
System Services Overview

Part Number: 800-3846-10
Revision A of 27 March, 1990

Trademarks

SunOS™, Sun Workstation®, as well as the word "Sun" followed by a numerical suffix, are trademarks
of Sun Microsystems, Incorporated.

UNIX® and UNIX System V® are trademarks of Bell Laboratories.

PostScript™ is a trademark of Adobe Systems Inc.

All other products or services mentioned in this document are identified by the trademarks or service
marks of their respective companies or organizations.

Legal Notice to Users

Yellow Pages™ is a registered trademark in the United Kingdom, of British Telecommunications pIc., and
may also be a trademark of various telephone companies around the world. Sun will be revising future
versions of software and documentation to remove references to the term "Yellow Pages. "

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any fonn or by any
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an infonnation
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,4854,688,1904,527,2324,745,407
4,679,0144,435,7924,719,5694,550,368 in addition to foreign patents and applications pending.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California. We acknowledge the following individuals and institutions for their role in
its development: The Regents of the University of California, the Electrical Engineering and Computer Sciences
Department at the Berkeley Campus of the University of California, and Other Contributors.

Contents

Chapter 1 Introduction .. 1

1.1. Overview .. 1

1.2. Compatibility and Conformance .. 1

Chapter 2 The Virtual Memory System .. 3

2.1. Virtual Memory, Address Spaces and Mapping .. 3

Address Space Layout .. 4

Shared Memory .. 6

2.2. Networking, Heterogeneity and Coherence .. 6

2.3. Memory Management Interfaces .. 7

Creating and Using Mappings ... 7

Removing Mappings ... 11

Cache Control ... 11

Oilier Mapping Functions .. 13

Chapter 3 Kernel Interface .. 15

3.1. Processes and Protection 15

Host and Process Identifiers 15

Creating and Terminating Processes , ,.;, ;:;:;:;;,.,,;;:;;.,.:,:.,.,," , ,ie ::

User and Group Ids .. " ... " " , ,," .. ,.:..: ;':':;:;;'''''''''':':':''''''i.,.,.,:;:,,:,:,,: ... ,,:::::e.:

Process Groups and Controlling

Controlling Terminal , " , ;;;,;.; .. ; .. ".:; ;,;,:;.;., ... ,,;; .• :;, ... ;;; ::::::::.

tty Parameters .. " " " " .. ;;:;:;:;:;:;: ... ;" •• ~ •. ".; ... ;;;: ... ;;,:;,,;. 19

Sessions and Process Groups ", " ;':":;.;;: :." .. ; "'" 19

- iii-

Contents - Continued

Process Groups ... 20

Deallocating a Controlling Tenninal ... 20

3.2. Signals .. 20

Signal Tyt)es .. 21

Signal Handlers .. 22

Sending Signals ... 23

Protecting Critical Sections .. 23

Signal Stacks ... 24

3.3. Timers .. 24

Real Time .. 24

Interval Time ... 25

3.4. Descriptors ... 26

The Reference Table ... 26

Descriptor Pro~rties .. 27

Managing Descriptor References ... 27

Multiplexing Requests ... 28

3.5. Resource Controls ... 29

Process Priorities ... 29

Resource Utilization .. 30

Resource Limits ... 30

Memory Locking: mlock () and munlock () .. 31

3.6. System Operation Support ... 31

Accounting ... 32

3.7. Generic I/O Operations .. 32

read () and write () .. 32

Input/Output Control .. 33

Non-Blocking and Multiplexed Operations .. 33

Asynchronous I/O: aread (), awri te () and await () 34

File Caches ... 34

3.8. File System .. 34

Naming ... 34

Creation and Removal .. 35

Directory Creation and Removal .. 35

-iv-

Contents - Continued

File Creation ... 35

Creating References to Devices .. 36

File and Device Removal ... 37

Reading and Modifying File Attributes ... 37

Links and Renaming ... 39

Extension and Truncation .. 40

Checking Accessibility .. 41

File Locking ... 41

File and Record Locking: lockf () .. 42

Mounting Filesystems .. 42

Disk Quotas .. 43

3.9. Devices .. 43

Structured Devices ... 43

Unstructured Devices ... 43

3.10. Debugging Support .. 44

Chapter 4 Networking Overview .. 47

4.1. Socket-Based Interprocess Communications .. 47

Interprocess Communication Primitives ... 47

Communication Domains ... 47

Socket Types and Protocols .. 47

Socket Creation, Naming, and Service Establishment 48

Accepting Connections .. 49

Making Connections .. 50

Sending and Receiving Data ... 50

Scatter/Gather and Exchanging Access Rights 51

Using readO and wr.ite () with Sockets 52

Shutting Down Halves of Full-Duplex Connections 52

Socket and Protocol Options 52

UNIX Domain .. 53

Types of Sockets .. 53

Naming .. 53

Access Rights Transmission ... 53

-v-

Contents - Continued

Internet Domain ... 53

Socket Types and Protocols .. 53

Socket Naming .. 53

Access Rights Transmission ... 53

Raw Access ... 53

4.2. TLI Communication Facilities .. 53

Modes of Service .. 54

Connection-Mode Service ... 55

Local Management .. 55

Connection Establishment ... 56

Data Transfer ... 57

Connection Release ... 57

Connectionless-Mode Service ... 58

State Transitions .. 58

4.3. Network-Based Services ... 58

4.4. Standard Server-Based Services ... 59

Chapter 5 Programmer's Guide to Security Features 63

5.1. System Calls ... 63

I/O Routines ... 63

Process Control .. 64

File Attributes ... 64

User ID and Group ID .. 65

5.2. C Library Routines ... 66

Standard I/O ... 66

Password Processing ... 67

Group Processing .. 68

Who's Running a Program? .. 68

Encryption Routines .. 69

The des_crypt Library .. 69

Password Encryption Routines .. 70

User and Group ID ... 71

5.3. Writing Secure Progrruns .. 71

-vi-

Contents - Continued

Set User ID Programs ... 72

Set Group ID Programs ... 73

Commands with Shell Escapes ... 73

Shell Scripts and Security .. 73

Guidelines for Secure Programs ... 73

5.4. Programming as Superuser .. 74

Chapter 6 Native Language Application Support .. 77

6.1. Introduction ... 77

Overview .. 77

Standards-Based Approach ... 78

Common Data Model... 78

8-Bit Clean Commands ... 79

I/O Device Support .. 79

Sun View 1 ... 79

Native Language Keyboards ... 80

Alternate Key Mappings ... 81

The Compose Key .. 81

Floating Accent Keys .. 81

Line Printers 82

Networking ... 82

Mailers ... 82

File Transfer and Sharing 82

Terminal Emulation ... ".................. 82

Other Networking Services .. 83

Modems .. 83

The Announcement (Locale) Mechanism ... 83

6.2. Using the Internationalized Desktop .. 85

Sharing Data between Applications ... 85

Sharing Data between 4.1 Host Systems ... 85

Sharing Data with Other SunOS Operating System Hosts 85

6.3. Creating and Installing a Native Language Environment

(Locale) ... 86

-vii-

Contents - Continued

Building a Classification and Conversion Table: chrtbl 86

Building a String Collation Table: colldef ... 88

Date and Time Fonnats ... 88

Decimal Units ... 90

Monetary FOflIlats .. 91

Message Catalogs ... 94

Installing a Locale .. 95

6.4. Developing an Internationalized Application ... 95

Overview .. 95

8-Bit Character Support Routines ... 97

Acquiring the Locale: setlocale () ... 98

Handling Alphabets and Character Sets .. 98

Handling Date and Time Fonnats ... 99

Handling Numeric Fonn.ats ... 100

Handling Monetary Fonn.ats .. 101

Handling File Names .. 102

Sorting, Collation and Conversion ... 102

Native-Language Messages .. 103

Library Routines for Accessing Message Catalogs 103

Message Catalogs and the File System ... 104

Static and Dynamic Messaging ... 104

Other Programming Considerations ... 107

Graphical Characters 107

Printing .. 107

Page Sizes .. 107

Fonts ... 108

Handling Multi-Byte Characters .. 108

Chapter 7 System V Compatibility Features ... 109

7.1. Introduction ... 109

Future Directions .. 109

System V Enhancements .. 110

How the Compatibility Features Work .. 111

- viii-

Contents - Continued

File-Creation Group ID Semantics ... 112

Ancillary Libraries .. 112

7.2. SVID Compliance .. 113

Chapter 8 XlOPEN Compatibility Features ... 119

8.1. Introduction ... 119

Ancillary Libraries .. 119

8.2. X/OPEN Confonnance ... 119

Chapter 9 POSIX Conformance .. 123

.. Conformance with IEEE Standard 1003.1-1988 ... 123

.. Implementation-Defined Features ... 123

POSIX.1 Section 2, Definitions and General Requirements 123

POSIX.1 Section 3, Process Primitives ... 124

POSIX.1 Section 4, Process Environment ... 126

POSIX.l Section 5, Files and Directories .. 128

POSIX.1 Section 6, I/O Primitives .. 131

POSIX.1 Section 7, Device- and Class-Specific Functions 132

POSIX.1 Section 8, Language-Specific Services for C............................ 135

POSIX.1 Section 9, System Databases .. 136

POSIX.1 Section 10, Data Interchange Fonnat .. 137

.. Headers ... 139

Appendix A ISO Latin 1 Character Set ... 143

Appendix B U.S. and European Keyboard Layouts .. 149

Appendix C Compose Key and Floating Accent Key Sequences 157

Index ... 163

-ix-

Tables

Table 4-1 Local Management Routines ... 56

Table 4-2 Connection Establishment Routines ... 57

Table 4-3 Connection Mode Data Transfer Routines .. 57

Table 4-4 Connection Release Routines ... 58

Table 6-1 8-Bit Dirty Commands .. 79

Table 6-2 International Date and Time Conventions ... 89

Table 6-3 International Decimal Formatting Conventions 90

Table 6-4 International Monetary Formatting Conventions 91

Table 6-5 Internationalized Routines .. 97

Table 6-6 More Sample Monetary Formats .. 102

Table 6-7 Values of the Structure Returned by localeconv () 102

Table 6-8 Common International Page Sizes ... 107

Table 7-1 SVID Base System OS Service Routines ... 113

Table 7-2 SVID Base System General Library Routines .. 113

Table 7-3 SVID Kernel Extension OS Service Routines 114

Table 7-4 SVID Basic Utilities Extension , ,:;H :-: ;;,:;;:;,~, 114

Table 7-5 SVID Advanced Utilities Extension ,,, ,::;:.:;:;:;:, : ; ,,:::::.

Table 7-6 SVID Administered Systems Extension

Table 7-7 SVID Software Development Extension Upllit1.¢$.. :.~ .. ;.:% ;.; ... ~.; .. ; ... «

Table 7-8 SVID Software Development Extension Ad.CI1t:LOtl:a1 ..

Routines ' .. , .. ~.: ; .. ;;;.;:;:".;.; .. ;; +,.

Table 7-9 SVID Terminal Interface Extension Utilities ;;.;;;.:. .. ;;,"" 116

-xi-

Tables - Continued

Table 7-10 SVID Tenninallnterface Extension Library Routines 116

Table 7-11 SVID Open Systems Networking Interfaces (TLI) Library
Routines .. 117

Table 7-12 SVID STREAMS I/O Interface Operating System Service
Routines .. 117

Table 7-13 SVID Shared Resource Environment (RFS) Utilities 117

Table A-I ISO Latin 1 .. 143

Table A-2 The ISO 8859 Standard Character Set Family.. 147

Table C-l Compose Key Sequences .. 157

Table C-2 Boating Accent Key Sequences ... 160

-xii-

Figures

Figure 2-1 Traditional UNIX System Address-Space Layout 4

Figure 2-2 Address-space Layout .. 5

Figure 4-1 Transport Layer Interface .. 54

Figure 4-2 Channel Between User and Provider .. 55

Figure 4-3 Transport Connection .. 56

Figure 6-1 Gennan and French Characters in Sun View 1 Desktop 80

Figure 6-2 United Kingdom keyboard layout .. 81

Figure 6-3 Structure of a Localization Database .. 84

Figure 8-1 System Calls .. 120

Figure 8-2 Subroutines and Libraries .. 120

Figure 8-3 File Forrn.ats ... 121

Figure 8-4 Headers ... 121

Figure 8-5 Commands ... 122

Figure 8-6 Special Files 122

Figure B-1 United States ... ,: ~.:+,:;:;:~ ".+ .. ~.,:.; .. ;.
Figure B-2 Belguim/France .. ,~~~;:";~.+;:+ ... ,,;+" .•.. +,~, ... ~.~.++;

Figure B-3 Canada ... " .. i ,;;;:;;;; ;:,:;:,';:.;,,,~ ,; .. ;: .. ; ... :.,.,,,'

Figure B-4 Denmark .. :.:.:.;.;:; ; ,~:;:.:;:;:;.;;, •. , ,.;;;;;>

Figure B-5 Netherlands .. ~;.~(;:;:,' " ;.;;;;.,.;;:;:;:;,,~

Figure B-6 Germany 151

Figure B-7 Italy .. 152

- xiii-

Figures - Continued

Figure B-8 Norway .. 152

Figure B-9 Portugal ... 153

Figure B-IO Spain .. 153

Figure B-Il Sweden/Finland ... 154

Figure B-12 Switzerland (French) .. 154

Figure B-13 Switzerland (Gennan) .. 155

Figure B-14 United Kingdom .. 155

- xiv-

1.1. Overview

1.2. Compatibility and
Conformance

1
Introduction

Release 4.1 of the SunOS operating system (hereafter referred to as "Release
4.1, " or "4.1' ') is derived from Berkeley Standard Distribution (BSD) release
4.3, which in tum, was derived form Version 7 of the UNIX operating system
developed at Bell Laboratories. 4.1 also incoIporates numerous features from
UNIX System V Release 3, including library routines that are compliant with the
SVID, Issue 2, STREAMS-based communication facilities, RFS, and System V
interprocess communication facilities.

System selVices are typically made available to an executing program (process)
by means of library routines (function calls). Services provided by the system
kernel are described in the Kernel Interface chapter. Network-based services
and networking concepts are introduced in the Networking Overview chapter.
For a detailed description of the various system abstractions in Release 4.1, refer
to Intro(2) and Intro(3) in the SunOS Reference Manual.

This manual also describes the architecture of the virtual memory system, in The
Virtual Memory System. Programming security features are outlined in
Programmer's Guide to Security Features.

An important feature of the SunOS operating system is its compatibility and con
fonnance with various emerging standards for the UNIX operating system. This
manual also describes how Release 4.1 complies with these various standards .

• \sun .. -,---_ .. _._-- 1 Revision A of 27 March 1990

2 System Services Overview

Revision A of 27 March 1990

2.1. Virtual Memory,
Address Spaces and
Mapping

2
The Virtual Memory System

Release 4.1 of the SunOS operating system provides a virtual-memory system
with a rich set of memory-management facilities. These facilities, in tum, fonn a
basis for providing system services such as shared libraries.

Process address spaces are composed of a vector of memory pages, each of which
can be independently mapped and manipulated. Typically, the system presents
mappings that simulate the traditional UNIX process memory environment, but
other views of memory are useful as well.

These memory-management facilities:

o Unify the system's operations on memory.

o Provide a set of kernel mechanisms powerful and general enough to support
the implementation of fundamental system services without special-purpose
kernel support.

o Maintain consistency with the existing environment, in particular using the
file system as the name space for named virtual-memory objects.

The system's virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space and other random-access devices. Named objects in the vir
tual memory are referenced though the file system. However, not all file system
objects are in the virtual memory; devices that the operating system cannot treat
as storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
System V shared memory segments (refer to Programming Utilities and
Libraries), are not named.

A process's address space is defined by mappings onto objects in the system's
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is execut
ing. Each page may be mapped (or not) independently. Only process addresses
that are mapped to some system object are valid, for there is no memory associ
ated with processes themselves--all memory is represented by objects in the
system's virtual memory.

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage

3 Revision A of 27 March 1990

4 System Services Overview

Address Space Layout

Figure 2-1

that implements the address within the object. The virtual memory's associated
physical storage is thus accessed by transfonning process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important characteris
tic of a mapping is that the object to which the mapping is made is not affected
by the mere existence of the mapping. Thus, it cannot, in general, be expected
that an object has an "awareness" of having been mapped, or of which portions
of its address space are accessed by mappings; in particular, the notion of a
"page" is not a property of the object. Establishing a mapping to an object sim
ply provides the potential for a process to access or change the object's contents.

The establishment of mappings provides an access method that renders an object
directly addressable by a process. Applications may find it advantageous to
access the storage resources they use directly rather than indirectly through
read () and write (). Potential advantages include efficiency (elimination of
unnecessary data copying) and reduced complexity (single-step updates rather
than the read () ,modify buffer, write () cycle). The ability to access an
object and have it retain its identity over the course of the access is unique to this
access method, and facilitates the sharing of common code and data.

Traditionally, the address space of a process has consisted of exactly three seg
ments: one each for write-protected program code (text), a heap of dynamically
allocated storage (data), and the process's stack. Text is read-only and shared,
while the data and stack segments are private to the process. as follows:

Traditional UNIX System Address-Space Layout

Text

Data

Stack

Under Release 4.1, a process's address space is simply a vector of pages, and the
division between different address-space segments is not so clear-cut. Process
text and data spaces are simply groups of pages. 1 There are often multiple text
and data "segments", some belonging to specific programs and some belonging

1 For compatibility pwposes, the system maintains address ranges that "should" belong to such segments to
support operations such as extending or contracting the data segment's "break". These are initialized when a
program is initiated with execve () .

Revision A of 27 March 1990

Chapter 2 - The Virtual Memory System 5

to code running in shared libraries. An illustration of one possible layout of an
address space is:

Figure 2-2 Address-space Layout

<-- Page 0 left unmapped

~ For some execve 'ed program

text
text
Gata
data

<-- Unmapped Area

text
data For Shared Libraries

text
data
data

< -- Other Voids
llIllcer

.............. Stack Limit

t
stack
stack
staCk

Release 4.1 system processes still uses text, data, and stack segments, but these
are better thought of as constructs provided by the programming environment
rather than the operating system. As such, it is possible to construct processes
that have multiple segments of each "type," or of types of arbitrary semantic
value - no longer are programs restricted to being built only from objects the
system was capable of representing directly. For instance, a process's address
space may contain multiple text and data segments, some belonging to specific
programs and some shared among multiple programs. Text segments from
shared libraries, for example, typically appear in the address spaces of many
processes. A process's address space is simply a vector of pages, and there is no
necessary division between different address-space segments. Process text and
data spaces are simply groups of pages mapped in ways appropriate to the func
tion they provide the program.

A process's address space is usually sparsely populated, with data and text pages
intermingled. The precise mechanics of the management of stack space is
machine-dependent, although by convention, page 0 is not used. Process address
spaces are often constructed through dynamic linking when a program is
exec 'ed. Operations such as exec () and dynamic linking build upon the map
ping operations described previously. Dynamic linking is described further in
Programming Utilities and Libraries.

While the system may have multiple areas that can be considered' 'data" seg
ments, for programming convenience the system maintains operations to operate

Revision A of 27 March 1990

6 System Services Overview

Shared Memory

2.2. Networking,
Heterogeneity and
Coherence

on an area of storage associated with a process's initial' 'heap storage area." A
process can manipulate this area by calling brk () and sbrk () :

caddr t brk(addr)
caddr_t addr;

caddr_t sbrk(incr);
int incr;

br k () sets the system's idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system's page size).

sbrk () ,the alternate function, adds incr bytes to the caller's data space and
returns a pointer to the start of the new data area.

Memory sharing between processes (or even between two areas of the same pro
cess) occurs whenever mappings are establish that reference the same memory
object. This can occur when two processes map common addresses of a single
file, or when a parent and child share a MAP_SHARED mapping across a
fork () .

This memory sharing is an implicit fonn of Interprocess Communication (!PC),
which is turns out to be a highly efficient method for communicating infonnation
between processes. Within this framework, the general fonn of establishing
common memory for mapping into multiple processes for purposes !PC is to
create a file. However, for compatibility purposes, Release 4.1 also provides the
standard System V shared memory segments, along with messages and sema
phores. These facilities are described in Programming Utilities and Libraries.

The VM is designed to fit well with the operating system's heterogeneous
environment, an environment that makes extensive use of networking to access
file systems which can now be regarded as part of the system's virtual memory.

Networks are not constrained to consist of similar hardware or to be based upon a
common operating system; in fact, the opposite is encouraged, for such con
straints create serious barriers to accommodating heterogeneity. While a given
set of processes may apply a set of mechanisms to establish and maintain the pro
perties of various system objects-properties such as page sizes and the ability of
objects to synchronize their own use-a given operating system should not
impose such mechanisms on the rest of the network.

As it stands, the access-method view of virtual memory maintains the potential
for a given object (say a text file) to be mapped by the operating system's
memory-management facilities, and also by systems like PC-DOS, for which vir
tual memory and storage management techniques such as paging are totally
foreign. Such systems can continue to share access to the object, each using and
providing its programs with the access method appropriate to that system. The
unacceptable alternative would be to prohibit access to the object by less capable
systems.

Another consideration arises when applications use an object as a communica
tions channel, or otherwise attempt to access it simultaneously. In both of these
cases, the object is being shared, and thus the applications must use some

Revision A of 27 March 1990

2.3. Memory Management
Interfaces

Creating and Using Mappings

Chapter 2 - The Virtual Memory System 7

synchronization mechanism to guarantee the coherence of their transactions with
it. The scope and nature of the synchronization mechanism is best left to the
application to decide. For example, file access on systems that do not support
virtual memory access methods must be indirect, by way of read () and
wr it e (). Applications sharing files on such systems must coordinate their
access using semaphores, file locking or some application-specific protocols.
What is required in an environment where mapping replaces read () and
wr it e () as the access method is an operation, such as f s y n c () , that supports
atomic update operations.

The nature and scope of synchronization over shared objects is application
defined from the outset. If the system attempted to impose any automatic seman
tics for sharing, it might prohibit other useful forms of mapped access that have
nothing whatsoever to do with communication or sharing. By providing the
mechanism to support coherency, and leaving it to cooperating applications to
apply the mechanism, the needs of applications are met without erecting barriers
to heterogeneity. Note that this design does not prohibit the creation of libraries
that provide coherent abstractions for common application needs. Not all
abstractions on which an application builds need be supplied by the "operating
system. "

The applications programmer gains access to the facilities of the VM system
through several sets of system calls. This section summarizes these calls, and
provides examples of their use. For details, see the SunOS Reference Manual.

caddr_t mmap(addr, len, prot, flags, fd, off)
caddr_t addr;
size_t len;
int prot, flags, fd;
off_t off;

mma p () establishes a mapping between a process's address space and an object
in the system's virtual memory. It is the system's most fundamental function for
defining the contents of an address space - all other system functions that con
tribute to the definition of an address space are built from mma p (). The fonnat
of an mmap () call is:

paddr = mmap(addr, len, prot, flags, fd, off);

mma p () establishes a mapping from the process's address space at an address
paddr for len bytes to the object specified by fd at offset off for len bytes.
The value returned by mmap () is an implementation-dependent function of the
parameter addr and the setting of the MAP_FIXED bit of flags, as described
below. A successful call to mmap () returns paddr as its result. The address
range [paddr, paddr + Ie n) must be valid for the address space of the
process and the range [off, off + len) must be valid for the virtual
memory object. (The notation [start, end) refers to the interval from
start to end, including start but not including end.) The mapping esta
blished by mma p () replaces any previous mappings for the process's pages in
the range [paddr, paddr + len).

Revision A of 27 March 1990

8 System Services Overview

The parameter prot detennines whether read, execute, write or some combina
tion of accesses are permitted to the pages being mapped. Specify permissions by
an OR of the flags values PROT_READ, PROT_EXECUTE, and
PROT_WRITE. A write access must fail if PROT_WRITE has not been set,
though the behavior of the write can be influenced by setting MAP _PRIVATE in
the flags parameter, as described below.

The flags parameter provides other infonnation about the handling of mapped
pages:

o MAP _SHARED and MAP _PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of store
operations made by this process into the address range defined by the map
ping operation. If MAP _SHARED is specified, write references will modify
the mapped object. No further operations on the object are necessary to
effect a change - the act of storing into a MAP _SHARED mapping is
equivalent to doing a wr it e () system call.

On the other hand, if MAP _PRIVATE is specified, an initial write reference to a
page in the mapped area will create a copy of that page and redirect the initial
and successive write references to that copy. This operation is sometimes
referred to as copy-on-write and occurs invisibly to the process causing the store.
Only pages actually modified have copies made in this manner. MAP _PRIVATE
mappings are used by system functions such as exec(2) when mapping files
containing programs for execution. This pennits operations by programs such as
debuggers to modify the "text" (code) of the program without affecting the file
from which the program is obtained. The private copy is not created until the
first write; until then, other users who have the object mapped MAP _ SHARED can
change the object. That is, if one user has an object mapped MAP _PRIVATE and
another user has the same object mapped MAP_SHARED, and the MAP _SHARED
user changes the object before the MAP _PRIVATE user does the first write, then
the changes appear in the MAP _PRIVATE user's copy that the system makes on
the first write. If an application desires such isolation, it should use read to
make a copy of the data it wishes to keep isolated.

The mapping type is retained across a fork (). The mapping type only affects
the disposition of stores by the calling process-there is no isolation from
changes made by other processes. If an application desires such isolation, it
should use read () to make a copy of the data it wishes to keep isolated.

o MAP _F IXED informs the system that the value returned by mrnap () must
be addr, exactly. The use of MAP _FIXED is discouraged, as it may
prevent an implementation from making the most effective use of system
resources. When MAP_FIXED is not set, the system uses addr as a hint to
arrive at paddr. The paddr so chosen is an area of the address space that
the system deems suitable for a mapping of 1 e n bytes to the specified
object. An addr value of zero grants the system complete freedom in
selecting paddr, subject to constraints described below. A non-zero value
of addr is taken as a suggestion of a process address near which the map
ping should be placed. When the system selects a value for paddr, it never
places a mapping at address 0, nor replaces any extant mapping, nor maps

Revision A of 27 March 1990

Chapter 2 - The Virtual Memory System 9

into areas considered part of the potential data or stack "segments." The
system strives to choose alignments for mappings that maximize the perfor
mance of the its hardware resources.

The file descriptor used in a mma p () call need not be kept open after the map
ping is established. If it is closed, the mapping will remain until such time as it
is replaced by another call to rrunap () that explicitly specifies the addresses
occupied by this mapping; or until the mapping is removed either by process ter
mination or a call to munmap (). Although the mapping endures independently
of the existence of a file descriptor, changes to the file can influence accesses to
the mapped area, even if they do not affect the mapping itself. For instance,
should a file be shortened by a call to trunca te () , such that the mapping now
, , overhangs" the end of the file, then accesses to that area of the file that "does
not exist" will result in SIGBUS signals. It is possible to create the mapping in
the first place such that it "overhangs" the end of the file - the only require
ment when creating a mapping is that the addresses, lengths, and offsets specified
in the operation be possible (Le., within the range pennitted for the object in
question), not that they exist at the time the mapping is created (or subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how
it has been mapped (for instance, a store operation into a mapping that was esta
blished with only PROT_READ access), then a SIGSEGV signal will result. SIG
SEGV signals will also result on any attempt to reference an address not defined
by any mapping.

In general, if a program makes a reference to an address that is inconsistent with
the mapping (or lack of a mapping) established at that address, the system will
respond with a SIGSEGV violation. However, if a program makes a reference to
an address consistent with how the address is mapped, but that address does not
evaluate at the time of the access to allocated storage in the object being mapped,
then the system will respond with a SIGBUS violation. In this manner a pro
gram (or user) can distinguish between whether it is the mapping or the object
that is inconsistent with the access, and take appropriate remedial action.

Using mmap () to access system memory objects can simplify programs in a
variety of ways. Keeping in mind that mmap () can really be viewed as just a
means to access memory objects, it is possible to program using mmap () in
many cases where you might program with read () or wri te (). However, it
is important to realize that mmap () can only be used to gain access to memory
objects - those objects that can be thought of as randomly accessible storage.
Thus, terminals and network connections can not be accessed with mmap ()
because they are not' 'memory." Magnetic tapes, even though they are memory
devices, can not be accessed with mmap () because storage locations on the tape
can only be addressed sequentially. Some examples of situations that can be
thought of as candidates for use of mma p () over more traditional methods of file
access include:

o Random access operations - either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is variable,
create "windows" of mappings to the object.

sun Revision A of 27 March 1990
microsystems

10 System Services Overview

/*

o Efficiency - even in situations where access is sequential, if the object
being accessed can be accessed using rnma p () , an efficiency gain may be
obtained by avoiding the copying operations inherent in accesses via
read () or write (). For even greater efficiency, you can use mad
vise () to set the MADV _SEQUENTIAL flag, in which case the system will
free each page after it is passed.

o Structured storage - if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to the
file is treated just as though the tables were in memory. Previously, pro
grams could not simply make storage or table alterations in memory and
save them for access in subsequent runs, however when the addresses of the
table are defined by mappings to a file then changes to the storage are
changes to the file, and are thus automatically recorded in it.

Scattered storage - if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation. However, this method is not portable
to systems using the traditional UNIX address-space layout.

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Mapping / dev / zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap (). / dev / zero is a special
device, that responds to read () as an infinite source of bytes with the value 0,
but when mapped creates an unnamed object to back the mapped region of
memory. The following code fragment demonstrates a use of this to create a
block of scratch storage in a program, at an address of the system's choosing.

* Function to allocate a block of zeroed storage. Parameter
* is the number of bytes desired. The storage is mapped as
* MAP_SHARED, so that if a fork() occurs, the child process
* will be able to access and modify the storage. If we wished
* to cause the child's modifications (as well as those by the
* parent) to be invisible to the ancestry of processes, we
* would use MAP PRIVATE.
*/

caddr_t get_zero_storage(len)
int len;

int fd;
caddr t result;

if «fd = open(n/dev/zero", O_RDWR» == -1)
return «caddr_t) -1) ;

result = mmap(O, len, PROT_READIFROT_WRITE, MAP_SHARED, fd, 0);
(void) close (fd) ;
return (result);

Revision A of 27 March 1990

Removing Mappings

Cache Control

Chapter 2 - The Virtual Memory System 11

As written, this function pennits a hierarchy of processes to use the area of allo
cated storage as a region of communication for implicit Intetprocess Communi
cation. As noted earlier, System V !PC facilities can be used to accomplish the
same purpose without requiring that the processes be in a parent-child hierarchy.

In some cases, devices or files are only useful when accessed by way of mapping.
An example of this are frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate randomly
on the addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define multi
pIe pages of an address space, there is absolutely no restriction that subsequent
operations on those addresses must operate on the same number of pages. For
instance, an mmap () operation defining 10 pages of an address space may be
followed by subsequent munmap () (see below) operations that remove every
other page from the address space, leaving 5 mapped pages each followed by an
unmapped page. Those unmapped pages may subsequently be mapped to dif
ferent locations in the same or different objects, or the whole range of pages (or
any partition, superset, or subset of the pages) used in other mmap () or other
memory management operations. Further, it must be noted that any mapping
operation that operates on more than a single page can "partially succeed" in
that some parts of the address range can be affected even though the call returns a
failure. Thus, an mmap () operation that replaces another mapping, if it fails,
may have deleted the previous mapping and failed to replace it. Similarly, other
operations (unless specifically stated otherwise) may process some pages in the
range successfully before operating on a page where the operation fails.

int munmap(addr, len)
caddr_t addr;
size_t len;

munmap () removes all mappings in the range [addr, addr + len) from
the address space of the calling process. It is not an error to remove mappings
from addresses that do not have them, and any mapping, no matter how it was
established, can be removed with munrnap (). munmap () does not in any way
affect the objects that were mapped at those addresses.

The memory management system in Release 4.1 can be thought of as a fonn of
"cache management," in which a processor's primary memory is used as a cache
for pages from objects from the system's virtual memory. Thus, there are a
number of operations that control or interrogate the status of this "cache," as
described in this section.

int mincore(addr, len, vec)
caddr_t addr;
size_t len;
char *vec;

mincore () detennines the residency of the memory pages in the address space
covered by mappings in the range -[addr, addr + len). Using the "cache

+~!l!! Revision A of 27 March 1990

12 System Services Overview

concept" described earlier, this function can be viewed as an operation that inter
rogates the status of the cache, and returns an indication of what is currently
resident in the cache. The status is returned as a char-per-page in the character
array referenced by *vec (which the system assumes to be large enough to
encompass all the pages in the address range). Each character contains either a
, , 1 " (indicating that the page is resident in the system's primary storage), or a
"0" (indicating that the page is not resident in primary storage.) Other bits in
the character are reserved for possible future expansion - therefore programs
testing residency should test only the least significant bit of each character.

int mlock(addr, len)
caddr_t addr;
size_t len;

int munlock(addr, len)
caddr_t addr;
size_t len;

mlock () causes the pages referenced by the mapping in the range [addr,
addr + len) to be locked in physical memory. References to those pages
(even through other mappings in this or other processes) will not result in page
faults that require an I/O operation to obtain the data needed to satisfy the refer
ence. Because this operation ties up physical system resources, and has the
potential to disrupt normal system operation, use of this facility is restricted to
the super-user. The system will not permit more than a configuration-dependent
limit of pages to be locked in memory simultaneously, the call to mlock () will
fail if this limit is exceeded.

munlock () releases the locks on physical pages. Note that if multiple
mlock () calls are made through the same mapping, only a single munlock ()
call will be required to release the locks (in other words, locks on a given map
ping do not nest.) However, if different mappings to the same pages are pro
cessed with mlock () , then the pages will not be unlocked until the locks on all
the mappings are released.

Locks are also released when a mapping is removed, either through being
replaced with an rmnap () operation or removed explicitly with munmap (). A
lock will be transferred between pages on the "copy-on-write" event associated
with a MAP _PRIVATE mapping, thus locks on an address range that includes
MAP_PRIVATE mappings will be retained transparently along with the copy
on-write redirection (see mmap () above for a discussion of this redirection.)

int mlockall(flags)
int flags;

int
munlockall ()

mlockall () and munlockall () are similar in purpose and restriction to
mlock () and munlock () ,except that they operate on entire address spaces.
mlockall () accepts a flags argument that influences whether the lock is to
affect everything currently in the address space, everything that will be added in
the future, or both. The flags are built as a bit-field of values from the set:

Revision A of 27 March 1990

Other Mapping Functions

MCL CURRENT
MCL FUTURE

Chapter 2 - The Virtual Memory System 13

Current mappings
Future mappings

munlockall () removes all locks on aU pages in the address space, whether
established by mlock () ormlockall () .

int msync(addr, len, flags)
caddr_t addr;
size_t len;
int flags;

ms yn c () supports applications that require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent com
munications in a distributed environment. ms yn c () causes aU modified copies
of pages over the range [addr, addr + len) to be flushed to the objects
mapped by those addresses. In the cache analogy discussed previously,
msync () is the cache "write-back," or flush, operation. It is similar in purpose
to the f sync () operation for files.

msync () optionally invalidates such cache entries so that further references to
the pages cause the system to obtain them from their permanent storage loca
tions.

The flags argument provides a bit-field of values that influences the behavior
ofmsync (). The bit names and their interpretations are:

MS SYNC
MS ASYNC
MS INVALIDATE

Synchronized write
Return immediately
Invalidate caches

MS _SYNC causes msync () to return only after aUI/O operations are complete.
MS_ASYNC causes msync () to return immediately once all I/O operations are
scheduled. MS _ INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be re-obtained from the object's
storage upon the next reference.

int
getpagesize ()

getpagesize () returns the system-dependent size of a memory page. For
portability, applications should not embed any constants specifying the size of a
page, and instead should make use of getpagesize () to obtain that informa
tion. Note that it is not unusual for page sizes to vary even among implementa
tions of the same instruction set, increasing the importance of using this function
for portability.

int mprotect(addr, len, prot)
caddr_t addr;
size_t len;
int prot;

Revision A of 27 March 1990

14 System Services Overview

mprotect () has the effect of assigning protection prot to all pages in the
range [addr, addr + len). The protection assigned can not exceed the
permissions allowed on the underlying object. For instance, a read-only mapping
to a file that was opened for read-only access can not be set to be writable with
mprotect () (unless the mapping is of the MAP PRIVATE type, in which case
the write access is pennitted since the writes will modify copies of pages from
the object, and not the object itself.)

int munmap(addr, len)
caddr_t addr;
size_t len;

munmap () has the effect of removing all pages in the range [addr, addr +
len) from the address space of the calling process.

int
getpagesize()

getpagesize () returns the system-dependent size of a memory page.

int mincore(addr, len, vec)
caddr_t addr;
size_t len;
char *vec;

mincore () detennines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). The status is
returned as a char-per-page in the character array referenced by *vec (which the
system assumes to be large enough to encompass all the pages in the address
range).

Revision A of 27 March 1990

3.1. Processes and
Protection

Host and Process Identifiers

3
Kernel Interface

Each host system has associated with it a 32-bit host ID, and a hostname of up to
MAXHOSTNAMELEN characters (as defined in <sys/param.h». The hostname is
accessed and modified with the calls:

int getdomainname(name, namelen)
char *name;
int namelen;

int setdomainname(name, namelen)
char *name;
int namelen;

long gethostid ()

int gethostname(name, namelen)
char *name;
int namelen;

int sethostname(name, namelen)
char *name;
int namelen;

getdomainname () places the name of the domain for the current processor in
the string pointed to by the name parameter. name is null-terminated if space
allows. setdomainname () sets the name of the current processor's domain
to the string pointed to by name.

