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1.1. Device Independence 

1 
Introduction 

This manual is a guide to adding drivers for new devices to the SunOS kernel. It 
comes is three parts. 

o Part One, Regular Device Drivers, discusses a variety of issues relevant to 
standard (non-STREAMS) device drivers. It is intended to be self
contained, and to include all necessary discussion of hardware and kernel 
topics. 

o Part Two, STREAMS Programming, discusses topics relevant to the con
struction and installation of STREAMS drivers and modules. It also 
includes STREAMS-related reference material. 

o Part Three, Non-STREAMS Appendices, includes reference material related 
to regular (non-STREAMS) drivers. 

Throughout the manual, statements that apply only to specific machines, e.g. 
Sun-4s or Sun386i's, will be clearly flagged to that effect. 

One of SunOS's major services to application programs is to provide a device
independent view of the 110 hardware. In this view, user processes (application 
programs), see devices as "special" types of files that can be opened, closed and 
manipulated just like regular files. The user process manipulates devices as it 
would files, by making system calls. 

Once a system call carries process execution into the SunOS kernel, however, it 
becomes clear just how "special" devices really are. The kernel distinguishes 
between real files and device special files, and translates operations on the latter 
into calls to their corresponding device drivers. These drivers control all device 
operations; devices do nothing until their drivers tell them to. 

Thus, system calls provide the interface between user processes and the SunOS 
kernel, while device drivers provide an interface between the kernel itself and its 
peripheral devices. Device drivers are thus crucial elements in SunOS's overall 
device-independent scheme of things. Device-drivers are the only parts of the 
system that know, or care, if a device is DMA (Direct Memory Access), PIO 
(Programmed 110), or memory-mapped. 

The kernel supplied with the Sun system is a configurable kernel, meaning that it 
is possible to add new device driver modules to your system by rebuilding your 
kernel, even if you don't have access to the system source code. On Sun386i 

+~,!! 3 Revision A, of9 May 1988 



4 Writing Device Drivers 

1.2. Types of Devices 

systems, the loadable driver capability makes it possible to attach a driver to a 
system without rebuilding the kernel and rebooting the system. For more infor
mation on how to reconfigure your kernel to include new device drivers, see the 
Configuring the Kernel and SunOS STREAMS Topics chapters of this manual, the 
Adding Hardware to Your System chapter of Network Programming and the 
config (8) man page. 

This document is aimed at Sun users who wish to connect new Multibus, 
VMEbus or A Thus devices to their system. It does not, however, explain how to 
write drivers for all possible Sun devices. 

We can classify devices into eight major categories: 

1. Co-processors. 

2. Disks and tapes. 

3. Network interface drivers such as Ethernet or :x.25. 

4. SCSI devices. 

5. Serial communications multiplexors. 

6. General DMA devices such as driver boards for raster-oriented printers or 
plotters. DMA devices contain their own processors and, once dispatched, 
perform 110 independently of the system CPU by stealing memory cycles. 

7. Programmed 110 devices, that is, devices which send and receive data on the 
main system bus under direct control of the system CPU. 

8. Frame buffers and other memory-mapped devices. Such devices are typi
cally mapped into user-process memory and then accessed directly. 

9. So called pseudo devices, which are actually drivers without associated 
hardware devices. 

This manual does not cover driver development for devices in categories 1, 2, 3, 
4 and 5. It does discuss - in Part one - drivers for the devices in categories 6, 
7, 8 and 9 and - in Part Two - gives STREAMS-related information of interest 
to programmers planning drivers for serial communications devices. The major
ity of the devices which users will want to add to their systems are found in 
categories 6 to 9. These include: 

o input devices like mice, digital tablets and analog-to-digital converters, 

o output and display devices like frame buffers, printers, and plotters, 

o utility peripherals like array and graphics processors. 

This manual doesn't support the development of co-processor drivers for the sim
ple reason that co-processors, while certainly devices, are so intimately linked to 
the CPU that they are integrated below the driver level of the kernel. 

It also excludes tape and disk drivers-, or indeed drivers for any structured or 
block 110 devices, for such drivers are quite difficult to write well. Besides, most 
customers will find that the structured-device drivers provided with the standard 
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system software fill their needs quite adequately. The extensive use of standards 
within the Sun product line will allow them to use hardware interfaces already 
provided by Sun to drive whatever tape and disk units they wish to use. If this 
turns out not to be the case, an experienced driver developer will have to be con
sulted. (You will also want to start with an existing driver, and will thus need a 
source-code license). 

Finally, this manual doesn't really discuss the issues relevant to serial communi
cations and local network interface driver development. Again, such drivers are 
rather involved, and users will almost certainly find the Sun product line to con
tain devices adequate to their task. (And again, you will need a source license to 
go it alone). 

This manual is primarily concerned with unstructured or character (as opposed 
to structured or block) devices. This distinction is often made, but seldom 
clearly, and it may be helpful then to consider structured devices as only those 
upon which SunOS filesystems can be mounted. Such devices (almost always 
disks, but tape drives are possible) support random-access I/O by way of the sys
tem buffer-caching mechanism. They almost always support a second, 
character-oriented style of 110, often called raw liD, but this doesn't make them 
character devices. Their drivers tend to implement raw 110 with the same 
mechanisms constructed for the main task of supporting block liD. 

Character devices, on the other hand, do not support random-access liD, and 
file systems cannot be mounted upon them. Their drivers typically support read 
and/or write operations, but these operations are fundamentally different than in 
block devices. Sometimes character drivers use mechanisms, routines and struc
tures that are primarily intended for block drivers, but this shouldn't be allowed 
to confuse matters; they use them only because it's convenient to do so. 1 

The techniques described in this manual can also be used to build pseudo-device 
drivers. Such drivers can be useful in a variety of ways. They can be used to 
implement virtual devices (for example, windows that behave as virtual tenni
nals) or for extending the capabilities of the kernel in highly localized and port
able fashions (for example, by building a pseudo device to implement a specific 
kind of semaphore facility). What they all have in common is the absence of 
hardware; the driver actually implements and controls virtual software devices. 

1 To jump ahead for a moment, the kernel routines which, though written for block drivers are also used for 
character drivers are physio (), mbsetup () and mbrelse (). The driver xxstrategy () routine is also 
intended primarily for block devices, though it can be used in character drivers which buffer their 110 (typically 
those which don't support a tty-style interface). In such cases it's not, as it is in block drivers, an entry point, 
and it doesn't implement any strategy to speak of. But ph y s i 0 () requires its existence,. as it does the use of 
the bu f structure, and so they are used. The main point to keep in mind is that character drivers use block
driver mechanisms because it's convenient for them to do so, but this doesn't make them block drivers. In 
particular, character drivers never have anything to do with the kernel buffer cache. 
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1.3. System V 
Compatibility 

1.4. Major Development 
Stages 

1.5. Warning To 
Microcomputer 
Programmers 

The SunOS applications interface is almost completely compatible with that of 
AT &T' s System V UNIX system. The driverlkernel interface, however, is not. 
In general, though, drivers that were written for System V (or V7 or 4.1BSD, 
which have driver interfaces similar to System V) will be easily ported to SunOS, 
because, with the exception of drivers for pseudo devices, drivers are far more 
sensitive to the architectural details of-the machines upon which they run than to 
the details of the kernels to which they interface. 

Sun device drivers differ from typical System V drivers because the Sun operat
ing system has evolved from 4.2BSD and, in 4.2BSD, the kernel driver interface 
was significantly restructured. This doesn't mean that programmers with experi
ence developing System V drivers will find Sun drivers to be altogether foreign. 
In fact, the overall structure of Sun drivers is largely identical to the structure of 
System V drivers. Nevertheless, there are differences, and from some perspec
tives they are quite significant. See the Overall Kernel Context chapter of this 
manual for the details of the Sun driver/kernel interface. 

The greatest differences between Sun drivers and drivers for other systems are 
due not to operating system differences but rather to differences between the Sun 
Memory-Mangement Unit (MMU) and the MMUs of other systems. Conse
quently, drivers which map addresses require a lot of Sun-specific code. 

To add a new device and its driver to the system you must: 

1. Get the device hardware into a state where you know it works as advertised. 
It is extremely difficult to debug the driver software if the device hardware 
isn't first working properly. 

2. Write the device driver itself. 

3. Add the driver to a kernel's configuration file to specify a system containing 
the new driver, and compile this system. On the Sun386i, if you have writ
ten the driver as a loadable driver, then compile the driver and use the 
rnodload (1) command to load the driver into a running system. 

4. Debug the driver. 

5. Repeat steps 2 to 4 as necessary. Drivers are often written (and debugged) 
by stages, with development proceeding long after early versions are 
configured into the kernel. 

Sun computers are virtual-address machines, and, as such, their addressing 
schemes are far more complex than anything that microcomputer programmers 
typically confront. In virtual-address machines, physical addresses have a com
plex and rapidly changing relationship to the virtual addresses which user pro
grams manipulate. The kernel continually maps, remaps and unmaps pages of 
virtual memory to accommodate the limits of system physical memory. This 
means that the kernel (including its device drivers) cannot assume that any physi
cal address in user memory will not be snatched away by the paging daemon 
unless it explicitly locks the physical page containing that address into memory. 
The details of how this locking is done will be given later, in discussions of the 
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Table 1-1 
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kernel support routine physio () ; for the moment simply note that physical 
addresses have a complex and transient relationship to virtual addresses. 
Specific all y: 

o Each user process (and, on Sun-2 machines, the kernel as well) has its own 
distinct virtual address space. A user process (or the kernel) can make 
arrangements to share address space with another process - that is, to have 
part of its address space mapped to the same physical memory as a part of 
the address space of another process - but this must be done explicitly. 

o In similar regard, a user process can elect to have a bus address mapped into 
its address space, but this doesn't happen automatically. 

In this manual, we will adopt a VMEbus address-space naming convention that 
makes both address size and data size explicit. The first number in the name 
indicates the number of bits in the address and the second number indicates the 
number of bits in the data length. For example, the space with a 24-bit address 
and a 16-bit data length will be known as vme 2 4 d16. This naming convention 
is used elsewhere, but others are as well, as indicated in the following table. 

VMEbus Address-space Names 

Address-Space Name 

vme16d16 
vme24d16 
vme32d16 
vme16d32 
vme24d32 
vme32d32 

Other Name(s) 

VME D16A16 and vme16 
VME D16A24 and vme24 
VMED16A32 
VMED32A16 
VMED32A24 
VME D32A32 and vme32 

The short names in the second column (vme16, vrne24 and vme32) are com
monly used, but they can seem ambiguous to the novice, and will consequently 
be avoided in this manual. 

Note that there are two situations where the system expects the name of a 
VMEbus address space as input. In these situations, either the vme 16 d16 or the 
vme 16 forms are acceptable. These situations are: 

o within the kernel config file, and 

o when naming actual memory devices ("special" files in the / dev directory). 
See the Mapping Devices Without Device Drivers section of the Driver 
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1.7. Manual Overview 

Regular Drivers 

STREAMS Drivers 

Last Word 

Development Topics chapter for more information. 

Chapter 2 is an overview of the hardware environment provided by Sun Worksta
tions to their drivers. The emphasis is on bus and address-space related issues. 

Chapter 3 is an overview of the kernel environment within which drivers operate. 

Chapter 4 covers a number of topics relevant to drivers: address spaces, inter
rupts and so on, in greater detail. It also surveys the most important classes of 
services provided by the kernel to its drivers. 

Chapter 5 covers development topics, including the initial installation and 
checkout of devices, driver debugging and error handling. 

Chapter 6 provides a detailed discussion of a driver for a very simple hypotheti
cal character device. 

Chapter 7 explains how to add new drivers to the SunOS kernel. 

Chapter 8 explains pseudo-drivers, and provides source and installation instruc
tions for a real ramdisk pseudo-driver. 

Chapter 9 is and introduction to the STREAMS mechanism. 

Chapter 10 describes the development of user-level STREAMS applications. 

Chapter 11 discusses, in detail, the development of STREAMS drivers and 
modules. 

Chapter 10 discusses those aspects of the STREAMS mechanism that are unique 
to SunOS. It covers the few STREAMS-specific configuration topics. 

Finally, there are appendices containing information useful to driver developers. 
These include a set of STREAMS-specific appendices (included in Part II), a 
summary of kernel support functions useful in developing device drivers, 
descriptions of user-level routines useful in driver development; and a number of 
annotated driver listings. 

Remember, spend as much time as you need in the Sun PROM monitor poking, 
prodding and cajoling your device until you're thoroughly familiar with its 
behavior. This will save you a lot of grief later. The details on how to proceed 
with a monitor checkout of your device are found in the Installing and Checking 
the Device section of the Driver Development Topics chapter. 

And finally, note that if you have no previous experience writing UNIX device 
drivers, you should expect to seek some help from the Sun technical support or 
consulting organizations, or from an outside consultant experienced with driver 
development. 
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2.1. Multibus Machines 

Multibus Memory Address 
Space and I/O Address Space 

2 
Hardware Context 

Computer 110 architectures are far more dependent upon bus structure than they 
are upon CPU type, and device drivers, oriented as they are towards 110, must 
have intimate knowledge of the bus characteristics of the machines on which 
they are running. For example, many Multibus machines do not support vectored 
interrupts 2 and thus drivers for interrupt driven devices which are intended to 
run on Multibus machines must provide polling facilities. Fortunately, the Sun 
kernel provides facilities (described in the Other Kernel/Driver Interfaces section 
of the Overall Kernel Context chapter) by which a driver can determine the type 
of the machine upon which it's running. 

The MC680XO family of processors does all its I/O via a process known as 
"memory mapping." What this means is that the processor sees no difference 
between memory and peripheral devices - all input-output operations are per
formed by storing data and fetching data from the same memory space. The 
Multibus, on the other hand, was originally designed for processors, like those of 
the Intel 8080 family, which have two separate address spaces. Such processors 
have one kind of instruction for storing data in memory or fetching data from 
memory (instructions such as MOV), and another, different kind of instruction 
(such as IN and OUT) for transferring data to or from peripheral devices. 
Reflecting the architecture of such processors, the Multibus has'two address 
spaces. 

Multibus memory space 
is used for memory or devices that look like memory. Many devices -
commonly known as "memory mapped" devices - are designed to be 
accessed as memory, and drivers for such devices can "map" them into user 
virtual memory space and then perform device I/O by simply reading and 
writing the device's memory as part of normal address space. Such 
memory-mapped drivers tend to be quite simple, and so it's notable that dev
ices not explicitly designed to be memory mapped can, under a restricted set 
of circumstances, be driven by memory mapping. The restrictions are, 

2 The Multibus itself, as it turns out, actually does support vectored intenupts, but not in a way lhat can 
reasonably be used with the MC680XO family of processors. 
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however, fairly severe. Such drivers cannot, for example, have xxioctl () 
routines. See the Mapping Devices Without Device Drivers section of the 
Driver Development Topics manual for more details. The Sun-2 Color 
Board is a good example of a device that is designed to be memory mapped, 
and a listing of its driver can be found in the Sample Driver Listings appen
dix. 

M ultibus 110 address space 
is another "space" entirely separate from normal memory. Typically used as 
an area to which device registers can be mapped, I/O space was originally 
introduced to keep such registers out of limited primary address space by 
providing a means of making peripherals, rather than system memory, 
respond to the bus whenever given I/O control lines were asserted by the 
CPU. (Such a setup also reduces hardware costs by keeping the number of 
address lines small.) Devices which have their control and status registers 
mapped to Multibus I/O address space are said to be "I/O mapped" devices. 

The MC680XO family, of course, no longer suffers the addressing limitations that 
made the dual-space architecture of the Multibus so attractive. The VMEbus, in 
similar regard, is no longer structured around separate "memory" and "I/O" 
spaces. (The term "I/O space" does continue to be used, from time to time, with 
reference to VMEbus-based systems and devices. Such use, however, is largely 
by way of analogy with Multibus systems, and it shouldn't be taken too literally). 

Be aware that generic Multibus memory space can be either 20-bit or a 24-bit. 
(Sun normally uses 20-bit Multibus memory addresses, though when a Multibus 
card is installed in a VMEbus system with a VMEbus/Multibus adapter, 24-bit 
addresses are used). In similar regard, a generic Multibus can provide either an 
8-bit or 16-bit I/O space, and Sun uses only the 16-bit Multibus I/O space. Note, 
however, that some older Multibus boards accept only 8-bit Multibus I/O 
addresses. 

Sun Multibus systems actually have four "address spaces," corresponding to the 
four types of memory (each type has an identifying number associated with it, a 
number which is used by the MMU in computing PrE's (Page Table Entries). 
See the Sun-2 Address Mapping section of the Driver Development Topics 
chapter for details. Though you will seldom deal with the on-board address 
spaces, you're best off understanding what they are. The following table thus 
contains not only the two Multibus spaces, but the "on board" memory and I/O 
spaces as well. It's within these spaces, resident on the CPU board itself, that 
SunOS is run. 

Table 2-1 Sun-2 Multibus Memory Types 

Type Description Address Size Address Range 

0 On-Board Memory 23 bits OxO Ox7FFFFF 
1 On-Board I/O Space 14 bits OxO Ox3rFF 
2 Multibus Memory 20 bits OxO OxFFFFF 
3 Multibus I/O Space 16 bits OxO OxFFFF 
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The following schematic view of the Sun-2 Multibus may help the driver 
developer to visualize the larger hardware context within which drivers operate 
(when running on a Sun-2 Multibus machine.) 

Sun-2 Multibus Address Spaces 

16 bits 
Multibus 

110 

type 
2 bits - 20 bits 

Multibus 

23 bits Memory 
MMU 

It 

: 

Phy~ical 14 bits OnBoard 
Address 110 

23 bits OnBoard 
Memory 

Note some significant aspects of addressing layout as indicated in this table. 

D The Memory Management Unit is at the center of the picture, a position that 
reflects its importance in the addressing scheme of all Sun machines, 
VMEbus based as well as Multibus based. (The centrality of the MMU will 
become quite clear when you later set out to allocate a physical address to 
your device, and then examine/set it with the PROM monitor.) 
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16 Writing Device Drivers 

Allocation of Multibus 
Memory 

D Secondly, the input address of the MMU is a 24-bit virtual address. It may 
originate with the CPU, or come from a DMA bus master; it makes no 
difference. 

D The output is a 23-bit physical address and a 2-bit address type. The 
address type specifies one of the four address spaces indicated at the right of 
the diagram. 

D The four address spaces are to the right. The space corresponding to the 
incoming virtual address is a function of both the address and the memory 
type. Note that only the top two memory spaces (Multibus 110 and Multibus 
Memory) are accessible by way of the Multibus; the two On-Board memory 
spaces are accessed directly and are seldom of concern to non-Sun driver 
developers. 

Programs can only reference driver address spaces in terms of virtual addresses 
which are then translated by the MMU into physical addresses within the 
appropriate physical address space. 

Here are some notes about the allocation of Multibus Memory resources in the 
Sun system. 

No devices may be assigned addresses below Ox40 000 in Multibus memory 
space since the CPU uses these addresses for DVMA. (See the end of this 
chapter for a discussion of DVMA). 

The table on the next page shows a map of how Multibus Memory space is laid 
out in the Sun system. Note that this memory map, as well as all of those that 
follow, is only a general guide. To be sure that you are not installing a device at 
a location that will put it in conflict with existing devices, it's necessary to check 
the configuration of the specific systems into which it will be installed. The best 
way to do so is to check the local config file for the physical addresses of the dev
ices installed within the bus of interest. This will probably give you enough 
information, but if you still think that there may be a conflict, and if you have a 
Sun source license, you can check the driver header files to determine the amount 
of space consumed on the bus by existing devices. With the exception of the Sky 
board, these devices can be rearranged. Also note the possibility that your 
machine will have devices attached to it, and taking up bus space, even though 
those devices do not appear in the config file. This possibility exists because the 
xxmmap () system call can sometimes be used to drive a device without instal
ling it in the formal sense - see the Mapping Devices Without Device Drivers 
section of the Driver Development Topics chapter for more details. 

+~I!! Revision A. of 9 May 1988 



Chapter 2 - Hardware Context 17 

Table 2-2 Sun-2 Multibus Memory Map 

Allocation of Multibus I/O 
Space 

Table 2-3 

Address 

OxOOOOO - Ox3FFFF 
Ox40000 - Ox7FFFF 
Ox80000 - Ox83800 
Ox84000 - Ox87800 
Ox88000 - Ox8B800 
Ox8COOO - Ox8F800 
Ox90000 - Ox9F800 
OxAOOOO - OxAF800 
OxBOOOO - OxBF800 
OxCOOOO - OxDF800 
OxEOOOO - OxE1800 
OxE2000 - OxE3800 
OxE4000 - OxE7COO 
OxE8000 - OxF7800 
OxF8000 - OxFF800 

Device 

DVMA Space (256 Kilobytes) 
Sun Ethernet Memory (# 1) (256 Kilobytes) 
SCSI (# 1) (16 Kilobytes) 
SCSI (#2) ( 16 Kilobytes) 
Sun Ethernet Control Info (# 1) (16 Kilobytes) 
Sun Ethernet Control Info (#2) (16 Kilobytes) 
*** FREE *** (64 Kilobytes) 
Sun Ethernet Memory (#2) (64 Kilobytes) 
*** FREE *** (64 Kilobytes) 
Sun Model 100/150 Frame Buffer (128 Kilobytes) 
3COM Ethernet (#1) 
3COM Ethernet (#2) 
*** FREE *** (16 Kilobytes) 
Reserved for Color Devices (64 Kilobytes) 
*** FREE *** (16 Kilobytes) 

Multibus 110 address space is specified in the config file as mbio. From the 
PROM monitor, Multibus 110 space begins at 0 xEB 0000, and extends to 
OxECOOOO. 

Prior to Sun Release 3.0, the system made the assumption that any address lower 
than 0 x 1 0000 that it found in its config file was a Multibus I/O address. With 
current releases this is no longer true; now the bus type of every address must be 
explicitly given. 

The following table of generic Multibus I/O usage, like the table above, is 
intended only as a guide. 

Sun-2 Multibus I/O Map 

Address 

OxOO40 OxOO47 
OxOOAO - OxOOA3 
Ox0200 - Ox020F 
Ox0400 Ox047F 
Ox0480 - Ox057F 
Ox0620 - Ox069F 
Ox2000 - Ox200F 
OxEE40 OxEE4F 
OxEE60 - OxEE6F 

Device Type 

Interphase Disk Controllers 
CPC TapeMaster Controllers 
Archive Tape Drives 
Ikon 10071-5 Multibus/Versatec Interface 
Systech VPC-2200 Versatec/Centronics Interfaces 
Systech MTI-800/1600 terminal Interface 
Sky Board 
Xylogics 450/451 Disk Controller 
Xylogics 472 Multibus Tape Controller 
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2.2. VMEbus Machines 

Sun-2 VMEbus Address 
Spaces 

VMEbus machine architecture is generally more complex than Multibus machine 
architecture - it makes no distinction between I/O space and Memory space, but 
on the other hand it supports multiple address spaces. It does so for reasons of 
both cost and flexibility. The VMEbus was designed to be cost-effective for a 
range of applications. It is expensive (in terms of money, power, and board 
space) to provide the hardware for a full 32-bit address space. If installed dev
ices only respond to 16-bit addresses, it makes sense to be able to put them all 
into a 16-bit address space and save the cost of 16-bits' worth of address 
decoders and the like. The 24 and 32-bit address spaces are similar compromises 
between cost and flexibility. 

The driver writer has to understand which address space his board uses (gen
erally, this is completely out of his/her control), and make an appropriate entry in 
the config file. For DMA devices, the driver writer has to know the address space 
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space). 

The Sun-2 VMEbus machines are based upon the 24-bit subset of the generic 
VMEbus - they support only a 16-bit and a 24-bit address space. These address 
spaces are known as vme16d16 (16 data bits and 16 address bits) and 
vrne2 4d16 (16 data bits and 24 address bits). Sun-2 VMEbus machines also 
contain on-board memory and 110 space, of course, but these aren't accessed by 
way of the VMEbus and are only barely relevant to the driver developer. 

There are four types of memory on Sun-2 VMEbus machines: 

Table 2-4 Sun-2 VMEbus Memory Types 

Description Address Size Address Range 

On-Board Memory 23 bits OxO - Ox7FFFFF 
On-Board I/O Space 23 bits OxO - Ox7FFFFF 
vrne24d16 23+1 bits OxO - OxFEFFFF 
vrne16d16 - Stolen from top 64K ofvrne24d16 (OxO - OxFFFF) 

The four address spaces are laid out as follows: 
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Figure 2-2 Sun-2 VMEbus Address Spaces 
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Note a few details: 

o In all Sun-2 machines (as in Sun-3s and Sun-4s), the address input into the 
MMU is a virtual address, and may originate with either the CPU or a 
DVMA (Direct Virtual Memory Access) bus master. (See the Sun Main-Bus 
DVMA section, later in this chapter, for a discussion of DVMA). 

o Unlike Sun-2 Multibus systems, in which each memory type maps cleanly to 
one address space, vme2 4d16 maps to two different memory banks. 
Addresses from OxO to Ox7FFFFF are "type 2" memory, while those from 
Ox800000 and up are "type 3". This is because Sun-2 VMEbus machines 
have only 23 output address bits, and this trick is necessary to generate the 
full range of a 24-bit address space. (See Sun-2 Address Mapping in the 
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Sun-3/Sun-4 Address Spaces 

Table 2-5 

Driver Development Topics chapter for more details). 

o Multibus boards, connected to VMEbus to Multibus adapters, can be 
plugged into physical memory anywhere within vrne24d16 (which means 
that they can also be in vrne16d16). 

o The 24 bits in the vrne24d16 address space are referred to in the above 
table as 23+1 bits. This is because, as should be clear in the diagram above, 
the Sun-2 MMU outputs only the lower 23 bits of the address, and the 24th 
bit is actually one of the MMU's type bits. 

o Note especially that vrne16d16 is stolen from vrne2 4d16. It's selected by 
addresses in the form 0 xFFXXXX, that is, addresses which have the 8 high 
bits set. 

Sun-3 and Sun-4 machines are all based on the full 32-bit VMEbus, so let's begin 
their discussion with a listing of the address types supported by the generic 
VMEbus. 

Generic VMEbus (Full Set) 

VMEbus-Space Address Data Transfer Physical Address 
Name Size Size Range 

vrne32d16 32 bits 16 bits OxO OxFFFFFFFF 
vrne24d16 24 bits 16 bits OxO - OxFFFFFF 
vrne16d16 16 bits 16 bits OxO OxFFFF 
vrne32d32 32 bits 32 bits OxO - OxFFFFFFFF 
vrne24d32 24 bits 32 bits OxO - OxFFFFFF 
vrne16d32 16 bits 32 bits OxO OxFFFF 

Not all of these spaces are commonly used, but they are all nevertheless sup
ported by the Sun-3 and Sun-4 lines. The following table indicates their sizes 
and physical address mappings. 

Table 2-6 Sun-3/Sun-4 VMEbus Address Types 

Type Address-Space Name Address Size Address Range 

o On-board Memory 32 bits OxO OxFFFFFFFF 
IOn-board 110 24 bits OxO OxFFFFFF 
2 vrne32d16 32 bits OxO OxFEFFFFFF 
3 vrne32d32 32 bits OxO OxFEFFFFFF 
2 vrne24d16 - Stolen from top 16M ofvrne32d16 (OxO - OxFEFFFF) 
2 vrne16d16 - Stolen from top 64K ofvrne24d16 (OxO - OxFFFF) 
3 vrne2 4d32 - Stolen from top 16M of vrne3 2d32 (OxO - OxFEFFFF) 
3 vrne16d32 - Stolen from top 64K of vrne2 4d32 (OxO - OxFFFF) 

Sun-3/Sun-4 space overlays are much more complex than those of the Sun-2, as 
is evident from both the table above and the diagram below. The principle, how
ever, is the same - when a space overlays a larger space, its memory is stolen 
from that larger space and is considered by the MMU to be in the the overlaid 
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space. One simply cannot address above OxFFOOOOOO in 32-bit VMEbus space 
or above OxFFOOOO in 24-bit VMEbus space. 

As the two following diagrams illustrate, Sun-3 and Sun-4 addressing schemes 
are almost identical. They differ only in the size of the virtual address which -
output by the CPU or a DVMA Bus Master - is fed to the MMU. 

Figure 2-3 Sun-3 VMEbus Address Spaces 
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Figure 2-4 Sun-4 VMEbus Address Spaces 
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This section summarizes the typical use of the 16,24 and 32-bit VMEbus address 
spaces by Sun devices. Note well that the usages summarized here are only for 
the generic configuration, and there's no guarantee that they match the exact 
usage on your machine. They will, however, help you to decide where to attach 
your device. The" Allocated From" field shows whether bus space is allocated 
from the high end of the given range or from the low end. The idea is to keep the 
maximum size "hole" in the middle in case the boundary needs to be shifted 
later . 
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Table 2-8 

16-bit VMEbus Address Space Allocation 

Address Range Allocated 
From 
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Description of Use 

OxOOOO-Ox7FFF Low 
Ox8000-0xFFFF High 

Reserved for OEM/user devices 
Reserved for Sun devices 

16-bit VMEbus space is mapped into the topmost 64K of 24-bit VMEbus space 
at OxOOFFOOOO to OxOOFFFFFF (on Sun-2s) or OxFFFFOOOO to 
OxFFFFFFFF (on Sun-3s and Sun-4s). Note: The Multibus/VMEbus Adapter 
will map the Multibus I/O addresses of Multibus cards that use Multibus I/O into 
the same addresses in the 16-bit VMEbus space. This may place the standard 
Multibus addresses for some cards into the OEM/user area in the above table. 
These addresses can be changed, if necessary, by physically readdressing the 
device and then changing its entry in the config file. 

24-bit VMEbus Address Space Allocation 

Address Range 

OxOOOOOO-OxOFFFFF 
OxlOOOOO-OxlFFFFF 
Ox200000-0x2FFFFF 
Ox300000-0x3FFFFF 
Ox400000-0x7FFFFF 
Ox800000-0xBFFFFF 
OxCOOOOO-OxCFFFFF 
OxDOOOOO-OxDFFFFF 
OxEOOOOO-OxEFFFFF 
OxFOOOOO-OxFEFFFF 
OxFFOOOO-OxFFFFFF 

Allocated 
From 

Low 
High 
(Taken) 
High 
Low 
High 

Description of Use 

CPU board DVMA space 
Reserved by Sun 
Reserved for small Sun devices 
Reserved for large Sun devices 
Reserved for huge Sun devices 
Reserved for huge OEM/user devices 
Reserved for large OEM/user devices 
Reserved for small OEM/user devices 
Multibus-to-VMEbus memory space 
Reserved for the Future 
Stolen by 16-bit VMEbus space 

Table 2-9 32-bit VMEbus Address Space Allocation (Sun-3s and Sun-4s Only) 

Address Range 

OxOOOOOOOO - OxOOOFFFFF 
OxOOlOOOOO - Ox7FFFFFFF 
Ox80000000 - OxFEFFFFFF 
OxFFOOOOOO - OxFFFFFFFF 

Description of Use 

DVMASpace 
Reserved by Sun 
Reserved for OEM/user devices 
Stolen by vme 24 d16 

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus 
accesses. Note that, at least in the GENERIC kernel, there are some Sun devices 
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Table 2-10 

The Sun VMEbus to MuItibus 
Adapter 

Interrupt Vector Assignments 

( trnO, trnl, vpcO, vpcl and rntiO-4) installed in the OEM/user area. 
It's always best to check, when choosing an installation address, that you aren't 
going to conflict with an already installed device. 

VMEbus Address Assignments for Some Devices 

Device 

VMEbus SKY Board 
VMEbus SCSI Board 
VMEbus TOD Chip 
Graphics Processor 
Sun-2 Color Board 

Addressing 

vrne16d16 
vrne24d16 
vrne24d16 
vrne24d16 
vrne24d16 

Addresses Used 

Ox8000 - Ox8FFF (Sun-2 only) 
Ox200000 - Ox2007FF 
Ox200800 - Ox2008FF (Sun-2 only) 
Ox210000 - Ox210FFF 
Ox400000 - Ox4FF7FF 

The VMEbus Sky board occupies addresses 8000-8FFF in 16-bit address 
space, and it requires that the high nibble of the address be '8'. Unlike other 
pre-installed devices, it cannot be moved. 

This table is, of course, not complete. There is always a variety of devices on the 
bus, as can be easily determined by examining the config file. This table, how
ever, does include the standard devices that use a significant amount of space on 
the VMEbus. Note that, in machines which came after the Sun-2line, several of 
these devices have been replaced by on-board devices and have thus disappeared 
from the VMEbus address space. 

Multibus devices that are to be attached to VMEbus machines must be attached 
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul
tibus boards). An adapter can be used to take over one and only one chunk of 
vrne24d16. However, that chunk can overlap all or part ofvrne16d16 
(because vrne16d16 is a proper subset of vrne2 4d16). In any case, the adapter 
must be told how much space the board attached to it actually expects, for by 
default it will take over a full megabyte. Note that the Multibus Adapter sup
ports fully vectored interrupts, and that drivers for Multibus devices attached by 
way of adapters need not poll, since the adapters contain switches by which Mul
tibus devices can be assigned vectors. 

The table below shows the assignments of interrupt vectors for those devices that 
can supply interrupts through the VMEbus vectored interrupt interface. To pick 
one for your device, examine the kernel config file for an unused number in the 
range reserved for customer use, 0 xC 8 to 0 xFF . 
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Table 2-11 Vectored Interrupt Assignments 

2.3. A Tbus Machines 

Vector Numbers Description 

Ox40 thru Ox43 scO, sc? siD, si? - SCSI Host Adapters 
Ox48 thru Ox4B xycO, xycl, xyc? - Xylogics Disk Controllers 
Ox4C thru Ox5F future disk controllers 
Ox60 thru Ox63 tInO, tIn 1 , tm? - TapeMaster Tape Controllers 
Ox64 thru Ox67 xtcO, xtcl, xtc? - Xylogics Tape Controllers 
Ox68 thru Oc6F future tape controllers 
Ox70 thru Ox73 ec? - 3COM Ethernet Controller 
Ox74 thru Ox77 ieD, iel, ie? - Sun Ethernet Controller 
Ox78 thru Ox7F future ethernet devices 
Ox80 thru Ox83 vpe? - Systech VPC-2200 
Ox84 thru Ox87 vp? - Ikon Versatec Parallel Interface 
Ox88 thru Ox8B mtiO, mti? - Systech Serial Multiplexors 
Ox8C thru Ox8F dcp 1, dcp? - SunLink Comm. Processor 
Ox90 thru Ox9F zsO, zsl - Sun-3 TenninallModem Controller 
OxAO thru OxA3 future serial devices 
OxA4 thru OxA7 peO, pe 1, pe2, pe3 - SunlPC 
OxA8 thru OxAB future frame buffer devices 
OxAC thru OxAF future graphics processors 
OxBO thru OxB3 skyO, ? - SKY Floating Point Board 
OxB4 thru OxB7 SunLink Channel Attach 
OxB8 thru OxC7 Reserved for Sun Use 

OxC8 thru OxFF Reserved for Customer Use 

The Intel 80386 processor handles I/O devices placed in either memory space or 
in 110 space. On the 80386, memory-mapped I/O provides additional program
ming flexibility. Any memory instruction can access any I/O port located in the 
memory space. For example, the MOV instruction transfers data between any 
register and any port. The AND, OR, and TEST instructions manipulate bits in 
the internal registers of a device. 

On some devices, reading a register will not read back what was written. There
fore, instructions such as AND, OR, and TEST can, in some cases, produce unex
pected results because the instruction reads a good location, changes it, and 
writes it back. See the Other Device Peculiarities section, ahead. 

Memory-mapped I/O can use the full complement of instructions. The 16 MB 
memory of AT memory exists in the 4 GB physical address space of the Sun386i 
at a xE a a a a a a O. For example, a device that, on an AT, shows up in memory 
at DO 0000 will showup in the Sun386i physical memory at OxEODO 0000. 
Virtual addresses are assigned during the autoconfiguration process. 

If an I/O device is mapped into the I/O space then the IN, OUT, INS, and OUTS 
instructions are used to communicate to and from the device. All I/O transfers 
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are perfonned via the AL (8-bit), AX (l6-bit), or EAX (32-bit) registers. The 
first 256 bytes of the I/O space are directly addressable. The entire 64 Kbyte I/O 
space is indirectly addressable through the DX register. 

The Sun386i has 21 interrupt channels, but only 11 are available to devices on 
the AT bus. The following list of interrupt channel assignments shows all of the 
interrupt channels. 

Table 2-12 Interrupt Channel Assignments 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

ATChannel* 

* Available to AT Cards 

Assignee 

ATPinB25 
ATPinB24 
ATPinB23 
Not available (system diskette) 
Not available (parallel port) 
SCSI 
ATPinB04 
ATPinD03 
AT Pin D04 
AT Pin D05 
Not available (Ethernet) 
ATPinD07 
AT Pin D06 

When you add an AT card to the AT bus, you must select one of the values in the 
Channel column for the AT card's jumpers. For example, if you select channel 
10 for a serial card, the "device" line in the config file might look as follows: 

device nsO at atio ? csr Ox3f8 irq 10 priority 6 

The Sun386i does not permit two AT cards to use the same interrupt channel. 

Some cards will also use DMA and will have jumpers to select a DMA channel 
to use. The following list shows that DMA channels 0-3 and channel 5 are avail
able for AT cards. Note that channel 0 and 5 can be used with 16-bit DMA dev
ices; 1, 2, and 3 can be used only with 8-bit DMA devices. Note also that chan
nels 4, 6, and 7 are pre-assigned . 
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Table 2-13 
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Sun386i DMA Channel Assignments 

Channel Assignee Size (bits) 

0 AT Bus 16 
1 AT Bus 8 
2 AT Bus 8 
3 AT Bus 8 
4 Software Not Available 
5 AT Bus 16 
6 Ethernet 16 
7 SCSI 16 

For example, you might set up a controller that uses DMA channel 3. For this, 
the "controller" line in the config file might look like: this: 

controller wdsO at atio ? csr Ox320 dmachan 3 irq 3 priority 3 

The Sun386i does not permit two AT cards to use the same DMA channel. 

In these examples, "priority" refers to the sp1levels used in the driver. That is, 
the phrase "priority 3" implies that the driver uses s p 13 () to protect its critical 
regions. 

On Sun386i machines, device drivers can be dynamically loadable. That is, they 
can be attached to a system without rebuilding its kernel and without having to 
bring the system down and restart it. See the Adding and Removing Loadable 
Drivers section of the Configuring the Kernel chapter for details. 

The Sun386i system supports both DOS drivers and SunOS drivers. 

You can attach a DOS device driver in the standard DOS way, but it will be 
usable only from within the DOS environment. Usually, all you need to do is to 
first plug in an add-in board. Then you insert an installation diskette (which 
comes with the board) into Drive A> and re-boot the system. TP.e device driver 
is already compiled and linked. Generally, the diskette contains programs called 
"INSTALL" or something similar. You execute this program by typing its name. 
It copies the driver file from the diskette to the hard disk. At the same time, this 
procedure will modify the disk's config. sys file. 

The DOS system must be re-booted. The device driver will automatically be 
loaded into memory, its options will be parsed, and the driver will be initialized. 

NOTE The DOS driver on the Sun386i is running under SunOS and DOS, but the driver 
is unaware of this. SunOS might switch control to another task during device 
operation, so strict timing dependencies could fail. Real time devices,for exam
ple, may not work properly. If a peripheral and controller have strict timing 
requirements, their drivers should be written in the standard SunOS style. DOS 
drivers do not run at the elevated priority of SunOS drivers . 
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2.4. Hardware Peculiarities 
to Watch Out For 

Multibus Device Peculiarities 

Multibus Byte-Ordering Issues 

SunOS drivers, of course, are parts of the system kernel. Thus the timing 
requirements of most devices can be met under SunOS. SunOS drivers are 
accessible from the DOS environment. 

There is a variety of device peculiarities that the driver developer must be aware 
of. The most common of them are related to the Multibus and Multibus-based 
devices, but there are others as well. 

The IEEE Multibus is a source of problems for two separate reasons. The first of 
these, discussed immediately below, is the fact that the Multibus has a different 
notion of byte order than does the either Motorola MC680XO family or the Sun 
SP ARC processor (the reduced instruction set CPU upon which Sun-4 machines 
are built). The second is simply that the Multibus has been around for a long 
time, and thus brings with it a variety of older devices, many of which have 
addressing limitations and other characteristics which make for a less than per
fect fit with the Sun architecture. 

Sun-2 and Sun-3 processors are members of the Motorola MC680XO family, 
while Sun-4 processors are based on the SPARC CPU. All of these processors 
address bytes within words by what we shall call IBM conventions - the most 
significant byte of a word is stored at the lowest addressed byte of the word. The 
Multibus, on the other hand, uses DEC conventions - the least significant byte 
of a word is stored at the lowest address, and significance increases with address. 

This class of byte-addressing conventions leads to two separate problems, 
with two separate solutions: 

o The first problem occurs when you're moving a single byte across the inter
face between the MC680XO/SP ARC and the IEEE Multibus. Because the 
two devices don't agree about the end of the word that the byte actually 
appears in, you have to change the byte address before the move - what 
you want to do, in effect, is move every byte to the other side of the word 
which it occupies - the most CPU-efficient way of doing so is to toggle the 
least significant bit of every byte address. 

o The second problem, also related to the Multibus, is a higher level version of 
the first It occurs when machine words with significant internal structure 
(or structures that contain words) are moved across the bus interface. (If you 
write only words, and the device uses only words, there's no problem). The 
Multibus byte-ordering incompatibility will cause structures to be scrambled 
when they're moved across the bus interface, unless the bytes within them 
are physically swapped first. 

Here are a few pictures describing the problems in detail: 

Revision A, of 9 May 1988 



Chapter 2 - Hardware Context 29 

Motorola (IBM) Byte Ordering 

bit 15 bit 0 

Byte 0 Byte 1 

Multibus (DEC) Byte Ordering 

bit 15 bit 0 

Byte 1 Byte 0 

That is, the MC680XO and SPARC CPUs place byte 0 in bits 8 through 15 of the 
16-bit word, whereas the Multibus places byte 1 in those bits. If you did every
thing with the CPU, or everything on the Multibus, there wouldn't be any 
conflict, since things would be consistent. However, as soon as you cross the 
boundary between them, the byte order is reversed. Thus, you have to toggle the 
least significant bit of the address of any byte destined for the Multibus - this 
will have the effect of swapping adjacent addresses and thus reordering the bytes. 

To clarify this, consider an interface for a hypothetical Multibus board containing 
only two 8-bit I/O registers, namely a control and status register (csr) and a data 
register (we actually use this design later on in our example of a simple device 
driver). In this board, we place the command and status register at Multibus byte 
location 600, and the data register at Multibus byte location 601. The Multibus 
picture of that device looks like this: 

Hypothetical Board Registers 

bit 15 

Location 60 1 

DATA 

bit 0 

Location 600 

CSR 

But the MC680XO and SP ARC processors view that device as looking like this: 
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Other Multibus-related 
Peculiarities 

Hypothetical Board Registers 

bit 15 

Location 600 

CSR 

bit 0 

Location 601 

DATA 

so that if you were to read location 600 from the point of view of the processor, 
you'd really end up reading the DATA register off the Multibus instead. So, 
when we define the skdevice data structure for that board, we define it by starting 
with the register definition in the device manual, and then swapping bytes to take 
account of the expected byte swapping: 

struct skdevice { 

} ; 

char 
char 

sk_data; 
sk_csr; 

/ * 01: Data Register * / 
/* 00: command(w) and status(r) * / 

This rule (flipping the least significant bit of the address) holds good for all byte 
transfers which cross the line between the MC680XO/SP ARC CPU and the Mul
tibus. 

o Many Multibus device controllers are geared for the 8-bit 8080 and Z80 
style chips and don't understand 16-bit data transfers. Because of this, such 
controllers are quite happy to place what's really a word quantity (such as a 
16-bit address which must be two-byte aligned in the MC680XO) starting on 
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many 
don't know about 24-bit addresses), and it often happens that you have to 

chop an address into bytes by shifting and masking, and assign the halves or 
thirds of the address one at a time, because the device controller wants to 
place word-aligned quantities on odd-byte boundaries. Note also that many 
Multibus boards are geared for the 8086 family with its segmented address 
scheme. An 8086 (20-bit) address really consists of a 4-bit segment number 
and a 16-bit address; you usually have to deal with the 4-bit part and the 16-
bit part separately. For a good example of what we're talking about here, 
see the code for vp . c in the Sample Driver Listings appendix to this 
manual. 

o Although there are a myriad of vendors offering Multibus products, 
remember that the Multibus is a "standard" that evolved from a bus for 8-bit 
systems to a bus for 16-bit systems. Read vendors' product literature care
fully (especially the fine print) when selecting a Multibus board. The 
memory address space of the Multibus is supposed to be 20 or 24 bits wide 
and the 110 address space of the Multibus is supposed to be 16 bits wide. In 
practice, some older boards are limited to 16 bits of address space and 8 bits 
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of 110 space. In particular, watch for the following addressing peculiarities: 

o For a memory-mapped board, ensure that the board can actually handle 
a full twenty bits of addressing. Older Multibus boards often can only 
handle sixteen address lines. The Sun system assumes there is a 20-bit 
Multibus memory space out there. If the Multibus board you're talking 
to can only handle 16-bit addresses, it will ignore the upper four address 
lines, and this means that such a board "wraps around" every 64K, 
which means that on a Sun the addresses that such a board responds to 
would be replicated sixteen times through the one-megabyte address 
space on the Multibus. This may conflict with some other device. 

o Some Sun-2 Multibus systems, notably Sun-2/170s, have a backplane 
structure that complicates the installation of 24-bit memory-mapped 
devices. The internal "bus" on these systems (often called the P2 bus) is 
divided into multiple segments, each mapped to a portion of the back
plane slots. In such systems, 24-bit memory-mapped devices must be 
installed in a different segment than that used by standard Sun-2 dev
ices. See the Sun-2/170 Configuration Guide for more information. 

o For an I/O-mapped board (one that uses lID registers), make sure that 
the board can handle 16-bit I/O addressing. Some older boards support 
only 8-bit I/O addressing. In our system, the address spaces of such 
boards would find themselves replicated every 256 bytes in the I/O 
address space. Trying to fit such a board into the Sun system would 
severely curtail the number of I/O addresses available in the system. 

o Finally, watch out for boards containing PROM code that expects to find a 
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of 
course useless in the Sun system. 

There are two peculiarities which are specific to machines built upon the Sun 
SP ARC CPU (currently, just Sun-4s) which can impact device drivers. For more 
infonnation about the Sun-4 machine architecture, see Porting C, Fortran and 
Pascal Programs to the Sun-4. 

o The first problem is structure alignment. In MC680XO family processors, 
structures are aligned on half-word boundaries, but on Sun-4s, the structure
alignment requirements are imposed by the most strictly-aligned structure 
components. For example, a structure containing only bytes and characters 
has no alignment restrictions, while a structure containing a double word 
must be constructed so as to guarantee that that this word falls on a 64-bit 
boundary. 

Programmers must be aware of these rules when writing drivers, for Sun-4 
compilers will pad structures to enforce them, and such padding will not 
always be correct for structures intended to map to device registers. Also, 
structures must be carefully designed if drivers are to be portable across 
machine architectures. 

o The second problem is data alignment. In MC680XO family processors, 
characters are aligned on byte boundaries, while integers of all sizes are 
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Other Device Peculiarities 

aligned on 16-bit boundaries. In Sun-4 machines, in contrast, all quantities 
must be aligned on their "natural" boundaries: 16-bit half words on 16-bit 
boundaries, 32-bit words on 32-bit boundaries and 64-bit double words on 
64-bit boundaries. 

In normal programs, details such as these are handled by the compiler. In 
drivers, however, more care must be taken. SPARC (unlike the MC68010) 
doesn't break down 32-bit transactions into successive 16-bit transactions. 
Thus, there are times when 32-bit entities have to be broken down by the 
driver if they are to get across the bus correctly. More specifically, 32-bit or 
64-bit alignment is not possible in the 16-bit VMEbus spaces, and thus 32-
bit and 64-bit data access does not exist. In the 32-bit VMEbus spaces, all 
data paths exist. 

There are other device peculiarities of interest to the driver developer. These 
peculiarities are particularly unfortunate in that they tend to require special han
dling of various kinds - byte swapping, bit shuffling, timing delays, etc. -
whenever the driver contacts the device. Such special handling precludes the 
most obvious and desirable means of interfacing the driver to the device, by map
ping the device registers into a C-structure declaration and then accessing them 
by way of references to structure fields. 

o One of the most infuriating of these peculiarities is internal sequencing 
logic. Devices with this strange characteristic (a vestige of microcomputer 
systems with extremely limited address space) map multiple internal regis
ters to the same externally addressable address. There are various kinds of 
internal sequencing logic: 

o The Intel 825lA and the Signetics 2651 alternate the same external 
register between two internal mode registers. Thus, if you want to put 
something in the first mode register of an 8251, you do so by writing to 
the external register. This write will, however, have the invisible side 
effect of setting up the sequencing logic in the chip so that the next 
read/write operation refers to the alternate, or second, internal register. 

o The NEC PD7201 PCC has multiple internal data registers. To write a 
byte into one of them, it's necessary to first load the first (register 0) 
with the number of the register into which the following byte of data 
will go - you then send that byte of data and it goes into the specified 
data register. The sequencing logic then automatically sets up the chip 
so that the next byte sent will go into data-register O. 

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a 
data pointer register for pointing at the data register into which a data 
byte will go. When you send a byte to the data register, the pointer gets 
incremented. The design of the chip is such that you can't read the 
pointer register to find out what's in it! 

o In fact, it's often true that device registers, when read, don't contain the 
same bits that were last written into them. This means that bitwise opera
tions (like register &= -XX_ENABLE) that have the side effect of 
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generating register reads must be done in a software copy of the device 
register, and then written to the real device register. 

o Another problem is timing. Many chips specify that they can only be 
accessed every so often. The Zilog Z8530 SCC, which has a "write recovery 
time" of 1.6 microseconds, is an example. This means that a delay has to be 
enforced (with DELA Y) when writing out characters with an 8530. Things 
can get worse, however, for there are instances when it's unclear what delays 
are needed, and in such cases it's left to the driver developer to determine 
them empirically. 

o And peripheral devices can contain chips that use a byte-ordering convention 
different from that used by the Sun system into which they're installed. The 
Intel 82586, for example, supports DEC byte-ordering conventions; this 
makes it perfectly compatible with Multibus-based, but not VMEbus-based, 
Sun machines. Drivers for such peripheral devices will have to swap bytes, 
as indicated above, and to take care that, in doing so, they don't inadver
tently reorder the bits in any control fields greater than 16 bits in length. 

o Finally, there are some common interrupt-related peculiarities worth noting: 

o When a controller interrupts, it does not necessarily mean that both it 
and one of its slave devices are ready. Some controllers are designed in 
this way, but others interrupt to indicate that the controller or one of its 
devices but not necessarily both is ready. 

o Not all devices power up with interrupts disabled and then start inter
rupting only when told to do so. 

o While there should be a way to determine that a board has actually gen
erated an interrupt - an attention bit or something equivalent - some 
devices have no such thing. 

o Finally, an interrupting board should shut off its interrupts when told to 
do so (and also after a bus reset). Not all do. 

Many device controller boards are capable of what is known as Direct Memory 
Access or DMA. This means that the CPU can tell the device controller for such 
devices the address in memory where a data transfer is to take place and the 
length of the data transfer, and then instruct the device controller to start the 
transfer. The data transfer then takes place without further intervention on the 
part of the processor. When it's complete, the device controller interrupts to say 
that the transfer is done. 

Sun-2, Sun-3, and Sun-4 machines use Direct Virtual Memory Access (DVMA) to 
allow devices on the Main Bus (either a VMBbus or a Multibus) to perform DMA 
transfers from and to system virtual address space. In the Sun386i system, how
ever, the Memory Management Unit (MMU) is incorporated directly on the Intel 
80386 chip itself,· devices need to use physical addresses. Sun386i DMA is 
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discussed in the next Section. 

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun 
Memory Management Unit to allow devices on the Main Bus (either a VMEbus 
or a Multibus) to perform DMA directly to Sun processor memory. It also allows 
Main Bus master devices to do DMA directly to Main Bus slaves without the 
extra step of going through processor memory. DVMA works by ensuring that 
the addresses used by devices are processed by the MMU, just as if they were 
virtual addresses generated by the CPU. This allows the system to provide the 
same memory protection and mapping facilities to DMA devices as it does to the 
system CPU (and thus to programs). 

When setting up a driver to support DMA, it's necessary to know the device's 
DMA address size. This address size is the primary factor used in determining 
which of the system address spaces will host the device. Multibus devices gen
erally have a DMA address size of 20 bits, while VMEbus devices generally have 
a 24 or 32-bit DMA address size. 

D Since, on Sun-2 Multibus machines, DMA addresses are generally 20-bits 
long, the system DVMA hardware responds to the first 256K of Multibus 
address space (OxO to Ox3FFFF). When an address in this range appears 
on the bus, the DVMA hardware adds OxFO 0000 to it (the system places 
the Multibus memory address space at OxFOOOOO in the system's virtual 
address space) and then uses the MMU to map to the location in physical 
memory that will be used for the data transfer. 

D On Sun-2 VMEbus systems, the DVM A hardware responds to the entire 
lower megabyte of VMEbus address space (0 x 0 to 0 xFFFFF). The system 
maps addresses in this range into the most significant megabyte of system 
virtual address space (OxFOOOOO to OxFFFFFF). 

o On both Sun-3 and Sun-4 systems, the DVMA hardware responds to the 
lowest megabyte of VMEbus address space in both the 24-bit and 32-bit 
VMEbus spaces. It maps addresses in this megabyte into the most 
significant megabyte of system virtual address space (OxFFOOOOO to 
OxFFFFFFF for the Sun-3 and OxFFFOOOOO to OxFFFFFFFF for the 
Sun-4). Both Sun-3 and Sun-4 DVMA hardware uses supervisor access for 
checking protection. 

The driver writer must account for these mappings, as should be evident from the 
diagram below. 
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Figure 2-5 System DVMA 
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Devices can only make DVMA transfers in memory buffers which are from (or 
redundantly mapped into - see below) the low-memory areas reserved as 
DVM A space. The memory-management hardware will then recognize refer
ences to dlese aieas and map them into u'e high megabyte of system virtual 
address space, an area known as DVMA space. Likewise, if a driver needs to 
allocate space for a DMA transfer, it must do so by way of a mechanism that 
guarantees its allocation from DVM A space. There are several ways of making 
this guarantee: 

o rmalloc () can be used with the iopbmap argument. This will get a 
small block of memory from the beginning of the DVMA space. Such small 
blocks of memory are usually used for control infonnation, and not for large 

.sun 
~ microsystems 
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blocks of data. 

o For a large buffer, the driver can statically declare a buf structure (which is 
a buffer header that contains a pointer to the data) and then use mb set up ( ) 
to allocate a buffer for it from DVMA space. This mechanism is primarily 
intended for block devices but is perfectly adaptable for use by character 
devices that need large DMA buffers. 

When dealing with addresses which are in DVMA space, the driver must strip off 
the high bits by subtracting the external variable DVMA, which contains the 
address of DVMA (declared as an array of ch~racters). DVMA is initialized by the 
system to either OxFOOOOO (for Sun-2s) or OxFFOOOOO (for Sun-3s and Sun-
4s). If the driver fails to make this adjustment, the device will attempt to use a 
null address - in the high megabyte - and the CPU board will not respond to 
it. 

NOTE Addresses received by way ofmbsetup () (andMBI_ADDR()) do not have to be 
adjusted in this fashion, as mbset up () will have already adjusted them to be 
relative to the start of DVMA space. 

When the device, in turn, uses the address, the address reference comes down the 
bus and through a slave decoder, which adds the machine-specific offset to it to 
map it back into the high megabyte of system virtual memory. 

Sun DMA is called DVMA because the addresses which the device uses to com
municate with the kernel are virtual addresses like any others. The driver, as part 
of the kernel, is privy to implementation dependent information, and knows that 
it must chop off the high-bits of any address intended for the device. This allows 
the MMU to recognize the addresses destined for the Main Bus and to act accord
ingly. The device, however, knows nothing of this except that its buffers are 
mapped to the high megabyte of system virtual memory. 

User processes, it should be noted, cannot do DVMA directly into their own 
address spaces. The kernel, however, provides a way of getting around this limi
tation by supporting the redundant mapping of physical memory pages into mul
tiple virtual addresses. In this way, a page of user memory (or, for that matter, a 
page of kernel memory) can be mapped into DVMA space in such a way that 
transferred data immediately appears in (or immediately comes from) the address 
space of the process requesting the I/O operation. All that a driver need do to 
support such direct user-space DVMA is to set up the kernel page maps with the 
routine mbsetup () - the details of the mapping will then be automatically 
handled by the kernel. 

If you wish to do DMA over the Main Bus, you must make the appropriate 
entries in the kernel memory map. There are two functions, mbsetup () and 
mbrelse () , to help with this chore. 

DMA on A Tbus Machines The Sun386i uses the Intel 80386 chip. This chip has an integrated MMU, so the 
I/O devices cannot access the Sun MMU address-translation facility and there
fore must use physical addresses to access memory directly. 

To do DMA on the Sun386i, you must make certain changes in the kernel's 
memory map (its page tables). Use the mbs et up () , dIna_set up ( ) , 
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mbrelse ( ) , and dIna_done () routines to make these changes. The changes 
you must make to the kernel memory map are described with these routines in 
the Kernel Support Routines appendix. 
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3.1. The System Kernel 

3 
Overall Kernel Context 

Device drivers are parts of the SunOS kernel, a fact that must be appreciated to 
understand the ways in which drivers differ from user-level programs. The ker
nel is the crucial system program responsible for the control and allocation of 
system resources, including the processor, primary memory and the 110 devices. 
In most ways it's just like any user program, being a more or less cleverly con
structed structure shaped to its particular goals. In other ways, however, it's 
significantly different from a user program: 

o For one thing, the kernel is thick with the details of hardware implementa
tion and function. This tends not to be true of user programs, precisely 
because the kernel shields them from the need to consider device-specific 
details. 

o For another, the kernel (and thus its drivers) runs in supervisor mode. This 
means that drivers can often perform privileged device operations that can't 
be performed by user processes, even if those processes have access to the 
necessary device registers. 

o The kernel memory context is not entirely paged. Certain parts of the kernel 
are paged, but drivers can safely assume that their text and data are resident 
and stationary within physical memory. 

o Programmers of ordinary user processes rarely need to concern themselves 
with physical addresses and virtual-to-physical address mappings. Device
driver developers, however, deal simultaneously with user virtual addresses, 
kernel virtual addresses and physical bus addresses. Special functions (see 
the Kernel Support Routines appendix) are provided to help drivers with the 
various address mappings they're called upon to perform. 

o Finally, the kernel provides a far different external interface than do user 
processes. It's possible for user processes to communicate with and dispatch 
tasks to other user processes by way of system inter-process communications 
mechanisms (like signals and pipes) but to do so they must first make special 
arrangements with those other processes. The kernel, on the other hand, 
exists to provide services to user processes and it provides a special mechan
ism - the system call - by which user processes can call upon it to do so. 
This is not to say that user processes and the kernel (that is, the drivers) can't 
also use system inter-process communications mechanisms like signals. It's 
certainly possible, for example, to write a driver so that it will send a signal 
to a user process as part of its handling of a specified event. However, in the 
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NOTE 

3.2. Devices as "Special" 
Files 

norm, user processes and the kernel communicate by way of system calls. 

On all Sun systems, system calls are defined in 
/usr/sys/os/init_sysent. c,. which users may edit to add system calls. 
This file is provided with all Sun-2, Sun-3, Sun-4, and Sun386i systems. 

System calls can, for all intents and purposes, be understood as calls by user 
processes to kernel subroutines; they involve, however, far more profound sys
tem state changes that do regular subroutine calls. When system calls are pro
cessed, the processor is placed in supervisor state (and, in Sun-2 systems, the ker
nel virtual address space becomes current in place of the the user virtual address 
space). The user process is suspended and the kernel begins to run, but since it 
runs on behalf of that user process which issued the system call, it can be viewed 
as that user process continuing execution in kernel mode. Such "kernel-mode" 
processes continue to run (with pauses whenever they sleep or yield to a higher
priority process) until the system call processing is completed. At this time the 
scheduler is called to choose the next user process to be dispatched. 

Some system calls can be completely processed without calling any device driver 
routines. The system callI seek () is in this class, it requires only that a 
software file position indicator be reset. Like many system calls - those related 
to process control, inter-process communication, timing services, and status 
information - it can be handled entirely in software. Requests for I/O, however, 
usually involve some action on the part of a peripheral device. In this case the 
kernel calls (through a branch table mechanism described below) a routine within 
the 110 device's driver. The driver will then initiate the I/O operation and, if 
necessary, sleep () until the data is available; in the meantime the kernel will 
dispatch another user process. 

When a user process issues a system call, execution shifts to the kernel. Then, 
for liD-related system calls, the kernel distinguishes requests related to regular 
named files (that is, files on a block device like a disk) from requests related to 
other kinds of 110 devices (like terminals or printers). In the interests of unifor
mity, these devices are viewed as "special" files which (by convention) are col
lected in the /dev directory. These special files are not created in the usual way. 
The information in their i-nodes (the system structures that define the state of 
files) is quite different from the information maintained for regular files, and, as a 
consequence, special files can only be created with the mknod (make a node) 
administration command. Instead of the addresses that will locate the contents of 
a regular file on a disk, the i-nodes of special files (devices) contain the informa
tion necessary to determine the corresponding device driver (the major device 
number), the device class (block or character), and the minor device number. 

When a file of any type is accessed, the kernel needs to determine which device 
driver is responsible for it To make this determination, it must get the name of 
the device associated with the file. From that name it can derive (using a 
device-independent kernel subsystem) an i-node and thus a major device number 
(as well as a minor device number and a device class). 

The connection between the device name and its major number is made by way 
of the device entry in the /dev directory (more specifically, by way of the i-node 
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infonnation associated with the device entry). The i-node for a device special 
file contains a major device number, which is used to index one of the two device 
switches. These switches, bdevsw (the block device switch) and cdevsw (the 
character device switch) are actually arrays of structures, and the major device 
number selects a driver by indexing one of these structures. (The minor device 
number is then passed to the driver for local interpretation). 

Using the Is -1 command on the / dev directory shows you the i-node infor
mation associated with special files: 

A Sample Listing of the Idev Directory 

T per-
y mis-
p sions 
e 

c rw--w--w-
c rw-r--r--
c rw-------
c rw-------
c rw-r--r--
c rw-rw-rw-
c rw-rw-rw-
c rw-------
c rw-------

c rw-------
c rw-------
b rw-------
b rw-------

b rw------
b rw-------

s own-
er 

z 
e 

1 henry 
1 root 
1 root 
1 root 
1 root 
1 root 
1 root 
1 root 
1 root 

1 root 
1 root 
1 root 
1 root 

1 root 
1 root 

maj-
or 
# 

0, 
3, 
3, 
3, 
3, 

13, 
3, 
9, 
9, 

9, 
9, 
3, 
3, 

3, 
3, 

min-
or 
# 

0 
1 
4 
3 
0 
0 
2 
0 
1 

6 
7 
0 
1 

6 
7 

date 

Feb 21 09:45 
Dec 28 16:18 
Jan 13 23:07 
Jan 13 23:07 
Dec 28 16:18 
Dec 28 16:18 
Feb 22 16:40 
Dec 28 16:19 
Dec 28 16:19 

Feb 25 1984 
Dec 28 16:19 
Feb 25 1984 
Jan 17 20:12 

Dec 28 16:19 
Dec 28 16:19 

name 

console 
kmem 
mbio 
mbmem 
mem 
mouse 
null 
rxyOa 
rxyOb 

rxyOg 
rxyOh 
xyOa 
xyOb 

xyOg 
xyOh 

When a user process wishes access to a system service, it makes a system call. 
The subsequent flow of control looks somewhat like this: 
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Figure 3-1 I/O Paths in the UNIX system 
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When you add a new device driver you must add entries to one or both of the 
device switches. Since we are discussing only character-oriented devices in this 
manual, we will ignore the bdevsw structure and concentrate on the cdevsw 
structure. But note that it's common for drivers to appear in both tables; this 
happens because block-devices almost always support raw character 110. 

Application programs make calls upon the operating system to perform services 
such as opening a file, closing a file, reading data from a file, writing data to a 
file, and other operations that are done in tenns of the file interface. The operat
ing system code turns these requests into specific requests to the device driver 
involved with that particular file. The glue between the specific file operation 
involved and the device driver entry-point is through the bdevsw and cdevsw 
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tables. 

Each entry in bdevsw or cdevsw contains pointers to a driver's entry-point 
functions. The position of an entry in the structure corresponds to the major dev
ice number assigned to the device. The minor device number is passed to the 
device driver as an argument. Usually, the driver uses it to access one of several 
identical physical devices, but it is also possible for it to be encoded so that mul
tiple minor numbers indicate the same device, but different operating modes. For 
example, one minor number might indicate a specific tape device, as well as the 
fact that the device is to be rewound when being closed, while another indicates 
the same device without the rewind. A minor number may also indicate a 
controller/device pair. Such breadth of interpretation is possible because the 
minor number has no significance other than that attributed to it by the driver 
itself. 

The cdevsw table specifies the interface routines present for character devices. 
Each character device may provide seven functions: xxopen () ,xxclose () , 
xxread (), xxwrite (), xxioctl (), xxselect (), and xxmmap (). (While 
character drivers sometimes have "strategy" routines, this name is simply a car
ryover from the world of block drivers, and cdevsw thus has no xxstra
tegy () entry point). If you wish calls on a routine to be ignored - for exam
ple xxopen () calls on non-exclusive devices that require no setup - the 
cdevsw entry for that driver can be given as nulldev; if a call should be con
sidered an error - for example xxwri te () on read-only devices - nodev, 
which returns immediately with an error code, can be used. For terminals, the 
cdevsw structure also contains a pointer to an array oftty structures associ
ated with the driver. 

Note: the device switch tables do not include pointers to the driver initialization 
and interrupt handler functions. Pointers to these functions appear in separate 
mbvar structures (discussed below). 

Here's what the declaration of an entry in the character device switch looks like. 
Each entry (row) is the only link between the main SunOS code and the driver. 
The declaration and initialization of the device switches is in 
/usr/sys/sun/conf.c: 

struct cdevsw { 

} ; 

int (*d_open) (); /* 
int (*d_close) (); /* 
int (*d_read) (); /* 
int (*d_write) (); /* 
int (*d_ioctl) (); /* 
int (*d_stop) (); /* 
int (*d_reset) (); /* 
struct tty *d_ttys; /* 
int (*d_select) (); /* 
int (*d_mmap) () ; /* 
struct streamtab *d_str; 

routine to call to open the device * / 
routine to call to close the device * / 
routine to call to read from the device * / 
routine to call to write to the device * / 
special interface routine * / 
flow control in tty's * / 
reset device and recycle its bus resources * / 
tty structure * / 
routine to call to select the device * / 
routine to call to mmap the device * / 
/ * support for STREAMS * / 
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Table 3-2 

Only teletype-like devices (such as the the console driver, the rot i driver, and 
the z s driver) use the tty structure. All other devices set it to zero. 

Routines in the kernel call specific driver routines indirectly by way of the table 
with the major device number. A typical kernel call to a driver routine will look 
something like: 

(*cdevsw[major(dev)] .d_open) (params ... ); 

And here is a typical line from /usr / sys/ sun/ conf . c, which initializes the 
requisite pointers in the cdevsw structure: 

All the other cdevsw entries between 0 and 13 appear first 

cgoneopen, cgoneclose, nodev, nodev, /*14*/ 
cgoneioctl, nodev, nodev, 0, 
seltrue, cgonemmap, 

} , 

Then aIL the other cdevsw entries from 15 up 

In the Sun system, a number of devices in cdevsw are preassigned. The table 
below shows some of these assignments at the time of this writing. It is not com
plete, and besides, new devices are always being added. In allocating a major 
number to the new device which you're installing, make sure that you don't 
choose one that's already been allocated. /usr / sys/ sun/ conf . c will give 
the major device numbers as currently allocated on your system. Choose yours so 
it will go at the end. 

Current Major Device Number Assignments 

Major Device 
Number 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

en 

Device 
Abbreviation 

Not Available 
sy 
Memory special files 
Not Available 
tro 
vp 
Not Available 
ar 
xy 

Device 
Description 

Sun Console 
No Device 
Indirect TTY 

No Device 
Raw Tapemaster Ta~ Device 
Ikon Versatec Parallel Controller 
No Device 
Archive Tape Controller 
Raw Xylogics Disk Device 
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Current Major Device Number Assignments-- Continued 

Major Device Device Device 
Number Abbreviation Description 

10 mti Systech MTI 
11 des DES Chip 
12 zs UARTS 
13 ms Mouse 
14 cgone Sun-l Color Graphics Board 
15 win Window Pseudo Device 
16 Not Available Log Device 
17 sd Raw SCSI disk 
18 st Raw SCSI tape 
19 Not Available No Device 
20 pts PseudoTIY 
21 pte PseudoTIY 
22 fb Sun Console Frame Buffer 
23 rope RastetOp Chip 
24 sky SKY Floating Point Board 
25 pi Parallel input device 
26 bwone Sun 1 Monochrome frame buffer 
27 bwtwo Sun-2 Monochrome frame buffer 
28 vpe Parallel Driver for Versatec printer 
29 kbd Sun Console Keyboard Driver 
30 xt Raw Xylogics 472 Tape Controller 
31 cgtwo Sun-2 Color Frame Buffer 
32 gpone Graphics Processor 
33 sf Raw SCSI Floppy 
34 fpa Floating -Point Accelerator 
35 Not Available STREAMS Support 
36 Not Available No Device 
37 Not Available STREAMS Clone 
38 pc Sun PC Driver 
39 egfour Sun-3/110 Color Frame Buffer 
40 Not Available STREAMS NIT 
41 Not Available Dump Device 
42 xd Xylogics 7053 SMD Disk Driver 

If you skip ahead and read the chapter on Configuring the Kernel you will see a 
discussion of the procedures by which Sun systems are reconfigured to include 
new devices and drivers. There are two major programs involved in this process. 
The first is conf ig, which reads the kernel config file and generates the data
structure tables which specify the configuration of the new kernel. You will also 
note, in that chapter, references to the kernel's autoconfiguration process (some
times called autoconfig). The autoconfiguration process verifies that the 
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devices specified in the config file are actually installed and working, and adjusts 
the kernel data structures accordingly. 

The autoconfiguration approach was first introduced in 4.1BSD as part of a larger 
kernel rationalization, and it significantly increases the flexibility of the kernel 
configuration process, for example, by allowing multiple device controllers to be 
driven by the same instance of a driver. 

The auto configuration process is called by the kernel during its boot-time initiali
zation. It does several things: 

D It verifies that the information in the kernel config file is correct; that is to 
say, it verifies that the devices which the kernel thinks are installed are actu
ally installed. It does this by calling device-specific xxprobe () routines 
that are supplied by the driver. 

D It completes the initialization of the kernel data structures that were declared 
by conf ig and linked into the kernel by way of ioconf . c (a file which 
config creates but cannot fully initialize). These structures, which are 
defined in <sundev /mbvar. h> and shall hereafter be known as the 
mbvar structures, form a good part of the run-time environment of the driver 
routines. 

D It maps the device registers (or memory) into kernel virtual space. 

D It sets up polling interrupts on Multibus systems. 

The autoconfiguration code does its work, as its name indicates, without worry
ing the driver developer too much. It's only necessary for the developer to know 
what conventions to follow and what options exist. The rest will take care of 
itself. 

Note: readers who have written only System V drivers will perhaps find this all a 
bit mysterious. In System V, as in BSD UNIX systems, the driver interface to the 
kernel is defined primarily by thefunction switch (either cdevsw or bdevsw) 
by which driver routines are called, by the parameters these routines are passed 
and by the values they return. So far so good, but then there are the differences. 
In System V drivers, nothing like the mbvar structures exists, and generic kernel 
structures (like the user structure) are usedfar more heavily than in 4.2BSD, 
where mbvar-like structures are consulted by preference. Sun's operating system 
is, of course, derivedfrom 4.2BSD, and its driver interface is quite similar. 

The "mb" in the name of the mbvar structures clearly recalls the primary motiva
tion of the kernel rewrite in which they were introduced - to improve the 
management of bus resources. The "mb" is derived from the initials of the M ul
tibus, around which older generation Sun machines were built. Newer machines, 
while built around the VMEbus, nevertheless continue to bear the traces of the 
past in these mbvar structure names, names which are now taken to stand for 
"Main Bus" rather than for "Multibus." 

During the configuration of the kernel, an edifice is built of the mbvar structures 
and its initialization is begun. The edifice consists of a structure which 
represents the bus itself, two arrays of structures (one representing system con
trollers; the other, devices) and a number of inter-structure field-to-field links of 
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various kinds.3 The details of the edifice depend upon the information in the ker
nel config file, and upon the compile-time declarations made by the individual 
drivers. During boot time, the initialization that conf ig began is completed by 
the autoconfiguration process. 

Then, at run time, the mbvar structures are used by both the drivers and the ker
nel to manage the bus and its interaction with the devices. The mbvar structures 
are linked to each other in quite a complex fashion, for device characteristics and 
thus device driver structures vary greatly, and these structures are intended to 
support a great variety of access paths: device to controller, device to driver, con
troller to driver, and so on. Driver developers do not, however, need to concern 
themselves with the details of the inter-structure links and access paths. Driver 
routines will be called by the kernel with pointers to the mbvar structures of 
interest to them. They are then free to build that information into whatever local 
structures they find most convenient for the representation of whatever access 
paths are of interest to them. 

So, to sum up, the Sun kernel/driver runtime interface can be seen as being built 
in two different sections. One of these sections is composed of the mbvar struc
tures, constructed into interlinked arrays to represent specific kernel 
configurations on specific machines. The other is similar to the generic SunOS 
kernel/driver interface, consisting as it does of the two device switches, the user 
and proc structures, parameter conventions and a few miscellaneous variables. 
We will now discuss the details to these two interfaces. 

All controllers are installed on the main system bus, and all slave devices (like 
disks and tape drivers) are attached to their controllers.4 Additionally, each con
troller is associated with a device driver, which is really a controller driver. The 
mbvar data structures reflect these relationships, not only in terms of the fields 
that they contain but in terms of the ways these fields are linked together. 

The following mbvar structure fields are the ones most relevant to driver 
developers. 

mb hd The first data structure, rnb _ hd, is the Main Bus header data struc
ture. There is only one such structure, for Sun systems have only 
one Main Bus. It contains a queue of rnb _ ctlr structures, each 
one representing a controller waiting for DVMA space. The 
queue only contains entries when DVMA space is full. It also 
contains other bus-status information. For example, if a driver has 

3 It's not always clear just when a device is a "controller", and when it's a "device". The extreme cases are 
clear: if a device attaches to the bus, fields interrupts and has other, so-called "slave" devices, then it's a 
controller. Likewise, if a device attaches to a controller rather than to the bus, it's a slave device. The confusion 
surrounds devices which attach to the device and field interrupts, but which do not have slave devices. Such 
"devices" would, in many ways, be better thought of as "controllers" which control only themselves. 

4 Sometimes, in this manual, the word "device" will be used in a generic sense to denote either a ''free'' 
device that attaches directly to the system bus rather than to a separate controller, or a regular slave device. This 
generic usage occurs, for example, whenever the tenn "device driver" is used - such programs would more 
accurately be described as "controller drivers". In this section, however, we're being extremely precise - free 
devices attach to the system bus, and so they're called "controllers", not "devices". 
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mb ctlr 
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exclusive access to the bus, this is noted in rob _ hd. Device 
drivers never directly access the fields in rob _ hd. 

Each slave-device controller on the Main Bus has an rob ctIr 
structure associated with it. (This structure contains all of the 
configuration-dependent infonnation which the kernel needs in 
interactions with the controller's driver, as well as some status 
infonnation. It is rob _ ct Ir that is queued onto rob _ hd during a 
wait for DVMA space. The following fields within rob _ ctIr are 
of interest even for character devices (there are others that are 
used only by block devices): 

me ctlr 
The controller index for the corresponding controller, for 
example, the '0' in scO. Used to index into arrays of driver
specific controller status and control structures. 

me addr 
The address of the controller (control and status registers and 
RAM) in bus space. 

me c:lmachan 

On the Sun386i only, a field containing the DMA channel. 

InC_space 
A bit pattern which identifies the address space within which 
the controller is installed. 

mc_intpri. 
The interrupt priority level of the controller. This is to be 
given in the config file and should be used, in the driver 
source, only as an argument to spIn () - e.g. 
spIx(pritospl(mc_intpri}). 

InC intr 
On Sun-2, Sun-3, and Sun-4 systems, pointer to the vec 
structure that specifies vectored interrupt behavior (or NULL 
if vectored interrupts are not used). Ifmc_intr is set, then 
the fields within the ve c structure become significant: 

v func 
Pointer to the vector-interrupt function. 

v vec 
Vector number associated with the function in v func. 

v_vptr 
A pointer to the 32-bit argument to be passed to the 
driver vector-interrupt routine. Defaults to the controller 
number of the interrupting device, though it can be reset 
within the driver. It's often set by the driver xxat
tach () routine to contain a local structure pointer. On 
the Sun386i system, this field contains the irq (interrupt 
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request channel). The Sun386i system does not support 
vectored interrupts, so the v _ * fields are not present. 

me a1ive 
Set to one by the autoconfiguration process if the controller is 
detennined to be present. Otherwise left at O. 

me mbinfo 
Main Bus resource allocation information (Used by 
MBI _ ADDR ( ) , mbset up () and mbrelseO). 

mb device "Free" devices (devices with no separate controllers) as well as 
"slave" devices, are represented to the kernel bus-management 
routines by an instance of the rnb _device structure. (This is as 
it has been since 4.1BSD, but it's not ideal- if free devices were 
taken as controllers and represented by an rob _ ct lr structure, 
then rnb_device would only be for slave devices and would 
contain fewer fields). mb_ctlr contains all of the 
configuration-related data for the free or slave device. If a con
troller has multiple slave devices attached to it, there will be as 
many rob_device structures associated with its mb_ctlr struc
ture. The following fields within rnb _device (which are set by 
the configuration system and are not normally reset by the driver) 
are of interest: 

md driver 
A pointer to the rob _ dr i ve r structure associated with this 
device. 

md unit 
The device index for the corresponding device, for example, 
the '0' in xyO. Used to index into arrays of driver-specific 
device status and control structures. 

md sl.ave 
The slave number of the device on its controller. 

md addr 
The base address of the device (its control/status registers and 
perhaps some RAM). For most Multibus devices, this will be 
an address in I/O space, though for memory-mapped devices 
this will be an address in Memory space. For VMEbus 
machines, it's the particular address space within which the 
device is attached. Unused for devices on controllers. 

md dmachan 
On the Sun386i only, a field containing the DMA channel. 

md_intpri 
The Main Bus priority level of the device (the priority that is 
passed to pri tosplO). Used to parameterize the setting of 
hardware priorities. Unused for devices on controllers. 
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md intr 
On Sun-2, Sun-3, and Sun-4 systems, pointer to the ve c 
structure that specifies vectored interrupt behavior (or NULL 

if vectored interrupts are not used). Unused for devices on 
controllers. On the Sun386i system, this field contains the 
interrupt channel. 

md_f1ags 
The optional flags parameter from the system config file is 
copied to this field, to be interpreted by the driver. Only the 
driver uses the information in this field. If f lags was not 
specified in the config file, then this field will contain a O. 

md a11ve 
Set by the autoconfiguration process to 1 if xxprobe () finds 
the device, otherwise it's left at O. Incidently, if xxprobe () 
fails to find the device, the autoconfiguration process will also 
leave the device position in the xxdinfo () array (if the 
driver has one) at O. The driver is free to t~st either variable 
(in its xxopen () routine) to determine xxprobe () 's ver
dict. 

rob drl ver The system assumes that the source code of your driver declares a 
rob _ dr i ver structure named xxdr i ve r ( ). This structure con
tains information relevant to the device driver as a whole, as 
opposed to information about individual devices or controllers. It 
differs in several important manners from the device and con
troller structures. For one thing, it contains a number of pointers 
to driver functions. These pointers, like those in cdevsw and 
bdevsw, are used by the kernel as entry points into the driver. 
For another, it's initialized not by the configuration system, but 
within the driver source code itself - if fact, several of the rou
tines in xxdr i ve r () are actually called by the kernel 
autoconfiguration process to complete the driver-related kernel 
initialization. (Note: while the driver has responsibility for ini
tializing the fields in xxdr i ve r, it is still limited, at run time, to 
reading these fields - it cannot ever change them). 

xxdriver () must be known more intimately by the driver developer than 
either the driver rod ctlr structure or the driver rod device structure. We 
will therefore give its complete definition: 
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struct rob driver { 

} ; 

int (*mdr-probe) () ; / * check device/controller installation * / 
/ * check slave device installation * / int (*mdr_slave) (); 

int (*mdr_attach) (); / * boot-time device initialization * / 
in t ( *mdr _go) () ; / * routine to start transfer * / 
int (*mdr_done) (); / * routine to finish transfer * / 
int 
int 
char 
struct 
char 
struct 
short 
struct 

(*mdr_intr) (); 
mdr size; 

*mdr_dname; 
rob device **mdr_dinfo; 

*mdr_cname; 
rob ctlr **mdr_cinfo; 
mdr_flags; 
rob driver *mdr_link; 

/ * polling interrupt routine * / 
/ * amount of memory space needed * / 
/ * name of a device * / 
/ * back pointers to mhdinit structs * / 
/ * name of a controller * / 
/ * back pointers to mhcinit structs * / 
/* want exclusive use of Main Bus */ 
/ * interrupt routine linked list * / 

Here is a brief discussion of the fields in the mb _ dr i ver structure that you will 
need to initialize when declaring xxdri ver (). Note that many of the fields in 
rob _ dri ver are for the use of block drivers only - they're presented here as 
useful background information. 

mdrJ>robe 
is a pointer to the driver xxprobe () routine. xxprobe () is called for 
every controller and every independent device (with no separate controller) 
given in the kernel config file. xxprobe () determines if the 
device/controller is actually installed. If it is, it returns the amount of bus 
space consumed by the device/controller to the autoconfiguration process, 
where this space is then mapped into system address space. When 
xxprobe () fails, it returns O. 

mdr s1ave 
is a pointer to an xxslave () function within your driver. xxslave () is 
analogous to xxprobe () , and serves the same function for devices which 
are driven by separate controllers. Unlike xxprobe () , however, 
xxslave () exists only for controllers that may have multiple devices
it's therefore quite rare in character device drivers. 

mdr attach 
is a pointer to an xxat tach () function within your driver. xxattach () 
is called during the autoconfiguration process, where it does preliminary 
setup and initialization for a device or controller. It's commonly used within 
disk and tape drivers to perform setup tasks like the reading of labels, and in 
character drivers for tasks like initializing interrupt vectors and reserving 
blocks of memory. Initialize this field only if there's an xxat tach () rou
tine in your driver. 

mdr_<1o 
mdr done 

are pointers to xxgo () and xxdone () functions within the driver. These 
functions usually don't exist for character drivers, and these fields are conse
quently O. 
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mdr intr 
is a pointer to a polling interrupt routine within your driver. Such a polling 
routine is used for the "auto-vectoring" of interrupts in systems where the 
interrupt "vector" can only be based on the interrupt priority. This is the 
case on all Multibus machines, and if there's any chance that your driver 
will someday be run on a Multibus machine you should include a polling 
interrupt routine and plug it in here. 

If you have a Sun source license, and take the opportunity it affords to exam
ine a number of drivers, you may note an inconsistency in the naming of 
interrupt routines: 

o Some drivers have two interrupt routines: a polling interrupt routine 
named .:apoll () and a vector interrupt routine, named xxintr ( ). In 
such cases .:apo 11 () determines the unit number of the interrupting 
device and then calls xxintr () to actually handle the interrupt. 

o Other drivers have only one interrupt routine. The routine is named 
xxintr () and called from rndr _ intr, but it nevertheless contains 
polling code. This, like the naming of the field mdr_intr (which 
really should be mdr YOll) is an artifact of early Sun systems, in 
which drivers were written for the Multibus only - in these systems 
xxintr () was the interrupt routine, and it always contained polling 
code. 

