
Network Programming Guide 

Part Number: 800-3850-10 
Revision A of 27 March, 1990 



Trademarks 

SunOS™, Sun Workstation®, as well as the word "Sun" followed by a numerical suffix, are trademarks 
of Sun Microsystems, Incorporated. 

ONC is a trademark of Sun Microsystems, Incorporated. 

UNIX® and UNIX System V® are trademarks of Bell Laboratories. 

All other products or services mentioned in this document are identified by the trademarks or service 
marks of their respective companies or organizations. 

Legal Notice to Users 

The Network Infonnation Service (NIS) was formerly known as Sun Yellow Pages. The functionality of 
the two remains the same, only the name has changed. The name Yellow Pages™ is a registered trade
mark in the United Kingdom of British Telecommunications pIc and may not be used without permission. 

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A. 

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any fonn or by any 
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an information 
retrieval system, without the prior written permission of the copyright owner. 

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in 
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in 
similar clauses in the FAR and NASA FAR Supplement. 

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, 
which license also covers Sun's licensees. 

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,1904,527,2324,745,407 
4,679,0144,435,7924,719,5694,550,368 in addition to foreign patents and applications pending. 

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the 
Regents of the University of California. We acknowledge the following individuals and institutions for their role in 
its development: The Regents of the University of California, the Electrical Engineering and Computer Sciences 
Department at the Berkeley Campus of the University of California, and Other Contributors. 



Contents 

Chapter 1 Network Services ............................................................................................. 1 

1.1. The Major Network Services .................................................................................... 2 

1.2. Network Programming Manual Overview........................................................ 3 

1.3. The Network File System (NFS) ............................................................................ 4 

Computing Environments ........................................................................................ 5 

Example NFS usage .................................................................................................... 6 

Example 1: Mounting a Remote Filesystem ............................................ 6 

Example 2: Exporting a Filesystem .............................................................. 7 

Example 3: Administering a Server Machine ......................................... 8 

NFS Architecture .......................................................................................................... 8 

Transparent Information Access ............................... ...................................... 8 

Different Machines and Operating Systems ............................................ 8 

Easily Extensible ..................................................................................................... 8 

Ease of Network Administration .................................................................... 9 

Reliability .................................................................................................................... 9 

High Performance ................................................................................................... 9 

The Sun NFS Implementation .......................................................... , ••••• ,:,: ••• " ............ . 

The NFS Interface ........................................................................ ,.:" .... ,:,"': ........ :.: .... , ..... .:,',: .... , .. 

The NFS and the Mount Protocol ........................ , ... ", ................... ".; ... ,' ..... ;.,; ...... ;-. 

Pathname Parsing .................................................... ,.~;., ...... ;;;;;;.:.,,;: ................ ,; .... :;;;: ... :;; ... ; ••• :::. 

Export and Mount Lists ........................................... :;;.;.; ... : ..• ,,"' ........... ii;; .... :;;:;.;;::; .•••• ; .••.• : ....... ;;;::: 

UNIX Mount Protocol Procedures ......................... 'i ••• " ......... , .... " .... :.· .... i ... " ................... :<:::/ 

A Stateless Protocol .................................................................... ,:.,. ...................... ; .. , ...... . 

Note: Miscellaneous Network Operations ................................ ;;;.;: ... ;:, .. ; ............. . 

- iii-



Contents - Continued 

1.4. Remote File Sharing (RFS) ....................................................................................... 18 

Advertise ............................................................................................... ............................. 18 

U nadvertise .......................................................................................... ............................. 18 

Remote Mounts .............................................................................................................. 18 

Resource Naming .......................................................................................................... 19 

RFS Security Features ................................................................................................ 19 

Client Authentication ............................................................................................ 19 

Client Autllorization .............................................................................................. 19 

User and Group Id Mapping ............................................................................. 20 

1.5. The Portmapper ................................................................................................................ 21 

Port Registration ............................................................................................................ 21 

1.6. The Network Infonnation SelVice Database Service .................................. 22 

What Is The Network InfOImation Service? ................................................. 23 

Network Infonnation Service Maps ................................................................... 23 

Network Infonnation Service Domains ........................................................... 23 

Masters and Slaves ....................................................................................................... 24 

Naming .......................................................................................................................... 24 

Data Storage ............................................................................................................... 25 

Servers ........................................................................................................................... 25 

Clients ............................................................................................................................ 25 

Default NIS Files .......................................................................... ................................ 25 

Hosts ............................................................................................................................... 26 

Passwd ........................................................................................................................... 26 

Others ............................................................................................................................. 26 

Changing your passwd ......................................................................................... 26 

1.7. The Network Lock Manager ..................................................................................... 26 

The Locking Protocol ................................................................................................. 29 

1.8. The Network Status Monitor .................................................................................... 30 

PART ONE: Network Programming .............................................................................. 31 

Chapter 2 Introduction to Remote Procedure Calls ........................................ 33 

2.1. Overview .............................................................................................................................. 33 

How it is useful .............................................................................................................. 33 

-iv-



Contents - Continued 

Terrn.inology .................................................................................................................... 33 

The RPC Model ............................................................................................................. 34 

2.2. Versions and Numbers .................................................................................................. 35 

2.3. Portmap ................................................................................................................................. 36 

2.4. Transports and Semantics ........................................................................................... 36 

Transport Selection ...................................................................................................... 36 

2.5. External Data Representation ................................................................................... 37 

2.6. Ipcinfo .................................................................................................................................... 37 

2.7. Assigning Program Numbers .................................................................................... 37 

Chapter 3 rpcgen Programming Guide ............................................................... 41 

3.1. The rpcqen Protocol Compiler .......................................................................... 41 

Converting Local Procedures into Remote Procedures .......................... 42 

An Advanced Example .............................................................................................. 47 

Debugging Applications ........................................................................................... 52 

The C-Preprocessor ..................................................................................................... 52 

rpcqen Programming Notes ............................................................................. 53 

Network Types .......................................................................................................... 53 

User-Provided Define Statements .................................................................. 53 

Inetd Support .............................................................................................................. 54 

Dispatch Tables ........................................................................................................ 54 

Client Programming Notes ...................................................................................... 55 

Timeout Changes ..................................................................................................... 55 

Client Authentication ................................................ .................. .......................... 56 

Server Programming Notes ..................................................................................... 56 

Handling Broadcast on the Server Side ...................................................... 56 

Other Infonnation Passed to Server Procedures .................................... 57 

RPC Language ................................................................................................................ 58 

Definitions ................................................................................................................... 58 

Enumerations ............................................................................................................. 58 

Typedefs ....................................................................................................................... 59 

Constants ...................................................................................................................... 59 

Declarations ................................................................................................................ 59 

-v-



Contents - Continued 

Structures ..................................................................................................................... 60 

Unions ............................................................................................................................ 60 

Programs ....................................................................................................................... 61 

Special Cases ............................................................................................................. 62 

Chapter 4 Remote Procedure Call Programming Guide ............................. 65 

4.1. Layers ofRPC ................................................................................................................... 65 

Higher Layers of RPC ................................................................................................ 66 

Middle Layers of RPC ............................................................................................... 67 

Passing Arbitrary Data Types .......................................................................... 69 

Lower Layers of RPC ................................................................................................. 72 

More on the Server Side ...................................................................................... 73 

More on the Client Side ....................................................................................... 75 

Memory Allocation with XDR ........................................................................ 77 

4.2. RawRPC .............................................................................................................................. 78 

4.3. Ot11erRPC Features ........................................................................................................ 80 

Select on tlle Server Side .......................................................................................... 80 

Broadcast RPC ............................................................................................................... 81 

Broadcast RPC Synopsis ..................................................................................... 82 

Batching ............................................................................................................................. 82 

Authentication ................................................................................................................ 86 

UNIX Authentication ............................................................................................ 86 

DES Authentication ............................................................................................... 89 

Using Inetd ....................................................................................................................... 92 

4.4. More EXaIllples ................................................................................................................. 92 

Versions on Server Side ............................................................................................ 92 

Versions on Client Side ............................................................................... .............. 94 

TCP ....................................................................................................................................... 95 

Callback Procedures .................................................................................................... 98 

4.5. Futures ................................................................................................................................... 101 

Chapter 5 External Data Representation: Sun Technical Notes ........... 103 

Justification ...................................................................................................................... 104 

-vi-



Contents - Continued 

A CaIlonical StaIldard ........................................................................................... 106 

The XDR Library .......................................................................................................... 107 

5.1. XDR Library Primitives .............................................................................................. 109 

Number Filters ................................................................................................................ 109 

Floating Point Filters ................................................ .................................................. 110 

Enumeration Filters ..................................................................................................... 111 

No Data ............................................................................................................................... III 

Constructed Data Type Filters ............................................................................... 111 

Strings .......................... ............ ...... ............ ......... ......... ......... ......... ...... ...... ............ ........ 111 

Byte Arrays ................................................................................................................. 112 

Arrays ............................................................................................................................. 113 

Opaque Data ............................................................................................................... 115 

Fixed Sized Arrays ................................................................................................. 116 

Discriminated Unions ........................................................................................... 116 

Pointers .................................................................................................................. ........ 118 

Non-filter Primitives ................................................................................................... 120 

XDR. Operation Directions ...................................................................................... 120 

XDR Stream Access .................................................................................................... 120 

Standard I/O Streams ............................................................................................ 120 

Memory Streams ...................................................................................................... 121 

Record (l'CPIIP) Streams ................................................................................... 121 

XDR Stream Implementation ................................................................................ 123 

The XDR Object ...................................................................................................... 123 

5.2. Advanced Topics ............................................................................................................. 124 

Linked Lists .......................................................... ........................................................... 124 

PART TWO: Protocol Specifications .............................................................................. 129 

Chapter 6 External Data Representation Standard: Protocol 
Specification ................................................ ........................................................... 131 

6.1. Status of this Standard .................................................................................................. 131 

6.2. Introduction ......................................................................................................................... 131 

Basic Block Size ........................................................................................................... 131 

6.3. XDR Data Types .............................................................................................................. 132 

-vii-



Contents - Continued 

Integer .................................................................................................................................. 132 

Unsigned Integer ........................................................................................................... 132 

Enumeration ..................................................................................................................... 133 

Boolean ............................................................................................................................... 133 

Hyper Integer and Unsigned Hyper Integer ................................................... 133 

Floating-point .................................................................................................................. 133 

Double-precision Floating-point .......................................................................... 134 

Fixed-length Opaque Data ....................................................................................... 135 

Variable-length Opaque Data ................................................................................ 135 

String .................................................................................................................................... 136 

Fixed-length Array ....................................................................................................... 136 

Variable-length Array ................................................................................................ 137 

Structure ............................................................................................................................. 137 

Discriminated Union ................................................................................................... 138 

Void ...................................................................................................................................... 138 

Constant .............................................................................................................................. 139 

Typedef ............................................................................................................................... 139 

Optional-data ................................................................................................................... 140 

Areas for Future Enhancement .............................................................................. 141 

6.4. Discussion ............................................................................................................................ 141 

Why a Language for Describing Data? ............................................................ 141 

Why Only one Byte-Order for an XDR Unit? .............................................. 141 

Why does XDR use Big-Endian Byte-Order? .............................................. 141 

Why is the XDR Unit Four Bytes Wide? ........................................................ 141 

Why must Variable-Length Data be Padded with Zeros? ..................... 142 

Why is there No Explicit Data-Typing? .......................................................... 142 

6.5. The XDR Language Specification ......................................................................... 142 

Notational Conventions ............................................................................... .............. 142 

Lexical Notes .................................................................................................................. 142 

Syntax Information ...................................................................................................... 143 

Syntax Notes .............................................................................................................. 144 

6.6. An Example of an XDR Data Description ........................................................ 145 

6.7. References ............................................................................................................................ 146 

- viii-



Contents - Continued 

Chapter 7 Remote Procedure Calls: Protocol Specification ..................... 147 

7.1. Status of tllis Memo ....................................................................... ................................ 147 

7.2. Introduction ......................................................................................................................... 147 

Tenninology .................................................................................................................... 147 

The RPC Model ............................................................................................................. 147 

Transports and Semantics ........................................................................................ 148 

Binding and Rendezvous Independence .......................................................... 149 

Autllentication ................................................................................................................ 149 

7.3. RPC Protocol Requirements ..................................................................................... 149 

Programs and Procedures ......................................................................................... 150 

Autllentication ................................................................................................................ 150 

Program Number Assignment ............................................................................... 151 

Other Uses of the RPC Protocol ........................................................................... 151 

Batching ........................................................................................................................ 152 

Broadcast RPC .......................................................................................................... 152 

7.4. The RPC Message Protocol....................................................................................... 152 

7.5. Authentication Protocols ............................................................................................. 155 

Null Autllentication ..................................................................................................... 155 

UNIX Authentication ................................................................................................. 155 

DES Autllentication ..................................................................................................... 156 

Naming .......................................................................................................................... 156 

DES Authentication Verifiers ........................................................................... 156 

Nicknames and Dock Synchronization ...................................................... 157 

DES Authentication Protocol (in XDR language) ................................ 158 

Diffie-Hellman Encryption ................................................................................ 159 

7.6. Record Marking Standard ........................................................................................... 160 

7.7. The RPC Language ........................................................................................................ 161 

An Example Service Described in the RPC Language ........................... 161 

The RPC Language Specification ........................................................................ 162 

Syntax Notes .................................................................................................................... 162 

7.8. Port Mapper Program Protocol ................................................................................ 162 

Port Mapper Protocol Specification (in RPC Language) ....................... 163 

Port Mapper Operation .............................................................................................. 164 

-ix-



Contents - Continued 

7.9. References ............................................................................................................................ 165 

Chapter 8 Network File System: Version 2 Protocol 
Specification ........................................................................................................... 167 

8.1. Status oftllis Standard .................................................................................................. 167 

8.2. Introduction ......................................................................................................................... 167 

Remote Procedure Call .............................................................................................. 167 

External Data Representation ................................................................................ 167 

Stateless Servers ............................................................................................................ 169 

8.3. NFS Protocol Definition .............................................................................................. 169 

File System Model ....................................................................................................... 169 

RPC Infonnation ........................................................................................................... 170 

Sizes of XDR Structures ........................................................................................... 170 

Basic Data Types .......................................................................................................... 170 

stat ............................................................................................................................ 171 

ftype ......................................................................................................................... 172 

fhandle ................................................................................................................... 172 

timeval ................................................................................................................... 173 

fattr ......................................................................................................................... 173 

sattr ......................................................................................................................... 174 

filename ............................................................................................................... 174 

path ............................................................................................................................ 174 

attrstat ............................................................................................................... 175 

diropargs ............................................................................................................ 175 

diropres ............................................................................................................... 175 

Server Procedures ......................................................................................................... 175 

Do Nothing .................................................................................................................. 176 

Get File Attributes .................................................................................................. 176 

Set File Attributes ................................................................................................... 176 

Get Filesystem Root .............................................................................................. 177 

Look Up File Name ............................................................................................... 177 

Read From Symbolic Link ................................................................................. 177 

Read From File ......................................................................................................... 177 

-x-



Contents - Continued 

Write to Cache .......................................................................................................... 178 

Write to File ............................................................................................................... 178 

Create File ................................................................................................................... 178 

Remove File ............................................................................................................... 178 

Renrune File ........................................................................................................ ........ 179 

Create Link to File .................................................................................................. 179 

Create Symoolic Link ........................................................................................... 179 

Create Directory ....................................................................................................... 180 

Remove Directory ................................................................................................... 180 

Read From Directory ............................................................................................. 180 

Get Filesystem Attributes .............................................................................. ..... 181 

8.4. NFS Implementation Issues ....................................................................................... 181 

Server/Client Relationship ...................................................................................... 182 

Pathnrune Interpretation ...................................................... .................. ...... .............. 182 

Pennission Issues .......................................................................................................... 182 

Setting RPC Parruneters ............................................................................................ 183 

8.5. Mount Protocol Definition ......................................................................................... 183 

Introduction ...................................................................................................................... 183 

RPC Information ........................................................................................................... 184 

Sizes of XDR Structures ............................. ........................ ............ ............... ........... 184 

Basic Data Types .......................................................................................................... 184 

fhandle ................................................................................................................... 184 

fhstatus ............................................................................................................... 184 

dirpath ................................................................................................................... 184 

name ............................................................................................................................ 185 

Server Procedures ....................................................... ...... ......... ........................ ........... 185 

Do Nothing .................................................................................................................. 185 

Add Mount Entry .................................................................. ................................... 185 

Return Mount Entries ............................................................................................ 185 

Remove Mount Entry ............................................................................................ 186 

Remove All Mount Entries ................................................................................ 186 

Return Export List .................................................................................................. 186 

PART THREE: Transport-Level Programming .................................................... 187 

-xi-



Contents - Continued 

Chapter 9 Transport Level Interface Programming ....................................... 189 

9.1. Background ......................................................................................................................... 189 

9.2. Document Organization ............................................................................................... 191 

9.3. OvelView of the Transport Interface ........................................ ......... .................... 192 

Modes of SelVice .......................................................................................................... 192 

Connection-Mode Service .................................................................................. 193 

Local Management ................................................................................................ 193 

Connection Establishment ................................................................................ 194 

Data Transfer ............................................................................................................ 196 

Connection Release .......................................................................... .................... 196 

Connectionless-Mode SelVice ......................................................................... 197 

State Transitions ............................................................................................................ 197 

9.4. Introduction to Connection-Mode Services ...................................................... 197 

Local Management· ...................................................................................................... 198 

The Client .................................................................................................................... 199 

The Server ................................................................................................................... 201 

Connection Establishment ....................................................................................... 204 

The Client .................................................................................................................... 204 

Event Handling ......................................................................................................... 205 

The Server ................................................................................................................... 206 

Data Transfer ................................................................................................................... 209 

The Client .................................................................................................................... 210 

The Server ................................................................................................................... 211 

Connection Release ..................................................................................................... 213 

The Server ................................................................................................................... 213 

The Client .................................................................................................................... 214 

9.5. Introduction to Connectionless-Mode Service ............................................... 215 

Local Management ...................................................................................................... 215 

Data Transfer ................................................................................................................... 217 

Datagrrun Errors ............................................................................................................ 219 

9.6. A Read/Write Interface ................................................................................................ 219 

write ............................................................................................................................... 221 

read .................................................................................................................................. 221 

- xii-



Contents - Continued 

close ............................................................................................................................... 221 

9.7. Advanced Topics ............................................................................................................. 222 

Asynchronous Execution Mode ............................................................................ 222 

Advanced Programming Example ...................................................................... 223 

9.8. State Transitions ............................................................................................................... 229 

Transport Interface States ........................................................................................ 229 

Outgoing Events ............................................................................................................ 229 

Incoming Events ............................................................................................................ 230 

Transport User Actions .............................................................................................. 231 

State Tables ...................................................................................................................... 231 

9.9. Guidelines for Protocol Independence ................................................................ 233 

9.10. Some Examples ............................................................................................................. 234 

Connection-Mode Client .......................................................................................... 235 

Connection-Mode Server ......................................................................................... 236 

Connectionless-Mode Transaction Server ...................................................... 239 

Read/Write Client ......................................................................................................... 241 

Event-Driven Server .................................................................................................... 243 

9.11. Glossary .............................................................................................................................. 248 

Chapter 10 A Socket-Based Interprocess Communications 
Tutorial .................................................................................................................... 251 

10.1. Goals .................................................................................................................................... 251 

10.2. Processes ............................................................................................................................ 252 

10.3. Pipes ..................................................................................................................................... 253 

10.4. Socketpairs ....................................................................................................................... 256 

10.5. Domains and Protocols .............................................................................................. 258 

10.6. Datagrams in the UNIX Domain ......................................................................... 260 

10.7. Datagrams in the Internet Domain ...................................................................... 263 

10.8. Connections ...................................................................................................................... 266 

10.9. Reads, Writes, Recvs, etc. ........................................................................................ 275 

10.10. Choices ............................................................................................................................. 278 

10.11. What to do Next .......................................................................................................... 278 

- xiii-



Contents - Continued 

Chapter 11 An Advanced Socket-Based Interprocess 
Communications Tutorial ......................................................................... 279 

11.1. Basics ................................................................................................................................... 280 

Socket Types ................................................................................................................... 280 

Socket Creation .............................................................................................................. 281 

Binding Local Names ................................................................................................. 282 

Connection Establishment ....................................................................................... 283 

Data Transfer ................................................................................................................... 285 

Discarding Sockets ....................................................................................................... 286 

Connectionless Sockets ............................................................................................. 286 

Input/Output Multiplexing ...................................................................................... 288 

11.2. Library Routines ............................................................................................................ 290 

Host Names ...................................................................................................................... 291 

Network Names ............................................................................................................. 291 

Protocol Names .............................................................................................................. 292 

Service Names ................................................................................................................ 292 

Miscellaneous ................................................................................................................. 293 

11.3. Client/SeIVer Model .................................................................................................... 295 

Servers ................................................................................................................................. 295 

Clients ................................................................................................................................. 298 

Connectionless Servers .............................................................................................. 299 

11.4. Advanced Topics ........................................................................................................... 302 

Out Of B and Data ......................................................................................................... 302 

Non-Blocking Sockets ............................................................................................... 304 

Interrupt Driven Socket I/O .................................................................................... 304 

Signals and Process Groups .................................................................................... 305 

Pseudo Tenninals .......................................................................................................... 306 

Selecting Specific Protocols ................................................................................... 308 

Address Binding ............................................................................................................ 309 

Broadcasting and Detennining Network Configuration ......................... 311 

Socket Options ..................................... .......................................................................... 314 

inetd ............................................................................................................................... 315 

-xiv-



Contents - Continued 

Chapter 12 Socket-Based IPC Implementation Notes .................................. 317 

Overview ............................................................................................................................ 317 

Goals .................................................................................................................................... 318 

12.1. Memory, Addressing .................................................................................................. 318 

Address Representation ............................................................................................. 318 

Memory Management ................................................................................................ 319 

12.2. Internal Layering ........................................................................................................... 322 

Socket Layer .................................................................................................................... 323 

Socket State ...................................................................................................................... 324 

Socket Data Queues ..................................................................................................... 325 

Socket Connection Queuing ................................................................................... 326 

Protocol Layer(s) ........................................................................................................... 326 

Network-Interface Layer .......................................................................................... 328 

12.3. Socket/Protocol Interface ......................................................................................... 331 

12.4. Protocol to Protocol Interface ................................................................................ 334 

pr_output () ........................................................................................................... 335 

pr_input () .............................................................................................................. 335 

pr_ctlinput () .................................................................................................... 336 

pr_ctloutput () ................................................................................................. 336 

12.5. ProtocollNetwork-Interface Interface ................................................................ 337 

Packet Transmission ....... ....................................... .................. ................................... 337 

Packet Reception ........................................................................................................... 337 

12.6. Gateways and Routing Issues ................................................................................ 338 

Routing Tables ............................................................................................................... 338 

Routing Table Interface .......................................................... ......... .......................... 340 

User Level Routing Policies ................................................................................... 341 

12.7. Raw Sockets ..................................................................................................................... 341 

Control Blocks ..................................................... ........................ ......... .......................... 341 

Input Processing ................ ................................. ........................ ......... .......................... 342 

Output Processing ...................................................................... ......... ..................... ..... 343 

12.8. Buffering, Congestion Control.............................................................................. 343 

Memory Management ................................................................................................ 343 

Protocol Buffering Policies ..................................................................................... 343 

-xv-



Contents - Continued 

Queue Limiting .............................................................................................................. 344 

Packet Forwarding ....................................................................................................... 344 

12.9. Out of Band Data .......................................................................................................... 344 

12.10. Acknowledgements ................................................................................................... 345 

12.11. References ...................................................................................................................... 345 

Index ....................................................................................................................................................... 347 

- xvi-



Tables 

Table 1-1 MOUNT: Remote Procedures, Version 1 .................................................. 15 

Table 2-1 Registered RPC Program Numbers ............................................................... 38 

Table 4-1 RPC Service Library Routines ......................................................................... 67 

Table 9-1 Local Management Routines ............................................................................. 194 

Table 9-2 Connection Establishment Routines ............................................................. 195 

Table 9-3 Connection Mode Data Transfer Routines ................................................ 196 

Table 9-4 Connection Release Routines ........................................................................... 196 

Table 9-5 Connectionless-mode Data Transfer Routines ........................................ 197 

Table 9-6 Transport Interface States .................................................................................... 229 

Table 9-7 Transport Interface Outgoing Events ............................................................ 230 

Table 9-8 Transport Interface Incoming Events ........................................................... 231 

Table 11-1 C Run-time Routines ........................................................................................... 293 

Table 11-2 ruptime Output .................................................................................................. 299 

- xvii-





Figures 

Figure 1-1 An Example NFS Filesystem Hierarchy ................................................... 7 

Figure 1-2 Mount and NFS Servers ..................................................................................... 13 

Figure 1-3 Typical Portmapping Sequence ..................................................................... 22 

Figure 1-4 Architecture of the NFS Locking Service ................................................ 28 

Figure 2-1 Network Communication with the Remote Procedure Call.......... 35 

Figure 9-1 OSI Reference Model .......................................................................................... 189 

Figure 9-2 Transport Interface ................................................................................................ 192 

Figure 9-3 Channel Between User and Provider .......................................................... 193 

Figure 9-4 Transport Connection .......................................................................................... 195 

Figure 9-5 Listening and Responding Transport Endpoints .................................. 209 

Figure 9-6 Common Local Management State Table ................................................ 232 

Figure 9-7 Connectionless-Mode State Table ................................................................ 232 

Figure 9-8 Connection-Mode State Table ........................................................................ 233 

Figure 10-1 Use of a Pipe ............................................................................................................. .. 

Figure 10-2 Sharing a Pipe between Parent and Child ........................ ;:;.;.;:;.; ..... ;" ............... . 

Figure 1 0-3 Use of a Socketpair ............................................................ ~.~.; .. ;;;;+.~;;, .. ;! ..... ~i;;;;;~~.;;.; ... · 

Figure 10-4 Sharing a Socketpair between Parent " .. A\.A ........ ,"UA .. &:::;; ..... ·i ... '::., .. :,;.;· ..... ;";;'i .. 

Figure 10-5 Reading UNIX Domain Datagrams ....... ;;"';,;:;;;;; ... ;.;::.; .... ;.;;:; ........ {;,,; .. .':':; .. ;;;. 

Figure 10-6 Sending a UNIX Domain Datagrams ........... : ... ;;; ... ;;:;:;;;:;; ....... ;i •.•.• ;;;,:;:;.: ..... ;:;;, •. ;; 

Figure 10-7 Reading Internet Domain Datagrams ........................ : ...... ;;i:'i'; ..... ,·;."" .... ·.:.;iii •• 

Figure 1 0-8 Sending an Internet Domain Datagram ....................... ;;;;:;;; ... ;;;,;; .. , ......... .. 

-xix-

253 

255 

264 



Figures - Continued 

Figure 10-9 Initiating an Internet Domain Stream Connection ............................ 266 

Figure 10-10 Accepting an Internet Domain Stream Connection ...................... 268 

Figure 10-11 Using select () to Check for Pending Connections ............. 270 

Figure 10-12 Establishing a Stream Connection .......................................................... 272 

Figure 10-13 Initiating a UNIX Domain Stream Connection ............................... 272 

Figure 10-14 Accepting a UNIX Domain Stream Connection ............................. 273 

Figure 10-15 Varieties of Read and Write Commands ............................................. 276 

Figure 11-1 Remote Login Client Code ............................................................................ 294 

Figure 11-2 Remote Login Server ........................................................................................ 295 

Figure 11-3 rwho Server ........................................................................................................... 300 

Figure 11-4 Flushing Tenninal I/O on Receipt of Out Of Band Data .............. 303 

Figure 11-5 Use of Asynchronous Notification of I/O Requests ......................... 305 

Figure 11-6 Use of the SrGCHLD Signal ......................................................................... 306 

Figure 11-7 Creation and Use of a Pseudo Tenninal ................................................. 307 

-xx-



1 
Network Services 

This guide gives an overview of the network services available in the Sun 4.1 
release. To appreciate the design of these services, it's necessary to see that 
SunOS is structurally a network UNIX system, and is designed to evolve as net
work technology changes. 

SunOS originally diverged from the 4.2BSD UNIX system, a system that already 
strained at the limits of the UNIX system's original simplicity of design. It was 
with 4.2BSD that many of the network services found in SunOS were first intro
duced. Fortunately, the Berkeley designers found alternatives to wedging every
thing into the kernel. They implemented network services by offloading certain 
jobs to specialized daemons (server processes) working in close cooperation with 
the kernel, rather than by adding all new code to the kernel itself. Though NFS is 
primarily kernel based (using a daemon only to make system calls), SunOS has 
continued this line of development. Its expanding domain of network services is 
unifonnly built upon a daemon (server) based architecture. Examples of server 
daemons are the portmapper, the network naming service (NIS), the Remote 
Execution Facility (REX), the Network Lock Manager, and the Status Monitor. 

Terminology A machine that provides resources to the network is called a userver", while a 
machine that employs these resources is called a II client". A machine may be 
both a server and a client, and when NFS resources (files and directories) are at 
issue, often is. A person logged in on a client machine is a uuser", while a pro
gram or set of programs that run on a client is an II application". There is a dis
tinction between the code implementing the operations of a filesystem, (called 
11ilesystem operations" ) and the data making up the filesystem' s structure and 
contents (called "filesystem data" ). 

Network services are added to SunOS by means of server processes that are 
based upon Sun's RPC (Remote Procedure Call) mechanism. These servers are 
executed on all machines that provide the service. Sun daemons differ 
significantly from those that were inherited from Berkeley in that most of them 
are based on RPC. As a consequence, they automatically benefit from the ser
vices provided by RPC, and the External Data Representation (XDR) that it is 
built upon - for example, the data portability provided by XDR and RPC's 
authentication system. 

Anything built with RPC/XDR is automatically a network application, as is any
thing that stores data in NFS files, even if it doesn't use RPC directly. Further
more, in so far as network applications can presume the functionality of other 
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network applications and call upon their services, all network applications are 
network services as well. The RPC/XDR environment then, is inherently exten
sible. New network services can be easily added by building upon the founda
tion already in place. In SunOS, then, network services are analogous to UNIX 
commands - anyone can add one, and when they do they are effectively 
extending the "system". 

The term Open Network Computing (ONC) is based on RPC utilities only (such 
as REX, NIS, Lock Manager, and Status Monitor). The other network utilities 
described here are not considered part of ONC. 

The Remote Procedure Call (RPC) facility is a library of procedures that provide 
a means whereby one process (the caller process) can have another process (the 
server process) execute a procedure call, as if the caller process had executed the 
procedure call in its own address space (as in the local model of a procedure 
call). Because the caller and the server are now two separate processes, they no 
longer have to live on the same physical machine. 

The External Data Representation (XDR)is a specification for the portable data 
representation standard. RPC uses XDR to ensure that data is represented the 
same on different computers, operating systems, and computer languages. In 
SunOS 4.1 XDR is implemented through the socket interface, yet allows pro
grammers to have a standardized access to sockets without being concerned 
about the low-level details of socket-based IPC. 

The Network File System (NFS), is an operating system-independent service 
which allows users to mount directories, even root directories, across the net
work, and then to treat those directories as if they were local. There is also an 
option for a secure mount involving DES authentication of user and host-for 
more infonnation about it, see the Secure Networking Features chapter of Secu
rity Features Guide. 

portmapper is a system service upon which all other RPC-based services rely. 
It's a kind of registrar that keeps track of the correspondence between ports (logi
cal communications channels) and services on a machine, and provides a stan
dard way for a client to look up the port number of any RPC program supported 
by the server. But in effect, only RPC programs use it. 

Sun's Network Information Service is a network. service designed to ease the job 
of administering large networks. NIS is a replicated, read-only, distributed data
base service. Network. file system clients use it to access network-wide data in a 
manner that is entirely independent of the relative locations of the client and the 
server. The NIS database typically provides password, group, network, and host 
infonnation. 

As part of its System V compatibility program, Sun now supports System-V 
(SVID) compatible advisory file and record locking for both local and NFS 
mounted files. User programs simply issue lockf () and fcntl () system 
calls to set and test file locks - these calls are then processed by Network Lock 
Manager daemons, which maintain locks at the network level, even in the face of 
multiple machine crashes. 
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The lock-manager daemons are able to manage machine crashes because they are 
based upon a general putpOse Network Status Monitor. This monitor provides a 
mechanism by which network applications can detect machine reboots and 
trigger application-specific recovery mechanisms. The Lock Manager is there
fore equipped with a flexible fault-tolerant recovery capability. 

There are other network services - NIS and REXl are two obvious examples
and there are many others that are certainly services in the broad sense. This sec
tion, however, is intended as an introduction, and it covers only the fundamental 
services noted above. 

This Network Programming manual contains this Network Services overview and 
then three major sections. In this overview the fundamental network services are 
introduced without dealing with any protocol or implementation related issues. 

PART ONE focuses on Sun's network programming mechanisms. It includes: 

o The rpcgen Programming Guide, which introduces the rpcgen protocol 
compiler and the C-like language that it uses to specify RPC applications 
and define network data. In almost all cases, rpcgen will allow network 
applications developers to avoid the use of lower-level RPC mechanisms. 

o The Remote Procedure Call Programming Guide is intended for program
mers who wish to understand the lower-level RPC mechanisms. Readers are 
assumed to be familiar with the C language and to have a working 
knowledge of network theory. 

o The External Data Representation: Sun Technical Notes, which introduces 
XDR and explains the justification for its "canonical" approach to network 
data interchange. This section also gives Sun implementation infonnation 
and a few examples of advanced XDR usage. 

PART TWO includes a number of number of protocol specifications. Both the 
External Data Representation Protocol Specification and Remote Procedure Call 
Specification have been published as a DARPA RFC (Request for Comments). 
These protocol specifications include: 

o The External Data Representation Protocol Specification, which includes a 
complete specification of XDR data types, a discussion of the XDR approach 
and a number of examples of XDR usage. This specification is published as 
DARPARFC 1014. 

o The Remote Procedure Call Protocol Specification, which includes a discus
sion of the RPC model, a detailed treatment of the RPC authentication facili
ties and a complete specification of the portmapper Protocol. This 
specification is published as DARPA RFC 1057. 

1 These. however. are notfundamenlal network services. in the same sense as NFS. REX. for example. 
cannot be guaranteed to be portable to a non-UNIX enviromnent. This is true because the executability of a 
program depends on many environmental factors - from machine architecture to operating-system services -
that are not universally available. 
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o The Network File System: Version 2 Protocol Specification, which includes 
a complete specification of the Mount Protocol, as well as the NFS 
specification itself. This specification is published as DARPA RFC 1094. 

PART THREE documents Transport-Level Network Programming. 

o The first chapter, Transport Level Interface (TLI) Programming, describes 
the TLI system interface for direct access to network mechanisms. 

The rest of the chapters in this part document the Berkeley style, socket-Based 
Inter-Process Communications mechanisms. 

o A Socket-Based Interprocess Communications Tutorial then introduces 
socket-based IPC. It assumes little more that basic networking concepts on 
the part of its reader, and includes many examples. 

o An Advanced Socket-Based Interprocess Communications Tutorial, which 
takes up where the Tutorial leaves off. 

o Berkeley-Style IPC Implementation Notes, which describes the low-level 
networking primitives (e.g. accept () , bind () and select () ) which 
originated with the 4.2BSD UNIX system. This document is of interest pri
marily to system programmers and aspiring UNIX gurus. 

The Network File System is a facility for sharing files in a heterogeneous 
environment of machines, operating systems, and networks. Sharing is accom
plished by mounting a remote filesystem, then reading or writing files in place. 

NFS was not designed by extending SunOS onto the network - such an 
approach was considered unacceptable because it would mean that every com
puter on the network would have to run SunOS. Instead, operating-system 
independence was taken as an NFS design goal, along with machine indepen
dence, crash recovery, transparent access and high performance. NFS was thus 
designed as a collection of network services, and not as a distributed operating 
system. As such, it is able to support distributed applications without restricting 
the network to a single operating system. 

Sun's implementation ofNFS is integrated with the SunOS kernel for reasons of 
efficiency, although such close integration is not strictly necessary. Other ven
dors will make different choices, as dictated by their operating environments and 
applications. And because of NFS 's open design, all of these applications will be 
able to work together on a single network. 
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The traditional timesharing environment looks like this: 

tenninall 

Mainframe Io-----t tenninal2 

tenninal3 

tenninal4 

The major problem with this environment is competition for CPU cycles. The 
workstation environment solves that problem, but requires more disk drives. A 
network environment looks like this: 

workstation2 workstation3 workstation4 

Network 

workstation 1 server 

printer 

The goal of the NFS design was to make all disks available as needed. Indivi
dual workstations have access to all infonnation residing anywhere on the net
work. Printers and supercomputers may also be available somewhere on the net
work. 
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Example NFS usage This section gives three examples of NFS usage. 

Example 1: Mounting a Remote 
Filesystem 

Suppose your machine name is client, that you want to read some on-line 
manual pages, and that these pages are not available on your server machine, 
named server, but are available on another machine named docserv. Mount 
the directory containing the manuals as follows: 

clienti /usr/etc/mount docserv:/usr/man lusr/man 

Note that you have to be superuser in order to do this. Now you can use the man 
command whenever you want. Try running the mount -p command (on 
client) after you've mounted the remote filesystem. Its output will look 
something like this: 

server:/roots/client / nfs rw,hard 0 0 
server:/usr /usr nfs ro 0 0 
server:/horne/server /horne/server nfs rw,bg 0 0 
server:/usr/local /usr/local nfs ro,soft,bg 0 0 
docserv:/usr/rnan /usr/rnan nfs ro,soft,bg 0 0 

You can remote mount not only filesystems, but also directory hierarchies inside 
filesystems. In this example, /usr /rnan is not a filesystem mount point - it's 
just a subdirectory within the /usr filesystem. Here's a diagram showing a few 
key directories of the three machines involved in this example. Ellipses 
represent machines, and NFS-mounted filesystems are shown boxed. There are 
five such boxed directories, corresponding to the five lines shown in the 
mount -p output above. The docserv: /usr/rnan directory is shown 
mounted as the /usr /man directory on client, as it would be by the mount 
command given above. 
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Figure 1-1 An Example NFS Filesystem Hierarchy 

Ilib 

Example 2: Exporting a 
Filesystem 

lusr lete llib lusr 

lusr/bin lusr/man 

lusr/loeal 

Suppose that you and a colleague need to work together on a programming pro
ject. The source code is on your machine, in the directory /usr/proj. It 
doesn't matter whether your workstation is a diskless node or has a local disk. 
Suppose that after creating the proper directory your colleague tried to remote 
mount your directory. Unless you have explicitly exported the directory, your 
colleague's remote mount will fail with a "permission denied" message. 

To export a directory, first become superuser and then edit the / etc/ exports 
file. If your colleague is on a machine named cohort, then you need to run 
exportfs (8) (after putting this line in / etc/ exports): 

/usr/proj -access=cohort 

If no explicit access is given for a directory, then the system allows anyone on 
the network to remote mount your directory. By giving explicit access to 
cohort, you have denied access to others. (For more details about the 
/etc/exports, see the exports (5) man page). mountd, the NFS mount 
request server, (see The NFS I nterj'ace, below) reads the file / et c / xt ab when
ever it receives a request for a remote mount. The file / etc/xtab contains the 
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Example 3: Administering a 
Server Machine 

NFS Architecture 

Transparent Infonnation Access 

Different Machines and 
Operating Systems 

Easily Extensible 

entries for directories that are currently exported. Now your cohort can remote 
mount the source directory by issuing this command: 

cohortt Jete/mount elient:/usr/proj /usr/proj 

This, however, isn't the end of the story, since NFS requests are also checked at 
request time. If you do nothing, the accesses that you've established in your 
/ etc / export 5 file will stay in effect, but you (and your programs) are free to 
change them at any time with the exportfs command and system call. 

Since both you and your colleague will be able to edit files on / u s r / pro j, it 
would be best to use the s c c s source code control system for concurrency con
trol. 

System administrators must know how to set up the NFS server machine so that 
client workstations can mount all the necessary filesystems. You export filesys
tems (that is, make them available) by placing appropriate lines in the 
/etc/exports file. Here is a sample /etc/exports file for a typical 
server machine: 

-access=systems / 
/exec -access=engineering:joebob:shilling 
/usr -access=engineering 
/home/server -access=engineering 
/home/local.sun2 -access=engineering:athena 
/home/local.sun3 -access=engineering 

Machine names or netgroups, such as staff (see netgroup (5» may be 
specified after the filesystem, in which case remote mounts are limited to 
machines that are a member of this netgroup. For the complete syntax of the 
/etc/exports file, see exports (5). At any time, the system administrator 
can see which filesystems are remote mounted by executing the showmount 
command. 

Users are able to get directly to the files they want without knowing the network 
address of the data. To the user, all NFS-mounted filesystems look just like 
private disks. There's no apparent difference between reading or writing a file on 
a local disk, and reading or writing a file on a disk in the next building. Infonna
tion on the network is truly distributed. 

No single vendor can supply tools for all the work that needs to get done, so 
appropriate services must be integrated on a network. NFS provides a flexible, 
operating system-independent platform for such integration. 

A distributed system must have an architecture that allows integration of new 
software technologies without disturbing the extant software environment. Since 
the NFS network -services approach does not depend on pushing the operating 
system onto the network, but instead offers an extensible set of protocols for data 
exchange, it supports the flexible integration of new software. 

Revision A, of 27 March 1990 



Ease of Network Administration 

Reliability 

High Performance 

Chapter 1 - Network Services 9 

The administration of large networks can be complicated and time-consuming, 
yet they should (ideally) be at least as easy to administer as a set of local filesys
terns on a timesharing system. The UNIX system has a convenient set of mainte
nance commands developed over the years, and the Network Information Ser
vice, a NFS-based network database service, has allowed them to be adapted and 
extended for the purpose of administering a network of machines. The NlS also 
allows certain aspects of network administration to be centralized onto a small 
number of file servers, e.g. only server disks must be backed up in networks of 
diskless clients. An overview of the NIS facility is presented in the The Network 
Information Service Database Service section of this manual. 

The NIS interface is implemented using RPC and XDR, so it is available to non
UNIX operating systems and non-Sun machines. NIS servers do not intetpret 
data, so it is easy for new databases to be added to the NIS service without modi
fying the servers. 

NFS's reliability derives from the robustness of the 4.2BSD filesystem, from the 
stateless NFS protoco12, and from the daemon-based methodology by which net
work services like file and record locking are provided. See The Network Lock 
Manager for more details on locking. In addition, the file server protocol is 
designed so that client workstations can continue to operate even when the server 
crashes and reboots. 

The major advantage of a stateless server is robustness in the face of client, 
server, or network failures. Should a client fail, it is not necessary for a server 
(or human administrator) to take any action to continue nonnal operation. 
Should a server or the network fail, it is only necessary that clients continue to 
attempt to complete NFS operations until the server or network gets fixed. This 
robustness is especially important in a complex network of heterogeneous sys
tems, many of which are not under the control of a professional operations staff, 
and which may be running untested systems that are often rebooted without 
warning. 

The flexibility of NFS allows configuration for a variety of cost and performance 
trade-offs. For example, configuring servers with large, high-performance disks, 
and clients with no disks, may yield better performance at lower cost than having 
many machines with small, inexpensive disks. Furthermore, it is possible to dis
tribute the filesystem data across many servers and get the added benefit ofmul
tiprocessing without losing transparency. In the case of read-only files, copies 
can be kept on several servers to avoid bottlenecks. 

Sun has also added several performance enhancements to NFS, such as "fast 
paths" for key operations, asynchronous service of multiple requests, disk-block 
caching, and asynchronous read-ahead and write-behind. The fact that caching 
and read-ahead occur on both client and server effectively increases the cache 
size and read-ahead distance. Caching and read-ahead do not add state to the 
server, nothing (except perfonnance) is lost if cached information is thrown 

2 The NFS protocol is stateless because each transaction stands on its own. The server doesn't have to 
remember anything - about clients or files - between transactions. 
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away. In the case of write-behind, both the client and selVer attempt to flush crit
ical infonnation to disk whenever necessary, to reduce the impact of an unantici
pated failure; clients do not free write-behind blocks until the selVer confinns 
that the data is written. 

In the Sun NFS implementation, there are three entities to be considered: the 
operating system interface, the virtual file system (VFS) , interface, and the net
work file system (NFS) interface. The UNIX operating system interface has been 
preserved in the Sun implementation of NFS, thereby insuring compatibility for 
existing applications. Applications will use read (2) and wr i te (2) to access 
NFS files just as the do to access local files. 

The VFS is best seen as a layer that Sun has wrapped around the traditional 
UNIX filesystem. This traditional filesystem is composed of directories and files, 
each of which has a corresponding inode (index node), containing administra
tive infonnation about the file, such as location, size, ownership, penn iss ions, 
and access times. Inodes are assigned unique numbers within a filesystem, but a 
file on one filesystem could have the same number as a file on another filesystem. 
This is a problem in a network environment, because remote filesystems need to 
be mounted dynamically, and numbering conflicts would cause havoc. To solve 
this problem, Sun designed the VFS, which is based on a data structure called a 
vnode. In the VFS, files are guaranteed to have unique numerical designators, 
even within a network. Vnodes cleanly separate file system operations from the 
semantics of their implementation. Above the VFS interface, the operating sys
tem deals in vnodes; below this interface, the filesystem may or may not imple
ment inodes. The VFS interface can connect the operating system to a variety 
of filesystems (for example, 4.2 BSD or MS-DOS). A local VFS connects to 
file system data on a local device. 
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The remote VFS defines and implements the NFS interface on the basis of the 
RPC and XDR mechanisms. The figure below shows the flow of a request from 
a client (at the top left) to a collection of filesystems. 

sys calls 

VFS 
interface 

4.2 
VFS 

NFS 
client 

RPC/ 
XDR 

Network 

NFS 

RPC/ 
XDR 

VFS 

4.2BSD 
UFS 

In the case of access through a local VFS, requests are directed to file system data 
on devices connected to the client machine. In the case of access through a 
remote VFS, the request is passed through the RPC and XDR layers onto the net. 
In the current implementation, Sun uses the UDP/IP protocols and the Ethernet. 
On the server side, requests are passed through the RPC and XDR layers to an 
NFS server, the selVeruses vnodes to access one of its local VFSs and service 
the request. This path is retraced to return results. 

Sun's implementation of NFS provides five types of transparency: 

1. Filesystem Type: The vnode, in conjunction with one or more local VFSs 
(and possibly remote VFSs) pennits an operating system (hence client and 
application) to interface transparently to a variety of filesystem types. 

2. Filesystem Location: Since there is no differentiation between a local and a 
remote VFS, the location of filesystem data is transparent. 

3. Operating System Type: The RPC mechanism allows interconnection of a 
variety of operating systems on the network, and makes the operating system 
type of a remote server transparent. 

4. Machine Type: The XDR definition facility allows a variety of machines to 
communicate on the network and makes the machine type of a remote server 
transparent. 
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The NFS Interface 

The NFS and the Mount 
Protocol 

More precisely J NFS never interprets 
path names. Some NFS procedures 
take pathname arguments, but they 
are just strings to NFS. 

5. Network Type: RPC and XDR can be implemented for a variety of transport 
protocols, thereby making the network type transparent. 

Simpler NFS implementations are possible at the expense of some advantages of 
the Sun version. In particular, a client (or server) may be added to the network 
by implementing one side of the NFS interface. An advantage of the Sun imple
mentation is that the client and seIVer sides can be symmetrical; thus, it is possi
ble for any machine to be client, seIVer, or both. Users at client machines with 
disks can arrange to share them over NFS without having to appeal to a system 
administrator or configure a different system on their workstation. 

As mentioned in the preceding section, a major advantage of NFS is the ability to 
mix filesystems. In keeping with this, Sun encourages other vendors to develop 
products to interface with Sun network services. The specifications for RPC and 
XDR have been placed in the public domain, and Sun's implementation ofRPC 
and XDR is freely licensed, whic seIVes as a standard for anyone wishing to 
develop applications for the network. Furthennore, the NFS interface itself is 
open and can be used by anyone wishing protocol specifications to implement an 
NFS client or seIVer for the network. 

The NFS interface defines traditional filesystem operations for reading direc
tories, creating and destroying files, reading and writing files, and reading and 
setting file attributes. The interface is designed so that file operations address 
files with an uninterpreted identifier called ajiiehandle, a starting byte address, 
and a length in bytes. NFS never deals with pathnames, only with filehandles. 

Given a filehandle for a directory, a client program can use NFS procedures to 
get other filehandles and thereby navigate throughout the directories and files of a 
filesystem. A client must, however, get its first filehandle for a filesystem by 
using RPC to call the mount seIVer. Mount will return a filehandle that grants 
access to the filesystem. Figure 1-2 shows the interaction between a client pro
gram, a mount seIVer, and an NFS server. Note that the only interface between a 
mount server and an NFS seIVer is a common filehandle. 
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Although many operating systems have analogs to the hierarchical NFS directory 
and file structure, the conventions used by operating systems to fonnulate path
names vary considerably. To accommodate the many possible path naming con
ventions, the mount procedure is not defined in the NFS protocol but in a 
separate mount protocol. Actually the mount protocol is the same for any 
Operating System. It is only the implementation that differs between systems. 

The mount procedure in the UNIX mount protocol converts a UNIX patbname 
into a filehandle. If local patbnames can be reasonably mapped to UNIX path
names; an NFS server developer may wish to implement the UNIX mount proto
col, even though the server runs on a different operating system. This approach 
makes the server immediately usable by clients that use the UNIX protocol and 
eliminates the need to develop a new mount command for UNIX-based clients. 

Alternatively, a server developer can obtain a new remote program number from 
Sun and define a new mount protocol. For example, the mount procedure in a 
VMS Mount protocol would take a VMS file specification rather than a UNIX 
patbname. Mount protocols are not mutually exclusive; a server could, for exam
ple, support the UNIX protocol for UNIX clients and a Multics protocol for Mul
tics clients. Both protocols would return filehandles defined by the NFS imple
mentation on their server. 

The mount protocols remove patbname parsing from the NFS protocol, so that a 
single NFS protocol can work with multiple operating systems. This means that 
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Export and Mount Lists 

UNIX Mount Protocol 
Procedures 

users and client programs need to know the details of a server's path naming con
ventions only when mounting a filesystem. Different server path naming con
ventions therefore typically have little impact on users. 

Because mounts are relatively infrequent operations, mount servers can be imple
mented outside of operating system kernels without materially affecting overall 
file system perfonnance. Because user-level code is easier to write and far easier 
to debug than kernel code, mount servers are fairly simple to put together. 

Technically, a mount protocol needs to define only a mount procedure that 
bootstraps the first filehandle for a filesystem. (By convention, a mount protocol 
should also define a NULL procedure). However, adding other procedures can 
simplify network management. As a convenience to clients, a mount protocol 
might provide a procedure that returns a list of filesystems exported by a server. 
Another useful item is a mount list, a list of clients and the patbnames they have 
mounted from the server. The UNIX mount protocol defines a mount list and a 
procedure called readmount () that returns the list. With the help of read
mount () , an administrator can notify the clients of a server that is about to be 
shutdown. 

Note that a mount list makes a mount server stateful. Recall, however, that the 
business of a mount server is to translate patbnames into filehandles; the state 
represented by a mount list does not affect a server's ability to operate correctly. 
Neither servers nor clients need take any action to update or rebuild a mount list 
after a crash. Mount server users should regard the mount and export lists pro
vided by a mount seIVer as "accessories" that are usually, but not necessarily, 
accurate. 

The mount protocol consists of the six remote procedures listed in Table 1-1. 
The mount () procedure transforms a UNIX patbname into a filehandle which 
the client can then pass to the associated NFS server. The patbname passed to 
the mount procedure usually refers to a directory, often the root directory of a 
filesystem, but it can name a file instead. In addition to returning the filehandle, 
mount adds the client's host name and the pathname to its mount list. The 
readmount () procedure returns the seIVer's mount list. unmount ( ) 
removes an entry from the server's mount list and unmountall () removes all 
of a client's mount list entries. The readexport () procedure returns the 
server's export list. 
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MOUNT: Remote Procedures, Version 1 

Number Name Description 
0 null Do nothing 
1 mount Return filehandle for pathname 
2 readmount Return mount list 
3 unmount Remove mount list entry 
4 unmountall Qear mount list 
5 readexport Return export list 

The NFS interface is defined so that a server can be stateless. This means that a 
seIVer does not have to remember from one transaction to the next anything 
about its clients, transactions completed or files operated on. For example, there 
is no open () operation, as this would imply state in the seIVer; of course, the 
UNIX interface uses an open () operation, but the information in the UNIX 
operation is remembered by the client for use in later NFS operations. 

An interesting problem occurs when a UNIX application unlinks an open file. 
This is done to achieve the effect of a temporary file that is automatically 
removed when the application tenninates. If the file in question is served by 
NFS, the call to unlink () will remove the file, since the server does not 
remember that the file is open. Thus, subsequent operations on the file will fail. 
In order to avoid state on the server, the client operating system detects the situa
tion, renames the file rather than unlinking it, and unlinks the file when the appli
cation terminates. In certain failure cases, this leaves unwanted "temporary" files 
on the seIVer, these files are removed as a part of periodic file system mainte
nance. 

Another example of the advantages gained by having the NFS interface to the 
UNIX system without introducing state is the mount command. A UNIX client 
ofNFS "builds" its view of the filesystem on its local devices using the mount 
command or via automount; thus, it is natural for the UNIX client to initiate 
its contact with NFS and build its view of the filesystem on the network with an 
extended mount command. This mount command does not imply state in the 
seIVer, since it only acquires information for the client to establish contact with a 
seIVer. The mount command may be issued at any time, but is typically exe
cuted as a part of client initialization. The corresponding umount command is 
only an informative message to the server, but it does change state in the client 
by modifying its view of the filesystem on the network. 

The major advantage of a stateless seIVer is robustness in the face of client, 
seIVer or network failures. Should a client fail, it is not necessary for a server (or 
human administrator) to take any action to continue normal operation. Should a 
server or the network fail, it is only necessary that clients continue to attempt to 
complete NFS operations until the server or network is fixed. This robustness is 
especially important in a complex network of heterogeneous systems, many of 
which are not under the control of a professional operations staff and may be 
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Note: Network access to devices 
such as tape drivers is a good idea, 
but it is best implemented as a 
separate network service whose 
requirement for stateful operation is 
kept separate from network access 
to files. 

running untested systems and/or may be rebooted without warning. 

An NFS selVer can be a client of another NFS selVer. However, it is not often 
that a Sun selVer will not act as an intermediary between a client and another 
selVer. Instead, a client may ask what remote mounts the selVer has and then 
attempt to make similar remote mounts. The decision to disallow intermediary 
selVers is based on several factors. First, the existence of an intennediary will 
impact the performance characteristics of the system; the potential performance 
implications are so complex that it seems best to require direct communication 
between a client and selVer. Second, the existence of an intermediary compli
cates access control; it is much simpler to require a client and selVer to establish 
direct agreements for selVice. Finally, disallowing intermediaries prevents 
cycles in the selVice arrangements; Sun prefers this to detection or avoidance 
schemes. 

NFS currently implements UNIX file protection by making use of the authentica
tion mechanisms built into RPC. This retains transparency for clients and appli
cations that make use of UNIX file protection. Although the RPC definition 
allows other authentication schemes, their use may have adverse effects on tran
sparency. 

Note that NFS, although very UNIX-like, is not a UNIX filesystem per se
there are cases in which its behavior differs from that which would be expected 
of the UNIX system proper: 

o The guaranteed APPEND_MODE is the most striking of these differences, 
for it simply is not supported by NFS. 

o NFS does not support device operation over NFS. Support of special files is 
not stateful because the device operations are carried out locally. 

o There are also minor incompatibilities between NFS and UNIX file-system 
interfaces that are dictated by the very nature of remote NFS mounts. For 
example, a local NFS daemon simply can't tell that a remote disk partition is 
full until the remote NFS daemon tells it so. Rather than wait for a positive 
confirm on every write - a strategy that would impose unacceptable perfor
mance problems - the local NFS code caches writes and returns to its 
caller. If a remote error occurs, it gets reported back as soon as possible, but 
not as immediately as would a local disk. 

File locking and other inherently stateful functionality has been omitted from the 
base NFS definition. In this way, Sun has been able to preselVe a simple, general 
interface that can be implemented by a wide variety of customers. File locking 
has been provided as a NFS-compatible network selVice, and Sun is considering 
doing the same for other features that inherently imply state and/or distributed 
synchronization. These features, too, will be kept separate from the base NFS 
definition. In any case, the open nature of the RPC and NFS interfaces means 
that customers and users who need stateful or complex features can implement 
them "beside" NFS. 
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Sun supports a small number of miscellaneous networking operations that are 
useful for temporary inter-host connections, isolated file transfers, and access to 
non-UNIX systems (e.g. VMS machines on the Internet). These operations 
include rep, rlogin, rsh, ftp, telnet, and tftp. 

o rep is a remote copy utility program that uses "BSD networking facilities" 
to copy files from one machine to another. The rep user supplies the path 
name of a file on a remote machine, and receives a stream of bytes in return. 
Access control is based on the client's login name and host name. 

The major problem with rep is that it's not transparent to the user, who 
winds up with a redundant copy of the transferred file. With NFS, by con
trast, only one copy of the file is necessary. Another problem is that rep 
does nothing but copy files. To use it as a model for additional network ser
vices would be to introduce a remote command for every regular command: 
for example, r di f f to perform differential file comparisons across 
machines. By providing for the sharing of filesystems, NFS makes this 
unnecessary . 

rep is useful for NFS seIVers that you have login access to but not NFS access. 
Files can copied back and forth, yet you don't need any file system mounted. 

o r login allows the user to log into a remote machine, directly accessing 
both its processor and its mounted file systems. It remains useful in NFS
based networks because, with it, users can directly execute commands on 
remote machines over the network. 

Drs h allows the user to execute a command on a remote machine. If no com
mand is specified, rsh is equivalent to rlogin. Unlike the REX-based on 
command, r s h does not copy the users local environment to the remote 
machine before executing the command. This can be a benefit in situations 
where exporting your local environment might cause problems. 

o ftp is very much like rep, in that it supports file copying between 
machines. However, ftp is more general that rep, and is not restricted to 
copies between two UNIX systems. 

o telnet communicates with another host using the TELNET protocol. It 
isn't used much because rlogin is the standard mechanism for local inter
host communication. But like ftp, telnet is useful for non-Unix sys
tems. 

o tftp is like ftp, expect that it is simpler and less reliable. This is because 
tftp's transfer protocol is very simple; it is less robust that ftp's protocol, 
and offers fewer options. tftp is also used as part of the diskless NFS 
booting procedure (Le. netdisk). 
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1.4. Remote File Sharing 
(RFS) 

Advertise 

Unadvertise 

Remote Mounts 

Remote File Sharing (RFS) provides a means of viewing files that physically 
reside on remote machines as if they were on the local machine. Remote files are 
named using the same conventions as for local files, and all operations on remote 
files work the same as they do on local files. Like NFS, RFS allows application 
programs to transparently share files across the network. 

NFS, however, is stateless, transactions are independent of each other, and thus 
no recovery is required when a server or client goes down. RFS, in contrast, sup
ports all UNIX semantics as defined by AT&T. Consequently, it saves state 
across transactions, and must recover when a server or client goes down. 

RFS is used in much the same way as NFS. For both, the user accesses remote 
files by mounting directories which are made available across the network by 
server processes running on remote machines. The details do vary, though. 
Machines using RFS make selected directories available for sharing by advertis
ing them. Correspondingly, machines are able to augment their own file trees 
with the advertised files from other machines. This augmentation is perfonned 
by means of a remote mount, which is a direct extension of the standard mount 
operation. Once remote directories have been mounted on the local filesystem, 
they are functionally part of that filesystem and are accessed in the same way as 
local directories. 

To allow other machines to access a directory, its owner must advertise it by 
using the adv (8) command. Once advertised, the directory and all files con
tained in its subtree are available for sharing by any authorized machine. 

A directory can be unadvertised at any time with the unadv (8) command. 
Unadvertising a directory has no effect on existing mounts of that directory, but 
future mount requests will fail. 

RFS extends the mount (8) operation to include a remote mount. After a 
machine has advertised a resource, another machine may remotely mount that 
resource in its own file tree. For example, to advertise a directory named / f s 1, 
the administrator of a server machine would type: 

exarnple% adv DATA /£sl 

This makes the / f s 1 subtree available for sharing, and specifies that other 
machines will use the name DATA to refer to it when they mount it. The name 
DATA can be almost any name that would work as a file name as long as it does 
not contain a period (". "). See below for the special meaning of the period. 

Another machine (a client) gains access to the advertised subtree by mounting 
the remote subtree on the local directory. The remote / f s 1 is mounted on the 
local / f s 1 with the command 

exarnple% mount -d DATA /£sl 

The -d option tells the mount (8) command that the resource being mounted is 
remote. 

There is no need for the structures of the client and server file trees to match in 
any way, or for advertised subtrees to be mounted at the same level on the client 
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as they occupy on the server. If the client had done the remote mount onto its 
/ u s r directory, then its references to files under / u s r would yield files in the 
server subtree under / f s 1. A client cannot get to parts of the server file tree that 
are not within an advertised directory. 

Resource naming is modeled after the DARPA domain naming convention, 
which has a hierarchically structured name space. A domain in this usage is a 
name space that may encompass a group of machines and a set of resources 
advertised by that group of machines. 

Resource names are made up of two components separated by a period ("."). For 
example, isl.payroll might represent a resource called payroll in domain isl, and 
isl.acctp might represent the machine acctp within the same domain. Whether a 
name specifies a resource or a machine is determined by context; there is no syn
tactic distinction. If a name is unqualified (Le., if it contains no periods), the 
associated domain may (in some cases) be inferred from the context. 

A domain's name space is maintained by a domain name server, which insures 
uniqueness of names within the domain and provides a central location for stor
ing infonnation about the machines and advertised resources in the domain. The 
adv (8), unadv (8), mount (8), umount (8), and nsquery (8) com
mands use the domain name server as a data base for infonnation about adver
tised resources, such as their names and the servers that own them. 

As described above, each resource is assigned a symbolic name when it is adver
tised, and the resource is subsequently identified (e.g. with a mount (8) com
mand issued on a client) using just the domain name and that symbolic name. 
Because of this symbolic naming of resources, remote users of resources need 
not know the actual position of the resources within the server's file tree, nor 
even what server within the domain is offering the resource. This location 
independence simplifies references to resources, and allows for the transparent 
migration of resources among the machines within a domain (for example, for 
balancing the load among a set of server machines). 

RFS contains three security features - client authentication, client authorization, 
and user and group id mapping. 

This feature associates a password with a client machine so that the identity of a 
prospective client can be checked before a mount request is serviced. Entry and 
update of passwords is discussed in the rfadmin (8) , rfstart (8) , and 
rfpasswd(8) commands. 

RFS provides a means of selectively advertising directories through the adv ( 8 ) 
command. For example, if you want to advertise / us r / pr iva t e, but only 
want to authorize machines mach1 and mach2 to mount it, you would issue the 
command: 

example% adv PRIVATE /usr/private machl mach2 

Without such a list of machines, the adv ( 8) command puts no restrictions on 
av ailabili ty . 
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User and Group Id Mapping 

One may also choose to advertise a directory read-only by using the - r option. 
Here, a remote mount will only succeed if the mount command also includes the 
-r option. 

Whenever a user accesses a remote file, that user's pennissions must be checked 
as part of the normal processing of the request (for example, an "open to write" is 
only valid if the user making the request has write pennissions on the file). 
When accessing a file across two machines, there is no guarantee that the user 
and group ids on the local machine have the same meaning on the other machine. 

Some machines handle this problem by requiring the same numeric ids across 
machines and expecting the administrators to make sure that the / etc/passwd 
and / etc/ group files are identical across all machines (at least the entries for 
all users that access remote files). This approach is conceptually simple, but it is 
not always feasible in practice, especially in large or already established environ
ments. 

RFS, therefore, provides a range of id mapping options through the idload ( 8 ) 
command. Id mapping is done by a server machine on all incoming requests, as 
well as in reporting file ownership ids in response to a request from a client 
machine (e.g. a stat (2) or f s ta t (2 »). A client machine maps ids in order 
to detennine the effective user or group id to use in executing a program that is 
stored on a server and is "set user id" or "set group id". 

On each machine, mapping can be set globally, for all remote machines, or on a 
per-machine basis. All mapping is based on one of two default cases: 

Id This case maps all incoming ids to id, which means that remote users will 
have the pennissions associated with id in accessing a server's files. This 
mapping is the default if no other mapping is specified. 

Transparent 
This is a null mapping; remote user and group ids are used locally without 
change. 

These base mappings are augmented by two additional capabilities: 

Exclude 
This capability excludes selected ids from the default mapping by mapping 
them to an otherwise unused id. This capability can be used together with 
the transparent mapping capability to handle a network where the 

Map 

/ etc/passwd and / etc/ group files were identical, but certain pennis
sions (e.g. root) are to be disallowed from remote machines. 

This capability provides arbitrary mapping between remote and local ids that 
have different name or different numeric values. It can be used with the 
transparent mapping to handle exceptions to "nearly" identical 
/ etc/passwd files. 
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Client programs need a way to find server programs; that is, they need a way to 
look up and find the port numbers of server programs.3 Network transport ser
vices do not provide such a selVice; they merely provide process-to-process mes
sage transfer across a network. A message typically contains a transport address 
which contains a network number, a host number, and a port number. (A port is a 
logical communications channel in a host - by waiting on a port, a process 
receives messages from the network). 

How a process waits on a port varies from one operating system to the next, but 
all provide mechanisms that suspend a process until a message arrives at a port. 
Thus, messages are not sent across networks to receiving processes, but rather to 
the ports at which receiving processes wait for messages. The portmapper proto
col defines a network service that provides a standard way for clients to look up 
the port number of any remote program supported by a server. 

The portmapper on every host is associated with port number 111. The port
mapper is one of the few network services that must have such a well-known and 
dedicated port. Other network services can be assigned port numbers statically 
or dynamically so long as they register their ports with their host's portmapper. 
For example, a selVerprogram based on Sun's RPC library typically gets a port 
number at run time by calling an RPC library procedure. Note that a given net
work service can be associated with port number 1256 on one server and with 
port number 885 on another; on a given host, a service can be associated with a 
different port every time its selVer program is started. Delegating port-to-remote 
program mapping to portrnappers also automates port number administration. 

The portmapper is started automatically whenever a machine is booted. As 
shown in the Typical Portmapping Sequence figure, below, both server programs 
and client programs call portmapper procedures.4 To find a remote program's 
port, a client sends an RPC call message to a server's portrnapper; if the remote 
program is registered with the portrnapper, it returns the relevant port number in 
an RPC reply message. The client program can then send RPC call messages to 
the remote program's port. 

NOTE The portmapper provides an inherently stateful service because a portmap is a 
set of associations between registrants and ports. Hence, all the RPC services 
need to be reregistered if the portmap is restarted. 

3 The naming of services by way of the port-number segment of their IP address is mandated by the Internet 
protocols. Given this, clients face the problem of detennining which ports are associated with the services they 
wish to use. 

4 Although client and server programs and client and server machines are usually distinct, they need. not be. 
A server program can also be a client program, as when an NFS server calls a porunapper server. Likewise, 
when a client program directs a "remote" procedure call to its own machine, the machine acts as both client and 
server. 
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Figure 1-3 Typical Portmapping Sequence 
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Note that, because every instance of a remote program can be mapped to a dif
ferent port on every server, a client has no way to broadcast a remote procedure 
call directly. However, the portmapper PMAPPROC _ CALLIT procedure can be 
used to broadcast a remote procedure call indirectly, since all portmappers are 
associated with port number 111. One way for a client to find a seIVer running a 
remote program is to broadcast a call to PMAPPROC _ CALLIT, asking it to call 
procedure 0 of the desired remote program. 

The Sun RPC library provides an interface to all portmapper procedures. Some 
of the RPC library procedures also call portmappers automatically on behalf of 
client and seIVer programs. 

This chapter explains Sun's network database mechanism, the Network Infonna
tion Service. NIS was previously known as "Yellow Pages", which is now a 
trademark of British Telecom (refer to the trademark page at the front of this 
manual). Although it is not intended exclusively for system administrators, it 
leans towards their concerns. The Network Information Service pennits pass
word information and host addresses for an entire network to be held in a single 
database, and, by so doing, greatly ease system and network administration. 
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The Network Infonnation Service constitutes a distributed network lookup ser
vice: 

o NIS is a lookup service: it maintains a set of databases for querying. Pro
grams can ask for the value associated with a particular key, or all the keys, 
in a database. 

o NIS is a network service: programs need not know the location of data, or 
how it is stored. Instead, they use a network protocol to communicate with a 
database server that knows those details. 

o Network Infonnation Service is distributed: databases are fully replicated on 
several machines, known as NIS servers. SelVers propagate updated data
bases among themselves, ensuring consistency. At steady state, it doesn't 
matter which server answers a request; the answer is the same everyWhere. 

The Network Infonnation Service serves infonnation stored in NIS maps. Each 
map contains a set of keys and associated values. For example, the hosts map 
contains (as keys) all host names on a network, and (as values) the corresponding 
Internet addresses. Each NIS map has a mapname, used by programs to access 
data in the map. Programs must know the fonnat of the data in the map. Most 
maps are derived from ASCII files fonnerly found in / et e / pa s s wd, 
fete/group, fete/hosts, fete/networks, and other files in / etc. 
The fonnat of data in the NIS map is in most cases identical to the fonnat of the 
ASCII file. Maps are implemented by dbm ( 3X) files located in subdirectories 
of / et e / yp on NIS server machines. 

The relationship between a NIS map and the standard UNIX / ete file which it 
relates to varies from map to map. Some files (e.g. fete/hosts, are replaced 
by their corresponding NIS maps, while some (e.g. / ete/passwd are merely 
augmented. 

Maps sometimes have nicknames. Although the ypea t command is a general 
NIS database print program, it knows about the standard files in the NIS. Thus 
ypeat hosts is translated into ypeat hosts .byaddr, since there is no 
file called hosts in the NIS. The command ypeat -x furnishes a list of 
expanded nicknames. 

A NIS domain is a named set of NIS maps. Taken together, these maps define a 
distinct network namespace and locate a distinct area of administrative control. 
NIS domains differ from both Internet domains and sendmail domains, which 
define similar kinds of administrative loci in their respective (IP and electronic 
mail) networks. A given host will typically fall within all three domains, but 
these domains will not typically coincide. A NIS domain is implemented as a 
directory in / ete/yp containing a set of maps. 

You can determine your NIS domain by executing the domainname command. 
A domain name is required for retrieving data from a NIS database. For instance, 
if your NIS domain is s y s 1 and you want to find the Internet address of host 
dbserver, you must ask NlS for the value associated with the key dbserver 
in the map ho st s . byname within the NIS domain sy s 1. Each machine on 
the network belongs to a default domain, which is set at boot time. Diskfull 
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Masters and Slaves 

Naming 

machines have their default domains set by a call to the domainname command 
made from / etc/ rc .local. Diskless clients have it set as the result of a con
sultation with the bootparams {5} server. 

A NIS server holds all the maps of a NIS domain in a subdirectory of / et c / yp, 
named after the domain. In the example above, maps for the s y s 1 domain 
would be held in / et c / yp / s y s 1. A given host can contain maps for more 
than one NIS domain. 

NIS servers containing copies of the same databases can be spread throughout a 
network. When an arbitrary machine wants information in one of the NIS data
bases, it makes an RPC call to one of the NIS servers to get it. For any NIS map, 
one NIS server is designated as the master - the only one whose database may 
be modified. The other NIS servers are slaves, and they are automatically 
updated from time to time to keep their information in sync with that of the mas
ter. 

All changes to a NIS map must be made on the machine which is the master NIS 
server for that map. The changes will then propagate to the slaves. A newly 
built map is timestamped internally when it's created by makedbm. If you build 
a NIS map on a slave server, you will temporarily break the NIS update algo
rithm, and will have to get all versions in synch manually. Moral: after you 
decide which server is the master, do all database updates and builds there, not 
on slaves. 

A given server may even be master with regard to one map, and slave with regard 
to another. This can get confusing quickly. Thus, its recommended that a single 
server be master for all maps created by ypini t in a single domain. Here we 
are assuming this simple case, in which one server is the master for all maps in a 
database. 

Imagine a company with two different networks, each of which has its own 
separate list of hosts and passwords. Within each network, user names, numeri
cal user IDs, and host names are unique. However, there is duplication between 
the two networks. If these two networks are ever connected, chaos could result. 
The host name, returned by the hostname command and the gethost-
name () system call, may no longer uniquely identify a machine. Thus a new 
command and system call, domainname and getdomainname () have been 
added. In the example above, each of the two networks could be given a dif
ferent domain name. However, it is always simpler to use a single domain when
ever possible. 

The relevance of domains to NIS is that data is stored in 
/etc/yp/ domainname. In particular, a machine can contain data for several 
different domains. 

~~sun ~~ mlcrosystems 
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The data in NIS maps is stored as dbm fonnat databases. (See dbm (3X). Thus 
the database ho st s . byname for the domain s y s 1 is stored as 
/etc/yp/sysl/hosts.byname.pagmd 
/etc/yp/sysl/hosts .byname. dire The command makedbm takes m 
ASCII file such as /etc/hosts and converts it into a dbm file suitable for use 
by the NIS. However, system administrators normally use the makefile in 
/ etc/yp to create new dbm files (read on for details). This makefile in tum 
calls makedbm. 

To become a seNer, a machine must contain the NIS databases, and must also be 
running the NIS daemon ypserv. The ypini t commmd invokes this daemon 
automatically. It also takes a flag saying whether you are creating a master or a 
slave. When updating the master copy of a database, you can force the change to 
be propagated to all the slaves with the yppush commmd. This pushes the 
information out to all the slaves. Conversely, from a slave, the ypxfr command 
gets the latest information from the master. The makefile in / etc/yp first exe
cutes makedbm to make a new database, and then calls yppush to propagate 
the chmge throughout the network. 

Remember that a client machine does not access local copies of / etc files, but 
rather makes m RPC call to a NIS seNer each time it needs information from a 
NIS database. NIS clients on NIS seNers also don't access local copies of / etc 
files. The ypbind daemon remembers the name of a seNer. When a client 
boots, ypbind broadcasts asking for the name of the NIS server. Similarly, 
ypbind broadcasts asking for the name of a new NIS server if the old seNer 
crashes. The ypwhich commmd gives the name of the server that ypbind 
currently points at. 

Since client machines don't have entire copies of files in the NIS, the commands 
ypcat and ypmatch have been provided. As you might guess, ypcat 
passwd is equivalent to cat / etc/passwd. To look for someone's pass
word entry, searching through the password file no longer suffices; you have to 
issue one of the following commands 

example% ypcat passwd I qrep username 
example% ypmatch username passwd 

where you replace username with the login name you're searching for. 

By default, Sun workstations have a number of files from / etc in their NIS: 
/etc/passwd,/etc/group,/etc/hosts,/etc/networks, 
/etc/services, /etc/protocols, and /etc/ethers. In addition, 
there is the netgroup (5) , file, which defines network wide groups, and used 
for permiSSion checking when doing remote mounts, remote logins, md remote 
shells. 

In SunOS 4.0, the library routines getpwent () ,getgrent (), and gethos
tent () were rewritten to take advmtage of the NIS. Thus, C programs that 
call these library routines may have to be relinked in order to function correctly. 
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Hosts The hosts file is stored as two different NIS maps. The first, hosts. byname, 
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is indexed by hostname. The second, hosts. byaddr, is indexed by Internet 
address. Remember that this actually expands into four files, with suffixes 
.pag, and . dir. When a user program calls the library routine gethost-
byname ( ) , a single RPC call to a server retrieves the entry from the 
hosts. byname file. Similarly, gethostbyaddr () retrieves the entry from 
the hosts. byaddr file. If the NIS is not running (which is caused by com
menting ypbind out of the / ete/ re file), then gethostbyname () will 
read the / etc/hosts files, just as it always has. 