On each host runs a set of processes. Each process is largely independent of
other processes, having its own protection domain, address space, timers, and an
independent set of references to system or user implemented objects.

Each process in a host is named by an integer called the process ID (PID). This
number is in the range MAXPIDl- (as defined in <sys/param. h». A process
can discover its PID with the getpid () routine:

(pid _ t getpid ()

On each host this identifier is guaranteed to be unique; in a multi-host environ-

J

15 Revision A of 27 March 1990

16 System Services Overview

Creating and Terminating
Processes

ment, the (hostid, PID) pairs are guaranteed unique.

A new process is usually created by copying that mappings that define the
address space of a parent process, thus making a logical duplicate of the parent.
(See the Virtual Memory System chapter for a description of mapping).

The fork () call returns twice, once in the parent process, where the PID is the
process identifier of the child, and once in the child process where the PID is O.

)

Since execve () (see below) specifies MAP PRIVATE on all the mappings it
performs, parent and child effectively have copy-on-write access to a single set
of objects. Any MAP_SHARED mappings in the parent are also MAP_SHARED in
the child, providing the opportunity for both parent and child to operate on a
common object. The parent-child relationship induces a hierarchical structure on
the set of processes in the system.

A process may terminate by executing an exit () call:

[int exit(status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives
information about any event which caused termination of the child process. A
second call provides a non-blocking interface and may also be used to retrieve
information about resources consumed by the process during its lifetime.

#include <sys/wait.h>
#include <sys/resource.h>

int wait(statusp)
union wait *statusp;

int wait3(statusp, options, rusage)
union wait *statusp;
int options;
struct rusage *rusage;

The System V-compatible waitpid(2V) routine can be used to obtain informa
tion about a selected process.

A process can overlay itself with the memory image of another program, passing
the newly created process a set of parameters, using the call:

int execve(path, argv, envp)
char *path, **argv, **envp;

execve () specifies MAP _PRIVATE on the mappings which overlay the old

]

+!Y,.!! Revision A of 27 March 1990

User and Group Ids

Chapter 3 - Kernel Interface 17

address space. execve () perfonns this operation by perfonning the internal
equivalent of an nunap () to the file containing the program. The text and initial
ized data segments are mapped to the file, and the program's uninitialized data
and stack areas are mapped to unnamed objects in the system's virtual memory.
The boundaries of the mappings it establishes are recorded as representing the
traditional "segments" of a UNIX process's address space.

The text segment is mapped with only PROT _READ and PROT_EXECUTE pro
tections, so that write references to the text produce segmentation violations.
The data segment is mapped as writable; however any page of initialized data
that does not get written may be shared among all the processes running the pro
gram.

The specified name must be a file which is in a fonnat recognized by the system,
either a binary executable file or a ASCII file which causes the execution of a
specified intetpreter program (usually sh(1) or c sh(1)) to process its contents.

Each process in the system has associated with it two user ID's (UID) a real user
ID (RUID), and an effective user ID (EUID), both non-negative 16 bit integers.
(Note: a user may change his EUID, but this does not change his RUID). Each
process has a real accounting group ID (GID), an effective accounting group ID
(EOID), and a set of access group IDs. Group IDs are non-negative 16 bit
integers. Each process may be in several different access groups, with the max
imum concurrent number of access groups a system compilation parameter, the
constant NGROUPS in the file <sys /param. h>, guaranteed to be at least 8.

The real and effective user IDs associated with a process are returned by
getuid () and geteuid (), respectively.

[

Uid t getuid ()

uid _ t geteuid ()

the real and effective accounting group ID by:

[

gid t getgid ()

gid_t getegid ()

and the set of access group IDs is placed in the array pointed to by the gidset
parameter of getgroups () :

*include <sys/param.h>

int getgroups(gidsetlen, gidset)
int gidsetleni
gid_t gidset[]i

1

1

User and group IDs are assigned at login time using the setreuid () , setre
gid () , and setgroups () calls:

Revision A of 27 March 1990

18 System Services Overview

Process Groups and
Controlling Terminals

int setreuid(ruid, euid)
int ruid, euid;

int setregid(rgid, egid)
int rgid, egid;

*include <sys/param.h>

int setgroups(ngroups, gidset)
int ngroups;
gid_t gidset[];

The setreuid () call sets both the real and effective user IDs, while the
setregid () call sets both the real and effective accounting group IDs. Unless
the caller is the super-user, the RUID must be equal to either the current real or
effective user ID, and RGID equal to either the current real or effective account
ing group. The setgroups () call is restricted to the super-user.

Each process in the system is also nonnally associated with a process group.
The group of processes in a process group is sometimes referred to as a job and
manipulated by high-level system software (such as the shell). The current pro
cess group ofa process is returned by the getpgrp () call:

[~nt g7tpgrp(pid)]
J.nt pJ.d;

~--------'

The process group associated with a process may be changed using
setpgid ():

*include <sys/types.h>

int setpgid (pid, pgid)
pid_t pid, pgid;

Newly created processes are assigned process IDs distinct from all processes and
process groups, and the same process group as their parent. A nonnal
(unprivileged) process may set its process group equal to its process ID. A
privileged process may set the process group of any process to any value.

When a process is in a specific process group it may receive software interrupts
affecting the group, causing the group to suspend or resume execution or to be
interrupted or tenninated. In particular, every system terminal has a process
group and only processes which are in the process group of a tenninal may read
from the terminal, allowing arbitration of tenninals among several different jobs.
A process can examine the process group of the tenninal's foreground process
using tcgetpgrp () :

#include <sys/types.h>

pid_t tcgetpgrp(fd)
int fd;

Revision A of 27 March 1990

Controlling Terminal

tty Parameters

Sessions and Process Groups

Chapter 3 - Kernel Interface 19

A process may change the process group of any terminal which it can write
using: tcsetpgrp () call:

int tcsetpgrp(fd, pgrp_id)
int fd;
pid_t pgrp_id;

The tenninal's process group may be set to any value. Thus, more than one ter
minal may be in a process group.

Each process in the system is usually associated with a controlling terminal,
accessible through the file / dev / tty. A newly created process inherits the
controlling tenninal of its parent. A process may be in a different process group
than its controlling terminal, in which case the process does not receive software
interrupts affecting the controlling terminal's process group.

You can arrange for a process to be detached from the controlling terminal using
setsid () :

*include <sys/types.h>

pid t setsid ()

Refer to UNKNOWN TITLE ABBREVIATION: RELEASE for more information
about setting the controlling terminal for a process group.

Certain functions that relate to the state of the terminal device have been repack
aged for POSIX confonnance and portability. Previous interfaces are still avail
able by way of ioctl () requests. The new functions are:

Get/set tenninal (line) speeds: cfgetispeed(2), cfsetispeed(2),
cfgetospeed(2), and cfsetospeed(2).

Line control functions: tcdrain(2), tcflow(2), and tcflush(2).

Get/set attributes (such as line discipline modes): tcgetattr(2) and
tcsetat tr(2).

Get/set tty process group: tcgetpgrp(2), and tcsetpgrp(2).

Release 4.1 incorporates the concept of a session. A session is a grouping of pro
cess groups just as a process group is a grouping of processes. Sessions are
closely related to controlling terminals; each controlling tenninal belongs to a
session. All processes with the same controlling tenninal are in the same ses
sion. A terminal may be the controlling tenninal for at most one session.

setsid(2) is a new function that creates a new session with the calling process
as the session leader and only member of that session. Note: a session leader
may not create a new session by calling set sid () a second time. set sid ()
is similar to

Revision A of 27 March 1990

20 System Services Overview

Process Groups

Dealiocating a Controlling
Terminal

3.2. Signals

ioctl(fd, TIOCNOTTY, (char*)0)

in that setsid () disassociates the calling process from its controlling terminal,
if any; the TIOCNOTTY ioctl has been changed to be a call to setsid () .

There is a new version of setpgrp () called setpgid () ; setpgid () is
POSIX compliant. Release 4.1 supports both, but the meaning of
setpgrp (mypid, 0) has changed. That particular variation of the system call
has been changed to invoke set sid () .

setpgrp () no longer allows arbitrary values for pgrp. A process is only
allowed to create a new pgrp equal to its PID, or join an existing process group
within its session.

In 4.1, a process must be a session leader in order to acquire a controlling tenni
nal. Since set sid () is new to 4.1, the system has been modified to call it on
the behalf of old binaries. The system makes every effort to arrange that a pro
cess is a session leader at the appropriate time such that the process will receive a
controlling terminal. For more information refer to UNKNOWN TITLE ABBRE
VIATION: RELEASE.

The following will all result in the dealiocation of the process's controlling ter
minal, provided the process is not a session leader:

setpgrp(O, 0);
ioctl(fd, TIOCNOTTY, (char*) 0);
setsid () ;

The most portable way to get rid of a controlling terminal is to:

if (fork ())
exit () ;

(void) setsid () ;

The fork () is necessary to make sure the process is not a session leader. For
BSD based programs, the setsid () call may be safely replaced by a call to
setpgrp (0, 0). These calls are equivalent on 4.1 and later systems. On ear
lier systems this will not deallocate the controlling terminal; it does modify pro
cess state enough that the terminal will be replaced by a different one on the next
attempt to open the terminal.

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is blocked
from further occurrence, the current process context is saved, and a new one is
built. A process may specify the handler to which a signal is delivered, or
specify that the signal is to be blocked or ignored. A process may also specify
that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be
accompanied by creation of a core image file, containing the current memory
image of the process for use in post-mortem debugging. A process may choose
to have signals delivered on a special stack, so that sophisticated software stack
manipulations are possible.

Revision A of 27 March 1990

Signal Types

Chapter 3 - Kernel Interface 21

All signals have the same priority. If multiple signals are pending simultane
ously, the order in which they are delivered to a process is implementation
specific. Signal routines execute with the signal that caused their invocation
blocked, but other signals may yet occur. Mechanisms are provided whereby
critical sections of code may protect themselves against the occurrence of
specified signals.

For POSIX compliance, 4.1 includes a new package of signal library routines.
The new functions are: sigaction(2V) sigaddset(2V) sigdelset(2V)
sigemptyset(2V) sigfillset(2V) sigismember(2V)
sigpending(2V) sigprocmask(2V) and .sigsuspend(2V) Another
change for POSIX allows the S IGCONT signal to be blocked. The effect is that
the process is still restarted upon the receipt of a S IGCONT signal but the handler
is not called until the signal is unblocked.

The signals defined by the system fall into one of five classes: hardware condi
tions, software conditions, input/output notification, process control, or resource
control. The set of signals is defined in the file <signal. h>.

Hardware signals are derived from exceptional conditions which may occur dur
ing execution. Such signals include SIGFPE representing floating point and
other arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV
for addresses outside the currently assigned area of memory, and SIGBUS for
accesses that violate memory protection constraints. Other, more cpu-specific
hardware signals exist, such as SIGIOT, SIGEMT, and SIGTRAP.

Software signals reflect interrupts generated by user request: S I G INT for the
nonnal interrupt signal; SIGQUIT fortbe more powerful quit signal, that nor
mally causes a core image to be generated; SIGHUP and SIGTERM that cause
graceful process termination, either because a user has "hung up", or by user or
program request; and SIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous
events using SIGUSRl and SIGUSR2. Other software signals (SIGALRM,
SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a S IGIO signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A process
may request to receive a S IGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The S I GS TOP signal is a powerful stop signal, because it cannot be
caught. Other stop signals S IGTSTP, SIGTTIN, and S IGTTOU are used when
a user request, input request, or output request respectively is the reason for stop
ping the process. A S I GCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with as IGCHLD signal
when a child process changes state, either by stopping or by tenninating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs
when a process nears its CPU time limit and S I GXF S Z warns that the limit on
file size creation has been reached.

Revision A of 27 March 1990

22 System Services Overview

Signal Handlers A process has a handler associated with each signal. The handler controls the
way the signal is delivered. The call:

#include <signal.h>

struct sigvec {

} ;

int (*sv_handler) ();
int sv_mask;
int sv_flags;

int sigvec(sig, vec, avec)
int sig;
struct sigvec *vec, *avec;

assigns interrupt handler address sv _handler to signal sig. Each handler
address specifies either an interrupt routine for the signal, that the signal is to be
ignored, or that a default action (usually process tennination) is to occur if the
signal occurs. The constants SIG_IGN and SIG_DFL used as values for
sv _handler cause ignoring or defaulting of a condition.

NOTE There are two things that must be done to reset a signal handler from within a
signal handler. Resetting the routine that catches the signal, which

signal(n, SIG_DFL)

does, is only the first. It's also necessary to unblock the blocked signal, which is
done with sigsetmask () or sigblock (). The way to think of signals is as
hardware interrupts. Just resetting the vector for the interrupt is not enough,
you also have to lower the processor priority level.

The sv _rna s k and s v_on st ac k values specify the signal mask to be used
when the handler is invoked; it implicitly includes the signal which invoked the
handler. Signal masks include one bit for each signal; the mask for a signal signo
is provided by the macro sigmask(signo), from <signal. h>. sv _flags
specifies whether system calls should be restarted if the signal handler returns
and whether the handler should operate on the nonnal run-time stack or a special
signal stack (see below). If osv is non-zero, the previous signal vector is
returned. It also specifies whether the signal action is to be reset to S I G _ DFL,
and if the signal is to be blocked by setting a bit to the signal mask, when the sig
nal handler is called. This latter behavior is the default; the former is for back
ward compatibility with the signal mechanisms of some other versions of the
UNIX system (V7, BSD4.1, System V, etc.).

When a signal condition arises for a process, the signal is added to a set of sig
nals pending for the process. If the signal is not currently blocked by the process
then it will be delivered. The process of signal delivery adds the signal to be
delivered and those signals specified in the associated signal handler's sv _mask
to a set of those masked for the process, saves the current process context, and
places the process in the context of the signal handling routine. The call is
arranged so that if the signal handling routine exits nonnally the signal mask will
be restored and the process will resume execution in the original context. If the
process wishes to resume in a different context, then it must arrange to restore the

Revision A of 27 March 1990

Sending Signals

Protecting Critical Sections

Chapter 3 - Kernel Interface 23

signal mask itself.

You can use the s igpending () call to inquire about signals that are pending
and blocked:

*include <signal.h>

int sigpending(set)
sigset_t *seti

The ma~k of blocked signals is independent of handlers for delays. It delays the
delivery of signals much as a raised hardware interrupt priority level delays
hardware interrupts. Preventing an interrupt from occurring by changing the
handler is analogous to disabling a device from further interrupts.

The signal handling routine sv _handler is called by a C call of the fonn

(*sv_handler) (signo, code, scp, addr)
int signo, code;
struct sigcontext *SCPi
char *addr;

The signo gives the number of the signal that occurred, while code, is a
parameter of certain signals that provides additional detail. The s cp parameter
is a pointer to a machine-dependent structure containing the infonnation for res
toring the context from before the signal. addr is additional address informa
tion.

A process can send a signal to another process or group of processes with the
calls:

int kill(pid, sig)
pid_t pidi
int sig;

int killpg(pgrp, sig)
int pgrp, sigi

Unless the process sending the signal is privileged, it must have the same effec
tive user ID as the process receiving the signal.

Signals can also be sent from a terminal device to the process group associated
with the terminal. See kill(l).

To block a section of code against one or more signals, a sigblock () call may
be used to add a set of signals to the existing mask, returning the old mask:

(~nt sigblock(mask)]
lnt mask;

-----------"

Revision A of 27 March 1990

24 System Services Overview

Signal Stacks

3.3. Timers

Real Time

The old mask can then be restored later with sigsetmask (),

[

int sigsetmask(mask)
_int mask;

The sigblock () call can be used to read the current mask by specifying an
empty mask.

It is possible to check conditions with some signals blocked, and then to pause
waiting for a signal and restoring the mask, by using:

]

[~nt sigpause(sigmask) J
J.nt sigmask;

'-------------"

Applications that maintain complex or fixed size stacks can use the call:

struct sigstack {
char *ss_sp;
int ss_onstack;

} ;

int sigstack (55, 055)

struct sigstack *55, *055;

to provide the system with a stack based at s s _ sp for delivery of signals. The
value s s _ onstack indicates whether the process is currently on the signal
stack, a notion maintained in software by the system.

When a signal is to be delivered, the system checks whether the process is on a
signal stack. If not, then the process is switched to the signal stack for delivery,
with the return from the signal arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code
from the signal stack that uses a different stack, a s i g s t a c k () call should be
used to reset the signal stack.

The system's notion of the current Greenwich time and the current time zone is
set and returned by the calls:

#include <sys/time.h>

int settimeofday(tvp, tzp)
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp)
result struct timeval *tp;
result struct timezone *tzp;

Revision A of 27 March 1990

Interval Time

Chapter 3 - Kernel Interface 25

where the structures are defined in <sys/time. h> as:

struct timeval {
long tv_sec;
long tv_usec;

/ * seconds since Jan 1,1970 * /
/ * and microseconds * /

} ;

struct time zone {
int tz_minuteswest; /* o/Greenwich */
int tz_dsttime; /* type oldst correction to apply * /

} ;

The precision of the system clock is hardware dependent. Earlier versions of the
UNIX system contained only a I-second resolution version of this call, which
remains as a library routine:

*include <sys/time.h>

time t time(tloc)
time_t *tloc;

returning only the tv_sec field from the gettimeofday () call.

The system provides each process with three interval timers, defined in
<sys/time. h>:

*define ITIMER REAL 0
*define ITIMER VIRTUAL 1
*define ITIMER PROF 2

/ * real time intervals * /
/ * virtual time intervals * /
/ * user and system virtual time * /

The IT IMER REAL timer decrements in real time. It could be used by a library
routine to maintain a wakeup service queue. A S I GALRM signal is delivered
when this timer expires.

The IT IMER _VIRTUAL timer decrements in process virtual time. It runs only
when the process is executing. A SIGVTALRM signal is delivered when it
expires.

The ITIMER_PROF timer decrements both in process virtual time and when the
system is running on behalf of the process. It is designed to be used by processes
to statistically profile their execution. A SIGPROF signal is delivered when it
expires.

A timer value is defined by the it imerval structure:

struct itimerval {

} ;

struct
struct

timeval it_interval;
timeval it_value;

and a timer is set or read by the call:

/ * timer interval * /
/ * current value * /

Revision A of 27 March 1990

26 System Services Overview

3.4. I>escriptors

The Reference Table

int getitimer(which, value)
int whichi
result struct itimerval *valuei

int setitimer(which, value, ovalue)
int whichi
struct itimerval *value, *ovaluei

The third argument to seti timer () specifies an optional structure to receive
the previous contents of the interval timer. A timer can be disabled by specifying
a timer value of O.

The system rounds argument timer intervals to be not less than the resolution of
its clock. This clock resolution can be detennined by loading a very small value
into a timer and reading the timer back to see what value resulted.

The alarm () system call of earlier versions of the UNIX system is provided as
a library routine using the IT IMER _REAL timer. The process profiling facilities
of earlier versions of the UNIX system remain because it is not always possible to
guarantee the automatic restart of system calls after receipt of a signal. The pro
f i 1 () call arranges for the kernel to begin gathering execution statistics for a
process:

int profil(buf, bufsize, offset, scale)
char *bufi
int bufsize, offset, scalei

This begins sampling of the program counter, with statistics maintained in the
user-provided buffer.

Each process has access to resources through descriptors. Each descriptor is a
handle allowing the process to reference objects such as files, devices and com
munications links.

Rather than allowing processes direct access to descriptors, the system introduces
a level of indirection, so that descriptors may be shared between processes. Each
process has a descriptor reference table, containing pointers to the actual
descriptors. The descriptors themselves thus have multiple references, and are
reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned
by the getdtablesize () call:

(int getdtablesize()

and guaranteed to be at least 20. The entries in the descriptor reference table are
referred to by small integers; for example if there are 20 slots they are numbered
o to 19.

]

Revision A of 27 March 1990

Descriptor Properties

Managing Descriptor
References

Chapter 3 - Kernel Interface 27

Each descriptor has a logical set of properties maintained by the system and
defined by its type. Each type supports a set of operations; some operations, such
as reading and writing, are common to several abstractions, while others are
unique. Generic operations applying to many of these types are described in 3.7.
Naming contexts, files and directories are described in 3.8. Section 4.1.
describes communications domains and sockets. Tenninals and (structured and
unstructured) devices are described in 3.9.

A duplicate of a descriptor reference may be made by doing

(

int dup (fd)

_int fd;

returning a copy of descriptor reference f d indistinguishable from the original.
The new f d chosen by the system will be the smallest unused descriptor refer
ence slot. A copy of a descriptor reference may be made in a specific slot by
doing

(

int dup2(old, new)
_int old, new;

The dup2 () call causes the system to deallocate the descriptor reference
currently occupying slot new, if any, replacing it with a reference to the same
descriptor as old. This deallocation is also performed by:

(

int close (fd)

_int fd;

For applications that use a large number of open descriptors, the following rou
tine can be used to count the number of descriptors currently open:

#include <sys/stat.h>

static struct stat fdstat;

int count_open_fds()

int fd;
int count = 0;
int max_fds = getdtablesize();

for (fd = 0; fd < max_fds; fd ++)
if (fstat(fd, & fdstat) == 0)

count ++;
return count;

]

]

]

Revision A of 27 March 1990

28 System Services Overview

Multiplexing Requests

Note: Operations are said to be
multiplexed when they are inter
leaved in real time on the same
device or communications channel.
For example. 1/0 streams A and 8
are multiplexed if 8 begins before A
is completed.

The system provides a standard way to perfonn synchronous and asynchronous
multiplexing of operations.

Synchronous multiplexing is perfonned by using the select () call to examine
the state of multiple descriptors simultaneously, and to wait for state changes on
those descriptors. Sets of descriptors of interest are specified as bit masks, as fol
lows:

#include <sys/types.h>
#include <sys/time.h>

int select (width, readfds, writefds, exceptfds, timeout)
int width;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;

FD_ZERO(&fdset)
FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
int fd;
fs_set fdset;

The select () call examines the descriptors specified by the sets readf ss,
writefds and exceptfds, replacing the specified bit masks by the subsets
that select true for input, output, and exceptional conditions respectively (width
indicates the number of file descriptors specified by the bit masks). If any
descriptors meet the following criteria, then the number of such descriptors is
returned, and the bit masks are updated.

o A descriptor selects for input if an input oriented operation such as read ()
or receive () is possible, or if a connection request may be accepted (see
Accepting Connections) in section 4.1.1.

o A descriptor selects for output if an output oriented operation such as
wr i te () or send () is possible, or if an operation that was "in progress",
such as connection establishment, has completed (see section 3.7.3.

o A descriptor selects for an exceptional condition if a condition that would
cause a SIGURG signal to be generated exists (see section 3.2.1) or other
device-specific events have occurred.

If none of the specified conditions is true, the operation waits for one of the con
ditions to arise, blocking at most the amount of time specified by timeout. If
timeout is given as 0, the select () waits indefinitely

Options affecting I/O on a descriptor may be read and set by the call:

Revision A of 27 March 1990

3.5. Resource Controls

Process Priorities

#include <fcntl.h>

int fcntl (des, cmd, arg)
int des, cmd, arg;

/ * Interesting values for cmd * /
#define F DUPFD 0 /*
#define F SETFD 1 /*
#define F GETFD 2 /*
#define F SETFL 3 /*
#define F GETFL 4 1*
#define F SETOWN 5 /*
#define F GETOWN 6 /*

Chapter 3 - Kernel Interface 29

Return new descriptor * /
Set close-on-exec flag * 1
Set close-on-exec flag * /
Set descriptor options * 1
Set descriptor options * /
Set descriptor owner (pid/pgrp) */
Set descriptor owner (pid/pgrp) */

The F _ SE TFL cmd may be used to set a descriptor in non-blocking I/O mode
and/or enable signaling when I/O is possible. F _ SETOWN must be used to
specify a process or process group to be signaled when using the latter mode of
operation or when urgent indications arise.

Operations on non-blocking descriptors will either complete immediately, note
an error EWOULDBLOCK, partially complete an input or output operation return
ing a partial count, or return an error E lNPROGRESS noting that the requested
operation is in progress. A descriptor which has signaling enabled will cause the
specified process and/or process group be signaled, with a SIGlO for input, out
put, or in-progress operation complete, or a S IGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system
will accept only as much data as there is buffer space for and return; when mak
ing a connection on a socket, the operation may return indicating that the connec
tion establishment is "in progress". The select () facility can be used to
determine when further output is possible on the tenninal, or when the connec
tion establishment attempt is complete.

The system gives CPU scheduling priority to processes that have not used CPU
time recently. This tends to favor interactive processes and processes that exe
cute only for short periods. It is possible to determine the priority currently
assigned to a process, process group, or the processes of a specified user, or to
alter this priority using the calls:

#include <sys/time.h>
#include <sys/resource.h>

#define PRIO PROCESS 0
#define PRIO PGRP 1
#define PRIO USER 2

int getpriority(which, who)
int which, who;

int setpriority(which, who,
int which, who, prio;

1 * process * /
/ * process group */
1* user ID */

prio)

Revision A of 27 March 1990

30 System Services Overview

Resource Utilization

Resource Limits

The value returned by getpr ior i ty () is in the range -20 to 20. The default
priority is 0; lower priorities cause more favorable execution. The get pr ior
it y () call returns the highest priority (lowest numerical value) enjoyed by any
of the specified processes. The set p rio r it Y () call sets the priorities of all
of the specified processes to the specified value. Only the super-user may lower
priorities.

getrusage () places infonnation about currently consumed resources in a
structure defined in <sys/resource. h>:

#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN

getrusage(who, rusage)
int WhOi
struct rusage *rusagei

struct rusage {

/ * usage by this process * /
-1 / * usage by all children * /

struct tirneval ru_utime; / * user time used * /
struct tirneval ru_stime; / * system time used * /
long ru maxrss;

#define ru first ru ixrss - -/ * XXX: In 4.0, all three ru _i?rss fields are combined
* and presented in idrss; ixrss and isrss are zero
*/

long
long
long
long
long
long
long
long
long
long
long
long
long

ru_ixrss;
ru idrssi
ru_isrss;
ru_minflti
ru_majflti
ru_nswapi
ru inblock;
ru_oublock;
ru_msgsndi
ru_msgrcvi
ru_nsignalsi
ru_nvcsw;
ru_nivcswi

/ * integral shared memory size * /
/ * integral unshared data * /
/ * integral unshared stack * /
/ * page reclaims * /
/ * page faults * /
/* swaps */

/ * block input operations * /
/ * block output operations * /

/ * messages sent * /
/ * messages received * /
/ * signals received * /
/ * voluntary context switches * /
/ * involuntary * /

f:define ru last
} ;

ru nivcsw

The who parameter specifies whose resource usage is to be returned. The
resources used by the current process, or by all the tenninated children of the
current process may be requested.

The resources of a process for which limits are controlled by the kernel are
defined in <sys/resource. h>, and controlled by the getrlimi t () and
setr limi t () calls:

*define RLIMIT CPU
*define RLIMIT FSIZE
*define RLIMIT DATA

sun
microsystems

o
1
2

/ * cpu time in milliseconds * /
/ * maximum file size * /
/ * maximum data segment size * /

Revision A of 27 March 1990

Memory Locking: mlock ()
and munlock ()

3.6. System Operation
Support

Chapter 3 - Kernel Interface 31

fdefine RLIMIT STACK 3 /* maximum stack segment size * /
#define RLIMIT CORE 4 /* maximum core file size * /
fdefine RLIMIT RSS 5 /* maximum resident set size * /

fdefine RLIM NLIMITS 6

fdefine RLIM INFINITY Ox7fffffff

struct rlimit {
int rIim_cur;
int rlimyax;

} ;

/ * current (soft) limit * /
/ * hard limit * /

int getrIimit(resQurce, rIp)
int resource;
struct rlimit *rlp;

int setrlimit(resQurce, rIp)
int resource;
struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter
rlim cur within the range from 0 to rlim max or (irreversibly) lower - -
rlim max.

The sysconf(2) interface has been added forPOSIX compliance. It allows a
process to query the system about system-dependent information.

The mlock(3) routine locks selected pages in a process's address space. mun-
10 ckO unlocks selected pages:

finclude <sys/types.h>

mlock(addr, len)
caddr_t addr; size t len;

munlock(addr, len)
caddr t addr; size t len;

The call:

[

int swapon(special)
_Char *special;

specifies a device to be made available for paging and swapping. It can be run
only by a privileged user.

The call:

#include <sys/reboot.h>
reboot(howto, bootargs)
int howto;
char *bootargs;

]

Revision A of 27 March 1990

32 System Services Overview

Accounting

3.7. Generic I/O
Operations

read() and write 0

halts or reboots a machine. It too can be run only by a privileged user. The user
may request a reboot by specifying howto as RB _AUTOBOOT, or that the
machine be halted with RB HALT. These constants are defined in
<sys/reboot. h>. bootargs is a list of arguments to supply to the
boot(8S) program.

The system optionally keeps an accounting record in a file for each process that
exits on the system. The format of this record is beyond the scope of this docu
ment. Accounting may be enabled to a file by doing:

[int acct (path)
char *path;

If pa th is null, then accounting is disabled. Otherwise, the named file becomes
the accounting file.

]

All filesystem descriptors support the operations read () , write () and
ioctl (). We describe the basics of these common primitives here, as well as
the sync () and fsync () primitives. Mechanisms whereby normally synchro
nous operations may occur in a non-blocking or asynchronous fashion are com
mon to all system-defined abstractions, and are also described here.

The read () and write () system calls can be applied to communications
channels, files, terminals and devices. They have the form:

int read(fd, bUf, nbytes)
int fd, nbytes;
result caddr_t buf;

int write(fd, buf, nbytes)
int fd, nbytes;
caddr_t bUf;

The read () call transfers as much data as possible from the object defined by
fd to the buffer at address buf of size nbytes. read () returns the number of
bytes transferred, or -1 if the return occurs before any
data was transferred because of an error or use of non-blocking operations.

The wr it e () call transfers data from the buffer to the object defined by f d.
Depending on the type of f d, it is possible that the wr it e () call will accept
some portion of the provided bytes; in this case the user should resubmit the
other bytes in a later request. Error returns because of interrupted or otherwise
incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using
an array of input/output vector descriptors. The type for the descriptors is
defined in <sys/uio. h> as:

Revision A of 27 March 1990

Input/Output Control

Non-Blocking and
Multiplexed Operations

Chapter 3 - Kernel Interface 33

struct iovec {
caddr_t iov_msg;
int iov_len;

I * base of a component * I
I * length of a component * I

} ;

The calls using an array of descriptors are:

#include <sys/types.h>
#include <sys/uio.h>

int readv(fd, iov, iovcnt)
int fd;
struct iovec *iov;
int iovcnt;

int writev(fd, iov, iovlen)
int fd,
struct iovec *iov;
int iovlen;

Here iovlen is the count of elements in the iov array. It cannot exceed 16.

Control operations on an object are performed by the ioctl () operation:

ioctl(fd, request, buffer)
int fd, request;
caddr_t buffer;

This operation causes the specified request to be performed on the object fd.
The request parameter specifies whether the argument buffer is to be read,
written, read and written, or is not needed, and also the size of the buffer, as well
as the request. Different descriptor types and subtypes within descriptor types
may use distinct ioctl () requests. For example, operations on terminals con
trol flushing of input and output queues and setting of terminal parameters;
operations on disks cause fonnatting operations to occur; operations on tapes
control tape positioning.

The names for basic control operations are defined in <sys/ ioctl. h>.

A process that wishes to do non-blocking operations on one of its descriptors sets
the descriptor in non-blocking mode as described in section 3.4.4. Thereafter the
read () call will return a specific EWOULDBLOCK error indication if there is no
data to be read (). The process may select () the associated descriptor to
determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either
accept some of the provided data, returning a shorter than normal length, or
return an error indicating that the operation would block. More output can be
performed as soon as a select () call indicates the object is writable.

Revision A of 27 March 1990

34 System Services Overview

Asynchronous I/O: aread () ,
awrite () and await ()

File Caches

3.8. File System

Naming

Operations other than data input or output may be perfonned on a descriptor in a
non-blocking fashion. These operations will return with a characteristic error
indicating that they are in progress if they cannot complete immediately. The
descriptor may then be selected for wr it e () to find out when the operation has
been completed. When select () indicates the descriptor is writable, the
operation has completed. Depending on the nature of the descriptor and the
operation, additional activity may be started or the new state may be tested.

Release 4.1 of the SunOS operating system provides the aread(3) awrite(3)
and await(3) routines for asynchronous I/O. With these routines, processes that
would otherwise block while waiting for a resource can instead proceed with
other calculations. Refer to Writing Device Drivers for examples of how to use
these routines.

The call:

[

int f sync (fd)

_int fdi

moves all modified data and attributes of the file referenced by f d to a per
manent storage device. When the f sync () call returns, all in-memory
modified copies of buffers for the associated file have been written to disk. This
call is different from sync () .

The call:

(sync ()

schedules input/output to clean all system buffer caches.

]

]

The file system abstraction provides access to a hierarchical file system structure.
The file system contains directories (each of which may contain other sub
directories) as well as files and references to other objects such as devices and
inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system
related infonnation is present in a file. Files may be read and written in a
random-access fashion. The user may read the data in a directory as though it
were an ordinary file to detennine the names of the contained files, but only the
system may write into the directories. The file system stores only a small amount
of ownership, protection and usage infol1llation with a file.

The file system calls take pathname arguments. These consist of a zero or more
component filenames separated by / characters, where each filename is up to 255
ASCII characters excluding null and "f'.

Each process always has two naming contexts: one for the root directory of the
file system and one for the current working directory. These are used by the sys
tem in the filename translation process. If a pathname begins with a / , it is

Revision A of 27 March 1990

Creation and Removal

Directory Creation and
Removal

File Creation

Chapter 3 - Kemellnterface 35

called a full patbname and interpreted relative to the root directory context. If
the patbname does not begin with a / it is called a relative pathname and inter
preted relative to the current directory context.

The system limits the total length of a pathname to 1024 characters.

The filename " .. " in each directory refers to the parent directory of that directory.
The parent directory of the root of the file system is always that directory.

The calls

chdir(path)
char *path;

chroot(path)
char *path;

change the current working directory and root directory context of a process.
Only the super-user can change the root directory context of a process.

The file system allows directories, files and special devices, to be created and
removed from the file system.

A directory is created with the mkdir () system call:

int mkdir(path, mode)
char *path;
mode_t mode;

where the mode is defined as for files (see below). Note that in Release 4.1,
mkdir () supports both the Berkeley and the System V group ID semantics. If
the set-group-ID bit on a directory is set, objects created within that directory are
assigned the GID of that directory, as with the BSD UNIX system. If the GID bit
of a parent directory is clear, objects created within it are assigned the GID of the
creating process, as in System V.

Directories are removed with the rmdir () system call:

[int rmdir (path)
char *path;

A directory must be empty if it is to be deleted.

Files are created with the open () system call,

#include <fcntl.h>

open (path, flag, mode)
int flag, mode;
char *path;

J

Revision A of 27 March 1990

36 System Services Overview

Creating References to Devices

The path parameter specifies the name of the file to be created. The flag
parameter must include 0_ CREAT from below to cause the file to be created.
The protection for the new file is specified in mo de. The protection for the new
file is specified in mode. Bits for flag are defined in <sys/ file. h>:

#define o RDONLY 000 /* open for reading * /
#define o WRONLY 001 /* open for writing * /
#define o RDWR 002 /* open for read & write * / -
#define o NDELAY 004 /* non-blocking open * /
#define o APPEND 010 /* append on each write * / -
#define o CREAT 01000 /* open with file create * /
#define o TRUNC 02000 /* open with truncation * /
#define o EXCL 04000 /* error on create if file exists */

One of 0_ RDONLY, 0_ WRONLY and 0_ RDWR should be specified, indicating
what types of operations are desired to be perfonned on the open file. The opera
tions will be checked against the user's access rights to the file before allowing
the open () to succeed. Specifying 0_ APPEND causes writes to automatically
append to the file. The flag 0 _ CREAT causes the file to be created if it does not
exist, owned by the current user and the group of the containing directory. The
protection for the new file is specified in mode. The file mode is used as a three
digit octal number. Each digit encodes read access as 4, write access as 2 and
execute access as 1, or' ed together. The 700 bits describe owner access, the 070
bits describe the access rights for processes in the same group as the file, and the
007 bits describe the access rights for other processes.

If the open specifies to create the file with 0_ EXCL and the file already exists,
then the open () will fail without affecting the file in any way. This provides a
simple exclusive access facility. If the file exists but is a symbolic link, the open
will fail regardless of the existence of the file specified by the link.

The file system allows entries which reference peripheral devices. Peripherals
are distinguished as block or character devices according by their ability to sup
port block -oriented operations. Devices are identified by their major and minor
device numbers. The major device number determines the kind of peripheral it
is, while the minor device number indicates one of possibly many peripherals of
that kind. Structured devices have all operations performed internally in
"block" quantities while unstructured devices often have a number of special
ioctl () operations, and may have input and output perfonned in varying units.
The mknod () call creates special entries:

int mknod(path, mode, dev)
char *path;
int mode, dev;

where mode is fonned from the object type and access pennissions. The param
eter dev is a configuration dependent parameter used to identify specific charac
ter or block I/O devices.