In any case, remember that any routine called from mdr _in t r must check 
the polling chain, regardless of its name. If you will not support Multibus 
machines, and thus need no polling interrupt routine, put a zero in this field. 

mdr size 
is the size - in bytes - of the memory required for the device. This field is 
initialized with a value identical to that which xxprobe () returns upon 
success, and specifies the amount of space that needs to be mapped into sys
tem memory by the autoconfiguration code. The value returned by 
xxprobe () , while identical, is used only to indicate if the device was 
found. 

mdr dname 
is the name of the device for which this driver is written. 

mdr dinfo 
is a pointer to a pointer to the rob_device structure in xxdinfo (). This 
pointer is filled in during autoconfiguration (see section below on 
Autoconfiguration-Related Declarations) and is necessary to work back from 
the device unit number to the correct mb _device structure by way of an 
index operation. 

mdr cname 
is the name of the controller supported by this driver (for example, sc sup
ports the controllers s cO, scI, etc). This field takes the form of a regular 
null-terminated C string. Fill it in if you actually have a controller . 
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mdr cinfo 
is a pointer to a pointer to an rob _ ctlr structure declared in the driver. 
This pointer is filled in during autoconfiguration (see the section below on 
Autoconfiguration-Related Declarations) and is necessary to work back from 
the device unit number to the correct mb_ctlr structure by way of an index 
operation. 

mdr_flags 
consists of some flags, as follows: 
MDR XCLU 

The device needs exclusive use of Main Bus while running. This flag is 
used only by mbgo () and mbdone () routines (which are not docu
mented in this manual), and it guarantees exclusive use only among 
drivers which use it to enforce an exclusive-use protocol. Not all 
dri vers do so. 

MDR BIODMA 

For devices that do DMA on the Main Bus (such drivers call mbgo () 
and mbdoneO). This flag tells the kernel that it must lock other DMA 
devices off the bus. 

MDR DMA 

For devices which use DMA, either to transfer large blocks of data or 
simply to transfer small blocks of control information. The drivers for 
such devices call mbset up ( ). This flag tells the kernel that it must 
lock other DMA devices off the bus, and all DMA drivers should set it. 

MDR SWAB 

I/O buffers are to be swab () 'ed - that is, pairs of data bytes are to be 
exchanged. This flag is used to push the swab () out of rob go () and 
mbdone () and down into the Main Bus driver. 

MDR OBIO 

The device is installed in on-board I/O space. 

Of these, MDR_XCLU, MDR_SWAB and MDR_OBIO are potentially to be 
used for user character devices. These flags must be OR' ed together if you 
wish to place any of that information there. Place a zero (0) in this field if 
none of the flags apply to your driver. 

mdr link 
This field is used by the autoconfiguration routines and is not for the driver's 
use. 

At the top of each driver, after the include statements, is a group of declarations 
that are used by the autoconfiguration process to finish the initialization of the 
mbvar structures. Here, as an example, are the relevant declarations from the 
Sky Floating-Point Driver: 
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Other KernellDriver 
Interfaces 

WARNING 

/ * Driver Declarations for Autoconfiguration * / 
int skyprobe(), skyattach(), skyintr(); 
struct mb_device *skyinfo[l]; /* OnlySupportsOneBoard */ 
struct mb_driver skydriver = { 

} ; 

skyprobe, 0, skyattach, 0, 0, skyintr, 
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, 0, 

The first line declares the names of the autoconfiguration-related entry point rou
tines for the driver. In this case there are only three - skyprobe (), skyat
tach () and skyintr (). These declarations are necessary because, in a few 
lines, we will use the names to initialize the driver's rob_driver structure. 

The second line declares an array (in this case of dimension one) of pointers to 
mb_device structures. By the time the driver is linked into the kernel, con
fig will have already declared an array of rob_device structures that contains 
an entry for each of the devices named in the kernel config file. When the kernel 
is booted, the autoconfiguration process initializes each driver's xxinfo () array 
to indicate the rob_device structures corresponding to its devices, with each 
device's unit number being used as its subscript into the xxinfo () array. The 
Sky driver is slightly atypical in that it only supports one device; normally the 
device count provided by config in a macro "NXX" (which is set to the 
number of devices noted in the config file) would be the subscript in this declara
tion. 

If this was a driver for a controller with slave devices, the second line would be 
followed by an analogous one that declared an array of pointers to rob _ ct lr 
structures. 

The third line both declares and initializes the rob dr i ver structure that 
represents this driver. The fields within the structure are described in detail in 
the previous section. 

The kerneVdriver interface is almost entirely contained within t;he mbvar struc
tures and the parameter conventions of the driver routines. There are, however, a 
few other common kemeVrlriver interface points, which are given in this section. 

The user structure is validfor the current process only while execution is in 
the top half of the driver. It must never be accessedfrom the bottom half. 

The kernel user structure contains a few fields of interest to drivers. This struc
ture, which maintains status information for the current user process (and which 
is swapped in and out with the process it describes), is used far less by Sun 
drivers than it is by System V drivers. This is because, in SunOS, the user 
structure does not define the address of the characters to be written (or the place 
for characters to be read to). The Sun kernel uses uio structures for this pur
pose, and passes them as parameters to the driver xxread () and xxwri te () 
routines. (See Some Notes About the UIO Structure in the The "Skeleton" Char
acter Device Driver chapter of this manual). 
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Still, three fields within the user structure remain of interest to device drivers. 
They are: 

u.u_qsave 
is a set jrnp () environment buffer that can be used to save the current 
stack in preparation for a possible longjrnp () return. set jmp () and 
longjrnp () are useful in drivers that need to intercept signals, and then to 
wake sleeping processes. They can also be used for error handling. For 
more information, see the set j rnp (3) man page. 

u.u error 
If an I/O operation is not successful, the driver must return an error code 
(defined in <errno. h», which is plugged into u. u_error. From here 
it's normally stored in the per-process global variable errno in the user 
context. (Note that in most cases the kernel plugs the value into 
u. u _error, and it is not necessary for the driver to do so. In fact, a driver 
cannot access u . u _error in its interrupt routine, where transfer errors are 
nonnally detected, since the current user structure is unlikely to belong to 
the process for which the failed I/O was being performed). 

u.uyrocp 
The u. u yrocp field in the user structure is a pointer to the processs 
(proc) structure for the current process. The proc structure contains the 
information that the system needs about a process even when it is swapped 
out. u. u yrocp is used by drivers which contain select () routines. 
See the Variation with "Asynchronous 110" Support section of the The 
"Skeleton" Character Device Driver chapter of this manual for details. 

Drivers may occasionally need to know what kind of machine they're running 
on. They can find out by querying a variable, cpu, which, while not in the user 
structure, is available to them by including .. /rnachine/ cpu. h. This vari
able is initialized by the kernel on the basis of information in the ID PROM, and 
is set to one of the following values: 

CPU SUN2 50 
CPU SUN2 120 - -
CPU SUN3 50 
CPU SUN3 110 - -
CPU SUN3 160 - -
CPU SUN3 260 - -
CPU SUN4 260 
CPU 1386 AT386 

Note that when compiling for a Sun-2 system, only the Sun-2 names are avail
able; likewise for Sun-3s, Sun-4s and Sun386i's. 

Related to the CPU SUNX XX names are the SUNX xx ifdefs. These are set at - - -
compile time on the basis of information in the config file, and can be used to 
eliminate code or data that is unnecessary for machines of any particular type. In 
general, it's possible (and advised) to write drivers that can compile and run on a 
variety of Sun machines with no changes. 

DVMA drivers will often need to know the address of kernel DVMA space on 
the host machine (See the Sun Main-Bus DVMA section in the Hardware Context 
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chapter) so that they can subtract it from system virtual addresses to get 
addresses relative to the start of DVMA space. The external variable DVMA, 
declared as an array of characters, is available/or this purpose. 

The external variable hz gives the number of clock ticks per second on the host 
system. 

The external variable KERNELBASE gives the start of kernel address spece in the 
current memory context. 
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4 

Kernel Topics and Device Drivers 

A first step in writing a device driver is deciding what sort of interface the device 
should provide to the system. The way in which read () and write () opera
tions should occur, the kinds of control operations provided via ioctl () , and 
whether the device can be mapped into the user's address space using the 
mmap () system call, should be decided early in the process of designing the 
driver. (For simple memory devices that require neither DMA nor an ioctl ( ) 
routine, and that don't interrupt, it's possible to use the mmap () system call to 
avoid writing a driver altogether. See the Mapping Devices Without Device 
Drivers section of this manual for more details). 

Device drivers have access to the memory management and interrupt handling 
facilities of SunOS. The device driver is called each time the user program 
issues an open () ,read () ,write (), mmap () , select () or ioctl () 
system call, but only the last time the file is closed. The device driver can 
arrange for I/O to happen synchronously, or it can set things up so that I/O 
proceeds while the user process continues to run. 

Here's a brief summary of the parts that comprise a typical device driver. In any 
given driver, some routines may be missing. In a complex driver, all of these 
routines may well be present. A typical device driver consists of a number of 
major sections, containing the routines introduced below. 

Initial Declarations 
Device drivers, like all C programs, begin with global declarations of vari
ous sorts. These declarations include the structures that the driver will over
lay on the device registers. (These structures are often conveniently declared 
to contain unsigned integers and bit fields chosen to access various parts of 
the device registers). They also must include the declarations discussed in 
the Autoconfiguration-Related Declarations section of the Overall Kernel 
Context chapter of this manual. 

Autoconfiguration Support 
Then come the xxprobe () ,xxattach () and, perhaps, xxslave () rou
tines. These are called at kernel boot time to determine if devices noted as 
being present in the config file are actually installed, and to initialize them if 
they are. This initialization may include the resetting of the interrupt vector . 
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Opening and Closing the Device 
xxopen () is called each time the device is opened at the user level; if mul
tiple user processes open the device, xxopen () is called multiple times. 
xxc los e ( ) , in contrast, is called only when the last user process which is 
using the device closes it. 

Reading to and Writing from the Device 
xxread () and xxwri te () are called to get data from the device, or to 
send data to the device. Drivers for tty-like devices will probably structure 
xxread () and xxwri te () in the tenninal-driver style (not described in 
this manual), while devices that deal simultaneously with groups of charac
ters will probably have their xxread () and xxwri te () routines imple
mented in terms ofaxxstrategy () routine. Suchxxstrategy () rou
tines are in every way subsets of block-driver xxstrategy () routines
they are integrated with physio () and they use buf structures but they 
don't have anything to do with the kernel buffer cache. Character drivers for 
DMA device are likely to have s t rat egy () routines, but they can be use
ful for non-DMA devices as well- as long as the devices do I/O in chunks. 

Select Routine 
xxselect supports the select () system call, by which user processes 
can examine various devices (by way ofIJO descriptors which specify them) 
to see if they are ready for reading, writing, or have an exceptional condition 
pending on them. 

Start Routine 
xxstart () is needed in drivers that queue requests; it's called from 
xxread () ,xxwrite () or xxstrategy () to start the queue and is also 
called from xxintr () to send off the next request in the queue. 

Mmap Routine 
The rrunap () routine is present in drivers for devices which are operated by 
being mapped into user memory - for example, frame buffers. 

f nterrupt Routines 
There are two kinds of interrupt routines: polling (or auto-vectored) routines 
and vectored routines. Polling routines are necessary when the host system 
doesn't allow unambiguous means of mapping hardware interrupts to dev
ices, as is the case with Multibus-based machines. Vectored-interrupt rou
tines are used on VMEbus-based systems, which can map hardware inter
rupts immediately to devices. Drivers for VMEbus devices that are never 
run on Multibus-based systems need only vector interrupt routines, while 
drivers for devices which will be run on both Multibus and VMEbus 
machines need both types of interrupt routines. In this case the polling rou
tine can determine the interrupting device and then call the vectored routine 
to do the rest. 

foctI Routine 
The xxioctl () routine is called when the user process does an ioct 1 
system call. These calls are the great escape hatches in the otherwise gen
erally uniform IJO architecture. They are not, however, panaceas, and you 
should not overuse them to solve problems in driver design. Terminals have 
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many ioctl calls, but they're a special case. They have many ioctl 
calls because they're inherently quite complex and yet SunOS still insists 
that they look like files. 

SunOS, being a multi-tasking operating system, provides for multiple threads of 
control at the user level. (These multiple threads are the various user processes). 
At the kernel level, however, things are different. The SunOS kernel is monol
ithic monitor type of operating system, and, as such, it cannot be interrupted by 
user processes. Instead, it contains code which allocates its time (and other 
resources) among the various user processes, as well as to itself. The kernel can 
be interrupted by hardware, but when handling interrupts it doesn't run on 
behalf of any individual user process. 

Device driver functions are invoked by kernel routines after user processes make 
system calls. These functions must be able to move data to or from user virtual 
space quickly and easily. Kernel functions are provided to help it do so, and to 
redundantly map memory so that it can be shared by user programs and the ker
nel. 

Device drivers are parts of the kernel, and they inhabit kernel space: 

o In the Sun-2 the kernel virtual address space is 16 megabytes, and is com
pletely separate from the individual user virtual address spaces. 

o In the Sun-3 and Sun-4, the kernel virtual address space is at the top of the 
current context, starting at KERNE LBAS E. 

o In the Sun-4, the kernel uses the top 16 megabytes of the current Gigabyte 
context, starting at 0 xFF 000000 . 

o In the Sun386i, the kernel uses the top 64 Megabytes. Of these, the kernel 
has 32 Mbytes reserved for its use; kadb has 16 Mbytes reserved, and the 
EPROM uses 16 Mbytes. 

In general, drivers don't need to consider the details of kernel address-space 
implementation. Routines (like copy in () and copyoutO) which deal in 
multiple address spaces will manage the details internally, as will programs like 
kadb. 

A device driver can usefully be thought of as having a top half and a bottom half. 
The top half, consisting of the read () , wr i te () , and ioct 1 () routines, and 
of any other routines which run on behalf of the user process making requests on 
the driver, is run at I/O request time. The routines in the top half make device 
requests that can cause long delays during which the system will schedule a new 
user process so that it can continue doing useful work. The bottom half, consist
ing of xxintr () and any routines that it may call, is run at hardware interrupt 
time. 

Memory-mapped devices are usually not interrupt driven. Their drivers, thus, do 
not typically need to include interrupt routines. Memory-mapped devices 
operate by being written and read as system memory, and make no split-second 
demands (interrupt-time demands) upon their users. 

+~t!! Revision A, of 9 May 1988 



64 Writing Device Drivers 

4.4. Device Interrupts 

After starting an I/O request, the top half calls sleep () to wait for the bottom 
half to indicate (by way of a call to wakeupO) that the request has been ser
viced. Thus, when a user program issues a read on (say) an AID converter, it is 
nonnally suspended when the top half of the corresponding driver calls 
sleep () to wait until some input arrives. Alternatively, the top half of the 
driver can call iowait () and be put to sleep awaiting the completion of a 
buffer-oriented 110 transfer. 

The top half contains! not only all the non-interrupt time driver routines, but (for 
all practical purposes) the kernel routines above the driver as well. In particular, 
it contains the kernel physio () routine, which manages the decomposition of 
large 110 requests into a series of smaller ones that can be handled by the device. 

The bottom halfmay include anxxstart () routine, which can be called inter
nally to start 110. This allows the device-specific code to be isolated in one rou
tine. xxstart () is not a driver entry point. It's called from either xxstra
tegy () or xxintr () ,depending upon whether the device is busy or not. 

Consider an AID converter driver that expected the converter to interrupt when a 
sample was available. The kernel interrupt handler would detect the device inter
rupt and dispatch xxintr ( ) , which would then store the sample data in a buffer 
and wakeup () the user process sleeping in the top half so it process could 
retrieve the data. If there was no user process sleeping in the top half, the 
wakeup () would have no effect, but the next process to read the AID driver 
would find the data already there and wouldn't have to sleep () . 

It must be stressed that, in general, xxintr () doesn't run on behalf of the 
current user process - this is, in fact, why it's distinguished so clearly from the 
top half. This means is that no infonnation about the current user process is 
available, in any way, to xxintr (). It shouldn't examine, let alone change, any 
of the variables in the kernel use r structure. 

In general, the driver developer has limited control over the interrupt characteris
tics of the device. However, it should be said that some device-interrupt charac
teristics are better than others. In particular, interrupt-processing takes lots of 
time, and it's important that devices interrupt as seldom as possible. If, for 
example, a device can be made to handle multiple characters for each interrupt it 
processes, it should be. It's also preferable that a device not interrupt until its 
driver has enabled its interrupts, that it hold its interrupt line high until the driver 
asks that it be cleared, and that it remain quiescent after a bus reset (system 
boot). 

Most hardware devices interrupt, and all interrupts occur at some given priority 
level. When an interrupt occurs, the system traps it, suspends the in-process 
operation (which may be a process entirely unrelated to the interrupting device or 
even the kernel) and resumes execution in the bottom half of the driver associ
ated with the interrupting device. This means that the top half of a device driver 
can be interrupted at any time by its bottom half. If they wish to share data, they 
must do so in shared data structures, and they must take special provision to see 
that those structures remain consistent. An example of such a data structure is a 
pointer to a current buffer and a character counter. The top half of the driver 
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must protect itself so that data structures can be updated as atomic actions, that 
is, the bottom half must not be allowed to interrupt during the time that the top 
half is Updating some shared data structure. This protection is achieved by 
bracketing critical sections of code (sections that update or examine shared data 
structures) with subroutine calls that raise the processor priority to levels which 
can't be interrupted by the bottom half. Such a section of code looks like: 

s = spIn () ; 

critical section of code that can't be interrupted 

(void)splx(s); 

Here we've first raised the hardware priority level and then restored it after the 
protected section of code. (Detennining the correct hardware priority will be dis
cussed later). One section of code that almost always needs to be protected is the 
section where the top half checks to see if there is any data ready for it to read, or 
whether it can write data or start the device. Since the device can interrupt at any 
time, the section of code that checks for input in this fashion is wrong: 

if (no input ready) 
sleep (awaiting input, software-priority) 

because the device might well interrupt after the if condition is tested, but 
before the process switch. (fhe consequences, if this happens, are grave - the 
call to wakeup () will occur before the process has actually gone to sleep, and 
thus it will never wake up}. 

The above section of code must thus be rewritten to look like this: 

s = spIn () ; 
while (no input ready) 

sleep (awaiting input, software-priority) 
(void) splx (s) ; 

If the top half executes the sleep () system call, the bottom half will be 
allowed to interrupt, because the hardware priority level is reset to 0 as soon as 
the sleep () context switches away from this process. 

In many cases it is possible to set the device interrupt level by setting switches on 
its board. If so, you must decide what processor-interrupt level the device is 
going to interrupt at. At first it may seem that your device is very high priority , 
but you must consider the consequences of locking out other devices: 

o If you lock out the on-board UARTs (level 6) characters may be lost. 

o If you lock out the clock (level 5) time will not be accurate, and the SunGS 
scheduler will be suspended . 
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4.6. Vectored Interrupts 
and Polling Interrupts 

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed. 

o If you lock out the disks (level 2), disk rotations may be missed. 

o Level 1 is used for software interrupts and cannot be used for real devices. 

In general, it's best to use the lowest level that will provide you with the response 
that you need. 

In Multibus-based Sun-2 machines, the kernel uses only auto-vectored (polling) 
interrupts. With auto-vectoring, the interrupt vector associated with a given dev
ice is based solely on the device interrupt priority level. Since many system 
configurations will contain more devices than there are interrupt levels, multiple 
devices may share the same interrupt level. Still, when processing an interrupt, 
the kernel must have a way of determining which device interrupted, and which 
driver should process the interrupt. In such configurations, the kernel proceeds 
by polling all the drivers at the given interrupt level (in the order that they are 
given in the config file), calling each of their polling interrupt routines in tum. 
These routines then proceed to interrogate their corresponding devices looking 
for the device that has an "attention bit" set, thus indicating that it issued the 
interrupt. Devices that don't indicate that they've interrupted can still be 
installed - one per system - by putting them at the end of the config file and 
thus at the end of the polling chain. Unclaimed interrupts can then be assumed to 
be from the last device. 

After determining that one of its devices issued an interrupt, the polling routine 
services it and returns a non-zero to indicate that it did so (or a 0 to indicate that 
no device was found to originate the interrupt). 

Polling only works if devices which share interrupt levels continue to interrupt 
until the driver tells them to stop. This is because the driver polling-interrupt 
routine returns to the kernel with an indication of which of the devices it has ser
viced. If two devices (A & B) are polling at the same interrupt level and both 
issue an interrupt, device A will always get serviced first. The kernel will then 
go on its merry way unless device B continues to interrupt. If it does, then when 
device A has been serviced, device B will be serviced. Fortunately, most Mul
tibus boards continue to interrupt until told to stop. VMEbus boards typically do 
not, so it's important that they use vectored interrupts. 

Sun VMEbus machines, (even those with Multibus devices installed by way of 
adapters) can take advantage of vectored interrupts. When handling a vectored 
interrupt, the kernel calls the appropriate driver's vector interrupt routine 
directly, passing it an argument to identify which of its devices (or controllers) 
interrupted. 

It's important to realize that a driver can support both vectored interrupts and 
polling interrupts. Such a driver can be run on either ty pe of machine, its polling 
interrupt routine will determine which device, if any, originated the interrupt, and 
then call the vectored interrupt routine to actually service it. 
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VMEbus devices - if they interrupt - are assigned unique identifying numbers 
in the range Ox40 to OxFF when they are described in the config file. It is 
these vector numbers that are used by the kernel to directly identify the interrupt
ing device. 

There are cases where no separate polling routine is needed. The first is where a 
driver knows that it supports only one device, and that no other device will share 
its device's interrupt level. In this case only an xxintr () routine need exist. It 
can then be specified in rob _ dr i ver->rodr _ intr for use in the auto-vectored 
case and in the conf ig file for the vectored interrupt case. Thus, all 
configurations will use the same interrupt routine. Remember, this will only work 
if there are no other devices of any sort installed at the same interrupt level. 

The other case where xxpoll () is not needed is when a driver will never sup
port polling - presumably because it will never be run on a Multibus machine. 
In this case xxintr () should be specified in the conf ig file for use as the vec
tored interrupt routine, and the auto-vectored (polling) interrupt routine specified 
in rob dr i ver->mdr intr should be O. 

Note that in the first case above, where the device will have an interrupt level to 
itself, little need be done to make the driver work with vectored interrupts. One 
may simply take a polling interrupt routine, (perhaps renaming it xxintr () to 
avoid confusion) and install it as the vector interrupt routine by giving its name 
in the appropriate place in the conf ig file. This isn't the most efficient thing to 
do, for when the routine is called through the kernel's vectoring mechanism, it 
will waste the information in its argument (which identifies the device originat
ing the interrupt) and go on to poll its devices. Nevertheless it will work. It's 
better, however, if drivers contain both xxintr () and xxpoll () routines, so 
that they may be easily transported to a variety of systems. 

Another issue of concern only to drivers running on VMEbus machines is related 
to setting up the interrupt-vector number. When using the VMEbus-Multibus 
adapter or certain VMEbus devices, the vector number is set by switches on the 
circuit board. But some devices require that software initialize the device by tel
ling it which vector number to use on interrupts. Presently, the only place where 
this can be done is in xxat tach (). The vector number that xxat tach () 
communicates to the device is in the rod intr->v vec field of the - -
rob device structure - a NULL value in this field indicates that the host 
machine is Multibus based and does not support vectored interrupts. 

A skeleton for a "typical" driver, one supporting both vectored and polling inter
rupts and using software to set interrupt vectors might look like: 

1* 
* NXX is computed by config/or each device type. 
* It can then be used within the driver source code to 
* declare arrays of device specific data structures. 
*1 l :truct xx device xxdevice [NXX] ; 

J 
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* Attach routine for a device xx that must be notified of its 
* interrupt vector. 
*1 

xxattach (md) 
struct rob_device *md; 

register struct xx device *xx &xxdevice[md->md_unit]; 

#ifndef sun386 
1* 
* Vector number given in kernel config file and passed by the autoconfiguration 
* process during boot. This code does not apply to the Sun386i. which does not 
* support vectored interrupts. 
*1 

if (md->md_intr) 

/ * so we will be using vectored interrupts * I 

/ * WRITE interrupt number TO THE DEVICE * / 
xx->c_addr->intvec = md->md_intr->v_vec; 

/* Setup argument to be passed to xxattach * / 
* (md->md_intr->v_vptr) = (int)xx; 

else { / * WRITE auto-vector code TO THE DEVICE * / 
xx->c addr->intvec = AUTOBASE + md->md_intpri; 

/ * any other attach code * / 
#endif 
} 

1* 
* Handle interrupt - called from xxpo 11 and for vectored interrupts. 
*1 
xxintr (xx) 

struct xx_device *xx; 

/ * handle the interrupt here * / 

1* 
* Polling (auto-vectored) interrupt routine 
*1 

xxpoll () 
{ 

register struct xx device *xx; 
int serviced = 0; 

/ * loop through the device descriptor array * / 
for (xx = xxdevice; xx < &xxdevice[NXX]; xx++) { 

if (!xx->c-present I I 
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(xx->c_iobp->status & XX_INTR) 0) 
continue; 

serviced = 1; 
xxintr (xx) ; 

return (serviced); 

The kernel provides numerous service routines that device drivers can take 
advantage of. The most important of these routines can be clustered into the 
functional groups given here. These routines, as well as many others, are 
described more completely in the Kernel Support Routines appendix to this 
manual: 

If a device needs to know about real-time intervals, 

timeout (func, arg, interval) 
int (*func) () ; 
caddr_t arg; 
int interval; 

is useful. timeout () arranges that after interval clock-ticks, the June is called 
with arg as argument, in the style (*fune)( arg). interval is often expressed as a 
multiple of the external variable hz, since hz gives the number of ticks per 
second on the host machine. (lO*hz, then, specifies a timeout often seconds). 
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to terminate an attempt to 
read a device if there is no response within a specified number of seconds. Also, 
the specifiedfunc is called at "software" interrupt priority from the lower half of 
the clock routine, so it should conform to the requirements of interrupt routines 
in general- you can't, for example, call sleep () from withinfunc, although 
you can call wakeup (). (See also untirneoutO). 

Another key set of kernel routines is sleep () and wakeup () . The call 

sleep (event, software-priority) 
caddr_t address; 

l int priority; J 
~---------

makes the process wait (allowing other processes to run) until the event occurs; at 
that time, the process is marked ready-to-run. When the process resumes execu
tion, it has the priority specified by software yriority. 

The call 
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Raising and Lowering 
Processor Priorities 

[ wakeup (event) 
caddr_t address; 

indicates that the event has happened, that is, causes processes sleeping on the 
event to be awakened. The event is an arbitrary quantity agreed upon by the 
sleeper and the waker - it must uniquely identify the device. By convention, 
event is the address of some data area used by the driver (or by a specific minor 
device if there's more than one). 

Processes sleeping on an event should not assume that the event has really hap
pened when they are awakened, for wakeup () wakes all processes which are 
asleep waiting for the event to happen. Processes which are awakened should 
check that the conditions that caused them to go to sleep are no longer true. 

Software priorities can range from 0 to 127; a higher numerical value indicates a 
less-favored scheduling condition. A distinction is made between processes 
sleeping at priority less than or equal to P ZERO and those sleeping at numeri
cally greater priorities. 

If a process is blocked in sleep () at a priority less than or equal to PZERO,dt 
will not be awakened upon receipt of a signal; the signal will not be processed 
until the process is awakened elsewhere and returns to user mode. (This means 
that a user cannot interrupt such a process by typing their interrupt character). 
Thus, it is a bad idea to sleep with priority less than or equal to P ZERO on an 
event that may not occur. 

On the other hand, if a process is blocked in sleep () at a priority greater than 
P ZERO, and if a signal is sent to the process, it will be awakened. However, the 
call to sleep () will not return. This means that the routine that called 

] 

sleep () cannot clean up after receiving the signal. If the routine needs to do 
such clean up, it can arrange for this by DRing the PCATCH flag into the priority 
it passes to sleep (). If this is done, and sleep () is interrupted by a signal, it 
will return 1; if the process is woken up normally, sleep () will return O. 

In general, sleeping at priorities less than or equal to P ZERO should only be used 
to wait for events that occur quickly, such as disk and tape liD completion. 
Waiting for events that may not occur quickly-for example, the typing of a par
ticular key by a human at a keyboard-should be done at priorities greater than 
PZERO. 

Incidentally, it is a gross error to call sleep () in a routine called at interrupt 
time, since the process that is running is almost certainly not the process that 
should go to sleep. 

At certain places in a device driver it is necessary to raise the processor priority 
so that a section of critical code cannot be interrupted, for example, while adding 
or removing entries from a queue, or modifying a data structure common to both 
halves of a driver. 

The splx () function changes the interrupt priority to a specified level, and then 
returns the old value. 
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For configuration reasons, the pr i tospl () macro is necessary to convert a 
Main Bus priority level to a processor priority level. The Main Bus priority level 
can be found in eithermd->md_intpri ormc->mc_intpri, where it is put 
by the autoconfiguration process. (These structures are defined in 
/usr / include/ sundev /mbvar. h). 

Here's how you normally use the pritospl () and splx () functions in a 
hypothetical strategy () routine: 

hypo_strategy (bp) 
register struct buf *bPi 

register struct mb_ctlr *mc 
hypoinfo[minor(bp->b_dev)]i 

int s; 

s = splx(pritospl(mc->mc_intpri»; 
while (bp->b_flags & B_BUSY) 

sleep«caddr_t)bp, PRIBIO); 

here is some critical code section 

(void)splx(s); / * Set priority to what it was previously * / 

Alternatively, spln can be used to set the processor to a certain fixed priority 
level. 

On the Sun-2, Sun-3 and Sun-4, the routine mbsetup () is called when the dev
ice driver wants to start up a DMA transfer to the device, for DMA transfers 
require Main Bus resources. The MBI_ADDR () macro can then be used to 
transform the abstract integer returned by mbsetup () into a DVMA transfer 
address. At some later time, when the transfer is complete, the device driver 
calls the mbrelse () routine to inform the Main Bus resource manager that the 
transfer is complete and the resources are no longer required. 

On the Sun386i, the mbsetup () and dma_setup () routines are called when 
the device driver wants to start up a DMA transfer. After the transfer is com
plete, the driver calls mbrelse () and dma_done (). 

The kernel provides a number of routines designed to transfer data between the 
user and kernel address spaces. These include copy in () and copyout () , 
general routines designed to move blocks of bytes back and forth. They also 
include uiomove () , ureadc () and uwritec () ,routines which are 
designed to transfer data to or from a uio structure (see Some Notes About the 
UIO Structure in the The "Skeleton" Character Device Driver chapter for more 
details about this structure). 
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Kernel print f () Function 

Macros to Manipulate Device 
Numbers 

The kernel provides a printf () function analogous to the printf () func
tion supplied by the C library for user programs. The kernel pr in t f ( ) , how
ever, is more limited. It writes directly to the console, and it doesn't support 
pr intf () 's full set of formatting conversions. See the Debugging with 
printf () section of this manual for more details on the use of the kernel 
printf (). 

A device number (in this system) is a 16-bit number (typedef short 
dev _ t) divided into two parts called the major device number and the minor 
device number. There are macros provided for the purpose of isolating the major 
and minor numbers from the whole device number. The macro 

major (dev) 

returns the major portion of the device number dev, and the macro 

minor (dev) 

returns the minor portion of the device number. Finally, given a major and a 
minor number x and y, the macro 

dev_tmakedev(x,y) 

returns a device number constructed from its two arguments. 
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5.1. Installing and 
Checking the Device 

Setting the Memory 
Management Unit 

5 
Driver Development Topics 

The central processor board (CPU) of the Sun Workstation has a set of PROMs 
containing a program generally known as the "Monitor". (See the appropriate 
PROM Commands chapter of the PROM User's Manual for detailed descriptions 
of the monitor commands and their syntax). The monitor has three basic pur
poses: 

1) To bring the machine up from power on, or from a hard reset (monitor k2 
command). 

2) To provide an interactive tool for examining and setting memory, device 
registers, page tables and seg~ent tables. 

3) To boot SunOS, stand-alone programs, or the kernel debugger kadb. 

If you simply power up your computer and attempt to use its monitor to examine 
your device's registers, you will likely fail. This is because, while you may have 
correctly installed your device (a process that includes specifying its virtual 
memory mapping in the config file) those mappings are SunOS specific, and 
don't become active until SunOS is booted. The PROM will, upon power up, 
map in a set of essential system devices - like the keyboard - but your device 
is almost certainly not among them. 

When installing a new device, you will use the monitor primarily as a means of 
examining and setting device registers. But before even beginning the develop
ment of your driver, it's a good idea to attach your device to the system bus and 
use the monitor to manually probe and test it. This will give you a chance to 
become familiar with the details of its operation, and to ensure that it works as 
you expect it to. 

Upon power-up, the PROM monitor: 

D Maps the beginning of on-board memory, up to 6 megabytes, to low virtual 
addresses starting at virtual OxO. 

D Sun-2 machines only. Maps the bus spaces into virtual address space, for the 
purpose of supporting Multibus devices. Multibus 10 space is mapped from 
OxEBOOOO to OxEBFFFF on Sun-2 Multibus machines. On Sun-2 
VMEbus machines, vme16d16 is mapped from OxEBOOOO to OxEBFFFF 
so that Multibus cards attached by way of VMEbus adapter cards can be 
accessed. These two address spaces, Multibus 110 and vrne16d16, are not 
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Selecting a Virtual Address 

remapped by the SunOS kernel. This means that, for example, that kernel 
virtual address OxEBEE40 can be used to talk to a device at OxEE40 in 
Multibus 10 space without setting up a mapping. (This shortcut is only pos
sible for the two 16-bit Sun-2 spaces). 

Later, using the autoconfiguration process, SunOS makes a pass through the 
config file (actually, through the ioconf file that was produced as output by 
config when it processed the config file). For each device, SunOS selects an 
unused virtual address (using an algorithm that doesn't presently concern us) and 
maps it into the device's physical address as specified in the config file. 

SunOS then calls the xxprobe () routine for each device~ passing it the chosen 
virtual address. In this way, xxprobe () is kept from having any knowledge of 
the physical address to which the device is mapped. xxprobe () then deter
mines whether or not the device is present. If it isn't, the virtual address can be 
reused. 

To test a device, ignore the SunOS mappings and use the monitor to manually set 
the MMU to map your device registers to a known address in physical memory. 
Then you can use the monitor to verify its proper operation. This verification 
process will consist primarily of using the monitor's 0 (open a byte), E (open a 
word) and L (open a long word) commands to examine and modify the device's 
registers. Note that, in Sun-4 machines, words and long words are both 32 bits in 
length. 

The process of setting up the device for initial testing consists of three discrete 
steps. 

o The selection of an appropriate virtual address for the testing of the device. 

o The determination of the physical address of the device, as well as the 
address space that it occupies. 

o The use of the monitor to map the system's virtual address to the device's 
physical address. Detailed discussion of these three steps follow. 

Since Sun OS initializes the MMU in the course of its autoconfiguration process, 
it's possible to test a device by actually installing it, and then booting and halt
ing SunOS. (You can halt SunOS by pressing the 'Ll' and 'A' keys simultane
ously, or, on a terminal console, by hitting the <BREAK> key). Having gotten to 
the monitor by this route, the MMU will be initialized to its SunOS run-time 
state. You can then use the monitor to test the device, or, if you wish, boot 
kadb. (A hard reset- the monitor's k2 command-will set the to MMU to its 
pre-SunOS power-up state). But while using the SunOS memory maps may occa
sionally be useful, it's not what you want to do during the first stages of device 
integration. 

First, understand that the MMU, when mapping a virtual address to a physical 
address, is actually mapping to a page of physical memory and an offset within 
that page. The low-order bits of a virtual address, those that specify the offset, 
do not get mapped - an address that is X bytes from the beginning of its virtual 
page will be X bytes from the beginning of whatever physical page it gets 
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mapped into. 

The mapping mechanism is the essentially the same for all Sun systems, although 
the details of address size and page mapping differ. This can be seen in the fol
lowing diagrams: 

Figure 5-1 Sun-2 Address Mapping 
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Figure 5-2 Sun-3 Address Mapping 
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Figure 5-3 Sun-4 Address Mapping 
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Figure 5-4 Sun386i Address Mapping 
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The easiest way to select a virtual address for PROM-monitor testing is to use 
one between Ox4000 and OxlOOOOO on Sun-2, Sun-3, and Sun-4 systems, or 
a x 2 a 0 a a and 0 xl 0 a a a a on Sun386i systems. Addresses in these ranges are 
unused by the monitor in the respective Sun models, and are thus available. 

-
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(Note that these addresses, while convenient for testing, are not those that the 
kernel will choose when your device is finally installed). 

It's most convenient to select a virtual address which has only zero's in its low
order bits. This way you select the first address in a virtual page. The low-order 
bits in the address you choose will remain unchanged. With' X' representing 
the unmapped low-order bits (11 for a Sun-2, 13 for a Sun-3 or Sun-4, 12 for a 
Sun386i the test address 0 x4 0 0 0 is, in binary: 

Sun-2: 0000 0000 0010 OXXX XXXX XXXX 
Sun-3: 0000 0000 0000 100X XXXX XXXX XXXX 
Sun-4: 0000 0000 0000 0000 100X XXXX XXXX XXXX 

Sun386i: 0000 0000 0000 0000 0100 XXXX XXXX XXXX 

(24 bits) 
(28 bits) 
(32 bits) 
(32 bits) 

Your board may be preconfigured to some address. If it is, then use that address 
unless it conflicts with the address of an already installed device. If it does, you 
will have to find an unused physical address at which you can install your device. 
To do so, examine the kernel config file for the system upon which you are work
ing. Tables in the Hardware Context chapter show memory layouts correspond
ing to typical configurations, but if your system has departed at all from the 
nonn, you will have to consult your kernel's config file (to determine where dev
ices have been installed) and the header files for the corresponding device drivers 
(to determine how much space they consume on the bus). 

When selecting a virtual to physical mapping, it's best if you understand a bit 
about the internals of the Memory Management Unit. To this point we've only 
stressed that the MMU maps the top bits of the virtual address, leaving the offset 
bits unchanged. Now it will be necessary to explain the mapping process in more 
detail. 

Some new concepts are necessary to discuss the details of virtual to physical 
memory mapping. 

o The context register (of real concern only on the Sun-2) is a register specify
ing which of memory contexts should be used when mapping virtual 
addresses to physical addresses. Sun-2 and Sun-3 Context Registers contain 
3 bits, and specify one of eight memory contexts; Sun-4/260 Context Regis
ters contain four bits, and specify one of 16 memory contexts. Each SunOS 
process segment (containing either code, data or stack) is kept within a sin
gle memory context. 

o Sun-3s have user and kernel address spaces in the same hardware con
text. That is to say, there is only one virtual address space, a portion of 
which is used by the kernel and the rest by user processes. Sun-4 virtual 
address spaces are divided into two chunks. One of them is at the top of 
the addressable virtual memory space and the other is at the bottom. 
The size of the unused space between these two spaces varies with the 
model- in the Sun-4/260 each of the two virtual address spaces is 512 
megabytes in size, and the space between them consumes 15 Gigabytes. 
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o Sun-2s, on the other hand, segregate kernel and user processes into 
separate hardware contexts with separate address maps. Kernel 
processes are run in the supervisor context (context 0) and only 
processes in context 0 have access to the I/O devices. 

o The segment map is used in conjunction with the context register to select 
the page map entry group (PMEG) corresponding to the virtual address 
being mapped. The eight bits in the segment register specify one of a group 
of 256 PMEGs. 

o Within each page map entry group there are 16 page table entries. 

o The page map maps the PMEG returned from the segment mapping with a 
second subfield of the incoming virtual address to exactly specify a single 
page table entry describing the physical page within which the virtual 
address is mapped. 

o The page table entry (PrE) is the final output of the MMU. A PrE specifies 
the physical address of a page, as well as its type (e.g., on-board memory 
space), protection, and the state of its access and modified flags. 

Note (for Sun-2 machines only): when testing your device, it's necessary to 
ensure both that you are in supervisor state and that you are in context zero (the 
kernel context). The monitor normally initializes to supervisor state, but if you 
enter it by way of an abortfrom SunOS, you will remain in whatever context you 
were in at the time of the abort. To be on the safe side, begin all of your monitor 
sessions with the command S 5. This will put you into supervisor data state, 
where you want to be. Note one important exception to this rule: if you've 
mmap () , ed the device into your (user) program's address space and want to 
check that this worked, you must use the S 1 command instead of the S 5 com
mand. This will cause user function codes to be used when accessing page maps 
and data. 
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Note the following diagram of the Sun-2 MMU: 
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: 
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11 

Note that: 

D The lower 11 bits of the incoming virtual address are passed through the 
MMU without being mapped - these are the bits that specify the position 
within the page, regardless of whether that page is physical or virtua1. 

D Multiple segment maps can specify the same PMEG, and often do. 

D The PTE, on the output side of the MMU, specifies a variety of kinds of 
status information for the specified page, as well as the top bits of its physi
cal address. 

The process of mapping a virtual to a physical address consists, in practice, of 
plugging the right number into the right PTE. The monitor provides a simple 
means of addressing the right PTE, but you will have to calculate the right value 
to plug into it. 
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Table 5-1 

On Sun-2 systems, hardware PrEs are 32-bit numbers with the following struc
ture. 

V r w x r w x Type a m Unused (8) Physical Page # (12) 

I I I I I I 

Most of the PrEs that we will deal with will have similar structures, and so we 
can begin by making a "template" bit mask that we can use to construct our stan
dard PTEs. One acceptable mask will assume values as follows: 

v (valid) = 1 
rwxrwx = 111111 
(a/m) accessed/modified 00 
unused = 00000000 

Thus, we can see that our template will be: 

1111111 Type 
1 ,I o 0 0 0 000 0 

I I , I I I I I I I I I 

Physical Page # (12) 

This gives us a mask of OxFEOOOOOO (if we assume that the type field is 
0000). Now, as already mentioned, there are four types of memory, represented 
in the PTE by values of 0, 1, 2 and 3 in the type field indicated above. (Types 0 
and 1 have the same meaning in both Multibus and VMEbus machines, but types 
2 and 3 do not. Type 2 is used, on Sun-2 VMEbus machines, to designate the 
first 8 megabytes of the 24-bit VMEbus space - OxO to Ox7FFFFF - and type 
3 is used to designate the second 8 megabytes - Ox800000 to OxFFFFFF. 
(But remember that the top 64K of the 24-bit space is stolen for the 16-bit space). 
This use of two memory types to designate physical memory is necessary 
because the Sun-2 physical address size, 23 bits, is not sufficient to address all 16 
megabytes of vme 2 4 d16. 

Sun-2 PTE Masks 

Type Description Mask 

0 On Board Memory OxFEOOOOOO 
1 On Board I/O Space OxFE400000 
2 (Multibus) Memory Space OxFE800000 
3 (Multibus) I/O Space OxFECOOOOO 
2 (VMEbus) VMEbus Low OxFE800000 
3 (VMEbus) VMEbus High OxFECOOOOO 

To determine the value which we need to plug into the PTE, we must add the 
appropriate mask to the appropriate physical page number, thus giving us the full 
32-bit number that we need. Here, we will cease to explain details and simply 
give a series of rules for calculating physical page numbers. 
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If Sun-2 Multibus: 

If Multibus I/O Space, use Type-3 Template 
If Multibus Memory Space, use Type-2 Template 

Physical Page Number = Physical Address » 11 

If Sun-2 vme24d16: 

If Physical Address >= Ox800000 
Use Type-3 Template 
Physical Page Number = 

(Physical Address - Ox800000) » 11 

If Physical Address < Ox800000 
Use Type-2 Template 
Physical Page Number = Physical Address » 11 

If Sun-2 vme16d16 

sun 
microsystems 

Use Type-3 Template 
Physical Page Number 

(Physical Address + Ox7FOOOO) » 11 
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Sun-3 and Sun-4 Address 
Mapping 

Figure 5-6 
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Consider the following diagram of address mapping on the Sun-3. 
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As you can see, the general scheme is the same as it was in the Sun-2, but the 
details have changed: 

o The MMU is getting a 28-bit virtual address as its input, as opposed to a 24-
bit address in the Sun-2. 

o The number of mode and permission bits in the PTE has been reduced. 

o The number of high-order bits reported out of the MMU, and thus the size of 
the physical address, is variable. The address size is fixed for any given 
Sun-3 machine, and varies only with the model- there are different kinds 
of Sun-3 machines and they have different physical address sizes. 

The Sun-4 MMU is almost the same: 

sun 
microsystems 
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Sun-4MMU 
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As you can see, the Sun-4 MMU is largely identical to the Sun-3 MMU. The 
differences are that: 

o The Sun-4 MMU gets a 32-bit virtual address as its input, as opposed to a 
28-bit address in the Sun-3. The top two bits are immediately shunted off. 
They must be either 00 or 11, and are used to specify one of the two 
"chunks" in the virtual address space. (See Selecting a Virtual to Physical 
Mapping above). 

o The number of bits coming off the Context Register is 4 (to specify one of 
16 contexts) on Sun-4/260s and 3 (to specify one of 8 contexts) on Sun-
4/110s. 

o The number of bits coming off the Segment map is 9 for Sun-4/260s and 8 
for Sun-41l1 Os. 

On both Sun-3 and Sun-4 systems, PrEs are 32-bit numbers with the following 
structure. 
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v w s c Type a m Unused (5) Physical Page Number (19) 

I L I 

As we did with Sun-2 PrEs, we will make a "template" bit mask that we can use 
to construct our standard PrEs. One acceptable mask assumes values as follows: 

v (valid) = 1 
w/s (write ok/supervisor only) = 11 
c (don't cache) = 1 
unused = 00000 

(A one (1) in the don't cache position only dis'ables caching if the type is zero 
(0), since other types of pages are never cached). With the above values, our 
template will be: 

1 1 1 1 Type o 0 o 0 000 Physical Page Number (19) 

I I 1 I I I I 

This gives us a mask of 0 xF 0000000 (if we assume that the type field is 00). 
Thus, the four masks for the four types of memory are: 

Table 5-2 Sun-3/Sun-4 PTE Masks 

Type Descri ption Mask 

0 On Board Memory OxFOOOOOOO 
1 On Board 110 Space OxF4000000 
2 vrne16d16 OxF8000000 
2 vrne24d16 OxF8000000 
2 vrne32d16 OxF8000000 
3 vrne16d32 OxFCOOOOOO 
3 vrne24d32 OxFCOOOOOO 
3 vrne32d32 OxFCOOOOOO 

To determine the value to be plugged into the PrE, we must add the appropriate 
mask to the appropriate physical page number, thus giving us the full 32-bit 
number that we need. Here, again, we will give rules instead of details. 

If vme16d16 
or vme24d16 
or vme32d16 

Use Type-2 Template 
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If vme16d32 
or vme24d32 
or vme32d32 

Use Type-3 Template 

If vme32d16 
or vme32d32 

r 

Physical Page Number Physical Address » 13 

If vme24d16 
or vme24d32 

Physical Page Number = 
(Physical Address +OxFFOOOOOO) » 13 

If vme16d16 
or vme16d32 

Physical Page Number = 
(Physical Address +OxFFFFOOOO) » 13 

Example One: You wish to map a device which you have attached at physical 
Ox280008 onto bus type vrne24d16 on a Sun-3. You will map it at virtual 
OxEOOOOOO. What is the corresponding PTE? 

Well, since we are mapping the device into vme 24 d16, we will use 
OxF8000000 as the template. Then, following the Sun-3 rules, as given 
above, we add the physical address to 0 xFF 0 0 0 0 00. This yields 
OxFF280008. In binary, this is: 

1111 1111 0010 1000 0000 0000 0000 1000 

Shifting this right by 13 yields: 

XXX X XXXX XXXX X111 1111 1001 0100 0000 

Adding the template, 0 xF 8000000, we get values for the 13 bits that are 
undefined from the shift. Thus the PTE is: 

1111 1000 0000 0111 1111 1001 0100 0000 

Which is OxF807F940. 

87 

A final note: we've now calculated the PTE that maps the virtual page beginning 
at OxEOOO 000 to the physical page containing Ox2 8000 8. To get the virtual 
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Getting the Device Working 
and in a Known State 

address by which to access the device it's necessary to take the lower 13 bits of 
the physical installation address - the bits that are just passed through the MMU 
- and add them to virtual 0 xE 0 00000. The lower 13 bits of physical 
Ox2S000S are OOOS, and adding them to OxEOOOOOO yields OxEOOOOOS, 
the virtual address by which the device can be accessed. 

Example Two: You wish to map physical OxEE4S on bus type vme16d32 on a 
Sun-3. Using virtual address OxEOOOOOO, what is the PTE? 

Since we are mapping the device into vrne16d32, we will use 
OxFCOOOOOO as the template. Then, following the Sun-3 rules, as given 
above, we add the physical address to 0 xFFFF 0 000. This yields 
OxFFFFEE4 S. In binary, this is: 

1111 1111 1111 1111 1110 1110 0100 1000 

Shifting this right by 13 yields: 

xxxx XXXX XXXX X111 1111 1111 1111 1111 

Adding the template, OxFCOOOOOO, we get values for the 13 bits that are 
undefined from the shift. Thus the PrE is: 

1111 1100 0000 0111 1111 1111 1111 1111 

Which is OxFC07FFFF. 

To get the virtual address by which to access the device at physical OxEE4S, add 
its lower 13 bits, OxE4S, to OxEOOOOOO -this yields OxEOOOE48. 

Before you even think about writing any code you should check out your device. 
You must get to know it, finding out early if it has any peculiarities that will 
affect its driver. It may, for example, have addressing and data-bandwidth limi
tations. Or, if it's a bus master, it may not implement the release on request 
bus-arbitration scheme the Sun supports. Know the peculiarities of your device 
early, and then test it to verify that it's working before proceeding further with 
driver development. 

Make sure that the board is set up as specified in the vendor's manual. Device 
characteristics which, in general, have to be set properly before the device can 
successfully be used include: 

o I/O register addresses for I/O mapped Multibus boards, 

o Memory base addresses for Multibus boards that use Multibus memory 
space, 

o Address and data widths, 

o Interrupt levels, 

o Interrupt vector numbers for VMEbus device, 

o VMEbus address modifiers, 
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o The bus grant level for VMEbus devices should be set at 3. 

Then, take down your system and power it off. Plug the device into the card 
cage and attempt to bring the system back up. If you can't boot the system, then 
there's a problem. Perhaps the board isn't really working, or perhaps it's 
responding to addresses used by other system devices. You must resolve this 
problem before proceeding further. 

Take SunOS down again and attempt to contact the device using the PROM 
monitor. To do so, you will need to set up a PTE on the Sun-2, Sun-3, or Sun-4 
which maps to the device's physical installation address. Use the procedures 
given above to calculate a PrE, then: 

o Issue the monitor command that puts you into supervisor data state. This 
will be s B for Sun-4 machines and s5 for all others. So, if you have a 
Sun-3, give the 

>55 

command. 

o Calculate, using the procedures given above, the PrE appropriate to the phy
sical address you've chosen. 

o Set the position in the kernel page map that corresponds to your physical 
address to contain the calculated PTE. This will map your chosen physical 
address, thus putting you in contact with your device. You may use the 
monitor's P command to perform this mapping. The P command takes a 
virtual address as its argument, displays the PrE that corresponds to that vir
tual address, and gives you the option of modifying the PTE. For example: 

>pF32000 

selects the page map entry that corresponds to the virtual address of 
o xF 3 2000 and displays it. It also displays a'?', which indicates that you 
may type in a new value to replace the one displayed. (See the appropriate 
PROM Commands chapter of the PROM User's Manual for more details). 
Note that all virtual addresses within a page select the same PTE. 

Having contacted the device from the monitor, try some of the following: 

o Try reading from the device status register(s), if there are any. 

o Try writing to the device control and data registers(s), if there are any. Then 
try reading the data back to see if it got written properly (this assumes, of 
course, that the device allows the reading of these register(s). 

o Try actually getting the device to do something by sending it data. 

o If the device is a controller with separate slave devices, then switch a slave 
on and off and watch for changes in the controller status bits. 

Your goal is to try to actually operate the device, for a moment, from the moni
tor. For example, if you have a line printer, try to print a line with a few charac
ters. Be aware that bit and byte ordering issues are critical in this process. The 
reason you're doing this is to ensure that the device works and that you 

4}~sun 
~ microsystems 
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A Warning about Monitor 
Usage 

5.2. Installation Options 
for Memory-Mapped 
Devices 

Memory-Mapped Device 
Drivers 

understand the way it works. When you understand the device's peculiarities, 
you can proceed to write a driver for it 

When you use the monitor's 0, E or L commands to open a location, the monitor 
reads the present contents of that location and displays them before giving you 
the option to rewrite them. In the best of all possible worlds, this would present 
no problems, but many devices don't respond to reads and writes in as straight
forward a fashion as does normal memory. 

For example, the Intel 8251A and the Signetics 2651 use the same externally 
addressable register to access two separate internal mode registers, and they have 
internal state logic that alternates accesses to the external register between the 
two internal registers. So suppose that you want to put something in mode regis
ter 1 of the 8251. You open the external register, the monitor displays its con
tents, and you then do your write. If, being cautious, you then read the external 
register to check that the data you wrote is there, you will find that it's not
because the read will sequence you on to the second register. 

To deal correctly with such devices, it's necessary to use the monitor's "write 
without looking" facility and then read the locations back later to check them. 
You can write without looking with any of the monitor commands that "open" an 
area of memory; all that's necessary is that you enter a val ue after the 
address argument. For example: 

>1 [address] [value] 

This will cause value to be written into address without first reading its 
current contents. For more information on hardware peculiarities and the prob
lems that they can cause for the monitor, the Hardware Peculiarities to Watch 
Out For section of the Hardware Context chapter. 

Memory-mapped devices are the simplest types of devices to write drivers for. 
Frequently, however, their essential simplicity isn't obvious from a quick glance 
at their source code. This is because many memory-mapped devices are frame 
buffers, and frame-buffer drivers must set up and manage the low-level interface 
for the Sun window system as well as the standard device interface. Conse
quently, they tend to be littered with declarations and manipulations related to 
the "pixrect" (pixel rectangle) system. See the Purect Reference Manual for 
more details. 

Memory-mapped devices are most frequently installed into Sun systems with 
simple drivers that map them into user address space (there are sometimes alter
natives to such drivers, as you will see below). Such memory-mapped drivers 
don't really do much. Obviously, xxprobe () and xxrmnap () must exist, for 
the kernel must be able to check the device installation and perform the actual 
device mapping. And, in addition, xxi n t r () must be real if the device is 
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interrupt driven. Butxxopen () and xxclose () are usually stubs, and 
xxread () and xxwrite () can be calls to nulldev. 

Keep in mind that the major purpose of a memory-mapped driver is to support 
the mmap () system call. This is very important because user processes which 
call window code must first map the frame buffer into their address space. They 
do so with the mmap () system call, which is translated by the kernel into a 
series of calls to the driver's mmap routine. Each of these calls returns page 
table entry information which the kernel needs to map a single page (the next 
page) of frame-buffer memory into a virtual address space. Here's some very 
simple driver xxmmap () code. 

/*ARGSUSED*/ 
cgonemmap(dev,off,prot) 

dev_t dev; 
off_t off; 
int prot; 

return (fbmmap(dev,off,prot,NCGONE,cgoneinfo,CGlSIZE»; 

/*ARGSUSED*/ 
int fbmmap(dev, off, prot, numdevs, mb_devs, size) 

dev_t dev; 
off_t off; 
int prot, numdevs; 
struct mb_device **mb_devs; 
int size; 

int kpfnum; 

if ((u_int) off >= size) 
return -1; 

kpfnum = 
hat_getkpfnum(mb_devs[minor(dev)]->md addr + off); 

return kpfnum; 

dev is, of course, the device major and minor number, and off is the offset into 
the frame buffer (passed down from the user's mmap () system call). prot is also 
passed down from the user's call, but it is not currently used. As you can see, 
there's a bit of shuffling around and then a call to hat _getkpfnum, which 
returns a Page Frame Number whichxxmmap () is expected to return. 

Note that rob dev->md addr is the address of the frame buffer from the Main - -
Bus device structure. This is the device installation address as given in the ker
nel config file. The offset is checked to be sure the user isn't mapping beyond 
the end of the frame buffer. 
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Mapping Devices Without 
Device Drivers 

Under a restricted set of circumstances, it's possible to avoid writing a device 
driver altogether by using the mmap () system call to overlay the device's regis
ters and memory onto user memory. Having done this, you can read and write 
the registers - as if they were normal user memory - from a user program. 

What this really amounts to is piggybacking the new device onto an another, sys
tem standard, virtual memory device (and its driver). The mmap () routine of a 
system virtual memory device is then used to do the user-device mapping, and 
the "installation" is accomplished without the development of a driver specific to 
the user device. Instead, a user level program is written, one that calls the 
nuna p () system call. 

The restrictions on this shortcut are, however, fairly severe. 

D The device must not require any special handling of the type that would go 
into xxioctl () . 

D The device (including all its control registers) must work with user function 
codes, since that's what it will get when mapped into and then accessed from 
user space. 

NOTE MC680XO processors, SPARC processors and the Intel 80386 all run in either 
'user' or 'supervisor' state. Many devices, in turn, restrict certain of their 
operations, and will only perform them when the processor is in supervisor state. 
The Sun CPU is in supervisor state only when executing kernel code. This means 
that device drivers, which are part of the kernel, can issue device commands 
which are not available from user processes. Also note that, when the CPU is in 
supervisor state, as it is when driver code is executing, the device will receive 
different VMEbus address modifier codes than when the CPU is in user state. 
For details about these codes see the VMEbus specification). 

D The device must not require any other sort of special handling - it cannot, 
for example, be multiplexed, interrupt driven, or do DMA. 

D Finally, there are security problems associated with this sort of installation. 
Since the system virtual-memory devices are normally owned by and res
tricted to the superuser, your programs will either have to change their per
missions to allow normal users to access them, or will have to run with 
superuser privileges. The former strategy is usually not acceptable in the 
long run, because it creates a gaping hole in the security of the system. And 
it's far from clear that the second alternative is desirable either. 

The virtual-memory devices of interest here are those that support mapping over 
the entire range of a virtual address space. They are: 
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Table 5-3 Virtual Memory Devices 

Machine Type 

Multibus (Sun-2 only) 
Multibus (Sun-2 only) 
VMEbus 
VMEbus 
VMEbus (Sun-3 and Sun-4) 
VMEbus (Sun-3 and Sun-4) 
VMEbus (Sun-3 and Sun-4) 
VMEbus (Sun-3 and Sun-4) 
ATbus (Sun386i only) 
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Memory Device Name 

mbmem 
mbio 
vme16d16 
vme24d16 
vrne32d16 
vme16d32 
vme24d32 
vme32d32 
atmem 

In addition, there are memory pseudo-devices that support access to the on-board 
devices that users are allowed to access. These are / dev / fb, / dev /mem and 
/ dev /kmem (See the mem (4) manual page for details). 

/ dev / fb is a memory device which, on any given system, is set up to address 
the local frame-buffer device. It can be used as if it were a system memory dev
ice - on any given system, / dev / fb can be mmap () 'ed into user memory and 
then written to, with the effect of writing the local frame buffer memory. 

To use mmap () with one of the system memory devices, you must do three 
things: 

o Open the device. 

o Calculate the offset which you will need to call mma p ( ). This offset is 
merely the device address on the appropriate system memory device rounded 
to a page boundary. That is to say that you get the offset from the device 
manual and/or the switches on the device itself. 

o Call mmap () to allocate virtual space and map in the physical bus address 
of your device, which you must know. (See the Hardware (:ontext chapter 
for a discussion on how to pick a good physical address from the informa
tion in the system config file). 

The following example program uses / dev / fb rather than one of the virtual 
memory devices. It makes a good example because it maps the system frame 
buffer into user memory so that it can then be written from a user program. It 
uses mmap () to set things up, but doesn't bother with calling munmap () , 
because unmapping occurs automatically when the memory device is closed. 
This close occurs implicitly when the program ceases execution. (The machine 
segment size is 128K for the Sun-2 and Sun-3; 256K for the Sun-4; and 4Mbytes 
for the Sun386i. Areas greater than the machine segment size should be mapped 
only with special care. For details, see the discussion ofmmap () in the User 
Support Routines appendix). 

Once the device has been mapped into user space it can be treated as a piece of 
local user memory. (Remember that memory accesses performed by way of this 
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mechanism will be reflected - at the device level - as non-privileged (user) 
accesses. This is because mmap () accesses inherit the privilege of the process 
that calls mmap ( ). Thus, if memory is mapped by a driver, subsequent accesses 
to it will have the standard supervisor data access privilege, but if it's called from 
a user process, as described here, subsequent accesses will be non-privileged. 
Attempts to access supervisor-only device registers without supervisor privilege 
might produce a bus error, i.e., they're inaccessible from a user program, and 
thus a kemellevel driver must be written to manipulate them. The device will 
also receive different address modifier codes when accessed from a user process 
than when accessed via a device driver). 

tinclude <stdio.h> 
tinclude <sys/file.h> 
tinclude <sys/mman.h> 
tinclude <sys/types.h> 

/ * Width and Height of Frame Buffer in Bits * / 
tdefine WIDTH 1152 
tdefine HEIGHT 900 

main () 
{ 

int fd; 
unsigned len; 
char *addr; 

/ * Open the frame-buffer device * / 
if «fd = open("/dev/fb",O_RDWR» < 0) 

syserr (n open") ; 

/ * Compute total number of bytes * / 
len = «WIDTH * HEIGHT)/8); 

/* 
* offset must be page aligned. /dev/fb 
* is already aligned withframe-buffer memory 
*/ 

offset = 0; 

/ * Map device memory to user space * / 
addr = mmap«caddr_t)0, len, PROT_READIPROT_WRITE, 

MAP_SHARED, fd, 0); 
if (addr == (caddr_t)-1) 

syserr("mmap failed"); 

writeFB(addr) ; 
exit(O); 

wr i teFB (addr) / * Write to frame buffer * / 
char *addr; 

sun 
microsystems 
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char color; 
int i,j; 

color = OxFF; 
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for (i = 0; i < HEIGHT; i++) 
color = -color; 
for (j = 0; j < WIDTH/8; j++) 

*addr++ = color; 

syserr (msg) /* print system call error message and terminate * / 
char *msg; 

extern int errno, sys_nerri 
extern char *sys_errlist[]i 

fprintf(stderr,"ERROR: %s (%dn , msg, errno); 
if (errno > 0 && errno < sys_nerr) 

fprintf(stderr, "; %s)\n", sys_errlist[errno])i 
else 

fprintf(stderr,")\nn); 
exit(l); 

NOTE This example uses the special memory device / dey / fb, since this device is 
always set up to address the frame buffer memory. 

Direct Opening of Memory 
Devices 

So, despite the plethora of limitations on the sorts of devices that can be installed 
by way of mapping them into user space, it's quite an easy thing to do. If your 
device characteristics are such that this is an option, you may well wish to take it 
And even if such an installation isn't an attractive long-term option (for example, 
because of unacceptable security problems) it may still be attractive as a short
term alternative to driver development. Even in environments where security 
considerations make it unacceptable in the long term, it can allow you to get your 
device up and running very quickly. Sometimes this counts for a lot. 

It should be noted, for the purpose of completeness, that there's another approach 
to avoiding driver development, one that's even easier than the use ofmrnap () 
described here, and even more limited. That is, it's possible to simply open the 
virtual memory device that contains your board, to seek to the location of its 
registers, and then to read and write those registers as if they were regular 
memory. 

This approach has most of the same problems as does the use ofmrnap (), and is 
notable mainly because, with it, the device receives supervisor function codes. It 
does, however, introduce new problems. It doesn't give you the same degree of 
control as does mma pO, and you often need that control when dealing with dev
ices. When you use rrunapO, the device actually becomes part of your user 
memory space, and it's left to the compiler to generate exactly the I/O accesses 
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which you implicitly specify in your structure and variable declarations. You 
can always access exactly what you want, and the accesses occur directly as 
move byte and move word operations. Thus they are very fast 

When, however, you simply open a system memory device as a file and then read 
and write to it, your communication with your board is mediated by the I/O sys
tem. The I/O systems will always try to do the "right thing" (if you request I/O 
at an odd address or for an odd number of bytes it will perform byte access as 
appropriate; otherwise it will use short integers), but it still doesn't give you the 
kind of control that can be had using mma pO. Furthermore, I/O operations 
involve lots of code, and take hundreds of times as long as direct references to 
mmap () 'ed references, which proceed by way of the MMU and use low-level 
store and move instructions to directly access device registers and memory as 
physical memory. 

So the bottom line is that, unless you need to access a device only a few times, or 
if you need to receive supervisor function codes (and the corresponding VMEbus 
address-modifier codes) and performance isn't critical, you can do your installa
tion by opening a system memory device and then seeking to your device regis
ters and memory space. Otherwise, use nunap () or write a driver. If you do 
decide to use the open ( ) /1 seek () method, do so with low-level 110 rather 
than with the standard I/O library. The standard 110 library implements a buf
fered I/O scheme which will add considerably to your problems. 

The following user program is similar to the example above, in that it writes the 
same pattern to the memory of a frame buffer. This time, though, the write is 
done by way of the I/O system rather than by using mma pO, and the frame buffer 
is taken to be installed at OFFSET (whatever the device physical installation 
address is) in the vrne24d16 memory space. 

NOTE Since all Sun VMEbus machines have a built-in, on-boardframe buffer, this 
example is only meaningful/or color frame buffers. On Sun-2 Multibus 
machines, however, this code would work with / dev / obmem and an offset of 
BW2MB FB. 

iinclude <stdio.h> 
iinclude <sys/types.h> 
iinclude <sys/param.h> 
iinclude <sys/buf.h> 
iinclude <sys/file.h> 

void syserr(); 
long lseek(); 

/ * Width and Height of Frame Buffer in Bits * / 
idefine WIDTH 1152 
idefine HEIGHT 900 

main () 
{ 

int fd; 
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/ * Open the system menwry device containing the frame buffer * / 
if «fd = open ("/dev/vme24" , O_RDWR) ) < 0) 

syserr("open"); 

/ * Seek to the frame buffer menwry * / 
if (lseek(fd, (long) OFFSET, L_SET) -lL) 

syserr("lseek") ; 

writeFB(addr); 
exit(O); 

writeFB (fd) /* Write toframe buffer * / 
int fd; 

char color; 
int i,j; 

color = OxFF; 
for (i = 0; i < HEIGHT; i++) 

color = -color; 
for (j = 0; j < WIDTH/8; j++) { 

if (write (fd, &color, 1) == -1) 
syserr("write") ; 

As described above, it's a good idea to begin debugging by using the monitor to 
check that the device has been installed at the intended address, and that it works, 
before proceeding to debug your device driver. This allows you to avoid debug
ging the device simultaneously with the driver, and experience that you'd like to 
avoid for as long as possible. Alternatively, if you're confident in both yourdev
ice and the correctness of your installation, you can simply make a new kernel, 
boot it and proceed with debugging. In this case you should put some 
pr in t f () messages - see below - into the xxprobe () routine. Then you 
can at least see the device get contacted and initialized. 

Debugging drivers is significantly more difficult than debugging regular user pro
grams, for a number of reasons: 

o In the first place, device drivers are part of the system kernel. This means 
that the system is not protected from their errors. Addressing errors, for 
example, will frequently trip hardware traps and crash the system. 

o As mentioned above, there's the possibility that the device hardware will be 
buggy. For this reason, you can't really trust your environment in the same 
way as you can when writing a user program on a mature computer system. 

o Some device behave in rather peculiar ways. (See A Warning about Monitor 
Usage, above). 

Revision A, of 9 May 1988 



98 Writing Device Drivers 

o Finally, the debugging environment in the kernel is thinner than it is in user 
space. There is a kernel debugger, kadb, and this a a big step towards mak
ing life easier for driver developers. Still, life remains more difficult when 
debugging in kernel space. 

It's possible to prototype drivers in user address space by using techniques 
similar to those described in the Mapping Devices Without Device Drivers 
section of this chapter. The same constraints given there apply to prototyp
ing. In particular, it's not possible to run an interrupt routine, or to probe 
for non-existent devices without generating bus errors from prototype 
drivers in user space. If the device generates no interrupts, and if it doesn't 
do DMA, the entire driver might be able to run in user space. 

For all these reasons, you should give extra care to desk-checking your code, and 
check a reference manual when not absolutely sure of the meaning of a given 
construction. Don't take chances. 

Also, make changes incrementally. Don't try to save time by making many 
changes at once. You will save time in the long run if you take the time to add 
and test a few parts at a time. Keep your feet on solid ground. 

Use trace output from printf(), as described below. Drivers can act in surpris
ing ways, and the best way to proceed is by making the flow of operations highly 
visible. 

NOTE On the Sun386i system, the loadable drivers feature makes driver development 
much easier because the code-compile-reboot-test cycle is reduced to code
compile-load-test. 

Debugging with printf () With the availability of kadb, the kernel debugger, the importance of 

The window systems should not be 
up when you use printf () to 
debug a driver because its output 
will go to the console window. On 
the Sun386i system, it is best to set 
the global variable newlog to o. 

printf () in the debugging of device drivers has been significantly reduced. 
Still, even with kadb available, pr intf () statements remain useful as means 
of providing synchronous tracing of overall driver flow and structure. kadb can 
be made to provide a similar sort of tracing (by tying print commands to strategi
cally chosen breakpoints) but this won't altogether eliminate the printf () 
statement. The pr intf () has long found application in driver debugging, and, 
as a matter of taste and experience, some pI:ogrammers will continue to use it. 
For this reason, we will discuss its use in some detail. 

The kernel printf () sends its message directly to the systems console, 
without going through the tty driver. As a consequence, the printing is 
uninterruptible-the characters aren't buffered. Furthermore, pr int f () runs at 
high priority, and no other kernel or user process activity takes place while its 
output is being produced. printf () thus radically limits overall system perfor
mance (though this is usually ok while device drivers are being debugged). 

There is a second kernel print statement, uprintfO. uprintfO, however, is 
of little use to driver developers. It attempts to print to the current user tty as 
identified in the user structure, and prints to the console only if there's no 
current user tty (at which it becomes identical to printfO). uprintf () can
not be called from lower-half routines, which run in interrupt context and cannot 
make any assumptions about the user structure (where uprintf () looks to 
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determine the current user tty). uprintf () is most useful for production 
drivers, like tape drivers that encounter media errors, which want to report errors 
not to a programmer but to the user. 

There are occasions in which the use oJprintf () (or uprintf()) statements 
will change the behavioroJyourdriver. printf () statements,Jor example, 
can affect the timing oj operations in the driver being tested as well as in other 
drivers. The output may be so slow relative to other device operations that inter
rupts are lost and system failures are introduced; thus, it is frequently impossible 
to synchronously trace a device interrupt routine. Driver code may begin to fail 
only when pr intf () s are introduced, or, even worse, only when printf () s 
are disabled. If you' re debugging a tty driver, you may evenface a situation 
where printf () -based tracing generates new calls to the driver being 
debugged. Thus, there are situations in which it cannot be used. In such situa
tions, you should use kadb or the techniques suggested below in the section on 
Asynchronous Tracing. 

The best way to use printf () statements for tracing driver execution is by set
ting things up so that you can toggle printing by using the kernel debugger, 
kadb (see below) to set and reset print-control variables. Doing so is very sim
ple. At the top of the driver source file, include statements like: 

:If:ifdef XXDEBUG 
int xxdebug = 0; 
:If:define XXDPRINT if (xxdebug > 0) printf 
:If:endif 

(It's important that the variables like xxdebug be global, so that you can later 
access them freely from the debugger - remember that all drivers are part of one 
program, the kernel, and name your print-control variables so as to avoid naming 
conflicts). 

Then, instead of calling printf () inside the driver routines, call XXDPRINT. 

Each call should be in the form: 

:If:ifdef XXDEBUG 
XXDPRINT ("driver name ... ", ... ) ; 
:If:endif 

which will only call printf () if XXDEBUG is defined and xxdebug is set to a 
value greater than O. 

Make sure that each call to XXDPRINT identifies the driver, for it's possible that 
you, or some other programmer, will want to see debugging output from several 
drivers at once. And leave the debugging code in for a while after you're 
finished - bugs may surface later. 

Having set things up like this, you can turn the pr intf () 's on or off at any 
time by using kadb to set unset or change the print-control variable xxdebug. 
Or you can use adb if you wish, running it at user level in a separate window: 

.~sun 
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Event-Triggered Printing 

example adb -w /v.munix /dev/kmem 

(adb won't allow you to set breakpoints in the kernel, but it will allow you to set 
and unset variables - you can change the value of xxdebug, or even reset a 
variable which has caused your driver to hang). Remember that you're in the 
kernel and BE CAREFUL. 

Incidentally, / dev / kmem represents the kernel virtual address space, which is 
why it's used here. adb - k / vrnunix / dev / mem, in contrast, generates a 
view of the physical address space, because / dev /mem represents the physical 
memory. This latter command is useful for examining core :files. 

Good places to put printf () statements include: 

o driver routine entry points 

o before critical subroutine calls 

o upon reading status information from the device 

o before writing of commands or data to the device 

o at intennediate points in complex routines 

o at routine exit points 

Note again that you don't have to restrict yourself to a single xxdebug variable, 
or to binary tests that check to see if a variable is on or off. You can use as many 
variables, and as many values for each variable, as necessary to reflect the func
tional divisions most appropriate to your driver. It might even be useful to get 
truly esoteric, and send certain trace statements directly to the user tty (by calling 
uprintf() while the rest use printf () and go to the console. 

In the above discussion, the xxdebug variable was initialized by the compiler, 
and toggled with a debugger. However, it's just as easy to have the driver rou
tines themselves set a trigger variable under pre-chosen conditions. 

For example, if you wanted to enable tracing after a given condition had 
occurred, you could declare xxdebug, just as was shown above, but define 
XXDPRINT somewhat differently: 

*ifdef XXDEBUG 
int xxdebug = 0; 
*define XXDPRINT(v,msg,al,a2) \ 

if (xxdebug> (v)) printf(msg,al,a2); 
*endif 

and then, in the code that checks for the condition: 

*ifdef XXDEBUG 
if (condition) xxdebug 
*endif 

1; 
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Then to call XXDPRINT: 

#ifdef XXDEBUG 
XXDPRINT (0, "driver name ... \n", a, b) ; 
#endif 

One major disadvantage of using the kernel pr int f () is that its output doesn't 
go through a device driver, and thus can't be paused with Control-S or redirected 
to a file. It's possible, then, that printf () will overwhelm you with output. 
There are a number of things that you can do if you run into this problem: 

D If you haven't used multivalued print-control variables, then do so. This 
gives you more control than you have with simple on/off print control, and 
will allow you to reduce the amount to trace noise. 

D You can use a debugger to set the global variable nopr intf. This will 
keep p r i n t f ( ) 's output from being sent to the console, but that output 
will still go to a buffer where kernel error messages are kept before being 
transferred to /var / adm/messages. You can examine the message 
buffer at your leisure, in one of two different ways: 

D From a user window, you can use dme s g. 

D From kadb (or adb on /dev/kmem) you can type msgbuf+lO/s. 

D It's also possible to reconfigure your system so that it uses a hardcopy tenni
nal as its console over a RS-232 line. Then, you won't lose any of the 
printf () output. 

D Best of all, you can get another machine and connect it to your machine over 
a RS-232 line. Having done so, use tip to open a window on the second 
machine as the console of the test machine. You can then use tip's record 
feature (see the tip man page) to make a record of all the stuff that 
p r in t f () is sending to the test machine's console. 

As mentioned above, there are occasions when timing problems forbid the use of 
the printf statement. In these cases, it's a good idea to give up any attachment 
that you might have to printf () statements and use kadb. 

Or, if you prefer, it's possible to deal with timing problems by using kadb to 
patch the nopr in t f variable, and then to check the message buffer to see 
what's going on. Doing so: 

D allows you to continue using the debugging code that you installed before 
encountering the timing problem, and 

D presents you with a sequential list of the events in your driver, a list spelled 
out in English phrases and including interrupt-level events. 

Or, you can simply use kadb for everything. 
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kadb - A Kernel Debugger 

NOTE kadb does not work with versions o/the kernel earlier than 3.2. 

kadb is an interactive debugger similar in operation to adb. kadb differs in 
several key respects from adb. It runs as a standalone program under the PROM 
monitor, rather than as a user process in user address space. And it allows you to 
set breakpoints and single step in the kernel! 

Thus, running a kernel under kadb is significantly different than running it 
under adb - k. The k option to adb merely makes it simulate the kernel 
memory mappings while kadb actually runs in the kernel address space. And 
unlike adb, which runs at user level and as a separate process from the process 
being debugged, kadb runs in system space as a coprocess. It shares not only 
the kernel address space but its CPU supervisor mode as well. 

kadb, for all intents and purposes, is a version of adb. It has the same com
mand syntax and almost the same command set. Thus, you can see the kadb and 
adb manual pages, as well as Debugging Tools/or the Sun Workstation, for 
more details on its use. Note, however, the following points of special interest to 
driver developers: 

D All interrupts are disabled while interacting with kadb (except non
maskable interrupts). Thus, when using kadb to examine memory, the ker
nel remains stable. However, while single stepped instructions are being 
executed, the actual standing priority of the kernel is temporarily restored, 
and interrupts can get dispatched, run and return. You won't notice unless 
you have a break point set in the interrupt routine, which works just fine. 

D kadb is installed so that, when a program is being run under it, an abort 
sequence (LI-A) will transfer control not to the PROM monitor but to kadb 
itself. Once in kadb, you can abort again and be transferred to the monitor. 
The transfer is direct and immediate, so you can use the monitor to examine 
control spaces (e.g. page and segment maps) which are not accessible from 
kadb. The monitor c command will return you to kadb. 

D kadb runs in the same virtual memory space as the kernel itself, and with 
the CPU in supervisor mode. This means that kadb uses the kernel memory 
maps when calculating virtual addresses, and that it can directly examine 
kernel structures. This is in contrast to the situation with adb -k, where 
software copies of the page table entries are used to map virtual addresses to 
physical pages. 

D kadb's memory view is almost the same as that resulting from adb 
/vmunix / dev/kmem. In other ways, however, kadb is much different. 
To give just one example: on Sun-3 machines, where users and supervisors 
share the virtual address space, kadb allows the user to examine the user 
virtual address space (this is not true with adb - k). 

D Finally, be aware that kadb - as a consequence of the way that adb works 
- always does 32-bit memory reads. Even if you tell kadb to read a byte it 
will read a long. This leads to a lack of control that can cause problems 
when reading device registers. (This problem does not exist on the Sun386i. 
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On the Sun386i, when kadb is told to read a byte, it does. Within kacib, 
the B command is used to read a single byte and the v command to write 
one). 

There are various types of errors: "expected" errors like those generated by 
xxprobe () routines, transient errors in operations that can reasonably be 
retried, fatal errors that require controlled shutdowns, and others. The kinds of 
errors that you will face depends upon the kinds of drivers that you write and the 
peculiarities of your devices; few generalizations can usefully be made. 

To further complicate matters, the detection and treatment of errors varies greatly 
from device to device. You should begin by carefully reading your device 
specification manual to determine the error indications that can arise and the 
responses that should be made when they do. Most devices have at least an error 
bit in the control/status register, and usually more detailed error information is 
available. Ideally, you should understand all potential errors, avoid those that 
you can and recover from the rest. This ideal isn't always achievable, but try not 
to leave any obvious holes. If you do nothing else, checkfor device errors and 
use the kernel printf () function to report them to the system console. 

There are various error reporting and management mechanisms available to the 
driver developer. Most of them have already been mentioned as they've become 
relevant; here they are collected and summarized: 

It's difficult to generalize about error-recovery mechanisms, for they are largely 
device specific. It's worth noting, however, that: 

D Some errors are worth retrying and some aren't; the matter is entirely device 
specific. 

D Error-recovery routines should be able to run at the interrupt level. This is 
because errors can occur either synchronously or asynchronously with 
respect to the dispatch of device commands, and, therefore, recovery rou
tines must be callable from interrupt routines. 

D If you do implement error recovery logic, you must do so consistently. The 
data structure that contains retry-status information must be global, and must 
be protected by critical sections. Error-recovery routines, like interrupt rou
tines in general, must take special pains to protect data-structure integrity; 
indeed, they must restore such integrity upon encountering errors they can't 
recover from. 

There are three mechanisms by which driver routines can report errors up to their 
calling routines. The first, of course, is by way of the values that the driver rou
tines return to their callers. The second, and most important, is the error
reporting mechanism based upon the buffer-header. This is the only mechanism 
that can be used when returning errorsfrom xxstrategy (), xxstart () ,and 
xxintr (). (See the discussion of xxintr () error reporting in the Swnmary of 
Device Driver Routines chapter. Finally, it is possible to directly set the global 

Revision A, of 9 May 1988 



104 Writing Device Drivers 

Error Signals 

Error Logging 

Kernel Panics 

error register, u . u _error, from routines in the top half of the driver. 

It is sometimes desirable to have a driver send a software interrupt to the process 
or processes. It's possible, for example, that a device will fail in an unrecover
able fashion - in this case it's perhaps a good idea to signal the user processes, 
rather than merely returning an extraordinary error code. It's also possible 
(though rare) for a driver to encounter serious errors from which it can recover by 
restarting the device - user processes may also need to be notified in this case. 
The kernel psignal () and gsignal () routines can signal either a single 
process or all the processes in a given process group. 

When you use the kernel printf () statement to report errors to the console, 
those errors are also placed into a system error-message buffer accessible to the 
drnesg daemon. dmesg can be, and typically is, run every 30 minutes by the 
crontab daemon, for the purpose of appending the messages in the buffer to 
/ var / adm/me s sage s. Note that the message buffer is small, and that if a lot 
of entries are being written into it, some of them will get lost before being 
transferred into /var / adm/mes sages. 

The most unequivocal way of dealing with an error is to panic when you get it. 
The panic () routine is provided to help you do so in a somewhat controlled 
fashion - panic () is called only on unresolvable fatal errors. It prints "panic: 
mesg" on the console, and then reboots. (Or, if you're running under the 
debugger, it transfers control to kadb). panic () also keeps track of whether 
it's already been called, and avoids attempts to sync the disks (by flushing all 
pending write buffers) if it has, since this can lead to recursive panics. 

The final production version of a driver should call panic () only when 
"impossible" situations are encountered; lesser errors should be recovered from. 
During debugging, though, panic () can be used to implement a passable assert 
mechanism. 

#ifdef XXDEBUG 
if (inconsistent condition) 

panic("Assertion Failed: ... "); 
#endif 

(It's possible to write a fancier assert mechanism, for example by having an 
ASSERT macro which calls an assert () routine which prints error context 
information and then calls panic ( ) , but this minimal hack will perhaps do). 

Finally, note that in cases where it's very important to halt the system immedi
ately after detecting an inconsistent condition, kadb can be used. The driver 
code can test for the inconsistent condition, and then set a debugging variable: 

[

if (inconsistent condition) J 
junk = 1; 

-------------" 
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kadb can then be used to set a breakpoint at the machine instruction generated 
from the assignment to junk. 

System upgrades generally have minimal effects on user-written device drivers. 
The changes that are necessary are rare and release specific. 

Some changes must be made if user-written drivers are to work with new release 
software. In Release 2.0, for example, there was a minor change in one of the 
bus-interface structures. There wasn't much involved in adapting user-written 
drivers, but it had to be done. 

In other cases, changes are optional. When VMEbus machines were introduced, 
for example, drivers had to be adapted to run on them; however, it was possible 
to upgrade Multibus machines without rewriting user-written drivers. 

In any case, any release upgrades that imply changes - either optional or man
datory - to user-written device drivers will be documented in the System Sum
mary and Change Notes for the release in question. 

The Sun386i supports loadable drivers. This feature allows you to add a device 
driver to a running system without rebooting the system or rebuilding the kernel. 
The loadable drivers feature reduces time spent on driver development, and 
makes it easier for users to install drivers from other vendors. 

This section explains how to convert a non-Ioadable driver to be a loadable 
driver. 

Conversion of a non-Ioadable driver to a loadable driver requires an initialization 
or "wrapper" module to be written. The module z zini t . c below is an exam
ple of a wrapper module that contains the same kind of information ordinarily 
provided by a config file and by the linker. Almost all wrappers are identical to 
the example below. Usually, only the actual structure initialization values are 
different. 

