
Debugging Tools Manual

Part Number: 800-3849-10
Revision A of 27 March, 1990

Trademarks

Sun Workstation® is a trademark of Sun Microsystems, Incorporated.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any fonn or by any
means - graphic, electronic, or mechanical- including photocopying, recording, taping, or storage in an infonnation
retrieval system, without the prior written pennission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,4854,688,1904,527,2324,745,407
4,679,0144,435,7924,719,5694,550,368 in addition to foreign patents and applications pending.

Contents

Chapter 1 Introduction .. 1

1.1. Three Debuggers 1

dbx ... 1

dbxtool .. 1

adb ... 1

Chapter 2 dbx and dbxtool Compared ... 3

2.1. Debugging Modes of dbx and dbxtool .. 3

2.2. Common Features of dbx and dbxtool .. 3

Filenames .. 4

Expressions 4

dbx Sco{)e Rules ... 5

Chapter 3 dbxtool .. 7

3.1. d.bxtool Options .. 8

3.2. d.bxtool Subwindows ... 8

3.3. Scrolling .. ' .. ,."

3.4. The Source Window , ... ,.,.,.; .. , , ",.:.",

3.5. Constructing Commands ... , .. , ... ;; .. ;., ... ;';;,,';;';:.,.:,+ ; •• ,.;:::::,

3.6. Command Buttons .. ,'.',;;;:;; " ,:;:;:;:;':; .. ; .. ,::

3.7. The Display Window .. '.'.' ', .. ' , ' :, ::':,:::,:::'

3.8. Editing in the Source Window ;;;'; ... , ... ~.,; ;;',;: , ",

3.9. Controlling the Environment , , ;;',: .. ;;.'.';i : •• ,.;;+~."'.;';,,.;.

3.10. Other Aspects of d.bxtool .. , "i.:,:;:;: •• ,(................ .

-iii-

Contents - Continued

3.11. Bugs .. 14

Chapter 4 dbx ... 15

4.1. Preparing Files for dbx ... 16

4.2. Invoking dbx ... 16

4.3. dbx Options ... 17

The . dbxini t File ... 18

4.4. Listing Source Code ... 18

4.5. Listing Active and Post-Mortem Procedures ... 19

4.6. Naming and Displaying Data .. 19

4.7. Setting Breakpoints .. 21

4.8. Running and Tracing Programs ... 22

4.9. Accessing Source Files and Directories ... 24

4.10. Machine-Level Commands ... 25

4.11. Miscellaneous Commands ... 28

4.12. Debugging Large Programs .. 30

Running Out of Swap Space with Large Files ... 32

4.13. Debugging Child Processes .. 33

4.14. dbx FPA Support ... 35

4.15. Example ofFPA Disassembly ... 36

4.16. Examples ofFPA Register Use .. 37

Chapter 5 Debugging Tips for Programmers .. 39

5.1. dbx and FORTRAN ... 40

5.2. A Sample dbx Session ... 40

Calling a Function .. 42

Structures and Pointers .. 42

Parameters ... 45

Uppercase .. 45

Parts of Large Arrays .. 46

Passing Arguments to a Main Program .. 47

Where Exception Occurred ... 47

Print in Hex .. 48

- iv-

Contents - Continued

5.3. Using adb with FORTRAN .. 49

Chapter 6 adb Tutorial .. 53

6.1. A Quick SUlVey .. 53

Starting adb .. 53

Current Address 54

Fonnats ... 54

General Command Meanings .. 55

6.2. Debugging C Programs .. 56

Debugging A Core Image .. 56

Setting Breakpoints ... 59

Advanced Breakpoint Usage .. 62

Other Breakpoint Facilities ... 63

6.3. File Maps .. 65

407 Executable Files 65

410 Executable Files ... 66

413 Executable Files ... 67

Variables .. 67

6.4. Advanced Usage ... 68

Fonnatted Dump ... 68

Accounting File Dump .. 70

Converting Values .. 70

6.5. Patching ... 70

6.6. Anomalies .. 72

Chapter 7 Sun386i adb Tutorial .. 73

7.1. A Quick Survey .. 73

Starting adb .. 73

Current Address 74

Fonnats ... 74

General Request Meanings .. 75

7.2. Debugging C Programs on Sun386i ... 75

Debugging A Core Image .. 75

-v-

Contents - Continued

Setting Breakpoints ... 78

Advanced Breakpoint Usage .. 82

Other Breakpoint Facilities ... 83

7.3. File Maps .. 85

407 Executable Files 85

410 Executable Files ... 86

413 Executable Files .. 87

Variables .. 88

7.4. Advanced Usage ... 88

Fonnatted Dump ... 88

Accounting File Dump .. 90

Converting V alues .. 90

7.5. Patching ... 91

7.6. Anomalies .. 92

Chapter 8 adb Reference ... 93

8.1. adb Options ... 93

8.2. Using adb ... 93

8.3. adb Expressions .. 94

Unary Operators .. 95

Binary Operators ... 95

8.4. adb Variables .. 96

8.5. adb Commands ;... 96

adb Verbs ... 96

?, /, @, and = Modifiers .. 97

? and / Modifiers ... 99

: Modifiers ... 99

$ Modifiers ... 100

8.6. adb Address Mapping ... 102

8.7. See Also .. 102

8.8. Diagnostic Messages from adb .. 102

8.9. Bugs ... 103

8.10. Sun-3 FPA Support in adb ... 103

-vi-

Contents - Continued

8.11. Examples ofFPA Disassembly ... 104

Chapter 9 Debugging SunOS Kernels with adb .. 107

9.1. Introduction 107

Getting Started .. 107

Establishing Context 108

9.2. adb Command Scripts ... 108

Extended Fonnatting Facilities ... 108

Traversing Data Structures .. 112

Supplying Parameters ... 113

Standard Scripts ... 114

9.3. Generating adb Scripts with adbgen ... 115

Chapter 10 Generating adb Scripts with adbgen .. 117

10.1. Example of adbgen .. 118

10.2. Diagnostic Messages from adbgen ... 118

10.3. Bugs in adbgen ... 118

Index ... 119

-vii-

Tables

Table 2-1 Operators Recognized by dbx ... 4

Table 2-2 Operator Precedence and Associativity ... 5

Table 3-1 Attribute-Value Pairs for dbxtool ... 13

Table 4-1 dbx Functions ... 15

Table 4-2 Tracing and its Effects .. 23

Table 6-1 Some adb Fonnat Letters ... 55

Table 6-2 Some adb Commands .. 55

Table 7-1 Some adb Fonnat Letters ... 74

Table 7-2 Some adb Commands .. 75

Table 9-1 Standard Command Scripts .. 114

-ix-

.~

Figures

Figure 3-1 Five dbxtool Subwindows .. 9

Figure 6-1 Executable File Type 407 .. 65

Figure 6-2 Executable File Type 410 .. 66

Figure 6-3 Executable File Type 413 .. 67

Figure 7-1 Executable File Type 407 .. 85

Figure 7-2 Executable File Type 410 .. 86

Figure 7-3 Executable File Type 413 .. 87

-xi-

1.1. Three Debuggers

dbx

dbxtool

adb

1
Introduction

This manual describes three debuggers available on Sun Workstations™: dbx,
dbxtool, and adb. This document is intended for C, assembler, FORTRAN,
Modula-2, and Pascal programmers.

dbx is an interactive, line-oriented, source-level, symbolic debugger. It lets you
determine where a program crashed, view the values of variables and expres
sions, set breakpoints in the code, and run and trace a program. In addition,
machine-level and other commands are available to help you debug code. A
detailed description of how to use dbx is found in Chapter 4 .

dbxtool is a window-based interface to dbx. Debugging is easier because you
can use the mouse to enter most commands from redefinable buttons on the
screen. You can use any of the standard dbx commands in the command win
dow. A detailed description of how to use dbxtool is found in Chapter 3 .

adb is an interactive, line-oriented, assembly-level debugger. It can be used to
examine core files to detennine why they crashed, and provides a controlled
environment for program execution. Since it dates back to UNIXt Version 7, it is
likely to be available on UNIX systems everywhere. Chapters 6 and 7 are tutorial
introductions to adb for the Sun-3 and the Sun386i, respectively, and Chapter 8
is a reference manual for it.

This manual begins with material about the debuggers of choice, dbxtool and
dbx. They are much easier to use than adb, and are sufficient for almost all
debugging tasks. adb is most useful for interactive examination of binary files
without symbols, patching binary files or object code, debugging programs when
the source code is not at hand, and debugging the kernel.

Some programs produce core dumps when an internal bug causes a system fault.
You can usually produce a core dump by typing (CTRL-\J while a process is run
ning. If a process is running in the background, or originated from a different
process group, you can get it to dump core by using the gcore(1) utility.

t UNIX is a registered trademark of AT&T.

1 Revision A of 6 March 1990

2 Debugging Tools

Revision A of 6 March 1990

2.1. Debugging Modes of
dbx and dbxtool

NOTE

2.2. Common Features of
dbx and dbxtool

2
dbx and dbxtool Compared

Both dbx and dbxtool support three distinct types of debugging: post-mortem,
live-process, and multiple-process. References to dbx below apply to dbxtool
as well.

You can do post-mortem debugging on a program that has created a core file.
Using the core file as its image of the program, dbx retrieves the values of
variables from it. The most useful operations in post-mortem debugging are get
ting a stack trace with where, and examining the values of variables with
pr in t. Operations such as setting breakpoints, suspending and continuing exe
cution, and calling procedures, are not supported with post-mortem debugging.

In live-process debugging, a process's execution is controlled by dbx. From
there, the user can:

o set the process' starting point

o set and clear breakpoints

o restart a stopped process.

The most useful operations are getting a stack trace with where, examining the
values of variables with print and display, setting breakpoints with stop,
and continuing execution with next, step, and cont.

Multiple-process debugging is most useful when debugging the interaction
between two tightly coupled programs. For example, in a networking situation it
is common to have server and client processes that use some style of inter
process communication (remote procedure calls, for example). To debug both
the client and the server simultaneously, each process must have its own instance
of dbx. When using dbx for multiple-process debugging, it is advisable to
begin each dbx in a separate window. This gives you a way to debug one pro
cess without losing the context of the other debugging session.

This does not mean that either dbx or dbxtool supports remote debugging.
You can debug only processes running on your machine.

The following symbols and conventions apply to both dbx and dbxtool; as
before, references to dbx apply to dbxtool as well.

3 Revision A of 6 March 1990

4 Debugging Tools

Filenames

Expressions

Table 2-1

Filenames within d.bx may include shell metacharacters. The shell used for pat
tern matching is detennined by the SHE LL environment variable.

Expressions in dbx are combinations of variables, constants, procedure calls,
and operators. Hexadecimal constants begin with "Ox" and octal constants with
"0". Character constants must be enclosed in single quotes. Expressions cannot
involve literal strings, structures, or arrays, although elements of structures and
arrays may be used. However, the print and display commands do accept
structures or arrays as arguments and, in these cases, print the entire contents of
the structure or array. The call command accepts literal strings as arguments,
and passes them according to the calling conventions of the language of the rou
tine being called.

Operators Recognized by dbx

Operators Recognized by dbx

+ add
- subtract

* multiply
/ divide
div integer divide
% remainder
« left shift
» right shift
& bitwise and
I bitwise or
,.. exclusive or
- bitwise complement
& address of

* contents of
< less than
> greater than
<= less than or equal to
>= greater than or equal to
-- equal to
!= not equal to
! not
&& logical and
I I logical or
sizeof size of a variable or type
(type) type cast

structure field reference
-> pointer to structure field reference

The operator "." can be used with pointers to records, as well as with records
themselves, making the C operator "->" unnecessary (though it is supported).

Precedence and associativity of operators are the same as in C, and are described
in Table 2-2 below. Parentheses can be used for grouping.

Revision A of 6 March 1990

Table 2-2

- !

dbx Scope Rules

Chapter 2 - dbx and dbxtool Compared 5

Operator Precedence and Associativity

Operator Assocwtivity Precedence
-> left to right highest

(type) * & sizeof right to left

* / % div left to right

+ - left to right

« » left to right

< <= > >= left to right

== != left to right

& left to right

A left to right

I left to right

&& left to right

II left to right

?: right to left lowest

Of course, if the program being debugged is not active and there is no core file,
you may only use expressions containing constants. Procedure calls also require
that the program be active.

dbx uses two variables to resolve scope conflicts: file and func (see Section
4.8). The values of file and func change automatically as files and routines
are entered and exited during execution of the user program. They can also be
changed by the user. Changing func also changes the value of file; however,
changing file does not change func.

The func variable is used for name resolution, as in the command print
gr ab where gr ab may be defined in two different routines. The search order is:

1) Search for grab in the routine named by func.

2) If grab is not found in the routine named by func, search the file contain
ing the routine named by func.

3) Finally, search the outer levels - the whole program in the case of C and
FORTRAN, and the outer lexical levels (in order outward) in the case of Pas
cal- for grab.

Clearly, if grab is local to a different routine than the one named by func, or is
a static variable in a different file than is the routine named by func, it won't be
found. Note, however, that print a' grab is allowed, as long as routine a
has been entered but not yet exited. Note that the file containing the routine a
might have to be specified when the file name (minus its suffix) is the same as a
routine name. For example, if routine a is found in module a. c, then print
a 'grab would not be enough - you would have to use pr int a 'a 'grab.
If in doubt as to how to specify a name, use the wherei s command, as in

Revision A of 6 March 1990

6 Debugging Tools

whereis grab to display the full qualifications of all instances of the
specified name - in this case gr abo

The variable file is used to:

1) Resolve conflicts when setting func - for example, when a C program has
two static routines with the same name.

2) Detennine which file to use for commands that take only a source line
number-forexample, stop at 55.

3) Detennine which file to use for commands such as edit, which has
optional arguments or no arguments at all.

When dbx begins execution, the initial values of file and func are deter
mined by the presence or absence of a core file or process ID. If there is a core
file or process ID, file and func are set to the point of interruption. If there is
no core file or process ID, func is set to main (or MAIN for FORTRAN) and
file is set to the file containing main or (MAIN).

Note that changing func doesn't affect the place where dbx continues execu
tion when the program is restarted.

+!Y,.,!! Revision A of 6 March 1990

3
dbxtool

dbxtoo~ [-kdb] [-I dir] [objectfile [corefile I processlD]]

dbxtool is a source-level debugger with a window and mouse-based user inter
face, accepting dbx 's commands with a more convenient user interface. Using
the mouse, one can set breakpoints, examine variable values, control execution,
browse source files, and so on. There are subwindows for viewing source code,
entering commands, and several other uses. This debugger functions in the sun
tools(1) environment, so that the standard tool manager actions, such as mov
ing, resizing, moving to the front or back, and so on can be applied to it. For
more information on dbxtool, see the dbxtool (1) man page.

In the usage above, objectfi.le is an object file produced by cc, f7 7, pc, or
Modula-2 or a combination thereof, with the -g flag specified to produce the
appropriate symbol information. If no objectfile is specified, one may use the
debugger's debug command to specify the program to be debugged. The object
file contains a symbol table which includes the names of all the source files
translated by the compiler to create it. These files are available for perusal while
using the debugger, and can be seen with the modules command.

NOTE Every stage of the compilation process, including the linking and loading phases,
must include the -g option.

dbxtool can be used to examine the state of the program when it faulted if a
file named core exists in the current directory, or a core file is specified on the
command line or in the debug command.

Giving a processlD instead of a corefile, halts that process and begins debugging
it. Detaching the debugger from the process allows that process to continue to
execute.

7 Revision A of 6 March 1990

8 Debugging Tools

3.1. dbxtool Options -kdb

3.2. dbxtool Subwindows

Debugs a program that sets the keyboard into up-down translation mode.
This flag is necessary if you are debugging a program that uses up-down
decoding.

-I dir
Add dir to the list of directories searched when looking for a source file.
Normally d.bxtoollooks for source files in the directory where objectfile is
located, and if the source files can't be found there or in the current direc
tory, the user must tell dbxtool where to find the source files; either by
means of the -I option or else by setting the directory search path by means
of the use command. Multiple -I options may be given.

A dbxtool window consists of five subwindows. From top to bottom they are:

status Gives the overall status of debugging, including the location where
execution is currently stopped, and a deSCription of lines displayed
in the source subwindow.

source Displays source text of the program being debugged, and allows you
to move around in the source file.

buttons Contains buttons for frequently used commands; picking a button
with the mouse invokes the corresponding command.

command Provides a typing interface to supplement the buttons subwindow.
Also, most command output appears in this subwindow.

display Display output appears here.

~) sun Revision A of 6 March 1990
, microsystems

Figure 3-1

3.3. Scrolling

3.4. The Source Window

Five dbxtool Subwindows

dbxtool
Awaiting Execution
File Displayed: ./example.c .
~

II
/ ..

struct few few2 ,. { 3, 4, NULL, "world" } ;
struct few few1 - { 1, 2, &few2, "hello" } ;

.. write a main program to use the structures .. /
main()
{

/ ..
.. declare the variable "fewp
.. to p[oint to a few-type structure
.. /

struct few "fewp;
/ ..

.. print out a message

.. /

Chapter 3 - dbxtool 9

Lines: 13-32

! for (fewp - &few1; fewp !x NULL; UIII~ fewp -> next) {
pri ntf("o/"s ", fewp -> message);

}
~ }

[print)(print"U next)[step](stop atU cont][stop inn clear](where)

(up)[down)(run)

~ Reading symbolic information ...
, Read 155 symbols
:} (dbxtool) run
{~ Running: example
{} hello world
~:(ex ecut i on camp 1 eted, ex it code is e
?;, program exited with e
;:i:i;: (dbxtool) stop at "example .c" :29
:>; (2) stop at "example .c" :29
:>: (dbxtool) print fewp
t;;' "fewp" is not act i ve
~ (dbxtool)

The source, command, and display windows have scroll bars to facilitate brows
ing their contents. The scroll bar is at the left edge of each window.

See the SunView User's Guide for a more complete description of scroll bars.

The source window displays the text of the program being debugged. Initially, it
displays text from either the main routine, if there is no core file, or the point at
which execution stopped, if there is a core file. Whenever execution stops during
a debugging session, it displays the point at which it stopped. The file com
mand can be used to switch the source window to another file; the focus of atten
tion moves to the beginning of the new file. Similarly, the func command can
be used to switch the source window to another function; the new focus of atten
tion is the first executable line in the function.

Breakpoints are indicated in the source window by a solid stop sign at the begin
ning of the line. The point at which execution is currently stopped is marked by
a rightward pointing outlined or hollow arrow.

Revision A of 6 March 1990

10 Debugging Tools

3.S. Constructing
Commands

3.6. Command Buttons

One can either type commands to dbxtool, in the command window or con
struct commands with the selection and button mechanism (if a button is pro
vided for the command), but typing and buttons cannot be combined to build a
command.

The command window is a text subwindow and so uses the text selection facility
described in the SunView User's Guide.

The software buttons operate in a postfix manner. That is, one first selects the
argument, and then clicks the software button with the left mouse button. Each
command interprets the selection as appropriate for that command.

There are five ways that dbxt 00 1 may interpret a selection:

literal

expand

lineno

A selection may be interpreted as exactly representing selected
material.

A selection may be interpreted as exactly representing selected
material, except that it is expanded if either the first or last character
of the selection is an alphanumeric character or underscore. It is
expanded to the longest enclosing sequence of alphanumeric charac
ters or underscores. Selections made outside of dbxtool cannot be
expanded and are interpreted as exactly the selected text.

A selection in the source window may be interpreted as representing
the (line number of the) first source line containing all or some of the
selection.

command A selection in the command window may be interpreted as represent
ing the command containing the selection.

ignore Buttons may ignore a selection.

The standard set of command buttons in the buttons window is as follows:

print Print the value of a variable or expression. Since this button expands
the selection, identifiers can be printed by selecting only one charac
ter.

pr int * Print the value at the address represented by the selected variable or
expression.

next

step

Execute one source statement and then stop execution, except that if
the statement contains a procedure or function call, execute through
the called routine before stopping. The next button ignores the
selection.

Execute one source line and then stop execution again. If the current
source line contains a procedure or function call, stop at the first exe
cutable line within the procedure or function. The step button
ignores the selection.

stop at Set a breakpoint at a given source line. Interpret a selection in the
source window as representing the line number associated with the
first line of the selection.

Revision A of 6 March 1990

The Button Command

3.7. The Display Window

cant

Chapter 3 - dbxtool 11

Resume execution from the point where it is currently stopped. The
cant button ignores the selection.

stop in Set a breakpoint at the first line of a given function or procedure.

clear

where

up

down

Since this button expands the selection, identifiers may be printed by
selecting only one character.

Clear all breakpoints at the currently selected point. <lineno>
clear clears all breakpoints at the specified line number.

Prints a procedure traceback. <number> where prints number
top procedures in the traceback.

Moves up the call stack one level. <number> up moves the call
stack up number levels.

Moves the call stack down one level. <number> down moves the
call stack down n umbe r levels.

run Begins execution of the program. <argument s> run begins
execution of the program with new arguments.

The but ton command defines buttons in the buttons window. It can be used in
. dbx i nit to define buttons not otherwise displayed, or during a debugging ses
sion to add new buttons. The first argument to but ton is the selection interpre
tation for the button, and the remainder is the command associated with it. The
default set of buttons can be replicated by the following sequence:

button expand print
button expand print *
button ignore next
button ignore step
button lineno stop at
button ignore cont
button expand stop in
button ignore clear
button ignore where
button ignore up
button ignore down
button ignore run

The unbutton command may be used in . dbxinit to remove a default but
ton from the buttons window, or during a debugging session to remove an exist
ing button. The argument to unbutton is the name of the command associated
with the button.