Revision A of 27 March 1990

File and Device Removal

Reading and Modifying File
Attributes

Chapter 3 - Kernel Interface 37

A new interface to mknod (), mkfifo () has been provided for POSIX compli
ance. mkf ifo () creates a named pipe.

A reference to a file or special device may be removed with the unlink () call,

[

int unlink (path) J
char *path;

'---------""

The caller must have write access to the directory in which the file is located for
this call to be successful.

Detailed infonnation about the attributes of a file system may be obtained with
the calls:

#include <sys/vfs.h>

int statfs(path, buf)
char *path;
struct statfs *bufi

int fstatfs(fd, buf)
int fd;
struct statfs *bufi

The stat f s structure includes the file system type, file system block size, total
blocks in the file system, free blocks, free blocks available to non-super-user,
total file nodes in the file system, free file nodes in the file system, and the file
system ID.

Directory entries can be obtained in a filesystem-independent fonnat by using the
getdent s () call:

#include <sys/types.h>
#include <sys/dirent.h>

int getdents(fd, buf, nbytes)
int fd;
char *buf;
int nbytes;

Detailed infonnation about the attributes of a file may be obtained with the calls:

#include <sys/types.h>
#include <sys/stat.h>

int stat(path, stb)
char *path;
struct stat *stb;

fstat (fd, stb)
int fd;
struct stat *stbi

Revision A of 27 March 1990

38 System Services Overview

The s tat structure includes the file type, protection, ownership, access times,
size, and a count of hard links. If the file is a symbolic link, then the status of the
link itself (rather than the file the link references) may be found using the
lstat () call:

int lstat(path, stb)
char *path;
result struct stat *stb;

Newly created files are assigned the UID of the process that created them and the
GID of the directory in which they are created. The ownership of a file may be
changed by either of the calls

#include <sys/types.h>

int chown(path, owner, group)
char *path;
uid_t owner;
gid_t group;

int fchown(fd, owner, group)
int fd;
uid towner;
gid_t group;

In addition to ownership, each file has three levels of access protection associated
with it. These levels are owner relative, group relative, and global (all users and
groups). Each level of access has separate indicators for read permission, write
permission, and execute permission. The protection bits associated with a file
may be set by either of the calls:

#include <sys/types.h>
#include <sys/stat.h>

int chmod(path, mode)
char *path;
mode_t mode;

int fchmod(fd, mode)
int fd, mode;

where rno de is a value indicating the new protection of the file as listed above in
the File Creation section.

Three additional bits exist: the Q4000 "set-user-ID" bit can be set on an execut
able file to cause the EUID of a process which executes the file to be set to the
owner of that file; the 02000 bit has a similar effect on the EGID. The 01000 bit
causes an image of an executable program to be saved longer than would other
wise be normal; this "sticky" bit is a hint to the system that a program is heavily
used.

Revision A of 27 March 1990

Links and Renaming

Chapter 3 - Kernel Interface 39

Finally, the access and modify times on a file may be set by the call:

*include <sys/types.h>

int utimes(file, tvp)
char *file;
struct timeval *tvp;

This is particularly useful when moving files between media, to preserve rela
tionships between the times the file was modified.

Links allow multiple names for a file to exist.

Two types of links exist, hard links and symbolic (sometimes called "soft") links.
A hard link is a reference counting mechanism that allows a file to have multiple
names within the same file system. Symbolic links cause string substitution dur
ing the pathname interpretation process. Unlike hard links, symbolic links can
exist independently of the file being linked to.

Hard links and symbolic links have different properties. A hard link insures the
target file will always be accessible, even after its original directory entry is
removed; no such guarantee exists for a symbolic link. Symbolic links can span
file systems boundaries.

The following calls create a new link, named path2, to pa thl:

int link(pathl, path2)
char *pathl, *path2;

int symlink(pathl, path2)
char *pathl, *path2;

The unlink () primitive may be used to remove either type of link.

If a file is a symbolic link, the ' 'value" of the link may be read with the
readlink () call,

int readlink(path, buf, bufsiz)
char *path, *buf;
int bufsiz;

This call returns, in bu f, the null-terminated string substituted into pathnames
passing through path.

Atomic renaming of file system resident objects is possible with the rename ()
call:

int rename(oldname, newname)
char *oldname, *newname;

where both oldname and newname must be in the same file system. If
newname exists and is a directory, then it must be empty.

Revision A of 27 March 1990

40 System Services Overview

Extension and Truncation

Two new interfaces for file system queries have been provided for POSIX compli
ance. pathconf (2) and fpathconf () answer questions about the named
file and/or the underlying file system. These routines always return properly with
4.1 and later UFS file systems. NFS® file systems that are served by a server
recognizing mount protocol version 2 can also provide this infonnation for the
NFS files. The NFS file system must be mounted with the posix option.

Files are created with zero length and may be extended simply by writing or
appending to them. While a file is open the system maintains a pointer into the
file indicating the current location in the file associated with the descriptor. This
pointer may be moved about in the file in a random access fashion. To set the
current offset into a file, the lseek () call may be used,

#include <sys/types.h>
#include <sys/unistd.h>

off_t lseek(fd, offset, whence)
int fd;
off_t offset;
int whence;

where whence is given in <sys/ file. h> as one of,

#define L SET 0
#define L INCR 1
#define L XTND 2

The call:

(lseek(fd, 0, L_INCR)

/ * set absolute file offset * /
/ * set file offset relative to current position * /
/ * set offset relative to end-of-file * /

returns the current offset into the file.

]

Files may have' 'holes" in them. Holes are void areas in the linear extent of the
file where data has never been written. These may be created by seeking to a
location in a file past the current end-of-file and writing. Holes are treated by the
system as zero-valued bytes.

A file may be truncated (or extended) with either of the calls:

int truncate(path, length)
char *path;
off_t length;

int ftruncate(fd, length)
int fd;
off_t length;

The truncate () and ftruncate () system calls set the length ofa file. If
the newly specified length is shorter than the file's current length, the file is

Revision A of 27 March 1990

Checking Accessibility

File Locking

Chapter 3 - Kernel Interface 41

shortened. However, if the new length is longer, the file's size is increased to the
desired length. When writing a file exclusively through mapped access, trun
ca te () and ftruncate () are the onIy alternatives to MAP _RENAME opera
tions for growing a file.

A process running with different real and effective user ids may interrogate the
accessibility of a file to the real user by using the acces s () call:

int access (path, mode)
char *path;
int mode;

Here mode is constructed by taking the logical OR of the following bits, defined
in <sys/ file. h>:

#define F OK o / * file exists * /
#define X OK 1 / * file is executable * /
#define W OK 2 / * file is writable * /
#define R OK 4 / * file is readable * /

The presence or absence of advisory locks does not affect the result of
access () .

The file system provides basic facilities that allow cooperating processes to syn
chronize their access to shared files. A process may place an advisory read ()
or wri te () lock on a file, so that other cooperating processes may avoid
interfering with the process' access. This simple mechanism provides locking
with file granularity. The system does not force processes to obey locks placed
by flo c k () ; they are of an advisory nature onI y. Locks placed by flo c k ()
are only visible to processes running on the local processor.

Locking is performed after an open () call by applying the flock () primitive:

flock (fd, operation)
int fd, operation;

where the operation parameter is formed from bits defined in
<sys/file. h>:

#define LOCK SH 1
#define LOCK EX 2
#define LOCK NB 4
#define LOCK UN 8

/ * shared lock * /
/ * exclusive lock * /
/ * don't block when locking * /
/* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If
an object is currently locked by another process when a flock () call is made,
the caller will be blocked until the current lock owner releases the lock; this may
be avoided by including LOCK_NB in the operation parameter. Specifying

Revision A of 27 March 1990

42 System Services Overview

File and Record Locking:
lockf ()

Mounting Filesystems

LOCK_UN removes all locks associated with the descriptor. Advisory locks held
by a process are automatically deleted when the process tenninates.

The lockf(3) routine allows you to lock a specified record (set of contiguous
bytes), or an entire file. The file must be write-accessible by the process. Locks
placed by lockf () are visible to any process running on any processor with
access to the file:

*include <unistd.h>

int lockf(fd, cmd, size)
int fd, cmd;
long size;

The cmd argument can be one of:

define F ULOCK 0 /
define FLOCK 1 /
define F TLOCK 2 /
define F TEST 3 /

Unlock a previously locked section */
Lock a section for exclusive use */
Test and lock a section (non-blocking)
Test section for other process' locks

The s i z e argument indicates the number of bytes in the segment to lock; the
segment starts at the current offset within the file. If size is zero, lockf ()
places a lock on the segment from the current offset through the end of the file
(so a call to lockf () immediately after an open () would lock the entire file).

The call:

int mount (type, dir, flags, data)
char *type, *dir;
int flags;
caddr_t data;

extends the UNIX name space. The mount () call specifies a block device
type containing a UNIX file system to be made available starting at di r. If
flags is set then the file system is read-only; writes to the file system will not
be pennitted and access times will not be updated when files are referenced.
da t a is a pointer to a structure which contains the type specific arguments to
mount.

The call:

[

unmount (dirj

. char *dir;]
unmounts the file system mounted on dire umount () call will succeed only if
the file system is not currently being used.

Revision A of 27 March 1990

Disk Quotas

3.9. Devices

Structured Devices

Unstructured Devices

Chapter 3 - Kernel Interface 43

As an optional facility, each file system may be requested to impose limits on a
user's disk usage. Two quantities are limited: the total amount of disk space
which a user may allocate in a file system and the total number of files a user
may create in a file system. Quotas are expressed as hard limits and soft limits.
A hard limit is always imposed; if a user would exceed a hard limit, the operation
which caused the resource request will fail. A soft limit results in the user
receiving a warning message, but with allocation succeeding. Facilities are pro
vided to tum soft limits into hard limits if a user has exceeded a soft limit for an
unreasonable period of time.

To manipulate disk quotas on a file system the quotactl () call is used:

#include <ufs/quota.h>

int quotactl(crod, special, uid, addr)
int crod, uid;
char *special;
caddr_t addr;

where cmd indicates a command to be applied to the UID. special is a pointer
to a null-terminated string containing the path name of the block special device
for the file system being manipulated. The block special device must be
mounted. a ddr is the address of an optional, command specific, data structure
which is copied in or out of the system. The interpretation of addr is given with
each command.

The system uses a collection of device drivers to access attached peripherals.
Such devices are generally grouped into two classes: structured devices on which
block-oriented input/output operations occur (basically disks and tapes), and
unstructured devices (anything else).

Structured devices include disk and tape drives, and are accessed through a sys
tem buffer-caching mechanism, which permits them to be accessed as ordinary
files, by means of random-access reads and writes.

The mount(8) command in the system allows a structured device containing a
file system volume to be accessed through the operating system.

Tape drives also typically provide a structured interface, although this is rarely
used.

Unstructured devices are those devices which do not support a randomly
accessed block structure.

Communications lines, raster plotters, normal magnetic tape access (in large or
variable size blocks), and access to disk drives permitting large block transfers
and special operations like disk formatting and labeling all use unstructured dev
ice interfaces.

Much more information about device drivers can be found in Writing Device
Drivers.

Revision A of 27 March 1990

44 System Services Overview

3.10. Debugging Support ptrace () provides a means by which a process may control the execution of
another process, and examine and change its memory image. Its primary use is
for the implementation of breakpoint debugging.

#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>

ptrace(request, pid, addr, data, addr2)
enum ptracereq request;
int pid, data;
char *addr, *addr2;

There are five arguments whose intetpretation depends on the request argu
ment. Generally, pid is the PID of the traced process. A process being traced
behaves normally until it encounters some signal whether internally generated
like "illegal instruction" or externally generated like "interrupt." See
sigvec (2) for the list. Then the traced process enters a stopped state and the
tracing process is notified via wai t (2). When the traced process is in the
stopped state, its memory image can be examined and modified using
ptrace (). If desired, another ptrace () request can then cause the traced
process either to terminate or to continue, possibly ignoring the signal.

Note that several different values of the request argument can make
ptrace () return data values - since -1 is a possibly legitimate value, to dif
ferentiate between -1 as a legitimate value and -1 as an error code, you should
clear the errno global error code before doing a ptrace () call, and then
check the value of errno afterwards.

The value of the request argument determines the precise action of the call:

PTRACE TRACEME
This request is the only one used by the traced process; it declares that the
process is to be traced by its parent. All the other arguments are ignored.
Peculiar results will ensue if the parent does not expect to trace the child.

PTRACE_PEEKTEXT,PTRACE_PEEKDATA
The word in the traced process's address space at addr is returned. addr
must be even (except on Sun386i machines), the child must be stopped and
the input data and addr2 are ignored.

PTRACE PEEKUSER
The word of the system's per-process data area corresponding to addr is
returned. addr must be a valid offset within the kernel's per-process data
structures. This space contains the registers and other information about the
process; its layout corresponds to the user structure in the system.

PTRACE_POKETEXT,PTRACE_POKEDATA
The given data is written at the word in the process's address space
corresponding to addr, which must be even (except on Sun386i machines).
No useful value is returned. If the instruction and data spaces are separate
request PTRACE_PEEKTEXT indicates instruction space while

Revision A of 27 March 1990

Chapter 3 - Kernel Interface 45

PTRACE_PEEKDATA indicates data space. The PTRACE_POKETEXT
request must be used to write into a process's text space even if the instruc
tion and data spaces are not separate.

PTRACE POKEUSER
The process's system data is written, as it is read with request
PTRACE _PEEKUSER. Only a few locations can be written in this way: the
general registers, the floating point status and registers, and certain bits of
the processor status word.

PTRACE CONT
The data argument is taken as a signal number and the child's execution
continues at location addr as if it had incurred that signal. Nonnally the
signal number will be either 0 to indicate that the signal that caused the stop
should be ignored, or that value fetched out of the process's image indicating
which signal caused the stop. If addr is (int *)1 then execution continues
from where it stopped.

PTRACE KILL
The traced process tenninates.

PTRACE SINGLESTEP
Execution continues as in request P TRACE _ CO NT ; however, as soon as pos
sible after execution of at least one instruction, execution stops again. The
signal number from the stop is S I GTRAP. On Sun machines the T -bit is
used and just one instruction is executed.

PTRACE ATTACH
Attach to the process identified by the pid argument and begin tracing it.
Process pid does not have to be a child of the requester, but the requester
must have pennission to send process p id a signal and the effective userids
of the requesting process and process pid must match.

PTRACE DETACH
Detach the process being traced. Process pi d is no longer being traced and
continues its execution. The data argument is taken as a signal number
and the process continues at location addr as if it had incurred that signal.

PTRACE GETREGS
The traced process's registers are returned in a structure pointed to by the
addr argument. The registers include the general purpose registers, the
program counter and the program status word. The' regs' structure defined
in <machine / reg. h> describes the data that is returned.

PTRACE SETREGS
The traced process's registers are written from a structure pointed to by the
addr argument. The registers include the general purpose registers, the
program counter and the program status word. The 'regs' structure defined
in <machine / reg. h> describes the data that is set.

PTRACE_READTEXT,PTRACE_READDATA
Read data from the address space of the traced process. If the instruction
and data spaces are separate, request PTRACE_READTEXT indicates

Revision A of 27 March 1990

46 System Services Overview

instruction space while PTRACE_ READDATA indicates data space. The
addr argument is the address within the traced process from where the data
is read, the data argument is the number of bytes to read, and the addr2
argument is the address within the requesting process where the data is writ
ten.

PTRACE_WRITETEXT,PTRACE_WRITEDATA
Write data into the address space of the traced process. If the instruction and
data spaces are separate, request PTRACE_READTEXT indicates instruction
space while PTRACE_READDATA indicates data space. The addr argu
ment is the address within the traced process where the data is written, the
data argument is the number of bytes to write, and the addr2 argument is
the address within the requesting process from where the data is read.

As indicated, these calls (except for requests PTRACE_TRACEME and
PTRACE ATTACH) can be used only when the subject process has stopped. The
wait () call is used to determine when a process stops; in such a case the 'ter
mination' status returned by wait has the value WSTOPPED to indicate a stop
rather than genuine termination.

To forestall possible fraud, ptrace () inhibits the set-user-ID and set-group-ID
facilities on subsequent execve (2) calls. If a traced process calls execve () ,
it will stop before executing the first instruction of the new image showing signal
SIGTRAP.

Revision A of 27 March 1990

4.1. Socket-Based
Interprocess
Communications

Interprocess Communication
Primitives

Communication Domains

Socket Types and Protocols

4
Networking Overview

This chapter provides an overview of the socket -based and Transport Layer
Interface-based Interprocess Communication (IPC) facilities, along with the
Internet and RPC-based network services in Release 4.1 of the SunOS operating
system.

This chapter introduces the socket-based interprocess communications facilities
that the SunOS operating system has adapted from BSD. Much more detail about
these facilities can be found in part three of Network Programming. For an intro
duction to the networking facilities which Sun has added to its system in the
time since socket-based !PC was developed, see the Network Services section of
this same Network Programming manual. (These facilities include the Network
File System, the Remote Procedure Call mechanisms, and the External Data
Representation standard). For detailed information about AT&T-style STREAMS,
see STREAMS Programming.

The system provides access to an extensible set of communication domains. A
communication domain is identified by a manifest constant defined in the file
< s y s / soc ke t . h>. Important standard domains supported by the system are
the UNIX domain, AF _UNIX, for communication within the system, and the
"internet" domain for communication with the DARPA Internet protocol family,
AF _ INET. Other domains can be added to the system.

Within a domain, communication takes place between endpoints known as sock
ets. Each socket has the potential to exchange information with other sockets of
an appropriate type within the domain.

Each socket has an associated abstract type, which describes the semantics of
communication using that socket. Properties such as reliability, ordering, and
prevention of duplication of messages are determined by the type. The basic set
of socket types is defined in <sys/ socket. h>:

47 Revision A of 27 March 1990

48 System Services Overview

Socket Creation, Naming, and
Service Establishment

/ * Standard socket types * /
#define SOCK DGRAM 1 /* datagram */
#define SOCK STREAM 2 /* virtual circuit */
#define SOCK RAW 3 /* raw socket * /
#define SOCK RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packets * /

The SOCK _DGRAM type models the semantics of datagrams in network commun
ication: messages may be lost or duplicated and may arrive out-of-order. A
datagram socket may send messages to and receive messages from multiple
peers. The SOCK _RDM type models the semantics of reliable datagrams: mes
sages arrive unduplicated and in-order, the sender is notified if messages are lost.
The send () and receive () operations (described below) generate
reliable/unreliable datagrams. The SOCK_STREAM type models connection
based virtual circuits: two-way byte streams with no record boundaries. Connec
tion setup is required before data communication may begin. The
SOCK_SEQPACKET type models a connection-based, full-duplex, reliable,
sequenced packet exchange; the sender is notified if messages are lost, and mes
sages are never duplicated or presented out-of-order. Users of the last two
abstractions may use the facilities for out-of-band transmission to send out-of
band data.

SOCK_RAW is used for unprocessed access to internal network layers and inter
faces; it has no specific semantics.

Other socket types can be defined.

Each socket may have a concrete protocol associated with it. This protocol is
used within the domain to provide the semantics required by the socket type.
Not all socket types are supported by each domain; support depends on the
existence and the implementation of a suitable protocol within the domain. For
example, within the "internet" domain, the SOCK _ DGRAM type may be imple
mented by the UDP user datagram protocol, and the SOCK _STREAM type may be
implemented by the TCP transmission control protocol, while no standard proto
cols to provide SOCK _ RDM or SOCK _ SEQP ACKE T sockets exist.

Sockets may be connected or unconnected. An unconnected socket descriptor is
obtained by the socket () call:

s = socket(domain, type, protocol);
result int s;
int domain, type, protocol;

The socket domain and type are as described above, and are specified using the
definitions from <sys/ socket. h>. The protocol may be given as 0, meaning
any suitable protocol. One of several possible protocols may be selected using
identifiers obtained from a library routine, getprotobyname () .

An unconnected socket descriptor of a connection-oriented type may yield a con
nected socket descriptor in one of two ways: either by actively connecting to

sun Revision A of 27 March 1990
microsystems

Accepting Connections

Chapter 4 - Networking Overview 49

another socket, or by becoming associated with a name in the communications
domain and accepting a connection from another socket. Datagram sockets need
not establish connections before use.

To accept connections or to receive datagrams, a socket must first have a binding
to a name (or address) within the communications domain. Such a binding may
be established by a bind () call:

bind(s, name, namelen);
int s, namelen;
struct sockaddr *name;

Datagram sockets may have default bindings established when first sending data
if not explicitly bound earlier. In either case, a socket's bound name may be
retrieved with a getsockname () call:

getsockname(s, name, namelen);
int s;
result struct sockaddr *name;
result int *namelen;

while the peer's name can be retrieved with getpeername () :

getpeername(s, name, namelen);
int s;
result struct sockaddr *name;
result int *namelen;

Domains may support sockets with several names.

Once a binding is made to a connection-oriented socket, it is possible to
listen () for connections:

[

listen(S, backlog);
. int s, backlog;

The backlog specifies the maximum count of connections that can be simultane
ously queued awaiting acceptance.

An accept () call:

t = accept(s, name, anarnelen);
result int t, *anamelen;
int s;
result struct sockaddr *narne;

]

returns a descriptor for anew, connected, socket from the queue of pending con
nections on s. If no new connections are queued for acceptance, the call will wait
for a connection unless non-blocking I/O has been enabled.

+~~,,!! Revision A of 27 March 1990

50 System Services Overview

Making Connections

Sending and Receiving Data

An active connection to a named socket is made by the connect () call:

connect(s, name, namelen);
int s, namelen;
struct sockaddr *name;

Although datagram sockets do not establish connections, the connect () call
may be used with such sockets to create an association with the foreign address.
The address is recorded for use in future sen d () calls, which then need not sup
ply destination addresses. Datagrams will be received only from that peer, and
asynchronous error reports may be received.

It is also possible to create connected pairs of sockets without using the domain's
name space to rendezvous; this is done with the socketpair () call2:

socketpair(domain, type, protocol, sv);
int domain, type, protocol;
result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept ()
and connect () .

The call

[

PiPe(PV);]
result int pv[2];

'-------------"

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv [0] only
writable and pv [1] only readable.

Messages may be sent to a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc;
int s, len, flags, tolen;
caddr_t buf, to;

if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc;
int s, len, flags;
caddr_t buf;

if the socket is connected. The corresponding receive primitives are:

2 lhls release supports socketpair () creation only in the "unix" communication domain.

Revision A of 27 March 1990

Scatter/Gather and Exchanging
Access Rights

Chapter 4 - Networking Overview 51

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int *fromlenaddr;
result int msglen;
int s, len, flags;
result caddr_t buf, from;

and

msglen = recv(s, buf, len, flags);
result int msgleni
int s, len, flags;
result caddr t buf;

In the unconnected case, the parameters to and tolen specify the destination or
source of the message, while the from parameter stores the source of the mes
sage, and *fromlenaddr initially gives the size of the from buffer and is updated
to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of
length len bytes, starting at address buf The flags specify peeking at a message
without reading it or sending or receiving high-priority out-of-band messages, as
follows:

-#define MSG PEEK Oxl /* peek at incoming message */
-#de fine MSG OOB 0 x2 / * process out-oJ-band data * /

It is possible to scatter and gather data and to exchange access rights with mes
sages. When either of these operations is involved, the number of parameters to
the call becomes large. Thus the system defines a message header structure, in
<sys/ socket. h>, which is used to contain the parameters to the calls:

struct msghdr {

} ;

caddr_t msg_name;
int msg_namelen;
struct iov *msg_iov;
int msg_iovlen;
caddr_t msg_accrights;
int msg_accrightslen;

/ * optional address * /
/ * size of address * /
/ * scatter/ gather array * /
/ * # elements in msg_iov * /
/ * access rights sent/received * /
/ * size of msg_ accrights * /

Here msg_ name and msg_namelen specify the source or destination address if the
socket is unconnected; msg_name may be given as a null pointer if no names are
desired or required. The msg_iov and msg_iovlen describe the scatter/gather
locations, as described in section 3.7.1. Access rights to be sent along with the
message are specified in msg_accrights, which has length msg_accrightslen. In
the "unix" domain these are an array of integer descriptors, taken from the send
ing process and duplicated in the receiver.

Revision A of 27 March 1990

52 System Services Overview

Using read () and
wri te () with Sockets

Shutting Down Halves of Full
Duplex Connections

Socket and Protocol Options

This structure is used in the operations sendmsg () and recvmsg () :

sendmsg(s, msg, flags);
int s, flags;
struct msghdr *msg;

msglen = recv.msg(s, msg, flags);
result int msglen;
int s, flags;
result struct msghdr *msg;

The nonnal read () and write () calls may be applied to connected sockets
and translated into sen d () and re ce i ve () calls from or to a single area of
memory and discarding any rights received. A process may operate on a virtual
circuit socket, a tenninal or a file with blocking or non-blocking input/output
operations without distinguishing the descriptor type.

A process that has a full-duplex socket such as a virtual circuit and no longer
wishes to read from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, I to not write further, or 2 to completely
shut the connection down. If the underlying protocol supports unidirectional or
bidirectional shutdown, this indication will be passed to the peer. For example, a
shutdown for writing might produce an end-of-file condition at the remote end.

Sockets, and their underlying communication protocols, may support options.
These options may be used to manipulate implementation specific or protocol
specific facilities. The getsockopt () and setsockopt () calls are used to
control options:

getsockopt(s, level, optname, optval, optlen);
int s, level, optname;
result caddr_t optval;
result int *optlen;

setsockopt(s, level, optname, optval, optlen);
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a
value is specified with optval and optlen, it is interpreted by the software operat
ing at the specified level. The level SOL_SOCKET is reserved to indicate options
maintained by the socket facilities. Other level values indicate a particular proto
col which is to act on the option request; these values are nonnally interpreted as
a "protocol number".

sun Revision A of 27 March 1990
microsystems

UNIX Domain

Types of Sockets

Naming

Access Rights Transmission

Internet Domain

Socket Types and Protocols

Socket Naming

Access Rights Transmission

Raw Access

4.2. TLI Communication
Facilities

Chapter 4 - Networking Overview 53

This section describes briefly the properties of the UNIX communications
domain.

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facili
ties, while SOCK_DGRAM provides datagrams - unreliable message-style com
munications.

Socket names are strings and the current implementation of the UNIX domain
embeds bound sockets in the file system name space; this is a side effect of the
implementation.

The ability to pass descriptors with messages in this domain allows migration of
service within the system and allows user processes to be used in building system
facilities.

This section describes briefly how the Internet domain is mapped to the model
described in this section. More information will be found in the Networking
Implementation Notes section of Network Programming.

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the
UDP protocol. Each is layered atop the transport-level Internet Protocol (IP).
The Internet Control Message Protocol is implemented atop/beside IP and is
accessible via a raw socket.

Sockets in the Internet domain have names composed of the 32 bit internet
address, and a 16 bit port number. Options may be used to provide IP source
routing or security options. The 32-bit address is composed of network and host
parts; the network part is variable in size and is frequency encoded. The host
part may optionally be interpreted as a subnet field plus the host on subnet; this is
enabled by setting a network address mask at boot time.

No access rights transmission facilities are provided in the Internet domain.

The Internet domain allows the super-user access to the raw facilities of IP.
These interfaces are modeled as SOCK RAW sockets. Each raw socket is associ
ated with one IP protocol number, and receives all traffic received for that proto
col. This allows administrative and debugging functions to occur, and enables
user-level implementations of special-purpose protocols such as inter-gateway
routing protocols.

This section gives an overview of the Transport Layer Interface, which supports
the transfer of data between two processes in a manner compatible with System
V Release 3.

TLI uses an architecture similar to that of sockets as described above. Communi
cation takes place between a transport provider, and a transport user.

An example of a transport provider is the TLI -based TCP transport protocol. A
transport user may be a networking application or session-layer protocol.

Revision A of 27 March 1990

54 System Services Overview

Figure 4-1

Modes of Service

Transport Layer Interface

ice serv
requ ests

transport
user

I

L Transport Layer Interface ········t
servic e events

dications and in

transport
provider

The transport user accesses the service by issuing the appropriate requests. One
example is a request to transfer data over a connection. Similarly, the provider
notifies the user of various events, such as the arrival of data on a connection.

TLI provides two modes of service, connection-mode and connectionless-mode.

Connection-mode is circuit-oriented and enables data to be transmitted over an
established connection in a reliable, sequenced manner (akin to TCP over sock
ets). Connection-mode also provides an identification mechanism that avoids the
overhead of address resolution and transmission during the data transfer phase.
This service is attractive for applications that require relatively long-lived,
datastream -oriented interactions.

Connectionless-mode, in contrast, is message-oriented and supports data transfer
in self-contained units with no logical relationship required among multiple units
(akin to UDP). This service requires only a preexisting association between the
peer users involved, which detennines the characteristics of the data to be
transmitted. All the infonnation required to deliver a unit of data (for example,
the destination address) is presented to the transport provider, together with the
data to be transmitted, in one service access (which need not relate to any other
service access). Each unit of data transmitted is entirely self-contained.

Connectionless-mode service is attractive for applications that:

o involve short-tenn request/response interactions

o exhibit a high level of redundancy

o are dynamically reconfigurable

o do not require guaranteed, in-sequence delivery of data

Revision A of 27 March 1990

Connection-Mode Service

Local Management

Chapter 4 - Networking Overview 55

Connection-mode transport service is characterized by four phases:

[J local management

[J connection establishment

[J data transfer, and

[J connection release.

The local management phase defines local operations between a transport user
and a transport provider. For example, a user must establish a channel of com
munication with the transport provider, as illustrated below. Each channel
between a transport user and transport provider is a unique endpoint of communi
cation, and will be called the transport endpoint.

The t _ open(3N) routine enables a user to choose a particular transport provider
that will supply the connection-mode services, and establishes the transport end
point.

Figure 4-2 Channel Between User and Provider

transport
user

~ transport endpoint

.......... Transport Layer

transport
provider

Another necessary local function for each user is to establish an identity with the
transport provider. Each user is identified by a transport address. More accu
rately, a transport address is associated with each transport endpoint, and one
user process may manage several transport endpoints. In connection-mode ser
vice, one user requests a connection to another user by specifying that user's
address. The structure of a transport address is defined by the address space of
the transport provider. An address may be as simple as a random character string
(for example, "file_server' '), or as complex as an encoded bit pattern that
specifies all infonnation needed to route data through a network. Each transport
provider defines its own mechanism for identifying users. Addresses may be
assigned to each transport endpoint by t _ bind(3N)

Revision A of 27 March 1990

56 System Services Overview

Table 4-1

Connection Establishment

Figure 4-3

Local Management Routines

Routine Description

t alloe () Allocates TLI data structures.

t bind () Binds a transport address to a transport endpoint.
t close () Closes a transport endpoint.

t error () Prints an error message.
t free () Frees structures allocated using t alloe ().

t_getinfo () Returns a set of parameters associated with a
particular transport provider.

t getstate () Returns the state of a transport endpoint.

t look () Returns the current event on a transport endpoint.

t_open () Establishes a transport endpoint connected to a
chosen transport provider.

t _ optmgrnt () Negotiates protocol-specific options with the
transport provider.

t_syne () Synchronizes a transport endpoint with the
transport provider.

t_unbind () Unbinds a transport address from a transport
endpoint.

In addition to t _open () and t _bind () , several routines are available to sup
port local operations. The table below summarizes the TLI local management
routines.

The connection establishment phase enables two users to create a connection, or
virtual circuit, between them, as shown below.

Transport Connection

user 1 user 2

......... T ransport Layer

(
T ransport Connection

" ----------------
transport provider

Revision A of 27 March 1990

Table 4-2

Data Transfer

Table 4-3

Connection Release

Chapter 4 - Networking Overview 57

This phase is illustrated by a client-server relationship between two transport
users. One user, the server, typically advertises some service to a group of users,
and then listens for requests from those users. As each client requires the service,
it attempts to connect itself to the server using the server's advertised transport
address. The t_connect(3N) routine initiates the connect request. One argu
ment to t _connect () , the transport address, identifies the server the client
wishes to access. The server is notified of each incoming request using
t_listen(3N) and may call t_accept(3N) to accept the client's request for
access to the service. If the request is accepted, the transport connection is esta
blished.

The next table summarizes all routines available for establishing a transport con
nection.

Connection Establishment Routines

Routine Description
t accept () Accepts a request for a transport connection.
t connect () Establishes a connection with the transport -

user at a specified destination.
t listen () Retrieves an indication of a connect request -

from another transport user.
t_rcvconnect() Completes connection establishment if

t_connect () was called in asynchronous
mode.

The data transfer phase enables users to transfer data in both directions over an
established connection. Two routines, t_snd(3N) and t_rcv(3N) send and
receive data over this connection. All data sent by a user is guaranteed to be
delivered to the user on the other end of the connection in the order in which it
was sent. The table below summarizes the connection mode data transfer rou
tines.

Connection Mode Data Transfer Routines

Routine Description
t_rcv () Retrieves data that has arrived over a transport

connection.
t snd () Send data over an established transport connection.

The connection release phase provides a mechanism for breaking an established
connection. When you decide that the conversation should terminate, you can
request that the provider release the transport connection. TLI supports two types
of connection release. The first is an abortive release, which directs the transport
provider to release the connection immediately. Any previously sent data that
has not yet reached the other transport user may be discarded by the transport
provider. The t snddis(3N) routine initiates this abortive disconnect, and
t _ rcvdis(3N) processes the incoming indication of an abortive disconnect.

Revision A of 27 March 1990

58 System Services Overview

Table 4-4

Connectionless-Mode Service

State Transitions

4.3. Network-Based
Services

All transport providers must support the abortive release procedure. In addition,
some transport providers may also support an orderly release facility that enables
users to terminate communication gracefully with no data loss. The functions
t_sndrel(3N) and _rcvrel(3N) support this capability, as shown below.

Connection Release Routines

Routine Description
t rcvdis () Returns an indication of an aborted connection, -

including a reason code and user data.
t_rcvrel () Returns an indication that the remote user has

requested an orderly release of a connection.
t snddis () Aborts a connection or rejects a connect request.
t sndrel () Requests the orderly release of a connection.

The connectionless-mode transport service is characterized by two phases: local
management and data transfer. The local management phase defines the same
local operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes called
datagrams) to the specified peer user. Each data unit must be accompanied by
the transport address of the destination user. Two routines, t sndudata(3N)
and t_rcvudata(3N). support this message-based data transfer facility. The
table below summarizes all routines associated with connectionless-mode data
transfer.

Routine Description
t rcvudata () Retrieves a message sent by another transport user.
t rcvuderr () Retrieves error information associated with a pre--

viously sent message.
t sndudata () Sends a message to the specified destination user.

In addition to library routines that provide transport seIVices to users TLI also
provides state transition rules that define the sequence in which the transport rou
tines may be invoked. These transition rules take the form of state tables, which
are explained in detail in Network Programming. TLI state tables define the legal
sequence of library calls based on state information and the handling of events.
These events include user-generated library calls, as well as provider-generated
event indications.

For more infonnation about TLI-based communication, refer to Network Pro
gramming.

Release 4.1 is considerably more sophisticated than the first versions of the UNIX
system. This is true not only in terms of programming environments and tools,
though 4.1 does include many networking features from 4.3 BSD and virtually all
System V Release 3 networking facilities. Release 4.1 is oriented, at a fundamen
tal level, to networks of closely linked machines. It is structurally a network sys
tem, and is designed to evolve with the evolution of computer network

slIn Revision A of 27 March 1990
mlcrosystems

NOTE

4.4. Standard Server-Based
Services

Chapter 4 - Networking Overview 59

technology.

Derived from networking features in 4.2 BSD, network services were imple
mented with special-purpose daemons (server processes) working in close
cooperation with the kernel, rather than in the kernel itself. Release 4.1 contin
ues this line of development. Its network services, from the Network File System
(NFS) and Remote Execution Facility (REX) to its network name service
serviceypname are built upon a server-based architecture.

When a network service is added to the system, it is added by means of a server
process which is executed on all machines providing the service. Each server
then communicates with the kernel or with its peers on other machines as neces
sary. Sun servers do differ in one very significant way from those which were
inherited from BSD, they are usually based on Sun's Remote Procedure Call
(RPC) mechanism. As a consequence, they automatically benefit from the
features provided by RPC and the External Data Representation (XDR), protocol,
including the data portability provided by XDR and the modularity ofRPC's
authentication system.

There are a number of benefits to a server-based approach to the provision of net
work services:

o The kernel itself remains more manageable in size and complexity, and more
clearly delimited in function. Its job is to implement the virtual machine on
the system that hosts it. It does not negotiate with other machines for the
non-local resources that it needs.

o When network services are implemented as independent server processes,
they are easily tuned and controlled.

o They can be invoked only when needed (see inet d(8)) and thus consume
no run-time resources when not in use. And they are easily updated to
accommodate protocol and transport changes. Indeed, when such changes
are made, multiple versions of the same server can be run simultaneously,
thus allowing development to proceed without rendering old applications
obsolete.

The overall effect is thus an extensible environment in which new network ser
vices can be easily added to the system by building upon XDR, RPC, network
communications and other services. Network services, then, are analogous to
commands: anyone can add one to effectively extend the system.