The following module is a typical example of an initialization routine for a driver 
named z z that has one controller and one device on that controller. 

iinclude <sys/types.h> 
iinclude <sys/conf.h> 
iinclude <sys/buf.h> 
iinclude <sys/param.h> 
iinclude <sys/errno.h> 
iinclude <sundev/mbvar.h> 
iinclude <sun/autoconf.h> 
iinclude <sun/vddrv.h> 

extern zzopen(), nulldev(), zzstrategy(), zzdump()i 
extern zzsize(), zzread(), zzwrite(), zzioctl()i 
extern zzint(), nodev(), seltrue()i 

extern struct rob driver zzcdriveri / * defined in driver * / 
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1* 
* Driver block device entry points (normally in <sun/ conf . c» 
*1 
struct bdevsw zzbdev = { 

zzopen, nulldev, zzstrategy, zzdump, zzsize, 0 
} ; 

1* 
* Driver character device entry points (normally in <sun/ conf . c» 
*1 
struct cdevsw zzcdev = { 

zzopen, nulldev, zzread, zzwrite, zzioctl, nodev, 
nulldev, seltrue, 0 

} ; 

1* 
* Controller structure (normally in ioconf . c) (see <sundev /mbvar. h» 
*1 
struct mb_ctlr zzcctlr[] = { 

&zzcdriver, 0, 0, (caddr_t) OxOOOOl000, 2, 6, 
SP_ATMEM, 0 

} ; 

1* 
* Device structure (normally in ioconf. c) (see <sundev/mbvar .h» 
*1 
struct mb_device zzcdevice[] = { 

&zzcdriver, 0, 0, 0, (caddr_t) OxOOOOOOOO, 0, 0, OxO, 
0, OxO 

} ; 

1* 
* ThefoUowing structure is defined in <sun/vddrv. h> 

* 
* If the number of controllers is 0, then the address of the 
* controller structure array must be NULL. Similarly, if the number 
* of devices is 0, then the address of the device structure array 
* must be NULL. The bdevsw or cdevsw entries can be NULL if there 
* is no block or character device for the driver. 
*1 
struct vdldrv vd 

VDMAG I C_DRV , 

"zzdrv", 
zzcctlr, 
&zzcdriver, 
zzcdevice, 
1, 

} ; 

1, 
&zzbdev, 
&zzcdev, 
0, 
0, 

sun 
microsystems 

{ 

/ * Type of module. This one is a driver. * / 
/* Name of the module. * / 
/ * Address of the mb _ ctlr structure array * / 
/ * Address of the mb _driver structure * / 
/ * Address of the mb _device structure array * / 
/ * Number of controllers * / 
/ * Number of devices * / 
/ * Address of the bdevsw entry * / 
/ * Address of the cdevsw entry * / 
/ * Block device number. 0 means let system choose. * / 
/ * Char. device number. 0 means let system choose. * / 
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1* 
* This is the driver entry point routine. The name of the default entry point 
* is xxxinit. It can be changed by using the" -entry" command to mod/oad. 

* 
* inputs: function code - VDLOAD, VDUNLOAD, or VDSTAT. 

* pointer to kernel vddrv structure for this module. 
* pointer to appropriate vdioctl structure for this function. 
* pointer to vdstat structure (jor VDSTAT only) 

* 
* return: 0 for success. VDLOAD function must set vdp->vdd _ vdtab. 
* non-zero error code (from errno.h) if error. 

* 
*1 

xxxinit(function_code, vdp, vdi, vds) 
unsigned int function_code; 
struct vddrv *vdp; 
addr t vdi; 
struct vdstat *vds; 

switch (function_code) 
case VDLOAD: 

vdp->vdd_vdtab 
return (0); 

case VDUNLOAD: 

(struct vdlinkage *)&vd; 

return (unload (vdp, vdi»; 
case VDSTAT: 

return (0); 
default: 

return (ErO); 

static unload(vdp, vdi) 
struct vddrv *vdp; 
struct vdioctl unload *vdi; 

extern struct buf zztab; 

struct buf *dp; 

dp = &zztab; 
if (dp->b_actf) 

ret urn (-1); / * The driver still has an active request. * / 

/ * The driver can do any device shutdown stuff that it needs to do * / 

return(O); 
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Your driver routines can be placed in the wrapper module if you like. If your 
driver is big, it is more appropriate to break it into several modules. 

If you decide to place your driver in the wrapper module, then the driver can be 
compiled with the following command line: 

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \ 
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \ 
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \ 
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzinit.c 

However, if the driver consists of more than one module, then you must use the 
link editor, Id(l), with the -r option to preserve relocation information. For 
example you might type: 

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \ 
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \ 
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \ 
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzinit.c 

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \ 
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \ 
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \ 
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzl.c 

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \ 
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \ 
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \ 
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zz2.c 

examplet ld -r -0 zz.o zzinit.o zzl.o zz2.0 

Thus the object module can be created either by the cc(l) command, when the 
driver resides in one module, or by the Id(l) command, when the driver resides 
in several modules. 

In either case the resulting object file ( z z in it. 0 or z z . 0) is a normal COFF 
file and can then be used with the modload command.5 The driver is just like 
any other program, except its text segment starts somewhere in the range 
OxFDOOOOOO to OxFEOOOOOO. 

S "COFF' = Common Object File Fonnat, a UNIX object-file standard to which Sun386i assembler and 
link-editor output files (nonnaUy a • out) comply. See co f f(5). 
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6 
The "Skeleton" Character Device 

Driver 

This chapter presents one of the simplest drivers you could ever hope to 
encounter, a driver for an imaginary Multibus character device known as the 
"Skeleton" device. Both programmed I/O and DMA versions of the driver will 
be discussed. There is a complete version of this driver in the Sample Driver 
Listings appendix to this manual - the parts are presented piecemeal here with 
some discussion of their functions. 

What we're doing here is inventing the very simple, I/O mapped, Skeleton con
troller. It's actually a "free device" with no separate controller and no separate 
slaves. It has a single-byte command/status register, and a single-byte data regis
ter. It's a write-only device. It's not a slow tty-type device - you can provide 
vast blocks of data and the Skeleton board gets it all out very fast. It interrupts 
when it's ready for a data transfer, and comes up in the power-on state with inter
rupts disabled and everything else in neutral. 

Note: the Skeleton device is capable, in both its simple and its DMA variants, of 
writing chunks (not to say "blocks") of data in a single operation. It is, therefore, 
a character device that can make good use of xxstrategy () routines, phy
sio () ,buf structures and other block-I/O mechanisms. As explained in Ker
nel Topics and Device Drivers, its use of these mechanisms does not make it a 
block driver. Rather, its simple needs are a subset of the needs of block drivers, 
and it's convenient here for form to follow function. 

Let us assume that we've installed the Skeleton board with its control/status 
register at 0 x 600 in Multibus I/O space - this puts its data register at 0 x 60 l. 
The control/status register is both a read and a write register, with bit assign
ments as shown in the tables below. 
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BIT 7 

Read 

BIT 7 
Write 

6 5 4 3 

6 5 4 3 

2 1 

2 1 

Reset 

o 

o 
Enable 

Interrupt 

Here is a brief description of what the bits mean: 

When reading from the status register 

bit 7 is a 1 when the board is interrupting, 0 otherwise. 

bit 3 is a I when the device that the board controls is ready for data 
transfers. 

bit 2 is a I when the Skeleton board itself is ready for data transfers. 

bit 0 is a 1 when interrupts are enabled, 0 when interrupts are dis
abled. 

When writing to the status register 

bit 2 resets the Skeleton board to its startup state - interrupts are 
disabled and the board should indicate that it is ready for data 
transfers. 

bit 0 enables interrupts by writing a 1 to this bit, disables interrupts 
by writing a O. 

The header file for this interface is in skreg. h. By convention, we put the 
register and control information for a given device (say xy) in a file called 
xyreg . h. The actual C code for the xy driver would by convention be placed 
in a file called xy. c. The header file for the Skeleton board looks like this: 
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/* 
* Registers for Skeleton Multibus 110 Interface -- note the byte swap 
*/ 

struct sk_reg { 
char sk_data; 

} ; 

/ * 01: Data Register * / 
/* 00: command(w) and status(r) * / 

/* sk csr bits (read) */ 
#"define SK INTR Ox80 /* Device is Interrupting * / 
#"define SK_DEVREADY Ox08 /* Device is Ready * / 
#"define SK INTREADY Ox04 /* Interface is Ready * / 
#"define SK ERROR Ox02 /* Device Error * / 
#"define SK INTENAB OxOl /* Interrupts are Enabled */ 

#"define SK ISTHERE Oxoc /* Existence Check; 
Device and Interface Ready * / 

/* sk csr bits (write) */ 
#"define SK RESET Ox04 
#"define SK ENABLE OxOl 

/ * Reset Device and Interface * / 
/ * Enable Interrupts * / 

The complete device driver for the Skeleton board consists of the following 
parts: 

skprobe 
is the autoconfiguration routine called at system startup time to determine if 
the sk board is actually in the system, and to notify the kernel of its memory 
requirements. 

skopen and skclose 
routines for opening the device for each time the file corresponding to that 
device is opened, and for closing down after the last time the file has been 
closed. 

skwrite 
routine that is called to send data to the device. 

skstrategy 
routine that is called from skwr i te () via physio () to control the actual 
transfer of data. 

skstart 
routine that is called for every byte to be transferred. 

skpoll 
the polling interrupt routine that services interrupts and arranges to transfer 
the next byte of data to the device. 

The subsections to follow describe these routines in more detail. 
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6.1. General Declarations 
in Driver 

In addition to including a bunch of system header files, there are some data struc
tures that the driver must define . 

.. /h/param.h" 

.. /h/buf.h" 

.. /h/file.h" 

.. /h/dir.h" 

.. /h/user.h" 

.. /h/uio.h" 

iinclude 
iinclude 
iinclude 
:ftinclude 
iinclude 
:ftinclude 
iinclude 
iinclude 

.. /machine/psl.h" 

.. /sundev/mbvar.h" 

iinclude "sk.h" 1* file generated by config; 
contains the definition of NSK * / 

iinclude "skreg.h" 1* registerdefinitions */ 

idefine SKPRI (PZERO-l) /* software sleep priority for sk * / 

idefine SKUNIT(dev) (minor(dev» 

struct buf skbufs [NSK] ; /* static buffer headersfor physio * / 

/ * autoconfiguration-related declarations * / 
int skprobe (), skpoll () ; 1* kernel interface routines * / 
struct mb_device *skdinfo[NSK]; 
struct rob_driver skdriver = { skprobe, 0, 0, 0, 0, skpoll, 

sizeof(struct sk_reg), "sk", skdinfo, 0, 0, 0, 0, 
} ; 

/ * device state information -- global to driver * / 
struct sk_device { 

char soft_csr; 
struct buf *sk_bp; 
int sk_count; 
char *sk_cp; 
char sk_busy; 

skdevice[NSK]; 

/ * software copy of csr * / 
/ * current buf * / 
/ * number of bytes to send * / 
/ * next byte to send * / 
/ * true if device is busy * / 

Here's a brief discussion on the declarations in the above example. 

sk. h file is automatically generated by config. It contains the definition 
of NSK, the number of sk devices configured into the system. 

SKPRI declaration declares the software priority level at which this device 
dri ver will sleep. 

SKUNIT macro is a common way of obtaining the minor device number in a 
driver. Study just about any device driver and you will find a 
declaration like this - it is a stylized way of referring to the minor 
device number. One reason for this is that sometimes a driver will 
encode the bits of the minor device number to mean things. other 
than just the device number, so using the SKUNIT convention is an 
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probe () Routine 

skbufs 
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easy way to make sure that if things change, the code will not be 
affected. 

array is necessary so that the driver will have its own buf headers to 
pass to the ph Y s i 0 () routine. Character drivers should never use 
buf headers from the kernel's JlO queue. physio () will fill in 
certain fields (only a few, really) before calling xxstrategy () 
with the buf structure as the argument. 

There then follows a series of declarations, one for each of the 
autoconfiguration-related entry points into the device driver. In this driver, the 
only such entry points we use are skprobe () (which probes the Main Bus dur
ing system configuration) and skpoll () (the polling interrupt routine). 

skdinfo is an array of pointers to the rob_device structures that correspond 
to the driver's devices. The autoconfiguration process will initialize 
it during kernel boot time. 

skdriver 
is a definition of the rob driver structure for this driver. An 
explanation of the fields in this structure and how they are initialized 
appears in the Autoconfiguration-Related Declarations section of 
this manual. 

This data structure is the major linkage to the kernel. It must be 
called driver-namedriver where driver-name is the name of the 
device driver. config assumes that all device-driver structures 
have names in the fonn driver-namedr i ver. 

sk device 
is a definition of a structure, global to the driver, that holds driver
specific state information. 

Sun device drivers are tightly bound to the Sun autoconfiguration system. They 
assume, at compile time, that certain services have been provided for them by 
config, and they, in tum, provide boot-time hooks by which the kernel can 
determine if the actual system configuration matches that given in its conf ig 
file. 

There are, essentially, two autoconfiguration routines provided by the driver. 
The first is xxp robe ( ) , the second xxa t t a c h ( ). For more information, see 
the Overall Kernel Context section of this manual. 

There should be an xxprobe () function in every driver. During the system 
boot each device entry in the config file generates a call to the xxprobe () rou
tine in the corresponding driver. xxprobe () has three functions: 

1. To detennine if a device is present at the address indicated i~ the config file. 

2 To detennine if it's the expected type of device. 

3. To notify the kernel of the system resources required for the device. 
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Under normal circumstances, addressing non-existent memory or 110 space on 
the Multibus or the VMEbus generates a bus error in the CPU. The kernel, how
ever, supports checking for device existence with a set of functions designed to 
probe the address space, recover from possible bus errors, and return an indica
tion as to whether the probe generated a bus error. 

These functions are peek () ,peekc () , peekl () ,poke () ,pokec () ,and 
pokel (). They provide for accessing possibly non-existent addresses on the 
bus without generating the bus errors that would otherwise terminate the process 
trying to access such addresses. peek () and poke () read and write, respec
tively, 16-bit words ("shorts" on Sun2s and Sun3s, "half-words" on Sun-4s). 
peekc () and pokec () read and write 8-bit characters. In general, you will 
use the character routines for probing single-byte I/O registers. See the Kernel 
Support Routines appendix for details on these routines. 

Having determined whether the device exists in the system, the xxprobe ( ) 
function returns either: 

o the size (in bytes) of the device structure if it does exist. The kernel uses the 
value returned from probe () to reserve memory resources for that device. 
For both I/O-mapped and memory-mapped devices, xxprobe () returns the 
total amount of space consumed by the device registers and memory. 

o a value of 0 (zero) if the device does not exist. 

Now we can write skprobe ( ) : 

/*ARGSUSED*/ 
skprobe(reg, unit) 

caddr_t reg; 
int unit; 

register struct sk_reg *sk_reg; 
register int Ci 

sk_reg = (struct sk_reg *)reg; 

/ * contact the device * / 
c = peekc«char *)&sk_reg->sk_csr); 
if (c == -1 I I (c != SK_ISTHERE» 

return (0) i 

/ * contact the device * / 
if (pokec«char *)&sk_reg->sk_csr, SK_RESET» 

return (0); 

return (sizeof (struct sk_reg»; 

The reg argument is the purported address of the device, as given in the config 
file. The unit argument is only needed for controller drivers that must distinguish 
among multiple slave devices. 
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The xxprobe () routine determines that the device actually exists, resets it to 
make sure that it's ready to go, and then returns the amount of bus space that it 
uses to the kernel autoconfiguration process. If xxprobe () finds the device, the 
rod_ali ve field in the device structure is set to 1, otherwise it's set to O. 
rod_ali ve is subsequently used by other driver (and kernel) functions to check 
that the device was probed successfully at startup time. (These routines can also 
check the device's position in the driver's xxdi n f 0 () array (if it has one) to see 
if it's been initialized). 

The second autoconfiguration routine is xxa t t a c h ( ). The purpose of xxa t -
tach () is to do device-specific initialization. Such initialization may include 
the issuing of commands to the actual device hardware, for example, the disa
bling of its interrupts, or it may be entirely confined to the initialization of local 
device-specific structures. It's up to the driver what kind of initialization is done 
inxxattach (). 

The Skeleton device is artificially simple, and it requires no initialization besides 
the assignment of SK _RESET into its control/status register. This assignment, as 
you will note, has already been done in skprobe () , where it serves as a doub
lecheck on the correct installation of the device. Since no further initialization is 
necessary, the Skeleton driver needs no attach () routine. 

During the processing of an open () call for a special file, the system always 
calls the device's xxopen () routine to allow for any special processing required 
(rewinding a tape, turning on the data-terminal-ready lead of a modem, and so 
on). However, the xxclose () routine is called only when the last process 
closes a file, that is, when the i-node table entry for that file is being deallocated. 
Thus it is not feasible for a device driver to maintain, or depend on, a count of its 
users, although it is quite simple to implement an exclusive-use device that can't 
be reopened until it has been closed. 

skopen () is quite straightforward. It's called with two arguments, namely, the 
device to be opened, and a flag indicating whether the device should be opened 
for reading, writing, or both. The first task is to check whether the device 
number to be opened actually exists - skopen () returns an error indication if 
not. The second check is whether the open is for writing only. Since the Skele
ton device is write only, it's an error to open it for reading. If all the checks 
succeed, skopen () enables interrupts from the device, and then returns zero as 
an indication of success. Here's the code for skopen () : 

.~sun 
• microsystems 
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skopen(dev, flags) 
dev_t dev; 
int flags; 

register int unit = SKUNIT(dev); 
register struct mb_device *md; 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]; 

if (unit >= NSK II md->md_alive 0) 
return (ENXIO); 

if (flags & FREAD) 
return (ENODEV); 

/ * enable interrupts * / 
skdevice[unit] .soft_csr 

/ * contact the device * / 
sk_reg->sk_csr skdevice[unit] .soft_csr; 

return (0); 

The first if statement checks if the device actually exists. The first clause 

(unit >= NSK) 

is necessary because, as root, someone could make a special file that has a minor 
device number greater than NSK then try to open it. This actually isn't unusual, 
many /dev directories have entries for devices that are not really installed. The 
second clause tests to see if the probe routine found the device. Note the use of 
the SKUNIT macro to obtain the minor device number - we discussed this ear
lier on. Also note that we're maintaining a copy 

(skdevice[unit] .soft_csr) 

of the control/status register in memory. Each time we write the register we will 
do so first in memory and then in the actual hardware register. We will do this 
doggedly, to make the point that we must protect ourselves from the potential 
side effects of inadvertent calculations within registers. For example 

csr &= -SK ENABLE 

has the side effect of reading the csr register - and patterns read from this regis
ter are not always identical to those written into it (For more information, see 
the Hardware Peculiarities to Watch Out For section of the Hardware Context 
chapter). 

skclose () is quite straightforward, since all it does is disable interrupts: 
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/*ARGSUSED*/ 
skclose(dev, flags) 

dev_t dev; 
int flags; 

register int unit = SKUNIT(dev); 
register struct mb_device *md; 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]; 

/ * disable interrupts * / 
sk_reg = (struct sk_reg *)md->md_addr; 
skdevice[unit] .soft_csr &= -SK_ENABLE; 

/ * contact the device * / 
sk_reg->sk_csr skdevice[unit] .soft_csri 

skclose () could in fact be more complicated than this. It could, for example: 

o deallocate resources that were allocated for the device being closed, or 

o shut down the device itself, for example by signaling a port to hang up. 

The Skeleton device is write-only, but this discussion would apply equally to 
reading in such a non-tty oriented character device. 

When a read or write takes place, the user's arguments - as well as some 
system-maintained information about the file to which the 110 operation is to be 
performed - are used to initialize two structures - uio and iovec - that are 
used for character 110. The fields of greatest interest within these structures are 
iovec. iov_base, iovec. iov_len, and uio. uio_offset which 
respectively contain the (user) address of the liD target area, the byte-count for 
the transfer, and the current location in the file. If the file referred to is a 
character-type special file, the appropriate x:xread () or xxwr i te () routine is 
called - this routine is responsible for transferring data and updating the count 
and current location appropriately as discussed below. 

For most non-tty devices, xxread () and xxwr ite () call xxstrategy () 
through the system physio () routine. physio () ensures that the user's 
memory space is locked into core (not paged out) for the duration of the data 
transfer. It also provides an automated way of breaking a large transfer into a 
series of smaller, more manageable ones. Note that character drivers that use 
ph y s io () must declare an array of buf structures, one for each of their dev
ices (here the array is named skbufs). By doing so they avoid any need to use 
the kernel's buffer cache, which is provided for the use of system block
structured devices. 

xxwr it e () differs from xxread () only in the value of the flag it passes to 
physio (). skwrite () looks like this: 
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Some Notes About the UIO 
Structure 

skwrite(dev, uio) 

struct uio *uio; See note on the uio structure below 

int unit SKUNIT (dev) ; 

if (unit >= NSK) 
return (ENXIO); 

return (physio(skstrategy, &skbufs [unit] , dev, 
B_WRITE, skminphys, uio»; 

The skminphys () routine is called by physio to determine the largest rea
sonable block size to transfer at once. If the user requests a larger transfer, phy
sio () will call skstrategy () repeatedly, requesting no more than this 
block size each time. This is important when DVMA transfers are done. 
(DVMA is covered in more detail below). The reasoning is that only a finite 
amount of address space is available for DVMA transfers and it is not reasonable 
for any device to tie up too much of it. A disk or a tape might reasonably ask for 
as much as 63 Kilobytes; slow devices like printers should only ask for one to 
four Kilobytes since they will tie up the resource for a relatively long time. 
Here's the skminphy s () routine. 

skminphys(bp) 
struct buf *bp; 

if (bp->b_bcount > MAX_SK_BSIZE) 
bp->b_count = MAX_SK_BSIZE; 

Note that if you don't supply your own minphys () routine, you place the name 
of the system supplied minphys () routine, whose name is minphys (), as the 
argument to physio () in its place, and the system supplied m'inphys () rou
tine gets used instead. This is not always a good thing, however, for the system 
routine divides an 110 operation into 63K chunks, and this can be too large for 
optimum system performance when the device in question is slow (like a 
printer). 

When the system is reading and writing data from or to a device, the uio struc
ture is used extensively (see /usr/ include/ sys/uio. h for more informa
tion). The uio structure is generalized to support what is called gather-write 
and scatter-read. That is, when writing to a device, the blocks of data to be writ
ten don't have to be contiguous in the user's memory but can be in physically 
discontiguous areas. Similarly, when reading from a device into memory, the 
data comes off the device in a continuous stream but can go into physically 
discontiguous areas of the user's memory. Each discontiguous area of memory is 
described by a structure called an iovec (I/O vector). Each iovec contains a 
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pointer to the data area to be transferred, and a count of the number of bytes in 
that area. The uio structure describes the complete data transfer. uio contains 
a pointer to an array of these iovec structures. Thus when you want to write a 
number of physically discontiguous blocks of memory to a device, you can set up 
an array of iovec structures, and place a pointer to the start of the array in the 
uio structure. In the simplest case, there's just one block of data to be 
transferred, and the uio structure is quite simple. Note that physio () will call 
the strategy routine at least once for each iovec contained by the uio structure. 

xxstrategy () is called by physio () after it has locked the user's buffer 
into memory. The name strategy originated in the world of disk drivers, and 
implied that the routine could be clever about queuing I/O requests (for example, 
by disk address) so as to minimize time wasted by the disk. The skstra
tegy () routine has no such problems, since it doesn't queue I/O requests for a 
random-access device. Still, a number of tasks remain - skstrategy ( ) 
must check that the device is ready, initiate the data transfer, and wait for its 
completion to be signaled by the interrupt routine. Note that skstrategy () 
can safely assume that physio () has properly initialized a number of variables 
- here we will assume that the b dev field in the buf has been set to contain 
the device number. 

skstrategy(bp) 
register struct buf *bPi 

register struct rob device *mdi 
register struct sk_device *Ski 
int S; 

md skdinfo[SKUNIT(bp->b_dev)]i 
sk &skdevice[SKUNIT(bp->b_dev)]; 

s = splx(pritospl(md->md_intpri»; /* begincriticalsection */ 
while (sk->sk_busy) 

sleep«caddr_t) sk, SKPRI); 

/ * set up for first I/O operation * / 
sk->sk_busy = 1; 
sk->sk_bp = bPi 
sk->sk_cp = bp->b_un.b_addri 
sk->sk_count = bp->b_bcount; 
skstart(sk, (struct sk_reg *)md->md_addr)i 

(void) splx (s) i / * end critical section * / 

xxstrategy () doesn't actually do any I/O. It just insures that the device is 
not busy, (by sleeping on the address of a data structure that is global to the 
driver) sets up for the first I/O operation and then calls xxskstart () to g~t 
things rolling. The critical section is necessary because xxs t rat egy () is 
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6.6. Skeleton start () 
Routine 

trying to acquire the device on behalf of one, and only one, user process. 

xxstart () is actually responsible for getting the data to or from the device. 
skstart () is called once directly from skstrategy () to get the very first 
byte out to the device. After that, it is assumed that the device will interrupt 
every time it is ready for a new data byte, and so skstart () is thereafter 
called from skintr ( ). Here is one possible skstart () routine: 

skstart(sk, sk_reg) 
struct sk device *sk; 
struct sk_reg *sk_reg; 

if (--sk->sk_count > 0) { 
sk->soft csr = SK_ENABLE; 

/ * contact the device * / 
sk->soft_csr; 

This routine will work, but not very efficiently. There's a lot of overhead in tak
ing a device interrupt on every character. Since we know that the device can 
accept characters very quickly, it would be much more efficient to give the char
acters quickly, and thus avoid generating unnecessary interrupts. xxstart () 
should take advantage of device-specific characteristics to win efficiency 
enhancements of this type. It can wait for characters, check for ready, etc -
here, we will just check after each character and give another one if the device is 
ready for it. Here's the new, more efficient skstart () routine. 
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skstart(sk, sk_reg) 
struct sk_device *sk; 
struct sk_reg *sk_reg; 

while(sk->sk_count > 0) { /* stillmore characters */ 
sk_reg->sk_data 
sk->sk_count--; 

*sk->sk_cp++; 

/ * stop giving characters if device not ready * / 
/ * Note: the softcopy isn't needed for reads * / 
/ * contact the device * / 

/* DELAY(10)mightgohere */ 

if (! (sk_reg->sk_csr & SK_DEVREADY» 
break; 

/ * error-retry logic would go here * / 

/ * still more characters * / 
if (sk->sk_count > 0) 

sk->soft_csr = SK_ENABLE; 

/ * contact the device * / 
sk_reg->sk_csr = sk->soft_csr; 

else { 
/ * special case: finished command without taking any interrupts! * / 

/ * disable interrupts * / 
sk->soft_csr = 0; 

/ * contact the device * / 
sk_reg->sk_csr = sk->soft_csr; 
sk->sk_busy =,0; 

/ * free device to sleeping strategy routine * / 
wakeup«caddr_t) sk); 

/* free buffer to waiting physio * / 
iodone(sk->sk_bp); 

We give characters to the device as long as there are more characters and the 
device is ready to receive them. If we run out of characters, we disable interrupts 
to keep the device from bothering us and call iodone () to mark the buffer as 
done. 

It may be that the device is not quite quick enough to take a character and raise 
the SK DEVREADY bit in the time we can decrement the counter. If so, it would 
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6.7. intr () and poll () 
Routines 

be very worthwhile to busy wait for a short time. The reasoning is that while 
busy waiting is a waste, servicing an interrupt costs lots more CPU time, and if 
busy waiting works fairly often it is a big win. There is a macro DELAY () that 
takes an integer argument which is approximately the number of microseconds to 
delay, so we could add 

DELAY (10) ; 

at the top of the while loop. Clearly this is an area where experimentation with 
the real device is called for. 

Each device should have appropriate interrupt-time routines. When an interrupt 
occurs, it is transformed into a C-compatible call on the device's interrupt rou
tine. After the interrupt has been processed, a return from the interrupt handler 
returns from the interrupt itself. 

The address of the polling interrupt routine for a particular device driver is con
tained in the per-driver (that is, mb _ dri ver) data structure for that device 
driver. It is installed there during the kernel configuration process based upon 
information in the config file. 

Since (on Multibus machines) devices typically need to share interrupt levels, it's 
the specific driver's responsibility to determine if the interrupt is intended for it 
or not. The driver does so by providing a polling interrupt routine that queries 
the interrupt state of each of its devices in tum - if a driver doesn't provide such 
a routine, it won't work correctly on a Multibus machine. Polling interrupt rou
tines that determine that an interrupt belongs to one of their devices must notify 
the kernel to that effect (after servicing the interrupt) by returning a non-zero 
value. If a polling interrupt routine determines that an interrupt is not from one 
of its devices, it must return a zero value. 

It's expected that the device actually indicates when it's interrupting. If there are 
any more bytes to transfer, the interrupt routine calls xxstart () to transfer the 
next byte. If there are no more bytes to transfer, the interrupt routine disables the 
interrupt (so that the device won't keep interrupting when there's nothing to do), 
and finishes up by calling iodone (). (iodone () , incidentally, is another of 
the mechanisms provided primarily for block drivers). Here are the interrupt rou
tines for the Skeleton driver: 
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skpoll () 
{ 

register struct sk_reg *sk_reg; 
int serviced, i; 

serviced = 0; 
for (i = 0; i < NSK; i++) /* tryeachone */ 

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr; 

/ * contact the device * / 
if (sk_reg->sk_csr & SK_INTR) 

serviced = 1; 
skintr(i); 

return (serviced); 

skintr(i) 
int i; 

register struct sk_reg *sk_reg; 
register struct sk_device *sk; 

sk reg = (struct sk_reg *)skdinfo[i]->md_addr; 
sk = &skdevice[i]; 

/ * check for an I/O error * / 

/ * contact the device * / 
if (sk_reg->sk_csr & SK_ERROR) 

/ * error-retry logic would go here * / 

printf("skintr: I/O errorO); 
sk->sk_bp->b_flags 1= B_ERROR; 

/ * I/O transfer completed * / 
if «sk->sk_bp->b_flag & B_ERROR) != 0 II 

sk->sk_count == 0) { 

sun 
microsystems 

/ * clear interrupt * / 
sk->soft_csr = 0; 

/ * contact the device * / 
sk_reg->sk_csr = sk->soft_csr; 
sk->sk_busy = 0; 

/ * free device to sleeping strategy routine * / 
wakeup«caddr_t) sk); 
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/* free buffer to waiting physio * / 
iodone(sk->sk_bp); 

else 
skstart(sk, sk_reg); 

skintr () checks the hardware for an error every time it's called, and upon 
finding an error, calls pr in t f ( ) , flags the error in the 110 buffer and then 
returns. Note that: 

o skintr () needs the buffer header associated with the failed transfer so 
that it can indicate the error in its b _flags field. 

o A retry attempt could be made before giving up and taking the error return. 
Whether or not this is advisable is entirely dependent on the specific device 
and error characteristics. 

o The error return aborts the 110 request that produced the error and then 
places both the device and the driver in their normal idle states. 

6.8. ioctl () Routine xxioctl () is used to perform any tasks that can't be done by xxopen (), 
xxclose () ,xxread () , or xxwri te (). Typical applications are: "what is the 
status of this device", or "go into mode X". The Skeleton device, as we've 
defined it here, is modeless and has no such special functions so we don't have an 
xxioctl () routine. (Though we will add one below in a variation of the Skele
ton driver that supports a form of asynchronous I/O). For details about driver 
xxioct 1 () routines, and the other driver routines, see the Summary of Device 
Driver Routines appendix. 

6.9. Skeleton Driver The Skeleton 110 board isn't particularly realistic, but is does serve to illustrate 
Variations the construction of a basic character driver. In this section, we will propose some 

variations on the basic device, each designed to illustrate a useful technique. 

DMA Variations Devices that are capable of doing DMA are treated differently than the Skeleton 
device we've been working with so far. Let's assume that we have a new version 
of the Skeleton board; call it the Skeleton II. It can do DMA transfers and we 
want to use this feature since it is much more efficient. 

NOTE DMA is different on the Sun386i system. For information about it, see the 
dIna_setup () and dIna_done () routines in the Kernel Support Routines 
appendix. 

Multibus or VMEbus DVMA The Sun processor board is always listening to the Multibus or VMEbus for 
memory references. When there is a request to read or write any address in the 
DVMA space (see the Sun Main-Bus DVMA section of the HardWare Context 
chapter for more information) the DVMA hardware adds a machine-specific 
offset to the address to find the location in kernel virtual memory that contains 
the device RAM being used in the transfer. 
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On Sun-2 Multibus machines, DVMA space consists of all addresses between 0 
and ax3FFFF. On Sun-2 VMEbus machines, it consists of all addresses 
between a xO and a xFFFFF. Upon encountering one of these addresses, the 
DVMA hardware adds a xF 0 a a 0 a to get the system virtual address of the device 
RAM. 

On the Sun-3, the DVMA space is defined by the address range axa to 

axFFFFF for 24-bit or 32-bit addressing; its system virtual address is 
axFFoaaao. 

On the Sun-4, the DVMA space is defined by the same address range used on the 
Sun-3, axa to OxFFFFF for 24-bit or 32-bit addressing. Its system virtual 
address, however, is a xFFF 0 0 0 a o. 

If you wish to do DMA over the Main Bus, you must make entries in the kernel 
memory map to map your device's RAM into the appropriate DVM A space. As 
you might expect, there are subroutines to help with this chore. mbsetup () 
sets up the kernel memory map and mbrelse () clears entries in it to release 
DVM A space. Note that all Sun DMA occurs between the bus and kernel virtual 
address space - if you wish to do DMA directly into a user buffer, you will have 
to first map that buffer into kernel space, then pass it to mbsetup () to map it 
into DVMA space. 

The addition of DMA to the capabilities of the device opens up several new 
options. For the moment, consider only the changes necessary to switch the 
driver over to DMA-style I/O. These changes turn out to be surprisingly straight
forward. First we will extend the sk _reg structure which defines the device 
registers. We will assume that the Skeleton II board is a bus-master which sup
ports 20-bit transfers, and that the following structure overlays its registers. 

struct sk_reg { 

} i 

char sk_datai 
char sk_csri 
short sk_counti 
caddr t sk_addri 

/ * 01: Data Register * / 
/* 00: command(w) and status(r) * / 
/ * bytes to be transferred * / 
/ * 20-bit DMA address * / 

Next we assume that bit 5 in the csr is set to initiate a DMA transfer. 

idefine SK DMA OxlO / * Do DMA transfer * / 
and a definition of the maximum DMA transfer for skminphys () . 

idefine MAX SK BSIZE 4096 / * DMA transfer block * / 

And we must add another element to the sk _device structure for use by 
mbsetup () and mbrelse (). (The alternative would be to use the 
mC_rnbinfo structure in the mb_ctlr structure, but since we don't use that 
structure for anything else, this seems more reasonable): 

int sk_mbinfoi 

Now we change skstrategy () to use the DMA feature. 
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skstrategy(bp) 
register struct buf *bp; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk device *sk; 
int s; 

md = skdinfo[SKUNIT(bp->b_dev)]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[SKUNIT(bp->b_dev)]; 

s = splx (pritospl (md->md_intpri) ) ; /* begin critical section * / 
while (sk->sk_busy) 

sleep«caddr_t) sk, SKPRI); 
sk->sk_busy = 1; 
sk->sk_bp = bPi 

/ * this is the part that is changed * / 

/ * grab bus resources * / 
sk->sk_mbinfo = mbsetup(md->md_hd, bp, 0); 

/ * plug the remainder * / 
sk_reg->sk_count = bp->b_bcount; 

/ * plug bus transfer address * / 
sk_reg->sk_addr = (caddr_t) MBI_ADDR (sk->sk_mbinfo) ; 

/ * make sure we didn't overrun the address space limit * / 
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) 

printf("sk%d: ", sk_reg->sk_addr); 
panic (nexceeded 20 bit address"); 

sk->soft csr = SK_ENABLE I SK_DMA; 
sk_reg->sk_csr = sk->soft_csr; /* contact the device * / 

/ * end of DMA-related changes * / 

(void) splx(s); / * end critical section * / 

There are a number of details here that are worth noting: 

o skstart () is no longer needed and may be completely eliminated. 

o The return value from mbset up () is being saved for use in calls to 
MBI _ ADDR () and mbrelse () . 

o The 32-bit address returned by MBI _ ADDR () is being tested to ensure that 
it doesn't exceed the 20-bits limits of the device. (This wouldn't be neces
sary if the address was sure to be in the DVMA transfer area, which always 
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ends at OxFFFFF or below. However, the transfer address can also be else
where in the VMEbus address space). 

D All the I/O now is started by skstrategy () and continues until 
skpoll () is called-thus we can delete the sk_cp and sc_count 
fields from the sk device structure. 

D There's no longer any need to check the count and sometimes call 
skstart (). Instead, iodone () is always called and physio () is 
relied upon to proceed with the transfer. Note that, with skstart () elim
inated, the call to wakeup () ,as well as the clearing of sk_busy, have 
been moved to skintr () . 

D Finally, skintr () needs to free up the Main Bus resources, so it will call 
mbrelse (). 

Here are the new skintr () and skpoll () routines: 

skintr(i) 
int ii 

register struct rob_device *rndi 
register struct sk_reg2 *sk_reg; 
register struct sk_device *Ski 

rnd = (struct rob_device *)skdinfo[i]i 
sk_reg = (struct sk_reg2 *)rnd->rnd_addri 
sk = &skdevice2[i]i 

/ * check for an 110 error * / 
if (sk _ reg->sk _ csr & SK _ERROR) { / * contact the device * / 

/ * error-retry logic would go here * / 

printf("skintr: I/O error\n")i 
sk->sk_bp->b_flags /= B_ERRORi 

/ * this is the part that changed * / 
sk->soft csr = 0 i / * clear interrupt * / 
sk_reg->sk_csr = sk->soft_csri 
rnbrelse(rnd->rnd_hd, &sk->sk_rnbinfo)i 

sk->sk_busy = 0; 
wakeup ( (caddr _ t) sk); / * free device to sleeping strategy routine * / 
iodone(sk->sk_bp) i /* free buffer to waitingphysio */ 
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Variation with 
"Asynchronous I/O" Support 

skpoll () 
{ 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
int serviced, i; 

serviced = 0; 
for (i 0; i < NSK; i++) { 

md = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
if (sk_reg->sk_csr & SK_INTR) { 

serviced = 1; 
skintr(i); 

return (serviced); 

In this next section, we will assume that we want to further modify the Skeleton 
dri ver to support "asynchronous 1/0". This may, at first sight, seem an odd 
thing to do, for asynchronous 110 is most commonly used for network and 
serial-line devices that have little in common with the Skeleton device. In actual 
fact, however, asynchronous I/O is not limited in application to such devices -
its purpose is to support user processes which need to avoid blocking during 110 
operations, and such functionality is of interest for serial lines, sockets, 
STREAMS and various character devices. 

First, note that the term ','asynchronous I/O" is used, in the UNIX world, to indi
cate two separate mechanisms. In practice, these mechanisms are closely related, 
and both of them will be be covered in this section: 

o The first is "non-blocking 110". This is a type of 110 which, when incapa
ble of immediately proceeding to completion, notifies its user process of this 
fact rather than simply going to sleep (). It thus gives the user process a 
choice of resJX>nses. 

In the UNIX system, non-blocking I/O is traditionally provided by the 
select () system call, which allows a user process to query a device to see 
if it's ready before making a read () or write () request to it, and thus to 
avoid being blocked. (It should be noted that select () isn't really non
blocking 110 proper. It's better thought of as an alternative to device pol
ling, which can waste considerable CPU time). 

o The second UNIX asynchronous 110 mechanism is best called "asynchro
nous notification". With this mechanism available, the user process no 
longer needs to keep trying an 110 operation until it succeeds, because the 
driver will signal () it (with a S IGIO) when one of its 110 channels 
clears. The code necessary to support such asynchronous notification is 
closely related to that necessary to support select () , and it should rou
tinely be provided at the same time as select () sUpJX>rt. 
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The Skeleton driver hasn't really been defined as a device that we would expect 
to have a select () routine. Such routines are most useful for devices which 
aren't always ready, and since we've defined the Skeleton device as being write 
only and arbitrarily fast, we wouldn't expect it to clog. Still, for the purposes of 
this example, we will assume that the Skeleton board is sufficiently slow that it's 
reasonable to have its driver support select ( ) . 

select () is more typically used in serial-line drivers which are multiplexed 
between multiple lines. Before reading, for example, a terminal's keyboard, such 
drivers need to ensure that there are characters waiting. If they didn't, they 
would block so often that their overall performance would be unacceptable. 

select () works by providing user processes with a means of determining if 
110 is possible on a given file descriptor. Alternatively, it has a multiplexing 
feature that makes it possible to determine which of a set of specified descriptors 
is ready to go. It can be told to return immediately, or to block the calling pro
cess until at least one descriptor is ready. A timeout argument can be specified to 
keep the process from blocking forever, or to allow the process to periodically do 
something else. See s e 1 e c t (2) for details. 

The driver's select () routine mayor may not support the full functionality of 
the select () system call. The minimum that it can reasonably do is allow the 
user program to poll the specified device to determine if it's ready: 

skseIect(dev, rw) 
dev_t dev; 
int rw; 

register struct rob_device *rod; 
register struct sk_reg *sk_reg; 
int s = splS () ; 

rod = skdinfo[SKUNIT(bp->b_dev)]; 
sk_reg = rod->md_addr; 

/ * Check if the device is ready * / 
if (sk_reg->sk_csr & SK_DEVREADY) 

(void) splx(s); 
return (1); 

(void) spIx(s); 
return (0); 

Note that, in this example, the rw flag has been ignored because the Skeleton 
device is write only. If, however, it were a read/write device, skselect () 
would switch on rw, and do a separate readiness test for each of ~e READ and 
WRITE cases. Throughout this example we will show only write cases: read 
cases would be handled identically. 
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To extend skselect () to allow user processes to block for specified periods 
of time (or, for that matter, indefinitely) while waiting for an OK to proceed with 
an I/O operation, more must be done. To begin with, we must add two fields to 
the sk_device () structure. Both of them must be initialized to O. 

struct sk_device { 

struct proc *sk_wsel; 
int sk_state; 

/ * user proc structure * / 
/ * select state flag * / 

} ; 

We also need the flag 

#define SK WCOLL OxOl 

which will be used to indicate that a write-select collision has occurred, that is to 
say, that more than one process has attempted to select the device. -.r 

Then, skselect () must be changed, as follows: 

skselect(dev, rw) 
dev_t dev; 
int rw; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk device *sk; 

int s = splS () ; 

md = skdinfo[SKUNIT(dev)]; 
sk_reg = md->md_addr; 
sk = &skdevice[SKUNIT(dev)]; 

/ * Check if the device is ready * / 
if (sk_reg->sk_csr & SK_DEVREADY) 

(void) splx(s); 
return (1); 

/ * Here's the new code * / 
if (sk->sk_wsel && 

(sk->sk_wsel->p_wchan == (caddr t) &selwait» 
sk->sk_state 1= SK_WCOLL; 

else 
sk->sk wsel = u.u-procp; 

(void) splx(s); 
return (0); 
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selwait (), an external integer imported via <sys/ systm. h>, is the "chan
nel" which the select () system call, and only the select () system call , 
uses when it calls sleep (). 

If the device is ready to go, skselect () behaves just as it did above: it returns 
immediately with a 1. If, however, the device isn't ready, a check is made to see 
if it has already been selected. If it hasn't been, the field sk _ wsel is set to 
point to the proc structure of the process doing the select. In effect, we're 
remembering the first process to select the device. If no other processes select 
the same device, this structure will later be used as a "fast path" to the selecting 
process. 

If, however, skselect () finds that sk_ wsel has already been set, the test: 

(sk->sk_wsel->p_wchan == (caddr_t) &selwait) 

is made to see if the process indicated by sk->sk _ wsel is sleeping as a result 
of a call to select (). If it is, the code 

sk->sk_state 1= SK_WCOLL; 

is executed to indicate that a select "collision" has occurred, that is, that a 
second (or third, etc.) process attempted to select the device while the first pro
cess was still waiting for it to become available. 

The rest of the select-related code is executed at interrupt time, so it goes into 
skintr (). One clean way of inserting it is to create a new routine, 
skwakeup () , and to call it from skintr () instead of calling wakeup () . 
(See the non-DMA version of skintr () , above): 

skwakeup(sk) 
register struct sk_device *sk; 

if (sk->sk_wsel) { 1* select ispending *1 

/ * wake up the process * I 
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL); 

/ * reset the select flags * I 
sk->sk_state &= -SK_WCOLL; 
sk->sk_wsel = 0; 

wakeup«caddr_t) sk); 

selwakeup () thus receives a NULL second parameter unless a select collision 
occurred. If such a collision did occur, all processes which are sleeping as a 
result of a select () (any select) are awakened by a call to wakeup () on the 
s e 1 w ai t () channel. Most of them will just go back to sleep, and the ones that 
don't will race for the device. This isn't very efficient, but it doesn't happen very 
often. Usually, the device will be selected by a single process, and the proc 
structure will be used to wake only that process . 
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Adding Asynchronous 
Notification 

Adding an ioctl () routine 

Note that selwakeup () does nothing if sk->sk_wsel is 0, or if there are no 
processes sleeping on selwait (). Thus, if a process has called select () , 
but not gone to sleep (because the device was immediately ready) the subsequent 
interrupt will simply reset the flags. 

If the driver is to support asynchronous notification as well as select () , a bit 
more is necessary. First, a new flag is necessary to indicate that the user has 
requested asynchronous notification: 

#define SK ASYNC Ox02 

And a new field is necessary in the sk_ device structure, which now becomes: 

struct sk_device { 

struct proc *sk_wsel; 
int sk_state; 
short pygrp; 
} ; 

1* user proc structure * I 
I * select state flag * I 
I * user process group leader * / 

The new field, p ygrp must, like the others, be initialized to O. And p _pgrp 
must be initialized in skopen () to indicate the process group leader of the user· 
process opening the device: 

if (sk->pygrp 0) 
sk->pygrp = (u.u_procp)->p-pid; 

Next, we must provide a way for the user process to request that the driver enable 
asynchronous notification. Of course it would be possible for it to always 
operate in asynchronous mode, but then user processes would constantly get sent 
SIGIO signals by the driver, whether they expected them or not. Besides, if the 
Skeleton driver has multiple modes, we must introduce an skioctl () routine 
to toggle them, and that gives us an opportunity to discuss ioctl routines. Actu
ally, there are potentially three system calls that can be used to put a driver into 
asynchronous mode, or, for that matter, into any mode. The most common of 
these is ioctl (2) , and it is it that we will show here. Note, though, that the 
other two possibilities are f cnt 1 ( 2) and open (2) . 

The first step in introducing an ioctl () routine is to define the macros which 
user processes will use to issue commands to the device and its driver. (For 
details, see the discussion of ioctl () routines in the Summary of Device 
Driver Routines appendix to this manual). 

In the case of skioctl () , these macros are few and simple, for skioctl () 
will only toggle the driver mode between synchronous and asynchronous. 
There's no need for the ioctl () macros to either ship data from, or return it to, 
the user program. 

ioctl- related command codes are exported to user processes by means of 
macros kept, by convention, in /usr / include/ sys. In the case of the 
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Skeleton driver, only two macros are necessary, and we will put them into 
/usr/include/sys/skcmds.h: 

#define SKSETSYNC IO(k,O) 
#define SKSETASYNC _IO(k,l) 

The _10 macro is the simplest of the ioctl () macros, being intended for pur
poses like this, where no argument data need be transferred. Here, all that's 
necessary is to define a convention by which 0 indicates synchronous mode (the 
default) and 1 indicates asynchronous mode. Note the first parameter, 'k'. It's 
used, quite arbitrarily, to identify the ioctl () to be vectored to the Skeleton 
driver. It's only necessary to choose a letter that is not already in use by another 
driver. 

The additions to the driver are very simple. First, it must include the file contain
ing its control macros: 

#include <sys/skcmds.h> 

Then, in skioctl () it simply takes the information encoded by the _10 macro 
to toggle the driver's state: 

skioctl(dev, cmd, data, flag) 
dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

register struct sk_device *sk; 
sk = &skdevice[SKUNIT(dev)]; 

switch (cmd) { 

case SKSETSYNC: 
sk->sk state &= -SK_ASYNC; 
break; 

case SKSETASYNC: 
sk->sk state 1= SK_ASYNC; 
break; 

That's it. And now that skioctl () can set the SK_ASYNC flag, 
skwakeup () can reasonably test for it and, if it's set, call gsignal () to send 
the SIGIO signal to the user process group. Note that the SK_ASYNC signal 
must be cleared after calling gsignal ( ) . 
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skwakeup (sk) 
register struct sk_device *sk; 

if (sk->sk_wsel) { /* select ispending */ 

/ * wake up the process * / 
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL); 

/ * reset the select flags * / 
sk->sk_state &= -SK_WCOLL; 
sk->sk_wsel = 0; 

if (sk->sk_state & SK_ASYNC) { 
gsignal(sk->p-pgrp, SIGIO); 
sk->sk_state &= -SK_ASYNC; 
} 

wakeup«caddr_t) sk); 

The final step in adding a select () routine to a driver is to edit the kernel 
conf . c file~ and to plug the name of the new select () routine into the 
cdevsw structure in the place of the "nodev" or "seltrue" that is already there. 
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7.1. Background 
Information 

7 
Configuring the Kernel 

In this chapter, we will assume that you've written your driver. The next step, 
obviously, is to build a kernel that includes your new driver. This process isn't 
difficult; Sun systems support easy kernel configuration, even without access to 
system source code. If the driver is a loadable driver then the kernel is not re
built and therefore the discussion of rebuilding the kernel does not apply. In this 
case, see the Loadable Drivers section of the Driver Development Topics 
chapter. 

In heterogeneous server/client environments, kernels must be configured infairly 
general ways. For one thing, they must work on both Multibus and VMEbus 
machines, for another, they have to tolerate normal variations among system 
devices (e.g. client Ethernet boards may be made by either 3COM or Sun). The 
GENERI C config file thus contains configuration lines for all common devices for 
both bus types. However, if you're configuring a kernelfor a known system, you 
need not carry around extraneous options - you can tailor your configuration 
file as appropriate and thus get a smaller (by 100 kilobytes or more!) and more 
efficient kernel. 

For additional information on kernel configuration, see the Adding Hardware to 
Your System section of Network Programming and the config (8) man page. 
(Incidently, config is found in the /usr / etc/ directory - so make sure that 
your path includes /usr / etc before proceeding). 

First, a simple distinction. If your kernel already contains a certain driver, and 
you're simply installing a corresponding device, you will only need to edit the 
kernel config file - all of the installation specific information about devices 
themselves is contained in this file. If, however, you will be adding a new driver 
to the kernel, you will need to edit some additional files: 

o The first of these is /usr / sys/ sun/ conf . c, a C-Ianguage source-code 
file which contains the definitions of the switches cdevsw and bdevsw, as 
well as a bit of initialization infrastructure for the installed devices. 

o The second is either /usr / sys/ sun2 / conf/files, 
/usr/sys/sun3/conf/files,/usr/sys/sun4/conf/files,or 
/usr / sys/ sun38 6/ conf/ files, (depending upon the type of your 
machine). This file tells conf ig where to find the source code for the ker
nel and its dri verso 
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The discussion in this chapter concerns config, a utility program that is used 
in configuring kernels and initializing the kernel/driver interface structures. 
conf ig is altogether different from the autoconfiguration process, sometimes 
called autoconfig, which is built into the initialization pass of the SunOS ker
nel, and thus run at system boot time. Autoconfiguration completes the run-time 
driver environment initialization that config begins,for example by checking 
that the devices indicated as present in the kernel config file are actually present 
in the running system. Autoconfiguration is discussed in much greater detail in 
the Overall Kernel Context chapter of this manual. 

config's goal is to output a set of files that can be directly used to configure a 
new kernel. The purpose of the configuration may simply be to install a device 
(for which the kernel already contains a driver) or it may be to integrate a new 
device and its driver. The kernel configuration system learns of new devices by 
way of entries in the config file, whereas new drivers are indicated by editing one 
or all of the files conf . c, / us r / conf . common / file s _ cron and 
/usr/sys/sun[234]/conf/files(or 
/usr/ sys/ sun38 6/ conf/files). The files output by config are used in 
the construction of the new kernel, but so are others, notably conf . c itself. 

o ioconf. c - the major input to the autoconfiguration process. It contains 
arraysofmbvarstructures- struct mb_ctlr mbcinit[] and 
struct rob_device robdinit [] - that have been initialized on the 
basis of the device and controller information in the config file. (Incidently, 
the order of the device declarations in the config file will determine the order 
of the structures in ioconf . c, and thus the order in which devices are 
polled). The autoconfiguration process assumes that ioconf . c exists and 
will complete the initialization of its structures by calling xxprobe () , 
xxattach (), andxxslave (). See the Overall Kernel Context chapter 
for more information. 

o xx.h - a set of header files, one for each driver. These header files define 
macros (e.g. #define NSK 2) that tell the drivers how many devices 
they will be managing. The drivers will use these macros at compile time to 
control conditional compilation and to size device tables. 

o mbglue.s - contains assembly-level code that translates from the hardware 
interrupt mechanisms to the device-interrupt routines for the installed dev
ices. It does not exist on Sun-4 or Sun386i machines. 

o Makefile - a makefile that, when executed, will actually make the new ker
nel, compiling and linking files as necessary. Note that the entries in 
/usr/sys/sun[234]/conf/files(or 
/usr / sys/ sun38 6/ conf/ files) refer to source files (Le. 
sundev / sk . c), but that if conf ig fails to find a named source file it will 
set up to use the corresponding object file (from the OBJ subdirectory of the 
configuration directory) instead. Thus, conf ig works on both source 
licensed and object licensed machines. 
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The example that follows assumes that you're adding a driver for the Skeleton 
board (sk. c) to your system. To proceed, you will need a configuration direc
tory and a config file for your new kernel. config will create a configuration 
directory in / u s r / s y s / with the same name as the new config file in 
/usr I sys/conf, so all you have to do is create that file: 

example=#: 
example=#: 

cd /usr/sys/sun[234]/conf 
cp GENERIC SKELETON 

Then edit the SKELETON config file to reflect the presence, in your system, of 
the Skeleton board. As you can see by checking conf ig (8) , each line in the 
file describes a different device - thus, you will simply need to add lines that 
describe the installation of the Skeleton board. The exact fonnat of those lines 
will depend upon the address space within which the board is to be installed. 

The address space that's given in the kernel config file will determine the 
address-space mappings that are set up by the MMU - the virtual addresses that 
the driver receives from the kernel, and then treats as pointers to the device's 
registers, will be within the address space given here. What's important is that 
the driver writer know and specify, at this point, the number of bits in the device 
address, and the number of bits in its data-access length. 

The Skeleton board, as we've defined it, is an IIO-mapped Multibus device with 
an eight-bit status and an eight-bit data register. Thus, in a Sun-2 Multibus 
machine, it would be installed in 110 space; if we put it at offset 0 x 600 within 
that space, we'd add the following line to SKELETON: 

device skO at mbio ? csr Ox600 priority 2 

This says that we have an sk device (the first device is always, by convention, 
number 0) on the Multibus. The device has its control/status register (device 
register) at Multibus I/O address Ox600 (this is passed to xxprobe () at boot 
time) and interrupts at level 2. 

If our machine is a VMEbus machine, we will install the Skeleton device within 
vme16d16 by way of a Multibus-VMEbus adapter. We choose vrne16d16 
because it's the smallest address space: 

device skO at vrne16d16 ? csr Ox600 priority 2 vector skintr Oxe8 

This says that, when plugged into an adapter board, the vector number OxC8 is 
set up to route to the skintr routine. (Vector numbers OxC8 through OxFF are 
reserved for user devices). Notice that Ox60 0 within mbio maps directly to 
Ox600 within vrne16d16. 

On a Sun-3 or Sun-4, it would likewise be reasonable to choose the smallest of 
the available address spaces: 

Each of these config-file entries specify the installation of the Skeleton device for 
either a Multibus or a VMEbus system. It's fine for one config file to contain 
both entries - config will know the type of system that it is running on, and 
automatically use the right entry. 
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Only very rudimentary error checking is done on the config file. For example, if 
you declare a device attached to a controller, you must declare the controller as 
well. Also, a sanity check is done on the timezone and date entries. The check
ing, however, is not comprehensive. 

One more point about the config file. The number of installed devices will be 
determined, for each driver, by config, and it will generate the appropriate 
s k . h header file for you in the configuration directory. 

Now, you can go on with the process of building the new kernel. The next step is 
to edit conf . c, adding to it the names of the entry point routines for the Skele
ton driver, and then installing those routines into the kernel's character device 
switch cdevsw. The following code accomplishes these two goals: 

4tinclude "sk.h" 
#if NSK > 0 
int skopen(), skclose(), skread(), skwrite(), skmmap()i 
#else 
#define skopen nodev 
#define skclose nodev 
4tdefine skread nodev 
#define skwrite nodev 
#define skmmap nodev 
#endif 

struct cdevsw cdevsw[] 
{ 

skopen, skclose, skread, skwrite, 
nodev, nodev, nodev, 0, 
seltrue, skmmap, 

} , 

This will add the driver's routines to cdevsw ifNSK is greater than 0 (NSK is, as 
already explained, calculated by config). Note well that the position in the 
cdevsw where we've installed our routines (the exact position depends, of 
course, upon how many device are already installed) is the same as the major 
device number which we will later assign to all devices driven by this driver -
the major number is an index into cdevsw. 

The entries in cdevsw are, in order, xxopen ( ) ,xxclose ( ) , .x:xread ( ) , 
xxwrite () ,xxioctl () ,xxstop () and xxreset () , at ty structure 
pointer, and finally, xxselect () and xxmmap (). The Skeleton driver doesn't 
have an xxioctl () routine so this entry is set to nodev, the special routine 
that always returns an error. Since our device is not a tty it doesn't have an 
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xxstop () routine (used for flow control) nor does it have a tty structure. 
xxreset () is never used so all devices set its entry to nodev. xxselect () 
is called when a user process does a select (2) system call; it returns 1 if the 
device can be immediately selected. Since the Skeleton device is write only and 
arbitrarily fast, it's always selectable - so we will use the default seltrue 
routine that always returns 1. 

The next step is to edit the file that tells con fig how to locate the driver source 
code. This source code will not be common to all Sun systems, and thus its path
name will go not into /usr /conf. common/files_cmn but into 
/usr/sys/sun[234]/conf/files(or 
/usr / sys/ sun386/ conf / files). Assuming that the driver source is in 
/usr / sys/ sundev, here's the line you must add to 
/usr/sys/sun[234]/conf/files(or 
/usr / sys/ sun386/ conf/ files): 

sundev/sk.c optional sk device-driver 

This says that the file sundev / sk. c contains the source code for the optional 
sk device and that it is a device driver. 

After adding these lines to your configuration file, you can run conf ig: 

example# config SKELETON 

configuses SKELETON, /usr/conf. common/files_cmn and 
/usr/sys/sun[234]/conf/files(or 
/usr / sys/ sun38 6/ conf / files) as input, and generates a number of files 
in the .. / SKELETON directory. One of these files is the makefile that con
tains a dependency tree for any new C source files you created during the process 
of adding new drivers (or whatever) to the kernel. make will use this as its com
mand file when it is actually executed to produce the new kernel. When con
fig finishes generating the makefile, it automatically goes on to generate the 
dependencies (unless you tell it not to with the -n command-line flag). The 
generation of the dependencies takes a long time, and before it starts, conf ig 
will notify you with the message: 

Doing a "make depend" 

Now you can change directory to the new configuration directory, .. /SKELE
TON in this case, and make the new system: 

example# cd .. /SKELETON 
example# make 

Now you must add a new device entry to the / dev directory. The connections 
between the kernel and the device driver are established through the entries in the 
/ dev directory. Using the example above as our model, we want to install the 
device for the Skeleton driver. 

Device entries are made with one of two shell scripts in the / dev directory. The 
first, MAKED EV, is for standard system devices and should be left as is. The 
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second, MAKEDEV .local, differs only in that it contains entries for user dev
ices, and it is here that entries for new devices should be placed. 

It's worth looking inside MAKEDEV to see the kinds of things it does. The lines 
of shell script below reflect what you'd add to MAKEDEV .local for the new 
Skeleton device. First, there are some lines of commentary: 

4I=! /bin/sh 
41= MAKEDEV.local 4.45 
41= Graphics 
41= sk* Skeleton Board 

86/04/15 

Then there's the actual shell code that makes the device entries: 

sk*) 
unit='expr $i : 'sk)" 
/etc/mknod sk$unit c 40 $unit 
chmod 222 sk$unit 
; ; 

This code extracts the numeric portion of MAKE DE V • local's argument and 
passes it on to rnknod and chrnod. In the simplest case, we simply say: 

example 41= MAKEDEV.local skO 

MAKEDEV. local then makes the special inode / dev / skO for a character spe
cial device with major device number 40 and minor device number 0, and then 
sets the mode of the file so that anyone can write to the device. 

Having added the new device entry, you can install the new system and try it out. 

example 41= cp /usr/sys/sun[234]/SKELETON/v.munix vrounix+ 
example 41= halt 

The system here goes through the halt sequence, then 
the monitor displays its prompt, at which point you can 
boot the system in single-user state 

> b vmunix+-s 

example 41= 

The system boots up in single user state and 
then you can try things out 

If the system appears to work, save the old kernel under a different name and 
install the new one in Ivmunix: 

example 41= cd / 
example 41= mv v.munix v.munix
example 41= mv v.munix+ vmunix 
example 41= 

Make sure that the new version of the kernel is actually called vrnunix because 
programs like ps and netstat () use that exact name in collecting information 
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they need from runtime tables. If the running version of the kernel is called 
something other than vmunix the results from such programs will be wrong. 

Normally, devices interface to the system by way of a single address space. 
However, there are exceptions. Some Multibus devices have registers in Mu1-
tibus 110 space and memory in Multibus memory space. And there are any 
number of VMEbus devices coming on the market that have memory in 24 or 
32-bit VME space while keeping their control and status registers in 16, or even 
8-bit, VME space. 

Unfortunately, such situations can't currently be handled in a clean fashion 
because the kernel configuration program (config) can't cope with dual-space 
devices. The xxprobe () routine is the core of the problem, since it deals with 
only a single space. 

There are, fortunately, two ways to work around the problem: 

o The first is easier, but rather inelegant. It consists of treating the device as if 
it were two devices, and of writing two separate "drivers" for it. So, for 
example, if we were to have a new, dual-space, VMEbus version of the 
Skeleton device, we'd add the following two lines to the config file: 

* Skeleton Memory Space 
device skmO at vrne32d32 ? csr OxDOOOOOOO priority 3 * Skeleton Register Space 
device skrO at vrne16d16 ? csr OxDOOO priority 3 vector skintr Ox88 

It's also necessary to have two entries in 
/usr/sys/sun[234]/conf/files(or 
/usr / sys/ sun38 6/ conf/ files): 

sundev/skm.c 
sundev/skr.c 

optional skm device-driver 
optional skr device-driver 

And it's necessary to have a second "driver". Actually, all of the real driver 
code goes into skr. c, which manipulates the device registers. The second 
driver, skm. c, consists entirely of a probe () routine - all its other rou
tines are null. 

Both sides of the driver, skr . c and skm. c, include the same register 
header file skreg. h. skreg. h contains an external declaration for an 
array of structures (one for each instance of the device) that contain what
ever information skr. c needs from the memory-side probe () routine: 

extern struct sk_devinfo sk_devinfo[NSK]; 

All that remains is for the memory-side probe () routine to initialize 
sk devinfo. 

o There's a second procedure for installing dual-space devices. It's a bit 
harder to use, but it doesn't require a stub driver containing only a 
probe () routine. 
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7.4. Adding and Removing 
Loadable Drivers 

Pick one of the two device installation addresses for normal treatment in the 
config file. It doesn't matter which one you pick, unless the device is a 
memory-mapped Multibus device, in which case you must pick the address 
in Multibus Memory space. Otherwise just pick the one that's most con
venient for your xxprobe () routine to use to test the device installation. 
The registers and memory in this first space will then be automatically 
mapped into kernel virtual space (as usual) by the autoconfiguration process. 

Then use the config file flags word to communicate the second space 
installation address to your driver. The driver will then find that address in 
md->md_flags and be able to access it from either the xxattach () or 
xxslave () routine; it's best (for most character devices) to pick it up at 
xxat tach () time. The driver can then use rmalloc () to allocate (from 
kernelmap) virtual space for the second-space registers/memory, and then 
call mapin () to map them into kernel space. (See the Kernel Support Rou
tines appendix for details about mapinO). 

The Sun386i supports loadable drivers. A loadable driver doesn't need to be 
linked with the kernel . 0 files. Nor does the system have to be rebooted or 
rebuilt for loadable drivers to be used. You can simply add a loadable driver to a 
running system. Once you have a driver in the loadable form, you can load it 
into the running system with the modload(8) command. You must be the 
superuser to do this. 

Take care when loading an undebugged driver for the first time. Although there 
are many consistency checks made when a driver is loaded, it is still possible for 
dri vers to crash the system. One of the more common crashes occurs when the 
running kernel is not /vmunix. modload assumes by default (unless the-A 
switch is provided) that the running kernel is /vmunix. It resolves driver refer
ences to kernel addresses by reading the symbol table from /vmunix. If 
/vmunix is not the running system, then the system is likely to crash when the 
dri ver is used. 

A typical example of the modload command is: 

example* mod10ad zz.o -conf <confiq_fi1e> -exec <exec file 

This tells the kernel that the driver object module is in z z . o. (See the Loadable 
Drivers section of the Driver Development Topics chapter for information about 
how to build a loadable driver.) 

Configuration information for the driver and optionally the block and character 
major numbers are specified in the file config.Jile. If modload is successful, the 
file exec .Jile is executed. This file is typically a script used to make the / dev 
entries for the driver. modload(8) has many options; see its man page for 
details. 

Error messages from modload can appear in two places. The modload utility 
itself prints error messages to standard output on the terminal from which 
modload is run. In addition, modload-related kernel code can print information 
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to the console. For this reason, we recommend that the console output be visible 
when you issue the modload command. 

When it is loading a driver, modload may fail for a variety of reasons. For 
example, the driver initialization routine may not do all that is required (as 
described in the Loadable Drivers section of the Driver Development Topics 
chapter). Or the linkage structure in the driver wrapper module may have invalid 
addresses. Since it is not possible to return a unique error code for every possible 
condition, a single error code is returned and additional information is often 
printed on the console. To assist the driver writer in debugging the driver, the 
kernel variable vddebug can be set to -1 using adb or kadb. This will cause 
the kernel to print additional informational messages when loading a module. 

To inquire about device drivers after they are loaded, use the modstat(8) com
mand. It displays the module id of the driver, the name of the device, and the 
major numbers of the block and character devices, as well as some additional 
information about the module. 

The module id is required to unload a driver. A driver can be unloaded by using 
the modunload(8) command, as in this example: 

example* modunload -id 2 -exec <exec_file> 

This example assumes that the rnodstat command displayed the driver's 
module id as 2. The file exec Jtle is executed and if the execution is successful 
the driver is unloaded. Typically this file is a script that removes the / dev 
entries for the driver. 

An example of a script that could be used with modload is as follows: 

#!/bin/csh -f 
if $3 != "0" then 

if ( ! -r /dev/zzO) then 
echo /etc/mknod /dev/zzO b $3 0 
/etc/mknod /dev/zzO b $3 0 

endif 
endif 

if $4 != "0" then 
if ( ! -r /dev/xrfdOa) then 

echo /etc/mknod /dev/xrfdOa c $4 0 
/etc/mknod /dev/rzzO c $4 0 

endif 
endif 

The script is invoked with the following arguments: 

<module _id> <module_type> <block_major _number> <character_major _number> 

modunload could be invoked with the following script to remove the / dev 
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entries for the driver: 

#!/bin/csh -f 
rm -f /dev/zzO 
rm -f /dev/rzzO 
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8 
Pseudo-Device Drivers - A Ramdisk 

SunOS supports "software devices", sometimes called "pseudo devices", which 
have no associated physical devices. Such devices can be quite useful. The sys
tem memory devices, for example, are pseudo devices, and they can be used to 
access installed peripheral devices, as is shown in the discussion of frame-buffer 
installation in Direct Opening of Memory Devices section of this manual. The 
memory devices allow such direct physical-device access by providing a means 
by which processes can read and write physical memory outside their own 
address space. For example, the ps command uses the kmem pseudo-device 
driver to access the kernel's process tables by way of the physical memory to 
which the kernel is mapped. 

This section will introduce pseudo-devices by way of a real, working pseudo
device ramdisk. As you will see, such a ramdisk requires none of the subtlety 
that makes physical disk drivers so difficult.6 Yet it does buy speed, since ram
disks avoid two distinct kinds of file-system overhead: 

D In normal use, 10 buffers get paged out, despite the use of the kernel buffer 
cache to minimize unnecessary 110 operations. A ramdisk is an especially 
big win on reads, since reading processes must normally block while 
requested data is brought into the buffer cache. 

D During normal file-system operation, file control information (like inodes) 
must be written synchronously with data. This overhead doesn't exist with 
ramdisks. 

Ramdisks can be used for I tmp. This way, if a system crash results in the loss 
of ramdisk files, it's not a serious problem. Note that for some applications, par
ticularly those that involve temporary files larger than ramdisk memory, using 
Itmp isn't a very good idea. An alternative is to mount the ramdisk as I aux, 
and to use it explicitly each time you think it's safe. Ramdisks have only a 
minimal impact on applications software - once they're set up they are entirely 
transparent. (Note that ramdisks -like devices in general- can be shared by 
multiple processes. This driver can thus be used as an indirect means of sharing 
memory.) 

6 The ramdisk given here is very crude. A production version should have its memory allocated at boot time 
and should be pagable. And with the memory-management system introduced in SunOS 4.0, a ramdisk 
probably won't improve performance anyway. In general, you' II be better off letting UNIX manage memory as 
a page cache, rather than devoting some of that cache to a ramdisk 
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8.1. A Ramdisk Driver 

Ramdisk Source Code 

The following ramdisk driver consumes a half-megabyte of kernel memory, 
which is allocated to the ramdisk pseudo-device. 
Put the source code for the ramdisk driver into / sys/ sundev frame c. 

1* 
* Ramdisk pseudo-device to support 110 to real merrwry 
* (a statically allocated kernel array). 
*1 

#include "ram.h" 
#if NRAM > 0 
#include " .. /h/param.h" /* Includes " . ./hltypes.h" */ 
#include " .. /h/errno.h" 
#include " .. /h/uio.h" 
#include " .. /h/buf .h" 

#define RAMSIZE (1024*512) /* Half a megabyte */ 
char ram[NRAM] [RAMSIZE]i 

ramopen(dev,wrtflag) 
dev_t devi 
int wrtflagi 

return (minor (dev) >= NRAM ? ENXIO O)i 

ramsize(dev) 
dev_t devi 

return (minor (dev) >= NRAM ? -1 

ramread(dev,uio) 
dev_t devi 
register struct uio *UiOi 

btodb(RAMSIZE»i 

if «unsigned)uio->uio_offset > RAMSIZE) 
return(EINVAL); 

return(uiomove(ram[minor(dev)]+uio->uio_offset, 
MIN (uio->uio_resid, RAMSIZE - uio->uio_offset), 
UIO_READ, UiO»i 

ramwrite(dev,uio) 
dev_t devi 
register struct uio *uio; 

if «unsigned)uio->uio_offset > RAMSIZE) 
return(EINVAL)i 

return(uiomove(ram[minor(dev)]+uio->uio_offset, 
MIN (uio->uio_resid, RAMSIZE - uio->uio_offset), 
UIO_WRITE, UiO»i 
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rarnstrategy(bp) 
register struct buf *bp; 

register long offset = dbtob(bp->b_blkno); 

if «u_long)offset > RAMSIZE) 
bp->b_error = EINVAL; 
bp->b_flags 1= B_ERROR; 

else { 
caddr t raddr = ram[rninor(bp->b_dev)]+offset; 
unsigned nbytes = MIN(bp->b_bcount, RAMSIZE-offset); 

if (bp->b_flags&B_READ) 
bcopy(raddr, bp->b_un.b_addr, nbytes); 

else 
bcopy(bp->b_un.b_addr, raddr, nbytes); 

bp->b_resid = bp->b_bcount - nbytes; 

iodone(bp) ; 

#endif 

Pseudo-device drivers, by definition, have no corresponding physical devices. 
Thus, they have no probe routines. 

Note the routine ramsize. All block drivers provide such a routine, which is 
charged with returning the sector size of the device in the peculiar units which 
the kernel expects. (This information is then used to maximize the speed of 
fsck). ramsize () calls the btodb () ,conversion routine, passing it an 
argument in bytes, and receiving from it an appropriately scaled result. 

The more detailed discussion of these and related configuration procedures can 
be found in the Configuring the Kernel chapter of this manual. 

First, create the file I sys I sundev I ram. h containing the line: 

4I=define NRAM 1 

Then, edit lusrl sysl sun [234] I confl files or 
lusr I sys I sun38 61 conf I files, adding the following line to the end of it: 

sundev/ram.c optional ram device-driver 

Then, edit both the bdevsw and cdevsw arrays in Isys/sun/conf. c, 
adding entries for the ramdisk to each of them. (In this discussion, we will only 
use the ramdisk as a block device, but the driver provides all the entry points 
necessary for use as either a block or a character driver) . 
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=If:include "ram.h" 
if NRAM > 0 
int ramopen(), ramread(), ramwrite(); 
int ramstrategy(), ramsize(); 
=If:else 
=If:define ramopen nodev 
=If:define ramread nodev 
=If:define ramwrite nodev 
=If:define ramstrategy nodev 
=If:define ramsize nodev 
=If:endif 

ramopen, nulldev, ramstrategy, nulldev, /*8*/ 
ramsize, nulldev 

ramopen, nulldev, ramread, ramwrite, /*30*/ 
nodev, nodev, nulldev, 0, seltrue, nodev, 

} 

Next, move into / dev and create device entries to correspond to the entries in 
conf. c. 

example=lf: cd /dev 
example=lf: /etc/mknod ramOc 8 0 
example. /etc/mknod rramOc 30 0 

The next step is to make a new configuration directory for the variant of you ker
nel that will include the ramdisk. Copy your kernel configuration file and add the 
line: 

pseudo-device ram 

to the pseudo-device section of the copy. If your config file was named GEN
ERI C, you might name the ramdisk variation GENERI C _ RAM. 

Then, make a version of the system kernel that includes the ramdisk: 

example. mkdir /sys/GENERIC_RAM 
example. /etc/config GENERIC_RAM 
example. cd .. /GENERIC_RAM 
example=lf: make depend 
example. make 
example. cp /v.munix /v.munix.old 
example. cp vmunix /v.munix 
example. /etc/reboot 

During the reboot, note that the size of the kernel has gotten very large. After the 
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reboot, make and associate a "filesystem" with the block ramdisk device: 

/ete/mkfs /dev/ramOc 1024 8 8 4096 1024 16 5 100 
fete/mount /dev/ramOe /tmp 

That's 1024 blocks total (512 Kb), broken out as 8 sectors of 8 tracks of 4096 
bytes per block with 1024 byte fragment size with 16 cylinders per group with 
5% minimum free (as in df(I)) and 100 revolutions per second. (This two line 
sequence should probably be put in the /etc/rc .local script). 

Once the ramdisk filesystem is mounted onto /tmp, then any program which 
creates and uses files on / tmp will use the ramdisk. Reads and writes to these 
files will be very fast. Measured performance indicates that 1/0 on files of about 
10K bytes is about 5 times as fast as with a physical disk, and that this factor 
increases to about 10 for very large files. 
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Ramdisk Test Program 

I 

Here's a test program that proves that the ramdisk works: 

fdefine BUFSIZ 1024 
fdefine CYCLES 100 
fdefine RAMDISK 

/* 
* Ramdisk test program 
*/ 

main () 
{ 

int fd; 
int nb; 
int i; 

/ * file descriptor * / 
/ * number of bytes traniJerred * / 
/ * generic loop counter variable * / 

int count=BUFSIZ; 
char buffer[BUFSIZ]; 
int iterations=O, error=O, done=O; 

fifndef RAMDISK 
/ * Open a file on the regular filesystem * / 
if «fd = open("testfile", 2» == -1 ) { 

perror("ramdisk test (normal opening)"); 
exit(1); 

felse 
/ * Open a file in the ram disk filesystem * / 
if «fd = open("/tmp/testfile", 2» == -1 ) { 

perror("ramdisk test (ram opening)"); 
exit(l); 

fendif 

do { 
lseek(fd, 0, 0); 
if (write (fd, buffer, count) != count) { 

perror("ramdisk test (writing)"); 
exit(l); 

lseek ( fd, 0, 0); 
if (read(fd, buffer, count) != count) { 

printf("count= %dO, count); 
perror("ramdisk test (reading)"); 
exit(l); 

if (iterations++ CYCLES ) done++; 

while !error && !done ); 
close(fd); 
exit(O); 
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Introduction to STREAMS 

STREAMS were designed to systematize the existing UNIX character 110 
mechanism and to support the development of communications services. 

STREAMS consist of a set of system calls, kernel resources and kernel routines. 
For detailed information about the STREAMS-kernel interface, about the internal 
structure of STREAMS modules and about STREAMS driver programming, see 
the following chapters. 

The UNIX system was originally designed as a general-purpose, multi-user, 
interactive operating system for minicomputers. Initially developed in the 
1970's, the system's communications environment included slow to medium 
speed, asynchronous terminal devices. The original design, the communications 
environment, and hardware state of the art influenced the character 110 mechan
ism but the character 110 area did not require the same emphasis on modularity 
and performance as other areas of the system. 

Support for a broader range of devices, speeds, modes, and protocols has since 
been incorporated into the system, but the original character 110 mechanism, 
which processes one character at a time, made such development difficult. Addi
tionally, a paucity of tools and the absence of a framework for incorporating con
temporary networking protocols added to the difficulty. 

Attempts to compensate for the above problems have led to diverse, ad-hoc 
implementations; for example, protocol drivers are often intertwined with the 
hardware configuration in which they were developed. As a result, functionally 
equivalent protocol software often cannot interface with alternate implementa
tions of adjacent protocol layers. Portability, adaptability, and reuse of software 
have been hindered. 

STREAMS, a general, flexible facility and a set of tools for development of 
UNIX system communication services, is intended to remedy these problems. 
STREAMS supports services ranging from complete networking protocol suites 
to individual device drivers. 

STREAMS defines standard interfaces for character 110 within the kernel, and 
between the kernel and the rest of the system. The associated mechanism is sim
ple and open-ended. It consists of a set of system calls, kernel resources, and 
kernel utility routines. The standard interface and open-ended mechanism enable 
modular, portable development and easy integration of higher performance net
work services and their components. STREAMS does not impose any specific 
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9.1. A Basic View of a 
Stream 

network architecture. Instead, it provides a powetful framework with a con
sistent user interface that is compatible with the existing character I/O 
interface-which is still available. 

STREAMS modularity and design reflect the "layers and options" characteristics 
of contemporary networking architectures. The basic components in a 
STREAMS implementation are referred to as modules. These modules, which 
reside in the kernel, offer a set of processing functions and associated service 
interfaces. From user level, modules can be dynamically selected and intercon
nected to provide any rational processing sequence. Kernel programming, 
assembly, and link editing are not required to create the interconnection. 
Modules can also be dynamically "plugged into" existing connections from user 
level. STREAMS modularity allows: 

D User level programs that are independent of underlying protocols and physi
cal communication media. 

D Network architectures and higher level protocols that are independent of 
underlying protocols, drivers, and physical communication media. 

D Higher level services that can be created by selecting and connecting lower 
level services and protocols. 

D Enhanced portability of protocol modules resulting from STREAMS' well-
defined structure and interface standards. 

In addition to modularity, STREAMS provides developers with integral func
tions, a library of utility routines, and facilities that expedite software design and 
implementation. The principal facilities are: 

o Buffer management - To maintain STREAMS' own, independent buffer 
pool. 

o Flow control - To conserve STREAMS' memory and processing resources. 

o Scheduling - To incorporate STREAMS' own scheduling mechanism. 

o Multiplexing - For processing interleaved data streams, such as occur in 
SNA, X.25, and windows. 

o Asynchronous operation of STREAMS and user processes - Allows 
STREAMS-related operations to be performed efficiently from user level. 

o Error and trace loggers - For debugging and administrative functions. 

"STREAMS" is a collection of system calls, kernel resources, and kernel utility 
routines that can create, use, and dismantle a "Stream". A Stream is a full
duplex processing and data transfer path between a driver in kernel space and a 
process in user space (see Figure 9-1). 
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A Stream has three parts: A Stream head, module(s) (optional), and a driver 
(also referred to as the Stream end). The Stream head provides the interface 
between the Stream and user processes. Its principal function is to process 
STREAMS-related user system calls. A module processes data that travel 
between the Stream head and driver. A STREAMS driver may be a device 
driver, providing the services of an external 110 device, or an internal software 
driver, commonly called a pseudo-device driver. 

Using a combination of system calls, kernel routines, and kernel utilities, 
STREAMS passes data between a driver and the Stream head in the form of mes
sages. Messages that are passed from the Stream head toward the driver are said 
to travel downstream, and messages passed in the other direction travel upstream. 

The Stream head transfers data between the data space of a user process and 
STREAMS kernel data space. Data sent to a driver from a user process are pack
aged into STREAMS messages and passed downstream. Messages arriving at 
the Stream head from downstream are processed by the Stream head, and data are 
copied into user buffers. STREAMS can insert one or more modules into a 
Stream between the Stream head and driver to perform intermediate processing 
of data passing between the Stream head and driver. 

Applications programmers can use the STREAMS facilities via a set of system 
calls. This system call interface is upward compatible with the existing character 
I/O facilities. The open (2) system call will recognize a STREAMS file and 
create a Stream to the specified driver. A user process can send and receive data 
using read (2) and wr i te (2) in the same manner as with character files and 
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devices. The ioctl (2) system call enables application programs to perfonn 
functions specific to a particular device. In addition, a set of generic STREAMS 
ioctl () commands (see streamio(4» support a variety of functions for 
accessing and controlling Streams. A close (2) will dismantle a Stream. 

open (), close (), read (), write (), and ioctl () support the basic set 
of operations on Streams. In addition, new system calls support advanced 
STREAMS facilities. The po 11 (2) system call enables an application program 
to poll multiple Streams for various events. When used with the STREAMS 
I_SETS IG ioctl () command, poll () allows an application to process I/O 
in an asynchronous manner. The putmsg (2) and getmsg (2) system calls 
enable application programs to interact with STREAMS modules and drivers 
through a service interface (described next). 

These calls are discussed in this chapter and, in more detail, the the chapters that 
follow. They are precisely specified in the following manual pages: 

Figure 9-2 STREAMS-Related Manual Pages 

Man Page 
open.2 

close.2 
read.2 

write.2 
putmsg.2 
getmsg.2 

poll.2 
clone.4 

streamio.4 
termio.4 

tty_compat.4m 
tty_std.4m 

kbd.4s 
kb.4m 

mouse.4s 
ms .4m 
pty.4 

console.4s 
mti.4s 

zs.4s 
nit.4m 

nit if. 4m 
nityf.4m 

nit buf. 4m 

Description 
Open a stream 
Close a stream 
Read from a stream 
Write to a stream 
Send a message on a stream 
Get next message off a stream 
STREAMS input/output multiplexing 
Open any minor device on a STREAMS driver 
STREAMS ioctl commands 
General terminal interface 
V7/4BSD compatibility STREAMS module 
Standard tenninal STREAMS module 
Sun keyboard device 
Sun keyboard STREAMS module 
Sun mouse device 
Sun mouse STREAMS module 
Pseudo terminal driver 
Sun console driver and terminal emulator 
Systech MfI-80011600 multi-tenninal interface 
Zilog 8530 SCC serial communications drive 
Network Interface Tap (NIT) Protocol 
STREAMS NIT device interface 
STREAMS NIT packet filtering module 
STREAMS NIT buffering module 
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Manipulating Modules 

Protocol Portability 
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STREAMS offers two major benefits for applications programmers: easy crea
tion of modules that offer standard data communications services, and the ability 
to manipulate those modules on a Stream. 

One benefit of STREAMS is that it simplifies the creation of modules that 
present a service interface to any neighboring application program, module, or 
device driver. A service interface is defined at the boundary between two neigh
bors. In STREAMS, a service interface is a specified set of messages and the 
rules for allowable sequences of these messages across the boundary. A module 
that implements a service interface will receive a message from a neighbor and 
respond with an appropriate action (for example, send back a request to 
retransmit) based on the specific message received and the preceding sequence of 
messages. 

STREAMS provides feature~ that make it easier to design various application 
processes and modules to common service interfaces. If these modules are writ
ten to comply with industry-standard service interfaces, they are called protocol 
modules. 

