
C Programmer's Guide

Part Number: 800-3844-10
Revision A of 27 March, 1990

Trademarks

Sun Workstation® is a trademark of Sun Microsystems, Incorporated.

SunOS1M is a trademark of Sun Microsystems, Incorporated.

Copyright © 1989 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any fonn or by any
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an infonnation
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack­
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter­
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232 4,745,407
4,679,0144,435,7924,719,5694,550,368 in addition to foreign patents and applications pending.

• eo:

Contents

Chapter 1 U sing The Sun C Compiler .. 1

1.1. Basics - Compiling and Running C Programs .. 1

1.2. C Compiler .. 3

1.3. cc Options ... 3

-a Option .. 3

-align _block_ Option .. 3

- B binding Option .. 4

-c Option .. 4

-c Option .. 4

-dalign Option ... 4

-dryrun Option ... 4

- Dname [=defJ Option .. 4

-E Option .. 4

Floating-Point Options .. 4

-g Option .. 5

-go Option ... 5

-help Option 5

- Ipathname Option " ,. " : ;.:;;;;; ... ;;:.;:.," ... ;~:;:.~;;,

- J Option " .. ;;;;;; .. , i«;' •••• ; •. :;:.:;:;; ••• ;';:;;:;;.",;;.;::'

-1 library Option ,. ,~~~~"':;.;.,.,:;@.~ : ;+~~ ... ;.;.;.;: ...•• , •• ,.: ;;<".

- L dir Option ... · ..• :.· ;;,,;.,.,:,;: .. " •. ;'H~~:~.:,,;,~.;;·;;;·;i.,,,,,

-MOption .. "' , .. " ... ;" ; ~.,~ .. ,,'.><

-misalign Option .. ; •• ;;;; .•. ;;:;;;.;., ... ~,.: 6

-0 output/Lie Option ... : ••• ;;; 6

- iii-

Contents - Continued

-O[level] ... 6

-p Option .. 6

-P Option .. 6

-pg Option ... 6

-pic Option ... 6

-PIC Option ... 6

-pipe Option .. 7

-Qoption prog opt Option .. 7

-Qpa th pathnarrze Option .. 7

-Qproduce sourcetype Option .. 7

-R Option .. 7

-8 Option .. 7

-sb Option ... 7

target_arch Option .. 7

-t emp= dir Option ... 7

-t ime Option .. 8

-Uname Option .. 8

-w Option .. 8

1.4. Environment ... 8

FLOAT_OPTION ... 8

Chapter 2 Accessing a Program's Environment ... 9

2.1. Basics - Accessing Command Line Arguments ... 9

2.2. Basics - Accessing Environment Variables .. 10

Accessing Environment Variable Using getenv () 11

Chapter 3 Processes .. 13

3.1. The system () Function ... 13

3.2. Low-Level Process Creation - execl () and execv () 13

3.3. Process Control- fork () and wait () .. 15

3.4. Pipes .. 16

Chapter 4 Signals - Interrupts and All That .. 21

-iv-

Contents - Continued

Chapter 5 The Standard I/O Library .. 27

5.1. The Standard I/O Library .. 27

5.2. Using the Standard I/O Library ... 27

5.3. The Standard Input and Standard Output .. 29

Reading Standard Input and Writing Standard Output 29

5.4. ErrorHandling- stderrand exit() .. 31

5.5. Miscellaneous 110 Functions .. 31

Chapter 6 Accessing Files Through Standard I/O ... 33

6.1. Accessing Files ... 36

fopen () - Open a File .. 36

freopen () - Reopen a File ... 37

fflush () - Flush Stream Buffer .. 37

fclose () - Close A File ... 38

setbuf () - Set Buffer for File I/O ... 38

fileno () - Obtain File Descriptor ;.................................... 39

rewind () - Rewind a Stream ... 40

Chapter 7 Character 1/0 ... 41

getc () Macro - Get a Character from a File 41

f get c () Function - Get Character from File 42

getchar () Macro - Get a Character from Standard Input 43

f get s () - Read a String from a File .. 44

ungetc () -'- Push a Character Back on a Stream 44

pu t c () Macro - Put a Character to a File .. 45

fputc () Function - Put a Character to a File 46

putchar () Macro - Put a Character to Standard Output 46

fputs () - Put a String to a File .. 47

feof () - Test for End Of File .. 47

7.1. Fonnatted Input and Output .. 48

Fonnatted Output Conversions ... 48

Fonnatted Input Conversions ... 48

The Fonnat Control Templates ... 49

-v-

Contents - Continued

Conversion Specifications ... 49

d - Decimal Conversion ... 50

o - Octal Conversion ... 50

x - Hexadecimal Conversion .. 50

h - Short Conversion on Input Only... 51

u - Unsigned Decimal Conversion .. 51

c - Character Conversion .. 51

s - String Conversion .. 52

e - Exponential Floating Conversion ... 52

f - Fractional Floating Conversion ... 53

g - Adaptable Floating Conversion ... 53

Literal Character Output ... 54

Optional Format Modifiers .. 54

Left Justify Field .. 55

Minimum Field Width and Precision Specifications 55

Length Modifier ... 56

Chapter 8 String-Handling Functions ... 57

8.1. Character Classification ... 57

isalpha () - Is Character Alphabetic ... 57

isupper () - Is Character Uppercase Letter 57

is lower () - Is Character Lowercase Letter 57

isdigi t () - Is Character Decimal Digit .. 57

isxdigit () - Is Character Hexadecimal Digit 58

isalnum () - Is Character Letter or Digit ... 58

isspace () - Is Character White space ... 58

ispunct () - Is Character Punctuation ... 58

isprint () - Is Character Printable ... 58

,iscntr 1 () - Is Character Control Character 58

isascii () - Is Character an ASCII Character 58

isgraph () - Is Character a Visible Graphic 58

8.2. Character Conversion Macros .. 58

toupper () - Convert Lowercase to Uppercase 58

-vi-

Contents - Continued

tolower () - Convert Uppercase to Lowercase 58

toascii () - Ensure Character is ASCII ... 58

8.3. Functions for Handling Null-Terminated Strings ... 58

Null Pointers versus Null Strings .. 59

strlen () - Find Length of String ... 59

strcmp () and strncmp () - Compare Strings 59

strcpy () and strncpy () - Copy Strings 60

strcat () and strncat () - Concatenate Strings 60

index () and r index () - Find Character in String 60

8.4. Byte String and Bit String Functions ... 61

bcmp () - Compare Byte Strings .. 61

bcopy () - Copy Byte Strings ... 61

bzero () - Clear Byte String to Zero .. 61

ffs () - Find First Bit Set .. 61

Appendix A Low-Level File I/O .. 63

A.l. File Descriptors ... 63

A.2. read () and write () ... 64

A.3. open (), close (), unlink () .. 66

A.4. Random Access- lseek() .. 67

A.5. Error Processing .. 68

Appendix B Binary I/O ... 71

fread () - Read Data from File ... 71

fwrite () - Write Data to File .. 71

Appendix C Memory Management ... 73

C.l. mallo c () - Allocate Memory ... 73

C.2. free () - Free Allocated Memory .. 73

C.3. calloc () - Allocate Memory for C Objects .. 73

CA. cfree () - Free Allocated Memory ... 74

C.5. realloc () - Change Size of Allocated Block 74

C.6. memalign () - Allocate to Alignment Boundary 74

-vii-

Contents - Continued

C.7. valloc () - Allocate Memory on a Page Boundary 74

C.S. alloca () - Allocate Memory on Stack ... 75

C.9. Memory Allocation Debugging .. 75

malloc_debug () - Set Debug Level.. 75

malloc_ verify () - Check Storage Allocation Heap 75

C.lO. Errors from Memory Management Routines ... 76

Appendix D Sun C Data Representations ... 77

0.1. Storage Allocation ... 77

0.2. Data Representations .. 77

Integer Representations ... 78

float and double Representation .. 78

Extreme Number Representation ... 79

Hexadecimal Representation of Selected Numbers SO

Pointer Representation ... SO

Array Storage .. SO

Arithmetic Operations on Extreme Values .. SO

0.3. Argument Passing Mechanism ... S2

0.4. Referencing Data Objects in C ... 82

Referencing Simple V ariables ... 82

Referencing With Pointers .. 83

Referencing Array Elements .. 83

Referencing Structures and Unions .. 84

Appendix E Sun C Extensions .. 87

E.1. Keywords (§A.2.3) ... 87

E.2. Name Spaces (§A.4) .. 87

E.3. Characters and Integers (§A.6.l) ... 87

E.4. float and double (§A.6.2) .. 87

E.5. Arithmetic Conversions (§A.6.6) ... 88

E.6. Primary Expressions (§A.7.1) .. 88

E.7. Multiplicative Operators (§A.7.3) ... 88

E.8. Storage Class Specifiers (§A.S.l) .. 88

- viii-

Contents - Continued

E.9. Type Specifiers (§A.8.2) ... 88

E.I0. Declarator Naming (§A.8.4 and §A.14.I) .. 88

E.I1. struct and union Declarations (§A.8.5 and §A.14.I) 88

E.12. Switch Statement (§A.9.7) .. 89

E.13. External Function Definitions (§A.I0.I) .. 89

E.14. Lexical Scope (§A.II.1) .. 89

E.15. Scope of Externals (§A.II.2) .. 89

E.16. Explicit Pointer Conversions (§A.14.4) .. 89

E.17. Constant Expressions (§A.15) .. 89

B.18. Anachronisms (§A.17) .. 89

Index ... 91

-ix-

_':;;~'" .": " ··~~ti

Tables

Table 5-1 Standard I/O Library Names Accessible to User Programs 28

Table 0-1 Storage Allocation for Oata Types ... 77

Table 0-2 Representation of short .. 78

Table 0-3 Representation of int and long ... 78

Table 0-4 float Representation .. 78

Table 0-5 double Representation ... 79

Table 0-6 float Representations .. 79

Table 0-7 double Representations ... 79

Table 0-8 Extreme Values Usage ... 80

Table 0-9 Addition and Subtraction Results .. 81

Table 0-10 Multiplication Results ... 81

Table 0-11 Oivision Results .. 81

Table 0-12 Comparison Results .. 82

-xi-

Figures

Figure 6-1 Example of Using fopen () .. 36

Figure 6-2 Example of Using freopen () ... ,37

Figure 6-3 Example of Using setbuf () ... 39

Figure 6-4 Example of Using fileno () ... 39

Figure 7-1 Example of Using getc () ... 42

Figure 7-2 Example of Using fgetc () .. 43

Figure 7-3 Example of Using getchar () ... 43

Figure 7 -4 Example of Using f get s () .. 44

Figure 7-5 Example of Using ungetc () ... 45

Figure 7-6 Example of Using fputc () .. 46

Figure 7-7 Example of Using put char () ... 47

Figure 7-8 Example of Using fputs () .. 47

Figure 7 -9 Example of d Fonnat Specification ... 50

Figure 7 -1 0 Example of 0 Fonnat Specification .. 50

Figure 7-11 Example of x Fonnat Specification .. 51

Figure 7 -12 Example of u Fonnat Specification ,:,:,: •• ,,,.,,

Figure 7 -13 Example of c Fonnat Specification ;++.;;:;,~";;, •.. ;,+:+.,,

Figure 7-14 Example of s Fonnat Specification ,".;,.:; :.,,~ ... ;.;:;:;:;:;.:, ... ; :~ ... ,~~ •• ::;:;:;

Figure 7 -15 Example of e Fonnat Specification ~ , .. , .. ;:;;:;.; ... ,:,," :.:.:.:.;; :;:,;:;: ; .. ~ ..• :::::::;'

Figure 7 -16 Example of f Fonnat Specification ",H:;~.;.,.,;;;+;.,++; .. , " ,,;++; ... ~e,;::::

Figure 7 -17 Example of g Fonnat Specification i;.,;:;;;;+; •.• :~" .. ";;;;;;:~;;,.,.,:;:;,~:.: •. ,;i; ... ,,:,:,:':,::;

Figure 7 -18 Example of Literal Character Output ;.;:;:;:;.:~,,, .. ,:;~;;:~ •• " ;;~;;:;;':,.,.;;';"

Figure 7-19 Example of Field Width Specifications ;;:;:;:.:";,.~~

- xiii-

54

55

Figures - Continued

Figure 8-1 Layout of Null-Terminated String in Memory 59

Figure 0-1 Examples of Simple Variable References ... 83

Figure 0-2 Examples of Pointer References ... 83

Figure 0-3 Examples of Array Variable References .. 84

Figure 0-4 Examples of Accessing Members of Structures 85

-xiv-

1.1. Basics - Compiling
and Running C
Programs

1
U sing The Sun C Compiler

This chapter describes how to compile C programs under the SunOS version of
the UNIXt operating system running on Sun Microsystems' Sun-3 and Sun-4
(SPARC) workstations.

If you are already familiar with using cc, (the UNIX C compiler), either on Sun
workstations or on other UNIX systems, you can probably ignore or skim the rest
of this chapter without regretting it later.

If you need to learn about programming in C, or about SunOS programming
tools, you should refer to one or more of the introductory books available that
address the topic.

This section shows how to compile and run a minimal C program. Consider this
C program that just displays a message and exits:

Using your preferred text editor, save the text of this program in a file called
hackers. c. After you have saved the file, compile it with the cc command:

[tutorial% cc hackers.c
tutorial%]

cc works silently unless there are errors in the program. In this case, there are
no errors, and c c compiles the program and saves an executable version of it in a
file named a. out.

t UNIX is a registered trademark of AT&T.

Revision A of 27 March, 1990

2 C Programmer's Guide

When you want to run the program, type the name of the executable file:

tutorial% a.out
Real Programmers Hack C!
tutorial%

Note that the program's last line was an exit () statement. If run interactively
from a shell, either with or without the final line, this program will behave as
expected:

tutorial% a.out
Real Programmers Hack C!
tutorial%

However, if the same program (minus exit (» is executed in an environment
which examines the program's exit status, unexpected results may occur. In par­
ticular, if the program is executed from a Makefile, an unexpected error code
may be reported:

tutorial% cat Makefile
example: example.c

cc example.c -0 example
example

tutorial% make
cc example.c -0 example
example
main returns value which is NOT ignored
*** Error code 40
make: Fatal error: Command failed for target 'example'
tutorial%

This strange message may be explained by noting that make examines the exit
status of each program that it invokes, where the program's exit status is the
value returned by main () or passed to exit (). Ifmain () does not return a
value or call exit () , the exit status is undefined and the program is in error.
This error may be detected by running system V lint on the suspect program:

tutorial% /usr/Sbin/lint example.c

example.c

(4) warning: maine) returns random value to invocation environment

This program may be corrected by adding a return statement or a call to
exit ().