Normally, the hosts file for the NIS will be the same as the fete/hosts file on 
the machine serving as a NIS master. In this case, the makefile in / et e / yp will 
check to see if / et e / ho s t s is newer than the dbm file. If it is, it will use a 
simple sed script to recreate host s . byname and hosts. byaddr, run them 
through makedbm and then call yppush See ypmake for details. 

The passwd file is similar to the hosts file. It exists as two separate files, 
passwd. byname and passwd. byuid. The ypeat program prints it, and 
ypmake updates it. However, if getpwent always went directly to the NIS as 
does gethostent, then everyone would be forced to have an identical pass
word file. Consequently, getpwent reads the local / ete/passwd file, just as 
it always did. But now it intetprets "+" entries in the password file to mean, 
intetpolate entries from the NIS database. If you wrote a simple program using 
getpwent to print out all the entries from your password file, it would print out 
a virtual password file: rather than printing out + signs, it would print out what
ever entries the local password file included from the NIS database. 

Of the other files in / etc, / ete/ group is treated like / ete/passwd, in that 
getgrent () will only consult the NIS if explicitly told to do so by the 
fete/group file. The files fete/networks, /ete/serviees, 
/ete/protoeols, fete/ethers, and /ete/netgroup are treated like 
jete/hosts: for these files, the library routines go directly to the NIS, without 
consulting the local files. 

To change data in the NIS, the system administrator must log into the master 
machine, and edit databases there; ypwhieh -m tells where the master server 
is. However, since changing a password is so commonly done, the yppasswd 
command has been provided to change your NIS password. It has the same user 
interface as the passwd command. This command will only work if the 
yppa s s wdd server has been started up on the NIS master server machine. 

SunOS includes an NFS-compatible Network Lock Manager (see the lockd(8C) 
man page for more details) that supports the loekf () /fentl (), System V 
style of advisory file and record locking over the network. System V locks are 
generally considered superior to 4.3BSD locks, implemented with the flock ( ) 
system call, for they provide record level, and not merely file level, locking. 
Record level locking is essential for database systems. Sun does support 
flock () for use on individual machines, but flock () is not intended to be 
used across the network. flock () locks exclude only other processes on the 
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same machine. There is no interaction between flock () and lockf () . 

Locking prevents multiple processes from modifying the same file at the same 
time, and allows cooperating processes to synchronize access to shared files. The 
user interfaces with Sun's network locking service by way of the standard 
lockf () system-call interface, and rarely requires any detailed knowledge of 
how it works. The kernel maps user calls to flock () and fcntl () into 
RPC-based messages to the local lock manager (or, if the files in question are on 
RFS-mounted filesystems, into calls to RFS). The fact that the file system may 
be spread across multiple machines is really not a complication - until a crash 
occurs. 

All computers crash from time to time, and in an NFS environment, where multi
pIe machines can have access to the same file at the same time, the process of 
recovering from a crash is necessarily more complex than in a non-network 
environment. Furthermore, locking is inherently stateJul. If a server crashes, 
clients with locked files must be able to recover their locks. If a client crashes, 
its servers must have the sense to hold the client's locks while it recovers. And, 
to preserve NFS's overall transparency, the recovery of lost locks must not 
require the intervention of the applications themselves. This is accomplished as 
follows: 

D Basic file access operations, such as read and write, use a stateless protocol 
(the NFS protocol). All interactions between NFS servers and clients are 
atomic - the server doesn't remember anything about its clients from one 
interaction to the next. In the case of a server crash, client applications will 
simply sleep until it comes back up and their NFS operations can complete. 

D StateJul services (those that require the server to maintain client information 
from one transaction to the next) such as the locking service, are not part of 
NFS per se. They are separate services that use the status monitor (see The 
Network Status Monitor) to ensure that their implicit network state informa
tion remains consistent with the real state of the network. There are two 
specific state-related problems involved in providing locking in a network 
context: 

1) if the client has crashed, the lock can be held forever by the server 

2) if the server has crashed, it loses its state (including all its lock infor
mation) when it recovers. 

The Network Lock Manager solves both of these problems by cooperating 
with the Network Status Monitor to ensure that it's notified of relevant 
machine crashes. Its own protocol then allows it to recover the lock infor
mation it needs when crashed machines recover. 

The lock manager and the status monitor are both network -service daemons -
they run at user level, but they are essential to the kernel's ability to provide fun
damental network services, and they are therefore run on all network machines. 
They are best seen as extensions to the kernel which, for reasons of space, 
efficiency and organization, are implemented as daemons. Most application pro
grams will request the network service through a system call to the kernel (like 
lockf () ), though it is possible to interact with the service directly with RPC. 
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With lockf () the kernel uses RPC to call the daemon. The network daemons 
communicate among themselves with RPC (see The Locking Protocol for some 
details of the lock manager protocol). It should be noted that the daemon-based 
approach to network services allows for tailoring by users who need customized 
services. 

The following figure depicts the overall architecture of the locking service. 

Figure 1-4 Architecture of the NFS Locking Service 
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At each server site, a lock manager process accepts lock requests, made on behalf 
of client processes by a remote lock manager, or on behalf of local processes by 
the kernel. The client and server lock managers communicate with RPC calls. 
Upon receiving a lock request for a machine that it doesn't already hold a lock 
on, the lock manager registers its interest in that machine with the local status 
monitor, and waits for that monitor to notify it that the machine is up. The moni
tor continues to watch the status of registered machines, and notifies the lock 
manager is one of them is rebooted (after a crash). If the lock request is for a 
local file, the lock manager tries to satisfy it, and communicates back to the 
application along the appropriate RPC path. 

The crash recovery procedure is very simple. If the failure of a client is detected, 
the server releases the failed client's locks, on the assumption that the client 
application will request locks again as needed. If the recovery (and, by implica
tion, the crash) of a server is detected, the client lock manager retransmits all 
lock requests previously granted by the recovered server. This retransmitted 
information is used by the server to reconstruct its locking state. See below for 
more details. 
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The locking service recovers from failure in a stateless manner. Its state infor
mation is carefully circumscribed within a pair of system daemons that are set up 
for automatic, application-transparent crash recovery. If a server crashes, and 
thus loses its state, it expects that its clients will be notified of the crash and send 
it the infonnation that it needs to reconstruct its state. The key in this approach is 
the status monitor, which the lock manager uses to detect both client and server 
failures. 

The lock style implemented by the network lock manager is that specified in the 
AT&T System V Inter/ace Definition, (see the lockf (2) and fcntl (2) man 
pages for details). There is no interaction between the lock manager's locks and 
flock ( ) -style locks, which remain supported, but which should be used for 
non-network applications only. 

Locks are presently advisory only, on the (well supported) assumption that 
cooperating processes can do whatever they wish without mandatory locks. (See 
the fcntl (2) man page for more infonnation about advisory locks). 

There are four basic Lock Manager requests that are made by the kernel in 
response to various ioctl () I fcntl () calls: 

KLM LOCK 
Lock the specified record. 

KLM UNLOCK 
Unlock the specified record. 

KLM TEST 
Test if the specified record is locked. 

KLM CANCEL 
Cancel an outstanding lock request. 

Despite the fact that the network lock manager adheres to the 
lockf () / fcntl () semantics, there are a few subtle points about its behavior 
that deserve mention. These arise directly from the nature of the network: 

o The first and most important of these has to do with crashes. When an 
NFS-client goes down, the lock managers on all of its servers are notified by 
their status monitors, and they simply releases its locks, on the assumption 
that it will request them again when it wants them. When a server crashes, 
however, matters are different: the clients will wait for it to come back up, 
and when it does, its lock manager will give the client lock managers a grace 
period to submit lock reclaim requests, and during this period will accept 
only reclaim requests. The client status monitors will notify their respective 
lock managers when the server recovers. The default grace period is 45 
seconds. 

o It is possible that, after a server crash, a client will not be able to recover a 
lock that it had on a file on that server. This can happen for the simple rea
son that another process may have beaten the recovering application process 
to the lock. In this case the S IGLOST signal will be sent to the process (the 
default action for this signal is to kill the application). 
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1.S. The Network Status 
Monitor 

D The local lock manager does not reply to the kemellock request until the 
selVer lock manager has gotten back to it. Further, if the lock request is on a 
selVer new to the local lock manager, the lock manager registers its interest 
in that selVer with the local status monitor and waits for its reply. Thus, if 
either the status monitor or the selVer's lock manager are unavailable, the 
reply to a lock request for remote data is delayed until it becomes available. 

The Network Status Monitor (see the statd(8C) man page for more details) was 
introduced with the lock manager, which relies heavily on it to maintain the 
inherently statefullocking service within the stateless NFS environment. How
ever, the status monitor is very general, and can also be used to support other 
kinds of stateful network selVices and applications. Nonnally, crash recovery is 
one of the most difficult aspects of network application development, and 
requires a major design and installation effort. The status monitor makes it more 
or less routine. 

It is anticipated that, in the future, new network selVices, some of them stateful, 
will be introduced into the Sun system. These selVices will use the status moni
tor to keep up with the state of the network and to cope with machine crashes. 

The status monitor works by providing a general framework for collecting net
work status infonnation. Implemented as a daemon that runs on all network 
machines, it implements a simple protocol which allows applications to easily 
monitor the status of other machines. Its use improves overall robustness, and 
avoids situations in which applications running of different machines (or even on 
the same machine) come to disagree about the status of a site - a potentially 
dangerous situation that can lead to inconsistencies in many applications. 

Applications using the status monitor do so by registering with it the machines 
that they are interested in. The monitor then tracks the status of those machines, 
and when one of them crashes5 it notifies the interested applications to that 
effect, and they then take whatever actions are necessary to reestablish a con
sistent state. 

There are several major advantages to this approach: 

D Only applications that use stateful selVices must pay the overhead - in time 
and in code - of dealing with the status monitor. 

D The implementation of stateful network applications is eased, since the 
status monitor shields application developers from the complexity of the net
work. 

S Actually. when one of them recovers from a crash. 
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2.1. Overview 

How it is useful 

Terminology 

2 
Introduction to Remote Procedure Calls 

What are Remote Procedure Calls? Simply put, they are a high-level communi
cations paradigm which allows network applications to be developed by way of 
specialized kinds of procedure calls designed to hide the details of the underlying 
networking mechanisms. 

RPC implements a logical client to server communications system designed 
specifically for the support of network applications. With RPC, the client makes 
a procedure call which sends requests to the server as necessary. When these 
requests arrive, the server calls a dispatch routine, performs whatever service is 
requested, sends back the reply, and the procedure call returns to the client. 

The net effect of programming with RPC is that programs are designed to run 
within a client/server network model. Such programs use RPC mechanisms to 
avoid the details of interfacing to the network, and provide network services to 
their callers without even requiring that they be aware of the existence and func
tion of the underlying network. 

This mechanism solves the tedious issues of programming by making the calls 
transparent. For example, a program can simply make a call to rnusers () , a 
C routine which returns the number of users on a remote machine. The caller is 
not explicitly aware of using RPC - they simply call a procedure, much like 
making a system call to rna 11 0 C ( ) . 

Even though this discussion only mentions the interface to C, Remote Procedure 
Calls can be made from any language. Additionally even though this discussion 
refers to RPC only as it is used to communicate between processes on different 
machines, it also works for communication between different processes on the 
same machine. 

This chapter discusses servers, services, programs, procedures, clients, and ver
sions. A server provides network services and a network service is a collection 
of one or more remote programs. A remote program implements one or more 
remote procedures; the procedures, their parameters, and results are documented 
in the specific program's protocol specification. Network clients initiate remote 
procedure calls to services. A server may support more than one version of a 
remote program in order to be forward compatible with changing protocols. 

For example, a network file service may be composed of two programs. One 
program may deal with high-level applications such as file system access control 
and locking. The other may deal with low-level file 10 and have procedures like 
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The RPC Model 

"read" and "write". A client machine of the network file service would call the 
procedures associated with the two programs of the service on behalf of some 
user on the client machine. 

The remote procedure call model is similar to the local procedure call model. In 
the local case, the caller places arguments to a procedure in some well-specified 
location (such as a result register). It then transfers control to the procedure, and 
eventually gains back control. At that point, the results of the procedure are 
extracted from the well-specified location, and the caller continues execution. 

The remote procedure call is similar, in that one thread of control logically winds 
through two processes--one is the caller's process, the other is a server's pro
cess. That is, the caller process sends a call message to the server process and 
waits (blocks) for a reply message. The call message contains the procedure's 
parameters, among other things. The reply message contains the procedure's 
results, among other things. Once the reply message is received, the results of 
the procedure are extracted, and caller's execution is resumed. 

On the selVer side, a process is dormant awaiting the arrival of a call message. 
When one arrives, the server process extracts the procedure's parameters, com
putes the results, sends a reply message, and then awaits the next call message. 
Please refer to Figure 2-1. 

Note that in this model, only one of the two processes is active at any given time. 
The RPC protocol makes no restrictions on the concurrency model implemented, 
and others are possible. For example, an implementation may choose to have 
RPC calls be asynchronous, so that the client may do useful work while waiting 
for the reply from the server. Another possibility is to have the server create a 
task to process an incoming request, so that the server can be free to receive other 
requests. For a more detailed discussion on the RPC protocol, see Chapter 7-
Remote Procedure Calls: Protocol Specification. 
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Figure 2-1 Network Communication with the Remote Procedure Call 
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In the above diagram, the details of the network transport are hidden within the 
Remote Procedure Call. Note, however, that the RPC would not be very useful if 
those details were entirely unavailable to user and programmers who required 
access to them. 

Each RPC procedure is uniquely defined by a program number and procedure 
number. The program number specifies a group of related remote procedures, 
each of which has a different procedure number. Each program also has a ver
sion number, so when a minor change is made to a remote service (adding a new 
procedure, for example), a new program number doesn't have to be assigned. 
For example, when you want to call a procedure to find the number of remote 
users, you look up the appropriate program, version and procedure numbers in a 
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2.3. Portmap 

2.4. Transports and 
Semantics 

Transport Selection 

manual, just as you look up the name of a memory allocator when you want to 
allocate memory. 

The portmap is the only network service that must have such a well-known 
(dedicated) port. Other network services can be assigned port numbers statically 
or dynamically so long as they register their ports with their host's portmap. 
The portmap is started automatically whenever a machine is booted. As part of 
its initialization, a server program calls its host's portmap to create a portmap 
entry for its program and version number. To find a remote program's port, a 
client sends an RPC call message to a server's portmap; if the remote program 
is registered with the portmap, it returns the relevant port number in an RPC 
reply message. The client program can then send RPC call messages to the 
remote program's port. 

The RPC protocol is independent of transport protocols. That is, RPC does not 
care how a message is passed from one process to another. The protocol deals 
only with specification and interpretation of messages. 

It is important to point out that RPC does not try to implement any kind ofrelia
bility and that the application must be aware of the type of transport protocol 
underneath RPC. If it knows it is running on top of a reliable transport such as 
TCP/IP[ 6], then most of the work is already done for it. On the other hand, if it 
is running on top of an unreliable transport such as UDPIIP[7], it must implement 
is own retransmission and time-out policy as the RPC layer does not provide this 
service. 

Because of transport independence, the RPC protocol does not attach specific 
semantics to the remote procedures or their execution. Semantics can be inferred 
from (but should be explicitly specified by) the underlying transport protocol. 
For example, consider RPC running on top of an unreliable transport such as 
UDP/IP. If an application retransmits RPC messages after short time-outs, the 
only thing it can infer if it receives no reply is that the procedure was executed 
zero or more times. If it does receive a reply, then it can infer that the procedure 
was executed at least once. 

On the other hand, if using a reliable transport such as TCP/lP, the application 
can infer from a reply message that the procedure was executed exactly once, but 
if it receives no reply message, it cannot assume the remote procedure was not 
executed. Note that even if a connection-oriented protocol like TCP is used, an 
application still needs time-outs and reconnection to handle server crashes. 

Sun RPC is currently supported on both UDP/IP and TCP/IP transports. The 
selection of the transport depends upon the requirements of the application. UDP 
(connection less) may be the transport of choice if the application has all of the 
following characteristics: 

1. The procedures are idempotent. Le. the same procedure can be executed 
more than once without any harmful side-effects. For example, reading a 
block of data is idempotent, while creating a file is a non-idempotent opera
tion. 

~~sun ~~ mlcrosystems 
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2. The size of both the arguments and results is smaller than the UDP packet 
size (8 Kbytes for Sun UDP implementation). 

3. The server is required to handle many (hundreds) of clients. Since the UDP 
server does not keeps any state about the client, it can potentially handle 
many clients. On the other hand, TCP server keeps state for each open client 
connection and hence the number of clients is limited by the machine 
resources. 

TCP (connection oriented) may be the transport of choice if the application has 
any of the following requirements and characteristics: 

1. The application needs to maintain a high degree of reliability. 

2. The procedures are non-idempotent and at-most-once semantics are 
required. 

3. The size of either the arguments or the results exceeds 8 Kbytes. 

RPC presumes the existence of the eXternal Data Representation (XDR), a stan
dard for the machine-independent description and encoding of data. XDR is use
ful for transferring data between different computer architectures, and has been 
used to communicate data between such divers machines as the Sun Workstation, 
VAX, IBM-PC, and Cray. 

RPC can handle arbitrary data structures, regardless of different machines' byte 
orders or structure layout conventions, by always converting them to a network 
standard called External Data Representation (XDR) before sending them over 
the wire. The process of converting from a particular machine representation to 
XDR format is called serializing, and the reverse process is called deserializing. 
For a detailed discussion of XDR, see Chapter 6 - External Data Representa
tion Standard: Protocol Specification. 

rpcinfo is a command that reports current RPC registration information 
known to portmap (and can be used by administrators to delete registrations). 
rpcinfo can be used to find all the RPC services registered on a specified host 
and to report their port numbers and the transports for which they are registered. 
It can also be used to call (ping) a specific version of a specific program on a 
specific host using TCP or UDP transport, and to report whether the response was 
received. For details, see the rpc in f 0 (8 C) manual pages. 

Program numbers are assigned in groups of 0 x 2000 0000 according to the fol
lowing chart: 

OxO - Oxlfffffff Defined by Sun 
Ox20000000 - Ox3fffffff Defined by user 
Ox40000000 - OxSfffffff Transient 
Ox60000000 - Ox7fffffff Reserved 
Ox80000000 - Ox9fffffff Reserved 
OxaOOOOOOO - Oxbfffffff Reserved 
OxcOOOOOOO - Oxdfffffff Reserved 
OxeOOOOOOO - Oxffffffff Reserved 
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Table 2-1 

Sun Microsystems administers the first group of numbers, which should be ident
ical for all Sun customers. If a customer develops an application that might be of 
general interest, that application should be given an assigned number in the first 
range. The second group of numbers is reserved for specific customer applica
tions. This range is intended primarily for debugging new programs. The third 
group is reserved for applications that generate program numbers dynamically. 
The final groups are reserved for future use, and should not be used. 

To register a protocol specification, send a request by network. mail to 
rpc@ sun. com, or write to: 

RPC Administrator 
Sun Microsystems 
2550 Garcia Ave. 
Mountain View, CA 94043 

Please include a compilable rpcgen ". x" file describing your protocol. You 
will be given a unique program number in return. 

Some of the RPC program numbers can be found in letc/rpc. Protocol 
specifications of standard Sun RPC services can be found in the include files in 
/usr / include/ rpcsvc. These services, however, constitute only a small 
subset of those which have been registered. A list of some of the registered pro-
grams is: 

Registered RPC Program Numbers 

RPC Number Program Description 

100000 PMAPPROG portmap 
100001 RSTATPROG remote stats 
100002 RUSERSPROG remote users 
100003 NFSPROG nfs 
100004 YPPROG NIS 
100005 MOUNTPROG mount daemon 
100006 DBXPROG remote dbx 
100007 YPBINDPROG NIS binder 
100008 WALLPROG shutdown msg 
100009 YPPASSWDPROG yppasswd server 
100010 ETHERSTATPROG ether stats 
100011 RQUOTAPROG disk quotas 
100012 SPRAYPROG spray packets 
100013 IBM3270PROG 3270 mapper 
100014 IBMRJEPROG RJEmapper 
100015 SELNSVCPROG selection service 
100016 RDATABASEPROG remote database access 
100017 REXECPROG remote execution 
100018 ALICEPROG Alice Office Automation 
100019 SCHEDPROG scheduling service 
100020 LOCKPROG local lock manager 
100021 NETLOCKPROG network lock manager 
100022 X25PROG x.25 inr protocol 
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Table 2-1 Registered RPC Program Numbers- Continued 

RPC Number Program Description 
100023 STATMON1PROG status monitor 1 
100024 STATMON2PROG status monitor 2 
100025 SELNLIBPROG selection library 
100026 BOOTPARAMPROG boot parameters service 
100027 MAZEPROG mazewars game 
100028 YPUPDATEPROG NIS update 
100029 KEYSERVEPROG key server 
100030 SECURECMDPROG secure login 
100031 NETFWDIPROG nj's net forwarder init 
100032 NETFWDTPROG nj's net forwarder trans 
100033 SUNLINKMAP PROG sunlinkMAP 
100034 NETMONPROG network monitor 
100035 DBASEPROG lightweight database 
100036 PWDAUTHPROG password authorization 
100037 TFSPROG translucent file svc 
100038 NSEPROG nse server 
100039 NSE ACTIVATE PROG nse activate daemon 
100043 SHOWHFD showfh 

150001 PCNFSDPROG pc passwd authorization 

200000 PYRAMIDLOCKINGPROG Pyramid-locking 
200001 PYRAMIDSYS5 Pyramid-sys5 
200002 CADDS IMAGE CV cadds _image 

300001 ADT RFLOCKPROG ADT file locking 
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3.1. The rpcgen Protocol 
Compiler 

3 
rpcgen Programming Guide 

The details of programming applications to use Remote Procedure Calls can be 
tedious. One of the more difficult areas is writing XDR routines to convert pro
cedure arguments and results into their network format and vice-versa. 

Fortunately, rpcgen (1) exists to help programmers write RPC applications 
simply and directly. rpcgen does most of the dirty work, allowing program
mers to debug the main features of their application, instead of requiring them to 
spend most of their time on their network interface code. 

rpcgen is a compiler. It accepts a remote program interface definition written 
in a language, called RPC Language, which is similar to C. It produces a C 
language output for RPC programs. This output includes skeleton versions of the 
client routines, a server skeleton, XDR filter routines for both parameters and 
results, a header file that contains common definitions and, optionally, dispatch 
tables which the server can use to check authorizations and then invoke service 
routines. The client skeletons' interface with the RPC library and effectively 
hide the network from their callers. The server skeleton similarly hides the net
work from the server procedures that are to be invoked by remote clients. 
rpcgen's output files can be compiled and linked in the usual way. The server 
code generated by rpcgen has support for inetd i.e. the server can be started 
via inetd or at the command line. 

The developer writes server procedures-in any language that observes system . 
calling conventions-and links them with the server skeleton produced by 
rpcgen to get an executable server program. To use a remote program, a pro
grammer writes an ordinary main program that makes local procedure calls to the 
client skeletons. Linking this program with rpcgen's skeletons creates an exe
cutable program. rpcgen options can be used to suppress skeleton generation 
and to specify the transport to be used by the server skeleton. 

Like all compilers, rpcgen reduces development time that would otherwise be 
spent coding and debugging low-level routines. All compilers, including 
rpcgen, do this at a small cost in efficiency and flexibility. However, many 
compilers allow escape hatches for programmers to mix low-level code with 
high-level code. rpcgen is no exception. In speed-critical applications, hand
written routines can be linked with the rpcgen output without any difficulty. 
Also, one may proceed by using rpcgen output as a starting point, and then 
rewriting it as necessary. (For a discussion of RPC programming without 
rpcgen, see the next chapter, the Remote Procedure Call Programming Guide). 
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Converting Local Procedures 
into Remote Procedures 

Assume an application that runs on a single machine, one which we want to con
vert to run over the network. Here we will demonstrate such a conversion by 
way of a simple example-a program that prints a message to the console: 

1* 
* printmsg.c: print a message on the console 
*1 
iinclude <stdio.h> 

main (argc, argv) 
int argc; 
char *argv[]; 

char *message; 

if (argc != 2) 
fprintf(stderr, "usage: %s <message>\n", argv[O]); 
exit (1); 

message = argv[1]; 

if (!printmessage(message» 
fprintf (stderr, "%s: couldn't print your message \n" , 

argv[O]); 

1* 

exit (1); 

printf("Message Delivered!\n"); 
exi t (0); 

* Print a message to the console. 
* Return a boolean indicating whether the message was actually printed. 
*1 
printmessage(msg) 

char *msg; 

FILE *f; 

f = fopen("/dev/console", "w"); 
if (f == NULL) { 

return (0); 

fprintf(f, "%s\n", msg); 
fclose(f); 
return (1); 

And then, of course: 
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example % cc printmsg.c -0 printmsg 
example % printmsg "Hello, there." 
Message delivered! 
example % 

If printmes sage () was turned into a remote procedure, then it could be 
called from anywhere in the network. Ideally, one would just like to stick a key
word like remote in front of a procedure to tum it into a remote procedure. 
Unfortunately, we have to live within the constraints of the C language, since it 
existed long before RPC did. But even without language support, it's not very 
difficult to make a procedure remote. 

In general, it's necessary to figure out what the types are for all procedure inputs 
and outputs. In this case, we have a procedure printmessage () which takes 
a string as input, and returns an integer as output. Knowing this, we can write a 
protocol specification in RPC language that describes the remote version of 
printmessage (). Here it is: 

1* 
* msg.x: Remote message printing protocol 
*1 

program MESSAGEPROG { 
version MESSAGEVERS 

int PRINTMESSAGE(string) 1; 
} = 1; 
Ox20000099; 

Remote procedures are part of remote programs, so we actually declared an 
entire remote program here which contains the single procedure PRINTMES
SAGE. By convention, all RPC services provide for procedure O. It is nonnally 
used for pinging purposes. The above procedure was declared to be in version I 
of the remote program. No null procedure (procedure 0) is necessary in the pro
tocol definition because rpcgen generates it automatically and the user is not 
concerned with it. 

Notice that everything is declared with all capital letters. This is not required, 
but is a good convention to follow. 

Notice also that the argument type is "string" and not "char *". This is because a 
"char *" in C is ambiguous. Programmers usually intend it to mean a null
terminated string of characters, but it could also represent a pointer to a single 
character or a pointer to an array of characters. In RPC language, a null
terminated string is unambiguously called a "string". 

There are just two more things to write. First, there is the remote procedure 
itself. Here's the definition of a remote procedure to implement the PRINTMES
SAGE procedure we declared above. 
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1* 
* msgyroc.c: implementation o/the remote procedure "printmessage" 
*1 

#include <stdio.h> 
/ * always needed * / #include <rpc/rpc.h> 

#include "msg.h" / * msg.h will be generated by rpcgen * / 
1* 
* Remote verson of "printmessage" 
*1 
int * 
printmessage_1(msg) 

char **msg; 

static int result; /* mustbestatic! */ 
FILE *f; 

f = fopen("/dev/console", "w"); 
if (f == NULL) { 

result = 0; 
return (&result); 

fprintf(f, "%s\n", *msg); 
fclose(f); 
result = 1; 
return (&result); 

Notice here that the declaration of the remote procedure printmessage_l () 
differs from that of the local procedure printmessage () in three ways: 

1. It takes a pointer to a string instead of a string itself. This is true of all 
remote procedures: they always take pointers to their arguments rather than 
the arguments themselves. If there are no arguments, specify void. 

2. It returns a pointer to an integer instead of an integer itself. This is also 
characteristic of remote procedures - they return pointers to their results. 
Therefore it is important to have the result declared as a static. If there 
are no arguments, specify void. 

3. It has an "_1" appended to its name. In general, all remote procedures called 
by rpcgen are named by the following rule: the name in the procedure 
definition (here PRINTMESSAGE) is converted to all lower-case letters, an 
underbar ("_") is appended to it, and finally the version number (here 1) is 
appended. 

The last thing to do is declare the main client program that will call the remote 
procedure. Here it is: 

1* 
* rprintmsg.c: remote version of"printmsg.c" 
*1 
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iinclude <stdio.h> 
iinclude <rpc/rpc.h> 
iinclude "msg.h" 

/ * always needed * / 
/ * msg.h will be generated by rpcgen * / 

main (argc, argv) 
int argc; 
char *argv[]; 

CLIENT *cl; 
int *result; 
char *server; 
char *message; 

if (argc != 3) 
fprintf (stderr, 
"usage: %s host message\n", argv[O]); 
exit{l); 

server = argv[l]; 
message = argv[2]; 

1* 
* Create client "handle" usedfor calling MESSAGEPROG on the 
* server designated on the command line. We tell the Rep package 
* to use the "tcp" protocol when contacting the server. 
*1 
cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, 

"tcp") ; 
if (cl == NULL) { 

1* 

1* 
* Couldn't establish connection with server. 
* Print error message and die. 
*1 
clnt-pcreateerror(server)i 
exit(l); 

* Call the remote procedure ''printmessage'' on the server 
*1 
result = printmessage_l{&message, cl); 
if (result == NULL) { 

1* 

1* 
* An error occurred while calling the server. 
* Print error message and die. 
*1 
clnt-perror{cl, server); 
exit{l); 

* Okay, we successfully called the remote procedure. 
*1 
if (*result == 0) { 

1* 
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* Server was unable to print our message. 
* Print error message and die. 
*/ 

fprintf(stderr, "%5: %5 couldn't print your message\n", 
argv[O], server); 
exit(l); 

/* 
* The message got printed on the server's console 
*/ 
printf ("Message delivered to %s! \n", server); 
exit(O); 

There are a few points worth noting here: 

1. First a client "handle" is created using the RPC library routine 
cInt_create (). This client handle will be passed to the skeleton rou
tines which call the remote procedure. 

2. The last parameter to cInt_create is "tcp", the transport on which you 
want your application to run on. It could also have been "udp", as an alter
nate transport. For more information on transport selection see the section 
Transport Selection in Chapter 2 -Introduction to Remote Procedure 
Calls. 

3. The remote procedure printmessage_l () is called exactly the same 
way as it is declared in msgyroc . c except for the inserted client handle 
as the second argument. 

4. The remote procedure call can fail in two ways. The RPC mechanism itself 
can failor, alternatively, there can be an error in the execution of the actual 
remote procedure. In the fonner case, the remote procedure (in this case 
print_message_l (» returns with a NULL. In the later case, however, 
the details of error reporting are application dependent. Here, the error is 
being reported via *result. 

Here's how to put all of the pieces together: 

example% 
example% 
example% 

rpcqen msq. x 
cc rprintmsq.c msq_clnt.c -0 rprintmsq 
cc msqJroc. c msq_ svc . c -0 msq_ server 

Two programs were compiled here: the client program rpr intmsg and the 
server program msg_ server. Before doing this though, rpcgen was used to 
fill in the missing pieces. 

Here is what rpcgen (called without any flags) did with the input file msg . x: 

1. It created a header file called msg . h that contained #def ine 's for MES
SAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in the other 
modules. This file should be included by both the client and the server 
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modules. 

2. It created the client "skeleton" routines in the msg_ clnt . c file. In this 
case there is only one, the printmessage_l () that was referred from the 
printmsg client program. If the name of the input file is FOO. x, the 
client skeletons output file is called Faa _ c 1 n t . c. 

3. It created the selVerprogram inmsg_svc. c which calls printmes
sage_l () from msgyroc. c. The rule for naming the selVer output file 
is similar to the previous one: for an input file called FOO • x, the output 
selVer file is named FOO svc. c. 

(Note that, given the -T argument, rpcgen creates an additional output file 
which contains index infonnation used for the dispatching of selVice routines). 

Now we're ready to have some fun. First, copy the selVer to a remote machine 
and run it. For this example, the machine is called "moon". 

( moon% msg_server & J 

Then on our local machine ("sun") we can print a message on "moon"s console. 

[
sun% rprintmsg moon "Hello, moon." ] 

"----------
The message will get printed on "moon"s console. You can print a message on 
anybody's console (including your own) with this program if you can copy the 
selVer to their machine and run it. 

The previous example only demonstrated the automatic generation of client and 
selVerRPC code. rpcgen may also be used to generate XDR routines, that is, 
the routines necessary to convert local data structures into network fonnat and 
vice-versa. This next example is more advanced in that it presents a complete 
RPC selVice-a remote directory listing selVice, which uses rpcgen not only to 
generate skeleton routines, but also to generate the XDR routines. Here is the 
protocol description file. 

1* 
* dir.x: Remote directory listing protocol 
*1 
const MAXNAMELEN = 255; / * maximum length of a directory entry * / 
typedef string nametype<MAXNAMELEN>; 

typedef struct namenode *namelist; 

/ * a directory entry * / 
/ * a link in the listing * / 

1* 
* A node in the directory listing 
*1 
struct namenode { 

nametype name; 
namelist next; 

} ; 

/ * name of directory entry * / 
/ * next entry * / 
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1* 
* The result of a READDIR operation. 
*1 
union readdir_res switch (int errno) { 
case 0: 

namelist list; /* no error: return directory listing * / 
default: 

void; / * error occurred: nothing else to return * / 
} ; 

1* 
* The directory program definition 
*1 
program DIRPROG { 

version DIRVERS 
readdir res 
READDIR(nametype) 1; 

} = 1; 
Ox20000076; 

NOTE Types (like readdir_res in the example above) can be defined using the 
Ustruct", uunion" and uenum" keywords, but those keywords should not be used 
in subsequent declarations o/variables o/those types. For example, if you define 
a union ufoo", you should declare using only ('loo" and not U union foo". In 
fact, rpcgen compiles RPC unions into C structures and it is an error to 
declare them using the tlunion" keyword. 

Running rpcgen on dir . x creates four output files. First are the basic three 
itemized above: those containing the header file, client skeleton routines and 
selVer skeleton. The fourth contains the XDR routines necessary for converting 
the data types we declared into XDR fonnat and vice-versa. These are output in 
the file dir _ xdr . c. For each data type used in the . x file, rpcgen assumes 
that the RPCIXDR library has a routine defined with the name of that data type 
prepended by xdr_ (e.g. xdr_int). If the data type was defined in the . x file, 
then rpcgen will generate the required xdr routine. If there are no such data 
types, then the file (e.g. dir_xdr. c) will not be generated. If the data types 
were used but not defined, then the user has to provide that xdr routine. This is a 
way for users to provide their own customized xdr routines. 

Here is the implementation of the READD IR procedure. 

1* 
* dir yroc.c: remote readdir implementation 
*1 
*include <rpc/rpc.h> 
*include <sys/dir.h> 
*include "dir.h" 

/ * Always needed * I 

extern int errno; 
extern char *malloc{); 
extern char *strdup(); 

/ * Created by rpcgen * / 
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readdir res * 
readdir_l(dirname) 

nametype *dirname; 

DIR *dirp; 
struct direct *d; 
namelist nl; 
namelist *nlp; 
static readdir res res; /* must be static! * / 

1* 
* Open directory 
*1 
dirp = opendir(*dirname); 
if (dirp == NULL) { 

res.errno = errnOi 
return (&res)i 

1* 
* Free previous result 
*1 
xdr_free(xdr_readdir_res, &res); 

1* 
* Collect directory entries. 
* Memory allocated here will be freed by xdr _free 
* next time readdi r 1 is called 
*1 
nIp = &res.readdir_res_u.list; 
while (d = readdir(dirp» { 

nl = *nlp = (namenode *) malloc(sizeof(namenode»; 
nl->name = strdup(d->d_name)i 
nIp = &nl->nexti 

*nlp = NULL; 

1* 
* Return the result 
*1 
res.errno = 0; 
closedir (dirp) i 

return (&res) i 

Finally, there is the client side program to call the server: 

1* 
* rls.c: Remote directory listing client 
*1 
*include <stdio.h> 
*include <rpc/rpc.h> 
*include "dir.h" 

/ * always need this * / 
/* will be generated by rpcgen * / 
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extern int errno; 

main (argc, argv) 
int argc; 
char *argv[]; 

CLIENT *cl; 
char *server; 
char *dir; 
readdir_res *result; 
namelist nl; 

if ( a rgc ! = 3) { 
fprintf(stderr, "usage: %s host directory\n", 

argv[O]); 
exit(l); 

server = argv[l]; 
dir = argv[2]; 

1* 
* Create client "handle" used/or calling DIRPROG on the 
* server designated on the command line . Use the tcp protocol when 
* contacting the server. 
*1 
cl = clnt_create(server, DIRPROG, DIRVERS, "tcp"); 
if (cl == NULL) { 

1* 

1* 
* Couldn't establish connection with server. 
* Print error message and die. 
*1 
clnt-pcreateerror(server); 
exit(l); 

* Call the remote procedure readdir on the server 
*1 
result = readdir_l(&dir, cl); 
if (result == NULL) { 

1* 
* An RPC error occurred while calling the server. 
* Print error message and die. 

1* 

*1 
clnt-perror(cl, server); 
exit(l); 

* Okay, we successfully called the remote procedure. 
*1 
if (result->errno != 0) { 

1* 
* A remote system error occurred. 
* Print error message and die. 
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*' errno = result->errno; 
perror (dir) ; 
exit(l); 

'* * Successfully got a directory listing. 
* Print it out. 

*' for (nl = result->readdir_res u.list; nl != NULL; 
nl = nl->next) { 

printf("%s\n", nl->name); 

exit(O); 

Compile everything, and run. 

rpegen dir. x 
ee -c dir _ xdr . e 

sun% 
sun% 
sun% 
sun% 

ee r1s.e dir_elnt.c dir_xdr.o -0 rls 
ee dir_sve.e dir-proc.e dir xdr.o -0 dir sve 

sun% 

moon% 

dir_sve , 

ascii 
eqnehar 
greek 
kbd 
marg8 
tabelr 
tabs 
tabs4 
moon% 

rls sun /usr/pub 

rpcgen generated client code does not release the memory allocated for the 
results of the RPC call. Users can call xdr _ f re e to free up the memory once 
they are done with it. It is quite similar to calling free () except that here one 
also has to pass the xdr routine for the result. In this example, after printing the 
list, the user could have called 
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Debugging Applications It is often difficult to debug distributed applications like these because the client 
and the server are two different processes. To simplify the testing and debugging 
process, the client program and the server procedure can be tested together as a 
single program by simply linking them with each other rather than with the client 
and server skeletons. This could be done in the previous example by doing: 

cc rls.c dir_cInt.c dir-proc.c dir_xdr.c -0 rls 

The procedure calls will be executed as ordinary local procedure calls and the 
program can be debugged with a local debugger such as dbxtool. When the 
program is working, the client program can be linked to the client skeleton pro
duced by rpcgen and the server procedures can be linked to the server skeleton 
produced by rpcgen. 

NOTE If you do this, you will have to comment out calls to client create RPC library 
routines (e.g. clnt_create ()). 

There are two kinds of errors which can happen in an RPC call. The first kind of 
error is caused if there is some problem with the actual mechanism of the remote 
procedure calls. This could happen in such cases as the procedure is not avail
able, the remote server is not responding, the remote server is unable to decode 
the arguments, and so on. In the previous example, an RPC error has occurred if 
result is NULL. The reason for the failure can be printed by using 
clntyerror () ,or an error string can be returned through 
clnt_sperror (). 

The second type of error is due to the server itself. In the previous example, an 
error was reported if opendir () fails. Now you can see why readdir_res 
is of type union. The handling of these types of errors are the responsibility of 
the programmer. 

The C-Preprocessor The C-preprocessor, cpp, is run on all input files before they are compiled, so all 
the preprocessor directives are legal within a ".x" file. Five macro identifiers may 
have been defined, depending upon which output file is getting generated. They 
are: 

Identifier 
RPC HDR 
RPC XDR 
RPC SVC 
RPC CLNT 
RPC TBL 

Usage 
For header-file output 
For XDR routine output 
For server-skeleton output 
For client skeleton output 
For index table output 

Also, rpcgen does some additional preprocessing of the input file. Any line 
that begins with a percent sign is passed directly into the output file, without any 
interpretation of the line. Here is a simple example that demonstrates this pro
cessing feature. 
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1* 
* time.x: Remote time protocol 
*1 
program TlMEPROG { 

version TlMEVERS 
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unsigned int TIMEGET(void) 1; 
} = 1; 

} = 44; 

iifdef RPC_SVC 
%int * 
%timeget_1 () 
%{ 
% static int thetime; 
% 

% thetime = time(O); 
% return (&thetime); 
%} 
iendif 

When using the '%' feature, there is no guarantee that rpcgen will place the 
output where you intended. If you have problems of this type, we recommend 
you to not use this feature. 

By default rpcgen generates server code for both UDP & TCP transports. The 
- s flag creates a server which responds to requests on the specified transport. 
The following example creates a udp server: 

examplei rpcgen -8 udp_n proto.x 

rpcgen also provides a means of defining symbols and assigning values to 
them. These defined symbols are passed on to the C preprocessor when it is 
invoked. This facility is useful when the user wants to, for example, invoke 
debugging code which is enabled only when the DEBUG symbol is defined. For 
example: 

[xample% rpcgen -DDEBUG proto.x J l ___________ _ 
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Inetd Support 

Dispatch Tables 

rpcgen can also be used to create RPC servers which can be invoked by 
inetd when a request for that service comes in. 

~xample% %pcgan -I proto.x 

The server code in proto_svc. c has the required support for inetd. For 
more infonnation on how to setup the entry for RPC services in 
/ etc/ inetd. conf, please see the Using Inetd section of Remote Procedure 
Call Programming Guide. 

) 

In many applications, it is useful for services to wait after satisfying a servicing 
request, on the chance that another will follow. However, if there is no call 
within the specified time, the server will exit and the portmonitor will continue to 
monitor requests for its services. By default, services wait of 120 seconds after 
servicing a request before exiting. The user can, however, change that interval 
with the - K flag. 

~xample% rpcgen -I -K 20 proto.x 

Here the server will wait only for 20 seconds before exiting. If you want the 
server to exit immediately, - K 0 can be used, while if the selVer is intended to 
stay around forever (a nonnal server) the appropriate argument is - K -1. 

There are a number of cases when dispatch tables are useful. For example, the 
server dispatch routine may need to check authorization and then invoke the ser
vice routine; or a client library may want to deal with the details of storage 
management and XDR data conversion. 

txamPle% %pcgen -T proto.x 

) 

) 
Here rpcgen generates RPC dispatch tables for each program defined in the 
protocol description file, proto. x, in the file proto _ tbl. i. (The suffix . i 
stands for "index"). See below for how to use this file when compiling programs. 
Each entry in the table is a struct rpcgen _table, defined in the header file 
proto. h as follows: 

struct rpcgen_table 

} ; 

char * (*proc) (); 
xdrproc_t 
unsigned 
xdrproc_t 
unsigned 

xdr_arg; 
len_arg; 
xdr_res; 
len_res; 

where 

proc is a pointer to the service routine, 
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xdr arg is a pointer to the input (argument) xdr_routine, 

len arg is the length in bytes of the input argument, 

xdr res is a pointer to the output (result) xdr_routine, and 

len res is the length in bytes of the output result 

The table, named dirprog_l_table, is indexed by procedure number. The 
variable dirprog_l_ nproc contains the number of entries in the table. 

An example of how to locate an procedure in the dispatch tables is demonstrated 
by the routine findyroc: 

struct rpcgen_table * 
findyroc(proc) 

long proc; 

if (proc >= dirprog_l_nproc) 
/* error * / 

else 
return (&dirprog_l_table[proc); 

Each entry in the dispatch table contains a pointer to the corresponding service 
routine. However, the selVice routine is not defined in the client code. To avoid 
generating unresolved external references, and to require only one source file for 
the dispatch table, the actual selVice routine initializer is 
RPCGEN_ACTION(proc_ver). 

This way, the same dispatch table can be included in both the client and the 
server. Use the following define when compiling the client: 

tdefine RPCGEN_ACTION(routine) 0 

and use this define when compiling the server: 

define RPCGEN_ACTION(routine) routine 

RPC sets a default timeout of25 seconds for RPC calls when clnt_create () 
is used. This means RPC will wait for 25 seconds to get the results from the 
selVer. If it does not hear within that time period, then perhaps the server isn't 
running or the remote machine crashed or the network is unreachable. There are 
many possibilities of why no answer is heard. In such cases the function will 
return NULL and the error can be printed using clntyerrno (). 

) 

There are cases when the user wants to change the timeout value to accommodate 
the application needs or the fact that the server is slow and quite far away. The 
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Client Authentication 

Server Programming Notes 

Handling Broadcast on the 
SelVer Side 

timeout can be changed using clnt_ control (). Here is a small code frag
ment to demonstrate use of clnt_control () : 

struct timeval tv; 
CLIENT *cl; 

cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp"); 
if (cl == NULL) { 

exit(l); 

tv . tv_sec = 60; /* change timeout to 1 minute * / 
tv. tv _usec = 0; /* this should always be set * / 
clnt_control(cl, CLSET_TIMEOUT, &tv); 

The client create routines do not, by default, have any facilities for client authen
tication, but the client may sometimes want to authenticate itself to the selVer. 
For more infonnation on how to perform authentication, see the Authentication 
section of Remote Procedure Call Programming Guide. Doing so is trivial, and 
looks like this: 

CLIENT *cl; 

cl = client_create("somehost", SOMEPROG, SOMEVERS, "udp"); 
if (cl != NULL) { 

/* To set UNIX style authentication * / 
cl->cl_auth authunix_create_default(); 

Clients may sometimes broadcast to find out whether a particular selVer exists on 
the network or just to find out about all the selVers for a particular program and 
version number. These calls are made via clnt _broadcast ( ). Note that 
there is no rpcgen support for that. Please see Broadcast RPC Synopsis in 
Remote Procedure Call Programming Guide. 

When a procedure is known to be called via broadcast RPC, it is usually wise for 
the selVer to not reply unless it can provide some useful information to the client. 
This prevents the network from getting flooded by useless replies. 

To prevent the selVer from replying, a remote procedure can return NULL as its 
result, and the server code generated by rpcgen will detect this and not send out 
a reply. 

Here is an example of a procedure that replies only if it thinks it is an NFS 
server: 
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void * 
reply_if_nfsserver() 
{ 

char notnull; / * just here so we can use its address * / 
if (access ("/etc/exports", F_OK) < 0) { 

return (NULL); /* prevent RPCfrom replying * / 

1* 
* return non-null pointer so RPC will send out a reply 
*1 
return «void *)&notnull); 

Note that if procedure returns type "void *", they must return a non-NULL 
pointer if they want RPC to reply for them. 

Server procedures will often want to know more about an RPC call than just its 
arguments. For example, getting authentication infonnation is important to pro
cedures that want to implement some level of security. This extra infonnation is 
actually supplied to the server procedure as a second argument. (For details see 
the structure of svc _ req, in the Authentication section of Remote Procedure 
Call Programming Guide. Here is an example to demonstrate its use. What 
we've done here is rewrite the previous pr intmes sage _1 () procedure to 
only allow root users to print a message to the console. 

int * 
printmessage_l(msg, rqstp) 

char **msg; 
struct svc_req *rqstp; 

static int result; / * Must be static * / 
FILE *f; 
struct authunix-parms *aupi 

aup = (struct authunix-parms *)rqstp->r~clntcredi 
if (aup->aup_uid != 0) { 

1* 

result = 0; 
return (&result)i 

* Same code as before. 
*1 
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RPC Language 

Definitions 

Enumerations 

RPC language is an extension ofXDR language. The sole extension is the addi
tion of the program and version types. For a complete description of the 
XDR language syntax, see the External Data Representation Standard: Protocol 
Specification chapter. For a description of the RPC extensions to the XDR 
language, see the Remote Procedure Calls: Protocol Specification chapter. 

However, XDR language is so close to C that if you know C, you know most of 
it already. We describe here the syntax of the RPC language, showing a few 
examples along the way. We also show how the various RPC and XDR type 
definitions get compiled into C type definitions in the output header file. 

An RPC language file consists of a series of definitions. 

definition-list: 
definition ";" 
definition ";" definition-list 

It recognizes the following types of definitions. 

definition: 
enum-definition 
typedef-definition 
const-definition 
declaration-definition 
struct-definition 
union-definition 
program-definition 

XDR enumerations have the same syntax as C enumerations. 

enum-definition: 
"enum" enum-ident "{" 

enum-value-list 
"}" 

enum-value-list: 
enum-value 
enum-value "," enum-value-list 

enum-value: 
enum-value-ident 
enum-value-ident "=" value 

Here is a short example of an XDR enum, and the C enum that it gets compiled 
into. 

enum colortype { 
RED = 0, 
GREEN = 1, 
BLUE = 2 

} ; 

enum colortype { 
RED = 0, 

--> GREEN = 1, 
BLUE = 2, 

} ; 

typedef enum colortype colortype; 
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XDR typedefs have the same syntax as C typedefs. 

typedef-definition: 
"typedef" declaration 

Here is an example that defines a f name _ type used for declaring file name 
strings that have a maximum length of 255 characters. 

typedef string fname_type<255>; --> typedef char *fname_type; 

XDR constants may be used wherever a integer constant is used, for example, in 
array size specifications. 

const-definition: 
"const" const-ident "=" integer 

For example, the following defines a constant DOZEN equal to 12. 

const DOZEN = 12; --> #define DOZEN 12 

In XDR, there are only four kinds of declarations. 

declaration: 
simple-declaration 
fixed-array-declaration 
variable-array-declaration 
pointer-declaration 

1) Simple declarations are just like simple C declarations. 

simple-declaration: 
type-ident variable-ident 

Example: 

colortype color; --> colortype color; 

2) Fixed-length Array Declarations are just like C array declarations: 

fixed-array-declaration: 
type-ident variable-ident "[" value "]" 

Example: 

colortype palette[8]; --> colortype palette[8]; 

3) Variable-Length Array Declarations have no explicit syntax in C, so XDR 
invents its own using angle-brackets. 

variable-array-declaration: 
type-ident variable-ident "<" value ">" 
type-ident variable-ident n<" n>n 

The maximum size is specified between the angle brackets. The size may be 
omitted, indicating that the array may be of any size. 

int heights<12>; 
int widths<>; 

/* at most 12 items * / 
/ * any number of items * / 

Since variable-length arrays have no explicit syntax in C, these declarations are 
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Structures 

Unions 

actually compiled into "struct"s. Foor example, the "heights" declaration gets 
compiled into the following struct: 

struct { 
u_int heights_leni 
int *heights_vali 

heightsi 

/ * # of items in array * / 
/ * pointer to array * / 

Note that the number of items in the array is stored in the "_len" component and 
the pointer to the array is stored in the "_val" component. The first part of each 
of these component's names is the same as the name of the declared XDR vari
able. 

4) Pointer Declarations are made in XDR exactly as they are in C. You can't 
really send pointers over the network, but you can use XDR pointers for sending 
recursive data types such as lists and trees. The type is actually called 
"optional-data", not "pointer", in XDR language. 

pointer-declaration: 
type-ident n*" variable-ident 

Example: 

listitem *nexti --> listitem *nexti 

An XDR struct is declared almost exactly like its C counterpart. It looks like the 
following: 

struct-definition: 
"structn struct-ident "{" 

declaration-list 
"}" 

declaration-list: 
declaration "i" 
declaration "i" declaration-list 

As an example, here is an XDR structure to a two-dimensional coordinate, and 
the C structure that it gets compiled into in the output header file. 

struct coord 
int Xi 

int Yi 
} i 

--> 
struct coord 

int Xi 

int Yi 
} i 

typedef struct coord coord; 

The output is identical to the input, except for the added typedef at the end of 
the output. This allows one to use "coord" instead of "struct coord" in declara
tions. 

XDR unions are discriminated unions, and look quite different from C unions. 
They are more analogous to Pascal variant records than they are to C unions. 
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union-definition: 
"union" union-ident n switch" " (" simple declaration") n " { " 

case-list 
"}" 

case-list: 
"case" value ":" declaration ";" 
"case" value n:n declaration ";" case-list 
"defaultn n:" declaration ,,;n 

Here is an example of a type that might be returned as the result of a "read data" 
operation. If there is no error, return a block of data. Otherwise, don't return 
anything. 

union read_result switch (int errno) { 
case 0: 

opaque data[1024]; 
default: 

void; 
} ; 

It gets compiled into the following: 

struct read result 
int errno; 
union { 

} ; 

char data[1024]; 
} read_result_u; 

typedef struct read_result read_result; 

Notice that the union component of the output struct has the same name as the 
structure type name, except for the trailing "_u". 

RPC programs are declared using the following syntax: 

program-definition: 
"program" program-ident "{" 

version-list 
"}" "=" value 

version-list: 
version 
version 

version: 

".n , 
".n , version-list 

"version" version-ident "{" 
procedure-list 

"}" n=" value 

procedure-list: 
procedure n;n 

procedure n;n procedure-list 

procedure: 
type-ident procedure-ident "(" type-ident ")" "=" value 
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Special Cases 

For example, here is the time protocol, revisited: 

1* 
* time.x: Get or set the time. Time is represented as number of seconds 
* since 0:00, January 1,1970. 
*1 
program TlMEPROG { 

version TlMEVERS 
unsigned int TIMEGET(void) 1; 
void TlMESET(unsigned) = 2; 

} = 1; 
} = 44; 

This file compiles into these #defines in the output header file: 

#define TlMEPROG 44 
#define TlMEVERS 1 
#define TIMEGET 1 
#define TlMESET 2 

There are a few exceptions to the rules described above. 

Booleans: C has no built-in boolean type. However, the RPC library has a 
boolean type called bool_t that is either TRUE or FALSE. Things declared as 
type bool in XDR language are compiled into bool_ t in the output header 
file. 

Example: 

bool married; --> bool_t married; 

Strings: C has no built-in string type, but instead uses the null-tenninated "char 
*" convention. In XDR language, strings are declared using the "string" key
word, and compiled into "char *"s in the output header file. The maximum size 
contained in the angle brackets specifies the maximum number of characters 
allowed in the strings (not counting the NULL character). The maximum size 
may be left off, indicating a string of arbitrary length. 

Examples: 

string name<32>; 
string longname<>; 

--> char *name; 
--> char *longname; 

Opaque Data: Opaque data is used in RPC and XDR to describe untyped data, 
that is, just sequences of arbitrary bytes. It may be declared either as a fixed or 
variable length array. 

Examples: 
opaque diskblock[512]; --> char diskblock[512]; 

opaque filedata<1024>; --> struct { 
u_int filedata_len; 
char *filedata_val; 

filedata; 

Voids: In a void declaration, the variable is not named. The declaration is just 
"void" and nothing else. Void declarations can only occur in two places: union 

~ sun 
microsystems 
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definitions and program definitions (as the argument or result of a remote pro
cedure). 
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4 
Remote Procedure Call Programming 

Guide 

This document assumes a working knowledge of network theory. It is intended 
for programmers who wish to write network applications using remote procedure 
calls (explained below), and who want to understand the RPC mechanisms usu
ally hidden by the rpcgen (1) protocol compiler. rpcgen is described in 
detail in the previous chapter, the rpcqen Programming Guide. 

NOTE Before attempting to write a network application, or to convert an existing non
network application to run over the network, you may want to understand the 
material in this chapter. However, for most applications, you can circumvent the 
need to cope with the details presented here by using rpcgen. The An 
Advanced Example section of that chapter contains the complete source for a 
working RPC service-a remote directory listing service which uses rpcgen to 
generate XDR routines as well as client and server stubs. 

4.1. Layers of RPC The RPC interface can be seen as being divided into three layers.6 

The Highest Layer: The highest layer is totally transparent to the operating sys
tem, machine and network upon which is run. It's probably best to think of this 
level as a way of using RPC, rather than as a part ofRPC proper. Programmers 
who write RPC routines should (almost) always make this layer available to oth
ers by way of a simple C front end that entirely hides the networking. 

To illustrate, at this level a program can simply make a call to rnusers () , a C 
routine which returns the number of users on a remote machine. The user is not 
explicitly aware of using RPC - they simply call a procedure, just as they would 
call malloc () . 

The Middle Layer: The middle simplified layer is really "RPC proper." Here, the 
user doesn't need to consider details about sockets, the UNIX system, or other 
low-level implementation mechanisms. They simply make remote procedure 
calls to routines on other machines. The selling point here is simplicity. It's this 
layer that allows RPC to pass the "hello world" test - simple things should be 
simple. The middle layer routines are used for most applications. 

Simplified RPC calls are made with the system routines registerrpc ( ) , 
callrpc () and svc_run (). registerrpc () obtains a unique system-

6 For a complete specification of the routines in the remote procedure call Library, see the rpc (3N) manual 
page. 
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Higher Layers of RPC 

wide procedure-identification number, and callrpc () actually executes a 
remote procedure call. At the middle level, a call to rnuser s () is imple
mented by way of these two routines. 

The middle layer is rarely used in serious programming due to its inflexibility 
(simplicity). It does not allow timeout specifications or the choice of transport. 
It allows no UNIX process control or flexibility in case of errors. It doesn't sup
port multiple kinds of call authentication. The programmer rarely needs all these 
kinds of control, but one or two of them is often necessary. 

The Lowest Layer: The lowest layer does allow these details to be controlled by 
the programmer. Programs written at this level are also most efficient and allow 
for flexibility. The lowest layer routines include client creation routines such as 
clnt_create (), the actual client call clnt_call () ,server creation rou
tines such as svcudp _create () , and the server registration routine 
svc_register (). 

This layer consists of RPC-library based services. Imagine you're writing a pro
gram that needs to know how many users are logged into a remote machine. You 
can do this by calling the RPC library routine rnusers () , as illustrated below: 

iinclude <stdio.h> 

main (argc, argv) 
int argCi 
char **argvi 

int numi 

if (argc != 2) { 
fprintf(stderr, "usage: rnusers hostname\nn)i 
exit(l); 

if «num = rnusers(argv[l]» < 0) { 
fprintf(stderr, "error: rnusers\nn)i 
exit(l); 

printf("%d users on %s\n", num, argv[l]); 
exit(O)i 

RPC library routines such as rnusers () are in the RPC services library 
librpcsvc. a. Thus, the program above should be compiled with 

example% cc program.c -lrpcsvc 

rnuser s { } , like the other RPC library routines, is documented in section 3R of 
the System Services Overview, the same section which documents the standard 
Sun RPC services. See the intro (3R) manual page for an explanation of the 
documentation strategy for these services and their RPC protocols. 

Revision A, of 27 March 1990 



Table 4-1 

Middle Layers of RPC 

Chapter 4 - Remote Procedure Call Programming Guide 67 

Here are some of the RPC service library routines available to the C programmer: 
RPC Service Library Routines 

Routine 

rnusers 
rusers 
havedisk 
rstat 
rwall 
yppasswd 

Description 

Return number of users on remote machine 
Return infonnation about users on remote machine 
Detennine if remote machine has disk 
Get perfonnance data from remote kernel 
Write to specified remote machines 
Update user password in Network Information Service 

Other RPC services - for example ether, mount, rquota, and spray
are not available to the C programmer as library routines. They do, however, 
have RPC program numbers so they can be invoked with callrpc () ,which 
will be discussed in the next section. Most of them also have compilable 
rpcgen (1) protocol description files. Some of the files (in the form *.x) may 
be found in /usr /include/rpcsvc. (The rpcgen protocol compiler radi
cally simplifies the process of developing network. applications. See the 
rpcqen Programming Guide chapter for detailed information about rpcgen 
and rpcgen protocol description files). 

The simplest interface, which explicitly makes RPC calls, uses the functions 
callrpc () and registerrpc ( ). Using this method, the number of remote 
users can be obtained as follows: 

iinclude <stdio.h> 
iinclude <rpc/rpc.h> 
iinclude <rpcsvc/rusers.h> 

main (argc, argv) 
int argc; 
char **argv; 

unsigned long nusers; 
int stat; 

if (argc ! = 2) { 
fprintf(stderr, "usage: nusers hostname\n"); 
exit(l); 

if (stat = callrpc(argv[l], 
RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, 
xdr_void, 0, xdr_u_long, &nusers) != 0) 

clnt-perrno(stat); 
exit(l); 

printf("%d users on %s\n", nusers, argv[l]); 
exit(O); 
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The simplest way of making remote procedure calls is with the RPC library rou
tine callrpc ( ). It has eight parameters. The first is the name of the remote 
server machine. The next three parameters are the program, version, and pro
cedure numbers-together they identify the procedure to be called. The fifth and 
sixth parameters are an XDR filter and an argument to be encoded and passed to 
the remote procedure. XDR filter is a user provided procedure which can encode 
or decode machine native data to or from the XDR fonnat. The final two param
eters are an XDR filter for decoding the results returned by the remote procedure 
and a pointer to the place where the procedure's results are to be stored. Multiple 
arguments and results are handled by embedding them in structures. If 
callrpc () completes successfully, it returns zero; else it returns a nonzero 
value. The return codes are found in <rpc/ clnt. h>. 

callrpc () needs both the type of the RPC argument, as well as a pointer to 
the argument itself (and similarly for the result). For RUSERSPROC NUM, the 
return value is an unsigned long, so callrpc () has xdr_u_long () as 
its first return parameter, which says that the result is of type unsigned long, 
and &nusers as its second return parameter, which is a pointer to where the 
long result will be placed. Since RUSERSPROC_NUM takes no argument, the 
argument parameter of callrpc () is xdr _void. In such cases the argument 
should be NULL. 

After trying several times to deliver a message, if callrpc () gets no answer, it 
returns with an error code. Methods for adjusting the number of retries or for 
using a different protocol require you to use the lower layer of the RPC library, 
discussed later in this document. 

The remote server procedure corresponding to the above might look like this: 

unsigned long * 
nuser(indata) 

char *indatai 

static unsigned long nuserSi 

1* 
* Code here to compute the number of users 
* and place result in variable nusers. 
*1 
return(&nuSers)i 

It takes one argument, which is a pointer to the input of the remote procedure call 
(ignored in our example), and it returns a pointer to the result. In the current ver
sion of C, character pointers are the generic pointers, so input argument and the 
return value can be cast to char * . 
Nonnally, a server registers all of the RPC calls it plans to handle, and then goes 
into an infinite loop waiting to service requests. If rpcgen is used to provide 
this functionality, it will also generate a server dispatch function. But users can 
write the servers themselves using registerrpc () and especially so for 
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simple applications like the one shown here. In this example, there is only a sin
gle procedure to register, so the main body of the server would look like this: 

*include <stdio.h> 
*include <rpc/rpc.h> 
*include <rpcsvc/rusers.h> 

unsigned long *nuser(); 

main () 
{ 

/ * required * / 
/* for prog. vers definitions * / 

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, 
nuser, xdr_void, xdr_u_long); 

svc_run () ; /* Never returns * / 
fprintf(stderr, "Error: svc run returned!\nn); 
exit(l); 

The registerrpc () routine registers a procedure as corresponding to a given 
RPC procedure number. The first three parameters, RUSERPROG, 
RUSERSVERS, and RUSERSPROC_NUM are the program, version, and pro
cedure numbers of the remote procedure to be registered; nuser () is the name 
of the local procedure that implements the remote procedure; and xdr_ void () 
and xdr _ u _10 ng () are the XDR filters for the remote procedure's arguments 
and results, respectively. (Multiple arguments or multiple results are passed as 
structures). 

The underlying transport mechanism used with registerrpc () is both 
callrpc () and UDP. 

WARNING Warning: the UDP transport mechanism can only deal with arguments and 
results less than 8K bytes in length. 

Passing Arbitrary Data Types 

After registering the local procedure, the server program's main procedure calls 
svc _run ( ) , the RPC library's remote procedure dispatcher. It is this function 
that calls the remote procedures in response to RPC requests. Note that the 
dispatcher takes care of decoding remote procedure arguments and encoding 
results, using the XDR filters specified when the remote procedure was registered 
with registerrpc () . 

In the previous example, the RPC passes a single unsigned long. RPC can 
handle arbitrary data structures, regardless of different machine's byte orders or 
structure layout conventions, by always converting them to a network standard 
called External Data Representation (XDR) before sending them over the wire. 
The process of converting from a particular machine representation to XDR for
mat is called serializing, and the reverse process is called deserializing. The type 
field parameters of callrpc () and registerrpc () can be a built-in pro
cedure like xdr _ u _long () in the previous example, or a user supplied one. 
XDR has these built-in type routines: 
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xdr_int () 
xdr_long() 
xdr_short () 
xdr_char () 

xdr_u_int () 
xdr_u_long () 
xdr_u_short () 
xdr_u_char () 

xdr_enum() 
xdr_bool () 
xdr_wrapstring () 

Note that the routine xdr_string () exists, but cannot be used with 
callrpc () and registerrpc (), which only pass two parameters to their 
XDR routines. Instead xdr_wrapstring () can be used. It takes only two 
parameters, and is thus OK. It calls xdr_string (). 

As an example of a user-defined type routine, if you wanted to send the structure 

struct simple 
int a; 
short b; 

simple; 

then you would call callrpc () as 

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, 
xdr_simple, &simple ... ); 

where xdr_simple () is written as: 

#include <rpc/rpc.h> 

xdr_simple(xdrsp, simplep) 
XDR *xdrsp; 
struct simple *simplep; 

if (!xdr_int(xdrsp, &simplep->a» 
return (0); 

if (!xdr_short(xdrsp, &simplep->b» 
return (0); 

return (1); 

An XDR routine returns nonzero (true in the sense of C) if it completes success
fully, and zero otherwise. A complete description of XDR is in the XDR Proto
col Specification section of this manual, only few implementation examples are 
given here. 

NOTE We strongly recommend that rpcgen be used to generate XDR routines. The 
"_C" option oJrpcgen can be used to generate just the xdr. cfile. 

In addition to the built-in primitives, there are also the prefabricated building 
blocks: 
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xdr_array () 
xdr_vector () 
xdr_string () 

xdr_bytes () 
xdr_union () 
xdr_ opaque ( ) 

xdr_reference () 
xdryointer () 

To send a variable array of integers, you might package them up as a structure 
like this 

struct varintarr 
int *datai 
int arrlnthi 

arri 

and make an RPC call such as 

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, 
xdr_varintarr, &arr ... )i 

with xdr _ var intarr () defined as: 

xdr_varintarr(xdrsp, arrp) 
XDR *xdrspi 
struct varintarr *arrpi 

return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, 
MAXLEN, sizeof(int), xdr_int»; 

This routine takes as parameters the XDR handle, a pointer to the array, a pointer 
to the size of the array, the maximum allowable array size, the size of each array 
element, and an XDR routine for handling each array element. 

If the size of the array is known in advance, one can use xdr_ vector (), 
which serializes fixed-length arrays. 

int intarr[SIZE]i 

xdr_intarr(xdrsp, intarr) 
XDR *xdrspi 
int intarr[]i 

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), 
xdr_int) ) ; 

XDR always converts quantities to 4-byte multiples when serializing. Thus, if 
either of the examples above involved characters instead of integers, each charac
ter would occupy 32 bits. That is the reason for the XDR routine 
xdr_bytes (), which is like xdr_array () except that it packs characters; 
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Lower Layers of RPC 

xdr_bytes () has four parameters, similar to the first four parameters of 
xdr_array (). For null-tenninated strings, there is also the xdr_str ing () 
routine, which is the same as xdr _ byt e s () without the length parameter. On 
serializing it gets the string length from strlen () , and on deserializing it 
creates a null-tenninated string. 

Here is a final example that calls the previously written xdr_simple () as well 
as the built-in functions xdr_string () and xdr_reference (), which 
chases pointers: 

struct finalexample 
char *string; 
struct simple *simplep; 

finalexample; 

xdr_finalexample(xdrsp, finalp) 
XDR *xdrsp; 
struct finalexample *finalp; 

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN» 
return (0); 

if (!xdr_reference(xdrsp, &finalp->simplep, 
sizeof(struct simple), xdr_simple); 

return (0); 
return (1); 

Note that we could as easily call xdr _ simple () here instead of 
xdr_reference(). 

In the examples given so far, RPC takes care of many details automatically for 
you. In this section, we'l1 show you how you can change the defaults by using 
lower layers of the RPC library. 

There are several occasions when you may need to use lower layers of RPC. 
First, you may need to use TCP, since the higher layer uses UDP, which restricts 
RPC calls to 8K bytes of data. Using TCP pennits calls to send long streams of 
data. For an example, see the TCP section below. Second, you may want to 
allocate and free memory while serializing or deserializing with XDR routines. 
There is no call at the higher level to let you free memory explicitly. For more 
explanation, see the Memory Allocation with XDR section below. Third, you 
may need to perfonn authentication on either the client or server side, by supply
ing credentials or verifying them. See the explanation in the Authentication sec
tion below. 
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The server for the nuser s () program shown below does the same thing as the 
one using registerrpc () above, but is written using a lower layer of the 
RPC package: 

finclude <stdio.h> 
finclude <rpc/rpc.h> 
finclude <utmp.h> 
finclude <rpcsvc/rusers.h> 

main () 
{ 

SVCXPRT *transpi 
int nuser()i 

transp = svcudp_create(RPC_ANYSOCK)i 
if (transp == NULL) { 

fprintf(stderr, "can't create an RPC server\nn)i 
exit(l)i 

pmap_unset(RUSERSPROG, RUSERSVERS)i 
if (!svc_register(transp, RUSERSPROG, RUSERSVERS, 

nuser, IPPROTO_UDP» { 
fprintf(stderr, "can't register RUSER service\n"); 
exit(l)i 

svc _run () ; / * Never returns * / 
fprintf(stderr, "should never reach this point\n")i 

nuser(rqstp, transp) 
struct svc_req *rqstpi 
SVCXPRT *transpi 

unsigned long nuserSi 

switch (rqstp->r~roc) 
case NULLPROC: 

if (!svc_sendreply(transp, xdr_void, 0» 
fprintf(stderr, "can't reply to RPC call\n"); 

returni 
case RUSERSPROC NUM: 

/* 
* Code here to compute the number of users 
* and assign it to the variable nusers 
*/ 
if (!svc_sendreply(transp, xdr_u_long, &nusers» 

fprintf(stderr, "can't reply to RPC call\n"); 
returni 

default: 
svcerr_noproc(transp)i 
returni 
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( 

First, the server gets a transport handle, which is used for receiving and replying 
to RPC messages. If the argument to svcudp_create () is RPC_ANYSOCK, 
the RPC library creates a socket on which to receive and reply to RPC calls. 
Otherwise, svcudp_create () expects its argument to be a valid socket 
number. If you specify your own socket, it can be bound or unbound. If it is 
bound to a port by the user, the port numbers of svcudp_create () and 
clntudp_create () (the low-level client routine) must match. 
registerrpc () uses svcudp_create () to get a UDPhandle. If you 
require a more reliable protocol, call svctcp_create () instead. 

After creating an SVCXPRT, the next step is to call pmap _unset () so that if 
the nus e r s () server crashed earlier, any previous trace of it is erased before 
restarting. More precisely, pmap _unset () erases the entry for RUSERSPROG 
from the portmapper's tables. 

) 

Finally, we associate the program number RUSERSPROG and version 
RUSERSVERS with the procedure nuser ( ) , which in this case, is 
IPPROTO_UDP. Notice that unlike registerrpc () ,there are no XDR rou
tines involved in the registration process. Also, registration is done on the pro
gram level rather than procedure level. A service may choose to register its port 
number with the local portmapper service. This is done by specifying a non-zero 
protocol number in the final argument of svc_register (). A client can dis
cover the server's port number by consulting the portmapper on their server's 
machine. This can be done automatically by specifying a zero port number in 
clntudp_create() orclnttcp_create(). 

The user routine nuser () must call and dispatch the appropriate XDR routines 
based on the procedure number. Note that two things are handled by nuser () 
that registerrpc () handles automatically. The first is that procedure 
NULLPROC (currently zero) returns with no results. This can be used as a simple 
test for detecting if a remote program is running. Second, there is a check for 
invalid procedure numbers. If one is detected, svcerr _ noproc () is called to 
handle the error. 

The user service routine serializes the results and returns them to the RPC caller 
via svc_sendreply (). Its first parameter is the SVCXPRT handle, the 
second is the XDR routine, and the third is a pointer to the data to be returned. 
Note that it is not required to have nusers declared as static here because 
svc_sendreply () is called within that function itself. Not illustrated above 
is how a server handles an RPC program that receives data. As an example, we 
can add a procedure RUSERSPROC_BOOL, which has an argument nusers (), 
and returns TRUE or FALSE depending on whether there are nusers logged on. It 
would look like this: 

case RUSERSPROC_BOOL: { 
int bool; 
unsigned nuserquerYi 

if (!svc_getargs(transp, xdr_u_int, &nuserquery) { 
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svcerr_decode(transp); 
return; 

1* 
* Code to set nusers = number of users 
*1 
if (nuserquery == nusers) 

bool TRUE; 
else 

bool FALSE; 
if (!svc_sendreply(transp, xdr_bool, &bool» 

fprintf(stderr, "can't reply to RPC call\n"); 
return; 

The relevant routine is svc_getargs () ,which takes an SVCXPRT handle, the 
XDR routine, and a pointer to where the input is to be placed as arguments. 

When you use callrpc () , you have no control over the RPC delivery 
mechanism or the socket used to transport the data. To illustrate the layer of 
RPC that lets you adjust these parameters, consider the following code to call the 
nusers service: 

*include <stdio.h> 
*include <rpc/rpc.h> 
*include <rpcsvc/rusers.h> 
*include <sys/time.h> 
*include <netdb.h> 

main (argc, argv) 
int argc; 
char **argv; 

struct hostent *hp; 
struct timeval pertry_timeout, total_timeout; 
struct sockaddr_in server_addr; 
int sock = RPC_ANYSOCK; 
register CLIENT *client; 
enum clnt_stat clnt_stat; 
unsigned long nusers; 

if (argc ! = 2) { 
fprintf(stderr, "usage: nusers hostname\n"); 
exit(-l); 

if «hp = gethostbyname(argv[l]» == NULL) { 
fprintf(stderr, "can't get addr for %s\n",argv[l]); 
exit(-l); 

pertry_timeout.tv_sec = 3; 
pertry_timeout.tv_usec = 0; 
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bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, 
hp->h_length); 

server_addr.sin_family = AF_INET; 
server_addr.sin-port = 0; 
if «client = clntudp_create(&server_addr, RUSERSPROG, 

RUSERSVERS, pertry_timeout, &sock» == NULL) { 
clnt-pcreateerror("clntudp_create"); 
exit(-l); 

total timeout. tv_sec = 20; 
total_timeout.tv_usec = 0; 
clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void, 

0, xdr_u_Iong, &nusers, total_timeout); 
if (clnt_stat != RPC_SUCCESS) { 

clnt-perror(client, "rpc"); 
exit(-l); 

printf("%d users on %s\n", nusers, argv[l]); 
clnt_destroy(client); 
exit(O); 

The CLIENT pointer is encoded with the transport mechanism. callrpc () 
uses UDP, thus it calls clntudp_create () to get a CLIENT pointer. To get 
TCP you would use clnttcp_create (). 

The parameters to clntudp_create () are the server address, the program 
number, the version number, a timeout value (between tries), and a pointer to a 
socket. Only when the sin_po rt is 0, the remote portmapper is queried to find 
out the address of the remote service. 

The low-level version of callrpc () is clnt_call (), which takes a 
CLIENT pointer rather than a host name. The parameters to clnt_call () are 
a CLIENT pointer, the procedure number, the XDR routine for serializing the 
argument, a pointer to the argument, the XDR routine for deserializing the return 
value, a pointer to where the return value will be placed, and the time in seconds 
to wait for a reply. If the client does not hear from the server within the time 
specified in pertry_timeout, the request may be sent again to the server. 
Thus, the number of tries that the clnt_call () will make to contact the 
server is the clnt_call () timeout divided by the clntudp_create () 
timeout. 