In general, any two modules can be connected anywhere in a Stream. However, 
rational sequences are generally constructed by connecting modules with compa
tible protocol service interfaces. For example, a module that implements an X.25 
protocol layer, as shown in Figure 9-3, presents a protocol service interface at its 
input and output sides. In this case, other modules should only be connected to 
the input and output side if they have the compatible X.25 service interface. 

STREAMS provides the capabilities to manipulate modules from user level, to 
interchange modules with common service interfaces, and to present a service 
interface to a Stream user process. As mentioned above, these capabilities yield 
benefits when implementing networking services and protocols, including: 

D User level programs can be independent of underlying protocols and physi
cal communication media. 

D Network architectures and higher level protocols can be independent of 
underlying protocols, drivers and physical communication media. 

D Higher level services can be created by selecting and connecting lower level 
services and protocols. Below are examples of the benefits of STREAMS 
capabilities to developers for creating service interfaces and manipulating 
modules. 

Figure 9-3 shows how the same X.25 protocol module can be used with different 
drivers on different machines by implementing compatible service interfaces. 
The X.25 protocol module interfaces are Connection Oriented Network Service 
(CONS) and Link Access Protocol - Balanced (LAPB) dri ver. 
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Figure 9-3 Protocol Module Portability 
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Alternative protocol modules (and device drivers) can be interchanged on the 
same machine if they are implemented to an equivalent service interface(s). 

Figure 9-4 illustrates how STREAMS can migrate functions between kernel 
software and front end finnware. A common downstream service interface 
allows the transport protocol module to be independent of the number or type of 
modules below. The same transport module will connect without modification to 
either an X.25 module or X.25 driver that has the same service interface. 

By shifting functions between software and firmware, developers can produce 
cost effective, functionally equivalent systems over a wide range of 
configurations. They can rapidly incorporate technological advances. The same 
transport protocol module can be used on a lower capacity machine, where 
economics may preclude the use of front-end hardware, and also on a larger scale 
system where a front-end is economically justified. 
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Figure 9-4 Protocol Migration 
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Figure 9-5 shows the same canonical module (for example, one that provides 
delete and kill processing on character strings) reused in two different Streams. 
This module would typically be implemented as a filter, with no downstream ser
vice interface. In both cases, a TTY interface is presented to the Stream's user 
process since the module is nearest the Stream head. 
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Figure 9-5 Module Reusability 
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The STREAMS mechanism constructs a Stream by serially connecting kernel 
resident STREAM$ components, each constructed from a specific set of struc
tures. As described earlier and shown in Figure 9-6, the primary STREAMS 
components are the Stream head, optional module(s), and Stream end. 
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The Stream head provides the interface between the Stream and an application 
program. The Stream head processes STREAMS-related system calls from the 
application and performs the bidirectional transfer of data and information 
between the application (in user space) and messages (in STREAMS' kernel 
space). 

Messages are the only means of transferring data and communicating within a 
Stream. A STREAMS message contains data, status/control information, or a 
combination of the two. Each message includes a specified message type indica
tor that identifies the contents. 

A module performs intermediate transformations on messages passing between 
Stream head and driver. There may be zero or more modules in a Stream (zero 
when the driver performs all the required character and device processing). 

Each module is constructed from a pair of QUEUE structures (see Au! Ad and 
BulBd in Figure 9-6). A pair is required to implement the bidirectional and sym
metrical attributes of a Stream. One QUEUE performs functions on messages 
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Stream End 

passing upstream through the module (Au and Bu in Figure 9-6). The other set 
(Ad and Bd) perfonns another set of functions on downstream messages. (A 
QUEUE, which is part of a module, is different from a message queue, which is 
described later.) 

Each of the two QUEUEs in a module will generally have distinct functions, that 
is, unrelated processing procedures and data. The QUEUEs operate indepen
dently so that Au will not know if a message passes through Ad unless Ad is pro
grammed to infonn it. Messages and data can be shared only if the developer 
specifically programs the module functions to perfonn the sharing. 

Each QUEUE can directly access the adjacent QUEUE in the direction of mes
sage flow (for example, Au to Bu or Stream head to Bd). In addition, within a 
module, a QUEUE can readily locate its mate and access its messages (for exam
ple, for echoing) and data. 

Each QUEUE in a module may contain or point to messages, processing pro
cedures, or data: 

o Messages - These are dynamically attached to the QUEUE on a linked list 
("message queue", see Au and Bd in Figure 9-6) as they pass through the 
module. 

o Processing procedures - A put procedure, to process messages, must be 
incorporated in each QUEUE. An optional service procedure, to share the 
message processing with the put procedure, can also be incorporated. 
According to their function, the procedures can send messages upstream 
and/or downstream, and they can also modify the private data in their 
module. 

o Data - Developers may provide private data if required by the QUEUE to 
perfonn message processing (for example, state infonnation and translation 
tables). 

In general, each of the two QUEUEs in a module has a distinct set of all of these 
elements. Additional module elements will be described later. Although dep
icted as distinct from modules (see Figure 9-6), a Stream head and the Stream 
end also contain a pair of QUEUEs. 

A Stream end is a module in which the module's processing procedures are the 
driver routines. The procedures in the Stream end are different from those in 
other modules because they are accessible from an external device and because 
the STREAMS mechanism allows multiple Streams to be connected to the same 
driver. 

The driver can be a device driver, providing an interface between kernel space 
and an external communications device, or an internal pseudo-device driver. A 
pseudo-device driver is not directly related to any external device, and it per
fonns functions internal to the kernel. The multiplexing driver discussed in the 
Other Facilities chapter is a pseudo-device driver. 

Device drivers must transform all data and status/control infonnation between 
STREAMS message formats and their external representation. Differences 
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between STREAMS and character device drivers are discussed in the Driver 
Design Comparisons chapter. 

A Stream is created on the first open ( 2) system call to a character special file 
corresponding to a STREAMS driver. A STREAMS device is distinguished 
from other character devices by a field contained in the associated cdevsw dev
ice table entry. 

A Stream is usually built in two steps. Step one creates a minimal Stream con
sisting of just the Stream head and device driver, and step two adds modules to 
produce an expanded Stream (see Figure 9-7). The first step has three parts: 
head and driver structures are allocated and initialized; the modules in the head 
and end are linked to each other to form a Stream; the driver open routine is 
called. 

Setting Up a Stream 

Minimal 
STREAM 

-------:-------
ST~AM 

HEAD 

\ 

I QUEUP pair I 
rawTIY 

device driver 

Expanded 
STREAM 

STREAM 
HEAD 

CANONPROC 
module 

raw TTY 
device driver 

If the driver performs all character and device processing required, no modules 
need be added to a Stream. Examples of STREAMS drivers include a raw tty 
driver (one that passes along input characters without change) and a driver with 
multiple Streams open to it (corresponding to multiple minor devices opened to a 
character device driver). 

When the driver receives characters from the device, it places them into mes
sages. The messages are then transferred to the next Stream component, the 
Stream head, which extracts the contents of the message and copies them to user 
space. Similar processing occurs for downstream character output; the Stream 
head copies data from user space into messages and sends them to the driver. 
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Expanded Streams 

Subsequent use of the word 
"module" will refer to those push
able modules between Stream head 
and end. 

Pushable Modules 

As the second step in building a Stream, modules can be added to the Stream. In 
the right-hand Stream in Figure 9-7, the CANONPROC module was added to 
provide additional processing on the characters sent between head and driver. 

Modules are added and removed from a Stream in last-in-first-out (LIFO) order. 
They are inserted and deleted at the Stream head via the ioctl (2) system call. 
In the Stream on the left of Figure 9-5, the X.25 module was the first added to the 
Stream, followed by Class 1 Transport and Canonical modules. To replace the 
Class 1 module with a Class 0 module, the Canonical module would have to be 
removed first, then the Class 1 module, then a Class 0 module would be added 
and the Canonical module put back. 

Because adding and removing modules resembles stack operations, the add is 
called a push and the remove a pop. Push and pop are two of the ioctl () 
functions included in the STREAMS subset of ioctl () system calls. These 
commands perform various manipulations and operations on Streams. The 
modules manipulated in this manner are called pushable modules, in contrast to 
the modules contained in the Stream head and end. This stack terminology 
applies only to the setup, modification, and breakdown of a Stream. 

The Stream head processes the ioctl () and executes the push, which is analo
gous to opening the Stream driver. Modules are referenced by a unique symbolic 
name, contained in the STREAMS fmodsw module table (similar to the 
cdevsw table associated with a device file). The module table and module 
name are internal to STREAMS and are accessible from user space only through 
STREAMS ioctl () system calls. The fmodsw table points to the module 
template in the kernel. When a module is pushed, the template is located, the 
module structures for both QUEUEs are allocated, and the template values are 
copied into the structures. 

In addition to the module elements described in A Basic View of a Stream, each 
module contains pointers to an open routine and a close routine. The open is 
called when the module is pushed, and the close is called when the module is 
popped. Module open and close procedures are similar to a driver open and 
close. 

As in other files, a STREAMS file is closed when the last process open to it 
closes the file by a close (2) system call. This system call causes the Stream 
to be dismantled (modules popped and the driver close executed). 

Modules are pushed onto a Stream to provide special functions and/or additional 
protocol layers. In Figure 9-7, the Stream on the left is opened in a minimal 
configuration with a raw tty driver and no other module added. The driver 
receives one character at a time from the device, places the character in a mes
sage, and sends the message upstream. The Stream head receives the message, 
extracts the single character, and copies it into the reading process buffer to send 
to the user process in response to a read (2) system call. When the user pro
cess wants to send characters back to the driver, it issues a wr it e (2) system 
call, and the characters are sent to the Stream head. The head copies the charac
ters into one or more multi -character messages and sends them downstream. An 
application program requiring no further kernel character processing would use 
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this minimal Stream. 

A user requiring a more terminal-like interface would need to insert a module to 
perform functions such as echoing, character-erase, and line-kill. Assuming that 
the CANONPROC module in Figure 9-7 fulfills this need, the application pro
gram first opens a raw tty Stream. Then, the CANONPROC module is pushed 
above the driver to create a Stream of the form shown on the right of the figure. 
The driver is not aware that a module has been placed above it and therefore con
tinues to send single character messages upstream. The module receives single 
character messages from the driver, processes the characters, and accumulates 
them into line strings. Each line is placed into a message and sent to the Stream 
head. The head now finds more than one character in the messages it receives 
from downstream. 

Stream head implementation accommodates this change in format automatically 
and transfers the multiple-character data into user space. The Stream head also 
keeps track of messages partially transferred into user space (for example, when 
the current user read () buffer can only hold part of the current message). 
Downstream operation is not affected: the head sends, and the driver receives, 
multiple character messages. 

Note that the Stream head provides the interface between the Stream and user 
process. Modules and drivers do not have to implement user interface functions 
other than open and close. 

After a Stream has been opened, STREAMS-related system calls allow a user 
process to insert and delete (push and pop) modules. That process can then com
municate with and control the operation of the Stream head, modules, and 
drivers, and can send and receive messages containing data and control informa
tion. This chapter presents an example of some of the basic functions available 
to STREAMS-based applications via the system calls. Additional functions are 
described at the end of this chapter and in the Other Facilities chapter. 

The full set of STREAMS-related system calls is: 

open () 
Open a Stream 

close () 
Close a Stream 

read () 
Read data from a Stream 

write () 
Write data to a Stream 

ioctl () 
Control a Stream 
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An Asynchronous Protocol 
Stream Example 

qetmsq () 
Receive the message at Stream head 

putmsq() 
Send a message downstream 

po11 () 
Notify the application program when selected events occur on a Stream 

The following two-part example describes a Stream that controls the data com
munication characteristics of a connection between an asynchronous terminal and 
a tty port. It illustrates basic user level STREAMS features, then shows how 
messages can be used. The Kernel Level Functions chapter discusses the kernel 
Stream operations corresponding to the user operations described in this intro
duction. 

In the example, our computer supports different kinds of asynchronous terminals, 
each logging in on its own port. The port hardware is limited in function; for 
example, it detects and reports line and modem status, but does not check parity. 

Communications software support for these terminals is provided via a 
STREAMS implemented asynchronous protocol. The protocol includes a variety 
of options that are set when a terminal operator dials in to log on. The options 
are determined by a get ty-type STREAMS user process, getstrm () , which 
analyzes data sent to it through a series of dialogs (prompts and responses) 
between the process and terminal operator. 

The process sets the terminal options for the duration of the connection by push
ing modules onto the Stream or by sending control messages to cause changes in 
modules (or in the device driver) already on the Stream. The options supported 
include: 

o ASCII or EBCDIC character codes 

o For ASCII code, the parity (odd, even or none) 

o Echo or not echo input characters 

o Canonical input and output processing or transparent (raw) character han
dling 

These options are set with the following modules: 

CHARPROC 
Provides input character processing functions, including dynamically sett
able (via control messages passed to the module) character echo and parity 
checking. The module's default settings are to echo characters and not 
check character parity. 

CANONPROC 

Performs canonical processing on ASCII characters upstrea~ and down
stream (note that this performs some processing in a different manner from 
the standard UNIX character I/O tty subsystem) . 

• ~sun ~ microsystems 
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ASCEBC 
Translates EBCDIC code to ASCII upstream and ASCII to EBCDIC down
stream. 

At system initialization a user process, getstrm () , is created for each tty port. 
getstrm () opens a Stream to its port and pushes the CHARPROC module onto 
the Stream by use of an ioctl () I_PUSH command. Then, the process issues 
a getmsg () system call to the Stream and sleeps until a message reaches the 
Stream head. The Stream is now in its idle state. 

The initial idle Stream, shown in Figure 9-8, contains only one pushable module, 
CHARPROC. The device driver is a limited function raw tty driver connected to a 
limited-function communication port. The driver and port transparently transmit 
and receive one unbuffered character at a time. 

Idle Stream Configuration/or Example 

~ __ -=c __ 
S~AM 

HEAD 

CHAR?ROC 
module 

rawTIY 
device driver 

Upon receipt of initial input from a tty port, getstrm () establishes a connec
tion with the terminal, analyzes the option requests, verifies them, and issues 
STREAMS system calls to set the options. After setting up the options, 
getstrm () creates a user application process. Later, when the user terminates 
that application, get s t rm () restores the Stream to its idle state by use of sys
tem calls. 

The next step is to analyze in more detail how talJe Stream sets up the communi
cations options. Before doing so, let's examine how messages are handled in 
STREAMS. 
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Message Types 

Sending and Receiving 
Messages 

All STREAMS messages are assigned message types to indicate their intended 
use by modules and drivers and to determine their handling by the Stream head. 
A driver or module can assign most types to a message it generates, and a 
module can modify a message's type during processing. The Stream head will 
convert certain system calls to specified message types and send them down
stream, and it will respond to other calls by copying the contents of certain mes
sage types that were sent upstream. Messages exist only in the kernel, so a user 
process can only send and receive buffers. The process is not explicitly aware of 
the message type, but it may be aware of message boundaries, depending on the 
system call used (see the distinction between getmsg () and read () in the 
next section). 

Most message types are internal to STREAMS and can only be passed from one 
STREAMS module to another. A few message types, including M _DATA, 
M_PROTO, and M_PCPROTO, can also be passed between a Stream and user 
processes. M_DATA messages carty data within a Stream and between a Stream 
and a user process. M _PROTO or M _ P CPROTO messages carry both data and 
control information. However, the distinction between control information and 
data is generally determined by the developer when implementing a particular 
Stream. Control information includes service interface information, carried 
between two Stream entities that present service interfaces, and condition or 
status information, which may be sent between any two Stream entities regard
less of their interface. An M _ PCPROTO message has the same general use as an 
M _PROTO, but the former moves faster through a Stream (see Message Queue 
Priority in the Other F acUities chapter). 

putmsg () is a STREAMS-related system call that sends messages; it is similar 
to write (). putmsg () provides a data buffer which is converted into an 
M_DATA message, and can also provide a separate control buffer to be placed 
into anM_PROTO orM_PCPROTO block. write () provides byte-stream data 
to be converted into M_DATA messages. 

getmsg () is a STREAMS-related system call that accepts messages; it is simi
lar to read (). One difference between the two calls is that read () accepts 
only data (messages sent upstream to the Stream head as message type M_DATA), 
such as the characters entered from the terminal. getmsg () can simultaneously 
accept both data and control information (message sent upstream as types 
M_PROTO orM_PCPROTO). getmsg () also differs from read () in that it 
preserves message boundaries so that the same boundaries exist above and below 
the Stream head (that is, between a user process and a Stream). re ad () gen
erally ignores message boundaries, processing data as a byte stream. 

Certain STREAMS ioctl () commands, such as I_STR, also cause messages 
to be sent or received on the Stream. 1_ STR provides the general "ioctl" capa
bility of the character 110 subsystem. A user process above the Stream head can 
issue putmsg (), getmsg () ,the I_STR ioctl () command, and certain 
other STREAMS related system calls. Other STREAMS ioctl' s perform 
functions that include changing the state of the Stream head, pushing and pop
ping modules, or returning special information. 
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In addition to message types that explicitly transfer data to a process, some mes
sages sent upstream result in information transfer. When these messages reach 
the Stream head, they are transformed into various forms and sent to the user pro
cess. The forms include signals, error codes, and call return values. 

Returning to the asynchronous protocol example, the Stream was in its idle 
configuration (see Figure 9-8). getstrm () had issued a getmsg () and was 
sleeping until the arrival of a message from the Stream head. Such a message 
would result from the driver detecting activity on the associated tty port. 

An incoming call arrives at port one and causes a ring detect signal in the 
modem. The driver receives the ring signal, answers the call, and sends upstream 
an M _PROTO message containing information indicating an incoming call. 
getstrm () is notified of all incoming calls, although it can choose to refuse 
the call because of system limits. In this idle state, get st rm () will also accept 
M _PROTO messages indicating, for example, error conditions such as detection 
of line or modem problems on the idle line. 

The M _PROTO message containing notification of the incoming call flows 
upstream from the driver into CHARPROC. CHARPROC inspects the message 
type, determines that message processing is not required, and passes the 
unmodified message upstream to the Stream head. The Stream head copies the 
message into the getmsg () buffers (one buffer for control information, the 
other for data) associated with getstrm () and wakes up the process. 
getstrm () sends its acceptance of the incoming call with a putmsg () sys
tem call which results in a downstream M_PROTO message to the driver. 

Then, getstrm () sends a prompt to the operator with a wri te () and issues a 
getmsg () to receive the response. A read () could have been used to receive 
the response, but the getmsg () call allows concurrent monitoring for control 
(M _PROTO and M _PCP ROTO) information. ge t s t rm () will now sleep until 
the response characters, or information regarding possible error conditions 
detected by modules or driver, are sent upstream. 

The first response, sent upstream in a M_DATA block, indicates that the code set 
is ASCII and that canonical processing is requested. get strm () implements 
these options by pushing CANONPROC onto the Stream, above CHARPROC, to 
perform canonical processing on the input ASCII characters. 

The response to the next prompt requests even parity checking. get strm ( ) 
sends an ioctl () I_STR command to CHARPROC, requesting the module to 
perform even parity checking on upstream characters. When the dialog indicate 
protocol option setting is complete, getstrm () creates an application process. 
At the end of the connection, get s t rm () will pop CANONP ROC and then send 
a 1_ STR to CHARPROC requesting the module to restore the no-parity idle state 
(CHARPROC remains on the Stream). 

As a result of the above dialogs, the terminal at port one operates in the following 
configuration: 

o ASCII, even parity 
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o Echo 

o Canonical processing 

In similar fashion, an operator at a different type of tenninal on port two requests 
a different set of options, resulting in the following configuration: 

o EBCDIC 

o No Echo 

o Canonical processing 

The resultant Streams for the two ports are shown in Figure 9-9. For port one, on 
the left, the modules in the Stream are CANONPROC and CHARPROC. 

For port two, on the right, the resultant modules are CANONPROC, ASCEBC and 
CHARPROC. ASCEBC has been pushed on this Stream to translate between the 
ASCII interface at the downstream side of CANONPROC and the EBCDIC inter
face of the upstream output side of CHARPROC. In addition, getstrrn () has 
sent an I_STR to the CHARPROC module in this Stream requesting it to disable 
echo. The resultant modification to CHARPROC' s functions is indicated by the 
word "modified" in the right Stream of Figure 9-9. 
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Figure 9-9 Asynchronous Terminal Streams 
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Since CHARPROC is now perfonning no function for port two, it might have 
been popped from the Stream to be reinserted by getstrm () at the end of con
nection. However, the low overhead of STREAMS does not require its removal. 
The module remains on the Stream, passing messages unmodified between 
ASCEBC and the driver. At the end of the connection, getstrm () restores this 
Stream to its idle configuration of Figure 9-8 by popping the added modules and 
then sending an I _ STR to CHARPROC to restore the echo default. 

Note that the tty driver shown in Figure 9-9 handles minor devices. Each minor 
device has a distinct Stream connected from user space to the driver. This ability 
to handle multiple devices is a standard STREAMS feature, similar to the minor 
device mechanism in character I/O device drivers. 
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Other User Functions 

9.6. Kernel Level 
Functions 

Messages 

The previous example illustrates basic STREAMS concepts. Alternate, more 
efficient, STREAMS calls or mechanisms could have been used in place of those 
described earlier. (Some of the alternatives are described in the Other Facilities 
chapter. For details, see following chapters and the SunOS Reference Manual. 

For example, the initialization process that created a get strm {) for each tty 
port could have been implemented as a "supergetty" by use of the STREAMS
related poll {} system call. As described in the Other Facilities chapter, 
poll {} allows a single process to efficiently monitor and control multiple 
Streams. The "supergetty" process would handle all of the Stream and terminal 
protocol initialization and would create application processes only for established 
connections. 

The M_PROTO notification sent to getstrm () could have been sent by the 
dri ver as an M _ S I G message that causes a specified signal to be sent to the pro
cess. As discussed previously under Message Types, error and status information 
can also be sent upstream from a driver or module to user processes via different 
message types. These messages will be transformed by the Stream head into a 
signal or error code. 

Finally, an ioctl I_STR command could have been used in place of a 
putmsg M _PROTO message to send information to a driver. The sending pro
cess must receive an explicit response from an 1_ S TR by a specified time period 
or an error will be returned. A response message must be sent upstream by the 
destination module or driver to be translated into the user response by the Stream 
head. 

This chapter introduces the use of the STREAMS mechanism in the kernel and 
describes some of the tools provided by STREAMS to assist in the development 
of modules and drivers. In addition to the basic message passing mechanism and 
QUEUE Stream linkage described previously, the STREAMS mechanism consists 
of various facilities including buffer management, the STREAMS scheduler, pro
cessing and message priority, flow control, and multiplexing. Over 30 
STREAMS utility routines and macros are available to manipulate and utilize 
these facilities. 

The key elements of a STREAMS kernel implementation are the processing rou
tines in the module and drivers, and the preparation of required data structures. 
The structures are described in the STREAMS section of Writing Device Drivers. 
The following sections provide further information on messages and on the pro
cessing routines that operate on them. The example of the previous chapter is 
continued, associating the user-level operations described there with kernel 
operations. 

As shown in Figure 9-10, a STREAMS message consists of one or more linked 
message blocks. That is, the first message block of a message may be attached to 
other message blocks that are part of the same message. Multiple blocks in a 
message can occur, for example, as the result of processing that adds header or 
trailer data to the data contained in the message, or because of message buffer 
size limitations which cause the data to span multi pIe blocks. When a message is 
composed of multiple message blocks, the message type of the first block 

.\sun 
• microsystems 

Revision A, of 9 May 1988 



Figure 9-10 

Chapter 9 - Introduction to STREAMS 181 

detennines the type of the entire message, regardless of the types of the attached 
message blocks. 

A Message 
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STREAMS allocates a message as a single block containing a buffer of a certain 
size (see the next section). If the data for a message exceed the size of the buffer 
containing the data, the procedure can allocate a new block containing a larger 
buffer, copy the current data to it, insert the new data and de-allocate the old 
block. Alternately, the procedure can allocate an additional (smaller) block, 
place the new data in the new message block and link it after or before the initial 
message block. Both alternatives yield one new message. 

Messages can exist standalone, as shown in Figure 9-10 when the message is 
being processed by a procedure. Alternately, a message can await processing on 
a linked list of messages, called a message queue, in a QUE UE. In Figure 9-11, 
Message 1 is linked to Message 2. 
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Figure 9-11 
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When a message is on a queue, the first block of the message contains links to 
preceding and succeeding messages on the same message queue, in addition to 
containing a link to the second block of the message (if present). The message 
queue head and tail are contained in the QUEUE. 

STREAMS utility routines enable developers to manipulate messages and mes
sage queues. 

STREAMS maintains its own storage pool for messages. A procedure can 
request the allocation of a message of a specified size at one of three message 
pool priorities. The allocb () utility will return a message containing a single 
block with a buffer of at least the size requested, providing there is a buffer avail
able at the priority requested. When requesting priority for messages, developers 
must weigh their process' need for resources against the needs of other processes 
on the same machine. 

Message pool priority generally has no effect on allocation until the pool falls 
below internal STREAMS thresholds. When this occurs, allocb () may refuse 
a lower priority request for a message of size "x" while granting a higher priority 
request for the same size message. As examples of priority usage, storage for an 
urgent control message, such as an M_ HANG UP or M _ PCPROTO could be 
requested at high priority. An M_DATA buffer for holding input might be 
requested at medium priority, and an output buffer (presuming the output data 
can wait in user space) at lowest priority. 
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The procedures in the QUEUE are the software routines that process messages as 
they transit the QUEUE. The processing is generally performed according to the 
message type and can result in a modified message, new message(s) or no mes
sage. A resultant message is generally sent in the same direction in which it was 
received by the QUEUE, but may be sent in either direction. A QUEUE will 
always contain a put procedure and may also contain an associated service pro
cedure. 

A put procedure is the QUEUE routine that receives messages from the preceding 
QUEUE in the Stream. Messages are passed between QUEUEs by a procedure in 
one QUEUE calling the put procedure contained in the following QUEUE. A call 
to the put procedure in the appropriate direction is generally the only way to pass 
messages between modules (unless otherwise indicated, "modules" infers 
"module, driver and Stream head"). QUEUEs in pushable (see Building a 
Stream) modules contain a put procedure. In general, there is a separate put pro
cedure for the read and write QUEUEs in a module because of the "full duplex" 
operation of most Streams. 

A put procedure is associated with immediate (as opposed to deferred, see below) 
processing on a message. Each module accesses the adjacent put procedure as a 
subroutine. For example, consider that modA, modB, and mode are three con
secutive modules in a Stream, with mode connected to the Stream head. If modA 
receives a message to be sent upstream, modA processes that message and calls 
modB's put procedure, which processes it and calls mode's put procedure, which 
processes it and calls the Stream head's put procedure. Thus, the message will 
be passed along the Stream in one continuous processing sequence. On one 
hand, this sequence has the benefit of completing the entire processing in a short 
time with low overhead (subroutine calls). On the other hand, if this sequence is 
lengthy and the processing is implemented on a multi-user system, then this 
manner of processing may be good for this Stream but may be detrimental for 
others since they may have to wait "too long" to get their turn at bat. 

In addition, there are situations where the put procedure cannot immediately pro
cess the message but must hold it until processing is allowed. The most typical 
examples of this are a driver which must wait until the current output completes 
before sending the next message and the Stream head, which may have to wait 
until a process initiates a read (2) on the Stream. 

STREAMS allows a service procedure to be contained in each QUEUE, in addi
tion to the put procedure, to address the above cases and for additional purposes. 
A service procedure is not required in a QUEUE and is associated with deferred 
processing. If a QUEUE has both a put and service procedure, message process
ing will generally be divided between the procedures. The put procedure is 
always called first, from a preceding QUEUE. After the put procedure completes 
its part of the message processing, it arranges for the service procedure to be 
called by passing the message to the putq () routine. putq () .does two things: 
it places the message on the message queue of the QUEUE (see Figure 9-11) and 
links the QUEUE to the end of the STREAMS scheduling queue. When putq () 
returns to the put procedure, the procedure typically exits. Some time later, the 
service procedure will be automatically called by the STREAMS scheduler. 

Revision A, of 9 May 1988 



184 Writing STREAMS Device Drivers 

The STREAMS scheduler is separate and distinct from the SunOS system pro
cess scheduler. It is concerned only with QUEUEs linked on the STREAMS 
scheduling queue. The scheduler calls the service procedure of the scheduled 
QUEUE in a FIFO manner, one at a time. 

Having both a put and service procedure in a QUEUE enables STREAMS to pro
vide the rapid response and the queuing required in multi-user systems. The put 
procedure allows rapid response to certain data and events, such as software 
echoing of input characters. Put procedures effectively have higher priority than 
any scheduled service procedures. When called from the preceding STREAMS 
component, a put procedure executes before the scheduled service procedures of 
any QUEUE are executed. 

The service procedure implies message queuing. Queuing results in deferred 
processing of the service procedure, following all other QUEUEs currently on the 
scheduling queue. For example, terminal output and input erase and kill process
ing would typically be performed in a service procedure because this type of pro
cessing does not have to be as timely as echoing. Use of a service procedure also 
allows processing time to be more evenly spread among multiple Streams. As 
with the put procedure there will generally be a separate service procedure for 
each QUEUE in a module. The flow control mechanism (see the Other Facilities 
-chapter) uses the service procedures. 

Kernel Processing The following continues the example of the previous chapter, describing 
STREAMS kernel operations and associating them, where relevant, with the 
user-level system calls already discussed. As a result of initializing operations 
and pushing a module, the Stream for port one has the following configuration: 

Figure 9-12 Operational Stream for Example 
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As shown in Figure 9-12 the upstream QUEUE is also referred to as the read 
QUEUE, reflecting the message flow in response to a read () system call. 
Correspondingly, downstream is referred to as the write QUEUE. Read side pro
cessing is discussed first . 
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In our example, read side processing consists of driver processing, CHARPROC 
processing, and CANONPROC processing. 

In the example, the user process has blocked on the getmsg (2) system call 
while waiting for a message to reach the Stream head, and the device driver 
independently waits for input of a character from the port hardware or for a mes
sage from upstream. Upon receipt of an input character interrupt from the port, 
the driver places the associated character in an M _DATA message, allocated pre
viously. Then, the driver sends the message to the CHARPROC module by cal
ling CHARPROC's upstream put procedure. On return from CHARPROC, the 
driver calls the allocb () utility routine to get another message for the next 
character. 

CHARPROC has both put and service procedures on its read side. In the example, 
the other QUEUEs in the modules also have put and service procedures: 

Module Put and Service Procedures 

write read 

......................................... · . · . 
CANONPROC: (Pl;lt) (service) 

Ii Module 

\! 
(service) (put) 

CHARPROC: (service) 
Ii Module 

\!. 
(servIce) (put) 

· . ................................... ....... . 

When the driver calls CHARPROC's read QUEUE put procedure, the procedure 
checks private data flags in the QUEUE. In this case, the flags indicate that echo
ing is to be performed (recall that echoing is optional and that we are working 
with port hardware which can not automatically echo). CHARPROC causes the 
echo to be transmitted back to the terminal by first making a copy of the message 
with a STREAMS utility. Then, CHARPROC uses another utility to obtain the 
address of its own write QUEUE. Finally, the CHARPROC read put procedure 
calls its write put procedure and passes it the message copy. The write procedure 
sends the message to the driver to effect the echo and then retum~ to the read pro
cedure. 

This part of read side processing is implemented with put procedures so that the 
entire processing sequence occurs as an extension of the driver input character 
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CANONPROC 

Write Side Processing 

interrupt. The CHARPROC read and write put procedures appear as subroutines 
(nested in the case of the write procedure) to the driver. This manner of process
ing is intended to produce the character echo in a minimal time frame. 

After returning from echo processing, the CHARPROC read put procedure checks 
another of its private data flags and determines that parity checking should be 
performed on the input character. Parity should most reasonably be checked as 
part of echo processing. However, for this example, parity is checked only when 
the characters are sent upstream. This relaxes the timing in which the checking 
must occur, that is, it can be deferred along with the canonical processing. 
CHARPROC uses putq () to schedule the (original) message for parity check 
processing by its read service procedure. When the CHARPROC read service pro
cedure is complete, it fOlWards the message to the read put procedure of 
CANONPROC. Note that if parity checking were not required, the CHARPROC 
put procedure would call the CANONPROC put procedure directly. 

CANONPROC performs canonical processing. As implemented, all read QUEUE 

processing is performed in its service procedure so that CANONPROC's put pro
cedure simply calls putq () to schedule the message for its read service pro
cedure and then exits. The service procedure extracts the character from the mes
sage buffer and place it in the "line buffer" contained in another M_DATA mes
sage it is constructing. Then, the message which contained the single character is 
returned to the buffer pool. If the character received was not an end-of-line, 
CANONPROC exits. OthelWise, a complete line has been assembled and 
CANONPROC sends the message upstream to the Stream head which unblocks the 
user process from the getmsg () call and passes it the contents of the message. 

The write side of this Stream carries two kinds of messages from the user pro
cess: ioctl () messages for CHARPROC, and M_DATA messages to be output 
to the terminal. 

ioctl () messages are sent downstream as a result of an I_STR ioctl sys
tem call. When CHARPROC receives an ioctl () message type, it processes 
the message contents to modify internal QUEUE flags and then uses a utility to 
send an acknowledgement message upstream (read side) to the Stream head. The 
Stream head acts on the acknowledgement message by unblocking the user from 
the ioctl () . 

For terminal output, it is presumed that M_DATA messages, sent by write () 
system calls, contain multiple characters. In general, STREAMS returns to the 
user process immediately after processing the wri te () call so that the process 
may send additional messages. Flow control, described in the next chapter, will 
eventually block the sending process. The messages can queue on the write side 
of the driver because of character transmission timing. When a message is 
received by the driver's write put procedure, the procedure will use putq () to 
place the message on its write-side service message queue if the driver is 
currently transmitting a previous message buffer. However, there is generally no 
write QUEUE service procedure in a device driver. Driver output interrupt pro
cessing takes the place of scheduling and performs the service procedure func
tions, removing messages from the queue. 
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For reasons of efficiency, a module implementation would generally avoid plac
ing one character per message and using separate routines to echo and parity 
check each character, as was done in this example. Nevertheless, even this 
design yields potential benefits. Consider a case where alternate, more intelligent 
port hardware was substituted. If the hardware processed multiple input charac
ters and performed the echo and parity checking functions of CHARPROC, then 
the new driver could be implemented to present the same interface as CHAR
PROC. Other modules such as CANONPROC could continue to be used without 
modification. 

The previous chapters described the basic concepts of constructing a Stream and 
utilizing the STREAMS mechanism. Additional STREAMS features are pro
vided to handle characteristic problems of protocol implementation, such as flow 
control, and to assist in development. 

There are also kernel and user-level facilities that support the implementation of 
advanced functions, such as multiplexors, and allow asynchronous operation of a 
user process and STREAMS input and output. 

As mentioned in the previous chapter, the STREAMS scheduler operates strictly 
FIFO so that each QUEUE's service procedure receives control in the order it was 
scheduled. When a service procedure receives control, it may encounter multiple 
messages on its message queue. This buildup can occur if there is a long interval 
between the time a message is queued by a put procedure and the time that the 
STREAMS scheduler calls the associated service procedure. In this interval, 
there can be multiple calls to the put procedure causing multiple messages. The 
service procedure always processes all messages on its message queue unless 
prevented by flow control (see next section). Each message must pass through 
all the modules connecting its origin and destination in the Stream. 

If service procedures were used in all QUEUEs and there was no message priority, 
then the most recently scheduled message would be processed after all the other 
scheduled messages on all Streams had been processed. In certain cases, mes
sage types containing urgent information (such as a break or alarm conditions) 
must pass through the Stream quickly. To accommodate these cases, STREAMS 
provides two classes of message queuing priority, ordinary and high. STREAMS 
prevents high-priority messages from being blocked by flow control and causes a 
service procedure to process them ahead of all ordinary priority messages on the 
procedure's queue. This results in the high-priority message transiting each 
module with minimal delay. 
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Figure 9-14 

Flow Control 
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The priority mechanism operates as shown in Figure 9-14. Message queues are 
generally not present in a QUEUE unless that QUEUE contains a service pro
cedure. When a message is passed to putq () to schedule the message for ser
vice procedure processing, putq () places the message on the message queue in 
priority order. High priority messages are placed ahead of all ordinary priority 
messages, but behind any other high priority messages on the queue. STREAMS 
utilities deliver the messages to the processing service procedure FIFO within 
each priority class. The service procedure is unaware of the message priority and 
simply receives the next message. 

Message priority is defined by the message type; once a message is created, its 
priority cannot be changed. Certain message types come in equivalent 
high/ordinary priority pairs (for example, M _ PCPROTO and M _PROTO), so that a 
module or device driver can choose between the two priorities when sending 
information. 

Even on a well-designed system, general system delays, malfunctions, and exces
si ve message accumulation on one or more Streams can cause the message buffer 
pools to become depleted. Additionally, processing bursts can arise when a ser
vice procedure in one module has a long message queue and processes all its 
messages in one pass. STREAMS provides two independent mechanisms to 
guard its message buffer pools from being depleted and to minimize long pro
cessing bursts at anyone module. 

The first flow control mechanism is global and automatic. When the Stream head 
requests a message buffer in response to a putmsg () or wr i te () system call, 
it uses the lowest level of priority. Since buffer availability is based on priority 
and buffer pool levels, the Stream head will be among the first modules refused a 
buffer when the pool becomes depleted. In response, the Stream head will block 
user output until the STREAMS buffer pool recovers. As a result, output has a 
lower priority than input. 

The second flow control mechanism is local to each Stream and advisory (volun
tary), and limits the number of characters that can be queued for processing at 
any QUEUE in a Stream. This mechanism limits the buffers and related 
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processing at anyone QUEUE and in anyone Stream, but does not consider 
buffer pool levels or buffer usage in other Streams. 

The advisory mechanism operates between the two nearest QUEUEs in a Stream 
containing service procedures (see diagram on next page). Messages are gen
erally held on a message queue only if a service procedure is present in the asso
ciated QUE UE. 

Messages accumulate at a QUEUE when its service procedure processing does not 
keep pace with the message arrival rate, or when the procedure is blocked from 
placing its messages on the following Stream component by the flow control 
mechanism. Pushable modules contain independent upstream and downstream 
limits, which are set when a developer specifies high-water and low-water control 
values for the QUEUE. The Stream head contains a preset upstream limit (which 
can be modified by a special message sent from downstream) and a driver may 
contain a downstream limit. 

Flow control operates as follows: 

D Each time a STREAMS message handling routine (for example, putqO) 
adds or removes a message from a message queue in a QUEUE, the limits are 
checked. STREAMS calculates the total size of all message blocks on the 
message queue. 

D The total is compared to the QUEUE high-water and low-water values. If the 
total exceeds the high-water value, an internal full indicator is set for the 
QUEUE. The operation of the service procedure in this QUEUE is not 
affected if the indicator is set, and the service procedure continues to be 
scheduled. 

D The next part of flow control processing occurs in the nearest preceding 
QUEUE that contains a service procedure. In the diagram below, if D is full 
and C has no service procedure, then B is the nearest preceding QUEUE. 

Flow Control 

~QU:UE~Q~UE~QU~UE~ 
i I 
I I 

V 
Message 

V 
Message 

Queue Queue 

D The service procedure in B uses a STREAMS utility routine to see if a 
QUEUE ahead is marked full. If messages cannot be sent, the scheduler 
blocks the service procedure in B from further execution. B remains 
blocked until the low-water mark of the full QUEUE, D, is reached. 

D While B is blocked, any non-priority messages that arrive at B will accumu
late on its message queue (recall that priority messages are not blocked). In 
tum, B can reach a full state and the full condition will propagate back to the 
last module in the Stream . 
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Multiplexing 

o When the service procedure processing on D causes the message block total 
to fall below the low water mark, the full indicator is turned off. Then, 
STREAMS automatically schedules the nearest preceding blocked QUEUE 
(B in this case), getting things moving again. This automatic scheduling is 
know as back-enabling a QUEUE. 

Note that to utilize flow control, a developer need only call the utility that tests if 
a full condition exists ahead, plus perform some housekeeping if it does. Every
thing else is automatically handled by STREAMS. 

STREAMS multiplexing supports the development of internetworking protocols 
such as IP and ISO CLNS, and the processing of interleaved data streams such as 
in SNA, X.25, and terminal window facilities. 

STREAMS multiplexors (also called pseudo-device drivers) are created in the 
kernel by interconnecting multiple Streams. Conceptually, there are two kinds of 
multiplexors that developers can build with STREAMS: upper and lower multi
plexors. Lower multiplexors have multiple lower Streams between device 
drivers and the multiplexor, and upper multiplexors have multiple upper Streams 
between user processes the multiplexor. 

Figure 9-16 Internet Multiplexing Stream 
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Figure 9-16 shows an example of a lower multiplexor. This configuration would 
typically occur where internetworking functions were included in the system. 
This Stream contains two types of drivers: the Ethernet, LAPB, and IEEE 802.2 
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are hardware device drivers that terminate links to other nodes; the IP (Internet 
Protocol) is a multiplexor. 

The IP multiplexor switches messages among the various nodes (lower Streams) 
or sends them upstream to user processes in the system. In this example, the 
multiplexor expects to see an 802.2 interface downstream; for the Ethernet and 
LAPB drivers, the Net 1 and Net 2 modules provide service interfaces to the two 
the non-802.2 drivers and the IP multiplexor. 

Figure 9-16 depicts the IP multi plexor as part of a larger Stream. The Stream, as 
shown in the dotted rectangle, would generally have an upper TCP multiplexor 
and additional modules. Multiplexors could also be cascaded below the IP driver 
if the device drivers were repl(lced by multiplexor drivers. 

X.25 Multiplexing Stream 
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Figure 9-17 shows an upper multiplexor. In this configuration, the driver routes 
messages between the lower Stream and one of the upper Streams. This Stream 
performs X.25 multiplexing to multiple independent SVC (Switched Virtual Cir
cuit) and PVC (Permanent Virtual Circuit) user processes. Upper multiplexors 
are a specific application of standard STREAMS facilities that support multiple 
minor devices in a device driver. This figure also shows that more complex 
configurations can be built by having one or more multiplexed LAPB drivers 
below and multiple modules above. 

Developers can choose either upper or lower multiplexing, or both, when design
ing their applications. For example, a window multiplexor would have a similar 
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configuration to the X.25 configuration of Figure 9-16, with a window driver 
replacing Packet Layer, a tty driver replacing LAPB, and the child processes of 
the terminal process replacing the user processes. Although the X.25 and win
dow multiplexing Streams have similar configurations, their multiplexor drivers 
would differ significantly. The IP multiplexor of Figure 9-15 has a different 
configuration than the X.25 multiplexor and the driver would implement its own 
set of processing and routing requirements. 

In addition to upper and lower multiplexors, more complex configurations can be 
created by connecting Streams containing multiplexors to other multiplexor 
drivers. With such a diversity of needs for multiplexors, it is not possible to pro
vide general purpose multiplexor drivers. Rather, STREAMS provides a general 
purpose multiplexing facility. The facility allows users to set up the inter
module/driver plumbing to create multiplexor configurations of generally unlim
ited interconnection. 

The connections are created from user space through specific STREAMS 
ioct I () system calls. In a lower multiplexor, multiple Streams are connected 
below an application-specific, developer-implemented multiplexing driver. The 
multiplexing facility will only connect Streams to a driver. The ioctl () call 
configures a multiplexor by connecting one Stream at a time below the opened 
multiplexor driver. As each Stream is connected to the driver, the connection 
setup procedure identifies the Stream to the driver. The driver will generally 
store this setup infonnation in a private data structure for later use. 

Subsequently, when messages flow into the driver on the various connected 
Streams, the identity of the associated Stream is passed to the driver as part of the 
standard procedure call. The driver then has available the Stream identification, 
the previously stored setup information for this Stream, and any internal routing 
information contained in the message. These data are used, according to the 
application implemented, to process the incoming message and route the output 
to the appropriate outgoing Stream. 

Additionally, new Streams can be dynamically connected to a operating multi
plexor without interfering with ongoing traffic, and existing Streams can be 
disconnected with similar ease. 

STREAMS allows user processes to monitor and control Streams so that system 
resources (such as CPU cycles and process slots) can be used effectively. Moni
toring is especially useful to user-level multiplexors, in which a user process can 
create multiple Streams and switch messages among them (similar to STREAMS 
kernel-level multiplexing, described previously). 

User processes can efficiently monitor and control multiple Streams with two 
STREAMS system calls: poll (2) and the ioctl (2) I_SETSIG command. 
These calls allow a user process to detect events that occur at the Stream head on 
one or more Streams, including receipt of a data or protocol message on the read 
queue and cessation of flow control. 

Synchronous monitoring is provided by use of poll () alone; in this case, the 
user process cannot continue processing until after the system call completes. 
When the calls are used together, they allow asynchronous, or concurrent, 
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operation of the process and STREAMS inputJoutput. This allows the user pro
cess to monitor the Stream while carrying on other activities. 

To monitor Streams with po 11 ( ) , a user process issues that system call and 
specifies the Streams to be monitored, the events to look for, and the amount of 
time to wait for an event. poll () will block the process until the time expires 
or until an event occurs. If an event occurs, poll () will return the type of 
event and the Stream on which the event occurred. 

Instead of waiting for an event to occur, a user process may want to monitor one 
or more Streams while processing other data. It can do so by issuing the ioctl 
I SETSIG command, specifying one or more Streams and events (as with 
polIO). Unlike a poll () , this ioctl () does not force the user process to 
wait for the event but returns immediately and will issue a signal when an event 
occurs. The process must also request signal (2) or sigset (2) to catch the 
resultant SIGPOLL signal. 

If any selected event occurs on any of the selected Streams, STREAMS will 
cause the SIGPOLL catching function to be executed in all associated requesting 
processes. However, the process( es) will not know which event occurred, nor on 
what Stream the event occurred. A process that issues the I_SETSIG can get 
more detailed information by issuing a poll () after it detects the event. 

STREAMS includes error and trace loggers useful for debugging and administer
ing modules and drivers. 

Any module or driver in any Stream can call the STREAMS logging function 
strlog () ,described in log(4). When called, strlog () will send formatted 
text to the error logger strerr(8V), the trace logger strace(8V), or both. 
The call parameters for strlog () include the module/driver identification, a 
severity level, and the formatted text describing the condition causing the call. 
The call also identifies the process ( strerr () and/or straceO) to receive the 
resultant output message. 
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Figure 9-18 Error and Trace Logging 
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strerr () is intended to operate as a daemon process initiated at system 
startup. A call to str log () requesting an error to be logged causes an 
M_PROTO message to be sent to strerr (), which fonnats the contents and 
places them in a daily file. The utility strclean (8V) is provided to periodi
cally purge aged, unreferenced daily log files. 

A call to strlog () requesting trace infonnation to be logged causes a similar 
M _PROTO message to be sent to strace (8V) , which places it in a user desig
nated file. strace () is intended to be initiated by a user. The user can desig
nate the modules/drivers and severity level of the messages to be accepted for 
logging by strace () . 

A user process can submit its own M _PROTO messages to the log driver for 
inclusion in the logger of its choice through putmsg (2). The messages must 
be in the same format required by the logging processes and will be switched to 
the logger(s) requested in the message. 

The output to the log files is fonnatted, ASCII text. The files can be processed 
by standard system commands such as grep (1) or ed (1) , or by developer
provided routines. 
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This chapter compares operational features of character I/O device drivers with 
STREAMS drivers and modules. It is intended for experienced developers of 
UNIX system character device drivers. Details are provided in the STREAMS 
section of Writing Device Drivers. 

No user environment is generally available to STREAMS module procedures and 
drivers. The exception is the module and driver open and close routines, both of 
which have access to the user structure of the calling process and can sleep. 
Otherwise, a STREAMS driver, module put procedure, and module service pro
cedure has no user context and can neither sleep nor access any user structure. 

Multiple Streams can use a copy of the same module (that is, the same fmodsw), 
each containing the same processing procedures. This means that module code is 
reentrant, so care must be exercised when using global data in a module. Put and 
service procedures are always passed the address of the QUEUE (for example, in 
Figure 9-6 Au calls Bu's put procedure with Bu as a parameter). The processing 
procedure establishes its environment solely from the QUEUE contents, typically 
the private data (for example, state information). 

At the interface to hardware devices, character I/O drivers have interrupt entry 
points; at the system interface, those same drivers generally have direct entry 
points (routines) to process probe () , open () , close () , read () , 
write () and ioctl () system calls. 

STREAMS device drivers have similar interrupt entry points at the hardware 
device interface and have direct entry points only for open () and close () 
system calls. These entry points are accessed via STREAMS, and the call for
mats differ from character device drivers. The put procedure is a driver's third 
entry point, but it is a message (not system) interface. The Stream head 
translates wr i te () and ioctl () calls into messages and sends them down
stream to be processed by the driver's write QUEUE put procedure. read () is 
seen directly only by the Stream head, which contains the functions required to 
process system calls. A driver does not know about system interfaces other than 
open {} and close ( ) , but it can detect absence of a read () indirectly if flow 
control propagates from the Stream head to the driver and affects the driver's 
ability to send messages upstream. 

For input processing, when the driver is ready to send data or other information 
to a user process, it does not wake up the process. It prepares a message and 
sends it to the read QUEUE of the appropriate (minor device) Stream. The 
driver's open routine generally stores the QUEUE address corresponding to this 
Stream. 

For output processing, the driver receives messages in place of a write () call. 
If the message can not be sent immediately to the hardware, it may be stored on 
the driver's write message queue. Subsequent output interrupts can remove mes
sages from this queue. 

Dri vers and modules can pass signals, error codes, and return values to processes 
via message types provided for that purpose. 
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As described above, modules have user context available only during the execu
tion of their open and close routines. Otherwise, the QUEUEs forming the 
module are not associated with the user process at the end of the Stream, nor with 
any other process. Because of this, QUEUE procedures must not sleep when they 
cannot proceed; instead, they must explicitly return control to the system. The 
system saves no state information for the QUEUE. The QUEUE must store this 
information internally if it is to proceed from the same point on a later entry. 

When a module or driver that requires private working storage (for example, for 
state information) is pushed, the open routine must obtain the storage from exter
nal sources. STREAMS copies the module template from fmodsw for the 
I _PUSH, so only fixed data can be contained in the module template. 
STREAMS has no automatic mechanism to allocate working storage to a module 
when it is opened. The sources for the storage typically include a module
specific kernel array, installed when the system is configured, or the STREAMS 
buffer pool. When using an array as a module storage pool, the maximum 
number of copies of the module that can exist at anyone time must be deter
mined. For drivers, this is typically determined from the physical devices con
nected, such as the number of ports on a multiplexor. However, certain types of 
modules may not be associated with a particular external physical limit. For 
example, the CANONICAL module shown in Figure 9-5 could be used on dif
ferent types of Streams. 

The direction from Stream head to driver. 

The end of the Stream closest to an external interface. The principal functions of 
the driver are handling any associated device, and transforming data and infor
mation between the external interface and Stream. It can also be a pseudo-driver, 
not directly associated with a device, which performs functions internal to a 
Stream, such as a multiplexor or log driver. 

One or more linked blocks of data or information, with associated STREAMS 
control structures containing a message type. Messages are the only means of 
transferring data and communicating within a Stream. 

A linked list of messages connected to a QUEUE. 

A defined set of values identifying the contents of a message. 

Software that performs functions on messages as they flow between Stream head 
and driver. A module is the STREAMS counterpart to the commands in a Shell 
pipeline except that a module contains a pair of functions which allow indepen
dent bidirectional (downstream and upstream) data flow and processing. 

A mechanism for connecting multiple Streams to a multiplexing driver. The 
mechanism supports the processing of interleaved data Streams and the process
ing of internetworking protocols. The multiplexing driver routes messages 
among the connected Streams. The other end of a Stream connected to a multi
plexing driver is typically connected to a device driver. 
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pushable module A module between the Stream head and driver. A driver is a non-pushable 
module and a Stream head includes a non-pushable module. 

Q UEU E The set of structures that forms a module. A module is composed of two 
QUEUEs, a read (upstream) QUEUE and a write (downstream) QUEUE. 

Read Queue The message queue in a module or driver containing messages moving upstream. 
Associated with input from a driver. 

Stream The kernel aggregate created by connecting STREAMS components, resulting 
from an application of the STREAMS mechanism. The primary components are 
a Stream head, a driver and zero or more pushable modules between the Stream 
head and driver. A Stream forms a full duplex processing and data transfer path 
in the kernel, between a user process and a driver. A Stream is analogous to a 
Shell pipeline except that data flow and processing are bidirectional. 

Stream Head The end of the Stream closest to the user process. The Stream head provides the 
interface between the Stream and the user process. The principal functions of the 
Stream head are processing STREAMS-related system calls, and bidirectional 
transfer of data and information between a user process and messages in 
STREAMS' kernel space. 

STREAMS A kernel mechanism that supports development of network services and data 
communication drivers. It defines interface standards for character input/output 
within the kernel, and between the kernel and user level. The STREAMS 
mechanism comprises integral functions, utility routines, kernel facilities and a 
set of structures. 

Upstream The direction from driver to Stream head. 

Write Queue The message queue in a module or driver containing messages moving down
stream. Associated with output from a user process . 
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10.1. Introduction 

Streams Overview 

10 
STREAMS Applications Programming 

This chapter provides detailed information about the STREAMS mechanism and 
system call interface. It includes the following topics. 

o The Streams Overview, below, reintroduces the STREAMS mechanism. 

o Basic Operations describes the basic operations available for constructing, 
using, and dismantling streams. These operations are performed using 
open(2), close(2), read(2), write(2), and ioctl(2). 

o Advanced Operations presents advanced facilities provided by STREAMS, 
including: poll(2), a user level I/O polling facility; asynchronous I/O pro
cessing support; and a method to sample drivers for available resources. 

o Multiplexed Streams describes the construction of sophisticated, multiplexed 
stream configurations. 

o Message Handling describes how users can process STREAMS messages 
using putmsg (2) and getmsg (2) in the context of a service interface 
example. 

The following STREAMS Module and Driver Programming chapter is the com
panion to this chapter-it provides an analogous discussion of system-level 
STREAMS. Both chapters assume a working knowledge ofUNIXt system pro
gramming, data communication facilities, and the material covered in the previ
ous Introduction to STREAMS chapter. 

This section reviews the STREAMS mechanism, a general, flexible facility and a 
set of tools for development of SunOS and UNIX system communication ser
vices. It supports the implementation of services ranging from complete net
working protocol suites to individual device drivers. The STREAMS mechanism 
defines standard interfaces for character I/O within the kernel, and between the 
kernel and the rest of the system. The associated mechanism is simple and 
open-ended. It consists of a set of system calls, kernel resources, and kernel rou
tines. 

The standard mechanism enables modular, portable development and easy 
integration of higher performance network services and their components. 
STREAMS provide a framework; they do not impose any specific network 

t UNIX is a registered trademark of AT&T . 
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architecture. The STREAMS user interface is upward compatible with the char
acter I/O user interface, and both user interfaces are available. 

A stream is a full-duplex processing and data transfer path between a STREAMS 
driver in kernel space and a process in user space (see the figure below). In the 
kernel, a stream is constructed by linking a stream head, a driver, and zero or 
more modules between the stream head and driver. The stream head is the end of 
the stream closest to the user process. Throughout this guide, the word 
"STREAMS" refers to the mechanism, and the word stream refers to the data 
path between a user and a driver.7 

A STREAMS driver may be a device driver that provides the services of an 
external I/O device, or a software driver, commonly referred to as a pseudo
device driver, that performs functions internal to a stream. The stream head pro
vides the interface between the stream and user processes. Its principal function 
is to process STREAMS-related user system calls. 

Data are passed between a driver and the stream head in messages. Messages 
that are passed from the stream head toward the driver are said to travel down
stream. Similarly, messages passed in the other direction travel upstream. The 
stream head transfers data between the data space of a user process and 
STREAMS kernel data space. Data to be sent to a driver from a user process are 
packaged into STREAMS messages and passed downstream. When a message 
containing data arrives at the stream head from downstream, the message is pro
cessed by the stream head, which copies the data into user buffers. 

7 The word' 'stream" is also used by 4.x BSD to refer to a nonseekable data source such as a pipe or socket. 
A STREAMS stream need not be restricted in this way . 

• sun 
" microsystems 
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Figure 10-1 Basic Stream 
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Within a stream, messages are distinguished by a type indicator. Certain mes
sage types sent upstream may cause the stream head to perform specific actions, 
such as sending a signal to a user process. Other message types are intended to 

carry information within a stream and are not directly seen by a user process. 

One or more kernel-resident modules may be inserted into a stream between the 
stream head and driver to perform intermediate processing of data as it passes 
between the stream head and driver. STREAMS modules are dynamically inter
connected in a stream by a user process. No kernel programming, assembly, or 
link editing is required to create the interconnection. 

General and STREAMS-specific system calls provide the user level facilities 
required to implement application programs. This system call interface is 
upwardly compatible with the character 110 facilities. The open (2) system call 
will recognize a STREAMS file and create a stream to the specified driver. A 
user process can receive and send data on STREAMS files using read (2) and 
wr it e (2) in the same manner as with character files. The io ct 1 (2) system 
call enables users to perform functions specific to a particular device and a set of 
generic STREAMS ioctl () commands, described by streamio(4), support 
a variety of functions for accessing and controlling streams. A close (2) dis
mantles a stream . 

• \sun 
• microsyslems 
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10.2. Basic Operations 

A Simple Stream 

In addition to the generic ioctl () commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The po 11 (2) system call 
enables a user to poll multiple streams for various events. The putmsg (2) and 
getmsg(2) system calls enable users to send and receive STREAMS messages, 
and are suitable for interacting with STREAMS modules and drivers through a 
service interface. 

STREAMS provide kernel facilities and utilities to support development of 
modules and drivers. The stream head handles most system calls so that the 
related processing does not have to be incorporated in a module and driver. The 
configuration mechanism allows modules and drivers to be incorporat~d into the 
system. 

Examples are used throughout both parts of this document to highlight the most 
important and common capabilities of STREAMS. The descriptions are not 
meant to be exhaustive. For simplicity, the examples reference fictional drivers 
and modules. 

This section describes the basic set of operations for manipulating STREAMS. 

A STREAMS driver is similar to a character 110 driver in that it has one or more 
nodes associated with it in the file system and it is accessed using the open ( ) 
system call. Typically, each file system node corresponds to a separate minor 
device for that driver. Opening different minor devices of a driver will cause 
separate streams to be connected between a user process and the driver. The file 
descriptor returned by the open () call is used for further access to the stream. 
If the same minor device is opened more than once, only one stream will be 
created; the first open () call will create the stream, and subsequent open () 
calls will return a file descriptor that references that stream. Each process that 
opens the same minor device will share the same stream to the device driver. 

Once a device is opened, a user process can send data to the device using the 
write () system call and receive data from the device using the read () sys
tem call. Access to STREAMS drivers using read () and wr i te () is compa
tible with the character 110 mechanism. 

The close () system call will close a device and dismantle the associated 
stream. 

The following example shows how a simple stream is used. In the example, the 
user program interacts with a generic communications device that provides 
point-to-point data transfer between two computers. Data written to the device is 
transmitted over the communications line, and data arriving on the line can be 
retrieved by reading it from the device. 
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finclude <fcntl.h> 

main () 
{ 

char buf[1024]; 
int fd, count; 

if «fd = open("/dev/conunOl", O_RDWR» < 0) { 
perror("open failed"); 
exit(l); 

while «count = read(fd, buf, 1024» > 0) 
if (write (fd, buf, count) != count) { 

perror("write failed"); 
break; 

exit(O); 

In the example, / dev / cormnO 1 identifies a minor device of the communications 
device driver. When this file is opened, the system recognizes the device as a 
STREAMS device and connects a stream to the driver. The figure below shows 
the state of the stream following the call to open () . 

Stream to Communications Driver 

Stream 
head 

communications 
driver 

____ ~s:,"-Space 

Kernel Space 

This example illustrates a user reading data from the communications device and 
then writing the input back out to the same device. In short, this program echoes 
all input back over the communications line. The example assumes that a user is 
sending data from the other side of the communications line. The program reads 
up to 1024 bytes at a time, and then writes the number of bytes just read. 

The re ad () call returns the available data, which may contain fewer than 1024 
bytes. If no data are currently available at the stream head, the read () call 
blocks until data arrive. 
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Inserting Modules 

Similarly, the wr it e () call attempts to send count bytes to / dev / commO 1. 
However, STREAMS implements a flow control mechanism that prevents a user 
from flooding a device driver with data, thereby exhausting system resources. If 
the stream exerts flow control on the user, the wri te () call blocks until the 
flow control has been relaxed. The call will not return until it has sent count 
bytes to the device. exi t(2) is called to terminate the user process. This system 
call also closes all open files, thereby dismantling the stream in this example. 

An advantage of STREAMS over the existing character 110 mechanism stems 
from the ability to insert various modules into a stream to process and manipulate 
data that passes between a user process and the driver. The following example 
extends the previous communications device echoing example by inserting a 
module in the stream to change the case of certain alphabetic characters. The 
case converter module is passed an input string and an output string by the user. 
Any incoming data (from the driver) is inspected for instances of characters in 
the module's input string and the alphabetic case of all matching characters is 
changed. Similar actions are taken for outgoing data using the output string. The 
necessary declarations for this program are shown below: 

iinclude <string.h> 
iinclude <fcntl.h> 
iinclude <stropts.h> 
/* 
* These defines would typically be 
* found in a header file for the module 
*/ 
idefine OUTPUT STRING 1 
idefine INPUT STRING 2 

main () 
{ 

char buf[1024]; 
int fd, count; 
struct strioctl strioctl; 

The first step is to establish a stream to the communications driver and insert the 
case converter module. The following sequence of system calls accomplishes 
this: 

if «fd = open(tf/dev/commOl", O_RDWR)) < 0) { 
perror("open failed"); 
exit(l); 

if (ioctl(fd, I_PUSH, "case_converter") < 0) { 
perror("ioctl I PUSH failed"); 
exit(2); 

The I_PUSH ioctl () call directs the stream head to insert the case converter 
module between the driver and the stream head, creating the stream shown in the 
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figure below. As with any driver, this module resides in the kernel and must 
have been configured into the system before it was booted. I_PUSH is one of 
several generic STREAMS i 0 c t 1 () commands that enable a user to access and 
control individual streams (see the streamio(4) man page). 

Figure 10-3 Case Converter Module 
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An important difference between STREAMS drivers and modules is illustrated 
here. Drivers are accessed through a node or nodes in the file system and may be 
opened just like any other device. Modules, on the other hand, do not occupy a 
file system node. Instead, they are identified through a separate naming conven
tion, and are inserted into a stream using I_PUSH. The name of a module is 
defined by the module developer, and is typically included on the manual page 
describing the module (manual pages describing STREAMS drivers and modules 
are found in section 7 of the SunOS Reference Manual). 

Modules are pushed onto a stream and removed from a stream in Last-In-First
Out (LIFO) order. Therefore, if a second module was pushed onto this stream, it 
would be inserted between the stream head and the case converter module. 

The next step in this example is to pass the input string and output string to the 
case converter module. This can be accomplished by issuing ioctl () calls to 
the case converter module as follows: 

.~sun ~ microsystems 
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/ * Set input conversion string * / 
strioctl.ic_cmd = INPUT_STRING; 
strioctl.ic_timout = 0; 

/ * Command type * / 
/* Default = 15 sec * / 

strioctl.ic_dp = "ABCDEFGHIJ"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I_STR, &strioctl) < 0) { 
perror("ioctl I STR failed"); 
exit (3) ; 

/ * Set output conversion string * / 
strioctl.ic_cmd = OUTPUT_STRING; / * Command type * / 
strioctl.ic_dp = "abcdefghij"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl (fd, I_STR, &strioctl) < 0) { 
perror("ioctl I STR failed"); 
exit(4); 

ioctl () requests are issued to STREAMS drivers and modules indirectly, 
using the I_STR ioctl () call (see the streamio(4) man page). The argu
ment to I_STR must be a pointer to a strioctl structure, which specifies the 
request to be made to a module or driver. This structure is defined in 
<stropts. h> and has the following format: 

struct strioctl { 
int ic_cmd; 
int ic_timout; 
int ic_len; 
char *ic_dp; 

/ * ioetl request * / 
/ * ACKINAK timeout * / 
/ * Length of data argument * / 
/ * Ptr to data argument * / 

where ic _ cmd identifies the command intended for a module or driver, ic _ timout 
specifies the number of seconds an I_STR request should wait for an ack
nowledgement before timing out, ie_len is the number of bytes of data to accom
pany the request, and ic _ dp points to that data. 

1_ STR is intercepted by the stream head, which packages it into a message, using 
information contained in the strioctl structure, and sends the message down
stream. The request will be processed by the module or driver closest to the 
stream head that understands the command specified by ic _cmd. The ioctl () 
call will block up to ic _ timout seconds, waiting for the target module or driver to 
respond with either a positive or negative acknowledgement message. If an ack
nowledgement is not received in ic _timout seconds, the ioctl () call will fail. 

I_STR is actually a nested request; the stream head intercepts I_STR and then 
sends the driver or module request (as specified in the str ioct"l structure) 
downstream. Any module that does not understand the command in ic _ cmd will 
pass the message further downstream. Eventually, the request will reach the tar
get module or driver, where it is processed and acknowledged. If no module or 

Revision A, of9 May 1988 



NOTE 

Chapter 10 - STREAMS Applications Programming 209 

driver understands the command, a negative acknowledgement will be generated 
and the ioctl () call will fail. 

In the example, two separate commands are sent to the case converter module. 
The first contains the conversion string for input data, and the second contains 
the conversion string for output data. The ic _ cmd field is set to indicate whether 
the command is setting the input or output conversion string. For each com
mand, the value of ic _timout is set to zero, which specifies the system default 
timeout value of 15 seconds. Also, a data argument that contains the conversion 
string accompanies each command. The ic _ dp field points to the beginning of 
each string, and ic _len is set to the length of the string. 

Only one 1_ STR request can be active on a STREAM at one time. Further 
requests will block until the active 1_ STR request is acknowledged and the system 
call completes. 

The strioctl structure is also used to retrieve the results, if any, of an I_STR 
request. If data are returned by the target module or driver, ic _ dp must point to a 
buffer large enough to hold that data, and ic _len will be set on return to indicate 
the amount of data returned. 

The remainder of this example is identical to the previous example: 

while «count = read(fd, buf, 1024) > 0) 
if (write (fd, buf, count) ! = count) { 

perror("write failed"); 
break; 

exit(O); 

The case converter module will convert the specified input characters to lower 
case, and the corresponding output characters to upper case. Notice that the case 
conversion processing was realized with no change to the communications 
driver. 

As with the previous example, the exit () system call will dismantle the stream 
before terminating the process. The case converter module will be removed from 
the stream automatically when it is closed. Alternatively, modules may be 
removed from a stream using the I_POP ioctl () call described in 
streamio(4). This call removes the topmost module on the stream, and 
enables a user process to alter the configuration of a stream dynamically, by 
pushing and popping modules as needed. 

A few of the important ioctl () requests supported by STREAMS have been 
discussed. Several other requests are available to support operations such as 
determining if a given module exists on the stream, or flushing the data on a 
stream. These requests are described fully in the streamio(4) man page). 
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10.3. Advanced Operations 

Advanced Input/Output 
Facilities 

Input/Output Polling 

This section introduces advanced features provided by STREAMS, such as an 
110 polling facility, asynchronous 110 processing support, and a method to sam
ple drivers for available resources. 

The traditional input/output open () , facilities- close ( ) , read ( ) , 
write (), and ioctl () -have been discussed, but STREAMS supports new 
user capabilities that will be described in the remaining sections of this guide. 
This section describes a facility that enables a user process to poll multiple 
streams simultaneously for various events. Also discussed is a signaling feature 
that supports asynchronous 110 processing. Finally, this section presents a new 
mechanism for finding available minor devices, called clone open. 

The poll (2) system call provides users with a mechanism for monitoring 
input and output on a set of file descriptors that reference open streams. It 
identifies those streams over which a user can send or receive data. For each 
stream of interest users can specify one or more events about which they should 
be notified. These events include the following: 

POLL IN 
Input data are available on the stream associated with the given file descrip
tor. 

POLLPRI 
A priority message is available on the stream associated with the given file 
descriptor. Priority messages are described in the section of Chapter 4 enti
tled "Accessing the Datagram Provider." 

POLLOUT 
The stream associated with the given file is writable. That is, the stream has 
relieved the flow control that would prevent a user from sending data over 
that stream. 

po 11 () will examine each file descriptor for the requested events and, on 
return, will indicate which events have occurred for each file descriptor. If no 
event has occurred on any polled file descriptor, poll () blocks until a 
requested event or timeout occurs. The specific arguments to poll () are the 
following: e 

o an array of file descriptors and events to be polled 

o the number of file descriptors to be polled 

o the number of milliseconds poll () should wait for an event if no events 
are pending (-1 specifies wait forever) 

The following example shows the use ofpollO. Two separate minor devices of 
the communications driver presented earlier are opened, thereby establishing two 
separate streams to the driver. Each stream is polled for incoming data. If data 
arrives on either stream, it is read and then written back to the ot\ler stream. This 
program extends the previous echoing example by sending echoed data over a 
separate communications line (minor device). The steps needed to establish each 
stream are as follows: 
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#include <fcntl.h> 
#include <poll.h> 

#define NPOLL 2 / * Number offile descriptors to poll * / 
main () 
{ 

struct pollfd pollfds[NPOLL]; 
char buf[1024]; 
int count, i; 

if «pollfds[O] .fd = 
open ("/dev/comm01" , O_RDWRIO_NDELAY» < 0) { 

perror("open failed for /dev/comm01"); 
exit(1); 

if «pollfds[1] .fd 
open ("/dev/comm02" , O_RDWRIO_NDELAY» < 0) { 

perror("open failed for /dev/comm02"); 
exit(2); 

The variable poll/ds is declared as an array ofpollfd structures, where this 
structure is defined in <poll. h> and has the following format: 

struct pollfd { 
int 
short 
short 

fd; 
events; 
revents; 

/ * File descriptor * / 
/ * Requested events * / 
/ * Returned events * / 

For each entry in the array,/d specifies the file descriptor to be polled and events 
is a bitmask that contains the bitwise inclusive OR of events to be polled on that 
file descriptor. On return, the revents bitmask will indicate which of the 
requested events has occurred. 

The example opens two separate minor devices of the communications driver and 
initializes the poll/ds entry for each. The remainder of the example uses 
po 11 () to process incoming data as follows: 

/ * Set events to poll for incoming data * / 
pollfds[O] .events POLLIN; 
pollfds[1] .events = POLLIN; 

while (1) { 
/ * Poll and use -1 timeout (infinite) * / 
if (poll (pollfds, NPOLL, -1) < 0) { 

perror("poll failed"); 
exit(3); 

for (i = 0; i < NPOLL; i++) { 
switch (pollfds[i] .revents) 
defaul t : / * Default err case * / 
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perror("error event"); 
exit(4); 

case 0: 
break; 

case POLLIN: 

/ * No events * / 

/ * Echo incoming data on "other" Stream * / 
while « count = 

read(pollfds[i] .fd, buf, 1024» > 0) 
1* 
* write loses data if flow control 
* prevents transmit at this time. 
*1 
if (write«i == 0 ? 

break; 

pollfds[1] .fd: pollfds[O] .fd), 
buf, count) != count) 

fprintf(stderr,"write lost data\n"); 

The user specifies the polled events by setting the events field of the pollfd 
structure to POLLIN. This requested event directs poll () to notify the user of 
any incoming data on each Stream. The bulk of the example is an infinite loop, 
where each iteration will poll both streams for incoming data. 

The second argument to poll () specifies the number of entries in the pollfds 
array (2 in this example). The third argument is a timeout value indicating the 
number of milliseconds po 11 () should wait for an event if none has occurred. 
On a system where millisecond accuracy is not available, timeout is rounded up 
to the nearest legal value available on that system. Here, the value of timeout is 
-1, specifying that poll () should block indefinitely until a requested event 
occurs or until the call is interrupted. 

If po 11 () succeeds, the program looks at each entry in pollfds. If revents is set 
to 0, no event has occurred on that file descriptor. If revents is set to POLL IN, 
incoming data are available. In this case, all available data are read from the 
polled minor device and written to the other minor device. 

If revents is set to a value other than ° or POLLIN, an error event must have 
occurred on that stream, because the only requested event was POLLIN. The 
following error events are defined for po 11 ( ). These events may not be polled 
for by the user, but will be reported in revents whenever they occur. As such, 
they are only valid in the revents bitmask: 

POLLERR 
A fatal error has occurred in some module or driver on the stream associated 
with the specified file descriptor. Further system calls will fail. 

POLLHUP 
A hangup condition exists on the stream associated with the specified file 
descriptor. 

~~sun ~ microsystems 
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POLLNVAL 
The specified file descriptor is not associated with an open stream. 

The example attempts to process incoming data as quickly as possible. However, 
when writing data to a stream, the wr it e () call may block if the stream is 
exerting flow control. To prevent the process from blocking, the minor devices 
of the communications driver were opened with the 0_ NDELA Y flag set. If 
flow control is exerted and 0 _NDELA Y is set, wr i te () will not be able to 
send all the data. This can occur if the communications driver is unable to keep 
up with the user's rate of data transmission. If the stream becomes full, the 
number of bytes wr i te () sends will be less than the requested count. For sim
plicity, the example ignores the data if the stream becomes full, and a warning is 
printed to stderr. 

This program will continue until an error occurs on a stream, or until the process 
is interrupted. 

The poll () system call described above enables a user to monitor multiple 
streams in a synchronous fashion. The po 11 () call normally blocks until an 
event occurs on any of the polled file descriptors. In some applications, however, 
it is desirable to process incoming data asynchronously. For example, an appli
cation may wish to do some local processing and be interrupted when a pending 
event occurs. Some time-critical applications cannot afford to block, but must 
have immediate indication of success or failure. 

A new facility is available for use with STREAMS that enables a user process to 
request a signal when a given event occurs on a stream. When used with 
polIO, this facility enables applications to asynchronously monitor a set of file 
descriptors for events. 

The I_SETSIG ioctl () call (see the streamio(4) man page) is used to 
request that a SIGPOLL signal be sent to a user process when a specific event 
occurs. Listed below are the events for which an application may be signaled: 

S INPUT 
Data has arrived at the stream head, and no data existed at the stream head 
when it arrived. 

S HIPRI 
A priority STREAMS message has arrived at the stream head. 

S OUTPUT 
The stream is no longer full and can accept output. That is, the stream has 
relieved the flow control that would prevent a user from sending data over 
that stream. 

S MSG 
A special STREAMS signal message that contains a SIGPOLL signal has 
reached the front of the stream head input queue. This mess~ge may be sent 
by modules or drivers to generate immediate notification of data or events to 

follow. 
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Clone Open 

The polling example could be written to process input from each communica
tions driver minor device by issuing 1_ SETSIG to request a signal for the 
S _ INPUT event on each stream. The signal catching routine could then call 
poll () to determine on which stream the event occurred. The default action 
for SIGPOLL is to terminate the process. Therefore, the user process must catch 
the signal using signal(2). SIGPOLL will only be sent to processes that 
request the signal using 1_ SETSIG. 

In the earlier examples, each user process connected a stream to a driver by open
ing a particular minor device of that driver. Often, however, a user process wants 
to connect a new stream to a driver regardless of which minor device is used to 

access the driver. 

In the past, this typically forced the user process to poll the various minor device 
nodes of the driver for an available minor device. To alleviate this task, a facility 
called clone open is supported for STREAMS drivers. If a STREAMS driver is 
implemented as a cloneable device, a single node in the file system may be 
opened to access any unused minor device. This special node guarantees that the 
user will be allocated a separate stream to the driver on every open () call. 
Each stream will be associated with an unused minor device, so the total number 
of streams that may be connected to a cloneable driver is limited by the number 
of minor devices configured for that driver. 

The clone device may be useful, for example, in a networking environment 
where a protocol pseudo-device driver requires each user to open a separate 
stream over which it will establish communication. Typically, the users would 
not care which minor device they used to establish a stream to the driver. 
Instead, the clone device can find an available minor device for each user and 
establish a unique stream to the driver. Chapter 3 describes this type of transport 
protocol driver. 

NOTE A user program has no control over whether a given driver supports the clone 
open. The decision to implement a STREAMS driver as a cloneable device is 
made by the designers of the device driver. 

10.4. Multiplexed Streams This section describes the construction of multiplexed stream configurations. 

Multiplexor Configurations In the earlier sections, streams were described as linear connections of modules, 
where each invocation of a module is connected to at most one upstream module 
and one downstream module. While this configuration is suitable for many 
applications, others require the ability to multiplex streams in a variety of 
configurations. Typical examples are terminal window facilities, and intemet
working protocols (which might route data over several subnetworks). 

An example of a multiplexor is one that multiplexes data from several upper 
streams over a single lower stream, as shown in the figure below. An upper 
stream is one that is upstream from a multiplexor, and a lower stream is one that 
is downstream from a multiplexor. A terminal windowing facility might be 
implemented in this fashion, where each upper stream is associated with a 
separate window. 
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Many-to-one Multiplexor 

MUX 

A second type of multiplexor might route data from a single upper stream to one 
of several lower STREAMS, as shown in the figure below. An intemetworking 
protocol could take this form, where each lower stream links the protocol to a 
different physical network. 

One-to-many Multiplexor 

MUX 

A third type of multiplexor might route data from one of many upper streams to 
one of many lower streams, as shown in the figure below. 

Many-to-many Multiplexor 

MUX 

A STREAMS mechanism is available that supports the multiplexing of streams 
through special pseudo-device drivers. Using a linking facility, users can 
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dynamically build, maintain, and dismantle each of the above multiplexed stream 
configurations. In fact, these configurations can be further combined to form 
complex, multi-level multiplexed stream configurations. 

The remainder of this section describes multiplexed stream configurations in the 
context of an example (see figure below). In this example, an intemetworking 
protocol pseudo-device driver (IP) is used to route data from a single upper 
stream to one of two lower streams. This driver supports two STREAMS con
nections beneath it to two distinct sub-networks. One sub-network supports the 
IEEE 802.3 standard for the CSMAlCD medium access method. The second 
sub-network supports the IEEE 802.4 standard for the token-passing bus medium 
access method. 

The example also presents a transport protocol pseudo-device driver (TP) that 
multiplexes multiple virtual circuits (upper streams) over a single stream to the 
IP pseudo-device driver. 

The figure below shows the multiplexing configuration to be created. This 
configuration will enable users to access the services of the transport protocol. 
To free users from the need to know about the underlying protocol structure, a 
user-level daemon process will build and maintain the multiplexing 
configuration. Users can then access the transport protocol directly by opening 
the TP driver device node. 

Figure 10-7 Protocol Multiplexor 
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The following example shows how this daemon process sets up the protocol 
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multiplexor. The necessary declarations and initialization for the daemon pro
gram are as follows: 

#include <fcntl.h> 
#include <stropts.h> 

main () 
{ 

int fd_802_4, 
fd_802_3, 
fd_ip, 
fd_tp; 

/ * Daemon-ize this process * / 
switch (fork ( » { 
case 0: 

break; 
case -1: 

perror("fork failed"); 
exit(2); 

default: 
exit(O); 

setpgrp ( ); 

This multi-level multiplexed stream configuration will be built from the bottom 
up. Therefore, the example begins by constructing the IP multiplexor. This mul
tiplexing pseudo-device driver is treated like any other software driver. It owns a 
node in the file system and is opened just like any other STREAMS device 
driver. 

The first step is to open the multiplexing driver and the 802.4 driver, creating 
separate streams above each driver as shown in the figure below. The stream to 
the 802.4 driver may now be connected below the multiplexing IP driver using 
the I_LINK ioctl () call. 

Before Link 
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_ L _____ ~ _____ _ l!..S!'- !iP!!ce 

802.4 
Driver 

IP 
Driver 

Kernel Space 

The sequence of instructions to this point is: 
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if «fd_802_4 = open(If/dev/B02_41f, O_RDWR» < 0) { 
perror(lfopen of /dev/B02_4 failed lf ); 
exit(l); 

if «fd_ip = open (If /dev/iplf, O_RDWR» < 0) { 
perror(lfopen of /dev/ip failed lf ); 
exit(2); 

/ * Now link 802.4 to underside of IP * / 
if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) { 

perror(lfI_LINK ioctl failed"); 
exit(3); 

I_LINK takes two file descriptors as arguments. The first file descriptor,/d_ip, 
must reference the stream connected to the multiplexing driver, and the second 
file descriptor,jd _802_4, must reference the stream to be connected below the 
multiplexor. The figure .. below shows the state of these streams following the 
I_LINK call. The complete stream to the 802.4 driver has been connected below 
the IP driver, including the stream head. The stream head of the 802.4 driver will 
be used by the IP driver to manage the multiplexor. 

Figure 10-9 IP Multiplexor After First Link 
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I_LINK will return an integer value, called a mux id, which is used by the multi
plexing driver to identify the stream just connected below it This mux id is 
ignored in the example, but may be useful for dismantling a multiplexor or rout
ing data through the multiplexor. Its significance is discussed later. 

The following sequence of system calls is used to continue building the internet
working multiplexor (IP): 
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if «fd_802_3 = open("/dev/802_3", O_RDWR» < 0) { 
perror("open of /dev/802_3 failed"); 
exit(4); 

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) { 
perror(III_LINK ioctl failed"); 
exit(5); 

All links below the IP driver have now been established, giving the configuration 
in the figure below. 

IP Multiplexor 
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stream 
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IP 
Driver 
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802.3 
Driver 

Kernel Space 

The stream above the multiplexing driver used to establish the lower connections 
is the controlling stream and has special significance when dismantling the multi
plexing configuration, as will be illustrated later in this section. The stream 
referenced by fd _ip is the controlling stream for the IP multiplexor. 

NOTE The order in which the streams in the multiplexing configuration are opened is 
unimportant. If, however, it is necessary to have intermediate modules in the 
stream between the IP driver and media drivers, these modules must be added to 
the streams associated with the media drivers (using I _PUSH) before the media 
drivers are attached below the multiplexor. 

The number of streams that can be linked to a multiplexor is restricted by the 
design of the particular multiplexor. The manual page describing each driver 
(typically found in section 7 of the SunOS Reference Manual) should describe 
such restrictions. However, only one I_LINK operation is allowed for each 
lower stream; a single stream cannot be linked below two multiplexors simul
taneously . 
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Figure 10-11 

Continuing with the example, the IP driver will now be linked below the tran
sport protocol (TP) multiplexing driver. As seen earlier in the figure below, only 
one link will be supported below the transport driver. This link is formed by the 
following sequence of system calls: 

if «fd_tp = open (" /dev/tp", O_RDWR» < 0) { 
perror("open of /dev/tp failed"); 
exit(6); 

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) 
perror ("I_LINK ioctl failed"); 
exit(7); 

The multi-level multiplexing configuration shown in the figure below has now 
been created. 
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Because the controlling stream of the IP multiplexor has been linked below the 
TP multiplexor, the controlling stream for the new multi-level multiplexor 
configuration is the stream above the TP multiplexor. 

At this point the file descriptors associated with the lower drivers can be closed 
without affecting the operation of the multiplexor. Closing these file descriptors 
may be necessary when building large multiplexors, so that many devices can be 
linked together without exceeding the system limit on the number of 
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simultaneously open files per process. If these file descriptors are not closed, all 
subsequent read (), write (), ioctl (), poll () ,getmsg (), and 
pu tms g () system calls issued to them will fail. That is because I_LINK asso
ciates the stream head of each linked stream with the multiplexor, so the user 
may not access that stream directly for the duration of the link. 

The following sequence of system calls will complete the multiplexing daemon 
example: 

close(fd_B024); 
close(fd_B02_3); 
close (fd_ip) ; 
/ * Hold multiplexor openforever * / 
pause () ; 

The figure below shows the complete picture of the multi-level protocol multi
plexor. The transport driver is designed to support several, simultaneous virtual 
circuits, where these virtual circuits map one-to-one to streams opened to the 
transport driver. These streams will be multiplexed over the single stream con
nected to the IP multiplexor. The mechanism for establishing multiple streams 
above the transport multiplexor is actually a by-product of the way in which 
streams are created between a user process and a driver. By opening different 
minor devices of a STREAMS driver, separate streams will be connected to that 
driver. Of course, the driver must be designed with the intelligence to route data 
from the single lower stream to the appropriate upper stream. 

Notice in the figure below that the daemon process maintains the multiplexed 
stream configuration through an open stream (the controlling stream) to the tran
sport driver. Meanwhile, other users can access the services of the transport pro
tocol by opening new streams to the transport driver; they are freed from the 
need for any unnecessary knowledge of the underlying protocol configurations 
and sub-networks that support the transport service. 