Revision A of 27 March, 1990

1.2. C Compiler

1.3. cc Options
-a Option

-align _block_ Option

Chapter 1 - Using The Sun C Compiler 3

More generally, if a function f () is declared with a result type, but ends without
returning a result, and the (undefined) result of f () is used in an expression con­
taining a call to f () , then the program is in error.

Some earlier versions of the compiler permitted programs that did not incor­
porate either a terminating exit () or return function.

This section describes the compiler options supported by Sun Microsystems' C
compiler. Later sections cover specific dependencies and features of Sun C
under SunOS.

(~ ____ c_C ___ [O_p_ti_O~ __] __ fi_le_n_a_~ ___ [I_W_r_a_ri_es_]_._._. ________________________ --J]

cc translates programs written in C into executable load modules, (or into relo­
eatable binary programs for later linking with ld(l», and optionally links (or
binds) the result with object files generated by cc or other language processors.

cc accepts a list of C source files and various object files contained in the list of
files specified by filename.... The resulting executable is placed in the file a.out,
unless the (-0) option is specified (see below).

cc lets you compile and link: any combination of the following:

o C source files (with a . c suffix)

o C preprocessed source files with a . i suffix

o SunOS system object-code files with . 0 suffixes

o Assembler source files with . s suffixes

After successfully linking, c c places the product of linking those files in the file
a. out, or in the file specified by the -0 option. Note that, unless otherwise
specified, options may follow the the filename, as in cc file. c -0 file.

This option directs c c to insert code to count how many times each basic block
in a program is executed. This creates a . d file for every . c file compiled that
accumulates execution data for its corresponding source file. On the Sun-3,
Sun-4, and SPARCStation, you can then run tcov(l) on the source files to gen­
erate statistics about the program.

Since this option entails some optimization, it is incompatible with -g.

This option directs cc to page-align the uninitialized global uninitialized data
symbol block, which is equivalent to a FORTRAN common block. This
increases its size to a whole number of pages, and places its first byte at the
beginning of a page. Multiple -align options may be given.

Revision A of 27 March, 1990

4 C Programmer's Guide

- B binding Option

-c Option

-c Option

-dalign Option

-dryrun Option

-Dname[=dej] Option

-E Option

Floating-Point Options

This option specifies whether bindings of libraries for linking are static or
dynamic, indicating whether libraries are non-shared or shared, respectively.

This option directs c c to suppress linking with 1 d(1) and produce a . 0 file for
each source file. You can explicitly name a single object file with the -0 option.

This option prevents the C preprocessor, cpp(l), from removing comments.

This option generates double load/store instructions whenever possible for
improved performance. Assumes that all double typed data are double aligned,
and should not be used when correct alignment is not assured.

Sun-4 and SPARCstation only.

This option directs c c to show but not execute the commands constructed by the
compilation driver.

This option defines a symbol name to the C preprocessor cpp(l). This is
equivalent to a =ll=define directive at the beginning of the source. If you don't
use =def, name is defined as '1'. Multiple -D options may be given.

This option runs the source file through cpp only. It sends the output to either
stdout, or to a file named with the -0 option (which must end with. i) and
includes the cpp line numbering information. (See also, the -P option.)

Sun supports several ways to perform floating-point calculations, both in
hardware and software. The floating-point point options provided by cc pennit
you to choose the way that gives you the best performance and portability for
your programs.

The following floating-point code generation option can be used on Sun-3, Sun-4
and SP ARC systems:

-fsingle This option directs cc to use single-precision arithmetic in com­
putations involving only float expressions - that is, do not
convert everything to double, which is the default. Note that
floating-point parameters are still converted to double precision,
andfunctions returning values can still return double-precision
values.

Although this is not traditional C practice, some programs run
much faster using this option. Be aware that some significance can
be lost due to lower-precision intermediate values.

The floating-point code generation options useable on Sun-3s can be any of the
following:

-f68881

-ffpa

This option directs cc to generate in-line code for the Motorola
MC68881 floating-point coprocessor (Sun-3 systems only).

This option directs c c to generate in-line code for the Sun
Floating-Point Accelerator (Sun-3 systems only).

Revision A of 27 March, 1990

-g Option

-go Option

-help Option

- Ipathname Option

-fsoft

-fstore

Chapter 1 - Using The Sun C Compiler 5

This option directs c c to generate software floating-point calls
(this is the default for all Sun-3 workstations).

This option insures that expressions allocated to extended preci­
sion registers are rounded to storage precision whenever an
assignment occurs in the source code.

Only effective if -f68881 is specified (Sun-3 systems only).

-fswitch This directs cc to generate runtime-switched floating-point calls.
The compiled object code is linked at runtime to routines that sup­
port one of the above types of floating-point code. This option is
not recommended.

This option produces additional symbol table information for dbx(l) and
dbxtool(l), and passes the -lg flag to ld(l) so as to include the g library,
/usr /lib/libg. a. This option suppresses the -0 and -R options.

This option produces additional symbol table information for adb(1). When this
option is given, the -0 and -R options are suppressed.

This option displays information about c c .

This option adds pathname to the list of directories that are searched for
#include files with relative filenames (those not beginning with slash I).

The preprocessor first searches for #include files in the directory containing
sourcefile, then in directories named with - I options (if any), and finally, in
/usr / include. Programs that use systems calls, for example, would need to
use the file types. h as one of their #include files. types. h contains
many type definitions used by common system calls.

-J Option This option generates 32-bit offsets in swi tchO statement branches (Sun-3 sys­
tems only).

-1 library Option This option directs ld to link with object library library. The ordering of
libraries in the compile line is important, as symbols are resolved from left to
right.

Note This option must follow the source file arguments.

- L dir Option This option adds dir to the list of directories containing object-library routines
(for linking with ld).

-M Option This option runs only the macro preprocessor on the named C programs, request­
ing that it generate makefile dependencies and send the result to the standard out­
put (see make(l) for details about make files and dependencies).

Revision A of27 March, 1990

6 C Programmer's Guide

-misalign Option

-0 output/tie Option

-O[level]

This option generates code to allow loading and storage of misaligned data
(Sun-4 and SPARe systems only).

This option names the output file outputflie. output/lie must have the appropriate
suffix for the type of file to be produced by the compilation, outputfile cannot be
the same as sourcefile since c c will not overwrite the source file.

This option directs c c to optimize the object code. It is ignored when either -g,
-go, or -a are used. level can be one of the following:

1 Do postpass assembly-level optimization only.

2 Do global optimization before code generation, including loop optimiza­
tions, common subexpression elimination, copy propagation, and automatic
register allocation. -02 does not optimize references to or definitions of
external or indirect variables.

3 Same as -02, but optimize uses and definitions of external variables. -03
does not trace the effects of pointer assignments. Neither L-03 nor -04
should be used when compiling either device drivers, or programs that
modify external variables from within signal handlers.

4 Same as -03, but traces the effects of pointer assignments.

Note If you use -0 without specifying the level, it is equivalent to using -02.

-p Option This option prepares the object code to collect data for profiling with prof(I).
-p invokes a run-time recording mechanism that produces a mon.out file at nor-
mal termination.

-P Option This option runs the source file through cpp(l), the C preprocessor, only. It then
puts the output in a file with a . i suffix. Does not include cpp-type line number
information in the output.

-pg Option This option prepares the object code to collect data for profiling with gprof(l).
It invokes a run-time recording mechanism that produces a gmo n . out file at
normal termination.

-pi c Option This option produces position-independent code. Each reference to a global
datum is generated as a dereference of a pointer in the global offset table. Each
function call is generated in pc-relative addressing mode through a procedure
linkage table. The size of the global offset table is limited to 64K on Sun-3 sys­
tems, or to 8K on SP ARC stations.

-PIC Option This option is similar to -pic, but lets the global offset table span the range of
32-bit addresses in those rare cases where there are too many global data objects
for -pic.

Revision A of 27 March, 1990

-pipe Option

-Qoption prog opt Option

-Qpa th pathname Option

-Qproduce sourcetype
Option

-R Option

-8 Option

-sb Option

target_arch Option

-t emp= dir Option

Chapter 1 - Using The Sun C Compiler 7

This option directs c c to use pipes, rather than intermediate files, between com­
pilation stages. (Very CPU-intensive.)

This option passes the option opt to the compiler phase prog. The option must
be appropriate to that program and may begin with a minus sign. prog can be
one of: as(I), cpp(l), inline, or ld(l).

This option inserts a directory pathname into the search path used to locate com­
piler components. This path will also be searched first for certain relocatable
object files that are implicitly referenced by the compiler driver, for example
*crt *.0 and bb_link. o. This lets you choose whether or not to use default
versions of programs invoked during compilation.

This option causes c c to produce source code of the type sourcetype. source type
can be one of the following:

· c C source (from bb_count).

· i Preprocessed C source from cpp.

• 0 Object file from as.

· s Assembler source (from CCOID, inline(l), or c2.

This option directs c c to merge the data segment with the text segment for
as(l). Data initialized in the object file produced by this compilation is read­
only, and (unless linked with ld -N) is shared between processes. This option
is ignored when either -g or -go are used.

This option directs c c to produce an assembly source file but not to assemble the
program.

This option generates extra symbol table information for the Sun Source Code
Browser. This is an unbundled product that will be released based on 4.1.

This option compiles object files for the specified processor architecture. Unless
used in conjunction with one of the Sun Cross-Compilers, correct programs can
be generated only for the architecture of the host on which the compilation is per­
formed. target_arch can be one of:

-sun2 Produce object files for a Sun-2 system.

-sun3 Produce object files for a Sun-3 system.

-sun4 Produce object files for a Sun-4 and SP ARC systems.

This option sets the directory to contain temporary files generated during the
compilation process to be dir.

Revision A of 27 March, 1990

8 C Programmer's Guide

-t ime Option

- Uname Option

-w Option

1.4. Environment
FLOAT OPTION

This option directs c c to report execution times for the various compilation
passes.

This option removes any initial definition of the cpp symbol name. This option
is the inverse of the -D option. Multiple -U options may be given.

This option directs c c to not print warnings.

(Sun-3, Sun-4, and SPARe systems only.) When no floating-point option is
specified, the compiler uses the value of this environment variable (if set).
Recognized values are: f68881, ffpa, fsky, fswitch and fsoft.

Revision A of 27 March, 1990

2.1. Basics - Accessing
Command Line
Arguments

2
Accessing a Program's Environment

This chapter discusses two basic topics:

o How to get the arguments from the command line used to run a program.

o How to access environment variables.

Assuming that you have written a C program, you might like to be able to get
information from the command line when the user starts up the program.
Although many SunGS system programs are run as filters - they obtain input
from the standard input and send output to the standard output, sometimes you
might like to be able to specify alternative files to operate upon, or to specify
options on the command line to control the program's behavior.

When a C program is run as a command, the arguments on the command line are
made available to the program's main () function as its first two arguments, an
argument count argc and an array argv of pointers to character strings that
contain the arguments. By convention, argv [0] is the command name itself,
so argc is always greater than O. Since argv is not NULL-terminated, you
must use argc when traversing it.

The following program illustrates the mechanism: it simply echoes its arguments
back to the tenninal- this is essentially the echo command.

argv is a pointer to an array whose elements are pointers to arrays of characters;
each is tenninated by \ 0, so they can be treated as strings. The program starts by
printing argv [1] and loops until it has printed argv [argc-l] .

9 Revision A of 27 March, 1990

10 C Programmer's Guide

2.2. Basics - Accessing
Environment
Variables

tutorial% cc environ.c
tutorial% a.out
HOME=/usr/henry

The argument count and the arguments are parameters to main, so if you want to
keep them around for other routines to use, you must copy them to external vari­
ables.

The next topic is how to obtain values from a running program's environment.

You can 'tailor' your SunOS system environment by setting environment vari­
ables, and these environment variables are accessible from a program.

When a C program is started, three arguments are passed to its main function.
In addition to argc and argv as described above, there is an array (named
en vp) of pointers to the character strings that comprise the environment.

Each environment variable is a null-terminated character string of the form name
= value that can be manipulated like any other character string. (envp itself is
also null-terminated.)

Here is a short program to display all the environment variables:

If you save the above text as environ. c, you can compile and run it as fol­
lows:

SHELL=/bin/csh
PATH=/usr/doctools/bin:/usr/local:.:/usr/ucb:/bin:/usr/bin
TERM=sun
USER=henry
EXINIT=set noai wrapmargin=16 para=IPLPPPQPLSLEDSDETSTEKSKEPSPEEQENLlpplpipbp
WINDOW_PARENT=/dev/winO
WINDOW_ME=/dev/winB
WINDOW_GFX=/dev/winB
tutorial%

Revision A of 27 March, 1990

Accessing Environment
Variable Using getenv ()

tutorial% a.out PATH

Chapter 2 - Accessing a Program's Environment 11

While environ. c is somewhat useful, parsing the name == value pairs is rather
tedious, so there is a C library function called getenv () whose purpose is to
get values from the environment Here is the interface definition for getenv () :

[char
char

*getenv(name)
*namei

Now we can compose a program that displays the value of a variable supplied as
an argument on its command line:

After compiling this program, you can use it like this:

]

PATH = /usr/doctools/bin:/usr/local:.:/usr/ucb:/bin:/usr/bin
tutorial% a.out nonesuch
a.out: no variable nonesuch
tutorial% a.out
Usage: a.out name
tutorial%

Revision A of 27 March, 1990

12 C Programmer's Guide

Revision A of27 March, 1990

3.1. The system ()
Function

3.2. Low-Level Process
Creation - execl ()
and execv ()

3
Processes

The following section describes how to execute one program from within
another. This makes it possible to use existing programs rather than always hav­
ing to write new ones.

The easiest way to execute a program from another is to use the standard library
routine system (). system () takes one argument, a command string exactly
as typed at the terminal (except for the newline at the end) and executes it - for
instance, to timestamp the output of a program, and returns a status word.

main ()
int stat;

stat = system ("date") ;

/* rest of processing */

The in-memory formatting capabilities of sprintf () are useful if you must
build the command string from pieces.

If you're not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using more primitive
routines that the standard library's system () routine is based on1.

The most basic operation is to execute another program without returning, by
using the routine execl (). For example, you can display the date as the last
action of a running program:

execl("/bin/date", "date", NULL);

1 system () uses Ibinlsh (the Bourne Shell) to execute the command string t so syntax specific to the C­
Shell will not work.

13 Revision A of 27 March t 1990

14 C Programmer's Guide

The arguments that you pass to execl () are:

1. The filename of the command that you want executed; you have to know
where it is found in the file system.

2 The second argument is conventionally the program name (that is, the last
component of the file name), but this is seldom used except as a placeholder.

3. If the command takes arguments, they are strung out in order, as a comma-
separated list, after the program name (or its position).

4. Following the arguments, the end of the list is marked by a NULL argument.

The exec 1 () call overlays the existing program with the new one, runs that,
then exits. There is no return to the original program.