See the Network Services section of Network Programming for more infonnation
about the fundamental network services.

Networking functions contained within the kernel include the network and tran
sport levels of the system networking support, the network device drivers, the IP
and TCP protocol code and the NFS itself. Other network services are provided
by server processes:

lusr/etc/biod
Block I/O daemon. Used by an NFS client to handle read-ahead and write
behind for blocks in the buffer cache.

Revision A of 27 March 1990

60 System Services Overview

/usr/etc/bootparams
NFS boot daemon. Provides the infonnation that diskless clients need for
booting. If the yp name service isn't available, it consults the boot
params database, / etc/bootparams.

/usr/etc/in.comsat
Listens to a non-standard UDP socket used for incoming mail notification, as
enabled by the biff program.

/usr/etc/rpc.etherd
etherd collects, summarizes and reports statistics on packet traffic for a
given network interface.

/usr/etc/in.finqerd
in. f ingerd provides support for the ARPA-standard finger command,
which displays infonnation about the current users of a given machine.

/usr/etc/in.ftpd
File Transfer Protocol daemon. This is the ARPA standard file transfer pro
tocol.

/usr/etc/inetd
Opens sockets for all the servers listed in / etc/ inetd. conf, and then
starts them up when requests are made on them.

/usr/etc/keyserv
The DES authentication daemon. Stores secret keys and controls access to
them. keyserv will not talk to anything but a local root process.

/usr/etc/rpc.1ockd
The network lock manager daemon. Provides System V compatible
advisory file and record locking for both local and NFS mounted files.

/usr/etc/rpc.mountd
NSF mount daemon. Handles mount requests for files systems exported over
the NFS.

/usr/etc/in.named
named is the Internet domain name server.

/usr/etc/nfsd
Network File System daemon. The real work is done in the kernel by way of
a magic system call that never returns.

/usr/etc/portmap
Demultiplexes UDPs for Remote Procedure Calls, converting RPC program
numbers to DARPA protocol port numbers.

/usr/etc/rarpd
rarpd is a daemon that responds to Reverse-ARP requests.

/usr/etc/rpc.rexd
rexd is the RPC server that controls remote program execution.

/usr/etc/in.rexecd
rexecd is the server for the rexec () routine. It provides remote

Revision A of 27 March 1990

Chapter 4 - Networking Overview 61

execution facilities with authentication based on user names and passwords.

/usr/etc/in.rloqind
Remote Login daemon.

/usr/etc/rmt
Remote magnetic tape access. Used by the remote dump and restore pro
grams to manipulate a tape driver over the network.

/usr/etc/in.routed
Routing table update daemon. Uses a non-standard UDP protocol to update
kernel routing tables.

/usr/etc/rpc.rquotad
rquotad returns quotas for a user of a local file system which is mounted
by a remote machine over the NFS. The results are used by quota to
display remote file systems user quotas.

/usr/etc/in.rshd
Remote shell daemon. Non-standard TCP protocol to allow remote execu
tion with authentication based on privileged port numbers.

/usr/etc/rpc.rusersd
Remote user daemon. Necessary to support the ruser s command.

/usr/etc/rpc.rwalld
Remote write-to-all daemon. Handles rwall and shutdown requests.

/usr/etc/in.rwhod
Remote who daemon. Generates broadcasts periodically about the status of
logged-in users, and listens to the broadcasts of other servers on the local
network and maintains the database that is printed by rwho. Not used much
in the Sun environment since the protocol involves lots of broadcast packets.

/usr/l1b/sendmail
Provides mail transport through the Simple Mail Transfer Protocol (SMlP).

/usr/etc/rpc.sprayd
Spray daemon. Used by the spray command for network diagnosis.

/usr/etc/rpc.rstatd
Remote status daemon. The primary purposes for this server are returning
kernel performance statistics for perfmeter, and responding to requests
from rup.

/usr/etc/in.sysloq
Reads a datagram (UDP) socket and logs information it receives according to
a configuration file.

/usr/etc/in.talkd
Listens on a UDP port, and negotiates talk TCP connections. This protocol
doesn't even work. between Vaxes and Suns.

/usr/etc/in.telnetd
The ARPA-standard remote terminal service.

Revision A of 27 March 1990

62 System Services Overview

/usr/etc/tfsd
Translucent file-system daemon. Provides copy-on-write access to a private
overlay of a read-only file system. Refer to ADMIN for details.

/usr/etc/in.tftpd
Trivial file transfer protocol daemon. Can be used for simple, non
authenticated file transfers. Also used to load boot files.

/usr/etc/in.t~d

The ARPA-standard time service. Note that this service only provides the
system time to clients who request it, and is not a full network synchroniza
tion service.

/usr/etc/in.tnamed
The tnamed daemon supports the old obsolete DARPA Name Server Proto
col.

/usr/etc/ypbind
ypbind remembers information that lets client processes on a single host
communicate with some ypserv process. It must run on every machine
which has yp name service client processes.

/usr/etc/rpc.yppasswdd
Runs on yp name service masters only. Supports password change requests
for the yp name service password database.

/usr/etc/ypserv
Runs on all yp name service servers. The ypserv daemon's primary func
tion is to look up information in the local yp name service database.

/usr/etc/rpc.ipallocd
(Sun386i only). The rpc. ipallocd daemon maps Ethernet addresses to
IP addresses, allocating temporary IP addresses when necessary.

/usr/etc/rpc.pnpd
(Sun386i only). The rpc. pnpd daemon configures new systems onto a
Sun386i network, and distributes configuration information for systems
already on the network. It also provides configuration RPC calls for diskless
clients.

Revision A of 27 March 1990

5.1. System Calls

I/O Routines

creat ()

open ()

read ()

5
Programtner's Guide to Security

Features

This chapter is for system programmers interested in writing secure programs for
the Release 4.1 of the SunOS operating system. The first section below discusses
system calls from a security standpoint, and the second section discusses C
library routines from this standpoint. The remaining sections give practical
advice on writing secure C programs.

System calls provide entry points into the operating system kerne1. When a pro
gram makes a system call, the kernel itself services the request. When a program
calls a library routine, it's just like calling a function defined in the program,
except the function is defined in a system library. Library routines mayor may
not employ system calls. System calls are documented in Section 2 of the Sun OS
Reference Manual; library routines are documented in Section 3 of that manual.

There are four basic I/O operations: creating a file, opening a file, reading, and
writing. Descriptions follow:

This call creates a new file, or recreates an old file zero-length. It takes two argu
ments indicating the file's name and its mode:

[creat("/tmp/data", 0644); J
cr ea t returns a valid file descriptor, or -1 if there was an error. The process
must have write and execute pennission for the directory where the file is being
created. The file's owner and group are set to the effective user ID and group ID.
The file's pennissions are set according to the second argument, modified by the
default file creation mask umask.

This call opens a file for reading and writing, or both. It takes two or three argu
ments indicating the file's name, the input/output combination, and the mode (as
above). open () returns a valid file descriptor, or -1 if the process doesn't have
proper access pennissions. Once a process opens a file, changing permissions on
that file and its containing directories does not affect the original access pennis
sions.

This call reads data from a file previously opened by open () , which deals with
all access pennissions.

63 Revision A of 27 March 1990

64 System Services Overview

write ()

Process Control

fork ()

exec* ()

signal ()

File Attributes

umask ()

chmod ()

chown ()

This call writes data to a file previously opened by open () , which deals with all
access permissions.

There are three basic process control operations: forking a new process, overlay
ing this process with an executable image, and signaling a process.

This call creates a new process (the child) that is an exact copy of the calling pro
cess (the parent). All processes on the system are created this way. Here are
some security considerations:

o The child inherits the real and effective user and group IDs.

o The child inherits the default file mode creation mask, umask.

o All open files are passed to the child.

These calls copy an executable program into the space occupied by the calling
process. t Generally this is done after forking a new process, so as not to destroy
the parent. All programs on the system are executed this way. Here are some
security considerations:

o The real and effective user and group IDs are normally inherited by an exe
cuted program.

o However, the effective user ID (or group ID) is set to the owner (group) of
the executed program, if the program has the set user ID (set group ID) bit
turned on.

o The new program inherits the default file mode creation mask, umask.

o All open files (except those with the close-on-exec flag) are passed to the
new program.

This call provides an exception and interrupt handling facility. It takes two argu
ments: the number (or name) of a signal, and the action to take when that signal
occurs. If the action is SIG_IGN, the signal is ignored; if it is SIG_DFL, the
signal is handled in the default manner; if it is the name of a function, that func
tion gets executed on receipt of signal. The lockscreen program ignores
most signals, for example, so that it can't be stopped or killed by an unfriendly
user. Many programs trap interrupts so they can delete temporary files.

Three system calls affect the permissions and ownership/group of a file. Two
more system calls return the accessibility and attribute status of a file.

This call sets the default file creation mask for the calling process and all its chil
dren. It takes one argument, just as with the umask command.

This call changes the pennission modes of a file or directory. It takes two argu
ments: the file name and the numeric mode, as with the chmod command.

This call changes both the owner and the group of a specified file. It takes three
arguments: the file name, the numeric user ID, and the group number. In this

t Actually only execve () is a system call; the others - execl () • execv () • execle (). execlp ().
execvp () - are library routines.

Revision A of 27 March 1990

access ()

stat ()

User ID and Group ID

getuid ()

getgid ()

geteuid ()

Chapter 5 - Programmer's Guide to Security Features 65

sense it is a combination of the chawn and chgrp commands. Note that the
chawn () system call turns off both setuid and setgid permission, for secu
rity reasons. This is so these permissions do not get given out by mistake.

This call determines the accessibility of a file. It takes two arguments: the name
of the file in question, and the type of access to be tested (specified as an integer
between 0 and 7).

o the file exists
1 it is executable
2 it is writable
3 writable and executable
4 it is readable
5 readable and executable
6 readable and writable
7 readable, writable, and executable

These numbers are exactly the same as the modes for chmod(1). Note that
access () uses real (instead of effective) user ID and group ID to determine
accessibility. This property makes it useful inside setuid and setgid pro
grams, which alter only the effective user and group IDs.

This call returns the attribute status of a file. It takes two arguments: the name of
the file in question, and the address of a stat structure, defined in
< s y s / s tat. h>. This status structure contains the following information,
among other things:

st dev
st ina
st mode
st n1ink
st uid
st_gid
st size
st atime
st mtime
st ctime

ID of the device containing the file
i-node number of the file
type and permission mode
number of links
user ID of the file's owner
group ID of the file's group
size of the file in bytes
last access time (read)
last modification time (write)
last status change (to i-node)

Note that the -1 option of the 1 s command prints the modification time, not the
atime or ctime.

A set of system calls permits C programs to get and set both real and effective
user and group IDs.

This call returns the real user ID of a process. Programs may employ this call
inside set uid programs to determine which user has really invoked a program.

This call returns the real group ID of a process. Programs may employ this call
inside setgid programs to determine the original group of the invoker.

This call returns the effective user ID of a process. Programs that should have
the setuid permission bit turned on can employ this call to verify that they are
in fact running set uid. Also, programs can employ this call to determine if

Revision A of 27 March 1990

66 System Services Overview

getegid ()

setreuid ()

they are running setuid to some other user than the one who invoked it.

This call returns the effective group ID of a process. Programs that should have
the setgid pennission bit turned on can employ this call to verify that they are
in fact running setgid. Also, programs can employ this call to detennine if
they are running setgid to some other group than that of the invoker.

This call sets either the real or the effective user ID, or both. It takes two argu
ments: the real user ID, and the effective user ID. When either argument is -1,
that value is not changed. If the effective user ID of the calling process is:

D Super-user, both real and effective user IDs can be set to any legal value.

D Not super-user, the real user ID can be set to the effective user ID, or the
effective user ID can be set to the real user ID or to the saved set-user ID
from execve(2}.

Programs can toggle between real and effective user IDs by exchanging them,
using this system call or the seteuid () library routine.

setgroups () This call, which is restricted to the super-user, sets the group access list of the
current process. It takes two arguments: the number of groups, and a pointer to
an array of integers specifying numeric group IDs.

5.2. C Library Routines Library routines are system services that offer programs the advantage of con
venience and reliability. Many library routines make use of system calls, dis
cussed above. The C library is documented in section 3 of the reference manual,
while system calls are documented in section 2.

Standard I/O The Standard I/O Library is the most commonly used set of routines for reading
and writing files.

fopen () This call opens a file for reading or writing, or both. It creates a file if necessary.
Security considerations are the same as those for open () .

Reading The fread (), fgetc () ,getc (), fgets (), gets () ,fscanf () ,and
scanf () routines read infonnation from a file opened by fopen () ,or from
standard input. Once a file stream is open for reading, it remains readable even if
its access pennissions change.

Writing The fwrite (), fputc (), putc (), fputs (), fprintf (), and
printf () routines write infonnation to a file opened by fopen (), or to stan
dard output. Once a file stream is open for writing, it remains writable even if its
access pennissions change.

system () This call runs /usr /bin/ sh to execute the command specified as its argument.
Try to avoid making this call inside a set uid root program, as the invoked
shell has super-user pennission.

popen () This call invokes the command specified as its argument using fork () and
exec () , then creates a pipe to the new process using pipe (). Be extremely
careful when making this call inside a setuid root program, as the spawned
process has super-user pennission.

sun Revision A of 27 March 1990
microsystems

Password Processing

getpass ()

getpwnam()

getpwuid ()

getpwent ()

putpwent ()

Chapter 5 - Programmer's Guide to Security Features 67

Several library routines are available for reading system password files and for
dealing with passwords typed at the tenninal.

This call prints its argument (a prompt) on the tenninal, turns off echoing, then
reads a password typed at the terminal, up to eight characters long. It returns a
pointer to the password string. This routine is often used in conjunction with
crypt () to obtain an encrypted password.

Given a login name, this call returns a pointer to a pas swd structure, filled with
the corresponding password file entry. This structure is defined in <pwd . h> and
looks like this:

struct passwd
char *pw_namei
char *pw-passwdi
int pw_uidi
int pw_gidi
int pw_quotai
char *pw_commenti
char *pw_gecosi
char *pw_diri
char *pw_shelli

} i

On C2 secure systems, the pw _pa s s wd field does not contain an encrypted
password, but rather an indication that the encrypted password resides some
where else.

Given a numeric user ID, this call returns a pointer to a passwd structure, filled
with the corresponding password file entry.

This call is used for sequential processing of the password file. Initially it opens
the file and returns the first entry. Thereafter it returns the following entry. The
related setpwent () call rewinds the password file, and the endpwent () call
closes the password file.

This call is used to change or extend the / et c / pa s s wd file. Here are the steps
involved in this process:

1. Create a unique temporary file such as / et c / pw $ $ where the $ $ represents

2. Link the temporary file to the conventional temporary file / etc/ptmp. If
the link fails, remove the unique temporary file and exit; somebody else is
modifying the password file.

3. Read from / etc/pas swd with successive calls to getpwent () , and
write to / etc/ptmp with successive calls to putpwent () ,making
changes as necessary.

4. Move /etc/passwd to a backup file such as /etc/opasswd.

5. Link / etc/ptmp to / etc/passwd.

6. Unlink the two temporary files, /etc/ptmp and / etc/pw$$.

Revision A of 27 March 1990

68 System Services Overview

Group Processing

getgrnam ()

getgrgid ()

getgrent ()

Who's Running a Program?

getlogin ()

At this point no library routines are available for dealing gracefully with the
/ et c / sec ur it y / pa s s wd . ad j u n ct file on C2 secure systems. Fortunately
there should be little reason to tamper with this file anyway. Because password
entries for most users are stored in the YP Name Service, the putpwent () rou
tine is of limited utility, in any case.

A set of routines is available to deal with the / etc/ group file, analogous to
the routines just described.

Given a group name, this call returns a pointer to a group structure, filled with
the corresponding group file entry. This structure is defined in <grp. h>.

Given a numeric group ID, this call returns a pointer to a group structure, filled
with the corresponding group file entry.

This call is used for sequential processing of the group file. Initially it opens the
file and returns the first entry. Thereafter it returns the following entry. The
related setgrent () call rewinds the group file, and the endgrent () call
closes the group file. In a defeat of symmetry, there exists no putgrent ()
library routine.

The most reliable method of detennining who is running a program is to employ
getuid () along with getpwuid (). The first call returns the real user ID,
which gets handed to the second call so it can look up the user's login name.

#include <pwd.h>

struct passwd *pwenti

pwent = getpwuid(getuid(»i
printf(nuser name is %s\n", pwent->pw_name)i

There are other methods of detennining a user's identity, but they aren't as reli
able as the code above.

This call is supposed to return a pointer to the name of the user logged into a ter
minal. The routine examines standard input, output, and error (in order), in case
they are redirected. The first associated with a tenninal produces a tenninal
name, which is used to find an associated user name in / et c / u tmp. If a pro
cess was run by at, it has no associated tenninal, so get login () returns a
null pointer. Unfortunately getlogin () can be fooled by changing the tenni
nal associated with standard input, for example with this Bourne shell command:

(~$ __ p_r_o_g_r_a_m __ O_> __ /_d_ev __ /t_t_Y_O_7 ________________________________ ~]
This would cause a getlogin () call inside program to return the name of
the user logged into / de v / t t yO 7. As a consequence, the use of get 1 0-

gin () is discouraged.

sun Revision A of 27 March 1990
microsystems

Encryption Routines

The des_crypt Library

Chapter 5 - Programmer's Guide to Security Features 69

NOTE These encryption routines are only available in the U.S.A. by way of the Domestic
Encryption Kit.

In 1977, the National Bureau of Standards announced an encryption method "for
use in [unclassified applications on] Federal ADP systems and networks," called
DES (Data Encryption Standard). This encryption method uses a 56-bit key to
perturb 8 bytes of data at a time. Because the key was shortened from 128 bits
(as recommended by IBM) to 56 bits, DES can be attacked by brute force - trying
all possible keys - but the computation required takes a long time even on a
supercomputer. As a consequence, DES is relatively secure, because it costs so
much to break.

Release 4.1 libraries offer a set of routines implementing DES, using hardware if
it is available, which can be used to encrypt and decrypt sensitive data. In addi
tion, there is an older set of routines used mainly for encrypting passwords,
employing a modified DES that has not been implemented in hardware. These
routines are used for password encryption to prevent hardware assistance for
breaking into the system.

This DES encryption library is faster and more general purpose than the older
encryption routines based on encrypt (). Furthermore, the des_crypt
library employs DES hardware when it is available. Programs using the newer
library must include <des_crypt. h>. Two flavors of encryption are avail
able: Electronic Code Book (ECB) mode, which encrypts blocks of data indepen
dently, and Cipher Block Chaining (CBC) mode, which chains together succes
sive blocks. The second mode is more secure, because it protects against inser
tions, deletions, and substitutions, and also because regularities in clear text do
not appear in cipher text.

des_setparity () This routine should be called first to set the parity of the 8-byte encryption key.
This call takes a single argument: a character pointer, whose contents get
modified. Note that in DES, the parity bit is the low bit (not the high bit) of each
byte.

This routine implements Electronic Code Book mode. It takes four arguments:
the encryption key discussed above, a character pointer to the data involved, an
unsigned integer indicating the data's length, and an unsigned integer indicating
the mode of operation. Flags are ORed into the mode as necessary:
DES_ENCRYPT means to encrypt, DES_DECRYPT means to decrypt, and
DES _HW means to use DES hardware if available. The ecb _ crypt () routine
returns an integer status code.

This routine implements Cipher Block Chaining mode. It takes five arguments:
the encryption key discussed above, a character pointer to the data involved, an
unsigned integer indicating the data's length, an unsigned integer indicating the
mode of operation, and a character pointer to an 8-byte initialization vector for
chaining. At first the initialization vector should be zeroed out, but afterwards it
gets updated to the next initialization vector on each call. Hags are ORed into
the mode as necessary: DES_ENCRYPT means to encrypt, DES _DECRYPT

Revision A of 27 March 1990

70 System Services Overview

Password Encryption Routines

setkey ()

encrypt ()

crypt ()

means to decrypt, and DES _ HW means to use DES hardware if available. The
cbc _ crypt () routine returns an integer status code.
Note that these library routines are used by the de s command, discussed in the
previous chapter.

The older and slower DES encryption routines based on encrypt () are used
primarily for encrypting passwords. The password encryption routine crypt ()
involves a "salt" used to perturb the encrypting algorithm, so that DES chips
cannot be used to assist in cracking login passwords. Furthermore, this routine
calls encrypt () sixteen times to eat up CPU cycles. If a cryptanalyst wanted
to search the key space for miniscules - trying all possible 8-letter combinations
of lowercase letters - it would take about 3000 years on a Sun-3. Allowing for
combinations of uppercase letters and digits as well, it would take much longer.
That's why guessing a password is a more efficient way to break security than
searching the key space.

Given a 64-byte character array of ones and zeros (8 bytes worth of text), this
routine creates the 56-bit DES encryption key, which is used by the following
routine to encrypt or decrypt text.

This routine encrypts or decrypts a 64-byte character array of ones and zeros
specified as the first argument (8 bytes worth of text), according to whether the
second argument is zero (meaning encrypt) or one (meaning decrypt).

This call is used to encrypt an 8-letter password, usually obtained from get
pass () ,presented above. This call takes two arguments: a character pointer to
the typed password (the key), and a character pointer to a two-letter salt for per
turbing the algorithm. The salt string may be longer, but only the first two char
acters are relevant. First crypt () hands the key to setkey () , and then calls
encrypt () repeatedly. Finally crypt () returns a pointer to the encrypted
password. Here's how crypt () is typically used in a C program:

#include <pwd.h>

char *username, *p, *passwd, *getpass(), *crypt();
struct passwd *pwd;

if «pwd = getpwnam(username» == NULL) {
fprintf(stderr, "No such user name.\n");
exit(l);

p getpass("password:");
passwd = crypt(p, pwd->pw-passwd);
if (strcmp(passwd, pwd->pw-passwd»

fprintf(stderr, "Incorrect password.\n");
exit(2);

Note: the crypt () library routine should not be confused with the crypt shell
command, which uses a much less sophisticated encoding algorithm, one that can

Revision A of 27 March 1990

User and Group ID

setuid ()

seteuid ()

setruid ()

setgid ()

setegid ()

setrgid ()

5.3. Writing Secure
Programs

Chapter 5 - Programmer's Guide to Security Features 71

be broken by brute force in several hours of CPU time. Users seeking a higher
level of security can always use the more secure de s shell command, however.

These library routines allow programs to set user and group ID, both real and
effective. The first routine behaves differently if compiled with the System V
compatibility library rather than with the standard C library.

This call sets both the real and effective user ID of the current process to the
specified numeric user ID. The super-user may set real and effective user IDs to
any value; other users may set them only if the argument is the real or effective
user ID.

When programs are compiled using the System V compatibility library, this call
sets the real user ID and/or the effective user ID to the specified numeric user ID.
The super-user may set both the real and effective user IDs to any value. Other
users may set only the effective user ID, and only if the specified argument is the
same as the real user ID, or if the argument is the same as the saved set-user ID
from exec (). This arrangement permits toggling between real and effective
user IDs.

This call sets the effective user ID of the current process to the specified numeric
user ID. The super-user may set the effective user ID to any value; other users
may set it only if the argument is the real user ID.

This call sets the real user ID of the current process to the specified numeric user
ID. The super-user may set the real user ID to any value; other users may set it
only if the argument is the effective user ID.

This call sets both the real and effective group ID of the current process to the
specified numeric group ID. The super-user may set real and effective group IDs
to any value; other users may set them only if the argument is the real or effec
tive group ID.

This call sets the effective group ID of the current process to the specified
numeric group ID. The super-user may set the effective group ID to any value;
other users may set it only if the argument is the real group ID.

This call sets the real group ID of the current process to the specified numeric
group ID. The super-user may set the real group ID to any value; other users
may set it only if the argument is the effective group ID.

When you're trying to write secure C programs, there are two important guide
lines you should follow:

1. Make sure that temporary files created by the program don't contain sensi
tive information that isn't encrypted. When in doubt, store data in memory.
Also, verify that temporary files are readable and writable only by the owner.
It's always a good idea to call umask (077) at the beginning of a program.
Also, it's best to create temporary files in private directories that are writable
only by the owner. However, if you must use / tmp, get your system
administrator to set its mode to 2777 (set group ID) so that files in it may be
deleted only by their owner.

Revision A of 27 March 1990

72 System Services Overview

Set User ID Programs

2. Make sure that any command the program runs - whether with exec (),
system (), or popen () - is the command that should be run, and not a
Trojan horse. This is especially important if your program is setuid or
setgid, in which case programs should always reset the user ID before
running any commands.

Let's look at some ways a program can be fooled into running a Trojan horse. In
this innocent-looking function call, the vi command invoked is the first one in
the search path. If a user copied /usr /bin/ csh to $HOME/bin/vi, and had
$HOME/bin as the first element of PATH, the program would actually invoke
that user's private copy of the C shell, not the vi command:

(system("vi n
);

J
This is because system () inherits the PATH environment from the program,
which inherits it from the user's login shell. The logical way to avoid this poten
tial problem, it seems, would be to specify the full path name:

(Syst~("/usr/bin/vi");

This can be circumvented as well. All a clever user has to do is move the pur
loined C shell $HOME/bin/vi to $HOME/bin/bin, write a shell script
named vi in the current directory, and modify the shell and environment vari
able IFS (input field separator) to slash. In this case, system () thinks the
command above means to run $HOME/bin/bin with the argument vi. The
logical way to avoid this further problem is to set IFS before invoking the com
mand:

system("IFS=' \t\n'; export IFS; /bin/vi");

That looks pretty cluttered, but is nearly impossible to crack. A further problem
arises if the command is to be invoked with argument. Clever users could put
command separators such as ampersand or semicolon into the argument list, fol
lowed by invocations of / us r /b in / c s h or something similar. In set u i d
root programs, that C shell would also run setuid root, giving the cracker
full access to the system. The only solution to this potential problem is to parse
arguments before passing them to a program.

J

Any programs you write that are setuid must reset the userID before invoking
any commands. Here's the easiest way to do this:

int saveid;

saveid = geteuid();
setuid(getuid(»;
system("/usr/bin/ed");
setuid (saveid) ;

For this to work properly, you must use the System V compatibility library by

~~Y,.t!! Revision A of 27 March 1990

Set Group ID Programs

Commands with Shell Escapes

Shell Scripts and Security

Guidelines for Secure
Programs

Chapter 5 - Programmer's Guide to Security Features 73

compiling with /usr / Sbin/ ec instead of /usr /bin/ ce. Without the Sys
tem V compatibility library, it is impossible to set the effective user ID back to
what it was when a setuid program was first invoked.

The same cautions apply to programs that set group ID, as to programs that set
user ID. Any programs you write that are setgid must reset the group ID
before invoking any commands. Here's the easiest way to do this:

int saveid;

saveid = getegid() ;
setgid(getgid(» ;
system("/usr/bin/ed");
setgid(saveid) ;

To work properly this also requires the System V compatibility library, so use
/usr / Sbin/ cc to compile.

Be wary of commands that allow shell escapes, such as mail, wri te, dc,
edit, ex, vi, ed, sed, awk, troff, and perhaps others. Make especially
sure that programs never call these commands while in setuid or setgid
mode. See the examples above.

The same caveats apply to shell scripts as to C programs. Whenever a shell
script involves sensitive data or affects system security, you should be careful to
set the input field separators and the search path before proceeding with the guts
of the script:

IFS=" AI

"
PATH=/bin:/usr/bin
export IFS PATH

set uid or setgid, shell scripts are potential security risks for the user or
group, and should be avoided if possible (or restricted in scope to a particular file
system using).ehroot(8) When such scripts are used, it is even more important
to set IFS and PATH before proceeding.

Shell scripts that are set uid to root should never be used.

Here are some guidelines for writing secure setuid and setgid programs.

1. Don't do it unless absolutely necessary.

2. Set the group ID rather than the user ID. It's best to create a new special
purpose group, but if that's impossible, don't use a system group. When you
use an existing group, remember that you may be compromising files that
belong to other users in the group.

3. Don't exec () any commands. Remember that the library calls sys
tem () and popen () call some form of exec () .

Revision A of 27 March 1990

74 System Services Overview

5.4. Programming as
Superuser

4. If you must exec () a command, set the effective group ID to the real
group ID first with setgid (getgid ()) .

5. If you can't reset the effective group ID, set the IFS when calling sys
tem () or popen () , and invoke a command using its full pathname.

6. Don't pass user-specified arguments to system () or popen (). If you
must, check user-specified arguments for special shell characters.

7. If you have a large program that must execute a lot of other programs, don't
make it setgid - write a smaller, simpler setgid program and execute it
from the large program.

8. If you must set user ID instead of group ID, remember that all of the above
also applies to set u i d pennission.

9. Don't make a program set user ID to root. Pick another login, or better yet
create another login, but don't use root.

Here are some guidelines for installing setuid and setgid programs.

1. Make sure a setuid or setgid command is not writable by group oroth
ers. Never set the mode to anything less restrictive than 4755 (for set uid
commands) or 2755 (for setgid commands).

2. Better yet, set the modes to 4111 (for set uid commands) or 2111 (for
setgid commands) so that snoopers can't run the strings command on
the binary to search for security holes.

3. Be wary of programs that come from unknown sources. Search through the
code for calls to exec () , ,systemO and popen (). If a program is sup
posed to be installed setuid or setgid, read the source code closely.
Never install such a program unless you get source code.

4. Pay close attention when installing new software. Some make/ install
procedures create set uid and setgid programs indiscriminately. Pro
grams should never employ root privileges merely to change the owner or
group of a file, since this can be done without being super-user. Check for
commands that may create setuid files, such as these:

(cp su /tmp/su
cp /usr/bin/csh /tmp/su]

This section describes considerations for programs to be run only by root, and
for programs that absolutely must be made setuid root.

Some system calls are restricted to processes whose effective user ID is root.
Also, many routines presented earlier in this chapter behave differently when
called by the super-user than when called by an ordinary user. Furthermore, the
system does not perform permission checks if the user is root. The super-user
is always allowed access. For example, open () does not check the permissions
of a file when called by root - it simply opens the file. This lack of checking
makes being super-user very dangerous.

Revision A of 27 March 1990

setuid(}

setgid ()

chown ()

chroot ()

rnknod ()

Chapter 5 - Programmer's Guide to Security Features 75

Commands run by the super-user are root processes (except for a non-root
setuid program, which has the effective userID of the program's owner).
Furthennore, setuid root programs, and commands executed from within
one, are also root processes.

When called from a root process, this call sets both the effective and the real
user ID, rather than just the effective user ID. This is allowed so that users can
log in to the system. After the system boots up, the init process spawns a
get t y process for each tenninal; when get t y reads a login name, it calls
login to read and validate the password. Since all three processes run as
root, login is able to set the real and effective user IDs for a user's shell.
Once a process loses root pennission, it can't get it back. Thus programs
should get privileged operations out of the way before calling setuid () .

When called from a root process, this call sets both the effective and the real
group ID. Unlike setuid (), which only sets the user ID to a valid number,
setgid () set the group ID to any integer, whether or not that value is associ
ated with a group.

When run by a root process, this routine does not remove setuid or setgid
pennission. When run by a non-root process, however, such pennissions are
removed.

This system call changes a process' idea of where the root directory is. After this
call, a process cannot change directory above the new root, and all path searches
begin at the new root directory. This call is useful for setting up restricted
environments. Obviously, only root processes are allowed to perfonn this
operation.

This system call is used to create special files, such as device drivers. Aside from
FIFOs (named pipes), only root can run this call successfully. Most programs
never use this call because special files can be created with the administrative
command /etc/rnknod.

Security considerations for the system calls mount () and urnount () are
described in the chapter on system administration.

Revision A of 27 March 1990

76 System Services Overview

Revision A of 27 March 1990

6.1. Introduction

Overview

6
Native Language Application Support

Sun's native language application support features allow developers to create
applications that are readily portable between various native languages. Users
and developers both benefit when applications can be installed without change
between locales having different languages and customs.

Portability between native languages can substantially reduce a user's difficulties
when configuring applications for different locales. It also allows for interna
tional distribution of standard applications, while simplifying the problems of
training and support. While the language representation may change, the
program's internal operations do not. This portability is also referred to as inter
nationalization.

Portability across languages greatly simplifies the process of adapting versions of
an application to fit local markets. This adaptation process is also referred to as
localization.

Release 4.1 of the SunOS operating system provides support for developing and
executing applications that operate in native languages whose characters are
included in the ISO 8859/1 (ISO Latin 1) character set. These include most major
European languages, such as: Danish, Dutch, English, Finnish, French, German,
Italian, Norwegian, Portuguese, Spanish and Swedish.

Readers interested in Asian language environments should refer to the Japanese
Language Environment Product Description, Part Number 800-3148-10.

The native language application support features in Release 4.1 are an integral
part of the operating system's command and programmatic interface. They
encompass:

o A common data model based on the ISO Latin 1 code set (with added sup
port for multi-byte characters).

o Commands that operate cleanly on that model (8-bit clean commands).

o I/O device support for ISO Latin 1 characters, including native-language
keyboards, a compose key to produce composite characters not found on a
given keyboard, on-screen fonts, and (optionally) printer support.

o A standard announcement mechanism that allows users to select or change
language environments (locales) when using native-language applications.
When provided, users may select a native language environment base for a

77 Revision A of 27 March 1990

78 System Services Overview

Standards-Based Approach

Common Data Model

given host, or they may choose different locales for different applications on
the same system. The base locale supplied with 4.1 is the "e" environ
ment, as described in Volume 3 of the X/OPEN Programmer's Guide, Issue
2; (XPG2); 4.1 provides facilities for developing and installing other locales.

o Programming support, including 8-bit clean library routines, routines that
make use of language-specific character collation orders, conversion
schemes, and format conventions, and routines that produce language
specific (diagnostic) messages.

The traditional approach of many computer vendors has been to adopt
proprietary solutions for international applications. However, those solutions
would only operate on a particular vendor's installed base. By contrast, the
standard-based internationalization features in Release 4.1 support portability
across differing native language environments as well as different vendor plat
fonns.

The approach used in Release 4.1 is compatible with the internationalization rou
tines described in the ANSI X3.1S9-1989 C language standard. It is based on the
NLS system described in XP02. Since 4.1 confonns to XPG2, and also includes
the ANSI C internationalization routines, XPG3-compliant applications can
readily be ported to 4.1.

4.1 also confonns to the IEEE Standard 1003.1 (POSIX.l). For more infonnation
about X/OPEN compatibility and POSIX confonnance, refer to the chapters,
X/OPEN Compatibility Features and POSlX Conformance, respectively, in this
manual.

Prior to Release 4.1, the SunOS operating system did not support a common
method for representing characters in the various European languages. Applica
tions that required the use of characters other than those in the 7-bit US ASCII
character set (see ascii(7» were forced to provide proprietary (non-standard)
methods to represent and operate on them. Thus, text produced by one interna
tionalized application might well be unusable by another, and would almost cer
tainly be unusable with system commands and library routines based on the 94
characters allowed with 7-bit ASCII.

The ISO Latin 1 character set uses 8 bits to represent each character, allowing for
188 characters. It is compatible with 7-bit Ascn in that the encodings for the
printable ASCII characters are the same (8th bit set to 0). For purposes of text
representation, ISO Latin 1 can be thought of as a superset of ASCII. For a listing
of this character set, refer to Appendix A,/SO Latin 1 Character Set.

The ability to represent the characters of many languages using this common
character set allows applications operating in different native languages to com
municate with each other.

Revision A of 27 March 1990

8-Bit Clean Commands

110 Device Support
SunView 1

Table 6-1

Chapter 6 - Native Language Application Support 79

To support the notion of a native-language application environment, a number of
commands used to process user input (text) have been modified to support 8-bit
characters. Prior to 4.1, many system commands were "8-bit dirty," meaning
that they interpreted Asen control characters (those with the eighth bit set to 1)
in specialized ways. Some simply masked off the eighth bit, while others used it
as a flag of some sort.

Other than those listed in the table below, all commands in 4.1 can be regarded
as 8-bit clean. That is, they either support 8-bit character data, or are not con
cerned with processing text.

8-Bit Dirty Commands

8-Bit Dirty Commands
adb cpp key login man rusers users
addbib ctags keylogout newgrp rwho w
as cxref lex nroff sdb who
awk dbx lint passwd spell whoami
catman dbxtool login refer strings whois
cc t deroff logname rlogin su yacc
cflow dis m4 rmail troff

t Supports 8-bit characters in strings and comments.

The screen fonts provided with SunOS 4.1 can display the entire range of ISO
Latin 1 characters.

SunView 1.8, bundled with Release 4.1 handles the input, editing and screen
display of native language characters. All the Sun View based desktop tools,
such as mail tool, textedit, commandtool and others, provide full native
language support, allowing users the full power of the Sun View desktop for use
with their native language.

Revision A of 27 March 1990

80 System Services Overview

Figure 6-1

Native Language Keyboards

German and French Characters in SunView 1 Desktop

Victor Hugo
travers leurs ombres, bril1e eneor;

Tantot fait, ~ '~ega1 des larges dOmes d~or,
Luire 1e toit d~une chaumi~re;

Ou dispute aux brouillards les vagues horizons;
Ou decoupe, en tombant sur les sombres gazons,

Comme de nds lacs de lumi~re. -
In 4.1, the Type 4 keyboard generates ISO Latin 1 characters. Sun also provides
Type 4 keyboards with key layouts for use in a number of countries, including:
Belgium, Canada, Denmark, Gennany, Italy, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland (French), Switzerland (Gennan), the United King
dom, and the U.S.A.

