
Porting Software to SPARe Systems

--- ._-------_.-

Part Number: 800-1796-10
Revision A of9 May, 1988

SP ARCTM is a trademark of Sun Microsystems, Inc.
Sun-4™ is a trademark of Sun Microsystems, Inc.
Sun-3™ is a trademark of Sun Microsystems, Inc.
Sun-2TM is a trademark of Sun Microsystems, Inc.
Sun Workstation® is a registered trademark of Sun Microsystems, Inc.
The Sun logo is a registered trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
VAX is a registered trademark of Digital Equipment Corporation.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical
including photocopying, recording, taping, or storage in an infonnation retrieval
system, without the prior written pennission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(I)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,1904,527,2324,745,4074,679,0144,435,792 4,719,569 4,550,368 in
addition to foreign patents and applications pending.

Contents

Chapter 1 Machine Architecture ... 1

1.1. Introduction .. '" 1

1.2. Non-Issues ... 1

Word Size .. 1

Byte Ordering 1

Scalar Representation 2

1.3. How to Read this Document ... 2

Chapter 2 Porting C Programs .. 3

2.1. Porting Issues ... 3

Data Alignment .. 3

Structure Alignment and Padding ... 4

Function Return V alues ... 5

Passing Mismatched Parameter Types ... 5

Parameter Passing: vararqs () .. 6

Order of Parameter Evaluation ... 6

Passing Union Arguments to semetl. ()

Stack Allocation with al.l.oca ()

Out -of -Range Shifts .. ,.;;;,; ... ;.;:;:;.;~ ~;:;;".,.;;;:;:.:;:; ':' ::::::

Uninitialized Automatic Variables :;:; .. : ,.;, ..•..... ,~ .. " :.:.:.:.;;; ',.:;; ';,:::::

2.2. Conclusion ... , .. : . .:,"' .. ;; ... :;:.~:.," "':;: .. ;.;;.; ,~'::::

Chapter 3 Porting FORTRAN Programs ;.;.;:;:;;:.::.,.; .. ; ;;;;;;.:,., ;:; .. ;;.

3.1. Porting Issues ... ;;;; .. , :,;;,;

- iii-

Contents - Continued

The EQUIVALENCE Statement ... 9

The COMMON Block ... 10

Order of Parameter Evaluation ... 10

Chapter 4 Porting Pascal Programs ... 11

4.1. Porting Issues ... 11

Data Alignment .. 11

Record Alignment and Padding .. 11

Order of Parameter Evaluation ... 13

Out-of-Range Shifts .. 13

Uninitialized Local Variables .. 13

4.2. Conclusion ... 13

-iv-

Figures

Figure 1-1 Forward Byte and Backward Bit Ordering (MC680xO &
SPARC) ... 1

Figure 1-2 Backward Byte and Bit Ordering (VAX & 80386) 1

Figure 1-3 Forward Byte and Bit Ordering (IBM 360) ... 1

Figure 2-1 Structures that Result in Non-Portable Binary Files 4

Figure 3-1 Alignment Problems with EQUIVALENCE .. 9

Figure 3-2 Alignment Problems with COMMON .. 10

Figure 4-1 Records that Result in Non-Portable Binary Files 12

Table 4-1 Bitwise Operations in Pascal and C ... 13

-v-

1.1. Introduction

1.2. Non-Issues

Word Size

Byte Ordering

1
Machine Architecture

This document is intended for programmers who are porting programs written in
C, FORTRAN, or Pascal from Sun-2 or Sun-3 machines to SPARC systems. The
acronym SP ARC stands for Scalable Processor ARChitecture. SP ARC is a RISC
(Reduced Instruction Set Computing) architecture easily scalable to new techno
logies, and is described in the SP ARC Processor Architecture manual.

Here are some common porting considerations that are not of concern here.

Both the Sun-2, based on the Motorola MC68010 CPU, and the Sun-3, based on
the MC68020, are 32-bit machines. That is, integers are 32 bits long. Since
SP ARC is a 32-bit architecture, word size is not an issue.

Both the MC68010 and the MC68020 have forward byte ordering but reverse bit
ordering. In other words, the MC680xO is big-endian with respect to bytes, but
little-endian with respect to bits. The same is true of SP ARC machines. Thus,
byte ordering is not an issue.

By contrast, the V AX and the Intel 80386 have both reverse byte ordering and
reverse bit ordering. In other words, they are little-endian architectures. The
IBM 360, on the other hand, has both forward byte ordering and forward bit
ordering. In other words, it is a big-endian architecture.