Multi-level multiplexing configurations, such as the one presented in the above 
example, should be assembled from the bottom up. That is because STREAMS 
does not allow ioctl () requests (including I_LINK) to be passed through 
higher multiplexing drivers to reach the desired multiplexor; they must be sent 
directly to the intended driver. For example, once the IP driver is linked under 
the TP driver, ioctl () requests cannot be sent to the IP driver through the TP 
driver. 

streams connected to a multiplexing driver from above with open ( ) , can be dis
mantled by closing each stream with close (). In the protocol multiplexor, 
these streams correspond to the virtual circuit streams above the TP multiplexor. 
The mechanism for dismantling streams that have been linked below a multiplex
ing driver is less obvious, and is described below in detail. 

The I_UNLINK ioctl () call is used to disconnect each multiplexor link below 
a multiplexing driver individually. This command takes the following form: 
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where fd is a file descriptor associated with a stream connected to the multiplex
ing driver from above, and mux _id is the identifier that was returned by I_LINK 
when a driver was linked below the multiplexor. Each lower driver may be 
disconnected individually in this way, or a special mux _id value of -1 may be 
used to disconnect all drivers from the multiplexor simultaneously. 

] 

In the multiplexing daemon program presented earlier, the multiplexor is never 
explicitly dismantled. That is because all links associated with a multiplexing 
driver are automatically dismantled when the controlling stream associated with 
that multiplexor is closed. Because the controlling stream is open to a driver, 
only the final call of close () for that stream will close it. In this case, the dae
mon is the only process that has opened the controlling stream, so the multiplex
ing configuration will be dismantled when the daemon exits. 

For the automatic dismantling mechanism to work in the multi-level, multiplexed 
stream configuration, the controlling stream for each multiplexor at each level 
must be linked under the next higher level multiplexor. In the example, the con
trolling stream for the IP driver was linked under the TP driver. This resulted in 
a single controlling stream for the full, multi-level configuration. Because the 
multiplexing program relied on closing the controlling stream to dismantle the 
multiplexed stream configuration instead of using explicit I_UNLINK calls, the 
mux id values returned by I_LINK could be ignored. 

An important side effect of automatic dismantling on close () is that it is not 
possible for a process to build a multiplexing configuration and then exit. That is 
because exi t(2) will close all files associated with the process, including the 
controlling stream. To keep the configuration intact, the process must exist for 
the life of that multiplexor. That is the motivation for implementing the example 
as a daemon process. 

As demonstrated, STREAMS has provided a mechanism for building multi
plexed stream configurations. However, the criteria on which a multiplexor 
routes data is driver dependent. For example, the protocol multiplexor shown in 
the last example might use address information found in a protocol header to 
determine over which sub-network a given packet should be routed. It is the 
multiplexing driver's responsibility to define its routing criteria. 

One routing option available to the multiplexor is to use the mux id value to 
determine to which stream data should be routed (remember that each multi
plexor link is associated with a mux id). I_LINK passes the mux id value to the 
driver and returns this value to the user. The driver can therefore specify that the 
mux id value must accompany data routed through it. For example, if a multi
plexor routed data from a single upper stream to one of several lower streams (as 
did the IP driver), the multiplexor could require the user to insert. the mux id of 
the desired lower stream into the first four bytes of each message passed to it. 
The driver could then match the mux id in each message with the mux id of each 
lower stream, and route the data accordingly. 
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This section describes how to process STREAMS messages in a service inter
face. 

A STREAMS message format has been defined to simplify the design of service 
interfaces. Also, two new system calls, getmsg(2) and putmsg (2) are avail
able for sending these messages downstream and receiving messages that are 
available at the stream head. This section describes these system calls in the con
text of a service interface example. First, a brief overview of STREAMS service 
interfaces is presented. 

A principal advantage of the STREAMS mechanism is its modularity. From user 
level, kernel-resident modules can be dynamically interconnected to implement 
any reasonable processing sequence. This modularity reflects the layering 
characteristics of contemporary network architectures. 

One benefit of modularity is the ability to interchange modules of like function. 
For example, two distinct transport protocols, implemented as STREAMS 
modules, may provide a common set of services. An application or higher layer 
protocol that requires those services can use either module. This ability to substi
tute modules enables user programs and higher level protocols to be independent 
of the underlying protocols and physical communication media. 

Each STREAMS module provides a set of processing functions, or services, and 
an interface to those services. The service interface of a module defines the 
interaction between that module and any neighboring modules, and therefore is a 
necessary component for providing module substitution. By creating a well
defined service interface, applications and STREAMS modules can interact with 
any module that supports that interface. The figure below demonstrates this. 

Figure 10-12 Protocol Substitution 
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By defining a service interface through which applications interact with a tran
sport protocol, it is possible to substitute a different protocol below that service 
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Figure 10-13 

The Message Interface 

interface in a manner completely transparent to the application. In this example, 
the same application can run over the Transmission Control Protocol (TCP) and 
the ISO transport protocol. Of course, the service interface must define a set of 
services common to both protocols. 

The three components of any service interface are the service user, the service 
provider, and the service interface itself, as seen in the figure below. 
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Typically, a user makes a request of a service provider using some well-defined 
service primitive. Responses and event indications are also passed from the pro
vider to the user using service primitives. The service interface is defined as the 
set of primitives that define a service and the allowable state transitions that 
result as these primitives are passed between the user and provider. 

A message format has been defined to simplify the design of service interfaces 
using STREAMS. Each service interface primitive is a distinct STREAMS mes
sage that has two parts: a control part and a data part. The control part contains 
information that identifies the primitive and includes all necessary parameters. 
The data part contains user data associated with that primitive. 

An example of a service interface primitive is a transport protocol connect 
request. This primitive requests the transport protocol service provider to estab
lish a connection with another transport user. The parameters associated with 
this primitive may include a destination protocol address and specific protocol 
options to be associated with that connection. Some transport protocols also 
allow a user to send data with the connect request. A STREAMS message would 
be used to define this primitive. The control part would identify the primitive as 
a connect request and would include the protocol address and options. The data 
part would contain the associated user data. 

STREAMS enables modules to create these messages and pass them to neighbor 
modules. However, the read () and wr i te () system calls are not sufficient to 
enable a user process to generate and receive such messages. First, read () and 
wr it e () are byte-stream oriented, with no concept of message boundaries. To 
support service interfaces, the message boundary of each service primitive must 
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be preserved so that the beginning and end of each primitive can be located. 
Also, read () and wri te () offer only one buffer to the user for transmitting 
and receiving STREAMS messages. If control information and data were placed 
in a single buffer, the user would have to parse the contents of the buffer to 
separate the data from the control information. 

Two new STREAMS system calls are available that enable user processes to 
create STREAMS messages and send them to neighboring kernel modules and 
dri vers or receive the contents of such messages from kernel modules and 
drivers. These system calls preserve message boundaries and provide separate 
buffers for the control and data parts of a message. 

The putmsg () system call enables a user to create STREAMS messages and 
send them downstream. The user supplies the contents of the control and data 
parts of the message in two separate buffers. Likewise, the ge tms g () system 
call retrieves such messages from a stream and places the contents into two user 
buffers. 

The syntax of pu tmsg () is as follows: 

int putmsg (fd, ctlptr, dataptr, flags) 
int fd; 
struct strbuf *ctlptr; 
struct strbuf *dataptr; 
int flags; 

fd identifies the stream to which the message will be passed, ctlptr and dataptr 
identify the control and data parts of the message, andjlags may be used to 

specify that a priority message should be sent. 

The strbuf structure is used to describe the control and data parts of a mes
sage, and has the following format: 

struct strbuf { 
int maxlen; 
int len; 
char *buf; 

/ * Maximum buffer length * / 
/ * Length of data * / 
/ * Pointer to buffer * / 

buf points to a buffer containing the data and len specifies the number of bytes of 
data in the buffer. maxlen specifies the maximum number of bytes the given 
buffer can hold, and is only meaningful when retrieving information into the 
buffer using getmsg () . 

The ge tms g () system call retrieves messages available at the stream head, and 
has the following syntax: 
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int getmsg (fd, ctlptr, dataptr, flags) 
int fd; 
struct strbuf *ctlptr; 
struct strbuf *dataptr; 
int *flags; 

The arguments to getmsg () are the same as those for putmsg (). 

The remainder of this section presents an example that demonstrates how 
putmsg () and getmsg () may be used to interact with the service interface of 
a simple datagram protocol provider. A potential provider of such a service 
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example 
implements a user level library that would free the user from knowledge of the 
underlying STREAMS system calls. The Transport Interface of the Network 
Services Library in UNIX System V Release 3.0 provides a similar function for 
transport layer services. The example here illustrates how a service interface 
might be defined, and is not an example of a complete IEEE 802.2 service inter
face. 

The example datagram service interface library presented below includes four 
functions that enable a user to do the following: 

o establish a stream to the service provider and bind a protocol address to the 
stream 

o send a datagram to a remote user 

o receive a datagram from a remote user 

o close the stream connected to the provider 

First, the structure and constant definitions required by the library are shown. 
These typically will reside in a header file associated with the service interface. 
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1* 
* Primitives initiated by the service user. 
*1 
fdefine BIND_REQ 
fdefine UNITDATA_REQ 
1* 

1 
2 

/ * Bind request * / 
/ * Unitdata request * / 

* Primitives initiated by the service provider. 
*1 
tdefine OK ACK 
fdefine ERROR ACK 
fdefine UNITDATA IND 
1* 

3 
4 

5 

/ * Bind acknowledgment * / 
/ * Error acknowledgment * / 
/ * Unitdata indication * / 

* The following structure definitions define the format 
* of the control part of the service interface message 
* of the above primitives. 
*1 
struct bind_req { 

long PRIM_type; 
long BIND_addr; 

} ; 

struct unitdata_req { 
long PRIM_type; 
long DEST_addr; 

} ; 

struct ok_ack { 
long 

} ; 

struct error_ack { 
long PRIM_type; 
long UNIX_error; 

} ; 

struct unitdata_ind { 
long PRIM_type; 
long SRC_addr; 

} ; 

union primitives { 
long 

} ; 

struct bind_req 
struct unitdata_req 
struct ok ack 
struct error ack 
struct unitdata ind 

/ * Bind request * / 
/ * Always BIND _ REQ * / 
/ * Addr to bind * / 

/ * Unitdata request * / 
/ * Always UNITDATA _ REQ * / 
/ * Destination addr * / 

/ * Positive acknowledgment * / 
/* Always OK_ACK */ 

/ * Error acknowledgment * / 
/ * Always ERROR _ ACK * / 
/ * UNIX error code * / 

/ * Unitdata indication * / 
/ * Always UNITDATA _IND * / 

/ * Source addr * / 

/ * Union of all primitives * / 
type; 
bind_req; 
unitdata_req; 
ok_acki 
error_ack; 
unitdata_indi 

/ * Header files needed by library * / 
finclude <stropts.h> 
tinclude <stdio.h> 
finclude <errno.h> 

Five primitives have been defined. The first two represent requests from the ser
vice user to the service provider. These are: 
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BIND_REQ 
This request asks the provider to bind a specified protocol address. It 
requires an acknowledgement from the provider to verify that the contents of 
the request were syntactically correct 

UNITDATA_REQ 
This request asks the provider to send a datagram to the specified destination 
address. It does not require an acknowledgement from the provider. 

The three other primitives represent acknowledgements of requests, or indica
tions of incoming events, and are passed from the service provider to the service 
user. These are: 

OK ACK 
This primitive informs the user that a previous bind request was received 
successfully by the service provider. 

ERROR ACK 
This primitive informs the user that a non-fatal error was found in the previ
ous bind request. It indicates that no action was taken with the primitive that 
caused the error. 

UNITDATA IND 
This primitive indicates that a datagram destined for the user has arrived. 

The structures defined above describe the contents of the control part of each ser
vice interface message passed between the service user and service provider. The 
first field of each control part defines the type of primitive being passed. 

The first routine presented below, inter _open, opens the protocol driver device 
file specified by path and binds the protocol address contained in addr so that it 
may receive datagrams. On success, the routine returns the file descriptor associ
ated with the open stream; on failure, it returns -1 and sets errno to indicate the 
appropriate error value. 
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inter_open (path, of lags , addr) 
char *path; 
{ 

int fd; 
struct bind_req bind req; 
struct strbuf ctlbuf; 
union primitives rcvbuf; 
struct error_ack *error_ack; 
int flags; 

if «fd = open(path, of lags)) < 0) 
return (-1) ; 

/ * Send bind request msg down stream * / 
bind_req.PRIM_type = BIND_REQ; 
bind_req.BIND_addr = addr; 
ctlbuf.len = sizeof(struct bind_req); 
ctlbuf.buf = (char *)&bind_req; 
if (putmsg(fd, &ctlbuf, NULL, 0) < 0) 

close (fd) ; 
return(-l) ; 

After opening the protocol driver, inter _open packages a bind request message to 
send downstream. putmsg () is called to send the request to the selVice pro
vider. The bind request message contains a control part that holds a bind _req 
structure, but it has no data part. etibu/ is a structure of type s t r bu f, and it is 
initialized with the primitive type and address. Notice that the ma:xlen field of 
etibu/is not set before calling putmsgO. That is because putmsg () ignores 
this field. The dataptr argument to putmsg () is set to NULL to indicate that 
the message contains no data part. Also, the flags argument is 0, which specifies 
that the message is not a priority message. 

After inter_open sends the bind request, it must wait for an acknowledgement 
from the selVice provider, as follows: 
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/ * Wait for ack of request * / 
ctlbuf.maxlen = sizeof(union primitives); 
ctlbuf.len = 0; 
ctlbuf.buf = (char *)&rcvbuf; 
flags = RS_HIPRI; 
if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) { 

close (fd) ; 
return(-l); 

/ * Did we get enough to determine type * / 
if (ctlbuf.len < sizeof(long» 

close(fd); 
errno = EPROTO; 
return(-l); 

/ * Switch on type (first long in rcvbuf) * / 
switch (rcvbuf.type) { 

default: 
errno = EPROTO; 
close(fd); 
return(-l); 

case OK ACK: 
ret urn (fd) ; 

case ERROR ACK: 
if (ctlbuf.len < sizeof(struct error_ack» 

errno = EPROTO; 
close(fd); 
return(-l); 

error_ack = (struct error_ack *)&rcvbuf; 
errno = error_ack->UNIX_error; 
close(fd); 
return(-l); 

getmsg () is called to retrieve the acknowledgement of the bind request. The 
acknowledgement message consists of a control part that contains either an 
ok_ ack or error _ ack structure, and no data part. 

The acknowledgement primitives are defined as priority messages. Two classes 
of messages can arrive at the stream head: priority and normal. Normal mes
sages are queued in a first-in-first-out manner at the stream head, while priority 
messages are placed at the front of the stream head queue. The STREAMS 
mechanism allows only one priority message per stream at the stream head at one 
time; any further priority messages are discarded until the first message is pro
cessed. Priority messages are particularly suitable for acknowledging service 
requests when the acknowledgement should be placed ahead of any other mes
sages at the stream head. 

These messages are not intended to support the expedited data capabilities of 
many communication protocols, as evidenced by the one-at-a-time restriction 
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just described. 

Before calling getmsgO, this routine must initialize the strbuf structure for 
the control part. buf should point to a buffer large enough to hold the expected 
control part, and maxlen must be set to indicate the maximum number of bytes 
this buffer can hold. 

Because neither acknowledgement primitive contains a data part, the dataptr 
argument to getmsg () is set to NULL. The flags argument points to an integer 
containing the value RS_HIPRI. This flag indicates that getmsg () should 
wait for a STREAMS priority message before returning, and is set because the 
acknowledgement primitives are priority messages. Even if a normal message is 
available, getms g () will block until a priority message arrives. 

On return from getmsgO, the len field is checked to ensure that the control part 
of the retrieved message is an appropriate size. The example then checks the 
primitive type and takes appropriate actions. An OK _ ACK indicates a successful 
bind operation, and in t e r _ope n () returns the file descriptor of the open 
stream. An ERROR _ACK indicates a bind failure, and errno is set to identify 
the problem with the request. 

The next routine in the datagram service library is inter_close, which closes the 
stream to the service provider. 

inter_close (fd) 
{ 

close(fd) ; 

The routine simply closes the given file descriptor. This will cause the protocol 
driver to free any resources associated with that stream. For example, the driver 
may unbind the protocol address that had previously been bound to that stream, 
thereby freeing that address for use by some other service user. 

The third routine, inter _snd, passes a datagram to the service provider for 
transmission to the user at the address specified in addr. The data to be transmit
ted is contained in the buffer pointed to by buf and contains Ie n bytes. On suc
cessful completion, this routine returns the number of bytes of data passed to the 
service provider; on failure, it returns -1 and sets errno to an appropriate system 
error value. 
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Receiving a Datagram 

inter_snd(fd, buf, len, addr) 
char *buf; 
long addr; 
{ 

struct strbuf ctlbuf; 
struct strbuf databuf; 
struct unitdata_req unitdata_req; 

unitdata_req.PRIM_type = UNITDATA_REQ; 
unitdata_req.DEST_addr = addr; 
ctlbuf.len = sizeof(struct unitdata_req); 
ctlbuf.buf = (char *)&unitdata_req; 
databuf.len = len; 
databuf.buf = buf; 
if (putmsg(fd, &ctlbuf, &databuf, 0) < 0) 

return(-l); 
return(len); 

In this example, the datagram request primitive is packaged with both a control 
part and a data part. The control part contains a unitdata _req structure that 
identifies the primitive type and the destination address of the datagram. The 
data to be transmitted is placed in the data part of the request message. 

Unlike the bind request, the datagram request primitive requires no acknowledge
ment from the service provider. In the example, this choice was made to minim
ize the overhead during data transfer. Since datagram services are inherently 
unreliable, this is a valid design choice. If the putmsg () call succeeds, this 
routine assumes all is well and returns the number of bytes passed to the service 
provider. 

The final routine in this example, inter _rev, retrieves the next available 
datagram. buf points to a buffer where the data should be stored, len indicates 
the size of that buffer, and addr points to a long integer where the source address 
of the datagram will be placed. On successful completion, inter _rev returns the 
number of bytes in the retrieved datagram; on failure, it returns -1 and sets the 
appropriate system error value. 
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inter_rcv(fd, buf, len, addr} 
char *buf; 
long *addr; 
{ 

struct strbuf ctlbuf; 
struct strbuf databuf; 
struct unitdata ind unitdata_ind; 
int retval; 
int flags; 

ctlbuf.maxlen = sizeof(struct unitdata_ind}; 
ctlbuf.len = 0; 
ctlbuf.buf = (char *)&unitdata_ind; 
databuf.maxlen = len; 
databuf.len 0; 
databuf.buf buf; 
flags = 0; 
if ((retval getmsg(fd,&ctlbuf,&databuf,&flags» < 0) 

return(-l); 
if (unitdata_ind.PR1M_type != UNITDATA_IND) 

errno = EPROTO; 
return(-l); 

if (retval) { 
errno = E10; 
return(-l); 

*addr = unitdata_ind.SRC addr; 
return(databuf.len); 

getmsg () is called to retrieve the datagram indication primitive, where that 
primiti ve contains both a control and data part. The control part consists of a 
unitdata _ind structure that identifies the primitive type and the source address of 
the datagram sender. The data part contains the data itself. 

In ctlbuJ, buJ must point to a buffer where the control information will be stored, 
and maxlen must be set to indicate the maximum size of that buffer. Similar ini
tialization is done for databuf 

Theflags argument to getmsg () is set to zero, indicating that the next message 
should be retrieved from the stream head, regardless of its priority. Datagrams 
will arrive in normal priority messages. If no message currently exists at the 
stream head, getmsg () will block until a message arrives. 

The user's control and data buffers should be large enough to hold any incoming 
datagram. If both buffers are large enough, getmsg () will process the 
datagram indication and return 0, indicating that a full message was retrieved 
successfully. However, if either buffer is not large enough, getinsg () will only 
retrieve the part of the message that fits into each user buffer. The remainder of 
the message is saved for subsequent retrieval, and a positive, non-zero value is 
returned to the user. A return value of MORECTL indicates that more control 
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infonnation is waiting for retrieval. A return value of MORE DATA indicates that 
more data are waiting for retrieval. A return value of MORECTL I MOREDATA 
indicates that data from both parts of the message remain. In the example, if the 
user buffers are not large enough (that is, getmsg () returns a positive, non-zero 
value), the function will set errno to EID and fail. 

The type of the primitive returned by getmsg () is checked to make sure it is a 
datagram indication. The source address is then set and the number of bytes of 
data in the datagram is returned. 

The above example presented a simplified service interface. The state transition 
rules for such an interface were not presented for the sake of brevity. The intent 
was to show typical uses of the putmsg () and getmsg () system calls. See 
putmsg (2) and getmsg (2) for further details. 
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11.1. Introduction 

11 
STREAMS Module and Driver 

Programming 

This chapter provides detailed information on the use of the STREAMS mechan
ism at the kernel level, including examples, information on development 
methods and design philosophy. It describes the use of STREAMS kernel facili
ties for developing and installing modules and drivers, and is intended for system 
programmers with knowledge of UNIX kernel programming, device driver 
development, networking and other data communication facilities. 

Examples are used throughout this chapter to highlight the most important and 
common capabilities of STREAMS. The descriptions are not meant to be 
exhaustive. For simplicity, the examples reference fictional drivers and modules. 

The preceding STREAMS Application Programming chapter is the companion to 
this chapter-it provides an analogous discussion of the STREAMS applications 
level. 

Both of these chapters assumes a working knowledge of the material covered in 
the preceding Introduction to STREAMS chapter (hereafter simply called the 
Introduction to STREAMS). This introduction includes a useful Glossary of 
STREAMS-related terms. STREAMS kernel utilities are summarized in the 
Utilities section of the Supplementary STREAMS Material chapter of this 
manual. STREAMS system calls are specified in Section 2 of the SunOS Refer
ence Manual. The STREAMS modules and drivers available with SunOS are 
described in section 4 of the SunOS Reference Manual. STREAMS-specific 
ioctl () calls are specified in streamio (4) . 

STREAMS was incorporated into SunOS to augment the existing character 
input/output (I/O) mechanism and to support the development of communication 
services. A STREAMS driver may be a device driver that provides the services 
of an external 110 device, or a software driver, commonly referred to as a 
pseudo-device driver, that performs functions internal to a Stream. The Stream 
head provides the interface between the Stream and user processes. Its principal 
function is to process STREAMS-related user system calls so that this processing 
does not have to be incorporated in a module and driver. 

Data is passed between a driver and the Stream head in messages. Messages that 
are passed from the Stream head toward the driver are said to travel downstream. 
Similarly, messages passed in the other direction travel upstream. The Stream 
head transfers data between the data space of a user process and STREAMS ker
nel data space. Data to be sent to a driver from a user process are packaged into 
STREAMS messages and passed downstream. When a message containing data 
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Development Facilities 

11.2. Streams Mechanism 

arrives at the Stream head from downstream, the message is processed by the 
Stream head, which copies the data into user buffers. 

Within a Stream, messages are distinguished by a type indicator. Certain mes
sage types sent upstream may cause the Stream head to perform specific actions, 
such as sending a signal to a user process. Other message types are intended to 
carry infonnation within a Stream and are not directly seen by a user process. 

One or more kernel-resident modules may be inserted into a Stream between the 
Stream head and driver to perfonn intennediate processing of data as it passes 
between the Stream head and driver. STREAMS modules are dynamically inter
connected in a Stream by a user process. No kernel programming, assembly, or 
link editing is required to create the interconnection. 

General and STREAMS-specific system calls provide the user level facilities 
required to implement application programs. This system call interface is 
upwardly compatible with the character 110 facilities. The open ( 2) system call 
recognizes a STREAMS file and creates a Stream to the specified driver. A user 
process can receive and send data on STREAMS files using read (2) and 
wr i te (2) in the same manner as with character files. The ioctl (2) system 
call enables users to perfonn functions specific to a particular device and a set of 
generic STREAMS ioctl () commands (see streamio(4» support a variety 
of functions for accessing and controlling Streams. A close (2) will dismantle 
a Stream. 

In addition to the generic ioctl () commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The poll (2) system call 
enables a user to poll multiple Streams for various events. The putmsg (2) and 
getmsg (2) system calls enable users to send and receive STREAMS mes
sages, and are suitable for interacting with STREAMS modules and drivers 
through a service interface. 

STREAMS provides module and driver developers with integral functions, a set 
of utility routines, and facilities that expedite design and implementation. The 
principle development facilities are: 

o Message storage management - to maintain STREAMS' own memory 
resources for message storage 

o Flow control - to conserve STREAMS memory and processing resources 

o Scheduling - to control the execution of service procedures 

o Multiplexing - to switch data among multiple Streams 

A Stream implements a connection within the kernel between a driver in kernel 
space and a process in user space. It provides a general character input/output 
(I/O) interface for user processes which is upwardly compatible with the inter
face of the preexisting character I/O facilities. A Stream is analogous to a shell 
pipeline except that data flow and processing are bidirectional to support con
current input and output. 
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The components that form a Stream are the Stream head, driver and optional 
modules. A Stream is initially constructed as the result of a user process 
open (2) system call referencing a STREAMS file. The call causes a kernel 
resident driver to be connected with a Stream head to form a Stream. Subsequent 
ioctl (2) calls select kernel resident modules and cause them to be inserted in 
the Stream. A module represents intermediate processing on messages flowing 
between the Stream head and driver. A module can function as, for example, a 
communication protocol, line discipline or data filter. STREAMS allows a user 
to connect a module with any other module. The user determines the module 
connection sequences that result in useful configurations. 

A process can send and receive characters on a Stream using wr i te (2) and 
read (2) , as on character files. When user data enters the Stream head or exter
nal data enters the driver, the data is placed into messages for transmission on the 
Stream. All data passed on a Stream is carried in messages, each having a 
defined message type identifying the message contents. Internal control and 
status information is transmitted among modules or between the Stream and user 
process as messages of certain types interleaved on the Stream. Modules and 
drivers can send certain message types to the Stream head to cause the generation 
of signals or errors to be received by the user process. 

A module is comprised of two identical sets of data structures called QUEUEs. 
One QUEUE is for upstream processing and the other is for downstream process
ing. The processing performed by the two QUEUEs is generally independent so 
that a Stream operates in a full-duplex manner. The interface between modules 
is uniform and simple. Messages flow from module to module. A message from 
one module is passed to the single entry point of its neighboring module. 

The last close (2) system call dismantles the Stream and closes the file, 
semantically identical to character 110 drivers. 

STREAMS supports implementation of user level applications with extensions to 
the above general system calls and STREAMS specific system calls: 
putmsg (2) , getmsg (2) , poll (2) and a set of STREAMS generic 
ioctl (2) functions. 

STREAMS constructs a Stream as a linked list of kernel resident data structures. 
In a STREAMS file, the vnode points to the Stream header structure. The 
header is used by STREAMS kernel routines to perform operations on this 
Stream generally related to system calls. Figure 11-1 depicts the downstream 
(write) portion of a Stream (see Building a Stream, in the Introduction to 
STREAMS) connected to a header. There is one header per Stream. From 
the header onward, a Stream is constructed of QUEUEs. The upstream (read) 
portion of the Stream (not shown here) parallels the downstream portion in the 
opposite direction and terminates at the Stream header structure. 
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Figure 11-1 

Figure 11-2 

Downstream Stream Construction 

At the same relative location in each QUEUE is the address of the entry point, a 
procedure to be executed on any message received by that QUEUE. The pro
cedure for QUEUE H, at one end of the Stream, is the STREAMS provided 
Stream head routine. QUEUE H is the downstream half of the Stream head. The 
procedure for QUEUE D, at the other end, is the driver routine. QUEUE D is the 
downstream half of the Stream end. PI and P2 are pushable modules, each con
taining their own unique procedures. That is, all STREAMS components are of 
similar organization. 

This similarity results in the uniform manner of navigating in either direction on 
a Stream: messages move from one end to the other, from QUEUE to the next 
linked QUEUE, executing the procedure specified in the QUEUE. 

Figure 11-2 shows the data structures forming each QUEUE: queue_t, qinit, 
module_info and module_stat. queue_t contains various modifiable 
values for this QUEUE, generally used by STREAMS. qinit contains a 
pointer to the processing procedures, module _ inf 0 contains limit values and 
module_stat is used for statistics. The two QUEUEs in a module will gen
erally each contain a different set of these structures. The contents of these struc
tures are described in following sections. 

QUEUE data structures 

earn. upstr downstream 

9 qinfo 
<--- -- -

read write 
fcc· 

queue_t 

'XI q_ne 

-
read 

9 qinfo 
<--- --

q qinfo 
--::.---> 

write 
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queue_t 

earn downstream upstr 

module 
stat 
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Figure 11-1 shows QUEUE linkage in one direction while figure 11-2 shows two 
neighboring modules with links (solid vertical arrows) in both directions. When 
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a module is pushed onto a Stream, STREAMS creates two QUEUEs and links 
each QUEUE in the module to its neighboring QUEUE in the upstream and 
downstream direction. The linkage allows each QUEUE to locate its next neigh
bor. The next relation is implemented between queue _ ts in adjacent modules 
by the ~ next pointer. Within a module, each queue _ t locates its mate (see 
dotted arrows in figure 11-2) by use of STREAMS macros, since there is no 
pointer between the two queue_ts. The existence of the Stream head and 
driver is known to the QUEUE procedures only as destinations towards which 
messages are sent 

When a file is opened [see open (2) ] , a STREAMS file is recognized by a 
non-null value in the d_str field of the associated cdevsw entry. d str 
points to a streamtab structure: 

struct streamtab 
struct qinit 
struct qinit 
struct qinit 
struct qinit 
char 

*st_rdinit; /*definesreadQUEUE */ 
*st_wrinit; /* defines write QUEUE * / 
*st_muxrinit; /* for multiplexing drivers only * / 
*st_muxwinit; /* for multiplexing drivers only * / 
* * s t _ modl i s t ; / * list of modules to be pushed * / 

streamtab defines a module or driver and points to the read and write qini t 
structures for the driver. 

If this open () call is the initial file open, a Stream is created. First, the single 
header structure and the Stream head (see figure 11-1) queue _ t structure pair 
are allocated. Their contents are initialized with predetermined values including, 
as noted above (see QUEUE H), the Stream head processing routines. 

Then, a queue _ t structure pair is allocated for the driver. The queue _ t con
tents are zero unless specifically initialized (see the Message Queues and Service 
Procedures section). A single, common qinit structure pair is shared among 
all the Streams opened from the same cdevsw entry, as is the associated 
module_info and module_stat structures (see figure 11-2.) 

Next, the <L next values are set so that the Stream head write queue _ t points 
to the driver write queue_t and the driver read queue_t points to the Stream 
head read queue _ t. The ~ next values at the ends of the Stream are set to 
NULL. Then, the driver open procedure (located via qini t) is called. 

If the st_modlist pointer is not NULL, it is assumed to point to the first 
member of an array of pointers to module names. After the driver's open () 
procedure has been called, the modules whose names are pointed to be the 
members of that array are pushed onto the stream, in the order that they appear in 
the array. (See Adding and Removing Modules, below). If one of these modules 
cannot be pushed, the open () fails. 

If this open () is not the initial open of this Stream, the only actions performed 
are to call the driver open and the open procedures of all pushable modules on 
the Stream. 
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Adding and Removing 
Modules 

Closing 

As part of constructing a Stream, a module can be added with an ioctl () 
I_PUSH (see the streamio (4) man page) system call (push). The push 
inserts a module beneath the Stream head. Because of the similarity of 
STREAMS components, the push operation is similar to the driver open. First, 
the address of the qini t structure for the module is obtained via an fmodsw 
entry. 

fmodsw is an array, analogous to cdevsw. Each fmodsw entry corresponds to 
a unique module and contains the name of the module (used by I_PUSH and cer
tain other STREAMS ioctl () s) and a pointer to the module's streamtab. 
Next, STREAMS allocates queue _ t structures and initializes their contents as 
in the driver open, above. As with the driver, the read and write qini t struc
tures are shared among all the modules opened from this fmodsw entry (see 
figure 11-2.) 

Then, ~next values are set and modified so that the module is interposed 
between the Stream head and the driver or module previously connected to the 
head. Finally, the module open procedure (located via qini t) is called. Unlike 
open () ,no other module or driver open procedure is called. 

Each push of a module is independent, even in the same Stream. If the same 
module is pushed more than once onto a Stream, there will be multiple 
occurrences of that module in the Stream. The total number of pushable modules 
that may be contained on anyone Stream is limited by the kernel parameter 
NSTRPUSH (see the SunOS STREAMS Topics chapter). 

An ioctl () I_POP (see the streamio (4) man page) system call (pop) 
removes the module immediately below the Stream head. The pop calls the 
module close procedure. On return from the module close, any messages left on 
the module's message queues are freed (deallocated). Then, STREAMS con
nects the Stream head to the component previously below the popped module 
and deallocates the module's two queue_t structures. I_POP enables a user 
process to dynamically alter the configuration of a Stream by pushing and pop
ping modules as required. For example, a module may be removed or a new one 
inserted below a module. In the latter case, the original module is popped and 
pushed back after the new module has been pushed. 

An I POP cannot be used on a driver. 

The last close () system call to a STREAMS file dismantles the Stream. Dis
mantling consists of popping any modules on the Stream, closing the driver and 
closing the file. Before a module is popped by close () , it may delay to allow 
any messages on the write message queue of the module to be drained by module 
processing. IfO_NDELAY [see open (2) ] is clear, close () will wait up to 
15 seconds for each module to drain If 0_ NDELA Y is set, the pop is performed 
immediately. close () will also wait for the driver's write queue to drain. 
Messages can remain queued, for example, if flow control (see Other Facilities, 
in the Introduction to STREAMS). is inhibiting execution of the write QU~UE. 
When all modules are popped and any wait for the driver to drain is completed, 
the driver close routine is called. On return from the driver close, any messages 
left on the driver's message queues are freed, and the queue_t and header 
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structures are deallocated. 

STREAMS frees only the messages contained on a message queue. Any messages 
used internally by the driver or module must be freed by the driver or module 
close procedure. 

Finally, the file is closed. 

A module and driver will contain, as a minimum, declarations of the following 
fonn: 

iinclude <sys/types.h> 
iinclude <sys/stream.h> 
iinclude <sys/param.h> 

/ * required in all modules and drivers * / 
/ * required in all modules and drivers * / 

static struct module info rminfo = {O,"mod",O,INFPSZ,O,O}; 
static struct module info wminfo = {O,"mod",O,INFPSZ,O,O}; 
static int modopen(), modrput(), modwput(), modclose(); 

static struct qinit rinit = 
modrput, NULL, modopen, modclose, NULL, &rminfo, NULL 

} ; 

static struct qinit winit = 
modwput, NULL, NULL, NULL, NULL, &wminfo, NULL 

} ; 

struct streamtab modinfo = { &rinit, &winit, NULL, NULL }; 

The contents of these declarations are constructed for the null module example in 
this section. This module perfonns no processing: Its only purpose is to show 
linkage of a module into the system. The descriptions in this section are general 
to all STREAMS modules and drivers unless they specifically reference the 
example. 

The declarations shown are: the header set; the read and write QUEUE (rminfo 
and wminfo) module_info structures (see figure 11-2); the module open, 
read-put, write-put and close procedures; the read and write (rinit and winit) 
qini t structures; and the streamtab structure. 

The minimum header set for modules and drivers is type s . hand s t r earn. h. 
par am. h contains definitions for NULL and other values for STREAMS 
modules and drivers as shown in the Accessible Symbols and Functions section 
of the Supplementary STREAMS Material chapter. 

Configuring a STREAMS module or driver (see the SunOS STREAMS Topics 
chapter) does not require any procedures to be externally accessible, only 
streamtab. The streamtab structure name must be the prefix used in 
configuring, appended with "info." 
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As described in the previous section, streamtab contains qini t values for 
the read and write QUEUEs, pointing to a module _info and an optional 
module stat structure. The two required structures, shown in figure 11-2), 
are these: 

struct qinit { 

} ; 

int (*qi-putp) (); 
int (*qi_srvp) (); 
int (*qi_qopen) (); 
int (*qi_qclose) (); 
int (*qi_qadmin) (); 
struct module info 
struct module stat 

struct module info 
ushort mi idnum; -
char *mi_idname; 
short mi_minpsz; 
short mi_maxpsz; 
short mi_hiwat; 
ushort mi lowat; 

} ; 

/ * put procedure * / 
/ * service procedure * / 
/ * called on each open or a push * / 
/ * called on last close or a pop * / 
/ * reserved for future use * / 
*qi_minfo; /* information structure */ 
*qi _ msta t; / * optional statistics structure * 

/ * module ID number * / 
/ * module name */ 
/ * min packet size accepted, for developer use */ 
/ * max packet size accepted, for developer use */ 
/ * hi-water mark,/or flow control * / 
/* lo-water mark,/or flow control * / 

qini t contains the QUEUE procedures. All modules and drivers with the same 
streamtab (i.e., the same fmodsw or cdevsw entry) point to the same 
upstream and downstream qini t structure(s}. The structure is meant to be 
software read-only, as any changes to it affect all instantiations of that module in 
all Streams. Pointers to the open and close procedures must be contained in the 
read qinit. These fields are ignored in the write side. The example has no ser
vice procedure on the read or write side. 

module info contains identification and limit values. All modules and 
drivers with the same streamtab point to the same upstream and downstream 
module_info structure(s). As with qinit, this structure is intended to be 
software read-only. However, the four limit values are copied to queue _ t (see 
the Message Queues and Service Procedures section). where they are 
modifiable. In the example, the flow control high and low water marks (see the 
Drivers section). are zero since there are no service procedures and messages are 
not queued in the module. 

Three names are associated with a module: the character string in fmodsw; the 
prefix for streamtab, used in configuring the module; and the module name 
field in the module info structure. The module name value used in the 
I_PUSH or other STREAMS ioctl () commands is contained in fmodsw. 
Each module ID and module name should be unique in the system. The module 
ID is currently used only in logging and tracing (see Other Facilities, in the 
-Introduction to STREAMS). For the example in this section, the module ID is 
zero. 

Minimum and maximum packet size are intended to limit the total number of 
characters contained in all (if any) of the M _DATA blocks in each message 
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passed to this QUEUE. These limits are advisory except for the Stream head. 
For certain system calls that write to a Stream, the Stream head will observe the 
packet sizes set in the write QUEUE of the module immediately below it. Other
wise, the use of packet size is developer dependent. In the example, INFPSZ 
indicates unlimited size on the read (input) side. 

module_stat is optional, intended for future use. Currently, there is no 
STREAMS support for statistical information gathering. The structure is 
described in Kernel Structures in the Supplementary STREAMS Material chapter. 

The null module procedures are as follows: 

static int modopen(q, dev, flag, sflag) 
queue _ t *q; / * pointer to read queue * / 
dev _ t dev; / * major/minor device number -- zero for modules * / 
in t flag; / * file open jlags -- zero for modules * / 
int sflag; / * stream openjlags * / 

/ * return success * / 
return 0; 

static int modwput (q, mp) /* write put procedure *1 
queue _ t *q; / * pointer to the write queue * / 
mblk t *mp; / * message pointer * / 

put next (q, mp); / * pass message through * / 

static int modrput (q, mp) 1* readputprocedure */ 
queue _ t *q; / * pointer to the read queue * I 
mblk t *mp; / * message pointer * / 

putnext(q, mp); /*passmessagethrough */ 

static int modclose(q, flag) 
queue _ t *q; / * pointer to the read queue * / 
int flag; / * file openjlags - zero for modules * / 

The form and arguments of these four procedures are the same in all modules and 
all drivers. Modules and drivers can be used in multiple Streams and their pro
cedures must be reentrant. 

modopen () illustrates the open call arguments and return value. The argu
ments are the read queue pointer (q), the major/minor device number (dev, in 
drivers only), the file open flags (flag, defined in sys/ file. h), and the 
Stream open flag (sflag). For a module, the value of flag and dev are 
always zero. The Stream open flag can take on the following values: 
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Module and Driver 
Environment 

STREAMS driver and module put 
procedures and service procedures 
have no user context. They cannot 
access the user structure of a pro
cess and must not sleep. 

11.4. Messages 

LBMODOPEN 
nonnal module open 

LBO 
nonnal driver open (see the Drivers section). 

LBCLONEOPEN 
clone driver open (see the Complete Driver section). 

The return value from open is >= 0 for success and OPENF AIL for error. The 
open procedure is called on the first I_PUSH and on all subsequent open () 
calls to the same Stream. During a push, a return value of OPENF AIL causes the 
I PUSH to fail and the module to be removed from the Stream. If OPENF AIL is 
returned by a module during an open () call, the open () fails, but the Stream 
remains intact. For example, it can be returned by a module/driver that only 
wishes to be opened by a superuser: 

if (!suser()) return OPENFAIL; 

In the example, modopen () simply returns successfully. modrput () and 
modwput () illustrate the common interface to put procedures. The arguments 
are the read or write queue _ t pointer, as appropriate, and the message pointer. 
The put procedure in the appropriate side of the QUEUE is called when a mes
sage is passed from upstream or downstream. The put procedure has no return 
value. In the example, no message processing is perfonned. All messages are 
forwarded using the putnext () macro (see Utilities in the Supplementary 
STREAMS Material chapter. putnext () calls the put procedure of the next 
QUEUE in the proper direction. 

The close procedure is only called on an I_POP oron the last close {} call of 
the Stream (see the last two sections of the (see the last two sections of Streams 
Mechanism). The arguments are the read queue_t pointer and the file open 
flags as in modopen (). For a module, the value of flag is always zero. There 
is no return value. In the example, modclose () does nothing. 

User context is not generally available to STREAMS module procedures and 
drivers. The exception is during execution of the open and close routines. 
Dri ver and module open and close routines have user context and may access the 
user structure (defined in user. h, see Accessible Symbols and Functions in 
the Supplementary STREAMS Material) chapter. These routines are allowed to 
sleep, but must always return to the caller. That is, if they sleep, it must be at 
priority <= PZERO, or with PCATCH set in the sleep priority. (A process which 
is sleeping at priority > PZERO and is sent a signal via kill ( 2 ) , never returns 
from the sleep call. Instead, the system call is aborted.) 
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Messages are the means of communication within a Stream. A message contains 
data or information identified by one of 18 message types (see Message Types in 
the Supplementary STREAMS Material chapter. Messages may be generated by 
a driver, a module, or the Stream head. The contents of certain message types 
can be transferred between a process and a Stream by use of system calls. 
STREAMS maintains its own pools for allocation of message storage. 

All messages are composed of one or more message blocks. A message block is 
a linked triplet, two structures and a variable length buffer block. The structures 
aremsgb (rnblk_t), the message block, and datab (db1k_t), the data block: 

struct msgb { 
struct msgb 
struct msgb 
struct msgb 
unsigned char 
unsigned char 
struct datab 

} ; 

*b _next; / * next message on queue * / 
*b yrev; / * previous message on queue * / 
*b _con t ; / * next message block of message * / 
*b _ rpt r ; / * first unread byte in buffer * / 
*b _ wpt r ; / * first unwritten byte in buffer * / 
*b_datap; /* data block * / 

typedef struct msgb mblk_t; 

struct datab { 
struct datab *db_freep; / * used internally * / 
unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned char 

} ; 

* db _ ba se ; / * first byte of buffer * * / 
*db_1im; /*lastbyte+1ofbuffer */ 
db _ re f ; / * count of messages pointing to this block* / 
db _type; / * message type * / 
db _ clas s ; / * used internally * / 

typedef struct datab dblk_t; 

mb1k_ t is used to link messages on a message queue, link the blocks in a mes
sage and manage the reading and writing of the associated buffer. b _ rpt rand 
b _ wptr are used to locate the data currently contained in the buffer. As shown 
in figure 11-3, mblk_t points to the data block of the triplet. The data block 
contains the message type, buffer limits and control variables. STREAMS allo
cates message buffer blocks of varying sizes (see below). db_bas e and 
db _1 im are the fixed beginning and end (+ 1) of the buffer. 

A message consists of one or more linked message blocks. Multiple message 
blocks in a message can occur, for example, because of buffer size limitations, or 
as the result of processing that expands the message. When a message is com
posed of multiple message blocks, the type associated with the first message 
block determines the message type, regardless of the types of the attached mes
sage blocks. 
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Figure 11-3 Message Form and Linkage 
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A message may occur singly, as when it is processed by a put procedure, or it 
may be linked on the message queue in a QUEUE, generally waiting to be pro
cessed by the service procedure. Message 1, as shown in figure 11-3, links to 
message 2. In the first message on a queue, b _prev points back to the header in 
the QUEUE. The last b_next points to the tail. 

Note that a data block in message 1 is shared between message 1 and another 
message. Multiple message blocks can point to the same data block to conserve 
storage and to avoid copying overhead. For example, the same data block, with 
associated buffer, may be referenced in two messages, from separate modules 
that implement separate protocol levels. (Figure 11-3 illustrates the concept, but 
data blocks would not typically be shared by messages on the same queue). The 
buffer can be retransmitted, if required by errors or timeouts, from either protocol 
level without replicating the data. Data block sharing is accomplished by means 
of a utility routine (see dupmsg () in the Utilities section of the Supplementary 
STREAMS Material chapter. STREAMS maintains a count of the message 
blocks sharing a data block in the db _ re f field. 

STREAMS provides utility routines and macros, specified in the Utilities section 
of the Supplementary STREAMS Material chapter, to assist in managing mes
sages and message queues, and to assist in other areas of module and driver 
development. A utility should always be used when operating on a message 
queue or accessing the message storage pool. 
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As discussed in the Introduction to STREAMS, most message types can be gen
erated by modules and drivers. A few are reserved for the Stream head. The 
most commonly used types are M_DATA, MYROTO and M_PCPROTO. 
These, and certain other message types, can also be passed between a process and 
the topmost module in a Stream, with the same message boundary alignment 
maintained on both sides of the kernel. This allows a user process to function, to 
some degree, as a module above the Stream and maintain a service interface (see 
the Service Interface section). M _PROTO and M _PCPROTO messages are 
intended to carry service interface information among modules, drivers and user 
processes. Some message types can only be used within a Stream and cannot be 
sent or received from user level. 

As discussed previously, modules and drivers do not interact directly with any 
system calls except open () and close (). The Stream head handles all mes
sage translation and passing. Message transfer between process and Stream head 
can occur in different forms. For example, M _ DATA, M _PROTO or 
M _ PCPROTO messages can be transferred in their direct form by getmsg (2 ) 
and putmsg (2) system calls (see the Service Interface section). Alternatively, 
a write () causes one or more M_DATA messages to be created from the data 
buffer supplied in the call. M _ DATA messages received from downstream at the 
Stream head will be consumed by read (2) and copied into the user buffer. As 
another example, M _ SIG causes the Stream head to send a signal to a process 
(see the Advanced Topics section). 

Any module or driver can send any message type in either direction on a Stream. 
However, based on their intended use in STREAMS and their treatment by the 
Stream head, certain message types can be categorized as upstream, downstream 
or bidirectional. M _DATA, M _PROTO or M _ PCPROTO messages, for exam
ple, can be sent in both directions. Other message types are intended to be sent 
upstream to be processed only by the Stream head. Downstream messages are 
silently discarded if received by the Stream head. 

The module shown below, crmod, is an asymmetric filter. On the write side, 
newline is converted to carriage return followed by newline. On the read side, no 
conversion is done. The declarations are essentially the same as the null module 
of the preceding section: 
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bappend () Subroutine 

/ * Simple filter - converts newline -> carriage return, newline * / 

finclude "sys/types.h" 
#include "sys/param.h" 
finclude "sys/stream.h" 

static struct module_info minfo = {O,"crmod",O,INFPSZ,O,O}; 

static int modopen(), modrput(), modwput(), modclose(); 
static struct qinit rinit = { 

modrput, NULL, modopen, modclose, NULL, &minfo, NULL 
} ; 

static struct qinit win it = 
modwput, NULL, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab crmdinfo = { &rinit, &winit, NULL, NULL }; 

Note that, in contrast to the null module example, a single module_info struc
ture is shared by the read and write sides. 

modopen (), modrput () and modclose () are the same as in the null 
module of the preceding section. 

The module makes use of a subroutine, bappend ( ) , which appends a character 
to a message block: 

/* 
* Append a character to a message block. 
* If (*bpp) is null, it will allocate a new block 
* Returns 0 when the message block is full, 1 otherwise 
*/ 

#define MODBLKSZ 128 / * size of message blocks * / 

static bappend(bpp, ch) 
mblk_t **bpp; 
int Chi 

mblk t *bp; 

if (bp = *bpp) 
if (bp->b_wptr >= bp->b_datap->db_Iim) 

return 0; 
else if 
«*bpp = bp allocb(MODBLKSZ, BPRI_MED» 

return 1; 
*bp->b_wptr++ Chi 
return 1; 

NULL) 
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bappend () receives a pointer to a message block pointer and a character as 
arguments. If a message block is supplied (*bpp ! = NULL), bappend ( ) 
checks if there is room for more data in the block. If not, it fails. If there is no 
message block, a block of at least MODBLKSZ is allocated through allocb (), 
described below. 

If the allocb () fails, bappend () returns success, silently discarding the 
character. This mayor may not be acceptable. For tty-type devices, it is gen
erallyaccepted. If the original message block is not full or the allocb () is 
successful, bappend () stores the character in the block. 

The allocb () utility (see the Utilities section of the Supplementary STREAMS 
Material chapter) is used to allocate message storage from the STREAMS pool. 
Its declaration is: 

mblk_t *allocb(buffersize, priority) 

allocb () will return a message block containing a buffer of at least the size 
requested, providing there is a buffer available at the message pool priority 
specified, or it will return NULL on failure. Three levels of message pool prior
ity can be specified (see the Utilities section of the Supplementary STREAMS 
Material chapter). Priority generally does not affect allocb () until the pool 
approaches depletion. In this case, for the same internal level of pool resources, 
allocb () will fail low priority requests while granting higher priority requests. 
This allows module and driver developers to use STREAMS memory resources 
to their best advantage and for the common good of the system. Message pool 
priority does not affect subsequent handling of the message by STREAMS. 
BPRI _HI is intended for special situations. This transmission of urgent messages 
relating to time sensitive events, conditions that could result in loss of state, loss 
of data or inability to recover. BPRI_MED might be used, for example, when 
requesting an M _ DATA buffer for holding input, and BPRI _ LO might be used 
for an output buffer (presuming the output data can wait in user space). The 
Stream head uses BPRI _ LO to allocate messages to contain output from a pro
cess (e.g., by write () orputmsgO). Note that allocb () will always return 
a message of type M _ DATA. The type may then be changed if required. 
b_rptr and b_wptr are set to db_base (see mblk_t and dblk_t). 

allocb () may return a buffer larger than the size requested. In bappend () , 
if the message block contents were intended to be limited to MODBLKSZ, a 
check would have to be inserted. 

If allocb () indicates buffers are not available, the bufcall () utility can be 
used to defer processing in the module or the driver until a buffer becomes avail
able (buf call () is described in the Advanced Topics section). 

modwput () processes all the message blocks in any downstream data (type 
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M _ DATA) messages. 

/ * Write side put procedure * / 
static modwput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

switch (mp->b_datap->db_type) { 
default: 

putnext (q, mp); /* Don't do these,pass them along * / 
break; 

case M_DATA: { 
register mblk_t *bp; 
struct mblk_t *nmp = NULL, *nbp = NULL; 

for (bp = mp; bp != NULL; bp = bp->b_cont) 
while (bp->b_rptr < bp->b_wptr) { 

if (*bp->b_rptr == '\n') 
if (!bappend(&nbp, '\r'» 

goto newblk; 
if (!bappend(&nbp, *bp->b_rptr» 

goto newblk; 

bp->b_rptr++; 
continue; 

newblk: 
if (nmp == NULL) 

nmp = nbp; 

/ * link message block to tail of nmp * / 
else linkb(nmp, nbp); 

nbp = NULL; 

if (nmp == NULL) 
nmp = nbp; 

else linkb(nmp, nbp); 
f reemsg (mp); / * de-allocate message * / 
if (nmp) 

put next (q, nmp); 
break; 

Data messages are scanned and filtered. modwput () copies the. original mes
sage into a new block(s), modifying as it copies. nbp points to the current new 
message block. nmp points to the new message being formed as multiple 
M _ DATA message blocks. The outer forO loop goes through each message 
block of the original message. The inner whileO loop goes through each byte . 
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bappend () is used to add characters to the current or new block. Ifbap
pend () fails, the current new block is full. If nmp is NULL, nmp is pointed at 
the new block. If nmp is non-NULL, the new block is linked to the end of nrnp 
by use of the linkb utility. 

At the end of the loops, the final new block is linked to nmp. The original mes
sage (all message blocks) is returned to the pool by freemsg (). If a new mes
sage exists, it is sent downstream. 

Service procedures, message queues and priority, and basic flow control are all 
intertwined in STREAMS. A QUEUE will generally not use its message queue 
if there is no service procedure in the QUEUE. The function of a service pro
cedure is to process messages on its queue. Message priority and flow control 
are associated with message queues. 

The operation of a QUEUE revolves around the queue _ t structure: 

struct queue { 

} ; 

struct qinit *CLqinfo; I*proceduresandlimitsforqueue *1 
struct msgb *CLfirst; 1* head of message queuefor this QUEUE * I 
struct msgb *CLlast; l*tailofmessagequeueforthisQUEUE */ 
struct queue *CL next; I * next QUEUE in Stream * I 
struct queue *CLlink; I * link to next QUEUE on scheduling queue * / 
caddr t qJ'tr; / * to private data structure * I 
ushort ~ count; I * weighted count of characters on message queue * / 
ushort CL flag; / * QUEUE state * / 
sho rt CL minps z ; I * min packet size accepted by this QUEUE * I 
short ~maxps z; / * max packet size accepted by this QUEUE * I 
ushort CL hiwat; / * message queue high water mark, for flqw control * I 
ushort ~lowat; / * message queue low water mark, for flow control * / 

typedef struct queue queue_t; 

As described previously, two of these structures fonn a module. When a 
queue _ t pair is allocated, their contents are zero unless specifically initialized. 
The following fields are initialized by STREAMS: 

o ~qinfo - from streamtab 

o ~minpsz, ~rnaxpsz, ~hiwat, ~lowat - from module_info 
Copying values from module_info allows them to be changed in the 
queue_t without modifying the template (i.e., streamtab and 
module_info) values. 

~ count is used in flow control calculations and is the weighted sum of the 
sizes of the buffer blocks currently on the message queue. The actual number of 
bytes in the buffer is not used. This is done to encourage the use of the smallest 
buffer that will hold the data intended to be placed in the buffer . 
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Service Procedures 

A service routine must never sleep 
and it has no user context. It must 
always return to its caller. 

Message Queues and Message 
Priority 

Put procedures are generally required in pushable modules. Service procedures 
are optional. The general processing flow when both procedures are present is as 
follows: A message is received by the put procedure in a QUEUE, where some 
processing may be performed on the message. The put procedure transfers the 
message to the service procedure by use of the putq () utility. putq () places 
the message on the tail (see CLlast in queue_t) of the message queue. Then, 
putq () will generally schedule (using CLlink in queue_t) the QUEUE for 
execution by the STREAMS scheduler following all other QUEUEs currently 
scheduled. After some indeterminate delay (intended to be short), the scheduler 
calls the service procedure. The service procedure gets the first message 
(CLfirst) from the message queue with the getq () utility. The service pro
cedure processes the message and passes it to the put procedure of the next 
QUEUE with putnext (). The service procedure gets the next message and 
processes it. This FIFO processing continues until the queue is empty or flow 
control blocks further processing. The service procedure returns to caller. 

If no processing is required in the put procedure, the procedure does not have to 
be explicitly declared. Rather, putq () can be placed in the qini t structure 
declaration for the appropriate QUEUE side, to queue the message for the service 
procedure, e.g.: 

static struct qinit win it = { putq, modwsrv, ... }; 

More typically, put procedures will, as a minimum, process priority messages 
(see below) to avoid queueing them. 

The key attribute of a service procedure in the STREAMS architecture is delayed 
processing. When a service procedure is used in a module, the module developer 
is implying that there are other, more time-sensitive activities to be performed 
elsewhere in this Stream, in other Streams, or in the system in general. The pres
ence of a service procedure is mandatory if the flow control mechanism is to be 
utilized by the QUEUE. 

The delay for STREAMS to call a service procedure will vary with implementa
tion and system activity. However, once the service procedure is scheduled, it is 
guaranteed to be called before user level activity is resumed. 

Also see the Put and Service Procedures section of the Introduction to 
STREAMS. 

Figure 11-3 depicts a message queue linked by b _next and b yrev pointers. 
As discussed in the Introduction to STREAMS, message queues grow when the 
STREAMS scheduler is delayed from calling a service procedure because of sys
tem activity, or when the procedure is blocked by flow control. When it is called 
by the scheduler, the service procedure processes enqueued messages in FIFO 
order. However, certain conditions require that the associated message (e.g., an 
M _ERROR) reach its Stream destination as rapidly as possible. STREAMS does 
this by assigning all message types to one of the two levels of message queueing 
priority-priority and ordinary. As shown in figure Message Queue Priority, 
when a message is queued, the putq () utility will place priority messages at the 
head of the message queue, FIFO within their order of queueing. 
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Priority messages are not subject to flow control. When they are queued by 
putq () ,the associated QUEUE is always scheduled (in the same manner as any 
QUEUE; following all other QUEUEs currently scheduled). When the service 
procedure is called by the scheduler, the procedure uses getq () to retrieve the 
first message on queue, which will be a priority message, if present. Service pro
cedures must be implemented to act on priority messages immediately (see next 
section). The above mechanisms-priority message queueing, absence of flow 
control and immediate processing by a procedure-result in rapid transport of 
priority messages between the originating and destination components in the 
Stream. 

The priority level for each message type is shown in the Message Types section 
of the Supplementary STREAMS Material chapter. Message queue management 
utilities are provided for use in service procedures (see the Utilities section of the 
Supplementary STREAMS Material chapter). 

The elements of flow control are discussed in the Other Facilities, section of the 
Introduction to STREAMS. Flow control is only used in a service procedure. 
Module and driver coding should observe the following guidelines for message 
priority. Priority messages, determined by the type of the first block in the mes
sage, 

(bp->b_datap->db_type > QPCTL), 

are not subject to flow control. They should be processed immediately and for
warded, as appropriate. 

For ordinary messages, flow control must be tested before any processing is per
formed. The canput () utility determines if the forward path from the QUEUE 
is blocked by flow control. The manner in which STREAMS determines flow 
control status for modules and drivers is described under Driver Flow Control in 
the Drivers section. 

This is the general processing for flow control: Retrieve the message at the head 
of the queue with get q ( ). Determine if the type is priority and not to be pro
cessed here. If both are true, pass the message to the put procedure of the follow
ing QUEUE with putnext (). If the type is ordinary, use canput () to deter
mine if messages can be sent onward. If canput () indicates messages should 
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Example 

not be forwarded, put the message back on the queue with putbq () and return 
from the procedure. In all other cases, process the message. 

The canonical representation of this processing within a service procedure is as 
follows: 

while (getq != NULL) 
if (priority message I I canput) 

process message 
put next 

else 
putbq 
return 

NOTE A service procedure must process all messages on its queue unless flow control 
prevents this. 

When an ordinary message is enqueued by putq (), putq () will cause the ser
vice procedure to be scheduled only if the queue was previously empty. If there 
are messages on the queue, putq () presumes the service procedure is blocked 
by flow control and the procedure will be automatically rescheduled by 
STREAMS when the block is removed. If the service procedure cannot complete 
processing as a result of conditions other than flow control (e.g., no buffers), it 
must assure it will return later (e.g., by use of bufcall () , see the Advanced 
Topics section) or it must discard all messages on queue. If this is not done, 
STREAMS will never schedule the service procedure to be run unless the 
QUEUE's put procedure queues a priority message with putq (). 

pu tbq () replaces messages at the beginning of the appropriate section of the 
message queue in accordance with their message type priority (see figure Mes
sage Queue Priority). This might not be the same position at which the message 
was retrieved by the preceding getq (). A subsequent getq () might return a 
different message. 

The filter module example of the Messages section is here modified to have a ser
vice procedure. The declarations from the example are unchanged except for the 
following lines (changes are shown in bold): 

'include "sys/stropts.h" 

static struct module_info minfo = { 
0, "ps_crmod", 0, INFPSZ, 512,128 

} ; 

static int modopen(), modrput(), modwput(); 
static int modwsrvO, modclose () ; 

static struct qinit winit = { 

modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL 
} ; 
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stropt s . h is generally intended for user level. However, it includes 
definitions of flush message options common to user level, modules and drivers. 
module_info now includes the flow control high- and low-watermarks (512 
and 128) for the write QUEUR(even though the same module_info is used 
on the read QUEUE side, the read side has no service procedure so flow control 
is not used). qini t now contains the service procedure pointer. modopen ( ) , 
modclose () and modrput () (read side put procedure) are unchanged from 
the Modules and Messages sections. The bappend () subroutine is also 
unchanged from the Messages section. 

The write side put procedures and the beginning of the service procedure are 
shown below: 

static int modwput(q, mp) 
queue_t *q; 
register mblk_t *mp; 
{ 

if (mp->b_datap->db_type > QPCTL && 
mp->b_datap->db_type != M_FLUSH) 

putnext(q, mp); 
else 
putq (q, mp); / * Put it on the queue * / 

static int modwsrv(q) queue_t *q; { 
mblk t *mp; 

while «mp getq(q)!= NULL) { 
switch (mp->b_datap->db_type) 

default: 
/ * always putnext priority messages * / 
if (mp->b_datap->db_type > QPCTL I I 
canput(q->~next» { 

putnext (q, mp); 
continue; 

else { 
putbq (q, mp); 
return; 

case M FLUSH: 
if (*mp->b_rptr & FLUSHW) 

flushq(q, FLUSHDATA); 
putnext(q, mp); 
continue; 

ps _ crmod performs a similar function to crmod of the previous section, but it 
uses a service routine. 

Revision A, of9 May 1988 



258 Writing STREAMS Device Drivers 

modwput () , the write put procedure, switches on the message type. Priority 
messages that are not type M_FLUSH are putnext () to avoid scheduling. 
The others are queued for the service procedure. An M_FLUSH message is a 
request to remove all messages on one or both QUEUEs. It can be processed in 
the put or service procedure. 

modwsrv () is the write service procedure. It takes a single argument, a pointer 
to the write queue _ t. modwsrv () processes only one priority message, 
M _FLUSH. All other priority messages are passed through. Actually, no other 
priority messages should reach modwsrv () . The check is included to show the 
canonical form when priority messages are queued by the put procedure. 

For an M_FLUSH message, modwsrv () checks the first data byte. If 
FLUSHW (defined in stropts . h) is set in the byte, the write queue is flushed 
by use of flushq (). flushq () takes two arguments, the queue pointer and a 
flag. The flag indicates what should be flushed, data messages (FLUSHDATA) 
or everything (FLUSHALL). In this case, data includes M_DATA, M_PROTO, 
and M _PCPROTO messages. The choice of what types of messages to flush is 
module specific. As a general rule, FLUSHDAT A should be used. 

Ordinary messages will be returned to the queue if 

canput(q->~next) 

returns false, indicating the downstream path is blocked. 

In the remaining part ofmodwsrv (), M_DATA messages are processed simi
larly to the previous example: 

case M DATA: 
mblk t *nbp NULL; 
mblk_t *next; 

if (!canput(q->~next» 
putbq(q, mp); 
return; 

/ * Filter data, appending to queue * / 
for (; mp ! = NULL; mp next) 

while (mp->b_rptr < mp->b_wptr) 

if (*mp->b_rptr == '\n') 
if (!bappend(&nbp, '\r'» 

goto push; 
if (!bappend(&nbp, *mp->b_rptr» 

goto push; 
mp->b_rptr++; 
continue; 

push: 
putnext(q, nbp); 
nbp = NULL; 
if (!canput(q->~next» 

if (mp->b_rptr >= mp->b_wptr) 
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next = mp->b_conti 
freeb(mp) ; 
mp=next; 

if (mp) 
putbq (q, mp); 

return; 

next = rnp->b_cont; 
freeb (mp) ; 

if (nbp) 
putnext (q, nbp); 

The differences in M _ DATA processing between this and the previous example 
relate to the manner in which the new messages are forwarded and flow control. 
For the purpose of demonstrating alternative means of processing messages, this 
version creates individual new messages rather than a single message containing 
multiple message blocks. When a new message block is full, it is immediately 
forwarded with putnext () rather than being linked into a single, large mes
sage (as was done in the previous example). This alternative may not be desir
able because message boundaries will be altered and because of the additional 
overhead of handling and scheduling multiple messages. 

When the filter processing is performed (following pushO), flow control is 
checked (canputO) after, rather than before, each new message is forwarded. 
This is done because there is no provision to hold the new message until the 
QUEUE becomes unblocked. If the downstream path is blocked, the remaining 
part of the original message is returned to the queue. Otherwise, processing con
tinues. 

Another difference between the two examples is that each message block of the 
original message is returned to the pool with freeb () when its processing is 
completed. 

This section describes the organization of a STREAMS driver, and discusses 
some of the processing typically required in drivers. Certain elements of driver 
flow control are discussed. Procedures for handling user ioctls, common to 
modules and drivers, are described. 

As discussed under Stream Construction in the Streams Mechanism section, 
dri ver and module organization are very similar. The call interfaces to all the 
driver procedures are identical to module interfaces and driver procedures must 
be reentrant. As described under Environment in the Modules section, the driver 
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put and service procedures have no user environme~t and cannot sleep. Other 
than with open () and close () , a driver interfaces with a user process by 
messages, and indirectly, through flow control. 

There are two significant differences between modules and drivers. First, a dev
ice driver must also be accessible from an interrupt as well as from the Stream, 
and second, a driver can have multiple Streams connected to it. Multiple connec
tions occur when more than one minor device uses the same driver and in the 
case of multiplexors (see the Multiplexing section). However, these particular 
differences are not recognized by the STREAMS mechanism: They are handled 
by developer-provided code included in the driver procedures. 

Figure 11-5 shows multiple Streams (corresponding to minor devices), to a com
mon driver. This depiction of two Streams connected to a single driver is some
what misleading. These are really two distinct Streams opened from the same 
cdevsw (Le., same major device). Consequently, they have the same stream
tab and the same driver procedures. Modules opened from the same fmodsw 
might be depicted similarly if they had any reason to be cognizant, as do drivers, 
of common resources or alternate instantiations. 

Multiple instantiations (minor devices) of the same driver are handled during the 
initial open for each device. Typically, the queue _ t address is stored in a 
driver-private structure indexed by the minor device number. The structure is 
typically pointed at by <LPtr (see the Message Queues and Service Procedures 
section). When the messages are received by the QUEUE, the calls to the driver 
put and service procedures pass the address of the queue _ t, allowing the pro
cedures to detennine the associated device. 

In addition to these differences, a driver is always at the end of a Stream. As a 
result, drivers must include standard processing for certain message types that a 
module might simply be able to pass to the next component . 

• ~sun ~ microsystems 
Revision A, of 9 May 1988 



Chapter 11 - STREAMS Module and Driver Programming 261 

Figure 11-5 Device Driver Streams 
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The same utilities (described in the Message Queues and Service Procedures sec
tion), and mechanisms used for module flow control are used by drivers. How
ever, they are typically used in a different manner in drivers, because a driver 
generally does not have a service procedure. The developer sets flow control 
values (mi_hiwat and mi_lowat) in the write side module_info structure, 
which STREAMS will copy into ~hiwat and ~lowat in the queue_t 
structure of the QUEUE. A device driver typically has no write service pro
cedure, but does maintain a write message queue. When a message is passed to 
the driver write side put procedure, the procedure will detennine if device output 
is in progress. In the event output is busy, the put procedure cannot immediately 
send the message and calls the putq () utility (see the Utilities section of the 
Supplementary STREAMS Material chapter) to queue the message. (Note that 
the driver might have elected to queue the message in all cases.) put q () recog
nizes the absence of a service procedure and does not schedule the QUEUE. 

When the message is queued, putq () increments the value of ~count 
(approximately the enqueued character count, see the beginning of the Message 
Queues and Service Procedures section) by the size of the message and compares 
the result against the driver's write high water limit (~hiwat) value. If the 
count exceeds ~hiwat, putq () will set the internal FULL (see Flow Control 
in the Introduction to STREAMS). indicator for the driver write QUEUE. This 
will cause messages from upstream to be halted (canput () retorns FALSE) 
until the write queue count reaches ~ Iowa t. The driver messages waiting to 
be output are dequeued by the driver output interrupt routine with getq () , 
which decrements the count. If the resulting count is below ~lowat, getq () 
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Driver Programming 

Driver Declarations 

will back-enable any upstream QUEUE that had been blocked. The above 
STREAMS processing also applies to modules on both write and read sides of 
the Stream. 

Device drivers typically discard input when unable to send it to a user process. 
However, STREAMS allows flow control to be used on the driver read side, pos
sibly to handle temporary upstream blocks. This is described in the Advanced 
Topics section in the Advanced Flow Control section. 

To some extent, a driver or module can control when its upstream transmission 
will become blocked. Control is available through the M _ SETOPTS message 
(see the Advanced Topics section, here, and the Message Types section of the 
Supplementary STREAMS Material) to modify the Stream head read side flow 
control limits. 

The example below shows how a simple interrupt-per-character line printer 
driver could be written. The driver is unidirectional and has no read side pro
cessing. It demonstrates some differences between module and driver program
ming, including the following: 

Open handling 
A driver is passed a minor device number or is asked to select one (see next 
section). 

Flush handling 
A driver must loop M _FLUSH messages back upstream. 

loctl handling 
A driver must nak ioctl messages it does not understand. This is discussed 
under Driver and Module Ioctls, below. Write side flow control is also illus
trated as described above. 

The driver declarations are as follows: 

/ * Simple line printer driver. * / 

=ltinclude "sys/types.h" 
=ltinclude "sys/param.h" 
=ltinclude "sys/sysmacros.h" 
=ltifdef u3b2 
=ltinclude "sys/psw.h" 
=ltinclude "sys/pcb.h" 
=ltendif 
=ltinclude "sys/stream.h" 
=ltinclude "sys/stropts.h" 
=ltinclude "sys/dir.h" 
=ltinclude "sys/signal.h" 
=ltinclude "sys/user.h" 
=ltinclude "sys/errno.h" 

/ * required/or user.h * / 
/ * required/or user.h * / 

/ * required/or user.h * / 
/ * required/or user.h * / 

static struct module info minfo 
0, "lp" , 0, INFPSZ, 150, 50 

} ; 
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static int lpopen(), lpclose(), lpwput(); 

static struct qinit rinit = { 
NULL, NULL, lpopen, lpclose, NULL, &minfo, NULL 

} ; 

static struct qinit winit = { 
lpwput, NULL, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab lpinfo = { &rinit, &winit, NULL, NULL }; 

#define SET_OPTIONS «'1'«8) 11) / * really must be in a .h file * / 
1* 
* This is a private data structure ,one per minor device number. 
*1 
struct 1p { 

short flags; /*.flags--seebelow */ 
mb1k _ t *msg; / * current message being output * / 
queue _ t * qpt r ; / * back pointer to write queue * / 

} ; 

/ * Flags bits * / 
#define BUSY 1 /*deviceisrunningandinterruptispending */ 

extern struct 1p 1p_1p[]; /*perdevicelpstructurearray */ 
extern int lp_cnt; /* number of valid minor devices */ 

As noted for modules in the Modules section, configuring a STREAMS driver 
does not require the driver procedures to be externally accessible; only 
streamtab must be. All STREAMS driver procedures would typically be 
declared static. 

There is no read side put or service procedure. The flow control limits for use on 
the write side are 50 and 150 characters. The private Ip structure is indexed by 
the minor device number and contains these elements: 

flags 
A set of flags. Only one bit is used: BUSY indicates that output is active 
and a device interrupt is pending. 

msg 
A pointer to the current message being output. 

qptr 
A back pointer to the write queue. This is needed to find the write queue 
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Driver Open 

during interrupt processing. 

The driver open, lpopen (), has the same interface as the module open: 

static int lpopen(q, dev, flag, sflag) 
queue _ t *q / * read queue * / 
{ 

struct lp *lp; 

/ * Check if non-driver open * / 
if (sflag) 

return OPENFAIL; 

/ * Dev is major/minor * / 
dev = minor(dev); 
if (dev >= lp_cnt) 

return OPENFAIL; 

/ * Check if open already. qytr is assigned below * / 
if (q->qytr) { 

u. u _error = EBUSY; / * only 1 user of the printer at a time * / 
return OPENFAIL; 

Ip = &lp_lp[dev]; 
Ip->qptr = WR(q); 
q->qytr = (char *) Ip; 
WR(q)->qytr = (char *) lp; 
return dev; 

The Stream flag, sflag, must have the value 0, indicating a normal driver open. 
dev holds both the major and minor device numbers for this port. After check
ing sflag, the open flag, lpopen () extracts the minor device from de v, 
using the minor () macro defined in sysmacros. h. 

NOTE The use o/major devices, minor devices and the minor () macro may be 
machine dependent. 

The minor device number selects a printer and must be less than lp _ cnt. 

The next check, if ( q->qyt r) ... , determines if this printer is already 
open. In this case, EBUSY is returned to avoid merging printouts from multiple 
users. qyt r is a driver/module private data pointer. It can be used by the 
driver for any purpose and is initialized to zero by STREAMS. In this example, 
the driver sets the value of ~ptr, in both the read and write queue_t struc
tures, to point to a private data structure for the minor device, lp _lp [dev] . 

WR is one of three QUEUE pointer macros. As discussed in the Stream Con
struction section, there are no physical pointers between QUEUEs, and these 
macros (see Utilities in the Supplementary STREAMS Material section) generate 
the pointer. WR(q) generates the write pointer from the read pointer, RD (q) 
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generates the read pointer from the write pointer and OTHER(q) generates the 
mate pointer from either. 

This example only has a write put procedure: 

static int Ipwput(q, mp) 
queue _ t *q; / * write queue * / 
register mblk_t *mp; /* message pointer * / 
{ 

register struct lp *lp; 
int s; 

lp = (struct lp *)q->~tr; 

switch (mp->b_datap->db_type) 
default: 

freemsg(mp); 
break; 

case M FLUSH: 
/ * Canonical flush handling * / 
if (*mp->b_rptr & FLUSHW) 

flushq(q, FLUSHDATA); 
s = splS () ; 
/ * also flush lp->msg since it is logically 
* at the head of the write queue * / 
if (lp->msg) { 

freemsg(lp->msg); 
lp->msg = NULL; 

splx(s); 

if (*mp->b_rptr & FLUSHR) { 
flushq(RD(q), FLUSHDATA); 
*mp->b_rptr &= -FLUSHW; 
qreply(q, mp); 

else 
freemsg (mp) ; 

break; 

case M IOCTL: 
case M DATA: 

putq (q, mp); 
s = splS(); 
if (! (lp->flags & BUSY» 

lpout(lp); 
splx(s); 
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Driver Flush Handling 

Driver Interrupt 

The write put procedure, Ipwput (), illustrates driver M_FLUSH handling: 
Note that all drivers are expected to incorporate this flush handling. If FLUSHW 
is set, the write message queue is flushed, and also (for this example) the leading 
message (1 P - >ms g). s P 15 is used to protect the critical code, assuming the 
device interrupts at level 5. If FLUSHR is set, the read queue is flushed, the 
FLUSHW bit is cleared, and the message is sent upstream using qreply (). If 
FLUSHR is not set, the message is discarded. 

The Stream head always perfonns the following actions on flush requests 
received on the read side from downstream. If FLUSHR is set, messages waiting 
to be sent to user space are flushed. IfFLUSHW is set, the Stream head clears 
the FLUSHR bit and sends the M _FLUSH message downstream. In this manner, 
a single M _FLUSH message sent from the driver can reach all QUEUEs in a 
Stream. A module must send two M _FLUSH messages to have the same affect. 

Ipwput () enqueues M_DATA and M_IOCTL (see the Driver and Module 
Ioctls section, below) messages and, if the device is not busy, starts output by 
calling Ipout (). Messages types that are not recognized are discarded. 

Ipintr () is the driver interrupt routine: 

/ * Device interrupt routine. * / 

Ipintr(dev) 
int dev; / * minor device number of Ip * / 
{ 

register struct Ip *lp; 

Ip = &lp_lp[dev]; 
if (! (lp->flags & BUSY» { 

printf("lp: unexpected interrupt\n"); 
return; 

Ip->flags &= -BUSY; 
Ipout(lp); 

/ * Start output to device - used by put procedure and driver * / 

Ipout(lp) 
register struct Ip *lp; 
{ 

register mblk_t *bp; 
queue_t *q; 

q = Ip->qptr; 
loop: 

if «bp = Ip->msg) == NULL) { 
if «bp = getq (q» == NULL) 

return; 
if (bp->b_datap->db_type 

Ipdoioctl(lp, bp); 
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goto loop; 

lp->msg = bPi 

if (bp->b rptr >= bp->b_wptr) 
bp = lp->msg->b_cont; 
lp->msg->b_cont = NULL; 
freeb(lp->msg) ; 
lp->msg = bPi 
goto loop; 

lpoutchar(lp, *bp->b_rptr++); 
lp->flags 1= BUSY; 

Ipout () simply takes a character from the queue and sends it to the printer. 
The processing is logically similar to the service procedure in the Message 
Queues and Service Procedures section. For convenience, the message currently 
being output is stored in p->rns g. 

Two mythical routines need to be supplied: 

Ipoutchar 
send a character to the printer and interrupt when complete 

Ipsetopt 
set the printer interface options 

Drivers and modules interface with ioctl (2) system calls through messages. 
Almost all STREAMS generic ioctl () s (see the streamio (4) man page) 
go no further than the Stream head. The capability to send an ioctl () down
stream, is similar to the ioctl () of character device drivers, is provided by the 
I_STR ioctl. The Stream head processes an I_STR by constructing an 
M _ IOCTL message (see Message Types in the Supplementary STREAMS 
Material chapter) from data provided in the call, and sends that message down
stream. In addition, since i 0 c t 1 () codes in SunOS inel ude the size of the 
parameter used for the ioctl () as well as an indication of whether this param
eter is to be copied to or from the user process, the 1_ STR ioctl need not be 
used if the parameter contains 255 or fewer bytes as is of a fixed size. 

The user process that issued the ioctl () is blocked until a module or driver 
responds with either an M_IOCACK (ack) or M_IOCNAK (nak) message, or 
until the request "times out" after a user specified interval. The STREAMS 
module or dri ver that generates an ack can also return infonnation to the process. 
If the Stream head does not receive one of these messages in the specified time, 
the ioctl () call fails. 

A module that receives an unrecognized M_IOCTL message should pass it on 
unchanged. A driver that receives an unrecognized M _ IOCTL should nak it. 
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Ipout () traps M_IOCTL messages and calls Ipdoioctl () to process them: 

Ipdoioctl(lp, mp) 
struct lp *lp; 
mblk_t *mp; 
{ 

struct iocblk *iocp; 
queue_t *q; 

q = lp->qptr; 

/ * 1 st block contains iocblk structure * / 
iocp = (struct iocblk *)mp->b_rptr; 

switch (iocp->ioc_cmd) { 
case SET OPTIONS: 

/ * Count should be exactly one short's worth * / 
if (iocp->ioc_count != sizeof(short» 

goto iocnak; 
/ * Actual data is in 2nd message block * / 
Ipsetopt(lp, *(short *)mp->b_cont->b_rptr); 

/ * ACK the ioctl * / 
mp->b_datap->db_type 
iocp->ioc_count = 0; 
qreply(q, mp); 
break; 

default: 
iocnak: 

/ * NAK the ioctl * / 
mp->b_datap->db_type 
qreply(q, mp); 

M_IOCACK; 

M_IOCNAK; 

Ipdoioctl () illustrates M_IOCfL processing: The first part also applies to 
modules. An M_IOCTL message contains a struct iocblk in its first 
block. The first block is followed by zero or more M _ DATA blocks. The 
optional M _ DAT A blocks typically contain any user supplied data. 

The fonn of an iocblk is as follows: 

struct iocblk { 

} ; 

int 
ushort 
ushort 
uint 

ioc_cmd; 
ioc_uid; 
ioc_gid; 
ioc_id; 

uint ioc_count; 
int ioc_error; 
int ioc_rval; 
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/ * ioctl command type * / 
/ * effective uid of user * / 
/ * effective gid of user * / 
/ * ioctl id * / 
/ * count of bytes in data field * f 
/ * error code * / 
/ * return value * / 
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ioc _ cmd contains the command supplied by the user. In this example, only one 
command is recognized, SET_OPTIONS. ioc_count contains the number of 
user supplied data bytes. For this example, it must equal the size of a short (2 
bytes). The user data is sent directly to the printer interface using 
Ipsetopt (). Next, the M_IOCTL message is changed to type M_IOCACK 
and the ioc count field is set to zero to indicate that no data is to be returned 
to the user. Finally, the message is sent upstream using qr ep 1 y ( ). If 
ioc_count was left non-zero, the Stream head would copy that many bytes 
from the 2nd - Nth message blocks into the user buffer. 

If the M _ IOCTL message is not understood or in error for any reason, the driver 
must set the type to M_IOCNAK and send the message upstream. No data can 
be sent to a user in this case. The Stream head will cause the ioctl () call to 
fail with the error number EINV AL. The driver has the option of setting 
ioc error to an alternate error number if desired. 

NOTE ioc_error can be set to a non-zero value by bothMJOCACK and 

Driver Close 

11.7. Complete Driver 

Cloning 

M IOCNAK. This will cause that value to be returned as an error number to the 
process that sent the ioctl () . 

The driver close clears any message being output. Any messages left on the mes
sage queue will be automatically removed by STREAMS. 

static int Ipclose(q) 
queue_t *qi 1* read queue */ 
{ 

struct Ip *lPi 
int Si 

lp = (struct Ip *) q->~ptri 
/ * Free message, queue is automatically flushed by STREAMS * / 
s = sp15()i 
if (lp->msg) { 

freemsg(lp->msg) i 

Ip->msg = NULL; 

splx(s) i 

The clone mechanism has been developed as a convenience. It allows a user to 
open a driver without specifying the minor device. When a Stream is opened, a 
flag indicating a clone open is tested by the driver open routine. If the flag is set, 
the driver returns an unused minor device number. The clone driver (see the 
clone (4) man page) is a system dependent STREAMS pseudo driver. 

Knowledge of clone driver implementation is not required to use it. A descrip
tion is presented here for completeness and to assist developers who must 
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Loop-Around Driver 

implement their own clone driver. A clone-able device has a device number in 
which the major number corresponds to the clone driver and the minor number 
corresponds to the target driver. When an open ( 2) system call is made to the 
associated (STREAMS) file, open () causes a new Stream to be opened to the 
clone driver and the open procedure in clone to be called with dev set to 
clone/target. The clone open procedure uses minor (dev) to locate the 
cdevsw entry of the target driver. Then, clone modifies the contents of the 
newly instantiated Stream queue _ ts to those of the target driver and calls the 
target driver open procedure with the Stream flag set to CLONEOPEN. The tar
get driver open responds to the CLONEOPEN by returning an unused minor dev
ice number. When the clone open receives the returned target driver minor 
device number, it allocates a new inode (which has no name in the file system) 
and associates the minor device number with the inode. 

The loop-around driver is a pseudo-driver that loops data from one open Stream 
to another open Stream. The user processes see the associated files as a full 
duplex pipe. The Streams are not physically linked. The driver is a simple mul
tiplexor (see the next section), which passes messages from one Stream's write 
QUEUE to the other Stream's read QUEUE. 

To create a pipe, a process opens two Streams, obtains the minor device number 
associated with one of the returned file descriptors, and sends the device number 
in an ioctl (2) to the other Stream. For each open ( ) , the driver open places 
the passed queue _ t pointer in a driver interconnection table, indexed by the 
device number. When the driver later receives the I_STR as an M_IOCfL mes
sage, it uses the device number to locate the other Stream's interconnection table 
entry, and stores the appropriate queue _ t pointers in both of the Streams' inter
connection table entries. 