Each native-language keyboard supplies the proper layout and key encodings for
a specific country's language. For instance, here is the layout for the United
Kingdom native-language keyboard:

Revision A of 27 March 1990

Chapter 6 - Native Language Application Support 81

Figure 6-2 United Kingdom keyboard layout

Alternate Key Mappings

The Compose Key

Floating Accent Keys

1~111111~1111 ~I~llil m~lllllm~IIIIIIr:~1111 il~II!II~1111 ~11!111~~I! IIIII ~II ~ m~t~n1~ljjjj~1
::::::::::::::::::::::

e £# S ~ to a * () +

3 4 5 8 ,

Appendix B shows the layouts for keyboards that are currently available.

At boot time, the system executes the loadkeys command which configures
the key-to-character-code mappings for the keyboard. The user may run load
keys at any time to update the key mappings (when switching keyboards, for
instance). Applications that read from the keyboard directly, that is, without
translation, must perfonn their own key mappings. For more infonnation about
key mappings, refer to the SunView System Programmer's Guide.

It is also possible to generate alternate key mappings for specific uses. Existing
key mappings can be found in the directory /usr I sharel lib/keytable s,
which can be copied and modified using a text editor. The new key mapping
thus created can be installed and brought up automatically by placing the com
mand

loadkeys keymap

in the user's. login or . profile. Refer to loadkeys(8), kb(4M), and
key table 8(5) for details.

Characters that do not appear in the layout of a given keyboard may still be
entered by way of the (Compose I key. Such characters are typically composite
characters that include diacritical marks. To indicate a composite character, first
press the (Compose I key. Next, press the key for the desired diacritical mark, and
then the key for the desired alphabetical character, or vice versa. For a complete
listing of composite key sequences, refer to Appendix C, Compose Key and
Floating Accent Key Sequences.

On some keyboards, certain keys appear with an empty box (0) underneath the
diacritical mark. These are referred to as floating accent keys. When used, they
allow you to type in a composite character without using the I Compose I key. The
floating accent key must be typed first, followed by the key for the character to
be accented.

Revision A of 27 March 1990

82 System Services Overview

Line Printers

Networking

Mailers

File Transfer and Sharing

Tenninal Emulation

4.1 support for native language printing includes:

[J Transmission of 8-bit characters by Ipr. The serial line must also be 8-bit
clean, and printer must support the ISO Latin 1 character set for printing to
take place. Otherwise, the output must be filtered before printing can take
place.

[J PostScriptt -based printing using TranScript@, an optional software package
that provides PostScript-based printing on Sun's LaserWriter® printer pro
ducts.

The TCP/IP and UDP protocols provide 8-bit clean datapaths for interprocess and
network communication, but this is no guarantee that applications using these
protocols will not interpret the 8th bit. The RPC-based services provided with
release 4.1 are 8-bit clean. Internet-protocol services in 4.1 are also 8-bit clean.
They will handle 8-bit code sets in addition to ISO Latin 1, provided that those
code sets also incorporate the encodings for printable Ascn characters.

The electronic mail applications, / usr /bin/mail and / usr / ucb/mail
(Mail), can handle 8-bit text. However, they are not designed to transfer binary
data that does not confonn to the text model; files that do not include I Return)
characters within a nonnalline-Iength range, or that are not null-tenninated, may
not get through.

The mail message-delivery server in 4.1, sendmail, can also handle 8-bit text.
However, not all implementations of sendmail are 8-bit clean. Versions
released prior to 4.0, or those supplied with other operating systems, are known
to strip the 8-th bit from text included in messages.

Since NFS does not interpret the file's content, text files with 8-bit characters can
be shared across systems. Also, in 4.1, pathnames can contain 8-bit characters.
However, servers running releases prior to 4.0 may have difficulty with these
filenames.

uucp(I) can handle 8-bit text, but not binaries (unless they are encoded using
uuencode(1».

When used in binary mode, ftp can transfer 8-bit text files with no problems.
There may be problems when trying to transfer 8-bit text using ftp in ASCII
mode.

When used with a serial line operating in 8-bit, noparity mode, tip can pass 8-
bit characters to a tenninal capable of displaying them. telnet is officially a
7-bit protocol, however it too has been rendered 8-bit clean in 4.1.

2 tPostScriptTN is a trademark of Adobe Systems Incorporated.

Revision A of 27 March 1990

Other Networking SelVices

Modems

The Announcement (Locale)
Mechanism

Chapter 6 - Native Language Application Support 83

comsat the selVer for the mail notifier biff is 8-bit clean, as are finger(1),
and talk(1).

rsh(l), the remote shell, is 8-bit clean, as is rlogin, but will only function as
such if the remote host is also running an 8-bit clean shell.

When used with 8-bit data, modems should be set to 8-bit noparity mode.

The key concept for application programs is that of a program's locale. The
locale is an explicit model and definition of a native-language environment. The
notion of a locale is explicitly defined and included in the library definitions of
the proposed ANSI C Language standard.

A program's locale defines items such as its code set (typically a subset of ISO
Latin 1), date and time formatting conventions, monetary and decimal formatting
conventions, and collation order.

The locale consists of a number of categories for which there are language
dependent formatting or other specifications.

In Release 4.1, these categories take the form of subdirectories in the
localization-database file hierarchy. The set of files corresponding to a given
locale (represented by a file in each category's subdirectory) is referred to as a
localization.

The localization subdirectories are as follows:

LC CTYPE
For controlling the behavior of character-handling routines and multi
byte character functions.

LC TIME
Date-time formats.

LC MONETARY
Monetary formats.

LC NUMERIC
Numeric formats and decimal-point characters.

LC COLLATE
Character (case) conversions and string collation tables.

LC MESSAGES
Message catalogs.

LANG INFO
Used by nl_langinfo () to display information about the locale.

Revision A of 27 March 1990

84 System Services Overview

Figure 6-3 Structure of a Localization Database

lusrlshare/lib/locale

\ --------LANG INFO LC CTYPE LC MONETARY LC TIME

LC COLLATE LC MESSAGES LC NUMERIC
C

default

C C C

default default default

iso 8859 1
En GB En GB
En US En US

Each of these directories has a corresponding environment variable of the same
name. A specification for each category can be obtained or altered by calling
set locale () and specifying the category and value. For example:

setlocale(LC_NUMERIC, nEn_Gs n);

sets the fonnat for numeric values to that for Great Britain.

In addition to identifying the code set, the LC_CTYPE can be used to indicate the
user's overall native-language environment. In other words, in the absence of a
specific call to set locale for a given category, the system can be instructed to
use the value of LC _ CTYPE for all categories.

When called as shown:

setlocale(LC_ALL, lin)

set locale () attempts to use the filename indicated in the LC _ CTYPE vari
able for each category. If LC _ CTYPE is empty or invalid (no corresponding
file), setlocale () tries the value of the LANG, environment variable, and
then that of LC_DEFAULT. If none of these apply, set locale () uses the
defaul t file in each directory. This file is typically a symbolic link to another
file within the subdirectory. The standard default in 4.1 is the "C" locale.

In accordance with the proposed POSIX 1003.1 standard and XPG2, 4.1 also pro
vides the LANG and NLSPATH environment variables to announce the run-time
locale requirements, and to indicate the directory search path for message cata
logs, respectively.

The environment variable LANG can be used to identify the locale. However, the
value for LC _ CTYPE takes precedence over LANG. A recognized value for
LANG takes the following fonn, which specifies the native language, and further
qualifies it if necessary with territory and code set specifications:

languageLterri tory[. codeset]]

which is used to name the locale infonnation file in each localization category.

Revision A of 27 March 1990

6.2. Using the
Internationalized
Desktop

Sharing Data between
Applications

Sharing Data between 4.1
Host Systems

Chapter 6 - Native Language Application Support 85

In practice, the territory and codeset fields are unnecessary with the default
environments shipped with 4.1. In 4.1 this syntax is not used to select supersets
of an individual language. Instead the programmer should use the individual
categories mentioned above, with the same territory.codeset structure as neces
sary.

The NLSPATH (environment) variable determines the search path for the locali
zation database(s). The default value for NLSPATH is
/usr/share/lib/locale.

Using LC _ CTYPE to switch display locales does not affect keyboard input.
Thus, if you had French and German locales available for your application, used
a German keyboard, and switched locales from German to French, the keyboard
would still transmit the labeled German characters. To enter French characters,
you would either have to use the I Compose I key, or switch physical keyboards
and issue a loadkeys command. (Or, if so inclined, you could set the dip
switches inside the keyboard, but the key caps would then be inaccurate.)

Many existing 3rd-party applications are based on the 7 -bit ASCII codeset. Since
applications that do not perform an explicit set locale () call operate with the
"C" environment, they will operate in the 4.1 without problems. However, they
may have difficulty with 8-bit character input from files or devices. Other appli
cations may use different codesets. To deal with the limitations of such applica
tions, consider:

o Does the application use a different codeset?

If so, then, it may be possible to create a filter to map text between the appli
cation and the system, or between applications.

o Does the application use the ISO Latin I codeset?

If not, then long in the long-term it should be changed to do so. In the short
term, you may be able to generate a character classification table for the
existing code set (such as the IBM PC international codeset).

o Can the application use 4.1 functionality? By default, the window system
and screen fonts assume the codeset to be ISO Latin 1. To use another you
would have to supply appropriate fonts and a new character classification
table. But note that, aside from editors, system utilities do not ordinarily
destroy data contained in files, they simply misinterpret it.

Applications that use ISO Latin 1 as their code set will operate cleanly under 4.1.
Since 4.1 is 8-bit clean, applications based on other code sets should also operate
on their own files without problems. However, attempts to mix and match files
may have unexpected results.

Data sharing and interprocess communication between host systems running
Release 4.1 is completely transparent.

Revision A of 27 March 1990

86 System Services Overview

Sharing Data with Other
SunOS Operating System
Hosts

6.3. Creating and Installing
a Native Language
Environment (Locale)

Building a Classification and
Conversion Table: chrtbl

When attempting to share data between 4.1 hosts and host systems running ear
lier versions of the operating system (or other operating systems such as UNIX
System V or BSD):

o 4.1 Host as File SelVer, with Non-4.1 Oient

In this configuration, you cannot assume that the applications running on the
client are 8-bit clean. Thus, 8-bit text files used by the client may create
problems. If the client is running 4.0, the Bourne shell is 8-bit clean. How
ever, most utilities are not.

o 4.1 Client, Non-4.1 Server

In this configuration, the file-access capabilities of the selVer allow 8-bit text
files to be accessed by client applications. However, utility programs run
ning on the selVer itself may have trouble with 8-bit text. If the selVer is
running 4.0, 8-bit characters in filenames are allowed. This may not be true
for other systems.

Now that you've been introduced to the native language support features, it is
time to discuss how to create a locale. Creating a locale involves:

o Selecting a name for the new locale

o Creating and installing a character classification and conversion table, and a
string collation table

o Creating and installing formats for dates and times, monetary values, and
numeric values

o Creating a database for native-languages messages for use by an application.

These topics are discussed in the following sections.

The chrtbl(8) command is used to create a table that contains the character
classification and case conversion tables for a code set. chrtbl takes as input a
specification file, and produces a classification and conversion data file that is in
proper fonnat for use within the LC _ CTYPE localization category.

The input file for the ISO Latin 1 code set is shown below. Note that characters
are specified by their hexadecimal (or octal) values. The - character is used to
indicate a range of values, while \ is used to continue across input lines. Lines
that begin with a # are treated as comments. The relationship between lower and
upper case letters is expressed as bracketed ordered pairs, with the first element
being lower-case.

Revision A of 27 March 1990

Chapter 6 - Native Language Application Support 87

i ISO Latin 1 Code Set definition

ehrclass iso S859 1 - -
model eue 1,1,1

isupper Ox41-0x5a OxeO-Oxd6 OxdS-Oxde

islower Ox61-0x7a Oxdf OxeO-Oxf6 Oxf8-0xff

isdigit Ox30-0x39

isspaee Ox20 Ox09-0xOd OxaO

ispunet Ox21-0x2f Ox3a-Ox40 Ox5b-Ox60 Ox7b-Ox7e \
Oxa1-0xbf Oxd7 Oxf7

isentrl OxO-Ox1f Ox7f

isblank Ox20 OxaO

isxdigit Ox30-0x39 Ox61-0x66 Ox41-0x46

ul <Ox41 Ox61> <Ox42 Ox62> <Ox43 Ox63> <Ox44 Ox64> \
<Ox45 Ox6S> <Ox46 Ox66> <Ox47 Ox67> <Ox48 Ox6S> \
<Ox49 Ox69> <Ox4a Ox6a> <Ox4b Ox6b> <Ox4e Ox6e> \
<Ox4d Ox6d> <Ox4e Ox6e> <Ox4f Ox6f> <Ox50 Ox70> \
<OxS1 Ox71> <OxS2 Ox72> <OxS3 Ox73> <Ox54 Ox74> \
<OxS5 Ox7S> <OxS6 Ox76> <Ox57 Ox77> <Ox58 Ox78> \
<Ox59 Ox79> <OxSa Ox7a> <OxeO OxeO> <Oxe1 Oxe1> \
<Oxe2 Oxe2> <Oxe3 Oxe3> <Oxe4 Oxe4> <OxeS OxeS> \
<Oxe6 Oxe6> <Oxe7 Oxe7> <Oxe8 OxeS> <Oxe9 Oxe9> \
<Oxea Oxea> <Oxeb Oxeb> <Oxee Oxee> <Oxed Oxed> \
<Oxee Oxee> <Oxef Oxef> <OxdO OxfO> <Oxd1 Oxf1> \
<Oxd2 Oxf2> <Oxd3 Oxf3> <Oxd4 Oxf4> <OxdS Oxf5> \
<Oxd6 Oxf6> <OxdS OxfS> <Oxd9 Oxf9> <Oxda Oxfa> \
<Oxdb Oxfb> <Oxde Oxfe> <Oxdd Oxfd> <Oxde Oxfe>

The chrclass heading gives the name of the code set. The value for this head
ing is used by chrtbl as the basename for the output file. The optional model
heading gives a description of the rules for a particular code set. These rules will
affect the way in which the multi-byte functions defined in rnblen(3) operate. If
the model field is selected and has the correct syntax it will crate another output
file with a filename based on the chrclass heading, with a . ci suffix added.
If the model heading is not used then it is assumed that the code-set being
defined is a single byte codeset. The ul heading indicates that the upper-to
lower case mappings follow. The other headings indicate which characters are to
be recognized by the various character-classification routines.

To compile the classification table, use a command of the form:

and then install the table in the LC _ CTYPE directory of the locale database, as
described under Installing a Locale, below.

It is possible to make variants of a classification table by making small adjust
ments to an ISO code-set definition. This may be to show small differences of
operation in differing countries. For example if you wished to make the French
version of 8859/1 invalidate upper case accented letters, this could be achieved
by editing the basic 8859/1 table, marking them as invalid and creating a new

Revision A of 27 March 1990

88 System Services Overview

Building a String Collation
Table: eolldef(8)

character set table for a French locale.

It should be noted that some issues of conversion are only handled by the colla
tion facility. The conversions allowed by this table are only single byte to single
byte. For example this table will not support the conversion of the Gennan ~
character to the string "ss".

The colldef command is used to create string collation tables used by a code
set. colldef reads its standard input, and produces a collation table that is in
proper fonnat for use within the LC_COLLATE localization category.

When comparing sequences (strings) of characters, a pair of words might collate
differently in different languages. The strxfrm () and strcoll () library
routines allow programs to use the locale-specific collation tables for sorting
strings.

A sample input file for colldef is shown below.

A sample collation specification

order \x20iA;a;B;b; (e,c) ;ch;D;d; (E, \xc8, \xc9, \xca) ;f; ... ;z

substitute "\xdf" with "ss"
substitute "\xc6" with "AE"
substitute "\xe6" with "ae"

The order line gives specifies the sort order for single characters. Semicolons
are used to separates primary collating elements. So, in this ordering, the string
Apple would be sorted ahead of the string apple. Parentheses are used to
indicate a secondary sorting, that is, groups of characters that are to be collated
together in the absence of a distinguishing character to follow. Thus 'Ca' comes
before lea' (as it would without the brackets), but ea comes before ICe'.
(which it wouldn't without the brackets)

The substitution lines define substitution rules. These are generally used
during sorting, so strings such as the following:

schlo~
schloss

(in this example) will collate together.

To compile the collating table, use a command of the fonn:

~
:". ," ,

•• \ ...•• ·•···• .• #a# •••• ¥p~#~sh<s:r:9· ••••• f:S91icl~#·.·~p~l"li~h •. n:
and then install the compiled table in the LC _COLLATE directory of the locale
database.

Revision A of 27 March 1990

Date and Time Formats

Chapter 6 - Native Language Application Support 89

Different cultures and nations use a variety of conventions to record the date and
time. The following table illustrates the wide variety of conventions in use
around the world.

The strftime(3) function can be used to display the date and time in the
desired fonnat.

Table 6-2 International Date and Time Conventions

Language Convention Examples
Danish dd/mm/yy 13/08/89

Finnish dd.mm.yyyy 13.08.1989

French dd/mm/yy 13/08/89

German dd.mm.yy 13.08.89

Italian dd.mm.yy 13.08.89

Norwegian dd.mm.yy 13.08.89

Spanish dd-mm-yy 13-08-89

Swedish yyyy-mm-dd 1989-08-13
United Kingdom dd/mm/yy 13/08/89

United States mm-dd-yy 08-13-89

French Canadian yyyy-mm-dd 1989-08-13

English Canadian yyyy-mm-dd 1989-08-13

The simplest way to create a date and time table for the LC _ TIME category is to
follow the format given in the file:
/usr/share/lib/locale/LC_TIME/C:

Jan
Feb
Mar

Dec
January
February
March

December
Sun
Mon

Sat
Sunday
Monday

Saturday
%H: %M: %S
%m/%d/%y
%a %b %e %T %Z %Y
AM

PM
%A, %B %e, %Y

• sun Revision A of 27 March 1990
-v"" microsvslems

90 System Services Overview

The first twelve lines indicate the short fonns of the months of the year. The fol
lowing twelve give the long fonns. The next seven give the short form of the
days of the week. The following seven give the long forms. The next lines give
various date and time fonnats using the field descriptors described in
ctime(3V):

%H:%M:%S
%m/%d/%y
%a %b %e %T %Z %Y
AM

PM
%A, %B %e, %Y

Short form of local time
Short form of local date
Local short fonn for date and time.
ante meridiem notation
post meridiem notation
local long form for date and time

The text of these last lines can be altered as to punctuation, order and content
according to local custom.

Once the new date and time fonnat file has been completed, you can install the
file in the LC _ TIME directory of the locale database.

Decimal Units There are a variety of fonnatting conventions for decimal units as well, as the
following table shows:

Table 6-3 International Decimal Formatting Conventions

Language Examples

Danish 1.234.567,89
Finnish 1.234.567,89

French 1.234.567,89
Gennan 1234 567,89

Italian 1.234.567,89
Norwegian 1.234.567,89

Spanish 1.234.567,89

Swedish 1.234.567,89

United Kingdom 1,234,567.89

United States 1,234,567.89

French Canadian 1234 567,89
English Canadian 1 234 567,89

You can use the fscanf () (refer to scanf(3C)) routine to accept input of
decimal amounts. fscanf () has been enhanced in 4.1 to accommodate dif
ferent input fonnats. Currently scanf () will not understand the space as a valid
input separator, but the space can be used on output (Gennan uses both modes).

To create a numeric format specification for the LC_NUMERIC category, follow
the fonnat given in the file
/usr/share/lib/locale/LC_NUMERIC/En_US:

Revision A of 27 March 1990

Chapter 6 - Native Language Application Support 91

[3

The first line of this file contains the radix character. The second line contains
the thousands-separator, and the third line gives the number of digits for group
ing purposes. If the last two lines are empty, grouping (by thousands) is not
done.

Once the numeric format file has been completed, you can install it in the
LC_NUMERIC directory of the locale database.

Monetary Formats There are many different formats for monetary figures, as the table below illus
trates.

Table 6-4 International Monetary Formatting Conventions

Language Unit of Currency Example
Danish Kroner(kr) kr.1.234,56
Finnish Markka(mk) 1.234 mk
French Franc (F) F1.234,56
German Deutschemark(DM) 1,234.56DM
Italian Lira(L) L1.234,56
Norwegian Krone(kr) kr 1.234,56
Spanish Peseta(Pts) 1.234,56Pts

Swedish Krona(Kr) 1234.56KR

United Kingdom t Pound(#) #1,234.56

United States Do11ar($) $1,234.56
English Canadian Do11ar($) $1 234.56
French Canadian Do11ar($) 1 234.56$

t The symbol # represents the pound-sterling symbol

1

The localeconv(3) function is used to obtain currency formats. It uses the
formatting conventions of the current locale to set the components of an object
with type struct lconv to the appropriate values, and returns a pointer to the
filled-in object.

Revision A of 27 March 1990

92 System Services Overview

To create a currency fonnat specification for the LC_MONETARY category, fol
low the fonnat given in the file
/usr/share/lib/locale/LC_MONETARY/En_US:

USDO
$

3
+

2

Y
n
y
n
1
o

This file consists of exactly fifteen lines, each of which contains specific infonna
tion about the monetary fonnat:

Line 1. International Currency Symbol (string)
This is the currency symbol for the locale. The first three characters contain
the alphabetical code for the symbol as specified in ISO 4217, Codes/or the
Representation 0/ Currency and Funds. The fourth character, which must
also be the last character on the line, is the character used to separate the
currency symbol from the monetary quantity. For example:

ITL.

would be the correct specification for Italy. ITL refers to the standard code
for the currency, and the period separates the code from the amount. Thus,
the string IT L . 123, 0 00 would represent 123,000 Lire.

Line 2. Local Currency Symbol (string)
This is the local version of the currency symbol, such as the $ dollar-sign
used in the United States.

Line 3. Monetary Decimal Point (string)
This is the radix character used to format monetary quantities. It separates
the unit quantity from the decimal fraction parts. If this is empty, it means
by default the decimal parts are not printed (such as in Italy, where fractions
of Lire are not printed).

Line 4. Monetary Thousands Separator (string)
This is the string used to separate digits that are grouped together. It is usu
ally a comma or period, and most often groups together thousands units (3
digits). If this line is blank, no grouping character is used.

Line 5. Monetary Grouping Specification (string)
This line gives the size of a group of digits. It is often used only for

Revision A of 27 March 1990

Chapter 6 - Native Language Application Support 93

separation after the thousands digit, but may be use in higher groupings as
well. For example:

\ 3 separates after thousands digit only:
3 \ 3 separates after each group of 3 digits:

If this line is empty, no grouping is done.

Line 6. The Positive Sign (string)

7654,321
7,654,321

The symbol used to represent a positive value. It is normally empty, but
may sometimes contain a symbol such as the plus sign (+). If this line is
empty, no positive sign is required.

Line 7. The Negative Sign (string)
The symbol used to represent a negative value. Usually set to the minus sign
(-).

Line 8. International Fractional Digits Count (character)
This is the integer number of digits required after the decimal point in the
international monetary representation. This does not affect the local
representation. For instance, the value 2 would produce:

NLG 1.234.56

for Dutch Guilders. If this line is empty, fractional digits are not
represented.

Line 9. Local Fractional Digits Count (character)
This is the integer number of digits required after the decimal point in the
local monetary representation. The value 3 would produce:

$1,234.560

for U.S. Dollars (obviously not the standard presentation fonn in this case).
If this line is empty, fractional digits are not represented.

Line 10. Position of Currency Symbol when Positive (character)
This is a boolean value that indicates whether the currency symbol comes to
the left or right of a positive (nonnegative) value. An y (or Y, t, or T)

means that the symbol appears to the left, an n (or N, f, or F), to the right. If
this line is empty, it is taken as f.

Line 11. Space Separation of Currency Symbol for Positive Values (character)
If this line contains an y (or Y, t, or T), the currency symbol is separated by
a space from the positive monetary value. Otherwise the symbol is not
separated from the value.

Line 12. Position of Currency Symbol when Negative (character)
This is a boolean value that indicates whether the currency symbol comes to
the left or right of a negative value. A y (or Y, t, or T), means that the sym
bol appears to the left, an n (or N, f, or F), to the right. If this line is empty,
it is taken as o.

Line 13. Space Separation of Currency Symbol for Negative Values (character)
If this line contains a y, (or Y, t, or T), the currency symbol is separated by
a space from the negative monetary value. Otherwise the symbol is not

Revision A of 27 March 1990

94 System Services Overview

Message Catalogs

separated from the value.

Line 14. Position of Positive Sign (character)
This is a numeric value in the range 0-4, representing the position of the
positive sign with respect to the monetary value, as follows:

o Parentheses surround the currency symbol
1 The sign string precedes the quantity and currency symbol
2 The sign string succeeds the quantity and currency symbol
3 The sign string immediately precedes the currency symbol
4 The sign string immediately succeeds the currency symbol

Line 15. Position of Negative Sign (character)
This is a numeric value in the range 0-4, representing the position of the
positive sign with respect to the monetary value, as follows:

o Parentheses surround the currency symbol
1 The sign string precedes the quantity and currency symbol
2 The sign string succeeds the quantity and currency symbol
3 The sign string immediately precedes the currency symbol
4 The sign string immediately succeeds the currency symbol

Message catalogs are files of message strings, separated from an application, with
an indexed internal structure. They are accessed by file name. The gencat(l)
utility is used to create a message catalog from the message text source file.

Individual messages are indexed by rnsg_ id within the catalog. Optionally,
message catalogs can also be divided into one or more sets of message, which are
indexed by set_ide Given these identifiers, accessing the appropriate message
is a simple table lookup.

Unlike the other categories in the locale database, the LC_MESSAGES directory
contains subdirectories for each locale. Each individual message catalogue typi
cally resides within each subdirectory associated with every available locale
(language) of messages for an application.

To build a message catalog for a given application and locale, first extract the
message strings from the source file. With this release of SunOS, there are no
tools supplied to automate this process.

The 4.1 C library allows you to make reference to a message string through the
functions catgets(3) and catopen(3). In addition 4.1 supplies the get
text(3), and textdornain(3) functions for the same purpose. Both sets of
functions perfonn the same tasks, although it is not recommended to mix both
sets of calls in the same application.

For an X/OPEN compliant application, run the source message file through gen
cat(1). This will produce a binary message file in the current working directory
that can later be moved to the correct installation directory.

If the message text is built for use with ge t text () , you may use the
install txt(1) to build it, and as with gencat you can copy the binary into
the locale database for run-time loading.

Revision A of 27 March 1990

Installing a Locale

6.4. Developing an
Internationalized
Application

Overview

Chapter 6 - Native Language Application Support 95

Once the various files for the desired categories have been created, you can
install them in the default locale database (directory tree), provided that you can
become the super-user on the system. The pathname for this location is:
/usr/share/lib/locale
If you wish to install a per-workstation private version of the same database, you
may install the files under:
/etc/locale
Which is always searched first by the set locale () function.

Creating internationalized application programs is not difficult, but it does
require knowledge of some specific programming techniques. If the need for
internationalization is considered in the application's design, the development
process can be quite straightforward. Techniques for dealing with the various
categories governed by the current locale are described in this section.

Programmers building internationalized applications may also be interested in
several other references. The Draft Proposed National Standardfor Information
Systems-Programming Language C explains the entire C language interface,
and is available from the:

X3 Secretariat
Computer and Business Equipment Manufacturers Association
311 First Street, N.W., Suite 500
Washington, DC 20001.

The X/OPEN Portability Guide volumes 2 and 3, explains the X/OPEN require
ments for internationalization; it is written by the X/OPEN Company, Ltd. and is
printed and published by:

Prentice Hall
Englewood Cliffs, NJ 07632

Note that the C compiler does not support 8-bit characters in object names (that
is, names of routines, variables, and so forth), although it does allow you to ini
tialize 8-bit data in strings. Certain 8-bit characters are treated specially by cpp,
and so their use is not recommended in names of defined constants.

This section discusses the following considerations when designing an applica
tion, and provides short programming examples of the best ways to structure
software.

o Acquiring the native-language environment using set locale ()

o Handling of alternate alphabets and character sets

o Date and Time Fonnats

o Numeric Fonnats

o Monetary Formats

o File Names

Revision A of 27 March 1990

96 System Services Overview

o Sorting and Collation Orders

o Native Language Messages

o Other Considerations

8-Bit Character Support Release 4.1 provides the following library routines for 8-bit character support.
Routines

Table 6-5 Internationalized Routines

Internationalized Routines

Routine Description

Locale
localdtconv () Returns date and time fonnat for locale
localeconv () Returns numeric and monetary fonnats
setlocale() Set locale or locale category

Date/Time
strftime() Convert date and time to string
strptime () Convert string to date and time

Character Handling
isalnum () Character classifications
isalpha ()
isascii()
iscntrl ()
isdigit ()
isgraph ()
islower ()
isprint ()
ispunct ()
isspace ()
isupper ()
isxdigit ()
toascii () Character conversions
tolower ()
toupper ()

String Handling
atof () Convert string to number
ecvt () Convert number to string
fcvt ()
gcvt ()
regexp(3)t Regular-expression routines
strcoll () Collate two strings
strtod () Convert string to number
strxfrm() Transform string

Formatted Output
fprintf () Print fonnatted string
printf ()
sprintf ()
nl fpr intf () Print fonnatted string (XPG2 version)

Revision A of 27 March 1990

Chapter 6 - Native Language Application Support 97

Table 6-5 Internationalized Routines- Continued

Acquiring the Locale:
setlocale{)

Internationalized Routines

Routine

nlyrintf ()
nl sprintf ()

Formatted Input
scanf ()
fscanf ()
sscanf ()
nl_scanf ()
nl_fscanf ()
nl sscanf ()

Messaging
catgets ()
catgetmsg ()
catopen ()
catclose ()
gettext ()
text domain ()
nl langinfo(}

Multi-Byte Characters:l=
mblen ()
mbtowc ()
wctomb ()
mbstowcs ()
wcstombs ()

Description

Accept formatted input

Accept formatted input (XPG2 version)

X/Open Messaging function
X/Open Messaging function
X/Open Messaging function
X/Open Messaging function
Messaging function
Messaging function
Print native-language database info

Get length of multi-byte string
Multi -byte to wide character
Wide character to multi-byte character
Multi -byte string to wide character string
Wide character string to multi-byte string

t regexp(3) routines are 8-bit clean only. They do not handle
POSIX regular expressions.

*These routines support a number of multi-byte code sets, including:
EVe, ISO 2022, and XEROX XCCS,®.

The Sun View I input and display routines also support 8-bit characters.

To confonn with the ANSI C language standard, all processes are initialized to
use the "C" (ASCII) native-language environment. Therefore, a program must
make an explicit call to setlocale () in order to use the locale specified in its
environment. A call of the fonn:

setlocale(LC_ALL, 1111);

is typically used to set all locale categories to those in the environment.

Applications may allow users to modify one or more locale categories, or to
switch locales entirely, by calling set locale () .

• ~r!!tn Revision A of 27 March 1990

98 System Services Overview

Handling Alphabets and
Character Sets

Handling Date and Time
Formats

Internationalized applications eliminate code set dependencies. Self-developed
programming techniques that introduce dependencies on the ASCII codeset must
be converted to a more portable fonn for an application to successfully handle
varying code sets. For instance, the example below shows a hard-coded test
based on ASCII, which should be replaced with ispr int () ,one of the standard
character-range test routines listed above. This program will fail to correctly
recognize some ISO Latin 1 characters that are printable when run in a locale
other than "C."

/* Poor practice: Codeset Assumed to Be ASCII */
main ()
{

int c;
if (c<=0371 Ic>=0177)
printf("This character cannot be printed\n");
else
printf("This character is %c\n",c);

As mentioned earlier, strftime () can be used to display the date and time in
whatever form the current locale specifies. strftime () , strptime () , and
localdtconv, are other functions that handle locale-dependent time formats
(see ctime(3V). The synopsis of strftime () is:

iinclude <time.h>

size_t strftime(s, maxsize, format, timeptr);
char *s;
size_t maxsize;
char *format;
struct tm *timeptr;

where s is a pointer to a string in which to store the formatted time, maxsize is
the maximum number of bytes that will be placed in s, format is a string giv
ing the format to display, and t imept r is a pointer to a tm struct as returned by
localtime () .

For example, the function below displays the time correctly in a number of dif
ferent locales:

Revision A of 27 March 1990

Handling Numeric Formats
scanf ()

Chapter 6 - Native Language Application Support 99

#include <time.h>

#include <sys/types.h>

#include <locale.h>

#define MAXLEN 80

int strftime(); /*Returns date/time according to locale */

char buff[MAXLEN);

struct tm *timeptr;
time t clock;

int count;

main()

setlocale(LC_TIME,"");

clock = time(O);

timeptr = localtime(&clock);
count=strftime(buff,MAXLEN,"%x %X",timeptr);
printf("Todays Date/Time Is: %s\n",buff);

It is possible to use the s canf style functions to input data based on language
dependent grammar, or order (see scanf(3V)). The trick here is to be able to
vary the fonnat string without the need to change the (hard-coded) argument lists
in your program code. The fonnat string can be extracted and can be defined in a
locale dependent manner.

int fscanf (stream, format [, pointer] ...)
FILE *stream;
char *format;

f s can f () reads input from the stream pointed to by s t ream; the string
pointed to by format specifies the admissible input sequences and an (optional)
order in which they are to be converted for assignment, for example, the call:

char input_string [40] = "dirty water";
char adjective[20] , noun[20];

sscanf(input_string,"%1$s%2$%s",adjective,noun);

would place "dirty" in the string adjective, and "water" in the string noun
Now, in German it may be required to reverse the noun and adjective, in which
case we would only have to change the (possibly extracted) string in the above
example, as follows:

sscanf(input_string,"%2$s%1$s",adjective,noun);

Revision A of 27 March 1990

100 System Services Overview

localeconv localeconv () returns a pointer to the lconv structure, which contains data
for fonnatting numeric and monetary amounts. This can be useful in conjunction
with conversion routines such as at 0 f () , for converting input strings into
actual numeric values.

The components of the lconv structure are given in <locale. h> as shown:

/*
* Numeric and monetary conversion information.
*/

struct lconv {

} ;

char *decimal_pointi /* decimal point character */
char *thousands_sepi /* thousands separator character */
char *groupingi /* grouping of digits */
char *int_curr_symbol; /* international currency symbol */
char *currency_symbol; /* local currency symbol */
char *mon decimal_point; /* monetary decimal point character */
char *mon thousands_sep; /* monetary thousands separator */
char *mon_groupingi /* monetary grouping of digits */
char *positive_signi /* monetary credit symbol */
char *negative_signi /* monetary debit symbol */
char int_frac_digitsi /* intI monetary number of fractional digits */
char frac_digitsi /* monetary number of fractional digits */
char p_cs_precedesi /* true if currency symbol precedes credit */
char p_sep_by_spacei /* true if space separates c.s. from credit */
char n_cs_precedesi /* true if currency symbol precedes debit */
char n_sep_by_space; /* true if space separates c.s. from debit */
char p_sign_posni /* position of sign for credit */
char n_sign_posni /* position of sign for debit */

Alternative input routines are also provided. The scanf () and sscanf ()
functions can be used to read from the standard input stream, or from a
character string, respectively. For compatibility with XPG2, the routines
nl_scanf (), nl_sscanf () and nl_fscanf () are also provided. How
ever their use is not recommended since their functionality has been completely
subsumed by the scanf () routines as specified in XPG3.

printf () It is possible to use the printf style functions to output data based on language
dependent grammar, or order (see scanf(3V)). The trick here (as with
scanf ()) is to be able to vary the format string without the need to change the
(hard-coded) argument lists in your program code. The format string can be
extracted and can be defined in a locale dependent manner.

int fprintf (stream, format [, pointer] ...)
FILE *streami
char *formati

fprintf () writes output to the stream pointed to by stream; the format
string specifies how subsequent arguments are converted for output. For instance
in American usage:

+m.!! Revision A of 27 March 1990

Chapter 6 -Native Language Application Support 101

fprintf (stream, "%s, %s %d, %d: %. 2d\n", day, month, date, hour, minute);

might produce:

Sunday, July 3,10:02

Whereas for German usage, the format string could be replaced:

fprintf(stream, "%1$5, %3$d.%2$s,%4$d:%5$.2d\n",
day, month, date, hour, minute);

to produce:

Sonntag, 3.Juli,10:02

Alternative output routines are also provided. The printf () and sprintf ()
functions can be used to output to the standard output stream, or to a character
string, respectively. For compatibility with XPG2, the routines n l_pr in t f () ,
nl_sprintf () and nl_fprintf () are also provided. However, since their
functionality has been subsumed by the pr intf () family in XPG3, their use is
not recommended.

Handling Monetary Formats The table below illustrates the rules that might be used by three countries. The
table that follows shows respective values for the structure that would returned
by localeconv () , once the appropriate locales have been created and
installed. t

Table 6-6 More Sample Monetary Formats

Country
Positive Negative International
Format Format Format

Italy L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56

Norway kr1.234,56 kr1.234,56- NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

2 tThese locales are not supplied in Release 4.1.