More commonly, a program falls into two or more phases that communicate only
through temporary files. Here it is natural to start the second pass simply by an
execl () call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error in performing the execl () call itself, for example
if the file can't be found or is not executable. If you don't know where date ()
is located, you might try

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl () called execv () is useful when you don't know in
advance how many arguments there are going to be. The call is

(execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execv () can tell where the list ends. As with execl () ,
filename is the file in which the program is found, and argp [0] is the name
of the program. (This arrangement is identical to the argv array for program
arguments.)

J

Neither of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know pre­
cisely where the command is located. Nor do you get the expansion of metachar­
acters like <, > , * , ? and [] in the argument list. If you want these, use
execl () to invoke a shell sh(I), which then does all the work. Construct a
string commandline that contains the complete command as it would have
been typed at the terminal, then call

Revision A of 27 March, 1990

3.3. Process Control -
fork () and wait ()

Chapter 3 - Processes 15

exeel("/bin/sh", "sh" , "-e", eommandline, NULL);

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to
treat the next argument as a whole command line, so it does just what you want.
The only problem is in constructing the right information in commandline.

So far what we've talked about isn't really all that useful by itself. Next we show
how to regain control after running a program with execl () or execv () .
Since these routines simply overlay the new program on the old one, to save the
old one requires that it first be split into two copies; one of these can be overlaid,
while the other waits for the new, overlaying program to finish. The splitting is
done by a routine called for k () :

]
This call splits the program into two copies, both of which continue to run. The
only difference between the two is the value ofproc_id, the process id. In one
of these processes (the child), proc id is zero. In the other (the parent),
proc _ id is nonzero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (for k () == 0)

execl("/bin/sh", "sh" , "-c", crod, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork () makes
two copies of the program. In the child, the value returned by fork () is zero,
so it calls execl () which does the command and then dies. In the parent,
fork () returns nonzero, so it skips the execl (). If there is an error, fork ()
returns -1.

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait () :

int status;

if (fork () == 0)

execl (...) ;
wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the
execl () or fork () ,or the possibility that there might be more than one child
running simultaneously. The wait () returns the process id of the terminated
child, in case you want to check it against the value returned by fork () .
Finally, this fragment doesn't deal with any unusual behavior on the part of the

Revision A of 27 March, 1990

16 C Programmer's Guide

3.4. Pipes

child (which is reported in status). Still, these three lines are the heart of the
standard library's system () routine, which we'll show in a moment.

The status returned by wait () encodes in its low-order eight bits the
system's idea of the child's tennination status; it is 0 for nonnal tennination and
nonzero to indicate various kinds of problems. The next higher eight bits are
taken from the argument of the call to exit () which caused a nonnal termina­
tion of the child process. It is good coding practice for all programs to return
meaningful exit status. (A program that does not explicitly call exi t () does
not automatically return a 0 status.)

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set
up to point to the right files (see Appendix A.l), and all other possible file
descriptors are available for use. When this program calls another one, correct
etiquette suggests making sure the same conditions hold. Neither fork () nor
exec affects open files in any way. If the parent is buffering output that must
come out before output from the child, the parent must flush its buffers before the
execl (). Conversely, if a caller buffers an input stream, the called program
will lose any information that has been read by the caller.

A pipe is an I/O channel intended for use between two cooperating processes:
one process writes into the pipe, while the other process reads from the pipe. The
system looks after buffering the data and synchronizing the two processes. Most
pipes are created by the shell, as in

(tutorial% 1s I pr
J

which connects the standard output of ls to the standard input ofpr. Some­
times, however, it is most convenient for a process to set up its own plumbing; in
this section, we illustrate how the pipe connection is established and used.

The system call pipe () creates a pipe. Since a pipe is used for both reading
and writing, two file descriptors are returned; the actual usage is like this:

int fd[2] ;

stat pipe(fd);
if (stat == -1)

/* there was an error ... */

f d is an array of two file descriptors, where f d [0] is the read side of the pipe
and fd [1] is for writing. These may be used in read, wri te () and
close () calls just like any other file descriptors.

If a process reads a pipe which is empty, it waits until data arrives; if a process
writes into a pipe which is full, it waits until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will encounter end of file.

Revision A of 27 March, 1990

Chapter 3 - Processes 17

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd (just as system () does),
and returns a file descriptor that will either read to or write from that process,
according to mo de. That is, the call

(fout = popen ("prn
, WRITE);

creates a process that executes the pr command; subsequent write () calls
using the file descriptor fout will send their data to that process through the
pipe.

]

popen () first creates the pipe with a pipe () system call; it then fork () '8 to
create two copies of itself. The child decides whether it is supposed to read or
write, closes the other side of the pipe, then calls the shell (via execl ()) to run
the desired process. The parent likewise closes the end of the pipe it does not
use. These closes are necessary to make end-of-file tests work properly. For
example, if a child that intends to read fails to close the write end of the pipe, it
will never see the end of the pipe file, just because there is one writer potentially
active.

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a, b) (mode == READ? (b) (a»
static int popen-pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2];

if (pipe (p) < 0)
return(NULL);

if «popen-pid = fork (» == 0) {
close(tst(p[WRITE], p[READ]»;
close (tst (0, 1»;
dup(tst(p[READ], p[WRITE]»;
close(tst(p[READ], p[WRITE]»;
execl("/bin/sh", "sh", "-c", cmd, 0);

_exit(l); /* disaster has occurred if we get here */

if (popen_pid == -1)
return(NULL);

close (tst (p[READl , p[WRITE]»;
return(tst(p[WRITE], p[READ]»;

The sequence of close () 's in the child is a bit tricky. Suppose that the task is
to create a child process that will read data from the parent. Then the first

Revision A of 27 March, 1990

18 C Programmer's Guide

close () closes the write side of the pipe, leaving the read side open. The lines

close(tst(O, 1»;
dup(tst(p[READ], p[WRITE]»;

are the conventional way to associate the pipe descriptor with the standard input
of the child. The close () closes file descriptor 0, that is, the standard input.
dup () is a system call that returns a duplicate of an already open file descriptor.
File descriptors are assigned in increasing order and the first available one is
returned, so the effect of the dup () is to copy the file descriptor for the pipe
(read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input2. Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write to the parent instead of reading. You may find it a useful exercise to step
through that case.

The job is not quite done, for we still need a function pelose () to close the
pipe created by popen (). The main reason for using a separate function rather
than e los e () is that it is desirable to wait for the termination of the child pro­
cess. First, the return value from pelose () indicates whether the process suc­
ceeded. Equally important when a process creates several children is that only a
bounded number of un waited-for children can exist, even if some of them have
terminated; performing the wait () lays the child to rest. Thus:

tinclude <signal.h>

pclose(fd)
int fd;
{

/* close pipe fd */

register r, (*hstat) (), (*istat) (), (*qstat) ();
int status;
extern int popen-pid;

close(fd);
istat signal (SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while «r = wait(&status» != popen-pid && r != -1);
if (r == -1)

status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, qstat);
signal (SIGHUP, hstat);
return(status);

2 Yes, this is a bit tricky, but it's a standard idiom.

Revision A of 27 March, 1990

Chapter 3 - Processes 19

The calls to signal () make sure that no interrupts, etc., interfere with the
waiting process; this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at a
time, because of the single shared variable popen-pid; it really should be an
array indexed by file descriptor. A popen () function, with slightly different
arguments and return value, is available as part of the standard I/O library dis­
cussed later. As currently written, it shares the same limitation.

Revision A of 27 March, 1990

20 C Programmer's Guide

Revision A of 27 March, 1990

4
Signals - Interrupts and All That

This chapter is concerned with how to deal gracefully with signals from the out­
side world (like interrupts) and with program faults. Since there's nothing very
useful that can be done from within a C program about program faults, which
arise mainly from illegal memory references or from execution of peculiar
instructions, we'll discuss only the outside world signals: interrupt and quit,
which are generated from the keyboard, hangup, caused by hanging up the phone
on dialup lines, and terminate, generated by the kill command. When one of
these events occurs, the signal is sent to all processes which were started by the
corresponding user - the signal terminates the process unless other arrange­
ments have been made. In the quit case, a core image file is written for debug­
ging purposes.

signal () is the routine which alters the default action. signal () has two
arguments: the first specifies the signal to be processed, and the second argument
specifies what to do with that signal. The first argument is just a numeric code,
but the second is either a function, or a somewhat strange code that requests that
the signal either be ignored or that it be given the default action. The include file
signal. h gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);

means that interrupts are to be ignored, while

(Signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal ()
returns the previous value of the signal. The second argument to signal ()
may instead be the name of a function (which must be declared explicitly if the
compiler hasn't seen it already). In this case, the named routine is called when
the signal occurs. Most commonly this facility is used so that the program can
clean up unfinished business before terminating, for example to delete a tem­
porary file:

)

21 Revision A of 27 March, 1990

22 C Programmer's Guide

Why the test and the double call to signal ()? Recall that signals, like inter­
rupts, are sent to all processes started from a particular user. Accordingly, when
a program is to be run non-interactively (started with &), the shell turns off inter­
rupts for it so it won't be stopped by interrupts intended for foreground
processes. If this program began by announcing that all interrupts were to be
sent to the onintr () routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to con­
tinue to ignore interrupts if they are already being ignored. The code as written
depends on the fact that signal () returns the previous state of a particular sig­
nal. If signals were already being ignored, the process should continue to ignore
them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it
as a request to stop what it is doing and return to its own command processing
loop. Think of a text editor - interrupting a long display should not tenninate
the edit session and lose the work already done. The outline of the code for this
case may be written like this:

Revision A of27 March, 1990

Chapter 4 - Signals - Interrupts and All That 23

The include file set jmp . h declares the type jmp _ buf - an object in which a
process's state can be saved. s jbuf is such an object. The set jmp () routine
then saves the state. When an interrupt occurs the onintr () routine is called,
which can display a message, set flags, or whatever. longjmp () takes as argu­
ment an object set by set jump () ,and restores control to the location following
the call to set jump () , so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop entered.
Notice, by the way, that the signal gets set again after an interrupt occurs.

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked list. If the routine called
when a signal occurs sets a flag and then returns instead of calling exit () or
longjmp () , execution continues at the exact point it was interrupted. The
interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is
reading the standard input when the interrupt is sent. The specified routine is
duly called; it sets its flag and returns. If it were really true, as we said above,
that 'execution resumes at the exact point it was interrupted,' the program would
continue reading stdin until the user typed another line. This behavior might
well be confusing, since the user might not know that the program is reading; he
presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to tenninate the read when execution resumes
after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be
prepared for 'errors' which are caused by interrupted system calls.

Revision A of 27 March, 1990

24 C Programmer's Guide

The ones to watch out for are read (), wait (), and pause (). A program
whose onintr () routine just sets intflag, resets the interrupt signal, and
returns, should usually include code like the following when it reads the standard
input:

if (getchar() == EOF)
if (intflag)

1* EOF caused by interrupt *1
else

1* true end-of-file *1

A final subtlety to keep in mind becomes important when catching signals is
combined with executing other programs. Suppose a program catches interrupts,
and also includes a method (like '!' in ex and vi) whereby other programs can be
executed. Then the code should look something like this:

if (fork() == 0)
execl (...) ;

signal (SIGINT, SIG_IGN); 1* ignore interrupts *1
wait(&status); 1* until the child is done *1
signal (SIGINT, onintr); 1* restore interrupts *1

Why is this? Again, it's not obvious, but not really difficult. Suppose the pro­
gram you call catches its own interrupts. If you interrupt the subprogram, it will
get the signal and return to its main loop, and probably read from stdin. But
the calling program will also pop out of its wait for the subprogram and read
from stdin. Having two processes reading the same input is very unfortunate,
since the system figuratively flips a coin to decide which should get each line of
input. A simple way out is to have the parent program ignore interrupts until the
child is done. This reasoning is reflected in the standard 1/0 library function
system:

sun
microsystems

Revision A of 27 March, 1990

Chapter 4 - Signals - Interrupts and All That 25

As an aside on declarations, the function signal () obviously has a rather
strange second argument. It is in fact a pointer to a function, and this is also the
type of the signal routine itself. The two values S IG _I GN and S IG _DFL have
the right type, but are chosen so they coincide with no possible actual functions.
For the enthusiast, here is how they are defined for the Sun system - the
definitions should be sufficiently ugly and nonportable to encourage use of the
include file.

#:define SIG DFL
#:define SIG IGN

(void (*) (» 0
(void (*) ()) 1

Revision A of 27 March, 1990

26 C Programmer's Guide

Revision A of 27 March, 1990

5.1. The Standard I/O
Library

5.2. Using the Standard I/O
Library

The names stdin, stdout, and
stderr are constants and may not
be assigned values. They
correspond to file descriptors 0, 1
and 2, respectively.

5
The Standard 110 Library

Input and output are, strictly speaking, not an intrinsic part of the C programming
language. Rather, the input and output functions are supplied by a library which
comes with each implementation.

This chapter describes the Standard I/O Library available to C programmers on
Sun workstations.

The standard 110 library was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and in space, so that there
will be no hesitation in using it, no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious
calls whose use mars the understandability and portability of many programs
using older packages.

3. The interface provided should be applicable on all machines, whether or not
the programs which implement it are directly portable to other systems, or to
non-Sun machines running a version of UNIX.

The stdio. h routines are in the normal C library, so no special library argu­
ment must be declared in your program for linking. All names in the include file
intended only for internal use begin with an underscore L) to reduce the possi­
bility of collision with a user name. The names intended to be visible outside the
package are listed in Table 5-1.

The routines in this package offer the convenience of automatic buffer allocation
and output flushing where appropriate.

Any program which uses the Standard 110 Library must have the following line
in the program source text, before using any of the functions in the library.

[iinclude <stdio.h> J
'---, ------

Putting this include statement in your program defines some macros and vari­
ables for the program.

+!!.!! 27 Revision A of 27 March, 1990

28 C Programmer's Guide

Name

stdin

stdout

stderr

EOF

NULL

FILE

BUFSIZ

Table 5-1 Standard I/O Library Names Accessible to User Programs

Description

The name of the standard input file. This file is automatically connected at program
startup time, and is the place from which a program reads its input.

The name of the standard out put file. This file is automatically connected at program
startup time, and is the place to which a program writes its output.

The name of the standard error file. This file is automatically connected at program
startup time, and is the place to which a program writes any error or diagnostic responses
which should not clutter up the standard output.

is actually the value -1. EOF is returned by the read routines upon encountering end-of-file
or error conditions.

is a notation for the null pointer. Functions whose values are pointers return NULL to indi-
cate an error.

is an abbreviation for the declaration: struct iob and is a useful notation when dec1ar--
ing a pointer to a stream.

is the size suitable for a user-supplied input-output buffer. BUFSIZ is usually 1024. See the
setbuf () function described below.