Note that the clnt _destroy () call always deallocates the space associated 
with the CLIENT handle. It closes the socket associated with the CLIENT han
dle only if the RPC library opened it. It the socket was opened by the user, it 
stays open. This makes it possible, in cases where there are multiple client han
dles using the same socket, to destroy one handle without closing the socket that 
other handles are using. 

To make a stream connection, the call to clntudp_create () is replaced 
with clnttcp_create (). 

Revision A. of 27 March 1990 



Memory Allocation with XDR 

Chapter 4 - Remote Procedure Call Programming Guide 77 

clnttcp_create(&server_addr, prognum, versnum, &sock, 
inbufsize, outbufsize); 

There is no timeout argument; instead, the receive and send buffer sizes must be 
specified. When the clnttcp_create () call is made, a TCP connection is 
established. All RPC calls using that CLIENT handle would use this connection. 
The server side of an RPC call using TCP has svcudp _create () replaced by 
svctcp _create ( ) . 

transp = svctcp_create(RPC_ANYSOCK, 0, 0); 

The last two arguments to svctcp _create () are send and receive sizes 
respectively. If '0' is specified for either of these, the system chooses default 
values. 

The simplest routine to create a client handle is clnt_create () . 

clnt=clnt_create(server_host,prognum,versnum, transport); 

The parameters are the name of the host on which the service resides, the pro
gram and version number and the transport to be used. The transport can be 
either "udp" for UDP or "tcp" for TCP. It is possible to change the default 
timeouts using clnt_ control (). For more details look under Client Pro
gramming Notes section in %peg-en Programming Guide. 

XDR routines not only do input and output, they may also do memory allocation. 
This is why the second parameter of x dr _ a r ray () is a pointer to an array, 
rather than the array itself. Ifit is NULL, then xdr_array () allocates space 
for the array and returns a pointer to it, putting the size of the array in the third 
argument. As an example, consider the following XDR routine 
xdr _ char ar r 1 () , which deals with a fixed array of bytes with length S I Z E: 

xdr_chararrl(xdrsp, chararr) 
XDR *xdrsp; 
char chararr[]i 

char *p; 
int leni 

p = chararri 
len = SIZEi 
return (xdr_bytes(xdrsp, &p, &len, SIZE»; 

If space has already been allocated in chararr, it can be called from a server like 
this: 
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4.2. RawRPC 

char chararr[SIZE]; 

svc_getargs(transp, xdr_chararrl, chararr); 

If you want XDR to do the allocation, you would have to rewrite this routine in 
the following way: 

xdr_chararr2(xdrsp, chararrp) 
XDR *xdrsp; 
char **chararrp; 

int len; 

len = SIZE; 
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE»; 

Then the RPC call might look like this: 

char *arrptr; 

arrptr = NULL; 
svc_getargs(transp, xdr_chararr2, &arrptr); 
1* 
* Use the result here 
*1 
svc_freeargs(transp, xdr_chararr2, &arrptr); 

Note that, after being used, the character array can be freed with 
svc _ freeargs ( ). svc _ freeargs () will not attempt to free any memory 
if the variable indicating it is NULL. For example, in the the routine 
xdr _f inalexarnple () , given earlier, if f inalp->str ing was NULL, 
then it would not be freed. The same is true for finalp->simplep. 

To summarize, each XDR routine is responsible for serializing, deserializing, and 
freeing memory. When an XDR routine is called from callrpc ( ) , the serial
izing part is used. When called from svc_getargs () , the deserializer is used. 
And when called from svc_freeargs () ,the memory deallocator is used. 
When building simple examples like those in this section, a user doesn't have to 
worry about the three modes. See the External Data Representation: Sun Techn
ical Notes chapter for examples of more sophisticated XDR routines that deter
mine which of the three modes they are in and adjust their behavior accordingly. 

Finally, there are two pseudo-RPC interface routines which are intended only for 
testing purposes. These routines, clntraw_create () and 
svcraw _create ( ) , don't actually involve the use of any real transport at all. 
They exist to help the developer debug and test the non-communications oriented 
aspects of their application before running it over a real network. Here's an 
example of their use: 
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1* 
* A simple program to increment the nwnber by 1 
*1 
#include <stdio.h> 
#include <rpc/rpc.h> 
#include <rpc/raw.h> / * required for raw * / 

struct timeval TIMEOUT = {O, O}i 
static void server()i 

main () 
{ 

CLIENT *clnt; 
SVCXPRT *svc; 
int num = 0, anSi 

if (argc == 2) 
num = atoi(argv[l]); 

svc = svcraw_create(); 
if (svc == NULL) { 

fprintf (stderr, "Couldnot create serverhandle\n") i 
exit(l); 

svc_register(svc, 200000, 1, server, 0); 
clnt = clntraw_create(200000, 1); 
if (clnt == NULL) { 

clntycreateerror("raw"); 
exit(l); 

if (clnt_call(clnt, 1, xdr_int, &num, xdr_int, &numl, 
TIMEOUT) != RPC_SUCCESS) { 

clntyerror(clnt, "raw"); 
exit(l); 

printf("Client: number returned %d\n", numl); 
exit (0) ; 

static void 
server (rqstp, transp) 

struct svc_req *rqstpi 
SVCXPRT *transp; 

int num; 

switch(rqstp->r~roc) 

case 0: 
if (svc_sendreply(transp, xdr_void, 0) == NULL) 

fprintf(stderr, "error in null proc\n"); 
exit(l); 

return; 
case 1: 
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4.3. Other RPC Features 

Select on the Server Side 

break; 
default: 

svcerr_noproc(transp); 
return; 

if (!svc_getargs(transp, xdr_int, &num» { 
svcerr_decode(transp); 
return; 

num++; 
if (svc_sendreply(transp, xdr_int, &num) == NULL) 

fprintf(stderr, "error in sending answer\n"); 
exit(l); 

return; 

Note the following points: 

1. All the RPC calls occur within the same thread of control. 

2. svc _run () is not called. 

3. It is necessary that the server be created before the client. 

4. svcraw_create () takes no parameters. 

5. The last parameter to svc_register is 0, which means that it will not 
register with portmapper. 

6. The server dispatch routine is the same as it is for nonnal RPC servers. 

This section discusses some other aspects of RPC that are useful for the RPC 
programmer. 

Suppose a process is processing RPC requests while performing some other 
activity. If the other activity involves periodically updating a data structure, the 
process can set an alann signal before calling svc run (). But if the other - . 
activity involves waiting on a a file descriptor, the svc_run () call won't work. 
The code for svc_run () is as follows: 

void 
svc_run () 
{ 

fd set readfds; 
int dtbsz = getdtablesize(); 

for (;;) { 
readfds = svc_fds; 
switch (select (dtbsz, &readfds, NULL,NULL,NULL» { 

case -1: 
if (errno != EBADF) 
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continue; 
perror("select"); 
return; 

case 0: 
continue; 

default: 
svc_getreqset(&readfds); 

You can bypass svc _run () and call svc _getreqset () yourself. All you 
need to know are the file descriptors of the socket(s) associated with the pro
grams you are waiting on. Thus you can have your own select () that waits 
on both the RPC socket, and your own descriptors. Note that s vc _ f ds is a bit 
mask of all the file descriptors that RPC is using for services. It can change 
everytime that any RPC library routine is called, because descriptors are con
stantly being opened and closed, for example for TCP connections. 

Caution: if you are handling signals in your application, then either make sure 
that you do not make any system calls and inadvertently set errno or reset 
errno to its old value before returning from your signal handler. 

The portmapper is a daemon that converts RPC program numbers into DARPA 
protocol port numbers; see The Portmapper section in the Network Services 
chapter. You can't do broadcast RPC without the portmapper. Here are the main 
differences between broadcast RPC and normal RPC: 

1. Normal RPC expects one answer, whereas broadcast RPC expects many 
answers (one or more answer from each responding server). 

2. Broadcast RPC can only be supported by packet-oriented (connectionless) 
transport protocols like UDP/IP. 

3. The implementation of broadcast RPC treats all unsuccessful responses as 
garbage by filtering them out. Thus, if there is a version mismatch between 
the broadcaster and a remote service, the user of broadcast RPC never 
knows. 

4. All broadcast messages are sent to the portmap port. Thus, only services 
that register themselves with their portmapper are accessible via the broad
cast RPC mechanism. 

5. Broadcast requests are limited in size to 1400 bytes. Replies can be up to 
8800 bytes (the current maximum UDP packet size). 
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Broadcast RPC Synopsis 

Batching 

#include <rpc/pmap_clnt.h> 

enum clnt stat clnt_stat; 

clnt_stat = clnt_broadcast(prognum, versnum, procnum, 
inproc, in, outproc, out, eachresult) 

u_long prognum; /* program number * / 
u _long versnum; / * version number * / 
u_long procnum; /* procedwe number * / 
xdrproc_t inproc; /* xdr routine/or args * / 
caddr tin; /* pointer to args * / 
xdrproc_t outproc; /* xdr routine/or results * / 
caddr tout; / * pointer to results * / 
boo 1 t (*eachresul t) () ; /* call with each result gotten * / 

The procedure eachresul t () is called each time a response is obtained. It 
returns a boolean that indicates whether or not the user wants more responses. 

bool_t done; 

done = eachresult(resultsp, raddr) 
caddr_t resultsp; 
struct sockaddr_in *raddr; /* Addr of responding server * / 

If done is TRUE, then broadcasting stops and clnt_broadcast () returns 
successfully. Otherwise, the routine waits for another response. The request is 
rebroadcast after a few seconds of waiting. If no responses come back in a 
default total timeout period, the routine returns with RPC_TlMEDOUT. You 
may also refer to Handling Broadcast on the Server Side section in the rpcqen 
Programming Guide chapter. 

In nonnal RPC clients send a call message and wait for the seIVer to reply that 
the call succeeded. This implies that clients do not compute while servers are 
processing a call. This is inefficient if the client does not want or need an ack
nowledgement for every message sent. Actually calis made by clients are buf
fered, thus causing no processing on the seIVers. When the connection is flushed, 
a normal RPC request is sent. The seIVer processes the request and sends the 
reply back. 

RPC messages can be placed in a "pipeline" of calls to a desired seIVer; this is 
called batching. Batching assumes that: 

1. Each RPC call in the pipeline requires no response from the seIVer, and the 
seIVer does not send a response message. 

2. The pipeline of calls is transported on a reliable byte stream transport such 
as TCP/IP. 
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Since the server does not respond to every call, the client can generate new calls 
in parallel with the selVer executing previous calls. Furthennore, the TCP/IP 
implementation can buffer up many call messages, and send them to the server in 
one wr it e () system call. This overlapped execution greatly decreases the 
interprocess communication overhead of the client and server processes, and the 
total elapsed time of a series of calls. 

Since the batched calls are buffered, the client should eventually do a nonbatched 
call in order to flush the pipeline. 

A contrived example of batching follows. Assume a string rendering service 
(like a window system) has two similar calls: one renders a string and returns 
void results, while the other renders a string and remains silent. The service 
(using the TCP/IP transport) may look like: 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <suntool/windows.h> 

void windowdispatch(); 

main () 
{ 

SVCXPRT *transp; 

transp = svctcp_create(RPC_ANYSOCK, 0, 0); 
if (transp == NULL) { 

fprintf(stderr, "can't create an RPC server\n"); 
exit(l); 

pmap_unset(WINDOWPROG, WINDOWVERS); 

void 

if (!svc_register(transp, WINDOWPROG, WINDOWVERS, 
windowdispatch, IPPROTO_TCP» { 

fprintf(stderr, "can't register WINDOW service\nn); 
exit(l); 

svc _run () ; / * Never returns * / 
fprintf(stderr, "should never reach this point\n"); 

windowdispatch(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

char *s = NULL; 

switch (rqstp->r~roc) 
case NULLPROC: 

if (!svc_sendreply(transp, xdr_void, 0» 
fprintf(stderr, "can't reply to RPC call\nn); 

return; 
case RENDERSTRING: 
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if (!svc_getargs(transp, xdr_wrapstring, &s)) { 
fprintf(stderr, "can't decode arguments\n"); 
1* 

1* 

* Tell caller he screwed up 
*1 
svcerr_decode(transp); 
return; 

* Code here to render the string s 
*1 
if (!svc_sendreply(transp, xdr_void, NULL)) 

fprintf(stderr, "can't reply to RPC call\nn); 
break; 

case RENDERSTRING BATCHED: 
if (!svc_getargs(transp, xdr_wrapstring, &s)) { 

fprintf(stderr, "can't decode arguments\n"); 
1* 

1* 

* We are silent in the/ace o/protocol errors 
*1 
break; 

* Code here to render string s, but send no reply! 
*1 
break; 

default: 
svcerr_noproc(transp); 
return; 

1* 
* Now free string allocated while decoding arguments 
*1 
svc_freeargs(transp, xdr_wrapstring, &s); 

Of course the service could have one procedure that takes the string and a 
boolean to indicate whether or not the procedure should respond. 

In order for a client to take advantage of batching, the client must perfonn RPC 
calls on a TCP-based transport and the actual calls must have the following attri
butes: 

1. the result's XDR routine must be zero (NULL), 

2. the RPC call's timeout must be zero. Do not rely on c In t _ co n t ro I () to 
assist in batching. 

If a UDP transport is used instead, the client call becomes a message to the server 
and the RPC mechanism reduces to a message passing system. No batching is 
possible here. 

Here is an example of a client that uses batching to render a bunch of strings; the 
batching is flushed when the client gets a null string (BOF): 
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iinclude <stdio.h> 
iinclude <rpc/rpc.h> 
iinclude <suntool/windows.h> 

main (argc, argv) 
int argc; 
char **argv; 

struct timeval total_timeout; 
register CLIENT *cIient; 
enum clnt_stat clnt_stat; 
char buf[lOOO], *s = buf; 

if «client = cInt_create(argv[l], 
WINDOWPROG, WINDOWVERS, "tcp"» 

perror("clnttcp_create"); 
exit(-l); 

NULL) { 

/ * set timeout to zero * / 
total_timeout.tv_usec = 0; 
while (scanf("%s", s) != EOF) { 

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED, 
xdr_wrapstring, &s, NULL, NULL, total_timeout); 

if (clnt_stat != RPC_SUCCESS) { 
clntyerror(client, "batching rpc"); 
exit(-l); 

/ * Now flush the pipeline * / 

total_timeout. tv_sec = 20; 
clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL, 

xdr_void, NULL, total_timeout); 
if (cInt_stat != RPC_SUCCESS) { 

cIntyerror(client, "bat ching rpc"); 
exit(-l); 

clnt_destroy(client); 
exit(O); 

Since the server sends no message, the clients cannot be notified of any of the 
failures that may occur. Therefore, clients are on their own when it comes to 
handling errors. 

The above example was completed to render all of the (2000) lines in the file 
letcltermcap. The rendering service did nothing but throw the lines away. The 
example was run in the following four configurations: 

1. machine to itself, regular RPC - 50 seconds 
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Authentication 

UNIX Authentication 

2. machine to itself, batched RPC - 16 seconds 

3. machine to another, regularRPC - 52 seconds 

4. machine to another, batched RPC - 10 seconds 

Running only f scanf () on / etc/termcap requires six seconds. These tim
ings show the advantage of protocols that allow for overlapped execution, though 
these protocols are often hard to design. 

In the examples presented so far, the caller never identified itself to the server, 
and the server never required an ID from the caller. Clearly, some network ser
vices, such as a network filesystem, require stronger security than what has been 
presented so far. 

In reality, every RPC call is authenticated by the RPC package on the server, and 
similarly, the RPC client package generates and sends authentication parameters. 
Just as different transports (TCP/IP or UDP/IP) can be used when creating RPC 
clients and servers, different fonns of authentication can be associated with RPC 
clients; the default authentication type used as a default is type none. 

The authentication subsystem of the RPC package is open ended. That is, 
numerous types of authentication are easy to support. 

The Client Side 

When a caller creates a new RPC client handle as in: 

clnt = clntudp_create(address, prognum, versnum, 
wait, sockp) 

the appropriate transport instance defaults the associate authentication handle to 
be 

[ clnt->cl_auth = authnone_create(); 

The RPC client can choose to use UNIX style authentication by setting 
c1n t ->c I_a u t h after creating the RPC client handle: 

clnt->cl_auth = authunix_create_default()i 

This causes each RPC call associated with cInt to carry with it the following 
authentication credentials structure: 

J 
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1* 
* UNIX style credentials. 
*1 
struct authunix-parms 

u_long aup_timei 
char *aup_machnamei 
int aup_uidi 
int aup_gidi 
u int aup_leni 
int *aup_gidsi 

} i 

/ * credentials creation time * / 
/* host name where client is * / 
/ * client's UNIX effective uid * / 
/ * client's current group id * / 
/ * element length of aup _gids * / 
/ * array of groups user is in * / 

These fields are set by authunix_create_default () by invoking the 
appropriate system calls. Since the RPC user created this new style of authenti
cation, the user is responsible for destroying it with: 

[_a_u_t_h ___ d_e_s_t_r_o_y __ <c_l_n_t __ -> __ c_l ___ au __ t_h_)_i _______________________________ J 

This should be done in all cases, to conselVe memory. 

The Server Side 

SelVice implementors have a harder time dealing with authentication issues since 
the RPC package passes the service dispatch routine a request that has an arbi
trary authentication style associated with it. Consider the fields of a request han
dle passed to a service dispatch routine: 

1* 
* An RPC Service request 
*1 
struct svc_req { 

u_long rqyrogi /* service program number * / 
u _long r~ vers i / * service protocol vers num * / 
u_long rqyroci /* desired procedure number * / 
struct opaque_auth r~credi /* raw credentials/rom wire * / 
caddr t r~clntcredi /* credentials (read only) * / 

} ; 

The rCL cred is mostly opaque, except for one field of interest: the style or 
flavor of authentication credentials: 
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1* 
* Authentication info. Mostly opaque to the programmer. 
*1 
struct opaque_auth { 

enum t oa_flavOri 
caddr t oa_baSei 

/ * style of credentials * / 
/ * address of more auth stuff * / 

u int oa_lengthi /* nottoexceedMAX_AUTH_BYTES */ 
} i 

The RPC package guarantees the following to the service dispatch routine: 

1. That the request's r'Lcred is well fonned. Thus the service implementor 
may inspect the request's r'Lcred. oa_flavor to determine which style 
of authentication the caller used. The service implementor may also wish to 
inspect the other fields of r'L cred if the style is not one of the styles sup
ported by the RPC package. 

2. That the request's r'L clntcred field is either NULL or points to a well 
formed structure that corresponds to a supported style of authentication 
credentials. r'L clntcred could be cast to a pointer to an 
authunixyarms structure. If r'Lclntcred is NULL, the service 
implementor may wish to inspect the other (opaque) fields of r'Lcred in 
case the service knows about a new type of authentication that the RPC 
package does not know about. 

Our remote users service example can be extended so that it computes results for 
all users except UID 16: 

nuser(rqstp, transp) 
struct svc_req *rqstpi 
SVCXPRT *transpi 

struct authunix-parms *unix_cred; 
int uidi 
unsigned long nuserSi 

1* 
* we don't care about authentication for null proc 
*1 
if (rqstp->r~roc == NULLPROC) { 

if (!svc_sendreply(transp, xdr_void, 0» 
fprintf(stderr, "can't reply to RPC call\nn)i 

return; 

1* 
* now get the uid 
*1 
switch (rqstp->r~cred.oa_flavor) 
case AUTH UNIX: 

unix cred = 
(struct authunix-parms *)rqstp->r~clntcredi 

uid = unix_cred->aup_uidi 
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break; 
case AUTH NULL: 
defaul t: /* return weak authentication error * / 

svcerr_weakauth(transp); 
return; 

switch (rqstp->r~roc) 
case RUSERSPROC_NUM: 

1* 
* make sure caller is allowed to call this proc 
*1 
if (uid == 16) { 

svcerr_systemerr(transp); 
return; 

1* 
* Code here to compute the number of users 
* and assign it to the variable nusers 
*1 
if (!svc_sendreply(transp, xdr_u_long, &nusers» 

fprintf(stderr, "can't reply to RPC call\n"); 
return; 

default: 
svcerr_noproc(transp); 
return; 

A few things should be noted here. First, it is customary not to check the authen
tication parameters associated with the NULLPROC (procedure number zero). 
Second, if the authentication parameter's type is not suitable for your service, 
you should call svcerr _ weakauth ( ). And finally, the service protocol itself 
should return status for access denied; in the case of our example, the protocol 
does not have such a status, so we call the service primitive 
svcerr_systemerr () instead. 

The last point underscores the relation between the RPC authentication package 
and the services; RPC deals only with authentication and not with individual ser
vices' access control. The services themselves must implement their own access 
control policies and reflect these policies as return statuses in their protocols. 

UNIX authentication can be defeated, which we won't explain here. Therefore 
DES authentication is recommended for people who want more security than 
what UNIX authentication offers. The details of the DES authentication protocol 
are complicated and are not explained here. Please see the Remote Procedure 
Calls: Protocol Specification section for the details. 

In orderfor DES authentication to work, the keyserv (8c) daemon must be 
running on both the server and client machines. The users on these machines 
need public keys assigned by the network administrator in the pub-
lickey (5) database. And, they need to have decrypted their secret keys 
using their login password. This automatically happens when one logs in 
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using login (1) , or can be done manually using key login (1). The Net
work Services chapter of Network Programming explains more how to setup 
secure networking. 

Client Side 

If a client wishes to use DES authentication, it must set its authentication handle 
appropriately. Here is an example: 

cl->cl auth = 
authdes_create(servername, 60, &server_addr, NULL); 

The first argument is the network name or "netname" of the owner of the server 
process. Typically, server processes are root processes and their netname can be 
derived using the following call: 

char servername[MAXNETNAMELEN]; 

host2netname(servername, rhostname, NULL); 

Here, rhostname is the hostname of the machine the server process is running on. 
host2netname () fills in servername to contain this root process's netname. 
If the server process was run by a regular user, one could use the call 
user2netname () instead. Here is an example for a server process with the 
same user ID as the client: 

char servername[MAXNETNAMELEN]; 

user2netname(servername, getuid(), NULL); 

The last argument to both of these calls, user2netname () and 
host2netname () ,is the name of the naming domain where the server is 
located. The NULL used here means "use the local domain name." 

The second argument to authdes_create () is a lifetime for the credential. 
Here it is set to sixty seconds. What that means is that the credential will expire 
60 seconds from now. If a user tries to reuse the credential, the server RPC sub
system will recognize that it has expired and not grant any requests. If the same 
user tries to reuse the credential within the sixty second lifetime, he will still be 
rejected because the server RPC subsystem remembers which credentials it has 
already seen in the near past, and will not grant requests to duplicates. 

The third argument to authdes_create () is the address of the host to syn
chronize with. In order for DES authentication to work, the server and client 
must agree upon the time. Here we pass the address of the server itself, so the 
client and server will both be using the same time: the server's time. The argu
ment can be NULL, which means "don't bother synchronizing." You should only 
do this if you are sure the client and server are already synchronized. 
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The final argument to authdes _create () is the address of a DES encryption 
key to use for encrypting timestamps and data. If this argument is NULL, as it is 
in this example, a random key will be chosen. The client may find out the 
encryption key being used by consulting the ah_key field of the authentication 
handle. 

Server Side 

The server side is a lot simpler than the client side. Here is the previous example 
rewritten to use AUTH DES instead of AUTH UNIX: - -

#include <sys/time.h> 
#include <rpc/auth_des.h> 

nuser(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

struct authdes cred *des_cred; 
int uid; 
int gid; 
int gidlen; 
int gidlist[lO]; 
1* 
* we don't care about authenticationfor null proc 
*1 

if (rqstp->r~roc == NULLPROC) { 
/ * same as before * / 

1* 
* now get the uid 
*1 
switch (rqstp->r~cred.oa_flavor) 
case AUTH DES: 

des cred = 
(struct authdes_cred *) rqstp->r~clntcred; 

if (! netname2user(des_cred->adc_fullname.name, 
&uid, &gid, &gidlen, gidlist» { 
fprintf(stderr, "unknown user: %s\n", 

des_cred->adc_fullname.name); 
svcerr_systemerr(transp); 
return; 

break; 
case AUTH NULL: 
default: 

svcerr_weakauth(transp); 
return; 
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Using Inetd 

4.4. More Examples 

Versions on Server Side 

[ 
1* 
* The rest is the same as before 
*1 

Note the use of the routine netname2user (), the inverse of 
user2netname () : it takes a network ID and converts to a unix ID. 
netnarne2user () also supplies the group IDs which we don't use in this 
example, but which may be useful to other UNIX programs. 

An RPC server can be started from inetd. The only difference from the usual 
code is that the service creation routine should be called in the following form: 

transp 
transp 
transp 

svcudp_create (0); /* For UDP * / 
svctcp _create (0,0, 0); / * For listener TCP sockets * / 
svcfd_create(O,O,O); /* ForconnectedTCPsockets */ 

since inetd passes a socket as file descriptorO. Also, svc_register () 
should be called as 

svc_register(transp, PROGNUM, VERSNUM, service, 0); 

with the final flag as 0, since the program would already be registered with 
portmapper by inetd. Remember that if you want to exit from the server 
process and return control to inetd, you need to explicitly exit, since 
svc_run () never returns. 

The format of entries in jetc/ inetd. conf forRPC services is in one of the 
following two forms: 

p_name/version dgram rpc/udp wait/nowait user server args 
p_name/version stream rpc/tcp wait/nowait user server args 

where p _ name is the symbolic name of the program as it appears in rpc (5 ) , 
server is the program implementing the server, and program and version are the 
program and version numbers of the service. For more information, see 
inetd. conf (5). 

If the same program handles multiple versions, then the version number can be a 
range, as in this example: 

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd 

1 

By convention, the first version number of program PROG is PROGVERS _OR! G 
and the most recent version is P ROGVERS. Suppose there is a new version of the 
user program that returns an unsigned short rather than a long. If we 
name this version RUSERSVERS_SHORT, then a server that wants to support 
both versions would do a double register. Note that there is no need to create 
another server handle for the new version. 
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if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG, 
nuser, IPPROTO_TCP» { 

fprintf(stderr, "can't register RUSER service\n"); 
exit(!); 

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT, 
nuser, IPPROTO_TCP» { 

fprintf(stderr, "can't register new service\n"); 
exit(!); 

Both versions can be handled by the same C procedure: 

nuser(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

unsigned long nusers; 
unsigned short nusers2; 

switch (rqstp->r~roc) 
case NULLPROC: 

if (!svc_sendreply(transp, xdr_void, 0» { 
fprintf(stderr, "can't reply to RPC call\n"); 
return; 

return; 
case RUSERSPROC NUM: 
1* 
* Code here to compute the number of users 
* and assign it to the variable nusers 
*1 

nusers2 = nusers; 
switch (rqstp->r~vers) 
case RUSERSVERS ORIG: 

if (!svc_sendreply(transp, xdr_u_Iong, 
&nusers» { 

fprintf (stderr, "can't reply to RPC call \n") ; 

break; 
case RUSERSVERS SHORT: 

if (!svc_sendreply(transp, xdr_u_short, 
&nusers2» { 

fprintf (stderr, "can't reply to RPC call \n ") i 

break; 

default: 
svcerr_noproc(transp)i 
return; 
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Versions on Client Side 

( ) 

Since different machines may run different versions of the RPC servers, the 
client should be prepared to deal with the world. It is possible to have one server 
running with the old version of RUSERSPROG (RUSERSVERS _ ORIG) while 
another server is running with the newer version (RUSERSVERS_SHORT). 

If the version of the server running does not match with the version number in 
the client create routines, then clnt_call fails with 
RPCPROGVERSMISMATCH error. You can find out the version numbers sup
ported by the server and then create a client handle with an appropriate version 
number. Either the routine below can be used, or clnt_create_ vers (). 
See the rpc (3N) manual page for more details. 

main () 
{ 

enum clnt_stat status; 

u_int num_l; 
struct rpc_err rpcerr; 
int maxvers, minvers; 

clnt = clnt_create(host, RUSERSPROG, 
RUSERSVERS_SHORT, "udp"); 

if (clnt == NULL) { 
clntycreateerror("clnt"); 
exit(-l); 

to.tv_sec = 10; /* setthetimeouts */ 
to.tv_usec = 0; 
status = clnt_call(clnt, RUSERSPROC_NUM, 

xdr_void, NULL, xdr_u_short, &num_s, to); 
if (status == RPC_SUCCESS) { 

/ * We found the latest version number * / 
clnt_destroy(clnt); 
printf(nnum %d\n",num_s); 
exit(O); 

if (status != RPC_PROGVERSMISMATCH) 
/ * Some other error * / 
clntyerror(clnt, "rusersn); 
exit(-l); 

clnt_geterr(clnt, &rpcerr); 
maxvers = rpcerr. re_vers. high; /* highest version supported * / 
minvers = rpcerr.re_vers.low; /*lowestversionsupported */ 
if (RUSERSVERS_ORIG < minvers I I 

RUSERS_ORIG > maxvers) { 
/ * doesn't meet minimum standards * / 
clntyerror(clnt, "version mismatch"); 
exit(-l); 
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/ * This version not supported * / 
clnt_destroy (clnt); /* destroy the earlier handle * / 
clnt = clnt_create(host, RUSERSPROG, 

RUSERSVERS_ORIG, II udp II ); 1* try different version * 1 
if (clnt == NULL) { 

clntycreateerror("clnt")i 
exit(-l); 

status = clnt_call(clnt, RUSERSPROCNUM, 
xdr_void, NULL, xdr_u_long, &num_l, to); 

if (status == RPC_SUCCESS) { 
1 * We found the latest version number * 1 
printf("num = %d\n", num_l)i 

else { 
clntyerror(clnt, "rusers")i 
exit(-l)i 

Here is an example that is essentially rep. The initiator of the RPC snd call 
takes its standard input and sends it to the server rev, which prints it on standard 
output. The RPC call uses TCP. This also illustrates an XDR procedure that 
behaves differently on serialization than on deserialization. 

/* 
* The xdr routine: 
* on decode, read from wire, write onto fp 
* on encode, readfromfp, write onto wire 
*/ 
#include <stdio.h> 
#include <rpc/rpc.h> 

xdr_rcp(xdrs, fp) 
XDR *xdrsi 
FILE *fp; 

unsigned long size; 
char buf[BUFSIZ], *Pi 

if (xdrs->x_op 
return 1; 

while (1) { 

XDR_FREE)/* nothing to free *1 

if (xdrs->x_op == XDR_ENCODE) { 
if «size = fread(buf, sizeof(char) , BUFSIZ, 

fp» == 0 && ferror(fp» { 
fprintf(stderr, "can't fread\n"); 
return (1); 

P buf; 
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ» 
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return (0); 
if (size == 0) 

return (1); 
if (xdrs->x_op == XDR_DECODE) { 

if (fwrite(buf, sizeof(char), size, 
fp) ! = size) { 
fprintf(stderr, "can't fwrite\n"); 
return (1); 

1* 
* The sender routines 
*1 
*include <stdio.h> 
*include <netdb.h> 
*include <rpc/rpc.h> 
*include <sys/socket.h> 
*include "rcp. h" /* for prog, vers definitions * / 

main (argc, argv) 
int argc; 
char **argv; 

int xdr_rcp () ; 
int err; 

if (argc < 2) { 
fprintf(stderr, "usage: %s servername\n", argv[O]); 
exit(-l); 

if «err = callrpctcp(argv[l], RCPPROG, RCPPROC, 
RCPVERS, xdr_rcp, stdin, xdr_void, 0) > 0» { 

clnt-perrno(err); 
fprintf(stderr, "can't make RPC call\nn); 
exit(l); 

exit(O); 

callrpctcp(host, prognum, procnum, versnum, 
inproc, in, outproc, out) 

char *host, *in, *out; 
xdrproc_t inproc, outproc; 

struct sockaddr_in server_addr; 
int socket = RPC_ANYSOCK; 
enum clnt stat clnt_stat; 
struct hostent *hp; 

sun 
microsystems 
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register CLIENT *client; 
struct timeval total_timeout; 

if «hp = gethostbyname(host» == NULL) 
fprintf(stderr, "can't get addr for '%s'\nn, host); 
return (-1); 

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, 
hp->h_length); 

server_addr.sin_family = AF_INET; 
server_addr.sin-port = 0; 
if «client = clnttcp_create(&server_addr, prognum, 

versnum, &socket, BUFSIZ, BUFSIZ» == NULL) { 
clnt_createerror(nrpctcp_createn); 
return (-1); 

total_timeout.tv_sec = 20; 
total_timeout.tv_usec = 0; 
clnt_stat = clnt_call(client, procnum, 

inproc, in, outproc, out, total_timeout); 
clnt_destroy(client); 
return «int)clnt_stat); 

* The receiving routines 
*1 
#include <stdio.h> 
#include <rpc/rpc.h> 
#include nrcp.h" /* Jorprog, versdefinitions */ 

main () 
{ 

register SVCXPRT *transp; 
int rcp_service(), xdr_rcp(); 

if «transp = svctcp_create(RPC_ANYSOCK, 
BUFSIZ, BUFSIZ» == NULL) { 
fprintf("svctcp_create: error\nn); 
exit(l); 

pmap_unset(RCPPROG, RCPVERS); 
if (!svc_register(transp, RCPPROG, 

RCPVERS, rcp_service, IPPROTO_TCP» 
fprintf(stderr, "svc_register: error\n"); 
exit(l); 

svc_run () ; /* never returns * / 
fprintf(stderr, "svc run should never return\nn); 

sun 
microsystems 
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Callback Procedures 

rcp_service(rqstp, transp) 
register struct svc_req *rqstp; 
register SVCXPRT *transp; 

switch (rqstp->r~roc) { 
case NULLPROC: 

if (svc_sendreply(transp, xdr_void, 0) == 0) 
fprintf(stderr, "err: rcp_service"); 

return; 
case RCPPROC FP: 

if (!svc_getargs(transp, xdr_rcp, stdout» { 
svcerr_decode(transp); 
return; 

if (!svc_sendreply(transp, xdr_void, 0» 
fprintf(stderr, "can't reply\n"); 

return; 
default: 

svcerr_noproc(transp); 
return; 

Occasionally, it is useful to have a seIVer become a client, and make an RPC call 
back to the process which is its client. An example is remote debugging, where 
the client is a window system program, and the seIVer is a debugger running on 
the remote machine. Most of the time, the user clicks a mouse button at the 
debugging window, which converts this to a debugger command, and then makes 
an RPC call to the seIVer (where the debugger is actually running), telling it to 
execute that command. However, when the debugger hits a breakpoint, the roles 
are reversed, and the debugger wants to make an rpc call to the window program, 
so that it can infonn the user that a breakpoint has been reached. 

Another case when callback can be useful is when the client cannot block waiting 
to hear back from the seIVer (possibly because of the huge amount of processing 
involved in serving the request). In such cases, the seIVer would first ack
nowledge the request and then use callback to reply. 

In order to do an RPC callback, you need a program number to make the RPC 
call on. Since this will be a dynamically generated program number, it should be 
in the transient range, Ox40000000 - Ox5fffffff. The routine get
transient () returns a valid program number in the transient range, and regis
ters it with the portmapper. It only talks to the portmapper running on the same 
machine as the gettransient () routine itself. The call to pmap_set () is 
a test and set operation, in that it indivisibly tests whether a program number has 
already been registered, and if it has not, then reseIVes it. 

#include <stdio.h> 
#include <rpc/rpc.h> 
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gettransient(proto, vers, portnum) 
int proto; 
u_long vers; 
u_short portnum; 

static u_long prognum = Ox40000000; 

while (!pmap_set(prognum++, vers, proto, portnum» 
continue; 

return (prognum - 1); 

NOTE The call to ntohs () for portnum is not necessary because it was already 
passed in host byte order (as pmap_set () expects). See the 
byteorder (3N) man page for more details on the conversion of network 
addresses from network to host byte order. 

The following pair of programs illustrate how to use the get transient () 
routine. The client makes an RPC call to the server, passing it a transient pro
gram number. Then the client waits around to receive a callback from the server 
at that program number. The server registers the program EXAMPLEPROG, so 
that it can receive the RPC call infonning it of the callback program number. 
Then at some random time (on receiving an ALRM signal in this example), it 
sends a callback RPC call, using the program number it received earlier. 

In this example, both the client and the server are on the same machine. they 
could very well be on different machines - in that case the handling of the host
name would be different. 

/* 
* client 
*/ 
#include <stdio.h> 
#include <rpc/rpc.h> 
#include "example.h" 

int callback () ; 

main () 
{ 

int tmpyrog; 
char hostname[256]; 
SVCXPRT *xprt; 
int stat; 

gethostname(hostname, sizeof(hostname»; 
if «xprt = svcudp_create(RPC_ANYSOCK» == NULL) { 

fprintf(stderr, "rpc_server: svcudp_create\nn); 
exit(1); 

if (tmpyrog = gettransient(IPPROTO_UDP, 1, 
xprt->xpyort) == 0) { 
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fprintf (stderr, "failed to get transient number\n") ; 
exit(1); 

fprintf(stderr, "client gets prognum %d\n", tmpyrog); '* protocol is 0 - gettransienl does registering *' 
(void)svc_register(xprt, tmpyrog, 1, callback, 0); 
stat - callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS, 

EXAMPLEPROC_CALLBACK,xdr_int, &tmpyrog,xdr_void, 0); 
if (stat !- RPC_SUCCESS) { 

clnt-perrno(stat); 
exit(1); 

svc_runO; 
fprintf(stderr, "Error: svc run shouldn't return\n"); 

callback (rqstp, transp) 
register struct svc_req *rqstp; 
register SVCXPRT *transp; 

switch (rqstp->r~roc) { 
case 0: 

if (!svc_sendreply(transp, xdr_void, 0» { 
fprintf(stderr, "err: exampleprog\n"); 
return (1); 

return (0); 
case 1: 

fprintf(stderr, "client got callback\n"); 
if (! svc_sendreply (transp, xdr_void, 0» { 

fprintf(stderr, "err: exampleprog\n")i 
return (1); 

return (0); 

'* * server 
*1 
'include <stdio.h> 
'include <rpc/rpc.h> 
'include <sys/signal.h> 
'include "example.h" 

char *getnewprog(); 
char hostname[256]; 
int docallback(); 
int pnum == -1; /* program number for callback routine * / 

main () 
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gethostname(hostname, sizeof(hostname»; 
registerrpc(EXAMPLEPROG, EXAMPLEVERS, 

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void); 
signal (SIGALRM, docallback); 
alarm(10) ; 
svc_run () ; 
fprintf(stderr, "Error: svc run shouldn't return\n"); 

char * 
getnewprog(pnump) 

int *pnumpi 

pnum = *(int *)pnump; 
return NULL; 

docallback () 
{ 

int anSi 

if (pnum == -1) { 
signal (SIGALRM, docallback); 
return; /* program number not yet received * / 

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0, 
xdr_void, 0) i 

if (ans != RPC_SUCCESS) 
fprintf(stderr, "server: %s\n",clnt_sperrno(ans»; 

Sun currently supports RPC on top of both UDP (datagram) and TCP (circuit 
oriented) transports. The RPC library uses sockets API for communicating with 
the underlying transport layers. 

It is likely that in the future releases, the RPC library will use Transport Layer 
Interface (TLI) API for communicating with the underlying protocol layers. 
Usage of TLI will help in making RPC transport independent and thus users will 
be able to use any TLI conforming transport for communication. 

Almost all of the current RPC API will be supported. Exceptions would include 
passing of an open socket to the client and server create routines. 

One of the ways to have a very smooth transition to transport independent RPC is 
to use rpcgen to generate the client and the server skeletons, in addition to not 
using any transport specific feature of UDP and TCP. Code written this way will 
not be bound to run only on UDP and TCP, but will be able to run on all tran
sports of datagram and circuit oriented type. The actual RPC protocol will 
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however remain the same. 
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External Data Representation: Sun 

Technical Notes 

This chapter contains technical notes on Sun's implementation of the External 
Data Representation (XDR) standard, a set of library routines that allow a C pro
grammer to describe arbitrary data structures in a machine-independent fashion. 
For a formal specification of the XDR standard, see the External Data Represen
tation Standard: Protocol Specification. XDR is the backbone of Sun's Remote 
Procedure Call package, in the sense that data for remote procedure calls is 
transmitted using the standard. XDR library routines should be used to transmit 
data that is accessed (read or written) by more than one type of machine. 7 

This chapter contains a short tutorial overview of the XDR library routines, a 
guide to accessing currently available XDR streams, and information on defining 
new streams and data types. XDR was designed to work across different 
languages, operating systems, and machine architectures. Most users (particu
larly RPC users) will only need the information in the Number Filters, Floating 
Point Filters, and Enumeration Filters sections. Programmers wishing to imple
ment RPC and XDR on new machines will be interested in the rest of the 
chapter, as well as the External Data Representation Standard: Protocol 
Specification, which will be their primary reference. 

NOTE rpcgen can be used to write XDR routines even in cases where no RPC calls 
are being made. 

On Sun systems, C programs that want to use XDR routines must include the file 
<rpc I rpc . h>, which contains all the necessary interfaces to the XDR system. 
Since the C library libc. a contains all the XDR routines, compile as normal. 

( example% cc program. c 

7 For a complete specification of the system External Data Representation routines, see the xdr (3N) 

manual page. 

] 
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J ostification Consider the following two programs, wr iter: 

iinclude <stdio.h> 

main () 
{ 

long i; 

/ * writer.c * I 

for (i = 0; i < 8; i++) { 
if (fwrite«char *)&i, sizeof(i), 1, stdout) != 1) { 

fprintf (stderr, "failed! \n"); 
exit (1); 

exit(O); 

and reader: 

iinclude <stdio.h> 

main () 
{ 

long i, j; 

1* reader.c *1 

for (j - 0; j < 8; j++) { 
if (fread«char*)&i, sizeof (i), 1, stdin) !=1) { 

fprintf (stderr, Itfailed! \nlt); 
exit(I); 

printf (It%ld ", i); 

printf(II\nlt); 
exit(O); 

The two programs appear to be portable, because (a) they pass lint checking, 
and (b) they exhibit the same behavior when executed on two different hardware 
architectures, a Sun and a VAX. 

Piping the output of the writer program to the reader program gives identi
cal results on a Sun or a V AX. 

sun% writer I reader 
0 1 2 3 4 5 6 7 
sun% 

vax% writer I reader 
0 1 2 3 4 5 6 7 
vax% 

With the advent of local area networks and 4.2BSD came the concept of "net
work pipes" - a process produces data on one machine, and a second process 
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consumes data on another machine. A network pipe can be constructed with 
writer and reader. Here are the results if the first produces data on a Sun, 
and the second consumes data on a V AX. 

sun% writer I rsh vax reader 
o 16777216 33554432 50331648 67108864 83886080 100663296 
117440512 
sun% 

Identical results can be obtained by executing wr iter on the V AX and 
reader on the Sun. These results occur because the byte ordering of long 
integers differs between the V AX and the Sun, even though word size is the 
same. Note that 16777216 is 224 - when four bytes are reversed, the 1 winds up 
in the 24th bit. 

Whenever data is shared by two or more machine types, there is a need for port
able data. Programs can be made data-portable by replacing the read () and 
wr i te () calls with calls to an XDR library routine xdr _long () , a filter that 
knows the standard representation of a long integer in its external fonn. Here are 
the revised versions of wri ter: 

#include <stdio.h> 
#include <rpc/rpc.h> / * xdr is a sub-library of rpc * / 

main () 
{ 

/ * writer.c * / 

XDR xdrs; 
long i; 

xdrstdio_create(&xdrs, stdout, XDR_ENCODE); 
for (i = 0; i < 8; i++) { 

if (!xdr_long(&xdrs, &i» { 
fprintf (stderr, "failed! \n") ; 
exit(l); 

exit(O); 

and reader: 
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iinclude <stdio.h> 
iinclude <rpc/rpc.h> / * xlir is a sub-library of rpc * / 
main () 
{ 

/ * reader.c * / 

XDR xdrs; 
long i, j; 

xdrstdio_create(&xdrs, stdin, XDR_DECODE); 
for (j = 0; j < 8; j++) { 

if (!xdr_long(&xdrs, &i» 
fprintf(stderr, "failed!\n"); 
exit(l); 

printf("%ld ", i); 

printf("\n"); 
exit(O); 

The new programs were executed on a Sun, on a V AX, and from a Sun to a 
V AX; the results are shown below. 

sun% writer I reader 
012 3 4 5 6 7 
sun% 

vax% writer I reader 
012 3 4 5 6 7 
vax% 

sun% writer I rsh vax reader 
012 3 4 5 6 7 
sun% 

NOTE Integers are just the tip of the portable-data iceberg. Arbitrary data structures 
present portability problems, particularly with respect to alignment and pointers. 
Alignment on word boundaries may cause the size of a structure to vary from 
machine to machine. Andpointers, which are very convenient to use, have no 
meaning outside the machine where they are defined. 

A Canonical Standard XDR's approach to standardizing data representations is canonical. That is, 
XDR defines a single byte order (Big Endian), a single floating-point representa
tion (IEEE), and so on. Any program running on any machine can use XDR to 
create portable data by translating its local representation to the XDR standard 
representations; similarly, any program running on any machine can read port
able data by translating the XDR standard representaions to its local equivalents. 
The single standard completely decouples programs that create or send portable 
data from those that use or receive portable data. The advent of a new machine 
or a new language has no effect upon the community of existing portable data 
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creators and users. A new machine joins this community by being "taught" how 
to convert the standard representations and its local representations; the local 
representations of other machines are irrelevant. Conversely, to existing pro
grams running on other machines, the local representations of the new machine 
are also irrelevant; such programs can immediately read portable data produced 
by the new machine because such data conforms to the canonical standards that 
they already understand. 

There are strong precedents forXDR's canonical approach. For example, 
TCP/IP, UDP/lP, XNS, Ethernet, and, indeed, all protocols below layer five of 
the ISO model, are canonical protocols. The advantage of any canonical 
approach is simplicity; in the case of XDR, a single set of conversion routines is 
written once and is never touched again. The canonical approach has a disadvan
tage, but it is unimportant in real-world data transfer applications. Suppose two 
Little-Endian machines are transferring integers according to the XDR standard. 
The sending machine converts the integers from Little-Endian byte order to XDR 
(Big-Endian) byte order, the receiving machine performs the reverse conversion. 
Because both machines observe the same byte order, their conversions are 
unnecessary. The point, however, is not necessity, but cost as compared to the 
alternative. 

The time spent converting to and from a canonical representation is insignificant, 
especially in networking applications. Most of the time required to prepare a 
data structure for transfer is not spent in conversion but in traversing the elements 
of the data structure. To transmit a tree, for example, each leaf must be visited 
and each element in a leaf record must be copied to a buffer and aligned there; 
storage for the leaf may have to be deallocated as well. Similarly, to receive a 
tree, storage must be allocated for each leaf, data must be moved from the buffer 
to the leaf and properly aligned, and pointers must be constructed to link the 
leaves together. Every machine pays the cost of traversing and copying data 
structures whether or not conversion is required. In networking applications, 
communications overhead-the time required to move the data down through the 
sender's protocol layers, across the network and up through the receiver's proto
collayers-dwarfs conversion overhead. 

The XDR library not only solves data portability problems, it also allows you to 
write and read arbitrary C constructs in a consistent, specified, well-documented 
manner. Thus, it can make sense to use the library even when the data is not 
shared among machines on a network. 

The XDR library has filter routines for strings (null-terminated arrays of bytes), 
structures, unions, and arrays, to name a few. Using more primitive routines, you 
can write your own specific XDR routines to describe arbitrary data structures, 
including elements of arrays, arms of unions, or objects pointed at from other 
structures. The structures themselves may contain arrays of arbitrary elements, 
or pointers to other structures. 

Let's examine the two programs more closely. There is a family ofXDR stream 
creation routines in which each member treats the stream of bits differently. In 
our example, data is manipulated using standard I/O routines, so we use 
xdrstdio_create (). The parameters to XDR stream creation routines vary 
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according to their function. In our example, xdrstdio _create () takes a 
pointer to an XDR structure that it initializes, a pointer to a FILE that the input 
or output is perfonned on, and the operation. The operation may be 
XDR_ENCODE for serializing in the writer program, or XDR_DECODE for 
deserializing in the reader program. 

Note: RPC users never need to create XDR streams; the RPC system itself 
creates these streams, which are then passed to the users. 

The xdr _long () primitive is characteristic of most XDR library primitives 
and all client XDR routines. First, the routine returns FALSE (0) if it fails, and 
TRUE (1) if it succeeds. Second, for each data type, xxx, there is an associated 
XDR routine of the fonn: 

xdr_xxx(xdrs, xp) 
XDR *xdrs; 
xxx *xp; 

In our case, xxx is long, and the corresponding XDR routine is a primitive, 
xdr _long (). The client could also define an arbitrary structure xxx in which 
case the client would also supply the routine xdr _xxx ( ) I describing each field 
by calling XDR routines of the appropriate type. In all cases the first parameter, 
xdr s can be treated as an opaque handle, and passed to the primitive routines. 

XDR routines are direction independent; that is, the same routines are called to 
serialize or deserialize data. This feature is critical to software engineering of 
portable data. The idea is to call the same routine for either operation - this 
almost guarantees that serialized data can also be deserialized. One routine is 
used by both producer and consumer of networked data. This is implemented by 
always passing the address of an object rather than the object itself - only in the 
case of deserialization is the object modified. This feature is not shown in our 
trivial example, but its value becomes obvious when nontrivial data structures are 
passed among machines. If needed, the user can obtain the direction of the XDR 
operation. See the XDR Operation Directions section of this chapter for details. 

Let's look at a slightly more complicated example. Assume that a person's gross 
assets and liabilities are to be exchanged among processes. Also assume that 
these values are important enough to warrant their own data type: 

struct gnumbers { 
long g_assets; 
long g_liabilities; 

} ; 

The corresponding XDR routine describing this structure would be: 
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bool t /* TRUE is success, FALSE isfailure * / 
xdr_gnumbers(xdrs, gp) 

XDR *xdrsi 
struct gnumbers *gp; 

if (xdr_long(xdrs, &gp->g_assets) && 
xdr_long(xdrs, &gp->g_liabilities» 
return (TRUE) ; 

return(FALSE)i 

Note that the parameter xdr s is never inspected or modified; it is only passed on 
to the subcomponent routines. It is imperative to inspect the return value of each 
XDR routine call, and to give up immediately and return FALSE if the subrou
tine fails. 

This example also shows that the type boo 1_ t is declared as an integer whose 
only values are TRUE (1) and FALSE (0). This document uses the following 
definitions: 

idefine bool tint 
idefine TRUE 1 
idefine FALSE 0 

Keeping these conventions in mind, xdr_gnumbers () can be rewritten as fol
lows: 

xdr_gnumbers(xdrs, gp) 
XDR *xdrSi 
struct gnumbers *gpi 

return (xdr_long(xdrs, &gp->g_assets) && 
xdr_long(xdrs, &gp->g_liabilities»; 

This document uses both coding styles. 

This section gives a synopsis of each XDR primitive. It starts with basic data 
types and moves on to constructed data types. Finally, XDR utilities are dis
cussed. The interface to these primitives and utilities is defined in the include file 
<rpc/xdr. h>, automatically included by <rpc/rpc. h>. 

The XDR library provides primitives to translate between numbers and their 
corresponding external representations. Primitives cover the set of numbers in: 

[signed, unsigned] * [short, int, long] 
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Floating Point Filters 

Specifically, the eight primitives are: 

bool_t xdr_char(xdrs, cp) 
XDR *xdrsi 
char *CPi 

XDR *xdrsi 
unsigned char *UCPi 

bool_t xdr_int(xdrs, ip) 
XDR *xdrsi 
int *iPi 

bool_t xdr_u_int(xdrs, up) 
XDR *xdrsi 
unsigned *UPi 

bool_t xdr_long(xdrs, lip) 
XDR *xdrsi 
long *lipi 

bool_t xdr_u_long(xdrs, lup) 
XDR *xdrsi 
u_long *lUPi 

bool_t xdr_short(xdrs, sip) 
XDR *xdrsi 
short *SiPi 

bool_t xdr_u_short(xdrs, sup) 
XDR *xdrsi 
u_short *SUPi 

The first parameter, xdrs, is an XDR stream handle. The second parameter is 
the address of the number that provides data to the stream or receives data from 
it. All routines return TRUE if they complete successfully, and FALSE other
wise. 

The XDR library also provides primitive routines for C's floating point types: 

bool_t xdr_float(xdrs, fp) 
XDR *xdrs; 
float *fPi 

bool_t xdr_double(xdrs, dp) 
XDR *xdrsi 
double *dp; 

The first parameter, xdr s is an XDR stream handle. The second parameter is 
the address of the floating point number that provides data to the stream or 
receives data from it. Both routines return TRUE if they complete successfully, 
and FALSE otherwise. 
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Note: Since the numbers are represented in IEEE floating point, routines may fail 
when decoding a valid IEEE representation into a machine-specific representa
tion, or vice-versa. 

The XDR library provides a primitive for generic enumerations. The primitive 
assumes that a C en urn has the same representation inside the machine as a C 
integer. The boolean type is an important instance of the enUffi. The external 
representation of a boolean is always TRUE (1) or FALSE (0). 

*define bool_t int 
*define FALSE 0 
*define TRUE 1 

*define enum tint 

bool_t xdr_enum(xdrs, ep) 
XDR *xdrsi 
enum_t *epi 

bool_t xdr_bool(xdrs, bp) 
XDR *xdrsi 
bool_t *bPi 

The second parameters ep and bp are addresses of the associated type that pro
vides data to, or receives data from, the stream xdrs. 

Occasionally, an XDR routine must be supplied to the RPC system, even when 
no data is passed or required. The library provides such a routine: 

bool t xdr _void () ; / * always returns TRUE * / 

Constructed or compound data type primitives require more parameters and per
fonn more complicated functions then the primitives discussed above. This sec
tion includes primitives for strings, arrays, unions, and pointers to structures. 

Constructed data type primitives may use memory management. In many cases, 
memory is allocated when deserializing data with XDR_DECODE. Therefore, the 
XDR package must provide means to deallocate memory. This is done by an 
XDR operation, XDR_FREE. To review, the three XDR directional operations 
are XDR _ENCODE, XDR _DECODE, and XDR _FREE. 

In C, a string is defined as a sequence of bytes tenninated by a null byte, which is 
not considered when calculating string length. However, when a string is passed 
or manipulated, a pointer to it is employed. Therefore, the XDR library defines a 
string to be a char *, and not a sequence of characters. The external represen
tation of a string is drastically different from its internal representation. Exter
nally, strings are represented as sequences of ASCII characters, while internally, 
they are represented with character pointers. Conversion between the two 
representations is accomplished with the routine xdr_string () : 
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Keep maxlength small. If it is too 
big you can blow the heap, since 
xdr string () will call malloe () 
for space. 

Byte Arrays 

bool_t xdr_string(xdrs, sp, maxlength) 
XDR *xdrs; 
char **sp; 
u_int maxlength; 

The first parameter xdr s is the XDR stream handle. The second parameter sp 
is a pointer to a string (type char **). The third parameter maxlength 
specifies the maximum number of bytes allowed during encoding or decoding. 
its value is usually specified by a protocol. For example, a protocol specification 
may say that a file name may be no longer than 255 characters. 

The routine returns FALSE if the number of characters exceeds maxlength, 
and TRUE if it doesn't 

The behavior of xdr _ str ing () is similar to the behavior of other routines dis
cussed in this section. The direction XDR ENCODE is easiest to understand. The 
parameter sp points to a string of a certain length; if the string does not exceed 
maxlengt h, the bytes are serialized. 

The effect of deserializing a string is subtle. First the length of the incoming 
string is detennined; it must not exceed maxlength. Next sp is dereferenced; 
if the value is NULL, then a string of the appropriate length is allocated and *sp 
is set to this string. If the original value of * s p is non-null, then the XDR pack
age assumes that a target area has been allocated, which can hold strings no 
longer than maxlength. In either case, the string is decoded into the target 
area. The routine then appends a null character to the string. 

In the XDR _FREE operation, the string is obtained by dereferencing sp. If the 
string is not NULL, it is freed and * sp is set to NULL. In this operation, 
xdr _string () ignores the maxlength parameter. 

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ 
from strings in the following three ways: 1) the length of the array (the byte 
count) is explicitly located in an unsigned integer, 2) the byte sequence is not ter
minated by a null character, and 3) the external representation of the bytes is the 
same as their internal representation. The primitive xdr_bytes () converts 
between the internal and external representations of byte arrays: 

bool_t xdr_bytes(xdrs, bpp, Ip, maxlength) 
XDR *xdrs; 
char **bpp; 
u_int *lp; 
u_int maxlength; 

The usage of the first, second and fourth parameters are identical to the first, 
second and third parameters of xdr string () ,respectively. The length of 
the byte area is obtained by dereferencing 1 p when serializing; * 1 P is set to the 
byte length when deserializing. 
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The XDR library package provides a primitive for handling arrays of arbitrary 
elements. The xdr_bytes () routine treats a subset of generic arrays, in which 
the size of array elements is known to be 1, and the external description of each 
element is built-in. The generic array primitive, xdr _array () requires param
eters identical to those of xdr _bytes () plus two more: the size of array ele
ments, and an XDR routine to handle each of the elements. This routine is called 
to encode or decode each element of the array. 

bool t 
xdr_array(xdrs, ap, Ip, maxlength, elementsiz, xdr_element) 

XDR *xdrsi 
char **api 
u_int *lPi 
u_int maxlengthi 
u_int elementsizi 
bool_t (*xdr_element) ()i 

The parameter ap is the address of the pointer to the array. If * ap is NULL 

when the array is being deserialized, XDR allocates an array of the appropriate 
size and sets *ap to that array. The element count of the array is obtained from 
* lp when the array is serialized; * lp is set to the array length when the array is 
deserialized. The parameter maxlength is the maximum number of elements 
that the array is allowed to have; elementsiz is the byte size of each element 
of the array (the C function sizeof () can be used to obtain this value). The 
xdr _element () routine is called to serialize, deserialize, or free each element 
of the array. 

Before defining more constructed data types, it is appropriate to present three 
examples. 

ExampZeA: 
A user on a networked machine can be identified by (a) the machine name, such 
as krypton: see the gethostname man page; (b) the user's UID: see the 
geteuid man page; and (c) the group numbers to which the user belongs: see 
the getgroups man page. A structure with this information and its associated 
XDR routine could be coded like this: 
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struct netuser { 

} ; 

char 
int 
u int 
int 

*nu_machinename; 
nu_uid; 
nu_glen; 
*nu_gids; 

#define NLEN 255 
#define NGRPS 20 

/ * machine names < 256 chars * / 
/ * user can't be in > 20 groups * / 

bool t 
xdr_netuser(xdrs, nup) 

XDR *xdrs; 
struct netuser *nup; 

return (xdr_string(xdrs, &nup->nu_machinename, NLEN) && 
xdr_int(xdrs, &nup->nu_uid) && 
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, 
NGRPS, sizeof (int), xdr_int»; 

ExampleB: 
A party of network users could be implemented as an array of net user struc
ture. The declaration and its associated XDR routines are as follows: 

struct party { 
u_int p_len; 
struct net user *p_nusers; 

} ; 

#define PLEN 500 /* max number o/users in a party * / 

bool t 
xdr-party(xdrs, pp) 

XDR *xdrs; 
struct party *pp; 

return (xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN, 
sizeof (struct netuser), xdr_netuser»; 

Example C: 
The well-known parameters to main, argc and argv can be combined into a 
structure. An array of these structures can make up a history of commands. The 
declarations and XDR routines might look like: 
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struct cmd { 

} i 

u_int c_argci 
char **c_argvi 

fdefine ALEN 1000 
fdefine NARGC 100 

/* args cannot be> 1000 chars * / 
/* commands cannot have> 100 args * / 

struct history { 
u_int h_leni 
struct cmd *h_cmdsi 

} i 

fdefine NCMDS 75 /* history is no more than 75 commands * / 

bool t 
xdr_wrapstring(xdrs, sp) 

XDR *xdrsi 
char **SPi 

return (xdr_string(xdrs, sp, ALEN»; 

bool t 
xdr_cmd(xdrs, cp) 

XDR *xdrsi 
struct cmd *CPi 

return (xdr_array (xdrs, &cp->c_argv, &cp->c_argc, NARGC, 
sizeof (char *), xdr_wrapstring»i 

bool t 
xdr_history(xdrs, hp) 

XDR *xdrsi 
struct history *hPi 

return (xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS, 
sizeof (struct cmd), xdr_cmd»i 

The most confusing part of this example is that the routine 
xdr_wrapstring () is needed to package the xdr_string () routine, 
because the implementation of xdr _array () only passes two parameters to 
the array element description routine; xdr _ wr a pst ring () supplies the third 
parameter to xdr_string (). 

By now the recursive nature of the XDR library should be obvious. Let's con
tinue with more constructed data types. 

In some protocols, handles are passed from a server to client. The client passes 
the handle back to the server at some later time. Handles are never inspected by 
clients; they are obtained and submitted. That is to say, handles are opaque. The 
xdr _ opaque () primitive is used for describing fixed sized, opaque bytes. 
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Fixed Sized Arrays 

Discriminated Unions 

bool_t xdr_opaque(xdrs, p, len) 
XDR *xdrs; 
char *p; 
u_int len; 

The parameter p is the location of the bytes; len is the number of bytes in the 
opaque object. By definition, the actual data contained in the opaque object are 
not machine portable. 

The XDR library provides a primitive, xdr _vector () , for fixed-length arrays. 

fdefine NLEN 255 
fdefine NGRPS 20 

/ * machine names must be < 256 chars * / 
/ * user belongs to exactly 20 groups * / 

struct netuser { 

} ; 

char *nu_machinename; 
int nu_uid; 
int nu_gids[NGRPS]; 

bool t 
xdr_netuser(xdrs, nup) 

XDR *xdrs; 
struct netuser *nup; 

int i; 

if (!xdr_string(xdrs, &nup->nu_machinename, NLEN» 
return(FALSE); 

if (!xdr_int(xdrs, &nup->nu_uid» 
return(FALSE); 

if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int), 
xdr_int» { 

return(FALSE); 

return(TRUE); 

The XDR library supports discriminated unions. A discriminated union is a C 
union and an enum t value that selects an "arm" of the union. 
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struct xdr_discrim { 
enum t value; 
bool t (*proc) () ; 

} ; 

bool t xdr_union(xdrs, dscmp, unp, arms, defaultarm) 
XDR *xdrs; 
enum_t *dscmp; 
char *unp; 
struct xdr discrim *arms; 
bool_t (*defaultarm) (); /* mayequalNUU */ 

First the routine translates the discriminant of the union located at * ds cmp. The 
discriminant is always an enum _ t. Next the union located at *unp is 
translated. The parameter arms is a pointer to an array of xdr _ discrim 
structures. Each structure contains an ordered pair of [value, pro C ]. If the 
union's discriminant is equal to the associated value, then the proc is called to 
translate the union. The end of the xdr_discrim structure array is denoted by 
a routine of value NULL (0). If the discriminant is not found in the arms array, 
then the defaultarm procedure is called if it is non-null; otherwise the routine 
returns FALSE. 

Example D: Suppose the type of a union may be integer, character pointer (a 
string), or a gnumbers structure. Also, assume the union and its current type 
are declared in a structure. The declaration is: 

enum utype { INTEGER=l, STRING=2, GNUMBERS=3 }; 

struct u_tag { 
enum utype utype; 
union { 

/ * the union's discriminant * / 

} ; 

int ivaI; 
char *pval; 
struct gnumbers gn; 

uval; 

The following constructs and XDR procedure (de )serialize the discriminated 
union: 
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Pointers 

struct xdr_discrim u_tag_arms[4] 
INTEGER, xdr_int }, 
GNUMBERS, xdr_gnumbers 
STRING, xdr_wrapstring }, 
__ dontcare __ , NULL } 

/ * always terminate arms with a NULL xdr yroc * / 

bool t 
xdr_u_tag(xdrs, utp) 

XDR *xdrs; 
struct u_tag *utp; 

return (xdr_union (xdrs, &utp->utype, &utp->uval, 
u_tag_ar.ms, NULL»; 

The routine xdr _gnumber s () was presented above in The XDR Library sec
tion. xdr_wrapstring () was presented in example C. The default arm 
parameter to xdr union () (the last parameter) is NULL in this example. 
Therefore the value of the union's discriminant may legally take on only values 
listed in the u_tag_arms array. This example also demonstrates that the ele
ments of the ann's array do not need to be sorted. 

It is worth pointing out that the values of the discriminant may be sparse, though 
in this example they are not. It is always good practice to assign explicitly 
integer values to each element of the discriminant's type. This practice both 
documents the external representation of the discriminant and guarantees that dif
ferent C compilers emit identical discriminant values. 

Exercise: Implement xdr _union () using the other primitives in this section. 

In C it is often convenient to put pointers to another structure within a structure. 
The xdr_reference () primitive makes it easy to serialize, deserialize, and 
free these referenced structures. 

bool_t xdr_reference(xdrs, pp, size, proc) 
XDR *xdrs; 
char **pp; 
u_int ssize; 
bool_t (*proc) (); 

Parameter pp is the address of the pointer to the structure; parameter s s i z e is 
the size in bytes of the structure (use the C function sizeof () to obtain this 
value); and proc is the XDR routine that describes the structure. When decod
ing data, storage is allocated if *pp is NULL. 

There is no need for a primitive xdr_struct () to describe structures within 
structures, because pointers are always sufficient. 
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Exercise: Implement xdr_reference () using xdr_array (). Warning: 
xdr_reference () and xdr_array () are NOT interchangeable external 
representations of data. 

Example E: Suppose there is a structure containing a person's name and a pointer 
to a gnumbers structure containing the person's gross assets and liabilities. 
The construct is: 

struct pgn { 
char *name; 
struct gnumbers *gnpi 

} i 

The corresponding XDR routine for this structure is: 

bool t 
xdr-pgn(xdrs, pp) 

XDR *xdrs; 
struct pgn *pp; 

if (xdr_string(xdrs, &pp->name, NLEN) && 
xdr_reference(xdrs, &pp->gnp, 
sizeof(struct gnumbers), xdr_gnumbers» 

return (TRUE) i 

return (FALSE) ; 

Pointer Semantics and XDR 

In many applications, C programmers attach double meaning to the values of a 
pointer. Typically the value NULL (or zero) means data is not needed, yet some 
application-specific interpretation applies. In essence, the C programmer is 
encoding a discriminated union efficiently by overloading the interpretation of 
the value of a pointer. For instance, in example E a NULL pointer value for gnp 
could indicate that the person's assets and liabilities are unknown. That is, the 
pointer value encodes two things: whether or not the data is known; and if it is 
known, where it is located in memory. Linked lists are an extreme example of 
the use of application-specific pointer interpretation. 

The primitive xdr_reference () cannot and does not attach any special 
meaning to a null-value pointer during serialization. That is, passing an address 
of a pointer whose value is NULL to xdr _ref erence () when serialing data 
will most likely cause a memory fault and, on the UNIX system, a core dump. 

xdr yointer () correctly handles NULL pointers. For more information 
about its use, see Linked Lists. 

Exercise: After reading the section on Linked Lists, return here and extend exam
ple E so that it can correctly deal with NULL pointer values. 

Exercise: Using the xdr_union () ,xdr_reference () and xdr_ void () 
primitives, implement a generic pointer handling primitive that implicitly deals 
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Non-filter Primitives 

XDR Operation Directions 

XDR Stream Access 

Standard I/O Streams 

with NULL pointers. That is, implement xdr yointer ( ) . 

XDR streams can be manipulated with the primitives discussed in this section. 

u_int xdr_getpos(xdrs) 
XDR *xdrs; 

bool_t xdr_setpos(xdrs, pos) 
XDR *xdrs; 
u_int pos; 

xdr_destroy(xdrs) 
XDR *xdrs; 

The routine xdr _getpos () returns an unsigned integer that describes the 
current position in the data stream. Warning: In some XDR streams, the returned 
value ofxdr_getpos () is meaningless; the routine returns a -1 in this case 
(though -1 should be a legitimate value). 

The routine xdr_setpos () sets a stream position to pos. Warning: In some 
XDR streams, setting a position is impossible; in such cases, xdr _ setpos () 
will return FALSE. This routine will also fail if the requested position is out-of
bounds. The definition of bounds varies from stream to stream. 

The xdr_destroy () primitive destroys the XDR stream. Usage of the stream 
after calling this routine is undefined. 

At times you may wish to optimize XDR routines by taking advantage of the 
direction of the operation- XDR_ENCODE, XDR_DECODE, or XDR_FREE. 
The value xdrs->x_op always contains the direction of the XDR operation. 
Programmers are not encouraged to take advantage of this information. There
fore, no example is presented here. However, an example in the Linked Lists sec
tion, below, demonstrates the usefulness of the xdrs->x_op field. 

An XDR stream is obtained by calling the appropriate creation routine. These 
creation routines take arguments that are tailored to the specific properties of the 
stream. 

Streams currently exist for (de)serialization of data to or from standard I/O FILE 
streams, TCP/IP connections and UNIX files, and memory. 

XDR streams can be interfaced to standard I/O using the 
xdrstdio_create () routine as follows: 
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*include <stdio.h> 
*include <rpc/rpc.h> / * xdr streams part of rpc * / 

void 
xdrstdio_create(xdrs, fp, x_op) 

XDR *xdrsi 
FILE *fPi 
enum xdr_op X_OPi 

The routine xdrstdio _ create () initializes an XDR stream pointed to by 
xdrs. The XDR stream interfaces to the standard I/O library. Parameter fp is 
an open file, and x _ op is an XDR direction. 

Memory streams allow the streaming of data into or out of a specified area of 
memory: 

*include <rpc/rpc.h> 

void 
xdrmem_create(xdrs, addr, len, x_op) 

XDR *xdrs; 
char *addri 
u_int len; 
enum xdr_op X_OPi 

The routine xdrmem_create () initializes an XDR stream in local memory. 
The memory is pointed to by parameter addr; parameter len is the length in 
bytes of the memory. The parameters xdrs and x_op are identical to the 
corresponding parameters of xdr stdio _create ( ). Currently, the UDP/IP 
implementation ofRPC uses xdrmem_create (). Complete call or result 
messages are built in memory before calling the sendto () system routine. 

A record stream is an XDR stream built on top of a record marking standard that 
is built on top of the UNIX file or 4.2 BSD connection interface. 

*include <rpc/rpc.h> / * xdr streams part of rpc * / 

xdrrec_create(xdrs, 
sendsize, recvsize, iohandle, readproc, writeproc) 

XDR *xdrs; 
u_int sendsize, recvsizei 
char *iohandlei 
int (*readproc) (), (*writeproc) () i 

The routine xdrrec_create () provides an XDR stream interface that allows 
for a bidirectional, arbitrarily long sequence of records. The contents of the 
records are meant to be data in XDR form. The stream's primary use is for inter
facing RPC to TCP connections. However, it can be used to stream data into or 
out of normal UNIX files. 
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The parameter xdr s is similar to the corresponding parameter described above. 
The stream does its own data buffering similar to that of standard I/O. The 
parameters sendsize and recvsize determine the size in bytes of the output 
and input buffers, respectively; if their values are zero (0), then predetermined 
defaults are used. When a buffer needs to be filled or flushed, the routine read
proc () or writeproc () is called, respectively. The usage and behavior of 
these routines are similar to the UNIX system calls read () and write () . 
However, the first parameter to each of these routines is the opaque parameter 
iohandle. The other two parameters (buf and nbytes) and the results (byte 
count) are identical to the system routines. If xxx is readproc () or wri
teproc ( ) , then it has the following form: 

1* 
* returns the actual number of bytes transferred. 
* -1 is an error 
*1 
int 
xxx(iohandle, buf, len) 

char *iohandle; 
char *buf; 
int nbytes; 

The XDR stream provides means for delimiting records in the byte stream. The 
implementation details of delimiting records in a stream are discussed in the 
Advanced Topics section, below. The primitives that are specific to record 
streams are as follows: 

bool t 
xdrrec_endofrecord(xdrs, flushnow) 

XDR *xdrs; 
bool_t flushnow; 

bool t 
xdrrec_skiprecord(xdrs) 

XDR *xdrs; 

bool t 
xdrrec _ eof (xdrs) 

XDR *xdrs; 

The routine xdrrec _ endofrecord () causes the current outgoing data to be 
marked as a record. If the parameter flushnow is TRUE, then the stream's 
writeproc will be called; otherwise, writeproc will be called when the 
output buffer has been filled. 

The routine xdrrec_skiprecord () causes an input stream's position to be 
moved past the current record boundary and onto the beginning of the next 
record in the stream. 

If there is no more data in the stream's input buffer, then the routine 
xdrrec_eof () returns TRUE. That is not to say that there is no more data in 
the underlying file descriptor. 
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This section provides the abstract data types needed to implement new instances 
of XDR streams. 

The following structure defines the interface to an XDR stream: 

enum xdr_op { XDR_ENCODE=O, XDR_DECODE=l, XDR_FREE=2 }; 

typedef struct { 
enum xdr_op x_op; 
struct xdr_ops { 

/ * operation; fast added param * / 

bool t (*x_getlong) () ; /* get long from stream * / 
bool t (*xyutlong) () ; /* put long to stream * / 
bool t (*x_getbytes) () ; /* get bytes from stream * / 
bool t (*xyutbytes) () ; /* put bytes to stream * / 
u int (*x_getpostn) () ; /* return stream offset * / 
bool t (*x_setpostn) () ; /* reposition offset * / 
caddr t (*x_inline) () i /* ptr to buffered data * / 
VOID (*x_destroy) () ; / * free private area * / 

*X_OpSi 
caddr_t xyublici 
caddr_t xyrivatei 
caddr t x_base; 

/ * users' data * / 

int x_handy; 
XDR; 

/ * pointer to private data * / 
/ * private for position info * / 
/ * extra private word * / 

The x _ op field is the current operation being perfonned on the stream. This 
field is important to the XDR primitives, but should not affect a stream's imple
mentation. That is, a stream's implementation should not depend on this value. 
The fields x_private, x_base, and x_handy are private to the particular 
stream's implementation. The field x yubl i c is for the XDR client and should 
never be used by the XDR stream implementations or the XDR primitives. 
x _getpostn () , x _ setpo stn ( ) , and x_de stroy ( ) , are macros for 
accessing operations. The operation x_inline () takes two parameters: an 
XDR *, and an unsigned integer, which is a byte count. The routine returns a 
pointer to a piece of the stream's internal buffer. The caller can then use the 
buffer segment for any purpose. From the stream's point of view, the bytes in 
the buffer segment have been consumed or put. The routine may return NULL if 
it cannot return a buffer segment of the requested size. (The x _ i nl ine () rou
tine is for cycle squeezers. Use of the resulting buffer is not data-portable. Users 
are encouraged not to use this feature.) 

The operations x_getbytes () and x_putbytes () blindly get and put 
sequences of bytes from or to the underlying stream; they return TRUE if they are 
successful, and FALSE otherwise. The routines have identical parameters 
(replace xxx): 
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5.2. Advanced Topics 

Linked Lists 

boo 1 t 
xxxbytes(xdrs, buf, bytecount) 

XDR *xdrs; 
char *buf; 
u_int bytecount; 

The operations x_getlong () and xyutlong () receive and put long 
numbers from and to the data stream. It is the responsibility of these routines to 
translate the numbers between the machine representation and the (standard) 
external representation. The UNIX primitives htonl () and ntohl () can be 
helpful in accomplishing this. The higher-level XDR implementation assumes 
that signed and unsigned long integers contain the same number of bits, and that 
nonnegative integers have the same bit representations as unsigned integers. The 
routines return TRUE if they succeed, and FALSE otherwise. They have identi
cal parameters: 

bool t 
xxxlong(xdrs, Ip) 

XDR *xdrs; 
long *lp; 

Implementors of new XDR streams must make an XDR structure (with new 
operation routines) available to clients, using some kind of create routine. 