The display window provides continual feedback of the values of selected vari
ables. The display command specifies variables to appear in the display win
dow, and undisplay removes them. Each time execution of the program
being debugged stops, the values of the displayed variables are updated .

• ~JJJJ Revision A of 6 March 1990

12 Debugging Tools

3.8. Editing in the Source
Window

3.9. Controlling the
Environment

3.10. Other Aspects of
dbxtool

toolenv

The source window is a standard text subwindow (see Sun View User's Guide for
details). Initially dbxtool puts the source subwindow in browse mode, mean
ing that editing capabilities are suppressed. dbxtool adds a "start editing"
entry to the standard text subwindow menu in the source window. When this
menu item is selected, the file in the source window becomes editable, the menu
item changes to "stop editing", and any annotations (stop signs and arrows) are
removed. The "stop editing" menu item is a pull-right menu with two options:
"save changes" and "ignore changes". Selecting either of these menu items dis
ables editing, changes the menu item back to "start editing", and causes the anno
tations to return.

After editing a source file, it is advisable to rebuild the program, as the source file
no longer reflects the executable program.

The toolenv command provides control over several facets of dbxtool 's
window environment, including the font, the vertical size of the source, com
mand, and display windows, the horizontal size of the tool, and the minimum
number of lines between the top or bottom of the source window and the arrow.
These are chiefly useful in the . dbxinit file to control initialization of the
tool, but may be issued at any time.

The commands, expression syntax, scope rules, etc. of dbxtool are identical to
those of dbx. Three of the commands, toolenv, button, and unbutton
affect only dbxtool, so they are described below. See Chapter 4 for descrip
tions of the others.

toolenv [attribute value]

Revision A of 6 March 1990

Table 3-1

button

unbutton

menu

Chapter 3 - dbxtool 13

Set or print attributes of the dbxtool window. This command has no effect in
dbx. The possible attribute-value pairs and their interpretations are as follows:

Attribute-Value Pairs for dbxtool

Attribute-Value Description
font fontfile change the font to that found infontfile; default is taken

from the DEFAULT FONT shell variable. -
width nchars change the width of the tool window to nchars charac-

ters; default is 80 characters.

srclines nlines make the source subwindow nlines high; default is 20
lines.

cmdlines nlines make the command subwindow nlines high; default is 12
lines.

displines nlines make the display subwindow nlines high; default is 3
lines.

topmargin nlines keep the line with the arrow at least nlines from the top
of the source subwindow; default is 3 lines.

botmargin nlines keep the line with the arrow on it at least nlines from the
bottom of the source subwindow; default is 3 lines.

The toolenv command with no arguments prints the current values of all the
attributes.

button selection command-name

Associate a button in the buttons window with a command in dbxtool. This
command has no effect in dbx. The argument selection may be any of
Ii teral, expand, lineno, command and ignore, as described in Section
3.5 . The command_name argument may be any sequence of words correspond
ing to a dbxtool command.

unbutton command-name

Remove a button from the buttons window. The first button with a matching
command-name is removed.

The menu command defines the menu list in the buttons window. It can be used
in . dbxini t to define menu items not otherwise displayed, or during a debug
ging session to add new menu items. The first argument to menu is the selection
interpretation for the menu, and the remainder is the command associated with it.
The default set of menu items can be replicated by the following sequence:

Revision A of 6 March 1990

14 Debugging Tools

unmenu

3.11. Bugs

menu expand display
menu expand undisplay
menu expand file
menu expand func
menu ignore status
menu lineno cont at
menu ignore make
menu ignore kill
menu expand list
menu ignore help

The unmenu command may be used in . dbxini t to remove a default menu
item from the menu associated with the buttons window or, during a debugging
session, to remove an existing menu item. The argument to unmenu is the menu
item to be removed.

The interaction between scrolling in the source subwindow and dbx's regular
expression search commands is wrong. Scrolling should affect where the next
search begins, but it does not.

Revision A of 6 March 1990

Table 4-1

4
dbx

dbx [-r] [-kbd] [-I dir] [object/t.le [core file I processlD]]

dbx is a tool for source-level debugging and execution of programs, that accepts
the same commands as dbxtool, but has a line-oriented user interface, which
does not use the window system. It is useful when you can't run SunView. (See
also the dbx(l) man page.)

dbx Functions

dbx Functions

Function Commands
list active procedures down, up, where

name, display, and set variables assign, display, dump,
print, set, set81,
undisplay, whatis, whereis,
which

set breakpoints catch, clear, delete,
ignore, status, stop, when

run and trace program call, cont, next, rerun,
run, step, trace

access source files & directories cd, edit, file, func, list,
pwd, use, /, ?

machine-level commands nexti, stepi, stopi,
tracei, address, +

miscellaneous commands alias, dbxenv, debug,
detach, help, kill, make,
modules, quit, sh, source,
setenv

Although dbx provides a wide variety of commands, there are a few that you
will execute most often. You will probably want to

o find out where an error occurred,

15 Revision A of 6 March 1990

16 Debugging Tools

o display and change the values of variables,

o display the values of constants,

o set breakpoints,

o and run and trace your program.

4.1. Preparing Files for
dbx

When compiling programs with cc, f 7 7, or pc, you must specify the -g option
on the command line, so that symbolic infonnation is produced in the object file.
Every step of compilation (including linking and loading) must include this
option.

In the past, many dbx users have compiled, with the -g option, only those
modules suspected of containing a bug that they wanted to fix, as this was an
efficient means of debugging large programs. Those modules compiled without
-g were accessible by just a few dbx commands, such as stop in
<procedure/function>, trace <procedure/function>, and
pr int <global>. However, dbx now contains the module s command,
which is expressly designed to aid in the debugging of large programs.

The modules command allows you to specify those modules for which dbx
should read source level debugging infonnation. Therefore, it is recommended
that most, if not all, modules be compiled with the -g option, and the modules
command used to debug the resulting program. For more infonnation on the
modules command, see Section 4.12, "Debugging Large Programs."

NOTE Thefollowing list contains afew notes you may want to keep in mind while using
dbx:

o dbx won't correctly debug library modules whose names are more than 14
characters long. While ar emits a warning at the time the library is being
created that the name of the file is being truncated, dbx will offer no warn
ing that there is a problem, other than not working correctly as you attempt
to debug the offending module.

o If you use ld's -r option when compiling your program, attempts to debug
the final load module with dbx will often fail. This is because ld -r
modifies the symbol table and the resultant load module.

o dbx may not work on programs using shared libraries, especially user
defined shared libraries. Therefore, for best results, compile and link your
programs statically, on the command line, with the -Bstatic option.

4.2. Invoking dbx To invoke dbx, type:

NOTE All the arguments are optional.

Revision A of 6 March 1990

4.3. dbx Options

dbx begins execution by printing:

Reading symbolic information ...
Read nnn symbols
(dbx)

To exit dbx and return to the command level, type:

Chapter 4 - dbx 17

For additional information and assistance, see Debugging Tips for Programmers
in Chapter 5 where a sample FORTRAN program and several examples are pro
vided. With a few changes and modifications to the examples this chapter may
also be useful for C programmers.

The options to dbx are:

-r Execute objfiZe immediately. Arguments to the program being debugged
follow the object filename (redirection is handled properly). If the program
terminates successfully, dbx exits. Otherwise, dbx reports the reason for
termination and waits for your response. When -r is specified and standard
input is not a terminal, dbx reads from / dey /tty.

-kdb
Debugs a program that sets the keyboard into up-down translation mode.
This flag is necessary if a program uses up-down decoding.

-1: dir
Add dir to the list of directories searched when looking for a source file.
Normally, dbx looks for source files in the directory where objfile is located,
and if the source files can't be found there or in the current directory, the
user must tell dbx where to find the source files; either by specifying the - I
option or by setting the directory search path with the use command.

The objfile contains compiled object code. If it is not specified, one can use
dbx's debug command to specify the program to be debugged. The object file
contains a symbol table, which includes the names of all the source files the com
piler translated with -g. These files are available for perusal while using the
debugger.

If a file named core exists in the current directory, or a corefile is specified,
dbx can be used to examine the state of the program when it faulted. If a pro
cesslD is given instead, dbx halts that process and begins debugging it. If you
later detach the debugger from it, the process continues to execute .

• ~!!,!! Revision A of 6 March 1990

18 Debugging Tools

The . dbxini t File

4.4. Listing Source Code

Users of prior releases of dbx may have grown used to setting breakpoints in
their. dbxinit file. The addition of the modules command has caused
. dbxini t to be read BEFORE the symbol table information rather than
AFTERWARDS as in previous versions. Hence, setting breakpoints in a
. dbxini t file no longer works.

To work around this difficulty, you may define an alias in your. dbxini t file
which will source another file of dbx commands; you can then set up this addi
tional file to contain the breakpoint-setting commands. Once you have set up
this second file with the breakpoint commands, all you need do is invoke the
alias immediately after you invoke dbx.

The last line in . dbxini t may look something like this:

alias moredbx source .dbxinit2

The contents of . dbx in it 2 may look something like this:

stop in main
stop in initial

Once you have properly set up the. dbxini t file with the above alias, the first
command you issue is:

moredbx

If you invoked dbx on an objfile, you can list portions of your program, and
associated line numbers in the program's source files. For example, consider the
program example. c, which you can see by typing:

If the range of lines starts past the end of file, db x will tell you the program has
only so many lines; if the range of lines goes past the end of file, dbx will print
as many lines as it can, without complaining. You can also list just a single pro
cedure by typing its name instead of a range of lines; for example 1ist main
prints ten lines starting near the top of the main () procedure.

Revision A of 6 March 1990

4.5. Listing Active and
Post-Mortem
Procedures

4.6. Naming and
Displaying Data

Chapter 4 - dbx 19

If your program fails to execute properly, you probably want to find out the pro
cedures that were active when the program crashed. Use the where command,
like this:

(where [nJ

where displays a list of the top n active procedures and functions on the stack,
and associated sourcefile line numbers (if available). If n is not specified, all
active procedures are displayed.

When debugging a post-mortem dump of the example. c program above, dbx
prints the following:

demo % .. ·dbxexample core
Rea.ding syrribollCihformation ...
Read 41 syrribols
program terrnina.ted by signalABRT
(dbx)
(cibx)· • where

· abortOa.t .Ox80eS
durnpcOre ()., lin.e12
main (Oxl, Oxfffd84,
(OOx)

Two other commands useful for viewing the stack are:

up [n]
Move up the call stack (towards main) n levels. If n is not specified, the
default is one. This command allows you to examine the local variables in
functions other than the current one.

down [n]
Move down the call stack (towards the current stopping point) n levels. If n
is not specified, the default is one.

You can name and display your data with the following commands:

pr int expression [, expression ...]
Print the values of specified expressions. An expression may involve func
tion calls if you are debugging an active process. If execution of a function
encounters a breakpoint, execution halts and the dbx command level is re
entered. A stack trace with the where command shows that the call ori
ginated from the dbx command level.

]

Variables having the same name as one in the current function may be refer
enced asjuncname ' variable, or filename' juncname 'variable. The
filename is required ifJuncname occurs in several files or is identical to a
filename. For example, to access variable i inside routine a, which is
declared inside module a . c, you would have to use p r in t a' a 'i to
make the name a unambiguous. Use whereis to determine the fully
qualified name of an identifier. For more details, see dbx Scope Rules in
Chapter 5.

Revision A of 6 March 1990

20 Debugging Tools

Hexadecimal numbers can be printed using the alias command in con
junction with machine-level commands. For more information, see Print in
Hex in Chapter 5.

display [expression [, expression ...]]
Display the values of the expressions each time execution of the debugged
program stops. The name qualification rules for print apply to display
as well. With no arguments, the display command prints a list of the
expressions currently being displayed, and a display number associated with
each expression. In dbxtool, the variable names and values are shown in
the display subwindow; in dbx they are printed automatically whenever
execution stops.

undisplay expression [, expression ...]
Stop displaying the expressions and their values each time execution of the
program being debugged stops. The name qualification rules for pr i n t
apply to undisplay as well. A numeric expression is intetpreted as a
display number and the corresponding expression is deleted from the
display.

whatis identifier
whatis type

Print the declaration of the given identifier or type. The identifier may be
qualified with block names as above. The type argument is useful to print all
the members of a structure, union, or enumerated type.

which identifier
Print the fully qualified form of the given identifier; that is, the outer blocks
with which the identifier is associated.

whereis identifier
Print the fully qualified form of all symbols whose names match the given
identifier. The order in which the symbols are displayed is not meaningful.

assign variable = expression
set variable = expression

Assign the value of the expression to the variable. Currently no type conver
sion takes place if the operands are of different types.

set8l fpreg = word1 word2 word3
Treat the 96-bit value gotten by concatenating word1, word2, and word3 as
an IEEE floating-point value, and assign it to the named MC68881 floating
point registerfpreg. Note that MC68881 registers can also be set with the
set command, but that the value is treated as double-precision and con
verted to extended precision. This command applies to Sun-3 systems only.

dump [June]
Display the names and values of all the local variables and parameters in
June. If not specified, the current function is used.

Revision A of 6 March 1990

4.7. Setting Breakpoints

Chapter 4 - dbx 21

Breakpoints are set with the stop and when commands, which have the follow
ing forms:

stop at source-line-number [if condition]
Stop execution at the given line number whenever the condition is true. If
condition is not specified, stop every time the line is reached.

stop in procedure/function [if condition]
Stop execution at the first line of the given procedure or function whenever
the condition is true. If condition is not specified, stop every time the pro
cedure or function is entered.

stop variable [if condition]
Stop execution whenever the value of variable changes and condition is true.
If condition is not specified, stop every time the value of variable changes.
This command perfonns interpretive execution, and thus is significantly
slower than most other dbx commands.

stop if condition
Stop execution whenever condition becomes true. This command perfonns
interpretive execution, and thus is significantly slower than most other dbx
commands.

when in procedure/function {command; ... }
Execute the given dbx command(s) whenever the specified procedure or
function is entered.

when at source-Line-number {command; ... }
Execute the given dbx command(s) whenever the specified source-line
number is reached.

when condition {command; ... }
Execute the given dbx command(s) whenever the condition is true before a
statement is executed. This command performs interpretive execution, and
thus is significantly slower than most other dbx commands.

NOTE In the when commands, the braces and the semicolons between commands are
required.

The following commands can be used to view and change breakpoints:

stat us [> filename]
Display the currently active trace, stop, and when commands. A
command-number is listed for each command. The filename argument
causes the output of status to be sent to that file.

delete command-number [[,] command-number . ..]
delete all

Remove the trace, when, and/or stop commands corresponding to the
given command-numbers, or all of them. The status command explained
above displays the numbers associated with these commands.

clear [source-tine-number]
Clear all breakpoints at the given source line number. If no source-Line
number is given, the current stopping point is used.

Revision A of 6 March 1990

22 Debugging Tools

4.8. Running and Tracing
Programs

Two additional commands can be used to set a breakpoint when a signal is
detected by the program, rather than a condition or location.

catch [number [[,]number ...]]
Start trapping the signals with the given number(s) before they are sent to
the program being debugged. This is useful when a program handles signals
such as interrupts. Initially all signals are trapped except S I GHUP ,
SIGEMT,SIGFPE,SIGCONT,SIGCHLD,SIGALRM,SIGKILL,
S IGTS TP, and S IGWINCH. If no number is given, list the signals being
caught.

ignore [number [[,] number ...]]
Stop trapping the signals with the given number(s) before they are sent to the
program being debugged. This is useful when a program handles signals
such as interrupts. If no number is given, list the signals being ignored.

You can run and trace your code using the following commands:

run [args] [> filename I »filename]
Start executing objfile, specified on the dbx command line (or with the most
recent debug command), passing args as command-line arguments; <, >,
and » can be used to redirect input or output in the usual manner. Other
wise, all characters in args are passed through unchanged. If no arguments
are specified, the argument list from the last run command (if any) is used.
If objfile has been written since the last time the symbolic infonnation was
read in, dbx reads the new information before beginning execution. For
more infonnation, see Passing Arguments to a Main Program in Chapter 5

rerun [args] [> filename I »filename]
Identical to run, except in the case where no arguments are specified. In
that case run runs the program with the same arguments as on the last invo
cation, whereas rerun runs it with no arguments at all.

cant [at source-line-number] [sig sig-number]
Continue execution from where it stopped, or, if the clause at source-line
number is given, at that line number. The sig-number causes execution to
continue as if that signal had occurred. The source-line-number is evaluated
relative to the current file and must be within the current procedure/function.
Execution cannot be continued if the process has finished (that is, has called
the standard procedure _ exi t). dbx captures control when the process
attempts to exit, thereby letting the user examine the program state.

trace source-line-number [if condition]
trace procedure/function [if condition]
trace [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Display tracing information when the program is executed. A number is
associated with the trace command, and can be used to tum the tracing off
(see the delete command).

Revision A of 6 March 1990

Table 4-2

Chapter 4 - dbx 23

If no argument is specified, each source line is displayed before it is exe
cuted. Execution is substantially slower during this fonn of tracing.

The clause in procedure/junction restricts tracing infonnation to be
displayed only while executing inside the given procedure or function. Note
that the procedure/junction traced must be visible in the scope in which the
trace command is issued - see the func command.

The condition is a Boolean expression evaluated before displaying the trac
ing information; the information is displayed only if condition is true.

The first argument describes what is to be traced. The effects of different
kinds of arguments are described below:

Tracing and its Effects

source-line-number Display the line immediately before executing it.
Source line numbers in a file other than the
current one must be preceded by the name of the
file in quotes and a colon, for example,
"mumble. p" : 1 7.

procedurelfunction Every time the procedure or function is called,
display information telling what routine called it,
and what parameters were passed to it. In addi-
tion' its return is noted, and if it is a function, the
return value is also displayed.

expression The value of the expression is displayed whenever
the identified source line is reached.

variable The name and value of the variable are displayed
whenever the value changes. Execution is sub-
stantially slower during this fonn of tracing.

Tracing is turned off whenever the function in which it was turned on is
exited. For instance, if the program is stopped inside some procedure and
tracing is invoked, the tracing will end when the procedure is exited. To
trace the whole program, tracing must be invoked before a run command is
issued.

When using conditions with trace, stop, and when, remember that variable
names are resolved with respect to the scope current at the time the command is
issued (not the scope of the expression inside the trace, stop, or when com
mand). For example, if you are currently stopped in function faa () and you
issue the command

(stop in bar if x==5

the variable x refers to the x in function foo () ,not in bar (). The func com
mand can be used to change the scope before issuing a trace, stop, or when
command, or the name can be qualified, for example, bar. :x:==S.

J

Revision A of 6 March 1990

24 Debugging Tools

4.9. Accessing Source Files
and Directories

Note: The FPA register names
$fpaO .. $fpa31 can be used in
arithmetic expressions and in set
commands on machines with a
FPA. This extension only applies
on a machine with an FPA. Note
that if an FPA register is used in an
expression or assignment, its type
is assumed to be double precision.
FPA registers can be displayed in
single precision using the If
display format. Double-precision
values are displayed using the IF.

step [n]
Execute through the next n source lines and then stop. If n is not specified, it
is taken to be one. Step into procedures and functions.

next [n]
Execute through the next n source lines and then stop, counting functions as
single statements.

call procedure (parameters)
Execute the named procedure (or function), with the given parameters. If
any breakpoints are encountered, execution halts and the dbx command
level is reentered. A stack trace with the where command shows that the
call originated from the dbx command level.

If the source file in which the routine is defined was compiled with the -g
flag, the number of arguments is checked and warnings are issued. You
must ensure that arguments of the appropriate type are passed.

If C routines are called that are not compiled with the -g flag, dbX does
NOT check the number of parameters. The parameters are simply pushed on
the stack as given in the parameter list.

Currently, FORTRAN alternate return points may not pass properly.

These commands let you access source files and directories without exiting dbx:

edit [filename]
edi t procedure/function

Invoke an editor on filename (or on the current source file if none is
specified). If a procedure orfunction name is specified, the editor is invoked
on the file that contains it. The default editor invoked is vi. Set the
environment variable EDITOR to the name of a preferred editor to override
the default. For dbxtool, the editor comes up in a new window.

file [filename]
Change the current source file to filename, or print the name of the current
source file if no filename is specified.

func [procedure / function]
Change the current function, or print the name of the current function if none
is specified. Changing the current function implicitly changes the current
source file displayed by file to the one that contains the function; it also
changes the current scope used for name resolution.

Ii st [source-Line-number [, source-Line-number]]
1 i st procedure/function

List the lines in the current source file from the first line number through the
second. If no lines are specified, the next 10 lines are listed. If the name of a
procedure or function is given, lines n-5 to n+5 are listed, where n is the
first statement in the procedure or function. If the list command's argu
ment is a procedure or function, the scope for further listing is changed to
that routine - use the file command to change it back. In dbxtool, the

Revision A of 6 March 1990

4.10. Machine-Level
Commands

Chapter 4 - dbx 25

region of the file is shown in the source window and extends from the first
line number to the end of the window.

use [directory ...]
Set the list of directories to search when looking for source files. If no direc
tory is given, print the current list of directories. Supplying a list of direc
tories replaces the current (possibly default) list. The list is searched from
left to right.

cd [dirname]
Change dbx's notion of the current directory to dirname. With no argu
ment, use the value of the HOME environment variable.

pwd
Print dbx's notion of the current directory.