The functions getc () , getchar () , putc () ,putchar () , feof () , fer­
ror (), and fileno () are all defined as macros. Their descriptions appear
later in this chapter. They are mentioned here to indicate that they cannot be
redec1ared. In addition, because they are macros and not functions, they cannot
be passed as arguments to other functions, nor can their addresses be taken.

The 'Standard 110 Library' is a collection of routines intended to provide
efficient and portable 110 services for most C programs. The standard 110 library
is available on each system that supports C, so programs that confine their system
interactions to its facilities can be transported from one system to another essen­
tially without change.

This chapter describes the basics of the standard liD library. Following chapters
contain a fuller description of the capabilities and calling conventions of the
functions in it.

You could do 110 by calling the system routines directly. However, there is a
'standard 110 package' that provides a high-level 110 access mechanism. This
and the following chapters discuss the functions available in the standard I/O
package. (An appendix discusses the raw interface to the operating system.) In
general, you can get by using the standard 110 package and never need to use the
raw system calls.

The standard I/O package provides access to files in the system through a collec­
tion of file descriptors that refer to structures for managing I/O buffering. The

Revision A of 27 March, 1990

5.3. The Standard Input
and Standard Output

Reading Standard Input and
Writing Standard Output

Chapter 5 - The Standard 110 Library 29

first part of the discussion in this chapter describes those file descriptors that are
defined automatically. Following sections describe how to get your own descrip­
tors connected to files in the system.

Three files are connected automatically when a SunOS program starts up. These
files are called the standard input (s t di n) , the standard output (s t dou t) ,
and the standard error (stderr).

The very simplest standard I/O call for output is to use pu t char (c) to put the
character c on the standard output, which is nonnally the user's screen.

If the user redirected the standard output by using the > syntax on the command
line, the standard output is redirected. For example, if you typed:

(~t_u_t_o_r_i_a_l_% __ p_r_o_g __ > __ o_u_t_P_u_t_f_i_l_e ______________________________ ~]
on the command line, the standard output from prog is written to outputfile and
the program is unaware that the standard output is going to a file instead of the
screen. outputfile is created if it doesn't exist; if it already exists, its previous
contents are overwritten.

Similarly, you can send the standard output from a program through a pipe with
the command line:

(tutorial% prog I otherprog

and the standard output of prog goes into the standard input of otherprog.

]

The simplest input mechanism is to read from the 'standard input,' which is gen­
erally the user's keyboard. The function get char () returns the next input
character each time it is called. A file may be substituted for the keyboard by
using the < convention (input redirection): if prog uses get char () , the com­
mand line

(tutorial% prog < filename

makes prog read from the file specified by filename, instead of from the key­
board. prog itself need know nothing about where its input is coming from.
This is also true if the input comes from another program through the pipe
mechanism:

]

(~t_u_t_o_r_i_a_l_% __ o_t_h_e_rp __ r_O_g __ l __ p_r_O_g ______________________________ ~]
provides the standard input forprog from the standard output (see above) of
otherprog.

Revision A of27 March, 1990

30 C Programmer's Guide

getchar () returns the value EOF when it encounters the end of file (or an
error) on whatever you are reading. The value of EOF is normally defined to be
-1, but it is unwise to take any advantage of that knowledge. As will become
clear shortly, this value is automatically defined for you when you compile a pro­
gram, and need not be of any concern.

The function printf (), which formats output in various ways, uses the same
mechanism as putchar () does, so calls to printf () and put char () may
be intermixed in any order; the output appears in the order of the calls.

Similarly, the function scanf () provides for formatted input conversion.
scanf () reads the standard input and breaks it up into strings, numbers, etc., as
desired. scanf () uses the same mechanism as getchar () , so calls to them
may also be intermixed.

Many programs read only one input and write one output; for such programs I/O
with getchar () ,putchar () , scanf (), and printf () may be entirely
adequate, and it is almost always enough to get started. This is particularly true
if the SunOS pipe facility is used to connect the output of one program to the
input of another. For example, the following program strips out all ASCII control
characters from its input (except for newline and tab).

You would use the program like this:

tutorial% cat infile I ccstrip > output

If you need to treat multiple files, you can use cat to collect the files for you:

tutorial% cat file! file2 ... I ccstrip> output

and thus avoid learning how to access files from a program. By the way, the call
to e xi t () at the end is not necessary to make the program work properly, but it
assures that any caller of the program will see a normal termination status (con­
ventionally 0) from the program when it completes. Section 3.3 discusses return­
ing status in more detail.

Revision A of 27 March, 1990

5.4. Error Handling -
stderr and exit ()

5.5. Miscellaneous I/O
Functions

Chapter 5 - The Standard lID Library 31

stderr is assigned to a program in the same way that stdin and stdout are.
Output written on s t der r appears on the user's terminal even if the standard
output is redirected, unless the standard error is also redirected. For example, the
command we writes its diagnostics on stderr instead of stdout so that if one
of the files can't be accessed for some reason, the message finds its way to the
user's terminal instead of disappearing down a pipe or into an output file.

The argument of exi t () is made available to whatever process called the pro­
cess that is exiting (see Section 3.3), so the success or failure of the program can
be tested by another program that uses this one as a subprocess. By convention,
a return value of 0 indicates that all is well; nonzero values indicate abnormal
situations.

ex it () itself calls f c los e () for each open output file, to flush out any buf­
fered output, then calls a routine named _ exi t (). The function _ exi t () ter­
minates the program immediately without any buffer flushing; it may be called
directly if desired.

The standard lID library provides several other I/O functions besides those illus­
trated above.

Normally, output with putc () and such is buffered - use fflush (fp) to
force it out immediately.

fscanf () is identical to scanf () ,except that its first argument is a file
pointer that specifies the file from which the input comes; it returns EOF at end of
file.

The functions sscanf () and sprintf () are identical to fscanf () and
fprintf () ,except that the first argument names a character string instead of a
file pointer. The conversion is done from the string for s s canf () and into it
for sprintf (), and no input or output is done.

fgets (buf, size, fp) copies the next line from stream fp, up to and
including a newline, into buf; at most size-l characters are copied; it returns
NULL at end of file. fput s (buf, fp) writes the string in buf onto file or
stdio stream fp.

Note The "stream" referred to above is not related to UNIX System V streams.
The functions gets () and puts () work like fgets () and fputs (), but
they default to operation with stdin and stdout, respectively. The macro
ungetc (c, fp) 'pushes back' the character c onto the input stream fp; a sub­
sequent call to getc (), fscanf () , and so on will encounter c. Only one
character of pushback is guaranteed to work.

Revision A of 27 MarCh, 1990

32 C Programmer's Guide

Revision A of27 March, 1990

6

Accessing Files Through Standard liD

Previous examples have all read the standard input and written the standard out­
put, which we have assumed are magically predefined. The next step is to write a
program that accesses a file that is not already connected to the program. One
simple example is we, which counts the lines, words and characters in a set of
files. For instance, the command

(tutorial% wc x.c y.c

displays the number of lines, words and characters in x . c and y . c and the
totals.

The question is how to arrange for the named files to be read - that is, how to
connect the filenames to the I/O statements which actually read the data.

The rules are simple - you have to open a file by the standard library function
fopen () before it can be read from or written to. fopen () takes an external
name (like x. c or y. c) , does some housekeeping and negotiation with the
operating system, and returns a pointer which must be used in subsequent reads
or writes of the file.

This pointer, called a FILE pointer, to a structure which contains information
about the file, such as the location of a buffer, the current character position in
the buffer, whether the file is being read or written, and the like. The only
declaration needed for a file pointer is exemplified by

J

(~F_I_L_E _____ *_f_P_' __ *_f_o_p_e_n_(_)_; __________________________________ ~J
This says that fp is a pointer to a FILE, and fopen () returns a pointer to a
FILE.

The actual call to fopen () in a program has the form:

(fp = fopen(name, mode);
J

33 Revision A of 27 March, 1990

34 C Programmer's Guide

The next thing needed is a way to read or write the file once it is open. There are
several possibilities, of which getc () and putc () are the simplest. getc ()
returns the next character from a file; it needs the file pointer to tell it what file.
Thus

[_c __ = __ g_et_C __ (f_P_) __ ~J
places in c the next character from the file referred to by fp; it returns EOF when
it reaches end of file. putc () is the inverse of getc () :

(putc (c, fp)

puts the character e on the file fp and returns e as its value. gete () and
putc () return EOF on error.

When a program is started, three streams are opened automatically, and file
pointers are provided for them. These streams are the standard input, the stan­
dard output, and the standard error output; the corresponding file pointers are
called stdin, stdout, and stderr. Normally these are all connected to the
terminal, but may be redirected to files or pipes as described in Section 5.3 .
stdin, stdout and stderr are predefined in the I/O library as the standard
input, output and error files; they may be used anywhere an object of type
FILE * can be. They are constants, however, not variables, so don't try to
assign to them.

J

With some of the preliminaries out of the way, we can now write we. The basic
design is one that has been found convenient for many programs: if there are
command-line arguments, they are processed in order. If there are no arguments,
the standard input is processed. This way the program can be used standalone or
as part of a larger activity.

Revision A of 27 March, 1990

Chapter 6 - Accessing Files Through Standard 110 35

The function fprintf () is identical to printf () , except that the first argu­
ment is a file pointer that specifies the file to be written.

The function fclose () is the inverse of fopen () ; it breaks the connection
between the file pointer and the external name that was established by f open () ,
freeing the file pointer for another file. There is a limit, depending on available
memory, on the number of files that a program may have open simultaneously,
so you should free things when they are no longer needed. There is another rea­
son to call fclose () on an output file - it flushes the buffer in which

Revision A of 27 March, 1990

36 C Progranuner's Guide

6.1. Accessing Files

fopen () - Open a File

Figure 6-1

putc () collects output. Each file is closed automatically when a program ter­
minates nonnally.

Several s t di 0 routines needed to perfonn file I/O housekeeping and access
functions are described below:

FILE *fopen(filename, type)
char *filenamei
char *typei

filename is a character string that specifies the name of the file.

type is a character string (not a single character) that specifies the access
mode of the file. type can be one of:
r reopen the file for reading,
w reopen the file for writing,
a reopen the file for appending.
f open () opens the file and, if needed, allocates a buffer for it. In
addition, each mode specification may be followed by a + sign to
open the file for reading and writing. Both reads and writes may be
used on read/write streams, with the limitation that an f seek,
rewind (), or reading end-of-file must be used between a read and
a write or vice versa. The value returned is a file pointer. If it is
NULL the attempt to open the file failed.

}
:<:::

:' :

::.: :::::::::: :: ::: . :"': :::
})

::::
:",

:::::: ::::::::,: :"::: <:',:,:, ::::::::: :"::Ellilli:} ,:,:,:

If a file that you open for writing or appending does not exist, it is created (if pos­
sible). Opening an existing file for writing discards the old contents. Trying to
read a file that does not exist is an error, and there may be other causes of error as
well (like trying to read a file without read pennission). If there is an error,
fopen () returns the null pointer value NULL.

Revision A of 27 March, 1990

freopen () - Reopen a File

fflush () - Flush Stream
Buffer

Chapter 6 - Accessing Files Through Standard UO 37

FILE *freopen(filename, type, ioptr)
char *filenamei
char *type;
FILE *ioptri

The stream named by ioptr is closed, if necessary, and then reopened as if by
fopen (). If the attempt to open fails, NULL is returned; otherwise ioptr is
returned, which now refers to the new file. Often the reopened stream is s t di n
or stdout. The filename and type parameters are as for fopen ().
filename is a character string that specifies the name of the file.
type is a character string (not a single character) that specifies the access

mode of the file. type can be one of:
r reopen the file for reading,
w reopen the file for writing,
a reopen the file for appending.

ioptr is a pointer to the existing stream which is to be closed.

The value of the freopen () function is a file pointer. If the value of the file
pointer is NULL, the attempt to open the file failed.

Example of Using freopen ()

The fflush () function flushes the stream buffer for a given file pointer. The
interface to fflush () is:

[fflush (ioptr)
FILE *fPi

Any buffered information on the output stream designated by ioptr is written
out to the file. Common use is to f flu s h (s t do u t) so that the prompt
appears immediately.

]

Output files are normally buffered if they are not directed to a screen. alwayss t­
doutis The stderr file usually starts off unbuffered, and remains unbuffered

Revision A of 27 March, 1990

38 C Programmer's Guide

fclose () - Close A File

setbuf () - Set ButTer for
File I/O

unless the setbuf () function is used, or unless the file is reopened.

The f close () function closes an open file. The interface definition is:

[fclose (ioptr)
FILE *ioptr;

The file designated by ioptr is closed, after any buffers associated with that
file have been written out.

Any buffers allocated to the file are freed.

When a C program tenninates normally (in a controlled fashion), fclose ()
requests are issued automatically.

The setbuf () function sets up a buffer for an open file. The user can desig­
nate a buffer different from the one which the run-time library chooses, or the
user can select no buffer at all. The interface to setbuf () is:

setbuf(ioptr, buf)
FILE *ioptr;
char *buf;

The setbuf () function is used after a file is opened, but before any I/O
transfers have been made to that file.

If the buf parameter is NULL, the stream becomes unbuffered. Otherwise, the
buffer supplied is used. The buffer buf must be a sufficiently large character
array. The usual way to assure this is to declare the buffer:

(Char buf[BUFSIZ];

Here's an example of setbuf () usage:

]

]

Revision A of 27 March, 1990

Figure 6-3

fileno () - Obtain File
Descriptor

Figure 6-4

Chapter 6 - Accessing Files Through Standard 110 39

Example of Using setbuf ()

The fileno () function returns an integer value which is the file descriptor
associated with the file.

[int fileno(ioptr)
FILE *ioptr;

fileno () is typically used when a file has been previously opened with
fopen () but you want to use a function on it that requires a file descriptor
instead of a file pointer.

Here's an example of fileno () usage:

Example of Using fileno ()

]

Revision A of 27 March, 1990

40 C Programmer's Guide

rewind () - Rewind a
Stream

The rewind () function rewinds the stream designated by the ioptr param­
eter.

[rewind (ioptr)
FILE *ioptr;

If you want to rewind a file for reading, use freopen () .

Revision A of 27 March, 1990

]

getc () Macro - Get a
Character from a File

7
Character 110

This section describes those macros and functions which are concerned with
reading and writing characters from and to streams.

The getc () macro gets a character from a file. The definition is:

[
int getc(ioptr) J

__ F_IL_E_*f_P; ________________ __

The get c () macro obtains the next character from the stream designated by
fp. fp is a file pointer such as is returned by the f open () function, or is a
name such as stdin.

When the end of file is reached, the integer EOF is returned. The character \ 0 is
a valid character from get c () .

Note that getc () is a macro, not a function.