Figure 1-1 Forward Byte and Backward Bit Ordering (MC680xO & SPARC)

Figure 1-2 Backward Byte and Bit Ordering (VAX & 80386)

Figure 1-3 Forward Byte and Bit Ordering (IBM 360)

1 Revision A, of 9 May 1988

2 Porting Software to SP ARC

Scalar Representation

1.3. How to Read this
Document

The bit and byte ordering of the V AX, Intel 80386, and IBM 360 are not relevant
when porting from the Motorola 680xO to SP ARC systems. They are mentioned
only for comparison. Also, note that the difference in bit ordering between the
MC680xO and the IBM 360 is purely notational. That is, on the MC680xO the bit
named 0 is the least significant, but on the IBM 360 the bit named 31 is the least
significant. These bits have the same numeric value, but different names.

Both the MC680xO and SPARe machines use two's-complement integers, and
standard IEEE floating-point single- and double-precision representations. So
scalar data representation is not an issue.

The next chapter describes issues you may encounter when porting C programs
to SPARC systems. The chapter after that covers the porting of FORTRAN pro
grams. The last chapter talks about porting Pascal programs to SP ARC systems.
You may read only the material that concerns you.

Revision A, of 9 May 1988

2.1. Porting Issues

Data Alignment

2
Porting C Programs

Here are some architectural considerations that you should be aware of when
porting C programs to SPARC machines. Fortunately you can pinpoint most of
these problems with lint -ch. The -c flag detects unportable casts, and the
h flag perfonns heuristic checking.

On the MC680xO, characters are aligned on byte boundaries, and everything else,
regardless of size, is aligned on halfword (even) boundaries. On SP ARC
machines, all quantities must be aligned on boundaries corresponding to their
sizes: bytes on byte boundaries, (16-bit) halfwords on halfword boundaries, (32-
bit) words on word boundaries, and (64-bit) doublewords on doubleword boun
daries. If you are coding in assembly language, you must observe alignment res
trictions. Otherwise, compilers nonnally keep track of everything for you. There
are several C language constructs, however, that may lead to a bus error during
execution:

o Casting a pointer to a char or unsigned char into a pointer to a larger
quantity, such as a short, int, long, float, double, or struct/
union containing one of these. This includes passing a char * as an argu
ment to a function expecting a pointer to a larger quantity.

o Casting a pointer to a short or unsigned short into a pointer to a
larger quantity, such as an int, long, float, double, or struct/
union containing one of these. This includes passing a short * as an
argument to a function expecting a pointer to a larger quantity.

o Casting a pointer to a 32-bitquantity (such as an int, unsigned int, or
float) into a pointer to a (64-bit) double or struct /union containing
a double. This includes passing a pointer to a 32-bit quantity as an argu
ment to a function expecting a pointer to a double. C programmers should
note that float * and double * are not the same.

The above constructs may work occasionally, if the pointer happens to end up on
the right boundary. But more often, these constructs lead to bus errors. It is not
the cast itself that causes the bus error, but rather dereferencing the resulting
pointer. The use of lint should catch most of these problems.

+~t!! 3 Revision A. of 9 May 1988

4 Porting Software to SP ARC

Structure Alignment and
Padding

Figure 2-1

Structure Alignment. On the MC680xO, each structure is aligned on a halfword
(even) boundary. On SP ARC machines, the alignment requirement for a struc
ture is the same as that of its most strictly aligned component. For instance, a
struct containing only char members has no alignment restrictions, whereas
a struct containing a double must be aligned on an 8-byte boundary.

Internal Padding. On the MC68OxO, structures are padded internally so that
integers and floats always begin on an even boundary. On SPARC machines,
structures are padded intemally so that every element is aligned on the appropri
ate boundary. For instance, a struct containing only one char and then a
long has three bytes of padding after the char, so that the long is aligned on a
4-byte boundary.

Tail Padding. On the MC680xO, structures are padded on the end to contain an
even number of bytes. On SP ARC machines, structures are padded on the end to
the appropriate alignment boundary. For instance, a struct containing only
char members is unpadded, whereas a struct containing an int but no dou
ble is padded out to a 4-byte boundary.

Because of the three considerations above, members of a given structure may
have different offsets on SP ARC machines than on the MC680xO, and the struc
ture as a whole may have a different size. Even though data representations are
identical on the MC680xO and SP ARC, binary files where raw structures have
been written out may not be portable between processors. Note that structures
retained in memory are fine; problems occur only when raw structures are written
to disk or across the network.