/ string[/]
Search downward in the current file for the regular expression string. The
search begins with the line immediately after the current line and, ifneces
sary, continues until the end of the file. The matching line becomes the
current line.

?string[?]
Search upward in the current file for the regular expression string. The
search begins with the line immediately before the current line and, if neces
sary, continues until the top of the file. The matching line becomes the
current line.

When dbx searches for a source file, the value of file and the use directory
search path are used. The value of file is appended to each directory in the
use search path until a matching file is found. This file becomes the current file.

dbx knows the same filenames as were given to the compilers. For instance, if a
file is compiled with the command

(% cc -c -g .. /mip/scan.c

then dbx knows the filename .. Imip/ scan. c, but not scan. e.

These commands are used to debug code at the machine level:

traeei [address] [if cond]
traeei [variable] [at address] [if cond]

Tum on tracing of individual machine instructions.

stopi [variable] [if cond]
stopi [at address] [if cond]

Set a breakpoint at the address of a machine instruction.

stepi
nexti

Single step as in step or next, but do a single machine instruction rather
than a line of source.

J

Revision A of 6 March 1990

26 Debugging Tools

Mode

i
d
D

0

0
x
X

b
c
s
f
F
E

Register

$dO-$d7
$aO-$a7

$fp
Ssp
$pc
$ps

Register

$fpO-$fp7
$fpc
$fps
$fpi
$fpf
$fpg

address, address / [mode]
address / [count] [mode]

+/ [count] [mode]
Display the contents of memory starting at the first address and continuing
up to the second address, or until count items have been displayed. If a + is
specified, the address following the one displayed most recently is used.
The mode specifies how memory is displayed; if omitted, the last specified
mode is used. The initial mode is x. The following modes are supported:

Does

display as a machine instruction
display as a halfword in decimal
display as a word in decimal
display as a halfword in octal
display as a word in octal
display as a half word in hexadecimal
display as a word in hexadecimal
display as a byte in octal
display a byte as a character
display as a string of characters terminated by a null byte
display as a single-precision real number
display as a double-precision real number
display as an extended-precision real number

Symbolic addresses used in this context are specified by preceding a name with
an ampersand &. Registers are denoted by preceding a name with a dollar sign $.
Here is a list of MC680xO register names:

Name

data registers
address registers
frame pointer (same as $a6)
stack pointer (same as $ a 7)
program counter
program status

The following registers apply only to Sun-3 workstations:

Name

MC68881 data registers
MC68881 control register
MC68881 status register
MC68881 instruction address register
MC68881 flags (unused, idle, busy)
MC68881 floating-point signal type

For example, to print the contents of the data and address registers in hex on a
Sun-3, type &$dO/16X or &$dO, &$a7 /x. To print the contents of register
dO, type print $dO (one cannot specify a range with print). Addresses

Revision A of 6 March 1990

Chapter 4 - dbx 27

may be expressions made up of other addresses and the operators + (plus),
(minus), * (multiply), and indirection (unary *). The address may be a + alone,
which causes the next location to be displayed.

See the SPARe Architecture Reference Manual and the Sun-4 Assembly
Language Reference Manual for information about Sun-4 registers and address
ing.

Here is the list of Sun386i registers:

Register Name

$ss stack segment register
$eflags flags

$cs code segment register
$eip instruction pointer
$eax general register
$ebx general register
$ecx general register
$edx general register
$esp stack pointer
$ebp frame pointer
$esi source index register
$edi destination index register
$ds data segment register
$es alternate data segment register
$fs alternate data segment register
$gs alternate data segment register

On the Sun386i, to print the contents of the data and address registers in hex,
type &$eax/ lOX or &$eax,&$eip/X. Data segment registers are always printed
together, so &$cs/X is the same as &$cs,&$gs/X. The print command can also
be as in print $eax.

You can also access parts of the Sun386i registers. Specifically, the lower halves
(16 bits) of these registers have separate names, as follows:

Register Name

$ax general register
$cx general register
$dx general register
$bx general register
$sp stack pointer
$bp frame pointer
$si source index register
$di destination index register
$ip instruction pointer, lower 16 bits

$flags flags, lower 16 bits

Revision A of 6 March 1990

28 Debugging Tools

4.11. Miscellaneous
Commands

Furthennore, the first four of these 16 bit registers can be split into two 8-bit
parts, as follows:

Register Name

$al lower (right) half of register Sax
$ah higher (left) half of register Sax
$cl lower (right) half of register $cx
$ch higher (left) half of register $cx
$dl lower (right) half of register $dx
$dh higher (left) half of register $dx
$bl lower (right) half of register $bx
$bh higher (left) half of register $bx

The registers for the Sun386i math coprocessor are the following:

Register Name

$fctrl control register
$fstat status register
$ftag tag register
$fip instruction pointer offset
$fcs code segment selector

$fopoff operand pointer offset
$fopsel operand pointer selector

$stO - $st7 data registers

sh [command-line]
Pass the SunOS command line to the shell for execution. The SHE LL
environment variable detennines which shell is used.

alias new-command-name character-sequence

[

Respond to new-command-name as though it were character-sequence. Spe
cial characters occurring in character-sequence must be enclosed in double
quotation marks. Alias substitution as in the C shell also occurs. For exam
ple, ! : 1 refers to the first argument. The command

alias mem "print (! :1)->meml->mem2"]
creates a mem command that takes an argument, evaluates its meml->mem2
field, and prints the result.

help [command]
help

Print a short message explaining command. If no argument is given, display
a synopsis of all dbx commands.

source filename
Read dbx commands from the givenfilename. This is especially useful

Revision A of 6 March 1990

Note: All FPA instructions are
disassembled by the off option,
not just those used in conjunction
with the fpaasm subcommand.

Chapter 4 - dbx 29

when that file was created by redirecting a status command from an ear
lier debugging session.

quit
Exit dbx.

dbxenv
Set dbx attributes. The dbxen v command with no argument prints the
attributes and their current values.

dbxenv case sensitivelinsensitive
The keyword case controls whether upper and lower case letters are con
sidered different. The default is sensi ti ve; insensi ti ve is most use
ful for debugging FORlRAN programs.

dbxenv fpaasm onloff
Controls the disassembly ofFPA instructions. If you specify off with the
dbxen v fpaa sm command, FP A instructions are disassembled as move
instructions. If you specify on, FPA instructions are disassembled by means
ofFPA assembler mnemonics. On a machine with an FPA, fpaasm is on
by default. On machines without FPA, fpaasm is off by default.

dbxenv fpabase a[0-7] I off
Designates an MC68020 address register for FP A instructions that use base
plus-short -displacement addressing to address the FP A.

If the value is on, long move instructions that use the designated address
register in base-plus-short-displacement mode are assumed to address the
FP A, and are disassembled using FP A assembler mnemonics.

If the value is off, all based-mode FPA instructions are disassembled and
single-stepped as move instructions. The default value of fpabase is off.

dbxenv makeargs args
The keyword makeargs defines which arguments will be passed to make
when it is invoked from dbx.

dbxenv speed seconds
The keyword speed determines the interval between execution of source
statements during tracing (default 0.5 seconds).

dbxenv stringlen num
The keyword stringlen controls the maximum number of characters
printed for a char * variable in a C program (default 512).

debug [objfile [corefile / process-id]]
Terminate debugging of the current program (if any), and begin debugging
the one found in objfile with the given corefile or live process, without incur
ring the overhead of reinitializing dbx. If no arguments are specified, the
name of the program currently being debugged and its arguments are
printed. You must have both the objfile and core file or live process available
to perform debugging.

Revision A of 6 March 1990

30 Debugging Tools

4.12. Debugging Large
Programs

NOTE

kill
Terminate debugging of the current process and kill the process, but leave
dbx ready to debug another. This can eliminate remains of a window pro
gram you were debugging without exiting the debugger, or allow the object
file to be removed and remade without incurring a "text file busy" error mes
sage.

modules
Used to debug large programs. For more information see "Debugging Large
Programs," below.

detach
Detach a process from dbx and let it continue to execute. The process is no
longer under the control of dbx.

setenv name string
Set the environment variable name to the value of string. (See csh(1)).

The modules command within dbx helps you debug very large programs by
selecting what parts of the available debugging information you want to use the
next time dbx reads in the object file.

To debug programs with the modules command, you must include main () .

The modules command controls and displays the amount of source level
debugging information available to dbx.

Usage:

modules
module s SELECT [ALL I objname] [objname l ..
module s APPEND [objname] [objname l ..

mo du 1 e s with no arguments displays the set of object files for which source
level debugging information is currently available to the debugger, including the
patbnames of any associated source files. If the debugger cannot access a source
file for which it has debugging information, its name is followed by , {? } '.

Example:

Source file pathnames reflect the current search path as set by USE commands or
the -I option.

The modules command followed by the keyword SELECT sets or displays the
modules selection list. This list is used to control whether the debugger reads
source level debugging information for a particular object file. You can use this

sun Revision A of 6 March 1990
microsystems

Chapter 4 - dbx 31

to control the size of the dbx internal symbol tables when debugging large
programs.

If the modules selection list is set and a particular object file of the executable file
is not included in the list, the debugger will ignore debugging information for
that file. The effect is the same as if the file had not been compiled with the -g
flag.

Set the modules selection list to include specified object files with this command.

(modules SELECT objname [objname] ...

Display the current list with the command.

(modules SELECT

Before reading debugging information for a particular object file, the debugger
checks whether the modules selection list is set. If it is set, the debugger
compares the name of the object file against the modules selection list. If the
name appears, its debugging information is read, otherwise it is ignored.

Disable the selection list with this command.

J

J

(~ ___ m_o_d_u_l_e_s __ S_E_L_E_C_T __ A_L_L ____________________________________ ~J
Once you set a modules selection list, all subsequent DEBUG commands will
interrogate it. Change the list with additional

(modules SELECT objname [objname] ...

commands.

J

Revision A of 6 March 1990

32 Debugging Tools

Running Out of Swap Space
with Large Files

Example:

Add the named files to the modules selection list with this command.

[modules APPEND objname [objname J •••

If the modules selection list includes any object files which do not appear in the
executable being debugged, dbx prints a warning.

The set of object files read from an executable file may be larger than the set
specified in the modules select list. To compress debugging symbols, the loader
eliminates any debugging infonnation which is redundantly defined in multiple
include files (see symbol type N _ EXCL in <stab. h>). If some symbols of an
object file were excluded, the object file(s) where those symbols were first
defined must also be read. Object files which were not selected but which were
implied in this way are flagged by' (*) , in the output from the modules
command.

If you debug large programs and do not use the modules command, you may
run out of swap space. If so, address the problem by doing one of the following
things:

o Increase the limit for the stacksize by inserting the line

J

"limit stacksize 8 megabytes" into your. cshrc file. If8 isn't
enough, you may need 16, or even 32. But don't over do it. Start with 8.

o Make a bigger swap file. For help see the mkfile(8) and swapon(8) man
pages.

Example: Login as superuser, use the command pstat-s to verify your
swap space usage, make the file, and tell the system to use it, as shown in the
example on the following page.

Revision A of 6 March 1990

4.13. Debugging Child
Processes

Do not press [Return I yet.

>dexno* pst.i.€ · ... 8<
~5~(k ~116d~t~d +
avai1 a.ble
deitt6f.mkflle~n. 20m></home.l swapflle
lh.o'me/swapfile20~7r520bYtes

. aemof /usfletcliwap6n·· /homelswapfile

Chapter 4 - dbx 33

You may find that debugging programs with dbx or dbxtool is difficult when
the program does a fork () and thereby creates child processes. Debugging can
be done, but it does not fit into dbx nicely. You will have to change the source
code during debugging.

Use the steps below and either dbx or dbxtool to debug programs that create
child processes.

1. Insert a sleep (20) or a similar call in the child process path of the code
which was started by the fork (). This delays the child code execution.
There are many alternatives that can be used. You could also use
get char () or an infinite loop that can be broken by the dbx command
set.

2. On SunOS releases prior to 4.0, link with the - N flag. This ensures that after
the for k () , the child and parent processes have their own copies of the text
segment for the process, rather than sharing the segment. Beginning with
SunOS 4.0, this flag is not necessary due to the copy-on-write capability
provided by the virtual memory subsystem.

3. Start dbx on the parent process. Put a break point in the parent process code
as needed. Be sure to put a break in the execution path of the parent process
right after the fork () point, in order to obtain the child process PID.

Do not put any breakpoints in the child process at this point.

4. Start another copy of db x, or db xt 001, and enter the first part of a
command as shown below.

[demo % dbi: execmable..filenalne

5. Start parent process code execution in the first dbx. Obtain the child
process PID number after reaching the breakpoint set in step 3 above. We
will use "1234" as the PID in this example.

6. Now complete the command as shown below.

demo% dbx execuiableJilendme 1234
R.eading symbolic information .. ~.

This command starts a second dbx process to debug the child process
suspended earlier by the sleep (20) or functionally-equivalent command

Revision A of 6 March 1990

34 Debugging Tools

or loop. A step command now allows you to debug the child process 20
seconds after the for k () call.

7. You may want to trace one of the exec () calls executed by most child
processes. The PID remains the same, but the executable image changes. A
sleep (20) command in the process which was started by exec () will
slow it down so that a dbx can attach to it. Use the following commands
from the dbx of the child process in this case. Note that the child process
will now execute at full speed .

• ··d~1ll6% ··.ciet.ach· ••••• · .. ·•· ••••••• ·•· •••....••••• > .••.••••.•••.•.••....•.•.•.•.•.•••....
··.·····.·.demo%dbx·.·nelr:.executiible...filename

You can now see how useful it is to alter the child process code by adding a
sleep () or similar command to trace both fork () and exec () calls.

8. The dbx for the child process should do a detach if it wishes to allow the
child process to continue executing with no interference from the debugger.
Alternately, a kill command should be used to terminate the process. If
neither of these commands is used and a dbx quit command is used, the
child process will be left in a suspended state .

. aemo%<>dbxa. out
Readingsyrribotic infOrmation ...
Rea.d42syrnbbls
(dbx) list 1,15

1 #include <st.dio.h>
2 main 0

13
14

<·15

{

(d}:)x) stop at 14

pid>== ·fbik();
priritf("pid is
switch (pid)
{

case ;"'1:

case 0:
sTeep (20);

(2)$topat"chi. l.d.c'i:15 .
(dbx) fun
Running: · a .. out
pid.·is 0
pidis<·1537
st:opped in main

15
. (dbx)

Revision A of 6 March 1990

4.14. dbx FPA Support

Chapter 4 - dbx 35

In another command tool or shelltool use the pid and read in the child process
as shown in the following example (1537 is the pid of the sample process):

demo%db:x a.outiS37
ReadingsyrnbOlic
Read 42 symbOls
(dbx) list

13
14
15
16

1. The fpaasm debugger variable controls disassembly ofFPA instructions.
This variable may be set or displayed by means of the dbxenv command.
The syntax of the command is:

(~ ____ db __ x_e_n_V __ f_p_a_a_s_m __ <_o_n_IO_f_f_> ______________________________ -J]

If the value of fpaasm is off, all FPA instructions are disassembled as
move instructions. If the value is on, FPA instructions are disassembled
with FPA assembler mnemonics. Defaults: on a machine with an FPA,
fpaasm is initially set to on; on machines without an FPA, it is initially set
to off.

2. The fpabase debugger variable designates a 68020 address register for
FPA instructions that use base-plus-short-displacement addressing to address
the FPA. The syntax is:

(~ ____ db __ x_e_n_V __ f_p_a_b_a_s_e __ <_a_[_O-_7_] __ IO_f_f_> ________________________ --J]

IfFPA disassembly is disabled (if fpaasm is off), its value is ignored.
Otherwise, its value is interpreted as follows:

value in [aO .. a7]:
Long move instructions that use the designated address register in base
plus-short-displacement mode are assumed to address the FPA, and are
disassembled using FP A assembler mnemonics. Note that this is
independent of the actual run-time value of the register.

value= off:
All based-mode FPA instructions are disassembled and single-stepped
as move instructions.

The default value of fpabase is off, which designates no FPA base regis
ter.

Revision A of 6 March 1990

36 Debugging Tools

4.15. Example ofFPA
Disassembly

Consider the following simple FORTRAN program:

program example
print *,f(l.O,l.O)
end

function f(x,y)
f = atan(x/y)
return
end

Assume that this program has been compiled with the - g option into the file
example. On a Sun-3 with an FPA, we could disassemble the function f as
shown below. Note that the FORTRAN intrinsic ATAN is directly supported by
the FPA instruction set and the FORTRAN compiler.

FPA disassembly can be disabled by setting the debugger variable fpaasm to
off. This causes dbx to disassemble FPA instructions as long moves to
addresses on the FPA page:

Revision A of 6 March 1990

4.16. Examples of FPA
Register Use

Chapter 4 - dbx 37

When tracing a more complex program, one may occasionally want to step into a
routine that has been compiled with optimization on. In such routines, it is often
the case that the compiled code addresses the FP A page by using base+short
offset addressing. Such code can be difficult to recognize unless it is known
ahead of time that a particular address register is being used to address the FP A.
This situation can be identified by the presence of an instruction that loads the
address of the FP A page (OxeOOOOOOO) into an address register before doing any
floating-point arithmetic.

For example, here is a disassembly of the beginning of an optimized FORTRAN
routine compiled with the -0 and -ffpa options:

(dbx) >&C:ldot"'] 11
(loot : lIhk
dd6t+Ox4<: moveml
dd6t+Ox8: lea
. dd6t··· + Oxe: Ino"l
ddOt __ +Ox14: movl
dddt+O x 1 a.: movl
dd6t+Ox20:movl

a6}l;';'Ox2aO
#<d2, d3, d4,dS, d6, d7,
eOOOOOOO:1,a2
i2~(Oxe20),a6@(-Ox278)

a2@(Oxe24) ,a6@ (... Ox274)
a2@(Oxe28)~a6@(~Ox270)

a2@(Oxe2c) ,·a6@(-Ox26c)

dbx does not know which register (if any) is being used to address the FP A in a
given sequence of machine code. However, you may set the dbxenv variable
fpabase to designate an MC68020 address register as an FPA base register. In
this example, we note that the compiler has loaded the address of the FP A page
into register a2, and so we designate a2 as the FPA base register to obtain the
following:

(dbx}·dbxenv fpabase<>a2
(dbx) · •• 'C:ldot:._/7i
ddct <.: link i6, f-Ox2aO
adOf+Ox4: :rrioveful #<d2,d3,·d.4, dS ,db, d7,·a2,
ddot +OX8: lea eOOOOOOO:l,a2
dd6t~+bj{e: fPmOved@4 fpa4,a6@(-Ox278)
ddOt·+Oxla: fpmoveCi@2 fpa5,a6@(~Ox270)

ddot +Ox26:fpmOved@2 204ce:l,:fpaS
·dd6tfOx36: fpmdved@~ 204ce:l i fpa4

FP A data registers can be displayed using a syntax similar to that used for the
MC68881 co-processor registers. Note that unlike the MC68881 registers, FP A
registers may contain either single-precision (32-bit) or double-precision (64-bit)
values; MC68881 registers always contain an extended-precision (96-bit) value.

For example, if fpaO contains the single-precision value 2.718282, we may
display it as follows:

(Clbx)&$fpaOlf
fpaO Ox402df8S5

Revision A of 6 March 1990

38 Debugging Tools

Note that the value is displayed in hexadecimal as well as in floating- point nota
tion.

A double-precision value may be displayed using the IF format. For example, if
fpaO contains the double-precision value 2.718281828, we may display it as
follows:

(cibx) &$£paOIF
fP~O O~4005bfO~

Note that it is important to use the correct display fonnat; attempting to display a
double-precision value in single precision (and vice versa) will usually produce
meaningless results.

FPA registers can also be used in set commands and in arithmetic expressions.
Since dbx cannot tell whether the value in an FPA register is single or double
precision, dbx provides two sets of names to refer to FP A registers. The names
{$fpaO .. $fpa31} always cause the contents of the register to be interpreted
as a double-precision value; the names {$ fpaO s .. $ fpa31 s} cause interpre
tation as a single-precision value. Thus, the commands

[~dbX) set $fpaOs = 1.0 1
_ (dbx) set $£paO = 1.0 .

cause different bit patterns to be stored in fpaO.

+§Y,.,!! Revision A of 6 March 1990

NOTE

Sample program

al.f

a2.f

a3.f

5
Debugging Tips for Programmers

This chapter provides a number of debugging tips. Primarily, the examples
presented here are in the FORTRAN language. However, with some minor
changes and modifications, the sample program and the examples in this chapter
may also be of use to C language programmers.

FORTRAN arrays can be specified using either parentheses 0 or brackets []. dbx
can take both.

The following sample program (with bug) is used in several examples:

20
10

parameter (n=2)
real twobytwo(2,2) / 4 *-1 /
call mkidentity(twobytwo, n
print *, determinant(twobytwo
end

subroutine mkidentity (array, m)
real array (m,m)
do 10 i = 1, m
do 20 j = 1, m
if (i .eq. j) then

array(i,j) 1.
else

array (i, j) O.
endif
continue
continue
return
end

+~I!! 39 Revision A of 6 March 1990

40 Debugging Tools

real function determinant (a
real a(2,2)
determinant
return
end

a(l,l) * a(2,2) - a(1,2) / a(2,1)

5.1. dbx and FORTRAN Note the following when using dbx with FORTRAN programs:

5.2. A Sample dbx Session

coq>ile

1) The main routine is referenced as MAIN (as distinguished from main). All
other names in the source file that have upper case letters in them will be
lower case in dbx, unless the program was compiled with f77 -u.