41 Revision A of 27 March, 1990

42 C Programmer's Guide

Figure 7-1

fgetc () Function - Get
Character from File

:':::::: :.;::: :"
::.;:).;:

:::
"8"

\
:::::::';::: :::::::::::

;:;::::: « ::::
::<: :.:.: :.: •• :::<

.) «<y
::.:;: :::: ::::;::

:U::··:·::::<::
{:

{{?}

}<:
::::rW}~

1",:::::: ::: .. .
•.••••. \ •••••• •• •• • •••• • ••• • ••• i •• ?

The f get c () function obtains a single character from a file. The interface
definition is:

[

int fgetc(ioptr) J
FILE *ioptr;

fgetc () obtains the next character from the stream designated by ioptr.
ioptr is a file descriptor such as is returned by the fopen () function, or is a
name such as stdin.

When the end of file is reached, the integer EOF is returned. The character \ 0 is
a valid character from fgetc () .

f get c () is a genuine function, as opposed to the get c () macro. This means
that fgetc () can be pointed to and passed as an argument to another function.

Revision A of27 March, 1990

Chapter 7 - Character 110 43

Figure 7-2 Example o/Using fgetc ()

getchar () Macro - Get a
Character from Standard
Input

The getchar () macro obtains a single character from the standard input. The
interface to get char () is:

(int getehar()]

The getchar () macro is a shorthand notation for

(gete (stdin))
Note that get char () is a macro, not a function.

Figure 7-3 Example o/Using getchar ()

Revision A of 27 March, 1990

44 C Programmer's Guide

f get s () - Read a String
from a File

The fgets () function reads a string from a specified file. The interface
definition is:

char *fgets(s, n, ioptr)
char *s;
int n;
FILE *ioptr;

The f get s () function reads up to n -1 characters from the stream designated
by ioptr into the character array pointed to by s.

Note Be careful that scan accomodate n characters!
The read terminates when a newline character is read. The newline character is
placed in the buffer. The last character read is always followed by a null charac­
ter in the character array.

The f get s () function returns its first argument, or NULL if an error or an end
of file was encountered.

Figure 7-4 Example o/Using fgets ()

ungetc () - Push a
Character Back on a Stream

»
::::::::::::::::::::::

The ungetc () function pushes a single character back onto a stream. The
interface definition is:

ungetc(c, ioptr)
char c;
FILE *ioptr;

The ungetc () function pushes the character argument, c, back onto the input
stream designated by ioptr.

Revision A of 27 March, 1990

Figure 7-5

putc () Macro - Put a
Character to a File

Chapter 7 - Character lID 45

Only one character may be pushed back between two reads.

Example o/Using ungetc ()

The putc () macro puts a single character to a specified file. The interface
definition is:

putc(c, ioptr)
char c;
FILE *ioptr;

The putc () macro writes the character c onto the output stream designated by
ioptr, where ioptr is a file pointer such as is returned by the fopen () func­
tion, oris a name such as stdout or stderr.

The character c is normally returned as a value from the macro, but if an error
occurs during the transfer, the value EOF is returned.

Note that putc () is a macro, not a function.

.. -::: ..

. ::::.

Revision A of 27 March, 1990

46 C Programmer's Guide

fputc () Function - Put a
Character to a File

Remember that putc () nonnally buffers its output; tenninal I/O is not properly
synchronized unless this buffering is defeated. Use fflush to do this.

The fputc () function outputs a single character to a specified file. The inter­
face definition is:

fputc(c, ioptr)
char Ci

FILE *ioptr;

The fputc () function writes the character c onto the stream designated by
ioptr, where ioptr is a file pointer such as is returned by the fopen () func­
tion, or is a name such as stdout or stderr.

The character c is normally returned as a value from the function, but if an error
occurs during the transfer, the value EOF is returned.

fputc () is a genuine function, as opposed to the putc () macro. This means
that fpu t c () can be pointed to, passed as an argument to another function, and
soon.

Figure 7-6 Example of Using fputc ()

put char () Macro - Put a
Character to Standard Output

ij ::.::.:.::
:::>' > »

I::::

I::. :;:: ,:::::,:,:::::::,:,
::::::

.}

~IIIII » co:::: :::::;:

Hi)}

The putchar () macro puts a single character to the standard output file. The
interface definition is:

[putchar (ch)
char Chi

The put char () macro is a shorthand notation for

(putC(Ch, stdout)

]

)

Revision A of 27 March, 1990

Figure 7-7

fputs () - Put a String to a
File

Figure 7-8

feof () - Test for End Of
File

Chapter 7 - Character 110 47

Note that putchar () is a macro, not a function.

Example o/Using putchar ()

fput s () writes a character string to a file. The interface definition is:

fputs (s, ioptr)
char *s;
FILE *ioptr;

The fputs () function writes the null-terminated character string s (which is a
character array) to the stream designated by ioptr.

fput s () does not append a newline to the string.

fput s () does not return a value.

Example o/Using fputs ()

The feof () function checks for an end of file on a specified file. The interface
definition is:

[feof (ioptr)
FILE *ioptr;]

Revision A of 27 March, 1990

48 C Programmer's Guide

7.1. Formatted Input and
Output

Formatted Output
Conversions

Formatted Input Conversions

The feof () function returns a nonzero value if an end-of-file has occurred on
the stream designated by ioptr.

The C run-time library provides extensive facilities for formatted conversions of
character strings to numeric data, and for the formatted conversion of numeric
data to character strings. Conversions can be done between the standard input or
standard output, an arbitrary file, or strings in memory. The subsections follow­
ing give detailed descriptions of these facilities.

There are three variations of the formatted output functions: they are all similar
in their actions, the only difference being the destination of the formatted string.

[

printf (format, arg l' . . .)]
char *format;

"----------"

printf () writes the formatted string to the standard output.

fprintf(ioptr, format, arg1, ...)
FILE *ioptr;
char *format;

fprintf () writes the fonnatted string to the file designated by ioptr.

sprintf(s, format, arg1, ...)
char *s;
char *format;

sprintf () stores the formatted string into a character string (character array)
in memory.

The scanf (), fscanf () , and sscanf () functions are the equivalents of the
pr intf () functions described above, except that the scanf () functions per­
fonn conversions from character strings to data in memory. They are thus used
for reading formatted information instead of writing it.

There are three variations of the s canf () function:

[

scanf(fOrmat, argl' ...)]
char *format;

"----------"

scanf () reads the formatted string from the standard input.

Revision A of 27 March, 1990

The Format Control
Templates

Conversion Specifications

fscanf(ioptr, format, arg
1

, ...)

FILE *ioptr;
char *format;

Chapter 7 - Character 110 49

f s canf () reads the formatted string from the file designated by iopt r .

sscanf(s, format, arg
1

, •.•)

char *s;
char *format;

sscanf () gets the formatted string from a character string (character array) in
memory.

All six print and scan functions accept a format argument, followed by
zero or more arg arguments.

n

The format argument is a template, in the form of a character string. The for­
rna t character string consists of two kinds of objects:

IJ

IJ

It can contain fixed parts which are sent to the destination unchanged
(for formatted output) or match characters in the input source (for
formatted input).

It can also contain conversion specifications, which indicate how the
corresponding arg are to be converted and placed into the final
formatted output stang, or recognized in the input, and converted to
internal form and placed in the location pointed to by the arg .

n

A conversion specification is marked by a percent sign %, and ends with a
conversion character. In between the % sign and the conversion character, there
can be modifiers. These modifiers are described below after the descriptions of
the conversion characters. Any character in a fonnat that is not part of a conver­
sion specification is passed or recognized as is.

Here is apr intf () call with a simple string template and no conversion
specifications:

printf("Calling occupants of interactive space\n");

This example simply prints the quoted string on the standard output.

The following paragraphs describe the effects of the conversion characters.
There are also modifiers for the conversion specifications, and these are described
below.

Revision A of 27 March, 1990

50 C Programmer's Guide

d - Decimal Conversion A d conversion character specifies that the associated argument is converted to
(or from) decimal notation.

Figure 7-9 Example of d Format Specification

o - Octal Conversion

Figure 7-10

x - Hexadecimal Conversion

When the above program is run, it generates the result:

(The value of data is: -25)

A conversion character of 0 specifies that the associated argument is converted to
(or from) unsigned octal notation. The resulting output string does not contain a
leading zero. It is the responsibility of the programmer to insert the leading zero
"manually" as part of the format string, if that is what is required.

Example of 0 Format Specification

:-:: :.:':

When the above program is run, it generates the result:

(~T_h_e __ v_a_l_u_e __ O_f __ d_a_t_a __ i_S_: __ O_3_1 ________________________________ ~)
Note that the program explicitly places the digit "0" in the generated number.

A conversion character of x specifies that the associated argument is converted to
(or from) unsigned hexadecimal notation. The resulting output string does not
contain a leading "Ox". It is the responsibility of the programmer to insert the
leading "Ox" "manually", as part of the format string, if that is what is required.

Revision A of 27 March, 1990

Figure 7-11

h - Short Conversion on Input
Only

u - Unsigned Decimal
Conversion

Figure 7-12

c - Character Conversion

Chapter 7 - Character lID 51

Example of x Format Specification

When the above program is run, it generates the result:

(
The value of data is: Ox19 J
--. ---------
Note that the programmer explicitly coded the "Ox" in the generated number.

A conversion character of h is used only for formatted input, and specifies that
the associated argument is a pointer to a short int data item.

A conversion character of u specifies that the associated argument is converted to
(or from) unsigned decimal notation.

Example of u Format Specification

When the above program is run, it generates the result:

[The value of data is: 4294967271

A conversion character of c specifies that the associated argument is to be con­
verted to (or from) a single character.

]

Revision A of 27 March, 1990

52 C Programmer's Guide

Figure 7-13 Example of c Format Specification

When the above program is run, it generates the result:

(~p_a_r_t_s __ O_f __ d_a_t_a __ a_r_e_: __ H __ ! __ h ___________________________________]

s - String Conversion A conversion character of s specifies that the associated argument is a string.
Characters from the string are printed until a null character is found, or until the
number of characters indicated by the precision specification (see below) are
used up.

Figure 7-14 Example of s Format Specification

e - Exponential Floating
Conversion

When the above program is run, it generates the result:

[The value of data is: 'Hello, World!'

A conversion character of e specifies that the associated argument is assumed to
be a float or a double. It is converted to (or from) a decimal exponential
notation of the form

([-jm.nnnnnnnE[±]xx

]

]
where the length of the string of n's is specified by the precision. The default pre­
cision is six decimal places.

Revision A of 27 March, 1990

Chapter 7 - Character 110 53

Figure 7-15 Example of e Format Specification

f - Fractional Floating
Conversion

When the above program is run, it generates the result:

(The value of data is: 1.234560e+02

A conversion character of f specifies that the associated argument is assumed to

be afloat or a double. It is converted to (or from) a fixed-decimal notation.

]

(~_[-_]_mmm ___ ._n_n_n_n_n_n __]

where the length of the string of n' s is specified by the precision. The default
precision is six decimal places. The precision does not detennine the number of
digits printed in f format, but the number of decimal places displayed.

Figure 7-16 Example of f Format Specification

g - Adaptable Floating
Conversion

r.;::::,:::::::::::::::

::::::},}::: ::

:::::'«><::::::}«> :)
:1:lil::~~~ii:liljQ'~'!:Y): :::::

:::::::

::::::::::::::::::<:::>< :>:::::

When the above program is run, it generates the result:

(The value of data is: 123.456001

:::< w{.:: <:::::::,
<.::./:

.i i········· ••• ••••••· •• ·· ••.••••••• ·• r •• • •••••••••••••••••• '

A conversion character of g specifies that the associated argument is to be con­
verted to (or from) either e or f format, depending upon which is the shorter.
Non-significant zeros are not printed in g format. This is similar to FORTRAN's
G format conversion.

]

Revision A of 27 March, 1990

54 C Programmer's Guide

Figure 7-17

Literal Character Output

Figure 7-18

Optional Format Modifiers

Example of g Format Specification

When the above program is run, it generates the result:

(The value of data is: 123.456

If the character which follows the % sign is not a conversion character, that char­
acter is printed as is. Thus, to print a % sign, use a fonnat conversion of % %.

Example of Literal Character Output

When the above program is run, it generates the result:

]

(The value of data is: y %]
The two percent signs are displayed as one, and the unknown conversion charac­
ter (y) is output as is. The value of the data variable in the output list is simply
ignored, since no conversion specification in the format required data.

Between the % sign and the format conversion letters as defined above, there may
be some optional information. The characters which may appear in these posi­
tions are described below.

Revision A of 27 March, 1990

Left Justify Field

Minimum Field Width and
Precision Specifications

Chapter 7 - Character 1/0 55

A minus sign (-) appearing before the conversion character specifies that the
argument is to be left-justified in the output field. The minus sign is optional.

After the minus sign can appear width and precision specifications, as described
next.

The form of the optional field width and precision specifications are:

o a digit string, which specifies a minimum field width. The converted
number is printed in a field at least this wide, and wider if required.
If the converted argument has fewer characters than the field width,
it is padded on the left (or on the right, if a minus sign was given)
with enough padding characters to make up the specified field width.
The padding character is normally a space. If the field width is
specified with a leading zero the output field is padded with zeros.

o a period character, which separates the field width from the next
digit string.

o a digit string, which is the precision. The precision means one of
two things. In the case of a float or a double argument, the pre­
cision is the number of digits to be printed to the right of the decimal
point. In the case of a string argument, the precision is the number
of characters to be printed from the string.

The examples below show the way that the justification, width, and precision
specifications apply to string values when they are output. The value to be
printed is the string "Wizard", which is six characters long. It is printed in a
variety of format specifications, and there are vertical bars at either end of the
field to show the extent of the field.

Figure 7-19 Example of Field Width Specifications

When the above program is run, it generates the results:

Revision A of 27 March, 1990

56 C Programmer's Guide

Length Modifier

data in %4s format is: IWizardl
data in %-4s format is: IWizardl
data in %10s format is: I Wizardl
data in %-10s format is: IWizard I
data in %10.4s format is: I Wizal
data in %-10.4s format is: IWiza I
data in %.4s format is: IWizal

If the conversion specification is preceded by a lx, it means that the associated
argument is a long while If indicates a double. If no length modifier pre­
cedes the conversion specification, the associated argument is assumed to be an
into A lone I preceding the conversion specification is ignored in Sun C
because ints and longs are the same.

In calls to scanf () , the arguments are pointers. Sizes in format specifiers must
be correct: use % f for floats and % I f for doubles.

Revision A of27 March, 1990

8.1. Character
Classification

isalpha () - Is Character
Alphabetic
isupper () - Is Character
Uppercase Letter
islower () - Is Character
Lowercase Letter
isdigit () -Is Character
Decimal Digit

8
String -Handling Functions

The C programming language has no language-defined facilities for manipulating
character string data. The C library does, however, provide a fairly rich set of
primitives for manipulating character strings.