Revision A of 27 March 1990

102 System Services Overview

Table 6-7

Handling File Names

Sorting, Collation and
Conversion

Values o/the Structure Returned by localeconv ()

Field Italy
Nether-

Norway
Switzer-

lands land
int curr symbol "ITL." "NLG " "NOK " "CHF " .
currency symbol "L." "F" "kr" "SFrs."
mon decimalyoint "" " " " " " " , ,
mon thousands sep " " " " " " " " ,
mon grouping "\3" "\3" "\3" "\3"
positive sign "" '''I "" ""
negative sign "-" "-" "_,, "C"
int frac digits 0 2 2 2

frac digits 0 2 2 2

P csyrecedes 1 1 1 1

P sep by space 0 1 0 0

n csyrecedes 1 1 1 1

n sep by space 0 1 0 0

p signyosn 1 1 1 1

n signyosn 1 4 2 2

There are no currently accepted international standard routines to control the
input of fonnatted monetary infonnation. Programmers should use
localeconv () in conjunction with fscanf () or read () to construct their
own input routines. Similarly, there are no currently accepted international stan
dard routines to control the output of fonnatted monetary information. Program
mers should use the localeconv () and fprintf () to construct their own.

Release 4.1 allows for any ISO 8859/1 character to be a valid character within a
file name except for the backslash (\), SPACE, slash / and NULL characters. It is
assumed the nonnal conventions for filenames will be applied to (e.g. The . c
suffixes).

The correct sorting of an alphabetic list, or collation across European languages
is a much more difficult problem than it appears at first glance. Many factors
affect collation order.

Often, accented characters and unaccented characters should sort alike. Upper
case and lower case characters should sort alike. Accented characters usually fol
low unaccented characters. However, there are many exceptions to this rule.
Some accented characters sort as a unique letter, some double characters sort as a
single character. Many more complex rules apply.

SunOS provides two functions for string comparison: strcoll () and
strxfrm (). Both of these reference the collation infonnation in the program's
language locale, (category LC_ COLLATE). The collation sequence table in the
locale can, in tum, be accessed or initialized from the command line with the
colldef and chartbl commands. SunOS 4.1 provides no collation tables by

Revision A of 27 March 1990

Native-Language Messages

Library Routines for Accessing
Message Catalogs

Chapter 6 - Native Language Application Support 103

default in the standard software distribution. Developers requiring collation
tables must construct their own.

The strcoll () function compares the string pointed to by its first argument
with the string pointed to by its second, interpreted with respect to the
LC _ COLLATE category of the current locale. The sign of a non-zero value
returned is detennined by the relative ordering within the current collating
sequence of the first pair of characters which differ.

The strxfrm (sl, s2, n) function transfonns the string pointed to by s2 and
places the resulting function into the array pointed to by sl. The transfonnation
is such that two transfonned strings can be ordered by s t r cmp () .

Release 4.1 provides several alternative solutions to the problem of how to create
message structures which can be easily written, translated, and correctly
accessed at run-time depending upon the locale of the program. Messages are
stored in message catalogs, files containing messages which are indexed and
accessible by msg_id.

Because the contents of the message catalog are separate from the application's
code, a message catalog for the current locale can be selected or altered at run
time without altering the code itself.

Message catalogs are opened by calling the routine catopen () , which locates
the identified message catalog accord to the search and naming rules in the
environment variable NLSPATH. To illustrate:

#include <nl_types.h>

nl_catd catd = catopen("catalog_name",O);

will return a catalog descriptor, nl_catd which is then used in calls to cat
get s () to identify the message catalog. Message catalogs are closed with the
routine catclose () .

The routine catgets () uses a message identifier, msg_id, to extract from the
numbered message set identified by set _ id, within the catalog referred to the
by the catalog identifier, catd:

char *catgets(catd,set_id,msg_id,string);

The small program below illustrates the use of all the routines. It retrieves the
first message of the second set of catalog messages in the file catalog_name.
If the call fails, the program displays the string: 'Not s u c c e s s f u 1 text'.

Revision A of 27 March 1990

104 System Services Overview

Message Catalogs and the File
System

Static and Dynamic Messaging

#include<stdio.h>
#include <nl_types.h>
#include <locale.h>

#define SET_NUMBER 2
#define MESSAGE_NUMBER 1

main ()
{

nl_catd catd:

setlocale(LC_MESSAGES,"")i
catd = cat open ("catalog_name", 0);
printf ("%s\n", catgets (catd,SET_NUMBER,MESSAGE_NUMBER,

"default text"»:
catclose(catd);

There are no standard conventions for the location and naming of message cata
logs; these are left to the application. In general, applications might choose
either to locate message catalogs within a subtree corresponding to the supported
language, I application_name I $ LANG 1* . cat, or to consolidate all message
catalogs in one sub-directory, lapplication_namelcatalogs/*. cat.

The environmental variable, NLSPATH allows this flexibility, Its use is as fol
lows:

NLSPATH = /appl_lib/%L/%N.cat:/nlslib/%N/%L

A substitution field is introduced by %, with % L substituting for the current value
of LANG, and %N, substituting for the value of the name parameter used in the
call to catopen (). catopen () searches first in
lappl_lib/$LANG/cat_name. cat, and then in
Inl slibl ca t _ namel $ LANG for the message catalog.

Generally, the use ofNLSPATH is discouraged, as it leads to the users having
uncertain knowledge of the location of the message catalog at run-time. It is pre
ferred practice to use the default location for messages in
lusr I sharel libl locale/LC_MESSAGESI locale/name In this case, col
lision of message catalogs should be detennined by the application installation
script.

Assuming that the programmer uses the message retrieval facility as described in
the previous section, it is still important to understand how best to define strings
in the original fonn so that they can be easily translated at a later stage. The
examples in this section do not contain references to catgets () (These are
only removed for readability), however it is assumed that in the real case these
calls would be surrounding the string literal itself.

Application writers can take two approaches to message creation, either static
messaging or dynamic messaging. Static message usage involves pre-fonnatted
messages which are selected from a message catalog and printed without re
ordering by the application. Dynamic message creation also selects messages

Revision A of 27 March 1990

Chapter 6 - Native Language Application Support 105

from a message catalog, but orders and assemble messages at run-time instead of
statically presenting them. 4.1 provides C language routines for both strategies.

The advantage of static messaging is its simplicity. A single message is selected
from the catalog and is sent directly to the output stream. However, with static
messaging, care must be taken to avoid splitting a message across printf() state
ments. Otherwise the message will be difficult to translate. This is illustrated
below:

/* Poor practice: Do Not Split Messages */
printf("This sentence may be difficult to translate ");
printf("because it spans mUltiple printf statements.\n");

Better practice is to place entire sentences within a single printf () statement,
as shown below:

/* Good practice: 1 Message Per Sentence */
printf("This sentence is easy to translate \

because it is included with one printf statement.\n");

Another problem that can arise is when a printf () statement could result in
more than one sentence when executed. The illustration below demonstrates a
message that would not be translatable.

/* Poor practice: Mixing Multiple Sentences */
printf("%- Insufficient resources to%s %d%s resource%s - %s",

func, (alloc_flg? " allocate" : "reserve"),
count, (request_fig? " sufficient" : ""),
(count == 1 ? "" : "s"), "Request failed. ");

One solution is to split the message into separate print statements, one per variant
of the message, and to have an implicit switch statement that selects the correct
version at run-time.

Dynamic messaging can be used when the exact content or order of a message is
not known until run-time. Unless done carefully, this approach can cause trans
lation problems. If the positional dependence of keywords is hard-coded into the
program, the program itself must also be changed for the message to be success
fully translated. Obviously, this defeats the purpose of message catalogs.

The solution is a set of routines which enables proper dynamic message creation
by allowing the calculation of string arguments to be perfonned in position
independent manner. The need for this will now be illustrated.

/* Poor practice: Position Dependent Keywording */
printf("Unable to %s the %s\n",

(lock_fig? "lock": "find"), (type_fIg? "page": "record"»;

Revision A of 27 March 1990

106 System Services Overview

This program could alternatively execute in English as either:

Unable to lock that page.
Unable find that record.

However, the program's message could not be translated into the equivalent Ger
man,

"Das Programm kann die Seite nicht sperren."

and

"Das Programm kann der Rekord nicht finden."

because the Gennan conventions for word order require that the program's key
words be reversed.

Release 4.1 solves this with functions which support dynamic message ordering:
printf(),fprintf(),sprintf(),scanf(),fscanf(),and
sscanf ().

These functions make the position of the argument independent of the underlying
input string. Position within the string is declared by an extension to the conver
sion character %. The sequence

%n$

where n is a decimal digit, is substituted for the conversion character. Conver
sions are subsequently applied to the nth argument in the argument list, rather
than to the next unused argument. In the example above, the fonnat string would
contain the new positional arguments:

printf("The program cannot %l$s %2$s\n",
(lockflg? "lock" : "find"), (type_fIg? "page" : "record"»;

The English message catalog becomes:

"Unable %l$s %2$s"
"lock"
"find"
"the page"
"the record"

While the Gennan message catalog becomes:

"Das Prograrrun kann %2$s nicht %l$s"
"sperren"
"finder"
"das Seite"
"der Rekord"

The routines nl_printf (), nl_fprintf (), nl_sprintf (),
nl_scanf () , nl_fscanf () ,and nl_sscanf () are also provided for
XPG2 compatibility, but since their functionality has been subsumed by the
pr intf () family in XPG3, the use of the nl_ * variants is not recommended.

Revision A of 27 March 1990

Other Programming
Considerations
Graphical Characters

Printing

Chapter 6 - Native Language Application Support 107

Finally, remember to allow messages to have variable lengths. Applications
should not make assumptions about the space required to express a message.
Messages originally written in English will often expand in length when
translated into foreign languages. However, applications should also plan for
messages which become shorter under translation as well.

Messages using parameters should be carefully considered; it may be necessary
to re-position the parameter within the message to allow for differences in trans
lation.

Graphical characters such as & and ! are subject to widely differing interpreta
tions and should be avoided. However, the % percentage symbol is widely under
stood.

Using menu selections or making choices with cursor position is a useful tech
nique for making application programs independent of the locale in which the
application runs. Choosing items by typing the first letter works less well.

Manufacturers of printers have lagged the manufacturers of computer systems in
the incorporation of standard codesets within their products. Application pro
grams should beware of printer-specific codesets which may not translate directly
from the ISO 8859/1 codeset used in SunOS. Applications expecting to
encounter such printers should define structures which contain the printer specific
code sets and specifically translate files to be printed.

SunOS minimizes these problems by providing 8-bit clean datapaths within 1 pr
and by also using the ISO 8859/1 codeset within the TranScript unbundled
software product which drives Sun LaserWriter printers.

Page Sizes The dimensions of the standard paper stocks used around the world varies
widely, as shown below. Internationalized applications should not make assump
tions about the pagesizes available to them. Release 4.1 provides no support for
tracking the page size to be written by an application; this is the responsibility of
the application program itself.

Table 6-8 Common International Page Sizes

Paper Size Name Measurements(Inches)
Letter 8.5" XII"
Legal 8.5" X 14"
A4 8.34" X 11.78"
JIS B4 10.20" X 14.43"
JIS B5 7.23" X 10.20"

The standard paper trays distributed with the Sun LaserWriter and LaserWriter II
printers support letter, legal, and A4 sized trays.

Revision A of 27 March 1990

108 System Services Overview

Fonts

The best strategy for the application is to make no assumptions about the page
sizes available, and to delay fonnatting to page size until print time. Tables of
explicitly supported page sizes should be used; default choices might be used
with an optional user interface for selecting from the supported page sizes.

Font support can be broken into two categories: printer fonts and screen fonts.
Printer font management is the responsibility of the application. SunOS provides
no programmatic interface for this function. However, TranScript, available as
an unbundled software product, provides filters which convert the common UNIX
outputs into Postscript based files and fonts.

Default screen fonts for use with Sun View 1, are in the directory
/usr/lib/fonts/fixedwidthfonts.

Handling Multi-Byte Characters There is an assumption underlying the relationship between the English language
and its representation in a codeset--the assumption that all characters can be
represented in one byte. ASCII makes the further restriction of assuming every
thing can fit into 7-bits of one byte. This may not apply to non-English
languages, particularly the Asian languages. Asian languages typically need more
than one byte (usually 2 or 3) to uniquely identify a character.

Applications intended for use outside of Europe may need to use another funda
mental type for character representation, rather than a char. Other fundamental
types defined in the proposed ANSI C Language standard and supported in
Release 4.1 are wide (2-byte) characters of type wchar t, and multi-byte char
acters. This data type is defined in <stddef . h>.

In practice, a multi-byte character can be defined to span any number of bytes,
however, they are typically encoded within the system as wide characters.

The mbtowc () function maps from a multi-byte character to a wide character.
It detennines the number of bytes within the multi-byte character, and identifies
and stores the code for the value of type wchar_ t corresponding to the multi
byte code.

Other functions for manipulating wide and multi-byte characters and strings are:

mblen () returns the number of bytes within the multi-byte character.

wctomb ()
perfonns the corresponding backwards conversion from wchar to
multi -byte.

mbstowc ()
converts a multi-byte string to an array ofwchar_t.

wcstombs ()
converts a string of wide characters to an array of multi-byte charac
ters.

Revision A of 27 March 1990

7.1. Introduction

Future Directions

7
System V Compatibility Features

This chapter is intended for users and programmers who want to learn about Sys
tem V compatibility features in Release 4.1 of the SunOS operating system.

Release 4.1 provides Sun Workstation® users and programmers with nearly
complete System V compatibility. Sun's compatibility package allows program
mers to write software that conforms to the Base Level of Release 3 of the Sys
tem V Interface Definition (SVID). This release represents another phase of joint
efforts by Sun and AT&T to unify versions of the UNIX operating system. The
two principal versions have been BSD (now 4.3 BSD),t and System V in its vari
ous releases.

System V and 4.3 BSD are not radically different in architecture, the interface
they present to the user, or the routines they provide for the programmer. Both
are derived from the UNIX system originated by Ken Thompson and Dennis
Ritchie in the mid-seventies; many features are essentially unchanged since then.

The System V compatibility package permits programmers to write and test
software targeted for either System V Release 3, or 4.3 BSD. Commands, system
calls, and library routines and headers can be drawn concurrently from either the
Berkeley or the System V set. For users, it is even possible to have one window
that uses System V by preference, and another window that uses BSD by prefer
ence (by placing / u s r / 5bi n ahead of / us r / ucb in the shell's execution
path, or vice versa).

Along with providing substantial conformance to the SVID Issue 2, the System V
compatibility package in Release 4.1 also conforms to IEEE Standard 1001.3-
1988 (POSIX.1). (See the chapter entitled POSIX Conformance, for details.)

4.1 also provides an additional compatibility package to conform with the
X/OPEN Portability Guide, Issue 2 (XPG2). Refer to the chapter entitled, X/OPEN
C ompatibility Features for more information about The
packageX/OPENcompatibility conformance with the System V Verification Suite
3 (SVVS3). X/OPEN.

Further developments have brought SVID89, and Issue 3 of the X/OPEN
Programmer's Guide (XPG3) closer together. These changes introduce

t An outgrowth of research at V.C. Berkeley, BSD stands for Berkeley Software Distribution.

109 Revision A of 27 March 1990

110 System Services Overview

System V Enhancements

differences between SVID Issue 2 and SVID89, as well as differences between
XPG2 and XPG3.

These developments have complicated the compatibility situation overall. How
ever, selecting the desired compatibility characteristics is simply a matter of
properly constructing the shell's search path.

Commands in /usr / Sbin provide the command-level interface required for
System V Release 3, as defined by the SVID Issue 2. The System V C compiler,
/usr / Sbin/ cc, links with libraries found in /usr / Slib, which substan
tially confonn to SVVS3. For System V compatibility, place /usr/ Sbin ahead
of / u s r / bin in the shell's search path.

The cc command in /usr/xpg2bin uses the Systein V C compiler, and links
with supplementary libraries found in /usr /xpg2lib. For X/OPEN compati
bility and strictest confonnance with SVVS3, place /usr/xpg2bin ahead of
/usr/Sbin.

For compatibility with SVID89 and POSIX, omit /usr /xpg2bin from the path.
To sum up:

/usr / Sbin: /usr /bin: /usr /ucb: ...
For confonnance with System V Release 3, POSIX.l and new func
tionality in SVID89 and XPG3.

/usr /xpgbin: /usr / Sbin: /usr /bin: /usr /ucb: ...
For strict confonnance with SVVS3, SVID Issue 2 and XPG2.

/usr /ucb: /usr /bin: ...
For traditional BSD compatibility.

Unless otherwise noted below, Release 4.1 incorporates the full functionality of
the SVID Issue 2 Base Level system. The compatibility package features:

o A number of system calls that are compatible with SVID Base Level, includ
ing: chown () , creat () , fcntl () , kill () ,mknod () , open () , and
utime ().

o The complete System V STREAMS interface, to support portable communi
cation protocol modules, and to simplify the writing of device drivers.

o The TLI transport-level networking interface. (Refer to UNKNOWN TITLE
ABBREVIATION: TRANSPORT for more infonnation.)

o RFS remote file sharing. (Refer to System and Network Administration for
more infonnation.)

o A STREAMS-based t ty(4) interface that is fully System V and BSD compa
tible, which supports all character sizes and parity settings. (For an intro
duction to STREAMS and STREAMS-related facilities, see the STREAMS
Programming manual).

o A System V compatible version of the archive utility ar(1 V).

o System V batch utilities and job scheduling facilities: at(1), batch(1),
cron(I), and crontab(1).

Revision A of 27 March 1990

How the Compatibility
Features Work

Chapter 7 - System V Compatibility Features 111

o Access to Sun's value-added libraries (Sun View for example) from inside
System V programs.

o System V IPC facilities, including messages, semaphores, and shared
memory segments. For more infonnation about these facilities, refer to Pro
gramming Utilities and Libraries.

o System V first-in-first-out (FIFO) files, also called named pipes, which allow
unrelated processes to communicate as if within a pipeline. (FIFO files are
created using the mknod () system call.)

o The lockf(3) library routine for mandatory file and record locking.

o Password aging.

o A line printer command interface that is compatible with System V, and
works with the system's BSD-based printer subsystem.

o SVID-compliant versions of memory-allocation routines, supplied in the
libmalloc. library in / usr / 5lib.

o SVID-compliant versions of math library routines, in the svidm library in
/usr / 5lib. The standard math library conforms to ANSI/IEEE Standard
754-1985.

o System V accounting. (Refer to System and Network Administration for
more infonnation.)

System V programs that are upwards compatible with those in 4.3 BSD have
already been added to the regular system directories. For example,
/usr /bin/ sh is the new Bourne shell, and /usr /bin/make includes
backward-compatible System V enhancements.

Programs that existed only on System V have been added to regular system
directories as well. For example, the text manipulation programs cut(!) and
paste(l) both reside in /usr /bin.

System V programs that are incompatible with those in 4.3 BSD reside in the
directory /usr / 5bin. For example, /usr / 5bin/ st ty has an entirely dif
ferent set of options from /usr /bin/ stty. If you want to use System V pro
grams by preference, simply include / us r / 5b in early in your path, as in these
lines from the .login or . profile files:

~s~ set path = (/usr/5bin /usr/bin /usr/ucb .)

(sh) PATH=/usr/Sbin: /usr/bin: /usr/ucb::
export PATH

The directories /usr / 5bin, /usr / 5lib, and /usr / 5include contain
material that has not yet been converged. Libraries and include files for compil
ing System V software reside in / u s r / 51 ib and / u s r /5 in c 1 ude respec
tively. These libraries and headers are not compatible with their counterparts in
/usr/inc1ude or /usr/1ib.

Revision A of 27 March 1990

112 System Services Overview

File-Creation Group ID
Semantics

Ancillary Libraries

If you want to compile a program written for System V, don't use
/usr /bin/ ee but rather /usr / 5bin/ ee, which will read all the correct
include files and load the correct libraries.

The directories that constitute the System V compatibility package are optional.
The suninstall(8) program lets you decide whether or not to load these
directories.

SunOS operating system releases prior to 4.0 used BSD group-ID assignment
semantics for file creation. Under this scheme, a file is assigned the group ID
(GID) of the directory in which it is created. By contrast, under System V a file
is assigned the GID of the creating process. SunOS system Release 4.0 and later
releases (including 4.1) allow users to select either of the two group-ID assign
ment schemes. When a directory has its set-GID bit set, the BSD semantics are in
effect; a file created in that directory will be assigned the directory's GID. Other
wise, it will be assigned the effective GID of the creating process (System V
semantics).

A newly created directory inherits the value of its parent's set-GID bit.

Release 4.1 distribution tapes are shipped with the set-GID bit set on all direc
tories, thereby giving BSD semantics as the default. When you install Release
4.1, if you want to mount old filesystems and have them act as they did in the
past, type the following command line for each mounted file system:

To set System V semantics on some portion of the installed system, use g-s
instead of g+ s in the above command line. There is a mount option called
grpid that always provides BSD semantics. This option may be needed when a
client system running Release 4.0 or later mounts a file system from a server that
has not yet been upgraded to a 4.x release.

In addition to the C library in / u sr / 51 ib Release 4.1 supplies the following
libraries for more complete compliance with the SVID:

o The libmalloe library contains versions of memory-allocation routines
such as malloe (), that return the errors expected by the SVVS (System V
Verification Suite). The default routines return different errors under certain
conditions. To select the System V versions of these routines, compile your
program with the -llibmalloe option to 'ee'.

o The svidm library is a System V implementation of the math library. The
default implementation confonns strictly to the IEEE Standard 754-1985 for
floating-point arithmetic. To select the System V version, compile your pro
gram with '-lsvidm'.

Revision A of 27 March 1990

7.2. SVID Compliance

Table 7-1

Non-Compliant
exit () -

abort ()
aeeesa() alarm ()
chown () calloc () t

fentlO chdir ()
getcwd() chmod ()
lockf () clearerr ()
mount () close ()
read() closedir ()
rmdir() creat ()
writ_O dup ()

dup2 ()
execl ()
execle ()

tWhen compiled with -llibmalloc.

Table 7-2

_tolower () erand48 ()
_toupper () erf ()
abs () erfc () t
acos 0 t exp () t
advance() fabs () t
asctime () fgetc ()
asin 0 t fgets ()
atan2 () t floor () t
atof () fmod ()
atoi () fprintf ()
atol () fputc ()
bsearch () fputs ()
ceil 0 t frexp ()
clock () fscanf ()
compile () ftw ()
cos () t gamma () t
cosh () t getc ()
crypt () getchar ()
cterrnid () getenv ()
ctime () getopt ()
drand48 () gets 0
encrypt () getw ()

tWhen compiled with -lsvidm.

Chapter 7 - System V Compatibility Features 113

The tables in this section illustrate how Release 4.1 complies with Issue 2 of the
System V Interface Definition (SVID).

SVID Base System as Service Routines

SVID Base System OS SelVice Routines

SVID-Compliant in 4.1
execlp () free () kill () readdir () unlink ()
execv () freopen () link () realloc () t ustat 0
execve () fseek () lseek () rewind () utime ()
execvp () fstat () mallinfo()t setuid () wait ()
exit () ftell () malloc () t sigset ()
fclose 0 fwrite () mallopt()t sleep ()
fdopen () getegid 0 mkdir 0 stat ()
feof 0 geteuid() mknod 0 stime 0
ferror () getgid () open () sync ()
fflush () getpgrp () opendir 0 system 0
fileno 0 getpid() pause 0 time ()
fopen () getppid () pclose () ulimit 0
fork () getuidO pipe () umask ()
fread 0 ioctlO popen () uname ()

SVID Base System General Library Routines

SVID Base System General Library Routines
SVID-compliant in 4.1

gmtime () jrand48 () printf 0 step () tfindO
gsignal () lcong480 putc () strcat () trnpfile 0
hdestroy () ldexp 0 putchar () strchr 0 trnpnam()
hsearch() lfind () putenv () strcrnp () toascii ()
hypot () t 10caltimO puts () strcpy () tolower ()
infini ty 0 t log 0 t putw () strcspn () toupper ()
isalnumO 10g10 0 t qsort () strdup () tsearch ()
isalpha () longjrnp 0 rand () strlen () ttyname ()
isascii () lrand48 () scanf 0 strncat () twalk ()
isatty () lsearch () seed480 strncmp () tzset ()
iscntrl () matherr()t setbuf () strncpy () ungetc ()
isdigit () mernccpy () setjmp() strpbrk () vfprintf 0
isgraph () mernchr() setkey 0 strrchr () vprintf ()
islower () merncmp() setvbuf () strspn () vsprintf ()
isprint () merncpy() sin 0 t strtod () yO() t
ispunct 0 mernset () sinh () t strtok () y1 () t

isspace () mktemp() sprintf () strtol () yn () t
isupper () modf () sqrt () t swab ()
isxdigit () mrand48 () srand () tan () t
jO () t nrand48 () srand48 () tanh () t
j 1 () t perror () sscanf 0 tdelete ()
jn () t pow 0 t ssignal () tempnarnO

Revision A of 27 March 1990

114 System Services Overview

Table 7-3 SVID Kernel Extension OS Service Routines

SVID Kernel Extension OS Service Routines

SVID-compliant in 4.1
acct () msgsnd () semctl ()
chroot () nice () semget () shmdt ()
msgctl () plock () semop () shmget ()
msgget () profil () shmat ()
msgrcv () ptrace () shmctl ()

Table 7-4 SVID Basic Utilities Extension

SVID Basic Utilities Extension

Non-Compliant SVID-compliant in 4.1

ar corom expr mv rmail tee
awk cp false nl rmdir test
banner cpio file nohup rsh touch
basename cut find pack sed tr

ps cal date grep paste sh true
calendar df kill pcat sleep umask
cat diff line pg sort uname
cd dirname In pr spell uniq
chmod du Is pwd split unpack
cmp echo mail red sum wait
col ed mkdir rm tail we

Table 7-5 SVID Advanced U tiUties Extension

SVID Advanced Utilities Extension
Non-Compliant SVID-compliant in 4.1

at cu logname su
batch dd Ip tabs uustat

mai~x cancel dircmp Ipstat tar uuto
shl chgrp egrep mesg tty uux
who chown ex newgrp uucp vi

cron fgrep od uulog wall
crontab id passwd uuname write
csplit join stty uupick

Revision A of 27 March 1990

Chapter 7 - System V Compatibility Features 115

Table 7-6 SVID Administered Systems Extension Utilities

SVID Administered Systems Extension Utilities
Non-Compliant SVID-Compliant

fsck sadc acctcms clri nice
fsdb sadp acctcom devnm prctmp
fuser sar acctconl diskusg prdaily
init setmnt acctcon2 dodisk prtacct
kil.lall. sysdef acctdisk fwtmp pwck
labelit timex acctmerg grpck runacct
link unlink accton ipcrm shutacct
mdfs volcopy acctprcl ipcs startup
mount whodo acctprc2 lastlogin sync
mvdir acctwtmp mknod turnacct
sal charge fee monacct umount
sa2 ckpacct ncheck wtmpfix

Table 7-7 SVID Software Development Extension Utilities

SVID Software Development Extension Utilities

Non-Compliant SVID-Compliant in 4.1
as admin lex tsort
dis cc lint unget
ld chroot lorder val
run cflow m4 what
prof cpp make xargs
sdb cxref prs
size delta rmdel
strip env sact
yacc get time

Table 7-8 SVID Software Development Extension Additional Routines

SVID Software Development Extension Additional Routines
Non-Compliant SVID-Compliant in 4.1

endutent () a64l() getgrnam() monitor ()
qetutent () assert () getlogin () nlist ()
qetutid() endgrent() getpass () putpwent ()
qetutl.:i.ne () endpwent () getpwent () setgrent ()
pututline () f getgrent () getpwnam () setpwent ()
setutent () fgetpwent () getpwuid () sgetl ()
utnpname () getgrent () l64a () sputl ()

getgrgid () mark ()

Revision A of 27 March 1990

116 System Services Overview

addch ()
addstr ()
attroff ()
attron ()
attrset ()
baudrate ()
beep ()
box ()
cbreak ()
clear ()
clearok ()
clrtobot ()
clrtoeol()
copywin ()
def yrog_ mode ()
def_ shell_mode ()
delay_output ()
delch ()
deleteln ()
delwin ()
doupdate ()
echo ()
echochar ()
endwin ()
erase ()
erasechar ()
fixterm ()
flash ()
flushinp ()
getbegyx ()
getch ()
getmaxyx ()

Table 7-9 SVID Terminal Interface Extension Utilities

SVID Tenninal Interface Extension Utilities
SVID-compliant in 4.1

tic put

Table 7-10 SVID Terminal Interface Extension Library Routines

SVID Terminal Interface Extension Library Routines
SVID-compliant in 4.1

getstr () mvwgetstr () scr_dump{)
gettmode () mvwin () scr_init ()
getyx () mvwinch () scr_restore ()
halfdelay () mvwinsch () scroll ()
has_ic () mvwprintw{) scrollok ()
has_il () mvwscanw () set_term()
idlok () napms () setscrreg ()
inch () newpad() setterm ()
initscr () newtermO setupterm()
insch () newwin () slk_clear ()
insertln 0 nlO slk_init ()
intrfl ush () nocbreak () slk_Iabel ()
keyname () nodelay () slk_noutrefresh()
keypad () noecho () slk_refresh ()
killchar () nonl () slk_restore ()
leaveok () noraw () slk_set ()
longname () overlay () slk_touch ()
move () overwri te () standend ()
mvaddch () pechochar () standout ()
mvaddstr () pnoutrefresh () subpad ()
mvcur () prefresh () subwin ()
mvdelch () printw () tgetent ()
mvgetch () putp() tgetflag ()
mvgetstr () raw () tgetnum()
mvinch () refresh () tgetstr ()
mvinsch () resetyrog_mode() tgoto ()
mvprintw () reset_shell_mode() touchline ()
mvscanw () reset term () touchwin ()
mvwaddch () resetty () tparm ()
mvwaddstr () saveterm() tputs ()
mvwdelch () savetty () typeahead ()
mvwgetch () scanw () unctrlO

vidattr ()
vidputs ()
waddch ()
waddstr ()
wattroff ()
wattron ()
wattrset ()
wclear ()
wclrtobot ()
wclrtoeol()
wdelch ()
wdeleteln ()
wechochar ()
werase ()
wgetch ()
wgetstr ()
winch ()
winsch ()
winsertln ()
wmove ()
wnoutrefresh ()
wprintw ()
wrefresh ()
wscanw ()
wset scrreg ()
wstandend ()
wstandout ()

Revision A of 27 March 1990

Chapter 7 - System V Compatibility Features 117

Table 7-11 SVID Open Systems Networking Interfaces (TLI) Library Routines

SVID Open Systems Networking Interfaces ('ILl) Library Routines
SVID-compliant in 4.1

t _accept () t_getinfo () t_rcvdis () t sndrel () -
t_alloc () t_getstate () t_rcvrel () t_sndudata ()
t_bind () t_Iisten () t_rcvudata () t_sync ()
t_close () t_Iook () t_rcvuderr () t_unbind ()
t connect () t_open () t _ revconnect () -
t_error () t _ optmgrnt () t snd() -
t free () t rcv () t snddis ()

Table 7-12 SVID STREAMS I/O Interface Operating System Service Routines

SVID STREAMS I/O Interface Routines

SVID-compliant in 4.1
getmsg () poll () putmsg ()

Table 7-13 SVID Shared Resource Environment (RFS) Utilities

SVID Shared Resource Environment (RFS) Utilities

SVID-compliant in 4.1

adv fusage rfadmin rfstop
dname idload rfpasswd rmnstat
fumount nsquery rfstart unadv

Revision A of 27 March 1990

118 System Services Overview

Revision A of 27 March 1990

8.1. Introduction

Ancillary Libraries

8.2. x/OPEN Conformance

8
X/OPEN Compatibility Features

This chapter describes the X/OPEN compatibility features in Release 4.1 of the
SunOS operating system.

The X/OPEN compatibility package allows programmers to write software that
conforms to the base level of the X/OPEN 1987 standard. The System V versions
of most required commands, system calls, library routines, and headers conform
to the X/OPEN Programmer's Guide (1987) definition (XPG-2), For routines and
headers that do not, Release 4.1 provides X/OPEN conforming versions in
/usr /xpg21ib, and /usr /xpg2inelude.

To compile C programs that conform to the X/OPEN standard, you can use the
ee executive script in / usr / xpg2bin. To use this as the preferred compiler,
place /usr /xpg2bin ahead of /usr / Sbin and /usr /bin in the shells exe
cution path. (See also System V Compatibility Features, in this manual, for more
information about System V.)

In addition to the System V and XPG libraries, Release 4.1 supplies the following
ancillary libraries for compliance with the SVID:

o The libmalloe library (in /usr/ Slib) contains versions of memory
allocation routines such as malloe () ,that return the errors expected by the
SVVS (System V Verification Suite). The default 4.1 routines return dif
ferent errors under certain conditions. To select the System V versions of
these routines, compile your program with the -llibmalloe option to
'ee'.

o The svidm library is a System V implementation of the math library. The
default 4.1 implementation conforms stricti y to the IEEE Standard 754-1985
for floating-point arithmetic. To select the System V version, compile your
program with '-lsvidrn'.

The tables in this section illustrate how Release 4.1 conforms to X/OPEN (1987).
These tables account for all commands, routines and files described in Volumes 1
and 20fXPG-2.

119 Revision A of 27 March 1990

120 System Services Overview

Figure 8-1 System Calls

Optional Required

Non-Confonning Conforming

acct(2) access(2) exec1(2) fork(2) mount(2) stat(2) uname(2)
brk(2) a1arm(2) exec1e(2) getpid(2) open(2V) stime(2) un1ink(2)
chroot(2) chdir(2) exec1p(2) getuid(2) pause(2) sync(2) ustat(2)
n.ice(2) chmod(2) execv(2) ioct1(2) pipe(2) time(2) utime(2)
p1ock(2) chown(2) execve(2) ki11(2V) read(2V) times(2) wait(2)
profi1(2) c1ose(2) execvp(2) 1ink(2) setpgrp(2V) u1imit(2) write(2V)
ptrace(2) creat(2) exit(2) lseek(2) setuid(2) umask(2)

dup(2) fcnt1(2V) mknod(2) signa1(2) umount(2)

Figure 8-2 Subroutines and Libraries

Non-Confonning Confonning

Optional NLS Required
abs(3) get1ogin(3) qsort(3)
assert(3) getopt(3) rand(3V)
bsearch(3) getpass(3) regexp(3)
c1ock(3C) getpw(3) setbuf(3S)

besse1~3M)
3

crypt(3) getpwent(3) setjmp(3)
end(3C) conv(3V) ctermid(3S) gets(3S) ssig na1(1?
erf(3M) ctime(3) cuserid(3S) getut(3C) stdio(3S)
exp(3M) ctype(3V) directory(3) hsearch(3) strto1(3)

qcumna(3M) f1oor(3M)2 ecvt(3)4 drand48(3) 13to1(3C) swab(3)
hypot(3M) printf(3S) econvert(3) 10ckf(3) system(3)
matherr(3M) scanf(3S) fc1ose(3S) 10gname(3) tmpfi1e(3S)
monitor(3) string(3) ferror(3S) lsearch(3~ tmpnam(3S)
sinh(3M) strtod(3) fopen(3S) ma11oc(3) tsearch(3)
trig(3M) fread(3S) memory(3) ttyname(3)

frexp(3M) mktemp(3) ttys1ot(3)
fseek(3S) perror(3) ungetc(3S)
ftw(3) popen(3S) vprintf(3S)
getc(3S) putc(3S)
getcwd(3) putenv(3)
getenv(3) putpwent(3)

1 Data items, not routines.
2Routines documented in rint(3M).
3Routines documented in ctype(3S).
~outines documented in econvert(3}.
5When compiled with -llibmalloc.
60verview of library, not routines.

Revision A of 27 March 1990

Chapter 8 - X/OPEN Compatibility Features 121

Figure 8-3 File Formats

Non-Confonning Conforming
acct(5) cpio(5)
utmp(5) group(5)

passwd(5)

Figure 8-4 Headers

Conforming

<sys/acct.h>
<assert.h>l

1 <ctype.h>
<sys/dirent.h>2
environ(5)3
<errno.h>
<fcntl.h>l
<ftw.h>
<grp.h>
<limits.h>2
<sys/lock.h>
<malloc.h>l
<math.h>2
<memory.h>
<mon.h>
<pwd.h>
<search.h>
<setjmp.h>
<signal.h>
<sys/stat.h>
<stdio.h>2
<string.h>
<termio.h>
<time.h>l
<sys/times.h>
<sys/types.h>
<unistd.h>
<ustat.h>

2 <utmp.h>

1Pilenamerelative to /usr/Sinclude.
2Pilename relative to /usr /xpg2include.
3010bal data format, not a header.

Revision A of 27 March 1990

122 System Services Overview

Figure 8-5 Commands

Optional Required

Non-Confonning Confonning

ar dd join od su uux
at delta kill pack sum val
awk df ld passwd tabs vi
banner diff lex paste tail wait
base name dircmp line pg tar wall

as batch cat dirname lint pr tee wc
dis cal. chown du logname prs test what
mail.x cal.endar chroot echo lorder pwd time write
mknod cancel. cmp ed Ip rm touch xargs
newqrp cc col egrep lpstat rmdel tr yacc
news cd comm env ls sact true
prof cfl.ow cp ex m4 sed tsort
sdb chqrp cpio expr mail sh tty
shl. chmod cpp false make size umask
who ps crontab fgrep mesg sleep un arne

csplit file mkdir sort unget
cu find mv spell uniq
cut get nl split uucp
cxref grep nm strip uustat
date id nohup stty uuto

Figure 8-6 Special Files

Optional Required

Non-Confonning Confonning

sct(7t)
console(4S)
nUll(4)
termio(4)
tty(4)

t Section 7 of XPG-2, Volume 2.