2) When referring to the value of a logical type in an expression, use the value
o or 1 rather than. false. or. true., respectively.

A few dbx commands are shown here in examples, using the sample program at
the start of this chapter.

Throughout a debugging session, dbx defines a procedure and a source file as
current. Requests to set breakpoints and to print or set variables are interpreted
relative to the current function and file. Thus, "stop at 5" sets one of three
different breakpoints depending on whether the current file is al . f, a2. f, or
a3.f.

To use dbx or dbxtool, you must compile and load your program with the -go
* flag. For example:

or:

dern,q% f77 -c -g a1.<f a2~f a3. f
dEHno% 1:.77 -g -0

run To run the program under the control of dbx, change to the directory where the
sources and programs reside, then type the dbx command and the name of the
executable file:

quit

... , """

Clem6%»dbx silly
Beadilig>sYIIltl(jlic
··Re~d<307 symbols

(d.bx)

The -q and -0 options are incompatible. If used together, the -q option cancels the -0 option.

Revision A of 6 March 1990

Chapter 5 - Debugging Tips for Programmers 41

To quit dbx, enter the command quit.

breakpoint To set a breakpoint before the first executable statement, wait for the (dbx)
prompt, then type "stop in MAIN".

run After the (dbx) prompt appears, type run to begin execution. When the break
point is reached, dbx displays a message showing where it stopped, in this case
at line 3 of file a 1 . f .

print The command "print n" displays 2, since dbx knows about parameters.

(dbx) priritri
n=·2
(dbx)

The command "print twobytwo" displays the entire matrix, one element per
line. Note that dbx displays square brackets (not parentheses) when it references
array elements.

(dbx).·· p:rint twobytw6
fw ol:>ytw 0 =.>[1,·1] .

[2,1]Li~O

[1,2]
·[2,>2]

The command "print array" fails because mkident it Y is not active at
this point.

.• ·(db~)

Revision A of 6 March 1990

42 Debugging Tools

next

Calling a Function

Structures and Pointers

The command next advances execution to line 4, and if the command "print
twobytwo" is now repeated, it displays the unit matrix.

It is possible to call a subroutine or function in the program at any point when
execution has stopped. The effect is exactly as if the source had contained a call
at that point. For example if, after the initial "stop in MAIN" described
above, you typed "print determinant (twobytwo) ", dbx displays the
value 0.0, since rnkidentity would not yet have modified twobytwo .

...... ",

gefll6~>qhx>si~~y

R~adlrig»symbo1.ic .
. ~eaa283 symbOl.s
(dbx r>stopiri>MAIN
(2)·st6p in ·MAIN ...
(dbx)priritdetebniriant(twoby-tw())
qet.e;Irliriant<two}::>ytwo) =>0.0
(dbk)

This facility is often useful for special-case printing. For example, in a program it
might be meaningful to trace the row and column sums of different matrices. A
subroutine called rna t s urn that does this could be compiled into a program and
invoked by the user at appropriate breakpoints.

The dbx debugger recognizes the Sun FORTRAN items such as structure,
record, union, and pointer. The following examples show using dbx with these
items.

Revision A of 6 March 1990

Chapter 5 - Debugging Tips for Programmers 43

Compile for dbx using the -9 option, load it in dbx, and list it.

-odebst.r~9'>d.eb1.f

demO%··dbx debstr
Reading-symbolic information ...
Read 269··· symbols
(dbx) list 1,30

1 * debl.f: Show dbx with
2 STRUCTURE /PRODUCT!

INTEGER*4
CHARACTER*16
CHARACTER*8
REAL*4
REAL*4

3
4
5
6
7
8
9

END STRUCTURE

ID
NAME

MODEL
COST
PRICE

10 RECORD jpRODUCT/ PRODl, PROD2
11 POINTER (PRIOR, PRODl), (CURR,
12
13 PRIOR = MALLOC (36)

PROD1.>ID = 82
PROD1.NAME="Schlepper"
PRODl~MODEL= "XL"
PRODl.COST= 24.0
PRobl.PRICE = 104.0

19 CURR == MALLOC(36)
20 PRob2 PRODl
21 WRITE (*, *) PROD2. NAME
22 STOP
23 END

Set a breakpoint at a specific line number, and run it under dbx.

(cibx) st.opat 21
(1}stopat "deb1.f": 21
(cilix) run
Running: debstr
stopped in main at line 21 in

21 WRITE (*,

Revision A of 6 March 1990

44 Debugging Tools

Print and inquire about a record.

If you tell dbx to print a record, it displays all fields of the record, including field
names.

Print a pointer, then quit dbx.

If you tell it to print a pointer, it displays the contents of that pointer, which is the
address of the variable pointed to. This address could very well be different with
every run.

Revision A of 6 March 1990

Parameters

Uppercase

Chapter 5 - Debugging Tips for Programmers 45

The dbx debugger recognizes parameters - the compiler generates pseudo
variables for parameters when programs are compiled for dbx with the -q
option. The following examples show using dbx with parameters.

Compile for dbx using the -q option, load it in dbx and list it. Print some
parameters.

If your program has uppercase letters in any identifiers, and you want dbxtool
to recognize them, then you need to give dbxtool a specific command, as
follows.

Once you've done the above command, then when dbxtool finds and displays
uppercase identifiers, you can select them and dbxtool can find them.

Caveat: Once you've done the above command, then the command
"stop in MAIN" does not work.

Revision A of 6 March 1990

46 Debugging Tools

Parts of Large Arrays Printing portions of large arrays is often of interest to FORTRAN programmers.
For example:

Note that the D in the last dbx command shown in the above example is the
mode used to display a longword in decimal fonnat.

Revision A of 6 March 1990

Passing Arguments to a Main
Program

Note that the arguments are passed
not on the dbx or dbxtool
command line, nor on the debug
command line.

Where Exception Occurred

Chapter 5 - Debugging Tips for Programmers 47

To specify main program arguments correctly within dbx, place them on the
run command of dbx, as follows:

demc:>% ·¢lit tesargs .<f
c}:).aractei>a:Cgv*lO
integer i,.i a.bjCt
rri)==ia.rgc()
i= 1
do while

call

i= 1+1
end do
stop
end

demo%a.out fi:rstsecond last:.
1 first
2 second
3 last

demo % dbx cl. out
Reading symbolic information ...
Read 29 2 symbols
(dbx»rtirifirst second last
RUI1ning:a.out first seCond last

1 first
2 ··second
3 last

exeCution completed,. exit code is
exi ted ·wlth<O

You can find the source code line where a floating-point exception occurred by
using the ieee_handler routine with either dbx or dbxtool. For example:

Revision A of 6 March 1990

48 Debugging Tools

Note the
"catch FPE"
dbx command. ~

Print in Hex Although you cannot use the print command to display objects in
hexadecimal, you can use the alias command with machine-level commands
to achieve the same results. The following command creates a new command
named mem which requires one argument: an object of type integer*4. It
then displays that argument in hexadecimal. For comparison, the example below
shows the same value displayed in decimal using the print command. The "1"
is the number of words to print.

Revision A of 6 March 1990

5.3. Using adb with
FORlRAN

compile

revised a l.f

Chapter 5 - Debugging Tips for Programmers 49

Using the following command, you can now set up a button in dbxtool so that
the mouse could select the object.

~ •.••.•.•.•
, " ... ,.,.. .

(dbxtoOrrbutton>fllij)and· mem'

This section introduces the use of the adb low-level debugger with the
FORlRAN language.

The adb debugger can be used to provide a stack traceback at a lower level.
adb can be used on any program regardless of whether or not it was compiled
with the -g debugging flag. For more information on adb, see adb Tutorial,
Chapter 6.

The adb program does not display any prompt at all; it just waits for input;
except if you enter only a (Return I, then it will display the prompt adb.

With the same three files as in the first dbx example, if you compile and run, you
get NaN (not a number). If you get an abort, you can get an adb low-level trace
back; so force an abort with an exception handler.

parameter (n=2)
real twobytwo(2,2) / 4 *-1 /
external hand
i = ieee_handler ('set', 'all', hand)
call mkidentity(twobytwo, n)
print *, determinant (twobytwo)
end

integer function hand (sig, code, context)
integer sig, code, context (5)
call abort ()
end

Revision A of 6 March 1990

50 Debugging Tools

Here is a compile and run, for a Sun-3, with 68881 floating point.

start You can start up adb and display a C backtrace as follows.

demo%jldb sillY···COre
6di~fil~~core

StGIOT···.·6: abort
$C
_kill (?)

_DYNAMIC() + 6
_force __ abort 0
ab6rt<) ·+···4a
_hand __ () + 18

Interpretation (bottom up):

o The startup routine main, called the FORTRAN MAIN routine,

o which in tum called the function determinant,

o which in tum called the function hand,

o which in tum called the function abo rt ,

o which in tum called the function force abort to halt execution.

Revision A of 6 March 1990

instructions

Chapter 5 - Debugging Tips for Programmers 51

Display, say, 10(hex) machine instructions and their addresses starting from the
entry point determinant.

~.. -. .", "," ". ."•.

·diterlliinarit. ... ll.O? ia
>deterrriinant: - -
~ dete<rtninaritL:
jdeteimiriant+ 4:
LdeterminahtS+Oxa:
_deteiritinahtj;+Oxe:
_c:iefertniriant ___ +Ox18:

deterrriiIlant.+Oxlc: - -.
LdeterrrtlI1aritl+Ox20:
> dete<rmiIlaIlE<.··+Ox24<: -. -
_det e<ttninarit.i+Ox 2 a :

deterxninaIlt·+Ox2e: - -deterrninant·+Ox34: - -
determiriant·+Ox38 : - -

c:iete<:rrniI1ant+Ox3e:
det.e<iminant+Ox42 : - -... determinant <+Ox48: - -
determiriant +Ox4a: - -

lirikw

quit To quit adb, type $q or $0 or D. For example:

blank common

~ct
demo %]

Variables can be displayed in a variety of fonnats, but their addresses must be
known. The addresses of some external variables are easy to determine.

For example, to print the first four bytes after the label __ BLNK __ , in a decimal
format, do this.

which is equivalent to the dbx command "print n" if n is the first variable in
blank common.

The addresses of local variables are usually difficult to determine.

Revision A of 6 March 1990

52 Debugging Tools

unfonnatted files As another example, consider this program.

[

write(4) 4]

____ end ___ -----"

When executed, this program creates a file named fort. 4 which contains a
single unfonnatted record. An unfonnatted record includes two count words
containing the record length at the beginning and end of the record.

You can examine this data file with adb as follows.

Then display the first three words of the data file (start at location 0, for 3 times,
in decimal fonnat).

0,3?D
0: 4 4 4
$q
demo %

Revision A of 6 March 1990

6
adb Tutorial

6.1. A Quick Survey Available on most UNIX systems, adb is a debugger that permits you to examine
core files resulting from aborted programs, display output in a variety of formats,
patch files, and run programs with embedded breakpoints. This chapter provides
examples of the most useful features of adb. The reader is expected to be fami
liar with basic SunOS commands, and with the C language.

NOTE This chapter describes adb use on the Sun-3 and Sun-4 only. Chapter 7
describes adb use on the Sun386i.

Starting adb Start adb with a shell command of the form

(%adb [objecdilej [corefile]]

where objectfile is an executable SunOS file and corefile is a core dump file. If
the object file is named a. out, then the invocation is

If you place object files into a named program file, then the invocation is

)

[~~%~ .. ·._a~db~ ..•• ·_i_p_ro_g_ra_m_ .. ____ ~~~~ __ ~ __ ~~~~ __ ~~~~~~==~~
The filename minus (-) means ignore the argument, as in:

[% .• adb - .. l:ore . ·i)~
This is for examining the core file without reference to an object file. adb pro
vides requests for examining locations in either file: ? examines the contents of
objectfile, while / examines the contents of corefile. The general form of these
requests is:

(address ? format

or

(address / format

]

]

53 Revision A of 6 March 1990

54 Debugging Tools

Current Address

Formats

adb maintains a current address, called dot. When an address is entered, the
current address is set to that location, so that

(0126?i]

sets dot to octal 126 and displays the instruction at that address. The request

[.,lO/d]

displays 10 decimal numbers starting at dot. Dot ends up referring to the address
of the last item displayed. When used with the? or / requests, the current
address can be advanced by typing newline; it can be decremented by typing

Addresses are represented by expressions. Expressions are made up of decimal
integers, octal integers, hexadecimal integers, and symbols from the program
under test. These may be combined with the operators + (plus), - (minus), *
(multiply), % (integer divide), , (bitwise and), I (bitwise inclusive or), # (round
up to the next multiple), and - (not). All arithmetic within adb is 32 bits. When
typing a symbolic address for a C program, you can type name. On a Sun-3 or
Sun-4 you could alternatively type _name; adb recognizes both fonns on these
systems.

To display data, specify a collection of letters and characters to describe the for
mat of the display. Fonnats are remembered, in the sense that typing a request
without a format displays the new output in the previous format. Here are the
most commonly used format letters:

Revision A of 6 March 1990

Table 6-1

General Command Meanings

Chapter 6 - adb Tutorial 55

Some adb Format Letters

Letter Description
b one byte in octal
B one byte in hex
c one byte as a character
0 one 16-bit word in octal
d one 16-bit word in decimal
f one single-precision floating point value
i MC68020 instructions on Sun-3,

SP ARC instruction on Sun-4.
s a null-tenninated character string
a the value of dot
u one 16-bit word as an unsigned integer
n print a newline
r print a blank space
... backup dot (not really a fonnat)
+ advance dot (not really a fonnat)

Format letters are also available for long values: for example, D for long
decimal, and F for double-precision floating point. Since integers are long words
on the Sun-3 capital letters are used more often than not.

The general fonn of a command is:

([address [, count]] command [modifier]

which sets dot to address and executes command count times. The following
table illustrates some general adb command meanings:

]

Table 6-2 Some adb Commands

Some adb Commands
Command Meaning

? Print contents from object file
/ Print contents from core file
= Print value of "dot"
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

Since adb catches signals, a user cannot use a quit signal to exit from adb. The
request $q or $Q (or (CTRL-D I) must be used to exit from adb.

Revision A of 6 March 1990

56 Debugging Tools

6.2. Debugging C
Programs

Debugging A Core Image

If you use adb because you are accustomed to it, you will want to compile pro
grams with the -go option, to produce old-style symbol tables. This will make
debugging proceed according to expectations. If you don't compile programs
with -go and the -0 option is set, the object code will be optimized, and may
not so readily be understood as the same thing that was written in the source file.

Consider the C program below, which illustrates a common error made by C pro
grammers. The object of the program is to change the lower case t to an upper
case T in the string pointed to by ch, and then write the character string to the
file indicated by the first argument.

finclude <stdio.h>

char *cp "this is a sentence.";

main (argc, argv)
int argc;
char **argv;
{

FILE *fp;
char c;

if (argc == 1) {
fprintf(stderr, "usage: %s file\n", argv[D);
exit(l);

if «fp = fopen(argv[l), "w"»
perror(argv[l);
exit(2);

cp = , T' ;
while (c = *cp++)

putc (c, fp);
fclose(fp);
exiteD);

NULL) {

The bug is that the character T is stored in the pointer cp instead of in the string
pointed to by cpo Compile the program as follows:

Executing the program produces a core dump caused by an illegal memory refer
ence. Now invoke adb by typing:

Commonly the first debugging request given is

Revision A of 6 March 1990

Chapter 6 - adb Tutorial 57

[~~in[80741 (2,fffd7c,fffd88) + 92]

which produces a C backtrace through the subroutines called. The output from
adb tells us that only one function -main - was called, and the arguments
argc and argv have the hexadecimal values 2 and fffd7c, respectively.
Both these values look reasonable - 2 indicates two arguments, and f f f d 7 c is
the stack address of the parameter vector. The next request

$C
_main[8074] (2,fffd7c,fffd88) + 92

fp: 10468
c: 104

generates a C backtrace plus an interpretation of all the local variables in each
function, and their values in hexadecimal. The value of the variable c looks
incorrect since it is outside the ASCII range. The request

$r
dO 54 frame+24
d1 77 frame+47
d2 2 manl
d3 0 exp
d4 0 exp
d5 0 exp
d6 0 exp
d7 0 exp
aO 54 frame+24
al 0 exp
a2 0 exp
a3 fffd7c
a4 fffd88
as 0 exp
a6 fffd64
sp fffd5c
pc 8106 main+92
ps 0 exp

main+92: ???

displays the registers, including the program counter, and an interpretation of the
instruction at that location. The request

$e
environ: fffd88

_sys_nerr: 48
__ ctype_: 202020

exit nhandlers:
exit tnames:
lastbuf: 10684
root: 0

o
9b06

Revision A of 6 March 1990

58 Debugging Tools

Ibound: 0
ubound: 0

curbrk: 12dd4
__ d-pot: 8000
__ d_big-pot: 8000
__ d_r-pot: 8000
__ d_r_big-pot: 8000

errno: 0
end: 0

displays the values of all external variables.

A map exists for each file handled by adb. The map for object files is referenced
by ?, whereas the map for core files is referenced by /. Furthennore, a good rule
of thumb is to use? for instructions and / for data when looking at programs.
To display infonnation about maps, type:

$m
b1 = 2000 e1 bOOO f1 800
b2 = 10000 e2 11000 f2 3800
/ map 'core'
b1 10000 e1 13000 f1 1800
b2 = fffOOO e2 1000000 f2 4800

This produces a report of the contents of the maps. More about these maps later.

In our example, we might want to see the contents of the string pointed to by cpo
We would want to see the string pointed to by cp in the core file:

55·
[

*CP/S 1
~d_a_~_a __ a_d_d_r_e_s_s __ n_o_t_f_o_u_n_d __________________________________ -J

Because the pointer was set to ' T' (hex 54) and then incremented, it now equals
hex 55. On the Sun-3, there are no symbols below address 2000 (8000 on a
Sun-2), so the data address 55 cannot be found. We could also display infonna
tion about the arguments to a function. To get the decimal value of the argc
argument to main, which is a long integer, type:

[main.argc/D
fffd6c: 2

To display the hex values of the three consecutive cells pointed to by argv in
the function main, type:

[~main.argv'3/X .fffd7C: fffdcO fffdc6 o

Note that these values are the addresses of the arguments to main. Therefore,

]

]

Revision A of 6 March 1990

Setting Breakpoints

#include <stdio.h>

#define MAXLIN 80
#define YES 1
#define NO 0
#define TABSP 8

int tabs[MAXLIN];

main ()
{

int *ptab, col, c;

Chapter 6 - adb Tutorial 59

typing these hex values should yield the command-line arguments:

[
fffdcO/S)

~.f_f_f_d_C_O_: __________ a_._o_u_t ____________________________________ ~

The request

[~.= _fffd_CO ___]

displays the current address (not its contents) in hex, which has been set to the
address of the first argument. The current address, dot, is used by adb to
remember its current location. It allows the user to reference locations relative to
the current address. For example

[fffdc6: zzz]

prints the first command-line argument.

Set breakpoints in a program with the: b instruction, which has this form:

[address: b [request 1

Consider the C program below, which changes tabs into blanks, and is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

]

ptab = tabs;
settab(ptab); /* set initial tab stops */
col = 1;
while «c = getchar(» != EOF)

switch (c) {
case '\t':

while (tabpos(col) != YES) {
putchar(' ');
col++;

putchar (' ');
col++;

Revision A of 6 March 1990

60 Debugging Tools

break;
case '\n':

putchar('\n');
col = 1;
break;

default:
putchar(c);
col++;

exit(O);

tabpos(col) /* return YES if col is a tab stop, NO if not */
int col;

if (col > MAXLIN)
return(YES);

else
return(tabs[col);

settab(tabp)
int *tabp;

int i;

1* set initial tab stops every TABSP spaces */

for (i
(i %

0; i <= MAXLIN; i++)
TABSP) ? (tabs[i) = NO) (tabs [i) YES);

Run the program under the control of adb, and then set four breakpoints as fol
lows:

~ •.••.. :: ••.. ·.% .•.•.••••..•• :: .•.•••••..•. a.: ..•.. :· .•• : •..•• db •.••.• :.: .• : •••• : .•••• : .• : .••• :.: .•.•• : .. : •.• :.: •.• : •. : •.. a :: .•..•• ~ .•.•.• o .•...•• :: •••••. u ..•.•••..• : •..• t ...••••. :.-: ••.. :.:.:.
settab:b
tabpos:b

• ••.•.•• i ••••• j

This sets breakpoints at the start of the two functions. Sun compilers generate
statement labels only with the -g option, which is incompatible with adb.
Therefore it is impossible to plant breakpoints at locations other than function
entry points using adb. To display the location of breakpoints, type:

$b
breakpoints
count bkpt
1 _tabpos
1 settab

command

Revision A of 6 March 1990

Chapter 6 - adb Tutorial 61

A breakpoint is bypassed count-l times before causing a stop. The command
field indicates the adb requests to be executed each time the breakpoint is
encountered. In this example no command fields are present.

Display the instructions at the beginning of function set tab () in order to
observe that the breakpoint is set after the link assembly instruction:

settab,5?ia
settab:
settab:
settab:
settab+a:
settab+e:
settab+12:
settab+1a:

link
addl
moveml
clrl
cmpl

a6,#0
#-4,a7
#<>,sp@
a6@ (-4)
:fI:50,a6@(-4)

This request displays five instructions starting at settab with the address of
each location displayed. Another variation is

settab,5?i
set tab:
set tab: link a6,#0

addl :fI:-4,a7
moveml :fI:<>,sp@
clrl a6@ (-4)
cmpl :fI:50,a6@(-4)

which displays the instructions with only the starting address. Note that we
accessed the addresses from a. out with the ? command. In general, when ask
ing for a display of multiple items, adb advances the current address the number
of bytes necessary to satisfy the request; in the above example, five instructions
were displayed and the current address was advanced 26 bytes.