This chapter discusses three major areas relating to string handling:

o

o

o

Macros for classifying characters (is a character, uppercase, letter,
digit, and such), plus macros for doing some minimal conversions
(convert uppercase to lowercase).

Functions for handling null-terminated strings.

Functions for handling bit strings and byte strings.

The following macros classify ASCII-coded integer values. Each is a predicate
returning nonzero for true, zero for false. isascii () is defined for all integer
values; the rest are defined only where isascii (c) is true and on the single
non-ASCII value EOF(see stdio(3S)).

You should have the line:

[_~_l_'n_C_l_U_d_e __ <_c_t_y_p_e_._h_> ______________________________________ ~]
at the beginning of any program unit that uses these macros.

isalpha (c) c is a letter- a through z or A through Z.

isupper (c) c is an upper case letter - A through Z.

islower (c) c is a lower case letter - a through z.

isdigit (c) c is a digit- 0 through 9.

57 Revision A of27 March, 1990

58 C Programmer's Guide

isxdigit () - Is Character
Hexadecimal Digit

isalnum () - Is Character
Letter or Digit
isspace () -Is Character
Whitespace
ispunct () -Is Character
Punctuation
isprint () - Is Character
Printable

iscntrl () -Is Character
Control Character

isascii () -Is Character
an Ascn Character
isgraph () -Is Character a
Visible Graphic

8.2. Character Conversion
Macros

toupper () - Convert
Lowercase to Uppercase

tolower () - Convert
Uppercase to Lowercase

toascii () -Ensure
Character is Ascn

8.3. Functions for Handling
Null-Terminated
Strings

isxdigit (c) c is a hexadecimal digit - 0 through 9 t a through f t or A

through F.

isalnum (c) c is an alphanumeric charactert that iS t c is a letter or a digit.

isspace (c) c is a space t tab t carriage retum t newline t orfonnfeed.

ispunct (c) c is a punctuation character (neither control nor alphanumeric)

is pr in t (c) c is a printing character t such as ASCII characters Ox20 (space)
through Ox7E (tilde).

is c n t r 1 (c) c is a delete character (Ox7F) or an ordinary control character
(less than Ox20).

isascii (c) c is an ASCII character less than Ox80.

isgraph (c) c is a visible graphic charactert an ASCII character code from
Ox21 (exclamation mark) through Ox7E (tilde).

These macros perfonn simple conversions on single characters.

toupper (c) converts c to its upper-case equivalent. Note that this only works
as expected if c is known to be a lower-case character to start with (presumably
checked by islower (».

tolower (c) converts c to its lower-case equivalent. Note that this only works
as expected if c is known to be an uppercase character to start with (presumably
checked by isupper ()).

toascii (c) masks c with the value Ox7F so that its result is guaranteed to be
an ASCII character in the range 0 thru Ox7F.

Null-terminated strings are arrays of characters. A correctly fonned string has a
zero (ASCII NUL) byte at the end to act as a terminator. All string handling rou­
tines and I/O routines conform to these semantics. C builds in this notion when a
programmer writes a string constant - the compiler correctly adds the null byte
at the end of the string. Suppose you have this declaration in your program:

(Char greetings[) = "Hi There!";]

Revision A of 27 March, 1990

Figure 8-1

Null Pointers versus Null
Strings

strlen () - Find Length of
String

strcmp () and strncmp ()
- Compare Strings

Chapter 8 - String-Handling Functions 59

Such a string appears in memory as:

Layout of Null-Terminated String in Memory

Functions described in this section operate on null-terminated strings. They do
not check for overflow of any receiving string.

You must have the line:

(*include <strings.h>

at the beginning of any program unit that uses the functions described here.

On Sun workstations (and on most other machines), you cannot use a zero
pointer to indicate a null string. Dereferencing a null pointer is an error and
results in aborting the program. If you wish to indicate a null string, you must
have a pointer that points to an explicit null string.

J

Programmers using NULL to represent an empty string should be aware that such
programs work by coincidence, if at all, rather than by intent and should be
aware that testing for zero pointers is inherently nonportable.

[strlen (s)
char *s;]

strlen () returns the number of non-null characters in s.

strcmp(string_l, string_2)
char *string_l, *string_2;

strncmp(string_l, string_2, n)
char *string_l, *string_2;

strcmp () compares its arguments and returns an integer greater than, equal to,
or less than 0, according as string_l is lexicographically greater than, equal to, or
less than string_2.

Revision A of 27 March, 1990

60 C Programmer's Guide

strcpy () and strncpy ()
- Copy Strings

strcat() and strncat()
- Concatenate Strings

index() and rindex()
Find Character in String

strncmp () makes the same comparison but examines at most n characters.

strcmp () uses native character comparison, which is signed on Sun worksta­
tions.

char *strcpy(string_l, string_2)
char *string_l, *string_2;

char *strncpy(string_l, string_2, n)
char *string_l, *string_2;

strcpy () copies string string_2 to string_l, stopping after the null character
has been moved. strncpy () copies exactly n characters, truncating or null­
padding string_2,· the target may not be null-tenninated if the length of string_2
is n or more. Both return string_l.

char *strcat(string_l, string_2)
char *string_l, *string_2;

char *strncat(string_l, string_2, n)
char *string_l, *string_2;

strcat () appends a copy of string string_2 to the end of string string_l.

strncat () appends n characters at most. Both return a pointer to the null­
tenninated result.

index () returns a pointer to thefirst occurrence of character c in string s, or
zero if c does not occur in the string.

rindex () returns a pointer to the last occurrence of character c in string s, or
zero if c does not occur in the string.

[Char *index(s, c)
char *s, Ci

[char *rindex(s, c)
char *s, Ci

]

]

Revision A of27 March, 1990

8.4. Byte String and Bit
String Functions

bcmp () - Compare Byte
Strings

bcopy () - Copy Byte
Strings

bzero () - Clear Byte
String to Zero

f f s () - Find First Bit Set

Chapter 8 - String-Handling Functions 61

Functions described in this section operate on byte strings and bit strings. They
do not recognize null-terminated strings, unlike the functions described in Sec­
tion 8.3.

bcmp(bl, b2, length)
char *bl, *b2;
int length;

bcmp () compares length bytes at address bl against length bytes at address b2,
returning zero if they are identical, nonzero otherwise.

bcopy(bl, b2, length)
char *bl, *b2;
int length;

bcopy () copies length bytes, in left-to-right order, from string bl to string b2.
Overlapping strings are handled correctly.

Note: The order of arguments is backwards from that of s t r cpy () - that
is, bcopy () copies from its first argument to its second argument,
while strcpy () copies from its second argument to its first argu­
ment.

bzero(b, length)
char *b;
int length;

bz ero () zeroes length bytes in the string b.

(ffs (~) .
~nt ~;

f f s () finds the first bit set in the argument passed it and returns the index of
that bit. Bits are numbered starting at 1 from the right. A return value of -1
indicates the value passed is zero.

]

Revision A of 27 March, 1990

62 C Programmer's Guide

Revision A of 27 March, 1990

A.I. File Descriptors

A
Low-Level File 1/0

This appendix describes the bottom level of I/O on the SunOS system. The
lowest level of I/O in SunOS provides no buffering or any other services except
moving data; it is, in fact, a direct entry into the operating system. You are
entirely on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are quite simple, this isn't as bad as it
sounds.

In SunOS, all I/O is done by reading or writing files, because all peripheral dev­
ices, even the user's terminal, are files in the file system. This means that a sin­
gle, homogeneous interface handles all communication between a program and
peripheral devices.

In the most general case, before reading or writing a file, it is necessary to infonn
the system of your intent to do so, a process called 'opening' the file. If you are
going to write on a file, it may also be necessary to create it. The system checks
your right to do so: does the file exist? Do you have permission to access it? If
all is well, the system returns a small positive integer called afile descriptor.
From then on, whenever I/O is to be done on the file, the file descriptor is used
instead of the name to identify the file. This is roughly analogous to the use of
READ (5, ...) and WRI TE (6, ...) in FORTRAN. All information about an
open file is maintained by the system; the user program refers to the file only by
the file descriptor.

File pointers are similar in spirit to file descriptors, but file descriptors are more
fundamental. A file pointer is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special
arrangements exist to make this convenient. When the command interpreter (the
'shell') runs a program, it opens three files, with file descriptors 0, I, and 2,
called standard input, standard output, and standard error output. All of these are
normally connected to the tenninal, so if a program reads file descriptor 0 and
writes to file descriptors 1 and 2, it can do terminal I/O without opening the files.

If I/O is redirected to and from files with < and >, as in

(tutorial% prog < infile > outfile]

63 Revision A of 27 March, 1990

64 C Programmer's Guide

A.2. read () and
write ()

the shell changes the default assignments for file descriptors 0 and 1 from the ter­
minal to the named files. Similar observations hold if the input or output is asso­
ciated with a pipe. Normally file descriptor 2 remains attached to the terminal,
so error messages can go there. In all cases, the file assignments are changed by
the shell, not by the program. The program does not need to know where its
input comes from nor where its output goes, so long as it uses file 0 for input and
1 and 2 for output.

All input and output is done by two functions called read () and wr i te ().
The first argument for both of these functions is a file descriptor. The second
argument is a buffer in your program where the data is to come from or go to.
The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n)i
n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred.
On reading, the number of bytes returned may be less than the number asked for,
because fewer than n bytes remained to be read in the buffer. When the file is a
terminal, read () normally reads only up to the next newline, which is generally
less than what was requested. A return value of zero bytes implies end of file,
and -1 indicates an error of some sort. For writing, the returned value is the
number of bytes actually written; it is generally an error if this isn't equal to the
number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most com­
mon values are 1, which means one character at a time (,unbuffered'), and 1024,
corresponding to the physical blocksize on many peripheral devices. This latter
size will be most efficient, but even character-at-a-time I/O is not inordinately
expensive.

Note The file stdio defines the constant BUF512, but in the following small exam­
ples, it is more efficient to have the definition in place.

Putting these facts together, we can write a simple program to copy its input to
its output. This program will copy anything to anything, since the input and out­
put can be redirected to any file or device.

Revision A of 27 March, 1990

Appendix A -Low-Level File 110 65

If the file size is not a multiple of BUFS IZ, some read () will return a smaller
number of bytes, and the next call to read () after that will return zero.

It is instructive to see how read () and wri te () can be used to construct
higher-level routines like getchar () , putchar () ,etc. For example, here is
a version of getchar () which does unbuffered input.

c must be declared char, because read () requires a character pointer. The
character being returned must be masked with 0 xf f to ensure that it is positive;
otherwise sign extension may make it negative. The constant Oxff is appropri­
ate for Sun workstations but not necessarily for other machines.

The second version of get char () does input in big chunks, and hands out the
characters one at a time:

Revision A of 27 March, 1990

66 C Programmer's Guide

A.3. open (), close () ,
unlink ()

Other than the default standard input, output and error files, you must explicitly
open files in order to read or write them.

open () is rather like the fopen () discussed in the previous section, except
that instead of returning a file pointer, it returns a file descriptor, which is just an
into

l
int fdi 1

~f_d __ = __ o_p_e_n __ (n __ am __ e_, __ r_wm __ o_d_e_)_i __________________________________ -J

As with f open () , the name argument is a character string corresponding to the
external file name. The access mode argument is different, however: rwmo de is
o for read, 1 for write, and 2 for read and write access. open () returns -1 if an
error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open () a file that does not exist.

In the SunOS file system, there are nine bits of protection information associated
with a file, controlling read, write and execute permission for the owner of the
file, for the owner's group, and for all others. Thus a three-digit octal number is
most convenient for specifying the permissions. For example, 0755 specifies
read, write and execute permission for the owner, and read and execute permis­
sion for the group and everyone else. For more information about permissions,
read the manual page for chrnod(l).

To illustrate, here is a simplified version of the SunOS utility cp, a program
which copies one file to another. The main simplification is that our version
copies only one file, and does not permit the second argument to be a directory:

Revision A of 27 March, 1990

A.4. Random Access -
lseek ()

Appendix A - Low-Level File 110 67

There is a limit (typically 64) on the number of files which a program may have
open simultaneously. Accordingly, any program which intends to process many
files must be prepared to reuse file descriptors. The routine close (fd) breaks
the connection between a file descriptor and an open file, and frees the file
descriptor for use with some other file. File descriptors 0, 1, and 2 can also be
closed if you need to obtain extra file descriptors. Program termination through
exit or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file
system.

File I/O is normally sequential: each read () or write () takes place at a
position in the file right after the previous one. When necessary, however, the
data in a file can be read or written in any arbitrary order. The system call
lseek () provides a way to move around in a file without actually reading or
writing:

Revision A of 27 March, 1990

68 C Programmer's Guide

A.S. Error Processing

(Iseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position
of fset, which is taken relative to the location specified by origin. Subse­
quent reading or writing will begin at that position. offset is a long; fd and
origin are int's. origin can be 0, 1, or 2 to specify that offset is to be
measured from the beginning, from the current position, or from the end of the
file, respectively. For example, to append to a file, seek to the end before writ­
ing:

]

(~1_s_e_e_k_(_f_d_' __ O_L_' __ 2_)_; __)

Note that in this case, if offset were nonzero, the length of the file would be
extended by offset.

To get back to the beginning ('rewind'),

(lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek () , it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following simple function reads any
number of bytes from any arbitrary place in a file.

J

r::;:::::: ,/' ::::::::::::::
:::::::::: ::::::: ,: ::,' t>? :;:,:;:::i':;::::::,::~ ::::,

::;::
::::::: t :,)'-·.!i.OU{:::<·/ .-: .. :: .): ::::::: :::::: ,:::::

t.t Wt > :'::::,

</ :::;: :,..: :>::::: :.:\

< .:' .. }

•••••

i:/ ::: .. :,:,).

r'j? 1::',: :::(:,:,- ::::. {> ?:<\'.::.>-'.: :!::::::,: :.: Iii
:;::;::

::/u >< >< l<';:: .. ::: ;:/::;;:i:/!::/ I"::, ~,,<: : {: :: n" m, •• '.'•. , ••.•......• ··········•···· •• ·.···.·iii
I:/.y :>:'"" :: -;;:./ '::1 :

:::~, •••.•• ··.~.·.·....i··.·•...•••.•.• ::.::: ::,: ..

l::::" « u)] :!!:;:i;i·:;:!: /.:. :-U!,>/;· ,:;::,- :":::
::,:,:

::: .. ,

The routines discussed in this section, and in fact all the routines which are direct
entries into the system, can incur errors. Usually they indicate an error by return­
ing a value of -1. Sometimes it is nice to know what sort of error occurred; for
this purpose all these routines, when appropriate, leave an error number in the
external variable errno. The meanings of the various error numbers are listed
in intro(2) in the Sun System Interface Manual so your program can, for exam­
ple, determine if an attempt to open a file failed because it did not exist or
because the user lacked permission to read it. Perhaps more commonly, you may
want to display the reason for failure. The routine perror displays a message
associated with the value of errno; more generally, sys_errno is an array of

Revision A of 27 March, 1990

Appendix A - Low-Level File 110 69

character strings which can be indexed by errno and displayed by your pro­
gram.