Revision A of 27 March 1990

Conformance with IEEE
Standard 1003.1·1988

Scope

Implementation.Defined
Features

POSIX.l Section 2, Definitions
and General Requirements

2.3 General Terms

2.4 General Concepts

9
POSIX Conformance

Release 4.1 of the SunOS operating system is a conforming implementation as
defined in Section 2.2.1.1 (Requirements) of the Portable Operating System
Interfacefor Computer Environments (POSIX), IEEE Standard 1003.1 (POSIX.l).

To comply with Section 2.2.2.1 (Documentation), this chapter describes the
behavior of features in Release 4.1 which are described in the POSIX.l standard
as implementation-defined, or for which it is stated that implementations may
vary. It does not describe any extensions or enhancements outside the scope of
the standard.

As required, this chapter also describes the contents of the < 1 imi t s . h> and
<unistd. h> headers, along with the conditions under which values defined in
those files may vary, and the limits by which they may. (See Headers, below.)

This chapter follows the structure of the POSIX.l standard, and is intended as a
supplement to that document. For more detailed information about the behavior
of the features mentioned herein, refer to the SunOS Reference Manual.

For Release 4.1, with regard to the definition for clock tick, the constant
{CLK _ TCK} is defined to be 60 (intervals per second). (This is unlikely to
change.)

In addition to the standard file status inquiries (refer to sta t(2) in the SunOS
Reference Manual), Release 4.1 provides the following macros:

S _ I SLNK () test for a symbolic link
S_ISSOCK () test for a socket.

The values for {NAME_MAX} and {PATH_MAX} are retrieved using the
pathconf(2) system call.

The constant LS _ISVTXT refers to the sticky bit. For a directory, this bit deter
mines whether or not an unprivileged user may delete or rename another user's

+~!l!! 123 Revision A of 27 March 1990

124 System Services Overview

2.5 Error Numbers

2.6 Primitive System Data
Types

2.7 Environment Description

2.10.3 Compile-Time Symbolic
Constants for Portability
Specifications

POSIX.l Section 3, Process
Primitives

3.1 Process Creation and
Execution
3.1.1 Process Creation
3.1.1.2

3.1.2 Execute a File
3.1.2.2 Description (execl (),
execv(},execle(),
execve(),execlp(},
execvp (»)

files (refer to chmod(2)).

Routines generally return the error code of the first error they encounter. The
operating system supports a number of error codes in addition to those defined in
POSIX.l. Refer to in t ro (2) for the complete list of error codes in Release 4.1.

In addition to the standard global data types, 4.1 defines the following:

caddr t
clock t
daddr t
key_t
sigset_t
speed_t
tcflag_t
time t
wchar t

type to hold machine addresses
clock ticks (units = 60ths of a second)
disk address type
used for System V IPC system calls
signal mask
tty baudrates
line discipline modes
time (units = seconds)
for wide characters (multi -byte)

Values for {ARG _MAX}, {NAME _MAX}, and other implementation-defined
values described in this section are retrieved using the sysconf(2) orpath
co nf (2) system calls. (See the discussion of Section 3.1.2.2 for infonnation
about how {ARG_MAX} is obtained.) Initial values are set either to the minimum
value specified in the standard, or are undefined.

Both {_POSIX_JOB_CONTROL} and {_POSIX_SAVED_IDS} are defined to
be 1 (that is, they are in effect) in 4.1.

Any relevant characteristics not defined in the standard are inherited by the child
process.

{ARG _ MAX} is retrieved using the s y s con f () function. This value includes
the total of bytes available for a new process's arguments, environment and
stack. {ARG _ MAX} also includes initial pointers into the argument and environ
ment vectors.

The space required for the arguments, environment and stack by an execve ()
call is detennined by the following fonnula:

space = (((na + 4) * bpw) + nc) + click

space is then rounded up to the next click boundary. A click is the number of
bytes that the system's memory-management facilities treat as a single unit. On

Revision A of 27 March 1990

3.1.2.4 Errors (EACCESS)

3.2 Process Tennination
3.2.1 Wait for Process
Termination
3.2.1.2 Description (wait (),
waitpid ())

3.2.2 Terminate a Process
3.2.2.2 Description L exi t ())

3.3 Signals
3.3.1 Signal Concepts
3.3.1.1 Signal Names

Chapter 9 - POSIX Conformance 125

Sun-4, Sun-3 and Sun386i systems, one click equals 8192 bytes. On Sun-2 sys
tems, one click equals 2048 bytes.

na is the count of arguments and environment variables. bpw is the number of
bytes per word: 4 on all Sun systems. nc is the count of bytes in the argument
and the environment vectors, including null tenninators, and rounded up to the
next word boundary.

When PAT H is not set, Release 4.1 supplies a default search path:

.:/usr/ucb:/bin:/usr/bin

Release 4.1 supports executables in a. cut(5) format. When the first line of a
text file takes the fonn:

#! interpreter

the system invokes the named interpreter to interpret the file. As a special case,
if the first character of the file is a pound-sign (:if), Release 4.1 invokes the C
shell (/usr /bin/ csh). Otherwise, the system invokes a Bourne shell
(/usr /bin/ sh).

Release 4.1 assigns process ID 1 (the PIO of the ini t process) as the new parent
process 10 (PPID) for an orphaned process.

Release 4.1 supports job control.

Release 4.1 supports the S IGCHLD signal.

Release 4.1 assigns process ID 1 (the PIO of the ini t process) as the new (PPIO)
for an orphaned process.

Release 4.1 supports job control.

Release 4.1 supports job control and the signals required for it. In addition to the
signals defined in the standard, 4.1 supports the following:

SIGBUS
SIGCLD
SIGEMT
SIGIO
SIGIOT
SIGLOST
SIGPOLL
SIGPROF

bus error
System V name for SIGCHLD
EMT instruction
asynchronous I/O available
lOT instruction
resource lost (such as a record-lock)
System V name for S I G I 0
profiling time alarm

Revision A of 27 March 1990

126 System Services Overview

3.3.1.2 Signal Generation and
Delivery

3.3.2 Send a Signal to a Process
(kill ()

3.3.2.2 Description

3.3.4 Examine and Change
Signal Action
3.3.4.2 Description
(sigaction ())

3.3.6 Examine Pending Signals
3.3.6.4 Errors
(sigpending ())

SIGSYS

SIGTRAP
SIGURG
SIGVTALRM
SIGWINCH
SIGXCPU
SIGXFSZ

bad argument to system call (when kernel is compiled with
-DCOMPAT)

trace trap (not reset when caught)
urgent condition on I/O channel (socket)
virtual time alann
window changed size
exceeded CPU time limit
exceeded file size limit

In addition to the signals defined in the standard, Release 4.1 delivers the follow
ing signals when the indicated event occur.

SIGBUS
SIGCLD
SIGEMT
SIGIO
SIGIOT
SIGLOST
SIGPOLL
SIGPROF
SIGSYS
SIGTRAP
SIGURG
SIGVTALRM
SIGWINCH
SIGXCPU
SIGXFSZ

on parity or other hardware error
when the status of a child process changes
when a software trap instruction occurs
on asynchronous I/O
used only with RFS
when a lock is broken (see lockd(8»
on asynchronous I/O
when a profiling alann occurs
used only when kernel is compiled with - DCOMPAT
used for tracing (see ptrace(2»
when out-of-band data arrives on a socket
when a virtual time clock alann occurs
when a window changes size
when a process exceeds its CPU time limit (software)
when a write exceeds the file size limit (software)

When the pi d argument is specified as ' (p i d _ t) -1 ' , the signal is broadcast to
all processes. The usual pennission checks for signals still apply.

{_POSIX_SAVED_IDS} is defined to be true. Release 4.1 allows a process to
receive a signal if its effective user ID (EUID) or saved user ID is the same as the
sending process's real user ID (UID) or EOID.

Release 4.1 supports the SA_NOCLDSTOP flag, which when set, suppresses gen
eration of S I GCHLD signals.

EFAULT The address passed as an argument is not within the process's
address space.

Revision A of 27 March 1990

POSIX.l Section 4, Process
Environment

4.2 User Identification
4.2.2 Set User and Group IDs
4.2.2.2 Description
(setuid () , setgid ())
4.2.4 Get User Name
4.2.4.2 Description
(getlogin () , cuser id ())

4.2.4.3 FtebUnns

4.3 Process Groups
4.3.3 Set Process Group ID for
Job Control
4.3.3.2 Description
(setpgid ())

4.4 System Identification
4.4.1 System Name
4.4.1.2 Description (uname ())

4.4.1.4 Errors

4.5 Time
4.5.2 Process Times
4.5.2.2 Description (times ())

4.6 Environment Variables
4.6.1 Environment Access
4.6.1.2 Description
(getenv (»)

Chapter 9 - POSIX Conformance 127

{_POS IX_SAVED _ ID S} is defined for Release 4.1.

The constant L _ cuser id, is defined in <stdio . h> to be 9. This is the
minimum number of bytes in the array pointed to by the argument to
cuserid ().

If the argument to cuserid () is NULL, the value rebUnned points to static data
also used by get pwnam (). Subsequent calls to either routine may overwrite
this data.

Release 4.1 supports job control.

Each element of the uname strucbUre is a 9-character array. To satisfy other
requirements for longer nodenames, the nodename [] array is immediately fol
lowed by a nodeext [] array of length 56. System administrators must
configure the system with nodenames no longer than 9 characters, including the
trailing NULL character, to confonn to POSIX.1. "nodename[] is followed by
'nodeext [77] '.

EFAULT The address passed as an argument is not within the process's
address space.

{ CLK _ TCK} is defined to be 60 (per second).

Under Release 4.1, getenv () points directly into the static environ variable.
By writing in this variable, you may alter the process's environment, but not that
of its parent.

Revision A of 27 March 1990

128 System Services Overview

4.7 Tenninal Identification
4.7.1 Generate Tenninal
Pathname
4.7.1.3 Returns (ctermid ())

4.7.2 Detennine Tenninal
Device Name
4.7.2.2 Description
(ttyname () , isatty ())

4.7.2.4 Errors

POSIX.l Section 5, Files and
Directories

5.1 Directories
5.1.1 Fonnat of Directory
Entries «dirent . h»

5.1.2 Directory Operations

5.2 Working Directory
5.2.1 Change Working
Directory
5.2.1.4 Errors (chidr ())

5.3 General File Creation
5.3.1 Open a File
5.3.1.2 Description (open ())

If the argument to ctermid () is NULL, the routine returns a pointer to an array
which is static, and which may be overwritten by a subsequent call.

t t yname () returns a pointer to an array which is static, and which may be
overwritten by a subsequent call.

EBADF f d is not a valid open file descriptor.

E lOAn I/O error occurred while reading from or writing to the file sys
tem.

The file system-independent fonnat for directory entries in Release 4.1 is:

struct dirent {

off_t d_off; 1* offset of next disk dir entry *1
unsigned long d_fileno; /* file number of entry */

unsigned short d_reclen; 1* length of this record */
unsigned short d_namlen; /* length of string in d_name */

char d_name[255+11i 1* name (up to MAXNAMLEN + 1) */

} i

In Release 4.1, the DIR data type is implemented using a file descriptor, with the
attendant restrictions.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

o CREAT
Bits other than 07777 (Oxfff) are cleared from the file pennission bits
passed to open () .

In addition to the flags defined by the standard, we supply:

Revision A of 27 March 1990

5.3.1.4 Errors

5.3.3 Set File Creation Mask
5.3.3.2 Description (umask ())

5.3.4 Link to a File
5.3.4.2 Description (link ())

5.3.4.4 Errors

5.4 Special File Creation
5.4.1 Make a Directory
5.4.1.2 Description (mkdir ())

5.4.1.4 Errors

5.4.2 Make a FIFO Special File
5.4.2.2 Description
(mkfifo (»)

5.5 File Removal
5.5.1 Remove Directory Entries
5.5.1.2 Description
(unlink (»)

5.5.1.4 Errors

5.5.2 Remove a Directory
5.5.2.2 Description (rmdir ())

Chapter 9 - POSIX Confonnance 129

o NDELAY
4.3 BSD or SVID Issue 2 no-delay semantics.

o SYNC
Each write is synchronous; no write returns until data has been flushed to
disk.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

In addition to the file-pennission bits, 4.1 allows the setuid (S_ISUID), set
gid, (S ISGID), and sticky (S ISVTX) bits to be masked using the cmask - -
argument. (See also, chmod(2).)

Release 4.1 does not support hard links across file systems. Hard links to direc
tories may be created only by processes with UID zero, that is by root (the
super-user).

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

mkdir () ignores non-permission bits in the process's file-creation mask.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

mkfifo () ignores non-permission bits in the process's file-creation mask.

Only root (the super-user) may use unlink () to remove a directory. User
processes can use rmdir () to remove (empty) directories.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

In Release 4.1, rmdir () returns an error if an attempt is made to remove the
mount point of any mounted file system. Otherwise, any user process may
remove its current working directory.

Revision A of 27 March 1990

130 System Services Overview

5.5.2.4 Errors

5.5.3 Rename a File
5.5.3.4 Errors (rename ())

5.6 File Characteristics
5.6.1 File Characteristics

5.6.2 Get File Status
5.6.2.4 Errors (stat () ,
fstat (»)

5.6.3 File Access
5.6.3.2 Description
(acces s (»)

5.6.3.4 Errors

5.6.4 Change File Modes
5.6.4.2 Description (chmod ())

5.6.4.4 Errors

5.6.5 Change Owner and Group
ofaFile
5.6.5.2 Description (chown ())

EBUSY The directory to be removed is the mount point for a mounted file
system, or is being used by another process.

ENAMETOOLONG
See also the remarks on Section 2.7 in this chapter.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

In addition to the required fields, the 4.1 s tat structure includes the following:

dev t
int
int
int
long
long
long

st_rdev;
st_sparel;
st_spare2;
st_spare3;
st_blksize;
st_blocks;
st_spare4[2];

ENAMETOOLONG

for block and character-special files
expansion for atime
expansion for mtime
expansion for ctime
Vo block size
blocks used
expansion

See the remarks on Section 2.7 in this chapter.

root (the super-user) is granted all pennissions except writing to a read-only
file system.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

If you are not a member of the file's group, the SOlD bit is cleared, unless the
Eum of the process is zero (the super-user).

Access pennissions for open file descriptors that refer to files on local (UPS) or
RFS-mounted file systems are not affected by chmod (). Access pennissions for
descriptors referring to files on NFS-mounted file systems may change as a result
of a successful c hmo d () calI.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

{_POSIX _ CHOWN _RESTRICTED} is true for native (UPS) file systems.
Remote file systems may have different attributes, which can be detennined
using the pathconf () system call.

sun Revision A of 27 March 1990
microsystems

5.6.5.4 Errors

5.7 Configurable Pathname
Variables
5.7.1 Get Configurable
Pathname Variables
5.7.1.4 Errors

POSIX.l Section 6, Input and
Output Primitives

6.4 Input and Output
6.4.1 Read from a File
6.4.1.2 Description (read ())

6.4.1.4 Errors

6.4.2 Write to a File
6.4.2.2 Description (wri te ())

6.4.2.4 Errors

Chapter 9 - POSIX Conformance 131

If the effective UID of the process is zero (that of root, the super-user),
chown () does not alter the file's sum and SOlD bits. Otherwise, chown ()
clears these bits.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

Release 4.1 supports only the variables described in the standard.

ENAMETOOLONG
See the remarks on Section 2.7 in this chapter.

Whennbyte is greater than {INT MAX}, read() returns an error and
transfers no data. When nbyte is zero, read () returns zero, and no data is
transferred.

EINTR A read from a slow device was interrupted by the delivery of a signal
before any data arrived.

EIO An I/O error occurred while reading from or writing to the file sys
tem, or the calling process is in a background process group and is
attempting to read from its controlling tenninal, and either the pro
cess is ignoring or blocking the SIOTTIN signal, or the process is
orphaned.

When nbyt e is greater than {INT MAX}, wr it e () returns an error and
transfers no data. When nbyte is zero, wr i te () returns zero, and transfers no
data.

Write requests to a pipe of greater than {P IPE _ BUF} may be interleaved with
write requests of other processes in the case of a named pipe.

EINTR A write to a slow device was by the delivery of a signal interrupted
before any was transferred.

E IO An I/O error occurred while reading from or writing to the file sys
tem, or the calling process is in a background process group and is
attempting to write to its controlling terminal, and either the process
is ignoring or blocking the SIOTTOU signal, or the process is
orphaned.

~~ sun Revision A of 27 March 1990
" microsystems

132 System Services Overview

6.5 Control Operations on Files
6.5.2 File Control
«sys/fcntl. h»

6.5.2.2 Description (fcntl ())

6.5.3 Reposition Read/Write
File Offset
6.5.3.4 Errors (lseek ())

POSIX.l Section 7, Device
and Class-Specific Functions

7.1 General Terminal Interface
7.1.1 Interface Characteristics
7.1.1.2 Process Groups

7.1. 1.3 The Controlling
Terminal

7.1.1.4 Terminal Access Control

7.1.1.5 Input Processing and
Reading Data

In addition to the values defined in the standard, 4.1 supports the following flags
for use with fcntl(2):

F GETOWN

F SETOWN

F RGETLK
F RSETLK
F CNVT
F RSETLKW
F UNLKSYS
o SYNC
o NDELAY

Get the PID or GPID of processes receiving
SIGIO and SIGURG signals.
Get the PID or GPID of processes receiving
S I G I 0 and S I GURG signals.
Test a remote lock to see if it is blocked.
Set or clear a remote lock.
Convert a file handle to an open descriptor.
Set or clear a remote lock (blocking).
Remove remote locks for a given system.
Perfonn writes to disk immediately.
Nonblocking I/O, System V style.

Advisory record locking operations for non-regular files are not supported in
Release 4.1.

EISPIPE The file descriptor is associated with a pipe, FIFO, or socket.

When a session leader has no controlling terminal, opens a tenninal that is not
the controlling terminal of another session, and did not the specify O_NOCTTY
flag to open () , that tenninal becomes the controlling terminal for the session.

When a session leader has no controlling terminal, and issues an

ioctl(fd, TIOCSCTTY, 0)

call on a terminal that is not already a controlling terminal, that terminal becomes
the controlling terminal for the session.

Release 4.1 supports job control, and the SIGTTIN signal behaves as described
in the standard.

The system limit for {MAX_INPUT} is defined to be the high-water mark of the
first module the queues in the 4.1 STREAMS terminal environment.

Revision A of 27 March 1990

7.1.1.6 Canonical Mode Input
Processing

7.1.1.8 Writing Data and Output
Processing
7.1.1.9 Special Characters

7.1.2 Settable Parameters
«sys/termios. h»

7.1.2.2 Input Modes

7.1.2.3 Output Modes

Chapter 9 - POSIX Conformance 133

The tty STREAMS module also supports flow control. However, if the sending
process ignores these signals, it is possible for data to be lost.

For local tenninals, when {MAX_CANON} is exceeded, local terminals issue a
BEL character and drops the extra characters.

Data is buffered for output by the tty STREAMS module.

Under 4.1, all tenninal-control characters can be changed.

{_POSlX_VDlSABLE} is set to O.

In addition to the members listed, the termios structure includes the field:

char cline

In addition to the input mode masks listed in the standard, 4.1 supports the fol
lowing:

lUCLC Translate upper case input characters to lower case.
I XANY Any character acts as the start character.
lMAXBEL Ring bell when {MAX_CANNON} is exceeded.

The initial setting of the input mode flag is (the bitwise OR of):

BRKINT I ICRNL I IXON I ISTRIP

In addition to OPOST, Release 4.1 supports the following output control mode
masks:

OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFlLL
OFDEL
NLDLY
NLO
NLI
CRDLY
CRO
CRI
CR2
CR3
TABDLY
TABO
TABI
TAB2

Map lower case to upper on output.
Map NL to CR-NL on output.
Map CR to NL on output
No CR output at column O.
NL perfonns CR function.
Use fill characters for delay.
Fill is DEL, else NUL.
Select new-line delays:

o
0000400

Select carriage-return delays:
o
0001000
0002000
0003000

Select horizontal-tab delays or expansion:
o
0004000
0010000

Revision A of 27 March 1990

134 System Services Overview

7.1.2.4 Control Modes

7.1.2.5 Local Modes

7.1.2.6 Special Control
Characters

TAB3 XTABS
XTABS Expand tabs to spaces.
BSDLY Select backspace delays:
BSO 0
BSl 002()()()()
VTDLY Select vertical-tab delays:
VTO 0
VTl 004()()()()
FFDLY Select form-feed delays:
FFO 0
FFl 0100000
PAGEOUT (unimplemented)
WRAP (unimplemented)

The initial setting for the output control flag of lag is:

OPOST I ONLCR I XTABS

In addition to the control mode masks listed in the standard, 4.1 supports the fol
lowing:

CBAUD
LOBLK
CIBAUD
CRTSCTS

Baud rate
unimplemented
Input baud rate.
Enable RTS/CfS flow control.

In addition to the local mode masks listed in the standard, 4.1 supports the fol
lowing:

XCASE
ECHOCTL
ECHOPRT
ECHOKE
DEFECHO
FLUSHO
PENDIN

Canonical upper/lower presentation.
Echo control characters as ' ,.. C' , delete character as 'A?'.
Echo erase character as character erased.
BS-SP-BS erase entire line on line kill.
(unimplemented)
Output is being flushed.
Retype pending input at next read or input character.

The initial setting for the local mode flag lflag is:

ISIG I ICANON I ECHO I IEXTEN

In addition to the control characters listed in the standard, 4.1 supports the fol
lowing:

SWITCH
DSUSP
REPRINT
DISCARD
WERASE
LNEXT

Switch shell layers character.
Delayed suspend (not supported).
Reprint the command line.
Temporarily discards output.
Word erase.
Literal next, that is, quote the next character.

Revision A of 27 March 1990

7.2 General Terminal Interface
Control Functions
7.2.2 Line Control Functions
7.2.2.2 Description
(tcsendbreak () ,
tcdrain(},tcflush(),
tcflow (»

7.2.3 Get Foreground Process
GroupID
7.2.3.2 Description
(tcgetpgrp ())

7.2.4 Set Foreground Process
GroupID
7.2.4.2 Description
(t cget pgrp ())

Chapter 9 - POSIX Confonnance 135

STATUS Status (unimplemented).

The initial values for control characters in Release 4.1 are:

INTR (Control-C J

QUIT (Control-\]
ERASE (Control-?]
KILL (Control-U)
EOF I Control-D]
EOF2 no defaUlt character
SWITCH not supported
START (Control-OJ
STOP (Control-S]
SUSP (Control-Z I
DSUSP (Control-Y)
REPRINT (Cantml-R I
DISCARD (CQntrQI-Q I
WERASE (Control-WI
LNEXT (Control-V)
STATUS not supported

Job control is supported in Release 4.1.

On non-asynchronous transmissions, tcsendbreak () does not sent a break; it
simply returns. For a delay of n > 0, tsendbreak () behaves as if it had been
called n times.

{_POSIX_JOB_CONTROL} is defined for Release 4.1, and tcgetpgrp ()
functions as described in the standard.

{_POSIX_JOB_CONTROL} is defined for Release 4.1, and tcsetpgrp ()
functions as described in the standard.

Revision A of 27 March 1990

136 System Services Overview

POSIX,.l Section 8, Language
Specific Services for the C
Programming Language

8.1 Referenced C Language
Routines
8.1.1 Extensions to Time
Functions
8.1.2 Extensions to setlocaleO
8.1.2.2 Description

8.2 F I LE-Type C Language
Functions
8.2.2 Open a Stream on a File
Descriptor
8.2.2.4 Errors (f dopen ())

POSIX.l Section 9, System
Databases

9.1 System Databases

9.2 Database Access
9.2.1 Group Database Access
9.2.1.4 Errors (getgrgid () ,
getgrnam (»)

Release 4.1 ignores the : value fonnat of the T z environment variable.

In addition to the categories (environment variables) described in the standard,
4.1 supports the following:

LC MESSAGES Allows for display of alternate message texts.
LC de fa ul t Allows for a default language other than the

, 'C" environment when LANG is not set or is
empty.

EINVAL The file descriptor is less than zero or greater than or equal to
{OPEN_MAX}.

The type argument does not begin with 'a', 'r', or 'w'.

ENOMEM The function could not allocate memory for the required stream
pointer.

The system default for the initial working directory is ' I '. The default for the
shell is /usr /binl sh.

There is an additional password and comments field in the passwd database.
There is an additional password field in the group database.

These routines depend on malloc(3) and fopen(2), either of which may fail
and return an error.

Revision A of 27 March 1990

9.2.2 User Database Access
Functions
9.2.2.2 Description
(getpwnam (),
getpwuid (»)

9 .2.2.4 Errors

POSIX.l Section 10, Data
Interchange Format

10.1 Archive/lnterchange File
Format

10.1.1 Extended tar Fonnat

10.1.2 Extended cpio Fonnat
10.1.2.1 Header

10.1.2.2 File Name

10.1.2.4 Special Entries

10.1.2.5 cpio Values

Chapter 9 - POSIX Confonnance 137

Although euserid () does not make use of getpwnam () in Release 4.1, the
pointer returned by each points to the same static array. Data in this array may
be overwritten by a subsequent call to either routine.

These routines depend on mallo e(3) and f open(2), either of which may fail
and return an error.

Release 4.1 provides a copying utility named pax(1), which reads and writes
tar(1) and epio(1) archives that confonn to the standard. For backward com
patibility, pax can also read, but not write, a number of other archive formats,
such as UNIX Version 7 tar and System V binary epio archives.

When an invalid filename is encountered, pax skips the file.

The value of e _ dev is taken from the file system's device number. e _ ina is
taken from the file's inode number. e rdev is taken from the device number of
a special file.

When an invalid filename is encountered, pax skips the file.

e_filesize is zero for block special and character special files.

pax supports the pennissions, file types, and mode masks. In the
<sys/ stat. h> header, Release 4.1 defines constants that are equivalent to
those listed in the standard:

POSIX.1 File 4.1 Function
Permissions Equivalents

C IRUSR S IRUSR read permission, owner
C IWUSR S IWUSR write pennission, owner
C IXUSR S IXUSR execute/search pennission, owner -
C IRGRP S IRGRP read permission, group
C IWGRP S IWGRP write pennission, group
C IXGRP S IXGRP execute/search pennission, group
C IROTH S IROTH read permission, other
C IWOTH S IWOTH write pennission, other
C IXOTH S IXOTH execute/search pennission, other
C ISUID S ISUID set user id on execution
C ISGID S ISGID set group id on execution
C ISVTX S ISVTX save swapped text even after use

Revision A of 27 March 1990

138 System Services Overview

10.1.3 Multiple Volumes

POSIX.1 File Types 4.1 Equivalents Meaning

C ISDIR S IFDIR directory
C ISFIFO S IFIFO FIFO
C ISREG S IFREG regular
C ISBLK S IFBLK block special
C ISCHR S IFCHR character special
C ISCTG S IFCTG unused
C ISLNK S IFLNK symbolic link
C ISSOCK S IFSOCK socket

pax ignores file modes other than file pennissions.

When pax encounters an end-of-file or end-of-medium condition, it issues a
prompt so that the user may load the next volume, and waits for a response from
standard input before proceeding.

Revision A of 27 March 1990

Headers
The <limits. h> Header

/* @(#)limits.h 1.11 89/06/16 SMI; from S5R2 1.1

Ufndef _sys_ limits h
#define sys_ limits h

#define CHAR BIT Ox8
#define SCHAR MIN -Ox80
#define SCHAR MAX Ox7F
#define UCHAR MAX OxFF
#define CHAR MIN -Ox80
#define CHAR MAX Ox7F
#define SHRT MIN -Ox8000
#define SHRT MAX Ox7FFF
#define USHRT MAX OxFFFF
#define INT MIN -Ox80000000
#define INT MAX Ox7FFFFFFF
#define UINT MAX OxFFFFFFFF
#define LONG MIN -Ox80000000
#define LONG MAX Ox7FFFFFFF
#define ULONG MAX OxFFFFFFFF
#define MB LEN MAX 4

/*
* All POSIX systems must support the following values
* A system may support less restrictive values
*/

#define POSIX ARG MAX 4096 - --
#define POSIX CHILD MAX 6 - -
#define POSIX LINK MAX 8
#define - POSIX_MAX_CANON 255
#define _POSIX_MAX_INPUT 255
#define POSIX NAME MAX 14 - - -
#define POSIX NGROUPS MAX 0 - - -
#define POSIX OPEN MAX 16 - - -
#define POSIX PATH MAX 255 -
#define POSIX PIPE BUF 512 - - -

#endif /* !_sys_ limits h */

.~!!!!

Chapter 9 - POSIX Confonnance 139

*/

Revision A of 27 March 1990

140 System Services Overview

The <unistd . h> Header

1* @(#)unistd.h 1.8 89/06/25 SMI; from S5R3 1.5 *1

#ifndef
#define

#define
#define
#define
#define
#define
#define
#define
#define

sys_unistd_h
sys_unistd_h

SC ARG MAX
SC CHILD MAX - -
SC CLK TCK
SC NGROUPS MAX - -
SC OPEN MAX
SC JOB CONTROL
SC SAVED IDS
SC VERSION

#define _POSIX_JOB_CONTROL
#define _POSIX_SAVED_IDS
#define _POSIX_VERSION

#define _PC_MAX_CANON
#define _PC_MAX_INPUT
#define _PC_NAME_MAX

PC PATH MAX - - -
PC PIPE BUF

#define
#define
#define
#define
#define
#define

PC CHOWN RESTRICTED
PC NO TRUNC
PC VDISABLE
PC LAST

#define STDIN FILENO 0
#define STDOUT FILENO 1
#define STDERR FILENO 2

#ifndef POSIX SOURCE
1*
* SVID lockf() requests
*1

#define F ULOCK
#define FLOCK
#define F TLOCK
#define F TEST

1*
* Iseek & access args

*

o
1
2
3

1 1* space for argv & envp *1
2 1* maximum children per process *1
3 1* clock ticks/sec *1
4 1* number of groups if multple supp.
5 1* max open files per process *1
6 1* do we have job control *1
7 1* do we have saved uid/gids *1
8 1* POSIX version supported *1

1
1
198808

1 1* max links to file/dir *1
2 1* max line length */
3 /* max "packet" to a tty device *1
4 /* max pathname component length */
5 1* max pathname length *1
6 /* size of a pipe *1
7 1* can we give away files *1
8 1* trunc or error on >NAME MAX *1
9 1* best char to shut off tty c_cc *1
9 1* highest value of any _PC_* *1

1* Unlock a previously locked region *1
1* Lock a region for exclusive use *1

*1

1* Test and lock a region for exclusive use *1
1* Test a region for other processes locks *1

* SEEK * have to track L * in sys/file.h
* ? OK have to track ? OK in sysl file. h
*1

#define SEEK SET 0 1* Set file pointer to "offset" *1
#define SEEK CUR 1 1* Set file pointer to current plus "offset" */
#define SEEK END 2 1* Set file pointer to EOF plus "offset" *1

#define F OK 0 1* does file exist *1
#define X OK 1 1* is it executable by caller *1
#define W OK 2 1* is it writable by caller *1
#define R OK 4 1* is it readable by caller *1

#if !defined(KERNEL)

sun
microsystems

Revision A of 27 March 1990

#include <sys/types.h>

extern void
extern int
extern unsigned
extern int
extern int
extern int
extern int
extern char
extern char
extern int
extern int
extern int
extern int
extern int
extern int
extern int
extern int
extern pid t -
extern long
extern char
extern gid_t
extern uid t -
extern gid t -
extern int
extern char
extern pid_t
extern pid_t
extern pid_t
extern uid t -
extern int
extern int
extern off t -
extern long
extern int
extern int
extern int
extern int
extern int
extern int
extern pid t -
extern int
extern unsigned
extern long
extern pid_t
extern int
extern char
extern int
extern int

_exit(/* int status */);
access(/* char *path, int amode */);
alarm(/* unsigned secs */);
chdir(/* char *path */);
chmod(/* char *path, mode_t mode */);
chown(/* char *path, uid_t owner, gid_t group */);
close(/* int fildes */);
ctermid(/ char *s */);
cuserid(/ char *s */);
dup(/* int fildes */);
dup2(/* int fildes, int fildes2 */);
execl(/* char *path, ... */);
execle(/* char *path, ... */);
execlp (/* char *file, ... * /) ;
execv(/* char *path, char *argv[] */);
execve(/* char *path, char *argv[], char *envp[] */);
execvp(/* char *file, char *argv[] */);
fork(/* void */);
fpathconf(/* int fd, int name */);
getcwd(/ char *buf, int size */);
getegid(/* void */);
geteuid(/* void */);
getgid(/* void */);
getgroups(/* int gidsetsize, gid_t grouplist[] */);
getlogin(/ void */);
getpgrp(/* void */);
getpid(/* void */);
getppid(/* void */);
getuid(/* void */);
isatty(/* int fildes */);
link(/* char *pathl, char *path2 */);
lseek(/* int fildes, off_t offset, int whence */);
pathconf(/* char *path, int name */);
pause(/* void */);
pipe(/* int fildes[2] */);
read(/* int fildes, char *buf, unsigned int nbyte */);
rmdir(/* char *path */);
setgid(/* gid_t gid */);
setpgid(/* pid_t pid, pid_t pgid */);
setsid(/* void */);
setuid(/* uid_t uid */);
sleep(/* unsigned int seconds */);
sysconf(/* int name */);
tcgetpgrp(/* int fildes */);
tcsetpgrp(/* int fildes, pid_t pgrp_id */);
ttyname(/ int fildes */);
unlink(/* char *path */);
write(/* int fildes, char *buf, unsigned int nbyte */);

#endif /* !KERNEL */
#endif /*

6sun

Chapter 9 - POSIX Conformance 141

Revision A of 27 March 1990

142 System Services Overview

sun Revision A of 27 March 1990
microsystems

A
ISO Latin 1 Character Set

The following table displays the ISO 8859/1 character set.