To run the program, type:

To delete a breakpoint, for instance the entry to the function t abpo s () , type:

(tabpos:d

Once the program has stopped, in this case at the breakpoint for settab () ,
adb requests can be used to display the contents of memory. To display a stack
trace, for example, type:

$c
_settab [8250] (10658) + 4
_main[8074] (1,fffd84,fffd8c) + la

J

J

Revision A of 6 March 1990

62 Debugging Tools

Advanced Breakpoint Usage

And to display three lines of eight locations each from the array called tabs,
type:

tabs,3/SX
tabs:
tabs: 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

At this time (at location settab) the tabs array has not yet been initialized. If
you just deleted the breakpoint at tabpos, put it back by typing:

(_t_a_b_p_O_S_:b __ ~]
To continue execution of the program from the breakpoint type:

You will need to give the a . 0 u t program a line of data, as in the figure above.
Once you do, it will encounter a breakpoint at tabpos+4 and stop again.
Examine the tabs array once more: now it is initialized, and has a one set in
every eighth location:

tabs,3/SX
tabs:
tabs: 1 0 0

1 0 0
1 0 0

0 0
0 0
0 0

0
0
0

0
0
0

o
o
o

You will have to type : c eight more times in order to get your line of output,
since there is a breakpoint at every input character. Type I CTRL-D I to terminate
the running process and to return to the command level of adb.

]

The quit and interrupt signals act on adb itself, rather than on the program being
debugged. If such a signal occurs, then the program being debugged is stopped
and control is returned to adb. The signal is saved by adb and passed on to the
test program if you type:

]
Now let's reset the breakpoint at set tab () and display the instructions located
there when we reach the breakpoint. This is accomplished by:

Revision A of 6 March 1990

Chapter 6 - adb Tutorial 63

settab+4:b settab,5?ia
:r
set tab: -
settab: - link a6,*O
settab+4: addl #-4,a7
settab+a: moveml *<>,sp@ -
settab+e: clrl a6@(-4) -
settab+12: cmpl *50,a6@(-4)
settab+1a: -

breakpoint settab+4: addl #-4,a7

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint
command. Variables can also be displayed at the breakpoint, as illustrated
below.

tabpos+4,2:b main.col?X
:0

x
fffd64:
fffd64:
breakpoint

1
2
_tabpos+4: addl *0,a7

This shows that the local variable co 1 changes from 1 to 2 before the occurrence
of the breakpoint.

NOTE Setting a breakpoint causes the value of dot to be changed. However, executing
the program under adb does not change the value of dot.

OtheF Breakpoint Facilities

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab+4:b main.ptab/X; main.c/X
:r
fffd68:
fffd60:
breakpoint

10658

° settab+4: addl #-4,a7

A semicolon is used to separate multiple adb requests on a single line.

Arguments and redirection of standard input and output are passed to a program
as follows. This request kills any existing program under test and starts the
object file anew:

[: r argl arg2 ... <inftle >outftle

The program being debugged can be single stepped as follows. If necessary, this
request starts up the program being debugged and stops after executing the first
instruction:

J

Revision A of 6 March 1990

64 Debugging Tools

You can enter a program at a specific address by typing:

(address:r

The count field can be used to skip the first n breakpoints, as follows:

(,n:r
This request may also be used for skipping the first n breakpoints when continu
ing a program:

(,n:c
A program can be continued at an address different from the breakpoint by:

]

]

]

]

(address: c]
____ . _____ ------J

The program being debugged runs as a separate process, and can be killed by:

[____ :k _____ ------JJ

Revision A of 6 March 1990

Chapter 6 - adb Tutorial 65

6.3. File Maps SunOS supports several executable file fonnats. Executable type 407 is gen
erated by the cc (or ld) flag -N. Executable type 410 is generated by the flag
-no An executable type 413 is generated by the flag -z; the default is type 413.
adb interprets these different file fonnats, and provides access to the different
segments contained in them through a set of maps. To display the maps, type $m
inside adb.

407 Executable Files In 407-format files, instructions and data are intermixed. This makes it impossi
ble for adb to differentiate data from instructions, but adb will display in either
format. Furthermore, some displayed symbolic addresses look incorrect (for
example, data addresses as offsets from routines). Here is a picture of 407-
format files:

Figure 6-1 Executable File Type 407

object I~h_d~rl ________ re_x_t_+_d_a_ta ______ ~

core hdr text + data

Here are the maps and variables for 407 -format files:

$m
? map
b1 = 2000
b2 = 8000

'object'

/ map 'core'
b1 8000
b2 = fffOOO
$v
variables
b = 0100000
d = 03070
e = 0407
m = 0407
s = 010000
t = 07450

e1
e2

e1
e2

8f28
9560

b800
1000000

stack

f1
f2

f1
f2

20
20

1800
5000

Revision A of 6 March 1990

66 Debugging Tools

410 Executable Files In 410-fonnat files (pure executable), instructions are separate from data. The?
command accesses the data part of the object file, telling adb to use the second
part of the map in that file. Accessing data in the core file shows the data after it
was modified by the execution of the program. Notice also that the data segment
may have grown during program execution. Here is a picture of 410-fonnat files:

Figure 6-2 Executable File Type 410

o~ect I~h_d~rl _______ t_e_x_t ______ ~ _________ d_m_a ________ ~

core hdr data

Here are the maps and variables for 410-fonnat files:

$m
? map 'object'
bI = 2000 e1
b2 = 10000 e2
/ map 'core'
b1 10000 e1
b2 = fffOOO e2
$v
variables
b 0200000
d = 03070
e = 0410
m = 0410
s = 010000
t = 07450

+~I!!

8f28
10638

12800
1000000

stack

f1
f2

f1
f2

20
f48

1800
4000

Revision A of 6 March 1990

413 Executable Files

object

core

Variables

Chapter 6 - adb Tutorial 67

In 413-fonnat files (pure demand-paged executable) the instructions and data are
also separate. However, in this case, since data is contained in separate pages,
the base of the data segment is also relative to address zero. In this case, since
the addresses overlap, it is necessary to use the ? * operator to access the data
space of the object file. In both 410 and 413-fonnat files the corresponding core
file does not contain the program text. Here is a picture of 413-fonnat files:

Figure 6-3 Executable File Type 413

Ihdrl

I
hdr

text data

data stack

The only difference between a410 and a 413-forrnat file is that 413-format seg
ments are rounded up to page boundaries. Here are the maps and variables for
413-fonnat files:

$m
? map 'abort'
b1 = 2000 e1 9000 f1 800
b2 = 10000 e2 10800 f2 1800
/ map 'core'
bI 10000 e1 12800 fl 1800
b2 = fffOOO e2 1000000 f2 4000
$v
variables
b 0200000
d 04000
e = 0413
m 0413
s = 010000
t = 010000

The b, e, and f fields are used to map addresses into file addresses. The f 1 field
is the length of the header at the beginning of the file - 020 bytes for an object
file and 02000 bytes for a core file. The f 2 field is the displacement from the
beginning of the file to the data. For a 407-fonnat file with mixed text and data,
this is the same as the length of the header; for 410-fo nn at and 413-format files,
this is the length of the header plus the size of the text portion. The band e fields
are the starting and ending locations for a segment. Given the address A, the
location in the file (either object or core) is calculated as:

b1 <A<e1 file address = (A-b1) +f1
b2<A<e2 file address = (A-b2) +f2

~~ sun Revision A of 6 March 1990
.... microsystems

68 Debugging Tools

6.4. Advanced Usage

Formatted Dump

You can access locations by using the adb-defined variables. The $ v request
displays the variables initialized by adb:

b base address of data segment,

d length of the data segment,

s length of the stack,

t length of the text,

In execution type (407,410,413).

Those variables not presented are zero. Use can be made of these variables by
expressions such as

in the address field. Similarly, the value of a variable can be changed by an
assignment request such as

[02000>b J
which sets b to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file.

The adb program reads the header of the core image file to find the values for
these variables. If the second file specified does not seem to be a core file, or if it
is missing, then the header of the executable file is used instead.

One of the uses of adb is to examine object files without symbol tables since
dbx cannot handle this kind of task.

With adb, you can combine formatting requests to provide elaborate displays.
Several examples are given below.

The following adb command line displays four octal words followed by their
ASCII interpretation from the data space of the core file:

[<b,-1/404-scn

Broken down, the various requests mean:

<b The base address of the data segment.

J

<b, -1 Print from the base address to the end-of-file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition
(like end-of-file) is detected.

The format 404 A 8en is broken down as follows:

40 Print 4 octal locations.

~ sun Revision A of 6 March 1990
microsystems

Chapter 6 - adb Tutorial 69

4" Back up the current address 4 locations (to the original start of the
field).

8e Print 8 consecutive characters using an escape convention; each char
acter in the range 0 to 037 is displayed as followed by the correspond
ing character in the range 0140 to 0177. An @ is displayed as @ @ •

n Print a new line.

The following request could have been used instead to allow the displaying to
stop at the end of the data segment. (The request <d provides the data segment
size in bytes.)

[~<_b_?_<_d_/_4_0_4_A_B_c_n __ ~J
Because adb can read in scripts, you can use formatting requests to produce
image dump scripts. Invoke adb as follows:

r ·~· .• :: ... ·:.· .• : .. :· ...•.. :1 .• : ..• :: .•. :. U~··'~· ••• ·()bJectfiJ.e .•• ·ci~~~f~~E>···<·· ••• dUuq>frie)
This reads in a script file, durnpfile, containing fonnatting requests. Here is
an example of such a script:

120$w
4095$s
$v
=3n
$m

=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
O$s
=3n"Data Segment"
<b,-l/Bona

The request 120$w sets the width of the output to 120 characters (nonnally, the
width is 80 characters). adb attempts to display addresses as:

(symbol + offset

The request 40 95$ s increases the maximum permissible offset to the nearest
symbolic address from the default 255 io 4095. The request = can be used to
display literal strings. Thus, headings are provided in this dump program with
requests of the fonn:

J

[
=3n"C Stack Backtrace"]

~. ------

Revision A of 6 March 1990

70 Debugging Tools

Accounting File Dump

Converting Values

6.5. Patching

This spaces three lines and displays the literal string. The request $v displays all
non-zero adb variables. The request 0 $ s sets the maximum offset for symbol
matches to zero, thus suppressing the display of symbolic labels in favor of octal
values. Note that this is only done for displaying the data segment. The request

(<b,-1/8ona]
displays a dump from the base of the data segment to the end-of-file with an octal
address field and 8 octal numbers per line.

As another illustration, consider a set of requests to dump the contents
/ et c / u tmp or / us r / adm/ wtmp, both of which are composed of 8-character
tenninal names, 8-character login names, 16-character host names, and a 4-byte
integer representing the login time.

%><CI,c:D:f ·./et.cl ut:.ni>--<•....•....
O/2.1?¢c::ccccc6gt.CC¢C::Cc66~fc::c::cq66cccccccCC::C::16tYn

The c fonnat is repeated 8 times, 8 times, and 16 times. The 8 t means go to
align on an 8-character-position boundary, and 16t means to align on a 16-
character-position boundary. Y causes the 4-byte integer representing the login
time to print in ct ime(3) fonnat.

You can use adb to convert values from one representation to another. For
example, to print the hexadecimal number f f in octal, decimal, and hexade
cimal, type:

[ff = odx
377 255 :!tff

J
The default input radix of adb is hexadecimal. Fonnats are remembered, so that
typing subsequent numbers will display them in the same fonnat. Character
values may be converted as well:

('a' = oc
0141 a

This technique may also be used to evaluate expressions, but be warned that all
binary operators have the same precedence, which is lower than for unary opera
tors.

Patching files with adb is accomplished with the write requests w or W. This is
often used in conjunction with the locate requests 1 or L. In general, the syntax
for these requests is as follows:

(?1 value

J

]

Revision A of 6 March 1990

NOTE

Chapter 6 - adb Tutorial 71

The 1 matches on two bytes, whereas L matches four bytes. The w request writes
two bytes, whereas w writes four bytes. The value field in either locate or write
requests is an expression. Either decimal and octal numbers, or character strings,
are pennitted.

In order to modify a file, adb must be invoked as follows:

[~~<l1>t"file~.~~f~ ~
When invoked with this option,jilel andjile2 are created if necessary, and
opened for both reading and writing.

The $w command has the same effect during an adb session as the -w option
used on the command line.

For example, consider the following C program, zen. c: We will change the
word "Thys" to "This" by compiling zen.

char strl[] = "Thys is a character string";
int one = 1;
int number 456;
long Inurn = 1234;
float fpt = 1.25;
char str2[] = "This is the second character string";

main ()
{

one 2;

Use the following requests:

~!~~t~~~:zen-I
The request <b? 1 starts at the start of the data segment and stops at the first
match of "Th", having set dot to the address of the location found. Note the use
of? to write to the object file. The fonn ?* would be used for a 410-fonnat
file.

More frequently the request is typed as:

(?1 'Th'; ?5

which locates the first occurrence of "Th", and display the entire string. Execu
tion of this adb request sets dot to the address of those characters in the string.

]

NOTE When using the? 1 or ? L commands, be cautious of gaps in the address range
that you want to search.

Revision A of 6 March 1990

72 Debugging Tools

6.6. Anomalies

As another example of the utility of the patching facility, consider a C program
that has an internal logic flag. The flag could be set using adb, before running
the program. For example:

The : s request is normally used to single step through a process or start a pro
cess in single-step mode. In this case it starts a . out as a subprocess with argu
ments argl and arg2. If there is a subprocess running, adb writes to it rather
than to the file so the w request causes flag to be changed in the memory of the
subprocess.

Below is a list of some strange things that users should be aware of.

1) When displaying addresses, adb uses either text or data symbols from the
object file. This sometimes causes unexpected symbol names to be
displayed with data (for example, savr 5+022). This does not happen if?
is used for text (instructions) and I for data.

2) The adb debugger cannot handle C register variables in the most recently
activated function.

Revision A of 6 March 1990

7.1. A Quick Survey

Starting adb

7
..... :] ..

Sun386i adb Tutorial

Available on most UNIX systems, adb is a debugger that permits you to examine
core files resulting from aborted programs, display output in a variety of formats,
patch files, and run programs with embedded breakpoints. This document pro
vides examples of the more useful features of adb. The reader is expected to be
familiar with basic SunOS commands, and with the C language.