This section describes techniques for passing data structures that are not covered 
in the preceding sections. Such structures include linked lists (of arbitrary 
lengths). Unlike the simpler examples covered in the earlier sections, the follow
ing examples are written using both the XDR C library routines and the XDR 
data description language. The External Data Representation Standard: Proto
col Specification chapter of this Network Programming manual describes this 
language in complete detail. 

The last example in the Pointers section presented a C data structure and its asso
ciated XDR routines for a individual's gross assets and liabilities. The example 
is duplicated below: 
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struct gnumbers { 
long g_assetsi 
long g_liabilitiesi 

} i 

bool t 
xdr_gnumbers(xdrs, gp) 

XDR *xdrs; 
struct gnumbers *gpi 

if (xdr_long(xdrs, &(gp->g_assets») 
return (xdr_long(xdrs, &(gp->g_liabilities»)i 

return(FALSE); 

Now assume that we wish to implement a linked list of such information. A data 
structure could be constructed as follows: 

struct gnumbers_node { 

} ; 

struct gnumbers gn_numbers; 
struct gnumbers_node *gn_nexti 

typedef struct gnumbers_node *gnumbers_list; 

The head of the linked list can be thought of as the data object; that is, the head is 
not merely a convenient shorthand for a structure. Similarly the gn _ next field 
is used to indicate whether or not the object has terminated. Unfortunately, if the 
object continues, the gn _next field is also the address of where it continues. 
The link addresses carry no useful information when the object is serialized. 

The XDR data description of this linked list is described by the recursive declara
tion of gnurnbers_list: 

struct gnumbers { 
int g_assetsi 
int g_liabilities; 

} ; 

struct gnumbers_node { 
gnumbers gn_numbersi 
gnumbers_node *gn_next; 

} ; 

In this description, the boolean indicates whether there is more data following it. 
If the boolean is FALSE, then it is the last data field of the structure. If it is 
TRUE, then it is followed by a gnumbers structure and (recursively) by a 
gnurnbers_list. Note that the C declaration has no boolean explicitly 
declared in it (though the gn next field implicitly carries the infonnation), 
while the XDR data description has no pointer explicitly declared in it. 
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Hints for writing the XDR routines for a gnumbers_list follow easily from 
the XDR description above. Note how the primitive xdryointer () is used 
to implement the XDR union above. 

bool t 
xdr_gnumbers_node(xdrs, gn) 

XDR *xdrs; 
gnumbers_node *gn; 

return (xdr_gnumbers (xdrs, &gn->gn_numbers) && 
xdr_gnumbers_list(xdrs, &gp->gn_next»; 

bool t 
xdr_gnumbers_list(xdrs, gnp) 

XDR *xdrs; 
gnumbers_list *gnp; 

return (xdr-pointer(xdrs, gnp, 
sizeof(struct gnumbers_node), 
xdr_gnumbers_node»; 

The unfortunate side effect of XDR'ing a list with these routines is that the C 
stack grows linearly with respect to the number of node in the list. This is due to 
the recursion. The following routine collapses the above two mutually recursive 
into a single, non-recursive one. 
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bool t 
xdr_gnumbers_list(xdrs, gnp) 

XDR *xdrs; 
gnumbers_list *gnp; 

bool_t more_data; 
gnumbers_list *nextpi 

for (;;) { 
more_data = (*gnp != NULL); 
if (!xdr_bool(xdrs, &more_data» 

return (FALSE) ; 

if (! more_data) 
break; 

if (xdrs->x_op == XDR_FREE) { 
nextp = & (*gnp)->gn_next; 

if (!xdr_reference(xdrs, gnp, 
sizeof(struct gnumbers_node), xdr_gnumbers» { 

return(FALSE); 
} 

gnp = (xdrs->x_op == XDR_FREE) ? 
nextp : & (*gnp)->gn_next; 

*gnp NULL; 
return(TRUE); 

The first task is to find out whether there is more data or not, so that this boolean 
infonnation can be serialized. Notice that this statement is unnecessary in the 
XDR_DECODE case, since the value of more_data is not known until we deserial
ize it in the next statement. 

The next statement XDR's the more_data field of the XDR union. Then if there 
is truly no more data, we set this last pointer to NULL to indicate the end of the 
list, and return TRUE because we are done. Note that setting the pointer to NULL 
is only important in the XDR _DECODE case, since it is already NULL in the 
XDR ENCODE and XDR_FREE cases. 

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the 
location of the next pointer in the list. We do this now because we need to 
dereference gnp to find the location of the next item in the list, and after the next 
statement the storage pointed to by gnp will be freed up and no be longer valid. 
We can't do this for all directions though, because in the XDR _DECODE direc
tion the value of gnp won't be set until the next statement. 

Next, we XDR the data in the node using the primitive xdr_reference () . 
xdr _reference () is like xdr yointer () which we used before, but it 
does not send over the boolean indicating whether there is more data. We use it 
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instead ofxdr-pointer () because we have already XDR'd this information 
ourselves. Notice that the xdr routine passed is not the same type as an element 
in the list. The routine passed is xdr _gnumber s ( ) , for XDR'ing gnumbers, 
but each element in the list is actually of type gnumbers_node. We don't 
pass xdr_gnurnbers_node () because it is recursive, and instead use 
xdr_gnurnbers () which XDR's all of the non-recursive part. Note that this 
trick will work only if the gn_nurnbers field is the first item in each element, 
so that their addresses are identical when passed to xdr_reference () . 

Finally, we update gnp to point to the next item in the list. If the direction is 
XDR_FREE, we set it to the previously saved value, otherwise we can derefer
ence gnp to get the proper value. Though harder to understand than the recursive 
version, this non-recursive routine is far less likely to blow the C stack. It will 
also run more efficiently since a lot of procedure call overhead has been 
removed. Most lists are small though (in the hundreds of items or less) and the 
recursive version should be sufficient for them. 
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6.1. Status of this Standard 

6.2. Introduction 

Basic Block Size 

6 
External Data Representation Standard: 

Protocol Specification 

Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others 
are using. It has been designated RFCIOl4 by the ARPA Network Infonnation 
Center. 

XDR is a standard for the description and encoding of data. It is useful for 
transferring data between different computer architectures, and has been used to 
communicate data between such diverse machines as the Sun Workstation, VAX, 
IBM-PC, and Cray. XDR fits into the ISO presentation layer, and is roughly 
analogous in pUIpOse to X.409, ISO Abstract Syntax Notation. The major differ
ence between these two is that XDR uses implicit typing, while X.409 uses expli
cit typing. 

XDR uses a language to describe data formats. The language can only be used 
only to describe data; it is not a programming language. This language allows 
one to describe intricate data formats in a concise manner. The alternative of 
using graphical representations (itself an infonnallanguage) quickly becomes 
incomprehensible when faced with complexity. The XDR language itself is 
similar to the C language [I], just as Courier [4] is similar to Mesa. Protocols 
such as Sun RPC (Remote Procedure Call) and the NFS (Network File System) 
use XDR to describe the format of their data. 

The XDR standard makes the following assumption: that bytes (or octets) are 
portable, where a byte is defined to be 8 bits of data. A given hardware device 
should encode the bytes onto the various media in such a way that other 
hardware devices may decode the bytes without loss of meaning. For example, 
the Ethernet standard suggests that bytes be encoded in "little-endian" style [2], 
or least significant bit first. 

The representation of all items requires a multiple of four bytes (or 32 bits) of 
data. The bytes are numbered 0 through n-l. The bytes are read or written to 
some byte stream such that byte m always precedes byte m+l. If the n bytes 
needed to contain the data are not a multiple of four, then the n bytes are fol
lowed by enough (0 to 3) residual zero bytes, r, to make the total byte count a 
multiple of 4. 

We include the familiar graphic box notation for illustration and comparison. In 
most illustrations, each box (delimited by a plus sign at the 4 comers and vertical 
bars and dashes) depicts a byte. Ellipses ( ... ) between boxes show zero or more 
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6.3. XDR Data Types 

Integer 

Unsigned Integer 

additional bytes where required. 

A Block 

+--------+--------+ ... +--------+--------+ ... +--------+ 
I byte 0 I byte 1 1 ... lbyte n-11 0 1 ... 1 0 1 
+--------+--------+ ... +--------+--------+ ... +--------+ 
I<-----------n bytes---------->I<------r bytes------>I 
I<-----------n+r (where (n+r) mod 4 = 0»----------->1 

Each of the sections that follow describes a data type defined in the XDR stan
dard, shows how it is declared in the language, and includes a graphic illustration 
of its encoding. 

For each data type in the language we show a general paradigm declaration. 
Note that angle brackets « and » denote variable length sequences of data and 
square brackets ([ and ]) denote fixed-length sequences of data. "n", "m" and "r" 
denote integers. For the full language specification and more formal definitions 
oftenns such as "identifier" and "declaration", refer to The XDR Language 
Specification, below. 

For some data types, more specific examples are included. A more extensive 
example of a data description is in An Example of an XDR Data Description, 
below. 

An XDR signed integer is a 32-bit datum that encodes an integer in the range [-
2147483648,2147483647]. The integer is represented in two's complement nota
tion. The most and least significant bytes are 0 and 3, respectively. Integers are 
declared as follows: 

Integer 

(MSB) (LSB) 

+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 I 
+-------+-------+-------+-------+ 
<------------32 bits------------> 

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in 
the range [0,4294967295]. It is represented by an unsigned binary number whose 
most and least significant bytes are 0 and 3, respectively. An unsigned integer is 
declared as follows: 

Unsigned Integer 

(MSB) (LSB) 

+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 I 
+-------+-------+-------+-------+ 
<------------32 bits------------> 
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Enumerations have the same representation as signed integers. Enumerations are 
handy for describing subsets of the integers. Enumerated data is declared as fol
lows: 

enum { name-identifier = constant, ... } identifier; 

For example, the three colors red, yellow, and blue could be described by an 
enumerated type: 

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors; 

It is an error to encode as an enum any other integer than those that have been 
given assignments in the enum declaration. 

Booleans are important enough and occur frequently enough to warrant their own 
explicit type in the standard. Booleans are declared as follows: 

bool identifier; 

This is equivalent to: 

enum { FALSE = 0, TRUE = 1 } identifier; 

Hyper Integer and Unsigned 
Hyper Integer 

The standard also defines 64-bit (8-byte) numbers called hyper integer and 
unsigned hyper integer. Their representations are the obvious extensions of 
integer and unsigned integer defined above. They are represented in two's com
plement notation. The most and least significant bytes are 0 and 7, respectively. 
Their declarations: 

Floating-point 

Hyper Integer 
Unsigned Hyper Integer 

(MSB) (LSB) 

+-------+-------+-------+-------+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 Ibyte 4 Ibyte 5 Ibyte 6 Ibyte 7 I 
+-------+-------+-------+-------+-------+-------+-------+-------+ 
<----------------------------64 bits----------------------------> 

The standard defines the floating-point data type "float" (32 bits or 4 bytes). The 
encoding used is the IEEE standard for normalized single-precision floating
point numbers [3]. The following three fields describe the single-precision 
floating-point number: 

s: The sign of the number. Values 0 and 1 represent positive and negative, 
respectively. One bit. 

E: The exponent of the number, base 2. 8 bits are devoted to this field. 
The exponent is biased by 127. 

F: The fractional part of the number's mantissa, base 2. 23 bits are 
devoted to this field. 

Therefore, the floating-point number is described by: 
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Double-precision Floating
point 

(-l)**S * 2**(E-Bias) * 1.F 

It is declared as follows: 

Single-Precision Floating-Point 

+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 1 
SI ElF 1 
+-------+-------+-------+-------+ 
11<- 8 ->1<-------23 bits------>I 
<------------32 bits------------> 

Just as the most and least significant bytes of a number are 0 and 3, the most and 
least significant bits of a single-precision floating- point number are 0 and 31. 
The beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 9, 
respectively. Note that these numbers refer to the mathematical positions of the 
bits, and NOT to their actual physical locations (which vary from medium to 
medium). 

The IEEE specifications should be consulted concerning the encoding for signed 
zero, signed infinity (overflow), and denonnalized numbers (underflow) [3]. 
According to IEEE specifications, the "NaN" (not a number) is system dependent 
and should not be used externally. 

The standard defines the encoding for the double-precision floating- point data 
type "double" (64 bits or 8 bytes). The encoding used is the IEEE standard for 
nonnalized double-precision floating-point numbers [3]. The standard encodes 
the following three fields, which describe the double-precision floating-point 
number: 

s: The sign of the number. Values 0 and 1 represent positive and negative, 
respectively. One bit. 

E: The exponent of the number, base 2. 11 bits are devoted to this field. 
The exponent is biased by 1023. 

F: The fractional part of the number's mantissa, base 2. 52 bits are 
devoted to this field. 

Therefore, the floating-point number is described by: 

(-l)**S * 2**(E-Bias) * 1.F 

It is declared as follows: 

Double-Precision Floating-Point 

+------+------+------+------+------+------+------+------+ 
Ibyte Olbyte 11byte 21byte 31byte 41byte 51byte 61byte 71 
S 1 ElF 1 

+------+------+------+------+------+------+------+------+ 
11<--11-->1<-----------------52 bits------------------->I 
<-----------------------64 bits-------------------------> 

Just as the most and least significant bytes of a number are 0 and 3, the most and 
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least significant bits of a double-precision floating- point number are 0 and 63. 
The beginning bit (and most significant bit) offsets of S, E , and F are 0, 1, and 
12, respectively. Note that these numbers refer to the mathematical positions of 
the bits, and NOT to their actual physical locations (which vary from medium to 
medium). 

The IEEE specifications should be consulted concerning the encoding for signed 
zero, signed infinity (overflow), and denonnalized numbers (underflow) [3]. 
According to IEEE specifications, the "NaN" (not a number) is system dependent 
and should not be used externally. 

At times, fixed-length uninterpreted data needs to be passed among machines. 
This data is called "opaque" and is declared as follows: 

opaque identifier[n]; 

where the constant n is the (static) number of bytes necessary to contain the 
opaque data. Ifn is not a multiple of four, then the n bytes are followed by 
enough (0 to 3) residual zero bytes, r, to make the total byte count of the opaque 
object a multiple of four. 

Fixed-Length Opaque 

o 1 
+--------+--------+ ... +--------+--------+ ... +--------+ 
1 byte 0 1 byte 1 I ... 1 byte n-ll 0 1 ... 1 0 
+--------+--------+ ... +--------+--------+ ... +--------+ 
I<-----------n bytes---------->I<------r bytes------>I 
I<-----------n+r (where (n+r) mod 4 = 0)------------>1 

The standard also provides for variable-length (counted) opaque data, defined as 
a sequence ofn (numbered 0 through n-l) arbitrary bytes to be the number n 
encoded as an unsigned integer (as described below), and followed by the n bytes 
of the sequence. 

Byte m of the sequence always precedes byte m+ 1 of the sequence, and byte 0 of 
the sequence always follows the sequence's length (count). enough (0 to 3) resi
dual zero bytes, r, to make the total byte count a multiple of four. Variable
length opaque data is declared in the following way: 

opaque identifier<m>i 

or 

opaque identifier<>i 

The constant m denotes an upper bound of the number of bytes that the sequence 
may contain. If m is not specified, as in the second declaration, it is assumed to 
be (2**32) - 1, the maximum length. The constant m would normally be found 
in a protocol specification. For example, a filing protocol may state that the max
imum data transfer size is 8192 bytes, as follows: 

opaque filedata<8192>i 

This can be illustrated as follows: 

Revision A, of 27 March 1990 



136 Protocol Specifications 

String 

Fixed-length Array 

Variable-Length Opaque 

o 1 2 3 4 5 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
1 length n 1 by teO 1 by tel 1 ... 1 n-1 1 0 1 ... 1 0 1 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
1<-------4 bytes------->I<------n bytes------>I<---r bytes--->1 
I<----n+r (where (n+r) mod 4 = 0)---->1 

It is an error to encode a length greater than the maximum described in the 
specification. 

TI\e standard defines a string of n (numbered 0 through n-1) ASCII bytes to be 
the number n encoded as an unsigned integer (as described above), and followed 
by the n bytes of the string. Byte m of the string always precedes byte m+ 1 of 
the string, and byte 0 of the string always follows the string's length. Ifn is not a 
multiple of four, then the n bytes are followed by enough (0 to 3) residual zero 
bytes, r, to make the total byte count a multiple of four. Counted byte strings are 
declared as follows: 

string object<m>; 

or 

string object<>; 

The constant m denotes an upper bound of the number of bytes that a string may 
contain. If m is not specified, as in the second declaration, it is assumed to be 
(2**32) - 1, the maximum length. The constant m would nonnally be found in a 
protocol specification. For example, a filing protocol may state that a file name 
can be no longer than 255 bytes, as follows: 

string filename<255>; 

Which can be illustrated as: 

A String 

o 1 2 3 4 5 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
1 length n IbyteO 1 by tel 1 ... 1 n-1 1 0 1 ... 1 0 1 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
1<-------4 bytes------->I<------n bytes------>I<---r bytes--->1 
I<----n+r (where (n+r) mod 4 = 0)---->1 

It is an error to encode a length greater than the maximum described in the 
specification. 

Declarations for fixed-length arrays of homogeneous elements are in the follow
ing form: 

type-name identifier[n]; 

Fixed-length arrays of elements numbered 0 through n-l are encoded by 
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individually encoding the elements of the array in their natural order, 0 through 
n-1. Each element's size is a multiple of four bytes. Though all elements are of 
the same type, the elements may have different sizes. For example, in a fixed
length array of strings, all elements are of type "string", yet each element will 
vary in its length. 

Fixed-Length Array 

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
1 element 0 1 element 1 1 ... 1 element n-l 1 
+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
I<--------------------n elements------------------->1 

Counted arrays provide the ability to encode variable-length arrays of homogene
ous elements. The array is encoded as the element count n (an unsigned integer) 
followed by the encoding of each of the array's elements, starting with element 0 
and progressing through element n- 1. The declaration for variable-length arrays 
follows this form: 

type-name identifier<m>; 

or 

type-name identifier<>; 

The constant m specifies the maximum acceptable element count of an array; if 
m is not specified, as in the second declaration, it is assumed to be (2**32) - 1. 

Counted Array 

012 3 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 
1 n 1 element 0 1 element 1 I ... I element n-ll 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 
1<-4 bytes->I<--------------n elements------------->1 

It is an error to encode a value of n that is greater than the maximum described in 
the specification. 

Structures are declared as follows: 

struct { 
component-declaration-A; 
component-declaration-B; 

identifier; 

The components of the structure are encoded in the order of their declaration in 
the structure. Each component's size is a multiple of four bytes, though the com
ponents may be different sizes. 
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Discriminated Union 

Void 

Structure 

+-------------+-------------+ .. . 
1 component A 1 component B I .. . 
+-------------+-------------+ .. . 

A discriminated union is a type composed of a discriminant followed by a type 
selected from a set of prearranged types according to the value of the discrim
inant. The type of discriminant is either "int", "unsigned int" , or an enumerated 
type, such as "bool". The component types are called "arms" of the union, and 
are preceded by the value of the discriminant which implies their encoding. 
Discriminated unions are declared as follows: 

union switch (discriminant-declaration) 
case discriminant-value-A: 
arm-declaration-A; 
case discriminant-value-B: 
arm-declaration-B; 

default: default-declaration; 
identifier; 

Each "case" keyword is followed by a legal value of the discriminant. The 
default arm is optional. If it is not specified, then a valid encoding of the union 
cannot take on unspecified discriminant values. The size of the implied arm is 
always a multiple of four bytes. 

The discriminated union is encoded as its discriminant followed by the encoding 
of the implied ann. 

Discriminated Union 

o 1 2 3 
+---+---+---+---+---+---+---+---+ 

discriminant 1 implied arm 
+---+---+---+---+---+---+---+---+ 
1<---4 bytes--->1 

An XDR void is a O-byte quantity. Voids are useful for describing operations 
that take no data as input or no data as output. They are also useful in unions, 
where some arms may contain data and others do not. The declaration is simply 
as follows: 

void; 

Voids are illustrated as follows: 

++ 
II 
++ 
--><-- 0 bytes 
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The data declaration for a constant follows this fonn: 

const name-identifier = n; 

"const" is used to define a symbolic name for a constant; it does not declare any 
data. The symbolic constant may be used anywhere a regular constant may be 
used. For example, the following defines a symbolic constant DOZEN, equal to 
12. 

const DOZEN = 12; 

"typedef' does not declare any data either, but serves to define new identifiers for 
declaring data. The syntax is: 

typedef declaration; 

The new type name is actually the variable name in the declaration part of the 
typedef. For example, the following defines a new type called "eggbox" using an 
existing type called "egg": 

typedef egg eggbox[DOZEN); 

Variables declared using the new type name have the same type as the new type 
name would have in the typedef, if it was considered a variable. For example, 
the following two declarations are equivalent in declaring the variable 
"fresheggs" : 

eggbox 
egg 

fresheggs; 
fresheggs[DOZEN); 

When a typedef involves a struct, enum, or union definition, there is another (pre
ferred) syntax that may be used to define the same type. In general, a typedef of 
the following fonn: 

typedef «struct, union, or enum definition» identifier; 

may be converted to the alternative fonn by removing the "typedef' part and 
placing the identifier after the "struct", "union", or "enum" keyword, instead of at 
the end. For example, here are the two ways to define the type "bool": 

typedef enum { 
FALSE = 0, 
TRUE = 1 
} bool; 

enum bool { 
FALSE = 0, 
TRUE = 1 
} ; 

/ * using typedef * / 

/ * preferred alternative * / 

The reason this syntax is preferred is one does not have to wait until the end of a 
declaration to figure out the name of the new type. 
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Optional-data Optional-data is one kind of union that occurs so frequently that we give it a spe
cial syntax of its own for declaring it. It is declared as follows: 

type-name *identifier; 

This is equivalent to the following union: 

union switch (bool opted) 
case TRUE: 
type-name element; 
case FALSE: 
void; 

identifier; 

It is also equivalent to the following variable-length array declaration, since the 
boolean "opted" can be interpreted as the length of the array: 

type-name identifier<l>; 

Optional-data is not so interesting in itself, but it is very useful for describing 
recursive data-structures such as linked-lists and trees. For example, the follow
ing defines a type "stringlist" that encodes lists of arbitrary length strings: 

struct *stringlist { 
string item<>; 
stringlist next; 

} ; 

It could have been equivalently declared as the following union: 

union stringlist switch (bool opted) { 

} ; 

case TRUE: 
struct { 

string item<>; 
stringlist next; 

element; 
case FALSE: 

void; 

or as a variable-length array: 

struct stringlist<l> 
string item<>; 
stringlist next; 

} ; 

Both of these declarations obscure the intention of the stringlist type, so the 
optional-data declaration is preferred over both of them. The optional-data type 
also has a close correlation to how recursive data structures are represented in 
high-level languages such as Pascal or C by use of pointers. In fact, the syntax is 
the same as that of the C language for pointers. 
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Areas for Future 
Enhancement 

6.4. Discussion 

Why a Language for 
Describing Data? 

Why Only one Byte-Order for 
an XDR Unit? 

Why does XDR use Big
Endian Byte-Order? 

Why is the XDR Unit Four 
Bytes Wide? 
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The XDR standard lacks representations for bit fields and bitmaps, since the stan
dard is based on bytes. Also missing are packed (or binary-coded) decimals. 

The intent of the XDR standard was not to describe every kind of data that peo
ple have ever sent or will ever want to send from machine to machine. Rather, it 
only describes the most commonly used data-types of high-level languages such 
as Pascal or C so that applications written in these languages will be able to com
municate easily over some medium. 

One could imagine extensions to XDR that would let it describe almost any 
existing protocol, such as TCP. The minimum necessary for this are support for 
different block sizes and byte-orders. The XDR discussed here could then be 
considered the 4-byte big-endian member of a larger XDR family. 

There are many advantages in using a data-description language such as XDR 
versus using diagrams. Languages are more formal than diagrams and lead to 
less ambiguous descriptions of data. Languages are also easier to understand and 
allow one to think of other issues instead of the low-level details of bit-encoding. 
Also, there is a close analogy between the types of XDR and a high-level 
language such as C or Pascal. This makes the implementation of XDR encoding 
and decoding modules an easier task. Finally, the language specification itself is 
an ASCII string that can be passed from machine to machine to perform on-the
fly data interpretation. 

Supporting two byte-orderings requires a higher level protocol for determining in 
which byte-order the data is encoded. Since XDR is not a protocol, this can't be 
done. The advantage of this, though, is that data in XDR format can be written 
to a magnetic tape, for example, and any machine will be able to interpret it, 
since no higher level protocol is necessary for determining the byte-order. 

Yes, it is unfair, but having only one byte-order means you have to be unfair to 
somebody. Many architectures, such as the Motorola 68000 and IBM 370, sup
port the big-endian byte-order. 

There is a tradeoff in choosing the XDR unit size. Choosing a small size such as 
two makes the encoded data small, but causes alignment problems for machines 
that aren't aligned on these boundaries. A large size such as eight means the data 
will be aligned on virtually every machine, but causes the encoded data to grow 
too big. We chose four as a compromise. Four is big enough to support most 
architectures efficiently, except for rare machines such as the eight-byte aligned 
Cray. Four is also small enough to keep the encoded data restricted to a reason
able size. 
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Why must Variable-Length 
Data be Padded with Zeros? 

Why is there No Explicit 
Data-Typing? 

6.5. The XDR Language 
Specification 

Notational Conventions 

It is desirable that the same data encode into the same thing on all machines, so 
that encoded data can be meaningfully compared or checksummed. Forcing the 
padded bytes to be zero ensures this. 

Data-typing has a relatively high cost for what small advantages it may have. 
One cost is the expansion of data due to the inserted type fields. Another is the 
added cost of interpreting these type fields and acting accordingly. And most 
protocols already know what type they expect, so data-typing supplies only 
redundant information. However, one can still get the benefits of data-typing 
using XDR. One way is to encode two things: first a string which is the XDR 
data description of the encoded data, and then the encoded data itself. Another 
way is to assign a value to all the types in XDR, and then define a universal type 
which takes this value as its discriminant and for each value, describes the 
corresponding data type. 

This specification uses an extended Backus-Naur Form notation for describing 
the XDR language. Here is a brief description of the notation: 

1. The characters I, (, ), [, ], ,and * are special. 

2. Terminal symbols are strings of any characters surrounded by double quotes. 

3. Non-terminal symbols are strings of non-special characters. 

4. Alternative items are separated by a vertical bar ( I ). 

5. Optional items are enclosed in brackets. 

6. Items are grouped together by enclosing them in parentheses. 

7. A * following an item means 0 or more occurrences of that item. 

For example, consider the following pattern: 

"a " "very" (", " " very")* [" cold" "and"] " rainy" ("day" I "night") 

Lexical Notes 

An infinite number of strings match this pattern. A few of them are: 

"a very rainy day" 
"a very, very rainy day" 
"a very cold and rainy day" 
"a very, very, very cold and rainy night" 

1. Comments begin with '/*' and terminate with '*/'. 

2. White space serves to separate items and is otherwise ignored. 

3. An identifier is a letter followed by an optional sequence of letters, digits or 
underbar (' _'). The case of identifiers is not ignored. 
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4, A constant is a sequence of one or more decimal digits, optionally preceded 
by a minus-sign (' -'), 

declaration: 
type-specifier identifier 
I type-specifier identifier "[" value "]" 
I type-specifier identifier "<" [value ">" 
I "opaque" identifier "[" value "l" 
I "opaque" identifier "<" [value ">" 
I "string" identifier "<" [value ">,, 
I type-specifier "*,, identifier 
I "void" 

value: 
constant 
I identifier 

type-specifier: 
[ "unsigned" 
[ "unsigned" 
"float" 
"double" 

"int" 
"hyper" 

"bool" 
enurn-type-spec 
struct-type-spec 
union-type-spec 
identifier 

enurn-type-spec: 
"en urn" enum-body 

enum-body: 
"{" 
( identifier "=,, value ) 
( "," identifier "=,, value )* 

"I" 

struct-type-spec: 
"struct" struct-body 

struct-body: 
"{" 
{ declaration 
( declaration 

"I" 

11.11 , 
";" ) * 

union-type-spec: 
"union" union-body 

union-body: 
"switch" "(" declaration ")" "{" 

"case" value "'" declaration ";" 
"case" value "'" declaration ";" )* 
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Syntax Notes 

[ ndefault n 

"}" 

constant-def: 

n.n declaration n." , 

"const" identifier ,,=n constant 

type-def: 
"typedef" declaration ";" 

n.n , 

nenum" identifier enum-body ,,;n 
"struct" identifier struct-body ,,;n 
"union" identifier union-body";" 

definition: 
type-def 
I constant-def 

specification: 
definition * 

1. The following are keywords and cannot be used as identifiers: "bool", 
"case", "const", "default", "double", "enum", "float", "hyper", "opaque", 
"string", "struct", "switch", "typedef', "union", "unsigned" and "void". 

2. Only unsigned constants may be used as size specifications for arrays. If an 
identifier is used, it must have been declared previously as an unsigned con
stant in a "const" definition. 

3. Constant and type identifiers within the scope of a specification are in the 
same name space and must be declared uniquely within this scope. 

4. Similarly, variable names must be unique within the scope of struct and 
union declarations. Nested struct and union declarations create new scopes. 

5. The discriminant of a union must be of a type that evaluates to an integer. 
That is, "int", "unsigned int", "bool", an enumerated type or any typedefed 
type that evaluates to one of these is legal. Also, the case values must be 
one of the legal values of the discriminant. Finally, a case value may not be 
specified more than once within the scope of a union declaration. 
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Here is a short XDR data description of a thing called a "file", which might be 
used to transfer files from one machine to another. 

const MAXUSERNAME = 32; 
const MAXFILELEN 65535; 
const MAXNAMELEN = 255; 

1* 
* Types offiles: 
*1 

/ * max length of a user name * / 
/ * max length of a file * / 
/ * max length of a file name * / 

enum filekind 
TEXT 0, 
DATA 1, 
EXEC 2 

/ * ascii data * / 
/* raw data * / 
1 * executable * / 

} ; 

1* 
* File information, per Idnd offile: 
*1 

union filetype switch (filekind kind) { 
case TEXT: 

void; 
case DATA: 

/ * no extra information * / 

string creator<MAXNAMELEN>; 
case EXEC: 

/ * data creator */ 

string interpretor<MAXNAMELEN>; /* program interpretor * / 
} ; 

1* 
* A complete file: 
*1 

struct file { 

} ; 

string filename<MAXNAMELEN>; /* name offile * / 
filetype type; /* info about file * / 
string owner<MAXUSERNAME>; /* owner offile * / 
opaque data<MAXFILELEN>; 1* file data * / 

Suppose now that there is a user named "john" who wants to store his lisp pro
gram "sillyprog" that contains just the data "(quit)". His file would be encoded as 
follows: 
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6.7. References 

Offset Hex Bytes ASCII Description 
0 00 00 00 09 · ... Length of filename = 9 
4 73 69 6c 6c sill Filename characters 
8 79 70 72 6f ypro ... and more characters ... 

12 67 00 00 00 g ... ... and 3 zero-bytes of fill 
16 00 00 00 02 · ... Filekind is EXEC = 2 
20 00 00 00 04 · ... Length of interpretor = 4 
24 6c 69 73 70 lisp Interpretor characters 
28 00 00 00 04 · ... Length of owner = 4 
32 6a 6£ 68 6e john Owner characters 
36 00 00 00 06 · ... Length of file data = 6 
40 28 71 75 69 (qui File data bytes ... 
44 74 29 00 00 t) .. ... and 2 zero-bytes of fill 

[1] Brian W. Kernighan & Dennis M. Ritchie, "The C Programming Language", 
Bell Laboratories, Murray Hill, New Jersey, 1978. 

[2] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer, 
October 1981. 

[3] "IEEE Standard for Binary Hoating-Point Arithmetic", ANSI/IEEE Standard 
754-1985, Institute of Electrical and Electronics Engineers, August 1985. 

[4] "Courier: The Remote Procedure Call Protocol", XEROX Corporation, XSIS 
038112, December 1981. 
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7.1. Status of this Memo 

7.2. Introduction 

Terminology 

The RPC Model 

7 
Remote Procedure Calls: Protocol 

Specification 

Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others 
are using. It has been designated RFC 1050 by the ARPA-Internet Network 
Information Center. 

This chapter specifies a message protocol used in implementing Sun's Remote 
Procedure Call (RPC) package. (The message protocol is specified with the 
External Data Representation (XDR) language. See the External Data Represen
tation Standard: Protocol Specification for the details. Here, we assume that the 
reader is familiar with XDR and do not attempt to justify it or its uses). The 
paper by Birrell and Nelson [1] is recommended as an excellent background to 
and justification of RPC. 

This chapter discusses servers, services, programs, procedures, clients, and ver
sions. A server is a piece of software where network services are implemented. 
A network service is a collection of one or more remote programs. A remote 
program implements one or more remote procedures; the procedures, their 
parameters, and results are documented in the specific program's protocol 
specification (see the Port Mapper Program Protocol, below, for an example). 
Network clients are pieces of software that initiate remote procedure calls to ser
vices. A server may support more than one version of a remote program in order 
to be forward compatible with changing protocols. 

For example, a network file service may be composed of two programs. One 
program may deal with high-level applications such as file system access control 
and locking. The other may deal with low-level file 10 and have procedures like 
"read" and "write". A client machine of the network file service would call the 
procedures associated with the two programs of the service on behalf of some 
user on the client machine. 

The remote procedure call model is similar to the local procedure call model. In 
the local case, the caller places arguments to a procedure in some well-specified 
location (such as a result register). It then transfers control to the procedure, and 
eventually gains back control. At that point, the results of the procedure are 
extracted from the well-specified location, and the caller continues execution. 

The remote procedure call is similar, in that one thread of control logically winds 
through two processes-one is the caller's process, the other is a server's 
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Transports and Semantics 

process. That is, the caller process sends a call message to the server process and 
waits (blocks) for a reply message. The call message contains the procedure's 
parameters, among other things. The reply message contains the procedure's 
results, among other things. Once the reply message is received, the results of 
the procedure are extracted, and caller's execution is resumed. 

On the server side, a process is dormant awaiting the arrival of a call message. 
When one arrives, the server process extracts the procedure's parameters, com
putes the results, sends a reply message, and then awaits the next call message. 

Note that in this model, only one of the two processes is active at any given time. 
However, this model is only given as an example. The RPC protocol makes no 
restrictions on the concurrency model implemented, and others are possible. For 
example, an implementation may choose to have RPC calls be asynchronous, so 
that the client may do useful work while waiting for the reply from the server. 
Another possibility is to have the server create a task to process an incoming 
request, so that the server can be free to receive other requests. 

The RPC protocol is independent of transport protocols. That is, RPC does not 
care how a message is passed from one process to another. The protocol deals 
only with specification and interpretation of messages. 

It is important to point out that RPC does not try to implement any kind of relia
bility and that the application must be aware of the type of transport protocol 
underneath RPC. If it knows it is running on top of a reliable transport such as 
TCP/IP[6] , then most of the work is already done for it. On the other hand, ifit 
is running on top of an unreliable transport such as UDPIIP[7], it must implement 
is own retransmission and time-out policy as the RPC layer does not provide this 
service. 

Because of transport independence, the RPC protocol does not attach specific 
semantics to the remote procedures or their execution. Semantics can be inferred 
from (but should be explicitly specified by) the underlying transport protocol. 
For example, consider RPC running on top of an unreliable transport such as 
UDP/IP. If an application retransmits RPC messages after short time-outs, the 
only thing it can infer ifit receives no reply is that the procedure was executed 
zero or more times. If it does receive a reply, then it can infer that the procedure 
was executed at least once. 

A server may wish to remember previously granted requests from a client and not 
regrant them in order to insure some degree of execute-at-most-once semantics. 
A server can do this by taking advantage of the transaction ID that is packaged 
with every RPC request. The main use of this transaction is by the client RPC 
layer in matching replies to requests. However, a client application may choose 
to reuse its previous transaction ID when retransmitting a request. The server 
application, knowing this fact, may choose to remember this ID after granting a 
request and not regrant requests with the same ID in order to achieve some 
degree of execute-at-most-once semantics. The server is not allowed to examine 
this ID in any other way except as a test for equality. 

On the other hand, if using a reliable transport such as TCP/IP, the application 
can infer from a reply message that the procedure was executed exactly once, but 
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if it receives no reply message, it cannot assume the remote procedure was not 
executed. Note that even if a connection-oriented protocol like TCP is used, an 
application still needs time-outs and reconnection to handle server crashes. 

There are other possibilities for transports besides datagram- or connection
oriented protocols. For example, a request-reply protocol such as VMTP[2] is 
perhaps the most natural transport for RPC. 

NOTE At Sun, RPC is currently implemented on top of both TCPI/P and UDP/IP tran
sports. 

Binding and Rendezvous 
Independence 

Authentication 

7.3. RPC Protocol 
Requirements 

The act of binding a client to a service is NOT part of the remote procedure call 
specification. This important and necessary function is left up to some higher
level software. (The software may use RPC itself-see the Port Mapper Pro
gram Protocol, below). 

Implementors should think of the RPC protocol as the jump-subroutine instruc
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader 
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful, 
using RPC to accomplish this task. 

The RPC protocol provides the fields necessary for a client to identify itself to a 
service and vice-versa. Security and access control mechanisms can be built on 
top of the message authentication. Several different authentication protocols can 
be supported. A field in the RPC header indicates which protocol is being used. 
More information on specific authentication protocols can be found in the 
Authentication Protocols, below. 

The RPC protocol must provide for the following: 

1. Unique specification of a procedure to be called. 

2. Provisions for matching response messages to request messages. 

3. Provisions for authenticating the caller to service and vice-versa. 

Besides these requirements, features that detect the following are worth support
ing because of protocol roll-over errors, implementation bugs, user error, and net
work administration: 

1. RPC protocol mismatches. 

2. Remote program protocol version mismatches. 

3. Protocol errors (such as misspecification of a procedure's parameters). 

4. Reasons why remote authentication failed. 

5. Any other reasons why the desired procedure was not called. 
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Programs and Procedures 

Authentication 

The RPC call message has three unsigned fields: remote program number, remote 
program version number, and remote procedure number. The three fields 
uniquely identify the procedure to be called. Program numbers are administered 
by some central authority (like Sun). Once an implementor has a program 
number, he can implement his remote program; the first implementation would 
most likely have the version number of 1. Because most new protocols evolve 
into better, stable, and mature protocols, a version field of the call message 
identifies which version of the protocol the caller is using. Version numbers 
make speaking old and new protocols through the same server process possible. 

The procedure number identifies the procedure to be called. These numbers are 
documented in the specific program's protocol specification. For example, a file 
service's protocol specification may state that its procedure number 5 is Itread lt 

and procedure number 12 is It write" . 

Just as remote program protocols may change over several versions, the actual 
RPC message protocol could also change. Therefore, the call message also has 
in it the RPC version number, which is always equal to two for the version of 
RPC described here. 

The reply message to a request message has enough information to distinguish 
the following error conditions: 

1. The remote implementation of RPC does speak protocol version 2. The 
lowest and highest supported RPC version numbers are returned. 

2. The remote program is not available on the remote system. 

3. The remote program does not support the requested version number. The 
lowest and highest supported remote program version numbers are returned. 

4. The requested procedure number does not exist. (This is usually a caller side 
protocol or programming error.) 

5. The parameters to the remote procedure appear to be garbage from the 
server's point of view. (Again, this is usually caused by a disagreement 
about the protocol between client and service.) 

Provisions for authentication of caller to service and vice-versa are provided as a 
part of the RPC protocol. The call message has two authentication fields, the 
credentials and verifier. The reply message has one authentication field, the 
response verifier. The RPC protocol specification defines all three fields to be the 
following opaque type: 
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Other Uses of the RPC 
Protocol 
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enum auth_flavor { 
AUTH NULL 0, 
AUTH UNIX 1, 
AUTH SHORT 2, 
AUTH DES 3 
/ * and more to be defined * / 

} ; 

struct opaque_auth { 
auth_flavor flavor; 
opaque body<400>; 

} ; 

In simple English, any opaque_auth structure is an auth_flavor enumera
tion followed by bytes which are opaque to the RPC protocol implementation. 

The interpretation and semantics of the data contained within the authentication 
fields is specified by individual, independent authentication protocol 
specifications. (See Authentication Protocols, below, for definitions of the vari-
0us authentication protocols.) 

If authentication parameters were rejected, the response message contains infor
mation stating why they were rejected. 

Program numbers are given out in groups of 0 x2 0000000 (decimal 
536870912) according to the following chart: 

Program Numbers Description 

o - Ifffffff Defined by Sun 
20000000 - 3fffffff Defined by user 
40000000 - 5fffffff Transient 
60000000 - 7fffffff Reserved 
80000000 - 9fffffff Reserved 
aOOOOOOO - bfffffff Reserved 
cOOOOOOO - dfffffff Reserved 
eOOOOOOO - ffffffff Reserved 

The first group is a range of numbers administered by Sun Microsystems and 
should be identical for all sites. The second range is for applications peculiar to a 
particular site. This range is intended primarily for debugging new programs. 
When a site develops an application that might be of general interest, that appli
cation should be given an assigned number in the first range. The third group is 
for applications that generate program numbers dynamically. The final groups 
are reselVed for future use, and should not be used. 

The intended use of this protocol is for calling remote procedures. That is, each 
call message is matched with a response message. However, the protocol itself is 
a message-passing protocol with which other (non-RPC) protocols can be imple
mented. Sun currently uses, or perhaps abuses, the RPC message protocol for the 
following two (non-RPC) protocols: batching (or pipelining) and broadcast RPC. 
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Batching 

Broadcast RPC 

7.4. The RPC Message 
Protocol 

These two protocols are discussed but not defined below. 

Batching allows a client to send an arbitrarily large sequence of call messages to 
a selVer; batching typically uses reliable byte stream protocols (like TCP/lP) for. 
its transport. In the case of batching, the client never waits for a reply from the 
seIVer, and the selVer does not send replies to batch requests. A sequence of 
batch calls is usually terminated by a legitimate RPC in order to flush the pipe
line (with positive acknowledgement). 

In broadcast RPC-based protocols, the client sends a broadcast packet to the net
work and waits for numerous replies. Broadcast RPC uses unreliable, packet
based protocols (like UDP/IP) as its transports. SelVers that support broadcast 
protocols only respond when the request is successfully processed, and are silent 
in the face of errors. Broadcast RPC uses the Port Mapper RPC seIVice to 
achieve its semantics. See the Port Mapper Program Protocol, below, for more 
information. 

This section defines the RPC message protocol in the XDR data description 
language. The message is defined in a top-down style. 

enum msg_type { 
CALL 0, 
REPLY = 1 

} ; 

1* 
* A reply to a call message can take on two forms: 
* The message was either accepted or rejected. 
*1 
enum reply_stat { 

MSG ACCEPTED 0, 
MSG DENIED 1 

} ; 

1* 
* Given that a call message was accepted, the following is the 
* status of an attempt to call a remote procedure. 
*1 
enum accept_stat 

SUCCESS 

} ; 

1* 

PROG UNAVAIL 
PROG MISMATCH 
PROC UNAVAIL 
GARBAGE ARGS 

° , / * RPC executed successfully * / 
1, / * remote hasn't exported program * / 
2, / * remote can't support version # * / 
3, / * program can't support procedure * / 
4 / * procedure can't decode params * / 

* Reasons why a call message was rejected: 
*1 
enum reject_stat 

RPC MISMATCH 
AUTH ERROR 1 

o , / * RPC version number! = 2 * / 
/ * remote can't authenticate caller * / 

Revision A. of 27 March 1990 



Chapter 7 - Remote Procedure Calls: Protocol Specification 153 

} ; 

1* 
* Why authentication failed: 
*1 
enum auth_stat { 

AUTH BADCRED 

} ; 

1* 

AUTH REJECTEDCRED 
AUTH BADVERF 
AUTH REJECTEDVERF 
AUTH TOOWEAK 

* The RPC message: 

1, /* bad credentials * / 
2, /* client must begin new session * / 
3, /* bad verifier * / 
4, /* verifier expired or replayed * / 
5 /* rejected for security reasons * / 

* All messages start with a transaction identifier, xid, 
* followed by a two-armed discriminated union. The union's 
* discriminant is a msg_ type which switches to one of the two 
* types of the message. The xid of a REPLY message always 
* matches that of the initiating CALL message. NB: The xid 
* field is only used for clients matching reply messages with 
* call messages or for servers detecting retransmissions; the 
* service side cannot treat this id as any type of sequence 
* number. 
*1 
struct rpc_msg { 

unsigned int xid; 

} ; 

1* 

union switch (msg_type mtype) 
case CALL: 

call_body cbody; 
case REPLY: 

reply_body rbody; 
body; 

* Body of an RPC request call: 
* In version 2 of the RPC protocol specification, rpcvers must 
* be equal to 2. The fields prog, vers, and proc specify the 
* remote program, its version number, and the procedure within 
* the remote program to be called. After these fields are two 
* authentication parameters: cred (authentication credentials) 
* and verf (authentication verifier). The two authentication 
* parameters are followed by the parameters to the remote 
* procedure, which are specified by the specific program 
* protocol. 
*1 
struct call_body 

unsigned int rpcvers; / * must be equal to two (2) * / 
unsigned int prog; 
unsigned int vers; 
unsigned int proc; 
opaque_auth cred; 
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opaque_auth verf; 
/ * procedure specific parameters start here * / 

} ; 

1* 
* Body of a reply to an RPC request: 
* The call message was either accepted or rejected. 
*1 
union reply_body switch (reply_stat stat) { 

case MSG ACCEPTED: 
accepted_reply areply; 

case MSG DENIED: 
rejected_reply rreply; 

reply; 

1* 
* Reply to an RPC request that was accepted by the server: 
* there could be an error even though the request was accepted. 
* The first field is an authentication verifier that the server 
* generates in order to validate itself to the caller. It is 
* followed by a union wlwse discriminant is an enum 
* accept_stat. The SUCCESS arm of the union is protocol 
* specific. The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGP 
* arms of the union are void. The PROG_MISMATCH arm specifies 
* the lowest and highest version numbers of the remote program 
* supported by the server. 
*1 
struct accepted_reply 

opaque_auth verf; 
union switch (accept_stat stat) 

case SUCCESS: 
opaque results[O]; 
/ * procedure-specific results start here * / 

case PROG MISMATCH: 
struct { 

unsigned int low; 
unsigned int high; 

mismatch_info; 
default: 

1* 
* Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL, 

} ; 

1* 

* and GARBAGE ARGS. 
*1 
void; 

reply_data; 

* Reply to an RPC request that was rejected by the server: 
* The request can be rejected for two reasons: either the 
* server is not running a compatible version of the RPC 
* protocol (RPC_MISMATCH), or the server refuses to 
* authenticate the caller (AUTH _ERROR). In case of an RPC 
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* version mismatch. the server returns the lowest and highest 
* supported RPC version numbers. In case of refused 
* authentication. failure status is returned. 
*1 
union rejected_reply switch (reject_stat stat) { 

case RPC MISMATCH: 

} ; 

struct { 
unsigned int low; 
unsigned int high; 

mismatch_info; 
case AUTH ERROR: 

auth stat stat; 

As previously stated, authentication parameters are opaque, but open-ended to 
the rest of the RPC protocol. This section defines some "flavors" of authentica
tion implemented at (and supported by) Sun. Other sites are free to invent new 
authentication types, with the same rules of flavor number assignment as there is 
for program number assignment. 

Often calls must be made where the caller does not know who he is or the server 
does not care who the caller is. In this case, the flavor value (the discriminant of 
the opaque auth's union) of the RPC message's credentials, verifier, and 
response verifier is AUTH_ NULL. The bytes of the opaque_auth's body are 
undefined. It is recommended that the opaque length be zero. 

The caller of a remote procedure may wish to identify himself as he is identified 
on a UNIX system. The value of the credential's discriminant of an RPC call 
message is AUTH_UNIX. The bytes of the credential's opaque body encode the 
following structure: 

struct auth_unix { 

} ; 

unsigned int stamp; 
string machinename<255>; 
unsigned int uid; 
unsigned int gid; 
unsigned int gids<10>; 

The stamp is an arbitrary ID which the caller machine may generate. The 
machinename is the name of the caller's machine (like "krypton"). The uid is 
the caller's effective user ID. The gid is the caller's effective group ID. The 
gids is a counted array of groups which contain the caller as a member. The 
verifier accompanying the credentials should be of AUTH _NULL (defined above). 

The value of the discriminant of the response verifier received in the reply mes
sage from the server may be AUTH_NULL or AUTH_SHORT. In the case of 
AUTH_SHORT, the bytes of the response verifier's string encode an opaque struc
ture. This new opaque structure may now be passed to the server instead of the 
original AUTH _UNIX flavor credentials. The server keeps a cache which maps 
shorthand opaque structures (passed back by way of an AUTH_SHORT style 

Revision A, of 27 March 1990 



156 Protocol Specifications 

DES Authentication 

Naming 

DES Authentication Verifiers 

response verifier) to the original credentials of the caller. The caller can save net
work bandwidth and server cpu cycles by using the new credentials. 

The server may flush the shorthand opaque structure at any time. If this happens, 
the remote procedure call message will be rejected due to an authentication error. 
The reason for the failure will be AUTH_REJECTEDCRED. At this point, the 
caller may wish to try the original AUT H _ UN IX style of credentials. 

UNIX authentication suffers from two major problems: 

1. The naming is too UNIX -system oriented. 

2. There is no verifier, so credentials can easily be faked. 

DES authentication attempts to fix these two problems. 

The first problem is handled by addressing the caller by a simple string of charac
ters instead of by an operating system specific integer. This string of characters 
is known as the "netname" or network name of the caller. The server is not 
allowed to interpret the contents of the caller's name in any other way except to 
identify the caller. Thus, netnames should be unique for every caller in the inter
net. 

It is up to each operating system's implementation of DES authentication to gen
erate netnames for its users that insure this uniqueness when they call upon 
remote servers. Operating systems already know how to distinguish users local 
to their systems. It is usually a simple matter to extend this mechanism to the 
network. For example, a UNIX user at Sun with a user ID of 515 might be 
assigned the following netname: "unix.SI5@sun.com". This netname contains 
three items that serve to insure it is unique. Going backwards, there is only one 
naming domain called "sun.com" in the internet. Within this domain, there is 
only one UNIX user with user ID 515. However, there may be another user on 
another operating system, for example VMS, within the same naming domain 
that, by coincidence, happens to have the same user ID. To insure that these two 
users can be distinguished we add the operating system name. So one user is 
"unix.515@sun.com" and the other is "vms.SlS@sun.com". 

The first field is actually a naming method rather than an operating system name. 
It just happens that today there is almost a one-to-one correspondence between 
naming methods and operating systems. If the world could agree on a naming 
standard, the first field could be the name of that standard, instead of an operating 
system name. 

Unlike UNIX authentication, DES authentication does have a verifier so the 
server can validate the client's credential (and vice-versa). The contents of this 
verifier is primarily an encrypted timestamp. The server can decrypt this times
tamp, and if it is close to what the real time is, then the client must have 
encrypted it correctly. The only way the client could encrypt it correctly is to 
know the "conversation key" of the RPC session. And if the client knows the 
conversation key, then it must be the real client. 
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The conversation key is a DES [5] key which the client generates and notifies the 
server of in its first RPC call. The conversation key is encrypted using a public 
key scheme in this first transaction. The particular public key scheme used in 
DES authentication is Diffie-Hellman [3] with 192-bit keys. The details of this 
encryption method are described later. 

The client and the server need the same notion of the current time in order for all 
of this to work. If network time synchronization cannot be guaranteed, then the 
client can synchronize with the server before beginning the conversation, perhaps 
by consulting the Internet Time Server (TIME[4]). 

The way a server determines if a client timestamp is valid is somewhat compli
cated. For any other transaction but the first, the server just checks for two 
things: 

1. the timestamp is greater than the one previously seen from the same client. 

2. the timestamp has not expired. 

A timestamp is expired if the server's time is later than the sum of the client's 
timestamp plus what is known as the client's "window". The "window" is a 
number the client passes (encrypted) to the server in its first transaction. You can 
think of it as a lifetime for the credential. 

This explains everything but the first transaction. In the first transaction, the 
server checks only that the timestamp has not expired. If this was all that was 
done though, then it would be quite easy for the client to send random data in 
place of the timestamp with a fairly good chance of succeeding. As an added 
check, the client sends an encrypted item in the first transaction known as the 
"window verifier" which must be equal to the window minus 1, or the server will 
reject the credential. 

The client too must check the verifier returned from the server to be sure it is leg
itimate. The server sends back to the client the encrypted timestamp it received 
from the client, minus one second. If the client gets anything different than this, 
it will reject it. 

After the first transaction, the server's DES authentication subsystem returns in 
its verifier to the client an integer "nickname" which the client may use in its 
further transactions instead of passing its netname, encrypted DES key and win
dow every time. The nickname is most likely an index into a table on the server 
which stores for each client its netname, decrypted DES key and window. 

Though they originally were synchronized, the client's and server's clocks can 
get out of sync again. When this happens the client RPC subsystem most likely 
will get back RPC_AUTHERROR at which point it should resynchronize. 

A client may still get the RPC_AUTHERROR error even though it is synchronized 
with the server. The reason is that the server's nickname table is a limited size, 
and it may flush entries whenever it wants. A client should resend its original 
credential in this case and the server will give it a new nickname. If a server 
crashes, the entire nickname table gets flushed, and all clients will have to resend 
their original credentials. 
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DES Authentication Protocol 
(in XDR language) 

1* 
* There are two kinds of credentials: one in which the client uses 
* its full network name, and one in which it uses its "nickname" 
* (just an unsigned integer) given to it by the server. The 
* client must use its fullname in its first transaction with the 
* server, in which the server will return to the client its 
* nickname. The client may use its nickname in allfurther 
* transactions with the server. There is no requirement to use the 
* nickname, but it is wise to use itfor performance reasons. 
*1 
enum authdes namekind 

ADN FULLNAME 0, 
ADN NICKNAME = 1 

} ; 

1* 
* A 64-bit block of encrypted DES data 
*1 
typedef opaque des_block[8]; 

1* 
* Maximum length of a network user's name 
*1 
const MAXNETNAMELEN = 255; 

1* 
* Afullname contains the network name of the client, an encrypted 
* conversation key and the window. The window is actually a 
* lifetime for the credential. If the time indicated in the 
* verifier timestamp plus the window has past, then the server 
* should expire the request and not grant it. To insure that 
* requests are not replayed, the server should insist that 
* timestamps are greater than the previous one seen, unless it is 
* the first transaction. In the first transaction, the server 
* checks instead that the window verifier is one less than the 
* window. 
*1 
struct authdes_fullname { 
string name<MAXNETNAMELEN>; 
des_block key; 

/ * name of client * / 

unsigned int window; 
/* PK encrypted conversation key * / 
/ * encrypted window * / 

} i 

1* 
* A credential is either a fullname or a nickname 
*1 
union authdes_cred switch (authdes_namekind adc_namekind) 

case ADN FULLNAME: 

} i 

authdes fullname adc_fullnamei 
case ADN NICKNAME: 

unsigned int adc_nickname; 
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1* 
* A timestamp encodes the time since midnight, January 1,1970. 
*1 
struct timestamp 

/ * seconds * / unsigned int seconds; 
unsigned int useconds; / * and microseconds * / 

} ; 

1* 
* Verifier: client variety 
* The window verifier is only used in the first transaction. In 
* conjunction with a fullname credential, these items are packed 
* into the following structure before being encrypted: 

* 
* struct { 

* 
* 
* 
* } 

adv _timestamp; -- one DES block 
adc fullname. window; -- one half DES block 
adv _winverf; -- one half DES block 

* This structure is encrypted using CBC mode encryption with an 
* input vector of zero. All other encryptions of timestamps use 
* ECB mode encryption. 
*1 
struct authdes verf_clnt { 

timestamp adv_timestamp; 
unsigned int adv_winverfi 

} ; 

1* 
* Verifier: server variety 

/ * encrypted timestamp * / 
/ * encrypted window verifier * / 

* The server returns (encrypted) the same timestamp the client 
* gave it minus one second. It also tells the client its nickname 
* to be used in future transactions (unencrypted). 
*1 
struct authdes_verf_svr { 
timestamp adv_timeverf; 
unsigned int adv_nickname; 
} i 

/ * encrypted verifier * / 
/ * new nickname for client * / 

In this scheme, there are two constants, BASE and MODULUS. The particular 
values Sun has chosen for these for the DES authentication protocol are: 

const BASE = 3; 
const MODULUS = "d4aOba0250b6fd2ec626e7efd637df76c716e22d09441 

The way this scheme works is best explained by an example. Suppose there are 
two people "A" and "B" who want to send encrypted messages to each other. So, 
A and B both generate "secret" keys at random which they do not reveal to any-
one. Let these keys be represented as SK(A) and SK(B). They also publish in a 
public directory their "public" keys. These keys are computed as follows: 
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PK(A) = ( BASE ** SK(A) ) mod MODULUS 
PK(B) = ( BASE ** SK(B) ) mod MODULUS 

The "**" notation is used here to represent exponentiation. Now, both A and B 
can arrive at the "common" key between them, represented here as CK(A, B), 
without revealing their secret keys. 

A computes: 

CK(A, B) = ( PK(B) ** SK(A» mod MODULUS 

while B computes: 

CK(A, B) = ( PK(A) ** SK(B» mod MODULUS 

These two can be shown to be equivalent: 

(PK(B) ** SK(A» mod MODULUS = (PK(A) ** SK(B» mod MODULUS 

We drop the "mod MODULUS" parts and assume modulo arithmetic to simplify 
things: 

PK(B) ** SK(A) = PK(A) ** SK(B) 

Then, replace PK(B) by what B computed earlier and likewise for PK(A). 

«BASE ** SK(B» ** SK(A) = (BASE ** SK(A» ** SK(B) 

which leads to: 

BASE ** (SK(A) * SK(B» = BASE ** (SK(A) * SK(B» 

This common key CK(A, B) is not used to encrypt the timestamps used in the 
protocol. Rather, it is used only to encrypt a conversation key which is then used 
to encrypt the timestamps. The reason for doing this is to use the common key as 
little as possible, for fear that it could be broken. Breaking the conversation key 
is a far less serious offense, since conversations are relatively short-lived. 

The conversation key is encrypted using 56-bit DES keys, yet the common key is 
192 bits. To reduce the number of bits, 56 bits are selected from the common 
key as follows. The middle-most 8-bytes are selected from the common key, and 
then parity is added to the lower order bit of each byte, producing a 56-bit key 
with 8 bits of parity. 

When RPC messages are passed on top of a byte stream protocol Oike TCP/IP), it 
is necessary, or at least desirable, to delimit one message from another in order to 
detect and possibly recover from user protocol errors. This is called record mark
ing (RM). Sun uses this RM/fCP/IP transport for passing RPC messages on 
TCP streams. One RPC message fits into one RM record. 

A record is composed of one or more record fragments. A record fragment is a 
four-byte header followed by 0 to (2**31) - 1 bytes of fragment data. The bytes 
encode an unsigned binary number; as with XDR integers, the byte order is from 
highest to lowest. The number encodes two values--a boolean which indicates 
whether the fragment is the last fragment of the record (bit value 1 implies the 
fragment is the last fragment) and a 31-bit unsigned binary value which is the 
length in bytes of the fragment's data. The boolean value is the highest-order bit 
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of the header, the length is the 31 low-order bits. (Note that this record 
specification is NOT in XDR standard fonn!) 

Just as there was a need to describe the XDR data-types in a f011llallanguage, 
there is also need to describe the procedures that operate on these XDR data
types in a fonnallanguage as well. We use the RPC Language for this purpose. 
It is an extension to the XDR language. The following example is used to 
describe the essence of the language. 

Here is an example of the specification of a simple ping program. 

1* 
* Simple ping program 
*1 
program PING_PROG 

/ * Latest and greatest version * / 
version PING VERS PINGBACK - -
void 
PINGPROC_NULL(void) = 0; 

1* 
* Ping the caller. return the round-trip time 
* (in microseconds). Returns -1 if the operation 
* timed out. 
*1 
int 
PINGPROC_PINGBACK(void) 1; 

} = 2; 

1* 
* Original version 
*1 
version PING_VERS_ORIG { 

void 
PINGPROC_NULL(void) 0; 
} = 1; 

} = 1; 

const PING VERS = 2; / * latest version * / 

The first version described is PING_ VERS_PINGBACK with two procedures, 
PINGPROC NULL and PINGPROC PINGBACK. PINGPROC NULL takes no - -
arguments and returns no results, but it is useful for computing round-trip times 
from the client to the server and back again. By convention, procedure 0 of any 
RPC protocol should have the same semantics, and never require any kind of 
authentication. The second procedure is used for the client to have the server do 
a reverse ping operation back to the client, and it returns the amount of time (in 
microseconds) that the operation used. The next version, PING_ VERS_ORIG, 
is the original version of the protocol and it does not contain 
P INGPROC _ P INGBACK procedure. It is useful for compatibility with old client 
programs, and as this program matures it may be dropped from the protocol 
entirely. 
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Syntax Notes 

7.8. Port Mapper Program 
Protocol 

The RPC language is identical to the XDR language, except for the added 
definition of a program-def described below. 

program-def: 
nprogramn identifier n{n 

version-def 
version-def * 

n}n n=n constant 

version-def: 

n.n , 

nversion" identifier n{n 
procedure-def 
procedure-def * 

n}n "=" constant 

procedure-def: 

n.n , 

type-specifier identifier "(" type-specifier n)n 
n=" constant n.n , 

1. The following keywords are added and cannot be used as identifiers: "pro
gram" and "version"; 

2. A version name cannot occur more than once within the scope of a program 
definition. Nor can a version number occur more than once within the scope 
of a program definition. 

3. A procedure name cannot occur more than once within the scope of a ver
sion definition. Nor can a procedure number occur more than once within 
the scope of version definition. 

4. Program identifiers are in the same name space as constant and type 
identifiers. 

5. Only unsigned constants can be assigned to programs, versions and pro
cedures. 

The port mapper program maps RPC program and version numbers to transport
specific port numbers. This program makes dynamic binding of remote pro
grams possible. 

This is desirable because the range of reserved port numbers is very small and the 
number of potential remote programs is very large. By running only the port 
mapper on a reserved port, the port numbers of other remote programs can be 
ascertained by querying the port mapper. 

The port mapper also aids in broadcast RPC. A given RPC program will usually 
have different port number bindings on different machines, so there is no way to 
directly broadcast to all of these programs. The port mapper, however, does have 
a fixed port number. So, to broadcast to a given program, the client actually 
sends its message to the port mapper located at the broadcast address. Each port 
mapper that picks up the broadcast then calls the local service specified by the 
client. When the port mapper gets the reply from the local service, it sends the 
reply on back to the client. 
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const PMAP PORT 111; / * portmapper port number * / 

1* 
* A mapping of (program. version. protocol) to port number 
*1 
struct mapping { 

unsigned int prog; 
unsigned int vers; 
unsigned int prot; 
unsigned int port; 

} ; 

1* 
* Supported values for the "prot" field 
*1 
const IPPROTO TCP 
const IPPROTO UDP 

1* 
* A list of mappings 
*1 
struct *pmaplist 

mapping map; 
pmaplist next; 

} ; 

1* 
* Arguments to callit 
*1 

6; 
17; 

struct call_args 
unsigned int progi 
unsigned int vers; 
unsigned int prOCi 
opaque args<>; 

} ; 

1* 
* Results of callit 
*1 
struct call result 

unsigned int port; 
opaque res<>; 

} ; 

1* 
* Port mapper procedures 
*1 
program PMAP_PROG { 

version PMAP VERS 
void 
PMAPPROC_NULL(void) 

bool 

/ * protocol number for TCP lIP * / 
/ * protocol number for UDPIIP * / 

0; 
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PMAPPROC_SET(mapping) 1; 

bool 
PMAPPROC_UNSET(mapping) 2; 

unsigned int 
PMAPPROC_GETPORT(mapping) 3; 

pmaplist 
PMAPPROC_DUMP(void) 4; 

call result 
PMAPPROC_CALLIT(call_args) 5; 

} = 2; 
} = 100000; 

The portmapper program currently supports two protocols (UDP/IP and TCP/lP). 
The portmapper is contacted by talking to it on assigned port number 111 
(SUNRPC [8]) on either of these protocols. The following is a description of 
each of the portmapper procedures: 

PMAPPROC NULL: 
This procedure does no work. By convention, procedure zero of any proto
col takes no parameters and returns no results. 

PMAPPROC SET: 
When a program first becomes available on a machine, it registers itself with 
the port mapper program on the same machine. The program passes its pro
gram number "prog", version number "vers", transport protocol number 
"prot", and the port "port" on which it awaits service request. The procedure 
returns a boolean response whose value is TRUE if the procedure success
fully established the mapping and FALSE otherwise. The procedure refuses 
to establish a mapping if one already exists for the tuple "(prog, vers, prot)". 

PMAPPROC UNSET: 
When a program becomes unavailable, it should unregister itself with the 
port mapper program on the same machine. The parameters and results have 
meanings identical to those of PMAPPROC _SET. The protocol and port 
number fields of the argument are ignored. 

PMAPPROC GETPORT: 
Given a program number "prog" , version number "vers", and transport proto
col number "prot", this procedure returns the port number on which the pro
gram is awaiting call requests. A port value of zeros means the program has 
not been registered. The "port" field of the argument is ignored. 

PMAPPROC DUMP: 
This procedure enumerates all entries in the port mapper's database. The 
procedure takes no parameters and returns a list of program, version, proto
col, and port values. 

PMAPPROC CALLIT: 
This procedure allows a caller to call another remote procedure on the same 
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machine without knowing the remote procedure's port number. It is 
intended for supporting broadcasts to arbitrary remote programs via the 
well-known port mapper's port. The parameters "prog", "vers", "proc", and 
the bytes of "args" are the program number, version number, procedure 
number, and parameters of the remote procedure. Note: 

1. This procedure only sends a response if the procedure was successfully 
executed and is silent (no response) otherwise. 

2. The port mapper communicates with the remote program using UDP/IP 
only. 

The procedure returns the remote program's port number, and the bytes of results 
are the results of the remote procedure. 
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External Data Representation 

8 
Network File System: Version 2 

Protocol Specification 

Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others 
are using. It specifies it in standard ARPA RFC form. 

The Sun Network Filesystem (NFS) protocol provides transparent remote access 
to shared filesystems over local area networks. The NFS protocol is designed to 
be machine, operating system, network architecture, and transport protocol 
independent. This independence is achieved through the use of Remote Pro
cedure Call (RPC) primitives built on top of an External Data Representation 
(XDR). Implementations exist for a variety of machines, from personal comput
ers to supercomputers. 

The supporting mount protocol allows the server to hand out remote access 
privileges to a restricted set of clients. It performs the operating system-specific 
functions that allow, for example, to attach remote directory trees to some local 
file system. 

Sun's remote procedure call specification provides a procedure- oriented inter
face to remote services. Each server supplies a program that is a set of pro
cedures. NFS is one such "program". The combination of host address, program 
number, and procedure number specifies one remote service procedure. RPC 
does not depend on services provided by specific protocols, so it can be used with 
any underlying transport protocol. See the Remote Procedure Calls: Protocol 
Specification chapter of this manual. 

The External Data Representation (XDR) standard provides a common way of 
representing a set of data types over a network. The NFS Protocol Specification 
is written using the RPC data description language. For more information, see 
the External Data Representation Standard: Protocol Specification chapter of 
this manual. Sun provides implementations of XDR and RPC, but NFS does not 
require their use. Any software that provides equivalent functionality can be 
used, and if the encoding is exactly the same it can interoperate with other imple
mentations of NFS. 
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The NFS protocol is stateless. That is, a server does not need to maintain any 
extra state infonnation about any of its clients in order to function correctly. 
Stateless servers have a distinct advantage over stateful servers in the event of a 
failure. With stateless servers, a client need only retry a request until the server 
responds; it does not even need to know that the server has crashed, or the net
work temporarily went down. The client of a stateful server, on the other hand, 
needs to either detect a server crash and rebuild the server's state when it comes 
back up, or cause client operations to fail. 

This may not sound like an important issue, but it affects the protocol in some 
unexpected ways. We feel that it is worth a bit of extra complexity in the proto
col to be able to write very simple servers that do not require fancy crash 
recovery. 

On the other hand, NFS deals with objects such as files and directories that 
inherently have state -- what good would a file be if it did not keep its contents 
intact? The goal is to not introduce any extra state in the protocol itself. Another 
way to simplify recovery is by making operations "idempotent" whenever possi
ble (so that they can potentially be repeated). 

Servers have been known to change over time, and so can the protocol that they 
use. So RPC provides a version number with each RPC request. This RFC 
describes version two of the NFS protocol. Even in the second version, there are 
various obsolete procedures and parameters, which will be removed in later ver
sions. An RFC for version three of the NFS protocol is currently under prepara
tion. 

NFS assumes a file system that is hierarchical, with directories as all but the 
bottom-level files. Each entry in a directory (file, directory, device, etc.) has a 
string name. Different operating systems may have restrictions on the depth of 
the tree or the names used, as well as using different syntax to represent the 
"pathname", which is the concatenation of all the "components" (directory and 
file names) in the name. A "file system" is a tree on a single server (usually a 
single disk or physical partition) with a specified "root". Some operating systems 
provide a "mount" operation to make all file systems appear as a single tree, 
while others maintain a "forest" of file systems. Files are unstructured streams of 
unintetpreted bytes. Version 3 of NFS uses a slightly more general file system 
model. 

NFS looks up one component of a pathname at a time. It may not be obvious 
why it does not just take the whole pathname, traipse down the directories, and 
return a file handle when it is done. There are several good reasons not to do 
this. First, pathnames need separators between the directory components, and 
different operating systems use different separators. We could define a Network 
Standard Pathname Representation, but then every pathname would have to be 
parsed and converted at each end. Other issues are discussed in NFS Implemen
tation Issues below. 

Although files and directories are similar objects in many ways, different pro
cedures are used to read directories and files. This provides a network standard 
fonnat for representing directories. The same argument as above could have 
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RPC Information 

Sizes of XDR Structures 

Basic Data Types 

been used to justify a procedure that returns only one directory entry per call. 
The problem is efficiency. Directories can contain many entries, and a remote 
call to return each would be just too slow. 

Authentication 
The NFS service uses AUTH_UNIX, AUTH_DES, or AUTH_SHORT style 
authentication, except in the NULL procedure where AUTH_NONE is also 
allowed. 

Transport Protocols 
NFS currently is supported on UDP/IP only. 

Port Number 
The NFS protocol currently uses the UDP port number 2049. This is not an 
officially assigned port, so later versions of the protocol use the "Portmap
ping" facility of RPC. 

These are the sizes, given in decimal bytes, of various XDR structures used in the 
protocol: 

/ * The maximum number of bytes of data in a READ or WRITE request * / 
const MAXDATA = 8192; 

/ * The maximum number of bytes in a pathname argument * / 
const MAXPATHLEN = 1024; 

/ * The maximum number of bytes in a file name argument * / 
const MAXNAMLEN = 255; 

/* The size in bytes of the opaque "cookie" passed by READDIR * / 
const COOKIESIZE = 4; 

/ * The size in bytes of the opaque file handle * / 
const FHSIZE = 32; 

The following XDR definitions are basic structures and types used in other struc
tures described further on. 
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enum stat { 

} ; 

NFS OK = 0, 
NFSERR_PERM=l, 
NFSERR_NOENT=2, 
NFSERR_IO=S, 
NFSERR_NXIO=6, 
NFSERR_ACCES=13, 
NFSERR_EXIST=17, 
NFSERR_NODEV=19, 
NFSERR_NOTDIR=20, 
NFSERR_ISDIR=21, 
NFSERR_FBIG=27, 
NFSERR_NOSPC=28, 
NFSERR_ROFS=30, 
NFSERR_NAMETOOLONG=63, 
NFSERR_NOTEMPTY=66, 
NFSERR_DQUOT=69, 
NFSERR_STALE=70, 
NFSERR WFLUSH=99 

The stat () type is returned with every procedure's results. A value of 
NF S _OK indicates that the call completed successfully and the results are valid. 
The other values indicate some kind of error occurred on the server side during 
the servicing of the procedure. The error values are derived from UNIX error 
numbers. 

NFSERR PERM: 
Not owner. The caller does not have correct ownership to perfonn the 
requested operation. 

NFSERR NOENT: 
No such file or directory. The file or directory specified does not exist. 

NFSERR 10: 
Some sort of hard error occurred when the operation was in progress. This 
could be a disk error, for example. 

NFSERR NXIO: 
No such device or address. 

NFSERR ACCES: 
Permission denied. The caller does not have the correct pennission to per
fonn the requested operation. 

NFSERR EXIST: 
File exists. The file specified already exists. 

NFSERR NODEV: 
No such device. 

NFSERR NOTDIR: 
Not a directory. The caller specified a non-directory in a directory operation. 
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ftype 

fhandle 

NF SERR :ISD:IR: 
Is a directory. The caller specified a directory in a non- directory operation. 

NFSERR FB:IG: 
File too large. The operation caused a file to grow beyond the server's limit. 

NFSERR NOSPC: 
No space left on device. The operation caused the server's filesystem to 
reach its limit. 

NFSERR ROFS: 
Read-only filesystem. Write attempted on a read-only filesystem. 

NFSERR NAME TOOLONG: 
File name too long. The file name in an operation was too long. 

NFSERR NOTEMPTY: 
Directory not empty. Attempted to remove a directory that was not empty. 

NFSERR_DQUOT: 
Disk quota exceeded. The client's disk quota on the server has been 
exceeded. 

NFSERR STALE: 
The "fhandle" given in the arguments was invalid. That is, the file referred 
to by that file handle no longer exists, or access to it has been revoked. 

NFSERR WFLUSB: 
The server's write cache used in the WRITECACHE call got flushed to disk. 

enum ftype { 
NFNON = 0, 
NFREG = 1, 
NFDIR = 2, 
NFBLK = 3, 
NFCHR = 4, 
NFLNK = 5 

} i 

The enumeration ftype gives the type of a file. The type NFNON indicates a 
non-file, NFREG is a regular file, NFDIR is a directory, NFBLK is a block-special 
device, NFCHR is a character-special device, and NFLNK is a symbolic link. 

typedef opaque fhandle[FHSIZE]i 

The fhandle is the file handle passed between the server and the client. All 
file operations are done using file handles to refer to a file or directory. The file 
handle can contain whatever information the server needs to distinguish an indi
vidual file. 
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struct timeval { 

} ; 

unsigned int seconds; 
unsigned int useconds; 

The timeval structure is the number of seconds and microseconds since mid
night January 1, 1970, Greenwich Mean Time. It is used to pass time and date 
infonnation. 

struct fattr 
ftype type; 
unsigned int mode; 
unsigned int nlink; 
unsigned int uid; 
unsigned int gid; 
unsigned int size; 
unsigned int blocksize; 
unsigned int rdev; 
unsigned int blocks; 
unsigned int fsid; 
unsigned int fileid; 
timeval atime; 
timeval mtime; 
timeval ctime; 

} ; 

The fattr structure contains the attributes of a file; "type" is the type of the 
file; "nlink" is the number of hard links to the file (the number of different names 
for the same file); "uid" is the user identification number of the owner of the file; 
"gid" is the group identification number of the group of the file; "size" is the size 
in bytes of the file; "blocksize" is the size in bytes of a block of the file; "rdev" is 
the device number of the file if it is type NFCHR or NFBLK; "blocks" is the 
number of blocks the file takes up on disk; "fsid" is the file system identifier for 
the filesystem containing the file; "fileid" is a number that uniquely identifies the 
file within its filesystem; "atime" is the time when the file was last accessed for 
either read or write; "mtime" is the time when the file data was last modified 
(written); and "ctime" is the time when the status of the file was last changed. 
Writing to the file also changes "ctime" if the size of the file changes. 