Subsequently, when messages other than M_IOCTL or M_FLUSH are received 
by the driver on either Stream's write side, the messages are switched to the read 
QUEUE following the driver on the other Stream's read side. The resultant logi
cal connection is shown in figure Loop Around Streams. Flow control between 
the two Streams must be handled by special code since STREAMS will not 
automatically propagate flow control information between two Streams that are 
not physically interconnected. 
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Loop Around Streams 

CLONE/ 

~ Module(s) 

The declarations for the driver are: 

1* 
* Loop around driver 
*1 

#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/sysmacros.h> 
#include <sys/stream.h> 
#include <sys/stropts.h> 
#include <sys/user.h> 
#include <sys/errno.h> 

CLONE/ 

Module(s) 

static struct module info minfo = { 
0, "loop", 0, INFPSZ, 512, 128 

} ; 

static int loopopen(), loopclose(), loopwput(); 
static int loopwsrv(), looprsrv(); 

static struct qinit rinit = { 
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL 

} ; 

static struct qinit win it = { 
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab loopinfo { &rinit, &winit, NULL, NULL }; 
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struct loop 
queue _ t *qptr; I * back pointer to write queue * I 
queue _ t * oqpt r ; I * pointer to connected read queue * I 

} ; 

*define LOOP SET _IOW(l, 1, int) I*shouldbeina.hfile */ 

extern struct loop loop_loop[ ]; 
extern int loop_cnt; 

The loop structure contains the interconnection infonnation for a pair of 
Streams. loop_loop is indexed by the minor device number. When a Stream 
is opened to the driver, the address of the corresponding loop_loop element is 
placed in <Lpt r (private data structure pointer) of the read and write side 
queue_ts. Since STREAMS clears <LPtr when the queue_t is allocated, a 
NULL value of <Lptr indicates an initial open ( ) . loop_loop is used to 
verify that this Stream is connected to another open Stream. 

The open procedure includes canonical clone processing which enables a single 
file system node to yield a new minor device/inode each time the driver is 
opened: 

static int loopopen(q, dev, flag, sflag) 
queue_t *q; 
{ 

struct loop *loop; 

1* 
* If CLONEOPEN, pick a minor device number to use. 
* Otherwise, check the minor device range. 
*1 
if (sflag == CLONEOPEN) { 

else 

for (dev = 0; dev < loop_cnt; dev++) 
if (loop_loop [dev] .qptr == NULL) 

break; 

dev = rninor(dev); 

if (dev >= loop_cnt) 
return OPENFAIL; / * default = ENXIO * I 

I * Setup data structures * I 
if (q->qytr) 1* already open * I 

return dev; 

loop = &loop_loop[dev]; 
WR(q)->qytr = (char *) loop; 
q->~tr = (char *) loop; 
loop->qptr = WR(q); 

1* 
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* The return value is the minor device. 
* For CLONEOPEN case, this will be used for 
* newly allocated inode 
*/ 
return dev; 

In loopopen () , sflag can be CLONEOPEN, indicating that the driver 
should pick a minor device (Le., the user does not care which minor device is 
used). In this case, the driver scans its private loop_loop data structure to find 
an unused minor device number. If sflag has not been set to CLONEOPEN, 
the passed-in minor device is used. 

The return value is the minor device number. In the CLONEOPEN case, this 
value will be used by the clone driver for the newly allocated inode and will 
then be passed to the user. 

Since the messages are switched to the read QUEUE following the other 
Stream's read side, the driver needs a put procedure only on its write side: 

static int loopwput(q, mp) 
queue_t *q; 
mblk_t *mpi 
{ 

register struct loop *lOOPi 

loop = (struct loop *)q->~tri 

switch (mp->b_datap->db_type) 
case M_IOCTL: { 

struct iocblk *iOCPi 
int errori 

iocp = (struct iocblk *)mp->b_rptri 
switch (iocp->ioc_cmd) { 
case LOOP_SET: { 

int to i / * other minor device * / 
/* 
* Sanity check. ioc _count contains the amount of 
* user supplied data which must equal the size of an into 
*/ 

if (iocp->ioc_count != sizeof(int)) { 
error = EINVALi 
goto iocnaki 

/ * fetch other dey from 2nd message block * / 

to = *(int *)mp->b_cont->b_rptri 
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1* 
* More sanity checks. The minor must be in range, open already. 
* Also, this device and the other one must be disconnected. 
*1 

if (to >= loop_cnt I I to < 0 I I 
! loop_loop [to] .qptr) { 
error = ENXIO; 
goto iocnak; 

if (loop->oqptr I I loop_loop [to] .oqptr) { 
error = EBUSY; 
goto iocnak; 

1* 
* Cross connect streams via the loop structures 
*1 

loop->oqptr = RD(loop_loop[to] .qptr); 
loop_loop [to] .oqptr = RD(q); 

1* 
* Return successful ioctl. Set ioc _count 
* to zero, since there is return no data. 
*1 

mp->b_datap->db_type 
iocp->ioc_count = 0; 
qreply (q, mp); 
break; 

M_IOCACK; 

default: 
error 

iocnak: 
1* 

EINVAL; 

* Bad ioctl. Setting ioc _error causes the 
* ioctl call to return that particular errno. 
* By default, ioctl will return EINVAL onfailure 
*1 
mp->b_datap->db_type = M_IOCNAK; 
iocp->ioc_error = error; /*setreturnederrno */ 
qreply(q, mp); 

break; 
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loopwput () shows another use of an ioct 1 () call (see Driver and Module 
[oetls in the Drivers section, below. The driver supports a LOOP_SET value of 
ioc_cmd in the iocblk of the M_IOCTL message. LOOP_SET instructs the 
driver to connect the current open Stream to the Stream indicated in the message. 
The second block of the M _ IOCTL message holds an integer that specifies the 
minor device number of the Stream to connect to. 

The driver performs several sanity checks: Does the second block have the 
proper amount of data? Is the "to" device in range? Is the "to" device open? Is 
the current Stream disconnected? Is the "to" Stream disconnected? 

If everything checks out, the read queue _ t pointers for the two Streams are 
stored in the respective oqptr fields. This cross-connects the two Streams 
indirectly, via loop_loop. 

Canonical flush handling is incorporated in the put procedure: 

case M FLUSH: 
if (*mp->b_rptr & FLUSHW) 

flushq(q, 0); 
if (*mp->b_rptr & FLUSHR) 

flushq(RD(q), 0); 
*mp->b_rptr &= -FLUSHW; 
qreply(q, mp); 

else 
freemsg(mp); 

break; 
default: 

1* 
* If this stream isn't connected, send an M _ERROR upstream. 
*1 
if (loop->oqptr == NULL) { 

putctll(RD(q)->~next, M_ERROR, ENXIO); 
freemsg (mp) ; 
break; 

putq(q, mp); 

Finally, loopwput () enqueues all other messages (e.g., M_DATA or 
M _PROTO) for processing by its service procedure. A check is made to see if 
the Stream is connected. If not, an M _ERROR is sent upstream to the Stream 
head (see below). 

putctll () and putctl () (see below) are utilities that allocate a non-data 
(i.e., not M_DATA, M_PROTO orM_PCPROTO) type message, place one byte 
in the message (forputctllO) and call the put procedure of the specified 
QUEUE (see Utilities in the Supplementary STREAMS Material "chapter). 
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Stream Head Messages 

Service Procedures 

Certain message types (see Message Types in the Supplementary STREAMS 
Material chapter) can be sent upstream by drivers and modules to the Stream 
head where they are translated into actions detectable by user process(es). The 
messages may also modify the state of the Stream head: 

M ERROR 
Causes the Stream head to lock up. Message transmission between Stream 
and user processes is terminated. All subsequent system calls except 
c 10 se (2) and po 11 (2) will fail. Also causes an M _FLUSH clearing all 
message queues to be sent downstream by the Stream head. 

M BANGUP 
Terminates input from a user process to the Stream. All subsequent system 
calls that would send messages downstream will fail. Once the Stream head 
read message queue is empty, EOF is returned on reads. Can also result in 
SIGHUP signal to the process group. 

M_SIG/M_PCSIG 
Causes a specified signal to be sent to a process (see the Advanced Topics 
section). 

Service procedures are required on both the write and read sides for purposes of 
flow control: 

static int loopwsrv(q) 
register queue_t *qi 
{ 

mblk_t *mpi 
register struct loop *lOOPi 

loop = (struct loop *)q->~tr; 

while «mp = getq(q» != NULL) { 

1* 
* Check ifwe can put the message up the other stream read queue 
*1 

if (mp->b_datap->db_type <= QPCTL && 
!canput(loop->oqptr->~next» { 

putbq (q, mp) i / * read side is blocked * / 
breaki 

/ * send message * / 
/ * To queue following other stream read queue * / 

putnext(loop->oqptr, mp)i 

static int looprsrv(q) 
queue_t *qi 
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/ * Enter only when "back enabled" by flow control * / 

struct loop *loop; 

loop = (struct loop *)q->~tr; 
if (loop->oqptr == NULL) 

return; 

/ * manually enable write service procedure * / 

qenable(WR(loop->oqptr»; 

The write service procedure, loopwsrv ( ) , takes on the canonical fonn (see the 
Message Queues and Service Procedures section) with a difference. The 
QUEUE being written to is not downstream, but upstream (found via oqptr) on 
the other Stream. 

In this case, there is no read side put procedure so the read service procedure, 
looprsrv () , is not scheduled by an associated put procedure, as has been 
done previously. looprsrv () is scheduled only by being back-enabled when 
its upstream becomes unstuck from flow control blockage. The purpose of the 
procedure is to re-enable the writer (loopwsrvO) by using oqptr to find the 
related queue_to loopwsrv () can not be directly back-enabled by 
STREAMS because there is no direct queue_t linkage between the two 
Streams. Note that no message ever gets queued to the read service procedure. 
Messages are kept on the write side so that flow control can propagate up to the 
Stream head. There is a defensive check to see if the cross-connect has broken. 
qenable () schedules the write side of the other Stream. 

loopclose () breaks the connection between the Streams. 

static int loopclose(q) 
queue_t *q; 
{ 

register struct loop *loop; 

loop = (struct loop *)q->~tr; 
loop->qptr = NULL; 

/* 
* If we are connected to another stream, break the 
* linkage, and send a hangup message. 
* The hangup message causes the stream head to fail writes, 
* allow the queued data to be read completely, and then 
* return EOF on subsequent reads. 
*/ 

if (loop->oqptr) { 
«struct loop *)loop->oqptr->~tr)->qptr NULL; 
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«struct loop *)loop->oqptr->~tr)->oqptr 
putctl(loop->oqptr->~next, M_HANGUP); 
loop->oqptr = NULL; 

NULL; 

loopclose () sends an M_HANGUPmessage (see above) up the connected 
Stream to the Stream head. 

NOTE This driver can be implemented much more cleanly by actually linking the 
~ next pointers of the queue _ t pairs of the two Streams. 

11.8. Multiplexing 

Multiplexing Configurations This section describes how STREAMS multiplexing configurations are created 
and discusses multiplexing drivers. A STREAMS multiplexor is a pseudo-driver 
with multiple Streams connected to it. The primary function of the driver is to 
switch messages among the connected Streams. Multiplexor configurations are 
created from user level by system calls. The Other Facilities, section of the 
Introduction to STREAMS contains the required introduction to STREAMS mul
tiplexing. 

STREAMS related system calls are used to set up the "plumbing," or Stream 
interconnections, for multiplexing pseudo-drivers. The subset of these calls that 
allows a user to connect (and disconnect) Streams below a pseudo-driver is 
referred to as the multiplexing facility. This type of connection will be referred 
to as a I-to-M, or lower, multiplexor configuration This configuration must 
always contain a multiplexing pseudo-driver, which is recognized by STREAMS 
as having special characteristics. 

Multiple Streams can be connected above a driver by use of open ( 2) calls. 
This was done for the loop-around driver of the previous section and for the 
driver handling multiple minor devices in the Drivers section. There is no differ
ence between the connections to these drivers, only the functions performed by 
the driver are different. In the multiplexing case, the driver routes data between 
multiple Streams. In the device driver case, the driver routes data between user 
processes and associated physical ports. Multiplexing with Streams connected 
above will be referred to as an N-to-l, or upper, multiplexor. STREAMS does 
not provide any facilities beyond open () and close (2) to connect or discon
nect upper Streams for multiplexing purposes. 

From the driver's perspective, upper and lower configurations differ only in the 
way they are initially connected to the driver. The implementation requirements 
are the same: route the data and handle flow control. All multiplexor drivers 
require special developer-provided software to perform the multiplexing data 
routing and to handle flow control. STREAMS does not directly support flow 
control among multiple Streams. 

M-to-N multiplexing configurations are implemented by using both of the above 
mechanisms in a driver. Complex multiplexing trees can be created by cascading 
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multiplexing Streams below one another. 

As discussed in the Drivers section, the multiple Streams that represent minor 
devices are actually distinct Streams in which the driver keeps track of each 
Stream attached to it. The Streams are not really connected to their common 
driver. The same is true for STREAMS multiplexors of any configuration. The 
multiplexed Streams are distinct and the driver must be implemented to do most 
of the work. As stated above, the only difference between configurations is the 
manner of connecting and disconnecting. Only lower connections have use of 
the multiplexing facility. 

A lower multiplexor is connected as follows: The initial open () to a multiplex
ing driver creates a Stream, as in any other driver. As usual, open () uses the 
first two streamtab structure entries (see Opening a Stream in the Streams 
Mechanism section) to create the driver QUEUEs. At this point, the only distin
guishing characteristic of this Stream are non-NULL entries in the streamtab 
st_mux [rw] init (mux) fields: 

struct streamtab 
struct qinit 
struct qinit 
struct qinit 
struct qinit 
char 

} ; 

*st_rdinit; /* defines read QUEUE */ 
*st_wrinit; / * defines write QUEUE * / 
* s t _muxr ini t ; / * for multiplexing drivers only * / 
* s t _ muxw in it; / * for multiplexing drivers only * / 
**st_modlist; / * list of modules to be pushed * / 

These fields are ignored by the open () (see the rightmost Stream in figure 
Internet Multiplexor Before Connecting). Any other Stream subsequently 
opened to this driver will have the same streamtab and thereby the same mux 
fields. 

Next, another file is opened to create a (soon to be) lower Stream. The driver for 
the lower Stream is typically a device driver (see the leftmost Stream in figure 
Internet Multiplexor Before Connecting). This Stream has no distinguishing 
characteristics. It can include any driver compatible with the multiplexor. Any 
modules required on the lower Stream must be pushed onto it now. 

Next, this lower Stream is connected below the multiplexing driver with an 
I_LINK ioctl () call (see the streamio (4) man page). As shown in figure 
11-1, all Stream components are constructed in a similar manner. The Stream 
head points to the stream-he ad-routines as its procedures (known via its 
queue_t). An I_LINK to the upper Stream, referencing the lower Stream, 
causes STREAMS to modify the contents of the Stream head in the lower 
Stream. The pointers to the stream-he ad-routines , and other values, in the 
Stream head are replaced with those contained in the mux fields of the multiplex
ing driver's streamtab. Changing the stream-head-routines on the lower 
Stream means that all subsequent messages sent upstream by the·lower Stream's 
driver will, ultimately, be passed to the put procedure designated in 
st_ffiuxrinit, the multiplexing driver. The I_LINK also establishes this 
upper Stream as the control Stream for this lower Stream. STREAMS 
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remembers the relationship between these two Streams until the upper Stream is 
closed, or the lower Stream is unlinked. 

Finally, the Stream head sends to the multiplexing driver an M_IOCTL message 
with ioc _ crnd set to I_LINK (see discussions of the iocb1k structure in the 
Drivers section, above, and in the Kernel Structures section of Supplementary 
STREAMS Material chapter). The M_DATA part of the M_IOCTL contains a 
linkb1k structure: 

struct Iinkbik 
queue_t *I_qtop; 
queue_t *I_qbot; 
int I_index; 

} ; 

/ * lowest level write queue of upper stream * / 
/ * highest level write queue of lower stream * / 
/ * system-unique index for lower stream. * / 

The multiplexing driver stores information from the 1 inkb1k in private storage 
and returns an M _IOCACK message (ack). 1_ index is returned to the process 
requesting the I_LINK. This value can be used later by the process to disconnect 
this Stream, as described below. linkblk contents are further discussed below. 

An I_LINK is required for each lower Stream connected to the driver. Addi
tional upper Streams can be connected to the multiplexing driver by open ( ) 
calls. Any message type can be sent from a lower Stream to user process(es) 
along any of the upper Streams. The upper Stream(s) provides the only interface 
between the user process(es) and the multiplexor. 

Note that no direct data structure linkage is established for the linked Streams. 
The <L next pointers of the lower Stream still appear to connect with a Stream 
head. Messages flowing upstream from a lower driver (a device driver or another 
multiplexor) will enter the multiplexing driver (Le., Stream head) put procedure 
with 1_ qbot as the queue _ t value. The multiplexing driver has to route the 
messages to the appropriate upper (or lower) Stream. Similarly, a message com
ing downstream from user space on the control, or any other, upper Stream has to 
be processed and routed, if required, by the driver. 

Also note that the lower Stream (see the headers and file descriptors in figure 
Internet Multiplexor After Connecting) is no longer accessible from user space. 
This causes all system calls to the lower Stream to return EINV AL, with the 
exception of close (). This is why all modules have to be in place before the 
lower Stream is linked to the multiplexing driver. As a general rule, the lower 
Stream file should be closed after it is linked (see following section). This does 
not disturb the multiplexing configuration. 

Finally, note that the absence of direct linkage between the upper and lower 
Streams means that STREAMS flow control has to be handled by special code in 
the multiplexing driver. The flow control mechanism cannot see across the 
driver. 

In general, multiplexing drivers should be implemented so that new Streams can 
be dynamically connected to, and existing Streams disconnected from, the driver 
without interfering with its ongoing operation. The number of Streams that can 
be connected to a multiplexor is developer dependent. However, there is a 
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system limit, NMUXLINK, to the number of Streams that can be linked in the 
system. 

Dismantling a lower multiplexor is accomplished by disconnecting (unlinking) 
the lower Streams. Unlinking can be initiated in three ways: an I_UNLINK 
ioctl () referencing a specific Stream, an I_UNLINK indicating all lower 
Streams, or the last close () (i.e., causes the associated file to be closed) of the 
control Stream. As in the link, an unlink sends a linkblk structure to the 
dri ver in an M _ IOCTL message. The I_UNLINK call, which unlinks a single 
Stream, uses the I_index value returned in the I_LINK to specify the lower 
Stream to be unlinked. The latter two calls must designate a file corresponding 
to a control Stream which causes all the lower Streams that were previously 
linked by this control Stream to be unlinked. However, the driver sees a series of 
individual unlinks. 

If the file descriptor for a lower Stream was previously closed, a subsequent 
unlink will automatically close the Stream. Otherwise, the lower Stream must be 
closed by close () following the unlink. STREAMS will automatically dis
mantle all cascaded multiplexors (below other multiplexing Streams) if their con
trolling Stream is closed. An I_UNLINK will leave lower, cascaded multiplex
ing Streams intact unless the Stream file descriptor was previously closed. 

This section describes an example of multiplexor construction and usage. A 
multiplexing configuration similar to the Internet figure in the Other Facilities 
section of the Introduction to STREAMS is discussed. Figure Internet Multi
plexor Before Connecting shows the Streams before their connection to create the 
multiplexing configuration of figure Internet Multiplexor After Connecting. Mul
tiple upper and lower Streams interface to the multiplexor driver. The user 
processes of figure Internet Multiplexor After Connecting are not shown in figure 
Internet Multiplexor Before Connecting. 
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Figure 11-7 Internet Multiplexor Before Connecting 
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I 

~ I-fi~e-~~~ ~ -1-1-~l: $:' ~ -'-1- ~;e -~s~.-~ -1-'- ~~e ~s~~ -'-1--~:!e~c~ _. 
. . . . . . . . . . 

Stream Head 

QUEU~Pr. A 

Stream Head 

QUEU~Pr. B 

Stream Head 

QUEU~Pr. C 

802.2 
Driver 

Stream Head 

QUEU~Pair 

Stream Head 

QUEU~Pair 

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other 
nodes. IP (Internet Protocol) is a multiplexor driver. IP switches datagrams 
among the various nodes or sends them upstream to a user(s) in the system. The 
Net modules would typically provide a convergence function which matches the 
IP and device driver interface. 

Figure Internet Multiplexor Before Connecting depicts only a portion of the full, 
larger Stream. As shown in the dotted rectangle above the IP multiplexor, there 
generally would be an upper TCP multiplexor, additional modules and, possibly, 
additional multiplexors in the Stream. Multiplexors could also be cascaded 
below the IP driver if the device drivers were replaced by multiplexor drivers . 
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Internet Multiplexor After Connecting 
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Streams A, Band C are opened by the process, and modules are pushed as 
needed. Two upper Streams are opened to the IP multiplexor. The rightmost 
Stream represents multiple Streams, each connected to a process using the net
work. The Stream second from the right provides a direct path to the multiplexor 
for supervisory functions. It is the control Stream, leading to a process which 
sets up and supervises this configuration. It is always directly connected to the IP 
driver. Although not shown, modules can be pushed on the control Stream. 

After the Streams are opened, the supervisory process typically transfers routing 
information to the IP drivers (and any other multiplexors above the IP), and ini
tializes the links. As each link becomes operational, its Stream is connected 
below the IP driver. If a more complex multiplexing configuration is required, 
the IP multiplexor Stream with all its connected links can be connected below 
another multiplexor driver. 

As shown in figure Internet Multiplexor After Connecting, the file descriptors for 
the lower device driver Streams are left dangling. The primary purpose in creat
ing these Streams was to provide parts for the multiplexor. Those not used for 
control and not required for error recovery (by reconnecting them through an 
I_UNLINK ioctlO) have no further function. As stated above, these lower 
Streams can be closed to free the file descriptor without any effect on the 
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Multiplexing Driver 

multiplexor. A setup process installing a configuration containing a large 
number of drivers should do this to avoid running out of file descriptors. 

This section contains an example of a multiplexing driver that implements an N
to-l configuration. This configuration might be used for terminal windows, 
where each transmission to or from the terminal identifies the window. This 
resembles a typical device driver, with two differences: the device handling func
tions are performed by a separate driver, connected as a lower Stream, and the 
device information (Le., relevant user process) is contained in the input data 
rather than in an interrupt call. 

Each upper Stream is connected by an open (2). A single lower Stream is 
opened and then it is linked by use of the multiplexing facility. This lower 
Stream might connect to the tty driver. The implementation of this example is a 
foundation for an M to N multiplexor. 

As in the loop-around driver, flow control requires the use of standard and special 
code, since physical connectivity among the Streams is broken at the driver. Dif
ferent approaches are used for flow control on the lower Stream, for messages 
coming upstream from the device driver, and on the upper Streams, for messages 
coming downstream from the user processes. 

The multiplexor declarations are: 

#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/sysmacros.h> 
#include <sys/stream.h> 
#include <sys/stropts.h> 
#include <sys/errno.h> 

static int muxopen(), muxclose(), muxuwput(); 
static int muxlwsrv(), muxlrput(); 

static struct module_info info = { 
0, "mux", 0, INFPSZ, 512, 128 

} ; 

static struct qinit urinit = { /* upper read * / 
NULL, NULL, muxopen, muxclose, NULL, &info, NULL 

} ; 

static struct qinit uwinit = { / * upper write */ 
muxuwput, NULL, NULL, NULL, NULL, &info, NULL 

} ; 

static struct qinit lrinit = { / * lower read * / 
muxlrput, NULL, NULL, NULL, NULL, &info, NULL 

} ; 

static struct qinit lwinit = { /* lower write * / 
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL 

} ; 

struct streamtab muxinfo = 
{&urinit, &uwinit, &lrinit, &lwinit}; 
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struct mux { 
queue_t *qptr; /* back pointer to read queue */ 

} ; 

extern struct mux mu x_mu x [ ]; 
extern int mux_cnt; 

queue t *muxbot; / * linked lower queue * / 
in t muxe r r ; / * set if error of hang up on lower stream * / 

The four streamtab entries correspond to the upper read, upper write, lower 
read, and lower write qini t structures. The multiplexing qini t structures 
replace those in each (in this case there is only one) lower Stream head after the 
I_LINK has completed successfully. In a multiplexing configuration, the pro
cessing performed by the multiplexing driver can be partitioned between the 
upper and lower QUEUEs. There must be an upper Stream write, and lower 
Stream read, put procedures. In general, only upper write side and lower read 
side procedures are used. Application specific flow control requirements might 
modify this. If the QUEUE procedures of the opposite upper/lower QUEUE are 
not needed, the QUEUE can be skipped over, and the message put to the follow
ingQUEUE. 

In the example, the upper read side procedures are not used. The lower Stream 
read QUEUE put procedure transfers the message directly to the read QUEUE 
upstream from the multiplexor. There is no lower write put procedure because 
the upper write put procedure directly feeds the lower write service procedure, as 
described below. 

The driver uses a private data structure, mux. mux _ mux [dev] points back to 
the opened upper read QUEUE. This is used to route messages coming upstream 
from the driver to the appropriate upper QUEUE. It is also used to find a free 
minor device for a CLONEOPEN driver open case. 
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The upper QUEUE open contains the canonical driver open code: 

static int muxopen(q, dev, flag, sflag) 
queue_t *q; 
{ 

struct mux *mux; 

if (sflag == CLONEOPEN) 
for (dev = 0; dev < mux_cnt; dev++) 

if (mux_mux[dev] .qptr 0) 
break; 

else 
dev = minor(dev); 

if (dev >= mux_cnt) 
return OPENFAIL; 

mux = &mux_mux[dev]; 
mux->qptr = q; 
q->~tr = (char *) mux; 
WR(q)->~tr = (char *) mux; 
return dev; 

muxopen checks for a clone or ordinary open call. It loads ~ptr to point at 
the rnux _ rnux[] structure. 

The core multiplexor processing is the following: downstream data written to an 
upper Stream is queued on the corresponding upper write message queue. This 
allows flow control to propagate towards the Stream head for each upper Stream. 
However, there is no service procedure on the upper write side. All M _ DAT A 
messages from all the upper message queues are ultimately dequeued by the ser
vice procedure on the lower (linked) write side. The upper write Streams are ser
viced in a round-robin fashion by the lower write service procedure. A lower 
write service procedure, rather than a write put procedure, is used so that flow 
control, coming up from the driver below, may be handled. 

On the lower read side, data coming up the lower Stream is passed to the lower 
read put procedure. The procedure routes the data to an upper Stream based on 
the first byte of the message. This byte holds the minor device number of an 
upper Stream. The put procedure handles flow control by testing the upper 
Stream at the first upper read QUEUE beyond the driver. That is, the put pro
cedure treats the Stream component above the driver as the next QUEUE . 
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Example Multiplexor Configuration 

Multiplexor Routines 

This is shown (sort of) in figure Example Multiplexor Configuration. Multi
plexor Routines are all the above procedures. Ul and U2 are queue _ t pairs, 
each including a write queue _ t pointed at by an 1_ qtop in a 1inkblk (see 
the beginning of this section). L is the queue _ t pair which contains the write 
queue_t pointed at by l_qbot. Nl and N2 are the modules (or Stream head 
or another multiplexing driver) seen by L when read side messages are sent 
upstream. 

muxuwput, the upper QUEUE write put procedure, traps ioctls, in particular 
I LINK and I UNLINK: - -

static int muxuwput(q, mp) 
queue_t *q; 
mblk t *mp; 

int s; 
struct mux *muxi 

mux = (struct mux *)q->~ptri 
switch (mp->b_datap->db_type) 
case M_IOCTL: { 

struct iocblk *iOCPi 
struct linkblk *linkpi 

/* 

* loctl. Only channel 0 can do ioctls. Two 
* calls are recognized: UNK, and UNLINK 
*/ 

if (mux != mux_mux) 
goto iocnaki 

iocp = (struct iocblk *) mp->b_rptri 
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switch (iocp->ioc_cmd) 
case I LINK: 

1* 
* Link. The data contains a linkblk structure 
* Remember the bottom queue in muxbot. 
*1 

if (muxbot != NULL) 
goto iocnak; 

linkp = (struct linkblk *) mp->b_cont->b_rptr; 
muxbot = linkp->l_qbot; 
muxerr = 0; 
mp->b_datap->db_type 
iocp->ioc_count = 0; 
qreply(q, mp); 
break; 

case I UNLINK: 
1* 

M_IOCACK; 

* Unlink. The data contains a linkblk structure. 
* Should not fail an unlink. Null out muxbot. 
*1 

linkp = (struct linkblk *) mp->b_cont->b_rptr; 
muxbot = NULL; 
mp->b_datap->db_type M_IOCACK; 
iocp->ioc_count = 0; 
qreply(q, mp); 
break; 

default: 
iocnak: 

/ * fail ioctl * / 

mp->b_datap->db_type 
qreply(q, mp); 

break; 

M_IOCNAK; 

First, there is a check to enforce that the Stream associated with minor device 0 
will be the single, controlling Stream. Ioctls are only accepted on this Stream. 
As described previously, a controlling Stream is the one that issues the I_LINK. 
Having a single control Stream is a recommended practice. I_LINK and 
I_UNLINK include a linkblk structure, described previously, 'containing: 

l_qtop 
The upper write QUEUE from which the ioctl is coming. It should always 
equal q. 
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1._qbot 
The new lower write QUEUE. It is the fonner Stream head write QUEUE. 
It is of most interest since that is where the multi plexor gets and puts its 
data. 

1. index 
A unique (system wide) identifier for the link. It can be used for routing, or 
during selective unlinks, as described above. Since the example only sup
ports a single link, I_index is not used. 

For I_LINK, 1_ qbot is saved in muxbot and an ack is generated. From this 
point on, until an I_UNLINK occurs, data from upper queues will be routed 
through muxbot. Note that when an I_LINK, is received, the la-wer Stream has 
already been connected. This allows the driver to send messages downstream to 
perfonn any initialization functions. Returning an M _IOCNAK message (nak) in 
response to an I _LINK will cause the lower Stream to be disconnected. 

The I_UNLINK handling code nulls out rnuxbot and generates an ack. A nak 
should not be returned to an I UNLINK. The Stream head assures that the lower 
Stream is connected to a multiplexor before sending an I_UNLINK M _IOCTL. 

muxuwput handles M_FLUSHmessages as a nonnal driver would: 

case M FLUSH: 
if (*rnp->b_rptr & FLUSHW) 

flushq(q, FLUSHDATA); 
if (*rnp->b_rptr & FLUSHR) 

flushq(RD(q), FLUSHDATA); 
*rnp->b_rptr &= -FLUSHW; 
qreply(q, rnp); 

else 
freernsg(rnp); 

break; 
case M DATA: 

1* 
* Data. Ifwe have no bottom queue --> fail 
* Otherwise, queue the data, and invoke the lower 
* service procedure. 
*1 
if (rnuxerr I I muxbot == NULL) 

goto bad; 
putq (q, rnp); / * place message on upper write message queue * / 
qenable (rnuxbot) ; / * lower service write procedure * / 
break; 

default: 
bad: 

1* 
* Send an error message upstream. 
*1 
rnp->b_datap->db_type = M_ERROR; 
rnp->b_rptr = rnp->b_wptr = rnp->b_datap->db_base; 
*rnp->b_wptr++ = EINVAL; 
qreply(q, rnp); 
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Lower QUEUE Write Service 
Procedure 

] 
M _ DATA messages are not placed on the lower write message queue. They are 
queued on the upper write message queue. putq () recognizes the absence of 
the upper service procedure and does not schedule the QUEUE. Then, the lower 
service procedure, muxlwsrv is scheduled with qenable () (see Utilities in 
the Supplementary STREAMS Material chapter) to start output. This is similar to 
starting output on a device driver. Note that muxuwput can not access 
rnuxlwsrv (the lower QUEUE write service procedure, contained in muxbot) 
by the conventional STREAMS calls, putq () or putnext () (to a 
rnuxlwput). Both calls require that a message be passed, but the messages 
remain on the upper Stream. 

rnuxlwsrv, the lower (linked) queue write service procedure is scheduled 
directly from the upper service procedures. It is also scheduled from the lower 
Stream, by being back-enabled when the lower Stream becomes unblocked from 
downstream flow control. 

static int muxlwsrv(q) 
register queue_t *q; 
{ 

register mblk_t *mp, *bp; 
register queue_t *nq; 

1* 
* While lower stream is not blocked, find an upper queue to 
* service (get_next _ q) and send one message from it downstream. 
*1 
while (canput(q->~next» 

nq = get_next_q(); 
if (nq == NULL) 

break; 
mp = getq (nq) ; 
1* 
* Prepend the outgoing message with a single byte header 
* that indicates the minor device number it came from. 
*1 
if «bp = allocb(1, BPRI_MED» == NULL) 

printf("mux: allocb failed (size 1)\n"); 
freemsg (mp) ; 
continue; 

*bp->b_wptr++ = (struct mux *)nq->~tr - mux_mux; 
bp->b_cont = mp; 
putnext(q, bp); 
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muxlwsrv takes data from the upper queues and puts it out throughmuxbot. 
The algorithm used is simple round robin. While we can put to 
muxbot->~ next, we select an upper QUEUE (via get_next _ q) and move 
a message from it to muxbot. Each message is prepended by a one byte header 
that indicates which upper Stream it came from. 

Finding messages on upper write queues is handled by get_next _ q ( ) = 

/* 
* Round-robin scheduling. 
* Return next upper queue that needs servicing. 
* Returns NULL when no more work needs to be done. 
*/ 

static queue t * 
get_next_q () 
{ 

static int next; 
int if start; 
register queue_t *q; 

start = next; 
for (i = next; i < rnux_cnt; i++) 

if (q = mux_mux[i] .qptr) { 
q = WR(q); 

if (q-><Lfirst) 
next = i+l; 
return q; 

for (i = 0; i < start; i++) 
if (q = mux_mux[i] .qptr) 

q = WR(q); 

if (q-><Lfirst) 
next = i+l; 
return q; 

return NULL; 

get_next_queue () searches the upper queues in a round robin fashion look
ing for the first one containing a message. It returns the queue _ t pointer or 
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Lower Read Put Procedure 

NULL if there is no work to do. 

The lower (linked) queue read put procedure is: 

static int muxlrput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

queue t *uq; 
mblk_t *b_cont; 
int dev; 

switch (mp->b_datap->db_type) 
case M FLUSH: 

1* 
* Flush queues. NOTE: sense of tests is reversed 
* since we are acting like a "stream head" 
*1 

if (*mp->b_rptr & FLUSHR) 
flushq(q, 0); 

if (*mp->b_rptr & FLUSHW) 
*mp->b_rptr &= -FLUSHR; 
qreply (q, mp); 

else 
freemsg (mp) ; 

break; 

case M ERROR: 
case M HANGUP: 

muxerr = 1; 
freemsg (mp) ; 
break; 

case M DATA: 
1* 
* Route message. First byte indicates 
* device to send to. No flow control. 

* 
* Extract and delete device number. If the leading block is 
* now empty and more blocks follow, strip the leading block. 
* The stream head interprets a leading zero length block 
* as an EOF regardless of what follows (sigh). 
*1 

dev = *mp->b_rptr++; 
if (mp->b_rptr == mp->b_wptr && 

(b_cont = mp->b_cont)) { 
freeb (mp) ; 
mp = b_cont; 
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/ * Sanity check. Device must be in range * / 

if (dev < 0 I I dev >= mux_cnt) 
freemsg(mp); 
break; 

1* 
* If upper stream is open and not backed up. 
* send the message there. otherwise discard it. 
*1 

uq = mux_mux[dev] .qptr; 
if (uq != NULL && canput(uq->~next» 

putnext(uq, mp); 
else 

freemsg(mp); 
break; 

default: 
freemsg(mp); 

muxlrput receives messages from the linked Stream. In this case, it is acting 
as a Stream head. It handles M _FLUSH messages. Note the code is reversed 
from that of a driver, handling M _FLUSH messages from upstream. 

muxlrput also handles M_ERROR and M_HANGUP messages. If one is 
received, it locks-up the upper Streams. 

M _ DATA messages are routed by looking at the first data byte of the message. 
This byte contains the minor device of the upper Stream. If removing this byte 
causes the leading block to be empty, and more blocks follow, the block is dis
carded. This is done because the Stream head interprets a leading zero length 
block as an EOF [see .L read(2)]. Several sanity checks are made: Does the mes
sage have at least one byte? Is the device in range? Is the upper Stream open? 
Is the upper Stream not full? 

This mux does not do end-to-end flow control. It is merely a router (like the 
Department of Defense's IP protocol). If everything checks out, the message is 
put to the proper upper QUEUE. Other.~ise, the message is silently discarded. 

The upper Stream close routine simply clears the mux entry so this queue will no 
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11.9. Service Interface 

Definition 

Message Usage 

longer be found by get_next _queue () : 

1* 
* Upper queue close 
*1 
static int muxclose(q) 
queue_t *q; 
{ 

«struct mux *)q->~tr)->qptr NULL; 

STREAMS provides the means to implement a service interface between any two 
components in a Stream, and between a user process and the topmost module in 
the Stream. A service interface is defined at the boundary between a service user 
and a service provider. A service interface is a set of primitives and the rules for 
the allowable sequences of primitives across the boundary. These rules are typi
cally represented by a state machine. In STREAMS, the service user and pro
vider are implemented in a module, driver, or user process. The primitives are 
carried bidirectionally between a service user and provider in M _PROTO and 
M _ PCPROTO (generically, PROTO) messages. M _ PCPROTO is the priority 
version of M PROTO. 

As described in the Message Types section of the Supplementary STREAMS 
Material chapter), PROTO messages can be multi-block, with the second 
through last blocks of type M _ DATA. The first block in a PROTO message con
tains the control part of the primitive in a form agreed upon by the user and pro
vider and the block is not intended to carry protocol headers. (Although its use is 
not recommended, upstream PROTO messages can have multiple PROTO blocks 
at the start of the message. getmsg () will compact the blocks into a single 
control part when sending to a user process.) The M_DATA block(s) contains 
any data part associated with the primitive. The data part may be processed in a 
module that receives it, or it may be sent to the next Stream component, along 
with any data generated by the module. The contents of PROTO messages and 
their allowable sequences are determined by the service interface specification. 

PROTO messages can be sent bidirectionally (up and downstream) on a Stream 
and bidirectionally between a Stream and a user process. putmsg (2) and 
getmsg (2) system calls are analogous, respectively, to wri te (2) and 
read (2) except that the former allow both data and control parts to be 
(separately) passed, and they observe message boundary alignment across the 
user-Stream boundary. putmsg () and getmsg () separately copy the control 
part (M _PROTO or M _PCP ROTa block) and data part (M _DATA blocks) 
between the Stream and user process. 

An M _ PCPROTO message is normally used to acknowledge M _PROTO mes
sages and not to carry protocol expedited data. M_PCPROTO insures that the 
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acknowledgement reaches the service user before any other message. If the ser
vice user is a user process, the Stream head will only store a single 
M _ PCPROTO message, and discard subsequent M _PCPROTO messages until 
the first one is read with getmsg (2) . 

The following rules pertain to selVice interfaces: 

o Modules and drivers that support a service interface must act upon all 
PROTO messages and not pass them through. 

o Modules may be inserted between a service user and a service provider to 
manipulate the data part as it passes between them. However, these modules 
may not alter the contents of the control part (PROTO block, first message 
block) nor alter the boundaries of the control or data parts. That is, the mes
sage blocks comprising the data part may be changed, but the message may 
not be split into separate messages nor combined with other messages. In 
addition, modules and drivers must obselVe the rule that priority messages 
are not subject to flow control and forward them accordingly (e.g., see the 
beginning ofmodwsrv () in the Message Queues and Service Procedures 
section). Priority messages also bypass flow control at the user-Stream 
boundary [e.g., see putmsg (2) ] • 

The example below is part of a module which illustrates the concept of a service 
interface. The module implements a simple datagram interface. 

The selVice interface primitives are defined in the declarations: 

#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/stream.h> 
#include <sys/errno.h> 

/* 
* Primitives initiated by the service user: 
*/ 

/ * bind request * / #define BIND_REQ 
#define UNITDATA_REQ 
/* 

1 
2 / * unitdata request * / 

* Primitives initiated by the service provider: 
*/ 

#define OK ACK 
#define ERROR ACK 
#define UNITDATA IND 

3 
4 
5 

/ * bind acknowledgment * / 
/ * error acknowledgment * / 
/ * unitdata indication * / 

/* 
* The following structures define the format of the 
* stream message block of the above primitives. 
*/ 

struct bind_req { /* bind request */ 
long PRIM_type; /* alwaysBIND_REQ */ 
long BIND _addr; / * addr to bind * / 

} ; 
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struct unitdata_req { 
long PRIM_type; 
long DEST_addr; 

} ; 

struct ok_ack { 
long PRIM_type; 

} ; 

/ * unitdata request * / 
/ * always UNITDATA_REQ * / 
/* destaddr */ 

/ * ok acknowledgment * / 
/* always OK_ACK * / 

struct error_ack { /* error acknowledgment */ 
long PRIM_type; /* always ERROR_ACK * / 
long UNIX_error; / * Sun OS error code * / 

} ; 

struct unitdata_ind { / * unitdata indication * / 
long PRIM_type; / * always UNITDATA _IND * / 
long SRC_addr; / * source addr * / 

} ; 

union primitives { /* union of all primitives * / 
long type; 
struct bind_req bind_req; 
struct unitdata_req unitdata_req; 
struct ok_ack ok_ack; 
struct error_ack error_ack; 
struct unitdata_ind unitdata_ind; 

} ; 

struct dgproto { 
short state; 
long addr; 

} ; 

/ * Provider states * / 

idefine IDLE 0 
idefine BOUND 1 

/ * structure per minor device * / 
/ * current provider state * / 

/ * net address * / 

In general, the M _PROTO or M _PCPROTO block is described by a data struc
ture containing the service interface infonnation. In this example, union 
pr imi t i ve s is that structure. 

Two commands are recognized by the module: 

BIND_REQ 
Give this Stream a protocol address, i.e. give it a name on the network. 
After a BIND _ REQ is completed, datagrams from other senders will find 
their way through the network to this particular Stream. 

ON I TDATA_REQ 
Send a datagram to the specified address. 

Three messages are generated: 

OK ACK 
A positive acknowledgement (ack) of BIND _ REQ. 

ERROR ACK 
A negative acknowledgement of BIND _ REQ . 
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UNITDATA IND 
A datagram from the network has been received (this code is not shown). 

The ack of a BIND _REQ informs the user that the request was syntactically 
correct (or incorrect ifERROR_ACK). The receipt of a BIND _REQ is ack
nowledged with an M _PCPROTO to insure that the acknowledgement reaches 
the user before any other message. For example, a UNITDAT A _IND could 
come through before the bind has completed, and the user would get confused. 

The driver uses a per-minor device data structure, dgproto, which contains the 
following: 

state 
current state of the Stream (endpoint) IDLE or BOUND 

addr 
network address that has been bound to this Stream 

It is assumed (though not shown) that the module open procedure sets the write 
queue <LPt r to point at one of these structures. 

The write put procedure is: 

static int protowput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

union primitives *proto; 
struct dgproto *dgproto; 
int err; 

dgproto = (struct dgproto *) q->~tr; 

switch (mp->b_datap->db_type) 
default: 

/ * don't understand it * / 
mp->b_datap->db_type = M_ERROR; 
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base; 
*mp->b_wptr++ = EPROTO; 
qreply(q, mp); 
break; 

case M FLUSH: 
/ * standard flush handling goes here ... * / 
break; 

case M PROTO: 
/ * Protocol message -> user request * / 
proto = (union primitives *) mp->b_rptr; 

switch (proto->type) { 
default: 

mp->b_datap->db_type = M_ERROR; 
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base; 
*mp->b_wptr++ = EPROTO; 
qreply(q, mp); 
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return; 

case BIND_REQ: 
if (dgproto->state != IDLE) { 

err = EINVAL; 
goto error_ack; 

if (mp->b_wptr - mp->b_rptr 
!= sizeof(struct bind_req)) 

err = EINVAL; 
goto error_ack; 

if (err = chkaddr(proto->bind_req.BIND_addr)) 
goto error_ack; 

dgproto->state = BOUND; 
dgproto->addr = proto->bind_req.BIND_addr; 
mp->b_datap->db_type = M_PCPROTO; 
proto->type = OK_ACK; 
mp->b_wptr = 

mp->b_rptr + sizeof(struct ok_ack); 
qreply(q, mp); 
break; 

error ack: 
mp->b_datap->db_type = M_PCPROTO; 
proto->type = ERROR_ACK; 
proto->error_ack.UNIX_error = err; 
mp->b_wptr = 

mp->b_rptr + sizeof(struct error_ack); 
qreply(q, mp); 
break; 

case UNITDATA_REQ: 
if (dgproto->state != BOUND) 

gote bad; 
if (mp->b_wptr - mp->b_rptr 

!= sizeof(struct unitdata_req)) 
gote bad; 

if (err=chkaddr(prote->unitdata_req.DEST_addr)) 
geto bad; 

if (mp->b_cont) { 
putq(q, mp->b_cont); 

/ * start device or mux output ... * / 

break; 
bad: 

freemsg (mp) ; 
break; 
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The write put procedure switches on the message type. The only types accepted 
are M _FLUSH and M _PROTO. For M _FLUSH messages, the driver will per
form the canonical flush handling (not shown). For M_PROTO messages, the 
driver assumes the message block contains a union primitive and 
switches on the type field. Two types are understood: BIND _ REQ, and 
UNITDATA_REQ. 

For a BIND _ REQ, the current state is checked; it must be IDLE. Next, the mes
sage size is checked. If it is the correct size, the passed-in address is verified for 
legality by calling chkaddr. If everything checks, the incoming message is 
converted into an OK _ ACK and sent upstream. If there was any error, the 
incoming message is converted into an ERROR _ ACK and sent upstream. 

For UNITDATA_REQ, the state is also checked; it must be BOUND. As above, 
the message size and destination address are checked. If there is any error, the 
message is simply discarded. (This action may seem rash, but it is in accordance 
with the interface specification, which is not shown. Another specification might 
call for the generation of a UNITDAT A_ERROR indication.) If all is well, the 
data part of the message, if it exists, is put on the queue, and the lower half of the 
driver is started. 

If the write put procedure receives a message type that it does not understand, 
either a bad b_datap->db_type or a bod proto->type, the message is 
converted into an M _ERROR message and sent upstream. 

Another piece of code not shown is the generation of UNITDAT A _IND mes
sages. This would normally occur in the device interrupt if this is a hardware 
driver (like ST ARLAN) or in the lower read put procedure if this is a multi
plexor. The algorithm is simple: The data part of the message is prepended by an 
M_PROTO message block that contains a unitdata_ind structure and sent 
upstream. 

The bufcall () utility (see Utilities in the Supplementary STREAMS Material 
chapter) is used to recover from an allocb () failure. The call syntax is as fol
lows: 

bufcall(size, pri, func, arg)i 
int size, pri, (*func) () i 

long argi 

bufcall() will call (*func) (arg) when a buffer of size bytes atpri 
priority is available. When func is called, it has no user context and must return 
without sleeping. Also, because of interrupt processing, there is no guarantee 
that when func is called, a buffer will actually be available (someone else may 
steal it). buf call () returns 1 on success, indicating that the request has been 
successfully recorded, or 0 on failure. On a failure return, the requested function 
will never be called. 
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Care must be taken to avoid 
deadlock when holding resources 
while waiting for bufcall () to call 
(*func) (arg). bufcall () 
should be used sparingly. 

Two examples are provided. Example one is a device receive interrupt handler: 

iinclude <sys/types.h> 
iinclude <sys/param.h> 
iinclude <sys/stream.h> 

dev_rintr(dev) 
{ 

1* 

/ * process incoming message... * / 

/ * allocate new buffer for device * / 
dev_re_load(dev); 

* Reload device with a new receive buffer 
*1 
dev_re_load(dev) 
{ 

if «bp = allocb(DEVBLKSZ, BPRI_MED» == NULL) { 
log (LOG_ERR (lfdev: allocb failure (size %d)\n", 

DEVBLKSZ)i 
1* 
* Allocation failed. Use bufcall to 
* schedule a call to ourself. 
*1 
(void) bufcall(DEVBLKSZ, BPRI_MED, dev_re_load, 

dev) ; 
return; 

/ * pass buffer to device... * / 

dev _ rintr is called when the device has posted a receive interrupt. The code 
retrieves the data from the device (not shown). dev _ rintr must then give the 
device another buffer to fill by a call to dev _re_load, which calls allocb () 
with the appropriate buffer size (DEVBLKSZ, definition not shown) and priority. 
If allocb () fails, dev _re_Ioad uses bufcall () to call itself when 
STREAMS determines a buffer of the appropriate size and priority is available. 

NOTE Since bufcall () may fail, there is still a chance that the device may hang. A 
better strategy, in the event buf call () fails, would be to discard the current 
input message and resubmit that buffer to the device. Losing input data is gen
erally better than hanging. 

The second example is a write service procedure, mod _wsrv ( ) ; which needs to 
prepend each output message with a header (similar to the multiplexor example 
of the Multiplexing section). mod wsrv () illustrates a case for potential 
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deadlock: 

static int mod_wsrv(q) 
queue_t *q; 
{ 

int qenable () ; 
mblk_t *mp, *bp; 

while (mp = getq(q» 

1* check/or priority messages and canput ... * I 
1* 
* Allocate a header to prepend to the message. If 
* the allocb fails, use bufcall to reschedule ourself 
*1 
if «bp = allocb(HDRSZ, BPRI_MED» == NULL) { 

if (!bufcall(HDRSZ, BPRI_MED, qenable, q» 

1* 

1* 
* The bufcall request has failed. Discard 
* the message and keep running to avoid hanging. 
*1 
freemsg(mp); 
continue; 

* Put the message back and exit, we will be re-enabled later 
*1 
putbq (q, mp); 
return; 

I * process message .... * I 

However, if allocb () fails, mod _ wsrv () wants to recover without loss of 
data ands calls buf call ( ). In this case, the routine passed to buf call () is 
qenable () (see below and in the Utilities section of the Supplementary 
STREAMS Material chapter). When a buffer is available (of size HDRSZ, 
definition not shown), the service procedure will be automatically re-enabled. 
Before exiting, the current message is put back on the queue. This example deals 
with buf call () failure by discarding the current message and continuing in 
the service procedure loop. 

Streams provides mechanisms to alter the normal queue scheduling process. 
putq () will not schedule a QUEUE if noenable (q) had been previously 
called for this QUEUE. noenable () instructs putq () to queue the message 
when called by this QUEUE, but not to schedule the service procedure. noen
able () does not prevent the QUEUE from being scheduled by a flow control 
back-enable. The inverse of noenable () is enableok (q) . 
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Signals 

An example of this is driver upstream flow control. Although device drivers typ
ically discard input when unable to send it to a user process, STREAMS allows 
driver read side flow control, possibly for handling temporary upstream blocks. 
This is done through a driver read service procedure which is disabled during the 
driver open with noenable (). If the driver input interrupt routine detennines 
messages can be sent upstream (from canputO), it sends the message with 
putnext (). Otherwise, it calls putq () to queue the message. The message 
waits on the message queue (possibly with queue length checked when new mes
sages are enqueued by the interrupt routine) until the upstream QUEUE becomes 
unblocked. When the blockage abates, STREAMS back-enables the driver read 
service procedure. The service procedure sends the messages upstream using 
getq () and canput ( ) , as in Message Queues and Service Procedures. This 
is similar to loopr srv () in the Complete Driver where the service procedure 
is present only for flow control. ' 

qenable () , another flow control utility, allows a module or driver to cause one 
of its QUEUEs, or another module's QUEUEs, to be scheduled. In addition to 
the usage shown in the Complete Driver and Multiplexing sections, qenable () 
might be used when a module or driver wants to delay message processing for 
some reason. An example of this is a buffer module that gathers messages in its 
message queue and forwards them as a single, larger message. This module uses 
noenable () to inhibit its service procedure and queues messages with its put 
procedure until a certain byte count or "in queue" time has been reached. When 
either of these conditions is met, the put procedure calls qenable () to cause 
its service procedure to run. 

Another example is a communication line discipline module that implements 
end-to-end (i.e., to a remote system) flow control. Outbound data is held on the 
write side message queue until the read side receives a transmit window from the 
remote end of the network. Then, the read side schedules the write side service 
procedure to run. 

STREAMS allows modules and drivers to cause a signal to be sent to user 
process(es) through an M_SIG or M_PCSIG message (see Message Types in the 
Supplementary STREAMS Material chapter) sent upstream. M_PCSIG is a prior
ity version ofM_SIG. For both messages, the first byte of the message specifies 
the signal for the Stream head to generate. If the signal is not SIGPOLL [see 
signal (2) and sigset (2) ], then the signal is sent to the process group 
associated with the Stream (see below). If the signal is SIGPOLL, the signal is 
only sent to processes that have registered for the signal by using the 1_ SETSIG 
ioctl (2) (see also the streamio (4) call). 

A process group is associated with a stream during the open of the driver or 
module. If the NEWCTTY flag is ORed into the value returned by the open ( ) 
procedure, the process on whose behalf the module or driver is being <?pened has 
become-a "session process group leader" by executing the set spgldr () call 
(which is executed by the setpgrp () call in the System V environment, but 
not in the 4BSD environment). If that process does not already have a control
ling tty, and the stream does not already have a process group, then the stream is 
assigned to the process group that the process is the leader of and becomes that 
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process' controlling tty. 

If the driver or module wants to have a process group associated with the stream, 
it should OR the NEWCTTY flag into its return value. 

M _ SIG can be used by modules or drivers that wish to insert an explicit inband 
signal into a message stream. For example, an M_SIG message can be sent to 
the user process immediately before a particular service interface message to gain 
the immediate attention of the user process. When the M _ SIG reaches the head 
of the Stream head read message queue, a signal will be generated and the 
M _ SIG message will be removed. This leaves the service interface message as 
the next message to be processed by the user. Use of M _ SIG would typically be 
defined as part of the service interface of the driver or module. 

The M_SETOPTS message (see Message Types in the Supplementary STREAMS 
Material chapter) allows a driver or module to exercise control over certain 
Stream head processing. An M _ SETOPTS can be sent upstream at any time. 
The Stream head responds to the message by altering the processing associated 
with certain system calls. The options to be modified are specified by the con
tents of the stroptions structure (see Message Types) contained in the mes
sage. 

Six Stream head characteristics can be modified. As described in Message Types, 
four correspond to fields contained in queue _ t (minimax packet sizes and 
high/low water marks). The other two are discussed here. 

The value for read options (so_readopt) corresponds to the three modes a 
user can set via the I_SRDOPf ioctl () (see streamio) call: 

byte-stream (RNORM) 
The read (2) call completes when the byte count is satisfied, the Stream 
head read queue becomes empty, or a zero length message is encountered. 
In the last case, the zero length message is put back on the queue. A subse
quent read () will return 0 bytes. 

message non-discard (RMSGN) 
The read () call completes when the byte count is satisfied or at a message 
boundary, whichever comes first. Any data remaining in the message is put 
back on the Stream head read queue. 

message discard (RMSGD) 
The read () call completes when the byte count is satisfied or at a message 
boundary. Any data remaining in the message is discarded. 

Byte-stream mode approximately models pipe data transfer. Message non
discard mode approximately models a tty in canonical mode. 

The value for write offset (so _ wroff) is a hook to allow more efficient data 
handling. It works as follows: In every data message generated by a wr i te (2 ) 

system call and in the first M _ DATA block of the data portion of every message 
generated by a putmsg (2) call, the Stream head will leave so_wroff bytes 
of space at the beginning of the message block. Expressed as a C language 
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construct: 

bp->b_rptr = bp->b_datap->db_base + write offset 

The write offset value must be smaller than the maximum STREAMS message 
size, STRMSGSZ (see Tunable Parameters in the Supplementary STREAMS 
Material). In certain cases (e.g., if a buffer large enough to hold the offset+data 
is not currently available), the write offset might not be included in the block. To 
be general, modules and drivers should not assume that the offset exists in a mes
sage, but should always check the message. 

The intended use of write offset is to leave room for a module or a driver to place 
a protocol header before user data in the message rather than by allocating and 
pre pending a separate message. This feature is not general, and its use is 
discouraged. A more general technique is to put protocol header infonnation in a 
separate message block and link the user data to it. 
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12 
SunOS STREAMS Topics 

The configuration of STREAMS device drivers is not fundamentally different 
from the configuration of regular device drivers. This section, therefore, 
presumes familiarity with the Configuring the Kernel section of this manual, 
which explains in some detail how new drivers are configured into the kernel. 

Note that, while STREAMS give programmers a good deal of flexibility in 
regard to configuration issues, STREAMS drivers and protocol modules must 
still be precomplied into the kernel. STREAMS drivers are not dynamically 
loadable. 

SunOS STREAMS drivers use exactly the same autoconfiguration interface as 
do regular SunOS drivers. This interface is designed to allow drivers (and 
modules) to easily define their per-instance data structures, using the information 
supplied by config. However, if a given driver or module chooses to use some 
other scheme for allocating its resources (such as using kmem_alloc () when a 
previously unopened device is opened), it is free to do so. This differs 
significantly from the System V driver/kernel interface, which arranges for such 
storage to be allocated elsewhere. 

Each character device that is configured into the Sun kernel results in an entry 
being placed in the kernel cdevsw table. Entries for STREAMS drivers are no 
exception - they too are placed in cdevsw. However, since system calls to 
STREAMS drivers must be processed by the STREAMS routines, their cdevsw 
interface differs from that of non-STREAMS drivers. conf ig, it should be 
noted, knows nothing about STREAMS drivers. It handles them correctly 
because, as far it it's concerned, they are just regular character drivers. There is 
nothing in the format of entries in a config file that distinguishes STREAMS 
devices/modules from other character devices. 

There is, however, a difference between STREAMS and non-STREAMS 
cdev s w entries, in that STREAMS entries have only the d _ s t r field set while 
other entries never have this field set. d _ str provides the appropriate single 
entry point for all system calls on STREAMS files, as shown below: 
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extern struct cdevsw { 

struct streamtab *d_str; 
cdevsw[]; 

The d _ str entry name is formed by appending the string "info" to the 
STREAMS driver prefix. The "info" entry is a pointer to the driver/module 
declared streamtab structure (see Kernel Structures). The streamtab 
structure contains pointers to the qini t structures for the driver/module's read 
and write queues. Its declaration must be externally visible: 

struct streamtab xxinfo = { ... 

If the driver declares a streamtab namedxxinfo, the d_str entry will contain 
a non-NULL pointer and the kernel will recognize the driver as a STREAMS 
driver and will call it by way of the appropriate STREAMS routines. If the 
d_str entry is NULL, the normal character 110 cdevsw interface will be used. 
Note that only streamtab must be externally visible in STREAMS drivers and 
modules, since it is used to uniquely identify the appropriate open, close, put, 
service and administration routines. These driver/module routines should gen
erally be declared stat ic. 

When adding a new STREAMS module to a kernel, one must add an entry to the 
fmodsw array in /sys/sun/str_conf. C. This file is analogous to 
/ sys / sun/ conf . c (see the Configuring the Kernel chapter) and its entries 
should be similarly conditional on the number of module instances being posi
tive. For example, for the xx device: 

#if NXX > 0 
extern struct streamtab xx_info; 
#endif 

struct fmodsw fmodsw[] 
{ 

#if NXX > 0 
{ "xx", &xx_info), 

#endif 
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The first of the two fields in each fmodsw entry is the name of the module, 
which will be used in all STREAMS-related ioctl () calls upon this module. 
The second is a pointer to the module's streamtab structure. 

Certain system parameters referenced by STREAMS are configurable when 
building a new kernel. They can be reset from their default values, values which 
are calculated to correspond to the value of MAXUSERS, by using the config file 
OPTIONS mechanism. (See config(8)). In this discussion, the term 
"queues" refers to queue _ t structures. The tunable parameters are: 

NSTREAM 
Total number of Streams that may be open at one time in a system. 

NBLK4096 
Total number of 4096 byte data blocks available for STREAMS operations. 
The pool of data blocks is a system-wide resource, so enough blocks must be 
configured to satisfy all Streams. 

NBLK2048 
Total number of 2048 byte data blocks available for STREAMS operations. 

NBLK1024 
Total number of 1024 byte data blocks available for STREAMS operations. 

NBLK512 
Total number of 512 byte data blocks available for STREAMS operations. 

NBLK256 
Total number of 256 byte data blocks available for STREAMS operations. 

NBLK128 
Total number of 128 byte data blocks available for STREAMS operations. 

NBLK64 
Total number of 64 byte data blocks available for STREAMS operations. 

NBLK16 
Total number of 16 byte data blocks available for STREAMS operations. 

NBLK4 
Total number of 4 byte data blocks available for STREAMS operations. 

NMUXLINK 
Total number of Streams in system that can be linked as lower Streams to 
multiplexor drivers (by an I_LINK ioct 1(2), see st reamio( 4)). 

NSTREVENT 
Initial number of internal event cells available in system to support bu f
call () and poll (2) calls. 

MAXSEPGCNT 
The number of additional pages of memory that can be dynamically allo
cated for event cells. If this value is 0, only the allocation defined by 
NSTREVENT is available for use. If the value is not 0 and if the kernel runs 
out of event cells, it will under some circumstances attempt to allocate an 
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System Error Messages 

extra page of memory from which new event cells can be created. MAX
S EP GCNT places a limit on the number of pages that can be allocated for 
this purpose. Once a page has been allocated for event cells, however, it 
cannot be recovered later for use elsewhere. 

NSTRPUSH 
Maximum number of modules that may be pushed onto a single Stream. 

STRMSGSZ 
Maximum bytes of information that a single system call can pass to a Stream 
to be placed into the data part of a message (in M_DATA blocks). Any 
wr it e (2) exceeding this size will be broken into multi pIe messages. A 
putmsg (2) with a data part exceeding this size will fail. 

STRCTLSZ 
Maximum bytes of information that a single system call can pass to a Stream 
to be placed into the control part of a message (in an M _PROTO or 
M _PCPROTO block). A putmsg (2) with a control part exceeding this size 
will fail. 

STRLOFRAC 
The percentage of data blocks of a given class at which low priority block 
allocation requests are automatically failed. For example, if STRLOFRAC is 
80 and there are 48 256-byte blocks, a low priority allocation request will 
fail when more than 38 256-byte blocks are already allocated. This value is 
used to prevent deadlock situations in which a low priority activity might 
starve out more important functions. For example, if S TRLOFRAC is 80 and 
there are 100 blocks of 256 bytes, then when more than 80 of such blocks 
are allocated, any low priority allocation request will fail. This value must 
be in the range 0 -<=-STRLOFRAC-<=- STRMEDFRAC. 

STRMEDFRAC 
The percentage of data blocks of a given class at which medium priority 
block allocation requests are automatically failed. 

Messages are reported to the console as a result of various error conditions 
detected by STREAMS. These messages and the action to be taken on their 
occurrence are described below. In certain cases, a tunable parameter (see previ
ous section) may have to be changed. 

sftopen:outofsfteams 
A Stream head data structure could not be allocated during the open () of a 
STREAMS device. If this occurs repeatedly, increase NSTREAM. 

aJlocq: out of queues 
A pair of queues could not be allocated for the Stream head during the 
open () of a driver, or a pair of queues could not be allocated for a push
able module (I_PUSH ioctl). This error message should never be seen, 
as additional space for queues is allocated dynamically when needed. 

strinit: can not allocate stream data blocks 
During system initialization, the system was unable to allocate enough 
memory for the STREAMS data blocks. The system must be rebuilt with 
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fewer data blocks specified. 

bufcall: could not allocate stream event 
A call to buf call () has failed because all Stream event cells have been 
allocated. If this occurs repeatedly, increase NS TREVENT. 

munlink: could not perform ioctl, closing anyway 
A linked multiplexor could not be unlinked when the controlling Stream for 
that link was closed. The linked Stream will be unlinked and the controlling 
Stream will be closed anyway. 

SunOS 4.0 includes reimplementations of two fundamental system mechanisms 
in terms of STREAMS. These are: 

1. The system terminal driver, which controls serial-line 110, and 

2. The Network Interface Tap (NIT) mechanism, which pennits a process to 
talk to the "raw" Ethernet. NIT is the only networking facility which is thus 
far implemented in tenns of STREAMS, though a TCP/IP implementation 
that can be accessed via STREAMS is planned. 

The following STREAMS modules, necessary to support the tty driver and the 
Network Interface Tap, are included in SunOS 4.0. 

o The' 'standard tty driver" module, which implements most of the standard 
tty driver behavior; it's a replacement for the current standard tty line discip
line. (See tty_std(4M)). 

o The "ioctl mapping" module, which maps old V7 and 4BSD ioctl () 
calls into new-style ioctl () calls. This gets pushed on top of the standard 
tty driver module, giving a stream that responds either to the old-style or 
new-style ioctl () calls. (See tty_cornpat(4M)). 

o The keyboard and mouse modules, which replace the old keyboard and 
mouse line disciplines. (See kb (4M) and ms (4M) . 

o The NIT "packet filter" module, which is given a set of criteria for selecting 
Ethernet packets, and passes only the selected packets upstream, discarding 
the others. Thus, the Reverse ARP daemon could request that it receive only 
Reverse ARP packets; filtering can be done more efficiently in this fashion 
than if all packets were handed to the program and it had to do the filtering 
itself. This also makes it easier to handle a high rate of arrival of packets, 
since the program doesn't have to handle the ones it's not interested in. (See 
nityf(4M)). 

o The NIT "buffering" module, which buffers up received Ethernet packets 
and delivers them to the user program in a single chunk. Such buffering 
reduces the number of read () calls done while monitoring the Ethernet, as 
is necessary when the rate at which packets arrive is very high. (See 
nit_buf(4M)). 
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In order to support STREAMS tenninal and pseudo-terminal drivers, SunOS has 
extended the AT&T STREAMS mechanism. SunOS STREAMS includes a 
mechanism by which STREAMS drivers can specify a list of STREAMS 
modules to be automatically pushed onto the stream at device open time. This 
(or a similar) feature is necessary to allow tty drivers to present an interface com
patible with that which existed in previous system releases. 

The set of internal interfaces and utility routines defined by the SunOS kernel 
differs considerably from that defined by the System V kernel. The 
STREAMS/kernel interface is well specified, however, and System V 
STREAMS modules and drivers that use only the interfaces it defines (see Acces
sible Symbols and Functions in the Supplementary STREAMS Material chapter 
of this manual) should be able to be adapted to the SunOS kernel without many 
problems. However, it's easy to use kernel facilities (data structures and rou
tines) other than those defined in the STREAMS interface. Any such use is 
likely to be non-portable between System V and SunOS. 

Similarly, STREAMS modules and drivers written for SunOS will only be port
able to System V systems if their kernel interfaces are confined to the explicitly 
listed Accessible Symbols and Functions. If System V -compatibility is not an 
issue, then STREAMS modules and drivers can use any of the driver-support 
routines listed in the Kernel Support Routines appendix. 

Note that STREAMS drivers, as opposed to modules, will always require a cer
tain degree of rewriting for use on System V machines, since the SunOS 
autoconfiguration interface differs significantly from that used in System V. See 
the The Bus-Resource Interface section of this manual for the details of the Sun 
interface. 

Note that user-built line disciplines will have to be converted into STREAMS 
form before they will be compatible with release 4.0. This is because they prob
ably access tty-specific internal structures, such as clist buffers. These struc
tures no longer exist, having been replaced by STREAMS structures, so any rou
tines that access them will no longer work. For information on how to proceed 
with the conversion of a line discipline, contact the Sun consulting department. 

Character drivers that do not implement line disciples can also be converted to 
STREAMS fonn, though in this case the conversion is entirely optional. This is 
because the SunOS STREAMS implementation preserves the external interfaces 
to the character devices and drivers (e.g. through the standard tty compatibility 
module, tty _ cornpat (4M) , that implements most of the 4BSD tty interfaces 
under STREAMS). Thus, drivers which do not directly access underlying system 
data structures will continue to work without changes. 

Drivers that have fancy read and write routines (routines that do anything more 
than just import parameters and perhaps start another routine) are probably not 
good candidates for conversion into STREAMS form, since STREAMS 
read/write modules should just set up data for the STREAMS queues. 

A line-printer driver is an example of a character driver that could be written in 
terms of STREAMS, but doesn't need to be, and doesn't need to be converted to 
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STREAMS if it already exists. After all, while a line-printer driver does 
transform a stream of characters (this transformation could certainly be built into 
a STREAMS module), its transfonnation is unlikely to be of interest to other pro
grams. Thus, there's little to be gained by encapsulating it in a module. And, 
since line-printer drivers implement no line discipline, they will continue to work 
with SunOS 4.0. 
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A 
Supplementary STREAMS Material 

This appendix summarizes previously described kernel structures commonly 
encountered in STREAMS module and driver development. 

STREAMS kernel structures are contained in <sys/ stream. h>. 

As discussed in the Streams Mechanism section of the STREAMS Module and 
Driver Programming chapter, this structure defines a module or driver: 

struct streamtab 

} i 

struct 
struct 
struct 
struct 
char 

qini t * s t _ rdini t i / * defines read QUEUE * / 
qinit *st_wriniti /* defines write QUEUE */ 
qinit *st_muxrinit i / * for multiplexing drivers only * / 
qinit *st muxwinit i / * for multiplexing drivers only * / 

**st_modlist; /* list of modules to be pushed * / 

Two sets of QUEUE structures fonn a module. The structures, discussed in the 
Streams Mechanism and Message Queues and Service Procedures sections of the 
STREAMS Module and Driver Programming chapter, are queue_t, qinit, 
module_info and, optionally, module_stat: 

struct queue { 

} i 

struct qinit *~qinfo i / * procedures and limitsfor queue * / 
struct msgb *~first i /* head of message queuefor this QUEUE */ 
struct msgb *~last; / * tail of message queuefor this QUEUE * / 
struct queue *~next; /*nextQUEUEinStream*/ 
struct queue *~link.; / * link to next QUEUE on scheduling queue * / 
caddr t CLpt r ; / * to private data structure * / 
ushort ~ count; / * weighted count of characters on message queue * / 
ushort CL flag; / * QUEUE state * / 
sho rt ~ minps z / * min packet size accepted by this QUEUE * / 
short CL maxps z; / * max packet size accepted by this QUEUE * / 
ushort ~hiwat; /* message queue high water mark, for flow control * 
ushort ~lowat; /* message queue low water mark, for flow control * / 

typedef struct queue queue_ti 
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When a queue _ t pair is allocated, their contents are zero unless specifically ini
tialized. The following fields are initialized: 

o <Lqinfo - from streamtab.st_[rdlwr]init (or st_mux[rw]init) 

o <Lminpsz, <Lmaxpsz, <Lhiwat, <Llowat - from module_info 

o CLPtr - optionally, by the driver/module open routine 

struct qinit { 

} ; 

int (*qi-putp) (); 
int (*qi_srvp) (); 
int (*qi_qopen) (); 
int (*qi_qclose) (); 
int (*qi_qadmin) () ; 
struct module info 
struct module stat 

/ * put procedure * / 
/ * service procedure * / 
/ * called on each open or a push * / 
/ * called on last close or a pop * / 
/ * reserved for future use * / 
*qi_minfo; / * information structure * / 
*qi_mstat; / * optional stats structure * / 

struct module_info { 
ushort mi_idnum; 
char *mi_idname; 
short mi_minpsz; 
short mi_maxpsz; 
short mi_hiwat; 
ushort mi_lowat; 

/ * module ID number * / 
/ * module name * / 

} ; 

struct module_stat { 

} ; 

long 
long 
long 
long 
long 
char 
short 

ms-pcnt; 
ms_scnt; 
ms_ocnt; 
ms_ccnt; 
ms_acnt; 

*ms_xptr; 
ms_xsize; 

/ * min packet size accepted,for developer use * / 
/ * max packet size accepted, for developer use * / 
/ * hi-water mark, for flow control * / 
/ * lo-water mark,for flow control * / 

/ * count of calls to put proc * / 
/ * count of calls to service proc * / 
/ * count of calls to open proc * / 
/ * count of calls to close proc * / 
/ * count of calls to admin proc * / 
/ * pointer to private statistics * / 
/ * length of private statistics buffer * / 

Note that in the event these counts are calculated by modules or drivers, the 
counts will be cumulative over all instantiations of modules with the same 
fmodsw entry and drivers with the same cdevsw entry. 

As described in the Messages section of STREAMS Module and Driver Program
ming, a message is composed of a linked list of triples, consisting of two struc
tures and a data buffer: 
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struct msgb { 

} ; 

struct msgb *b_next; 
struct msgb *b_prev; 
struct msgb *b_cont; 
unsigned char *b_rptr; 
unsigned char *b_wptr; 
struct datab *b_datap; 

/ * next message on queue * / 
/ * previous message on queue * / 
/ * next message block of message * / 
/ * first unread data byte in buffer * / 
/ * first unwritten data byte in buffer * / 
/ * data block * / 

typedef struct msgb mblk_t; 

struct datab { 
struct datab *db_freep; /* used internally */ 
unsigned char *db_basei /* first byte of buffer * */ 
unsigned char *db_Iim; /* last byte+l of buffer * / 
unsigned char db_ref; /* count of messages pointing to this block * / 
unsigned char db_type; /* message type * / 
unsigned char db_class; /* used internally */ 

} ; 

typedef struct datab dblk t; 

As described in the Drivers section of the STREAMS Module and Driver Pro
gramming chapter and in Message Types, below, this is contained in an 
M_ IOCTL message block: 

struct iocblk { 

} ; 

int ioc_cmd; 
ushort ioc_uid; 
ushort ioc_gid; 
uint 
uint 
int 
int 

ioc_idi 
ioc_count; 
ioc_error; 
ioc_rval; 

/ * iocll command type * / 
/ * effective uid of user * / 
/ * effective gid of user * / 
/ * ioctl id * / 
/ * count of bytes in data field * / 
/ * error code * / 
/ * return value * / 

As described in the Multiplexing section of STREAMS Module and Driver Pro
gramming, this is used in lower multiplexor drivers: 

struct linkblk { 
queue_t *l_qtop; 
queue_t *l_qbot; 
int I_index; 

} ; 

/ * lowest level write queue of upper stream * / 
/ * highest level write queue of lower stream * / 
/ * system-unique index for lower stream. * / 
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A.3. Message Types 

Ordinary Messages 

Eighteen STREAMS message types are defined. The message types differ in 
their intended purposes, their treatment at the Stream head, and in their message 
queueing priority (see the Message Queues and Service Procedures section of the 
STREAMS Module and Driver Programming chapter. 

STREAMS does not prevent a module or driver from generating any message 
type and sending it in any direction on the Stream. However, established pro
cessing and direction rules should be observed. Stream head processing accord
ing to message type is fixed, although certain parameters can be altered. 

The message types are described below, classified according to their message 
queueing priority. Ordinary messages are described first, with priority messages 
following. In certain cases, two message types may perform similar functions, 
differing in priority. Message construction is described in the Messages section 
of the STREAMS Module and Driver Programming chapter. The use of the word 
module will generally imply "module or driver." 

These message types are subject to flow control. These are referred to as non
priority messages when received at user level. 

M DATA 
Intended to contain ordinary data. Messages allocated by the allocb () 
routine (see Message Types, below) are type M _DATA by default. M _DATA 
messages are generally sent bidirectionally on a Stream and their contents 
can be passed between a process and the Stream head. In the getmsg ( 2 ) 
and putmsg (2) system calls, the contents ofM_DATA message blocks are 
referred to as the data part. Messages composed of multiple message blocks 
will typically have M_DATA as the message type for all message blocks fol
lowing the first. 

M PROTO 
Intended to contain internal control information and associated data. The 
message format is one M _PROTO message block followed by zero or more 
M_DATA message blocks as shown below: The semantics of the M_DATA 
and M _PROTO message block are determined by the STREAMS module that 
receives the message. 

The M_PROTO message block will typically contain implementation depen
dent control information. M _PROTO messages are generally sent bidirec
tionally on a Stream, and their contents can be passed between a process and 
the Stream head. The contents of the first message block of an M_ PROTO 
message is generally referred to as the control part, and the contents of any 
following M_DATA message blocks are referred to as the data part. In the 
getmsg (2) and putmsg (2) system calls, the control and data parts are 
passed separately. These calls refer to M _PROTO messages as non-priority 
messages. 

Note that, although its use is not recommended, the format ~f M _PROTO and 
M_PCPROTO (generically PROTO) messages sent upstream to the Stream 
head allows multiple PROTO blocks at the beginning of the message. 
getmsg () will compact the blocks into a single control part when passing 
them to the user process. 
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M PROTO and M _PCPROTO Message Structure 

M PROTO 
or 

M PCPROTO 

~ 
M DATA 

~ 
M DATA 

roo 

control 
info. 

M IOCTL 
Generated by the Stream head in response to an 1_ S TR, and certain other, 
ioctl (2) system calls (see the streamio (4) man page.) When one of 
these ioctl () s is received from a user process, the Stream head uses 
values from the process and supplied in the call to create an M _ IOCTL mes
sage containing them, and sends the message downstream. M_IOCTL mes
sages are intended to perform the general ioctl functions of character device 
drivers. 

The user values are supplied in a structure of the following form, provided as 
an argument to the ioctl () call (see 1_ STR in the streamio (4) man 
page. 

struct strioctl 
int ic_cmd; 
int ic_timouti 
int ic_len; 
char *ic_dp; 

/ * downstream request * / 
/ * ACK/NAK timeout * / 
/ * length of data arg * / 
/ * plr to data arg * / 

} ; 

where ic _ cmd is the request (or command) defined by a downstream module or 
driver, ic_tirnout is the time the Stream head will wait for acknowledgement 
to the M _ IOCTL message before timing out, ic _ dp is a pointer to an optional 
data argument. On input, ie_len contains the length of the data argument 
passed in and, on return from the call, it contains the length of the data, if any, 
being returned to the user. 

The form of an M _ IOCTL message is one M _ IOCTL message block linked 
to zero or more M_DATA message blocks. STREAMS constructs an 
M _ IOCTL message block by placing an iocblk structure in its data buffer: 
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struct iocblk { 

} i 

int ioc_cmd; 
ushort ioc_uid; 
ushort ioc_gid; 
uint ioc_id; 
uint ioc_counti 
int ioc_error; 
int ioc_rvali 

/ * ioctl command type * / 
/ * effective user id number * / 
/ * effective group id number * / 
/ * ioctl identifier * / 
/ * byte count for ioctl data * / 
/ * error code * / 
/ * return value * / 

The iocblk structure is defined in <sys/stream. h>. ioc cmd 
corresponds to ic_cmd. ioc_uid and ioc_gid are the effective user 
and group IDs for the user sending the ioct 1 () , and can be tested to deter
mine if the user issuing the ioctl () call is authorized to do so. 
ioc _count is the number of data bytes, if any, contained in the message 
and corresponds to ic _len. 

ioc _ id is an identifier generated internally, and is used to match each 
M _ IOCTL message sent downstream with a response which must be sent 
upstream to the Stream head. The response is contained in an M_IOCACK 
(positive acknowledgement) or an M _ IOCNAK (negative acknowledgement) 
messages. Both these message types have the same format as an M_IOCTL 
message and contain an iocblk structure in the first block with optional 
data blocks following. If one of these messages reaches the Stream head 
with an identifier which does not match that of the currently-outstanding 
M_IOCTL message, the response message is discarded. A common means 
of assuring that the correct identifier is returned, is for the replying module 
to convert the M _ I OCTL message type into the appropriate response type 
and set ioc _count to 0, if no data is returned. Then, the qreply () util
ity (see Utilities, below) is used to send the response to the Stream head. 

ioc _error holds any return error condition set by a downstream module. 
If this value is non-zero, it is returned to the user in errno. Note that both 
an M_IOCNAK and an M_IOCACK may return an error. ioc_rval holds 
any M_IOCACK return value set by a responding module. 

If a user supplies data to be sent downstream, the Stream head copies the 
data, pointed to by iC_dp in the strioctl structure, into M_DATA mes
sage blocks and links the blocks to the initial M _ IOCTL message block. 
ioc _count is copied from ic _len. If there is no data, ioc _ count is 
zero. 

If a module wants to send data to a user process as part of its response, it 
must construct an M _ IOCACK message that contains the data. The first mes
sage block of this message contains the iocblk data structure, with any 
data stored in one or more M _DATA message blocks linked to the first mes
sage block. The module must set ioc _count to the number of data bytes 
sent. On completion of the call, this number is passed to the user in 
ic _len. Data associated with an M _ IOCNAK message is not returned to 
the user process, and is discarded by the Stream head. 
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The first module or a driver that understands the request contained in the 
M_IOCTL acts on it, and generally returns an M_IOCACK message. Inter
mediate modules that do not recognize a particular request must pass it on. 
If a driver does not recognize the request, or the receiving module can not 
acknowledge it, an M _I OCNAK message must be returned. 

The Stream head waits for the response message and returns any information 
contained in an M IOCACK to the user. The Stream head will "time out" if 
no response is received in ie_timeout interval. 

M CTL 
Generated by modules that wish to send information to a particular module 
or type of module. M _ CTL messages are typically used for inter-module 
communication, as when adjacent STREAMS protocol modules negotiate 
the terms of their interface. An M _ CT L message cannot be generated by a 
user-level process and is always discarded if passed to the Stream head. 

M BREAK 
Sent to a driver to request that BREAK be transmitted on whatever media the 
dri ver is controlling. 

The message format is not defined by STREAMS and its use is developer 
dependent. This message may be considered a special case of an M _ CTL 
message. An M _BREAK message cannot be generated by a user-level pro
cess and is always discarded if passed to the Stream head. 

M DELAY 
Sent to a media driver to request a real-time delay on output. The data 
buffer associated with this message type is expected to contain an integer to 
indicate the number of machine ticks of delay desired. M _DELAY messages 
are typically used to prevent transmitted data from exceeding the buffering 
capacity of slower terminals. 

The message format is not defined by STREAMS and its use is developer 
dependent. Not all media drivers may understand this message. This mes
sage may be considered a special case of an M _ CTL message. An M _DELAY 

message cannot be generated by a user-level process and is always discarded 
if passed to the Stream head. 

M PASSFP 
This is used by STREAMS to pass a file pointer from the Stream head at one 
end of a Stream pipe to the Stream head at the other end of the same Stream 
pipe. (A Stream pipe is a Stream that is terminated at both ends by a Stream 
head; one end of the Stream can always find the other by following the 
CL next pointers in the Stream. The means by which such a structure is 
created is not described in this document.) 

The message is generated as a result of an 1_ SENDFD ioct 1 () (see the 
streamio (4) man page) issued by a process to the sending Stream head. 
STREAMS places the M PAS SFP message directly on the destination 
Stream head's read queue to be retrieved by an I _RECVFD ioctl () (see 
the streamio (4) man page). The message is placed without passing it 
through the Stream (i.e., it is not seen by any modules or drivers in the 
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Stream). This message type should never be present on any queue except 
the read queue of a Stream head. Consequently, modules and drivers do not 
need to recognize this message type, and it can be ignored by module and 
driver developers. 

M SETOPTS 

Alters some characteristics of the Stream head. It is generated by any down
stream module, and is interpreted by the Stream head. The data buffer of the 
message has the following structure: 

struct stroptions { 
short so_flags; 
short so_readopt; 
ushort so_wroff; 
short so_minpsz; 
short so_maxpsz; 
ushort so_hiwat; 
ushort so_lowat; 

/ * options to set * / 
/ * read option * / 
/ * write offset * / 
/ * minimum read packet size * / 
/ * maximum read packet size * / 
/ * read queue high-water mark * / 
/ * read queue low-water mark * / 

} ; 

where so _flags specifies which options are to be altered, and can be any com
bination of the following: 

SO ALL 
Update all options according to the values specified in the remaining 
fields of the stroptions structure. 

SO READOPT 
Set the read mode (see the read (2) man page) to RNORM (byte 
stream), RMSGD (message discard), or RMSGN (message non-discard) as 
specified by the value of so_readopt. 

SO WROFF 
Direct the Stream head to insert an offset specified by so_wroff into 
the first message block of all M _ DATA messages created as a result of a 
wr it e () system call. The same offset is inserted into the first 
M_DATA message block, if any, of all messages created by a 
putmsg () system call. The default offset is zero. 

The offset must be less than the maximum message buffer size (system 
dependent). Under certain circumstances, a write offset may not be 
inserted. A module or driver must test that b _ rptr in the mblk_ t 
structure is greater than db_base in the dblk _ t structure to deter
mine that an offset has been inserted in the first message block. 

SO MINPSZ 

~~sun 
• microsystems 

Change the minimum packet size value associated with the Stream head 
read queue to so_minpsz (see ~minpsz in the queue_t structure, 
in the Kernel Structures section, above) This value is advisory for the 
module immediately below the Stream head. It is intended to limit the 
size of M _DATA messages that the module should put to the Stream 
head. There is no intended minimum size for other message types. The 
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default value in the Stream head is O. 