Start adb with a shell command like

~~~cn;d~{ec~iec~~e~ . . ... ·?i~ 
where objectfile is a SunOS executable file and corefile is a core dump file. If 
you leave object files in a. out, then the invocation is simple: 

k.~ ••• · •• !~·· •• ·•·•·• 
If you place object files into a named program, then the invocation is a bit 
harder: 

(
' ....... ..... . . .>< ..•.••...• : .••.•.•.• : .• : •..•..• : •• :: ..• : •• :: .. : .• : ..•.•.. : .•... : ...•...• : ..•...• : ..•... : .....• ::.: ..••....... :.:: .•............• :: ....• :: .•...• :.~: ...• : .•. )~~~~h}gTaln •.....•....••.•..•.••••.•..••...•.•.•. J 

The filename minus (-) means ignore the object file argument, as in: 

r-:.:.:.:.~ ..... ·.Q: .•.•••• :.: ••.•••.• : •.•.•• a .•.• :.: .• : •.• :·:db .•.•..•.• :.::: .... : •.• : •... ·: .• : .•.• :.:.·:.:-.•.• : ..•...•..•.••...•.• : •.• : .• :·:c.· .•.••.• :.:o .• : •••..•.•. r:: ••.•. ·: •. e:·........... .. ..J L '»0) 

This is for examining the core file without reference to an object file. adb pro
vides requests for examining locations in either file: ? examines the contents of 
objectfile, while / examines the contents of corefile. The general form of these 
requests is: 

( adMess ? format 

or 

( address / format 

] 

] 

73 Revision A of 6 March 1990 



74 Debugging Tools 

Current Address 

Formats 

Table 7-1 

adb maintains a current address, called dot. When an address is entered, the 
current address is set to that location, so that 

( 0126?i ] 

sets dot to octal 126 and displays the instruction at that address. The request 

(.,lO/d ] 

displays 10 decimal numbers starting at dot. Dot ends up referring to the address 
of the last item displayed. When used with the ? or I requests, the current 
address can be advanced by typing newline; it can be decremented by typing ..... 

Addresses are represented by expressions. Expressions are made up of decimal 
integers, octal integers, hexadecimal integers, and symbols from the program 
under test. These may be combined with the operators + (plus), - (minus), * 
(multiply), % (integer divide), , (bitwise and), I (bitwise inclusive or), # (round 
up to the next multiple), and - (not). All arithmetic within adb is 32 bits. When 
typing a symbolic address for a C program, you can type name. 

To display data, specify a sequence of letters and characters to describe the for
mat of the display. Formats are remembered, in the sense that typing a request 
without a format displays the new output in the previous format. Here are the 
most commonly used fonnat letters: 

Some adb Format Letters 

Letter Description 
b one byte in octal 
B one byte in hex 
c one byte as a character 
0 one word in octal 
d one word in decimal 
f one single-precision floating point value 
i Sun386i instruction 
s a null-terminated character string 
a the value of dot 
u one word as an unsigned integer 
n print a newline 
r print a blank space 
A backup dot (not really a format) 
+ advance dot (not really a format) 

Format letters are also available for long values: for example, D for long 
decimal, and F for double-precision floating point. Since integers are long-words 
on the Sun, capital letters are used more often than not. 

Revision A of 6 March 1990 



General Request Meanings 

Table 7-2 

7.2. Debugging C 
Programs on Sun386i 

Debugging A Core Image 

Chapter 7 - Sun386i adb Tutorial 75 

The general fonn of a request is: 

( address, count command modifier 

which sets dot to address and executes command count times. The following 
table illustrates some general adb command meanings: 

Some adb Commands 

Some adb Commands 
Command Meaning 

? Print contents from object file 
/ Print contents from core file 
= Print value of expression 
: Breakpoint control 
$ Miscellaneous requests 
; Request separator 
! Escape to shell 

Since adb catches signals, you cannot use a quit signal to exit from adb. The 
request $q or $Q (or (CTRL-D I) must be used to exit from adb. 

If you use adb because you are accustomed to it, you will want to compile pro
grams with the -go option, to produce old-style symbol tables. This will make 
debugging proceed according to expectations. 

J 

Consider the C program below, which illustrates a common error made by C pro
grammers. The object of the program is to change the lower case t to an upper 
case T in the string pointed to by ch, and then write the character string to the 
file indicated by the first argument. 

#include <stdio.h> 

char *cp "this is a sentence."; 

main (argc, argv) 
int argc; 
char **argv; 
{ 

FILE *fp; 
char Ci 

if ( a rgc == 1) { 
fprintf(stderr, "usage: %5 file\n", argv[O]); 
exit(l); 

if «fp = fopen(argv[l], "w")) 
perror(argv[l]); 
exit(2); 

Cp = 'T'; 

NULL) { 

Revision A of 6 March 1990 



76 Debugging Tools 

while (c = *cp++) 
putc(c, fp); 

fclose(fp); 
exit(O); 

The bug is that the character T is stored in the pointer cp instead of in the string 
pointed to by cpo Compile the program as follows: 

Executing the program produces a core dump because of an out-of-bounds 
memory reference. Now invoke adb by typing: 

Commonly the first debugging request given is 

[!~in[80741 (2,fffd7c,fffd88) + 92 ] 
which produces a C backtrace through the subroutines called. The output from 
adb tells us that only one function - main - was called, and the arguments 
argc and argv have the hexadecimal values 2 and fffd7c respectively. Both 
these values look reasonable - 2 indicates two arguments, and f f f d 7 c equals 
the stack address of the parameter vector. The next request 

$C 
rnain[8074] (2,fffd7c,fffd88) + 92 

fp: 10468 
c: 104 

generates a C backtrace plus an interpretation of all the local variables in each 
function, and their values in hexadecimal. The value of the variable c looks 
incorrect since it is outside the ASCII range. The request 

Revision A of 6 March 1990 



$r 
gs OxfbffOOOO 
fs OxfbffOOOO 
es Oxfcff0083 
ds Ox83 
edi Ox30890 
esi Ox28680 
ebp Oxfbfffec8 
esp Oxfcff97eO 
ebx Ox2aOcO 
edx Oxfbfffe6a 
main+Ox10f: movb 

Chapter 7 - Sun386i adb Tutorial 77 

ecx Ox28680 
eax Ox54 
retaddr Oxfc06e38e 
trapno Oxe 
err Ox4 
eip Ox120b main+OxlOf 
C5 Ox7b 
efl Ox10206 end+Ox7202 
uesp OxfbfffecO 
S5 Ox83 

(%eax),%al 

displays the registers, including the program counter, and an interpretation of the 
instruction at that location. The request 

$e 
cp: Ox55 
exit nhandlers: OxO 
exit tnames: Ox35dc - -

_ctype_: Ox20202000 
smbuf: Ox65cO 
iob: OxO -
mallinfo: OxO 

root: OxO 
Ibound: OxO -
ubound: OxO 

curbrk: Ox9004 
errno: OxO 
environ: Oxfbfffef4 
end: OxO 

displays the values of all external variables. 

A map exists for each file handled by adb. The map for a. out files is refer
enced by? whereas the map for core files is referenced by /. Furthermore, a 
good rule of thumb is to use? for instructions and / for data when looking at 
programs. To display infonnation about maps, type: 

$m 
b1 = 8000 e1 bOOO f1 800 
b2 = 10000 e2 11000 f2 3800 
/ map 'core' 
b1 10000 e1 13000 f1 1800 
b2 = fffOOO e2 1000000 f2 4800 

This produces a report of the contents of the maps. More about these maps later. 

In our example, we might want to see the contents of the string pointed to by cpo 
We would want to see the string pointed to by cp in the core file: 

Revision A of 6 March 1990 



78 Debugging Tools 

Setting Breakpoints 

55-

[

*CP/S 

da~a address not found 1 
Because the pointer was set to ' T' (hex 54) and then incremented, it now equals 
hex 55. On the Sun386i, there is nothing mapped at this address, so the data at 
address 55 cannot be found. We could also display information about the argu
ments to a function. To get the decimal value of the argc argument to main, 
which is a long integer, type: 

[

mainoargC/D 
.fffd6C: 2 

To display the hex values of the three consecutive cells pointed to by argv in 
the function main, type: 

[

*main oargv,3/X 
.fffd7C: fffdcO fffdc6 o 

Note that these values are the addresses of the arguments to main. Therefore, 
typing these hex values should yield the command-line arguments: 

[

fffdCO/S 
_fffdCO: 

The request: 

[ 0= 

a.out 

fffdcO 

] 

] 

] 

] 
displays the current address (not its contents) in hex, which has been set to the 
address of the first argument. The current address, dot, is used by adb to 
remember its current location. It allows the user to reference locations relative to 
the current address. For example 

[ 

_ +6/8 
fffdc6: zzz 

prints the first command-line argument. 

You set breakpoints in a program with the : b instruction, which has this fonn: 

( address: b [request 1 

Consider the C program below, which changes tabs into blanks, and is adapted 
from Software Tools by Kernighan and Plauger, pp. 18-27. 

] 

] 

Revision A of 6 March 1990 



Chapter 7 - Sun386i adb Tutorial 79 

#include <stdio.h> 

#define MAXLIN 80 
#define YES 1 
#define NO 0 
#define TABSP 8 

int tabs[MAXLIN]; 

main () 
{ 

int *ptab, col, c; 

ptab = tabs; 
settab(ptab); 
col = 1; 

/* set initial tab stops */ 

while «c = getchar()) != EOF) 
switch (c) { 
case '\t': 

while (tabpos(col) != YES) { 
putchar (' '); 
col++; 

putchar (' '); 
COI++i 
break; 

case '\n': 
putchar('\n'); 
col = 1; 
break; 

default: 
putchar(c); 
col++; 

exit(O); 

tabpos(col) /* return YES if col is a tab stop, NO if not */ 
int col; 

if (col > MAXLIN) 
return(YES); 

else 
return(tabs[col]); 

settab(tabp) 
int *tabp; 

/* set initial tab stops every TABSP spaces */ 

int i; 

for (i 
(i % 

0; i <= MAXLIN; i++) 
TABSP) ? (tabs[i] = NO) (tabs [i] YES); 

Revision A of 6 March 1990 



80 Debugging Tools 

Run the program under the control of adb, and then set two breakpoints as fol
lows: 

This sets breakpoints at the start of the two functions. Sun compilers generate 
statement labels only with the -g option, which is incompatible with adb. In 
adb, you can set breakpoints anywhere, but you can only refer to a breakpoint as 
a function entry point plus an offset To display the location of breakpoints, 
type: 

$b 
breakpoints 
count bkpt 
1 tabpos+5 
1 settab+5 

command 

A breakpoint is bypassed count-l times before causing a stop. The command 
field indicates the adb requests to be executed each time the breakpoint is 
encountered. In this example no command fields are present. 

Display the instructions at the beginning of function settab () in order to 
observe that the breakpoint is set after the link assembly instruction: 

settab,5?ia 
settab: 
settab: 
settab+5: 
settab+Oxc: 
settab+Oxll: 
settab+Ox14: 
settab+Ox19: 

jmp 
movl 
jmp 
movl 
movl 

settab+Ox58 
$0,-4 (%ebp) 
settab+Ox48 
-4(%ebp),%eax 
$8,%ecx 

This request displays five instructions starting at settab with the address of 
each location displayed. Another variation is 

settab,5?i 
set tab: 
settab: 

movl 
jmp 

jmp settab+Ox58 
$0,-4(%ebp) 
settab+Ox48 

movl -4(%ebp),%eax 
movl $8,%ecx 

which displays the instructions with only the starting address. Note that we 
accessed the addresses from a. out with the? command. In general, when ask
ing for a display of multiple items, adb advances the current address the number 
of bytes necessary to satisfy the request; in the above example, five instructions 

+~t!! Revision A of 6 March 1990 



Chapter 7 - Sun386i adb Tutorial 81 

were displayed and t he current address was advanced 26 bytes. 

To run the program, type: 

To delete a breakpoint, for instance the entry to the function tabpos () , type: 

J 

(_t_a_b_p_oS __ :d ____________________________________________ J 

Once the program has stopped, in this case at the breakpoint for set tab ( ) , 
adb requests can be used to display the contents of memory. To display a stack 
trace, for example, type: 

$c 
settab[8250] (10658) + 4 
main[8074] (1,fffd84,fffd8c) + 1a 

Revision A of 6 March 1990 



82 Debugging Tools 

Advanced Breakpoint Usage 

And to display three lines of eight locations each from the array called tab s, 
type: 

tabs,3/8X 
tabs: 
tabs: 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 a 

At this time (at location settab) the tabs array has not yet been initialized. If 
you just deleted the breakpoint at tabpos, put it back by typing: 

(_t_a_b_p_O_S_:b ____________________________________________ ~) 
To continue execution of the program from the breakpoint type: 

[,----:C ,, ___________ ] 

You will need to give the a. out program a line of data, as in the figure above. 
Once you do, it will encounter a breakpoint at t abpo s + 4 and stop again. 
Examine the tabs array once more: now it is initialized, and has a one set in 
every eighth location: 

tabs,3/8X 
tabs: 
tabs: 1 0 0 0 0 0 a a 

1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 

You will have to type : c eight more times in order to get your line of output, 
since there is a breakpoint at every input character. Type I CTRL-D I to terminate 
the a. out process; you are back in command-level of adb. 

The quit and interrupt signals act on adb itself, rather than on the program being 
debugged. If such a signal occurs, then the program being debugged is stopped 
and control is returned to adb. The signal is saved by adb and passed on to the 
test program if you type: 

( :c a ] 

Revision A of 6 March 1990 



Chapter 7 - Sun386i adb Tutorial 83 

Now let's reset the breakpoint at settab () and display the instructions located 
there when we reach the breakpoint. This is accomplished by: 

settab+5:b settab,5?ia 
:r 
settab,5?ia 
set tab: 
settab: 
settab+5: 

jrnp 
rnovl 
jrnp 
rnovl 
rnovl 

settab+Ox58 
$0,-4 (%ebp) 
settab+Ox48 
-4 (%ebp),%eax 
$8,%ecx 

settab+Oxc: 
settab+Ox11: 
settab+Ox14: 
settab+Ox19: 
breakpoint settab+5: rnovl $0,-4 (%ebp) 

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint 
command. Variables can also be displayed at the breakpoint, as illustrated 
below: 

tabpos+4,2:b main.col?X 
:c 

x 
fffd64: 
fffd64: 
breakpoint 

1 
2 
tabpos+5: rnovl $Ox50,%eax 

This shows that the local variable col changes from 1 to 2 before the occurrence 
of the breakpoint. 

NOTE Setting a breakpoint causes the value of dot to be changed. However, executing 
the program under adb does not change the value of dot. 

Other Breakpoint Facilities 

A breakpoint can be overwritten without first deleting the old breakpoint. For 
example: 

settab+4:b main.ptab/X; main.c/X 
:r 
fffd68: 
fffd60: 
breakpoint 

10658 
o 
settab+5: rnovl $0,-4 (%ebp) 

The semicolon is used to separate multiple adb requests on a single line. 

Arguments and change of standard input and output are passed to a program as 
follows. This request kills any existing program under test and starts a . out 
afresh: 

( : r arg 1 arg2 ... <infile >outfile 
J 

Revision A of 6 March 1990 



84 Debugging Tools 

The program being debugged can be single stepped as follows. If necessary, this 
request starts up the program being debugged and stops after executing the first 
instruction: 

( ____ :8 ______ ] 

You can enter a program at a specific address by typing: 

( address:r ] 
The count field can be used to skip the first n breakpoints, as follows: 

( ____ ,n:r ______ ] 

This request may also be used for skipping the first n breakpoints when continu
ing a program: 

(,n:c 
A program can be continued at an address different from the breakpoint by: 

( address:c 

The program being debugged runs as a separate process, and can be killed by: 

J 

] 

] 

Revision A of 6 March 1990 



Chapter 7 - Sun386i adb Tutorial 85 

7.3. File Maps SunOS supports several executable file fonnats. 

407 Executable Files 

a.out 

core 

NOTE On the Sun386i, all executable files are COFF files. An additional COFF header 
precedes the a.out header; this a. out header is slightly different than the Sun-3 
or Sun4 a. out header. However, the executable file types are identical. 

Executable type 407 is generated by the cc (or Id) flag -N. Executable type 410 
is generated by the flag -no An executable type 413 is generated by the flag -z; 
the default is type 413. adb interprets these different file fonnats, and provides 
access to the different segments through a set of maps. To display the maps, type 
$m from inside adb. 

In 407-fonnat files, instructions and data are intennixed. This makes it impossi
ble for adb to differentiate data from instructions, but adb will happily display 
in either format. Furthermore, some displayed symbolic addresses look incorrect 
(for example, data addresses as offsets from routines). Here is a picture of 407-
format files: 

Figure 7-1 Executable File Type 407 

Ihdrl 

I 
hdr 

text + data 

text + data 

Here are the maps and variables for 407-format files: 

$m 
? map 
bl = 8000 
b2 = 8000 
/ map 
bl 8000 
b2 = fffOOO 
$v 
variables 
b = 0100000 
d = 03070 
e = 0407 
m = 0407 
s = 010000 
t = 07450 

'a. out' 
e1 8f28 
e2 9560 

'core' 
e1 = b800 
e2 = 1000000 

stack 

f1 
f2 

f1 
f2 

20 
20 

1800 
5000 

Revision A of 6 March 1990 



86 Debugging Tools 

410 Executable Files In 410-fonnat files (pure executable), instructions are separate from data. The ? 
command accesses the data part of the a. out file, telling adb to use the second 
part of the map in that file. Accessing data in the core file shows the data after it 
was modified by the execution of the program. Notice also that the data segment 
may have grown during program execution. Here is a picture of 410-fonnat files: 

Figure 7-2 Executable File Type 410 

a.outl ~h_d~rl~ ______ re_x_t ______ ~ __________ d_m_a ________ ~ 
core hdr data 

Here are the maps and variables for 410-fonnat files: 

$m 
? map 
bl = 8000 
b2 = 10000 
/ map 
b1 10000 
b2 = fffOOO 
$v 
variables 
b 0200000 
d = 03070 
e = 0410 
m = 0410 
s 010000 
t = 07450 

'a. out' 
el 8f28 
e2 10638 

'core' 
e1 12800 
e2 1000000 

stack 

fl 
f2 

f1 
f2 

20 
f48 

1800 
4000 

Revision A of 6 March 1990 



413 Executable Files 

Figure 7-3 

a.out Ihdrl 

core 

I 
hdr 

Chapter 7 - Sun386i adb Tutorial 87 

In 413-fonnat files (pure demand-paged executable) the instructions and data are 
also separate. However, in this case, since data is contained in separate pages, 
the base of the data segment is also relative to address zero. In this case, since 
the addresses overlap, it is necessary to use the ? * operator to access the data 
space of the a. out file. In both 410 and 413-fonnat files the corresponding core 
file does not contain the program text. Here is a picture of 413-fonnat files: 

Executable File Type 413 

text data 

data stack 

The only difference between a 410 and a 413-fonnat file is that 413 segments are 
rounded up to page boundaries. Here are the maps and variables for 413-fonnat 
files: 

$m 
? map 'abort' 
b1 = 8000 e1 9000 f1 800 
b2 = 10000 e2 10800 f2 1800 
/ map 'core' 
b1 10000 e1 12800 f1 1800 
b2 = fffOOO e2 1000000 f2 4000 
$v 
variables 
b = 0200000 
d = 04000 
e = 0413 
m = 0413 
s = 010000 
t = 010000 

Revision A of 6 March 1990 



88 Debugging Tools 

Variables 

7.4. Advanced Usage 

Formatted Dump 

The b, e, and f fields are used to map addresses into file addresses. The f 1 field 
is the length of the header at the beginning of the file - 020 bytes for an a . out 
file and 02000 bytes for a core file. The f 2 field is the displacement from the 
beginning of the file to the data. For a 407-fonnat file with mixed text and data, 
this is the same as the length of the header, for 410 and 413-format files, this is 
the length of the header plus the size of the text portion. The b and e fields are 
the starting and ending locations for a segment. Given the address A, the location 
in the file (either a. out or core) is calculated as: 

bl <A<el file address = (A-bl) +fl 
b2<A<e2 file address = (A-b2) +f2 

You can access locations by using the adb-defined variables. The $v request 
displays the variables initialized by adb: 

b base address of data segment, 

d length of the data segment, 

s length of the stack, 

t length of the text, 

In execution type (407,410,413). 

Those variables not presented are zero. Use can be made of these variables by 
expressions such as 

in the address field. Similarly, the value of a variable can be changed by an 
assignment request such as 

( 02000>b ] 

which sets b to octal 2000. These variables are useful to know if the file under 
examination is an executable or core image file. 

The adb program reads the header of the core image file to find the values for 
these variables. If the second file specified does not seem to be a core file, or if it 
is missing, then the header of the executable file is used instead. 

One of the uses of adb is to examine object files without symbol tables; dbx 
cannot handle this kind of task. With adb, you can even combine formatting 
requests to provide elaborate displays. Several examples are given below. 

The following adb command line displays four octal words followed by their 
ASCII interpretation from the data space of the core file: 

( <b,-1/404"SCn 
J 

Revision A of 6 March 1990 



Chapter 7 - Sun386i adb Tutorial 89 

Broken down, the various requests mean: 

<b The base address of the data segment. 

<b, -1 Print from the base address to the end-of-file. A negative count is used 
here and elsewhere to loop indefinitely or until some error condition 
(like end-of-file) is detected. 

The fonnat 404" 8Cn is broken down as follows: 

40 Print 4 octal locations. 

4" Back up the current address 4 locations (to the original start of the 
field). 

8C Print 8 consecutive characters using an escape convention; each char
acter in the range 0 to 037 is displayed as followed by the correspond
ing character in the range 0140 to 0177. An @ is displayed as @@. 

n Print a newline. 

The following request could have been used instead to allow the displaying to 
stop at the end of the data segment. 

The request <d provides the data segment size in bytes. Because adb can read 
in scripts, you can use fonnatting requests to produce image dump scripts. 
Invoked a db as follows: 

J 

~.~·.· •• "~db .••• a •. ()ui: ••• cs.re •••• ·.~.·.· •• c1~ .••• i •••••.•• ~ 
This reads in a script file, dump, containing fonnatting requests. Here is an 
example of such a script: 

120$w 
4095$s 
$v 
=3n 
$m 

=3n"C Stack Backtrace" 
$C 
=3n"C External Variables" 
$e 
=3n"Registers" 
$r 
O$s 
=3n"Data Segment" 
<b,-1/8ona 

Revision A of 6 March 1990 



90 Debugging Tools 

Accounting File Dump 

Converting Values 

The request 120$w sets the width of the output to 120 characters (nonnally, the 
width is 80 characters). adb attempts to display addresses as: 

[~~ __ m_bO_I __ + __ offi_s_e_t __________________________________________ ~J 
The request 40 95 $ s increases the maximum pennissible offset to the nearest 
symbolic address from the default 255 to 4095. The request = can be used to 
display literal strings. Thus, headings are provided in this dump program with 
requests of the fonn: 

(=3n"C Stack Backtrace" 
J 

This spaces three lines and displays the literal string. The request $ v displays all 
non-zero adb variables. The request 0 $ s sets the maximum offset for symbol 
matches to zero, thus suppressing the display of symbolic labels in favor of octal 
values. Note that this is only done for displaying the data segment. The request 

«b,-I/sona J 
displays a dump from the base of the data segment to the end-of-file with an octal 
address field and 8 octal numbers per line. 

As another illustration, consider a set of requests to dump the contents 
I etc/utrnp or /usr / adm/wtrnp, both of which are composed of 8-character 
terminal names, 8-character login names, 16-character host names, and a 4-byte 
integer representing the login time. 

The c fonnat is repeated 8 times, 8 times, and 16 times. The 8 t means go to the 
8th tab stop, and 16t means to the 16th tab stop. Y causes the 4-byte integer 
representing the login time to print in ct irne(3) fonnat. 

You can use adb to convert values from one representation to another. For 
example, to print the hexadecimal number f f in octal, decimal, and hexade
cimal, type: 

[

ff = odz 

. 072 58 #3a ] 
The default input radix of adb is hexadecimal. Formats are remembered, so that 
typing subsequent numbers will display them in the same format. Character 
values may be converted as well: 

['a' = oc 
0141 a ] 

Revision A of 6 March 1990 



7.5. Patching 

Chapter 7 - Sun386i adb Tutorial 91 

This technique may also be used to evaluate expressions, but be warned that all 
binary operators have the same precedence, which is lower than for unary opera
tors. 

Patching files with adb is accomplished with the write requests w or w. This is 
often used in conjunction with the locate requests 1 or L. In general, the syntax 
for these requests is as follows: 

( ?1 val"" ] 
The 1 matches on two bytes, whereas L matches four bytes. The w request writes 
two bytes, whereas w writes four bytes. The value field in either locate or write 
requests is an expression. Either decimal and octal numbers, or character strings, 