"mode" is the access mode encoded as a set of bits. Notice that the file type is 
specified both in the mode bits and in the file type. This is really a bug in the 
protocol and will be fixed in future versions. The descriptions given below 
specify the bit positions using octal numbers. 
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sattr 

filename 

path 

Bit 
0040000 
0020000 
0060000 
0100000 
0120000 
0140000 
0004000 
0002000 
0001000 
0000400 
0000200 
0000100 
0000040 
0000020 
0000010 
0000004 
0000002 
0000001 

Notes: 

Description 
This is a directory; "type" field should be NFDIR. 
This is a character special file; "type" field should be NFCHR. 
This is a block special file; "type" field should be NFBLK. 
This is a regular file; "type" field should be NFREG. 
This is a symbolic link file; "type" field should be NFLNK. 
This is a named socket; "type" field should be NFNON. 
Set user id on execution. 
Set group id on execution. 
Save swapped text even after use. 
Read permission for owner. 
Write permission for owner. 
Execute and search pennission for owner. 
Read permission for group. 
Write permission for group. 
Execute and search pennission for group. 
Read permission for others. 
Write permission for others. 
Execute and search pennission for others. 

The bits are the same as the mode bits returned by the stat (2) system call 
in the UNIX system. The file type is specified both in the mode bits and in 
the file type. This is fixed in future versions. 

The "rdev" field in the attributes structure is an operating system specific 
device specifier. It will be removed and generalized in the next revision of 
the protocol. 

struct sattr 
unsigned int 
unsigned int 
unsigned int 
unsigned int 
timeval 
timeval 

} ; 

mode; 
uid; 
gid; 
sizei 
atimei 
mtimei 

The sattr structure contains the file attributes which can be set from the client. 
The fields are the same as for fat tr above. A "size" of zero means the file 
should be truncated. A value of -1 indicates a field that should be ignored. 

typedef string filename<MAXNAMLEN>i 

The type filename is used for passing file names or pathname components. 

typedef string path<MAXPATHLEN>i 

The type path is a pathname. The server considers it as a string with no internal 
structure, but to the client it is the name of a node in a file system tree. 
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union attrstat switch (stat status) { 
case NFS OK: 

} ; 

fattr attributes; 
default: 

void; 

The attrstat structure is a common procedure result. It contains a "status" 
and, if the call succeeded, it also contains the attributes of the file on which the 
operation was done. 

struct diropargs 
fhandle dir; 
filename name; 

} ; 

The diropargs structure is used in directory operations. The "fhandle" "dir" 
is the directory in which to find the file "name". A directory operation is one in 
which the directory is affected. 

union diropres switch (stat status) { 
case NFS OK: 

} ; 

struct { 
fhandle file; 
fattr attributes; 

diropok; 
default: 

void; 

The results of a directory operation are returned in a diropres structure. If the 
call succeeded, a new file handle "file" and the "attributes" associated with that 
file are returned along with the "status". 

The protocol definition is given as a set of procedures with arguments and results 
defined using the RPC language. A brief description of the function of each pro
cedure should provide enough infonnation to allow implementation. 

All of the procedures in the NFS protocol are assumed to be synchronous. When 
a procedure returns to the client, the client can assume that the operation has 
completed and any data associated with the request is now on stable storage. For 
example, a client WRI TE request may cause the server to update data blocks, 
filesystem infonnation blocks (such as indirect blocks), and file attribute infor
mation (size and modify times). When the WRITE returns to the client, it can 
assume that the write is safe, even in case of a server crash, and it can discard the 
data written. This is a very important part of the statelessness of the server. If 
the server waited to flush data from remote requests, the client would have to 
save those requests so that it could resend them in case of a server crash. 

Revision A, of 27 March 1990 



176 Protocol Specifications 

Do Nothing 

Get File Attributes 
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1* 
* Remote file service routines 
*1 
program NFS_PROGRAM { 

version NFS_VERSION 
void NFSPROC_NULL(void) = 0; 
attrstat NFSPROC_GETATTR(fhandle)= 1; 
attrstat NFSPROC_SETATTR(sattrargs) 2; 
void NFSPROC_ROOT(void) = 3; 
diropres NFSPROC_LOOKUP(diropargs) 4; 
readlinkres NFSPROC_READLINK(fhandle) = 5; 
readres NFSPROC_READ(readargs) = 6; 
void NFSPROC_WRITECACHE(void) = 7; 
attrstat NFSPROC_WRITE(writeargs) = 8; 
diropres NFSPROC_CREATE(createargs) 9; 
stat NFSPROC_REMOVE(diropargs) = 10; 
stat NFSPROC_RENAME(renameargs) = 11; 
stat NFSPROC_LINK(linkargs) = 12; 
stat NFSPROC_SYMLINK(symlinkargs) = 13; 
diropres NFSPROC_MKDIR(createargs) = 14; 
stat NFSPROC_RMDIR(diropargs) = 15; 
readdirres NFSPROC_READDIR(readdirargs) 16; 
statfsres NFSPROC_STATFS(fhandle) = 17; 

} = 2; 
} = 100003; 

void 
NFSPROC_NULL(void) = 0; 

This procedure does no work. It is made available in all RPC services to allow 
seIVer response testing and timing. 

attrstat 
NFSPROC GETATTR (fhandle) = 1; 

If the reply status is NFS_OK, then the reply attributes contains the attributes for 
the file given by the input fhandle. 

struct sattrargs { 
fhandle file; 
sattr attributes; 
} ; 

attrstat 
NFSPROC SETATTR (sattrargs) = 2; 

The "attributes" argument contains fields which are either -lor are the new value 
for the attributes of "file". If the reply status is NF S _OK, then the reply attributes 
have the attributes of the file after the "SET A TTR" operation has completed. 

Note: The use of -1 to indicate an unused field in "attributes" is changed in the 
next version of the protocol. 
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void 
NFSPROC_ROOT(void) = 3; 

Obsolete. This procedure is no longer used because finding the root file handle 
of a filesystem requires moving pathnames between client and seIVer. To do this 
right we would have to define a network standard representation of pathnames. 
Instead, the function of looking up the root file handle is done by the 
MNTPROC_MNT () procedure. (See the Mount Protocol Definition below for 
details). 

diropres 
NFSPROC_LOOKUP(diropargs) = 4; 

If the reply "status" is NFS_OK, then the reply "file" and reply "attributes" are the 
file handle and attributes for the file "name" in the directory given by "dir" in the 
argument. 

union readlinkres switch (stat status) { 
case NFS OK: 

path data; 
default: 

void; 
} ; 

readlinkres 
NFSPROC_READLINK(fhandle) = 5; 

If "status" has the value NFS _OK, then the reply "data" is the data in the sym
bolic link given by the file referred to by the thandle argument. 

Note: since NFS always parses pathnames on the client, the patbname in a sym
bolic link may mean something different (or be meaningless) on a different client 
or on the server if a different patbname syntax is used. 

struct readargs { 
fhandle file; 
unsigned offset; 
unsigned count; 
unsigned totalcount; 

} ; 

union readres switch (stat status) { 
case NFS OK: 

} ; 

fattr attributes; 
opaque data<NFS_MAXDATA>; 

default: 
void; 

readres 
NFSPROC_READ(readargs) = 6; 

Returns up to "count" bytes of "data" from the file given by "file", starting at 
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Write to File 

Create File 

Remove File 

"offset" bytes from the beginning of the file. The first byte of the file is at offset 
zero. The file attributes after the read takes place are returned in "attributes". 

Note: The argument "totalcount" is unused, and is removed in the next protocol 
revision. 

void 
NFSPROC_WRITECACHE(void) = 7; 

To be used in the next protocol revision. 

struct writeargs { 

} ; 

fhandle file; 
unsigned beginoffset; 
unsigned offset; 
unsigned totalcount; 
opaque data<NFS_MAXDATA>; 

attrstat 
NFSPROC_WRITE(writeargs) = 8; 

Writes "data" beginning "offset" bytes from the beginning of "file". The first 
byte of the file is at offset zero. If the reply "status" is NFS_OK, then the reply 
"attributes" contains the attributes of the file after the write has completed. The 
write operation is atomic. Data from this call to WRITE will not be mixed with 
data from another client's calls. 

Note: The arguments "beginoffset" and "totalcount" are ignored and are removed 
in the next protocol revision. 

struct createargs { 
diropargs where; 
sattr attributes; 

} ; 

diropres 
NFSPROC_CREATE(createargs) = 9; 

The file "name" is created in the directory given by "dir". The initial attributes of 
the new file are given by "attributes". A reply "status" ofNFS_OK indicates that 
the file was created, and reply "file" and reply "attributes" are its file handle and 
attributes. Any other reply "status" means that the operation failed and no file 
was created. 

Note: This routine should pass an exclusive create flag, meaning" create the file 
only if it is not already there". 

stat 
NFSPROC_REMOVE(diropargs) = 10; 

The file "name" is removed from the directory given by "dir". A reply of 
NFS_ OK means the directory entry was removed. 
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Note: possibly non-idempotent operation. 

struct renameargs { 
diropargs from; 
diropargs to; 

} ; 

stat 
NFSPROC_RENAME(renameargs) = 11; 

The existing file "from.name" in the directory given by "from.dir" is renamed to 
"to.name" in the directory given by "to.dir". If the reply is NFS_OK, the file was 
renamed. The RENAME operation is atomic on the server; it cannot be inter
rupted in the middle. 

Note: possibly non-idempotent operation. 

struct linkargs { 
fhandle from; 
diropargs to; 

} ; 

stat 
NFSPROC_LINK(linkargs) = 12; 

Creates the file "to.name" in the directory given by "to.dir", which is a hard link 
to the existing file given by "from". If the return value is NFS_OK, a link was 
created. Any other return value indicates an error, and the link was not created. 

A hard link should have the property that changes to either of the linked files are 
reflected in both files. When a hard link is made to a file, the attributes for the 
file should have a value for "nlink" that is one greater than the value before the 
link. 

Note: possibly non-idempotent operation. 

struct symlinkargs { 
diropargs from; 
path to; 
sattr attributes; 

} ; 

stat 
NFSPROC_SYMLINK(symlinkargs) = 13; 

Creates the file "from.name" with ftype NFLNK in the directory given by 
"from.dir". The new file contains the pathname "to" and has initial attributes 
given by "attributes". If the return value is NFS_OK, a link was created. Any 
other return value indicates an error, and the link was not created. 

A symbolic link is a pointer to another file. The name given in "to" is not inter
preted by the server, only stored in the newly created file. When the client refer
ences a file that is a symbolic link, the contents of the symbolic link are normally 
transparently reinterpreted as a pathname to substitute. A READLINK operation 
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Create Directory 

Remove Directory 

Read From Directory 

returns the data to the client for inteIpretation. 

Note: On UNIX servers the attributes are never used, since symbolic links always 
have mode 0777. 

diropres 
NFSPROC MKDIR (createargs) = 14; 

The new directory "where.name" is created in the directory given by "where.dir". 
The initial attributes of the new directory are given by "attributes". A reply 
"status" ofNFS_OK indicates that the new directory was created, and reply "file" 
and reply "attributes" are its file handle and attributes. Any other reply "status" 
means that the operation failed and no directory was created. 

Note: possibly non-idempotent operation. 

stat 
NFSPROC_RMDIR(diropargs) = 15; 

The existing empty directory "name" in the directory given by "dir" is removed. 
If the reply is NFS_OK, the directory was removed. 

Note: possibly non-idempotent operation. 

struct readdirargs { 
fhandle dir; 
nfscookie cookie; 
unsigned count; 

} ; 

struct entry 
unsigned fileid; 
filename name; 
nfscookie cookie; 
entry *nextentry; 

} ; 

union readdirres switch (stat status) { 
case NFS_OK: 

} ; 

struct { 
entry *entries; 
bool eof; 

readdirok; 
default: 

void; 

readdirres 
NFSPROC READDIR (readdirargs) = 16; 

Returns a variable number of directory entries, with a total size of up to "count" 
bytes, from the directory given by "dir". If the returned value of "status" is 
NF S _OK, then it is followed by a variable number of "entry"s. Each "entry" con
tains a "fileid" which consists of a unique number to identify the file within a 
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filesystem, the "name" of the file, and a "cookie" which is an opaque pointer to 
the next entry in the directory. The cookie is used in the next READDIR call to 
get more entries starting at a given point in the directory. The special cookie 
zero (all bits zero) can be used to get the entries starting at the beginning of the 
directory. The "fileid" field should be the same number as the "fileid" in the attri
butes of the file. (See the Basic Data Types section.) The "eof' flag has a value 
of TRUE if there are no more entries in the directory. 

union statfsres (stat status) { 
case NFS OK: 

} i 

struct { 
unsigned tsize; 
unsigned bsize; 
unsigned blocks; 
unsigned bfreei 
unsigned bavail; 

info; 
default: 

void; 

statfsres 
NFSPROC_STATFS(fhandle) = 17; 

If the reply "status" is NFS_OK, then the reply "info" gives the attributes for the 
file system that contains file referred to by the input fhandle. The attribute fields 
contain the following values: 

tsize: 
The optimum transfer size of the server in bytes. This is the number of bytes 
the server would like to have in the data part of READ and WRITE requests. 

bsize: 
The block size in bytes of the filesystem. 

blocks: 
The total number of "bsize" blocks on the filesystem. 

bfree: 
The number of free "bsize" blocks on the filesystem. 

bavail: 
The number of "bsize" blocks available to non-privileged users. 

Note: This call does not work well if a filesystem has variable size blocks. 

The NFS protocol is designed to be operating system independent, but since this 
version was designed in a UNIX environment, many operations have semantics 
similar to the operations of the UNIX file system. This section discusses some of 
the implementation-specific semantic issues. 
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Server/Client Relationship 

Path name Interpretation 

Permission Issues 

The NFS protocol is designed to allow servers to be as simple and general as pos
sible. Sometimes the simplicity of the seIVer can be a problem, if the client 
wants to implement complicated file system semantics. 

For example, some operating systems allow removal of open files. A process can 
open a file and, while it is open, remove it from the directory. The file can be 
read and written as long as the process keeps it open, even though the file has no 
name in the filesystem. It is impossible for a stateless seIVer to implement these 
semantics. The client can do some tricks such as renaming the file on remove, 
and only removing it on close. We believe that the seIVer provides enough func
tionality to implement most file system semantics on the client. 

Every NFS client can also potentially be a seIVer, and remote and local mounted 
filesystems can be freely intermixed. This leads to some interesting problems 
when a client travels down the directory tree of a remote filesystem and reaches 
the mount point on the server for another remote filesystem. Allowing the server 
to follow the second remote mount would require loop detection, server lookup, 
and user revalidation. Instead, we decided not to let clients cross a server's 
mount point. When a client does a LOOKUP on a directory on which the seIVer 
has mounted a filesystem, the client sees the underlying directory instead of the 
mounted directory. A client can do remote mounts that match the server's mount 
points to maintain the server's view. 

There are a few complications to the rule that pathnames are always parsed on 
the client. For example, symbolic links could have different interpretations on 
different clients. Another common problem for non-UNIX implementations is 
the special interpretation of the pathname " .. " to mean the parent of a given direc
tory. The next revision of the protocol uses an explicit flag to indicate the parent 
instead. 

The NFS protocol, strictly speaking, does not define the permission checking 
used by seIVers. However, it is expected that a seIVer will do normal operating 
system permission checking using AUTH _UNIX style authentication as the basis 
of its protection mechanism. The server gets the client's effective "uid", effec
tive "gid", and groups on each call and uses them to check permission. There are 
various problems with this method that can been resolved in interesting ways. 

Using "uid" and "gid" implies that the client and seIVer share the same "uid" list. 
Every seIVer and client pair must have the same mapping from user to "uid" and 
from group to "gid". Since every client can also be a seIVer, this tends to imply 
that the whole network shares the same "uid/gid" space. AUTH _DES (and the 
next revision of the NFS protocol) uses string names instead of numbers, but 
there are still complex problems to be solved. 

Another problem arises due to the usually stateful open operation. Most operat
ing systems check permission at open time, and then check that the file is open 
on each read and write request. With stateless seIVers, the server has no idea that 
the file is open and must do permission checking on each read and write call. On 
a local filesystem, a user can open a file and then change the permissions so that 
no one is allowed to touch it, but will still be able to write to the file because it is 
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open. On a remote filesystem, by contrast, the write would fail. To get around 
this problem, the server's permission checking algorithm should allow the owner 
of a file to access it regardless of the permission setting. 

A similar problem has to do with paging in from a file over the network. The 
operating system usually checks for execute permission before opening a file for 
demand paging, and then reads blocks from the open file. The file may not have 
read permission, but after it is opened it doesn't matter. An NFS server can not 
tell the difference between a normal file read and a demand page-in read. To 
make this work, the server allows reading of files if the "uid" given in the call has 
execute or read permission on the file. 

In most operating systems, a particular user (on the user ID zero) has access to all 
files no matter what permission and ownership they have. This "super-user" per
mission may not be allowed on the server, since anyone who can become super
user on their workstation could gain access to all remote files. The UNIX server 
by default maps user id 0 to -2 before doing its access checking. This works 
except for NFS root filesystems, where super-user access cannot be avoided. 

Various file system parameters and options should be set at mount time. The 
mount protocol is described in the appendix below. For example, "Soft" mounts 
as well as "Hard" mounts are usually both provided. Soft mounted file systems 
return errors when RPC operations fail (after a given number of optional 
retransmissions), while hard mounted file systems continue to retransmit forever. 
Clients and servers may need to keep caches of recent operations to help avoid 
problems with non-idempotent operations. 

The mount protocol is separate from, but related to, the NFS protocol. It pro
vides operating system specific services to get the NFS off the ground -- looking 
up server path names, validating user identity, and checking access permissions. 
Clients use the mount protocol to get the first file handle, which allows them 
entry into a remote filesystem. 

The mount protocol is kept separate from the NFS protocol to make it easy to 
plug in new access checking and validation methods without changing the NFS 
server protocol. 

Notice that the protocol definition implies stateful servers because the server 
maintains a list of client's mount requests. The mount list information is not crit
ical for the correct functioning of either the client or the server. It is intended for 
advisory use only, for example, to warn possible clients when a server is going 
down. 

Version one of the mount protocol is used with version two of the NFS protocol. 
The only connecting point is the fhandle structure, which is the same for both 
protocols. 
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RPC Information 

Sizes of XDR Structures 

Basic Data Types 

fhandle 

fhstatus 

dirpath 

Authentication 
The mount service uses AUTH_UNIX and AUTH_DES style authentication 
only. 

Transport Protocols 
The mount service is currently supported on UDP/IP only. 

Port Number 
Consult the serverts portmapper, described in the Remote Procedure Calls: 
Protocol Specification, to find the port number on which the mount service 
is registered. 

These are the sizest given in decimal bytest of various XDR structures used in the 
protocol: 

/ * The maximum number of bytes in a pathname argument * / 
canst MNTPATHLEN = 1024; 

/ * The maximum number of bytes in a name argument * / 
canst MNTNAMLEN = 255; 

/ * The size in bytes of the opaque file handle * / 
canst FHSIZE = 32; 

This section presents the data types used by the mount protocol. In many cases 
they are similar to the types used in NFS. 

typedef opaque fhandle[FHSIZE]; 

The type fhandle is the file handle that the server passes to the client. All file 
operations are done using file handles to refer to a file or directory. The file han
dle can contain whatever information the server needs to distinguish an indivi
dual file. 

This is the same as the "tbandle" XDR definition in version 2 of the NFS proto
col; see Basic Data Types in the definition of the NFS protocol, above. 

union fhstatus switch (unsigned status) { 
case 0: 

} ; 

fhandle directory; 
default: 

void; 

The type f h s tat us is a union. If a "status" of zero is returned, the call com
pleted successfully, and a file handle for the "directory" follows. A non-zero 
status indicates some sort of error. In this case the status is a UNIX error 
number. 

typedef string dirpath<MNTPATHLEN>; 

The type dirpath is a server patbname of a directory. 
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typedef string name<MNTNAMLEN>; 

The type name is an arbitrary string used for various names. 

The following sections define the RPC procedures supplied by a mount server. 

1* 
* Protocol descriptionfor the mount program 
*1 

program MOUNTPROG 
1* 
* Version 1 of the mount protocol used with 
* version 2 of the NFS protocol. 
*1 

version MOUNTVERS 
void MOUNTPROC_NULL(void) = 0; 
fhstatus MOUNTPROC_MNT(dirpath) = 1; 
mountlist MOUNTPROC_DUMP(void) = 2; 
void MOUNTPROC_UMNT(dirpath) = 3; 
void MOUNTPROC_UMNTALL(void) = 4; 
exportlist MOUNTPROC_EXPORT(void) 5; 

} = 1; 
100005; 

void 
MNTPROC_NULL(void) = 0; 

This procedure does no work. It is made available in all RPC services to allow 
server response testing and timing. 

fhstatus 
MNTPROC_MNT(dirpath) = 1; 

If the reply "status" is 0, then the reply "directory" contains the file handle for the 
directory "dirname". This file handle may be used in the NFS protocol. This 
procedure also adds a new entry to the mount list for this client mounting "dir
name". 

struct *mountlist { 

} ; 

name 
dirpath 

hostname; 
directory; 

mountlist nextentry; 

mountlist 
MNTPROC_DUMP(void) = 2; 

Returns the list of remote mounted filesystems. The "mountlist" contains one 
entry for each "hostname" and "directory" pair. 
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Remove Mount Entry 

Remove All Mount Entries 

Return Export List 

void 
MNTPROC_UMNT(dirpath) = 3; 

Removes the mount list entry for the input "dirpath". 

void 
MNTPROC_UMNTALL(void) = 4; 

Removes all of the mount list entries for this client. 

struct *groups { 
name grname; 
groups grnext; 

} ; 

struct *exportlist { 
dirpath filesys; 
groups groups; 
exportlist next; 

} ; 

exportlist 
MNTPROC_EXPORT(void) = 5; 

Returns a variable number of export list entries. Each entry contains a filesystem 
name and a list of groups that are allowed to import it. The filesystem name is in 
"filesys", and the group name is in the list "groups". 

Note: The exportlist should contain more information about the status of the 
filesystem, such as a read-only flag. 
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9.1. Background 

9 
Transport Level Interface Programming 

This chapter provides detailed infonnation, with various examples, on the UNIX 
system Transport Interface. This interface is intended to supercede the socket
based interprocess communications mechanisms as the standard means of gain
ing direct access to transport selVices. Network application developers who do 
not require such direct access should instead work within the Remote Procedure 
Call (RPC) framework- which is documented in PART I of this manual. 

NOTE SunOS 4.1 does not support RPC on TLI. This is afeature that will appear in 
future products. 

Figure 9-1 

The following discussion assumes a working knowledge of UNIX system pro
gramming and data communication concepts. Familiarity with the Reference 
Model of Open Systems Interconnection (OSI) is required as well. 

To place the Transport Interface in perspective, a discussion of the OSI Refer
ence Model is first presented. The Reference Model partitions networking func
tions into seven layers, as depicted in Figure 9-1. 

OSI Reference Model 

Layer 7 application 

Layer 6 presentation 

Layer 5 session 

Layer 4 transport 

Layer 3 network 

Layer 2 data link 

Layer 1 physical 

Layer 1 
The physical layer is responsible for the transmission of raw data over a 
communication medium. 
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Layer 2 
The data link layer provides the exchange of data between network layer 
entities. It detects and corrects any errors that may occur in the physical 
layer transmission. 

Layer 3 
The network layer manages the operation of the network. In particular, it is 
responsible for the routing and management of data exchange between tran
sport layer entities within the network. 

Layer 4 
The transport layer provides transparent data transfer services between ses
sion layer entities by relieving them from concerns of how reliable and 
cost -effective transfer of data is achieved. 

LayerS 
The session layer provides the services needed by presentation layer entities 
that enable them to organize and synchronize their dialogue and manage 
their data exchange. 

Layer 6 
The presentation layer manages the representation of information that appli
cation layer entities either communicate or reference in their communica
tion. 

Layer 7 
The application layer serves as the window between corresponding applica
tion processes that are exchanging infonnation. 

A basic principle of the Reference Model is that each layer provides services 
needed by the next higher layer in a way that frees the upper layer from concern 
about how these services are provided. This approach simplifies the design of 
each particular layer. 

Industry standards either have been or are being defined at each layer of the 
Reference Model. Two standards are defined at each layer: one that specifies an 
interface to the services of the layer, and one that defines the protocol by which 
services are provided. A service interface standard at any layer frees users of the 
service from details of how that layer's protocol is implemented, or even which 
protocol is used to provide the service. 

The transport layer is important because it is the lowest layer in the Reference 
Model that provides the basic service of reliable, end-to-end data transfer needed 
by applications and higher layer protocols. In doing so, this layer hides the 
topology and characteristics of the underlying network from its users. More 
important, however, the transport layer defines a set of services common to 
layers of many contemporary protocol suites, including the International Stan
dards Organization (ISO) protocols, the Transmission Control Protocol and Inter
net Protocol (TCPIIP) of the ARPANET, Xerox Network Systems (XNS), and 
the Systems Network Architecture (SNA). 

A transport service interface, then, enables applications and higher layer proto
cols to be implemented without knowledge of the underlying protocol suite. 
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That is a principle goal of the UNIX system Transport Interface. Also, because 
an inherent characteristic of the transport layer is that it hides details of the physi
cal medium being used, the Transport Interface offers both protocol and medium 
independence to networking applications and higher layer protocols. 

The UNIX system Transport Interface was modeled after the industry standard 
ISO Transport Service Definition (ISO 8072). As such, it is intended for those 
applications and protocols that require transport services. Because the Transport 
Interface provides reliable data transfer, and because its services are common to 
several protocol suites, many networking applications will find these services 
useful. 

The Transport Interface is implemented as a user library using the STREAMS 
input/output mechanism. Therefore, many services available to STREAMS 
applications are also available to users of the Transport Interface. These services 
will be highlighted throughout this guide. For detailed information about 
STREAMS, see the STREAMS Programming manual. 

This section is organized as follows: 

D Overview of the Transport Interface, a summary of the basic services 
available to Transport Interface users and a presentation of the background 
infonnation needed for the remainder of the section. 

D Introduction to Connection-Mode Service, a description of the services 
associated with connection-based (or virtual circuit) communication. 

D Introduction to Connectionless-Mode Service, a description of the ser
vices associated with connectionless (or datagram) communication. 

D A Read/Write Interface, a description of how users can use the services of 
read(2) and wr i te(2) to communicate over a transport connection. 

D Advanced Topics, a discussion of important concepts not covered in earlier 
sections. These include asynchronous event handling and processing of 
multiple, simultaneous connect requests. 

D State Transitions, an appendix which defines the allowable state transitions 
associated with the Transport Interface. 

D Guidelines for Protocol Independence, an appendix which establishes 
necessary guidelines for developing software that can be run without change 
over any transport protocol developed for the Transport Interface. 

D Examples, an appendix that presents the full listing of each programming 
example used throughout the guide. 

D Glossary, a definition of the Transport Interface terms and acronyms used in 
this section. 

This section describes the more important and common facilities of the Transport 
Interface, but is not meant to be exhaustive. Section 3N of the SunOS Reference 
Manual contains a complete description of each Transport Interface routine. 
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9.3. Overview of the 
Transport Interface 

Figure 9-2 

Modes of Service 

This section presents a high level overview of the services of the Transport Inter
face, which supports the transfer of data between two user processes. Figure 9-2 
illustrates the Transport Interface. 

Transportlnte~ace 

ice serv 
requ ests 

transport 
user 

L ...... ..... ... ....... Transport Interface ········t 
servic e events 

dications and in 
~ 

transport 
provider 

The transport provider is the entity that provides the services of the Transport 
Interface, and the transport user is the entity that requires these services. An 
example of a transport provider is the ISO transport protocol, while a transport 
user may be a networking application or session layer protocol. 

The transport user accesses the services of the transport provider by issuing the 
appropriate service requests. One example is a request to transfer data over a 
connection. Similarly, the transport provider notifies the user of various events, 
such as the arrival of data on a connection. 

The Network Services Library of UNIX System V includes a set of functions that 
support the services of the Transport Interface for user processes [see 
intro(3)]. These functions enable a user to initiate requests to the provider and 
process incoming events. Programs using the Transport Interface can link the 
appropriate routines as follows: 

[ cc prog.c -Insl s ) 
Two modes of service, connection-mode and connectionless-mode, are provided 
by the Transport Interface. Connection-mode is circuit-oriented and enables data 
to be transmitted over an established connection in a reliable, sequenced manner. 
It also provides an identification mechanism that avoids the overhead of address 
resolution and transmission during the data transfer phase. This service is attrac
tive for applications that require relatively long-lived, datastream-oriented 
interactions. 

Connectionless-mode, in contrast, is message-oriented and supports data transfer 
in self-contained units with no logical relationship required among mUltiple 
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units. This service requires only a preexisting association between the peer users 
involved, which detennines the characteristics of the data to be transmitted. All 
the infonnation required to deliver a unit of data (for example, the destination 
address) is presented to the transport provider, together with the data to be 
transmitted, in one service access (which need not relate to any other service 
access). Each unit of data transmitted is entirely self-contained. 
Connectionless-mode service is attractive for applications that: 

o involve short-tenn request/response interactions 

o exhibit a high level of redundancy 

o are dynamically reconfigurable 

o do not require guaranteed, in-sequence delivery of data 

Connection-Mode Service The connection-mode transport service is characterized by four phases: local 
management, connection establishment, data transfer, and connection release. 

Local Management The local management phase defines local operations between a transport user 
and a transport provider. For example, a user must establish a channel of com
munication with the transport provider, as illustrated in Figure 9-3. Each channel 
between a transport user and transport provider is a unique endpoint of communi
cation, and will be called the transport endpoint. The t _ open(3N) routine 
enables a user to choose a particular transport provider that will supply the 
connection-mode services, and establishes the transport endpoint. 

Figure 9-3 Channel Between User and Provider 

transport 
user 

, 

~ transport endpoint 

.......... ......... ............... Transport Interface 

transport 
provider 

Another necessary local function for each user is to establish an identity with the 
transport provider. Each user is identified by a transport address. More accu
rately, a transport address is associated with each transport endpoint, and one 
user process may manage several transport endpoints. In connection-mode ser
vice, one user requests a connection to another user by specifying that user's 
address. The structure of a transport address is defined by the address space of 
the transport provider. An address may be as simple as a random character string 
(for example, "file_server"), or as complex as an encoded bit pattern that 
specifies all infonnation needed to route data through a network. Each transport 
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Table 9-1 

Connection Establishment 

provider defines its own mechanism for identifying users. Addresses may be 
assigned to each transport endpoint by t bind(3N). 

Local Management Routines 

Command Description 

t_alloc Allocates Transport Interface data structures. 

t_bind Binds a transport address to a transport endpoint. 

t_close Closes a transport endpoint. 

t_error Prints a Transport Interface error message. 

t_free Frees structures allocated using t_alloc. 

t~etinfo Returns a set of parameters associated with a particular 
transport provider. 

t~etstate Returns the state of a transport endpoint. 

t_Iook Returns the current event on a transport endpoint. 

t_open Establishes a transport endpoint connected to a chosen 
transport provider. 

t_optmgmt Negotiates protocol-specific options with the transport 
provider. 

t_sync Synchronizes a transport endpoint with the transport pro-
vider. 

t_unbind Unbinds a transport address from a transport endpoint. 

In addition to t_open and t_bind, several routines are available to support 
local operations. Table 9-1 summarizes all local management routines of the 
Transport Interface. 

The connection establishment phase enables two users to create a connection, or 
virtual circuit, between them, as demonstrated in Figure 9-4. 
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Transport Connection 

user 1 user 2 
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This phase is illustrated by a client-server relationship between two transport 
users. One user, the server, typically advertises some service to a group of users, 
and then listens for requests from those users. As each client requires the service, 
it attempts to connect itself to the server using the server's advertised transport 
address. The t_connect(3N) routine initiates the connect request. One argu
ment to t_connect, the transport address, identifies the server the client 
wishes to access. The server is notified of each incoming request using 
t_listen(3N), and may call t_accept(3N) to accept the client's request for 
access to the service. If the request is accepted, the transport connection is esta
blished. 

Table 9-2 summarizes all routines available for establishing a transport connec
tion. 

Connection Establishment Routines 

Command Description 

t_accept Accepts a request for a transport connection. 

t_connect Establishes a connection with the transport user at a 
speci fied destination. 

t_listen Retrieves an indication of a connect request from 
another transport user. 

t_rcvconnect Completes connection establishment if t_connect 
was called in asynchronous mode (see the Advanced 
Topics section). 
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Data Transfer 

Table 9-3 

Connection Release 

Table 9-4 

The data transfer phase enables users to transfer data in both directions over an 
established connection. Two routines, t_snd(3N) and t_rcv(3N), send and 
receive data over this connection. All data sent by a user is guaranteed to be 
delivered to the user on the other end of the connection in the order in which it 
was sent. Table 9-3 summarizes the connection mode data transfer routines. 

Connection Mode Data Transfer Routines 

Command Description 

t_rcv Retrieves data that has arrived over a transport connec-
tion. 

t_snd Send data over an established transport connection. 

The connection release phase provides a mechanism for breaking an established 
connection. When you decide that the conversation should tenninate, you can 
request that the provider release the transport connection. Two types of connec
tion release are supported by the Transport Interface. The first is an abortive 
release, which directs the transport provider to release the connection immedi
ately. Any previously sent data that has not yet reached the other transport user 
may be discarded by the transport provider. The t_snddis(3N) routine ini
tiates this abortive disconnect, and t_rcvdis(3N) processes the incoming 
indication of an abortive disconnect. 

All transport providers must support the abortive release procedure. In addition, 
some transport providers may also support an orderly release facility that enables 
users to tenninate communication gracefully with no data loss. The functions 
t _ sndrel(3N) and t _ rcvrel(3N) support this capability. Table 9-4 sum
marizes the connection release routines. 

Connection Release Routines 

Command Description 

t_rcvdis Returns an indication of an aborted connection, includ-
ing a reason code and user data. 

t_rcvrel Returns an indication that the remote user has requested 
an orderly release of a connection. 

t_snddis Aborts a connection or rejects a connect request. 

t_sndrel Requests the orderly release of a connection. 
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The connectionless-mode transport service is characterized by two phases: local 
management and data transfer. The local management phase defines the same 
local operations described above for the connection-mode service. 

The data transfer phase enables a user to transfer data units (sometimes called 
datagrams) to the specified peer user. Each data unit must be accompanied by 
the transport address of the destination user. Two routines, t_sndudata(3N) 
and t _ rcvuda ta(3N) support this message-based data transfer facility. Table 
9-5 summarizes all routines associated with connectionless-mode data transfer. 

C onnectionless-mode Data Transfer Routines 

Command Description 

t_rcvudata Retrieves a message sent by another transport user. 

t_rcvuderr Retrieves error information associated with a previously 
sent message. 

t_sndudata Sends a message to the specified destination user. 

The Transport Interface has two components: 

o the library routines that provide the transport services to users 

o the state transition rules that define the sequence in which the transport rou-
tines may be invoked 

The state transition rules can be found in the State Transitions section of this 
chapter in the form of state tables. The state tables define the legal sequence of 
library calls based on state infonnation and the handling of events. These events 
include user-generated library calls, as well as provider-generated event indica
tions. 

Any user of the Transport Interface must completely understand all possible state 
transitions before writing software using the interface. 

This section describes the connection-mode service of the Transport Interface. 
As discussed in the previous section, the connection-mode service can be illus
trated using a client-server paradigm. The important concepts of connection
mode service will be presented using two programming examples. The examples 
are related in that the first illustrates how a client establishes a connection to a 
server and then communicates with the server. The second example shows the 
server's side of the interaction. All examples discussed in this guide are 
presented in their entirety in the Some Examples section, below. 

In the examples, the client establishes a connection with a server process. The 
server then transfers a file to the client. The client, in turn, receives the data from 
the server and writes it to its standard output file. 
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Local~anage~ent Before the client and server can establish a transport connection, each must first 
establish a local channel (the transport endpoint) to the transport provider using 
t _open, and establish its identity (or address) using t _bind. 

The set of services supported by the Transport Interface may not be implemented 
by all transport protocols. Each transport provider has a set of characteristics 
associated with it that detennine the services it offers and the limits associated 
with those services. This information is returned to the user by t _open, and 
consists of the following: 

addr 
maximum size of a transport address 

options 

tsdu 

maximum bytes of protocol-specific options that may be passed between the 
transport user and transport provider 

maximum message size that may be transmitted in either connection-mode 
or connectionless-mode 

etsdu 
maximum expedited data message size that may be sent over a transport 
connection 

connect 
maximum number of bytes of user data that may be passed between users 
during connection establishment 

discon 
maximum bytes of user data that may be passed between users during the 
abortive release of a connection 

servtype 
the type of service supported by the transport provider 

The three service types defined by the Transport Interface are: 

T_COTS 
The transport provider supports connection-mode service but does not pro
vide the optional orderly release facility. 

T_COTS_ORD 
The transport provider supports connection-mode service with the optional 
orderly release facility. 

T_CLTS 
The transport provider supports connectionless-mode service. Only one 
such service can be associated with the transport provider identified by 
t_open. 

NOTE t _open returns the default provider characteristics associated with a transport 
endpoint. However, some characteristics may change after an endpoint has been 
opened. This will occur if the characteristics are associated with negotiated 
options (option negotiation is described later in this section). For example, if the 
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support of expedited data transfer is a negotiated option, the value of this charac
teristic may change. t_getinfo may be called to retrieve the current charac
teristics of a transport endpoint. 

Once a user establishes a transport endpoint with the chosen transport provider, it 
must establish its identity. As mentioned earlier, t _bind accomplishes this by 
binding a transport address to the transport endpoint. In addition, for servers, this 
routine informs the transport provider that the endpoint will be used to listen for 
incoming connect requests, also called connect indications. 

An optional facility, t _ optmgmt (3N), is also available during the local 
management phase. It enables a user to negotiate the values of protocol options 
with the transport provider. Each transport protocol is expected to define its own 
set of negotiable protocol options, which may include such information as 
Quality-of-Service parameters. Because of the protocol-specific nature of 
options, only applications written for a particular protocol environment are 
expected to use this facility. 

The local management requirements of the example client and server are used to 
discuss details of these facilities. The following are the definitions needed by the 
client program, followed by its necessary local management steps. 

#include <stdio.h> 
#include <tiuser.h> 
#include <fcntl.h> 

#define SRV ADDR 

main ( ) 

1 / * server's well known address * / 

{ 

int fd; 
int nbytes; 
int flags = 0; 
char buf[1024]; 
struct t_call *sndcall; 
extern int t_errno; 

if ((fd = t_open("/dev/tivc", O_RDWR, NULL» < 0) { 
t_error("t_open failed"); 
exit(l); 

if (t_bind(fd, NULL, NULL) < 0) 
t error("t_bind failed"); 
exit(2); 

The first argument to t _open is the patbname of a file system node that 
identifies the transport protocol that will supply the transport service. In this 
example, / dev /ti vc is a STREAMS clone device node that identifies a 
generic, connection-based transport protocol [see clone(4)]. 
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NOTE The name / dev /ti vc does not exist in SunOS. This is just a name used as an 
example that represents the transport selection node. 
The clone device finds an available minor device of the transport provider for 
the user. It is opened for both reading and writing, as specified by the O_RDWR 
open flag. The third argument may be used to return the service characteristics of 
the transport provider to the user. This information is useful when writing 
protocol-independent software (discussed in the Guidelines for Protocol 
Independence section, below.) For simplicity, the client and server in this exam
ple ignore this information and assume the transport provider has the following 
characteristics: 

[J The transport address is an integer value that uniquely identifies each user. 

D The transport provider supports the T_COTS_ORD service type, and the 
example will use the orderly release facility to release the connection. 

D User data may not be passed between users during either connection estab
lishment or abortive release. 

D The transport provider does not support protocol-specific options. Because 
these characteristics are not needed by the user, NULL is specified in the 
third argument to t _open. If the user needed a service other than 
T_COTS_ORD, another transport provider would be opened. An example 
of the T_CLTS service invocation is presented in the Introduction to 
Connectionless-Mode Service section. 

The return value of t _ope n is an identifier for the transport endpoint that will 
be used by all subsequent Transport Interface function calls. This identifier is 
actually a file descriptor obtained by opening the transport protocol file [see 
open(2)]. The significance of this fact is highlighted in the A Read/Write Inter
face section. 

After the transport endpoint is created, the client calls t _bind to assign an 
address to the endpoint. The first argument identifies the transport endpoint. The 
second argument describes the address the user would like to bind to the end
point, and the third argument is set on return from t_bind to specify the 
address that the provider bound. 

The address associated with a server's transport endpoint is important, because 
that is the address used by all clients to access the server. However, the typical 
client does not care what its own address is, because no other process will try to 
access it. That is the case in this example, where the second and third arguments 
to t_bind are set to NULL. A NULL second argument will direct the tran
sport provider to choose an address for the user. A NULL third argument indi
cates that the user does not care what address was assigned to the endpoint. 

If either t _open or t _bind fail, the program will call t _ error(3N) to 
print an appropriate error message to s t de r r. If any Transport Interface rou
tine fails, the global integer t _ errno will be assigned an appropriate transport 
error value. A set of such error values has been defined (in <ti user. h» for 
the Transport Interface, and t _error will print an error message correspond
ing to the value in t errno. This routine is analogous to perror(3), which 
prints an error message based on the value of err no. If the error associated 
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with a transport function is a system error, t _ er rno will be set to TSYSERR, 
and errno will be set to the appropriate value. 

The server in this example must take similar local management steps before com
munication can begin. The server must establish a transport endpoint through 
which it will listen for connect indications. The necessary definitions and local 
management steps are shown below: 

iinclude <tiuser.h> 
iinclude <stropts.h> 
iinclude <fcntl.h> 
iinclude <stdio.h> 
iinclude <signal.h> 

idefine DISCONNECT -1 
idefine SRV ADDR 1 /* server's well known address * / 

int conn_fd; / * connection established here * / 
extern int t_errno; 

main ( ) 
{ 

int listen_fd; /* listening transport endpoint * / 
struct t bind *bindi 
struct t_call *calli 

if «listen_fd = t_open (" /dev /tivc", 
O_RDWR, NULL» < 0) { 

t_error(nt_open failed for listen_fdll
); 

exit(l); 

1* 
* By asswning that the address is an integer value, 
* this program may not run over another protocol. 
*1 

if «bind = (struct t_bind *)t_alloc(listen_fd, 
T_BIND, T_ALL» == NULL) { 

t_error(nt_alloc of t bind structure failedn ); 
exit(2); 

bind->qlen = 1; 
bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDR; 

if (t_bind(listen_fd, bind, bind) < 0) { 
t_error(nt_bind failed for listen_fd ll

); 

exit(3); 
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1* 
* Was the correct address bound? 
*1 
if (*(int *)bind->addr.buf != SRV_ADDR) 

fprintf(stderr, nt_bind bound wrong address\O); 
exit(4); 

As with the client, the first step is to call t _open to establish a transport end
point with the desired transport provider. This endpoint, listenJd, will be used 
to listen for connect indications. Next, the server must bind its well-known 
address to the endpoint. This address is used by each client to access the server. 
The second argument to t_bind requests that a particular address be bound to 
the transport endpoint. This argument points to a t _bind structure with the 
following format: 

struct t bind 
struct netbuf addri 
unsigned qleni 

where addr describes the address to be bound, and qlen indicates the maximum 
outstanding connect indications that may arrive at this endpoint. All Transport 
Interface structure and constant definitions are found in <tiuser. h>. 

The address is specified using a netbuf structure that contains the following 
members: 

struct netbuf 
unsigned int maxleni 
unsigned int leni 
char *bufi 

where buJ points to a buffer containing the data, len specifies the bytes of data in 
the buffer, and maxlen indicates the maximum bytes the buffer can hold (and 
need only be set when data is returned to the user by a Transport Interface rou
tine). Forthe t_bind structure, the data pointed to by buJidentifies a transport 
address. It is expected that the structure of addresses will vary among each pro
tocol implementation under the Transport Interface. The netbuf structure is 
intended to support any such structure. 

If the value of qlen is greater than 0, the transport endpoint may be used to listen 
for connect indications. In such cases, t _bind directs the transport provider to 
immediately begin queueing connect indications destined for the bound address. 
Furthermore, the value of qlen indicates the maximum outstanding connect indi
cations the server wishes to process. The server must respond to each connect 
indication, either accepting or rejecting the request for connection. An outstand
ing connect indication is one to which the server has not yet responded. Often, a 
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server will fully process a single connect indication and respond to it before 
receiving the next indication. In this case, a value of 1 is appropriate for qlen. 
However, some servers may wish to retrieve several connect indications before 
responding to any of them. In such cases, qlen indicates the maximum number 
of such outstanding indications the server will process. An example of a server 
that manages multiple outstanding connect indications is presented in the 
Advanced Topics section. 

t_alloc(3N) is called to allocate the t_bind structure needed by t_bind. 
t_alloc takes three arguments. The first is a file descriptor that references a 
transport endpoint. This is used to access the characteristics of the transport pro
vider [see t open(3N)]. The second argument identifies the appropriate Tran
sport Interface structure to be allocated. The third argument specifies which, if 
any, netbuf buffers should be allocated for that structure. T_ALL specifies 
that all netbuf buffers associated with the structure should be allocated, and 
will cause the addr buffer to be allocated in this example. The size of this buffer 
is detennined from the transport provider characteristic that defines the max
imum address size. The maxlen field of this netbuf structure will be set to the 
size of the newly allocated buffer by t_alloc. The use of t_alloc will 
help ensure the compatibility of user programs with future releases of the Tran
sport Interface. 

The server in this example will process connect indications one at a time, so qlen 
is set to 1. The address information is then assigned to the newly allocated 
t_bind structure. This t_bind structure will be used to pass infonnation to 
t_bind in the second argument, and also will be used to return infonnation to 
the user in the third argument. 

On return, the t _bind structure will contain the address that was bound to the 
transport endpoint. If the provider could not bind the requested address (perhaps 
because it had been bound to another transport endpoint), it will choose another 
appropriate address. 

NOTE Each transport provider will manage its address space differently. Some tran
sport providers may allow a single transport address to be bound to several tran
sport endpoints, while others may require a unique address per endpoint. The 
Transport Interface supports either choice. Based on its address management 
rules, a provider will determine if it can bind the requested address. If not, it 
will choose another valid address from its address space and bind it to the tran
sport endpoint. 

The server must check the bound address to ensure that it is the one previously 
advertised to clients. Otherwise, the clients will be unable to reach the server. 

If t _bind succeeds, the provider will begin queueing connect indications. The 
next phase of communication, connection establishment, is entered. 
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The connection establishment procedures highlight the distinction between 
clients and selVers. The Transport Interface imposes a different set of procedures 
in this phase for each type of transport user. The client initiates the connection 
establishment procedure by requesting a connection to a particular selVer using 
t connect(3N). The selVer is then notified of the client's request by calling 
t _Ii sten(3N). The selVer may either accept or reject the client's request. It 
will call t_accept(3N) to establish the connection, or call t_snddis(3N) 
to reject the request. The client will be notified of the selVer's decision when 
t_connect completes. 

The Transport Interface supports two facilities during connection establishment 
that may not be supported by all transport providers. The first is the ability to 
transfer data between the client and selVer when establishing the connection. 
The client may send data to the selVer when it requests a connection. This data 
will be passed to the selVerby t_listen. Similarly, the selVer can send data 
to the client when it accepts or rejects the connection. The connect characteristic 
returned by t_open determines how much data, if any, two users may transfer 
during connect establishment. 

The second optional selVice supported by the Transport Interface during connec
tion establishment is the negotiation of protocol options. The client may specify 
protocol options that it would like the transport provider and/or the remote user. 
The Transport Interface supports both local and remote option negotiation. As 
discussed earlier, option negotiation is inherently a protocol-specific function. 
Use of this facility is discouraged if protocol independent software is a goal (see 
the Guidelines for Protocol Independence section). 

Continuing with the client/server example, the steps needed by the client to 
establish a connection are shown next: 

1* 
* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*1 
if «sndcall = (struct t_call *)t_alloc(fd, 

T_CALL, T_ADDR» == NULL) { 
t_error(tlt_alloc failed"); 
exit(3); 

sndcall->addr.len - sizeof(int); 
*(int *)sndcall->addr.buf = SRV_ADDR; 

if (t_connect(fd, sndcall, NULL) < 0) 
t_error(tlt_connect failed for fd tl ); 
exit(4); 

The t _ connect call establishes the connection with the server. The first argu
ment to t_connect identifies the transport endpoint through which the con
nection is established, and the second argument identifies the destination server. 
This argument is a pointer to a t _call structure, which has the following for
mat: 
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struct t_call { 
struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

addr identifies the address of the server, opt may be used to specify protocol
specific options that the client would like to associate with the connection, and 
udata identifies user data that may be sent with the connect request to the server. 
The sequence field has no meaning for t_connect. 

t_alloc is called above to allocate the t_call structure dynamically. Once 
allocated, the appropriate values are assigned. In this example, no options or 
user data are associated with the t_connect call, but the server's address 
must be set. The third argument to t_alloc is set to T_ADDR to indicate that 
an appropriate netbuf buffer should be allocated for the address. The seIVer's 
address is then assigned to buf, and len is set accordingly. 

The third argument to t_connect can be used to return infonnation about the 
newly established connection to the user, and may retrieve any user data sent by 
the . server in its response to the connect request. It is set to NULL by the client 
here to indicate that this infonnation is not needed. The connection will be esta
blished on successful return of t_ connect. If the server rejects the connect 
request, t_connect will fail and set t_errno to TLOOK. 

The TLOOK error has special significance in the Transport Interface. Some 
Transport Interface routines may be interrupted by an unexpected asynchronous 
transport event on the given transport endpoint, and TLOOK notifies the user that 
an event has occurred. As such, TLOOK does not indicate an error with a Tran
sport Interface routine, but the nonnal processing of that routine will not be per
fonned because of the pending event. The events defined by the Transport Inter
face are listed here: 

T_LISTEN 
A request for a connection, called a connect indication, has arrived at the 
transport endpoint. 

T_CONNECf 
The confinnation of a previously sent connect request, called a connect 
confinnation, has arrived at the transport endpoint. The confirmation is gen
erated when a server accepts a connect request. 

T_DATA 
User data has arrived at the transport endpoint. 

T_EXDATA 
Expedited user data has arrived at the transport endpoint. Expedited data 
will be discussed later in this section. 
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T_DISCONNECf 
A notification that the connection was aborted or that the server rejected a 
connect request, called a disconnect indication, has arrived at the transport 
endpoint. 

T_ORDREL 
A request for the orderly release of a connection, called an orderly release 
indication, has arrived at the transport endpoint. 

T_UDERR 
The notification of an error in a previously sent datagram, called a unitdata 
error indication, has arrived at the transport endpoint (see the Introduction to 
Connectionless-Mode Service section). 

It is possible in some states to receive one of several asynchronous events, as 
described in the state tables of the State Transitions section. The t_look(3N) 
routine enables a user to determine what event has occurred if a TLOOK error is 
returned. The user can then process that event accordingly. In the example, if a 
connect request is rejected, the event passed to the client will be a disconnect 
indication. The client will exit if its request is rejected. 

Returning to the example, when the client calls t_connect, a connect indica
tion will be generated on the server's listening transport endpoint. The steps 
required by the server to process the event are presented below. For each client, 
the server accepts the connect request and spawns a server process to manage the 
connection. 

if «call = (struct t_call *}t_alloc(listen_fd, 
T_CALL, T_ALL)} == NULL} { 

t_error (IIt_alloc of t_call structure failed") i 
exit(S}i 

while (1) { 

if (t_Iisten(listen_fd, call) < 0) { 
t_error(IIt_listen failed for listen_fd ll

}; 

exit(6}i 

if «conn_fd = accept_call (listen_fd, call» != DISCONNECT) 
run_server(listen_fd); 

The server will loop forever, processing each connect indication. First, the server 
calls t_listen to retrieve the next connect indication. When one arrives, the 
server calls accept_call to accept the connect request. accept_call 
accepts the connection on an alternate transport endpoint (as discussed below) 
and returns the value of that endpoint. conn Jd is a global variable that identifies 
the transport endpoint where the connection is established. Because the connec
tion is accepted on an alternate endpoint, the server may continue listening for 
connect indications on the endpoint that was bound for listening. If the call is 
accepted without error, run_server will spawn a process to manage the con
nection. 
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The server allocates a t_call structure to be used by t_Iisten. The third 
argument to t_alloc, T_ALL, specifies that all necessary buffers should be 
allocated for retrieving the caller's address, options, and user data. As mentioned 
earlier, the transport provider in this example does not support the transfer of 
user data during connection establishment, and also does not support any proto
col options. Therefore, t_alloc will not allocate buffers for the user data and 
options. It must, however, allocate a buffer large enough to store the address of 
the caller. t alloc detennines the buffer size from the addr characteristic 
returned by t _open. The maxlen field of each netbuf structure will be set 
to the size of the newly allocated buffer by t_alloc (maxlen is 0 for the user 
data and options buffers). 

Using the t_call structure, the server calls t_listen to retrieve the next 
connect indication. If one is currently available, it is returned to the server 
immediately. Otherwise, t_listen will block until a connect indication 
arrives. 

NOTE The Transport Interface supports an asynchronous mode for such routines that 
will prevent a process from blocking. This feature is discussed in the Advanced 
Topics section. 

When a connect indication arrives, the seNer calls accept _call to accept the 
client's request, as follows: 

accept_call (listen_fd, call) 
int listen_fd; 
struct t_call *call; 
{ 

int resfd; 

if «resfd = t_open (" /dev/tivc", O_RDWR, NULL» < 0) { 
t_error(IIt_open for responding fd failed"); 
exit(7); 

if (t_bind(resfd, NULL, NULL) < 0) { 
t_error(IIt_bind for responding fd failed"); 
exit(8); 

if (t_accept(listen_fd, resfd, call) < 0) { 
if (t_errno === TLOOK) { /* must be a disconnect * / 

if (t_rcvdis(listen_fd, NULL) < 0) { 
t_error(lIt_rcvdis failed for listen_fd"); 
exit(9); 

if (t_close(resfd) < 0) { 
t_error (Itt_close failed for responding fd") ; 

exit(lO); 
} 

/ * go back up and listen for other calls * / 
return(DISCONNECT); 

t_error("t_accept failed"); 
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exit(ll); 

return (resfd) ; 

accept_call takes two arguments. listenJd identifies the transport endpoint 
where the connect indication arrived, and call is a pointer to a t _ c all structure 
that contains all infonnation associated with the connect indication. The server 
will first establish another transport endpoint by opening the clone device node of 
the transport provider and binding an address. As with the client, a NULL value 
is passed to t _bind to specify that the user does not care what address is 
bound by the provider. The newly established transport endpoint, resjd, is used 
to accept the client's connect request. 

The first two arguments of t _accept specify the listening transport endpoint 
and the endpoint where the connection will be accepted respectively. A connec
tion may be accepted on the listening endpoint. However, this would prevent 
other clients from accessing the server for the duration of that connection. 

The third argument of t_accept points to the t_call structure associated 
with the connect indication. This structure should contain the address of the cal
ling user and the sequence number returned by t_Iisten. The value of 
sequence has particular significance if the server manages multiple outstanding 
connect indications. The Advanced Topics section presents such an example. 
Also, the t _call structure should identify protocol options the user would like 
to specify, and user data that may be passed to the client. Because the transport 
provider in this example does not support protocol options or the transfer of user 
data during connection establishment, the t _call structure returned by 
t_listen may be passed without change to t_accept. 

For simplicity in the example, the server will exit if either the t _open or 
t_hind call fails. exit(2) will close the transport endpoint associated with 
listen Jd, causing the transport provider to pass a disconnect indication to the 
client that requested the connection. This disconnect indication notifies the client 
that the connection was not established; t _ connect will fail, setting 
t errno to TLOOK. 

t _ a c c e pt may fail if an asynchronous event has occurred on the listening tran
sport endpoint before the connection is accepted, and t _ errno will be set to 
TLOOK. The state transition table in the State Transitions section shows that the 
only event that may occur in this state with only one outstanding connect indica
tion is a disconnect indication. This event may occur if the client decides to 
undo the connect request it had previously initiated. If a disconnect indication 
arrives, the server must retrieve the disconnect indication using t_rcvdis. 
This routine takes a pointer to a t _ di s con structure as an argument, which is 
used to retrieve infonnation associated with a disconnect indication. In this 
example, however, the server does not care to retrieve this information, so it sets 
the argument to NULL. After receiving the disconnect indication, 
accept _call closes the responding transport endpoint and returns DISCON
NECf, which informs the server that the connection was disconnected by the 
client. The server then listens for further connect indications. 
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Figure 9-5 illustrates how the server establishes connections. 

Figure 9-5 Listening and Responding Transport Endpoints 
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The transport connection is established on the newly created responding end
point, and the listening endpoint is freed to retrieve further connect indications. 

Once the connection has been established, both the client and server may begin 
transferring data over the connection using t _ s nd and t _ r c v. In fact, the 
Transport Interface does not differentiate the client from the server from this 
point on. Either user may send and receive data, or release the connection. The 
Transport Interface guarantees reliable, sequenced delivery of data over an exist
ing connection. 

Two classes of data may be transferred over a transport connection: nonnal and 
expedited. Expedited data is typically associated with information of an urgent 
nature. The exact semantics of expedited data are subject to the interpretations of 
the transport provider. Furthermore, all transport protocols do not support the 
notion of an expedited data class [see t _ open(3N)]. 

All transport protocols support the transfer of data in byte stream mode, where 
"byte stream" implies no concept of message boundaries on data that is 
transferred over a connection. However, some transport protocols support the 
preservation of message boundaries over a transport connection. This service is 
supported by the Transport Interface, but protocol-independent software must not 
rely on its existence. 

The message interface for data transfer is supported by a special flag of t _ s n d 
and t_rcv called T_MORE. The messages, called Transport Service Data 
Units (TSDU), may be transferred between two transport users as distinct units. 
The maximum size of a TSDU is a characteristic of the underlying transport pro
tocol. This infonnation is available to the user from t _open and 
t_getinfo. Because the maximum TSDU size can be large (possibly unlim
ited), the Transport Interface enables a user to transmit a message in multiple 
units. 
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To send a message in multiple units over a transport connection, the user must 
set the T _MORE flag on every t _ snd call except the last. This flag indicates 
that the user will send more data associated with the message in a subsequent call 
to t _ snd. The last message unit should be transmitted with T _MORE turned 
off to indicate that this is the end of the TSDU. 

Similarly, a TSDU may be passed to the user on the receiving side in multiple 
units. Again, if t_rcv returns with the T_MORE flag set, the user should con
tinue calling t_rcv to retrieve the remainder of the message. The last unit in 
the message will be indicated by a call to t_rcv that does not set T_MORE. 

CAUTION The T_MORE flag implies nothing about how the data may be packaged 
below the Transport Interface. Furthermore, it implies nothing about how 
the data may be delivered to the remote user. Each transport protocol, and 
each implementation of that protocol, may package and deliver the data dif
ferently. 

For example, if a user sends a complete message in a single call to t _ s nd, there 
is no guarantee that the transport provider will deliver the data in a single unit to 
the remote transport user. Similarly, a TSDU transmitted in two message units 
may be delivered in a single unit to the remote transport user. The message 
boundaries may only be preserved by noting the value of the T _MORE flag on 
t _ snd and t _ r cv. This will guarantee that the receiving user will see a mes
sage with the same contents and message boundaries as was sent by the remote 
user. 

Continuing with the client/server example, the server will transfer a log file to the 
client over the transport connection. The client receives this data and writes it to 
its standard output file. A byte stream interface is used by the client and server, 
where message boundaries (that is, the T _MORE flag) are ignored. The client 
receives data using the following instructions: 

while ((nbytes = t_rev(fd, buf, 1024, &flags» ~= -1) { 
if (fwrite(buf, 1, nbytes, stdout) < 0) 

fprintf(stderr, "fwrite failed\O); 
exit(S); 

The client continuously calls t _rev to process incoming data. If no data is 
currently available, t_rcv blocks until data arrives. t_rcv will retrieve the 
available data up to 1024 bytes, which is the size of the client's input buffer, and 
will return the number of bytes that were received. The client then writes this 
data to standard output and continues. The data transfer phase will complete 
when t rcv fails. t _ rcv will fail if an orderly release indication or discon
nect indication arrives, as will be discussed later in this section. If the 
fwri te(3S) call fails for any reason, the client will exit, thereby closing the 
transport endpoint. If the transport endpoint is closed (either by exit or 
t close) when it is in the data transfer phase, the connection will be aborted 
and the remote user will receive a disconnect indication. 
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Looking now at the other side of the connection, the seIVer manages its data 
transfer by spawning a child process to send the data to the client. The parent 
process then loops back to listen for further connect indications. 
run_server is called by the seIVerto spawn this child process as follows: 

connrelease ( ) 
{ 

/ * conn Jd is global because needed here * / 
if (t_look(conn_fd) == T_DISCONNECT) 

fprintf(stderr, "connection aborted\O); 
exit(12); 

/ * else orderly release indication - normal exit * / 
exit(O); 

run_server (listen_fd) 
int listen_fd; 

int nbytes; 
FILE *logfp; 
char buf[1024]; 

switch (fork ( ) ) 

case -1: 

/ * file pointer to log file * / 

perror("fork failed"); 
exit(20); 

default: /* parent * / 

/ * close conn Jd and then go up and listen again * / 
if (t_close(conn_fd) < 0) { 

t_error("t_close failed for conn_fd"); 
exit(21); 

return; 

case 0: /* child * / 

/ * close listen Jd and do service * / 
if (t_close(listen_fd) < 0) 

t_error("t_close failed for listen_fd"); 
exit(22); 

if ((logfp = fopen (" logfile", "r"» 
perror("cannot open logfile"); 
exit(23); 

signal (SIGPOLL, connrelease); 

NULL) { 

if (ioctl(conn_fd, I_SETSIG, S_INPUT) < 0) { 
perror("ioctl I_SETSIG failed"); 
exit(24); 

if (t_look(conn_fd) != 0) { /* was disconnect there? */ 
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fprintf(stderr, lit look: unexpected event\O); 
exit(25); 

while «nbytes = fread(buf, 1, 1024, logfp» > 0) 
if (t_snd(conn_fd, buf, nbytes, 0) < 0) { 

t_error(IIt_snd failed"); 
exit(26); 

After the for k, the parent process will return to the main processing loop and 
listen for further connect indications. Meanwhile, the child process will manage 
the newly established transport connection. If the fork call fails, exit will 
close the transport endpoint associated with listen Jd. This action will cause a 
disconnect indication to be passed to the client, and the client's t _connect 
call will fail. 

The selVer process reads 1024 bytes of the log file at a time and sends that data to 
the client using t_snd. bujpoints to the start of the data buffer, and nbytes 
specifies the number of bytes to be transmitted. The fourth argument is used to 
specify optional flags. Two flags are currently supported: T _EXPEDITED may 
be set to indicate that the data is expedited, and T _MORE may be set to define 
message boundaries when transmitting messages over a connection. Neither flag 
is set by the server in this example. 

If the user begins to flood the transport provider with data, the provider may exert 
back pressure to provide flow control. In such cases, t _ snd will block until the 
flow control is relieved, and will then resume its operation. t s nd will not 
complete until nbyte bytes have been passed to the transport provider. 

The t _ snd routine does not look for a disconnect indication (signifying that the 
connection was broken) before passing data to the provider. Also, because the 
data traffic is flowing in one direction, the user will never look for incoming 
events. If, for some reason, the connection is aborted, the user should be notified 
because data may be lost. One option available to the user is to use t _look to 
check for incoming events before each t _ snd call. A more efficient solution is 
the one presented in the example. The STREAMS I_SETSIG ioctl enables a 
user to request a signal when a given event occurs [see streamio(5) and 
signal(2)]. The STREAMS event of concern here is S_INPUT, which will 
cause a signal to be sent to the user if any input arrives on the Stream referenced 
by conn Jd. If a disconnect indication arrives, the signal catching routine 
(connrelease) will print an appropriate error message and then exit. 

If the data traffic flowed in both directions in this example, the user would not 
have to monitor the connection for disconnects. If the client alternated t snd 
and t_rcv calls, it could rely on t_rcv to recognize an incoming disconnect 
indication. 
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At any point during data transfer, either user may release the transport connection 
and end the conversation. As mentioned earlier, two fonns of connection release 
are supported by the Transport Interface. The first, abortive release, breaks a 
connection immediately and may result in the loss of any data that has not yet 
reached the destination user. t_snddis may be called by either user to gen
erate an abortive release. Also, the transport provider may abort a connection if a 
problem occurs below the Transport Interface. t s nddi s enables a user to 
send data to the remote user when aborting a connection. Although the abortive 
release is supported by all transport providers, the ability to send data when 
aborting a connection is not. 

When the remote user is notified of the aborted connection, t _ r cvdi s must be 
called to retrieve the disconnect indication. This call will return a reason code 
that indicates why the connection was aborted, and will return any user data that 
may have accompanied the disconnect indication (if the abortive release was ini
tiated by the remote user). This reason code is specific to the underlying tran
sport protocol, and should not be interpreted by protocol-independent software. 

The second fonn of connection release is orderly release, which gracefully ter
minates a connection and guarantees that no data will be lost. All transport pro
viders must support the abortive release procedure, but orderly release is an 
optional facility that is not supported by all transport protocols. 

The client-server example in this section assumes that the transport provider does 
support the orderly release of a connection. When all the data has been 
transferred by the server, the connection may be released as follows: 

if (t_sndrel(conn_fd) < 0) { 
t_error("t_sndrel failed"); 
exit(27); 

pause ( ) ; / * until orderly release indication arrives * / 

The orderly release procedure consists of two steps by each user. The first user 
to complete data transfer may initiate a release using t _ sndrel, as illustrated 
in the example. This routine informs the client that no more data will be sent by 
the server. When the client receives such an indication, it may continue sending 
data back to the server if desired. When all data has been transferred, however, 
the client must also call t _ sndrel to indicate that it is ready to release the 
connection. The connection will be released only after both users have requested 
an orderly release and received the corresponding indication from the other user. 

In this example, data is transferred in one direction from the server to the client, 
so the server does not expect to receive data from the client after it has initiated 
the release procedure. Thus, the server simply calls pause(2) after initiating 
the release. Eventually, the remote user will respond with its orderly release 
request, and the indication will generate a signal that will be caught by 
connrelease. Remember that the server earlier issued an I_SETSIG ioct 1 
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call to generate a signal on any incoming event. Since the only possible Tran
sport Interface events that can occur in this situation are a disconnect indication 
or orderly release indication, connrelease will tenninate normally when the 
orderly release indication arrives. The exit call in connrelease will close 
the transport endpoint, thereby freeing the bound address for use by another user. 
If a user process wants to close a transport endpoint without exiting, it may call 
t close. 

The client's view of connection release is similar to that of the server. As men
tioned earlier, the client continues to process incoming data until t _ rev fails. 
If the server releases the connection (using either t_snddis or t_sndrel), 
t_rcv will fail and set t_errno to TLOOK. The client then processes the 
connection release as follows: 

if «t_errno == TLOOK) && (t_look(fd) 
if (t_rcvrel(fd) < 0) { 

t_error (IIt_rcvrel failed"); 
exit(6); 

if (t_sndrel(fd) < 0) 
t_error(lIt_sndrel failed"); 
exit(7); 

exit(O); 

t_error (IIt_rcv failed"); 
exit(8); 

T_ORDREL) ) 

Under normal circumstances, the client terminates the transfer of data by calling 
t_sndrel to initiate the connection release. When the orderly release indica
tion arrives at the client's side of the connection, the client checks to make sure 
the expected orderly release indication has arrived. If so, it proceeds with the 
release procedures by calling t _ rcvrel to process the indication and 
t _ sndrel to infonn the server that it is also ready to release the connection. 
At this point the client exits, thereby closing its transport endpoint. 

Because all transport providers do not support the orderly release facility just 
described, users may have to use the abortive release facility provided by 
t_snddis and t_rcvdis. However, steps must be taken by each user to 
prevent any loss of data. For example, a special byte pattern may be inserted in 
the data stream to indicate the end of a conversation. Many mechanisms are pos
sible for preventing data loss. Each application and high level protocol must 
choose an appropriate mechanism given the target protocol environment and 
requirements. 
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This section describes the connectionless-mode service of the Transport Inter
face. Connectionless-mode service is appropriate for short-tenn request/response 
interactions, such as transaction processing applications. Data are transferred in 
self-contained units with no logical relationship required among multiple units. 

The connectionless-mode services will be described using a transaction server as 
an example. This server waits for incoming transaction queries, and processes 
and responds to each query. 

Just as with connection-mode service, the transport users must perform appropri
ate local management steps before data can be transferred. A user must choose 
the appropriate connectionless service provider using t _ open and establish its 
identity using t_bind. 

t _ optrngrnt may be used to negotiate protocol options that may be associated 
with the transfer of each data unit. As with the connection-mode service, each 
transport provider specifies the options, if any, that it supports. Option negotia
tion is therefore a protocol-specific activity. 

In the example, the definitions and local management calls needed by the tran
saction server are as follows: 

iinclude <stdio.h> 
iinclude <fcntl.h> 
iinclude <tiuser.h> 

idefine SRV ADDR 2 / * server's well known address * / 

main ( ) 
{ 

int fd; 
int flags; 

struct t bind *bind; 
struct t_unitdata *ud; 
struct t_uderr *uderr; 

extern int t_errno; 

if «fd = t_open(n/dev/tidgn, 0 RDWR, NULL» < 0) { 

t_error(nunable to open /dev/provider n); 
exit(l); 

if «bind = (struct t bind *)t alloc(fd, 
T_BIND, T_ADDR» == NULL) { 

t_error("t_alloc of t bind structure failed"); 
exit(2); 

bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf SRV_ADDR; 
bind->qlen = 0; 
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if (t_bind(fd, bind, bind) < 0) 
t_error (nt_bind failedn); 
exit(3); 

1* 
* is the bound address correct? 
*1 

if (*(int *)bind->addr.buf != SRV_ADDR) 
fprintf(stderr, nt_bind bound wrong address\O); 
exit(4); 

The local management steps should look familiar by now. The selVer establishes 
a transport endpoint with the desired transport provider using t _open. Each 
provider has an associated service type, so the user may choose a particular ser
vice by opening the appropriate transport provider file. This connectionless
mode selVer ignores the characteristics of the provider returned by t _ open in 
the same way as the users in the connection-mode example, setting the third 
argument to NULL. For simplicity, the transaction selVer assumes the transport 
provider has the following characteristics: 

o The transport address is an integer value that uniquely identifies each user. 

o The transport provider supports the T _ CL TS selVice type (connectionless 
transport selVice, or datagram). 

o The transport provider does not support any protocol-specific options. 

The connectionless selVer also binds a transport address to the endpoint, so that 
potential clients may identify and access the server. A t _bind structure is 
allocated using t alloe, and the bufand len fields of the address are set 
accordingly. 

One important difference between the connection-mode server and this 
connectionless-mode server is that the qlen field of the t _bind structure has no 
meaning for connectionless-mode service. That is because all users are capable 
of receiving datagrams once they have bound an address. The Transport Inter
face defines an inherent client -selVer relationship between two users while estab
lishing a transport connection in the connection-mode selVice. However, no such 
relationship exists in the connectionless-mode service. It is the context of this 
example, not the Transport Interface, that defines one user as a server and another 
as a client. 

Because the address of the server is known by all potential clients, the server 
checks the bound address returned by t_bind to ensure it is correct. 
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Once a user has bound an address to the transport endpoint, datagrams may be 
sent or received over that endpoint Each outgoing message is accompanied by 
the address of the destination user. In addition, the Transport Interface enables a 
user to specify protocol options that should be associated with the transfer of the 
data unit (for example, transit delay). As discussed earlier, each transport pro· 
vider defines the set of options, if any, that m·ay accompany a datagram. When 
the datagram is passed to the destination user, the associated protocol options 
may be returned as well. 

The following sequence of calls illustrates the data transfer phase of the 
connectionless·mode server: 

if «ud = (struct t_unitdata *)t_alloc(fd, 
T_UNITDATA, T_ALL» == NULL) { 

t_error("t_alloc of t_unitdata structure failed"); 
exit (5) ; 

if «uderr = (struct t_uderr *)t_alloc(fd, 
T_UDERROR, T_ALL» NULL) { 

t_error("t_alloc of t uderr structure failed"); 
exit (6); 

while (1) { 

if (t_rcvudata(fd, ud, &flags) < 0) { 

/* 

if (t_errno TLOOK) { 

/* 
* Error on previously sent datagram 
*/ 

if (t_rcvuderr(fd, uderr) < 0) { 
exit(7); 

fprintf (stderr, "baddatagram, error = %d\n", 
uderr->error); 

continue; 

t_error("t_rcvudata failed"); 
exit(8); 

* Query( ) processes the request and places the 
* response in ud·>udata.buf, setting ud·>udata.len 
*/ 

query (ud) ; 

if (t_sndudata(fd, ud, 0) < 0) { 
t_error("t_sndudata failed"); 
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query ( ) 
{ 

exit(9); 

1* Merely a stub for simplicity *1 

The server must first allocate a t _ uni tdata structure for storing datagrams, 
which has the following fonnat: 

struct t unitdata 
struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 

addr holds the source address of incoming datagrams and the destination address 
of outgoing datagrams, opt identifies any protocol options associated with the 
transfer of the datagram, and udata holds the data itself. The addr, opt, and 
udata fields must all be allocated with buffers that are large enough to hold any 
possible incoming values. As described in the previous section, the T _ALL 
argument to t_a11oc will ensure this and will set the maxlen field of each 
netbuf structure accordingly. Because the provider does not support protocol 
options in this example, no options buffer will be allocated, and maxlen will be 
set to zero in the netbuf structure for options. A t _ uder r structure is also 
allocated by the server for processing any datagram errors, as will be discussed 
later in this section. 

The transaction server loops forever, receiving queries, processing the queries, 
and responding to the clients. It first calls t _ rcvuda ta to receive the next 
query. t_rcvudata will retrieve the next available incoming datagram. If 
none is currently available, t _ rcvudata will block, waiting for a datagram to 
arrive. The second argument of t_rcvudata identifies the t_unitdata 
structure where the datagram should be stored. 

The third argument, flags, must point to an integer variable and may be set to 
T_MORE on return from t_rcvudata to indicate that the user's udata buffer 
was not large enough to store the full datagram. In this case, subsequent calls to 
t _ r c vuda ta will retrieve the remainder of the datagram. Because t _a 110 c 
allocates a udata buffer large enough to store the maximum datagram size, the 
transaction server does not have to check the value offlags. 

If a datagram is received successfully, the transaction server calls the query rou
tine to process the request. This routine will store the response in the structure 
pointed to by ud, and will set ud->udata.len to indicate the number of bytes in 
the response. The source address returned by t rcvudata in ud->addr will 
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be used as the destination address by t_sndudata. 