SO MAXPSZ 
Change the maximum packet size value associated with the Stream head 
read queue to so_maxpsz (see ~maxpsz in the queue_t structure, 
in the Kernel Structures section, above). This value is advisory for the 
module immediately below the Stream head. It is intended to limit the 
size of M _DATA messages that the module should put to the Stream 
head. There is no intended maximum size for other message types. The 
default value in the Stream head is INFP S z, the maximum STREAMS 
allows. 

SO HIWAT 
Change the flow control high water mark on the Stream head read queue 
to the value specified in so _ hiwat. 

SO LOWAT 

M SIG 

Change the flow control low water mark (see q_ minps z in the 
queue_t structure, in the Kernel Structures section, above) on the 
Stream head read queue to the value specified in so_lowat. 

Sent upstream by modules or drivers to post a signal to a process. When the 
message reaches the Stream head, the first data byte of the message is 
transformed into a signal, as defined in <sys / signal. h>, to the 
process(es) according to the following. 

If the signal is not SIGPOLL and the Stream containing the sending module 
or driver is a controlling TTY, the signal is sent to the associated process 
group. If the Stream does not have a process group, and the calling process 
does not have a controlling TTY, the Stream may become the controlling 
TTY for the caller's process group. This happens if the NEWCTTY flag is 
ORed into the value returned from a call to open (2) . 

If the signal is SIGPOLL, it will be sent only to those processes that have 
explicitly registered to receive the signal (see I_SETSIG in the 
streamio (4) man page). 

Priority messages are not subject to flow control. 

M PCPROTO 
This message type has the same format and characteristics as the M _PROTO 
message type, except for priority and the following additional attributes. 

When an M _ PCPROTO message is placed on a queue, its service procedure 
is always enabled. The Stream head will allow only one M _PCPROTO mes
sage to be placed in its read queue at a time. If an M _ PCPROTO message is 
already in the queue when another arrives, the second message is silently 
discarded and its message blocks freed. 

This message type is intended to allow data and control information to be 
sent outside the normal flow control constraints. 
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The getrnsg {2} and putrnsg (2) system calls refer to M _PCPROTO mes
sages as priority messages. 

M ERROR 
This message type is sent upstream by modules or drivers to report some 
downstream errer condition. When the message reaches the Stream head, 
the Stream is marked so that all subsequent system calls issued to the 
Stream, excluding close (2) and poll (2) , will fail with errno set to 
the first data byte of the message. POLLERR is set if the Stream is being 
poll () ed (see the poll (2) man page. All processes sleeping on a sys
tem call to the Stream are awakened. An M_FLUSH message with an 
FLUSHRW argument is sent downstream. 

M BANGUP 
This message type is sent upstream by a driver to report that it can no longer 
send data upstream. As example, this might be due to an error, or to a 
remote line connection being dropped. When the message reaches the 
Stream head, the Stream is marked so that all subsequent wr it e {2} and 
putmsg {2} system calls issued to the Stream will fail and return an 
ENXIO error. Those ioctl () s that cause messages to be sent downstream 
are also failed. POLLHUP is set if the Stream is being poll () ed (see the 
poll (2) man page. 

However, subsequent read (2) or getrnsg {2} calls to the Stream will not 
generate an error. These calls will return any messages (according to their 
function) that were on, or in transit to, the Stream head read queue before the 
M _ HANGUP message was received. When all such messages have been read, 
read () will return 0, and getrnsg () will set each of its two length fields 
to O. 

This message also causes a S IGHUP signal to be sent to the process group, if 
the device is a controlling TTY (see M _ S IG). 

M IOCACK 
This message type signals the positive acknowledgement of a previous 
M _ IOCTL message. The message may contain information sent by the 
receiving module or driver. The Stream head returns the information to the 
user if there is a corresponding outstanding M_IOCTL request. The format 
and use of this message type is described further under M _ IOCTL. 

M IOCNAK 
This message type signals the negative acknowledgement (failure) of a pre
vious M _ IOCTL message. When the Stream head receives an M_ IOCNAK, 
the outstanding i 0 c t I () request, if any, will fail. The format and usage of 
this message type is described further under M _ IOCTL. 

M FLUSH 
This message type requests all modules and drivers that receive it to flush 
their message queues (discard all messages in those queues) as indicated in 
the message. An M_FLUSH can originate at the Stream head, or in any 
module or driver. The first byte of the message contains flags that specify 
one of the following actions: 
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FLUSHR: 
Flush the read queue of the module. 

FLUSHW: 
Flush the write queue of the module. 

FLUSHRW: 
Flush both the read and the write queue of the module. 

Each module passes this message to its neighbor after flushing its appropri
ate queue(s), until the message reaches one of the ends of the Stream. 

Drivers are expected to include the following processing for M _FLUSH mes
sages. When an M _FLUSH message is sent downstream through the write 
queues in a Stream, the driver at the Stream end discards it if the message 
action indicates that the read queues in the Stream are not to be flushed (only 
FLUSHW set). If the message indicates that the read queues are to be 
flushed, the driver sets the M_FLUSH message flag to FLUSHR, and sends 
the message up the Stream's read queues. When a flush message is sent up a 
Stream's read side, the Stream head checks to see if the write side of the 
Stream is to be flushed. If only FLUSHR is set, the Stream head discards the 
message. However, if the write side of the Stream is to be flushed, the 
Stream head sets the M_FLUSH flag to FLUSHW and sends the message 
down the Stream's write side. All modules that enqueue messages must 
identify and process this message type. 

M PCSIG 
This message type has the same format and characteristics as the M_ S IG 

message type except for priority. 

M START and M STOP - -
These messages request devices to start or stop their output. They are 
intended to produce momentary pauses in a device's output, not to tum dev
ices on or off. 

The message format is not defined by STREAMS and its use is developer 
dependent. These messages may be considered special cases of an M _ CTL 
message. These messages cannot be generated by a user-level process and 
each is always discarded if passed to the Stream head. 

This appendix specifies the set of utilities that STREAMS provides to assist 
development of modules and drivers. There are over 30 utility routines and mac
ros. 

The general purpose of the utilities is to perform functions that are commonly 
used in modules and drivers. However, some utilities also provide the required 
interrupt environment. A utility must always be used when operating on a mes
sage queue and when accessing the buffer pool. 

The utilities are contained in either the system source file os / str _ buf . c or, if 
they are macros, in <sys/ stream. h>. 
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Buffer Allocation Priority 

All structure definitions are contained in the Kernel Structures section, above, 
unless otherwise indicated. All routine references are found in this section unless 
otherwise indicated. The following definitions are used. 

Blocked 
A queue that can not be enabled due to flow control (see the Flow Control 
section in the Introduction to STREAMS chapter of the System Services 
Overview. 

Enable 
To schedule a queue. 

Free 
De-allocate a STREAMS storage. 

Message block (bp) 
A triplet consisting of an mblk _ t structure, a dblk _ t structure, and a data 
buffer. It is referenced by its mblk _ t structure (see the Messages section of 
the STREAMS Module and Driver Programming chapter. 

Message (mp) 
One or more linked message blocks. A message is referenced by its first 
message block. 

Message queue 
Zero or more linked messages associated with a queue (queue_t structure), 

Queue (q) 
A queue _ t structure. This is generally the same as QUEUE in the rest of 
this document (e.g., see the definitions for enable and schedule). When it 
appears with "message" in certain utility description lines, it means "mes
sage queue." 

Schedule 
Place a queue on the internal linked list of queues which will subsequently 
have their service procedure called by the STREAMS scheduler. 

The word module will generally mean "module and/or driver." The phrase 
"next/following module" will generally refer to a module, driver, or Stream head. 
Message queueing priority (see the Message Queues and Service Procedures sec
tion of the STREAMS Module and Driver Programming chapters and the Mes
sage Types section, above) can be ordinary or Priority (to avoid "priority prior
ity"). 

STREAMS buffers are normally allocated with allocb (), described above. 
An associated set of allocation priorities has been established, which are also 
used in other utility routines: 

BPRI LO 
Low priority. At this priority, allocb () may fail even though the 
requested buffer size is available. This priority is used by the Stream head 
write routine to hold data associated with user calls. 
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BPRI NED 
Medium priority. This priority is typically used for normal data and control 
block allocation. As above, allocb () may fail at this priority even 
though a buffer of the requested size is available. However, for a given 
block size, an BPRI _ LO allocb () call will fail before a BPRI MED 
allocb () call. 

BPRI HI 
High priority. This priority is typically used only for critical control mes
sage allocations. Calls to allo cb () will succeed if a buffer of the 
appropriate size is available. Developers should exercise restraint in use of 
BPRI _HI allocation requests. 

The values BPRI_LO, BPRI_MED, and BPRI_HI are defined in 
<sys/ stream. h>. 

STREAMS does not guarantee successful buffer allocation-any set of resources 
can be exhausted under the right (wrong?) conditions. The bufcall () func
tion will help modules recover from buffer allocation failures, but it does not 
guarantee that the resources will ever be available. Developers should be aware 
of this when implementing modules. 

int adjmsg(mp, len) 
mblk_t *mp; 
int len; 

adjrnsg () trims bytes from either the head or tail of the message specified by 
mp. Iflen is greater than zero, it removes len bytes from the beginning of mp. If 
len is less than zero, it removes (-)len bytes from the end of mp. If len is zero, 
adjrnsg () does nothing. adjrnsg () only trims bytes across message blocks 
of the same type. It will fail if mp points to a message containing fewer than len 
bytes of similar type at the message position indicated. adjmsg () returns 1 on 
success, and 0 on failure. 

mblk_t *allocb(size, pri) 
int size, pri; 

allocb () returns a pointer to a message block of type M_DATA, in which the 
data buffer contains at least size bytes. pri indicates the priority of the allocation 
request, and can have the values BPRI_LO, BPRI_MED or BPRI_HI (see 
Buffer Allocation Priority, below). If a block can not be allocated as requested, 
allocb () returns a NULL pointer. 

[

queue_t *backq(q) ] 
queue_t *q; 

'--------~ 

backq () returns a pointer to the queue behind a given queue. That is, it returns 
a pointer to the queue whose <L next (see queue _ t structure) pointer is q. If 
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bufcall () - Recover from 
Failure of all!=>cb 
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no such queue exists (as when q is at a Stream end), backq () returns NULL. 

int bufcall(size, pri, func, arg) 
int (*func) () ; 
int size, pri; 
long arg; 

bufcall () is provided to assist in the event of a block allocation failure. If 
allocb () returns NULL, indicating a message block is not currently available, 
bufcall () may be invoked. 

bufcall () arranges for (*func)(arg) to be called when a buffer of size bytes 
at pri priority (see Buffer Allocation Priority, below) is available. Whenfunc is 
called, it has no user context It cannot reference the user structure and must 
return without sleeping. buf call () does not guarantee that the desired buffer 
will be available whenfunc is called since interrupt processing may acquire it 

bufcall () returns 1 on success, indicating that the request has been success
fully recorded, or 0 on failure. On a failure return,junc will never be called. A 
failure indicates a (temporary) inability to allocate required internal data struc
tures. 

canput (q) 
queue_t *q; ] 

canput () determines if there is room left in a message queue. If q does not 
have a service procedure, canput () will search further in the same direction in 
the Stream until it finds a queue containing a service procedure (this is the first 
queue on which the passed message can actually be enqueued). If such a queue 
cannot be found, the search terminates on the queue at the end of the Stream. 
canput () tests the queue found by the search. If the message queue in this 
queue is not full (see the Flow Control section in the Introduction to STREAMS 
chapter of the System Services Overview) canput () returns 1. This return indi
cates that a message can be put to queue q. If the message queue is full, can
put () returns O. In this case, the caller is generally referred to as blocked. 

] 
copyb () copies the contents of the message block pointed at by bp into a 
newly-allocated message block of at least the same size. copyb () allocates a 
new block by calling allocb () with pri set to BPRI _ MED (see Buffer Alloca
tion Priority, below). All data between the b _rptr and b _wptr pointers of a mes
sage block are copied to the new block, and these pointers in the new block are 
gi ven the same offset values they had in the original message block. On success
ful completion, copyb () returns a pointer to the new message block containing 
the copied data. Otherwise, it returns a NULL pointer. 
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[

mblk_t *copymsg(mp) ] 
mblk_t *mpi 

----------
copymsg () uses copyb () to copy the message blocks contained in the mes
sage pointed at by mp to newly-allocated message blocks, and links the new mes
sage blocks to fonn the new message. On successful completion, copymsg () 
returns a pointer to the new message. Otherwise, it returns a NULL pointer. 

( fdefine datamsg(mp) ... 
J 

The datamsg macro returns TRUE if mp (declared as mblk t *mp) points to 
a data type message. In this case, types M_DATA, M_PROTO, or 
theM _PCPROTO(see Message Types section, above). If mp points to any other 
message type, datamsg returns FALSE. 

] 
dupb () duplicates the message block descriptor (mblk_ t structure) pointed at 
by bp by copying it into a newly allocated message block descriptor. A message 
block is fonned with the new message block descri ptor pointing to the same data 
block as the original descriptor. The reference count in the data block descriptor 
(dblk _ t structure) is incremented. dupb () does not copy the data buffer, only 
the message block descriptor. 

On successful completion, dupb () returns a pointer to the new message block. 
If dupb () cannot allocate a new message block descriptor, it returns NULL. 

This routine allows message blocks that exist on different queues to reference the 
same data block. In general, if the contents of a message block with a reference 
count greater than 1 are to be modified, copyb () should be used to create a new 
message block and only the new message block should be modified. This insures 
that other references to the original message block are not invalidated by 
unwanted changes. 

[ mblk_t *dupmsg(mp) 
mblk_t *mpi 

dupmsg () calls dupb () to duplicate the message pointed at by mp, by copy
ing all individual message block descriptors, and then linking the new message 
blocks to fonn the new message. dupmsg () does not copy data buffers, only 
message block descriptors. On successful completion, dupmsg () returns a 
pointer to the new message. Otherwise, it returns NULL. 

] 
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enableok () - Re-allow 
Queue to be Scheduled 

flushq () - Flush a Queue 

freeb () - Free a Message 
Block 

freemsg 0 - Free All 
Message Blocks in a Message 

getq () - Get a Message 
from a Queue 

(
*define enableok(q) ... ] 

,---, --------
The enableok () macro cancels the effect of an earlier noenable () on the 
same queue q (declared as queue_t *q). It allows a queue to be scheduled 
for service that had previously been excluded from queue service by a call to 
noenable (). 

int flushq(q, flag) 
queue_t *q; 
int flag; 

flushq () removes messages from the message queue in queue q and frees 
them, using freemsg (). Ifjlag is set to FLUSHDATA, then flushq () dis
cards all M_DATA, M_PROTO, andM_PCPROTO messages (see datamsg), but 
leaves all other messages on the queue. Ifflag is set to FLUSHALL, all messages 
are removed from the message queue and freed. FLUSHALL and FLUSHDATA 
are defined in <sys/ stream. h>. 

If a queue behind q is blocked, flushq () may enable the blocked queue, as 
described in putq () . 

[ int freeb (bp) 
mblk_t *bp; 

freeb () will free (de-allocate) the message block descriptor pointed at by bp, 
and free the corresponding data block if the reference count (see dupbO) in the 
data block descriptor (dblk _ t structure) is equal to 1. If the reference count is 
greater than 1, freeb () will not free the data block, but will decrement the 
reference count. 

[ int freemsg (mp) 
mblk_t *mp; 

freemsg () uses freeb () to free all message blocks and their corresponding 
data blocks for the message pointed at by mp. 

J 

J 

(
mblk_t *getq(q) J 

queue_t *q; 

'------------" 

getq () gets the next available message from the queue pointed at by q. 
getq () returns a pointer to the message and removes that message from the 
queue. If no message is queued, getq () returns NULL. . 

getq () , and certain other utility routines, affect flow control in the Stream as 
follows: If getq () returns NULL, the queue is internally marked so that the next 
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time a message is placed on it, it will be scheduled for service (enabled, see qen
ableO). Also, if the data in the enqueued messages in the queue drops below 
the low-water mark, ~ lowat, and a queue behind the current queue had previ
ously attempted to place a message in the queue and failed (Le., was blocked, see 
canputO), then the queue behind the current queue is scheduled for service (see 
the Flow Control section in the Introduction to STREAMS chapter). 

int insq(q, emp, nmp) 
queue_t *q; 
mblk_t *emp, *nmpi 

insq () places the message pointed at by nmp in the message queue contained 
in the queue pointed at by q immediately before the already-enqueued message 
pointed at by emp. If emp is NULL, the message is placed at the end of the 
queue. If emp is non-NULL, it must point to a message that exists on the queue q, 
or a system panic could result. 

Note that the message is placed where indicated, without consideration of mes
sage queueing priority. The queue will be scheduled in accordance with the rules 
described in putq () for ordinary priority messages. 

int linkb(mpl, mp2) 
mblk_t *mpl; 
blk_t *mp2; 

1 i nkb () puts the message pointed at by mp2 at the tail of the message pointed 
at by mpl. 

[ int msgdsize(mp) 
mblk_t *mp; 

msgdsize () returns the number of bytes of data in the message pointed at by 
mp. Only bytes included in data blocks of type M_DATA are included in the 
total. 

(tdefine noenable(q) ... 

] 

J 
The noenable () macro prevents the queue q (declared as queue_t *q) 
from being scheduled for service by putq () or putbq () when these routines 
enqueue an ordinary priority message, or by insq () when it enqueues any mes
sage. noenable () does not prevent the scheduling of queues when a Priority 
message is enqueued, unless it is enqueued by insq ( ) . 
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OTHERQ () - Get Pointer to 
the Mate Queue 

pullupmsq () -
Concatenate Bytes in a 
Message 

putbq () - Return a 
Message to the Beginning of a 
Queue 

putctl () - Put a Control 
Message 

[
tdefine OTHERQ(q) ... ] 

,,--. --------
The OTHERQ () macro returns a pointer to the mate queue of q (declared as 
queue _ t *q). If q is the read queue for the module, it returns a pointer to the 
module's write queue. If q is the write queue for the module, it returns a pointer 
to the read queue. 

int *pullupmsg(mp, len) 
mblk_t *mp; 
int len; 

pull upmsg () concatenates and aligns the first len data bytes of the passed 
message into a single, contiguous message block. Proper alignment is 
hardware-dependent. To perform its function, pullupmsg () allocates a new 
message block by calling allocb () with pri set to BPRI _ MED (see Buffer 
Allocation Priority, below). pull upmsg () only concatenates across message 
blocks of similar type. It will fail if mp points to a message of less than len bytes 
of similar type. A len value of -1 requests a pull-up of all the like-type blocks in 
the beginning of the message pointed at by mp. 

At completion of concatenation, pull upmsg () replaces mp with a pointer to 
the new message block, so that mp still points to the same message block at the 
end of the operation. However, the contents of the message block may have been 
altered. On success, pullupmsg () returns 1. On failure, it returns O. 

int putbq(q, bp) 
queue_t *q; 
mblk_t *bp; 

pu tbq () puts the message pointed at by bp at the beginning of the queue 
pointed at by q, in a position in accordance with the message's type. Priority 
messages are placed at the head of the queue, and ordinary messages are placed 
after all Priority messages, but before all other ordinary messages. The queue 
will be scheduled in accordance with the same rules described in putq () . This 
utility is typically used to replace a message on a queue from which it was just 
removed. 

int putctl(q, type) 
queue_t *q; 
int type; 

putctl () creates a control (not data, see datamsg, above) m~ssage of type 
type, and calls the put procedure in the queue pointed at by q, with a pointer to 
the created message as an argument. putctl () allocates new blocks by calling 
allocb () with pri set to BPRI _HI (see the Buffer Allocation Priority section, 
below). On successful completion, putctl () returns 1. It returns 0 ifit cannot 
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allocate a message block, or if type M_DATA, M_PROTO or M_PCPROTO was 
specified. 

int putctll(q, type, p) 
queue_t *qi 
int typei 
int Pi 

putctll () creates a control (not data, see datamsg, above) message of type 
type with a one-byte parameter p, and calls the put procedure in the queue 
pointed at by q, with a pointer to the created message as an argument. 
putctll () allocates new blocks by calling allocb () withpri set to 
theBPRI _ HI(see Buffer Allocation Priority section, below). On successful com
pletion, putctll () returns 1. It returns 0 if it cannot allocate a message block, 
or if type M _DATA, M_PROTO or M _ PCPROTO was specified. 

( fdefine putnext(q, mp) .,. 

The pu t next () macro calls the put procedure of the next queue in a Stream, 
and passes it a message pointer as an argument. The parameters must be 
declared as queue_t *q and mblk_t *mp. q is the calling queue (not the 
next queue) and mp is the message to be passed. putnext () is the typical 
means of passing messages to the next queue in a Stream. 

int putq(q, bp) 
queue_t *qi 
mblk_t *bPi 

putq () puts the message pointed at by bp on the message queue contained in 
the queue pointed at by q and enables that queue. put q () queues messages 
appropriately by type (i.e., message queueing priority, see the Message Queues 
amd Service Procedures section of the STREAMS Module and Driver Program
ming chapter). 

pu t q () will always enable the queue when a Priority message is queued. 

J 

pu t q () will enable the queue when an ordinary message is queued if the fol
lowing condition is set, and enabling is not inhibited by noenable () : The con
dition is set if the module has just been pushed (see I_PUSH in streamio(4)), 
or if no message was queued on the last getq () call and no message has been 
queued since. 

pu t q () is intended to be used from the put procedure in the same queue in 
which the message will be queued. A module should not call put q () directly 
to pass messages to a neighboring module. put q () may be used as the 
qiyutp put procedure value in either or both of a module's qinit structures. 
This effectively bypasses any put procedure processing and uses only the 
module's service procedure(s). 
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qenable () - Enable a 
Queue 

qreply () - Send Reverse
Direction Message on Stream 

qsize () - Find the 
Number of Messages on a 
Queue 

RD () - Get Pointer to the 
Read Queue 

rmvb () - Remove a 
Message Block from a 
Message 

[
int qenable(q) ] 

_____ q_u_eu_e_-_t __ *_q_; ______________________________________ ~ 

qenable () places the queue pointed at by q on the linked list of queues that 
are ready to be called by the STREAMS scheduler (see the definition for 
"Schedule" above, and the Put and Service Procedures section in the Introduc
tion to STREAMS chapter). 

int qreply(q, bp) 
queue_t *q; 
mblk_t *bp; 

qreply () sends the message pointed at by bp up (or down) the Stream in the 
reverse direction from the queue pointed at by q. This is done by locating the 
partner of q (see OTHERQ ( ) , below}, and then calling the put procedure of that 
queue's neighbor (as in putnextO). qreply () is typically used to send back 
a response (M _I OCACK or M_ I OCNAK message) to an M _ I OCTL message (see 
Message Types, above). 

[ int qsize (q) 
queue_t *q; 

qs i z e () returns the number of messages present in queue q. If there are no 
messages on the queue, qsize () returns O. 

( idefine RD(q) ... 

The RD () macro accepts a write queue pointer, q (declared as queue_t *q), 
as an argument and returns a pointer to the read queue for the same module. 

mblk_t *rmvb(mp, bp) 
mblk t *mp; 
mblk_t *bp; 

] 

] 

rmvb () removes the message block pointed at by bp from the message pointed 
at by mp, and then restores the linkage of the message blocks remaining in the 
message. rmvb () does not free the removed message block. rmvb () returns a 
pointer to the head of the resulting message. If bp is not contained in mp, 
rmvb () returns a -1. If there are no message blocks in the resulting message, 
rmvb () returns a NULL pointer. 
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int rmvq(q, mp) 
queue_t *q; 
mblk_t *mp; 

rmvq () removes the message pointed at by mp from the message queue in the 
queue pointed at by q, and then restores the linkage of the messages remaining on 
the queue. If mp does not point to a message that is present on the queue q, a 
system panic could result. 

( int splstr () 

splstr () increases the system processor level to block interrupts at a level 
appropriate for STREAMS modules when those modules are executing critical 
portions of their code. splstr () returns the processor level at the time of its 
invocation. Module developers are expected to use the standard kernel function 
splx (s) , where s is the integer value returned by splstr () , to restore the 
processor level to its previous value after the critical portions of code are passed. 

int strlog(mid, sid, level, flags, fmt, argl, ... ) 
short mid, sid; 
char level; 
ushort flags; 
char *fmt; 
unsigned argl; 

strlog () submits messages containing specified information to the log (4) 
driver. Required definitions are contained in <sys/ strlog. h> and 
< s y s / log. h >. mid is the STREAMS module id number for the module or 
driver submitting the log () message. sid is an internal sub-id number usually 
used to identify a particular minor device of a driver. level is a tracing level that 
allows selective screening of messages from the tracer. flags are any combina
tion of SL _ERROR (the message is for the error logger), SL_ TRACE (the mes
sage is for the tracer), SL _FATAL (advisory notification of a fatal error), and 
SL_NOTIFY (request that a copy of the message be mailed to the system 
administrator). Imt is a printf (3S) style format string, except that %s, %e, 
%E, %g, and %G conversion specifications are not handled. Up to NLOGARGS 
numeric or character arguments can be provided. (See Other Facilities in the 
Introduction to STREAMS chapter of the System Services Overview and 
log (4) . ) 

J 

[ int ~estb~size, ~ri) 
lnt Slze, prl.; ] 

te stb () checks for the availability of a message buffer of size size at priority 
pri (see Buffer Allocation Priority, below) without actually retrieving the buffer. 
te stb () returns 1 if the buffer is available, and 0 if no buffer is available. A 
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unl.i.nkb () - Remove 
Message Block from Message 
Head 

WR () - Get Pointer to the 
Write Queue 

A.S. Design Guidelines 

General Rules 

successful return value from testb () does not guarantee that a subsequent 
allocb () call will succeed (e.g., in the case of an interrupt routine taking 
buffers). 

[

mblk_t *unlinkb(mp) ] 
mblk_t *mp; 

"-----------" 

unlinkb () removes the first message block pointed at by mp and returns a 
pointer to the head of the resulting message. unlinkb () returns a NULL 
pointer if there are no more message blocks in the message. 

[~t_d_e_f_i_n_e __ W_R_(_q_) __ ._._. ________________________________________ ~] 
The WR macro accepts a read queue pointer, q (declared as queue_t *q), as 
an argument and returns a pointer to the write queue for the same module. 

This appendix summarizes STREAMS module and driver design guidelines and 
rules presented in previous chapters. Additional rules that developers must 
observe are included. Where appropriate, the section of this document contain
ing detailed information is named. The end of the appendix contains a brief 
description of error and trace logging facilities. 

Unless otherwise noted, "module" implies "modules and drivers". 

The following are general rules that developers should follow when writing 
modules. 

1. Modules cannot access information in the user structure associated with a 
process. Modules are not associated with any process, and therefore have no 
concept of process or user context. 

The capability to pass user structure information upstream using messages 
has been provided where required. This can be done in M _ IOCTL handling 
(see the Drivers section of the STREAMS Module and Driver Programming 
chapter and also Message Types, above. A module can send error codes 
upstream in a M_IOCACK or M_IOCNAK message, where they will be 
placed in u_error by the Stream head. Return values may also be sent 
upstream in a M_IOCACK message, and will be placed in u_rvall. Infor
mation can also be passed to the user structure via a M_ERROR message 
(see the Complete Driver section of the STREAMS Module and Driver Pro
gramming chapter and also Message Types, above. The Stream head will 
recognize this message type and inform the next system call that an error has 
occurred downstream by setting u_error. Note that in both instances, the 
downstream module cannot access the user structure, but it informs the 
Stream head to do so. 

2. In general, modules should not require the data in an M _ DATA message to 
follow a particular format, such as a specific alignment. This makes it easier 
to arbitrarily push modules on top of each other in a sensible fashion. Not 
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following this rule may limit module re-usability (the ability to use the 
module in multiple applications). 

3. Every module must process an M_FLUSH message according to the value of 
the argument passed in the message. (See the Message Queues and Service 
Procedures and Drivers chapters of STREAMS Module and Driver Program
ming, and also Message Types, above. 

4. A module should not change the contents of a data block whose reference 
count is greater than 1 (see dupmsg () in the Utilities section, above) 
because other modules that have references to the block may not want the 
data changed. To avoid problems, it is recommended that the module copy 
the data to a new block and then change the new one. 

5. Modules should only manipulate message queues and manage buffers with 
the routines provided for those purpose, (see the Utilities section, above). 

6. Filter modules pushed between a service user and a service provider (see the 
Service Interface section of the STREAMS Module and Driver Programming 
chapter) may not alter the contents of the M _PROTO or M _ PCPROTO block 
in messages. The contents of the data blocks may be manipulated, but the 
message boundaries must be preserved. 

These rules pertain to module and drivers as noted. 

1. open and close routines may sleep, but the sleep must return to the routine in 
the event of a signal. That is, if they sleep, they must be at priority <= 
PZERO, or with PCATCH set in the sleep priority. 

2. The open routine must return >= 0 on success or OPENF AI L if it fails. This 
ensures that a failure will be reported to the user process. errno may be set 
on failure. However, if the open routine returns OPENFAIL and errno is 
not set, STREAMS will automatically set errno to ENXIO. 

3. If a module or driver recognizes and acts on an M _ I OCTL message, it must 
reply by sending aM _ IOCACK message upstream. A unique id is associated 
with each M _ IOCTL, and the M _ IOCACK or M _ IOCNAK message must con
tain the id of the M_IOCTL it is acknowledging. 

4. A module (not a driver) must pass on any M _ I OCTL message it does not 
recognize (see Message Types, above). If an unrecognized M_ IOCTL 
reaches a driver, the driver must reply by sending aM _ IOCNAK message 
upstream. 

Only the contents of qytr, ~minpsz, CLmaxpsz, CLhiwat,and 
CL lowat in a queue _ t structure may be altered. The latter four quantities are 
set when the module or driver is opened, but may be modified subsequently. 

As described in the SunOS STREAMS Topics chapter, every module and driver is 
configured in with the address of a streamtab structure (see also the Streams 
Mechanism section of the STREAMS Module and Driver Programming chapter. 
For a driver, a pointer to its streamtab is included in cdevsw. For a module, 
a pointer to its streamtab is included in fmodsw . 
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Hepder Files 

Accessible Symbols and 
Functions 

The following header files are generally required in modules and drivers: 

types.h 
contains type definitions used in the STREAMS header files 

stream.h 
contains required structure and constant definitions 

stropts.h 
primarily for users, but contains definitions of the arguments to the 
M _FLU S H message type also required by modules 

One or more of the header files described below may also be included (also see 
the following section). No standard SunOS system header files should be 
included except as described in the following section. The intent is to prevent 
attempts to access data that cannot or should not be accessed. 

errno.h 
defines various system error conditions, and is needed if errors are to be 
returned upstream to the user 

sysmacros.h 
contains miscellaneous system macro definitions 

param.h 
defines various system parameters, particularly the value of the P CATCH 

sleep flag 

siqnal.h 
defines the system signal values, and should be used if signals are to be pro
cessed or sent upstream 

file.h 
defines the file open flags, and is needed if 0 _NDELAY is interpreted 

The following lists the only symbols and functions that modules or drivers may 
refer to (in addition to those defined by STREAMS), if hardware and UNIX
system release independence is to be maintained. Drivers and modules which 
use symbols not listed here will not be compatible with System V systems. 

user. h (from open/close procedures only) 

struct proc *u_procp 
char u error 
ushort u uid 
ushort ll_gid 
ushort u ruid 
ushort u_rgid 

1* process structure pointer *1 
1* system call error number *1 
1* effective user ID *1 
1* effective group ID *1 
1* real user ID *1 
1* real group ID *1 

proc . h (from open/ close procedures only) 

short pyid 
short pygrp 

1* process ID *1 
1* process group ID *1 

Functions accessible from open/close procedures only 
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fIg = sleep(chan, pri) 1* sleep until wakeup *1 

Universally accessible functions 

bcopy (f rom, to, nbytes) 1* copy data quickly *1 
bzero (buffer, nbytes) 1* zero data quickly *1 
t = max (a, b) 1* return max of args *1 
t = min (a, b) 1* return min of args *1 
mem=rm_alloc (map, size) 1* allocate resource *1 
rmfree (map, size, addr) 1* de-allocate resource *1 
rminit (mp, size, addr, name, mapsize) /* initialize resource map */ 
printf (format, ... ) 1* print message *1 
s = spIn () 1* set priority level *1 
timeout (tunc, arg, ticks) /* schedule event */ 
untimeout (tunc, arg) /* cancel event */ 
wakeup (chan) 1* wake up sleeper *1 

sysmacros.h 

t = major (dev) 
t = minor (dev) 

kernel.h 

1* return major device *1 
/* return minor device *1 

struct timeval boot time 1* time since system came up *lhz 
struct timeval time /* current time */ 

param.h 

PZERO 
PCATCH 

hz 
NULL 

types.h 

dev t 
time t 

/* zero sleep priority */ 
1* catch signal sleep flag *1 
1* clock ticks per second *1 
1* 0 *1 

1* combined major/minor device *1 
1* time counter *1 

All data elements are software read-only except: 

u error 1* may be set on afailure return of open */ 

To ensure proper data flow between modules, the following rules should be 
observed in put and service procedures. The following rules pertain to put pro
cedures. 

1. A put procedure must not sleep. 

2. Each QUEUE must define a put procedure in its qini t (see Kernel Struc
tures, above) structure for passing messages between modules. 

3. A put procedure must use the putq () (see Utilities, above) utility to 
enqueue a message on its own message queue. This is necessary to ensure 
that the various fields of the queue _ t structure are maintained consistently. 

4. When passing messages to a neighbor module, a module may not call 
putq () directly, but must call its neighbor's put procedure (see 
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putnext () in Utilities) Note that this rule is distinct from the one above 
it. The previous rule states that a module must call putq () to place mes
sages on its own message queue, whereas this rule states that a module must 
not call putq () directly to place messages on a neighbor's queue. 

However, the <L-qinfo structure that points to a module's put procedure 
may point to putq () (i.e. putq () is used as the put procedure for that 
module). When a module calls a neighbor's put procedure that is defined in 
this manner, it will be calling putq () indirectly. If any module uses 
putq () as its put procedure in this manner, the module must define a ser
vice procedure. Otherwise, no messages will ever be sent to the next 
module. Also, because put q () does not process M _FLUSH messages, any 
module that uses putq () as its put procedure must define a service pro
cedure to process M _FLUSH messages. 

5. The put procedure of a QUEUE with no service procedure must call the put 
procedure of the next QUEUE directly, if a message is to be passed to that 
QUEUE. If flow control is desired, a service procedure must be provided. 

Service procedures must observe the following rules: 

1. A service procedure must not sleep. 

2. The service procedure must use get q () to remove a message from its mes
sage queue, so that the flow control mechanism is maintained. 

3. The service procedure should process all messages on its message queue. 
The only exception is if the Stream ahead is blocked (i.e., canput () fails, 
see Utilities, above). Adherence to this rule is the only guarantee that 
STREAMS will enable (schedule for execution) the service procedure when 
necessary, and that the flow control mechanism will not fail. 

If a service procedure exits for any other reason (e.g., buffer allocation 
failure), it must take explicit steps to assure it will be re-enabled. 

4. The service procedure must follow the steps below for each message that it 
processes. STREAMS flow control relies on strict adherence to these steps. 

Step 1: 
Remove the next message from the message queue using ge t q ( ). It is pos
sible that the service procedure could be called when no messages exist on 
the queue, so the service procedure should never assume that there is a mes
sage on its message queue. If there is no message, return. 

Step 2: 
If all the following conditions are met: 

o canput () fails and 

o the message type is not a priority type (see Message Types) and 

o the message is to be put on the next QUEUE. 

then, continue at Step 3. Otherwise, continue at Step 4. 

Revision A, of9 May 1988 



A.6. STREAMS Glossary 

Appendix A - Supplementary STREAMS Material 343 

Step 3: 
The message must be replaced on the head of the message queue from which 
it was removed using putbq () (see Utilities). Following this, the service 
procedure is exited. The service procedure should not be re-enabled at this 
point. It will be automatically back-enabled by flow control. 

Step 4: 
If all the conditions of Step 2 are not met, the message should not be 
returned to the queue. It should be processed as necessary. Then, return to 
Step 1. 

Back Enable To enable (by STREAMS) a preceding blocked QUEUE when STREAMS deter
mines that a succeeding QUEUE has reached its low water mark. 

Blocked A QUEUE that cannot be enabled due to flow control. 

Clone Device A STREAMS device that returns an unused minor device when initially opened, 
rather than requiring the minor device to be specified in the open (2) call. 

Close Procedure The module routine that is called when a module is popped from a Stream and 
the driver routine that is called when a driver is closed. 

Control Stream In a multiplexor, the upper Stream on which a previous I_LINK ioctl (to the 
associated file, see streamio( 4» caused a lower Stream to be connected to the 
multiplexor driver at the end of the upper Stream. 

Downstream The direction from Stream head towards driver. 

Device Driver In the STREAMS context, the term "device driver" refers to the end of the 
Stream closest to an external interface. The principle functions of a device driver 
are handling an associated physical device, and transforming data and informa
tion between the external interface and Stream. 

Driver 

Enable 

Flow Control 

Lower Stream 

Message 

Message block 

A module that forms the Stream end. It can be a device driver or a pseudo-device 
driver. In STREAMS, a driver is physically identical to a module (Le., com
posed of two QUEUEs), but it has additional attributes. 

Schedule a QUEUE. 

The STREAMS mechanism that regulates the flow of messages within a Stream 
and the flow from user space into a Stream. 

A Stream connected below a multiplexor pseudo-device driver, by means of an 
I LINK ioctl. The far end of a lower Stream terminates at a device driver or 
another multiplexor driver. 

One or more linked message blocks. A message is referenced by its first message 
block and its type is defined by the message type of that block. 

Carries data or information, as identified by its message type, in a Stream. A 
message block is a triplet consisting of a data buffer and associated control struc
tures, an mblk _ t structure and a dblk _ t structure. 
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Message Queue A linked list of zero or more messages connected to a QUEUE. 

Message type A defined set of values identifying the contents of a message block and message. 

Module A pair of QUEUEs. In general, module implies a pushable module. 

Multiplexor A STREAMS mechanism that allows messages to be routed among multiple 
Streams in the kernel. A multiplexor includes at least one multiplexing pseudo
device driver connected to one or more upper Streams and one or more lower 
Streams. 

Open Procedure The routine in each STREAMS driver and module called by STREAMS on each 
open (2) system call made on the Stream. A module's open procedure is also 
called when the module is pushed. 

Pop A STREAMS ioctl () (see streamio(4» that causes the pushable module 
immediately below the Stream head to be removed (popped) from a Stream 
(modules can also be popped as the result of a close (2) ) • 

Pseudo-device Driver A software driver, not directly associated with a physical device, that performs 
functions internal to a Stream such as a multiplexor or log driver. 

Push A STREAMS ioctl () (see streamio(4» that causes a pushable module to 
be inserted (pushed) in a Stream immediately below the Stream head. 

Pushable Module A module interposed (pushed) between the Stream head and driver. Pushable 
modules perform intermediate transformations on messages flowing between the 
Stream head and driver. A driver is a non-pushable module and a Stream head 
includes a non-pushable module. 

Put Procedure The routine in a QUEUE which receives messages from the preceding QUEUE. 
It is the single entry point into a QUEUE from a preceding QUEUE. The pro
cedure may perform processing on the message and will then generally either 
queue the message for subsequent processing by this QUEUE's service pro
cedure, or will pass the message to the put procedure of the following QUEUE. 

QUEUE A STREAMS defined set of C-Ianguage structures. A module is composed of a 
read (upstream) QUEUE and a write (downstream) QUEUE. A QUEUE will 
typically contain a put and service procedure, a message queue, and private data. 
The read QUEUE (cf. read queue) in a module will also contain the open pro
cedure and close procedure for the module. 

The primary structure is the queue _ t structure, occasionally used as a synonym 
for a QUEUE. 

Read Queue The message queue in a module or driver containing messages moving upstream. 
Associated with a read (2) system call and input from a driver. 

Schedule Place a QUEUE on the internal list of QUEUEs which will subsequently have 
their service procedure called by the STREAMS scheduler. 

Service Interface A set of primitives that define a service at the boundary between a service user 
and a service provider and the rules (typically represented by a state machine) for 
allowable sequences of the primitives across the boundary. At a Stream/user 
boundary, the primitives are typically contained in the control part of a message; 
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within a Stream, in M _PROTO or M _ PCPROTO message blocks. 

Service Procedure The routine in a QUEUE which receives messages queued for it by the put pro
cedure of the QUEUE. The procedure is called by the STREAMS scheduler. It 
may perlorm processing on the message and will generally pass the message to 
the put procedure of the following QUEUE. 

Service Provider In a service interface, the entity (typically a module or driver) that responds to 
request primitives from the service user with response and event primitives. 

Service User In a service interface, the entity that generates request primitives for the service 
provider and consumes response and event primitives. 

Stream The kernel aggregate created by connecting STREAMS components, resulting 
from an application of the STREAMS mechanism. The primary components are 
the Stream head, the driver, and zero or more pushable modules between the 
Stream head and driver. 

Stream End The end of the Stream furthest from the user process, containing a driver. 

Stream Head The end of the Stream closest to the user process. It provides the interface 
between the Stream and the user process. 

STREAMS A kernel mechanism that supports development of network services and data 
communication drivers. It defines interlace standards for character input/output 
within the kernel, and between the kernel and user level. The STREAMS 
mechanism comprises integral functions, utility routines, kernel facilities and a 
set of structures. 

Upper Stream A Stream terminating above a multiplexor pseudo-device driver. The far end of 
an upper Stream originates at the Stream head or another multiplexor driver. 

Upstream The direction from driver towards Stream head. 

Water Marks Limit values used inflow control. Each QUEUE has a high water mark and a 
low water mark. The high water mark value indicates the upper limit related to 
the number of characters contained on the message queue of a QUEUE. When 
the enqueued characters in a QUEUE reach its high water mark, STREAMS 
causes another QUEUE that attempts to send a message to this QUEUE to 
become blocked. When the characters in this QUEUE are reduced to the low 
water mark value, the other QUEUE will be unblocked by STREAMS. 

Write queue The message queue in a module or driver containing messages moving down
stream. Associated with a wr i te (2) system call and output from a user pro
cess. 
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B.l. Standard Error 
Numbers 

B.2. Device Driver 
Routines 

B 
Summary of Device Driver Routines 

The system has a collection of standard error numbers that a driver can return to 
its callers. These numbers are described in detail in intro (2) , the introduc
tory pages of the System Interface Manual. A complete listing of the error 
numbers appears in <sys/ errno. h>. 

These routines actually compose the bulk of the device driver. Some of them, 
like xxioctl () , are optional. Others, like xxprobe () , must appear in every 
driver. Omitted from this section is the xxslave () routine, which appears pri
marily in block-device drivers. See the The' 'Skeleton" Character Device 
Driver chapter for additional information about many of these routines. 

When a user program makes a system call that involves I/O devices, it's 
translated by the kernel into a call to the appropriate driver routine. However, 
when that driver routine is called, its parameters are no longer the same as the 
parameters that the user program passed to the system call - they will have been 
translated into parameters reflecting the actual run-time environment of the 
drivers, an environment set up and initialized by config and the 
autoconfiguration process and then maintained by the kernel and the drivers 
themselves. For example, a user program will call 

write (fileno, address, nbytes) 
int fileno; 
char *address; 
int nbytes; 

but the kernel will translate this into 

xxwrite(dev, uio) 
dev_t dev; 
struct uio *UiOi 

by the time it calls the driver's xxwri te () routine . 
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xxat tach () - Attach a Slave 
Device 

xxclose () - Close a Device 

xxintr 0 - Handle Vectored 
Interrupts 

r xxattach(md) J l _____ s_t __ ru_c_t __ mh __ -__ d_e_v_i_c_e __ *_m_d_; ________________________________ --J 

xxat tach () does boot-time, device-specific setup and initialization. It's com
monly used in disk and tape drivers for setup tasks like reading labels, and in 
character drivers for the initialization of interrupt vectors and the reserving of 
blocks of memory. Its proper tasks are not limited to the initialization of actual 
hardware devices - xxattach () is also used to set up and initialize local data 
structures. 

When it needs to set a device interrupt-vector number, xxat tach () finds it in 
the rod intr->v vec field of the rob device structure. A NULL value in - - -
this field indicates that the host machine is Multibus based and does not support 
vectored interrupts. On VMEbus machines md _ intr->v _ vec is the 
interrupt-vector number given for the device in the kernel config file and must be 
present 

xxat tach () can also be used to set the 32-bit argument that's subsequently 
passed to xxintr (). This argument (contained in rod_intr->v _ vptr is ini
tially set to the unit number of the interrupting device, but it's often convenient 
to reset it to contain a pointer to a local structure. 

xxclose(dev, flags) 
dev_t dev; 
int flags; 

xxclose () does whatever it has to do to indicate that data transfers can't be 
made on the device until it's been reopened. This may involve nothing at all, or 
it may include resetting and quieting the device, flushing data buffers"and releas
ing or unlocking resources (or unlocking the device itself if it's opened 
exclusively). Since xxclose () is called only when the last user process which 
is using the device closes it, xxc 10 se () must clean up for all user processes 
which have had the device open. xxclose () doesn't need to report an error, 
although it can. flags, incidently, is the same as it is for xxopen () . 

[
xxintr(ctrl_nUm) J 

int ctrl_num; 

'-------"" 

xxintr () is responsible for fielding vectored interrupts from the device. As 
such, it is specified (with its interrupt vector) in the kernel config file. As an 
interrupt routine, xxintr () (and any routines that it calls) is ab~olutely prohi
bited from calling sleep () or referencing the kernel user structure. 

xxintr () receives one 32-bit parameter, which is, by default, the unit number 
of the device that interrupted. However, you can arrange for it to receive 
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I/O Control 
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something else by changing the value in rnd_intr->v _ vptr. (See xxat
tach () , above). 

In character drivers which, like block drivers, make use ofphysio () and its 
associated structures, mechanisms and routines, xxintr () is used to indicate 
when the device is finished with one chunk and ready for the next. xxintr () is 
also instrumental in certain tasks which, by their nature, must be shared with 
top-half routines. Examples of such tasks are the maintenance of character I/O 
buffers and select ( ) -related bookkeeping structures. (In the select () 
case, xxintr () also has the job of calling selwakeup () to wakeup sleeping 
processes ). 

Note that whenever xxintr () maintains a data structure or resource in coopera
tion with top-level routines, the top-level code must be protected by a mutual
exclusion lock. Interrupts are automatically disabled when an interrupt routine is 
called, so it is generally unnecessary for xxintr () to disable interrupts before it 
does its part of the job. 

xxintr () is also responsible for error handling and reporting. More 
specifically: 

o xxintr () should check the device for an error every time it's called. It can 
also check the driver state against the device state to ensure that the device 
is, in fact, doing what the driver expects it to be doing. Upon finding an 
"impossible" or unrecoverable error, xxintr () should panic (). But for 
regular errors it should call printf () (or uprintfO), flag the error in 
the I/O buffer, and then return. 

o The error is flagged by setting the B _ ERROR bits in the buffer header 
b_flags field (and, if an error code other than EIO is desired, by assigning 
that error code into the buffer b _error field). The error code will then be 
propagated up to the user by way ofphysio (). physio () checks to see 
if the error flag has been set in the buffer, and if it has, passes the error code 
up to the user program, which usually plugs it into the global error register 
errno. xxintr () doesn't itselfretum anything. 

o A retry attempt can be made before giving up and taking the error return. 

o 

Whether or not this is advisable is entirely dependent on the specific device 
and error characteristics. (Note that the b _ re sid field in the buffer header 
will typically indicate the number of bytes of data that were still 
untransferred at the error return). 

The error return should abort the I/O request that produced the error and then 
place the device in its normal idle state. 

xxioctl(dev, cmd, data, flag) 
dev_t dey; 
int cmd; 
caddr_t data; 
int flag; 
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The device-driver entry routines, taken as a set, are intended to constitute a uni
fonn abstract interface capable of accommodating all possible I/O devices. 
Obviously, such devices differ greatly, and thus the need for this xxioctl (). It 
is the escape mechanism by which miscellaneous operations are accommodated. 

These functions vary greatly - almost anything is possible. The range ofpossi
bilities requires a very general interface, and xxioctl () has one. The cmd 
variable identifies a specific device control operation, and is typically used by 
xxioctl () as the index into a switch statement. The data parameter is the real 
escape hatch, a pointer to an array up to 255 bytes in length. This array, over 
which the driver and its users will overlay a driver-specific structure, can be 
treated as both an input parameter by which user programs send data to the driver 
and as an output parameter by which the driver returns data to its users. flag is 
set to the f_flags field of the file structure. The file structure, together 
with the file-mode flags to which its f_flags field can be set (FREAD, 
FWRlTE, and so on) is defined in <sys/file. h>. The driver is free to use 
flag to make its operation sensitive to the manner in which the file was opened by 
the user. 

In <sys/ ioctl. h> will be found a collection of macros which encode param
eter size and read/write control infonnation into ioctl () command codes. 
These macros tell the kernel, on a command by command basis: 

o How many of the maximum of 127 bytes in the ioctl () parameter are 
significant when that parameter is read. 

o How many of these bytes are significant when the parameter is written. 

o If the parameter bytes should be read into kernel space before calling 
xxioctl (). 

o If they should be read into user space after calling xxioctl (). 

The Versatec Interface driver in the Sample Driver Listings appendix of this 
manual contains some simple examples of the use of these ioctl () macros. 
(More complex examples can be found in <sys/ioctl. h». The Versatec 
Interface driver defines two ioctl () command codes (in 
/usr / include/ sys/vcmd. h): 

=ltdefine 
=It de fine 

VGETSTATE _IOR(v, 0, int) 
VSETSTATE _IOW(v, 1, int) 

The first parameter of the ioctl () macros is an ASCII character that serves to 
group together each driver's command codes. It must be different for each dev
ice - in this case, it's "v" for "Versatec". The second parameter is the com
mand code itself. The third is the size of the ioctl () argument, which cannot 
exceed 127 bytes. Note that the size is given as the name of the structure which 
will be used to interpret the parameter array. The macros _lOR, _lOW and 
_ I OWR then use the s i z eo f () operator to determine the number of bytes con
sumed by the structure. 

The definitions of such ioctl () -related structures, together with the 
command-code definitions themselves, must be collected into a user accessible 
include file. Such include files are usually, though not necessarily, kept in 
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/usr/include/sys. 

When the kernel processes the ioctl () system call, translating its parameters 
into the terms appropriate to anxxioctl () driver routine, it consults the 
read/write encode bits in the command code. If the read bit is set, then the argu
ment is read into a buffer in kernel space, and a pointer to that buffer is passed to 
the driver ioctl () routine. Likewise, if the write bit is set, the argument is 
copied back into user space after command execution is completed. 

xxioctl () does whatever it has to do, then returns 0 if there were no errors, an 
error code if there were. ENOTTY is the code used if the requested command did 
not apply to the device. The kernel passes error codes up to the user program, 
which usually plugs them into errno. 

xonmap(dev, off, protection) 
dev_t dev; 
off_t off; 
int protection; 

xxmrnap () is called for PrE information about the page (at offset off) of dev's 
memory. (This information is what the kernel needs to map the page to a virtual 
address). xxmmap () should first check that of f doesn't exceed the device
memory size: 

if (off >= XXSIZE) return (-1); 

for this would cause the mapping of an area greater than the device memory. 
xxmrnap () returns the subset of the page table entry (PrE) containing the page 
frame number and the page type to its caller in the kernel. xxmmap () is called 
iteratively to perform a mapping requested by a call to rmnap () - the looping 
and all of its bookkeeping, as well as the actual mapping, is performed by the 
kernel in a way that's transparent to the driver. 

xxmrnap () returns -1 to the kernel if it can't do the mapping, otherwise it returns 
its PTE subset. Upon receipt of a -1, the kernel returns the error code E I NVAL 

(Illegal argument) to the user program, where it's usually plugged into the global 
error variable errno. 

unsigned xxminphys(bp) 
register struct buf *bp; 

xxminphys () determines a "reasonable" block size for transfers, so as to avoid 
tying up too many resources. xxminphy s () is passed as an argument to phy
sio. The system version of the xxminphys () function, minphys, may be 
used by any driver. xxminphys () should perform the calculation: 
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xxopen () - Open a Device 
for Data Transfers 

int block; 1* some reasonable block sixefor transfers * I 

if (bp->b_bcount > block) 
bp->b_bcount block; 

xxopen(dev, flags) 
dev_t dev; 
int flags; 

xxopen () is called each time the device is opened, and may include any 
device-specific initialization. Typically, it will: 

o begin by validating the minor device number and doing other device-specific 
error checking. 

o Then if everything is ok, it will initialize the device (for example by clearing 
registers, enabling interrupts or checking for power-up errors) and possibly 
the local data structures. This structure initialization may include locking 
the device if it's exclusive use, or allocating driver resources - for example 
allocating dynamic buffers that will be needed later). 

o Finally, xxopen () will typically wait for the device to come on-line, and 
return an error if it doesn't. 

NOTE If xxopen () supports "clone open", that is to say, if it will allow a user to open 
a driver without specifying a minor device, then it is important that it does any
thing that may lead to its being blocked before it actually chooses the minor dev
ice that it is going to clone. Otherwise, there's a possibility of someone else 
grabbing the device while xxopen () is blocked. 

The integer argument flags indicates if the open is for reading, writing, or for 
both. The constants FREAD and FWRITE (from <sys/file. h» are avail
able to be AND' ed with flags. 

The minor device number encoded in dey is of concern only to the device driver 
itself. It can itself be encoded to contain various kinds of information, as needed 
by the driver. The driver developer will want to provide macros to break out 
encoded subfields. dey may encode a unit or driver number, a special feature, or 
an operating mode. 

xxopen () returns ENXIO (No such device or address) if the minor device 
number is out of range, ENODEV (No such device) if an attempt was made to 
open the device with an inappropriate mode or E 10 (110 Error) to indicate an 110 
error in the course of an attempted initialization. If the open is successful, xxo
pen () returns O. The kernel will return the error code to the user program, 
where it is usually plugged into the global error variable errno . 
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[ xxpoll () ) 
xxpol1 () is responsible for fielding non-vectored interrupts from the device. In 
situations where multiple devices share the same interrupt level, xxpoll () must 
determine if the interrupt was actually destined for this driver or not . .:apoll () 
returns 0 to indicate that the interrupt was not serviced by this driver, and non
zero to indicate that the interrupt was serviced. It is a gross error for xxpo 11 ( ) 
to say that it serviced an interrupt when it did not. 

If a device driver handles both vectored interrupts and polling interrupts, 
xxpoll () typically calls the xxintr () routine with the proper arguments, nor
mally the unit number of the device that interrupted. sleep may never be 
called from xxpoll ( ) , or, for that matter, from any of the lower-half routines. 

xxprobe(reg, unit) 
caddr_t reg; 
int unit; 

xxprobe () detennines whether the device at the kernel virtual address reg actu
ally exists and is the correct device for this driver. The method by which it 
accomplishes this is impossible to standardize, for devices provide no uniform 
means of identification. Indeed, some devices fail to provide even reasonable 
non-standard means of identification. 

The kernel provides a set of functions to help with probing. These functions can 
probe an address, recover from the bus error that will occur if no device is 
installed at that address, and return with an indication as to whether such a bus 
error occurred. These functions are peek ( ) , peekc () , peekl ( ) , poke ( ) , 
pokec () and pokel () . 

It's possible for probe () to check the value of the reg parameter to ensure that 
the device isn't installed at an address that it can't itself address. The device's 
entry in the kernel config file detennines which address space it's mapped into, 
but it's sometimes possible for the device itself to be configured differently. The 
driver can check, for example, that reg doesn't contain an address greater than 
OxFFFFF (that is, an address with more than 20 significant bits) if the device is 
configured for 20-bit references. 

It's also possible for xxprobe () to do some device initialization, even though 
such initialization is properly the job of xxattach (). This can make sense if 
such initialization allows xxprobe () to identify and verify the device, but it 
should only do the amount of initialization necessary to determine if the device is 
really there. It definitely should not allocate any memory that won't be used if 
the device isn't found, and it should not assume that just because. it found a dev
ice that the system will choose to include that device in its configuration 

If the correct device is found at the probed location, xxprobe () returns (sizeof 
(struct xxdevice () ». (This is the size of the device registers in I/O space if the 
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xxread () - Read Data from 
Device 

xxselect () - Select Support 

device is an I/O mapped Multibus device; otherwise it's the size of the device 
registers in memory space). If no device is found at the expected location, or if 
the device found is not the one that was expected, xxprobe () returns a O. Ifit 
doesn't, the kernel will be incorrectly led to believe that a device is present, and 
future attempts to contact it will cause the kernel to panic () with a bus error. 

Note that the amount of memory mapped in by the autoconfiguration code is 
determined by the size given in the mb _ dr i ve r->mdr _ S i z e field, and not by 
the value returned from xxprobe () , which is used only for the go/nogo test. 

xxread (dev , uio) 
dev_t dev; 
struct uio *uio; 

xxread () is the high-level routine called (in character device drivers) to per
form data transfers from the device. xxread () must check that the minor dev
ice number passed to it is in range. If the minor device number is out of range, 
xxread () returns like so: 

if (XXUNIT(dev) >= NXX) 
return (ENXIO); 

Subsequent actions of xxread () differ depending on whether the device is a 
tty-style character-at-a-time device or a device that buffers its I/O into blocks. 

For block transfers, xxread () uses physio () , its associated mechanisms, and 
the xxstrategy (). buf is here an array of locally declared buffers: 

return (physio(xxstrategy, &buf[minor(dev)], 
dev, B_READ, minphys, uio»; 

If the read operation fails, xxread () passes the error code which xxintr () set 
in the buffer header up to the kernel. The kernel then passes it on to the user pro
gram, which usually plugs it into the global error variable errno. 

xxselect(dev, rw) 
dev_t dev; 
int rw; 

The xxselect () routine is necessary if the driver is to support the select () 
system call. rw is either FREAD, FWRITE or O. (Simple character devices won't 
have occasion to use the 0 value, which is intended for exceptional conditions. It 
is used by network devices). These constants are defined in <sys/ file. h>. 

If xxselect () only supports polling, then it simply determines if the device 
specified by (the major/minor pair encoded within) dev is ready to go, returning 
a 1 if it is and a 0 if it's not. Interrupts must be disabled while this check is per
formed, so xxselect () should always do a 
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s = sp15()i 

immediately, and a 

splx(s) 

before returning. 
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If, however, xxselect () allows user processes to wait for a device to become 
ready, it must do somewhat more work. In this case, the driver will have to 
maintain a local per-device structure which can associate a process with each 
device. It can do so with the current process proc structure, a pointer to which 
can be found in u. uyrocp. (If the device can read and write independently, 
separate processes must be tracked for the two cases). The local structures must 
also contain some state information, which will be used by xxselect () (as 
well as xxintr (» for bookkeeping purposes. The details are somewhat com
plicated, and are illustrated in the Variation with "Asynchronous /10" Support 
section of the The "Skeleton" Character Device Driver chapter of this manual. 

xxstrategy (bp) 
register struct buf *bp; 

xxstrategy () is a high-level I/O routine designed to be called from phy
sio (). Its name derives from its role in block-device drivers, where xxstra
tegy () has responsibility for reordering the I/O request queue so as to increase 
the overall 110 bandwidth. In character devices (even those which queue I/O) 
such reordering is to no advantage, and xxstrategy () 's major function is 
structural. It allows the xxread () and xxwr i te () routines to share their com
mon code in a routine designed to be called from physio (). xxstrategy () 
returns no error code to its caller in the kernel. Instead, errors that occur in the 
course of the I/O operation are reported by xxintr () by way of the buffer 
header and passed along by xx s t rat e gy ( ) . 

xxwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

xxwr i te () is the high-level routine called (in character device drivers) to per
form data transfers to the device. xxwr i te () must check that the minor device 
number passed to it is in range. If the minor device number is out of range, 
xxwr i te () returns like so: 

if (XXUNIT(dev) >= NXX) 
return (ENXIO); 

Subsequent actions of xxwr it e () differ depending on whether the device is a 
tty-style character-at-a-time device or a device that buffers its I/O into blocks . 
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For block transfers, xxwri te () uses physio () ,its associated mechanisms, 
and the xxstrategy (). buf is here an array of locally declared buffers: 

return (physio(xxstrategy, &buf[rninor(dev)], 
dev, B_WRITE, minphys, uio)); 

If the write operation fails, xxwr it e () passes the error code which xxi n t r ( ) 
set in the buffer header up to the kernel. The kernel then passes it on to the user 
program, which usually plugs it into the global error variable errno. 
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btodb () - Convert Bytes to 
Disk Sectors 

copyin () - Move Data 
From User to Kernel Space 

copyout () - Move Data 
From Kernel to User Space 

c 
Kernel Support Routines 

These routines are in alphabetical order, on the assumption that this will make 
them easier to find than any "logical" order. 

[ btodb (bytes) 
int bytes; 

Converts bytes into standard kernel block-size units. btodb () is called (for 
block drivers) from xxsize (). It is listed here because it is called from the 
example ramdisk pseudo-device driver. 

copyin () moves data from the user address space to the kernel address space. 
It is commonly used when writing xxioctl () routines. See copyout () . 

copyin(udaddr, kaddr, n) 
caddr_t udaddr, kaddr; 
u int n; 

where kaddr is a kernel virtual address, udaddr is a user virtual address, and n is 
the number of bytes to copy in. Returns 0 ifno error occurs, EFAULT on a 
memory error, and other Exxx errors on page faults which cannot be resolved. 

] 

copyou t () moves data from the kernel address space to the user address space. 
It is commonly used when writing xxioctl () routines. See copyin () . 

copyout(kaddr, udaddr, n) 
caddr_t kaddr, udaddr; 
u_int n; 

where kaddr is a kernel virtual address, udaddr is a user virtual address, and n is 
the number of bytes to copy out. Returns 0 if no error occurs, EF AULT on a 
memory error, and other Exxx errors on pagefaults which cannot be resolved. 
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CDELAY () - Conditional 
Busy Wait 

DELAY () - Busy Wait for a 
Given Period 

dma _done () - Free the 
DMAChannel 

dma_setup 0 - Set Up for a 
DMA Transfer 

CDELAY(condition, time) 
int condition, time; 

CDELAY () is like DELAY () (see below) in that it busy waits for a specified 
number of microseconds. It differs, however, in that it has a second argument 
condition. Each time it goes through its busy wait loop, CDELAY () checks con
dition, and, if it's true, it immediately returns. In typical usage, condition is a 
masked subset of the bits in a device register. 

(
DELAY (time) ] 

int time; 

---------
DELAY busy waits for a specified minimum number of microseconds. That is, it 
just spins around using CPU time. It can be useful in situations where a device is 
not quite slow enough to justify having its driver go to sleep. In such cases, it's 
useful to busy wait for a short time. The reasoning is that while busy waiting is a 
waste, servicing an interrupt costs a lot more CPU time. 

DELAY () is also useful in introducing pauses between accesses to a device with 
write latency. A device register may, for example, require multiple sequential 
writes, and yet also require delays between the writes. See vpprobe in the 
Sample Driver Listings appendix for an example. See CDELAY () . 

[ dma_done (chan) 
int chani 

On Sun386i only. After a DMA transfer completes, dIna_done () must be 
called to mark the channel as not busy so that another transfer can proceed. 

( dma setup (dma) 
struct drna_request *drnai 

] 

] 
OnSun386i only. dma_setup () is called after the driver has gotten a contigu
ous set of virtual addresses from mbsetup () and before the device is pro
grammed to start sending or receiving data. The dma _request structure 
(defined in /usr/ include/ sun386/dma. h) contains all the information 
required to set up the 82380 DMA chip on the Sun386i. 

Unlike the Sun-2, Sun-3, Sun-4line of machines, the Sun386i ha.s a memory 
management unit as an integral part of the CPU (the 80386). Therefore, to use 
the DMA facility of the Sun386i for a device driver, you must interface to the 
82380 chip, which contains the DMA controller. 
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The primary interface to the DMA chip is the drna _request structure. You 
must fill in the fields in this structure and then call drna _ set up () with a 
pointer to the structure. drna _ set up () takes the contiguous virtual addresses, 
which were obtained from a call to rnbsetup () , and sets up a linked list of phy
sical addresses to be loaded into the DMA chip as needed. 

drna _ setup () returns a value of zero if the setup was successful, and non-zero 
if there is a problem. Reasons for failure are: the channel was busy, the transfer 
was zero pages long, or memory could not be allocated for the linked list of 
buffers. 

The fields in dIna_request structure are defined as follows: 

1* 
* DMA request structure passed to dma _set up ( ) . 
* See the Intel 82380 Tech Reffor more info. 
*1 
struct dma_request { 

u_char drna_channel; 
u char drna_xfer_mode; 

#define DMA DEMAND MODE 0 - -
#define DMA SINGLE MODE 1 - -
#define 
#define 

char 
#define 
#define 

DMA BLOCK MODE 2 - -
DMA CASCADE MODE 3 

dma_rdwr; 
DMA READ 
DMA WRITE 

u_long dma_count; 
u_long drna_re~space; 

2 
1 

#define DMA MEMORY 0 
#define DMA IO 1 

u int 
#define 
#define 
#define 

dma_re~size; 

DMA BUS 32 1 
2 
3 

} ; 

- -
DMA BUS 16 - -
DMA BUS 8 

char 
caddr t 
u_long 
u int 
char 
caddr t 

- -
dma_re~hold; 

drna _ re~ addr ; 
dma_target_space; 
dma_target_size; 
dma_target_hold; 
dma_target_addr; 

/ * Channel number: 0 - 7 * / 
/ * Transfer mode * / 

/ * Transfer direction * / 
/ * (Relative to requester) * / 

/ * Transfer count * / 
/ * Requester address space * / 

/ * Memory or memory-mapped * / 
/* 110 mapped * / 

/ * Size of xfers tolfrom requester * / 
/ * 32-bit transfers * / 
/ * 16-bit transfers * / 
/ * 8-bit transfers * / 

/* 1 = hold address, 0 = increment * 
/ * Requester (virtual) address * / 
/ * Target address space * / 
/ * Size of xfers tolfrom target * / 
/ * H oldlincrement target address * / 
/ * Target (virtual) address * / 

In this context, the "requester" is the device that requests service from the 82380 
(normally a peripheral such as a disk controller). The "target" is the "device" 
with which the requester wants to communicate (normally system memory). 

The fields of the dIna_request structure are used as follows: 

drna channel 
Specifies the channel that the requester will use for the transfer. 
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dIna xfer mode - -
Refers to the type of transfer that the requester is capable of supporting. The 
SCSI controller, for instance, uses the DMA _ S INGLE_MODE of transfer, as 
does the floppy controller. Refer to the peripheral manufacture's 
specification sheet and the the 82380 data sheet for more details. 

dIna rdwr 
is the direction of data transfer relative to the requestor. DMA _ WRI TE 
means transfer from the requester to the target and DMA _READ means 
transfer from the target to the requester. 

dIna count 
is the byte count for the transfer. 

dIna_re~space 

is the address space in which the requester resides, i.e., whether the device is 
memory mapped (DMA_MEMORY) or 110 mapped (.DMA_IO) 

dIna_re~size 

is the size of the requester's data path ( DMA _BUS _ 8 = 8 bits, 
DMA_BUS_16 = 16 bits, DMA_BUS_32 = 32 bits) and therefore the amount 
of data transferred with each DMA bus cycle. 

dIna_re~hold 

indicates whether the 82380 should hold the requester address constant 
throughout the DMA transfer, or increment it with each bus cycle. Typically 
the requester address is the address of the device's I/O register, which is 
fixed, so dma _ re~ hold is set to tt 1 tt • 

dIna_re~addr 

is the requester's virtual address. 

dIna_target_space 
is the address space in which the target resides (usually DMA _MEMORY). 

dIna_target_size 
is the size of the target's data path (DMA_BUS_32 for system memory). 

dIna_target_hold 
indicates whether the 82380 should hold or increment the target address dur
ing the DMA transfer. For memory devices, the 82380 should increment the 
target address with each bus cycle, so "dma _ target_hold" is set to O. 

dIna_target_addr 
is the target's virtual address. 

Once all these fields are set up by the driver, the driver calls the dIna_set up ( ) 
routine. The following pseudo-code routines demonstrate how to use the DMA 
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routines: 

#include <machine/dma.h> 
#include <sundev/mbvar.h> 

struct 
caddr t 

rob_device *xxinfo; I * Device info * I 
xx ioaddr XX_ADDR; I *Address of device's 110 port * I 

xx_example (bp) 
struct buf *bp; 

1* 

struct rob device *md = xxinfo[O]; 
unsigned int target_addr; 
unsigned int transfer count; 
int channel; 
int readflag; 

* Set up DMA transfer. 
*1 

target_addr = MBI_ADDR(robsetup(md->md_hd, bp, 0»; 
transfer_count = bp->b_bcount 
channel = md->md_dmachan; 
readflag = «bp->b_flags & B_READ) ? 1 : 0); 

if (xx_dma_setup(target_addr, transfer_count, 

1* 

channel, readflag) ! = 0) 

return(-l) ; 

* Code to talk to the device, initiate the transfer, 
* and wait for transfer completion. 
*1 

1* 
* Free DMA resources. 
*1 

xx_dma_done(channel); 
mbrelse(md->md_hd, &target_addr); 

return(O); 

xx_dma_setup(addr, count, chan, rdflag) 
unsigned int addr; 
unsigned int count; 
int chan; 
int rdflag; 

struct dma_request dreq; 

dreq.dma channel = chan; 
dreq.dma_xfer_mode 

DMA_SINGLE_MODE; 

sun 
microsystems 

1* Dma channel * I 

I * Single mode transfer * I 
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qsigna1 () - Send Signal to 
Process Group 

hat_qetkpfnum() -
Address to Page Frame Number 

1nb () - Read a Byte from an 
I/O Port 

dreq.dma_rdwr = 
(rdflag ? OMA_WRITE : DMA_READ); /* Direction */ 

dreq.dma_count = count; /* Transfercount */ 

dreq.dma_re~space 

dreq.dma_re~size 

dreq.dma_re~hold 

dreq.dma_re~addr 

OMA_MEMORY; 
OMA_BUS_8; 
1; 
xx_ioaddr; 

/*Memory-mapped requester * I 
/ * 8-bit data path * / 
/ * Hold address constant * / 
/ * 110 port virt. address * / 

dreq. dma _target_space = DMA _MEMORY; / * Target is system memory * / 
dreq.dma_target_size OMA_BUS_32; /* 32-bitdatapath */ 
dreq.dma_target_hold = 0; /*Incrementaddr. each cycle * I 
dreq.dma_target_addr = addr; /* Buffervirtualaddress */ 
return(dma_setup(&dreq»; 

xx_dma_done(chan) 
int chan; 

dma_done(chan); 

gsignal(pgrp, sig) 
int pgrp; 
int sig; 

Sends signal sig to all of the processes in the process group pgrp. See psig
nal (). 

unsigned int 
hat_getkpfnurn(addr) 

addr_t addr; 

hat_getkpfnum takes a virtual address and returns it associated Page Frame 
Number. This number has already been masked down to one that can appropri
ately be returned by the driver xxmmap () routine. 

[ 

inb (port) 
_ short port; 

Sun386i only. inb () returns the byte value from the specified J?Ort address in 
the I/O space. (See QutbO). 

] 
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iodone 0 - Indicate I/O 
Complete 

iowait 0 - Wait for I/O to 
Complete 

kmem _ al.l.oc () - Allocate 
Space from Kernel Heap 

kmem_free () - Return 
Space to Kernel Heap 
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[ 

iodone (bp) 
_ struct buf *bp; 

iodone is called to indicate that I/O associated with the buffer header bp is 
complete, and that it can be reused. iodone sets the DONE flag in the buffer 
header, then does a wakeup call with the buffer pointer as argument. 

] 

iodone () is called from the bottom half right after the call to wakeup ( ). See 
iowait (). 

[

int iowait(bp) 
_ struct buf *bp; 

iowait waits on the buffer header addressed by bp for the DONE flag to be set 
iowait actually does a sleep on the buffer header and is called from the top 
half in place of sleep (). iowait () also returns the error value. See 
iodone (). 

caddr_t kmem_alloc(nbytes) 
u int nbytes; 

] 

Allocates nbytes of contiguous kernel memory and returns a pointer to it. If 
called from an interrupt routine, kmem_alloe () can return a NULL. (Though 
kmem _alloe () generally should not be called from the interrupt level.) It calls 
panic () if its request can't be satisfied. Note that kmem_alloc () takes a 
while, and shouldn't be used frivolously. (Also note that it can't, in system 
releases prior to 3.2, be called by probe () or at tach () , since the kernel 
heap from which it allocates is not yet initialized). Memory allocated with 
kmem _alloe () can be recycled with kmem _ free ( ) . 

kmem_free(ptr, nbytes) 
caddr_t ptr; 
u int nbytes; 

Returns the block (allocated by kmem_alloeO) atptr to the kernel heap. If the 
block has already been freed, or if ptr doesn't indicate an address within the 
heap, kmem _ free () panics. When the block is freed, it is coalesced with adja
cent free blocks to ensure that the free blocks in the heap are as large as possible. 
kmem_free () ,like kmem_alloc () ,should not be called from the interrupt 
level. 
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10g () - Log Kernel Errors 

MEl _ ADDR () - Get Address 
in DVMA Space 

mapin () - Map Physical to 
Virtual Addresses 

[ lOg(~ri_CO~e, ... ) 1 
l.nt prl._code; 

"---------
The kernel provides a log () function analogous to the syslog (3) function 
supplied with the C library for user programs. The first argument to log () is a 
priority code, as defined in <sys/ syslog. h>, and is identical to the priority 
codes used by syslog (3); The subsequent arguments are a printf () for
mat string and the values to be printed under its control. Unlike syslog (), the 
format string must be terminated with a newline (\n) if a newline is to be printed 
at the end of the message. 

Messages logged with log () will not pass though the normal kernel 
printf () mechanism if the syslogd daemon is running. They will get writ
ten to the system message buffer just as p r i n t f () messages are. The s y s
logd daemon will read them using a special device driver, and will log them as 
messages from the "kern" facility with the given priority. 

If such a message is to be printed on the console, syslogd will do so, using its 
standard format which includes a time stamp. Messages printed with 
pr in t f () will get logged as messages from the "kern" facility with a priority 
of LOG_CRIT, except that syslogd will not print them on the console as they 
have already been printed there by the kernel. The kernel does not time stamp 
messages that it prints; thus, messages logged with log () will be time stamped 
if they are printed on the console, while messages printed with printf () will 
not. Furthermore, syslogd does not lock out interrupts while printing mes
sages, so messages logged with log () will not tie up the machine while they 
are being printed, unless syslogd is not printing and the kernel must print the 
message itself. 

[ MBI_ADDR(mb_cookie) 
int rob_cookie; ] 

MBI ADDR () is a macro that takes the "cookie" (abstract number) returned by 
mbsetup () and converts it into a 32-bit transfer address, which may be either 
in the DVMA space or a VMEbus address space. This is the address that is then 
given to the bus-master device, though it may first need to be checked (especially 
for older devices) to ensure that it is not larger than the device capacity. See 
mbsetup () and mbrelse (). 

mapin(ppte, vpagenum, physpagenum, sizeinpages, access) 
struct pte *ppte; 
u_int vpagenum, physpagenum; 
int sizeinpages, access; 
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mapin () maps physical addresses to virtual addresses. Device drivers use it to 
set up kernel virtual memory so that device registers and memory can be directly 
accessed. This is useful for devices which: 

o interface to the kernel by way of two different memory spaces. Since the 
autoconfiguration process only sets up one space, such cases are best han
dled by having the xxat tach () routine use mapin () to set up the other. 

o can consume variable amounts of virtual memory space, and for which, 
therefore, an optimum mapping cannot be made at autoconfiguration time. 
This is the case, for example, with certain kinds of variable-resolution frame 
buffers. 

Drivers that call mapin () in their xxat tach () routines must first call 
rmalloc (kernelmap, ... ) to get the kernel virtual addresses which 
mapin () requires. (Actually, rmalloc () will return indexes to kernel virtual 
addresses-see below). Note that, when a driver calls mapin ( ) , it should also 
call mapout () to return the mapped virtual memory when its no longer needed. 

ppte is a pointer to the PrE which performs the mapping. This is the PrE in 
S y sma p (defined in < s un [ 234 ] / pt e . h» which corresponds to the map 
index returned from rmalloc (kernelmap, ... ). That is,ppte can be 
given as &Sysmap [kmx] , where kmx is the map index returned by rmal
loc (). 

vpagenum is the number of the virtual page where the physical memory is to be 
mapped. krnx, the map index returned by rmalloc ( ) , can be used to calculate 
a virtual address, which can then be converted to a virtual page number like so: 

vpagenum = btoc«Sysbase» + kmx; 

Here Sysmap is the external array of page table entries used to map virtual 
addresses, starting at the (kernel virtual) base address Sysbase. btoc () is a 
macro (see machine/paramo h) which converts addresses to page numbers, 
and, if necessary, performs the appropriate rounding. 

Note that there are a number of general-purpose macros designed to convert 
between kernel map indexes and virtual addresses. These macros are in 
<sys/vmmac. h>. One of them, kmxtob expects an (integer) kernel map 
index and returns the virtual address by page number. Another, btokrnx expects 
a (caddr_t) virtual address and returns the integer kernel map index. 

physpagenum is the physical page number of the memory being mapped into ker
nel virtual memory. Actually, it is the physical page number with the appropriate 
type bits for the given physical memory space-these types bits (PGT _ *) are 
given in <sys/pte. h>. 

sizeinpages is the size in pages of the memory being mapped. It can be easily 
computed by using the btoc () macro to convert the size (in bytes) of the 
memory being mapped into pages (since btoc () will round up as needed). 

access is the PrE-level access flags. The flags (PG _ *) are defined in 
<sys/pte. h>. The value passed by the auto-configuration process when it 
calls mapin () (the standard device driver case) is "PG_ VIPG_KW", which 
indicates valid system pages with their write-enable flags set. 
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map out () - ~emove 

Physical to Virtual Mappings 

mbrel. se () - Free Main Bus 
Resources 

mbsetup () - Set Up to Use 
Main Bus Resources 

See fmmapin () and fbmapout () in fbutils. c (in the Sample Driver 
Listings appendix) for examples of real mapin () and mapout () calls. 

mapout (ppte, sizeinpages) 
struct pte *ppte; 
int sizeinpages; 

mapout () is used to unmap a chunk of physical memory from the virtual 
memory that mapin () associated it with. Its parameters are as given in 
mapin ( ) ,above. Drivers typically need to call mapout () only when they 
have made their own calls to rmalloc () and rmfree (). It should be called 
just before rmfree (). 

mbrelse(mb_hd, mbinfop) 
struct mb_hd *mb_hd; 
int *rnbinfop; 

mbrelse releases the Main Bus DVMA resources allocated by mbsetup. 
Note that the second parameter is a pointer to the integer returned by robs et up. 

mbsetup(mb_hd, bp, flag) 
struct mb_hd *mb_hd; 
struct buf *bp; 
int flag; 

mbsetup is called to set up the memory map for a single Main Bus DVMA 
transfer. It assumes that bp's fields have been set up to define the transfer, which 
is generally true, since physio () sets them up before calling the driver 
xxstrategy () routine. (These fields are b_un .b_addr, b_flags and 
b _ be oun t). jiag is MB _ CANTWAI T if the caller desires not to wait for map 
resources (slots in the map or DVMA space) if none are available - it's highly 
unlikely that this will ever happen, but if it does mbsetup will return immedi
ately with a O. In this case its caller can, presumably, wait before trying again. 
If, on the other hand,jiag is 0, the requesting process will be put to sleep until the 
necessary map resources become available. 

mbsetup () is typically called from the driver strategy () routine, so when 
physio () breaks up a large I/O request, one result is the generation of a series 
of calls to mbsetup (). (mbrelse () is then called from the driver xxintr () 
routine). mbsetup (), like physio () ,is intended primarily for the use of 
block drivers, though character drivers can use it as long as they don't use buffer 
headers from the kernel cache. The buffer is double mapped so that the system 
will consider it as being in kernel DVMA space as well as in the address space of 
the program being serviced . 

• SUD 
• microsystems 
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NOTE Don't set B _ PHYS in bp's b _flags field if DVMA is from kernel address space 
to the device. 

outb () - Send a Byte to an 
I/O Port 

panic () - Reboot at Fatal 
Error 

peek 0, peekc (), 
peekl. () - Check and Read 

physio 0 - Block I/O 
Service Routine 

Upon success, mbset up returns an number which must be saved for the call to 
mbrelse. This number can also be passed to MBI _ ADDR ( ) , which will 
transform it into a transfer address. 

outb(port, data) 
short port; 
u char data; 

Sun386i only. On the Sun386i, many devices, such as the floppy, are accessed by 
way of the I/O space. outb () sends a byte value to the I/O address specified. 
I/O device addresses are in the range of 0 to OxFFFF. (See inbO). 

[ panic (message) 
char *message; ] 

panic can be called upon encountering an unresolvable fatal error. It prints its 
message to the system console, and then reboots the system, so don't take its use 
lightly. (It does have the sense to avoid the reboot if it has already been called -
thus preventing recursive calls to panicO). A kernel core image is dumped. 

peek (value) 
short *value; 

peekc(value) 
char *value; 

peekl(address, value) 
long *address; 
long *value; 

pe e k and its variants are called with an address from which they read. They 
return -1 if the addressed location doesn't exist, otherwise they return the value 
that was fetched from that location. They are for use only in xxprobe ( ). See 
poke and its variants, below. 
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physio(strategy, buf, dev, flag, minphys, uio) 
void (*strategy) (); 
struct buf *buf; 
dev t dev; 
int rw_flag; 
void (*rninphys) (); 
struct uio *uio; 

Character drivers sometimes do block 110, and when they do it's convenient for 
them to use physio (). Such drivers resemble simple block drivers in that they 
havexxread () and/or xxwrite () andxxstrategy () routines, call those 
xxstrategy () routines indirectly through physio () ,and use buf struc
tures. Too much, however, should not be made of the similarity. Character
driver xxstrategy () routines typically implement no strategy, and they are 
not driver entry points. And while character drivers can use physio () (and 
rnbsetup () and iowait () and the few other kernel support routines that 
manipulate buffer headers) they do not use buffers from the kernel buffer cache. 

physio () serves two major purposes: 

o It ensures that pages of user memory are locked down (physically available 
and not paged out) during the duration of a data transfer. This is the only 
way to lock down pages of user memory. 

o It breaks large transfers (those greater than the value returned by min
physO) into smaller pieces, thus keeping slow devices from monopolizing 
the bus. 

If the size of the transfer is greater than the system determined maximum, phy
sio () calls the driver xxstrategy () routine repeatedly, making sure that all 
relevant pointers and counters are updated correctly. Basically, physio () 
looks like: 
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loop: 
error and termination checking (based on values in mo) 
s = sp16(); 
while (buf->b_flags & B_BUSY) 

buf->b_flags 1= B_WANTED; 
sleep(buf); 

(void) splx () ; 
set up buffer for I/O; 
while (more data) { 

buf->b_flags = B_BUSY B PHYS I rw_flag; 
more buffer I/O set up; 
(*minphys) (buf); 
lock down pages of user memory 
(*strategy) (); 
sp16(); 
unlock buffer; 
if (buf->b_flags & B_WANTED) 

wakeup(buf); 
(void) splx(s); 
bookkeeping; 

buf->b_flags &= -(B_BUSYIB WANTEDIB PHYS); 
error checking and bookkeeping (based on values in mo) 
goto loop: 

bu f is a buffer header for this device. ph Y s i 0 () wants excl usi ve use of this 
buffer header and its associated buffer, and when called it checks to see if it has 
it. If it doesn't, it will sleep () until it gets it. dev is the device to which the 
transfer is taking place. rw Jlag is B _READ or B _WRITE to indicate the direc
tion of the transfer. minphys () is a function that detennines the amount of 
data to be transferred in one call to the xxstrategy () routine. uio is a pointer 
to the uio structure. 

physio () returns one of the error codes defined in errno. h if an I/O error 
occurs, and a 0 upon success. Error codes are not returned on the stack, but by 
way of the b _error field in the buffer header. 

poke (address, value) 
short *address; 
short value; 

pokec(address, value) 
char *address; 
char value; 

pokel(address, value) 
long *address; 
long value; 
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pri.ntf () - Kernel Printf 
Function 

pri. tospl () - Convert 
Priority Level 

poke and its variants are called with an address to store into, and a value to be 
stored. They return 1 if the addressed location doesn't exist, and 0 if it does. 
They are for use only in xxprobe (). See peek and its variants, above. 