Revision A of27 March, 1990

70 C Programmer's Guide

Revision A of27 March, 1990

WARNING

fread () - Read Data from
File

fwrite () - Write Data to
File

B
Binary 1/0

The binary I/O facilities of the C library provide for record-oriented sequential
access to files.

Using these routines may result in data incompatabilities when porting pro­
grams to or from some other machines. See the description of Sun's External
Data Representation (XDR) standard for creating portable code as described in
Network Programming

The fread () function reads some number of objects into a block, from a
specified file. The interface to fread () is:

fread(pointer, sizeof *pointer, items, stream)
char *pointer;
int items;
FILE *stream;

The arguments to fread () have the following meanings:

pointer is a pointer to a block of objects

items is a count of the number of objects of a data type determined by the
type of whatever pointer points to

stream is the named input stream

The value of the fread () function is the number of objects actually read.

The fwri te () function writes some number of objects from a block, onto a
specified file. The interface to fwr i te () is:

fwrite (pointer, sizeof *pointer, items, stream)
char *pointer;
int items;
FILE *stream;

71 Revision A of 27 March, 1990

72 C Programmer's Guide

The arguments to fwrite () have the following meanings:

pointer is a pointer to a block of objects

items is a count of the number of objects of a data type detennined by the
type of whatever pointer points to

stream is the named output stream

The value of the fwr i te () function is the number of objects actually written
to the named stream.

sun Revision A of 27 March, 1990
microsystems

C.I. malloe () -
Allocate Memory

C.2. free () - Free
Allocated Memory

C.3. calloe () -
Allocate Memory for
C Objects

c
. .~ "

o 0 ~o 0 0

Memory Management

These routines provide a general-purpose memory allocation package. They
maintain a table of free blocks for efficient allocation and coalescing of free
storage. When there is no suitable space already free, the allocation routines call
sbrk (see brk(2)) to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for
storage of any type of object. They return a null pointer if the request cannot be
completed.

(char *rn~lloc(num)
uns1.gned num;]

allocates n urn bytes. The pointer returned is aligned so as to be usable for any
purpose. NULL is returned if no space is available. The resultofmalloe (0) is
undefined.

[int free (ptr)
char *ptr;

free () frees up memory previously allocated by malloe (). Disorder can be
expected if the pointer was not obtained from malloe () .

char *calloc(num, size);
unsigned num;
unsigned size;

allocates space for num items, each of size size. The space is guaranteed to be
set to 0 and the pointer is aligned so as to be usable for any purpose. NULL is
returned if no space is available.

]

73 Revision A of 27 March, 1990

74 C Programmer's Guide

C.4. efree () - Free
Allocated Memory

C.s. realloc () -
Change Size of
Allocated Block

C.6. memalign () -
Allocate to Alignment
Boundary

C.7. valloe () -
Allocate Memory on a
Page Boundary

(void) cfree(ptr, num, size)
char *ptr;
unsigned num;
unsigned size;

Space is returned to the pool used by ealloe (). Disorder can be expected if
the pointer was not obtained from ealloe () .

realloe () changes the size of the block referenced by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged
up to the lesser of the new and old sizes. For backwards compatibility, real­
loe () accepts a pointer to a block freed since the most recent call to mal-
loe () , ealloe () , realloe () , valloe () , or memalign (). Note that
using realloe () with a block freed before the most recent call to malloe () ,
ealloe () , realloe () , valloe () , or memalign () is an error.

char *realloc(ptr, size)
char *ptr;
unsigned size;

memalign () allocates size bytes on a specified alignment boundary, and
returns a pointer to the allocated block. The value of the returned address is
guaranteed to be an even multiple of alignment bytes. Note that the value of
alignment must be a power of two, and must be greater than or equal to the size
ofa word.

char *memalign(alignment, size)
unsigned alignment;
unsigned size;

realloe () , valloe () , and memalign () return NULL and set errno if
arguments are invalid, or if there is insufficient available memory, or if the heap
has been detectably corrupted, for example, by storing outside the bounds of a
block.

valloe (size) is equivalent to memalign (getpagesize (), size).

[

Char *v~lloc(s~ze) J
, unsl.gned Sl.ze; .

Revision A of 27 March, 1990

C.8. alloca () -
Allocate Memory on
Stack

Warning

C.9. Memory Allocation
Debugging

malloe_debug () - Set
Debug Level

malloe_verify() -
Check Storage Allocation
Heap

Appendix C - Memory Management 75

alloea () allocates size bytes of space in the stack frame of the caller, and
returns a pointer to the allocated block. This temporary space is automatically
freed when the caller returns.

[char.*all~ca(size)
~nt s~ze;

alloea () is both machine- and compiler-dependent; its use is strongly
discouraged. It is possible to request more stack space than is available, but if
you do, there is no way to detect this condition.

]

More detailed diagnostics can be made available to programs using the memory
management routines described in this chapter by including a special relocatable
object file at link time. This file also provides routines for control of error han­
dling and diagnosis, as defined below. Note that these routines are not defined in
the standard library.

(~nt malloc_debug(level)
.~nt level;]
malloe _debug () sets the level of error diagnosis and reporting during subse­
quent calls to malloe () , ealloe () , realloe () , valloe () ,
memalign () , efree () , and free (). The value of level is interpreted as
follows:

o malloe () , ealloe () , realloe () , valloe () ,memalign () ,
efree () , and free () behave the same as in the standard library.

1 malloe () , ealloe () , realloe () , valloe () ,memalign () ,
efree (), and free () abort with a message to stderr if errors are
detected in arguments or in the heap. If a bad block is encountered,
its address and size are included in the message.

2 Same as levell, except that the entire heap is examined on every call
to malloe () , ealloe () , realloe () , valloe () ,
memalign () , efree (), and free () .

malloe _debug () returns the previous error diagnostic level. The default
level is 1.

(int malloc_verify()

malloe _ ver ify () attempts to determine if the heap has been corrupted. It
scans all blocks in the heap (both free and allocated) looking for strange

]

Revision A of 27 March, 1990

76 C Programmer's Guide

C.I0. Errors from Memory
Management
Routines

addresses or absurd sizes, and also checks for inconsistencies in the free space
table. malloe _ ver ify () returns 1 if all checks pass without error, and other­
wise returns O. The checks can take a significant amount of time, so it should not
be used indiscriminately.

The file /usr /lib/debug/malloe. 0 contains the diagnostic versions of
malloe () , free () , etc.

malIoe(),ealloe(),realloe(},valloe(},memalign(),
efree () , and free () set errno as follows:

EINVAL an invalid argument was given. The value ofptr given to free (),
efree () , or realloe () must be a pointer to a block previously
allocated by malloe () , ealloe () , realloe () , valloe () ,
or merna lign (). E INVAL is also true if the heap is found to have
been corrupted. More detailed infonnation may be obtained by ena­
bling range checks using malIoe_debug () .

ENOMEM size bytes of memory could not be allocated .

• sun Revision A of 27 March, 1990
,,,.. microsystems

D.I. Storage Allocation

D
Sun C Data Representations

This appendix describes how Sun C represents data in storage and the mechan­
isms for passing arguments to functions. This chapter is intended as a guide to
programmers who wish to write or use modules in languages other than C and
have those modules interface to C code.

This section describes how storage is allocated to variables of various types.

In general, any word value is always aligned on a two-byte boundary. Values
that can fit into a single byte are aligned on a byte boundary.

Table D-1 Storage Allocation for Data Types

Data Type Internal RepresenltJlion

char elements a single 8-bit byte.

short integers one word (two bytes or 16 bits), aligned on a two-byte boun-
dary.

intand long 32 bits (four bytes or two words), aligned on a two-byte boun-
dary.

float 32 bits (four bytes or two words), aligned on a two-byte boun-
dary. A float has a sign bit, 8-bit exponent and 23-bit frac-
tion. On a Sun-4, they are aligned on 4-byte boundaries.

double 64 bits (eight bytes or four words), aligned on a word boundary.
A double element has a sign bit, an II-bit exponent and a
52-bit fraction. On a Sun-4, they are aligned on 8-byte boun-
daries.

D.2. Data Representations Bit numberings of any given data element depend on the architecture in use:
Sun-3s, Sun-4s, and SP ARCStations use bit 0 as the most significant bit, with
byte 0 being the most significant byte.

77 Revision A of 27 March, 1990

78 C Programmer's Guide

Integer Representations

Table D-2

Table D-3

float and double
Representation

Table D-4

Bits Name
31 Sign

23-30 Exponent

0-22 Fraction

There are three integer types used in Sun C: short, int, and long.

Representation of short

Bits Content
8-15 Byte 0

0-7 Byte 1

Representation of int and long

Bits Content
24-31 Byte 0

16-23 Byte 1

8-15 Byte 2

0-7 Byte 3

float and double data elements are represented according to the ANSI IEEE
754-1985 standard. The tables below,

s = sign (1 bit)

e = biased exponent (11bits)

f = fraction (23 bits)

u = unsigned

float Representation

Content
1 iff number is negative.

Eight-bit exponent, biased by 127. Values of all zeros, and all
ones, reserved.

23-bit fraction component of normalized significand. The "one"
bit is "hidden".

+~t!! Revision A of27 March, 1990

Bits
63

52-62

0-51

Extreme Number
Representation

Table 0-5

Name
Sign

Exponent

Fraction

Table 0-6

Appendix D - Sun C Data Representations 79

double Representation

Content
1 iff number is negative.

Eleven-bit exponent, biased by 1023. Values of all zeros, and all
ones, reserved.

52-bit fraction component of normalized significand. The "one"
bit is "hidden".

Afloat or double number is represented by the form:

[_______ (-_1)_~_g~_2_(~_O_ne_m_-bW_·_)_lf __________________________ ~]
where" 1.r' is the significand and "f' is the bits in the significand fraction.

Normalized float and double numbers are said to contain a "hidden" bit,
providing for one more bit of precision than would otherwise be the case.

float Representations

normalized number (0<e<255): (_l)Sign 2(exponent-127) 1./

subnormal number (e=O, f!=O): (_l)Sign 2(126) 1./

zero (e=O, f=O):
(_l)Sign 0

signaling NaN S=U, e=255(max); f=.Ouuu-uu (at least one bit must be nonzero)
Quiet NaN s=u, e=255(max); f=.luuu-uu
Infinity S=U, e=255(max); f=.ooOO-OO (all zeroes)

Table 0-7 double Representations

normalized number (0<e<2047): (-1)Sign 2(exponent-l023) 1./

subnormal number (e=O, f!=O):
(_l)Sign 2(1022) 1./

zero (e=O, f=O):
(_l)Sign 0

signaling NaN s=u, e=2047(max); f=.Ouuu-uu (at least one bit must be nonzero)
Quiet NaN 8=U, e=2047(max); f=.luuu-uu
Infinity 8=U, e=2047(max); f=.OOOO-OO (all zeroes)

+~t!! Revision A of27 March, 1990

80 C Programmer's Guide

Hexadecimal Representation
of Selected Numbers

Pointer Representation

Array Storage

Arithmetic Operations on
Extreme Values

Value float doubk

+0 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

A pointer in C occupies four bytes. The NULL value pointer is equal to zero.

Arrays are stored with their elements in a specific storage order. The elements
are actually stored in a linear sequence of storage elements.

C arrays are stored in row-major order; the last subscript in a multi-dimensional
array varies fastest.

String data types are simply arrays of char elements.

This subsection describes the results derived from applying the basic arithmetic
operations to combinations of extreme and ordinary floating-point values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow, underflow, and cancellation are
assumed not to happen. In all the tables below, the abbreviations have the fol­
lowing meanings:

Table D-8 Extreme Values Usage

Abbreviation Meaning
Num Subnormal or Normalized Number
Inf Infinity (positive or negative)
NaN Not a Number
Uno Unordered

The tables that follow describe the types of values that result from arithmetic
operations performed with combinations of different types of operands.

Revision A of 27 March, 1990

Appendix D - Sun C Data Representations 81

Table D-9 Addition and Subtraction Results

Addition and Subtraction

Left Operand Right Operand

0 Num Inf NaN

0
0 Num Inf NaN

Num Num Num Inf NaN
Inf Inf Inf Note NaN

NaN NaN NaN NaN NaN

Note: Inf + Inf = Inf; Inf - Inf = NaN

Table D-I0 Multiplication Results

Multiplication

Left Operand Right Operand

0 Num Inf NaN

0
0 0 NaN NaN

Num 0 Num Inf NaN

Inf NaN Inf Inf NaN

NaN NaN NaN NaN NaN

Table D-ll Division Results

Division

Left Operand Right Operand

0 Num Inf NaN

0
NaN 0 0 NaN

Num Inf Num 0 NaN

Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN

Revision A of 27 March, 1990

82 C Programmer's Guide

Table D-12 Comparison Results

D.3. Argument Passing
Mechanism

D.4. Referencing Data
Objects in C

Sun-3

Sun-4

Referencing Simple Variables

Comparison

Left Operand Right Operand

Note:

0 Num Inf NaN

0 = < < Uno

Num > < Uno

Inf > > Uno

NaN Uno Uno Uno Uno

NaN compared with NaN is Unordered, and also results in inequality.
+0 compares equal to -0.

This section describes how arguments are passed in Sun C.

All arguments to C functions are passed by value.

Actual arguments are pushed onto the stack in the reverse order from which they
are declared in a function declaration.

Actual arguments which are expressions are evaluated before the function refer­
ence. The result of the expression is then pushed onto the stack.

On Sun-3s, functions return their results in register DO, or in registers DO and Dl
when the result is a double value.

On Sun-4s, functions return integer and float results in register %00, while
double results are returned in %ofO and %of1.

All arguments, except doubles, are passed as four-byte values; a double is
passed as an eight-byte value. All float values are passed as doubles.

Upon return from a function, it is the responsibility of the caller to pop argu­
ments from the stack.

This section describes how variables of different types are actually accessed (or
referenced). The method and notations of access, of course, differ depending on
whether the object is a simple variable, an array, a structure, or a union.

A plain variable (of simple scalar type) is accessed by its identifier. Since such a
simple variable has no structure, its identifier alone is enough to reference it.

Revision A of 27 March, 1990

Figure D-l

Referencing With Pointers

Figure D-2

Referencing Array Elements

Appendix D - Sun C Data Representations 83

Examples of Simple Variable References

double sin();
int egress;
float lightly;
char coal;

/* Declare some simple variables */

extern double sin();

egress = 10;
/* Now reference those variables */
/* Set the int to a constant */

printf ("%f", sin (lightly»; /* Pass it as argument */

putc (coal); /* Write it to the standard output */

A variable can also be declared as a pointer to another object. In this case, the
reference to the object must be done with the pointer notation. Placing an aster­
isk character * in front of an identifier uses that identifier as a pointer to an
object, and the thing that is read from or written to is the object that the identifier
points to.