When the response is ready, t_sndudata is called to return the response to 
the client. The Transport Interface prevents a user from flooding the transport 
provider with datagrams using the same flow control mechanism described for 
the connection-mode service. In such cases, t_sndudata will block until the 
flow control is relieved, and will then resume its operation. 

Datagram Errors If the transport provider cannot process a datagram that was passed to it by 
t_sndudata, it will return a unit data error event, T_UDERR, to the user. 
This event includes the destination address and options associated with the 
datagram, plus a protocol-specific error value that describes what may be wrong 
with the datagram. The reason a datagram could not be processed is 
protocol-specific. One reason may be that the transport provider could not inter
pret the destination address or options. Each transport protocol is expected to 
specify all reasons for which it is unable to process a datagram. 

9.6. A ReadIWrite 
Interface 

NOTE The unit data error indication is not necessarily intended to indicate success or 
failure in delivering the datagram to the specified destination. The transport 
protocol decides how the indication will be used. Remember, the connectionless 
service does not guarantee reliable delivery of data. 

The transaction server will be notified of this error event when it attempts to 
receive another datagram. In this case, t_revudata will fail, setting 
t_errno to TLOOK. IfTLOOK is set, the only possible event is T_UDERR, 
so the server calls t _ rcvuderr to retrieve the event. The second argument to 
t revuderr is the t uderr structure that was allocated earlier. This struc-- -
ture is filled in by t_revuderr and has the following format: 

struct t_uderr { 
struct netbuf addr; 
struct netbuf opt; 
long error; 

where addr and opt identify the destination address and protocol options as 
specified in the bad datagram, and error is a protocol-specific error code that 
indicates why the provider could not process the datagram. The transaction 
server prints the error code and then continues by entering the processing loop 
again. 

A user may wish to establish a transport connection and then exec(2) an exist
ing user program such as eat(l) to process the data as it arrives over the con
nection. However, existing programs use read(2) and wr i te(2) for their 
input/output needs. The Transport Interface does not directly support a 
read/wr i te interface to a transport provider, but one is available with UNIX 
System V. This interface enables a user to issue read and write calls over a 
transport connection that is in the data transfer phase. This section describes the 
read/wri te interface to the connection-mode service of the Transport Inter
face. This interface is not available with the connectionless-mode service. 
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The read/write interface is presented using the client example of the 
Connection-Mode Client section with some minor modifications. The clients are 
identical until the data transfer phase is reached. At that point, this client will use 
the read/write interface and cat(1) to process incoming data. cat can 
be run without change over the transport connection. Only the differences 
between this client and that of the example in the Connection-Mode Client sec
tion are shown below. 

#include <stropts.h> 

1* 
* Same local management and connection 
* establishment steps. 
*1 

if (ioctl(fd, I_PUSH, "tirdwr") < 0) { 
perror(nI_PUSH of tirdwr failed"); 
exit(5); 

close(O); 
dup (fd) ; 
execl("/bin/cat P

, "/bin/cat", 0); 
perror(nexecl of /bin/cat failed"); 
exit(6); 

The client invokes the read/write interface by pushing the tirdwr(5) 
module onto the Stream associated with the transport endpoint where the connec
tion was established [see I_PUSH in streamio(5)]. This module converts the 
Transport Interface above the transport provider into a pure read/write inter
face. With the module in place, the client calls close(2) and dup(2) to estab
lish the transport endpoint as its standard input file, and uses /bin/ cat to 
process the input. Because the transport endpoint identifier is a file descriptor, 
the facility for duping the endpoint is available to users. 

Because the Transport Interface has been implemented using STREAMS, the 
facilities of this character input/output mechanism can be used to provide 
enhanced user seIVices. By pushing the tirdwr module above the transport 
provider, the user's interface is effectively changed. The semantics of read 
and wr it e must be followed, and message boundaries will not be preseIVed. 

CAUTION The tirdwr module may only be pushed onto a Stream when the transport 
endpoint is in the data transfer phase. Once the module is pushed, the user may 
not call any Transport Interface routines. If a Transport Interface routine is 
invoked, tirdwr will generate a fatal protocol error, EPROTO, on that Stream, 
rendering it unusable. Furthennore, if the user pops the tirdwr module off the 
Stream [see I_POP in streamio(5)], the transport connection will be aborted. 

The exact semantics of write, read, and close using tirdwr are 
described below. To summarize, tirdwr enables a user to send and receive 
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data over a transport connection using read and write. This module will 
translate all Transport Interface indications into the appropriate actions. The 
connection can be released with the close system call. 

The user may transmit data over the transport connection using wr i teo The 
tirdwr module will pass data through to the transport provider. However, if a 
user attempts to send a zero-length data packet, which the STREAMS mechan
ism allows, tirdwr will discard the message. If for some reason the transport 
connection is aborted (for example the remote user aborts the connection using 
t_snddis), a STREAMS hangup condition will be generated on that Stream, 
and further wr i te calls will fail and set errno to ENXIO. The user can still 
retrieve any available data after a hangup, however. 

read may be used to retrieve data that has arrived over the transport connection. 
The tirdwr module will pass data through to the user from the transport pro
vider. However, any other event or indication passed to the user from the pro
vider will be processed by tirdwr as follows: 

o read cannot process expedited data because it cannot distinguish expedited 
data from nonnal data for the user. If an expedited data indication is 
received, tirdwr will generate a fatal protocol error, EPROTO, on that 
Stream. This error will cause further system calls to fail. You must there
fore be aware that you should not communicate with a process that is send
ing expedited data. 

o If an abortive disconnect indication is received, tirdwr will discard the 
indication and generate a STREAMS hangup condition on that Stream. Sub
sequent read calls will retrieve any remaining data, and then read will 
return zero for all further calls (indicating end-of-file). 

o If an orderly release indication is received, t irdwr will discard the indica
tion and deliver a zero-length STREAMS message to the user. As described 
in read(2), this notifies the user of end-of-file by returning 0 to the user. 

o If any other Transport Interface indication is received, t ir dwr will gen
erate a fatal protocol error, EPROTO, on that Stream. This will cause 
further system calls to fail. Ifa user pushes tirdwr onto a Stream after 
the connection has been established, such indications will not be generated. 

With tirdwr on a Stream, the user can send and receive data over a transport 
connection for the duration of that connection. Either user may tenninate the 
connection by closing the file descriptor associated with the transport endpoint or 
by popping the tirdwr module off the Stream. In either case, tirdwr will 
take the following actions: 

o If an orderly release indication had previously been received by tirdwr, 
an orderly release request will be passed to the transport provider to com
plete the orderly release of the connection. The remote user, who initiated 
the orderly release procedure, will receive the expected indication when data 
transfer completes. 
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o If a disconnect indication had previously been received by t irdwr, no 
special action is taken. 

o If neither an orderly release indication nor disconnect indication had previ
ously been received by tirdwr, a disconnect request will be passed to the 
transport provider to abortively release the connection. 

o If an error had previously occurred on the Stream and a disconnect indica
tion has not been received by t irdwr, a disconnect request will be passed 
to the transport provider. 

A process may not initiate an orderly release after tirdwr is pushed onto a 
Stream, but tirdwr will handle an orderly release properly if it is initiated by 
the user on the other side of a transport connection. If the client in this section is 
communicating with the server program in the Connection-Mode Client section, 
that server will tenninate the transfer of data with an orderly release request. The 
server then waits for the corresponding indication from the client. At that point, 
the client exits and the transport endpoint is closed. As explained in the first bul
let item above, when the file descriptor is closed, tirdwr will initiate the ord
erly release request from the client's side of the connection. This will generate 
the indication that the server is expecting, and the connection will be released 
properly. 

This section presents important concepts of the Transport Interface that have not 
been covered in the previous section. First, an optional non-blocking (asynchro
nous) mode for some library calls is described. Then, an advanced programming 
example is presented that defines a server that supports multiple outstanding con
nect indications and operates in an event driven manner. 

Many Transport Interface library routines may block waiting for an incoming 
event or the relaxation of flow control. However, some time-critical applications 
should not block for any reason. Similarly, an application may wish to do local 
processing while waiting for some asynchronous transport interface event. 

Support for asynchronous processing of Transport Interface events is available to 
applications using a combination of the STREAMS asynchronous features 
(poll) and the non-blocking mode of the Transport Interface library routines 
(I_SETSIG ioet 1). 

In addition, each Transport Interface routine that may block waiting for some 
event can be run in a special non-blocking mode. For example, t _1 is t en will 
nonnally block, waiting for a connect indication. However, a server can periodi
cally poll a transport endpoint for existing connect indications by calling 
t_listen in the non-blocking (or asynchronous) mode. The asynchronous 
mode is enabled by setting O_NDELA Yon the file descriptor. This can be set as 
a flag on t open, or by calling f entl(2) before calling the Transport Inter
face routine. fen t 1 can be used to enable or disable this mode at any time. 
All programming examples illustrated throughout this guide use the default, syn
chronous mode of processing. 

o _NDELA Y affects each Transport Interface routine in a different manner. To 
determine the exact semantics of 0 _NDELA Y for a particular routine, see the 
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appropriate pages in Section 3N of the SunOS Reference Manual. 

The following example demonstrates two important concepts. The first is a 
setver's ability to manage multiple outstanding connect indications. The second 
is an illustration of the ability to write event-driven software using the Transport 
Interface and the STREAMS system call interface. 

The setver example in the Connection-Mode Client section was capable of sup
porting only one outstanding connect indication, but the Transport Interface sup
ports the ability to manage multiple outstanding connect indications. One reason 
a selVer might wish to receive several, simultaneous connect indications is to 
impose a priority scheme on each client. A server may retrieve several connect 
indications, and then accept them in an order based on a priority associated with 
each client. A second reason for handling several outstanding connect indica
tions is that the single-threaded scheme has some limitations. Depending on the 
implementation of the transport provider, it is possible that while the selVer is 
processing the current connect indication, other clients will find it busy. If, how
ever, multiple connect indications can be processed simultaneously, the server 
will be found to be busy only if the maximum allowed number of clients attempt 
to call the setver Simultaneously. 

The server example is event-driven: the process polls a transport endpoint for 
incoming Transport Interface events, and then takes the appropriate actions for 
the current event. The example demonstrates the ability to poll multiple tran
sport endpoints for incoming events. 

The definitions and local management functions needed by this example are 
similar to those of the server example in the Introduction to Connectionless
Mode Service section. 

*include <tiuser.h> 
*include <fcntl.h> 
*include <stdio.h> 
*include <poll.h> 
-#include <stropts.h> 
-#include <signal.h> 

*define NUM FDS 1 
-#define MAX CONN IND 4 - -
-#define SRV ADDR 1 /* server's well known address * / 

int conn_fdi / * server connection here * / 
extern int t_errnoi 

/ * holds connect indications * / 
struct t call *calls[NUM_FDS] [MAX CONN IND]i 

main ( ) 
{ 

struct pollfd pollfds[NUM_FDS]i 
struct t_bind *bindi 
int ii 
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1* 
* Only opening and binding one transport endpoint. 
* but more could be supported 
*1 
if «pollfds[O].fd = t_open(n/dev/tivc", 

O_RDWR, NULL» < 0) { 
t_error(nt_open failed"); 
exit(l); 

if «bind = (struct t_bind *)t_alloc(pollfds[O] .fd, 
T_BIND, T_ALL» == NULL) { 

t_error(nt_alloc of t_bind structure failedn ); 
exit(2); 

bind->qlen = MAX_CONN_IND; 
bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDR; 

if (t_bind(pollfds[O] .fd, bind, bind) < 0) { 
t_error(nt_bind failed"); 
exit(3); 

1* 
* Was the correct address bound? 
*1 
if (*(int *)bind->addr.buf != SRV_ADDR) 

fprintf(stderr, tIt bind bound wrong addressO); 
exit(4); 

The file descriptor returned by t_open is stored in a pollfd structure [see 
poll(2)] that will be used to poll the transport endpoint for incoming data. 
Notice that only one transport endpoint is established in this example. However, 
the remainder of the example is written to manage multiple transport endpoints. 
Several endpoints could be supported with minor changes to the above code. 

An important aspect of this server is that it sets q/en to a value greater than 1 for 
t _bind. This indicates that the server is willing to handle multiple outstanding 
connect indications. Remember that the earlier examples single-threaded the 
connect indications and responses. The server would accept the current connect 
indication before retrieving additional connect indications. This example; how
ever, can retrieve up to MAX_ CONN_IND connect indications at one time 
before responding to any of them. The transport provider may negotiate the 
value of qlen downward if it cannot support MAX_ CONN_IND outstanding con
nect indications. 

Once the server has bound its address and is ready to process incoming connect 
requests, it does the following: 
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pollfds[O] . events = POLLIN; 

while (1) { 
if (poll(pollfds, NUM_FDS, -1) < 0) { 

perror("poll failed"); 
exit(S); 

for (i = 0; i < NUM_FDS; i++) { 

switch (pollfds[i] .revents) 

default: 
perror("poll returned error event"); 
exit(6); 

case 0: 
continue; 

case POLLIN: 
do_event(i, pollfds[i] .fd); 
service_conn_ind(i, pollfds[i] .fd); 

The events field of the pollfd structure is set to POLLIN, which will notify 
the server of any incoming Transport Interface events. The server then enters an 
infinite loop, in which it will poll the transport endpoint(s) for events, and 
then process those events as they occur. 

The poll call will block indefinitely, waiting for an incoming event. On 
return, each entry (corresponding to each transport endpoint) is checked for an 
existing event. If revents is set to 0, no event has occurred on that endpoint. In 
this case, the server continues to the next transport endpoint. If revents is set to 
POLLIN, an event does exist on the endpoint. In this case, do_event is called 
to process the event. If revents contains any other value, an error must have 
occurred on the transport endpoint, and the server will exit. 

For each iteration of the loop, if any event is found on the transport endpoint, 
service_conn_ind is called to process any outstanding connect indications. 
However, if another connect indication is pending, service_conn_ind will 
save the current connect indication and respond to it later. This routine will be 
explained shortly. 

If an incoming event is discovered, the following routine is called to process it: 

do_event (slot, fd) 
{ 

struct t discon *discon; 
int i; 

switch (t_look(fd)) 

default: 
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fprintf (stderr, lit_look: unexpected event\O); 
exit(7); 

case TERROR: 
fprintf(stderr,"t_Iook returned TERROR event\O); 
exit(8); 

case -1: 
t_error(IIt_look failed"); 
exit(9); 

case 0: 
/ * since POWN returned, this should not happen * / 
fprintf(stderr,"t_Iook returned no event\O); 
exit(lO); 

case T LISTEN: 
1* 
* find free element in calls array 
*1 
for (i = 0; i < MAX_CONN_IND; i++) 

if (calls [slot] [i] == NULL) 
break; 

if «calls[slot] [i] = (struct t_call *)t_alloc(fd, 
T_CALL, T_ALL» == NULL) { 

t_error(IIt_alloc of t call structure failed"); 
exit(ll); 

if (t_Iisten (fd, calls [slot] [i]) < 0) { 
t_error(IIt_listen failed"); 
exit(12); 

break; 

case T DISCONNECT: 
discon = (struct t_discon *)t_alloc(fd, 

T_DIS, T_ALL); 

if (t_rcvdis(fd, discon) < 0) { 
t_error(IIt_rcvdis failed"); 
exit(13); 

1* 
* find call ind in array and delete it 
*1 
for (i = 0; i < MAX_CONN_IND; i++) 

if (discon->sequence == 
calls[slot] [i]->sequence) { 

t_free(calls[slot] [i], T_CALL); 
calls[slot] [i] = NULL; 

t_free(discon, T_DIS); 
break; 
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( ) J 

This routine takes a number, slot, and a file descriptor,jd, as arguments. slot is 
used as an index into the global array calls. This array contains an entry for each 
polled transport endpoint, where each entry consists of an array of t _call 
structures that hold incoming connect indications for that transport endpoint. 
The value of slot is used to identify the transport endpoint of interest. 

do_event calls t_look to detennine the Transport Interface event that has 
occurred on the transport endpoint referenced by jd. If a connect indication 
(T _LISTEN event) or disconnect indication (T _DISCONNECf event) has 
arrived, the event is processed. Otherwise, the server prints an appropriate error 
message and exits. 

For connect indications, do _ even t scans the array of outstanding connect 
indications looking for the first free entry. A t _ call structure is then allocated 
for that entry, and the connect indication is retrieved using t _listen. There 
must always be at least one free entry in the connect indication array, because the 
array is large enough to hold the maximwn nwnber of outstanding connect indi
cations as negotiated by t _bind. The processing of the connect indication is 
deferred until later. 

If a disconnect indication arrives, it must correspond to a previously received 
connect indication. This scenario arises if a client attempts to undo a previous 
connect request. In this case, do_event allocates a t_discon structure to 
retrieve the relevant disconnect infonnation. This structure has the following 
members: 

struct t_discon { 
struct netbuf udata; 
int reason; 
int sequence; 

where udata identifies any user data that might have been sent with the discon
nect indication, reason contains a protocol-specific disconnect reason code, and 
sequence identifies the outstanding connect indication that matches this discon
nect indication. 

Next, t _ r cvdi s is called to retrieve the disconnect indication. The array of 
connect indications for slot is then scanned for one that contains a sequence 
number that matches the sequence number in the disconnect indication. When 
the connect indication is found, it is freed and the corresponding entry is set to 
NULL. 

As mentioned earlier, if any event is found on a transport endpoint, 
service_conn_ind is called to process all currently outstanding connect 
indications associated with that endpoint as follows: 
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service_conn_ind(slot, fd) 

int i; 

for (i = 0; i < MAX_CONN_IND; i++) 
if (calls[slot] [i] == NULL) 

continue; 

if «conn_fd = t_open("/dev/tivc", O_RDWR, NULL» 
< 0) { 

t_error("open failed"); 
exit(14); 

if (t_bind(conn_fd, NULL, NULL) < 0) { 
t_error("t_bind failed"); 
exit(15); 

if (t_accept(fd, conn_fd, calls[slot] [i]) < 0) { 
if (t_errno == TLOOK) { 

t_close(conn_fd); 
return; 

t_error("t_accept failed"); 
exit(16); 

t_free(calls[slot] [i], T_CALL); 
calls[slot] [i] = NULL; 

run_server(fd); 

For the given slot (the transport endpoint), the array of outstanding connect indi
cations is scanned. For each indication, the server will open a responding tran
sport endpoint, bind an address to the endpoint, and then accept the connection 
on that endpoint. If another event (connect indication or disconnect indication) 
arrives before the current indication is accepted, t_accept will fail and set 
t errno to TLOOK. 

NOTE The user cannot accept an outstanding connect indication if any pending connect 
indication events or disconnect indication events exist on that transport endpoint. 

If this error occurs, the responding transport endpoint is closed and 
service_conn _ ind will return immediately (saving the current connect indi
cation for later processing). This causes the server's main processing loop to be 
entered, and the new event will be discovered by the next call to po 11. In this 
way, multiple connect indications may be queued by the user. 

Eventually, all events will be processed, and service_conn_ind will be 
able to accept each connect indication in tum. Once the connection has been 
established, the run_server routine used by the server in the Connection
Mode Client section is called to manage the data transfer. 
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9.8. State Transitions These tables describe all state transitions associated with the Transport Interface. 
First, however, the states and events will be described. 

Transport Interface States Table 9-6 defines the states used to describe the Transport Interface state transi
tions. 

Table 9-6 Transport Interface States 

State Description Service Type 
T_UNINIT uninitialized - initial and T_COTS, 

final state of interface T_COTS_ORD,T_CLTS 
T_UNBND initialized but not bound T_COTS, 

T_COTS_ORD,T_CLTS 
T_IDLE no connection established T_COTS, 

T_COTS_ORD,T_CLTS 
T_OUTCON outgoing connection T_COTS, T_COTS_ORD 

pending for client 
T_INCON incoming connection T_COTS, T_COTS_ORD 

pending for server 
T_DATAXFER data transfer T_COTS, T_COTS_ORD 
T_OUTREL outgoing orderly release T_COTS_ORD 

(waiting for orderly 
release indication) 

T_INREL incoming orderly release T_COTS_ORD 
(waiting to send orderly 
release request) 

Outgoing Events The outgoing events described in Table 9-7 correspond to the return of the 
specified transport routines, where these routines send a request or response to 
the transport provider. 

In the figure, some events (such as acceptN) are distinguished by the context in 
which they occur. The context is based on the values of the following variables: 

Dent 
count of outstanding connect indications 

fd file descriptor of the current transport endpoint 

resfd 
file descriptor of the transport endpoint where a connection will be accepted 
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Table 9-7 Transport Interface Outgoing Events 

Event Description Service Type 
opened successful return of t _open T_COTS, 

T_COTS_ORD,T_CLTS 

bind successful return oft bind T_COTS, -
T_COTS_ORD,T_CLTS 

optmgmt successful return of t _ optmgmt T_COTS, 
T_COTS_ORD,T_CLTS 

unbind successful return of t unbind T_COTS, 
T_COTS_ORD,T_CLTS 

closed successful return oft close T_COTS, 
T_COTS_ORD,T_CLTS 

connectl successful return of t connect in T_COTS, T_COTS_ORD 
synchronous mode 

connect2 TNODATAerroron t connect T_COTS, T_COTS_ORD 
in asynchronous mode, or TLOOK 
error due to a disconnect indication 
arriving on the transport endpoint 

accept! successful return of t_accept T_COTS,T_COTS_ORD 
with Dent == 1 ,jd == resjd 

accept2 successful return of t _accept T_COTS, T_COTS_ORD 
with oent== 1,jd!= resfd 

accept3 successful return of t_accept T_COTS, T_COTS_ORD 
with oent> 1 

snd successful return of t snd T_COTS, T_COTS_ORD 

snddisl successful return of t s nddi s T_COTS, T_COTS_ORD -
with oent <= 1 

snddis2 successful return of t snddis T_COTS, T_COTS_ORD -
with oent> 1 

sndrel successful return of t sndrel T_COTS_ORD 

sndudata successful return of t sndudata T_CLTS 

Incoming Events The incoming events correspond to the successful return of the specified routines, 
where these routines retrieve data or event infonnation from the transport pro
vider. The only incoming event not associated directly with the return of a rou
tine is pass_conn, which occurs when a user transfers a connection to another 
transport endpoint. This event occurs on the endpoint that is being passed the 
connection, despite the fact that no Transport Interface routine is issued on that 
endpoint. pass _conn is included in the state tables to describe the behavior when 
a user accepts a connection on another transport endpoint. 

In Table 9-8, the revdis events are distinguished by the context in which they 
occur. The context is based on the value of oent, which is the count of outstand
ing connect indications on the transport endpoint. 
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State Tables 
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Transport Interface Incoming Events 

Incoming 
Event Description Service Type 

listen successful return 9f t listen T_COTS,T_COTS_ORD 
rcvconnect successful return of t rcvconnect T_COTS,T_COTS_ORD 
rcv successful return of t rcv T_COTS,T_COTS_ORD 
rcvdis1 successful return of t rcvdis with T_COTS, T_COTS_ORD -

ocnt <= 0 
rcvdis2 successful return of t_rcvdis with T_COTS, T_COTS_ORD 

oent== 1 
rcvdis3 successful return of t rcvdis with T_COTS, T_COTS_ORD 

oent> 1 
rcvrel successful return of t rcvrel T_COTS_ORD 
rcvudata successful return of t rcvudata T_CLTS 
rcvuderr successful return of t rcvuderr T_CLTS 
pass_conn receive a passed connection T_COTS, T_COTS_ORD 

In the state tables that follow, some state transitions are accompanied by a list of 
actions the transport user must take. These actions are represented by the nota
tion [n], where n is the number of the specific action as described below. 

[1] Set the count of outstanding connect indications to zero. 

[2] Increment the count of outstanding connect indications. 

[3] Decrement the count of outstanding connect indications. 

[4] Pass a connection to another transport endpoint as indicated in t _accept. 

The following tables describe the Transport Interface state transitions. Given a 
current state and an event, the transition to the next state is shown, as well as any 
actions that must be taken by the transport user (indicated by [n]). The state is 
that of the transport provider as seen by the transport user. 

The contents of each box represent the next state, given the current state 
(column) and the current incoming or outgoing event (row). An empty box 
represents a state/event combination that is invalid. Along with the next state, 
each box may include an action list (as specified in the previous section). The 
transport user must take the specific actions in the order specified in the state 
table. 

The following should be understood when studying the state tables: 

o The t_close routine is referenced in the state tables (see closed event in 
Table 9-1), but may be called from any state to close a transport endpoint. If 
t_close is called when a transport address is bound to an endpoint, the 
address will be unbound. Also, if t _close is called when the transport 
connection is still active, the connection will be aborted. 
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D If a transport user issues a routine out of sequence, the transport provider 
will recognize this and the routine will fail, setting t_errno to TOUT
STATE. The state will not change. 

D If any other transport error occurs, the state will not change unless explicitly 
stated on the manual page for that routine. The exception to this is a 
TLOOKorTNODATA error on t_connect, as described in Table 9-1. 
The state tables assume correct use of the Transport Interface. 

D The support routines t_getinfo, t_getstate, t_alloc, 
t_free, t_sync, t_look, and t_error are excluded from the state 
tables because they do not affect the state. 

A separate table is shown for common local management steps, data transfer in 
connectionless-mode, and connection-establishment/connection-release/data
transfer in connection-mode. 

Figure 9-6 Common Local Management State Table 

~ event 
T_UNINIT T_UNBND T_IDLE 

opened T_UNBND 

bind T_IDLE [1] 

optmgmt T_IDLE 

unbind T_UNBND 

closed T_UNINIT 

Figure 9-7 Connectionless-Mode State Table 

~ event 
T_IDLE 

sndudata T_IDLE 

rcvudata T_IDLE 

rcvuderr T_IDLE 
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9.9. Guidelines for Protocol 
Independence 
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Connection-Mode State Table 

~ T_IDLB T_OrrrOON T_INCON TJ)ATAXFER T_OUTREL T_INREL 
event 

connectl T_DATAXFER 

connect2 T_orrrcoN 

reveonnect TJ)ATAXFER 

listen T_INCON[2] T_INCON[2] 

accept! T_DATAXFER[3] 

accept2 T_IDLB [3](4] 

accept3 T_INCON [3](4] 

snd T_DATAXFER T_INREL 

rev T_DATAXFER T_OUTREL 

snddisl TJDLB T_lDLB[3] T_IDLE T_IDLE T_IDLE 

snddis2 T_INCON(3) 

rcvdisl TJDLE LIDLE T_IDLE LIDLE 

rcvdis2 T_IDLE [3] 

rcvdis3 T_INCON(3) 

sndrel T_OlITREL T_IDLE 

rcvrel T_INREL T_lDLE 

pass_conn T_DATAXFER 

By defining a set of services common to many transport protocols, the Transport 
Interface offers protocol independence for user software. However, all transport 
protocols do not support all the services supported by the Transport Interface. If 
software must be run in a variety of protocol environments, only the common 
services should be accessed. The following guidelines highlight services that 
may not be common to all transport protocols. 

o In the connection-mode service, the concept of a transport service data unit 
(TSDU) may not be supported by all transport providers. The user should 
make no assumptions about the preservation of logical data boundaries 
across a connection. If messages must be transferred over a connection, a 
protocol should be implemented above the Transport Interface to support 
message boundaries. 

o Protocol and implementation specific service limits are returned by the 
t_open and t_getinfo routines. These limits are useful when allocat
ing buffers to store protocol-specific transport addresses and options. It is 
the responsibility of the user to access these limits and then adhere to the 
limits throughout the communication process. 
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9.10. Some Examples 

[J User data should not be transmitted with connect requests or disconnect 
requests [see t_connect(3N) and t_snddis(3N)]. All transport proto
cols do not support this capability. 

[J The buffers in the t_call structure used for t_listen must be large 
enough to hold any information passed by the client during connection 
establishment. The server should use the T _ALL argument to t _ allo c, 
which will determine the maximum buffer sizes needed to store the address, 
options, and user data for the current transport provider. 

[J The user program should not look at or change options that are associated 
with any Transport Interface routine. These options are specific to the 
underlying transport protocol. The user should choose not to pass options 
with t_connect or t_sndudata. In such cases, the transport provider 
will use default values. Also, a server should use the options returned by 
t _1 is ten when accepting a connection. 

[J Protocol-specific addressing issues should be hidden from the user program. 
A client should not specify any protocol address on t bind, but instead 
should allow the transport provider to assign an appropriate address to the 
transport endpoint. Similarly, a server should retrieve its address for 
t_hind in such a way that it does not require knowledge of the transport 
provider's address space. Such addresses should not be hard-coded into a 
program. A name server mechanism could be useful in this scenario, but the 
details for providing such a service are outside the scope of the Transport 
Interface. 

[J The reason codes associated with t _ r c vdi s are protocol-dependent. The 
user should not interpret this information if protocol-independence is a con
cern. 

[J The error codes associated with t_rcvuderr are protocol-dependent. 
The user should not interpret this information if protocol-independence is a 
concern. 

[J The names of devices should not be hard-coded into programs, because the 
device node identifies a particular transport provider, and is not protocol 
independent. 

[J The optional orderly release facility of the connection-mode service (pro
vided by t_sndrel and t_rcvrel) should not be used by programs 
targeted for multiple protocol environments. This facility is not supported 
by all connection-based transport protocols. In particular, its use will 
prevent programs from successfully communicating with ISO open systems. 

The examples presented throughout this guide are shown in entirety in this 
appendix. 
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The following code represents the connection-mode client program described in 
the Connection-Mode Client section. This client establishes a transport connec
tion with a server, and then receives data from the server and writes it to its stan
dard output. The connection is released using the orderly release facility of the 
Transport Interface. This client will communicate with each of the connection
mode servers presented in the guide. 

finclude <stdio.h> 
finclude <tiuser.h> 
finclude <fcntl.h> 

1 / * server's well known address * / 

main ( ) 
{ 

int fd; 
int nbytes; 
int flags = 0; 
char buf[1024]; 
struct t_call *sndcall; 
extern int t_errno; 

if «fd = t_open(lI/dev/tivc", O_RDWR, NULL» < 0) { 
t_error(lIt_open failed"); 
exit(l); 

if (t_bind(fd, NULL, NULL) < 0) 
t_error (lit_bind failedn ); 
exit(2); 

1* 
* By asswning that the address is an integer value, 
* this program may not run over another protocol. 
*1 
if «sndcall = (struct t_call *)t_alloc(fd, 

T_CALL, T_ADDR» == NULL) { 
t_error(nt_alloc failedn ); 
exit(3); 

sndcall->addr.len = sizeof(int); 
*(int *)sndcall->addr.buf = SRV_ADDR; 

if (t_connect(fd, sndcall, NULL) < 0) 
t_error(nt_connect failed for fd n ); 
exit(4); 

while «nbytes = t_rcv(fd, buf, 1024, &flags» != -1) { 
if (fwrite(buf, 1, nbytes, stdout) < 0) 

fprintf(stderr, IIfwrite failed\O); 
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Connection-Mode Server 

exit(S); 

if «t_errno == TLOOK) && (t_look(fd) 
if (t_rcvrel(fd) < 0) { 

t_error ("t_rcvrel failed") i 

exit(6); 

if (t_sndrel(fd) < 0) 
t_error(nt_sndrel failedn); 
exit(7); 

exit(O); 

t_error(nt_rcv failedn); 
exit(S); 

The following code represents the connection-mode server program described in 
the Connection-Mode Client section. This server establishes a transport connec
tion with a client, and then transfers a log file to the client on the other side of the 
connection. The connection is released using the orderly release facility of the 
Transport Interface. The connection-mode client presented earlier will commun
iCate with this server. 

#include <tiuser.h> 
#include <stropts.h> 
#include <fcntl.h> 
#include <stdio.h> 
#include <signal.h> 

#define DISCONNECT -1 
#define SRV ADDR 1 / * server's well known address * / 

int conn_fd; 
extern int t_errno; 

main ( ) 
{ 

/ * connection established here * / 

int listen_fd; /* listening transport endpoint * / 
struct t bind *bind; 
struct t_call *call; 

if «listen_fd = t_open (n /dev/tivc", O_RDWR, NULL» 
< 0) { 

1* 

t_error(nt_open failed for listen_fdn ); 

exit(l); 
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* By assuming that the address is an integer value, 
* this program may not run over another protocol. 
*1 
if ((bind = (struct t_bind *)t_alloc(listen_fd, 

T_BIND, T_ALL» == NULL) { 
t_error(nt_alloc of t bind structure failedn ); 
exit(2); 

bind->qlen = 1; 
bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDR; 

if (t_bind(listen_fd, bind, bind) < 0) { 
t_error(nt_bind failed for listen_fdn); 
exit(3); 

1* 
* Was the correct address bound? 
*1 
if (*(int *)bind->addr.buf != SRV_ADDR) 

fprintf(stderr, nt bind bound wrong address\O); 
exit(4); 

if ((call = (struct t_call *)t_alloc(listen_fd, 
T_CALL, T_ALL» == NULL) { 

t_error(nt_alloc of t call structure failedn); 
exit(5); 

while (1) { 

if (t_listen(listen_fd, call) < 0) { 
t_error(nt_listen failed for listen_fdn ); 
exit(6); 

if ((conn_fd = accept_call (listen_fd, call» 
!= DISCONNECT) 

run_server(listen_fd); 

accept_call (listen_fd, call) 
int listen_fd; 
struct t_call *call; 
{ 

int resfd; 

if ((resfd = t_open(n/dev/tivc n , O_RDWR, NULL» < 0) { 

t_error(nt_open for responding fd failedn ); 
exit(7); 
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if (t_bind(resfd, NULL, NULL) < 0) { 
t_error("t_bind for responding fd failed"); 
exit(S); 

if (t_accept(listen_fd, resfd, call) < 0) { 
if (t_errno == TLOOK) { 1* must be a disconnect *1 

if (t_rcvdis(listen_fd, NULL) < 0) { 
t_error("t_rcvdis failed for listen_fd"); 
exit(9); 

if (t_close(resfd) < 0) { 
t_error (nt_close failed for responding fd") ; 

exit(lO); 

1 * go back up and listen for other calls * 1 
return(DISCONNECT); 

t_error("t_accept failed"); 
exit(1l); 

return (resfd) : 

connrelease ( ) 
{ 

1* connJd is global because needed here * 1 
if (t_look(conn_fd) == T_DISCONNECT) 

fprintf(stderr, "connection abortedO): 
exit(12): 

/ * else orderly release indication - normal exit * 1 
exit(O): 

run_server (listen_fd) 
int listen_fd: 

int nbytes: 
FILE *logfp; 
char buf[1024]; 

/ * file pointer to log file * 1 

switch (fork(» 

case -1: 
perror("fork failed"); 
exit(20); 
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default: /* parent * / 

/ * close conn Jd and then go up and listen again * / 
if (t_close(conn_fd) < 0) { 

t_error(nt_close failed for conn_fdn ); 
exit(21); 

return; 

case 0: /* child * / 

/ * close listen Jd and do service * / 
if (t_close(listen_fd) < 0) 

t_error(nt_close failed for listen_fdn ); 
exit(22); 

if «logfp = fopen(nlogfile", "r"» 
perror(ncannot open logfile n ); 
exit(23); 

signal (SIGPOLL, connrelease); 

NULL) { 

if (ioctl(conn_fd, I_SETSIG, S_INPUT) < 0) { 
perror(nioctl I SETSIG failedn); 
exit(24); 

if (t_look(conn_fd) != 0) { /* wasdisconnectthere? */ 
fprintf(stderr, nt look: unexpected eventO); 
exit(25); 

while «nbytes = fread(buf, 1, 1024, logfp» > 0) 
if (t_snd(conn_fd, buf, nbytes, 0) < 0) { 

t_error(nt_snd failedn ); 
exit(26); 

if (t_sndrel(conn_fd) < 0) { 
t_error(nt_sndrel failedn ); 
exit(27); 

pause ( ) ; / * until orderly release indication arrives * / 

The following code represents the connectionless-mode transaction selVer pro
gram described in the Introduction to Connectionless-Mode Service section. 
This selVer waits for incoming datagram queries, and then processes each query 
and sends a response. 

( *inclUde <stdio.h> ] 
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finclude <fcntl.h> 
finclude <tiuser.h> 

fdefine SRV ADDR 2 / * server's well known address * / 

main ( ) 
{ 

int fd; 
int flags; 
struct t bind *bind; 
struct t_unitdata *ud; 
struct t_uderr *uderr; 
extern int t_errno; 

if «fd = t_open(n/dev/tidg", O_RDWR, NULL» < 0) { 
t_error(nunable to open /dev/provider n ); 

exit(l); 

if «bind = (struct t_bind *)t_alloc(fd, 
T_BIND, T_ADDR» == NULL) { 

t_error("t_alloc of t bind structure failed"); 
exit (2) ; 

bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf SRV_ADDR; 
bind->qlen = 0; 

if (t_bind(fd, bind, bind) < 0) 
t_error(nt_bind failedn ); 
exit(3); 

1* 
* is the bound address correct? 
*1 
if (*(int *)bind->addr.buf != SRV_ADDR) 

fprintf(stderr, "t bind bound wrong address\O); 
exit(4); 

if «ud = (struct t_unitdata *)t_alloc(fd, 
T_UNITDATA, T_ALL» == NULL) { 

t_error(nt_alloc of t unitdata structure failed"); 
exit(S); 

if «uderr = (struct t_uderr *)t_alloc(fd, 
T_UDERROR, T_ALL» NULL) { 

t_error(nt_alloc of t uderr structure failed"); 
exit(6); 
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while (1) { 
if (t_rcvudata(fd, ud, &flags) < 0) { 

if (t_errno == TLOOK) { 
1* 
* Error on previously sent datagram 
*1 
if (t_rcvuderr(fd, uderr) < 0) { 

t_error(nt_rcvuderr failed"); 
exit(7); 

fprintf(stderr, "bad datagram, 
error = %d\O, uderr->error); 

continue; 

t_error(nt_rcvudata failed"); 
exit(8); 

1* 
* Query( ) processes the request and places the 
* response in ud->udata.buf, setting ud->udata.len 
*1 
query (ud) ; 

query ( ) 
{ 

if (t_sndudata(fd, ud, 0) < 0) { 
t_error("t_sndudata failed"); 
exit(9); 

/* Merely a stub/or simplicity * / 

The following code represents the connection-mode read/write client pro
gram described in the A Read/Write Interface section. This client establishes a 
transport connection with a server, and then uses cat(l) to retrieve the data sent 
by the seIVer and write it to its standard output. This client will communicate 
with each of the connection-mode seIVers presented in the guide. 

:fI:include <stdio.h> 
:fI:include <tiuser.h> 
:fI:include <fcntl.h> 
:fI:include <stropts.h> 

:fI:define SRV ADDR 1 / * server's well known address * / 

main ( ) 
{ 

sun 
microsystems 
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int fd; 
int nbytes; 
int flags = 0; 
char buf{1024]; 
struct t_call *sndcall; 
extern int t_errno; 

if «fd = t_open(n/dev/tivc n , O_RDWR, NULL» < 0) { 
t_error(nt_open failedn); 
exit(l); 

if (t_bind(fd, NULL, NULL) < 0) 
t_error(nt_bind failed"); 
exit(2); 

1* 
* By assuming that the address is an integer value. 
* this program may not run over another protocol. 
*1 

if «sndcall = (struct t_call *)t_alloc(fd, 
T_CALL, T_ADDR» == NULL) { 

t_error(nt_alloc failedn); 
exit(3); 

sndcall->addr.len = sizeof(int); 
*(int *)sndcall->addr.buf = SRV_ADDR; 

if (t_connect(fd, sndcall, NULL) < 0) 
t_error(nt_connect failed for fd n); 
exit(4); 

if (ioctl(fd, I_PUSH, ntirdwrn ) < 0) { 
perror(nI_PUSH of tirdwr failedn ); 
exit(5); 

close(O); 
dup (fd) ; 

execl(n/bin/cat n , "/bin/cat n , 0); 

perror(nexecl of /bin/cat failedn); 
exit(6); 
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The following code represents the connection-mode server program described in 
the Advanced Topics section. This server manages multiple connect indications 
in an event-driven manner. Either connection-mode client presented earlier will 
communicate with this selVer. 

*include <tiuser.h> 
*include <fcntl.h> 
*include <stdio.h> 
*include <poll.h> 
*include <stropts.h> 
*include <signal.h> 

*define NUM FDS 1 
*define MAX CONN IND 4 - -
*define SRV ADDR 1 / * server's well known address * / 

int conn fd; / * server connection here * / 
extern int t_errnoi 

/ * holds connect indications * / 
struct t call *calls[NUM_FDS] [MAX_CONN_IND]; 

main ( ) 
{ 

struct pollfd pollfds[NUM_FDS]i 
struct t bind *bindi 
int ii 

1* 
* Only opening and binding one transport endpoint, 
* but more could be supported 
*1 
if ((pollfds [0] . fd = t_open (" /dev /tivc", O_RDWR, NULL» 

< 0) { 

t_error("t_open failed"); 
exit(l); 

if ((bind = (struct t_bind *)t_alloc(pollfds[O] .fd, 
T_BIND, T_ALL» == NULL) { 

t_error("t_alloc of t bind structure failed")i 
exit(2); 

bind->qlen = MAX_CONN_IND; 
bind->addr.len = sizeof(int); 
*(int *)bind->addr.buf = SRV_ADDRi 

if (t_bind(pollfds[O] .fd, bind, bind) < 0) { 
t_error ("t_bind failed") i 

exit(3)i 

1* 
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* Was the correct address bound? 
*/ 
if (*(int *)bind->addr.buf != SRV_ADDR) 

fprintf(stderr, nt bind bound wrong address\O); 
exit(4); 

pollfds[O] . events POLLIN; 

while (1) { 
if (poll(pollfds, NUM_FDS, -1) < 0) { 

perror(npoll failedn ); 
exit(S); 

for (i = 0; i < NUM_FDS; i++) { 

switch (pollfds[i] .revents) 

default: 
perror(npoll returned error event"); 
exit(6); 

case 0: 
continue; 

case POLLIN: 
do_event(i, pollfds[i] .fd); 
service_conn_ind(i, pollfds[i] .fd); 

do_event (slot, fd) 
{ 

struct t discon *discon; 
int i; 

switch (t_look(fd» 

default: 
fprintf(stderr,"t_look: unexpected event\O); 
exit(7); 

case TERROR: 
fprintf(stderr,"t_look returned TERROR event\O); 
exit(8); 

case -1: 
t error("t_look failed"); 
exit(9); 
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case 0: 
/ * since POWN returned, this should not happen * / 
fprintf(stderr,"t_Iook returned no event\O): 
exit(lO): 

case T LISTEN: 
1* 
* find free element in calls array 
*1 
for (i = 0; i < MAX CONN_IND: i++) 

if (calls[slot] [i] == NULL) 
break: 

if «calls[slot] [i] = (struct t call *)t_alloc(fd, 
T_CALL, T_ALL» == NULL) 

t_error(nt_alloc of t call structure failed"): 
exit(ll): 

if (t_Iisten (fd, calls [slot] [i]) < 0) { 
t_error(nt_listen failed"): 
exit(12): 

break: 

case T DISCONNECT: 
discon = (struct t discon *)t_alloc(fd, 

T_DIS, T_ALL); 

if (t_rcvdis(fd, discon) < 0) { 
t_error(lIt_rcvdis failed"): 
exit (13) ; 

/* 
* find call ind in array and delete it 
*1 
for (i = 0; i < MAX CONN_IND; i++) 

if (discon->sequence == 
calls[slot] [i]->sequence) { 

t_free(calls[slot] [i], T_CALL): 
calls[slot] [i] = NULL: 

t_free(discon, T_DIS): 
break: 

service_conn_ind(slot, fd) 
{ 
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int i; 

for (i = 0; i < MAX_CONN_IND; i++) 
if (calls [slot] [i] == NULL) 

continue; 

if «conn_fd = t_open(n/dev/tivc", 
O_RDWR, NULL» < 0) { 

t_error("open failed"); 
exit(14); 

if (t_bind(conn_fd, NULL, NULL) < 0) { 
t_error("t_bind failedn ); 
exit(15); 

if (t_accept(fd, conn_fd, calls[slot] [i]) < 0) { 
if (t_errno == TLOOK) { 

t_close(conn_fd); 
return; 

t_error (nt_accept failed"); 
exit(16); 

t_free(calls[slot] [i], T_CALL); 
calls[slot] [i] = NULL; 

run_server (fd) ; 

connrelease ( ) 
{ 

/ * conn Jd is global because needed here * / 
if (t_look(conn_fd) == T_DISCONNECT) 

fprintf(stderr, "connection aborted\O); 
exit(12); 

/ * else orderly release indication - normal exit * / 
exit(O); 

run_server (listen_fd) 
int listen_fd; 

int nbytes; 
FILE *logfp; 
char buf[1024]; 

/ * file pointer to log file * / 

switch (fork ( ) ) 

Revision A, of 27 March 1990 



Chapter 9 - Transport Level Interface Programming 247 

case -1: 
perror("fork failed"); 
exit(20); 

default: /* parent * / 

/ * close conn Jd and then go up and listen again * / 
if (t_close(conn_fd) < 0) { 

t_error(ltt_close failed for conn_fdtl ); 
exit(21); 

return; 

case 0: /* child * / 

+~I!! 

/ * close listen Jd and do service * / 
if (t_close(listen_fd) < 0) 

t_error(ltt_close failed for listen_fdn); 
exit(22); 

if «logfp = fopen (nlogfile n , nrn» 
perror("cannot open logfile tl ); 
exit (23) ; 

signal (SIGPOLL, connrelease); 

NULL) { 

if (ioctl(conn_fd, I_SETSIG, S_INPUT) < 0) { 
perror("ioctl I SETSIG failed"); 
exit(24); 

if (t look (conn_fd) != 0) { /* disconnect already there? * 
fprintf(stderr, "t look: unexpected event\O); 
exit(25); 

while «nbytes = fread(buf, 1, 1024, logfp» > 0) 
if (t_snd(conn_fd, buf, nbytes, 0) < 0) { 

t_error (tlt_snd failed"); 
exit(26); 

if (t_sndrel(conn_fd) < 0) { 
t_error(nt_sndrel failed tl ); 
exit(27); 

pause ( ) ; / * until orderly release indication arrives * / 
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9.11. Glossary The following tenns apply to the Transport Interface: 

Abortive release 
An abrupt termination of a transport connection, which may result in the loss 
of data. 

Asynchronous execution 
The mode of execution in which Transport Interface routines will never 
block while waiting for specific asynchronous events to occur, but instead 
will return immediately if the event is not pending. 

Client 
The transport user in connection-mode that initiates the establishment of a 
transport connection. 

Connection establishment 
The phase in connection-mode that enables two transport users to create a 
transport connection between them. 

Connection-mode 
A circuit-oriented mode of transfer in which data are passed from one user to 
another over an established connection in a reliable, sequenced manner. 

Connectionless-mode 
A mode of transfer in which data are passed from one user to another in 
self-contained units with no logical relationship required among multiple 
units. 

Connection release 
The phase in connection-mode that tenninates a previously established tran
sport connection between two users. 

Datagram 
A unit of data transferred between two users of the connectionless-mode ser
vice. 

Data transfer 
The phase in connection-mode or connectionless-mode that supports the 
transfer of data between two transport users. 

Expedited data 
Data that are considered urgent. The specific semantics of expedited data 
are defined by the transport protocol that provides the transport service. 

Expedited transport service data 
The amount of expedited user data the identity of which is preserved from 
one end of a transport connection to the other (that is, an expedited mes
sage). 

Local management 
The phase in either connection-mode or connectionless-mode in which a 
transport user establishes a transport endpoint and binds a transport address 
to the endpoint. Functions in this phase perform local operations, and 
require no transport layer traffic over the network. 
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Orderly release 
A procedure for gracefully tenninating a transport connection with no loss of 
data. 

Peer user 
The user with whom a given user is communicating above the Transport 
Interface. 

Server 
The transport user in connection-mode that offers services to other users 
(clients) and enables these clients to establish a transport connection to it. 

Service indication 
The notification of a pending event generated by the provider to a user of a 
particular selVice. 

Service primitive 
The unit of infonnation passed across a selVice interface that contains either 
a service request or selVice indication. 

Service request 
A request for some action generated by a user to the provider of a particular 
service. 

Synchronous execution 
The mode of execution in which Transport Interface routines may block 
while waiting for specific asynchronous events to occur. 

Transport address 
The identifier used to differentiate and locate specific transport endpoints in 
a network. 

Transport connection 
The communication circuit that is established between two transport users in 
connection-mode. 

Transport endpoint 
The local communication channel between a transport user and a transport 
provider. 

Transportlnte~ace 

The library routines and state transition rules that support the services of a 
transport protocol. 

Transport provider 
The transport protocol that provides the selVices of the Transport Interface. 

Transport service data unit 
The amount of user data whose identity is preselVed from one end of a tran
sport connection to the other (that is, a message). 

Transport user 
The user-level application or protocol that accesses the selVices of the Tran
sport Interface . 
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Virtual circuit 
A transport connection established in connection-mode. The following acro
nyms are used throughout this guide: 

CLTS 
Connectionless Transport Service 

COTS 
Connection Oriented Transport Service 

ETSDU 
Expedited Transport Service Data Unit 

TSDU 
Transport Service Data Unit 
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10.1. Goals 

10 
A Socket-Based Interprocess 

Communications Tutorial 

WARNING Socket-based interprocess communication (I PC), while still supported, is no 
longer the preferredframeworkfor transport-level programming. Socket
based IPC has been superceded as the "standard" method of accessing network 
protocols by a set of OSI-compatible transport mechanisms based upon 
STREAMS and accessed by way ofa Transport Library Interface (TLI). For 
details on the TLI, see the previous chapter, Transport Level Interface Pro
gramming. 

If you are building a new network application that requires direct access to tran
sport facilities, use the TLI mechanisms. If you do not require such direct access, 
Remote Procedure Calls (RPC) are the preferred programming framework - see 
the Remote Procedure Call Programming Guide section of this manual for 
details. New programs should not be based on sockets. 

Various approaches are possible within the socket paradigm; this manual 
discusses them, and then illustrates them by way a series of example programs. 
These programs demonstrate in a simple way the use of pipes, socketpairs, and 
the use of datagram socket and stream socket communication. 

NOTE Unlike RPC-based networking (which presumes XDR) socket-based [PC does not 
contain a mechanismfor ensuring architecture independent code. Socket-based 
programs must make judicious use of the host-to-network byte-order conversion 
macros described in byteorder (3N) if they are to be portable. 

The intent of this chapter is to present a few simple example programs, not to 
describe the socket-based networking facilities in full. For more infonnation, see 
the next chapter, An Advanced Socket-Based Inter process Communications 
Tutorial. 

Facilities for interprocess communication (IPC) and networking were a major 
addition to the UNIX system - first introduced in 4.2BSD. These facilities 
required major additions and some changes to the system interface. The basic 
idea of this interface is to make IPC similar to file I/O. In the UNIX system a 
process has a set of I/O descriptors, from which one reads and to which one 
writes. Descriptors may refer to normal files, to devices (including terminals), or 
to communication channels. The use of a descriptor has three phases: creation, 
use for reading and writing, and destruction. By using descriptors to write files, 
rather than simply naming the target file in the write call, one gains a surprising 
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10.2. Processes 

amount of flexibility. Often, the program that creates a descriptor will be dif
ferent from the program that uses the descriptor. For example the shell can 
create a descriptor for the output of the 1 s command that will cause the listing to 
appear in a file rather than on a teonina!. Pipes are another fonn of descriptor 
that have been used in the UNIX system for some time. Pipes allow one-way 
data transmission from one process to another; the two processes and the pipe 
must be set up by a common ancestor. 

The use of descriptors is not the only communication interface provided by the 
UNIX system. The signal mechanism sends a tiny amount of infoonation from 
one process to another. The signaled process receives only the signal type, not 
the identity of the sender, and the number of possible signals is small. The signal 
semantics limit the flexibility of the signaling mechanism as a means of interpro
cess communication. 

The identification of IPC with I/O is quite longstanding in the UNIX system and 
has proved quite successful. At first, however, IPC was limited to processes 
communicating within a single machine. With 4.2BSD this expanded to include 
IPC between machines. This expansion has necessitated some change in the way 
that descriptors are created. Additionally, new possibilities for the meaning of 
read and write have been admitted. Originally the meanings, or semantics, of 
these teons were fairly simple. When you wrote something it was delivered. 
When you read something, you were blocked until the data arrived. Other possi
bilities exist, however. One can write without full assurance of delivery if one 
can check later to catch occasional failures. Messages can be kept as discrete 
units or merged into a stream. One can ask to read, but insist on not waiting if 
nothing is immediately available. These new possibilities were implemented in 
4.3BSD and then incorporated into SunOS. 

Socket-based IPC offers several choices. This chapter presents simple examples 
that illustrate some of them. The reader is presumed to be familiar with the C 
programming language, but not necessarily with UNIX system calls or processes 
and interprocess communication. The chapter reviews the notion of a process 
and the types of communication that are supported by the socket abstraction. A 
series of examples are presented that create processes that communicate with one 
another. The programs show different ways of establishing channels of commun
ication. Finally, the calls that actually transfer data are reviewed. To clearly 
present how communication can take place, the example programs have been 
cleared of anything that might be construed as useful work. They can serve as 
models for the programmer trying to construct programs that are composed of 
cooperating processes. 

A process can be thought of as a single line of control in a program. Programs 
can have a point where control splits into two independent lines, an action called 
forking. In the UNIX system these lines can never join again. A call to the sys
tem routine fork () causes a process to split in this way. The result of this call 
is that two independent processes will be running, executing exactly the same 
code. Memory values will be the same for all values set before the fork, but, sub
sequently, each version will be able to change only the value of its own copy of 
each variable. Initially, the only difference between the two will be the value 
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Figure 10-1 
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returned by forkO. The parent will receive a process id for the child, the child 
will receive a zero. Calls to fork () typically precede, or are included in, an if
statement. 

A process views the rest of the system through a private table of descriptors. The 
descriptors can represent open files or sockets (sockets are the endpoints of com
munications channels, as discussed below). Descriptors are referred to by their 
index numbers in the table. The first three descriptors are often known by special 
names, stdin, stdout, and stderr. These are the standard input, output, and error. 
When a process forks, its descriptor table is copied to the child. Thus, if the 
parent's standard input is being taken from a tenninal (devices are also treated as 
files in the UNIX system), the child's input will be taken from the same terminal. 
Whoever reads first will get the input. If, before forking, the parent changes its 
standard input so that it is reading from a new file, the child will take its input 
from the new file. It is also possible to take input from a socket, rather than from 
a file. 

Most users of the UNIX system know that they can pipe the output of a program 
progl, to the input of another, prog2, by typing the command 

example# proql I proq2 

This is called "piping" the output of one program to another because the mechan
ism used to transfer the output is called a pipe. When the user types a command, 
the command is read by the shell, which decides how to execute it. If the com
mand is simple, for example, 

example# proql 

the shell forks a process, which executes the program, progl, and then dies. 
The shell waits for this termination and then prompts for the next command. If 
the command is a compound command, 

example# proql I proq2 

the shell creates two processes connected by a pipe. One process runs the pro
gram, progl, the other runs prog2, The pipe is an I/O mechanism with two 
ends. Data that is written into one end can be read from the other. 

Since a program specifies its input and output only by the descriptor table 
indices, the input source and output destination can be changed without changing 
the text of the program. It is in this way that the shell is able to set up pipes. 
Before executing progl, the process can close whatever is at stdout and replace 
it with one end of a pipe. Similarly, the process that will execute prog2 can 
substitute the opposite end of the pipe for stdin. 

Now let's examine a program that creates a pipe for communication between its 
child and itself. A pipe is created by a parent process, which then forks. When a 
process forks, the parent's descriptor table is copied into the child's. 

Useo!aPipe 

[
*inC1Ude <stdio.h> ] 

--. ------
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Idefine DATA "Bright star, would I . . " 

1* 
* This program creates a pipe, then forks. The child communicates to the 
* parent over the pipe. Notice that a pipe is a one-way communications 
* device. I can write to the output socket (socket s [1] , the second 
* socket of the array returned by pipe) and read from the input 
* socket (sockets [0]), but not vice versa. 
*1 

main () 
{ 

int sockets[2], child; 

/ * Create a pipe * / 
if (pipe (sockets) < 0) { 

perror("opening stream socket pair"); 
exit(10); 

if «child = fork(» -1) 
perror ("fork"); 

else if (child) { 
char buf[1024]; 

/* This is still the parent. It reads the child's message. * / 
close(sockets[l]); 
if (read(sockets[O], buf, 1024) < 0) 

perror(nreading message"); 
printf("-->%s\n", buf); 
close(sockets[O]); 

else { 
/ * This is the child. It writes a message to its parent. * / 
close(sockets[O]); 
if (write(sockets[l], DATA, sizeof(DATA» < 0) 

perror("writing message"); 
close(sockets[l]); 

exit(O); 

Here the parent process makes a call to the system routine pipeO. This routine 
creates a pipe and places descriptors for the sockets for the two ends of the pipe 
in the process's descriptor table. pipeO. is passed an array into which it places 
the index numbers of the sockets it creates. The two ends are not equivalent. 
The socket whose index is returned in the first word of the array is opened for 
reading only, while the socket in the second word is opened only for writing. 
This corresponds to the fact that the standard input is the first descriptor of a 
process's descriptor table and the standard output is the second. After creating 
the pipe, the parent creates the child with which it will share the pipe by calling 
forkO. 
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The following figure illustrates the effect of such a call to forkO. The parent 
process's descriptor table points to both ends of the pipe. After the fork, both 
parent's and child's descriptor tables point to the pipe. The child can then use 
the pipe to send a message to the parent. 

Figure 10-2 Sharing a Pipe between Parent and Child 

Parent 

C_~) __ ~( ______ ~P~I~ ________ ) 

Parent Child 

Q Q 

C __ )~ __ (~ ______ ~p~ip~e _________ ) 

Just what is a pipe? It is a one-way communication mechanism, with one end 
opened for reading and the other end for writing. Therefore, parent and child 
need to agree on which way to tum the pipe, from parent to child or the other 
way around. Using the same pipe for communication both from parent to child 
and from child to parent would be possible (since both processes have references 
to both ends), but very complicated. If the parent and child are to have a two
way conversation, the parent creates two pipes, one for use in each direction. (In 
accordance with their plans, both parent and child in the example above close the 
socket that they will not use. It is not required that unused descriptors be closed, 
but it is good practice.) A pipe is also a stream communication mechanism; that 
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10.4. Socketpairs 

Figure 10-3 

is, all messages sent through the pipe are placed in order and reliably delivered. 
When the reader asks for a certain number of bytes from this stream, it is given 
as many bytes as are available, up to the amount of the request. Note that these 
bytes may have come from the same call to wr i t e () or from several calls to 
wr it e () that were concatenated. 

SunOS provides a slight generalization of pipes. A pipe is now a pair of con
nected sockets for one-way stream communication. One may obtain a pair of 
connected sockets for two-way stream communication by calling the routine 
socketpairO. The program in figure 10-3, below, calls socketpair () to 
create such a connection. The program uses the link for communication in both 
directions. Since socketpairs are an extension of pipes, their use resembles that 
of pipes. Figure 10-4 illustrates the result of a fork following a call to socket
pairO. 

socketpair () takes as arguments a specification of a communication 
domain, a style of communication, and a protocol. These are the parameters 
shown in the example. Domains and protocols will be discussed in the next sec
tion. Briefly, a domain specifies a socket name space and implies a set of con
ventions for manipulating socket names. Currently, socketpairs have only been 
implemented for the UNIX domain. The UNIX domain uses UNIX path names 
for naming sockets. It only allows communication between sockets on the same 
machine. 

Note that the header files <sys/ socket. h> and <sys/types . h>. are 
required in this program. The constants AF _UNIX and SOCK_STREAM are 
defined in <sys/ socket. h>, which in tum requires the file 
<sys/types . h> for some of its definitions. 

Use of a Socketpair 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <stdio.h> 

#define DATAl "In Xanadu, did Kublai Khan . . 
#define DATA2 "A stately pleasure dome decree 

1* 
* This program creates a pair of connected sockets then/orks and 

" 
" 

* communicates over them. This is very similar to communication with pipes, 
* however, socket pairs are two-way communications objects. Therefore I can 
* send messages in both directions. 
*1 

main () 
{ 

int sockets[2], child; 
char buf[1024]; 

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) < 0) { 

Revision A, of 27 March 1990 



Figure 10-4 

Chapter 10 - A Socket-Based Interprocess Communications Tutorial 257 

perror("opening stream socket pair"); 
exit(l); 

if «child = fork(» == -1) 
perror("fork"); 

else if (child) { /* This is the parent */ 
close(sockets[O]); 
if (read(sockets[l], buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
if (write(sockets[l], DATA2, sizeof(DATA2» < 0) 

perror("writing stream message"); 
close(sockets[l]); 

else { /* This is the child * / 
close(sockets[l]); 
if (write(sockets[O], DATAl, sizeof(DATA1» < 0) 

perror("writing stream message"); 
if (read(sockets [0], buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
close(sockets[O]); 

exit(O); 

Sharing a Socketpair between Parent and Child 
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10.5. Domains and 
Protocols 

Parent 

0 < 0 
----~> 

Parent Child 

Q Q 

0 < 0 
----~> 

Pipes and socketpairs are a simple solution for communicating between a parent 
and child or between child processes. What if we wanted to communicate 
between processes that have no common ancestor. Neither standard UNIX pipes 
nor socketpairs are the answer here, since both mechanisms require a common 
ancestor to set up the communication. We would like to have two processes 
separately create sockets and then have messages sent between them. This is 
often the case when providing or using a service in the system. This is also the 
case when the communicating processes are on separate machines. 

Sockets created by different programs use names to refer to one another, names 
generally must be translated into addresses for use. The space from which an 
address is specified by a domain. There are several such domains for sockets. 
Two that will be used in the examples here are the UNIX domain (or AF _UNIX, 
for Address Fonnat UNIX) and the Internet domain (or AF _ INET). In the UNIX 
domain, a socket is given a path name within the file system name space. A file 
system node is created for the socket and other processes may then refer to it by 
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giving its pathname. UNIX domain names, thus, allow communication between 
any two processes that reside on the same machine and that are able to access the 
socket pathnames. The Internet domain is the UNIX implementation of the 
DARPA Internet standard protocols IP /TCP /UDP. Addresses in the Internet 
domain consist of a machine network address and an identifying number, called a 
port. Internet domain names allow communication between separate machines. 

Communication follows some particular "style." Currently, communication is 
either through a stream socket or by datagram. Stream communication implies a 
connection. The communication is reliable, error-free, and, as in pipes, no mes
sage boundaries are kept Reading from a stream may result in reading the data 
sent from one or several calls to wri te () or only part of the data from a single 
call, if there is not enough room for the entire message, or if not all the data from 
a large message has been transferred. The protocol implementing such a style 
will retransmit messages received with errors. It will also return error messages 
if one tries to send a message after the connection has been broken. Datagram 
communication does not use connections. Each message is addressed individu
ally. If the address is correct, it will generally be received, although this is not 
guaranteed. Often datagrams are used for requests that require a response from 
the recipient. If no response arrives in a reasonable amount of time, the request 
is repeated. The individual datagrams will be kept separate when they are read, 
that is, message boundaries are preserved. 

NOTE Sockets under TU Emulation: wri teO should/ail with errno set to 
ENOTCONN if it is used on an unconnected socket, however, under TU emula
tion, it will instead return success. Likewise, wri teO should/ail with errno 
set to EPIPE if a connection is broken, but instead it will return with errno set 
to ENXIO. Similarly, read() should/ail with errno set to ENOTCONN if it is 
used on an unconnected socket, but instead it will return success, with zero bytes 
read. In all of these cases, however, so_error will be correctly set. Along the 
same lines, wri te(), should allow zero length data messages on the internet 
UDP transport. This will not be the case. If it is attempted, wri teO will return 
-1 with errno set to ERANGE. These incompatibilities are considered very 
minor. Note that calling sendO, sendtoO or sendmsg() on a CLTS network 
will succeed. 

The difference in perfonnance between the two styles of communication is gen
erally less important than the difference in semantics. The perfonnance gain that 
one might find in using datagrams must be weighed against the increased com
plexity of the program, which must now concern itself with lost or out of order 
messages. If lost messages may simply be ignored, the quantity of traffic may be 
a consideration. The expense of setting up a connection is best justified by fre
quent use of the connection. Since the perfonnance of a protocol changes as it is 
tuned for different situations, it is best to seek the most up-to-date infonnation 
when making choices for a program in which performance is crucial. 

A protocol is a set of rules, data fonnats, and conventions that regulate the 
transfer of data between participants in the communication. In general, there is 
one protocol for each socket type (stream, datagram, etc.) within each domain. 
The code that implements a protocol keeps track of the names that are bound to 
sockets, sets up connections, and transfers data between sockets, perhaps sending 
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10.6. Datagrams in the 
UNIX Domain 

the data across a network. This code also keeps track of the names that are 
bound to sockets. It is possible for several protocols, differing only in low level 
details, to implement the same style of communication within a particular 
domain. Although it is possible to select which protocol should be used, for 
nearly all uses it is sufficient to request the default protocol. This has been done 
in all of the example programs. 

One specifies the domain, style and protocol of a socket when it is created. For 
example, in figure 10-6 the call to socket () causes the creation of a datagram 
socket with the default protocol in the UNIX domain. 

Let us now look at two programs that create sockets separately. The programs in 
Figures 10-5 and 10-6 use datagram communication rather than a stream. The 
structure used to name UNIX domain sockets is defined in the file 
<sys/un. h>. The definition has also been included in the example for clarity. 

Each program creates a socket with a call to socketO. These sockets are in the 
UNIX domain. Once a name has been decided upon it is attached to a socket by 
the system call bind(). The program in Figure 10-5 uses the name "socket", 
which it binds to its socket. This name will appear in the working directory of 
the program. The routines in Figure 10-6, use the socket only for sending mes
sages. They do not create a name for the socket because no other process has to 
refer to it 

Figure 10-5 Reading UNIX Domain Datagrams 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

1* 
* The include file <sys/un. h> defines sockaddr_un asfollows: 
* struct sockaddr_un { 
* short 
* char 
* } ; 
*1 

sun_family; 
sunyath[108]; 

-#define NAME "socket" 

1* 
* This program creates a UNIX domain datagram socket, binds a name to it, 
* then readsfrom the socket. 
*1 

main () 
{ 

int sock, length; 
struct sockaddr un name; 
char buf[1024]; 

/ * Create socket from which to read. * / 
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sock = socket(AF_UNIX, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(1); 

/ * Create name. * / 
name. sun_family = AF_UNIX; 
strcpy(name.sun-path, NAME); 
if (bind(sock, (struct sockaddr *)&name, 

strlen (NAME) +3) < 0) { 
perror("binding name to datagram socket n ); 
exit(1); 

printf("socket -->%s\n", NAME); 
/* Read/rom the socket. * / 
if (read(sock, buf, 1024) < 0) 

perror(nreceiving datagram packet"); 
printf(n_->%s\n", buf); 
close(sock); 
unlink(NAME); 
exit(O); 

Note that, in the call to bind () above, the &name parameter is cast to a 
(struct sockaddr *). In writing networking code, one invariably has to 

cast such address arguments to network-related system calls, since the system
call routines must be able to handle a variety of address formats, yet each indivi
dual call will use a specialization of the general fonnat. It is poor programming 
style to omit these casts, a fact which lint will be only to glad to remind you 
of. 

Sending a UNIX Domain Datagrams 

iinclude <sys/types.h> 
iinclude <sys/socket.h> 
iinclude <sys/un.h> 
iinclude <stdio.h> 

idefine DATA "The sea is calm, the tide is full . . 

1* 
* Here I send a datagram to a receiver whose name I get/rom the command 
* line arguments. The/orm o/the command line is udgramsend pathname. 
*1 

main (argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr un name; 

" 
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/ * Create socket on which to send. * / 
sock = socket(AF_UNIX, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(l); 

/ * Construct name of socket to send to . * / 
name. sun_family = AF_UNIX; 
strcpy(name.sun-path, argv[l]); 
/ * Send message. * / 
if (sendto(sock, DATA, sizeof(DATA), 0, 

(struct sockaddr *)&name, 
sizeof(struct sockaddr_un» < 0) { 

perror("sending datagram message"); 

close (sock) ; 
exit(O); 

Names in the UNIX domain are path names. Like file path names they may be 
either absolute (e.g. "/dev/imaginary") or relative (e.g. "socket"). Because these 
names are used to allow processes to rendezvous, relative path names can pose 
difficulties and should be used with care. When a name is bound into the name 
space, a file (vnode) is allocated in the file system. If the vnode is not deallo
cated, the name will continue to exist even after the bound socket is closed. This 
can cause subsequent runs of a program to find that a name is unavailable, and 
can cause directories to fill up with these objects. The names are removed by 
calling unlink () or using the rm (1) command. Names in the UNIX domain 
are only used for rendezvous. They are not used for message delivery once a 
connection is established. Therefore, in contrast with the Internet domain, 
unbound sockets need not be (and are not) automatically given addresses when 
they are connected. 

There is no established means of communicating names to interested parties. In 
the example, the program in Figure 10-6 gets the name of the socket to which it 
will send its message through its command line arguments. Once a line of com
munication has been created, one can send the names of additional, perhaps new, 
sockets over the link. 
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Figure 10-7 
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Reading Internet Domain Datagrams 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 

1* 
* The includefile <netinet/ in. h> defines sockaddr_in asfollows: 
* struct sockaddr_in { 
* short sin_family; 
* u_short sin-port; 
* struct in_addr sin_addr; 
* char sin_zeroES]; 
* } ; 
* 
* This program creates a datagram socket, binds a name to it, then reads 
* from the socket. 
*1 
main () 
{ 

int sock, length; 
struct sockaddr in name; 
char buf[1024]; 

/ * Create socket from which to read. * / 
sock = socket(AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(l); 

/ * Create name with wildcards. * / 
name. sin_family = AF_INET; 
name. sin addr.s addr = INADDR_ANY; 
name.sin-port = 0; 
if (bind(sock, (struct sockaddr *)&name, 

sizeof name ) < 0) { 
perror("binding datagram socket"); 
exit(l); 

/ * Find assigned port value and print it out. * / 
length = sizeof(name); 
if (getsockname(sock, (struct sockaddr *)&name, 

&length) < 0) { 
perror("getting socket name"); 
exit(l); 

printf("Socket port #%d\n", ntohs(name.sin-port»; 
/ * Read from the socket. * / 

Revision A, of 27 March 1990 



264 Transport-Level Programming 

Figure 10-8 

if (read(sock, buf, 1024) < 0) 
perror("receiving datagram packet"); 

printf("-->%s\n", buf); 
close(sock); 
exit(O); 

The examples in Figure 10-7 and 10-8 are very close to the previous examples 
except that the socket is in the Internet domain. The structure of Internet domain 
addresses is defined in the file <netinet/ in. h>. Internet addresses specify a 
host address (a 32-bit number) and a delivery slot, or port, on that machine. 
These ports are managed by the system routines that implement a particular pro
tocol. Unlike UNIX domain names, Internet socket names are not entered into 
the file system and, therefore, they do not have to be unlinked after the socket has 
been closed. When a message must be sent between machines it is sent to the 
protocol routine on the destination machine, which intetprets the address to 
determine to which socket the message should be delivered. Several different 
protocols may be active on the same machine, but, in general, they will not com
municate with one another. As a result, different protocols are allowed to use the 
same port numbers. Thus, implicitly, an Internet address is a triple including a 
protocol as well as the port and machine address. An association is a temporary 
or pennanent specification of a pair of communicating sockets. An association is 
thus identified by the tuple <protocol, local machine address, local port, remote 
machine address, remote port>. An association may be transient when using 
datagram sockets; the association actually exists during a send () operation. 

Sending an Internet Domain Datagram 

*include <sys/types.h> 
*include <sys/socket.h> 
*include <netinet/in.h> 
*include <netdb.h> 
*include <stdio.h> 

*define DATA "The sea is calm, the tide is full . . 

1* 
* Here I send a datagram to a receiver whose name I getfrom the command 
* line arguments. The form of the command line is: 
*dgramsend hostname portnumber 
*1 

main (argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr_in name; 
struct hostent *hp, *gethostbyname(); 

" 
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/ * Create socket on which to send. * / 
sock = socket (AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(l); 

1* 
* Construct name, with no wildcards, of the socket to send to. 
* gethostbyname returns a structure including the network address 
* of the specified host. The port number is taken from the command 
* line. 
*1 
hp = gethostbyname(argv[l]); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit(2); 

bcopy«char *)hp->h_addr, (char *)&name.sin_addr, 
hp->h_length); 

name. sin_family = AF_INET; 
name.sin-port = htons(atoi(argv[2]»; 
/ * Send message. * / 
if (sendto(sock, DATA, sizeof DATA, 0, 

(struct sockaddr *)&name, sizeof name) < 0) 
perror("sending datagram message"); 

close (sock) ; 
exit(O); 

The protocol for a socket is chosen when the socket is created. The local 
machine address for a socket can be any valid network address of the machine, if 
it has more than one, or it can be the wildcard value INADDR _ANY. The wild
card value is used in the program in Figure 10-7. If a machine has several net
work addresses, it is likely that messages sent to any of the addresses should be 
deliverable to a socket. This will be the case if the wildcard value has been 
chosen. Note that even if the wildcard value is chosen, a program sending mes
sages to the named socket must specify a valid network address. One can be wil
ling to receive from "anywhere," but one cannot send a message "anywhere." 
The program in Figure 10-8 is given the destination host name as a command 
line argument. To determine a network address to which it can send the mes
sage, it looks up the host address by the call to gethostbynameO. The 
returned structure includes the host's network address, which is copied into the 
structure specifying the destination of the message. 

The port number can be thought of as the number of a mailbox, into which the 
protocol places one's messages. Certain daemons, offering certain advertised 
selVices, have reselVed or "well-known" port numbers. These fall in the range 
from 1 to 1023. Higher numbers are available to general users. Only selVers 
need to ask for a particular number. The system will assign an unused port 
number when an address is bound to a socket. This may happen when an explicit 
bind () call is made with a port number of 0, or when a connect () or 
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send () is perfonned on an unbound socket. Note that port numbers are not 
automatically reported back to the user. After calling bindO, asking for port 0, 
one may call getsockname () to discover what port was actually assigned. 
The routine getsockname () will not work for names in the UNIX domain. 

NOTE Sockets under TU Emulation: get sockname() can only work if the underlying 
transport provider provides the necessary support, and under the TU, this is not 
always true. Specifically, if the address given to bind() was INADDR_ANY, the 
the socket module will not be able to map back/rom its real network address to 
its local name. This is only a minor problem. 

The fonnat of the socket address is specified in part by standards within the Inter
net domain. The specification includes the order of the bytes in the address. 
Because machines differ in the internal representation they ordinarily use to 
represent integers, printing out the port number as returned by getsockname may 
result in a misinterpretation. To print out the number, it is necessary to use the 
routine ntohs () (for network to host: short) to convert the number from the 
network representation to the host's representation. On some machines, such as 
68000-based machines, this is a null operation. On others, such as V AXes, this 
results in a swapping of bytes. Another routine exists to convert a short integer 
from the host fonnat to the network format, called htonsO; similar routines 
exist for long integers. For further infonnation, see byteorder (3) . 

10.S. Connections To send data between stream sockets (having communication style 
SOCK _STREAM), the sockets must be connected. Figures 10-9 and 10-10 show 
two programs that create such a connection. The program in 10-9 is relatively 
simple. To initiate a connection, this program simply creates a stream socket, 
then calls connectO, specifying the address of the socket to which it wishes its 
socket connected. Provided that the target socket exists and is prepared to handle 
a connection, connection will be complete, and the program can begin to send 
messages. Messages will be delivered in order without message boundaries, as 
with pipes. The connection is destroyed when either socket is closed (or soon 
thereafter). If a process persists in sending messages after the connection is 
closed, a SIGPIPE signal is sent to the process by the operating system. Unless 
explicit action is taken to handle the signal (see the signal (3) or 
sigvec (3) man pages) the process will tenninate. 