Table A-I ISO Latin 1

Row/Col Decimal Octal Name
02/00 032 040 SP SPACE
02/01 033 041 ! EXCLAMA nON POINT
02/02 034 042 " QUOTA nON MARK
02/03 035 043 # NUMBER SIGN
02/04 036 044 $ DOLLAR SIGN
02/05 037 045 % PERCENT SIGN
02/06 038 046 & AMPERSAND
02/07 039 047

,
APOSTROPHE

02/08 040 050 (LEFf PARENTHESIS
02/09 041 051) RIGHT PARENTHESIS
02/10 042 052 * ASTERISK
02/11 043 053 + PLUS SIGN
02/12 044 054 , COMMA
02/13 045 055 - HYPHEN. MINUS SIGN
02/14 046 056 FULL STOP (U.S.: PERIOD, DECIMAL POINT)
02/15 047 057 I SOLIDUS (U.S.: SLASH)

03/00 048 060 0 DIGIT ZERO
03/01 049 061 1 DIGIT ONE
03/02 050 062 2 DIGIT1WO
03/03 051 063 3 DIGIT THREE
03/04 052 064 4 DIGIT FOUR
03/05 053 065 5 DIGIT FIVE
03/06 054 066 6 DIGIT SIX
03/07 055 067 7 DIGIT SEVEN
03/08 056 070 8 DIGIT EIGHT
03/09 057 071 9 DIGIT NINE
03/10 058 072 : COLON
03/11 059 073 ; SEMICOLON
03/12 060 074 < LESS-THAN SIGN
03/13 061 075 EQUALS SIGN
03/14 062 076 > GREATER-THAN SIGN
03/15 063 077 ? QUESTION MARK

04/00 064 100 @ COMMERCIAL AT
04/01 065 101 A LA TIN CAPITAL LETTER A
04/02 066 102 B LA TIN CAPITAL LETTER B
04/03 067 103 C LA TIN CAPITAL LETTER C
04/04 068 104 D LA TIN CAPITAL LETTER D

143 Revision A of 27 March 1990

144 System Services Overview

Table A-I ISO Latin 1-Continued

Row/Col Decimal Octal Name
04/05 069 105 E LA TIN CAPITAL LEITER E
04/06 070 106 F LA TIN CAPITAL LEITER F
04/07 071 107 G LA TIN CAPITAL LEITER G
04/08 072 110 H LA TIN CAPITAL LEITER H
04/09 073 111 I LA TIN CAPITAL LEITER I
04/10 074 112 J LA TIN CAPITAL LEITER J
04/11 075 113 K LA TIN CAPITAL LEITER K
04/12 076 114 L LA TIN CAPITAL LEITER L
04/13 077 115 M LA TIN CAPITAL LEITER M
04/14 078 116 N LA TIN CAPITAL LEITER N
04/15 079 117 0 LA TIN CAPITAL LEITER 0

05/00 080 120 P LA TIN CAPITAL LEITER P
05/01 081 121 Q LA TIN CAPITAL LEITER Q
05/02 082 122 R LA TIN CAPITAL LEITER R
05/03 083 123 S LA TIN CAPITAL LEITER S
05/04 084 124 T LA TIN CAPITAL LEITER T
05/05 085 125 U LA TIN CAPITAL LEITER U
05/06 086 126 V LATIN CAPITAL LEITER V
05/07 087 127 W LA TIN CAPITAL LEITER W
05/08 088 130 X LA TIN CAPITAL LEITER X
05/09 089 131 Y LATIN CAPITAL LEITER Y
05/10 090 132 Z LA TIN CAPITAL LEITER Z
05/11 091 133 [LEFT SQUARE BRACKET
05/12 092 134 \ REVERSE SOLIDUS (U.S.: BACK SLASH)
05/13 093 135] ruGHTSQUAREBRACKET
05/14 094 136 A CIRCUMFLEX ACCENT
05/15 095 137 LOW LINE (U.S.: UNDERSCORE)

06/00 096 140
,

GRAVE ACCENT
06/01 097 141 a LA TIN SMALL LETTER a
06/02 098 142 b LA TIN SMALL LETTER b
06/03 099 143 c LA TIN SMALL LETTER c

06/04 100 144 d LA TIN SMALL LETTER d
06/05 101 145 e LA TIN SMALL LETTER e

06/06 102 146 f LA TIN SMALL LETTER f
06/07 103 147 g LA TIN SMALL LETTER g

06/08 104 150 h LA TIN SMALL LETTER h
06/09 105 151 i LA TIN SMALL LETTER i
06/10 106 152 j LA TIN SMALL LETTERj
06/11 107 153 k LA TIN SMALL LETTER k
06/12 108 154 1 LA TIN SMALL LETTER 1
06/13 109 155 m LA TIN SMALL LETTER m

06/14 110 156 n LA TIN SMALL LETTER n

06/15 111 157 0 LA TIN SMALL LETTER 0

07/00 112 160 P LA TIN SMALL LETTER p
07/01 113 161 q LA TIN SMALL LETTER q

07/02 114 162 r LA TIN SMALL LETTER r
07/03 115 163 s LA TIN SMALL LETTER s

07/04 116 164 t LA TIN SMALL LETTER t
07/05 117 165 u LA TIN SMALL LETTER u

07/06 118 166 v LA TIN SMALL LETTER v

07/07 119 167 w LA TIN SMALL LETTER w

07/08 120 170 x LA TIN SMALL LETTER x

07/09 121 171 Y LA TIN SMALL LETTER y

Revision A of 27 March 1990

Appendix A - ISO Latin 1 Character Set 145

Table A-I ISO Latin 1-Continued

Row/Col Decimal Octal Name
07/10 122 172 z LA TIN SMALL LETTER z

07/11 123 173 { LEFf CURLY BRACKET
07/12 124 174 I VERTICAL LINE
07/13 125 175 } ~GHTCURLYBRACKET

07/14 126 176 - TILDE

10/00 160 240 NO-BREAK SPACE
10/01 161 241 INVERTED EXCLAMATION MARK
10/02 162 242 CENT SIGN
10/03 163 243 POUND SIGN
10/04 164 244 CURRENCY SIGN
10/05 165 245 YEN SIGN
10/06 166 246 BROKEN BAR
10/07 167 247 PARAGRAPH SIGN, (U.S.: SECTION SIGN)
10/08 168 250 DIAERESIS
10/09 169 251 COP~GHT SIGN
10/10 170 252 FEMININE ORDINAL INDICATOR
10/11 171 253 LEFT ANGLE QUOTATION MARK
10/12 172 254 NOT SIGN
10/13 173 255 SHY SOFT HYPHEN
10/14 174 256 REGISTERED TRADEMARK SIGN
10/15 175 257 MACRON

11/00 176 260 RING ABOVE, DEGREE SIGN
11/01 177 261 PLUS-MINUS SIGN
11/02 178 262 SUPERSCRIPT TWO
11/03 179 263 SUPERSCRIPT THREE
11/04 180 264 ACUTE ACCENT
11/05 181 265 MICRO SIGN
11/06 182 266 PILCROW SIGN, (U.S.: PARAGRAPH)
11/07 183 267 MIDDLE DOT
11/08 184 270 CEDILLA
11/09 185 27;1 SUPERSCRIPT ONE
11/10 186 272 MASCULINE ORDINAL INDICATOR
11/11 187 273 RIGHT ANGLE QUOTATION MARK
11/12 188 274 VULGAR FRACTION ONE QUARTER
11/13 189 275 VULGAR FRACTION ONE HALF
11/14 190 276 VULGAR FRACTION THREE QUARTERS
11/15 191 277 INVERTED QUESTION MARK

12/00 192 300 LATIN CAPITAL LETTER A WITH GRAVE ACCENT
12/01 193 301 LA TIN CAPITAL LETTER A WITH ACUTE ACCENT
12/02 194 302 LATIN CAPITAL LETTER A WITH CIRCUMFLEX ACCENT
12/03 195 303 LA TIN CAPITAL LETTER A WITH TILDE
12/04 196 304 LATIN CAPITAL LETTER A WITH DIAERESIS
12/05 197 305 LA TIN CAPITAL LETTER A WITH RING ABOVE
12/06 198 306 CAPITAL DIPHTIIONG AE
12/07 199 307 LATIN CAPITAL LETTER C WITH CEDll..LA
12/08 200 310 LA TIN CAPITAL LETTER E WITII GRAVE ACCENT
12/09 201 311 LA TIN CAPITAL LETTER E WITII ACUTE ACCENT
12/10 202 312 LA TIN CAPITAL LETTER E WITII CIRCUMFLEX ACCENT
12/11 203 313 LATIN CAPITAL LETTER E WITII DIAERESIS
12/12 204 314 LA TIN CAPITAL LETTER I WITH GRAVE ACCENT
12/13 205 315 LATIN CAPITAL LETTER I WITH ACUTE ACCENT
12/14 206 316 LA TIN CAPITAL LETTER I WITH CIRCUMFLEX ACCENT
12/15 207 317 LATIN CAPITAL LETTER I WITH DIAERESIS

Revision A of 27 March 1990

146 System Services Overview

Table A-I ISO Latin 1-Continued

Row/Col Decimal Octal Name
13/00 208 320 CAPITAL ICELANDIC LEITER ETH
13/01 209 321 LATIN CAPITAL LETTER N WITH TILDE
13/02 210 322 LA TIN CAPITAL LETTER 0 WITH GRAVE ACCENT
13/03 211 323 LA TIN CAPITAL LETTER 0 WITH ACUTE ACCENT
13/04 212 324 LA TIN CAPITAL LETTER 0 WITH CIRCUMFLEX ACCENT
13/05 213 325 LA TIN CAPITAL LETTER 0 WITH TILDE
13/06 214 326 LA TIN CAPITAL LETTER 0 WITH DIAERESIS
13/07 215 327 MULTIPUCA TION SIGN
13/08 216 330 LA TIN CAPITAL LETTER 0 WITH OBUQUE STROKE
13/09 217 331 LATIN CAPITAL LETTER U WITH GRAVE ACCENT
13/10 218 332 LATIN CAPITAL LETTER U WITH ACUTE ACCENT
13/11 219 333 LA TIN CAPITAL LETTER U WITH CIRCUMFLEX
13/12 220 334 LA TIN CAPITAL LETTER U WITH DIAERESIS
13/13 221 335 LATIN CAPITAL LETTER Y WITH ACUTE ACCENT
13/14 222 336 CAPITAL ICELANDIC LEITER THORN
13/15 223 337 SMALL GERMAN LETTER SHARP s

14/00 224 340 LATIN SMALL LETTER a WITH GRAVE ACCENT
14/01 225 341 LA TIN SMALL LETTER a WITH ACUTE ACCENT
14/02 226 342 LA TIN SMALL LETTER a WITH CIRCUMFLEX ACCENT
14/03 227 343 LA TIN SMALL LETTER a WITH TILDE
14/04 228 344 LATIN SMALL LETTER a WITH DIAERESIS
14/05 229 345 LATIN SMALL LETTER a WITH RING ABOVE
14/06 230 346 SMALL DIPHTHONG ae
14/07 231 347 LA TIN SMALL LETTER c WITH CEDILLA
14/08 232 350 LATIN SMALL LETTER eWITHGRAVE ACCENT
14/09 233 351 LA TIN SMALL LETTER e WITH ACUTE ACCENT
14/10 234 352 LA TIN SMALL LETTER e WITH CIRCUMFLEX ACCENT
14/11 235 353 LA TIN SMALL LETTER e WITH DIAERESIS
14/12 236 354 LATIN SMALL LETTER i WITH GRA VE ACCENT
14/13 237 355 LATIN SMALL LETTER i WITH ACUTE ACCENT
14/14 238 356 LA TIN SMALL LETTER i WITH CIRCUMFLEX ACCENT
14/15 239 357 LATIN SMALL LETTER i WITH DIAERESIS

15/00 240 360 SMALL ICELANDIC LETTER ETH
15/01 241 361 LA TIN SMALL LETTER n WITH TILDE
15/02 242 362 LATIN SMALL LETTER 0 WITH GRAVE ACCENT
15/03 243 363 LA TIN SMALL LETTER 0 WITH ACUTE ACCENT
15/04 244 364 LA TIN SMALL LETTER 0 WITH CIRCUMFLEX ACCENT
15/05 245 365 LA TIN SMALL LETTER 0 WITH TILDE
15/06 246 366 LA TIN SMALL LETTER 0 WITH DIAERESIS
15/07 247 367 DIVISION SIGN
15/08 248 370 LA TIN SMALL LETTER 0 WITH OBUQUE STROKE
15/09 249 371 LA TIN SMALL LETTER u WITH GRAVE ACCENT
15/10 250 372 LA TIN SMALL LETTER u WITH ACUTE ACCENT
15/11 251 373 LA TIN SMALL LETTER u WITH CIRCUMFLEX ACCENT
15/12 252 374 LA TIN SMALL LETTER u WITH DIAERESIS
15/13 253 375 LA TIN SMALL LETTER y WITH ACUTE ACCENT
15/14 254 376 SMALL ICELANDIC LETTER THORN
15/15 255 377 LA TIN SMALL LETTER y WITH DIAERESIS

Revision A of 27 March 1990

Appendix A - ISO Latin 1 Character Set 147

Table A-2 The ISO 8859 Standard Character Set Family

No Name Coverage Status Release 4.1 Support
1 Latin Alphabet #1 Western European Approved Inti Standard Supported

2 Latin Alphabet #2 Eastern European Approved Inti Standard Not Supported

3 Latin Alphabet #3 Southern European Approved Inti Standard Not Supported
and Southern Africa

4 Latin Alphabet #4 Majority of Approved Inti Standard Not Supported
Scandanavian C's

5 Latin-Cyrillic Alphabet ASCII + Cyrillic Approved-Not Published Not Supported

6 Latin-Arabic Alphabet ASCII + Arabic Approved Inti Standard Not Supported

7 Latin-Greek Alphabet ASCII + Greek Approved Inti Standard Not Supported

8 Latin-Hebrew Alphabet ASCII + Hebrew Approved-Not Published Not Supported

9 Latin Alphabet #5 Turkish Changes Proposed Not Supported
to 8859/3

Revision A of 27 March 1990

148 System Services Overview

Revision A of 27 March 1990

B
u.s. and European Keyboard Layouts

Figure B-1 United States

Figure B-2 Belgium/France

li~~mi !lr~im ~ ~m l ~~~i ~~r~~jlj jlr~~~jl ~ mt~~ :::::::::: ::::::::::: :::::::: ::::::: ::::;::=:: ::::::::::: ::::::
F.lt
~UT

2 3 4 5 6 7
e 2 • 3 § A e

z E R T y U

s D F G H J

iEi: w x c v B N

l~~~ ~lt~Q
~ n: ~: ~ :::::::

B P

I £ ~ \

I 0

K L

?

149

ii.c...·:·
1
·::.· :.:.:-: {

£,J. ~~~
.~ .~ .. ~ ':= .: .~. .: [:::::::
o
a)

p 0
~

M 410

u. U
+

}

]
~~~~~H 
::::::::::: 

Revision A of 27 March 1990 



150 System Services Overview 

Figure B-3 Canada 

~ ~F.5 ~n ~ ~~F'~ .......... 
j~~!~~~ n~nn1n 

$ % 

£ 4 t ! c 

E R T 

D F G 

c v 
c 

~~~ 11~~W~:W: .............................. 

Figure B-4 Denmark

W E R T

s D F G

x c v

F.f
~ ~ ~ ! ~
?

6 ..,

Y

B

&:

6

H

F.B. ~~

! l ! j ~ :.:.:
: ~ : ~ : :.:.:

~~~~ 
:::;::: 

a * 
7 I 8 2 9 3 

U I o 

J K L 

N M 
o 

I 

7 { 8 [ 9] 

v U I 0 

H J K L 

B N M 

§ 

? 

o } + 
p 

JE 

# \ 

o 
6 

j~@jjjjjjjH 

i~;1 

II 

H~#~W~ ......... , .......... . 
~ ~ ~~;;;;;;;;;;;;;;;; ~ 

Revision A of 27 March 1990 



Figure B-5 Netherlands 

jr~~~~ I 
~:~:~:~:~: 1 1 ..... 

.. 
2 2 

I $ ~c a -
3 3 4 1/11 :; lit 6 3/14 7 £ 

Appendix B - U.S. and European Keyboard Layouts 151 

8 { 9 } o ' 
? 

I 

................. 

[] ~~~~M~ 
o r;J !n~;;;;;;;;;;;;;;;;! 

mL.t.~"~,, .. :,,::.: Q W E R T Y U lOP :~!ii~U 
I+-H: ~H-!-';':;++'...r,...,y--~-S~-'--D----''-T-F-''-T-G--'-T--H--'--r--J ---'--r-K----'--r-L-'-,-+_-.........,..-...I.....r-...r.....,:~ ~ ~.: .... :~.' .. :~.:: •. :;.~ .. :~:' ~ .... :~ : ... :;.' : .... :: .. :~:'l.:: .. :;:~ .... :~.: : .... :~. lP:~~~~l~lll; A 
~:~:~:~:~:~:~:~n:: 8 + 

Figure B-6 Germany 

:2 2 

w 

S 

§ $ 

3 3 4 

E 

D 

x 

R 

F 

c 

% 

5 

T 

v 

G 

& 

6 

B N M 

~~f ~U! { 
. : . : . : . .~. .~ .. :.' :~ .~. ::' .:.: [ ::::::: 

7 • 8 ' o I 
z u o p 

H J K L 

B N M 

Revision A of 27 March 1990 



152 System Services Overview 

Figure B-7 Italy 

~~#~!~ r~ rn ri i~ n.~ ri( 
:::::::: .... :;::: U~l un nnn ::::::: :::: 

n~~H! " £ $ % a I ? 

nuuuu 1 2 2 3 3 4 6" 7 8 9 \ 0 I 

~~jl~l~l~l~~' A S D 
F G H J K L 

:::=::;=:!:=:=::::-
c v B N M 

Figure B-8 Norway 

iif:~iilllm~lllli~ m1iiili mDI ·.l~.t.;·.j~.\:.~~.~~.~~.~;.; ~,.IJl.~\~.~\~.: : r.:,." 
.:.:.:.:.: :.:.:.:.:.: ................ . 

~~~ ~r~~~ m~~.: ~~ ~~~ § A ~r~~T 
l)llll ::::::: .:.:.: .:.:.:. I '::::::::::
I

7 { 8 [9]
y U I 0

H J K L

N M

Revision A of 27 March 1990

Appendix B - U.S. and European Keyboard Layouts 153

Figure B-9 Portugal

~'-
.....
. :-:.

n #

2 @ 3 £ 4 § 5 6'" 7 8 !it , o
W E R T y u o p

s D F G H J K L

l~HJ > Iz Ix Ie Iv IB IN 1M I; I:
:::::::::::::: < , .

Figure B-10 Spain

~~i if~! ~~iQ r~~! : : : : : : : : : : :
: : : : : : : : : :

s Cfo &: I

2 @ 3 I 4 5 0 6'" 7 8 !it \ 0 I
W E R T Y u o p

s D F G H J K L N

x e v B N M

?

*

::p,81:::
:::::::::=:
.

::::::::::::::::

0: + O~. "lil.!i!!II!1

tu~
: :
: :

?

:
:

o
D Ito

o
[]

{ } ~~~)
[«] » :::::::::::

~ ~~~~ ~~~++ ~
~};;;;;;;;;;; ;;;;; ~~

* j~@.)~

)1111111
+

c

Revision A of 27 March 1990

154 System Services Overview

Figure B-11 Sweden/Finland

~jts~n! u # ~ %

:~:)~~~~ 1 2 @ 3 £ 4 S ! 6 7 {8[9] O}

T y u o p

G H J K L

v B N M

Figure B-12 Switzerland (French)

lP.:: :.:.:.

r~~~ llll ~ l1
~~
nnn ~ nn:~

8 eo 9 \ 0 A

I 0 P

J K L

M

JJ.

6

?

+ \

A

~{
nnn~ < ! ill!
?

,
o ...
o

0

e

ii

. : ~~ £i~111

Revision A of 27 March 1990

Appendix B - U.S. and European Keyboard Layouts 155

Figure B-13 Switzerland (German)

~~~~~~ + 

i~T~~~i~ 1 ! ........ 

!.!=::lQ 
·~:jlmA 

* 
2 @ 3 #: 4 t 

w E R 

s D 

x c 

F 

0/0 a I 
5 .... 6 § 7 

T z 

G H 

v B 

Figure B-14 United Kingdom 

8 0 

u 

J 

N M 

@ £# $ % A&:* 

9 \ 

K 

2 3 4 5 6 7 8 9 

..... > ......... . 

? 
o A 

.. 
o [~¥:ffi M~ i ~ 

~nL;;; ;;;; ;;;;; ;; ~ ~ 
A 

o 
o p 

ft 

L 

r~~ 
.... \ ... 

+ 
o - .., 

!:.!rn~L.:'::.;: Q Iw E R T Y U lOP { } ~ij¥'~~~~ 
1+78: ~~A:+'~--'--r-s ----L~D---I-,I,--F-.r.....,-G-..I........r-H-....a...,-J-~-K----L~L---I'-r--.LI[;----L..o"r-~H .::::~.::::~ ,::::,,:::~ .:::.~::.i.: .::.~:·:~::.~::::.:I ::::::~::::~ .::::~::::~ l~mm::i.A 
............ .... ........ . .......... .. 

!IW~!~!~tyi !~!~ z 
x c v B N M < 

, 
> ? 

............. .......... .. . ..... ....... . .......... . ,. 

sun Revision A of 27 March 1990 
microsystems 



156 System Services Overview 

Revision A of 27 March 1990 



Table C-l 

c 
Compose Key and Floating Accent Key 

Sequences 

Compose Key Sequences 

I Comnose I Key Character Sequences 

Key Key 
ISO Latin 

Description 
1 Code 

Space Space OxAO non-overstrike backspace 
! ! OxAl inverted! 
c / OxA2 cent sign 
C / OxA2 cent sign 
1 - OxA3 Pounds Sterling 
L - OxA3 Pounds Sterling 
0 x OxA4 currency symbol 
0 X OxA4 currency symbol 
0 x OxA4 currency symbol 
0 X OxA4 currency symbol 
y - OxA5 Yen 
y - OxA5 Yen 
I I OxA6 broken bar 
s 0 OxA7 section mark 
S 0 OxA7 section mark 
n " OxA8 diaeresis 
c 0 OxA9 copyright 
C 0 OxA9 copyright 
- a OxAA feminine superior numeral 
- A OxAA feminine superior numeral 
< < OxAB left guillemot 
- I OxAC not sign 
- , OxAC not sign 
- - OxAD soft hyphen 
r 0 OxAE registered 
R 0 OxAE registered 
.... - OxAF macron (?) 
.... 

* OxBO degree 
0 .... OxBO degree 
+ - OxBl plus/minus 
~ 2 OxB2 superior '2' 
.... 3 OxB3 superior '3' 

157 Revision A of 27 March 1990 



158 System Services Overview 

Table C-l Compose Key Sequences-- Continued 

I Coml2Qse ) Key Character Sequences 

Key Key 
ISO Latin Description 

1 Code 
\ \ OxB4 acute accent 
/ u OxBS mu 
p ! OxB6 paragraph mark 
,.. OxB7 centered dot 
, , OxB8 cedilla 
... 1 OxB9 superior '1 ' 

0 - OxBA masculine superior numeral 
0 - OxBA masculine superior numeral 

> > OxBB right guillemot 
1 4 OxBC 1/4 
1 2 OxBD 1/2 
3 4 OxBE 3/4 
? ? OxBF inverted? 
A \ OxCO A with grave accent 
A 

, OxCl A with acute accent 
A "" OxC2 A with circumflex accent 
A - OxC3 A with tilde 
A WI OxC4 A with diaeresis 
A * OxCS A with ring 
A E OxC6 AEdipthong 
C , OxC7 C with cedilla 
E \ OxC8 E with grave accent 
E 

, OxC9 E with acute accent 
E 

,.. OxCA E with circumflex accent 
E WI OxCB E with diaeresis 
I \ OxCC I with grave accent 
I 

, OxCD I with acute accent 
I "" OxCE I with circumflex accent 
I " OxCF I with diaeresis 
D - OxDO Upper-case eth(?) 
N - OxDl N with tilde 
0 \ OxD2 o with grave accent 
0 

, OxD3 o with acute accent 
0 "" OxD4 o with circumflex accent 
0 - OxD5 o with tilde 
0 WI OxD6 o with diaeresis 
x x OxD7 multiplication sign 
0 / OxD8 o with slash 
U \ OxD9 U with grave accent 
U , OxDA U with acute accent 
U "" OxDB U with circumflex accent 
U WI OxDC U with diaeresis 
y , OxDD Y with acute accent 
p I OxDE Upper-case thorn 

Revision A of 27 March 1990 



Appendix C - Compose Key and Floating Accent Key Sequences 159 

Table C-l Compose Key Sequences- Continued 

( (;offiI2Qse I Key Character Sequences 

Key Key 
ISO Latin 

Description 
1 Code 

T H OxDE Upper-case thorn 
s s OxDF Gennan double-s 
a , OxED a with grave accent 
a , OxEl a with acute accent 
a .... OxE2 a with circumflex accent 
a - OxE3 a with tilde 
a " OxE4 a with diaeresis 
a * OxES a with ring 
a e OxE6 ae dipthong 
c , OxE7 c with cedilla 
e , OxE8 e with grave accent 
e , OxE9 e with acute accent 
e A OxEA e with circumflex accent 
e " OxEB e with diaeresis 
i , OxEC i with grave accent 
i , OxED i with acute accent 
i A OxEE i with circumflex accent 
i " OxEF i with diaeresis 
d - OxFO Lower-case eth(?) 
n - OxFl n with tilde 
0 

, OxF2 o with grave accent 
0 

, OxF3 o with acute accent 
0 

.... OxF4 o with circumflex accent 
0 - OxFS o with tilde 
0 " OxF6 o with diaeresis 
- : OxF7 division sign 
0 / OxF8 o with slash 
u 

, OxF9 u with grave accent 
u 

, OxFA u with acute accent 
u A OxFB u with circumflex accent 
u " OxFC u with diaeresis 
y 

, OxFD y with acute accent 
p I OxFE Lower-case thorn 
t h OxFE Lower-case thorn 
y " OxFF y with diaeresis 

Revision A of 27 March 1990 



160 System Services Overview 

Table C-2 Floating Accent Key Sequences 

Floating Accent Key Character Sequences 

Key Key 
ISO Latin 

Description 
1 Code 

A OxC4 A with umlaut 
E OxCB E with umlaut 
I OxCF I with umlaut 
0 OxD6 o with umlaut 
U OxDC U with umlaut 

Umlaut a OxE4 a with umlaut 
e OxEB e with umlaut 
i OxEF i with umlaut 
0 OxF6 o with umlaut 
u OxFC u with umlaut 
y OxFF y with umlaut 
A OxC2 A with circumflex 
E OxCA E with circumflex 
I OxCE I with circumflex 
0 OxD4 o with circumflex 

Circumflex U OxDB U with circumflex 
a OxE2 a with circumflex 
e OxEA e with circumflex 
i OxEE i with circumflex 
0 OxF4 o with circumflex 
u OxFB u with circumflex 

A OxC3 A with tilde 
N OxDl N with tilde 

Tilde 0 OxD5 o with tilde 
a OxE3 a with tilde 
n OxFl n with tilde 
0 OxF5 o with tilde 

Cedilla C OxC7 C with cedilla 
c OxE7 c with cedilla 
A OxCl A with acute accent 
E OxC9 E with acute accent 
I OxCD I with acute accent 
0 OxD3 o with acute accent 
U OxDA U with acute accent 

Acute Accent a OxEl a with acute accent 
e OxE9 e with acute accent 
i OxED i with acute accent 
0 OxF3 o with acute accent 
u OxFA u with acute accent 
y OxFD y with acute accent 

Revision A of 27 March 1990 



Appendix C - Compose Key and Floating Accent Key Sequences 161 

Table C-2 Floating Accent Key Sequencer- Continued 

Floating Accent Key Character Sequences 

Key Key ISO Latin Description 1 Code 
A OxCO A with grave accent 
E OxC8 E with grave accent 
I OxCC I with grave accent 
0 OxD2 o with grave accent 

Grave Accent u OxD9 U with grave accent 
a OxEO a with grave accent 
e OxE8 e with grave accent 
i OxEC i with grave accent 
0 OxF2 o with grave accent 
u OxF9 u with grave accent 

Revision A of 27 March 1990 





Index 

Special Characters 
getpagesizeO, 13, 14 

A 
accept () , 49 
access (), 41, 65 
accessibility of a file, 41 
acct (), 32 
address space of a process, 3, 4 
aread (), 34 
asynchronous ]10, 34 
attributes 

of a file, 37 
of a file system, 37 

await () ,34 
awk command, 73 
awrite (). 34 

B 
beginning new processes, 64 
bind () ,49 
binding sockets, 49 
/usr / etc /biod, 59 
/usr/etc/bootparams, 60 
brk (), 6 
BSD and System V compatibility in4.1, 109 

c 
C library routines, 66 
cbc_crypt (), 69 
chdir (), 35 
chmod ( ) , 38, 64 
chown ( ) , 38, 64, 75 
chroot () , 35, 75 
close (), 27 
coherence, 6 
commands with shell escapes, 73 
connect ( ) , 50 
connecting to sockets, 49 
control operations, 33 
controlling terminal, 19 
copying descriptors, 27 
counting open descriptors, 27 
creat (), 63 
creating 

-163-

creating, continued 
devices, 36 
directories, 35 
files, 36 
processes, 16 
sockets, 48 

crypt (), 70 

D 
daemons, 58 
dc command, 73 
debugging support, 44 

ptrace () , 44 
des _crypt library, 69 
des_setparity(),69 
descriptors, 26 

close (), 27 
copying, 27 
counting, 27 
dopt (), 28 
dup (), 27 
dup2 (), 27 
duplicating, 27 
getdtablesize(),26 
reference table, 26 
removing, 27 
select ( ) ,28 
setting options, 28 
synchronous multiplexing, 28 
type,27 

device 
removal, 37 

devices, 43 
creating, 36 
structured, 43 
unstructured,43 

/ dev / zero, 10 
disk quotas, 43 
dopt (), 28 
dup (), 27 
dup2 (), 27 
duplicating descriptors, 27 

E 
ecb_crypt (), 69 
ed editor, 73 
e di t editor, 73 



Index - Continued 

encrypt () , 70 
encryption routines, 69 
/etc/passwd, 67 
ex editor, 73 
exec (), 64, 73 
execve (), 16 
exit (), 16 
extending files, 40 

F 
f chmod ( ) , 38 
fgetc (), 66 
fgets (), 66 
file 

access times, 39 
accessibility, 41 
attributes, 37 
creation, 35 
extending, 40 
hard links, 39 
links, 39 
locking, 41 
modify times, 39 
ownership, 38 
permission, 38 
protection, 38 
removal,37 
renaming, 39 
seeking in, 40 
soft links, 39 
symbolic links, 39 
truncating, 40 

file attributes, 64 
file permission 

changing, 38 
set group-ID, 38 
set user-ID, 38 
sticky bit, 38 

file system, 34 
attributes, 37 
chdir (), 35 
chroot () , 35 
creating directory, 35 
naming, 34 
removing directories, 35 

files 
memory-mapped, 3 

flock (), 41 
fopen (), 66 
fork (), 16,64 
forking new processes, 64 
fprintf (), 66 
fputc (), 66 
fputs (), 66 
fread (), 66 
fscanf (), 66 
fstat (), 37 
fstatfs (), 37 
fsync (), 7 
fsync (), 34 
ftruncate (), 40 

fwrite (), 66 

G 
gather write, 32 
getc (), 66 
getdents (), 37 
getdomainname(),15 
getdtablesize(),26 
getegid (), 17, 66 
geteuid (), 17, 65 
getgid (), 17,65 
getgrent (), 68 
getgrgid ( ), 68 
getgrnam () , 68 
getgroups (), 17 
gethostid (), 15 
gethostname () , 15 
getitimer (), 26 
get login () , 68 
getpagesize(),13,14 
getpass () , 67 
getpeername(),49 
getpgrp (), 18 
getpid (), 15 
getpriority (), 29 
getpwent (), 67 
get pwnam ( ) , 67 
getpwuid (), 67 
getrlimit (), 31 
getrusage (), 30 
gets (), 66 
getsockname (), 49 
get sockopt () , 52 
gettimeofday(),24 
getty, 75 
getuid(), 17,65 
group 

10 semantics, System V vs. BSO, 112 
group 10, 65, 71 
group IDs, 17 
group processing, 68 
guidelines for secure programs, 73 

H 
hard links, 39 
heterogenaity and virtual memory, 6 
host identifiers, 15 

I 
I/O operations, generic, 32 
1/0 routines, 63 
IFS, 72, 74 
/usr/etc/in.comsat,60 
/usr/etc/in.fingerd,60 
/usr/ etc/ in. ftpd, 60 
/usr/etc/in . named, 60 
/usr/etc/in.rexecd,60 
/usr/etc/in. rlogind, 61 

-164-



/usr/etc/in.routed,61 
/usr/etc/in. rshd, 61 
/usr/etc/in.rwhod,61 
/usr/etc/in.syslog,61 
/usr/etc/in.talkd,61 
/usr/etc/in.telnetd,61 
/usr/etc/in.tftpd,62 
/usr/etc/in.timed,62 
/usr/etc/in.tnamed,62 
/usr/etc/inetd,60 
init,75 
interprocess communication, 47 
interval timers, 25 
ioctl (), 33 

K 
/usr/etc/keyserv,60 
kill (), 23 
killpgrp (), 23 

L 
library routines, 66 
link (), 39 
links, 39 

hard, 39 
symbolic, 39 

li sten () , 49 
locking files, 41 
login command, 75 
lseek (), 40 
lstat (), 38 

M 
mail command, 73 
mapped files, 7 thru 11 

private, 8 
shared, 8 

MCL_CURRENT,12 
MCL_FUTURE,12 
memory 

virtual,3 
memory management, 3 thru 14 

address spaces, 3 
concepts, 3 
external interfaces, 7 
file mapping, 3 
mmap (), 7 thru 11 
munmap (), 11 
sys tern calls, 7 

mincore () , 11, 14 
mkdir 0, 35 
mknod 0 , 36, 75, 111 
mlock (), 12 
mlockall () , 12 
mmap 0, 7 thru 11 
mount (), 42 
mprotect () , 13 
MS~SYNC,13 
MS_INVALIDATE,13 

-165-

MS_SYNC,13 
msync (), 13 
multiplexing requests, 28 
munlock () , 12 
munlockall (), 12 
munmap () ,11,14 

N 
network daemons, 58 
networking and virtual memory, 6 
/usr/etc/nfsd, 60 

o 
open (), 63 
operations support, 31 
options for descriptors, 28 
originating new processes, 64 
ownership of a file, 38 

p 
password encryption routines, 70 
password processing, 67 
PATH,72 
popen (), 66 
/usr/etc/portmap,60 
printf () , 66 
private mapped files, 8 
process 

address space, 4 
process address space, 3 
process control, 64 
processes 

and protection, 15 
creation, 16 
groups, 18 
identifiers, 15 
priorities, 29 
setting process group, 18 
termination, 16 
tracing with ptrace () , 44 
waiting for, 16 

profil (), 26 
program security, 71, 73 
programmer's guide to security, 63 thru 75 
programming as super-user, 74 
ptrace () , 44, 46 
putc 0, 66 
putpwent (), 67 

Q 
quotactl (), 43 
quotas, 43 

R 
/usr/etc/rarpd, 60 
read () , 32, 63 
readlink (), 39 
readv 0, 33 
reboot (), 31 

Index - Continued 



Index - Continued 

receiving from sockets, 50 
recv (). 51 
recvfrom (), 51 
recvmsg () • 52 
reference table, 26 
removing 

descriptors. 27 
devices, 37 
directories, 35 
files, 37 

rename () , 39 
renaming files, 39 
resource controls. 29 
rmdir (), 35 
/usr/etc/rmt,61 
/usr/etc/rpc.etherd,60 
/usr/etc/rpc.ipallocd,62 
/usr/etc/rpc.lockd,60 
/usr/etc/rpc.mountd,60 
/usr/etc/rpc.pnpd,62 
/usr/etc/rpc.rexd,60 
/usr/etc/rpc.rquotad,61 
/usr/etc/rpc.rusersd,61 
/usr/etc/rpc.rwalld,61 
/usr/etc/rpc.sprayd,61 
/usr/etc/rpc.statd,61 
/usr/etc/rpc.yppasswdd,62 

S 
sbrk (), 6 
scanf (), 66 
scatter read, 32 
security 

for programmers, 63 thru 75 
pro gram security, 71 
shell script security, 73 

sed stream editor, 73 
seeking in files, 40 
select (), 28 
send (), 50 
sending to sockets, 50 
/usr/lib/sendmail,61 
sendmsg () , 52 
sendto ( ) ,50 
server processes, 58 
server-based services, 59 
set group ID 

for programs, 73 
set user ID 

for programs, 72 
setdomainname (), 15 
setegid (), 71 
seteuid () , 71 
setgid ( ), 71, 75 
setgroups(),18,66 
sethostname () , 15 
setitimer (), 26 
setkey ( ), 70 
setpgid (), 18 

setpriority (), 29 
setregid () • 18 
setreuid () , 18,66 
setrgid (), 71 
setrlimit (), 31 
setruid () , 71 
set sockopt ( ) , 52 
settimeofday (), 24 
setting options for descriptors, 28 
setuid (), 71, 75 
shared mapped files, 8 
shared memory, 6 
shell escapes in commands, 73 
shell script security, 73 
shutdown ( ) , 52 
sigblock (), 23 
signal (), 64 
signals,20 

types, 21 
sigpause (), 24 
sigsetmask (). 24 
sigstack ( ).24 
sigvec () , 22 
socket () • 48 
socketpair (). 50 
sockets, 47 

binding, 49 
connecting, 49 
creating, 48 
options, 52 
receiving from, 50 
sending to, 50 

soft links, 39 
spawning new processes. 64 
standard I/O library, 66 
starting new processes, 64 
stat (), 37. 65 
statfs (), 37 
STREAMS 

110 Interface Operating System Service Routines, 117 
structured devices, 43 
super-user programming, 74 
SVID 

Administered Systems Extension Utilities, 115 
Advanced Utilities Extension, 114 
Base System General Library Routines, 113 
Base System OS Service Routines, 113 
Basic Utilities Extension, 114 
compliance, 113 
Kernel Extension OS Service Routines, 114 
Open Systems Networking Interfaces Library Routines, 117 
Shared Resource Environment Utilities, 117 
Software Development Extension Additional Routines, 115 
Software Development Extension Utilities, 115 
STREAMS I/O Interface Operating System Service Routines, 

117 
Terminal Interface Extension Library Routines, 116 
Terminal Interface Extension Utilities, 116 

swapon (), 31 
symbolic links, 39 

-166-



symlink (), 39 
sync 0,34 
synchronization, 7 
synchronous mUltiplexing of descriptors, 28 
system calls, 63 
System V 

batch utilities, 110 
choosing compatible utilities and libraries, 111 
compatibility, 109 
compatibility tools, 111 
features in 4.1, 110 
group 10 semantics vs. BSD semantics, 112 
programs and Sun-supplied libraries, 110 
SVID Issue 2 compliance, 110 
tty interface, 110 

system (), 66 

T 
tcgetpgrp (), 19 
terminating a process, 16 
/usr/etc/tfsd, 62 
time (), 25 
timers, 24 

interval, 25 
trace process - ptrace () , 44 
troff command, 73 
truncate (), 40 
truncating files, 40 

U 
umask (), 64 
unlink () , 37 
unmount (), 42 
unstructured devices, 43 
user 10,65,71 
user lOs, 17 
/usr/5bin/cc,73 
utimes (), 39 

v 
v i editor, 73 
virtual memory, 3 thru 7 
VM,3 

W 
wait 0,16 
wait3 (), 16 
waiting for a process, 16 
who's running a program?, 68 
write command, 73 
write (), 32,64 
writev (), 33 
writing secure programs, 71 

X 
X/OPEN compatibility, 119 

-167-

y 
/usr/etc/ypbind, 62 
/usr/etc/ypserv,62 

Index - Continued 



I 