are permitted. 

In order to modify a file, adb must be invoked as follows: 

When invoked with this option,jilel andjile2 are created if necessary, and 
opened for both reading and writing. 

For example, consider the following C program, zen. c: We will change the 
word "Thys" to "This" in the executable file. 

char strl[] = "Thys is a character string"; 
int one = 1; 
int number 456; 
long Inurn = 1234; 
float fpt = 1.25; 
char str2[] = "This is the second character string"; 

main () 
{ 

one 2; 

Use the following requests: 

~.: ••• : .•..•••.• :::: ...•• : ••• ~ ••.• :.o:: ... : •.••••• :: .•• :: .•••.•• : ..••.••. : .• : .••• a .•.. : .•.• : ..••.•.. db: ...••••. : •.. : •. :: .••. : ...•.•...... :: .••. ::: .•.••• : ..• : .. :.-::: .•• :: ..• : ...• : •..•• : .. w .•... :.:: •••.•..••. : .....•. zen-71 ''i'h' 
?W 'This' 

The request ? 1 starts a dot and stops at the first match of "Th", having set dot to 
the address of the location found. Note the use of? to write to the a. out file. 
The fonn ? * would be used for a 411 file. 

1 

Revision A of 6 March 1990 



92 Debugging Tools 

7.6. Anomalies 

More frequently the request is typed as 

(?1 'Th'; ?5 

which locates the first occurrence of "Th", and display the entire string. Execu
tion of this adb request sets dot to the address of those characters in the string. 

As another example of the utility of the patching facility, consider a C program 
that has an internal logic flag. The flag could be set using adb, before running 
the program. For example: 

The : s request is normally used to single step through a process or start a pro
cess in single step mode. In this case it starts a. out as a subprocess with argu
ments argl and arg2. If there is a subprocess running, adb writes to it rather 
than to the file so the w request caused flag to be changed in the memory of the 
subprocess. 

Below is a list of some strange things that users should be aware of. 

1) When displaying addresses, adb uses either text or data symbols from the 
a . ou t file. This sometimes causes unexpected symbol names to be 
displayed with data (for example, savr5+022). This does not happen if? 
is used for text (instructions) and I for data. 

2) The adb debugger cannot handle C register variables in the most recently 
activated function. 

J 

Revision A of 6 March 1990 



8.1. adb Options 

8.2. Using adb 

8 
a db Reference 

adb [ -w ] [ -k] [ -I dir] [ objectjile [ core file ] ] 

adb is an interactive, general-purpose, assembly-level debugger, that examines 
files and provides a controlled environment for executing SunOS programs. 

Nonnally objectfile is an executable program file, preferably containing a symbol 
table generated by the compiler's -go option. If the file does not contain a sym
bol table, it can still be examined, but the symbolic features of adb cannot be 
used. The default objectfile is a . out. 

The corefile is assumed to be a core image file produced by executing objectfile 
and having a problem causing the core image to be dumped to the file core. The 
default corefile is core. 

-w If either objectfile or corefile does not exist, create the nonexistent file and 
open both files for reading and writing. 

-k Do SunOS kernel memory mapping; should be used when corefile is a 
SunOS crash dump or / dev /mem. 

-I Specifies a directory where files to be read with $< or $« (see below) will 
be sought; the default is /usr / lib/ adb. 

adb reads commands from the standard input and displays responses on the stan
dard output, ignoring QUIT signals. An INTERRUPT signal returns to the next 
adb command. 

adb saves and restores tenninal characteristics when running a subprocess. This 
makes it possible to debug programs that manipulate the screen. See tty(4}. 

In general, requests to adb are of the form 

[ address] [, count] [command] [;] 

The symbol dot (.) represents the current location. It is initially zero. If address 
is present, then dot is set to address. For most commands count specifies how 
many times the command is to be executed. The default count is 1 (one). Both 
address and count may be expressions. 

93 Revision A of 6 March 1990 



94 Debugging Tools 

8.3. a db Expressions 

+ 

& 

The value of dot. 

The value of dot incremented by the current increment. 

The value of dot decremented by the current increment. 

The last address typed; this used to be ". 

integer 
A number. The prefixes 00 and 00 (zero oh) force intetpretation in octal 
radix; the prefixes 0 t and 0 T force intetpretation in decimal radix; the 
prefixes Ox and ox force interpretation in hexadecimal radix. Thus 0020= 
Ot16= Oxl 0= sixteen. If no prefix appears, then the default radix is used; 
see the $d command. The default radix is initially hexadecimal. Hexade
cimal digits are 0123456789abcdefABCDEF with the obvious values. 
Note that if a hexadecimal number starts with a letter, but does not duplicate 
a defined symbol, it is accepted as a hexadecimal value. To enter a hexade
cimal number that is the same as a defined symbol, precede it by 0, 0 x, or 
Ox. 

, ecce' 
The ASCII value of up to 4 characters. A backslash (\) may be used to 

escape a ' . 

<name 
The value of name, which is either a variable name or a register name; adb 
maintains several variables (see VARIABLES) named by single letters or 
digits. If name is a register name, then the value of the register is obtained 
from the system header in corefile. The register names are those printed by 
the $ r command. 

symbol 
A symbol is a sequence of upper or lower case letters, underscores or digits, 
not starting with a digit. The backslash character (\) may be used to escape 
other characters. The value of the symbol is taken from the symbol table in 
objectfile. An initial_ will be prepended to symbol if needed. 

_symbol 
In C, the true name of an external symbol begins with underscore U. It 
may be necessary to use this name to distinguish it from internal or hidden 
variables of a program. 

NOTE _symbol applies only to Sun-3 and Sun-4 systems. It is not used on Sun386i sys
tems. 

routine.name 
The address of the variable name in the specified C routine. Both routine 
and name are symbols. If name is omitted the value is the address of the 
most recently activated C stack frame corresponding to routine. Works only 
if the program has been compiled using the -go flag. See cc(l). 

e s Sun386i only. Like s, but steps over subroutine calls instead of into 
them . 

• sun Revision A of 6 March 1990 
~ microsystems 



Unary Operators 

Binary Operators 

Chapter 8 - adb Reference 95 

( expr) The value of the expression expr. 

* expression 
The contents of the location addressed by expression in eorefile. 

% expression 
The contents of the location addressed by expression in objeetjile (used to be 
@). 

-expression 
Integer negation. 

- expression 
Bitwise complement. 

=#: expression 
Logical negation . 

... F expression 
(Control-f) Translates program addresses into source file addresses. Works 
only if the program has been compiled using the -go flag. See ee(1) . 

... Aexpression 
(Control-a) Translates source file addresses into program addresses. Works 
only if the program has been compiled using the -go flag. See ee(1). 

'name 
(Back-quote) Translates a procedure name into a source file address. Works 
only if the program has been compiled using the -go flag. See ee(1). 

"filename" 
A filename enclosed in quotation marks (for instance, main. c) produces 
the source file address for the zero-th line of that file. Thus to reference the 
third line of the file main.c, we say: "main. c"+3. Works only if the pro
gram has been compiled using the -go flag. See ee(1). 

Binary operators are left associative and are less binding than unary operators. 

expression-l +expression-2 
Integer addition. 

expression-l-expression-2 
Integer subtraction. 

expression-l * expression-2 
Integer multiplication. 

expression-l % expression-2 
Integer division. 

expression-l & expression-2 
Bitwise conjunction. 

expression-l I expression-2 
Bitwise disjunction. 

Revision A of 6 March 1990 



96 Debugging Tools 

8.4. adb Variables 

8.5. a db Commands 

adb Verbs 

expression-l * expression-2 
Expressionl rounded up to the next multiple of expression2. 

adb provides several variables. Named variables are set initially by adb but are 
not used subsequently. Numbered variables are reserved for communication as 
follows: 

o The last value printed. 

1 The last offset part of an instruction source. 

2 The previous value of variable 1. 

9 The count on the last $ < or $ < < command. 

On entry the following are set from the system header in the corefile. If corefile 
does not appear to be a core file then these values are set from objectfile. 

b The base address of the data segment. 

d The data segment size. 

e The entry point. 

m The magic number (0407,0410 or 0413), depending on the file's type. 

s The stack segment size. 

t The text segment size. 

Commands to adb consist of a verb followed by a modifier or list of modifiers. 

The verbs are: 

? Print locations starting at address in objectfi,le. 

/ Print locations starting at address in corefile. 

Print the value of address itself. 

@ Interpret address as a source file address, and print locations in objectfile or 
lines of the source text. Works only if the program has been compiled using 
the -go flag. See cc(1). 

Manage a subprocess. 

$ Execute miscellaneous commands. 

> Assign a value to a variable or register. 

RETURN 
Repeat the previous command with a count of 1. Dot is incremented by its 
current increment. 

Call the shell to execute the following command. 

Each verb has a specific set of modifiers; these are described below. 

Revision A of 6 March 1990 



?, /, @, and = Modifiers 

Chapter 8 - adb Reference 97 

The first four verbs described above take the same modifiers, which specify the 
fonnat of command output. Each modifier consists of a fonnat letter (Jletter) 
preceded by an optional repeat count (rcount). Each verb can take zero, one, or 
more modifiers. 

{ ?, /, @, =} [[ rcount ] Jletter ... ] 

Each modifier specifies a fonnat that increments dot by a certain amount, which 
is given below. If a command is given without a modifier, the last specified for
mat is used to display output. The following table shows the format letters, the 
amount they increment dot, and a description of what each letter does. Note that 
all octal numbers output by adb are preceded by O. 

Format Dot+= Description 

0 2 Print 2 bytes in octal. 

0 4 Print 4 bytes in octal. 

q 2 Print in signed octal. 

Q 4 Print long in signed octal. 

d 2 Print in decimal. 

D 4 Print long in decimal. 

x 2 Print 2 bytes in hexadecimal. 

x 4 Print 4 bytes in hexadecimal. 

h 2 Sun386i only. Print 2 bytes in hexadecimal in reverse 
order. 

H 4 Sun386i only. Print 4 bytes in hexadecimal in reverse 
order. 

u 2 Print as an unsigned decimal number. 

U 4 Print long as an unsigned decimal. 

f 4 Print the 32-bit value as a floating point number. 

F 8 Print the 64-bit number as a double floating point 
number. 

b 1 Print the addressed byte in octal. 

B 1 Sun386i only. Print the addressed byte in hexadecimal. 

c 1 Print the addressed character. 

C 1 Print the addressed character using the standard escape 
convention. Print control characters as ,.. X and the delete 
character as "'? 

s n Print the addressed characters until a null character is 
reached; n is the length of the string including its zero ter-
minator. 

Revision A of 6 March 1990 



98 Debugging Tools 

Format Dot+= 

S n 

y 4 

i n 

M n 

z n 

I 0 

a 0 

p 4 

A 0 

p 4 

t 0 

r 0 

n 0 

" " 0 . . . 
.... 0 

+ 0 

- 0 

+~~t!! 

Description 

Print string using the escape conventions of C; n is the 
length of the string including its zero terminator. 

Print 4 bytes in etime(3) format. 

Print as machine instructions; n is the number of bytes 
occupied by the instruction. In this fonnat, variables 1 
and 2 are set to the offset parts of the source and destina-
tion, respectively. 

Sun386i only. Print as machine instructions along with 
machine code; n is the number of bytes occupied by the 
instruction. In this fonnat, variables 1 and 2 are set to the 
offset parts of the source and destination, respectively. 

Print as machine instructions with MC68010 Sun-2 
instruction timings; n is the number of bytes occupied by 
the instruction. In this fonnat, variables 1 and 2 are set to 
the offset parts of the source and destination respectively. 

Print the source text line specified by dot (@ command), 
or most closely corresponding to dot (? command). 

Print the value of dot in symbolic form. Symbols are 
checked to ensure that they have an appropriate type as 
indicated below: 

/ local or global data symbol 
? local or global text symbol 
= local or global absolute symbol 

Print the addressed value in symbolic form using the 
same rules for symbol lookup as for a. 
Print the value of dot in source file-symbolic form, that is: 
"file n+nnn. Works only if the program has been 
compiled with the -go flag. See cc(1). 

Print the addressed value in source-file symbolic fonn, 
that is: "file"+nnn. Works only if the program has 
been compiled using the -go flag. See ce(1). 

When preceded by an integer, tabs to the next appropriate 
tab stop. For example, 8 t moves to the next 8-space tab 
stop. 

Print a space. 

Print a newline. 

Print the enclosed string. 

Dot decremented by current increment; nothing is printed. 

Dot incremented by 1; nothing is printed. 

Dot decremented by 1; nothing is printed. 

Revision A of 6 March 1990 



? and I Modifiers 

: Modifiers 

Chapter 8 - adb Reference 99 

Only the verbs? and I take the following modifiers: 

[ ? I ] 1 value mask 
Words starting at dot are masked with mask and compared to value 
until a match is found. If the command is L instead of 1, the match is 
for 4 bytes at a time instead of 2. If no match is found dot is 
unchanged; otherwise dot is set to the matched location. If mask is 
omitted then -1 is used. 

? I ] w value ... 
Write the 2-byte value into the addressed location. If the command is 
W instead of w, write 4 bytes instead of 2. If the command is v, write 
only 1 byte. Odd addresses are not allowed when writing to the sub
process address space. 

? I ] m b 1 e 1 /1 [ ? I ] 
New values for (b1, e1 ,/1) are recorded. If fewer than three 
expressions are given, then the remaining map parameters are left 
unchanged. If the ? or I is followed by *, then the second segment 
(b2, e2,j2) of the address mapping is changed (see Address Mapping 
below). If the list is terminated by? or I, then the file, objectfile or 
corefile respectively, is used for subsequent requests. For example, 
1m? causes I to refer to objectfile. 

Only the verb: takes the following modifiers: 

a cmd Sun386i only. Set a data access breakpoint at address. Like b except 
that the breakpoint is hit when the program reads or writes to address. 

b cmd Set breakpoint at address. The breakpoint is executed count-l times 
before causing a stop. Each time the breakpoint is encountered the 
command cmd is executed. If this command is omitted or sets dot to 
zero, then the breakpoint causes a stop. 

w Sun386i only. Set a data write breakpoint at address. Like b except 
that the breakpoint is hit when the program writes to address. 

BeLike b but takes a source file address. Works only if the program has 
been compiled using the -go flag. See ceO). 

d Delete breakpoint at address. 

D Like d but takes a source file address. Works only if the program has 
been compiled using the -go flag. See ceO). 

z Sun386i only. Delete all breakpoints. 

r Run objectfile as a subprocess. If address is given explicitly, then the 
program is entered at this point; otherwise, the program is entered at its 
standard entry point. An optional count specifics how many break
points are to be ignored before stopping. Arguments to the subprocess 

~~ sun Revision A of 6 March 1990 
, microsystems 



100 Debugging Tools 

$ Modifiers 

may be supplied on the same line as the command. An argument start
ing with < or > causes the standard input or output to be established for 
the command. All signals are enabled on entry to the subprocess. 

c s The subprocess is continued with signal s; see sigvec(2). If address 
is given then the subprocess is continued at this address. If no signal is 
specified, then the signal that caused the subprocess to stop is sent. 
Breakpoint skipping is the same as for r. 

s s Same as for c except that the subprocess is single stepped count times. 
If there is no current subprocess, then objectfile is run as a subprocess 
as for r. In this case no signal can be sent; the remainder of the line is 
treated as an argument list for the subprocess. 

S Like s but single steps by source lines, rather than by machine instruc
tions. This is achieved by repeatedly single-stepping machine instruc
tions until the corresponding source file address changes. Thus pro
cedure calls cause stepping to stop. Works only if the program has 
been compiled using the -go flag. See cc(1). 

u Sun386i only. Continue uplevel, stopping after the current routine has 
returned. Should only be given after the frame pointer for the current 
routine has been pushed on the stack. 

i Add the signal specified by address to the list of signals that are passed 
directly to the subprocess with the minimum of interference. Nor
mally, adb intercepts all signals destined for the subprocess, and the 
: c command must be issued to continue the process with the signal. 
Signals on this list are handed to the process with an implicit: c com
mands as soon as they are seen. 

t Remove the signal specified by address from the list of signals that are 
implicitly passed to the subprocess. 

k Terminate (kill) the current subprocess, if any. 

A Sun386i only. Attach the process whose process ID is given by 
address. The PID is generally preceded by at so that it will be inter
preted in decimal. 

R Sun386i only. Release (detach) the current process. 

Only the verb $ takes the following modifiers: 

<file Read commands fromfile. If this command is executed in a file, 
further commands in the file are not seen. If file is omitted, the current 
input stream is terminated. If a count is given, and it is zero, the 

Revision A of 6 March 1990 



Chapter 8 - adb Reference 101 

command is ignored. The value of the count is placed in variable 9 
before the first command in file is executed. 

«file Similar to <, but can be used in a file of commands without closing the 
file. Variable 9 is saved during the execution of this command, and 
restored when it completes. Not more than 5 «files that can be open 
simultaneously. 

> file Append output to file, which is created if it does not exist. If file is 
omitted, output is returned to the tenninal. 

? Print the process id, the signal that stopped the subprocess, and the 
registers. Produces the same response as $ used without any modifier. 

r Print the general registers and the instruction addressed by the program 
counter; dot is set to that address. 

b Print all breakpoints and their associated counts and commands. 

c C stack backtrace. If address is given, it is taken as the address of the 
current frame instead of the contents of the frame-pointer register. If 
count is given, only the first count frames are printed. 

C Similar to c, but in addition prints the names and 32-bit values of all 
automatic and static variables for each active function. Works only if 
the program has been compiled using the -go flag. See cc(l). 

d Set the default radix to address and report the new value. Note that 
address is interpreted in the (old) current radix. Thus 10 $ d never 
changes the default radix. To make the default radix decimal, use 
OtlO$d. 

e Print the names and values of external variables. 

w Set the page width for output to address (default 80). 

s Set the limit for symbol matches to address (default 255). 

o Regard all input integers as octal. 

q Exit adb. 

v Print all non-zero variables in octal. 

rn Print the address map. 

f Print a list of known source file names. 

p Print a list of known procedure names. 

p For kernel debugging. Change the current kernel memory mapping to 
map the designated user structure to the address given by the symbol 
_u. The address argument is the address of the user's proc structure. 

i Show which signals are passed to the subprocess with the minimum of 
adb interference. Signals may be added to or deleted from this list 
using the : i and : t commands. 

~) sun Revision A of 6 March 1990 
~ microsystems 



102 Debugging Tools 

8.6. adb Address Mapping 

8.7. See Also 

8.8. Diagnostic Messages 
from adb 

w Re-open objectfile and corefile for writing, as though the -w 
command-line argument had been given. 

1 Sun386i only. Set the length in bytes (1, 2, or 4) of the object refer
enced by : a and : w to address. Default is 1. 

The interpretation of an address depends on its context. If a subprocess is being 
debugged, addresses are interpreted in the usual way (as described below) in the 
address space of the subprocess. If the operating system is being debugged, 
either post-mortem or by using the special file / dev /mem to examine and/or 
modify memory interactively, the maps are set to map the kernel virtual 
addresses, which start at zero. For some commands, the address is not inter
preted as a memory address at all, but as an ordered pair representing a file 
number and a line number within that file. The @ command always takes such a 
source file address, and several operators are available to convert to and from the 
more customary memory locations. 

The address in a file associated with a written address is determined by a map
ping associated with that file. Each mapping is represented by two triples (bl, 
el,fl) and (b2, e2,j2), and thejile address corresponding to a written address 
is calculated as follows. 

bl S; address < el => file address = address + fl - bl 

otherwise 

b2 S; address < e2 => file address = address + t2 - b2 

Otherwise, the requested address is not legal. If a? or / request is followed by 
an *, only the second triple is used. 

The initial setting of both mappings is suitable for nonnal object and core files. 
If either file is not of the kind expected then, for that file, hI is set to 0, el is set 
to the maximum file size, andfl is set to O. This way, the whole file can be 
examined with no address translation. 

For more infonnation, read dbx(1), ptrace(2), a. out(5), and core(5) in the 
man pages. 

After startup, the only prompt adb gives is 

when there is no current command or fonnat. On the other hand, adb supplies 
comments about inaccessible files, syntax errors, abnormal termination of com
mands, etc. The exit status is 0, unless the last command failed or returned non
zero status. 

J 

Revision A of 6 March 1990 



8.9. Bugs 

8.10. Sun-3 FP A Support 
in adb 

Chapter 8 - adb Reference 103 

There is no way to clear all breakpoints with a single command, except on the 
Sun386i. 

Since no shell is invoked to intetpret the arguments of the : r command, the cus
tomary wildcard and variable expansions cannot occur. 

Since there is little type checking on addresses, using a source file address in an 
inappropriate context may lead to unexpected results. 

Release of the floating-point accelerator (FPA) for the Sun-3 required some 
changes to adb, in order to support assembly language debugging of programs 
that use the FPA. 

1. The debugger variables A through z are reserved for special use by adb. 
They should not be used in adb scripts. 

2. The FPA registers fpaO through fpa31 are recognized and can be used or 
modified in debugger commands. This extension only applies to systems 
with anFPA. 

3. The debugger variable F governs FPA disassembly. This is equivalent to the 
dbx environment variable fpaasm. A value of 0 indicates that all FPA 
instructions are to be treated as move instructions. A nonzero value is used 
to indicate that FP A instruction sequences are to be disassembled and single 
stepped using FP A assembler mnemonics. On a machine with an FP A, the 
default value is 1; on other machines, the default value is O. 

4. The debugger variable B is used to designate an FP A base register. This is 
equivalent to the dbx environment variable fpabase. IfFPA disassembly 
is disabled (the F flag = 0), its value is ignored. Otherwise, its value is inter
preted as follows: 

o through 7: 
Based-mode FP A instructions that use the corresponding address regis
ter in [a 0 • • a 7] to address the FP A are also disassembled using FP A 
assembler mnemonics. Note that this is independent of the actual run
time value of the register. 

otherwise: 
All based-mode FPA instructions are disassembled and single-stepped 
as move instructions. 