Examples of Pointer References

int *egressi
float *lightly;
char *coali

/* Declare some pointer variables */

extern double sin();

*egress = 10;
/* Now reference those variables */
/* Set it to a constant */

printf ("%f", sin (*lightly»; /* Pass it as argument */

putc (*coal); /* Write it to the standard output */

When an identifier of an array type appears in an expression, the identifier is con­
verted to a pointer to the first member of the array.

The subscript operation [] is interpreted such that

(_____ E_l_[E_2_] __________________________________ ~]

Revision A of 27 March, 1990

84 C Programmer's Guide

Figure D-3

Referencing Structures and
Unions

is equivalent to the construct

(~ __ *_«_E_1)_+_(E_2_» ______________________________]

Examples of Array Variable References

/* Declare some array variables */
int egress[10];
float lightly[5] [5];
char coal[100];
extern double sin();
int idx;
int idy;

/* Now reference those variables */
for (idx = 0; idx < 10; idx++)

egress [idx] = 10; /* Set int to a constant */

for (idx = 0; idx < 5; idx++)
for (idy = 0; idy < 5; idy++)

printf ("%f", sin (lightly [idx] [idy]»;

for (idx = 0; idx < 100;
putc (coal[idx]);

idx++)
/* Write to standard output

There are only three operations which may be done on a structure or a union:

*/

1. A member of the structure or union can be referenced by means of the
. or -> operator.

2. The address of the entire structure or union can be taken, with the &

operator.

3. One structure can be copied to another of the same type with the
assignment operator.

The . operator is used in contexts where the structure or union identifier is avail­
able directly to the expression. The - > operator is used when the identifier for
the structure or union is a pointer to the object. Structures can also be passed as
parameters, returned from functions, or assigned to variables of the same struc­
ture or union type.

Revision A of 27 March, 1990

Figure D-4

Appendix D - Sun C Data Representations 85

Examples of Accessing Members o/Structures

#define MAXLEN 256
#define NULL 0
demo (wanted)

char *wanted;

struct
/* Declare a couple of structures */

/* This one is fairly simple */
int level;
char *cp;
char pbuffer[MAXLEN];

putter;

struct vallist /* This one is a linked list */
char *name;
char valtype;
int value;
struct vallist *nextval;
} *valhead, *valtail;

struct vallist *pointer;
/* Now access the members */

putter.level = 10;
for (i = 0; i < MAXLEN; i++)

putter.pbuffer [iJ *putter.cp;

/* Access members through pointers */
for (pointer = valhead;

pointer != NULL;
pointer = pointer->nextval)

if (strcmp (pointer->name, wanted) == 0)
return (pointer);

/* End of the demo function */

Revision A of27 March, 1990

86 C Programmer's Guide

sun Revision A of 27 March, 1990
microsystems

E.I. Keywords (§A.2.3)

E.2. Name Spaces (§A.4)

E.3. Characters and
Integers (§A.6.1)

E.4. float and double
(§A.6.2)

E
Sun C Extensions

The language described by Kernighan and Ritchie in The C Programming
Language (referred to hereafter as "K&R C"), while close to Sun C, is not identi­
cal to it, The extensions to K&R C embodied in Sun C are described below, with
the relevant section of Appendix A of The C Programming Language listed for
each topic discussed.

Sun C includes the additional keywords void and enum.

In Sun C, functions may be declared to return the type void. This means that
the function doesn't return any value, and so is functionally a subroutine. There
are no objects of type void.

Sun C provides separate address spaces for

o struct/union and enum tags

o Elements of each different type of struct/union

o Everything else: regular variables and functions

K&R C provides two name spaces: one for struct/union tags, and the other
for all variables, functions, type de f' d names, and so on.

Sun C's characters are signed, and all ASCII characters are positive. Unsigned
characters are, of course, unsigned, and promote to unsigned. See also refer­
ence to 8.2 below.

In K&R C, whenever a float appears in an expression it is lengthened to dou­
b I e by zero-padding its fraction.

In Sun C, floats are lengthened to doubles in expressions, but with consider­
ably more work, since the exponent part is of a different width, and of a different
bias. (See Chapter D for further discussion.)

Sun C also provides a compiler option, -fsingle, to avoid this widening in
expressions using only floats. -fsingle will not prevent float formal
parameters from being rewritten as doubles, nor float-valued actual parame­
ters from being promoted to doub Ie.

87 Revision A of27 March, 1990

88 C Programmer's Guide

E.S. Arithmetic
Conversions (§A.6.6)

E.6. Primary Expressions
(§A.7.1)

E. 7. Multiplicative
Operators (§A. 7 .3)

E.8. Storage Class
Specifiers (§A.8.1)

E.9. Type Specifiers
(§A.8.2)

E.IO. Declarator Naming
(§A.8.4 and §A.14.1)

E.11. struct and union
Declarations (§ A.8.S
and §A.14.1)

Unsigned char and unsigned short promote to unsigned. Since in Sun C
long == int, nothing ever promotes to long.

Sun C supports passing structs and unions by value. The C Programming
Language does not discuss the possibility of passing structs or unions as
value parameters since it is not allowed in K&R C. See §A.I0.1 below.

The C Programming Language states that % may not be applied to operands of
type float. In Sun C, it may not be applied to operands of type double,
either. Note that the sign of the remainder is the same as the sign of the divi­
dend.

In Sun C, any integral type (combinations of char, short, int, long,
unsigned, and enum) and any pointer type may be assigned to registers.
Depending on the hardware present, floats and doubles may be, too.

In K&R C, only int, char, and pointer types may be assigned to registers
with the register storage class.

Sun C supports the scalar types char, unsigned char, int, short int,
unsigned short int,long int,enum, float, and double.

K&R C does not support the unsigned char, unsigned short int, or
enum types. These types in Sun C promote to unsigned int rather than
into

Sun C permits declaring a function returning a struct or union.

Sun C permits you to both assign structs/unions and pass them as parame­
ters.

In Sun C, fields are packed left-to-right within a storage unit appropriate to the
type they are declared to be. They may be declared as any of the integer type,
and en urn. No matter what their declaration, all fields are unsigned, and thus
zero-extended for the purposes of "the normal conversions".

In Sun C, interpretation of . and - > take into account the type of the
struct/union or pointer expression on the left to determine the name on the
right. This permits apparent clashes between offsets and types between members
of different aggregates having the same name. The only difficulty comes if the
type of the left-hand expression does not properly disambiguate the name, in
which case:

1: If there is no ambiguity, then the only choice is taken and a warning is
issued.

2: If there is ambiguity, the program is considered to be in error .

• sun Revision A of 27 March, 1990
~ microsystems

E.12. Switch Statement
(§A.9.7)

E.13. External Function
Definitions (§A.IO.I)

E.14. Lexical Scope
(§A.II.I)

E.IS. Scope of Externals
(§A.II.2)

E.16. Explicit Pointer
Conversions
(§A.14.4)

E.17. Constant Expressions
(§A.IS)

E.18. Anachronisms
(§A.17)

Appendix E - Sun C Extensions 89

Sun C accepts switch expression of types float, double (fixed to ints), and
en urn, as well as the integer types permitted by K&R C.

Sun C permits passing struct and union value parameters in external func­
tions.

Sun C does not "push down" an outer variable declaration in a compound state­
ment if a variable of class extern is re-declared in an inner block. In this case,
the inner declaration persists until the end of the file, and if it redeclares a name
with a definition in an outer block, it will elicit a complaint from the compiler
about redeclaring a variable.

Sun C's linking rules are somewhat more liberal than those implied by K&R C:

o C uninitialized global data are treated like FORTRAN uninitialized
COMMON (a tentative definition). Sun C initialized data are are
treated like FORTRAN COMMON initialized by BLOCK DATA (a
true definition).

o A tentative definition in a library module will not cause the module to
be loaded. A true definition will, if the the name occurs as a reference
or tentative declaration in a module that is already being linked. (The
"already" here is important since order matters.)

o If the linker sees any true definitions of a name among the modules to
be linked, this definition overrides all tentative definitions. This
includes the case where the true definition allocates less space for the
named object than the tentative definition(s) would.

o If the linker sees no true definitions of a name, the name is defined by
the linker, and space is allocated. The amount of space allocated
should be the maximum of the size specified in any of the tentative
definitions in the modules being linked.

On Sun workstations, a pointer corresponds to a 32-bit integer, while addresses
are measured in 8-bit bytes. Alignment of data depends on the particular plat­
form.

For more about data representation, see Chapter D .

Sun C permits cast operators as part of constant expressions, except in preproces­
sorconstant expressions (see §12.3), where the sizeof operator is also disal­
lowed.

Sun C does not recognize any of the anachronisms listed in §A.17 of The C Pro­
gramming Language.

Revision A of 27 March, 1990

Index

A
accessing command line arguments, 9 thru 10
accessing environment variables, 10 thru 12
alloca () , 75
argc, 9
argv,9

B
bcmp (), 61
bcopy (), 61
bit string functions, 61

ffs 0,61
buffered 110 package

accessing files, 33 thru 40
standard input and output, 29 thru 30

byte string functions, 61
bcmp (), 61
bcopy (), 61
bzero (), 61

C
calloc () , 73
cfree (), 74
character classification, 57 thru 58

isalnum (), 58
i salpha 0 , 57
isascii (), 58
iscntrl 0,58
isdigit (), 57
i sgraph () , 58
islower (), 57
isprint (), 58
ispunct (), 58
isspace (), 58
isupper (), 57
isxdigit (), 58

character conversion, 58
toascii (), 58
tolower () , 58
toupper () , 58

character 110, 41 thru 56
check heap

malloc_verify 0, 7S
child process, 15
clear byte strings

bzero (), 61
close (), 66

-91-

·

command line arguments, 9 thru 10
argc, 9
argv, 9

compare byte strings
bcmp (), 61

compare strings
strcmp () , 59
strncmp () , 59

compiling C programs, 1 thru 8
concatenate strings

strcat () , 60
strncat () , 60

controlling processes
fork 0,15
wait 0, 15

convert character
toascii () , 58
tolower () , 58
toupper () , 58

copy byte strings
bcopy (), 61
strcpy (), 60
strncpy () , 60

creating processes
execl (), 13
execv (), 13

D
data representation

Sun-3, 77 thru 82
Sun-4, 77 thru 82

debugging memory management, 75 thru
malloc debug (), 75
malloc=verify(),75

descriptors, 63

E
environment variables, 10 thru

getenv () , 11 ...•
EOF, 30, 31.:..··<.
error processing in low level input-OUtpti#9~:
execl(),13 ..
execv (), 13
exitO,2,16

Index - Continued

F
feof (), 47
fflush 0, 37
ffs (), 61
fgetc () ,42
fgets (), 44
file descriptors, 63
find character in string

index (), 60
rindex () , 60

fork (), 15
fputc (), 46
fputs (), 47
free memory

cfree (), 74
free (), 73

fscanf (), 31

G
getc (), 41
getchar (), 29, 43
getenv () library function, 11, 11

H
high-level 110 package

accessing files, 33 thru 40
standard input and output, 29 thru 30

I
index strings

index (), 60
rindex () , 60

index (), 60
inline,7
input stream

ungetc (), 31
input-output

error processing, 68
lseek (), 67
seek (), 67

input-output - low-level routines, 63 thru 69
close (), 66
file descriptor, 63
read (), 64
unlink () , 66
write (), 64

interrupts, 21 thru 25
isalnum (), 58
isalpha (), 57
isascii (), 58
iscntrl (), 58
isdigit (), 57
isgraph (), 58
islower (), 57
isprint (), 58
ispunct (), 58
isspace (), 58
isupper (), 57
isxdigit (), 58

L
length of string

strlen (), 59
longjmp (), 23
low level input-output, 63 thru 69

close (), 66
error processing, 68
file descriptor, 63
lseek (), 67
open (), 66
read (), 64
seek (), 67
unlink (), 66
write (), 64

lseek (), 67

M
main (), 9
malloc (), 73
malloc_debug (), 7S
mal loc_veri fy (),7S
memalign (), 74
memory allocation debugging, 75 thru 76
memory management, 73 thru 76

alloca () , 7S
calloc (), 73
cfree (), 74
free (), 73
malloc (), 73
malloc_debug (), 7S
malloc_verify(),7S
memalign (), 74
realloc () , 74
valloc (), 74

memory management debugging, 75 thru 76

N
NULL, 14
null-terminated string functions, 58 thru 61
null-terminated strings

strcmp () , 59
strncmp () , 59
strcat () , 60
strncat () , 60
strcpy (), 60
strncpy (), 60
index (), 60
rindex () , 60
strlen (), 59

o
onintr (), 22
open (), 66

p
parent process, 15
pause (), 24
pipes, 16

-92-

printf (), 30
proc_id, 15
process control

fork (), 15
wait (), 15

processes, 13 thru 19
execl (), 13
execv (), 13
pipes, 16
system (), 13

putc (), 45
putchar (), 29, 46

R
random access

lseek (), 67
seek (), 67

read (), 64
realloc (), 74
rindex () , 60

S
scanf (), 30, 31
seek (), 67
setjmp.h,23
sh,14
SIG_DFL,25
SIG_IGN,25
signal () , 21, 25
signal. h, 21
signals, 21 thru 25
sprintf (), 13,31
sscanf (), 31
standard 110 package

accessing files, 33 thru 40
standard input and output, 29 thru 30

stdin, 23
stdio.h,27
storage allocation, 73 thru 76

alloca () , 7S
calloe (), 73
cfree (), 74
free (), 73
malloe (), 73
malloe debug (), 75
malloe-verify(),75
memalign (), 74
realloc () , 74
valloe (), 74

storage management, 73 thru 76
storage management debugging, 75 thru 76

strcat (), 60
strcmp (), 59
st rcpy () , 60
stream

ungete (), 31
string handling, 57 thru 61
string operations

strcat (), 60
strcpy () , 60

-93-

string operations, conJinued
strncpy () , 60
index (), 60
rindex () , 60
stremp () ,59
strlen (), 59
strncmp () , 59

strlen (), 59
strncat () , 60
strncmp () , 59
strncpy () , 60
system () , 13
system-level input-output, 63 thru 69

T
toascii (), 58
tolower () , 58
toupper () , 58

U
ungetc (), 31, 44
unlink (), 66

V
valloc () , 74

Index - ConJinued

variables, accessing from environment, 10 thru 12
verify heap

malloc_verify(),75

W
wait (), 15
write (), 64

Z
zero byte strings

bzero (), 61

I