Here is an example of two structures that could not be written on one processor
and read on the other (though in memory they would be fine):

Structures that Result in Non-Portable Binary Files

Offsets sizeo/(struct)
MC680xO SPARC MC680xO SPARC

struct chl
{

char c; +0 +0
long i; +2 +4 6 8

} ;

struct ccc
{

char cl; +0 +0
char c2; +1 +1
char c3; +2 +2 4 3

} ;

There are three solutions to this problem. First, you could write a program to run
on each processor to create binary files of structures according to the require
ments of that processor. For example, the makedev program used with device
independent troff writes out the font infonnation structures on each machine
running troff.

Revision A, of 9 May 1988

Function Return Values

Passing Mismatched
Parameter Types

Chapter 2 - Porting C Programs 5

Second, if a structure must be portable across machines, Sun's eXternal Data
Representation (XDR) is the best solution. The best way to write a record on one
machine that is to be read on others is to use an XDR standard representation for
the data. See the section entitled "XDR Protocol Specification" in the manual
Networking Programming on the Sun Workstation.

Third, you could manually arrange the members of a structure, from the most to
least restrictive alignment requirements, then insert explicit fill (padding) ele
ments as needed. Structures are often designed in this manner anyway, with the
largest elements at the beginning.

On SP ARC machines, if a function is going to return a structure by value, both
the calling function and the called function must agree on its type. If the called
function returns a structure by value but the calling function doesn't use it, no
harm is done. The value is returned, but the calling function ignores it. If the
called function does not return a structure by value but the calling function
expects one, you get an "Unimplemented Instruction Trap" at runtime upon
return from the called function. The use of 1 i n t should catch these problems.

The C language does not define what happens when you pass a list of variables to
a routine that receives a struct by value, or vice versa. This just happened to
work with Sun's MC680xO C compilers. On SPARC machines, it does not work.
Here is an example that won't work on SP ARC:

struct thing {
int x, Yi

} i

int a, bi

routine(s)
struct thing Si

routine(a, b) i

Likewise, on SPARC machines, passing a union by value is not equivalent to
passing one of its elements (use of lint should catch this). Here is a construct
that won't work on SPARC:

union thing {
int ii double Xi

} comboi

routine (x)
double Xi

routine(combo)i

Revision A, of 9 May 1988

6 Porting Software to SP ARC

Parameter Passing:
vararqs ()

Order of Parameter
Evaluation

Passing Union Arguments to
semctlO

Stack Allocation with
alloca()

Out-of-Range Shifts

Uninitialized Automatic
Variables

Taking the address of a function parameter and manipulating it to access other
parameters (or other data) on the stack is possible with Sun's MC680xO C com
pilers. With SPARC compilers, however, routines that receive a context
dependent number of arguments of varying types must be written using the mac
ros defined in <varargs. h>. These macros pennit you to write even such rou
tines as pr intf () portably. See the varargs(3) manual page for details.

The order of evaluation of parameters to a function is not defined by the C
language, and is different in SPARC C compilers than in Sun's MC680xO C
compilers. Let's consider this example:

(func(x • i, y / i, i++); J
Since the arguments of func () are evaluated in a different order on SPARC
systems than on Sun-2 or Sun-3 machines, the side effect caused by i ++ is going
to yield different results on different machines. It is never a good idea to make
assumptions about the order of parameter evaluation. The best strategy is to
write C code that does not depend on any side effects of parameter evaluation.

Users of the System V semaphore facility may have to modify code that worked
on other machines for SPARC. With the semctl(2) system call, the subcom
mands SETVAL, GETALL, SETALL, IPC_STAT, and IPC_SET require a
fourth argument semun, which is a union. Programs that call semctl () with
these subcommands must pass the union itself, rather than an element of the
union, or a constant such as 0 (zero). Programs that call semctl () with other
subcommands should omit the fourth argument, rather than pass a constant such
as 0 (zero). As usual, lint helps you spot problems of this kind.

On SPARC systems, users of the stack allocation routine alloca () must
include the header file <alloca. h> before using the routine. Furthennore,
since alloca () is now built in to the compiler, it cannot be assigned to an int
(*) () variable, nor can it be passed as a procedure-type parameter.

Using the C language bit-wise shift operators «, », «=, or »= with a right
hand operand greater than or equal to the size of the left-hand operand (in bits)
yields machine-dependent results. Many programmers are not aware of this, and
assume that an unsigned shift by a large amount yields zero. This is often true on
MC680xO machines, because the shift count is interpreted modulo 64. This is
true less often on SP ARC machines, because the shift count is interpreted
modulo 32. The best strategy is to avoid shift counts greater than the size of the
affected operand. A negative shift count won't yield sensible results on either
machine, of course.