Figure 10-9 Initiating an Internet Domain Stream Connection 

'include <sys/types.h> 
'include <sys/socket.h> 
'include <netinet/in.h> 
'include <netdb.h> 
'include <stdio.h> 

'define DATA "Half a league, half a league . . " 

1* 
* This program creates a socket and initiates a connection with the socket 
* given in the command line. One message is sent over the connection and 
* then the socket is closed. ending the connection. The form of the command 
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* line is: streamwri te hostname portnumber 
*1 

main (argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr in server; 
struct hostent *hp, *gethostbyname(); 
char buf[l024]; 

/ * Create socket. * / 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

/* Connect socket using name specified by command line. * / 
server. sin_family = AF_INETi 
hp = gethostbyname(argv[l])i 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit(2); 

bcopy«char *)hp->h_addr, (char *)&server.sin_addr, 
hp->h_length); 

server.sin-port = htons(atoi(argv[2]»; 

if (connect (sock, 
(struct sockaddr *)&server, sizeof server) < 0) { 

perror("connecting stream socket"); 
exit(l); 

if (write (sock, DATA, sizeof DATA) < 0) 
perror("writing on stream socket"); 

close(sock)i 
exit(O); 

Forming a connection is asymmetrical; one process, such as the program in Fig
ure 10-9 requests a connection with a particular socket, the other process accepts 
connection requests. Before a connection can be accepted a socket must be 
created and an address bound to it. This situation is illustrated in the top half of 
Figure 10-12. Process 2 has created a socket and bound a port number to it. Pro
cess 1 has created an unnamed socket. The address bound to process 2' s socket 
is then made known to process 1 and, perhaps to several other potential commun
icants as well. If there are several possible communicants, this one socket might 
receive several requests for connections. As a result, a new socket is created for 
each connection. This new socket is the endpoint for communication within this 
process for this connection. A connection may be destroyed by closing the 
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corresponding socket. 

The program in Figure 10-10 is a rather trivial example of a server. It creates a 
socket to which it binds a name, which it then advertises. (In this case it prints 
out the socket number.) The program then calls listen () for this socket. 
Since several clients may attempt to connect more or less simultaneously, a 
queue of pending connections is maintained in the system address space. 
listen () marks the socket as willing to accept connections and initializes the 
queue. When a connection is requested, it is listed in the queue. If the queue is 
full, an error status may be returned to the requester. The maximum length of 
this queue is specified by the second argument of listenO; the maximum 
length is limited by the system. Once the listen call has been completed, the pro
gram enters an infinite loop. On each pass through the loop, a new connection is 
accepted and removed from the queue, and, hence, a new socket for the connec
tion is created. The bottom half of Figure 10-12 shows the result of Process 1 
connecting with the named socket of Process 2, and Process 2 accepting the con
nection. After the connection is created, the service, in this case printing out the 
messages, is perfonned and the connection socket closed. The accept () call 
will take a pending connection request from the queue if one is available, or 
block waiting for a request. Messages are read from the connection socket. 
Reads from an active connection will nonnally block until data is available. The 
number of bytes read is returned. When a connection is destroyed, the read call 
returns immediately. The number of bytes returned will be zero. 

NOTE Sockets under TU Emulation: listen() has a un/ortunateJailure condition 
under TU emulation. The problem is rooted in the difference between TU and 
socket semantics which creates a timing window within which a second transport 
user can be allocated the address previously allocated to the caller oj 
listen(). If this happens, the socket library will return -1, and errno will be 
set to EADDRINUSE, an error not usually possible in sockets. Also note that, 
both read() and wr i te() should return with errno set to ENOCONN when 
used on an unconnected socket. Under the socket emulation, however, they will 
return success ( read() will also report zero bytes read). so error will still 
be properly set, so these incompatibilities are very minor. 

The program in Figure 10-11 is a slight variation on the server in Figure 10-10. 
lt avoids blocking when there are no pending connection requests by calling 
select () to check for pending requests before calling acceptO. This stra
tegy is useful when connections may be received on more than one socket, or 
when data may arrive on other connected sockets before another connection 
request. 

The programs in Figures 10-13 and 10-14 show a program using stream socket 
communication in the UNIX domain. Streams in the UNIX domain can be used 
for this sort of program in exactly the same way as Internet domain streams, 
except for the fonn of the names and the restriction of the connections to a 
machine. There are some differences, however, in the functionality of streams in 
the two domains, notably in the handling of out-oj-band data (discussed briefly 
below). These differences are beyond the scope of this chapter. 

Figure 10-10 Accepting an Internet Domain Stream Connection 
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iinclude <sys/types.h> 
iinclude <sys/socket.h> 
iinclude <netinet/in.h> 
iinclude <netdb.h> 
iinclude <stdio.h> 
idefine TRUE 1 

1* 
* This program creates a socket and then begins an infinite loop. Each time 
* through the loop it accepts a connection and prints out messages from it. 
* When the connection breaks, or a termination message comes through, the 
* program accepts a new connection. 
*1 

main () 
{ 

int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[1024]; 
int rval; 
int i; 

/ * Create socket. * / 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

/ * Name socket using wildcards. * / 
server. sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin-port = 0; 
if (bind(sock, (struct sockaddr *)&server, 

sizeof server ) < 0) { 
perror("binding stream socket"); 
exit(l); 

/ * Find out assigned port number and print it out. * / 
length = sizeof server; 
if (getsockname(sock, (struct sockaddr *)&server, 

&length) < 0) { 
perror("getting socket name"); 
exit(l); 

printf("Socket port i%d\n", ntohs(server.sin-port»; 

/ * Start accepting connections. * / 
listen(sock, 5); 
do { 

sun 
microsystems 

msgsock = accept (sock, 
(struct sockaddr *) 0, (int *) 0); 

if (msgsock == -1) 
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Figure 10-11 

1* 

perror("accept"); 
else do { 

bzero(buf, sizeof buf ); 
if «rval = read(msgsock, buf, 1024» < 0) 

perror("reading stream message"); 
i = 0; 
if (rval == 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval != 0); 

close(msgsock); 
while (TRUE); 

* Since this program has an infinite loop. the socket "sock" is 
* never explicitly closed. However, all sockets will be closed 
* automatically when a process is killed or terminates normally. 
*1 
exit(O); 

Using select () to Check/or Pending Connections 

*include <sys/types.h> 
*include <sys/socket.h> 
*include <sys/time.h> 
*include <netinet/in.h> 
*include <netdb.h> 
*include <stdio.h> 
*define TRUE 1 

1* 
* This program uses select to check that someone is trying to connect 
* before calling accept. 
*1 

main () 
{ 

int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[l024]; 
int rval; 
fd set ready; 
struct timeval to; 

/ * Create socket. * / 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 
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/ * Name socket using wildcards. * / 
server. sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin-port = 0; 
if (bind(sock, (struct sockaddr *)&server, 

sizeof server) < 0) { 
perror("binding stream socket"); 
exit(l); 

/ * Find out assigned port number and print it out. * / 
length = sizeof server; 
if (getsockname(sock, (struct sockaddr *)&server, 

&length) < 0) { 
perror("getting socket name"); 
exit(l); 

printf("Socket port #%d\n", ntohs(server.sin-port»; 

/ * Start accepting connections. * / 
listen (sock, 5); 
do { 

FD_ZERO (&ready) ; 
FD_SET(sock, &ready); 
to. tv_sec = 5; 
if (select (sock + 1, &ready, (fd_set *) 0, 

(fd_set *) 0, &to) < 0) { 
perror("select"); 
continue; 

if (FD_ISSET(sock, &ready» { 
msgsock = accept(sock, (struct sockaddr *)0, 

(int *)0); 
if (msgsock == -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof buf); 
if «rval = read(msgsock, buf, 1024» < 0) 

perror("reading stream message"); 
else if (rval == 0) 

printf(nEnding connection\nn); 
else 

printf(n-->%s\nn, buf); 
while (rval > 0); 

close(msgsock); 
else 

printf("Do something else\nn); 
while (TRUE); 

exit(O); 
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Figure 10-12 

Figure 10-13 

Establishing a Stream Connection 

Process 1 

Q 

o 
Process 1 

Q 

Initiating a UNIX Domain Stream Connection 

iinclude <sys/types.h> 
iinclude <sys/socket.h> 
iinclude <sys/un.h> 
iinclude <stdio.h> 

Process 2 

Q 

Process 2 

Q 
o 

o 

a bAMEI 

idefine DATA "Half a league, half a league . . " 

1* 
* This program connects to the socket named in the command line and sends a 
* one line message to that socket. The form of the command line is: 
*ustreamwrite pathname 
*1 
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main (argc, argv) 
int argc; 
char *argv [] ; 

int sock; 
struct sockaddr un server; 
char buf[1024]; 

/ * Create socket. * / 
sock = socket(AF_UNIX, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

/ * Connect socket using name specified by command line. * / 
server. sun_family = AF_UNIX; 
strcpy(server.sun-path, argv[l]); 

if (connect (sock, (struct sockaddr *)&server, 
sizeof(struct sockaddr_un» < 0) { 

close(sock); 
perror("connecting stream socket"); 
exit(l); 

if (write (sock, DATA, sizeof(DATA» < 0) 
perror("writing on stream socket"); 

exit(O); 

Accepting a UNIX Domain Stream Connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

#define NAME "socket" 

1* 
* This program creates a socket in the UNIX domain and binds a name to it. 
* After printing the socket's name it begins a loop. Each time through the 
* loop it accepts a connection and prints out messages from it. When the 
* connection breaks, or a termination message comes through, the program 
* accepts a new connection. 
*1 

main () 
{ 

int sock, msgsock, rval; 
struct sockaddr un server; 
char buf[l024]; 
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/ * Create socket. * / 
sock = socket (AF_UNIX, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

/ * Name socket using file system name. * / 
server. sun_family = AF_UNIX; 
strcpy(server.sun-path, NAME); 
if (bind(sock, (struct sockaddr *)&server, 

sizeof(struct sockaddr_un» < 0) { 
perror("binding stream socket"); 
exit(l); 

printf("Socket has name %s\n", server.sunyath); 
/ * Start accepting connections. * / 
listen(sock, 5); 
for (;;) { 

1* 

msgsock = accept(sock, (struct sockaddr *)0, 
(int *)0); 

if (msgsock == -1) 
perror("accept"); 

else do { 
bzero(buf, sizeof buf); 
if «rval = read(msgsock, buf, 1024» < 0) 

perror("reading stream message"); 
else if (rval == 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval > 0); 

close(msgsock); 

* The following statements are not executed, because they follow an 
* infinite loop. However, most ordinary programs will not run 
* forever. In the UNIX domain it is necessary to tell the file 
* system that one is through using NAME. In most programs one uses 
* the call unlink as below. Since the user will have to Idll this 
* program, it will be necessary to remove the name by a command from 
* the shell. 
*1 
close(sock); 
unlink(NAME); 
exit(O); 
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SunOS has several system calls for reading and writing infonnation. The sim
plest calls are read () and wr i teO. write () takes as arguments the index 
of a descriptor, a pointer to a buffer containing the data, and the size of the data. 
The descriptor may indicate either a file or a connected socket. "Connected" can 
mean either a connected stream socket (as described in the Connections section 
below, or a datagram socket for which a connect(3) call has provided a default 
destination. read () also takes a descriptor that indicates either a file or a 
socket. wr it e () requires a connected socket since no destination is specified 
in the parameters of the system call. read () can be used for either a connected 
or an unconnected socket. These calls are, therefore, quite flexible and may be 
used to write applications that make no assumptions about the source of their 
input or the destination of their output. There are variations on read () and 
wr it e () that allow the source and destination of the input and output to use 
several separate buffers, while retaining the flexibility to handle both files and 
sockets. These are readv () and writevO, for read and write vector. 

It is sometimes necessary to send high priority data over a connection that may 
have unread low priority data at the other end. For example, a user interface pro
cess may be interpreting commands and sending them on to another process 
through a stream socket connection. The user interface may have filled the 
stream with as yet unprocessed requests when the user types a command to can
cel all outstanding requests. Rather than have the high priority data wait to be 
processed after the low priority data, it is possible to send it as out-oj-band 
(OOB) data. The notification of pending OOB data results in the generation of a 
SIGURG signal, if this signal has been enabled (see the signal (3) and 
sigvec (3) man pages). See An Advanced Socket-Based Interprocess Com
munications Tutorial for a more complete description of the OOB mechanism. 

There are a pair of calls similar to read () and wr i te () that allow options, 
including sending and receiving OOB information; these are send () and 
recvO. These calls are used only with sockets; specifying a descriptor for a file 
will result in the return of an error status. These calls also allow peeking at data 
in a stream. That is, they allow a process to read data without removing the data 
from the stream. One use of this facility is to read ahead in a stream to determine 
the size of the next item to be read. When not using these options, these calls 
have the same functions as read () and writeO. 

To send datagrams, one must be allowed to specify the destination. The call 
sendto () takes a destination address as an argument and is therefore used for 
sending datagrams. The call recvfrorn () is often used to read datagrams, 
since this call returns the address of the sender, if it is available, along with the 
data. If the identity of the sender does not matter, one may use read () or 
recv (). 

NOTE Sockets under TU Emulation: A call to recvfrom() or recvmsg() should 
return the source address if the user supplies a nun-NULL buffer. Under emula
tion, though, if the user specifies MSG _PEEK and/or MSG _ OOB then the source 
address will not be returned. This is only a minor problem. 

Finally, there are a pair of calls that allow the sending and receiving of messages 
from multiple buffers, when the address of the recipient must be specified. These 
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are sendmsg () and recvmsg ( ). These calls are actually quite general and 
have other uses, including, in the UNIX domain, the transmission of a file 
descriptor from one process to another. 

The various options for reading and writing, together with their parameters, are 
shown in Figure 10-15 below. The parameters for each system call reflect the 
differences in function of the different calls. In the examples given in this 
chapter, the calls read () and wri te () have been used whenever possible. 

Figure 10-15 Varieties of Read and Write Commands 
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1* 
* The variable descriptor may be the descriptor of either a file 
* or of a socket. 
*1 
cc = read(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

1* 
* An iovec can include several source buffers. 
*1 
cc = readv(descriptor, iov, iovcnt) 
int cc, descriptor; struct iovec *iov; int iovcnt; 

cc = write(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

cc = writev(descriptor, iovec, ioveclen) 
int cc, descriptor; struct iovec *iovec; int iovecleni 

1* 
* The variable Ilsock" must be the descriptor of a socket. 
* Flags may include MSG_OOB and MSG_PEEK. 

*1 
cc = send(sock, msg, len, flags) 
int cc, sock; char *msg; int len, flags; 

cc = sendto(sock, msg, len, flags, to, tolen) 
int cc, sock; char *msg; int len, flags; 
struct sockaddr *to; int tolen; 

cc = sendmsg(sock, msg, flags) 
int cc, sock; struct msghdr msg[]; int flags; 

cc = recv(sock, buf, len, flags) 
int cc, sock; char *buf; int len, flags; 

cc = recvfrom(sock, buf, len, flags, from, fromlen) 
int cc, sock; char *buf; int len, flags; 
struct sockaddr *from; int *fromlen; 

cc = recvmsg(sock, msg, flags) 
int cc, socket; struct msghdr msg[]; int flags; 

Note that the meaning assigned to the msg_accrights and 
msg_accrightslen fields of the msghdr structure used in the recvmsg () 
and sendmsg () system calls is protocol-dependent. See the ScatterlGather 
and Exchanging Access Rights section of the System Services Overview for 
details about the msghdr structure. 
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10.10. Choices 

10.11. What to do Next 

This chapter has presented examples of some of the fonns of communication 
supported by SunOS. These have been presented in an order chosen for ease of 
presentation. It is useful to review these options emphasizing the factors that 
make each attractive. 

Pipes have the advantage of portability, in that they are supported in all UNIX 
systems. They also are relatively simple to use. Socketpairs share this simplicity 
and have the additional advantage of allowing bidirectional communication. The 
major shortcoming of these mechanisms is that they require communicating 
processes to be descendants of a common process. They do not allow inter
machine communication. 

The two communication domains, the UNIX domain and the Internet domain, 
allow processes with no common ancestor to communicate. Of the two, only the 
Internet domain allows communication between machines. This makes the Inter
net domain a necessary choice for processes running on separate machines. 

The choice between datagrams and socket stream communication is best made 
by carefully considering the semantic and performance requirements of the appli
cation. Streams can be both advantageous and disadvantageous. One disadvan
tage is that, since a process is only allowed a limited number of open file descrip
tors (normally 64) there is a limit on the number of streams that a process can 
have open at any given time. This can cause problems if a single server must 
talk with a large number of clients. Another is that for delivering a short mes
sage the stream setup and teardown time can be unnecessarily long. Weighed 
against this are the reliability built into the streams. This will often be the decid
ing factor in favor of streams. 

Many of the examples presented here can serve as models for multiprocess pro
grams and for programs distributed across several machines. In developing a 
new mUltiprocess program, it is often easiest to first write the code to create the 
processes and communication paths. After this code is debugged, the code 
specific to the application can be added. 

Further documentation of the socket-based IPC mechanisms can be found in An 
Advanced Socket-Based lnterprocess Communications Tutorial. More detailed 
infonnation about particular calls and protocols is provided in the SunOS Refer
enceManual. 
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An Advanced Socket-Based 
Interprocess Communications Tutorial 

W ARNlNG Socket-based interprocess communication (lPC), while still supported, is no 
longer the preferred framework for transport-level programming. S ocket
based lPC has been superceded as the "standard" method of accessing network 
protocols by a set of OSl-compatible transport mechanisms based upon 
STREAMS and accessed by way of a Transport Library Interface (TLI). For 
details on the TLl, see the previous chapter, Transport LevellnterJace Pro
gramming. 

If you are building a new network application that requires direct access to tran
sport facilities, use the TLI mechanisms. If you do not require such direct access, 
Remote Procedure Calls (RPC) are the preferred programming framework - see 
the Remote Procedure Call Programming Guide section of this manual for 
details. New programs should not be based on sockets. 

SunOS contains socket-based IPC mechanisms derived from Berkeley UNIX. 
This chapter describes the fine points of those mechanisms by supplementing the 
more introductory infonnation given in A Socket-Based Inter process Communi
cations Tutorial. The majority of the chapter considers the use of these primi
tives in developing network applications. The reader is expected to be familiar 
with the C programming language. 

Socket-based interprocess communication was first introduced in 4.2BSD and 
subsequently incorporated into SunOS. The design of these facilities was the 
result of more than two years of discussion and research, and they incorporated 
many ideas from then-current research, while maintaining the UNIX philosophy 
of simplicity and conciseness. 

Prior to the 4.2BSD IPC facilities, the only standard mechanism that allowed two 
processes to communicate were pipes (the mpx files that were in Version 7 were 
experimental). Unfortunately, pipes are very restrictive in that the two communi
cating processes must be related through a common ancestor. Further, the 
semantics of pipes makes them almost impossible to maintain in a distributed 
environment. 

Earlier attempts at extending the IPC facilities of the UNIX system have met 
with mixed reaction. The majority of the problems have been related to the fact 
that these facilities have been tied to the UNIX file system, either through nam
ing or implementation. Consequently, the 4.3BSD IPC facilities were designed 
as a totally independent subsystem. They allow processes to rendezvous in many 
ways. Processes may rendezvous through a UNIX file system-like name space (a 
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Socket Types 

space where all names are path names) as well as through a network name space. 
In fact, new name spaces may be added at a future time with only minor changes 
visible to users. Further, the communication facilities have been extended to 
include more than the simple byte stream provided by a pipe. 

This chapter provides a high-level description of the socket-based IPC facilities 
and their use. It is designed to complement the manual pages for the IPC primi
tives with examples of their use. After this initial description, come four more 
sections. The Basics section introduces the IPC-related system calls and the 
basic model of communication. The Library Routines section describes some of 
the supporting library routines that users may find useful in constructing distri
buted applications. The Client/Server Model section is concerned with the 
client/server model used in developing applications and includes examples of the 
two major types of selVers. The Advanced Topics section delves into advanced 
topics that sophisticated users are likely to encounter when using the these IPC 
facilities. 

The basic building block for communication is the socketO. A socket is an 
endpoint of communication to which a name may be bound. Each socket in use 
has a type and one or more associated processes. Sockets exist within communi
cations domains. Domains are abstractions which imply both an addressing 
structure (address family) and a set of protocols which implement various socket 
types within the domain (protocol family). Communications domains are intro
duced to bundle common properties of processes communicating through sock
ets. One such property is the scheme used to name sockets. For example, in the 
UNIX domain sockets are named with UNIX path names; e.g. a socket may be 
named Idev Ifoo. Sockets nonnally exchange data only with sockets in the 
same domain (it may be possible to cross between communications domains, but 
only if some translation process is perfonned). The 4.3BSD, and thus the 
socket-based SunOS IPC facilities support several separate communications 
domains: notably the UNIX domain, for on-system communication, and the 
Internet domain, which is used by processes that communicate using the DARPA 
standard communication protocols. The underlying communication facilities 
provided by these domains have a significant influence on the internal system 
implementation as well as the interface to socket facilities available to a user. An 
example of the latter is that a socket operating in the UNIX domain sees a subset 
of the error conditions that are possible when operating in the Internet, DECNET, 
X.25, or OSI domains. 

Sockets are typed according to the communication properties visible to a user. 
Processes are presumed to communicate only between sockets of the same type, 
although there is nothing that prevents communication between sockets of dif
ferent types should the underlying communication protocols support this. 

There are several types of sockets currently available: 

o A stream socket provides for the bidirectional, reliable, sequenced, and 
unduplicated flow of data without record boundaries. Aside from the 
bidirectionality of data flow, a pair of connected stream sockets provides an 
interface nearly identical to that of pipes8. 

8 In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been 
implemented internally as simply a pair of connected stream sockets. 
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Cl A datagram socket supports bidirectional flow of data that is not promised to 
be sequenced, reliable, or unduplicated. That is, a process receiving mes
sages on a datagram socket may find messages duplicated, and, possibly, in 
an order different from the order in which they were sent. An important 
characteristic of a datagram socket is that record boundaries in data are 
preserved. Datagram sockets closely model the facilities found in many 
contemporary packet switched networks such as the Ethernet. 

Cl A raw socket provides users access to the underlying communication proto
cols which support socket abstractions. These sockets are normally 
datagram oriented, though their exact characteristics are dependent on the 
interface provided by the protocol. Raw sockets are not intended for the 
general user; they have been provided mainly for those interested in 
developing new communication protocols, or for gaining access to some of 
the more esoteric facilities of an existing protocol. The use of raw sockets is 
considered in the Advanced Topics section below. 

Another potential socket type with interesting properties is the sequenced packet 
socket. Such a socket would have properties similar to those of a stream socket, 
except that it would preserve record boundaries. There is currently no support 
for this type of socket. 

Another potential socket type which has interesting properties is the reliably 
delivered message socket. The reliably delivered message socket has similar 
properties to a datagram socket, but with reliable delivery. There is currently no 
support for this type of socket. 

To create a socket, the socket () system call is used: 

s = socket(domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of 
the specified type. A particular protocol may also be requested. If the protocol is 
left unspecified (a value of 0), the system will select an appropriate protocol from 
those that comprise the domain and that may be used to support the requested 
socket type. The user is returned a descriptor (a small integer number) that may 
be used in later system calls that operate on sockets. The domain is specified as 
one of the manifest constants defined in the file <sys/ socket. h>. For the 
UNIX domain the constant is 

AF _UNIX; for the Internet domain, it is AF _INET9. The socket types are also 
defined in this file and one of SOCK_STREAM, SOCK_DGRAM, or 
SOCK_RAW must be specified. To create a stream socket in the Internet domain 
the following call might be used: 

s = socket(AF_INET, SOCK_STREAM, 0); 

This call would result in a stream socket being created with the TCP protocol 

9 The manifest constants are named AF _whatever as they indicate the "address format" to use in interpreting 
names. 
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providing the underlying communication support. To create a datagram socket 
for on-machine use the call might be: 

s = socket(AF_UNIX, SOCK_DGRAM, 0); 

The default protocol (used when the protocol argument to the socket () call is 
0) should be correct for most every situation. However, it is possible to specify a 
protocol other than the default; this will be covered in the Advanced Topics sec
tion below. 

There are several reasons a socket call may fail. Aside from the rare occurrence 
of lack of memory (ENOBUFS), a socket request may fail due to a request for an 
unknown protocol (EPROTONOSUPPORT), or a request for a type of socket for 
which there is no supporting protocol (EPROTOTYPE). 

A socket is created without a name. Until a name is bound to a socket, processes 
have no way to reference it and, consequently, no messages may be received on 
it. Communicating processes are bound by an association. In the Internet 
domain, an association is composed of local and foreign addresses, and local and 
foreign ports, while in the UNIX domain, an association is composed of local and 
foreign path names (the phrase "foreign pathname" means a pathname created by 
a foreign process, not a pathname on a foreign system). In most domains, associ
ations must be unique. In the Internet domain there may never be duplicate 

<protocol, local address, local port,/oreign address,/oreign port> 

tuples. UNIX domain sockets need not always be bound to a name, but when 
bound there may never be duplicate 

<protocol, local pathname,/oreign pathname> 

tuples. Currently, the pathnames may not refer to files already existing on the 
system, though this may change in future releases. 

The bind () system call allows a process to specify half of an association, 

<local address, local port> (or <local pathname» 

while the connect () and accept () primitives are used to complete a 
socket's association. 

In the Internet domain, binding names to sockets can be fairly complex. For
tunately, it is usually not necessary to specifically bind an address and port 
number to a socket, because the connect () and send () calls will automati
cally bind an appropriate address if they are used with an unbound socket. 

The bind () system call is used as follows: 

bind(s, name, namelen); 

The bound name is a variable length byte string that is interpreted by the support
ing protocol(s). Its interpretation may vary between communication domains 
(this is one of the properties that comprise a domain). As mentioned, Internet 
domain names contain an Internet address and port number. In the UNIX 
domain, names contain a path name and a family, which is always AF _UNIX. If 
one wanted to bind the name / tmp / f 00 to a UNIX domain socket, the 
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following code would be used: 10 

*include <sys/un.h> 

struct sockaddr_un addr; 

strcpy(addr.sunyath, "/tmp/foo"); 
addr.sun_family = AF_UNIX; 
bind(s, (struct sockaddr *) &addr, strlen(addr.sunyath) + 

sizeof (addr.sun_familY»i 

Note that in detennining the size of a UNIX domain address null bytes are not 
counted, which is why strlen () is used. In the current implementation of 
UNIX domain IPC, the file name referred to in addr. sun_path is created as a 
socket in the system file space. The caller must, therefore, have write permission 
in the directory where addr. sun_path is to reside, and this file should be 
deleted by the caller when it is no longer needed. Future versions may not create 
this file. 

In binding an Internet address things become more complicated. The actual call 
is similar, 

*include <sys/types.h> 
*include <netinet/in.h> 

struct sockaddr_in sin; 

bind(s, (struct sockaddr *) &sin, sizeof sin); 

but the selection of what to place in the address sin requires some discussion. 
We will come back to the problem of formulating Internet addresses in the 
Library Routines section when the library routines used in name resolution are 
discussed. 

Connection establishment is usually asymmetric, with one process a client and 
the other a server. The server, when willing to offer its advertised services, binds 
a socket to a well-known address associated with the service and then passively 
listens on its socket. It is then possible for an unrelated process to rendezvous 
with the server. The client requests services from the server by initiating a con
nection to the server's socket. On the client side the connect () call is used to 
initiate a connection. Using the UNIX domain, this might appear as, 

10 Beware of the tendency to call the "addr" structure "sun", which collides with a symbol predefined by the 
C preprocessor. 
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struct sockaddr_un server; 

connect(s, (struct sockaddr *)&server, 
strlen(server.sun-path) + sizeof (server.sun_family); 

while in the Internet domain, 

struct sockaddr in server; 

connect(s, (struct sockaddr *)&server, sizeof server); 

where server in the example above would contain either the UNIX pathname, or 
the Internet address and port number of the server to which the client process 
wishes to speak. If the client process's socket is unbound at the time of the con
nect call, the system will automatically select and bind a name to the socket if 
necessary. See the Signals and Process Groups section below. This is the usual 
way that local addresses are bound to a socket. 

An error is returned if the connection was unsuccessful (however, any name 
automatically bound by the system remains). Otherwise, the socket is associated 
with the server and data transfer may begin. Some of the more common errors 
returned when a connection attempt fails are: 

ETIMEDOUT 
After failing to establish a connection for a period of time, the system 
decided there was no point in retrying the connection attempt any more. 
This usually occurs because the destination host is down, or because prob
lems in the network resulted in transmissions being lost. 

ECONNREFUSED 
The host refused service for some reason. This is usually due to a server 
process not being present at the requested name. 

ENETDO~orEHOSTDO~ 

These operational errors are returned based on status infonnation delivered 
to the client host by the underlying communication services. 

ENETUNREACHorEHOSTUNREACH 
These operational errors can occur either because the network or host is un
known (no route to the network or host is present), or because of status infor
mation returned by intennediate gateways or switching nodes. Many times 
the status returned is not sufficient to distinguish a network being down from 
a host being down, in which case the system indicates the entire network is 
unreachable. 

For the server to receive a client's connection it must perform two steps after 
binding its socket. The first is to indicate a willingness to listen for incoming 
connection requests: 

listen(s, 5); 

The second parameter to the listen () call specifies the maximum number of 

Revision A, of 27 March 1990 



Data Transfer 

Chapter 11 - An Advanced Socket-Based Interprocess Communications Tutorial 285 

outstanding connections that may be queued awaiting acceptance by the server 
process; this number may be limited by the system. Should a connection be 
requested while the queue is full, the connection will not be refused, but rather 
the individual messages that comprise the request will be ignored. This gives a 
harried server time to make room in its pending connection queue while the 
client retries the connection request. Had the connection been returned with the 
ECONNREFUSED error, the client would be unable to tell if the server was up or 
not. As it is now it is still possible to get the ET IMEDOUT error back, though 
this is unlikely. The backlog figure supplied with the listen call is currently lim
ited by the system to a maximum of 5 pending connections on anyone queue. 
This avoids the problem of processes hogging system resources by setting an 
infinite backlog, then ignoring all connection requests. 

With a socket marked as listening, a server may accept () a connection: 

struct sockaddr_in from; 

sizeof from; fromlen 
newsock accept (s, (struct sockaddr *) &from, &fromlen); 

(For the UNIX domain,jrom would be declared as a struct sockaddr _un, 
but nothing different would need to be done as far asfromlen is concerned. In 
the examples that follow, only Internet routines will be discussed.) A new 
descriptor is returned on receipt of a connection (along with a new socket). If the 
server wishes to find out who its client is, it may supply a buffer for the client 
socket's name. The value-result parameter fromlen is initialized by the server to 
indicate how much space is associated with/rom, then modified on return to 
reflect the true size of the name. If the client's name is not of interest, the second 
parameter may be a null pointer. 

accept () normally blocks. That is, accept () will not return until a connec
tion is available or the system call is interrupted by a signal to the process. 
Further, there is no way for a process to indicate it will accept connections from 
only a specific individual, or individuals. It is up to the user process to consider 
who the connection is from and close down the connection if it does not wish to 
speak to the process. If the server process wants to accept connections on more 
than one socket, or wants to avoid blocking on the accept call, there are alterna
tives; they will be considered in the Advanced Topics section below. 

With a connection established, data may begin to flow. To send and receive data 
there are a number of possible calls. With the peer entity at each end of a con
nection anchored, a user can send or receive a message without specifying the 
peer. As one might expect, in this case, then the nonnal read () and write () 
system calls are usable, 

write(s, buf, sizeof buf); 
read(s, buf, sizeof buf); 

In addition to read () and wr i teO, the calls send () and recv () may be 
used: 
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send(s, buf, sizeof buf, flags); 
recv(s, buf, sizeof buf, flags); 

While send () and recv () are virtually identical to read () and writeO, 
the extrajlags argument is important. The flags, defined in <sys / socket. h>, 
may be specified as a non-zero value if one or more of the following is required: 

MSG OOB send/receive out of band data 
MSG PEEK look at data without reading 
MSG DONTROUTE send data without routing packets (internal only) 

Out of band data is a notion specific to stream sockets, and one that we will not 
immediately consider. The option to have data sent without routing applied to 
the outgoing packets is currently used only by the routing table management pro
cess, and is unlikely to be of interest to the casual user. However, the ability to 
preview data is of interest. When MSG_PEEK is specified with a recv () call, 
any data present is returned to the user, but treated as still "unread". That is, the 
next read () or recv () call applied to the socket will return the data previ
ously previewed. 

Once a socket is no longer of interest, it may be discarded by applying a 
close () to the descriptor, 

close(s); 

If data is associated with a socket that promises reliable delivery (e.g. a stream 
socket) when a close takes place, the system will continue to attempt to transfer 
the data. However, after a fairly long period of time, if the data is still 
undelivered, it will be discarded. Should a user have no use for any pending 
data, it may perform a shutdown () on the socket prior to closing it. This call 
is of the fonn: 

shutdown(s, how); 

where how is 0 if the user is no longer interested in reading data, 1 if no more 
data will be sent, or 2 if no data is to be sent or received. 

To this point we have been concerned mostly with sockets that follow a connec
tion oriented model. However, there is also support for connectionless interac
tions typical of the datagram facilities found in contemporary packet switched 
networks. A datagram socket provides a symmetric interface to data exchange. 
While processes are still likely to be client and server, there is no requirement for 
connection establishment. Instead, each message includes the destination 
address. 

Datagram sockets are created as before. If a particular local address is needed, 
the bind () operation must precede the first data transmission. Otherwise, the 
system will set the local address and/or port when data is first sent. To send data, 
the sendto () primitive is used, 

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen); 

The s, buj, bujlen, andjlags parameters are used as before. The to and tolen 
values are used to indicate the address of the intended recipient of the message. 
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When using an unreliable datagram interface, it is unlikely that any errors will be 
reported to the sender. When information is present locally to recognize a mes
sage that can not be delivered (for instance when a network is unreachable), the 
call will return -1 and the global value errno will contain an error number. 

To receive messages on an unconnected datagram socket, the recvfrom () 
primitive is provided: 

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, 
&fromlen); 

Once again, thefromlen parameter is handled in a value-result fashion, initially 
containing the size of the from buffer, and modified on return to indicate the 
actual size of the address from which the datagram was received. 

In addition to the two calls mentioned above, datagram sockets may also use the 
connect () call to associate a socket with a specific destination address. In 
this case, any data sent on the socket will automatically be addressed to the con
nected peer, and only data received from that peer will be delivered to the user. 
Only one connected address is permitted for each socket at one time; a second 
connect will change the destination address, and a connect to a null address 
(domain AF UN5PEC) will disconnect. Connect requests on datagram sockets 
return immediately, as this simply results in the system recording the peer's 
address (as compared to a stream socket, where a connect request initiates estab
lishment of an end to end connection). accept () and listen () are not used 
with datagram sockets. 

While a datagram socket is connected, errors from recent send () calls may be 
returned asynchronously. These errors may be reported on subsequent operations 
on the socket, or a special socket option used with getsockopt, 
50_ERROR, may be used to interrogate the error status. A select () for read
ing or writing will return true when an error indication has been received. The 
next operation will return the error, and the error status is cleared. Other of the 
less important details of datagram sockets are described in the Advanced Topics 
section below. 
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Input/Output Multiplexing One last facility often used in developing applications is the ability to multiplex 
i/o requests among multiple sockets and/or files. This is done using the 
select () call: 

#include <sys/time.h> 
#include <sys/types.h> 

fd set readmask, writemask, exceptmask; 
struct timeval timeout; 

select(nfds, &readmask, &writemask, &exceptmask, &timeout); 

select () takes as arguments pointers to three sets, one for the set of file 
descriptors on which the caller wishes to be able to read data, one for those 
descriptors to which data is to be written, and one for which exceptional condi
tions are pending; out-of-band data is the only exceptional condition currently 
implemented by the socket abstraction. If the user is not interested in certain 
conditions (Le., read, write, or exceptions), the corresponding argument to the 
select () should be a properly cast null pointer. 

Each set is actually a structure containing an array of long integer bit masks; the 
size of the array is set by the definition FD _SET SIZE. The array is long enough 
to hold one bit for each ofFD _SETSIZE file descriptors. 

The macros FD _SET lfd, &mask} and FD _ CLR (jd, &mask) have been pro
vided for adding and removing file descriptor fd in the set mask. The set should 
be zeroed before use, and the macro FD _ZERO ( &mask) has been provided to 
clear the set mask. The parameter nfds in the select () call specifies the range 
of file descriptors (Le. one plus the value of the largest descriptor) to be exam
ined in a set. 

A timeout value may be specified if the selection is not to last more than a 
predetennined period of time. If the fields in timeout are set to 0, the selection 
takes the fonn of a poll, returning immediately. If the last parameter is a null 
pointer, the selection will block indefinitelyll. select () nonnally returns the 
number of file descriptors selected; if the se Ie ct () call returns due to the 
timeout expiring, then the value 0 is returned. If the select () tenninates 
because of an error or interruption, a -1 is returned with the error number in 
errno, and with the file descriptor masks unchanged. 

Assuming a successful return, the three sets will indicate which file descriptors 
are ready to be read from, written to, or have exceptional conditions pending. 
The status of a file descriptor in a select mask may be tested with the 
FD _ ISSET lfd, &mask) macro, which returns a non-zero value iffd is a 
member of the set mask, and 0 if it is not. 

11 To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received 
by the caller, interrupting the system call. 
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To detennine if there are connections waiting on a socket to be used with an 
accept () call, select () can be used, followed by a FD ISSET (jd, 
&mask) macro to check for read readiness on the appropriate socket If 
FD_ISSET returns a non-zero value, indicating pennission to read, then a con
nection is pending on the socket. 

As an example, to read data from two sockets, sl and s2 as it is available from 
each and with a one-second timeout, the following code might be used: 

iinclude <sys/time.h> 
iinclude <sys/types.h> 

fd set read_template; 
struct timeval wait; 

for (;;) { 
wait.tv_sec = 1; 
wait.tv_usec = 0; 

/ * one second * / 

FD_SET(sl, &read_template); 
FD_SET(s2, &read_template); 

nb = select (FD_SETSIZE, &read_template, (fd_set *) 0, 
(fd_set *) 0, &wait); 

if (nb <= 0) { 
1* 

* An error occurred during the select. or 
* the select timed out. 
*1 
} 

if (FD_ISSET(sl, &read_template» { 
/ * Socket #1 is ready to be read from. * / 

if (FD_ISSET(s2, &read_template» { 
/ * Socket #2 is ready to be read from. * / 

In previous versions of s e 1 e c t 0, its arguments were pointers to integers 
instead of pointers to fd _sets. This type of call will still work as long as the 
number of file descriptors being examined is less than the number of bits in an 
integer; however, the methods illustrated above should be used in all current pro
grams. 

select () provides a synchronous multiplexing scheme. Asynchronous 
notification of output completion, input availability, and exceptional conditions 
is possible through use of the SIGIO and SIGURG signals described in the 
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11.2. Library Routines 

Advanced Topics section below. 

The discussion in the Basics section above indicated the possible need to locate 
and construct network addresses when using the interprocess communication 
facilities in a distributed environment. To aid in this task a number of routines 
have been added to the standard C run-time library. In this section we will con
sider the new routines provided to manipulate network addresses. 

Locating a seJVice on a remote host requires many levels of mapping before 
client and seJVer may communicate. A seJVice is assigned a name that is 
intended for human consumption; e.g. the login server on host monet. This 
name, and the name of the peer host, must then be translated into network 
addresses that are not necessarily suitable for human consumption. Finally, the 
address must then used in locating a physical location and route to the service. 
The specifics of these three mappings are likely to vary between network archi
tectures. For instance, it is desirable for a network to not require hosts to be 
named in such a way that their physical location is known by the client host. 
Instead, underlying seJVices in the network may discover the actual location of 
the host at the time a client host wishes to communicate. This ability to have 
hosts named in a location independent manner may induce overhead in connec
tion establishment, as a discovery process must take place, but allows a host to be 
physically mobile without requiring it to notify its clientele of its current loca
tion. 

Standard routines are provided for mapping host names to network addresses, 
network names to network numbers, protocol names to protocol numbers, and 
service names to port numbers and the appropriate protocol to use in communi
cating with the seJVerprocess. The file <netdb. h> must be included when 
using any of these routines. 
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An Internet host name to address mapping is represented by the h 0 s ten t struc
ture: 

struct hostent { 

} i 

char *h_namei 
char **h_aliasesi 
int h_addrtypei 
int h_lengthi 
char **h_addr_listi 

/ * official name of host * / 
/ * alias list * / 
/* host address type (e.g., AF _I NET) * / 
/ * length of address * / 
/ * list of addresses, null terminated * / 

#define h_addr h addr list[O] /* first address, network byte order */ 

The routine gethostbyname(3N) takes an Internet host name and returns a 
hostent structure, while the routine gethostbyaddr(3N) maps Internet 
host addresses into a hostent structure. The routine inet ntoa(3N) maps an 
Internet host address into an ASCII string for printing by log and error messages. 

The official name of the host and its public aliases are returned by these routines, 
along with the address type (domain) and a null terminated list of variable length 
addresses. This list of addresses is required because it is possible for a host to 
have many addresses, all having the same name. The h _ addr definition is pro
vided for backward compatibility, and is defined to be the first address in the list 
of addresses in the hostent structure. 

The database for these calls is provided either by the Network Information Ser
vice lookup (the preferred alternative), from the / etc/hosts file (see 
ho st s(5)), or by use of the re so 1 ver (5) nameserver. Because of the differ
ences in these databases and their access protocols, the infonnation returned may 
differ. When using the Network Infonnation Service on the host table version of 
gethostbynameQ, only one address will be returned, but all listed aliases will 
be included. The nameserver version may return alternate addresses, but will not 
provide any aliases other than one given as argument. 

As for host names, routines for mapping network names to numbers, and back, 
are provided. These routines return a netent structure: 

1* 
* Assumption here is that a network number 
* fits in 32 bits -- probably a poor one. 
*1 
struct netent { 

char *n_namei /* 
char **n_aliasesi /* 
int n_addrtype; /* 
int n_neti /* 

} ; 

official name of net * / 
alias list * / 
net address type */ 
network number, host byte order */ 

The routines getnetbyname (3N), getnetbynumber (3N), and 
getnetent (3N) are the network counterparts to the host routines described 
above. The routines extract their infonnation from the Network Infonnation 
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Protocol Names 

Service Names 

Service maps hosts. byname and hosts. byaddr or from 
/ etc/ net works. 

For protocols (which are defined in the Network Infonnation Service 
protocols. byname map and / etc/protocols) the protoent structure 
defines the protocol-name mapping used with the routines 
getprotobyname(3N), getprotobynumber(3N), and 
getprotoent(3N): 

struct protoent 

} ; 

char *p_name; 
char **p_aliases; 
int pyroto; 

/ * official protocol name * / 
/ * alias list * / 
/ * protocol number * / 

Information regarding services is a bit more complicated. A service is expected 
to reside at a specific port and employ a particular communication protocol. This 
view is consistent with the Internet domain, but inconsistent with other network 
architectures. Further, a service may reside on multiple ports. If this occurs, the 
higher level library routines will have to be bypassed or extended. Services 
available are contained in the Network Infonnation Service 
services .byname map and the file /etc/services. (Actually, thenarne 
services. byname is a misnomer, since the map actually orders Internet ports 
by number and protocol). 12 A service mapping is described by the servent 
structure: 

struct servent { 

} ; 

char *s_name; 
char **s_aliases; 
int syort; 
char *syroto; 

/ * official service name * / 
/ * alias list * / 
/ * port number, network byte order * / 
/ * protocol to use * / 

The routine getservbyname (3N) maps service names to a servent structure 
by specifying a service name and, optionally, a qualifying protocol. Thus the call 

sp = getservbyname("telnet", (char *) 0); 

returns the service specification for a telnet server using any protocol, while the 
call 

sp = getservbyname("telnet", "tcp"); 

returns only that teInet server which uses the TCP protocol. The routines 
getservbyport (3N) and getservent (3N) are also provided. The get
servbyport () routine has an interface similar to that provided by 

12 For details about the association of RPC services with ports, see the Port Mapper Program Protocol 
section of the Network Services chapter. 
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getservbynameO; an optional protocol name may be specified to qualify 
lookups. 

With the support routines described above, an Internet application program 
should rarely have to deal directly with addresses. This allows seIVices to be 
developed as much as possible in a network independent fashion. It is clear, 
however, that purging all network dependencies is very difficult. So long as the 
user is required to supply network addresses when naming services and sockets 
there will always some network dependency in a program. For example, the nor
mal code included in client programs, such as the remote login program, is of the 
form shown in Figure 11-1. (This example will be considered in more detail in 
the Client/Server Model section below.) 

Aside from the address-related data base routines, there are several other routines 
available in the run-time library that are of interest to users. These are intended 
mostly to simplify manipulation of names and addresses. Table 11-1 summarizes 
the routines for manipulating variable length byte strings and handling byte 
swapping of network addresses and values. 

C Run-time Routines 

Call Synopsis 

bemp (sl, s2, n) Compare byte-strings; 0 if same, not 0 otherwise 
beopy(sl, s2, n) Copy n bytes from s 1 to s2 
bzero(base, n) Zero-fill n bytes starting at base 
htonl (val) 32-bit quantity from host into network byte order 
htons (val) 16-bit quantity from host into network byte order 
ntohl (val) 32-bit quantity from network into host byte order 
ntohs (val) 16-bit quantity from network into host byte order 

The byte swapping routines are provided because the operating system expects 
addresses to be supplied in network order. On some architectures, such as the 
VAX, host byte ordering is different than network byte ordering. Consequently, 
programs are sometimes required to byte swap quantities. The library routines 
that return network addresses provide them in network order so that they may 
simply be copied into the structures provided to the system. This implies users 
should encounter the byte swapping problem only when interpreting network 
addresses. For example, if an Internet port is to be printed out the following code 
would be required: 

printf("port number %d\n", ntohs(sp->syort»; 

On machines such as the Sun-3 and Sun-4, where these routines are unneeded, 
they are defined as null macros. 13 

13 Sun-4 (SP ARC) machines do have alignment restrictions which network programmers need to be aware 
of. See Porting Software to SP ARC Systems. 
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Figure 11-1 Remote Login Client Code 

*include <sys/types.h> 
*include <sys/socket.h> 
*include <netinet/in.h> 
*include <stdio.h> 
*include <netdb.h> 

main (argc, argv) 
int argc; 
char *argv[]; 

struct sockaddr_in server; 
struct servent *sp; 
struct hostent *hp; 
int S; 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

fprintf (stderr, 
"rlogin: tcp/login: unknown service\n"); 

exit(l); 

hp = gethostbyname(argv[l]); 
if (hp == NULL) { 

fprintf (stderr, 
"rlogin: %s: unknown host\n", argv[l]); 

exit(2); 

bzero«char *)&server, sizeof server); 
bcopy(hp->h_addr, (char *)&server.sin_addr, 

hp->h_length); 
server. sin_family = hp->h_addrtype; 
server.sin-port = sp->s-port ; 
s = socket (AF_INET, SOCK_STREAM, 0); 
if (s < 0) { 

perror("rlogin: socket"); 
exit(3); 

/ * Connect does the bind/or us * / 

if (connect(s, (struct sockaddr *)&server, 
sizeof server) < 0) { 

perror("rlogin: connect"); 
exit (5) ; 

exit(O); 
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The most commonly used paradigm in constructing distributed applications is the 
client/server model. In this scheme client applications request services from a 
server process. This implies an asymmetry in establishing communication 
between the client and server that has been examined in the Basics section above. 
In this section we will look more closely at the interactions between client and 
server, and consider some of the problems in developing client and server appli
cations. 

The client and server require a well known set of conventions before service may 
be rendered (and accepted). This set of conventions comprises a protocol that 
must be implemented at both ends of a connection. Depending on the situation, 
the protocol may be symmetric or asymmetric. In a symmetric protocol, either 
side may play the master or slave roles. In an asymmetric protocol, one side is 
immutably recognized as the master, with the other as the slave. An example of 
a symmetric protocol is the TELNET protocol used in the Internet for remote ter
minal emulation. An example of an asymmetric protocol is the Internet file 
transfer protocol, FfP. No matter whether the specific protocol used in obtaining 
a service is symmetric or asymmetric, when accessing a service there is a client 
process and a server process. We will first consider the properties of server 
processes, then client processes. 

A server process normally listens at a well known address for service requests. 
That is, the server process remains dormant until a connection is requested by a 
client's connection to the server's address. At such a time the selVer process 
"wakes up" and services the client, performing whatever appropriate actions the 
client requests of it. 

Alternative schemes that use a service server may be used to eliminate a flock of 
server processes clogging the system while remaining donnant most of the time. 
For Internet servers, this scheme has been implemented via inetd, the so called 
"internet super-server." inetd listens at a variety of ports, detennined at start
up by reading a configuration file. When a connection is requested to a port on 
which inetd is listening, inetd executes the appropriate server program to 
handle the client. With this method, clients are unaware that an intermediary 
such as inetd has played any part in the connection. inetd will be described 
in more detail in the Advanced Topics section below. 

In SunOS most servers are accessed at well known Internet addresses or UNIX 
domain names. The form of their main loop is illustrated by the following code 
fonn the remote-login server: 

Figure 11-2 Remote Login Server 

main (argc, argv) 
int argci 
char *argv[]i 

int fi 
struct sockaddr_in fromi 
struct sockaddr_in sini 
struct servent *SPi 
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sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

fprintf(stderr, 
"rlogind: tcp/login: unknown service\n"); 

exit(l); 

#ifndef DEBUG 
/ * Disassociate server from controlling terminal. * / 

#endif 

sin.sinyort 
sin. sin addr 

sp-> S yo rt ; / * Restricted port * / 
INADDR_ANY; 

f = socket(AF_INET, SOCK_STREAM, 0); 

if (bind(f, (struct sockaddr *)&sin, sizeof sin) < 0) { 

listen(f, 5); 
for (;;) { 

int g, len = sizeof from; 

g = accept(f, (struct sockaddr *) &from, &len); 
if (g < 0) { 

if (errno != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %m"); 

continue; 

if (fork () == 0) { 

close(f); 
doit(g, &from); 

close(g); 

exit(O); 

The first step taken by the server is look up its service definition: 

sp = getservbyname(nlogin", "tcp"); 
if (sp == NULL) { 

fprintf(stderr, 
"rlogind: tcp/login: unknown service\n"); 

exit(l); 

The result of the getservbyname () call is used in later portions of the code 
to define the Internet port at which it listens for service requests (indicated by a 
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connection). Some standard port numbers are given in the file 
/usr/ include/netinet/ in. h for backward compatibility purposes. 

Step two is to disassociate the server from the controlling terminal of its invoker: 

for (i = getdtablesize()-l; i >= 0; --i) 
close(i); 

open (n/dev/null n , O_RDONLY); 
dup2(0, 1); 
dup2(0, 2); 

i = open(n/dev/tty", O_RDWR); 
if (i >= 0) { 

ioctl(i, TIOCNOTTY, 0); 
close(i); 

This step is important as the server will likely not want to receive signals 
delivered to the process group of the controlling terminal. Note, however, that 
once a server has disassociated itself it can no longer send reports of errors to a 
terminal, and must log errors via syslogO. 

Once a server has established a pristine environment, it creates a socket and 
begins accepting service requests. The bind {} call is required to insure the 
server listens at its expected location. It should be noted that the remote login 
server listens at a restricted port number, and must therefore be run with a user-id 
of root. This concept of a "restricted port number" is covered in the Advanced 
Topics section below. 

The main body of the loop is fairly simple: 

for (;;) { 
int g, len = sizeof from; 

g = accept(f, (struct sockaddr *)&from, &len); 
if (g < 0) { 

if (errno != EINTR) 
syslog(LOG_ERR, nrlogind: accept: %mn); 

continue; 

if ( for k () == 0) { / * Child * / 
close(f); 
doit(g, &from); 

close(g); /* Parent */ 

An accept {} call blocks the server until a client requests service. This call 
could return a failure status if the call is interrupted by a signal such as 
SIGCHLD (to be discussed in the Advanced Topics section below.) Therefore, 
the return value from accept {} is checked to insure a connection has actually 
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Clients 

been established, and an error report is logged via syslog () if an error has 
occurred. 

With a connection in hand, the server then forks a child process and invokes the 
main body of the remote login protocol processing. Note how the socket used by 
the parent for queuing connection requests is closed in the child, while the socket 
created as a result of the accept () is closed in the parent. The address of the 
client is also handed the doi t () routine because it requires it in authenticating 
clients. 

The client side of the remote login service was shown earlier in Figure 11-1. 
One can see the separate, asymmetric roles of the client and server clearly in the 
code. The server is a passive entity, listening for client connections, while the 
client process is an active entity, initiating a connection when invoked. 

Let us consider more closely the steps taken by the client remote login process. 
As in the server process, the first step is to locate the service definition for a 
remote login: 

sp = getservbyname(nlogin", "tcpn); 
if (sp == NULL) { 

fprintf (stderr, 
nrlogin: tcp/login: unknown service\nn); 

exit(l); 

Next the destination host is looked up with a gethostbyname () call: 

hp = gethostbyname(argv[l]); 
if (hp == NULL) { 

fprintf(stderr, "rlogin: is: unknown host\nn, argv[l]); 
exit(2); 

With this accomplished, all that is required is to establish a connection to the 
server at the requested host and start up the remote login protocol. The address 
buffer is cleared, then filled in with the Internet address of the foreign host and 
the port number at which the login process resides on the foreign host: 

bzero«char *)&server, sizeof server); 
bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length); 
server. sin_family = hp->h_addrtype; 
server.sin-port = sp->s-port ; 

A socket is created, and a connection initiated. Note that connect () implicitly 
perfonns a bind () cali, since s is unbound. 
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s = socket (hp->h_addrtype, SOCK_STREAM, 0); 
if (s < 0) { 

perror("rlogin: socket"); 
exit(3); 

if (connect(s, (struct sockaddr *)&server, 
sizeof server) < 0) { 

perror("rlogin: connect"); 
exit(4); 

The details of the remote login protocol will not be considered here. 

While connection-based services are the nonn, some services are based on the 
use of datagram sockets. One, in particular, is the rw ho service which provides 
users with status infonnation for hosts connected to a local area network. This 
service, while predicated on the ability to broadcast information to all hosts con
nected to a particular network, is of interest as an example usage of datagram 
sockets. 

A user on any machine running the rwho server may find out the current status of 
a machine with the rupt ime program. The output generated is illustrated in 
Figure 11-2. 

ruptime Output 

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31 
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59 
calder up 10:10, o users, load 0.27, 0.15, 0.14 
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65 
degas up 25+09:48, o users, load 1.49, 1.43, 1.41 
ear up 5+00:05, o users, load 1.51, 1.54, 1.56 
ernie down 0:24 
esvax down 17:04 
oz down 16:09 
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86 

Status infonnation for each host is periodically broadcast by rwho server 
processes on each machine. The same server process also receives the status 
information and uses it to update a database. This database is then interpreted to 
generate the status infonnation for each host. Servers operate autonomously, 
coupled only by the local network and its broadcast capabilities. 

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must 
process each message, whether or not using an rwho server. Unless such a ser
vice is sufficiently universal and is frequently used, the expense of periodic 
broadcasts outweighs the simplicity. 
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Figure 11-3 

The rwho server, in a simplified form, is pictured below. It preforms two 
separate tasks. The first is to act as a receiver of status information broadcast by 
other hosts on the network. This job is carried out in the main loop of the pro
gram. Packets received at the rwho port are interrogated to insure they've been 
sent by another rwho server process, then are time stamped with their arrival time 
and used to update a file indicating the status of the host. When a host has not 
been heard from for an extended period of time, the database interpretation rou
tines assume the host is down and indicate such on the status reports. This algo
rithm is prone to error, as a server may be down while a host is actually up. 

rwho Server 

main () 
{ 

sp = getservbyname("who", "udp"); 
net = getnetbyname("localnet"); 
sin.sin_addr inet_makeaddr(INADDR_ANY, net); 
sin.sin-port = sp->s-port ; 

s = socket (AF_INET, SOCK_DGRAM, 0); 

on = 1; 
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, 
sizeof on) < 0) { 

syslog(LOG_ERR, "setsockopt SO BROADCAST: %m"); 
exit(1); 

bind(s, (struct sockaddr *) &sin, sizeof sin); 

signal (SIGALRM, onalrm); 
onalrm() ; 
for (;;) { 

struct whod wd; 
int cc, whod, len = sizeof from; 

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 
0, (struct sockaddr *)&from, &len); 

if (cc <= 0) { 
if (cc < 0 && errno != EINTR) 

syslog(LOG_ERR, nrwhod: recv: %mn); 
continue; 

if (from.sin-port != sp->s-port) { 
syslog(LOG_ERR, "rwhod: %d: bad from port", 

ntohs(from.sin-port»; 
continue; 

if (!verify(wd.wd_hostname» 
syslog(LOG_ERR, "rwhod: bad host name from %x", 

ntohl(from.sin_addr.s_addr»; 
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continue; 

(void) sprintf(path, "%s/whod.%s", RWHODIR, 
wd.wd_hostname); 

whod = open(path, O_WRONLYIO_CREATIO_TRUNC, 0666); 

(void) time(&wd.wd_recvtime); 
(void) write (whod, (char *)&wd, cc); 
(void) close(whod); 

exit(O); 

The second task performed by the seIVer is to supply infonnation regarding the 
status of its host. This involves periodically acquiring system status information, 
packaging it up in a message and broadcasting it on the local network for other 
rwho seIVers to hear. The supply function is triggered by a timer and runs off a 
signal. Locating the system status infonnation is somewhat involved, but unin
teresting. Deciding where to transmit the resultant packet is somewhat prob
lematic, however. 

Status infonnation must be broadcast on the local network. For networks that do 
not support the notion of broadcast another scheme must be used to simulate or 
replace broadcasting. One possibility is to enumerate the known neighbors 
(based on the status messages received from other rwho servers). This, unfor
tunately, requires some bootstrapping information, for a server will have no idea 
what machines are its neighbors until it receives status messages from them. 
Therefore, if all machines on a net are freshly booted, no machine will have any 
known neighbors and thus never receive, or send, any status infonnation. This is 
the identical problem faced by the routing table management process in pro
pagating routing status infonnation. The standard solution, unsatisfactory as it 
may be, is to infonn one or more servers of known neighbors and request that 
they always communicate with these neighbors. If each server has at least one 
neighbor supplied to it, status infonnation may then propagate through a neigh
bor to hosts that are not (possibly) directly neighbors. If the server is able to sup
port networks that provide a broadcast capability, as well as those which do not, 
then networks with an arbitrary topology may share status information 14. 

It is important that software operating in a distributed environment not have any 
site-dependent infonnation compiled into it. This would require a separate copy 
of the server at each host and make maintenance a severe headache. SunOS 
attempts to isolate host-specific information from applications by providing sys
tem calls that return the necessary infonnation 15 . A mechanism exists, in the 
fonn of an ioctl () call, for finding the collection of networks to which a host 
is directly connected. Further, a local network broadcasting mechanism has been 

14 One must. however. be concerned about loops. That is, if a host is connected to multiple networks, it will 
receive status infonnation from itself. TIris can lead to an endless. wasteful, exchange of infonnation. 

IS An example of such a system call is the get hostname (2) call that returns the host"s official name. 
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implemented at the socket level. Combining these two features allows a process 
to broadcast on any directly connected local network which supports the notion 
of broadcasting in a site independent manner. This allows a solution to the prob
lem of deciding how to propagate status information in the case of rw h 0, or 
more generally in broadcasting. Such status information is broadcast to con
nected networks at the socket level, where the connected networks have been 
obtained via the appropriate ioct 1 () calls. The specifics of such broadcastings 
are complex, however, and will be covered in the Advanced Topics section 
below. 

A number of facilities have yet to be discussed. For most programmers, the 
mechanisms already described will suffice in constructing distributed applica
tions. However, others will find the need to utilize some of the features that we 
consider in this section. 

The stream socket abstraction includes the notion of out of band data. Out of 
band data is a logically independent transmission channel associated with each 
pair of connected stream sockets. Out of band data is delivered to the user 
independently of normal data. The abstraction defines that the out of band data 
facilities must support the reliable delivery of at least one out of band message at 
a time. This message may contain at least one byte of data, and at least one mes
sage may be pending delivery to the user at anyone time. For communications 
protocols (such as TCP) that support only in-band signaling (i.e. the urgent data 
is delivered in sequence with the nonnal data), the system nonnally extracts the 
data from the nonnal data stream and stores it separately. This allows users to 
choose between receiving the urgent data in order and receiving it out of 
sequence without having to buffer all the intervening data. It is possible to 
"peek" (via MSG_PEEK) at out of band data. If the socket has a process group, a 
S I GURG signal is generated when the protocol is notified of its existence. A pro
cess can set the process group or process id to be informed by the S IGURG signal 
via the appropriate fcntl () call, as described below for SIGIO. Ifmultiple 
sockets may have out of band data awaiting delivery, a select () call for 
exceptional conditions may be used to detennine those sockets with such data 
pending. Neither the signal nor the select indicate the actual arrival of the out
of-band data, but only notification that it is pending. 

In addition to the infonnation passed, a logical mark is placed in the data stream 
to indicate the point at which the out of band data was sent. The remote login 
and remote shell applications use this facility to propagate signals between client 
and server processes. When a signal flushes any pending output from the remote 
process(es), all data up to the mark in the data stream is discarded. 

To send an out of band message the MSG_OOB flag is supplied to a send () or 
send to () calls, while to receive out of band data MS G _ OOB should be indi
cated when performing a recvfrom () or recv () call. To find out if the read 
pointer is currently pointing at the mark in the data stream, the S IOCATMARK 
ioctl is provided: 

ioctl(s, SIOCATMARK, &yes); 

If yes is 1 on return, the next read will return data after the mark. Otherwise 
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(assuming out of band data has arrived), the next read will provide data sent by 
the client prior to transmission of the out of band signal. The routine used in the 
remote login process to flush output on receipt of an interrupt or quit signal is 
shown in the following example. This code reads the nonnal data up to the mark 
(to discard it), then reads the out-of-band byte. 

Figure 11-4 Flushing Terminal/fO on Receipt of Out Of Band Data 

iinclude <sys/ioctl.h> 
iinclude <sys/file.h> 

oob () 
{ 

int out = FWRITE; 
char waste[BUFSIZ]; 
int mark; 

/ * flush local terminal output * / 
ioctl (1, TIOCFLUSH, (char *) &out) ; 
for (;;) { 

if (ioctl(rem, SIOCATMARK, &mark) < 0) { 
perror("ioctl n ); 

break; 

if (mark) 
break; 

(void) read (rem, waste, sizeof waste); 

if (recv(rem, &mark, 1, MSG_OOB) < 0) { 
perror ("recv") ; 

A process may also read or peek at the out-of-band data without first reading up 
to the mark. This is more difficult when the underlying protocol delivers the 
urgent data in-band with the nonnal data, and only sends notification of its pres
ence ahead of time (e.g., the TCP protocol used to implement socket streams in 
the Internet domain). With such protocols, the out-of-band byte may not yet 
have arrived when a recv () is done with the MSG_OOB flag. In that case, the 
call will return an error of EWOULDBLOCK. Worse, there may be enough in
band data in the input buffer that normal flow control prevents the peer from 
sending the urgent data until the buffer is cleared. The process must then read 
enough of the queued data that the urgent data may be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multiple 
urgent signals (e.g., telnet(lC)) need to retain the position of urgent data 
within the socket stream. This treatment is available as a socket-level option, 
SO_OOBINLINE; see setsockopt (2) for usage. With this option, the 
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position of urgent data (the "mark") is retained, but the urgent data immediately 
follows the mark within the nonnal data stream returned without the MSG OOB 

flag. Reception of multiple urgent indications causes the mark to move, but no 
out-of-band data are lost. 

It is occasionally convenient to make use of sockets that do not block; that is, I/O 
requests that cannot complete immediately and would therefore cause the process 
to be suspended awaiting completion are not executed, and an error code is 
returned. Once a socket has been created via the socket () call, it may be 
marked as non-blocking by fentl () as follows: 

iinclude <fcntl.h> 

int s; 

s = socket(AF_INET, SOC~STREAM, 0); 

if (fcntl(s, F_SETFL, FNDELAY) < 0) 
perror("fcntl F_SETFL, FNDELAyII); 
exit(l); 

When perfonning non-blocking I/O on sockets, one must be careful to check for 
the error EWOULDBLOCK (stored in the global variable errno), which occurs 
when an operation would nonnally block, but the socket it was performed on is 
marked as non-blocking. In particular, aeeeptO, eonneetO, sendO, 
reev(), readO, and wr i te () can all return EWOULDBLOCK, and processes 
should be prepared to deal with such return codes. If an operation such as a 
send () cannot be done in its entirety, but partial writes are sensible (for exam
ple, when using a stream socket), the data that can be sent immediately will be 
processed, and the return value will indicate the amount actually sent. 

The S I G I 0 signal allows a process to be notified via a signal when a socket (or 
more generally, a file descriptor) has data waiting to be read. Use of the SIGIO 

facility requires three steps: First, the process must set up a S I G I 0 signal 
handler by use of the signal () or sigvee () calls. Second, it must set the 
process id or process group id that is to receive notification of pending input to 
its own process id, or the process group id of its process group (note that the 
default process group of a socket is group zero). This can be accomplished by 
use of an fentl () call. Third, it must enable asynchronous notification of 
pending I/O requests with another fen t 1 () call. Sample code to allow a given 
process to receive information on pending I/O requests as they occur for a socket 
s is given in Figure 11-5. With the addition of a handler for S IGURG, this code 
can also be used to prepare for receipt of SIGURG signals. 
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Use of Asynchronous Notification of I/O Requests 

*include <fcntl.h> 

int io_handler(); 

signal (SIGIO, io_handler); 

/ * Set the process receiving SIGIOISIGURG signals to us. * / 

if (fcntl(s, F_SETOWN, getpid(» < 0) { 
perror(nfcntl F_SETOWNn); 
exit(l); 

/ * Allow receipt of asynchronous 110 signals. * / 

if (fcntl(s, F_SETFL, FASYNC) < 0) { 
perror(nfcntl F_SETFL, FASYNCn)i 
exit(l)i 

Due to the existence of the SIGURG and SIGIO signals each socket has an asso
ciated process number, just as is done for tenninals. This value is initialized to 
zero, but may be redefined at a later time with the F SETOWN fcntlO, such as 
was done in the code above for S IGIO. To set the socket's process id for sig
nals, positive arguments should be given to the fcntl () call. To set the 
socket's process group for signals, negative arguments should be passed to 
fcntlO. Note that the process number indicates either the associated process id 
or the associated process group; it is impossible to specify both at the same time. 
A similar fcntlO, F _ GETOWN, is available for determining the current process 
number of a socket. 

Note that the receipt of S I GURG and S I G I 0 can also be enabled by using the 
ioctl () call to assign the socket to the user's process group: 

/* oobdata is the out-oj-band data handling routine * / 
signal (SIGURG, oobdata); 

int pid = -getpid(); 

if (ioctl (client, SIOCSPGRP, (char *) &pid) < 0) { 
perror(nioctl: SIOCSPGRp n ); 
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Figure 11-6 

Pseudo Terminals 

Another signal that is useful when constructing server processes is S I GCHLD. 
This signal is delivered to a process when any child processes have changed 
state. Nonnally servers use the signal to "reap" child processes that have exited 
without explicitly awaiting their tennination or periodically polling for exit 
status. For example, the remote login server loop shown in Figure 11-2 may be 
augmented as shown here: 

Use of the SIGCHLD Signal 

int reaper(); 

signal (SIGCHLD, reaper); 
listen(f, 5); 
for (;;) { 

int g, len = sizeof from; 

g = accept(f, (struct sockaddr *)&frorn, &len,); 
if (g < 0) { 

if (errno != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %mn ); 

continue; 

-#include <wait.h> 
reaper () 
{ 

union wait status; 

while (wait3(&status, WNOHANG, 0) > 0) 
continue; 

If the parent seIVer process fails to reap its children, a large number of zombie 
processes may be created. 

Many programs will not function properly without a terminal for standard input 
and output. Since sockets do not provide the semantics of terminals, it is often 
necessary to have a process communicating over the network do so through a 
pseudo-terminal. A pseudo-terminal is actually a pair of devices, master and 
slave, which allow a process to seIVe as an active agent in communication 
between processes and users. Data written on the slave side of a pseudo-terminal 
are supplied as input to a process reading from the master side, while data written 
on the master side are processed as terminal input for the slave. In this way, the 
process manipulating the master side of the pseudo-tenninal has control over the 
information read and written on the slave side as if it were manipulating the key
board and reading the screen on a real tenninal. The putpOse of this abstraction 
is to preserve terminal semantics over a network connection- that is, the slave 
side appears as a normal terminal to any process reading from or writing to it. 
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For example, the remote login server uses pseudo-tenninals for remote login ses
sions. A user logging in to a machine across the network is provided a shell with 
a slave pseudo-tetminal as standard input, output, and error. The server process 
then handles the communication between the programs invoked by the remote 
shell and the user's local client process. When a user sends a character that gen
erates an interrupt on the remote machine that flushes terminal output, the 
pseudo-terminal generates a control message for the server process. The server 
then sends an out of band message to the client process to signal a flush of data at 
the real terminal and on the intervening data buffered in the network. 

The name of the slave side of a pseudo-tenninal is of the form / dev / t t yxy, 
where x is a single letter starting at 'p' and continuing to 't'. Y is a hexadecimal 
digit (Le., a single character in the range 0 through 9 or 'a' through 'f). The 
master side of a pseudo-terminal is / dev / pt yxy, where x and y correspond to 
the slave side of the pseudo-terminal. 

In general, the method of obtaining a pair of master and slave pseudo-terminals is 
to find a pseudo-terminal that is not currently in use. The master half of a 
pseudo-terminal is a single-open device; thus, each master may be opened in tum 
until an open succeeds. The slave side of the pseudo-terminal is then opened, 
and is set to the proper terminal modes if necessary. The process then for k ( ) s; 
the child closes the master side of the pseudo-terminal, and exec () s the 
appropriate program. Meanwhile, the parent closes the slave side of the pseudo
terminal and begins reading and writing from the master side. Sample code mak
ing use of pseudo-terminals is given in the following example. This code 
assumes that a connection on a socket s exists, connected to a peer who wants a 
service of some kind, and that the process has disassociated itself from any previ
ous controlling terminal. 

Creation and Use of a Pseudo Terminal 

gotpty = 0; 
for (c = 'p'; !gotpty && c <= 's'; c++) 

line = "/dev/ptyXX"; 
line[sizeof "/dev/pty" -1] = c; 
line[sizeof "/dev/ptyp" -1] = '0'; 
if (stat (line, &statbuf) < 0) 

break; 
for (i = 0; i < 16; i++) 

line[sizeof "/dev/ptyp" -1] 
= "0123456789abcdef"[i]; 

master = open(line, O_RDWR); 
if (master >= 0) { 

gotpty = 1; 
break; 

if (! gotpty) 
syslog(LOG_ERR, "All network ports in use"); 
exit(l) ; 
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line[sizeof "/dev/" -1] = 't'; 
slave = open (line, O_RDWR); /* slave is now slave side * / 
if ( s 1 ave < 0) { 

syslog(LOG_ERR, "Cannot open slave pty %s", line); 
exit(l); 

ioctl (slave, TIOCGETP, &b); /* Set slave tty modes * / 
b.sg_flags = CRMODIXTABSIANYP; 
ioctl(slave, TIOCSETP, &b); 

i = fork(); 
if (i < 0) { 

syslog(LOG_ERR, "fork: %m"); 
exit(l); 

else if (i) { /* Parent * / 
close(slave); 

else { /* Child * / 
close(s); 
close(master); 
dup2(slave, 0); 
dup2(slave, 1); 
dup2(slave, 2); 
if (slave > 2) 

close(slave); 

If the third argument to the socket () call is 0, socket () will select a default 
protocol to use with the returned socket of the type requested. The default proto
col is usually correct, and alternate choices are not usually available. However, 
when using "raw" sockets to communicate directly with lower-level protocols or 
hardware interfaces, the protocol argument may be important for setting up 
demultiplexing. For example, raw sockets in the Internet domain may be used to 
implement a new protocol above IP, and the socket will receive packets only for 
the protocol specified. To obtain a particular protocol one detennines the proto
col number as defined within the protocol domain. For the Internet domain one 
may use one of the library routines discussed in the Library Routines section 
above, such as getprotobynameO: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 

pp = getprotobyname("newtcp"); 
s = socket (AF_INET, SOCK_STREAM, pp->p-proto); 

This would result in a socket s using a stream based connection, but with 
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protocol type of "newtcp" instead of the default "tcp." 

As was mentioned in the Basics section, binding addresses to sockets in the Inter
net domain can be fairly complex. As a brief reminder, these associations are 
composed of local and foreign addresses, and local and foreign ports. Port 
numbers are allocated out of separate spaces, one for each system and one for 
each domain on that system. Through the bind () system call, a process may 
specify half of an association, the <local address, local port> part, while the 
connect () and accept () primitives are used to complete a socket's associa
tion by specifying the <foreign address, foreign port> part. Since the associa
tion is created in two steps the association uniqueness requirement indicated pre
viously could be violated unless care is taken. Further, it is unrealistic to expect 
user programs to always know proper values to use for the local address and local 
port since a host may reside on multiple networks and the set of allocated port 
numbers is not directly accessible to a user. 

To simplify local address binding in the Internet domain the notion of a wildcard 
address has been provided. When an address is specified as INADDR _ANY (a 
manifest constant defined in <net inet / in. h», the system interprets the 
address as any valid address. For example, to bind a specific port number to a 
socket, but leave the local address unspecified, the following code might be used: 

*include <sys/types.h> 
*include <netinet/in.h> 

struct sockaddr_in sin; 

s = socket(AF INET, SOCK_STREAM, 0); 
sin. sin_family = AF_INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY)i 
sin.sin-port = htons(MYPORT)i 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

Sockets with wild carded local addresses may receive messages directed to the 
specified port number, and sent to any of the possible addresses assigned to a 
host. For example, if a host has addresses 128.32.0.4 and 10.0.0.78, and a socket 
is bound as above, the process will be able to accept connection requests that are 
addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow 
hosts on a given network connect to it, it would bind the address of the host on 
the appropriate network. 

In a similar fashion, a local port may be left unspecified (specified as zero), in 
which case the system will select an appropriate port number for it. For example, 
to bind a specific local address to a socket, but to leave the local port number 
unspecified: 
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hp = gethostbyname(hostname); 
if (hp == NULL) { 

bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_Iength); 
sin.sin-port = htons(O); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

The system selects the local port number based on two criteria. The first is that 
Internet ports below IPPORT_RESERVED (1024) are reserved for privileged 
users (Le., the super user); Internet ports above IPPORT_USERRESERVED 
(50000) are reserved for non-privileged servers. The second is that the port 
number is not currently bound to some other socket. In order to find a free Inter
net port number in the privileged range the rre svport () library routine may 
be used as follows to return a stream socket in with a privileged port number: 

int Iport 
int s; 

IPPORT RESERVED - 1; 

s = rresvport(&lport); 
if (s < 0) { 

if (errno == EAGAIN) 
fprintf(stderr, "socket: all ports in use\nn); 

else 
perror("rresvport: socket"); 

The restriction on allocating ports was done to allow processes executing in a 
"secure" environment to perfonn authentication based on the originating address 
and port number. For example, the rlogin (1) command allows users to log 
in across a network without being asked for a password, if two conditions hold: 
First, the name of the system the user is logging in from is in the file 
/ etc/hosts. equi von the system s/he is logging in to (or the system name 
and the user name are in the user's. rhosts file in the user's home directory), 
and second, that the user's rlogin process is coming from a privileged port on the 
machine from which s/he is logging in. The port number and network address of 
the machine from which the user is logging in can be detennined either by the 
from result of the accept () call, or from the getpeername () call. 