The default value of the FP A base register number is -1, which designates 
no FP A base register. 

5. The command $x has been added to display the values ofFPA registers 
fpaO through fpa15, along with FPA control registers and the current con
tents of the FP A instruction pipeline. All registers are displayed in the for
mat: 

<low word> <high word> <double precision> <single precision> 

Revision A of 6 March 1990 



104 Debugging Tools 

S.ll. Examples of FPA 
Disassembly 

This verbose display is used because FP A registers are typeless; in 
particular, they may contain either single- or double-precision floating point 
values. If a single-precision value is stored, it is always stored in the high
order word. Machines without an FPA display the message "no FPA". 

6. The command $X is similar to $x, but displays the FPA registers fpa16 
through fpa31 instead of fpaO through fpalS. This is done as a separate 
command because adb cannot display the contents of all FPA registers in a 
single standard-size window. 

7. The command $R displays the contents of the data and control registers of 
the standard MC68881 floating point coprocessor. 

As an example, consider the following assembly source fragment: 

On machines without an FPA, the default mode is to disassemble all FPA 
instructions as moves. For the example program, the following output is pro
duced (except the parenthesized comments added here for explanation): 

FP A disassembly can be enabled by setting the debugger variable F to 1. For 
example: 

On machines with an FPA, FPA disassembly is on by default, so the above out
put is produced without having to set the value of F. 

Some FP A instructions may address the FP A using a base register in 
[aO .. a 7]. In practice, only [aO .. as] are used by the compilers. 

adb does not know which register (if any) is being used to address the FPA in a 
given sequence of machine code. However, another debugger variable (B) may 
be set by the user to designate a register as an FP A base register. By default, this 

Revision A of 6 March 1990 



Chapter 8 - adb Reference 105 

variable has the value -1, which means that no register should be assumed to 
point to the FPA, so only instructions that access the FPA using absolute address
ing are recognized as FP A instructions. 

For the example program, a machine with an FP A produces the following output: 

Note that the second and third instructions are still disassembled as moves, since 
adb cannot assume that they access the FP A. Continuing this example, if the 
FPA base register number is set to 5, the following output is produced: 

%adb £()o<. () 
5>:8 
<B=d 

.Oxa: 
Oxe: 

5 

Note that the second instruction is still disassembled as a move, since as, the 
register designated as the FP A base, is not used in it. 

FP A data registers can be displayed using a syntax similar to that used for the 
MC68881 co-processor registers. Note that unlike the MC68881 registers, FP A 
registers may contain either single-precision (32-bit) or double-precision (64-bit) 
values; MC68881 registers always contain an extended-precision (96-bit) value. 

For example, if fpaO contains the value 2.718282, we may display it as follows: 

[ <fpaO=f 
fpa3 Ox402df855 +2.718282e+OO ] 

Revision A of 6 March 1990 



106 Debugging Tools 

Note that the value is displayed in hexadecimal as well as in floating-point nota
tion. Unfortunately, an FPA register can only be set to a hexadecimal value. To 
set fpaO to 1.0, for example, you must know that this is represented as 
Ox3f800000 in IEEE single-precision fonnat: 

Ox3f800000>fpaO 
<fpaO=X 

3f800000 
<fpaO=f 

+1.0000000e+00 

Revision A of 6 March 1990 



9.1. Introduction 

Getting Started 

9 
. : 

Debugging SunOS Kernels with adb 

This document describes the use of extensions made to the SunOS debugger adb 
for the purpose of debugging the SunOS kernel. It discusses the changes made to 
allow standard adb commands to function properly with the kernel and intro
duces the basics necessary for users to write adb command scripts that may be 
used to augment the standard adb command set. The examination techniques 
described here may be applied to running systems, as well as the post-mortem 
dumps automatically created by savecore(8) after a s/stem crash. The reader 
is expected to have at least a passing familiarity with the debugger command 
language. 

Modifications have been made to the standard UNIX debugger adb to simplify 
examination of the post-mortem dump generated automatically following a sys
tem crash. These facilities may also be used when examining SunOS in its nor
mal operation. This document serves as an introduction to the use of these facili
ties, but should not be construed as a description of how to debug the kernel. 

Use the -k option of adb when you want to examine the SunOS kernel: 

(,.aCib-k '<vinuil~:".~~~~i~ 
The -k option makes adb partially simulate the Sun virtual memory manage
ment unit when accessing the core file. In addition, the internal state maintained 
by the debugger is initialized from data structures maintained by the SunOS ker
nel explicitly for debugging. t A post-mortem dump may be examined in a simi
lar fashion: 

Supply the appropriate version of the saved operating system image, and its core 
dump, in place of the question mark. 

t If the -k flag is not used when invoking adb. the user must explicitly calculate virtual addresses. With 
the -k option. adb interprets page tables to perform virtual-to-physical address translation automatically. 

107 Revision A of 6 March 1990 



108 Debugging Tools 

Establishing Context 

9.2. adb Command Scripts 

Extended Formatting 
Facilities 

During initialization adb attempts to establish the context of the currently active 
process by examining the value of the kernel variable panic_regs. This 
structure contains the register values at the time of the call to the panic () rou
tine. Once the stack pointer has been located, the following command generates 
a stack trace: 

J 
An alternate method may be used when a trace of a particular process is required. 

This section supplies details about writing adb scripts to debug the kernel. 

Once the process context has been established, the complete acib command set is 
available for interpreting data structures. In addition, a number of adb scripts 
have been created to simplify the structured printing of commonly referenced 
kernel data structures. The scripts normally reside in the directory 
/usr / lib/ acib, and are invoked with the $< operator. Standard scripts are 
listed below in Table 8-1. 

As an example, consider the listing that starts below. The listing contains a 
dump of a faulty process's state. 

Revision A of 6 March 1990 



Chapter 9 - Debugging SunOS Kernels with adb 109 

Revision A of 6 March 1990 



110 Debugging Tools 

Revision A of 6 March 1990 



./"daddr"nI2Xn\ 

d71ae:< 
o 

swrss 
o 

d71be<:pOO:r· 
IOSCOO 

d71c8: 
o 

d71d4: 
o 

0>: 

d71e4: 
o 

quota 
Sf236 

. Oc:i9418 $ <text 
d8A18: da.ddl:' 

28-4 o a 
o 0 
o 0 

o 
o 

Chapter 9 - Debugging SunOS Kernels with adb 111 

swaddr 
b 

o 
ctx 

o 
o 
o 

·wchan 
0.8418 

<ticks 

ptdaddr 
184 7 

size 
d7160 

caddr 
d47eO 

rssize swrSS ccount flag 
4 o 01 01 

The cause of the crash was a panic (see the stack trace) due to a duplicate 
inode allocation detected by the ialloc () routine. The majority of the 
dump was done to illustrate the use of command scripts used to format kernel 
data structures. The u script, invoked by the command u$<u, is a lengthy series 
of commands to pretty-print the user vector. Likewise, proc and text are 
scripts to fonnat the obvious data structures. Let's quickly examine the text 
script, which has been broken into a number of lines for readability here; in actu
ality it is a single line of text. 

"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn\ 
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx 

./"daddr"n12Xn 

The first line produces the list of disk block addresses associated with a swapped 
out text segment. The n format forces a newline character, with 12 hexadecimal 
integers printed immediately after. Likewise, the remaining two lines of the 
command format the remainder of the text structure. The expression 16t tabs to 
the next column which is a multiple of 16. 

The majority of the scripts provided are of this nature. When possible, the for
matting scripts print a data structure with a single fonnat to allow subsequent 
reuse when interrogating arrays of structures. That is, the previous script could 
have been written: 

+/"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn 
+/"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx 

Revision A of 6 March 1990 



112 Debugging Tools 

Traversing Data Structures 

But then, reuse of the format would have invoked only the last line of the fonnat. 

The adb command language can be used to traverse complex data structures. 
One such data structure, a linked list, occurs quite often in the kernel. By using 
adb variables and the normal expression operators it is a simple matter to con
struct a script which chains down the list, printing each element along the way. 

For instance, the queue of processes awaiting timer events, the callout queue, is 
printed with the following two scripts: 

callout: 
calltodo/"time"16t"arg"16t"func" 
*(.+Ot12)$<callout.nxt 

callout.nxt: 
./D2p 
*+>1 
,*<1$< 
<l$<callout.nxt 

The first line of the script callout starts the traversal at the global symbol 
calltodo and prints a set of headings. It then skips the empty portion of the 
structure used as the head of the queue. The second line then invokes the script 
callout. nxt moving dot to the top of the queue - *+ performs the indirec
tion through the link entry of the structure at the head of the queue. The script 
callout. nxt prints values for each column, then performs a conditional test 
on the link to the next entry. This test is performed as follows: 

(*+>1 ] 
This means to place the value of the link in the adb variable <1. Next: 

(,*<1$< 

This means if the value stored in < 1 is non-zero, then the current input stream 
(from the script callout. nxt) is terminated. Otherwise, the expression 41:<1 
is zero, and the $ < operator is ignored. That is, the combination of the logical 
negation operator 41:, adb variable <1, and operator $<, in effect, creates a state
ment of the form: 

[if (!l~nk) 
ex~t; 

The remaining line of callout. nxt simply reapplies the script on the next 
element in the linked list. A sample callout dump is shown below: 

] 

] 

Revision A of 6 March 1990 



Supplying Parameters 

Chapter 9 - Debugging SunOS Kernels with adb 113 

A command script may use the address and count portions of an adb command 
as parameters. An example of this is the setproc script, used to switch to the 
context of a process with a known process ID: 

( Ot99$<setproc 

The body of setproc is: 

.>4 
*nproc>l 
*proc>f 
$<setproc.nxt 

The body of setproc . nxt is: 

(*«f+Ot42)&Oxffff)="pid "D 
,#«(*«f+Ot42)&Oxffff»-<4)$<setproc.done 
<1-1>1 
<f+Ot140>f 
,#<1$< 
$<setproc.nxt 

] 

The process 10, supplied as the parameter, is stored in the variable < 4, the 
number of processes is placed in < 1, and the base of the array of process struc
tures in <f. Then setproc. nxt perfonns a linear search through the array 
until it matches the process ID requested, or until it runs out of process structures 
to check. The script setproc. done simply establishes the context of the pro
cess, then exits. 

Revision A of 6 March 1990 



114 Debugging Tools 

Standard Scripts Here are the command scripts currently available in /usr/lib/adb: 

Table 9-1 Standard Command Scripts 

Standard Command Scripts 
Name Use Description 

buf addr$<buf fonnat block I/O buffer 
callout $<callout print timer queue 
clist addr$<c1iat fonnat character I/O linked list 
dine addr$<di.no fonnat directory inode 
dir addr$<di.r fonnat directory entry 

file addr$<fi.le fonnat open file structure 
filsys addr$<fi.laya fonnat in-core super block structure 
findproc pid$<findproc find process by process id 
ifnet addr$<ifnet fonnat network interface structure 
inode addr$<inode fonnat in-core inode structure 

inpcb addr$ <inpcb fonnat internet protocol control block 
iovec addr$<iovec fonnat a list of iov structures 
ipreass addr$<ipreas s fonnat an ip reassembly queue 
mact addr$ <mact show active list of mbufs 
mbstat $<mbstat show mbuf statistics 

mbuf addr$<mbuf show next list of mbufs 
mbufs addr$<mbufs show a number of mbufs 
mount addr $ <mount fonnat mount structure 
pcb addr$<pcb fonnat process context block 
proc addr$<proc fonnat process table entry 

protosw addr$<protosw format protocol table entry 
rawcb addr$<rawcb format a raw protocol control block 
rtentry addr$<rtentry fonnat a routing table entry 
rusage addr$<rusaqe format resource usage block 
setproc pid$<setproc switch process context to pid 

socket addr$<socket format socket structure 
stat addr$<stat format stat structure 
tcpcb addr$<tcpcb fonnat TCP control block 
tcpip addr$<tcpip format a TCP/IP packet header 
tcpreass addr$<tcpreass show a TCP reassembly queue 

text addr$<text fonnat text structure 
traceall $<traceall show stack trace for all processes 
tty addr$<tty format tty structure 
u addr$<u fonnat user vector, including pcb 
uio addr$<uio format uio structure 
vtimes addr$<vtimes format vtimes structure 

Revision A of 6 March 1990 



9.3. Generating adb 
Scripts with adbgen 

#include "sys/types. hIt 
#include "sys/text.h" 

text 

Chapter 9 - Debugging SunOS Kernels with adb 115 

You can use the adbgen program. to write the scripts presented earlier in a way 
that does not depend on the structure member offsets of referenced items. For 
example, the text script given above depends on all printed members being 
located contiguously in memory. Using adbgen, the script could be written as 
follows (again it is really on one line, but broken apart for ease of display): 

./"daddr"n{x_daddr,12X}n\ 
"ptdaddr"16t"size"16t"caddr"16t"iptr"n\ 
{x-ptdaddr,X} {x_size,X} {x_caddr,X} {x_iptr,X}n\ 
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n\ 
{x_rssize,x} {x_swrss,x} {x_count,b} {x_ccount,b}\ 
{x_flag,b} {x_slptime,b} {x-poip,x} {END} 

The script starts with the names of the relevant header files, while the braces del
imit structure member names and their fonnats. This script is then processed 
through adbgen to get the adb script presented in the previous section. See 
Chapter 10 of this manual for a complete description of how to write adbgen 
scripts. The real value of writing scripts this way becomes apparent only with 
longer and more complicated scripts (the u script for example). When scripts are 
written this way, they can be regenerated if a structure definition changes, 
without requiring that the offsets be recalculated . 

• ~!!.n Revision A of 6 March 1990 



116 Debugging Tools 

Revision A of 6 March 1990 



10 
Generating adb Scripts with adbgen 

/usr/1ib/adb/adbqen file.adb ... 

This program makes it possible to write adb scripts that do not contain hard
coded dependencies on structure member offsets. After generating a C program 
to determine structure member offsets and sizes, adbgen proceeds to generate 
an adb script. 

The input to adbgen is a file namedjile. adb containing adbgen header infor
mation, then a null line, then the name of a structure, and finally an adb script. 
The adbgen program only deals with one structure per file; all member names 
occurring in a file are assumed to be in this structure. The output of adbgen is 
an adb script injile (without the . adb suffix). 

The header lines, up to the null line, are copied verbatim into the generated C 
program. These header lines often have 4f:include statements to read in header 
files containing relevant structure declarations. 

The second part ofjile.adb specifies a structure. 

The third part contains an adb script with any valid adb commands (see 
Chapter 6 of this manual), and may also contain adbgen requests, each enclosed 
in braces. Request types are: 

1) Print a structure member. The request form is {member ,format} where 
member is a member name of the structure given earlier, and format is any 
valid adb format request. For example, to print the p yid field of the 
proc structure as a decimal number, say {p _pid, d} . 

2) Reference a structure member. The request fonn is {*member, base} 
where member is the member name whose value is wanted, and base is an 
adb register name containing the base address of the structure. For exam
ple, to get the p yid field of the proc structure, get the proc structure 
address in an adb register, such as <f, and say {*p yid, <f}. 

3) Tell adbgen that the offset is OK. The request form is {OFFSETOK}. 
This is useful after invoking another adb script which moves the adb dot. 

4) Get the size of the structure. The request form is {SIZEOF}; adbgen 
simply replaces this request with the size of the structure. This is useful for 
incrementing a pointer to step through an array of structures. 

117 Revision A of 6 March 1990 



118 Debugging Tools 

10.1. Example of adbgen 

10.2. Diagnostic Messages 
from adbgen 

10.3. Bugs in adbgen 

5) Get the offset to the end of the structure. The request form is {END}. This 
b useful at the end of a structure to get adb to align dot for printing the next 
structure member. 

By keeping track of the movement of dot, adbgen emits adb code to move for
ward or backward as necessary before printing any structure member in a script. 
The model of dot's behavior is simple: adbgen assumes that the first line of the 
script is of the form struct_addressl adb text and that subsequent lines are of the 
form + I adb text. This causes dot to move in a sane fashion. Unfortunately, 
adbgen does not check the script to ensure that these limitations are met. How
ever, adbgen does check the size of the structure member against the size of the 
adb format code, and warns you if they are not equal. 

If there were an include file x . h like this, 

struct x 
char *x_cp; 
char x_c; 

} ; 

then the adbgen file (call it script. adb) to print it would be: 

#include "x.h" 

x 
.1"x_cp"16t"x_c"8t"x_i"n{x_cp,X} {x_c,C} {x_i,D} 

After running adbgen, the output file scr ipt would contain: 

To invoke the script, type: 

(X$<scriPt 

The adbgen program generates warnings about structure member sizes not 
equal to adb fonnat items, and complaints about badly formatted requests. The 
C compiler complains if you reference a nonexistent structure member. It also 
complains about & before array names; these complaints may be ignored. 

Structure members that are bit fields cannot be handled, because C will not give 
the address of a bit field; the address is needed to determine the offset. 

J 

] 

Revision A of 6 March 1990 



Index 

Special Characters 
! adb verb, 96 
$ adb verb, 96 
1 adb verb, 96 
1 dbx command, 26 
: adb verb, 96 
= adb verb, 96 
> adb verb, 96 
? adb verb, 96 
@ adb verb, 96 

o 
o adb variable -last value printed, 96 

1 
1 adb variable - last offset, 96 

2 
2 adb variable - previous value of I, 96 

9 
9 adb variable - count on last read, 96 

A 
accessing source files and directories, 24 
adb 

debug, 49 
adb address mapping, 102 
adb commands, 96 thru 102 
adb expressions, 94 thru 96 
adb variables, 96 

o -last value printed, 96 
1 - last offset, 96 
2 - previous value of 1,96 
9 - count on last read, 96 
b - data segment base, 96 
d - data segment size, 96 
e - entry point, 96 
m - magic number, 96 
s - stack segment size, 96 
t - text segment size, 96 

adb verbs, 96 
!,96 
$,96 
1,96 
:,96 

-119-

adb verbs, continued 
=,96 
>,96 
?,96 
@,96 
RETURN,96 

address mapping in adb, 102 
arguments to main in dbx, 47 
arrays 

large, dbx, 46 
arrays large dbx, 30 
assign dbx command, 20 

B 
b adb variable - data segment base, 96 
blank: common 

and adb,51 
breakpoints in dbx, 21 thru 22 
buttons subwindow in dbxtool, 8 

C 
call dbx command, 24 
catch dbx command, 22 
catch FPE in dbx, 47 
child processes 

debugging with dbx, 33 
clear command button in dbxteol, 11 
clear dbx command, 21 
command buttons in dbxtool 

clear, 11 
cont, 11 
down, 11 
next, 10 
print, 10 
print *, 10 
run, 11 
step, 10 
stop at, 10 
stop in, 11 
up, 11 
where, 11 

command subwindow in dbxt 00 I, 8 
commands in adb, 96 thru 102 
cent, 3 
cont command button in dbxtoel, 11 
cent dbx command, 22 



Index - Continued 

core,3 

D 
d adb variable - data segment size, 96 
dbx, 3 

arguments to main, 47 
call a function, 42 
catch FPE,47 
commands, 40 
debugging child processes, 33 
exception location, 47 
large arrays, 30, 46 
print in hex, 48 

dbx and FORTRAN, 40 
dbx commands 

1,26 
assign, 20 
call,24 
catch,22 
clear, 21 
cont, 22 
dbxenv,29 
delete all,21 
detach,30 
display, 20 
dump,20 
help, 28 
ignore,22 
kill,30 
modules, 30 
next, 24 
nexti,25 
print, 19 
quit,29 
rerun, 22 
run, 22 
set, 20 
set8l,20 
setenv,30 
sh,28 
source, 28 
status, 21 
step, 24 
stop at, 21 
stop if,21 
stop in, 21 
stop, 21 
stopi,25 
trace, 22 
tracei,25 
undi splay, 20 
whatis,20 
when at, 21 
when in, 21 
whereis,20 
which,20 
alias, 28 
cd,25 
debug, 29 
delete, 21 
down,19 
edit,24 
file,24 

dbx commands, continued 
func,24 
list, 24 
pwd,25 
stepi,25 
up,19 
use,25 
where,19 

dbx FP A support, 35 
dbx machine-level commands, 25 Ihru 27 
dbx miscellaneous commands, 29 Ihru 30 
dbxenv dbx command, 29 
.dbxinit,8 
dbxtool,3 

debugging child processes, 33 
upper case, 45 

dbxtool command buttons 
clear, 11 
cont, 11 
down, 11 
next, 10 
print, 10 
print *, 10 
run, 11 
step, 10 
stop at, 10 
stop in, 11 
up, 11 
where, 11 

dbxtool options, 8 
dbxtool subwindows 

buttons, 8 
command, 8 
display, 8 
source, 8 
status, 8 

debug 
extensions, 42 
parameters, 45 
pointer, 44 
record, 42, 44 
structure, 42 
upper case, 45 

debugging 
dbx and child processes, 33 

delete all dbx command, 21 
detach dbx command, 30 
display, 3 
display data in dbx, 19 thru 20 
display dbx command, 20 
display subwindow in dbxtool, 8 
down command button in dbxtool, 11 
dump dbx command, 20 

E 
e adb variable - entry point, 96 
exception location in dbx, 47 
expressions in adb, 94 thru 96 

-120-



F 
files 

preparing, 16 
files too big, 32 
FPA disassembly, 36 
FPA register use, 37 
FPA support, 35 
FPE catch in dbx, 47 
function call in dbx, 42 

H 
help dbx command, 28 
hex print in dbx 

indbx,48 

I 
ignore dbx command, 22 
invoking dbx,16 

K 
kill dbx command, 30 

L 
large arrays in dbx, 30, 46 
large files, 32 
large programs, 30 
listing procedures, 19 
listing source code, 18 

M 
m adb variable - magic number, 96 
machine-level dbx commands, 25 thru 27 
main arguments dbx, 47 
miscellaneous dbx commands, 29 thru 30 
modules dbx command, 30 

N 
name data in dbx, 19 thru 20 
next, 3 
next command button in dbxtool, 10 
next dbx command, 24 
nexti dbx command. 25 

o 
options 

dbxtool.8 

p 
parameters 

debug, 45 
parts of large arrays in dbx. 46 
pointer 

debug, 44 
preparing files, 16 
print. 3 

in hex. in dbx, 48 
parts of large arrays in dbx, 46 

print command button in dbxtool, 10 
print dbx command, 19 

-121-

process debugging, children with dbx, 33 

Q 
qui t dbx command, 29 

R 
record 

debug, 44 
record debug, 42 
rerun dbx command, 22 
RETURN adb verb, 96 
run command button in dbxtool, 11 
run dbx command, 22 
running programs in dbx, 22 thru 24 

s 
s adb variable - stack segment size, 96 
scrolling in dbxtool, 9 
set dbx command, 20 
setSl dbx command, 20 
setenv dbx command, 30 
setting breakpoints in dbx, 21 thru 22 
sh dbx command, 28 
source code, listing, 18 
source dbx command, 28 
source subwindow in dbxt 00 1, 8 
status dbx command, 21 
status subwindow in dbxtool, 8 
step, 3 
step command button in dbxtool, 10 
step dbx command, 24 
stop, 3 
stop at command button in dbxtool, 10 
stop at dbx command, 21 
stop dbx command, 21 
stop if dbx command, 21 
stop in command button in dbxtool, 11 
stop in dbx command, 21 
stopi dbx command, 25 
structure debug, 42 
swap space, 32 

T 
t adb variable - text segment size, 96 
trace dbx command, 22 
tracei dbx command, 25 
tracing programs with dbx, 22 thru 24 

U 
undisplay dbx command, 20 
unformatted files 

and adb,52 
up command button in dbxtool, 11 
upper case 

debug,45 

Index - Continued 



Index - Continued 

V 
variables in adb, 96 

o -last value printed, 96 
1 - last offset, 96 
2 - previous value of 1, 96 
9 - count on last read, 96 
b - data segment base, 96 
d - data segment size, 96 
e - entry point, 96 
m - magic number, 96 
5 - stack segment size, 96 
t - text segment size, 96 

verbs in adb, 96 
!,96 
$,96 
/,96 
:,96 
=,96 
>,96 
?,96 
@,96 
RETURN,96 

W 
whatis dbx command, 20 
when at dbx command, 21 
when in dbx command, 21 
where, 3 
where command button in dbxtool, 11 
whereis dbx command, 20 
which dbx command, 20 

-122-



Notes 



Notes 