Naturally, beware ofuninitialized local variables; they may have different values
on different machines, and in different calls to the same function. The use of
uninitialized automatic variables continues to be a poor programming practice.
Fortunately, the use of lint should detect such problems.

Revision A, of 9 May 1988

2.2. Conclusion

Chapter 2 - Porting C Programs 7

Well-written portable C programs should compile and run on SPARC machines
as well as on other machines. Non-portable programs, by definition, may present
problems when transported to SP ARC machines, or to any other machine. There
is no substitute for good program design and judicious use of 1 i n t .

Revision A. of 9 May 1988

8 Porting Software to SP ARC

Revision A, of 9 May 1988

3.1. Porting Issues

The EQUIVALENCE
Statement

Figure 3-1

3
Porting FORTRAN Programs

In general, there are fewer potential areas of concern in porting FORTRAN pro
grams to SP ARC than there are porting C programs. Data alignment is not a
problem, because FORTRAN has no type casting mechanism. Binary reads and
writes are done byte-by-byte, so structure padding is not a concern. FORTRAN
has no structures, no unions, and no mechanism for variable-length argument
lists, so these do not pose portability problems, either.

The EQUIVALENCE statement and the COMMON block, and the order of parame
ter evaluation, are perhaps the only potential problem areas.

The use of EQUIVALENCE can force double-precision variables to be
misaligned, as in the following FORTRAN code:

REAL A(S)
DOUBLE PRECISION D(4)

EQUIVALENCE (A(2),D(1»

Note that the 8-byte doubleword D (1) does not begin on an 8-byte boundary
owing to the EQUIVALENCE, even though it would be much more efficient for
D (1) to be aligned on an 8-byte boundary.

Alignment Problems with EQUIVALENCE

I I

8 bytes 8 bytes 8 bytes 8 bytes

A: 1

I
2 3

I
4 5

I I D: 1 2 3 4

Because this usage of EQUIVALENCE is standard FORTRAN, the FORTRAN
compiler must deal with it. When an EQUIVALENCE statement skews align
ment, the compiler generates code to access double-precision variables as pairs
of single-precision variables. These variables are loaded and stored with word
instructions, rather than with doubleword instructions. Unfortunately this slows
down execution someWhat, so for the sake of efficiency, it is best not to
EQUIVALENCE variables without regard for data alignment.

9 Revision A. of9 May 1988

10 Porting Software to SPARe

The COMMON Block

Order of Parameter
Evaluation

Figure 3-2

The placement of odd-length single-precision arrays before double-precision
arrays in a COMMON block can also force double-precision variables to be
misaligned, as in the following FORTRAN code:

REAL A(3)

DOUBLE PRECISION D(3)

COMMON A,D

Note that the 8-byte word D (1) does not begin on an 8-byte boundary because
of the COMMON block ordering, even though it would be much more efficient for
D (1) to be aligned on an 8-byte boundary.

Alignment Problems with COMMON

I I

8 bytes 8 bytes 8 bytes 8 bytes
A: 1

I
2 3

I I I D: 1 2 3

Because this usage of COMMON is standard FORTRAN, the FORTRAN compiler
generates code to access double-precision elements of array D as pairs of single
precision variables. These variables are loaded and stored with word instruc
tions, rather than with doubleword instructions. Unfortunately this slows down
execution somewhat. The best fix is to get into the habit of placing double
precision variables first in a COMMON block.

The order of evaluation of parameters to a FORTRAN function or subroutine is
different on SPARC than on the Sun-2 or Sun-3. Let's consider this example:

[_c_a_l_l __ t_a_l_l_Y_(_f_<X_>_, __ g_(_x_>_> __________________________ --------)

Since the functions f () and g () , which are arguments of subroutine tally () ,
are evaluated in a different order on SP ARC systems than on the MC68Ox.0, the
value of x had better not change between function calls.

The best strategy is to write FORTRAN code that does not depend on the order of
parameter evaluation.

Revision A, of 9 May 1988

4.1. Porting Issues

Data Alignment

Record Alignment and
Padding

4
Porting Pascal Programs

Here are some architectural considerations that may cause problems when port
ing Pascal programs to SP ARC.

Since Pascal has no type casting mechanism like the one in C, there should never
be data alignment problems caused by casting pointers to small objects into
pointers to larger objects.

However, it is possible to simulate the effect of type casts by the use of the vari
ant record mechanism. For example, the following program may fail to work as
you would expect:

program WontWork;

type

var

faa = record
case boolean of

false :

end;

(Iptr Ainteger);
true :

(Cptr Achar)

bar : faa;

begin
new(bar.Cptr);
bar. Iptr'" .= 0;

end.