In certain cases the algorithm used by the system in selecting port numbers is 
unsuitable for an application. This is because associations are created in a two 
step process. For example, the Internet file transfer protocol, FTP, specifies that 
data connections must always originate from the same local port. However, 
duplicate associations are avoided by connecting to different foreign ports. In 
this situation the system would disallow binding the same local address and port 
number to a socket if a previous data connection's socket still existed. To over
ride the default port selection algorithm, an option call must be perfonned prior 
to address binding: 
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int on = 1; 

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

With the above call, local addresses may be bound that are already in use. This 
does not violate the uniqueness requirement as the system still checks at connect 
time to be sure any other sockets with the same local address and port do not 
have the same foreign address and port. If the association already exists, the 
error EADDRINUSE is returned. 

By using a datagram socket, it is possible to send broadcast packets on many net
works connected to the system. The network itself must support broadcast; the 
system provides no simulation of broadcast in software. Broadcast messages can 
place a high load on a network since they force every host on the network to ser
vice them. Consequently, the ability to send broadcast packets has been limited 
to sockets that are explicitly marked as allowing broadcasting. Broadcast is typi
cally used for one of two reasons: it is desired to find a resource on a local net
work without prior knowledge of its address, or important functions such as rout
ing require that information be sent to all accessible neighbors. 

To send a broadcast message, a datagram socket should be created: 

s = socket(AF_INET, SOCK_DGRAM, 0); 

The socket is marked as allowing broadcasting, 

int on = 1; 
setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on); 

and at least a port number should be bound to the socket: 

sin. sin_family = AF_INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY); 
sin.sin-port = htons(MYPORT); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

The destination address of the message to be broadcast depends on the 
network(s) on which the message is to be broadcast. The Internet domain sup
ports a shorthand notation for broadcast on the local network, the address 
INADDR_BROADCAST (defined in <netinet/ in. h>. To determine the list 
of addresses for all reachable neighbors requires knowledge of the networks to 
which the host is connected. Since this information should be obtained in a 
host-independent fashion and may be impossible to derive, SunOS provides a 
method of retrieving this information from the system data structures. The 
SIOCGIFCONF ioctl call returns the interface configuration of a host in the 
form of a single ifconf structure; this structure contains a "data area" that is 
made up of an array of ifreq structures, one for each address domain supported 
by each network interface to which the host is connected. These structures are 
defined in <net / if. h> as follows: 
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struct ifconf { 
int ifc_Ien: 
union { 

} : 

caddr_t ifcu_buf: 
struct ifreq *ifcu_req: 

ifc_ifcu: 

/ * size of associated buffer * / 

fdefine ifc_buf ifc_ifcu.ifcu_buf /* buffer~ess */ 
fdefine ifc_req ifc_ifcu. ifcu_req /* a"ay of structures returned * / 

struct ifreq { 
fdefine IFNAMSIZ 16 

char ifr_name[IFNAMSIZ]: 
union { 

struct sockaddr ifru_addr: 

/ * if name, e.g. "enD" * / 

struct sockaddr ifru_dstaddr: 
char ifru_oname [IFNAMSIZ]: /* other ifname * / 

} : 

short ifru_flags: 
char ifru_data(l]i 

ifr_ifru: 
/ * interface dependent data * / 

tdefine ifr addr ifr_ifru.ifru_addr /* ~ess */ 
tdefine ifr_dstaddr ifr_ifru.ifru_dstaddr/* otherendoflink */ 
Idefine ifr oname ifr_ifru. ifru_oname /* other ifnarne * / 
#define ifr_flags ifr_ifru.ifru_flags /* flags */ 
#define ifr_data ifr_ifru. ifru_data /*forusebyinterface * / 

The actual call that obtains the interface configuration is 

struct ifconf ifc: 
char buf[BUFSIZ]: 

ifc_ifc_len = sizeof buf; 
ifc.ifc_buf = buf: 
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) { 

After this call bufwill contain a list of ifreq structures, one for each network to 
which the host is connected. These structures will be ordered first by interface 
name and then by supported address families. ifc. ifc_len will have been 
modified to reflect the number of bytes used by the ifreq structures. 

For each structure there exists a set of "interface flags" that tell whether the net
work corresponding to that interface is up or down, point to point or broadcast, 
etc. The SIOCGIFFLAGS ioctl retrieves these flags for an interface 
specified by an ifreq structure as follows: 
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struct ifreq *ifri 

ifr = ifc.ifc_reqi 

for (n=ifc.ifc_len/sizeof (struct ifreq)i 
--n >= 0; ifr++) { 
1* 
* We must be careful that we don't use an interface 
* devoted to an address domain other than those intended; 
* ifwe were interested in NS interfaces, the 
* AF INET would be AF NS. - -
*1 
if (ifr->ifr_addr.sa_family != AF_INET) 

continue; 
if (ioctl (s, SIOCGIFFLAGS, (char *) ifr) < 0) { 

/* 
* Skip boring cases 
*/ 

if «ifr->ifr_flags & IFF_UP) == 0 I I 
(ifr->ifr_flags & IFF_LOOPBACK) I I 
(ifr->ifr_flags & 
(IFF_BROADCAST I IFF_POINTTOPOINT» 0) 
continue; 

Once the flags have been obtained, the broadcast address must be obtained. In 
the case of broadcast networks this is done via the SIOCGIFBRDADDR 
ioct 1, while for point-to-point networks the address of the destination host is 
obtained with SIOCGIFDSTADDR. 

struct sockaddr dst; 

if (ifr->ifr_flags & IFF_POINTTOPOINT) 
if (ioctl (s, SIOCGIFDSTADDR, (char *) ifr) < 0) { 

bcopy«char *) ifr->ifr_dstaddr, (char *) &dst, 
sizeof ifr->ifr_dstaddr)i 

else if (ifr->ifr_flags & IFF_BROADCAST) 
if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) { 

bcopy«char *) ifr->ifr_broadaddr, (char *) &dst, 
sizeof ifr->ifr_broadaddr)i 

After the appropriate ioct 1 () s have obtained the broadcast or destination 
address (now in dst), the sendto () call may be used: 
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sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst 

In the above loop one sendto () occurs for every interface to which the host is 
connected that supports the notion of broadcast or point-to-point addressing. If a 
process only wished to send broadcast messages on a given network, code similar 
to that outlined above would be used, but the loop would need to find the correct 
destination address. 

Received broadcast messages contain the sender's address and port, as datagram 
sockets are bound before a message is allowed to go out. 

It is possible to set and get a number of options on sockets via the set
sockopt () and getsockopt () system calls. These options include such 
things as marking a socket for broadcasting, not to route, to linger on close, etc. 
The general forms of the calls are: 

setsockopt(s, level, optname, optval, optlen); 

and 

getsockopt(s, level, optname, optval, optlen); 

The parameters to the calls are as follows: s is the socket on which the option is 
to be applied. level specifies the protocol layer on which the option is to be 
applied; in most cases this is the "socket level", indicated by the symbolic con
stant SOL_SOCKET, defined in <sys/ socket. h>. The actual option is 
specified in opt name, and is a symbolic constant also defined in 
<sys/ socket. h>. optval and optlen point to the value of the option (in most 
cases, whether the option is to be turned on or oft), and the length of the value of 
the option, respectively. For getsockoptO, optlen is a value-result parameter, 
initially set to the size of the storage area pointed to by optval, and modified 
upon return to indicate the actual amount of storage used. 

An example should help clarify things. It is sometimes useful to determine the 
type (e.g., stream, datagram, etc.) of an existing socket; programs invoked by 
inetd (described below) may need to perfonn this task. This can be accom
plished as follows via the SO_TYPE socket option and the getsockopt () 
call: 

#include <sys/types.h> 
#include <sys/socket.h> 

int type, size; 

size = sizeof (int); 

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, 
&size) < 0) { 

After the getsockopt () call, type will be set to the value of the socket type, 
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as defined in <sys/ socket, h>. If, for example, the socket were a datagram 
socket, type would have the value corresponding to SOCK _ DGRAM. 

One of the daemons provided with SunOS is inetd, the so called "Internet 
super-server." inetd is invoked at boot time and determines from the file 
/ etc/ inetd. conf the services for which it is to listen. Once this informa
tion has been read and a pristine environment created, inetd proceeds to create 
one socket for each service it is to listen for, binding the appropriate port number 
to each socket. 

inetd then perfonns a select () on all these sockets for read availability, 
waiting for somebody wishing a connection to the service corresponding to that 
socket. inetd then performs an accept () on the socket in question, 
fork ( ) s, dup () s the new socket to file descriptors 0 and 1 (stdin and stdout), 
closes other open file descriptors, and exec () s the appropriate server. 

Servers making use of inetd are considerably simplified, as inetd takes care 
of the majority of the IPC work required in establishing a connection. The server 
invoked by inetd expects the socket connected to its client on file descriptors 0 
and 1, and may immediately perfonn any operations such as readO, writeO, 
sendO, or recvO. Indeed, servers may use buffered I/O as provided by the 
"stdio" conventions, as long as they remember to use fflush () when appropri
ate. 

One call that may be of interest to individuals writing servers to be invoked by 
inetd is the getpeername () call, which returns the address of the peer (pro
cess) connected on the other end of the socket. For example, to log the Internet 
address in "dot notation" (e.g., "128.32.0.4") of a client connected to a server 
under inetd, the following code might be used: 

struct sockaddr_in name; 
int namelen = sizeof name; 

if (getpeername(O, 
(struct sockaddr *)&name, &namelen) < 0) { 
syslog(LOG_ERR, "getpeername: %m")i 
exit(l); 

else 
syslog(LOG_INFO, "Connection from %s", 

inet_ntoa(name,sin_addr»; 

While the getpeername () call is especially useful when writing programs to 
run with inetd, it can be used under other circumstances. Be warned, however, 
that getpeername will fail on UNIX domain sockets. ". 
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Overview 

12 
Socket-Based IPC Implelllentation 

Notes 

This chapter describes the internal structure of the socket-based networking facil
ities originally developed for the 4.2BSD version of the UNIX system and subse
quently integrated into SunOS. These facilities are based on several central 
abstractions that structure and unify the external (user) view of network com
munication as well as the internal (system) implementation. In addition, the 
implementation introduces a structure for network communications that may be 
used by system implementors in adding new networking facilities. The internal 
structure is not visible to the user, rather it is intended to aid implementors of 
communication protocols and network services by providing a framework that 
promotes code sharing and minimizes implementation effort. 

The reader is expected to be familiar with the C programming language and sys
tem interface, as described in the System Services Overview. Basic understand
ing of network communication concepts is assumed; where required any addi
tional ideas are introduced. 

The remainder of this document provides a description of the system internals, 
avoiding, when possible, overlap with the interprocess communication tutorials. 

If we consider the International Standards Organization's (ISO) Open System 
Interconnection (OSI) model of network communication [IS081] [Zimmer
mann80], the networking facilities described here correspond to a portion of the 
session layer, all of the transport and network layers, and some datalink layers. 

The network layer provides possibly imperfect data transport services with 
minimal addressing structure. Addressing at this level is normally host to host, 
with implicit or explicit routing optionally supported by the communicating 
agents. 

At the transport layer the notions of reliable transfer, data sequencing, flow con
trol, and service addressing are normally included. Reliability is usually 
managed by explicit acknowledgement of data delivered. Failure to ack
nowledge a transfer results in retransmission of the data. Sequencing may be 
handled by tagging each message handed to the network layer by a sequence 
number and maintaining state at the endpoints of communication to utilize 
received sequence numbers in reordering data that arrives out of order. 

The session layer facilities may provide forms of addressing that are mapped into 
formats required by the transport layer, service authentication and client 
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12.1. Memory, Addressing 

Address Representation 

authentication, etc. Various systems also provide services such as data encryp
tion and address and protocol translation. 

The following sections begin by describing some of the common data structures 
and utility routines, then examine the intemallayering. The contents of each 
layer and its interface are considered. Certain of the interfaces are protocol 
implementation specific. For these cases examples have been drawn from the 
Internet [Cerf78] protocol family. Later sections cover routing issues, the design 
of the raw socket interface, and other miscellaneous topics. 

The networking system was designed with the goal of supporting multiple proto
col families and addressing styles. This required infonnation to be "hidden" in 
common data structures that could be manipulated by all the pieces of the sys
tem, but that required interpretation only by the protocols that "controlled" it. 
The system described here attempts to minimize the use of shared data structures 
to those kept by a suite of protocols (a protocol family), and those used for ren
dezvous between "synchronous" and "asynchronous" portions of the system (e.g. 
queues of data packets are filled at interrupt time and emptied based on user 
requests). 

A major goal of the system was to provide a framework within which new proto
cols and hardware could be easily be supported. To this end, a great deal of 
effort has been extended to create utility routines that hide many of the more 
complex and/or hardware dependent chores of networking. Later sections 
describe the utility routines and the underlying data structures they manipulate. 

Common to all portions of the system are two data structures. These structures 
are used to represent addresses and various data objects. Addresses are internally 
described by the sockaddr structure, 

struct sockaddr { 

} ; 

short 
char 

sa_family; 
sa_data[14]; 

/ * address family * / 
/ * up to 14 bytes of direct address * / 

All addresses belong to one or more address families which define their format 
and interpretation. The sa_family field indicates the address family to which 
the address belongs, and the sa _ da t a field contains the actual data value. The 
size of the data field, 14 bytes, was selected based on a study of current address 
fonnats. Specific address fonnats use private structure definitions that define the 
fonnat of the data field. The system interface supports larger address structures, 
although address-family-independent support facilities, for example routing and 
raw socket interfaces, provide only 14 bytes for address storage. Protocols that 
do not use those facilities (e.g, the current UNIX domain) may use larger data 
areas.16 

16 Later versions of the system may support variable length addresses. 
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A single structure is used for data storage - the memory buffer, or "mbuf'. 
There are three kinds of mbufs - "small", "cluster", and "loaned". They differ 
in the policies and mechanisms by which their associated storage is allocated and 
managed. 

Small mbufs 
Small mbufs are the fundamental type and are used both on their own and as 
building blocks for cluster and loaned mbufs. They contain their own 
storage in the array (see below) named m _ da t. That array is defined as con
taining 112 (MLEN) bytes, so that's all the data that a small mbuf can hold. 
Small mbufs are guaranteed to start on a 128-byte boundary. The dtom 
macro, described below, works correctly only with small mbufs - mistaken 
attempts to use dtom with cluster and loaned mbufs are a common source of 
insidious error. 

Cluster mbufs 
Cluster mbufs support the storage and sharing of larger amounts of data. 
They do so by dynamically allocating storage, as necessary, from a pool of 
fixed-sized buffers called clusters. These clusters, each of which is 
MCLBYTES (lK) in size, are managed by the mbuf system itself. The mbuf 
system uses a small mbuf to refer to a given cluster by setting its m _of f 
field to refer to a location in the interior (most commonly, the beginning) of 
the cluster. This combination of a small mbuf and a cluster is what consti
tutes a cluster mbuf. 

Cluster mbufs can be shared because clusters are reference-counted. The 
routine mcldup () arranges to share an existing cluster mbuf by increasing 
its reference count and attaching a new small mbuf to it. Cluster mbufs 
always have theirm_cltype field set to MCL_STATIC. 

Loaned mbufs 
Loaned mbufs provide for treating storage not directly managed by the mbuf 
system in the same way as normal mbufs. The mbuf system uses small 
mbufs to store bookkeeping information about loaned mbufs, as it does with 
cluster mbufs. With loaned mbufs, however, storage is provided by the allo
cator, who is ultimately responsible of freeing it as well. To allocate a 
loaned mbuf, one calls mclgetxO, which takes as arguments the address of 
the buffer to be loaned, its length, a pointer to a function, and an argument to 
be passed to that function when it's called. This function is called when the 
loaned mbuf is freed, and must do whatever is necessary to clean up the 
loaned buffer. The m _ cl fun and m _ c larg fields of the mbuf structure 
record the pointer to this function and its argument. Loaned mbufs have 
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their m _ cIt ype field set to MeL_LOANED. 

An mbuf structure has the fonn: 

*define MSIZE 128 
*define MMINOFF 12 
*define MTAIL 4 

*define MLEN (MSIZE-MMINOFF-MTAIL) 

struct mbuf 
struct 
u_long 
short 
short 
union 

rnbuf *m_nexti 
m_offi 

/ * next buffer in chain * / 
/ * offset of data * / 

} m_un; 

m_leni 
m_typei 

/ * amount of data in this mbuf * / 
/* mbuftype (0 == free) * / 

u char mun_dat [MLEN] ; /* data storage * / 
struct 

short mun_cltypei /* "cluster" type* / 
int (*mun_clfun) ()i 
int mun_clargi 
int (*mun_clswp) (); 

mun_cli 

struct rnbuf *m_acti /* link in higher-level mbuflist * / 
#define m dat m un.mun_dat 
#define m_cltype ~un.mun_cl.mun_cltype 

#define m_clfun ~un.mun_cl.mun_clfun 
idefine m_clarg m_un.mun_cl.mun_clarg 
} ; 

The m _next field is used to chain mbufs together on linked lists, while the 
m _act field allows lists ofmbuf chains to be accumulated. By convention, the 
mbufs common to a single object (for example, a packet) are chained together 
with the ~next field, while groups of objects are linked via the ~act field 
(possibly when in a queue). 

The m _1 enfield indicates the amount of data, while the m _of f field is an offset 
to the beginning of the data from the base of the mbuf. Thus, for example, the 
macro rntodO, which converts a pointer to an mbufto a pointer to the data stored 
in the mbuf, has the fonn 

idefine mtod(x,t) ( (t) ( (i n t) (x) + (x) - >m _ 0 f f) ) 

(note the t parameter, a C type cast, which is used to cast the resultant pointer for 
proper assignment). Since a small mbuf's data always resides in the mbuf's own 
m _ dat array, its m_ off value is always less than MSI ZE. On the other hand, 
storage for cluster and loaned mbufs is external to the mbufs themselves, so their 
m_off values are always at least MSIZE. The M_HASCL macro distinguishes 
these two cases and is defined as 

#define M_HASCL(m) «m)->m_off >= MSIZE) 

As mentioned above, the dtom macro is safe to use only ifM_HASCL evaluates 
false. 
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The following routines and macros may be used to allocate and free mbufs: 

m = m_get(wait, type); 
MGET{m, wait, type); 

The subroutine m_get () and the macro MGET () each allocate an mbuf, 
placing its address in m. The argument wait is either M _WAIT or 
M _DONTWAI T according to whether allocation should block or fail if no 
mbuf is available. The type is one of the predefined mbuf types for use in 
accounting of mbuf allocation. 

MCLGET em) ; 
This macro attempts to allocate an mbuf cluster to associate with the mbuf 
m. If successful, the length of the mbuf is set to MCLS I ZE. The routine 
mclget () is similar, but returns success/failure. 

mclgetx{fun, arg, addr, len, wait) 
This routine wraps the storage defined by addr and len with an 
MCL _LOANED mbuf. The fun argument gives a function to be called when 
the resulting loaned mbuf is freed, and arg is a value that will be supplied to 
that function as its argument. The argument wait is either M _WAIT or 
M _DONTWAI T according to whether allocation should block or fail if no 
mbuf is available. 

mcldup{m, n, off); 
A duplicator for cluster and loaned mbufs, which duplicates minto n. If m is 
a cluster mbuf, mcldup () simply bumps its reference count and ignores 
off. But if m is a loaned mbuf, mcldup () allocates a chunk of memory and 
copies it, starting at offset off. 

n = m_free em) ; 
MFREE em, n) ; 

The routine m_free () and the macro MFREE () each free a single mbuf, 
m, and any associated external storage area, placing a pointer to its successor 
in the chain it heads, if any, in n. 

m_freem{m) ; 
This routine frees an mbuf chain headed by m. 

By insuring that mbufs always reside on 128 byte boundaries, it is always possi
ble to locate the mbuf associated with a data area by masking off the low bits of 
the virtual address. This allows modules to store data structures in mbufs and 
pass them around without concern for locating the Original mbuf when it comes 
time to free the structure. Note that this works only with objects stored in the 
internal data buffer of the mbuf. The dtom macro is used to convert a pointer 
into an mbufs data area to a pointer to the mbuf, 

#define dtom(x) ((struct mbuf *) ((int)x & - (MSIZE-l))) 

Mbufs are used for dynamically allocated data structures such as sockets as well 
as memory allocated for packets and headers. Statistics are maintained on mbuf 
usage and can be viewed by users using the netstat () program. The follow
ing utility routines are available for manipulating mbuf chains: 

Revision A, of 27 March 1990 



322 Transport-Level Programming 

12.2. Internal Layering 

m = m_copy(mO, off, len); 
The m_ copy () routine create a copy of all, or part, of a list of the mbufs in 
mO. len bytes of data, starting of/bytes from the front of the chain, are 
copied. Where possible, reference counts are manipulated in preference to 
core to core copies. The original mbuf chain must have at least off + len 
bytes of data. If len is specified as M _ COPYALL, all the data present, offset 
as before, is copied. 

m_cat (m, n) ; 
The mbuf chain, n, is appended to the end of m. Where possible, compac
tion is perfonned. 

m_cpytoc(m, off, len, cp) 
Copies a part of the contents of the mbuf m to the contiguous memory 
pointed to by cp, skipping the first offbytes and copying the next len bytes. 
It returns the number of bytes remaining in the mbuf following the portion 
copied. m is left unaltered. 

m_adj(m, diff}; 
The mbuf chain, m is adjusted in size by diffbytes. If diff is non-negative, 
diffbytes are shaved off the front of the mbuf chain. If diffis negative, the 
alteration is perfonned from back to front. No space is reclaimed in this 
operation; alterations are accomplished by changing the m _len and m _ off 
fields of mbufs. 

m = m-pullup(mO, size); 
After a successful call to m _pull upO, the mbuf at the head of the returned 
list, m, is guaranteed to have at least size bytes of data in contiguous memory 
within the data area of the mbuf (allowing access via a pointer, obtained 
using the mtod () macro, and allowing the mbufto be located from a 
pointer to the data area using dtom, defined below). If the original data was 
less than size bytes long, len was greater than the size of an mbuf data area 
(112 bytes), or required resources were unavailable, m is 0 and the original 
mbuf chain is deallocated. 

This routine is particularly useful when verifying packet header lengths on 
reception. For example, if a packet is received and only 8 of the necessary 
16 bytes required for a valid packet header are present at the head of the list 
of mbufs representing the packet, the remaining 8 bytes may be "pulled up" 
with a single InJ)ull up () call. If the call fails the invalid packet will 
have been discarded. 

The internal structure of the network system is divided into three layers. These 
layers correspond to the services provided by the socket abstraction, those pro
vided by the communication protocols, and those provided by the hardware inter
faces. The communication protocols are nonnally layered into two or more indi
vidual cooperating layers, though they are collectively viewed in the system as 
one layer providing services supportive of the appropriate socket abstraction. 

The following sections describe the properties of each layer in the system and the 
interfaces to which each must confonn. 
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The socket layer deals with the intetprocess communication facilities provided 
by the system. A socket is a bidirectional endpoint of communication which is 
"typed" by the semantics of communication it supports. For more infonnation 
about the system calls used to manipulate sockets, see A Socket-Based Interpro
cess Communications Tutorial and An Advanced Socket-Based Inter process 
Communications Tutorial, both sections of Network Programming. 

A socket consists of the following data structure: 

struct socket { 

1* 

short 
short 
short 
short 
caddr t 
struct 

so_type; 
so_options; 
so_linger; 
so_state; 
soycb; 
protosw *soyrotoi 

/ * generic type. see socket.h * / 
/ * from socket call * / 
/ * time to linger while closing * / 
/ * internal state flags SS _ * . below * / 
/ * protocol control block * / 
/ * protocol handle * / 

* Variablesfor connection queueing. A socket where accepts occur is so_head 
* in all subsidiary sockets. If so_head is O. the socket is not related to an 
* accept. For head socket so _ qO queues partially completed connections. while 
* so _ q is a queue of connections ready to be accepted. If a connection is 
* aborted and it has so_head set, then it has to be pulled out of either 
* so _ qO or so _ q. We allow connections to queue up based on current 
* queue lengths and limit on number of queued connections for this socket. 
*1 

struct 
struct 
struct 
short 
short 
short 
short 

socket *so_headi 
socket *so_qO; 
socket *so_q; 
so_qOlen; 
so_qlen; 
so_qlimit; 
so_timeo; 

u short so_error; 
short soygrp; 
u short so_oobmarki 

1* 
* Variablesfor socket buffering. 
*1 

1* 

struct 
struct 

sockbuf 
sockbuf 

so_rcv; 
so_snd; 

* Hooks for alternative wakeup strategies. 

/ * back pointer to accept socket * / 
/* queue ofpartial connections * / 
/ * queue of incoming connections * / 
/ * partials on so _ qO * / 
/ * number of connections on so _ q * / 
/ * max # of queued connections * / 
/ * connection timeout * / 
/ * error affecting connection * / 
/ * pgrp for signals * / 
/ * chars to oob mark * / 

/ * receive buffer * / 
/ * send buffer * / 

* These are used by kernel subsystems wishing to access the socket 
* abstraction. If so _ wupfunc is nonnull. it is called in place of 
* wakeup any time that wakeup would otherwise be called with an 
* argument whose value is an address lying within a socket structure. 
*1 

struct wupalt *so_wupalt; 
} ; 

struct wupalt { 
int (*wup_func) (); 
caddr t wup_arg; 

• ~!!I!! 

/ * function to call instead of wakeup * / 
/* argumentfor so_wupfunc * / 
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1* Other state information here, e.g. for a stream 
* connected to a socket 
*1 

} ; 

Each socket contains two send and receive data queues, so_rcv and so_snd 
(see below for a discussion), as well as protocol infonnation, private data, error 
infonnation and pointers to routines which provide supporting services. 

The type of the socket, so _type is defined at socket creation time and used in 
selecting those services that are appropriate to support it. The supporting proto
col is selected at socket creation time and recorded in the socket data structure 
for later use. Protocols are defined by a table of procedures, the proto sw struc
ture, which will be described in detail later. A pointer to a protocol-specific data 
structure, the "protocol control block," is also present in the socket structure. 
Protocols control this data structure, which normally includes a back pointer to 
the parent socket structure to allow easy lookup when returning infonnation to a 
user (for example, placing an error number in the so_error field). Other 
entries in the socket structure are used in queuing connection requests, validating 
user requests, storing socket characteristics (e.g. options supplied at the time a 
socket is created), and maintaining a socket's state. 

Processes "rendezvous at a socket" in many instances. For instance, when a pro
cess wishes to extract data from a socket's receive queue and it is empty, or lacks 
sufficient data to satisfy the request, the process blocks, supplying the address of 
the receive queue as a "wait channel' to be used in notification. When data 
arrives for the process and is placed in the socket's queue, the blocked process is 
identified by the fact it is waiting "on the queue." 

A socket's state is defined from the following: 

#define SS NOFDREF OxOOl / * no file table ref any more * / 
#define SS ISCONNECTED OxOO2 / * socket connected to a peer * / 
#define SS ISCONNECTING OxOO4 / * in process of connecting to peer* / 
#define SS ISDISCONNECTING OxOO8 / * in process of disconnecting * / 
#define SS CANTSENDMORE OxOlO / * can't send more data to peer * / 
#define SS CANTRCVMORE Ox020 / * can't take more data from peer * / 
#define SS RCVATMARK Ox040 / * at mark on input * / 

#define SS PRIV Ox080 / * privileged * / 
#define SS NBIO OxlOO / * non-blocking ops * / 
#define SS ASYNC Ox200 / * async i/o notify * / 

The state of a socket is manipulated both by the protocols and the user (through 
system calls). When a socket is created, the state is defined based on the type of 
socket. It may change as control actions are performed, for example connection 
establishment. It may also change according to the type of input/output the user 
wishes to perfonn, as indicated by options set with fcntlO. "Non-blocking" 
I/O implies that a process should never be blocked to await resources. Instead, 
any call that would block returns prematurely with the error EWOULDBLOCK, or 
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the selVice request (e.g. a request for more data than is present) may be only par
tially fulfilled. 

If a process requested "asynchronous" notification of events related to the socket, 
the SIGIO signal is posted to the process when such events occur. An event is a 
change in the socket's state; examples of such occurrences are space becoming 
available in the send queue, new data available in the receive queue, connection 
establishment or disestablishment, etc. 

A socket may be marked "privileged" if it was created by the super-user. Only 
privileged sockets may bind addresses in privileged portions of an address space 
or use "raw" sockets to access lower levels of the network. 

A socket's data queue contains a pointer to the data stored in the queue and other 
entries related to the management of the data. The structure of a data queue, 
struct sockbuf, is: 

struet soekbuf 
u short Sb_CCi 
u short sb_hiwati 
u short sb_mbcnti 
u short sb_mbmaxi 
u short sb_lowati 
struet mbuf *Sb_mbi 
struet proc *sb seli 
short sb_timeoi 
short sb_flagsi 

/ * actual chars in buffer * / 
/ * max actual char count * / 
/* chars ofmbufs used * / 
/ * max chars of mbufs to use * / 
/ * low water mark (not used yet) * / 
/ * the mbuf chain * / 
/ * process selecting readlwrite * / 
/ * timeout (not used yet) * / 
/ * flags. see below * / 

so_rev, so_sndi 

Data is stored in a queue as a chain of mbufs. The actual count of data characters 
as well as high and low water marks are used by the protocols in controlling the 
flow of data. The amount of buffer space (characters of m bufs and associated 
data clusters) is also recorded along with the limit on buffer allocation. The 
socket routines cooperate in implementing the flow control policy by blocking a 
process when it requests to send data and the high water mark has been reached, 
or when it requests to receive data and less than the low water mark is present 
(assuming non-blocking I/O has not been specified). 17 

A socket queue has a number of flags used in synchronizing access to the data 
and in acquiring resources: 

fdefine SB MAX 65535 / * max chars in sockbuf * / 
fdefine SB LOCK OxOl /* lock on data queue (so_rev only) * / 
fdefine SB WANT Ox02 / * someone is waiting to lock * / 
fdefine SB WAIT Ox04 / * someone is waiting for datal space * / 
fdefine SB SEL Ox08 / * buffer is selected * / 
fdefine SB CaLL OxlO / * collision selecting * / 

17 The low-water mark is always presumed to be 0 in the current implementation . 
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The last two flags are manipulated by the system in implementing the select 
mechanism. 

When a socket is created, the supporting protocol "reserves" space for the send 
and receive queues of the socket. The limit on buffer allocation is set somewhat 
higher than the limit on data characters to account for the granularity of buffer 
allocation. The actual storage associated with a socket queue may fluctuate dur
ing a socket's lifetime, but it is assumed that this reservation will always allow a 
protocol to acquire enough memory to satisfy the high water marks. 

The timeout and select values are manipulated by the socket routines in imple
menting various portions of the intetprocess communications facilities and will 
not be described here. 

Data queued at a socket is stored in one of two styles. Stream-oriented sockets 
queue data with no addresses, headers or record boundaries. The data are in 
mbufs linked through the m _next field. Buffers containing access rights may be 
present within the chain if the underlying protocol supports passage of access 
rights. Record-oriented sockets, including datagram sockets, queue data as a list 
of packets; the sections of packets are distinguished by the types of the mbufs 
containing them. The mbufs that comprise a record are linked through the 
m_ next field; records are linked from the m _act field of the first mbuf of one 
packet to the first mbuf of the next. Each packet begins with an mbuf containing 
the "from" address if the protocol provides it, then any buffers containing access 
rights, and finally any buffers containing data. If a record contains no data, no 
data buffers are required unless neither address nor access rights are present. 

In dealing with connection oriented sockets (e.g. SOCK STREAM) the two ends 
are considered distinct. One end is tenned active, and generates connection 
requests. The other end is called passive and accepts connection requests. 

From the passive side, a socket is marked with SO _ ACCEP TCONN when a 
listen () call is made, creating two queues of sockets: so _ qO for connections 
in progress and so_ q for connections already made and awaiting user accep
tance. As a protocol is preparing incoming connections, it creates a socket struc
ture queued on so _ qO by calling the routine sonewconnO. When the connec
tion is established, the socket structure is then transferred to so _ q, making it 
available for an acceptO. 

If an SO _ ACCEPTCONN socket is closed with sockets on either so _ qO or so _ q, 
these sockets are dropped, with notification to the peers as appropriate. 

Each socket is created in a communications domain, which usually implies both 
an addressing structure (address family) and a set of protocols that implement 
various socket types within the domain (protocol family). Each domain is 
defined by the following structure: 
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struct domain 
int 
char 
int 

dom_family; /* PF_xxx * / 
*dom_name; 
( * dom _ ini t) () ; / * initialize domain structures * / 

} ; 

int 
int 
struct 
struct 

(*dom_externalize) (); /* externalize access rights * / 
(*dom_dispose) () ; / *dispose oJ internalized rights* / 
protosw *dom-protosw, *dom-protoswNPROTOSW; 
domain *dom_next; 

At boot time, each domain configured into the kernel is added to a linked list of 
domains. The initialization procedure of each domain is then called. After that 
time, the domain structure is used to locate protocols within the protocol family. 
It may also contain procedure references for externalization of access rights at the 
receiving socket and the disposal of access rights that are not received. 

Protocols are described by a set of entry points and certain socket-visible charac
teristics, some of which are used in deciding which socket type(s) they may sup
port. 

An entry in the "protocol switch" table exists for each protocol module 
configured into the system. It has the following form: 

struct protosw { 

} ; 

short pr_type; 
struct domain *pr_domain; 
short pr-protocol; 
short pr_flags; 
/ * protocol-protocol hooks * / 
int (*pr_input) (); 
int (*pr_output) (); 
int (*pr_ctlinput) (); 
int (*pr_ctloutput) (); 
/ * user-protocol hook * / 
int (*pr_usrreq) () ; 
/ * utility hooks * / 
int (*pr_init) () ; 
int (*pr_fasttimo) (); 
int (*pr_slowtimo) (); 
int (*pr_drain) (); 

/ * socket type used for * / 
/ * domain protocol a member of * / 
/ * protocol number * / 
/ * socket visible attributes * / 

/ * input to protocol (from below) * / 
/ * output to protocol (from above) * / 
/ * control input (from below) * / 
/ * control output (from above) * / 

/ * user request * / 

/ * initialization routine * / 
/ * fast timeout (200ms) * / 
/ * slow timeout (500ms) * / 
/ * flush any excess space possible * / 

A protocol is called through the pr _ ini t entry before any other. Thereafter it 
is called every 200 milliseconds through the pr_fasttimo entry and every 
500 milliseconds through the pr_slowtimo for timer based actions. The sys
tem will call the pr _ dr a in entry if it is low on space and this should throw 
away any non-critical data. 

Protocols pass data between themselves as chains of mbufs using the 
pr_input () and pr_output () routines. pr_input () passes data up 

Revision A, of 27 March 1990 



328 Transport-Level Programming 

Network-Interface Layer 

(towards the user) and pr output () passes it down (towards the network); 
control infonnation passes up and down on pr_ctlinput () and 
pr ctloutput(). The protocol is responsible for the space occupied by any 
of the arguments to these entries and must either pass it onward or dispose of it. 
(On output, the lowest level reached must free buffers storing the arguments; on 
input, the highest level is responsible for freeing buffers.) 

The pr_usrreq () routine interfaces protocols to the socket code and is 
described below. 

The pr _flags field is constructed from the following values: 

:If de fine PR ATOMIC OxOl / * exchange atomic messages only * / 
:If de fine PR ADDR Ox02 / * addresses given with messages * / 
:lfdefine PR_CONNREQUIRED Ox04 / * connection required by protocol * / 
:lfdefine PR WANTRCVD Ox08 /* want PRU_RCVD calls * / 
:If de fine PR RIGHTS OxlO / * passes capabilities * / 

Protocols that are connection-based specify the PR _ CONNREQUIRED flag so 
that the socket routines will never attempt to send data before a connection has 
been established. If the PR _ WANTRCVD flag is set, the socket routines will 
notify the protocol when the user has removed data from the socket's receive 
queue. This allows the protocol to implement acknowledgement on user receipt, 
and also update windowing infonnation based on the amount of space available 
in the receive queue. The PR _ ADDR field indicates that any data placed in the 
socket's receive queue will be preceded by the address of the sender. The 
PR_ ATOM I C flag specifies that each user request to send data must be performed 
in a single protocol send request; it is the protocol's responsibility to maintain 
record boundaries on data to be sent. The PR _RIGHTS flag indicates that the 
protocol supports the passing of capabilities; this is currently used only by the 
protocols in the UNIX protocol family. 

When a socket is created, the socket routines scan the protocol table for the 
domain looking for an appropriate protocol to support the type of socket being 
created. The pr _type field contains one of the possible socket types (e.g. 
SOCK_STREAM), while the pr_domain is a back pointer to the domain struc
ture. The pryrotocol field contains the protocol number of the protocol, 
nonnally a well-known value. 

Each network-interface configured into a system defines a path through which 
packets may be sent and received. Nonnally a hardware device is associated 
with this interface, though there is no requirement for this (for example, all sys
tems have a software "loopback" interface used for debugging and performance 
analysis). In addition to manipulating the hardware device, an interface module 
is responsible for encapsulation and decapsulation of any link-layer header infor
mation required to deliver a message to its destination. The selection of which 
interface to use in delivering packets is a routing decision carried out at a higher 
level than the network-interface layer. An interface may have addresses in one or 
more address families. The address is set at boot time using an ioctl () on a 
socket in the appropriate domain; this operation is implemented by the protocol 
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family, after verifying the operation through the device ioctl () entry. 

An interface is defined by the following structure, 

struct ifnet { 
char *if_name; 
short if_unit; 
short if_mtu; 
short if_flags; 
short if_timer; 

/ * name, e.g. lien" or 1110" * / 
/ * sub-unit for lower level driver * / 
/ * maximum transmission unit * / 
/ * up/down, broadcast, etc. * / 
/ * time 'til if_watchdog called * / 

u short if-promisc; 
int if_metric; 

/ * # of requests for promiscuous mode * / 
/ * routing metric (external only) * / 
/ * linked list of addresses per if * / struct ifaddr *if_addrlist; 

struct ifqueue { 
struct mbuf *if~head; 
struct mbuf *if~tail; 
int if~len; 
int if~maxlen; 
int if~drops; 

if_snd; 
/ * procedure handles * / 

int (*if_init) (); 
int (*if_output) (); 
int (* if _ioctl) () ; 
int (*if_reset) (); 
int (*if_watchdog) () ; 

/ * generic interface statistics * / 
int if_ipackets; 
int if_ierrors; 
int if_opackets; 
int if_oerrors; 
int if_collisions; 

/ * end statistics * / 
struct ifnet *if_next; 
struct ifnet *if_upper; 
struct ifnet *if_lower; 
int (*if_input) (); 
int (*if_ctlin) (); 
int (*if_ctlout) () ; 

#ifdef sun 

/ * output queue * / 

/ * in it routine * / 
/ * output routine * / 
/ * ioctl routine * / 
/ * bus reset routine * / 
/ * timer routine * / 

/ * packets received on interface * / 
/ * input errors on interface * / 
/ * packets sent on interface * / 
/ * output errors on interface * / 
/ * collisions on csma interfaces * / 

/ * next layer up * / 
/ * next layer down * / 
/ * input routine * / 
/ * control input routine * / 
/ * control output routine * / 

struct map *if_meromap; /* rmapfor interface specific memory * / 
#endif 

} ; 

Each interface address has the following fonn: 

struct ifaddr 
struct 
union { 

struct 
struct 

ifa_ifu; 

sockaddr ifa_addr; / * address of interface * / 

sockaddr ifu_broadaddr; 
sockaddr ifu_dstaddr; 
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} ; 

struct 
struct 

ifnet *ifa_ifpi 
ifaddr *ifa_nexti 

/ * back-pointer to interface * / 
/ * next address for interface * / 

#define if a broadaddr if a ifu.ifu_broadaddr /*brdcastaddress*/ 
#define ifa_dstaddr ifa_ifu.ifu_dstaddr /*otherendoflink*/ 

The protocol generally maintains this structure as part of a larger structure con
taining additional information concerning the address. 

Each interface has a send queue and routines used for initialization (if _ ini t), 
input (if_input), and output (if_output). If the interface resides on a sys
tem bus, the routine if_reset will be called after a bus reset has been per
fonned. An interface may also specify a timer routine, if watchdog; if 
if _timer is non-zero, it is decremented once per second until it reaches zero, 
at which time the watchdog routine is called. 

The state of an interface and certain characteristics are stored in the if_flags 
field. The following values are possible: 

4tdefine IFF UP Oxl / * interface is up * / 
4tdefine IFF BROADCAST Ox2 / * broadcast is possible * / 
4tdefine IFF DEBUG Ox4 /* turn on debugging * / 
4tdefine IFF LOOPBACK Ox8 / * is a loopback net * / 
4tdefine IFF POINTOPOINT OxlO / * interface is point-to-point link * / 
4tdefine IFF NOTRAILERS Ox20 / * avoid use of trailers * / 
4tdefine IFF RUNNING Ox40i / * resources allocated * / 
4tdefine IFF NOARP Ox80 / * no address resolution protocol */ 
4tdefine IFF PROMISC OxlOO / * receive all packets * / 
4tdefine IFF ALLMULTI Ox200 / * receive all multicast packets * / 

If the interface is connected to a network that supports transmission of broadcast 
packets, the IFF_BROADCAST flag will be set and the ifa_broadaddr field 
will contain the address to be used in sending or accepting a broadcast packet. If 
the interface is associated with a point-to-point hardware link (for example, 
Sunlink/lNR), the IFF _POINTOPOINT flag will be set and ifa_dstaddr 
will contain the address of the host on the other side of the connection. These 
addresses and the local address of the interface, if_addr, are used in filtering 
incoming packets. The interface sets IFF _RUNNING after it has allocated sys
tem resources and posted an initial read on the device it manages. This state bit 
is used to avoid multiple allocation requests when an interface's address is 
changed. The IFF _ NOTRAILERS flag indicates the interface should refrain 
from using a trailer encapsulation on outgoing packets, or (where per-host nego
tiation of trailers is possible) that trailer encapsulations should not be requested; 
trailer protocols are described in section 14. The IFF _ NOARP flag indicates the 
interface should not use an "address resolution protocol" in mapping internet
work addresses to local network addresses. The IFF PROMISC bit is set when 
the interface is in promiscuous mode, indicating that it should receive all incom
ing packets regardless of their intended destination. 

Various statistics are also stored in the interface structure. These may be viewed 
by users using the net s tat (1) program. 

~~sun ~~ microsystems 
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The interface address and flags maybe set with the SIOCSIFADDR and SIOC
SIFFLAGS ioctls. SIOCSIFADDR is used initially to define each 
interface's address; SIOGSIFFLAGS can be used to mark an interface down and 
perfonn site-specific configuration. The destination address of a point-to-point 
link is set with S IOCS IFDSTADDR. Corresponding operations exist to read 
each value. Protocol families may also support operations to set and read the 
broadcast address. The S IOCADDMULTI and SCIODELMULTI ioctls may 
be used to add and remove multicast addresses from the set that the interface 
accepts. In addition, the SIOCGIFCONF ioctl retrieves a list of interface 
names and addresses for all interfaces and address families on the host. 

The interface between the socket routines and the communication protocols is 
through the pr_usrreq () routine defined in the protocol switch table. The 
following requests to a protocol module are possible: 

#define PRU ATTACH 0 / * attach protocol * / 
#define PRU DETACH 1 / * detach protocol * / 
#define PRU BIND 2 / * bind socket to address * / 
#define PRU LISTEN 3 / * listen for connection * / 
#define PRU CONNECT 4 / * establish connection to peer * / 
#define PRU ACCEPT 5 / * accept connection from peer * / 
#define PRU DISCONNECT 6 / * disconnect from peer * / 
#define PRU SHUTDOWN 7 / * won't send any more data * / 
#define PRU RCVD 8 / * have taken data; more room now * / 
#define PRU SEND 9 / * send this data * / 
#define PRU ABORT 10 / * abort (fast DISCONNECT, DETATCH) * / 
#define PRU CONTROL 11 / * control operations on protocol * / 
#define PRU SENSE 12 / * return status into m * / 
#define PRU RCVOOB 13 / * retrieve out of band data * / 
#define PRU SENDOOB 14 / * send out of band data * / 
tdefine PRU SOCKADDR 15 / * fetch socket's address * / 
#define PRU PEERADDR 16 / * fetch peer's address * / 
#define PRU CONNECT2 17 / * connect two sockets * / 
/ * begin for protocol's internal use * / 
#define PRU FASTTIMO 18 / * 200ms timeout * / 
#define PRU SLOWTIMO 19 / * 500ms timeout * / 
#define PRU PROTORCV 20 / * receive from below * / 
#define PRU PROTOSEND 21 / * send to below * / 

A call on the user request routine is of the form, 

error = (*protosw[] .pr_usrreq) (so, req, ro, addr, rights); 
int error; 
struct socket *50; int req; 
struct mbuf *m, *addr, *rights; 

The mbuf data chain m is supplied for output operations and for certain other 
operations where it is to receive a result. The address addr is supplied for 
address-oriented requests such as PRU _BIND and PRU _CONNECT. The rights 
parameter is an optional pointer to an mbuf chain containing user-specified 

.~!!.n Revision A, of 27 March 1990 



332 Transport-Level Programming 

capabilities (see the sencimsg {) and recvmsg {} system calls). The protocol 
is responsible for disposal of the data mbuf chains on output operations. A non
zero return value gives a UNIX error number that should be passed to higher 
level software. The following paragraphs describe each of the requests possible. 

PRU ATTACH 
When a protocol is bound to a socket (with the socket () system call) the 
protocol module is called with this request. It is the responsibility of the 
protocol module to allocate any resources necessary. The "attach" request 
will always precede any of the other requests, and should not occur more 
than once. 

PRU DETACH 
This is the antithesis of the attach request, and is used at the time a socket is 
deleted. The protocol module may deallocate any resources assigned to the 
socket. 

PRU BIND 
When a socket is initially created it has no address bound to it. This request 
indicates that an address should be bound to an existing socket. The proto
col module must verify that the requested address is valid and available for 
use. 

PRU LISTEN 
The "listen" request indicates the user wishes to listen for incoming connec
tion requests on the associated socket. The protocol module should perform 
any state changes needed to carry out this request (if possible). A "listen" 
request always precedes a request to accept a connection. 

PRU CONNECT 
The "connect" request indicates the user wants to a establish an association. 
The addr parameter supplied describes the peer to be connected to. The 
effect of a connect request may vary depending on the protocol. Virtual cir
cuit protocols, such as TCP [PosteI81b], use this request to initiate establish
ment of a TCP connection. Datagram protocols, such as UDP [Postel 80] , 
simply record the peer's address in a private data structure and use it to tag 
all outgoing packets. There are no restrictions on how many times a connect 
request may be used after an attach. If a protocol supports the notion of 
multi-casting, it is possible to use multiple connects to establish a multi-cast 
group. Alternatively, an association may be broken by a 
PRU_DISCONNECT request, and a new association created with a subse
quent connect request; all without destroying and creating a new socket. 

PRU ACCEPT 
Following a successful PRU_LISTEN request and the arrival of one or more 
connections, this request is made to indicate the user has accepted the first 
connection on the queue of pending connections. The protocol module 
should fill in the supplied address buffer with the address of the connected 
party. 

PRU DISCONNECT 
Eliminate an association created with a PRU _CONNECT request. 
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PRU SHUTDOWN 
This call is used to indicate no more data will be sent and/or received (the 
addr parameter indicates the direction of the shutdown, as encoded in the 
soshutdown () system call). The protocol may, at its discretion, deallo
cate any data structures related to the shutdown and/or notify a connected 
peer of the shutdown. 

PRU RCVD 
This request is made only if the protocol entry in the protocol switch table 
includes the PR _ WANTRCVD flag. When a user removes data from the 
receive queue this request will be sent to the protocol module. It may be 
used to trigger acknowledgements, refresh windowing infonnation, initiate 
data transfer, etc. 

PRU SEND 
Each user request to send data is translated into one or more PRU _ SEND 
requests (a protocol may indicate that a single user send request must be 
translated into a single PRU _ SEND request by specifying the PR _ ATOMI C 
flag in its protocol description). The data to be sent is presented to the proto
col as a list of mbufs, and an address is, optionally, supplied in the addr 
parameter. The protocol is responsible for preserving the data in the 
socket's send queue if it is not able to send it immediately, or if it may need 
it at some later time (e.g. for retransmission). 

PRU ABORT 
This request indicates an abnonnal tennination of service. The protocol 
should delete any existing association(s). 

PRU CONTROL 
The "control" request is generated when a user perfonns a UNIX i 0 c t 1 ( ) 
system calIon a socket (and the ioctl is not intercepted by the socket rou
tines). It allows protocol-specific operations to be provided outside the 
scope of the common socket interface. The addr parameter contains a 
pointer to a static kernel data area where relevant infonnation may be 
obtained or returned. The m parameter contains the actual i 0 c t 1 ( ) 
request code (note the non-standard calling convention). The rights parame
ter contains a pointer to an ifnet structure if the ioctl () operation per
tains to a particular network interface. 

PRU SENSE 
The "sense" request is generated when the user makes an f s tat () system 
calIon a socket; it requests status of the associated socket. This currently 
returns a standard stat () structure. It typically contains only the optimal 
transfer size for the connection (based on buffer size, windowing infonna
tion and maximum packet size). The m parameter contains a pointer to a 
static kernel data area where the status buffer should be placed. 

PRU RCVOOB 
Any "out-of-band" data presently available is to be returned. An mbuf is 
passed to the protocol module, and the protocol should either place data in 
the mbuf or attach new mbufs to the one supplied if there is insufficient 
space in the single mbuf. An error may be returned if out-of-band data is not 
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(yet) available or has already been consumed. The addr parameter contains 
any options such as MSG_PEEK to examine data without consuming it. 

PRU SENDOOB 
Like PRU_SEND, but for out-of-band data. 

PRU SOCKADDR 
The local address of the socket is returned, if any is currently bound to it. 
The address (with protocol specific format) is returned in the addr parame
ter. 

PRU PEERADDR 
The address of the peer to which the socket is connected is returned. The 
socket must be in a SS _ I SCONNECTED state for this request to be made to 
the protocol. The address fonnat (protocol specific) is returned in the addr 
parameter. 

PRU CONNECT2 
The protocol module is supplied two sockets and requested to establish a 
connection between the two without binding any addresses, if possible. This 
call is used in implementing the socketpair {2} system call. 

The following requests are used internally by the protocol modules and are never 
generated by the socket routines. In certain instances, they are handed to the 
pr _ usrreq routine solely for convenience in tracing a protocol's operation 
(e.g. PRU_S LOWT IMO). 

PRU FASTTIMO 
A "fast timeout" has occurred. This request is made when a timeout occurs 
in the protocol's pr _ fa s t imo routine. The addr parameter indicates 
which timer expired. 

PRU SLOWTIMO 
A "slow timeout" has occurred. This request is made when a timeout occurs 
in the protocol's pr_slowtimo {} routine. The addr parameter indicates 
which timer expired. 

PRU PROTORCV 
This request is used in the protocol-protocol interface, not by the routines. It 
requests reception of data destined for the protocol and not the user. No pro
tocols currently use this facility. 

PRU PROTOSEND 
This request allows a protocol to send data destined for another protocol 
module, not a user. The details of how data is marked "addressed to proto
col" instead of "addressed to user" are left to the protocol modules. No pro
tocols currently use this facility. 

The interface between protocol modules is through the pr _ usrreqO, 
pr _ inputO, pr _ output(), pr _ ctlinputO, and pr _ ctloutput {} rou
tines. The calling conventions for all but the pr_usrreq {} routine are 
expected to be specific to the protocol modules and are not guaranteed to be con
sistent across protocol families. We will examine the conventions used for some 

Revision A, of 27 March 1990 



Chapter 12 - Socket-Based IPC Implementation Notes 335 

of the Internet protocols in this section as an example. 

The Internet protocol UDP uses the convention, 

error = udp_output(inp, m); 
int error; 
struct inpcb *inp; 
struct mbuf *m; 

where the inp, "internet protocol control block", passed between modules con
veys per connection state infonnation, and the mbuf chain contains the data to be 
sent. UDP perfonns consistency checks, appends its header, calculates a check
sum, etc. before passing the packet on. UDP is based on the Internet Protocol, IP 
[PosteI81a], as its transport. UDP passes a packet to the IP module for output as 
follows: 

error = ip_output(m, opt, ro, flags); 
int error; 
struct mbuf *m, *opt; 
struct route *ro; int flags; 

The call to IP's output routine is more complicated than that for UDP, as befits 
the additional work the IP module must do. The m parameter is the data to be 
sent, and the opt parameter is an optional list of IP options which should be 
placed in the IP packet header. The ro parameter is used in making routing deci
sions (and passing them back to the caller for use in subsequent calls). The final 
parameter, f lags, contains flags indicating whether the user is allowed to 
transmit a broadcast packet and if routing is to be perfonned. The broadcast flag 
may be inconsequential if the underlying hardware does not support the notion of 
broadcasting. 

All output routines return 0 on success and a UNIX error number if a failure 
occurred that could be detected immediately (no buffer space available, no route 
to destination, etc.). 

Both UDP and TCP use the following calling convention, 

(void) (*protosw [] . pr_input) (m, ifp); 
struct mbuf *m; 
struct ifnet *ifp; 

Each mbuf list passed is a single packet to be processed by the protocol module. 
The interface from which the packet was received is passed as the second param
eter. 

The IP input routine is a software interrupt level routine, and so is not called with 
any parameters. It instead communicates with network interfaces through a 
queue, ipintrq, which is identical in structure to the queues used by the net
work interfaces for storing packets awaiting transmission. The software interrupt 
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pr_ctlinput () 

pr_ctloutput 0 

is enabled by the network interfaces when they place input data on the input 
queue. 

This routine is used to convey "control" infonnation to a protocol module (Le. 
infonnation that might be passed to the user, but is not data). 

The common calling convention for this routine is, 

(void) (*protosw[] .pr_ctlinput) (req, addr); 
int req; 
struct sockaddr *addr; 

The req parameter is one of the following, 

#define PRe IFDOWN 0 / * interface transition * / 
#define PRe ROUTEDEAD 1 / * select new route if possible * / 
#define PRe_QUENCH 4 / * some said to slow down * / 
#define PRe MSGSIZE 5 / * message size forced drop * / 
#define PRe HOSTDEAD 6 / * normally from IMP * / 
#define PRe HOSTUNREACH 7 /* ditto * / 
#define PRe UNREACH NET 8 / * no route to network * / - -
#define PRe UNREACH HOST 9 / * no route to host * / - -
#define PRe UNREACH PROTOCOL 10 / * dst says bad protocol * / - -
#define PRe UNREACH PORT 11 /* bad port # * / - -
#define PRC UNREACH NEEDFRAG 12 /* IP _DF caused drop * / - -
#define PRC UNREACH SRCFAIL 13 / * source route failed * / - -
#define PRe REDIRECT NET 14 / * net routing redirect * / 
#define PRC REDIRECT HOST 15 / * host routing redirect * / - -
#define PRC REDIRECT TOSNET 16 /* redirectfor type & net * / - -
#define PRe REDIRECT TOSHOST 17 / * redirect for tos & host * / - -
#define PRe TIMXCEED INTRANS 18 / * packet expired in transit * / 
#define PRC TIMXCEED REASS 19 /* lifetime expired on reass q * / - -
#define PRC PARAMPROB 20 / * header incorrect * / 

while the addr parameter is the address to which the condition applies. Many of 
the requests have obviously been derived from ICMP (the Internet Control Mes
sage Protocol [Postel81 c]), and from error messages defined in the 1822 
host/lMP convention [BBN78]. Mapping tables exist to convert control requests 
to UNIX error codes that are delivered to a user. 

This is the routine that implements per-socket options at the protocol level for 
getsockopt () and setsockoptO. The calling convention is, 

error = (*protosw[] .pr_ctloutput) (op,so,level,optname,mp)i 
int 0Pi 

struct socket *SOi 
int level, optnamei 
struct mbuf **mpi 

where op is one of PRCO _ SETOPT or PRCO _ GETOPT, so is the socket whence 
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the call originated, and level and optname are the protocol level and option 
name supplied by the user. The results ofa PRCO_GETOPT call are returned in 
an mbufwhose address is placed in mp before return. On a PRCO_SETOPT call, 
mp contains the address of an mbuf containing the option data; the mbuf should 
be freed before retum 

The lowest layer in the set of protocols that comprise a protocol family must 
interface itself to one or more network interfaces in order to transmit and receive 
packets. It is assumed that any routing decisions have been made before handing 
a packet to a network interface; in fact this is absolutely necessary in order to 
locate any interface at all (unless, of course, one uses a single "hardwired" inter
face). There are two cases with which to be concerned, transmission of a packet 
and receipt of a packet; each will be considered separately. 

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it 
transmits a fully fonnatted packet with the following call, 

error = (*ifp->if_output) (ifp, m, dst) 
int error; 
struct ifnet *ifp; 
struct mbuf *m; 
struct sockaddr *dst; 

The output routine for the network interface transmits the packet m to the dst 
address, or returns an error indication (a UNIX error number). In reality 
transmission may not be immediate or successful; nonnally the output routine 
simply queues the packet on its send queue and primes an interrupt driven rou
tine to actually transmit the packet. For unreliable media, such as the Ethernet, 
"successful" transmission simply means that the packet has been placed on the 
cable without a collision. On the other hand, an 1822 interface guarantees proper 
delivery or an error indication for each message transmitted. The model 
employed in the networking system attaches no promises of deli very to the pack
ets handed to a network interface, and thus corresponds more closely to the Eth
ernet. Errors returned by the output routine are only those that can be detected 
immediately, and are nonnally trivial in nature (no buffer space, address fonnat 
not handled, etc.). No indication is received if errors are detected after the call 
has returned. 

Each protocol family must have one or more "lowest level" protocols. These 
protocols deal with internetwork addressing and are responsible for the delivery 
of incoming packets to the proper protocol processing modules. In the PUP 
model [Boggs78] these protocols are tenned Level 1 protocols, in the ISO model, 
network layer protocols. In this system each such protocol module has an input 
packet queue assigned to it. Incoming packets received by a network interface 
are queued for the protocol module, and a software interrupt is posted to initiate 
processing. 

Three macros are available for queuing and dequeuing packets: 
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IF_ENQUEUE (ifq, rn) 

This places the packet m at the tail of the queue ifq. 

IF_DEQUEUE (ifq, rn) 
This places a pointer to the packet at the head of queue ifq in m and removes 
the packet from the queue. A zero value will be returned in m if the queue is 
empty. 

IF_DEQUEUE IF (ifq, rn, ifp} 
Like IF_DEQUEUE, this removes the next packet from the head of a queue 
and returns it in m. A pointer to the interface on which the packet was 
received is placed in ifp, a (struct ifnet *). 

IF_PREPEND(ifq, rn} 
This places the packet m at the head of the queue ifq. 

Each queue has a maximum length associated with it as a simple fonn of conges
tion control. The macro IF _QFULL (ifq) returns 1 if the queue is filled, in 
which case the macro IF_DROP (ifq) should be used to increment the count of 
the number of packets dropped, and the offending packet is dropped. For exam
pIe, the following code fragment is commonly found in a network interface's 
input routine, 

if (IF_QFULL(inq» 
IF_DROP(inq); 
m_freem (m) ; 

else 
IF_ENQUEUE (inq, m); 

The system has been designed with the expectation that it will be used in an 
internetwork environment. The "canonical" environment was envisioned to be a 
collection of local area networks connected at one or more points through hosts 
with multiple network interfaces (one on each local area network), and possibly a 
connection to a long haul network (for example, the ARPANET). In such an 
environment, issues of gatewaying and packet routing become very important. 
Certain of these issues, such as congestion control, have been handled in a 
simplistic manner or specifically not addressed. Instead, where possible, the net
work system attempts to provide simple mechanisms upon which more involved 
policies may be implemented. As some of these problems become better under
stood, the solutions developed will be incorporated into the system. 

This section will describe the facilities provided for packet routing. The simplis
tic mechanisms provided for congestion control are described in the Buffering, 
Congestion Control section below. 

The network system maintains a set of routing tables for selecting a network 
interface to use in delivering a packet to its destination. These tables are of the 
fonn: 
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struct rtentry { 
u_long rt_hashi 

} i 

struct sockaddr rt_dsti 
struct sockaddr rt_gatewaYi 
short rt_flagsi 
short rt_refcnti 
u_long rt_usei 
struct ifnet *rt_ifpi 

/ * hash key for lookups * / 
/ * destination net or host * / 
/ * forwarding agent * / 
/* see below * / 
/ * # of references to structure * / 
/ * packets sent using route * / 
/ * interface to give packet to * / 

The routing infonnation is organized in two separate tables, one for routes to a 
host and one for routes to a network. The distinction between hosts and networks 
is necessary so that a single mechanism may be used for both broadcast and 
multi-drop type networks, and also for networks built from point-to-point links. 

Each table is organized as a hashed set of linked lists. Two 32-bit hash values 
are calculated by routines defined for each address family; one based on the des
tination being a host, and one assuming the target is the network portion of the 
address. Each hash value is used to locate a hash chain to search (by taking the 
value modulo the hash table size) and the entire 32-bit value is then used as a key 
in scanning the list of routes. Lookups are applied first to the routing table for 
hosts, then to the routing table for networks. If both lookups fail, a final lookup 
is made for a "wildcard" route (by convention, network 0). The first appropriate 
route discovered is used. By doing this, routes to a specific host on a network 
may be present as well as routes to the network. This also allows a "fall back" 
network route to be defined to a "smart" gateway which may then perform more 
intelligent routing. 

Each routing table entry contains a destination (the desired final destination), a 
gateway to which to send the packet, and various flags which indicate the route's 
status and type (host or network). A count of the number of packets sent using 
the route is kept, along with a count of "held references" to the dynamically allo
cated structure to insure that memory reclamation occurs only when the route is 
not in use. Finally, a pointer to the a network interface is kept; packets sent using 
the route should be handed to this interface. 

Routes are typed in two ways: either as host or network, and as "direct" or 
"indirect". The host/network distinction detennines how to compare the 
rt_dst field during lookup. If the route is to a network, only a packet's desti
nation network is compared to the rt_dst entry stored in the table. If the route 
is to a host, the addresses must match bit for bit. 

The distinction between "direct" and "indirect" routes indicates whether the des
tination is directly connected to the source. This is needed when perfonning 
local network encapsulation. If a packet is destined for a peer at a host or net
work which is not directly connected to the source, the internetwork packet 
header will contain the address of the eventual destination, while the local net
work header will address the intervening gateway. Should the destination be 
directly connected, these addresses are likely to be identical, or a mapping 
between the two exists. The RTF_GATEWAY flag indicates that the route is to an 

Revision A, of 27 March 1990 



340 Transport-Level Programming 

Routing Table Interface 

"indirect" gateway agent, and that the local network header should be filled in 
from the rt_gateway field instead of from the final internetwork destination 
address. 

It is assumed that multiple routes to the same destination will not be present; 
only one of multiple routes, that most recently installed, will be used. 

Routing redirect control messages are used to dynamically modify existing rout
ing table entries as well as dynamically create new routing table entries. On 
hosts where exhaustive routing infonnation is too expensive to maintain (e.g. 
work stations), the combination of wildcard routing entries and routing redirect 
messages can be used to provide a simple routing management scheme without 
the use of a higher level policy process. Current connections may be rerouted 
afiernotification of the protocols by means of their pr_ctlinput () entries. 
Statistics are kept by the routing table routines on the use of routing redirect mes
sages and their affect on the routing tables. These statistics may be viewed using 
.netstat (1) 

Status infonnation other than routing redirect control messages may be used in 
the future, but at present they are ignored. Likewise, more intelligent "metrics" 
may be used to describe routes in the future, possibly based on bandwidth and 
monetary costs. 

A protocol accesses the routing tables through three routines, one to allocate a 
route, one to free a route, and one to process a routing redirect control message. 
The routine rtalloc () performs route allocation; it is called with a pointer to 
the following structure containing the desired destination: 

struct route { 

} i 

struct rtentry *ro_rt; 
struct sockaddr ro_dst; 

The route returned is assumed "held" by the caller until released with an 
rtfree () call. Protocols which implement virtual circuits, such as TCP, hold 
onto routes for the duration of the circuit's lifetime, while connection-less proto
cols, such as UDP, allocate and free routes whenever their destination address 
changes. 

The routine rtredirect () is called to process a routing redirect control mes
sage. It is called with a destination address, the new gateway to that destination, 
and the source of the redirect. Redirects are accepted only from the current 
router for the destination. If a non-wildcard route exists to the destination, the 
gateway entry in the route is modified to point at the new gateway supplied. Oth
erwise, a new routing table entry is inserted reflecting the infonnation supplied. 
Routes to interfaces and routes to gateways which are not directly accessible 
from the host are ignored. 
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Routing policies implemented in user processes manipulate the kernel routing 
tables through two ioctl () calls. The commands SIOCADDRT and SIOC
DELRT add and delete routing entries, respectively; the tables are read through 
the /dev /kmem device. The decision to place policy decisions in a user process 
implies that routing table updates may lag a bit behind the identification of new 
routes, or the failure of existing routes, but this period of instability is normally 
very small with proper implementation of the routing process. Advisory infor
mation, such as ICMP error messages and IMP diagnostic messages, may be read 
from raw sockets (described in the next section). 

Several routing policy processes have already been implemented. The system 
standard "routing daemon" uses a variant of the Xerox NS Routing Information 
Protocol [Xerox82] to maintain up-to-date routing tables in our local environ
ment. Interaction with other existing routing protocols, such as the Internet EGP 
(Exterior Gateway Protocol), has been accomplished using a similar process. 

A raw socket is an object that allows users direct access to a lower-level protocol. 
Raw sockets are intended for knowledgeable processes that wish to take advan
tage of some protocol feature not directly accessible through the nonnal inter
face, or for the development of new protocols built atop existing lower level pro
tocols. For example, a new version of TCP might be developed at the user level 
by utilizing a raw IP socket for delivery of packets. The raw IP socket interface 
attempts to provide an identical interface to the one a protocol would have if it 
were resident in the kernel. 

The raw socket support is built around a generic raw socket interface, (possibly) 
augmented by protocol-specific processing routines. This section will describe 
the core of the raw socket interface. 

Every raw socket has a protocol control block of the following form: 

struct rawcb { 

} ; 

struet 
struct 
struet 
struet 
struet 
struet 
caddr t 
struet 
struet 
int 
int 
short 

rawcb *reb_next; 
rawcb *rcbyrev; 
socket *rcb_socket; 
sockaddr rcb_faddr; 
sockaddr rcb_laddr; 
sockproto rebyroto; 
rcbycb; 
mbuf *reb_options; 
route reb_route; 
rcb_ce; 
rcb_mbcnt; 
rcb_flags; 

/ * doubly linked list * / 

/ * back pointer to socket * / 
/ * destination address * / 
/ * socket's address * / 
/ * protocol family, protocol * / 
/ * protocol specific stuff * / 
/ * protocol specific options * / 
/ * routing information * / 
/ * bytes of rawintr queued data * / 
/ * bytes of rawintr queued mbufs* / 

All the control blocks are kept on a doubly linked list for performing lookups 
during packet dispatch. Associations may be recorded in the control block and 
used by the output routine in preparing packets for transmission. The 
reb_proto structure contains the protocol family and protocol number with 
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which the raw socket is associated. The protocol, family, and addresses are used 
to filter packets on input; this will be described in more detail shortly. If any 
protocol-specific infonnation is required, it may be attached to the control block 
using the rcb _pcb field. Protocol-specific options for transmission in outgoing 
packets may be stored in rcb_options. rCb_cc and rcb_rnbcnt are used 
to keep track of the resources consumed by the raw socket. 

A raw socket interface is datagram oriented. That is, each send or receive on the 
socket requires a destination address. This address may be supplied by the user 
or stored in the control block and automatically installed in the outgoing packet 
by the output routine. Since it is not possible to determine whether an address is 
present or not in the control block, two flags, RAW_LADDR and RAW_FADDR, 
indicate if a local and foreign address are present. Routing is expected to be per
formed by the underlying protocol if necessary. 

Input packets are "assigned" to raw sockets based on a simple pattern matching 
scheme. Each network interface or protocol gives unassigned packets to the raw 
input routine with the call: 

raw_input(m, proto, src, dst) 
struct mbuf *m; 
struct sockproto *proto; 
struct sockaddr *src, *dst; 

The data packet then has a generic header prepended to it of the form 

struct raw_header { 

} ; 

struct sockproto raw-proto; 
struct sockaddr raw_dst; 
struct sockaddr raw_src; 

and it is placed in a packet queue for the "raw input protocol" module. Packets 
taken from this queue are copied into any raw sockets that match the header 
according to the following rules, 

1) The protocol family of the socket and header agree. 

2) If the protocol number in the socket is non-zero, then it agrees with tha~ 
found in the packet header. 

3) If a local address is defined for the socket, the address format of the local 
address is the same as the destination address's and the two addresses agree 
bit for bit. 

4) The rules of 3) are applied to the socket's foreign address and the packet's 
source address. 

A basic assumption is that addresses present in the control block and packet 
header (as constructed by the network interface and any raw input protocol 
module) are in a canonical form that may be "block compared". 
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On output the raw pr _ usrreq () routine passes the packet and a pointer to the 
raw control block to the raw protocol output routine for any processing required 
before it is delivered to the appropriate network interface. The output routine is 
nonnally the only code required to implement a raw socket interface. 

One of the major factors in the performance of a protocol is the buffering policy 
used. Lack of a proper buffering policy can force packets to be dropped, cause 
falsified windowing infonnation to be emitted by protocols, fragment host 
memory, degrade the overall host performance, etc. Due to problems such as 
these, most systems allocate a fixed pool of memory to the networking system 
and impose a policy optimized for "nonnal" network operation. 

The networking system developed for UNIX is little different in this respect. At 
boot time a fixed amount of memory is allocated by the networking system. At 
later times more system memory may be requested as the need arises, but at no 
time is memory ever returned to the system. It is possible to garbage collect 
memory from the network, but difficult. In order to perfonn this garbage collec
tion properly, some portion of the network will have to be "turned off' as data 
structures are updated. The interval over which this occurs must kept small com
pared to the average inter-packet arrival time, or too much traffic may be lost, 
impacting other hosts on the network, as well as increasing load on the intercon
necting mediums. In our environment we have not experienced a need for such 
compaction, and thus have left the problem unresolved. 

The mbuf structure was introduced in the Memory, Addressing section, above. In 
this section a brief description will be given of the allocation mechanisms, and 
policies used by the protocols in performing connection level buffering. 

The basic memory allocation routines manage a private page map, the size of 
which detennines the maximum amount of memory that may be allocated by the 
network. A small amount of memory is allocated at boot time to initialize the 
mbuf and mbuf cluster free lists. When the free lists are exhausted, more 
memory is requested from the system memory allocator if space remains in the 
map. If memory cannot be allocated, callers may block awaiting free memory, or 
the failure may be reflected to the caller immediately. The allocator will not 
block awaiting free map entries, however, as exhaustion of the resource map usu
ally indicates that buffers have been lost due to a "leak." An array of reference 
counts parallels the cluster pool and is used when multiple references to a cluster 
are present. 

64 mbufs fit into a 8Kbyte page of memory. Data can be placed into a mbuf by 
copying, or, better, the memory that contains that data can be treated as a tem
porary ("loaned") mbuf. This second alternative is far more efficient than an 
actual copy. 

Protocols reserve fixed amounts of buffering for send and receive queues at 
socket creation time. These amounts define the high and low water marks used 
by the socket routines in deciding when to block and unblock a process. The 
reselVation of space does not currently result in any action by the memory 
management routines. 
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Protocols that provide connection level flow control do this based on the amount 
of space in the associated socket queues. That is, send windows are calculated 
based on the amount of free space in the socket's receive queue, while receive 
windows are adjusted based on the amount of data awaiting transmission in the 
send queue. Care has been taken to avoid the "silly window syndrome" 
described in [Clark82] at both the sending and receiving ends. 

Incoming packets from the network are always received unless memory alloca
tion fails. However, each Level 1 protocol input queue has an upper bound on 
the queue's length, and any packets exceeding that bound are discarded. It is 
possible for a host to be overwhelmed by excessive network traffic (for instance a 
host acting as a gateway from a high bandwidth network to a low bandwidth net
work). As a "defensive" mechanism the queue limits may be adjusted to throttle 
network traffic load on a host. Consider a host willing to devote some percentage 
of its machine to handling network traffic. If the cost of handling an incoming 
packet can be calculated so that an acceptable "packet handling rate" can be 
determined, then input queue lengths may be dynamically adjusted based on a 
host's network load and the number of packets awaiting processing. Obviously, 
discarding packets is not a satisfactory solution to a problem such as this (simply 
dropping packets is likely to increase the load on a network); the queue lengths 
were incorporated mainly as a safeguard mechanism. 

When packets can not be forwarded because of memory limitations, the system 
attempts to generate a "source quench" message. In addition, any other problems 
encountered during packet forwarding are also reflected back to the sender in the 
form of ICMP packets. This helps hosts avoid unneeded retransmissions. 

Broadcast packets are never forwarded due to possible dire consequences. In an 
early stage of network development, broadcast packets were forwarded and a 
"routing loop" resulted in network saturation and every host on the network 
crashing. 

Out of band data is a facility peculiar to the stream socket abstraction defined. 
Little agreement appears to exist as to what its semantics should be. TCP defines 
the notion of "urgent data" as in-line, while the NBS protocols [Burruss81] and 
numerous others provide a fully independent logical transmission channel along 
which out of band data is to be sent. In addition, the amount of the data which 
may be sent as an out of band message varies from protocol to protocol; every
thing from 1 bit to 16 bytes or more. 

A stream socket's notion of out of band data has been defined as the lowest rea
sonable common denominator (at least reasonable in our minds); clearly this is 
subject to debate. Out of band data is expected to be transmitted out of the nor
mal sequencing and flow control constraints of the data stream. A minimum of 1 
byte of out of band data and one outstanding out of band message are expected to 
be supported by the protocol supporting a stream socket. It is a protocol's prero
gative to support larger-sized messages, or more than one outstanding out of 
band message at a time. 
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Out of band data is maintained by the protocol and is usually not stored in the 
socket's receive queue. A socket-level option, SO _ OOBINLINE, is provided to 
force out-of-band data to be placed in the normal receive queue when urgent data 
is received; this sometimes amelioriates problems due to loss of data when multi
pIe out-of-band segments are received before the first has been passed to the user. 
The PRU_SENDOOB and PRU_RCVOOB requests to the pr_usrreq () routine 
are used in sending and receiving data. 

The internal structure of the system is patterned after the Xerox PUP architecture 
[Boggs79], while in certain places the Internet protocol family has had a great 
deal of influence in the design. The use of software interrupts for process invoca
tion is based on similar facilities found in the VMS operating system. Many of 
the ideas related to protocol modularity, memory management, and network 
interfaces are based on Rob Gurwitz's TCP/IP implementation for the 4.1BSD 
version of the UNIX system [Gurwitz81]. 
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