On the MC680xO, each record is aligned on halfword (even) boundaries. On
SP ARC machines, the alignment requirement of a record is the same as that of
its most strictly aligned component. For instance, a record containing only
char members has no alignment restrictions, whereas a record containing a
real must be aligned on an 8-byte boundary.

On the MC680xO, records are padded internally so that integers and reals
always begin on an even boundary. For instance, a record containing only one

11 Revision A, of9 May 1988

12 Porting Software to SPARe

Figure 4-1

char and then an integer has three bytes of padding after the char, so that
the integer is aligned on a 4-byte boundary.

On the MC680xO, records are padded on the end to contain an even number of
bytes. On SP ARC machines, re co rds are padded on the end to the appropriate
alignment boundary. For instance, a record containing only char members is
unpadded, whereas a record containing an integer but no real is padded
out to a 4-byte boundary.

Because of the three considerations above, members of a given record may have
different offsets on SP ARC machines than on the MC680xO, and the record as a
whole may have a different size. Even though basic data types (machine types)
are represented identically on the two machines, constructed data types may be
different. Note that records retained in memory are fine; problems occur only
when records are actually written out.

Here is an example of two records that could not be written on one processor and
read on the other (though in memory they would be fine):

Records that Result in Non-Portable Binary Files

Offsets sizeoj(struct)
MC680xO SPARC MC680xO SPARC

type
cint = record

c : char; +0 +0
i : integer; +2 +4 6 8

end;
ccc = record

cl : char; +0 +0
c2 : char; +1 +1
c3 : char; +2 +2 4 3

end;

There are three solutions to this problem. First, you could write a program to run
on each processor that would create binary files of records according to the
requirements of that processor. Pascal versions of TEX, for example, come with
programs to create font metric files on different machines.

Second, if a record must be portable across machines, Sun's eXternal Data
Representation (XDR) would be the best solution. The best way to write a record
on one machine that is to be read on others is to use an XDR standard representa
tion for the data. See the section entitled "XDR Protocol Specification" in the
manual Networking on the Sun Workstation. Unfortunately calling XDR routines
from Pascal is not yet supported.

Third, you could manually arrange the elements of a record, from the most to
least restrictive alignment requirements, then insert explicit fill elements as
needed. Records are often designed in this manner anyway, with the largest ele
ments at the beginning.

Revision A, of 9 May 1988

Order of Parameter
Evaluation

Out-of-Range Shifts

Table 4-1

Uninitialized Local Variables

4.2. Conclusion

Chapter 4 - Porting Pascal Programs 13

The order of evaluation of parameters to a procedure or function is not defined by
the Pascal language, and is different in SPARC Pascal compilers than in Sun's
MC680xO Pascal compilers. Let's consider this example:

[tallY(fUnC(X), eval(x»

Since the functions func () and eval (), which are arguments of procedure
tally () ,are evaluated in a different order on SPARC systems than on the
MC680xO, the value of x had better not change between function calls.

It is never a good idea to make assumptions about the order of parameter evalua
tion. The best strategy is to write Pascal code that does not depend on any side
effects of parameter evaluation.

Sun's Pascal compiler has non-standard extensions to perform bit operations on
integral types. The logical shift (right and left) is analogous to shifting
unsigned quantities in C, whereas the arithmetic shift (right and left) is analo
gous to shifting signed quantities in C.

Bitwise Operations in Pascal and C

Pascal C
lsl(x, count) unsigned x « count;
lsr(x, count) unsigned x » count;
asl(y, count) int y « count;
asr(y, count) int y » count;

With any of these operations, a count greater than or equal to the size of the
left-hand operand yields machine-dependent results. Many programmers are not
aware of this, and assume that a right logical shift by a large amount yields zero.
This is often true on MC680xO machines, because the shift count is intetpreted
modulo 64. This is true less often on SP ARC machines, because the shift count
is intetpreted modulo 32.

The best strategy is to avoid shift counts greater than the size of the affected
operand. A negative shift count won't yield sensible results on either machine,
of course.

Naturally, beware of uninitialized local variables; they may come up with dif
ferent values on different machines. The use of uninitialized variables is a poor
programming practice. The Pascal compiler pc flags uninitialized local vari
ables, but not uninitialized global variables, since external procedures may ini
tialize any global variable.

J

Well-written portable Pascal programs should run on SP ARC machines as well
as on any other machine. Non-portable programs, by definition, may present
problems when transported to SP ARC machines, or to any other machine. There
is no substitute for good program design.

+~t!! Revision A, of 9 May 1988

I