The kernel provides a printf () function analogous to the printf () func
tion supplied with the C library for user programs. The kernel pr in t f ( ) , how
ever, is more limited than is the version in the C library. It writes directly to the 
console tty, its output cannot be easily redirected, and it supports only a subset of 
pr intf ( ) 's formatting conversions. Furthermore, it's not interrupt driven, and 
thus causes all system activities to be suspended while it outputs its message. 
Nevertheless, printf () is useful as a debugging tool, and for reporting error 
messages. See uprintf (). 

The formatting conversions supported by the kernel pr in t f () are: 

%x, %X - Hexadecimal numbers 
%d, %D - Decimal numbers 
%0, %0 - Octal numbers 
%c - Single characters 
%s - Strings 
%b - Bit values 

Note that floating-point conversions are not supported. Also note that a special 
format %b is provided to decode error registers. Its usage is: 

printf("reg=%b\n", regval, "<base><arg>*"); 

Where <base> is the output base expressed as a control character. For exam
ple, \ 10 gives octal and \ 20 gives hex. Each arg is a sequence of characters, 
the first of which gives the bit number to be inspected (counting from 1), and the 
rest of which (up to a control character, that is, a character <= 32), give the name 
of the register. Thus: 

printf("reg=%b\n", 3, "\10\2BITTWO\lBITONE\n"); 

would produce the output: 

reg=3<BITTWO,BITONE> 

Also note that no conversion modifiers (field widths and so on) are supported
only a single character can follow the %. 

The kernel pr intf () function raises the priority level and therefore locks out 
interrupts while it is sending data to the console. And it displays its messages 
directly on the console, unless specifically redirected by the TIOCCONS ioctl. 

(

pritosPl(Value> ] 
int value; 

"----------

pritospl is a macro that converts the hardware priority level given by value, 
which is a Main Bus priority level, to the processor priority level that splx 
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expects. The Main Bus priority level can be found in either 
rnb_device .md_intpri orrnb_ctlr .mc_intpri, where it is put by the 
autoconfiguration process. pritospl is used to parameterize the setting of 
priority levels. See spIn and splx () . 

psignal(p, sig) 
struct proc *p; 
int sig; 

Sends signal sig to the process specified by the proc structure. See gsig
nal (). 

u_long rmalloc(mp, size) 
struct map *mp; 
long size; 

rmalloc (for resource map allocator) is a rather specialized sort of resource 
allocator. In fact, it doesn't really allocate resources at all, but rather names of 
resources (that is, lists of numbers). Such lists are initialized by rminit () and 
are called resource "maps". Given such a map, rmalloc () can parcel out the 
names in it. The relationship of such names to real resources (virtual address 
space, physical memory, and so on) is entirely a matter of usage conventions. 
Names allocated with rmalloc () are recycled with rmfree. 

rmalloc is a low-level routine, and shouldn't be used casually. If you just 
want some kernel virtual memory, use kmem_alloc (). rmalloc () is called 
by drivers that need to allocate kernel virtual address space during their 
xxprobe () andxxattach () routines. They call it, rather than 
kroem_alloc () , because they want an address space without physical memory 
mapped to it. 

rminit () is not documented here, for device drivers only have occasion to use 
two pre-initialized rmalloc () maps: 

D The map kernelmap (in <sys/map. h» is used to allocate chunks of 
generic kernel virtual address space. 

D The map iopbmap (in <sundev /rnbvar. h» contains addresses that are 
guaranteed to be in the high megabyte and thus suitable for use as DVMA 
buffer addresses. iopbmap is quite small, and should be used only for tem
porary or very small buffers . 
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rmfree () - Recycle Map 
Resource 

selwakeup () -Wakeup a 
Select-blocked Process 

rmfree(mp, size, addr) 
struct map *mpi 
long sizei 
u_Iong addri 

rmfree recycles the map resource allocated with rmalloc. 

selwakeup(p, colI) 
register struct proc *Pi 
int colli 

selwakeup () is called from driver intenupt routines to wakeup () processes 
which are asleep as a result of calls to s e 1 e c t ( ). If both of its parameters are 
0, it does nothing. If coll is 0, thus indicating that no select () collision 
occurred - that only one process is waiting for the device - selwakeup () 
just wakes up the waiting process indicated by p. If, however, a collision did 
occur, it issues a wakeup «caddr_t) &selwait), thus waking all select
sleeping processes. (The selwait channel is used exclusively to indicate 
select-related sleeping). These waking processes then race for access to the dev
ice, with the first selector getting no special treatment. 

sleep 0 - Sleep on an Event 
sleep (address, priority) 

caddr_t addressi 
int prioritYi 

sleep is called to put the calling process to sleep, typically while it awaits the 
availability of some system resource. address is the address of a location in 
memory, usually a field in some global driver structure that is being used as a 
"semaphore" (such fields are not true semaphores, see below). priority is the 
software priority the calling process will have after being awakened. 

sleep must never be called from the intenupt-Ievel side of a driver. This is 
because sleep () is always executed on behalf of a specific process. It 
suspends that process while the scheduler picks and executes another waiting 
process. And since, when handling an interrupt, the kernel isn't running on 
behalf of any process, it makes no sense to call sleep (). Incidently, the kernel 
will panic () if sleep is called while it's running on the intenupt stack. 

A process that has called sleep () will be reawakened by any wakeup call 
issued with the same address. However it s not guaranteed that, upon waking, 
the process will find the resource that it was waiting for to be available. It must, 
therefore, check again before proceeding, and go back to sleep ifnecessary. This 
is because the SunOS sleep () and wakeup () facilities do not constitute true 
semaphore primitives in the usual P/V sense. wakeup will wakeup every pro
cess that is sleeping on that event, where a true 'V' semaphore will wake only 
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spIx () - Reset Priority 
Level 
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one sleeper (the highest priority one or whichever). 

Thus in SunOS you always do: 

s = spln(high-priority); 
while (resource_busy) 

sleep (resource, high-priority); 
make_resource_busy; 
(void) splx(s); 

<critical section> 

wakeup(resource); 

whereas with real semaphores you would simply do: 

P (resource) ; 

<critical section> 

V(resource); 

which is a much simpler and cleaner design. 

However, semaphores are not easy to use to implement lockouts around hardware 
interrupts so SunOSjustuses the sleep () /wakeup () mechanism for both 
situations. 

The spIn functions are available for setting the CPU priority level to n, where n 
ranges from 0 to 7 (higher numbers indicate higher priorities). Note that 
sp16 () actually gets you splS () on Sun systems to avoid lockout of the level 
6 on-board UART interrupts. When you allocate a CPU priority level to your 
device, choose one that's high enough to give you the performance you need, but 
don't overdo it or you will interfere with the operation of the system: 

o If you lock out the on-board U ARTS (level 6) characters may be lost. 

o If you lock out the clock (level 5) time will not be accurate, and the SunOS 
scheduler will be suspended. 

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed. 

o And if you lock out the disks (level 2), disk rotations may be missed. 

The spIn functions return the previous priority level. 

[ 
splx ~s) ] 

l.nt s; 

'----------" 

spix called with an argument s sets the priority level to s, which was returned 
from a previous call to spIn, pr i tospi () , or spix ( ) . spix is typically 
used to restore the priority level to a previously stored level. spix () returns 
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suser () - Reset Priority 
Level 

swab () - Swap Bytes 

timeout () - Wait for an 
Interval 

uiomove () - Move Data To 
or From an uio Structure 

the previous level. 

( suser () 

Returns a 1 if the current user is root, 0 if not. suser () is commonly called by 
ioct 1 () routines that are restricted to the superuser, and that thus need to 
check who's calling them. 

swab(from, to, nbytes) 
caddr_t {-rom; 
caddr t to; 
int nbytes; 

swab swaps bytes within 16-bit words. nbytes is the number of bytes to swap, 
and is rounded up to a multiple of two. No checking is done to ensure that the 
from and to areas do not overlap each other. 

timeout (func, arg, interval) 
int (*func) () ; 
caddr_t arg; 
int interval; 

J 

timeout arranges that after interval clock-ticks,func will be called with arg as 
its argument, in the sty Ie (*func)( arg). A clock tick is about a fiftieth of a second 
for Sun-2, Sun-3, and Sun386i machines, a hundredth of a second for Sun-4s. 
The precise number of clock ticks per second is given in the external variable hz. 
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to cancel read or write 
requests that have received no response within a specified amount of time (if 
there's a lost interrupt or if the device otherwise flakes out). The specifiedjunc is 
eventually called from the lower half of the clock-interrupt routine, so it must 
conform to the requirements of interrupt routines in general. In particular, it 
can't call sleep (). See untimeout () . 

uiomove(cp, n, rw, uio) 
caddr t cp; 
int n; 
enum uio rw rw; 
struct *uio; 

uiomove () is the most common way for device drivers to move a specified 
number of bytes between a byte array in kernel address space and an area defined 
by a uio structure (which mayor may not be in kernel address space). If the 
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uio_seg field in the uio structure is set to UIOSEG_USER, uiomove () will 
assume the uio pointer to be in user space; if it is UIOSEG _KERNEL, it will 
assume it to be in kernel space (see <sys/uio. h». uiomove () moves n 
bytes between the uio structure and the area defined by the cp parameter. The 
read/write flag is interpreted as follows: - U I a_READ indicates a transfer from 
kernel to user space (a call to copyoutO), and UIO _WRITE a transfer from 
user to kernel space (a call to copyinO). uiomove () returns 0 upon success, 
Exxx upon failure. 

For more information about the uio structure, see Some Notes About the VIO 
Structure in the The' 'Skeleton" Character Device Driver chapter of this manual. 

untirneout(func, arg) 
int (*func) () ; 
caddr t arg; 

untimeout is called to cancel a prior timeout request. June and arg are the 
same as in timeout () . 

uprintf () is like printf () , with two important differences. The first is 
that it checks to see if the process' "controlling tenninal" is open, and if it is the 
message is sent to it rather than to the system console (uprintf () consults the 
user structure, so it must not be called from the lower-half routines). If there's 
no controlling terminal, upr intf () executes as would printf ( ). The 
second difference is that uprintf () is interruptible, and thus reasonably 
efficient. 

uprintf () is often called from open () routines to report errors to the user. 
It's used for errors which, like tape-read errors, are likely to indicate operator 
error rather than system failure. See pr intf () . 

ureadc(c, uio) 
int c; 
struct *uio; 

ureade () transfers the character c into the uio structure (which is normally 
passed to the driver when it is called). ureade () is normally used when "read
ing" a character in from a device. 

[ uwritec (uio) 
struct *uio; 

uwr i tee () returns the next character in the uio structure (which is nonnally 
passed to the driver when it is called), or returns -Ion error. uwri tee () is 
normally used when "writing" a character to a device . 

J 
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wakeup 0 - Wake Up a 
Process Sleeping on an Event 

Note that "read" and "write" are slightly confusing in the above contexts, since 
ureade () actually obtains a character from somewhere and places it into the 
uio structure, whereas uwri tee () obtains a character from the uio structure 
and "writes" it somewhere else. The "read" and the "write," then, are from the 
perspective of the user program. 

ureade () and uwri tee () replace the routines epass () and passe (), 
which are no longer supported. 

[ wakeup (address) 
caddr_t address; 

wakeup is called when a process waiting on an event must be awakened. 
address is typically the address of a location in memory. wakeup is typically 
called from the low level side of a driver when (for instance) all data has been 
transferred to or from the user's buffer and the process waiting for the transfer to 
complete must be awakened. See sleep () . 

] 
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free () - Free Allocated 
Memory 

getpagesize () - Return 
Pagesize 

mmap () - Map Memory from 
One Space to Another 

D 
User Support Routines 

These routines are often useful in user-level programs that manipulate devices. 

[ free (ptr) 
char *ptr; 

free (3) can be used to recycle the virtual memory allocated by a variety of 
memory allocators, including valloe (3) and malloe (3) (the most general 
purpose of the allocators). 

( int getpagesize() 

] 

] 
getpagesize (2) returns the number of bytes in a page. The page size is the 
system page size and may not be identical with the page size in the underlying 
hardware - it is, however, the pagesize of interest in all of the memory manage
ment functions. 

caddr t 
mmap(addr, len, protection, flags, fd, off) 

caddr_t addr; 
int len, protection, flags, fd; 
off t off; 

rnrnap () maps pages of memory space from the memory device associated with 
the file fd into the address space of the calling process (or into the kernel address 
space). The mapping is perfonned one page at a time, by iteratively calling the 
memory device's rnrnap () routine. 

The memory is mapped from the memory device, beginning at off (the device's 
physical installation address withinfd's memory), into the caller's address space 
beginning at addr and continuing for len bytes. (By default, mrnap () will pick a 
good value for addr). The mapping established by mmap () replaces any previ
ous mappings for the process's pages in the range [addr, addr + len). 
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munmap () - Unmap Pages of 
Memory 

fd is a file descriptor obtained by opening the character special device to be 
rnmap () 'ed. protection specifies the read/write accessibility of the mapped 
pages. The values desired are expressed by or'ing the flags values PROT_READ, 

PROT_EXECUTE, and PROT_WRITE. A write () must fail if PROT_WRITE 

has not been set, though its behavior can be influenced by setting 
MAP _PRIVATE in the flags parameter. 

flags provides additional information about the handling of mapped pages. Its 
possible values are: 

MAP SHARED Share Changes 
MAP PRIVATE Changes are Private 
MAP TYPE Mask for Type of Mapping 
MAP FIXED Interpret addr Exactly 
MAP RENAME Assign Page to File 

addr and off must be multiples of the page size (which can be found by using 
getpagesizeO). Pages are automatically unmapped whenfd is closed - they 
should be explicitly unmapped with rnunrnap (). rnmap () returns a -1 on error, 
o on success. ' 

For an detailed overview of SunOS memory mapping, see the Memory Manage
ment chapter of the Sun System Services Overview. For specific details about 
rnmap () and its related facilities, see rnunrnap () below and the mrnap (2) , 

rnunrnap (2) , rnincore (2) , rnprotect (2) , and rns ync (2) manual 
pages. 

munmap(addr, len) 
caddr_t addr; 
int len; 

rnunrnap () causes the pages starting at addr and continuing for len bytes to be 
unmapped, that is, marked invalid. If an address within an unmapped page is 
subsequently referenced, and if that page is in the "data segment" of a UNIX pro
cess, then a page of zeros will be created under the address. However, if the 
address is outside a data segment, such a reference will cause a segmentation vio
lation. munrnap () returns a -1 on error, 0 on success. See mrnap () above and 
the rnmap (2) manual page for more details. 
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E 
Sample Driver Listings 

The following source listings are for sample Sun device drivers. There are four 
drivers listed here; the first being the skeleton driver and the other three being 
real production drivers. (These three drivers, it should be mentioned, have been 
chosen as relatively simple illustrations of the three major types of drivers - not 
as software ideals to be closely emulated). 

SKELETON 
is the driver for the "skeleton board" discussed earlier in this manual. 

CGIWO 

SKY 

is a device driver for the Sun-2 Color Graphics board. It is one of the sim
plest drivers around, being memory mapped. 

is a programmed I/O driver for the Sky floating-point board, with both pol
ling interrupts and vectored interrupts. However, the interrupt routines don't 
do a whole lot. 

VP is a driver for the Versatec Printer Interface. It's a fairly good example of a 
DMA device driver. 

PP is the listing of the Sun386i Parallel Port Driver . 
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E.I. Skeleton Board Driver 

1* 
* (skreg.h) Registers for Skeleton Board -- note the byte swap 
*1 

struct sk_reg { 
char sk_data; 
char sk_csr; 

/ * 01: Data Register * / 
/ * 00: command(w) and status( r) * / 

} ; 

/ * sk_csr bits (read) * / 
#define SK INTR 
#define SK DEVREADY 
#define 
#define 
#define 

#define 

SK INTREADY 
SK ERROR 
SK INTENAB 

SK ISTHERE 

/ * sk _csr bits (write) * / 
#define SK RESET Ox04 
#define SK ENABLE OxOl 

1* 

Ox80 / * Device is Interrupting * / 
OxO 8 / * Device is Ready * / 
OxO 4 / * Interface is Ready * / 
Ox02 / * Device Error * / 
OxO 1 / * Interrupts are Enabled * / 

Oxoc / * Existance Check; Device and Interface Ready * / 

/ * Reset Device and Interface * / 
/ * Enable Interrupts * / 

* Further definitions for DMA skeleton board 
*1 

#define 
#define 

SK DMA OxlO / * Do DMA transfer * / 
/ * DMA tranfer block * / MAX SK BSIZE 4096 

struct sk_reg2 { 

} ; 

char sk_data; 
char sk_csr; 
short sk_counti 
caddr t sk_addri 

/ * 01: Data Register * / 
/ * 00: command(w) and status(r) * / 
/ * bytes to be transferred * / 
/ * DMA address * / 
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1* 
* (sk.c) The "Skeleton Board" Driver" 
*1 

1* This listing is not heavily annotated. This is because it's identical to 
* the Skeleton driver discussed at length in the main body of the manual. 
* It appears here for purposes of completeness. 
*1 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/file.h> 
#include <sys/dir.h> 
#include <sys/user.h> 
#include <sys/uio.h> 
#include <machine/psl.h> 
#include <sundev/mbvar.h> 

#include "sk. h" / * file generated by config (defines NSK) * / 
# inc 1 ude "s kreg . h" / * register definitions * / 

#define SKPRI (PZERO-l) / * software sleep priority for sk * / 

#define SKUNIT(dev) (minor(dev» 

struct buf skbufs[NSK]; 

int skprobe(), skpoll(); 

struct rob_device *skdinfo[NSK]; 
struct rob driver skdriver = { skprobe, 0, 0, 0, 0, skpoll, 

sizeof(struct sk_reg), "sk", skdinfo, 0, 0, 0, 0, 
} ; 

struct sk_device { 
char soft_csr; 
struct buf *sk_bp; 
int sk_count; 
char *sk_cp; 
char sk_busy; 

skdevice[NSK]; 

/*ARGSUSED*/ 
skprobe(reg, unit) 

caddr_t reg; 
int unit; 

/ * software copy of control/status register * / 
/ * current buf * / 
/ * number of bytes to send * / 
/ * next byte to send * / 
/ * true if device is busy * / 

register struct sk_reg *sk_reg; 
register int c; 

sk_reg = (struct sk_reg *)reg; 

c = peekc«char *)&sk_reg->sk_csr); /* contactthedevice*1 
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if (c == -1 I I (c != SK_ISTHERE» 
return (O)i 

if (pokec «char *) &sk_reg->sk_csr, SK_RESET» /* contact the device *1 
return (0); 

return (sizeof (struct sk_reg»i 

skopen(dev, flags) 
dev_t devi 
int flagsi 

register int unit = SKUNIT(dev)i 
register struct rob_device *mdi 
register struct sk_reg *sk_reg; 

md = skdinfo[unit]i 

if (unit >= NSK I I md->md_alive 0) 
return (ENXIO); 

if (flags & FREAD) 
return (ENODEV)i 

/ * enable interrupts * / 
skdevice[unit] .soft_csr 

/ * contact the device * / 

SK_ENABLEi 

sk_reg->sk_csr skdevice[unit] .soft_csri 

return (0); 

/*ARGSUSED*/ 
skclose(dev, flags) 

dev_t devi 
int"flagsi 

register int unit = SKUNIT(dev)i 
register struct rob_device *mdi 
register struct sk_reg *sk_regi 

md = skdinfo[unit]i 

/ * disable interrupts * / 
sk_reg = (struct sk_reg *)md->md_addri 
skdevice[unit] .soft_csr &= -SK_ENABLEi 

/ * contact device * / 
sk_reg->sk_csr = skdevice[unit] .soft_csri 
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skrninphys(bp) 
struct buf *bp; 

if (bp->b_bcount > MAX_SK_BSIZE) 
bp->b_bcount = MAX_SK_BSIZE; 

skstrategy(bp) 
register struct buf *bp; 

register struct rob device *md; 
register struct sk device *sk; 
int S; 

md skdinfo[SKUNIT(bp->b_dev)]; /* physioputthedevicenumberintobp */ 
sk &skdevice[SKUNIT(bp->b_dev)]; 

s = splx (pritospl (md->md_intpri) ); /* begin critical section * / 
while (sk->sk_busy) 

sleep«caddr_t) sk, SKPRI); 

/ * set up for first write * / 
sk->sk_busy = 1; 
sk->sk_bp = bPi 
sk->sk_cp = bp->b_un.b_addr; 
sk->sk_count = bp->b_bcount; 
skstart(sk, (struct sk_reg *)md->md_addr); 

(void) splx(s); 

skwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

register int unit 

if (unit >= NSK) 
return (ENXIO); 

/ * end critical section * / 

SKUNIT(dev); 

return (physio(skstrategy, &skbufs[unit], 
dev, B_WRITE, skrninphys, uio»; 

skstart(sk, sk_reg) 
struct sk_device *sk; 
struct sk_reg *sk_reg; 

while (sk->sk_count > 0) /* still more characters */ 
sk_reg->sk_data = *sk->sk_cp++; 
sk->sk_count--; 
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/ * stop giving characters if device not ready * / 
/* Note: the softcopy isn't neededfor reads * / 

/ * DELAY( 10) might go here * / 

if (! (sk_reg->sk_csr & SK_DEVREADY» /* contactthedevice */ 
break; 

/* error-retry logic would go here * / 

if (sk->sk count > 0) { / * still more characters * / 
sk->soft csr = SK_ENABLE; 
sk_reg->sk_csr = sk->soft_csr; /*contactthedevice*/ 

else { 

skpoll () 
{ 

/ * special case: finished the command without taking any interrupts! * / 
s k - > so f t _ c s r = 0; / * disable interrupts * / 
sk_reg->sk_csr = sk->soft_csr; /* contact the device * / 
sk->sk_busy = 0; 
wakeup ( (caddr _ t) sk); / *free device to sleeping strategy routine * / 
iodone (sk->sk_bp) ; / *free buffer to waiting physio * / 

register struct sk_reg *sk_reg; 
int serviced, i; 

serviced = 0; 
for (i = 0; i < NSK; i++) { /* try each one */ 

sk reg = (struct sk_reg *)skdinfo[i]->md_addr; 
if (sk_reg->sk_csr & SK_INTR) { /* contactthedevice */ 

serviced = 1; 
skintr(i); 

return (serviced); 

skintr (i) 
int i; 

register struct sk_reg *sk_reg; 
register struct sk_device *sk; 

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr; 
sk = &skdevice[i]; 

/ * check for an 110 error * / 
if (sk_reg->sk_csr & SK_ERROR) { /* contactthedevice */ 

/ * error-retry logic would go here * / 
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printf("skintr: 1/0 error\n"); 
sk->sk_bp->b_flags 1= B_ERROR; 
goto error_return; 

if (sk->sk_count == 0) { 1* 110 transfer completed *1 
error return: 

sk->soft csr = 0; 1* clear interrupt * I 
sk_reg->sk_csr sk->soft_csr; /* contact the device */ 
sk->sk_busy = 0; 
wakeup ( (caddr _ t) sk); I * free device to sleeping strategy routine * / 
iodone(sk->sk_bp); 1* free buffer to waitingphysio *1 

else skstart(sk, sk_reg); 

/* DMA VARIATIONS FOLLOW *1 

struct sk_device { 
char soft_csr; 
struct buf *sk_bp; 
char sk_busy; 

I * software copy of control/status register * I 
/ * current buf * I 
I * true if device is busy * I 

int sk_mbinfo; I * Information stash/or DMA * / 
skdevice[NSK]; 

skstrategy(bp) 
register struct buf *bp; 

register struct mb device *md; 
register struct sk_reg *sk_reg; 
register struct sk device *sk; 
int s; 

md = skdinfo[SKUNIT(bp->b_dev)]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[SKUNIT(bp->b_dev)]; 

s = splx(pritospl(md->md_intpri»; 
while (sk->sk_busy) 

sleep«caddr_t) sk, SKPRI); 
sk->sk_busy = 1; 
sk->sk_bp = bPi 

I * this is the part that is changed * / 

I * grab bus resources * / 

I * begin critical section * / 

sk->sk mbinfo = mbsetup(md->md_hd, bp, 0); 

I * the remainder * I 
sk_reg->sk_count = bp->b_bcount; 

I * plug bus transfer address * / 
sk_reg->sk_addr = (caddr_t)MBI ADDR(sk->sk mbinfo); 
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1* make sure we didn't overrun the address space limit *1 
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) { 

printf("sk%d: If, sk_reg->sk_addr); 
panic ("exceeded 20 bit address"); 

sk->soft csr = SK_ENABLE 1 SK_DMA; 
sk_reg->sk_csr = sk->soft_csr; 

I * end of DMA-related changes * I 

I * contact the device * I 

(void) splx(s); I * end critical section * I 

skpoll () 
{ 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
int serviced, i; 

serviced = 0; 
for (i = 0; i < NSK; i++) { 

md = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
if (sk_reg->sk_csr & SK_INTR) { 

serviced = 1; 
skintr(i); 

return (serviced); 

skintr (i) 
int i; 

register struct mb_device *md; 
register struct sk_reg *sk_reg; 
register struct sk_device *sk; 

rod = (struct mb_device *)skdinfo[i]; 
sk_reg = (struct sk_reg *)md->md_addr; 
sk = &skdevice[i]; 

I * check for an liD error * I 
if (sk_reg->sk_csr & SK_ERROR) { 1* contactthedevice *1 

I * error-retry logic would go here * I 

printf("skintr: I/O errorO); 
sk->sk_bp->b_flags 1= B_ERROR; 

I * this is the part that changed * I 
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sk->soft csr = 0; I * clear interrupt * I 
sk_reg->sk_csr = sk->soft_csr; 
mbrelse(md->md_hd, &sk->sk_mhinfo); 
sk->sk_busy = 0; 
wakeup (~caddr_t) sk); /* free device to sleeping strategy routine * I 
iodone (sk->sk_bp) ; 1* free buffer to waiting physio * I 
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E.2. Sun-2 Color Graphics Driver 

1* 

* 
* (cg2reg.h) Description ofSUN-2 hardware color frame buffer. 
* Copyright (c) 1983 by Sun Microsystems. Inc. 
*1 

1* 
* Structure defining the way in which the address bits to the 
* SUN-2 color frame buffer are decoded. 
*1 

*define CG2 WIDTH 1152 
*define CG2 HEIGHT 900 
*define CG2_SQUARE 1024 
*define CG2 DEPTH 8 

struct cg2memfb { 

} ; 

union bitplane /* Word nwde menwry * / 
short word[CG2_HEIGHT] [CG2 WIDTH/(8*sizeof(short))]; 
short sword [CG2_SQUARE] [CG2_SQUARE/(8*sizeof(short))]; 

memplane[8]; 
union byteplane { / * Pixel nwde menwry * I 

u char pixel [CG2_HEIGHT] [CG2 WIDTH]; 
u char spixel[CG2_SQUARE] [CG2_SQUARE]; 

pixplane; 

struct cg2statusreg { 
unsigned unused : 4; 
unsigned resolution : 4; 

/ * Reserved for future use * / 
/ * Screen resolution * / 

} ; 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

retrace 1; 
inpend 1; 
ropmode 3; 
inten 1; 
update_cmap : 1; 

unsigned video enab 1; 

/ * 0 = 900 x 1152 * / 
1* 1 = 1024 x 1024 */ 

/ * rdonly: monitor in retrace * / 
/ * rdonly: interrupt pending * I 
/ * Rasterop nwde * / 
I * Enable interrupt at end of retrace * / 

/ * Copy ITL cmap to ECL cmap next vert retrace * / 
/ * Silently disables writing to ITL cmap * / 
/ * Enable video DACs * / 

struct cg2fb { 
union { / * ROP mode memory * / 

union bitplane ropplane [8] ; / * Word mode memory with ROP * / 
union byteplane roppixel; / * Pixel mode memory with ROP * / 

ropio; 
union { / * Rasterop unit control * / 
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} ; 
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struct memropc ropregs; / * Normal register access * / 
struct { 

char pad [2048] ; / * For pixmode src reg prime * / 
struct memropc ropregs; / * Byte xfer loads alternate * / 

pr ime; / * Source register bits * / 
char pad[4096]; 

ropcontrol[9]; 
union { / * Status register * / 

struct cg2statusreg reg; 
short word; 
char pad[4096]; 

status; 
union { 

unsigned short reg; 
char pad[4096]; 

ppmask; 
union { 

unsigned short reg; 

char pad[4096]; 
wordpan; 

union { 
struct 

unsigned unused 
unsigned lineoff 
unsigned pixzoom 

reg; 
short word; 
char pad[4096]; 

zoom; 
union { 

struct 
unsigned unused 
unsigned lorigin 
unsigned pixeloff 

reg; 
short word; 
char pad[4096]; 

pixpan; 
union { 

unsigned short reg; 
char pad[4096]; 

varzoom; 
union { 

unsigned short reg; 
char pad[4096]; 

} intrptvec; 
u short redmap[256]; 
u short greenmap[256]; 
u short bluemap[256]; 

sun 
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8; 

/ * Per plane mask register * / 
/ * 8 bits 1 bit -> wr to plane * / 

/ * Word pan register * / 
/* High 16 bits of20-bit pixel address * / 
/ * Pixel addr = eG2 _ WID TH*y +x * / 

/ * Zoom and line offset register * / 

4; / * y offset into zoomed pixel * / 
4; / * Zoomed pixel size - 1 * / 

/ * Pixel pan register * / 

8; 
4; 
4; 

/* Low 4 bits of pix addr* / 
/ * Zoomed pixel x offsetl4 * / 

/ * Variable zoom register * / 
/ * Reset zoom after line no * / 
/ * Line nwnber 0 .. 102414 * / 

/* Interrupt vector register * / 
/ * Line nwnber 0 .. 102414 * / 

/* Shadow color maps * / 
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/* 

* ROPMODES -- Parallel, W _SDT, LS_SRC, Read/Write, 
* on read or write?, on wrdmode or pixrrwde? 
*/ 

idefine PRWWRD 0 /* parallel 8 plane, read write, wrdmode 
idefine SRWPIX 1 /* single pixel, read write, pixmode 
idefine PWWWRD 2 /* parallel 8 plane, write write, wrdmode 
idefine SWWPIX 3 /* single pixel, write write, pixmode 
idefine PRRWRD 4 /* parallel 8 plane, read read, wrdmode 
idefine PRWPIX S /* parallel 16 pixel, read write, pixmode 
idefine PWRWRD 6 /* parallel 8 plane, write read, wrdmode 
idefine PWWPIX 7 /* parallel 16 pixel, write write, pixmode 

/* 

* ROP control unit numbers 
*/ 

:fI:define CG2 ROPO 0 /* Rasterop unit for bit plane 0 */ 
:fI:define CG2 ROP1 1 /* Rasterop unit for bit plane 1 */ 
:fI:define CG2 ROP2 2 
:fI:define CG2 ROP3 3 
:fI:define CG2 ROP4 4 
:fI:define CG2 ROPS S 
:fI:define CG2 ROP6 6 
:fI:define CG2 ROP7 7 
:fI:define CG2 ALLROP 8 /* Writes to all units enabled by PPMASK, */ 

/* reads from plane zero * / 

:fI:define CG SRC OxCC 
:fI:define CG DEST OxAA 
:fI:define CG MASK OxfO 
:fI:define CG NOTMASK OxOf 
:fI:define CGOP_NEEDS_MASK(op) ( ( ( (op) »4) A (op) ) & CG_NOTMASK) 

/* 

* Defines for accessing the rasterop units 
*/ 

:fI:define 

:fI:define 

:fI:define 

:fI:define 

:fI:define 

:fI:define 

cg2_setrsource(fb, ropunit, val)\ 
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_source1 (val» 
cg2_setlsource(fb, ropunit, val)\ 
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_source2 (val» 
cg2_setfunction(fb, ropunit, val)\ 
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_op = (val» 
cg2_setpattern(fb, ropunit, val)\ 
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_pattern = (val» 
cg2_setshift(fb, ropunit, shft, dir)\ 
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_shift =\ 
(shft) I ( (dir) «8) ) 

cg2_setwidth(fb, ropunit, w, count)\ 
«fb)->ropcontrol[(ropunit)].ropregs.mrc_width = (w»;\ 
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_opcount = (count» 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
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/* 
* Defines for accessing the zoom and pan registers 
*/ 

#define 

#define 

#define 

#define 

cg2_setzoom(fb, pixsize)\ 
«fb)->zoom.reg.pixzoom = (pixsize)-l) 
cg2_setpanoffset(fb, xoff, yoff)\ 
«fb)->pixpan.reg.pixeloff = (xoff»>2;\ 
(fb)->zoom.reg.lineoff = (yoff) 

cg2_setpanorigin(fb, x, y)\ 
«y) = «fb)->status.reg.resolution == 1) ?\ 

(y)*CG2_SQUARE+(x) : (y)*CG2_WIDTH+(X)i\ 
(fb)->pixpan.reg.lorigin = (y)&OXfi\ 
(fb)->wordpan.reg = (y»>4) 

cg2_setzoomstop(fb, y) «fb)->varzoom.reg (y»>2) 

/* 

* Defines that facilitate addressing the frame buffer 
*/ 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 
#define 

cg2-pixaddr(fb, x, y)\ 
«(fb)->status.reg.resolution) ?\ 
&(fb)->pixplane.spixel[(y)] [(x)] :\ 
&(fb)->pixplane.pixel[(y)] [(x)] ) 

cg2_wordaddr(fb, plane, x, y)\ 
«(fb)->status.reg.resolution) ?\ 
& (fb) ->memplane [ (plane) ] . sword [ (y) ] [ (x) »4] : \ 
&(fb)->memplane[(plane)] .word[(y)] [(x»>4]) 

cg2_roppixaddr(fb, x, y)\ 
«(fb)->status.reg.resolution) ?\ 
&(fb)->ropio.roppixel.spixel[(y)] [(x)] :\ 
&(fb)->ropio.roppixel.pixel[(y)] [(x)]) 

cg2_ropwordaddr(fb, plane, x, y)\ 
«(fb)->status.reg.resolution) ?\ 
&(fb)->ropio.ropplane[(plane)] .sword[(y)] [(x»>4]:\ 
&(fb)->ropio.ropplane[(plane)] .word[(y)] [(x»>4]) 

cg2_width (fb ) \ 
( «fb)->status.reg.resolution) ? CG2_SQUARE CG2_WIDTH) 
cg2_height(fb )\ 
( «fb)->status.reg.resolution) ? CG2_SQUARE CG2 HEIGHT 
cg2_linebytes(fb, mode)\ 
( «fb)->status.reg.resolution)\ 
? ( «mode)&1)?CG2_SQUARE:CG2_SQUARE/8 )\ 
: «(mode)&1)?CG2_WIDTH:CG2_WIDTH/8 » 

cg2-prskew(x) «x) & 15) 
cg2_touch(a) «a)=O) 
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/* (cg2var.h) More Sun-2 color frame buffer definitions 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*/ 

/* 
* Information pertaining to the Sun-2 color buffer but not to pixrects in 
* general is stored in the struct pointed to by the pr _data attribute of the 
* pixrect. One property of the color buffer not shared with all pixrects is 
* that it has a color map. The color map type and colormap contents are 
* specified by the putcolormap operation. 
*/ 

struct cg2pr 
struct 
int 

cg2fb *cgpr_va; 
cgpr_fd; 

int 
struct 

cgpr ylanes ; / * Color bit plane mask register * / 
pryos cgpr_offset; 

} ; 

#define cg2_d(pr) «struct cg2pr *) (pr)->pr_data) 
#define cg2_fbfrompr(pr) «(struct cg2pr *) (pr)->pr_data)->cgpr_va) 
#define cg2_ropword(cgd, plane, ax, ay)\ 

(cg2_ropwordaddr«cgd)->cgpr_va, (plane),\ 
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay» 

fdefine cg2yixel(cgd, ax, ay)\ 
(cg2yixaddr«cgd)->cgpr_va,\ 
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay» 

#define cg2_roppixel(cgd, ax, ay)\ 
(cg2_roppixaddr«cgd)->cgpr_va,\ 
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay» 

#define cg2_prd_skew(cgd, ax)\ 
«(cgd)->cgpr_offset.x+(ax» & 15) 

extern struct pixrectops cg2_ops; 

int cg2_rop(); 
int cg2yutcolormap(); 
int cg2yutattributes(); 

#ifndef KERNEL 
int 
int 
struct 
int 
int 
int 
int 
struct 
int 
int 
#endif 

cg2_stencil () ; 
cg2_batchrop () ; 
pixrect *cg2_make(); 
cg2_destroy () ; 
cg2_get(); 
cg2yut(); 
cg2_vector () ; 
pixrect *cg2_region(); 
cg2_getcolormap(); 
cg2_getattributes(); 

!KERNEL 
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1* 
* (cgtwo.c) Sun2 (Memory Mapped) Color Board Driver 
* Copyright (c) 1984 by Sun Microsystems, Inc. 
*/ 

1* 
* As a driver for aframe-buffer device, cgtwo.c must provide not only the 
* standard device-driver functionality, but also low-level support for the 
* Sun virtual desktop. That is to say, frame-buffer drivers not only 
* implement the standard device-driver hardware interface, but also declare, 
* initialize and export the pixrect structures which allow the kernel to 
* view the frame-buffer memory as a large rectangle within which it can 
* rapidly paint a cursor. As a consequence, some of the code here is pixrect 
* related, though among the muck you'll find the operations common to all 
* memory-mapped drivers. 

* 
* The kernel does not context switchframe buffers, despite thefact that some 
* of them (including the Sun2 Color Board which this driver controls) do hnve 
* context. In general, the kernel assumes that frame buffers either have no 
* context that needs to be switched, or are used in a manner that doesn't 
* require them to be context switched. Sun Windows takes the second of these 
* tacks, arbitratingframe-buffer access (with pixwin locking) so that no 
* process can use the frame buffer while another process has "context" in it. 

* 
*/ 

:#=include "cgtwo.h" 
:#=include "win.h" 
:#=if NCGTWO > 0 

/ * installed device count --from conf ig * / 

/ * general kernel parameters * / 
/ * I/O buffers * / 
/ * system error reporting * / 
/ * ioctl definitions * / 
/ * resource allocation maps * / 
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:#=include <sys/param.h> 
:#=include <sys/buf.h> 
:#=include <sys/errno.h> 
:#=include <sys/ioctl.h> 
:#=include <sys/map.h> 
:#=include <sys/vrnrnac.h> / * virtual memory related conversion macros * / 

/ * <machine> is a symbolic link to sun/234] * / 
:#=include <machine/pte. h> /* page table entries * / 
:#=include <machine/mrnu .h> /* memory-management unit */ 
:#=include <machine/psI. h> / * process status register * / 

:#=include <sun/fbio.h> / * frame buffer definitions * / 

/ * < sundev > is the device driver source directory * / 
:#=include <sundev/rnbvar.h> /* bus-interface definitions */ 

/ * <pixrect> contains pixrect-related source * / 
:#=include <pixrect/pixrect .h> /* basicpixrectdefinitions */ 
:#=include <pixrect/pr_impl_util. h> /* pixrect utilities * / 
:#= include <pixrect /memreg . h> / * rasterop hardware registers * / 
:#=include <pixrect/cg2reg.h> /* Sun2 color frame buffer definitions */ 
:#=include <pixrect/cg2var. h> /* more Sun2 color frame buffer * / 
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/ * probe size in bytes -- enough for the useful part of the board * / 
#define CG2 PROBESIZE CG2 MAPPED SIZE 

/* Mainbus device data * / 
int cgtwoprobe(), cgtwoattach(); 

struct rob device *cgtwoinfo[NCGTWO]; 
struct rob driver cgtwodriver = { 

cgtwoprobe, 0, cgtwoattach, 0, 0, 0, 
CG2_PROBESIZE, "cgtwo", cgtwoinfo, 0, 0, 0, a 

} ; 

/ * Driver per-unit data * / 
struct cg2_softc { 

int flags; /* misc.flags;bitsdefinedincg2var.h */ 
/ * (struct cg2pr, flags member) * / 

struct cg2fb *fb; /* virtual address */ 
int w, h; / * resolution * / 

#if NWIN > a 
Pixrect pr; 
struct cg2pr prd; 

#endif NWIN > 0 
} cg2_softc[NCGTWO]; 

/ * kernel pixrect and private data * / 

/ * default structure for FBIOGAITRIFBIOGTYPE ioctls * / 
static struct fbgattr fbgattr_default { 
/ * real_type owner * / 

FBTYPE_SUN2COLOR, 0, 
/ * fbtype: type h w depth cms size * / 

{ FBTYPE_SUN2COLOR, 0, 0, 8, 256, CG2 MAPPED SIZE }, 
/ * fbsattr:flags emu_type * / 

{ FB_ATTR_DEVSPECIFIC, -1, 
/ * dey _specific: FLAGS, BUFFERS, PRFLAGS * / 

{ FB_ATTR_CG2_FLAGS_PRFLAGS, 1, a } }, 
/ * emu_types * / 

{ -1, -1, -1, -I} 
} ; 

/ * Double buffering enable flag * / 
int cg2_dblbuf_enable = 1; 

#if NWIN > a 

/ * SunWindows specific stuff * / 

/ * kernel pixrect ops vector * / 
static struct pixrectops pr_ops 

cg2_rop, 

} ; 

cg2yutcolormap, 
cg2yutattributes 

#endif NWIN > a 
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cgtwoprobe(reg, unit) 
caddr_t reg; 
int unit; 

register struct cg2fb *fb = (struct cg2fb *) reg; 
register struct cg2_softc *softc; 

/* 
* Check if board is present and strapped for 2M decoding. 
* If this fails, remap for 4M decoding and try again. 
*/ 
if (probeit (fb» { 

fbmapin«caddr_t) fb, fbgetpage«caddr_t) fb) + 
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(int) btop(CG2_MAPPED_OFFSET), CG2_MAPPED_SIZE); 

if (probeit (fb) ) 
return 0; 

softc = &cg2_softc[unit]; 
softc->fb = fb; 
softc->flags = 0; 

/ * check for supported resolution * / 
switch (fb->status.reg.resolution) 
case CG2 SCR 1152X900: - -

softc->w = 1152; 
softc->h = 900; 
softc->flags = CG2D_STDRES; 
break; 

case CG2 SCR 1024X1024: - -
softc->w 1024; 
softc->h = 1024; 
break; 

default: 
printf("%s%d: unsupported resolution (%d)O, 

cgtwodriver.mdr_cname, unit, 
fb->status.reg.resolution); 

return 0; 

return CG2_PROBESIZE; 

static 
probeit(fb) 

register struct cg2fb *fb; 

union { 
struct cg2statusreg reg; 
short word; 

status; 

Revision A, of 9 May 1988 



406 Writing STREAMS Device Drivers 

=If:define 
=If:define 

allrop(fb, reg) ((short *) & (fb)->ropcontrol[CG2_ALLROP] .ropregs.reg) 
pixelO(fb) ((char *) &fb->ropio.roppixel.pixel[O] [0]) 

1* 
* Probe sequence: 

* 
* set board for pixel mode access 
* enable all planes 
* set rasterop function to CG _ SRC 
* disable end masks 
* set fifo shift/direction to zerolleft-to-right 
* write Oxa5 to pixel at (0,0) 
* check pixel value 
* enable subset of planes (Oxcc) 
* set rasterop function to ·CG _DEST 
* write to pixel at (0,0) again 
* enable all planes again 
* read pixel value .. should be 0xa5 A Oxcc = Ox69 
*/ 
status.word = peek(&fb->status.word); 
status.reg.ropmode = SWWPIX; 
if (poke (&fb->status.word, status.word) I I 

poke ((short *) &fb->ppmask.reg, 255) II 
poke(allrop(fb, mrc_op), CG_SRC) I I 
poke (allrop (fbi mrc_mask1) I 0) I I 
poke (allrop (fbi mrc_mask2), 0) I I 
poke(allrop(fb, mrc shift), 1 «8) II 
pokec (pixelO (fb), Oxa5) I I 
pokec(pixelO(fb), 0) I I 
peekc(pixelO(fb» != Oxa5 I I 
poke((short *) &fb->ppmask.reg, Oxcc) I I 
poke(allrop(fb, mrc_op), -CG_DEST) I I 
pokec(pixelO(fb), 0) I I 
poke((short *) &fb->ppmask.reg, 255) I I 
peekc(pixelO(fb» != (Oxa5 A Oxcc» 
return 1; 

return 0; 

4tundef 
4tundef 
} 

allrop 
pixelO 

cgtwoattach(md) 
struct rob device *md; 

register struct cg2_softc *softc = &cg2_softc[md->md_unit]; 
register struct cg2fb *fb = softc->fb; 
register int flags = softc->flags; 

4tdefine dummy flags 
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/ * set interrupt vector * / 
if (md->rnd_intr) 

fb->intrptvec.reg 
else 
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printf(nWARN1NG: no interrupt vector specified in config fileO); 

1* 
* Determine whether this is a Sun-2 or Sun-3 color board 
* by setting the wait bit in the double buffering register 
* and seeing ifit clears itself during retrace. 

* 
* On the Sun-2 color board this just writes a bit in the 
* "wordpan" register. 
*/ 
fb->misc.nozoom.dblbuf.word = 0; 
fb->misc.nozoom.dblbuf.reg.wait = 1; 

/ * wait for leading edge. then trailing edge of retrace * / 
while (fb->status.reg.retrace) 

/ * nothing * / ; 
while (!fb->status.reg.retrace) 

/ * nothing * / ; 
while (fb->status.reg.retrace) 

/ * nothing * / ; 

if (fb->misc.nozoom.dblbuf.reg.wait) 

else 

/ * Sun-2 color board * / 
fb->misc.nozoom.dblbuf.reg.wait 0; 
flags 1= CG2D_ZOOM; 

/ * Sun-3 color board (or better) * / 
flags 1= CG2D_32B1T 1 CG2D_NOZOOM; 

if (fb->status.reg.fastread) 
flags 1= CG2D_FASTREAD; 

if (fb->status.reg.id) 
flags 1= CG2D 1D 1 CG2D_ROPMODE; 

1* 
* Probe for double buffering feature. 
* Write distinctive values to one pixel in both buffers. 
* then two pixels in buffer B only. 
* Read from buffer B and see what we get. 

* 
* Warning: assumes we were called right after cgtwoprobe 
*1 
cg2_setfunction(fb, CG2_ALLROP, CG_SRC); 
fb->ropio.roppixel.pixel[O] [0] = Ox5a; 
fb->ropio.roppixel.pixel[O] [0] = Oxa5; 
fb->misc.nozoom.dblbuf.reg.nowrite_a = 1; 
fb->ropio.roppixel.pixel[O] [0] = Oxc3; 

sun 
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fb->ropio.roppixel.pixel[O] [4] = dummy; 
if (fb->ropio.roppixel.pixel[O] [0] == OxSa) 

fb->misc.nozoom.dblbuf.reg.read_b = 1; 

if (fb->ropio.roppixel.pixel[O] [0] == OxaS && 
fb->ropio.roppixel.pixel[O] [4] == Oxc3 && 
cg2_dblbuf_enable) 
flags 1= CG2D_DBLBUF; 

fb->misc.nozoom.dblbuf.word = 0; 

softc->flags flags; 

=If:ifndef sun2 
/ * re-map into correct VME space if necessary * / 
{ 

int page = fbg.etpage «caddr_t) fb); 

if «(flags & CG2D_32BIT) != 0) != 
«page & PGT_MASK) == PGT_VME_D32» 
fbmapin«caddr_t) fb, 

page A (PGT_VME_D16 A PGT_VME_D32), 
CG2_MAPPED_SIZE); 

=If:endif !sun2 

/ * print informative message * / 
printf("%s%d: Sun-%c color board%s%sO, 

md->md_driver->mdr_dname, md->md_unit, 
flags & CG2D_ZOOM ? '2' : '3', 
flags & CG2D_DBLBUF ? ", double buffered" . "" 
flags & CG2D_FASTREAD ? ", fast read" : ""); 

cgtwoopen(dev, flag) 
dev_t dev; 
int flag; 

return fbopen(dev, flag, NCGTWO, cgtwoinfo); 

/*ARGSUSED*/ 
cgtwoclose(dev, flag) 

dev_t dev; 

register struct cg2_softc *softc = &cg2_softc[minor(dev)]; 
register struct cg2fb *fb = softc->fb; 

/ * fix up zoom and/or double buffering on close * / 

if (softc->flags & CG2D_ZOOM) { 
fb->misc.zoom.wordpan.reg 0; / * hi pixel adr = 0 * / 
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fb->misc.zoom.zoom.word = 0; /* zoom=O,yoff=O */ 
fb->misc. zoom. pixpan. word 0; / * pix adr=O, xoff=O * / 
fb->misc.zoom.varzoom.reg = 255; /* unzoomatline4*255 */ 

if (softc->flags & CG2D_NOZOOM) 
fb->misc.nozoom.dblbuf.word 0; 

return 0; 

cgtwomrnap(dev, off, prot) 
dev_t dev; 
off_t off; 
int prot; 

return fbmrnap(dev, off - CG2_MAPPED_OFFSET, 
prot, NCGTWO, cgtwoinfo, CG2_MAPPED_SIZE); 

/ *ARGSUSED * / 
cgtwoioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

register struct cg2_softc *softc 

switch (cmd) { 

case FBIOGTYPE: 

&cg2_softc[minor(dev)]; 

register struct fbtype *fbtype = (struct fbtype *) data; 

*fbtype = fbgattr_default.fbtype; 
fbtype->fb_height softc->h; 
fbtype->fb_width = softc->w; 

break; 

case FBIOGATTR: 
register struct fbgattr *gattr (struct fbgattr *) data; 

*gattr = fbgattr_default; 
gattr->fbtype.fb_height = softc->h; 
gattr->fbtype.fb_width = softc->w; 

if (softc->flags & CG2D_NOZOOM) 
gattr->sattr.dev_specific[FB_ATTR CG2 FLAGS] 1= 

FB_ATTR_CG2_FLAGS_SUN3; 

if (softc->flags & CG2D_DBLBUF) 
gattr->sattr.dev_specific[FB_ATTR_CG2_BUFFERS] 2; 
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softc->flags; 

break; 

case FB'IOSATTR: 
break; 

iif NWIN > 0 

case FBIOGPIXRECT: 
«struct fbpixrect *) data)->fbpr-pixrect 

/ * initialize pixreet * / 
softc->pr.pr_ops = &pr ops; 
softc->pr.pr_size.x = softc->w; 
softc->pr.pr_size.y = softc->h; 
softc->pr.pr_depth = CG2_DEPTH; 
softc->pr.pr_data = (caddr_t) &softc->prd; 

/ * initialize private data * / 

&softc->pr; 

bzero«char *) &softc->prd, sizeof softc->prd); 
softc->prd.cgpr_va = softc->fb; 
softc->prd.cgpr_fd = 0; 
softc->prd.cgpr-planes = 255; 
softc->prd.ioctl_fd = minor(dev); 
softc->prd.flags = softc->flags; 
softc->prd.linebytes = softc->w; 

/ * enable video * / 
softc->fb->status.reg.video_enab 1; 

break; 

iendif NWIN > 0 

/ * get info for GP * / 
case FBIOGINFO: { 

register struct fbinfo *fbinfo 

fbinfo->fb-physaddr = 

(struct fbinfo *) data; 

(fbgetpage«caddr_t) softc->fb) « PGSHIFT) -
CG2_MAPPED_OFFSET & Oxffffff; 

fbinfo->fb_hwwidth = softc->w; 
fbinfo->fb_hwheight = softc->h; 
fbinfo->fb_ropaddr (u_char *) softc->fb; 

break; 

/ * set video flags * / 
case FBIOSVIDEO: 

softc->fb->status.reg.video_enab 
(* (int *) data) & FBVIDEO ON ? 1 0; 

break; 
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/ * get video flags * / 
case FBIOGVIDEO: 

* (int *) data = softc->fb->status.reg.video_enab 
? FBVIDEO_ON FBVIDEO_OFF; 

break; 

case FBIOVERTICAL: 
cgtwo_wait(minor(dev»; 
break; 

default: 
return ENOTTY; 

return 0; 

/ * wait for vertical retrace interrupt * / 
cgtwo_wait(unit) 

int unit; 

register struct mb device *md = cgtwoinfo[unit & 255]; 
register struct cg2_softc *softc = &cg2_softc[unit & 255]; 
int s; 

if (md->md_intr 0) 
return; 

s = splx(pritospl(md->md_intpri»; 
softc->fb->status.reg.inten = 1; 
(void) sleep«caddr_t) softc, PZERO - 1); 
(void) splx(s); 

/ * vertical retrace interrupt service routine * / 
cgtwointr(unit) 

int unit; 

register struct cg2_softc *softc 

softc->fb->status.reg.inten = 0; 
wakeup«caddr_t) softc); 

#-ifdef lint 
cgtwointr(unit); 

#-endif 
} 

&cg2_softc[unit]; 

Revision A, of9 May 1988 



412 Writing STREAMS Device Drivers 

1* 
* (fbutil.c) Frame Buffer Driver Support Utilities 
* Copyright (c) 1985, 1987 by Sun Microsystems, Inc. 
*1 

1* 
* The routines in this file, calledfrom many the Sunframe buffer drivers, 
* perform the essential operations necessary for all memory-mapped drivers. 
*1 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/errno.h 
#include <sys/mman.h> 
#include <sys/vrnmac.h> 

/ * machine dependent kernel parameters * / 
/ * 110 buffers * / 
/ * System error reporting * / 
/ * Memory-mapping definitions * / 
/ * Virtual memory related conversion macros * / 

/ * <machine> is a symbolic link set to sun[234] * / 
#include <machine/pte.h> /* page table entries */ 

/ * < sundev > is the device driver source directory * / 
#include <sundev /mbvar. h> / * bus-interface definitions * / 

1* 
* Makes the necessary error checks and then returns. Everything is OK if the 
* device is predefined in the config file and if the probe routine found it as 
* expected. 
*1 
int fbopen(dev, flag, numdevs, mb_devs) 

dev_t dev; 
int flag, numdevs; 
struct mb device **mb_devs; 

register struct mb_device *md; 

if (minor (dev) >= numdevs I I 
(md = mb_devs [minor (dev) ] ) 0 I I 

md->md alive == 0) 
return ENXIO; 

return 0; 

1* 
* Work from the device address and an offset within its address 
* space to get the page frame number for the page to be mapped. 
*1 
int fbmmap(dev, off, prot, numdevs, mb_devs, size) 

dev_t dev; 
off_t off; 
int rot; 
int numdevs; 
struct mb device **mb_devs; 
int size; 
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if «u_int) off >= size) 
return -1; 

return fbgetpage(mb_devs[minor(dev)]->md_addr + off); 

/ * Get page frame number and page type * / 
fbgetpage (addr) 

caddr_t addr; 

return (int) hat_getkpfnum«addr_t) addr); 

1* 
* Simplified mapin and mapout. Note that, since these 
* routines are implemented in terms ofUsrptmap (which has been 
* preservedfor compatibility reasons) they will work with either SunOS 
* release 4.0 or with earlier releases. 
fbmapin(virt, phys, size) 

caddr_t virt; 
int phys; 
int size; 

mapin(&Usrptmap[btokmx«struct pte *) virt)], btop(virt), 
(u_int) phys, btoc(size), PG V I PG_KW); 

fbmapout(virt, size) 
caddr_t virt; 
int size; 

mapout(&Usrptmap[btokmx«struct pte *) virt)], btoc(size»; 

4tifdef sun2 
1* 
* Some Sun-2 frame-buffer devices allowed the user to enable/disable interrupts, and 
* even to change the interrupt level. Thus, fbintr is necessary so that the 
* kernel will always be able to find the interrupting device. If fbint r finds 
* an interrupting device, it returns with a 1 after calling intclear to turn 
* off its interrupt. 
*1 
fbintr(numdevs, rob_devs, intclear) 

int numdevs; 
register struct rob_device **mb_devs; 
int (*intclear) (); 

register struct rob_device *md; 

while (--numdevs >= 0) 
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if ((md = *mb_devs++) && 
md->md alive && 
(*intclear) (md->md_addr) 
return 1; 

return 0; 

#"endif sun2 

~~sun ~ microsystems 
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E.3. Sky Floating-Point Driver 

/* 
* (skyreg.h) Sky Floating Point Processor Registers 
* Copyright (c) 1983 by Sun Microsystems. Inc. 
*/ 

struct skyreg { 
u short sky_command; 
u short sky_status; 
union { 

short skyu_dword[2]; 
long skyu_dlong; 

skyu; 
#define sky_data skyu.skyu_dlong 
#define sky_dlreg skyu.skyu_dword[O] 

long sky_ucode; 
u short sky_vector; / * VME interrupt vector number * / 

} ; 

/ * command masks * / 
#define SKY SAVE OxlO40 
#define SKY RESTOR OxlO41 
#define SKY NOP OxlO63 
#define SKY STARTO OxlOOO 
#define SKY STARTl OxlOOl 

/ * status masks * / 
#define SKY IHALT OxOOOO 
#define SKY INTRPT OxOOO3 
#define SKY INTENB OxOO1O 
#define SKY RUNENB OxOO40 
#define SKY SNGRUN OxOO60 
#define SKY RESET OxOO80 
#define SKY IODIR Ox2000 
#define SKY IDLE Ox4000 
#define SKY IORDY Ox8000 

~\sun ~<f$ microsystems 
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1* 
* (sky.c) SKY Floating-point Processor Driver 
* Copyright (c) 1985 by Sun Microsystems. Inc. 
*1 

1* 
* The Sky driver is quite unusual in that maintains some state information 
* in the kernel user structure. This is because the kernel must context 
* switch the Sky board among the processes that wish to use it. This is not 
* typical, and, intact. there is currently no way for users to add new 
* devices which, like the Sky board, must be context switched by the kernel. 

* 
* The Sky board is used only with Sun2 machines, and machines with Sky boards 
* are known to have only one installed. 
*1 

1* 
* Most device drivers include about the same set of system header files, 
* with variation reflecting driver differences in functionality. The system 
* include files are located in directories whose location is fixed relative 
* to the configuration directories (for both source and object distributions.) 
* Note that there is not a sky.hfile included here; the sky board is a 
* special case and we know that there's only one installed. 
*1 

#include <sys/param.h> 
#include <sys/buf.h> 
#include <sys/file.h> 
#include <sys/dir.h> 
#include <sys/user.h> 

/ * general kernel parameters * / 
/ * 110 buffers * / 
/ * open file information * / 
/ * file system directories * / 
/ * kernel per-process status * / 

/ * <machine> is a symbolic link set to either sun2 or sunJ * / 
#include <machine/pte. h> / * page table entries * / 
#include <machine/mmu.h> /* memory management unit */ 
#include <machine/cpu. h> / * architecture-related defs * / 
#include <machine/ scb. h> / * system control block * / 

/ * . .Isundev is the device driver source directory * / 
#include <sundev /mbvar. h> / * bus interface definitions * / 
# include <sundev / skyreg. h> / * sky register definitions * / 

1* 
* The ''page'' size (jor the VME sky board only) is an offset which must be 
* added to the device base address to get access to the full set of device 
* registers. The second page (page 1) is taken as the supervisor page and 
* allows access to all the registers; the first (0) page is the user page and 
* does not, thus preventing access to the registers needed to load microcode 
* and context switch the device. In user mode it's only possible to access the 
* registers needed to control floating-point operations. 
*1 
#define SKYPGSIZE Ox800 

/ * auto-configuration information * / 
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int skyprobe(), skyattach(), skyintr(); 
struct rob_device *skyinfo[l]; I*OnlyoneSkyboard*/ 
struct rob_driver skydriver = { 

skyprobe, 0, skyattach, 0, 0, skyintr, 
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, 0, 0, 

} ; 

1* 
* The global variable skyaddr is set in skyprobe to contain the 
* base address of the "supervisor page" (page 1) of the Sky board (the base 
* address of the device registers.) 
*1 
struct skyreg *skyaddr; 

1* 
* These two global variables are used to control extraordinary aspects of the 
* Sky driver logic: 
* skyinit is set to 1 when the device (during system initialization) 
* is openedfor microcode loading. When the microcode loader closes the 
* device, skyinit is set to 2, indicating that the device is available 
* for general use. This mechanism is necessary to handle the special open 
* state needed for microcode loading. 
* skyisnew is even more peculiar, being necessary only to distinguish 
* two slightly different versions of the Sky board. 
*1 
int skyinit = 0, skyisnew = 0; 

/ *ARGSUSED* I 
skyprobe(reg, unit) 

caddr_t reg; 
int unit; 
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register struct skyreg *skybase (struct skyreg *)reg; 

I * Is something there? * / 
if (peek«short *)skybase) -1) 

return (0); 

I * If so, is it a Sky board? * I 
if (poke«short *)&skybase->sky_status, SKY_IHALT)) 

return (0); 

skyaddr = (struct skyreg *) (SKYPGSIZE + reg); 
if (cpu == CPU_SUN2_120 I I 

poke«short *)&skyaddr->sky_status, SKY_IHALT)) 

/ * old VMEbus or Multibus version of the Sky board * / 
skyaddr = (struct skyreg *)reg; 
skyisnew 0; 

else 
skyisnew 1; 

return (sizeof (struct skyreg)); 

sun 
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1* 
* If it's the new version of the board, then it has to be told what interrupt 
* to respond to. This is true for both vectored and auto-vectored interrupts. 
* In the auto-vectored case, the VME interrupt vector is set to be identical 
* to the 68000 auto-vector for the appropriate interrupt level. For the old 
* version of the Sky board, skyattach does nothing. 
*1 
skyattach(md) 

struct rob device *md; 

if (skyisnew) { 
if (!md->md_intr) { 

/ * auto-vectored interrupts * / 
(void) poke«short *)&skyaddr->sky_vector, 

AUTOBASE + md->md_intpri); 
else { 

/* vectored interrupts * / 
(void) poke«short *)&skyaddr->sky_vector, 

md->md_intr->v_vec); 

/*ARGSUSED* / 
skyopen(dev, flag) 

dev_t dev; 
int flag; 

int i; 
register struct skyreg *s = skyaddr; 

if (skyaddr == 0) /* skyprobe didn'tfind the device */ 
return (ENXIO); 

if (skyinit == 2) { 
1* 
* skyinit is 2 only when skyclose has previously been 
* called. This is true only in the case where skyclose was 
* called by the microcode loader, and so it's used here to recognize 
* the first time that the device is opened for use by a user 
* process. Thus, it's here that the device (and its related 
* bookkeeping fields) need to be initialized. 
*1 
s->sky_status = SKY_RESET; 
s->sky_command SKY_STARTO; 
s->sky_command = SKY_STARTO; 
s->sky_command = SKY_START1; 
s->sky_status = SKY_RUNENB; 
u.u_skyctx.usc_used = 1; 
u.u_skyctx.usc_cmd = SKY_NOP; 
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for (i=O; i<8; i++) 
u.u_skyctx.usc_regs[i] 0; 

skyrestore(); 

else if (flag & FNDELAY) 
/* 
* This open isfor the the user program that loads the microcode. 
* This is a special case that allows it to open the device, even 
* though it isn't initialized. 
*/ 
skyinit = 1; 

else 
return (ENXIO); 

return (0); 

/*ARGSUSED* / 
skyclose(dev, flag) 

dev_t dev; 
int flag; 

1* 
* Call skysave in case a user aborted and left the board in an 
* unclean state. We're really not saving the device state here, but 
* rather calling skysave to ensure that the state is safe for the 
* next user. 
*1 
if (skyinit == 2) 

skysave(); 

1* 
* This is not the normal case. sky ini t is being set to 2 to indicate to 
* skyopen that the device has been initialized. 
*1 
if (skyinit == 1) 

skyinit = 2; 
u.u_skyctx.usc_used 0; 
return (0); 

/*ARGSUSED* / 
skymmap(dev, off, prot) 

dev_t dev; 
off_t off; 
int prot; 

if (off) 
return (-1); 

1* 

+~t!! 
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1* 

* If this is a VME Sky board, and the board has been initialized (its 
* microcode loaded), then allow the user process to have access only to 
* the "user" page. This allows users to do floating-point operations, 
* but not to load microcode. The Multibus Sky board doesn't offer such 
* protection, so any process can load microcode and screw up other users 
* of the board. If this is a VME board, but we've still in the 
* microcode-loading state, allow access to the "supervisor" version of 
* the registers so we can load the microcode. 
*1 
off = (off_t)skyaddr; 
if (skyisnew && skyinit 2) /* useuserpage */ 

off -= SKYPGSIZEi 

return (hat_getkpfnum«addr_t) off»; 

* skyintr is also quite atypical, being used only for error reporting 
* and to disable interrupts. It must disable interrupts because they may (on 
* the Multibus versionfor sure) have been accidently set by a user process 
* with access to the device registers. The kernel must be able to handle 
* all the interrupts which can be generated by all the devices, even if it 
* doesn't use them for anything. 
*1 

1* ARGSUSED* I 
skyintr(n) 

int n; 

static u short skybooboo = 0; 

if (skyaddr && (skyaddr->sky_status & (SKY_INTENBISKY_INTRPT») { 
if (skyaddr->sky_status & SKY_INTENB) { 

printf("skyintr: sky board interrupt enabled, status Ox%x\n", 
skyaddr->sky_status); 

skyaddr->sky_status &= -(SKY_INTENBISKY_INTRPT); 
return (1); 

if (!skybooboo && (skyaddr->sky_status & SKY_INTRPT» { 
printf("skyintr: sky board unrecognized status, status Ox%x\n", 

skybooboo = skyaddr->sky_status); 
return (0); 

return (0); 

1* 
* skysave does the actual work of saving the device state. It has to 
* jump through some hoops to do so, but these hoops are completely device 
* specific. 
*1 
skysave () 
{ 
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register short i; 
register struct skyreg *s 
register u_short stat; 

for (i = Oi i < 100; i++) 
stat = s->sky_statusi 
if (stat & SKY_IDLE) { 

u.u_skyctx.usc_cmd 
goto sky_save; 

if (stat & SKY_IOROY) 
goto sky_ioready; 

printf("skyO: hung\n"); 
skyinit = 0; 
u.u_skyctx.usc_used = 0; 
return; 

skyaddr; 

1* 110 is ready, is it a read or write? * I 
sky_ioready: 

s->sky_status = SKY_SNGRUNi 1* set single step mode *1 
if (stat & SKY_IODIR) 

i = s->sky_dlregi 
else 

s->sky_d1reg = i; 

1* 
* Check again since data may have been in a long word. 
*1 

stat = s->sky_status; 
if (stat & SKY_IORDY) 

1* 

if (stat & SKY_IODIR) 
i = s->sky_d1reg; 

else 
s->sky_d1reg = i; 

* Read and save the command register. Decrement it by 1 since it's 
* actually Sky program counter and must be backed up. 
*1 

s->sky_command - 1; 

/* 
* Reinitialize the board. 
*/ 

s->sky_status = SKY_RESET; 
s->sky_command SKY_STARTOi 
s->sky_command = SKY_STARTO; 
s->sky_command = SKY_STARTl; 
s->sky_status SKY_RUNENBi 

/* 
* Do the actual context save. (Unrolled loop for efficiency.) 
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*/ 
sky_save: 

s->sky_command = SKY_Nap; /* set device to a clean nwde * / 
s->sky_command = SKY_SAVE; 
u.u_skyctx.usc_regs[O] s->sky_data; 
u.u_skyctx.usc_regs[l] s->sky_data; 
u.u_skyctx.usc_regs[2] s->sky_data; 
u.u_skyctx.usc_regs[3] s->sky_data; 
u.u_skyctx.usc_regs[4] s->sky_data; 
u.u_skyctx.usc_regs[5] s->sky_data; 
u.u_skyctx.usc_regs[6] s->sky_data; 
u.u_skyctx.usc_regs[7] s->sky_data; 

skyrestore () 
{ 

register struct skyreg *s skyaddr; 

if (skyinit != 2) { 
u.u_skyctx.usc_used 0; 
return; 

s->sky_command 

/* 
* Do the actual context restore. 
*/ 

/ * set device to a clean nwde * / 

s->sky_command = SKY_RESTOR; 
s->sky_data u.u skyctx.usc_regs[O]; 
s->sky_data u.u_skyctx.usc_regs[l]; 
s->sky_data u.u_skyctx.usc_regs[2]; 
s->sky_data u.u_skyctx.usc_regs[3]; 
s->sky_data u.u_skyctx.usc_regs[4]; 
s->sky_data u.u_skyctx.usc_regs[5]; 
s->sky_data u.u_skyctx.usc_regs[6]; 
s->sky_data u.u skyctx.usc regs[7]; 
s->sky_command = u.u_skyctx.usc_crnd; 
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E.4. Versatec Interface Driver 

/* 
* (vcmd.h) Includefilefor user programs that'll give ioctl commands to the 
* Ikon 10071-5 Multibus/Versatec interface. 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*/ 

#ifndef IOCTL 
#include <sys/ioctl.h> 
#endif 

#define VPRINT 0100 
#define VPLOT 0200 
#define VPRINTPLOT 0400 
#define VPC TERMCOM 0040 
#define VPC FFCOM 0020 
#define VPC EOTCOM 0010 
#define VPC CLRCOM 0004 
#define VPC RESET 0002 

/* 
* lOR and lOW encode read/write instructions to the kernel within the ioct 1 

- -
* command code. These instructions cause the kernel to read the ioctl 
* command argument into user space (_lOR), or to write it into kernel space ClaW). 
*/ 
#define 
#define 

VGETSTATE 
VSETSTATE 

IOR(v, 0, int) 
IOW(v, 1, int) 
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1* 
* (vpreg.h) Registers/or Ikon 10071-5 MultibuslVersatec interface. 
* Copyright (c) 1983 by Sun Microsystems, Inc. 
*1 

1* 
* Note that the vpdevice structure actually spans the registers of several 
* contiguous IC devices (a 8259 and a 8237.) Only the low byte of each 
* (short) word is used. 
*1 

struct vpdevice { 
u short vp_status; 
u short vp_cmd; 
u short vp-pioout; 
u short vp_hiaddr; 
u short vp_icadOi 
u short vp_icadli 

/ * 00: mode(w) and status(r) * / 
/ * 02: special command bits(w) * / 
/ * 04: PI 0 output data(w) (unused) * / 
/ * 06: hi word of Multibus DMA address(w) * / 
/ * 08: adO of 8259 interrupt controller * / 
/ * OA: ad1 of 8259 interrupt controller * / 

/ * The rest of the fields are for the 8237 DMA controller * / 
u short vp_addr i /* OC: DMA word address * / 
u short VP_WCi /*OE:DMAwordcount*/ 
u short vp_dmacsri /* 10: command and status (unused) */ 
u short vp_dmareq; /* 12: request (unused) */ 
u short vp _smb i / * 14: single mask bit (unused) * / 
u short vp_modei /* 16: dma mode */ 
u short vp_clrffi /* 18: clearfirstllastflip-flop */ 
u short vp_clear i /* 1A: DMA master clear * / 
u short vp_clrmaski /* 1C:clearmaskregister */ 
u short vp_allmaski /* 1E:allmaskbits(unused) */ 

} ; 

1* 
* Warning - this is one of those devices in which the read bits are not 
* identical to write bits. 
*1 

/ * vp _status bits (read) * / 
#define VP IS8237 Ox80 / * 1 if 8237 (sanity checker) * / 
#define VP REDY Ox40 / * printer ready * / 
#define VP DRDY Ox20 / * printer and interface ready * / 
#define VP IRDY OxlO / * interface ready * / 
#define VP PRINT Ox08 / * print mode * / 
#def.ine VP NOSPP Ox04 /* not in SPP mode * / 
#define VP ONLINE Ox02 / * printer online * / 
#define VP NOPAPER OxOI / * printer out of paper * / 

/ * vp _status bits (write) * / 
#define VP PLOT Ox02 / * enter plot mode * / 
#define VP SPP OxOI / * enter SPP mode * / 

/ * vp _ cmd bits * / 
#define VP RESET OxlO / * reset the plotter and interface * / 
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#define VP CLEAR Ox08 / * clear the plotter * / 
#define VP FF Ox04 / * form feed to plotter * / 
#define VP EOT Ox02 / * EOT to plotter * / 
#define VP TERM OxOl / * line terminate to plotter * / 

/ * vp _ mode bits * / 
#define VP DMAMODE Ox47 / * put interface in DMA mode * / 

1* 
* These two values are used to set the device (which is reticent to disclose 
* that it has issued an interrupt) so that the polling routine can find out. 
*1 
#define 
#define 

VP ICPOLL OxOC 
VP ICEOI Ox20 
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/* 
* (vp.c) DMA driver for Ikon 10071-5 Versatec matrix printer/plotter driver. 
* Copyright (c) 1985 by Sun Microsystems, Inc. 
*/ 

/* 
* Most device drivers include about the same set of system header files, with 
* variation reflecting driver differences infunctionality. The system include 
* files are located in directories whose location is fixed relative to the 
* configuration directories (for both source and object distributions.) vp.h 
* is presumed to be in the configuration directory, where config will have 
* left it andfrom which it is assumed that driver source files (like this one) 
* are compiled. 
*/ 

4tinclude "vp.h" 
4tinclude <sys/param.h> 
4tinclude <sys/dir.h> 
4tinclude <sys/user.h> 
4tinclude <sys/buf.h> 
4tinclude <sys/systm.h> 
4tinclude <sys/kernel.h> 
4tinclude <sys/map.h> 
4tinclude <sys/ioctl.h> 
4tinclude <sys/vcmd.h> 
4tinclude <sys/uio.h> 

/ * installed device count -- from config * / 
/ * general kernel parameters * / 
/ * file system directories * / 
/ * kernel per-process status * / 
/ * I/O buffers * / 
/ * miscellaneous kernel variables * / 
/ * kernel global variables * / 
/ * resource allocation maps * / 
/ * ioctl definitions * / 
/ * for all Versatec interface drivers * / 
/ * uio structures * / 

/ * <machine> is a symbolic link set to either sun2 or sunJ * / 
4tinclude <machine/psI. h> /* processor status codes * / 
4tinclude <machine/mmu. h> /* memory-management unit * / 

/ * < sundev > is the device driver source directory * / 
4tinclude <sundev/vpreg.h> /* vpregisterdefinitions */ 
4tinclude <sundev/mbvar.h> /* bus-interface definitions */ 

/* 
* Define the Versatec sleeping priority to be lower than PZERO, that is, make 
* its sleep be uninterruptible by signals. This is appropriate because the 
* events which we'll be waitingfor, slow as they may be, are relatively fast 
* and sure (unlike user input) to occur. 
*1 
4tdefine VPPRI (PZERO-l) 

/* 
* Define an array ofvp_softc structures, one for each of the NVP 
* installed devices. By convention, the names xx_softc and 
* xx_device are usedfor the private,per-device software state 
* structure. 
*/ 
struct vp_softc { 

int sc_state; 
struct buf *sc_bp; 
int sc_mbinfo; 

/ * current device state * / 
/ * buffer mapped to device * / 
/ * stash for mbsetup's return code * / 
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} vp_softc[NVP]; 

/* 
* sc_state bits - passed in VGETSTATE and VSETSTATE ioctl calls. 
* The user-level ioctl command codes are in vcrnd. h, normally found 
* in /usr/include/sys 
*/ 
#define VPSC BUSY 0400000 
#define VPSC MODE 0000700 
#define VPSC SPP 0000400 
#define VPSC PLOT 0000200 
#define VPSC PRINT 0000100 
#define VPSC CMNDS 0000076 
#define VPSC OPEN 0000001 

/ * no special encoding in minor device number * / 
#define VPUNIT(dev) (rninor(dev» 

/* 
* Declare an array ofprivate buf headers, by convention named rvpbuf, onefor 
* each of the NVP installed devices. 
*/ 
struct buf rvpbuf[NVP]; 

/ * The autoconfig-related declarations. * / 
int vpprobe(), vpintr(); 
struct rob_device *vpdinfo[NVP]; 
struct rob driver vpdriver = { 

vpprobe, 0, 0, 0, 0, vpintr, 
sizeof (struct vpdevice), "vp", vpdinfo, 0, 0, 0, 

} ; 

/* 

* vpprobe already indicates the persnickety nature of the device, a 
* nature that will become more clear as we proceed. 
*/ 
vpprobe(reg) 

caddr t reg; 
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register struct vpdevice *vpaddr 
register int x; 

(struct vpdevice *)reg; 

x = peek((short *)&vpaddr->vp_status); 

/* 
* Note that the device provides a sanity check bit, which 
* we can use to ensure that vpprobe is accurate 
*/ 

if ( x == -1 I I ( x & VP _IS 8 2 3 7) == 0) 
return (0); 

/* Now reset the 8259; also return 0 ifresetfails * / 
if (poke((short *)&vpaddr->vp_crnd, VP_RESET» 

sun 
microsystems 

Revision A, of 9 May 1988 



428 Writing STREAMS Device Drivers 

return (0); 

1* 
* Device-specific magic to shut up the device, by setting the 8259 -- it 
* doesn't have enough sense to wait for the driver's instructions, and 
* starts interrupting after being reset. Note that even this isn't 
* straightforward because of register write latency. 
*1 
vpaddr->vp_icadO 
DELAY(l) ; 
vpaddr->vp_icad1 
DELAY(l); 
vpaddr->vp_icad1 

Ox12; / * ICW1, edge-trigger * / 

OxFF; / * ICW2 - don't care (non-zero) * / 

OxFE; / * IRO - interrupt on DRDY edge * / 

/ * Also reset the 8237 * / 
vpaddr->vp_clear = 1; 

return (sizeof (struct vpdevice»; 

vpopen(dev) 
dev_t dev; 

register struct vp_softc *sc; 
register struct rob_device *md; 
register int s; 
static int vpwatch = 0; 

1* Do a variety of error checks upon opening the device. Fail if dev 
* is greater than the configured number of devices, or if the device 
* (which is exclusive open) has already been opened, or ifvpprobe 
* failed to find the device as expected. 

* 
* Note that, if the device wasn'tfound by the probe routine, both 
* vpdinfo [VPUNIT (dev) ] andmd->md_alive will be O. Any given 
* driver may chose, for its convenience, to make either test, but it's 
* paranoid to -- as is done here -- make both. (All drivers have 
* access to md->md _ali ve; this isn't the case with xxdinfo). 
*1 
if (VPUNIT(dev) >= NVP I I 

1* 

«sc = &vp_softc[minor(dev)])->sc_state&VPSC OPEN) I I 
(md = vpdinfo[VPUNIT(dev)]) == 0 I I md->md alive == 0) 
return (ENXIO); 

* vpwatch is a static local which is set to 0 the first time 
* vpopen is called. This code sets vpwatch to one and then 
* calls vptimo -- the effect is that vptimo gets called only once, 
* the first time a user process calls vpopen. But if you examine 
* vpt imo, you'll see that it arranges matters so that it's called 
* repeatedly. This helps to keep the device from locking up. 
*1 
if (! vpwatch) 
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1* 

vpwatch = 1; 
vptimo () ; 

* Initialize softc state variable. Here we are, among other things, setting 
* sc->sc_state = VPSC_OPEN, which indicates that the device (which is 
* exclusive use) is tied up, and that no one else can open it. We are also 
* dispatching two commands, CLRCOM and VPC_RESET. 
*1 
sc->sc_state = VPSC_OPENIVPSC_PRINT VPC_CLRCOM 1 VPC_RESET; 

/ * Loop while any command is in process * / 
while (sc->sc_state & VPSC_CMNDS) 

1* 
* This critical section ensures that only one instance of the driver can 
* vpwa it / vpcmd at any time. vpcmd clears command request 
* bits as it processes commands. This is absolutely necessary, since 
* vpcmd intends to actually dispatch a command (posted in 
* sc->sc_state) to the hardware. 
*1 
s = splx(pritospl(md->md_intpri)); 
vpwait (dev) ; 
vpcmd (dev) ; 
(void) splx(s); 

return (0); 

vpclose(dev) 
dev_t dev; 

register struct vp_softc *sc 

sc->sc state = 0; 

vpstrategy(bp) 
register struct buf *bp; 

&vp_softc[VPUNIT(dev)]; 

register struct vp softc *sc = &vp_softc[VPUNIT(bp->b_dev)]; 
register struct rob_device *md = vpdinfo[VPUNIT(bp->b_dev)]; 
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addri 
int Si 

int pa, wc; 

1* 
* The hardware doesn't support writes to odd addresses or DMA requests 
* of less than two bytes in length. 
*1 
if «(int)bp->b_un.b_addr & 1) 1 1 bp->b_bcount < 2) 

bp->b_flags 1= B_ERROR; 
iodone (bp) ; 
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1* 

return; 

s = splx(pritospl(md->md_intpri»; 
while (sc->sc_bp != NULL) 

sleep«caddr_t)sc, VPPRI); 

sc->sc_bp = bPi 

vpwait(bp->b_dev); 
/ * Map next request for the now idle device onto the bus for a DMA transfer* / 
sc->sc_mbinfo = mbsetup(md->rnd_hd, bp, 0); 

vpaddr->vp_clear = 1; 

/ * Get the address in DVMA space * / 
pa MBI_ADDR(sc->sc_mbinfo); 

1* 
* Now comes some VERY device-specific code, as we set the DMA transfer 
* address on the device. 
*1 
vpaddr->vp_hiaddr = (pa » 16) & OxF; 
pa = (pa » 1) & Ox7FFF; 
wc = (bp->b_bcount » 1) - 1; 
bp->b_resid = 0; 

1* 
* Note the 2 sequential 8-bit writes into the same address to indicate 
* a 16-bit address! 
*1 
vpaddr->vp_addr 
vpaddr->vp_addr 

pa & OxFF; 
pa » 8; 

vpaddr->vp_wc = wc & OxFF; 
vpaddr->vp_wc = wc » 8; 
vpaddr->vp_mode = VP_DMAMODE; 
vpaddr->vp_clrmask = 1; 

1* 
* By setting the VPSC_BUSY bit in sc->sc_state, we indicate that the device 
* is to sleep, and that vpwai t is to loop. This is because we want to insure 
* that another command doesn't get issued until this DMA transfer is completed. 
*1 
sc->sc_state 1= VPSC_BUSY; 

(void) splx(s); / * end of critical section * / 

* There is no read routine, as this is a write-only device. 
*1 

1* ARGSUSED* 1 
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vpwrite(dev, uio) 
dev_t dev; 
struct uio *uio; 

1* 

if (VPUNIT(dev) >= NVP) 
return (ENXIO); 

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE, 
minphys, UiO»i 

* vpwai t kills time, but not by busy waiting. Instead, it relies on the 
* fact that sleep and wakeup aren't proper semaphores, and that ALL 
* processes which are sleeping on a channel wake when a wakeup is issued 
* on that channel. vpwait's sleep, then, is awaken by vpintr. 
*1 
vpwait(dev) 

dev_t devi 

register struct vpdevice *vpaddr = 
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr; 

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]i 

for (;;) 
if «sc->sc_state & VPSC BUSY) == 0 && 

vpaddr->vp_status & VP_DRDY) 
break; 

sleep«caddr_t)sc, VPPRI); 

return; 

struct pair 
char soft; 
char hard; 

/ * software bit * / 
/ * hardware bit * / 

} ; 

1* 

vpbits[] = { 

VPC_RESET, 
VPC_CLRCOM, 
VPC_EOTCOM, 
VPC_FFCOM, 
VPC_TERMCOM, 
0, 

VP_RESET, 
VP_CLEAR, 
VP_EOT, 
VP_FF, 
VP_TERM, 
0, 

* vpcmd is designed to be called after vpwa it has returned, thus 
* indicating that the hardware is quiet and ready to receive a new command. 
* When it's called, it runs through the possible command bits in 
* sc->sc_state, and, finding one set, issues the corresponding hardware 
* command to the actual device. At the same time it clears the commandfrom 
* sc->sc_state, so that the next time vpcmd is called another 
* command will be issued to the hardware. Note that vpcmd waits a long 
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* time, probably too long, for the' device to recover before it returns. 
*/ 
vpcmd(dev) 

dev_t; 

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]; 
register struct vpdevice *vpaddr = 

(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr; 
register struct pair *bit; 

for (bit = vpbits; bit->soft != 0; bit++) 
if (sc->sc_state & bit->soft) { 

vpaddr->vp_cmd = bit~>hard; 
sc->sc_state &= -bit->soft; 
DELAY (100) ; / * time/or DRDY to drop * / 
return; 

/*ARGSUSED*/ 
vpioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

register int m; 
register struct rob_device *md = vpdinfo[VPUNIT(dev)]; 
register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]; 
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr; 
int s; 

switch (cmd) { 

case VGETSTATE: 
*(int *)data 
break; 

sc->sc_state; 

1* 
* Turn ojfVPSC _MODE; restrict the user to resetting itand setting 
* VPSC CMNDS 
*/ 
case VSETSTATE: 

m = *(int *)data; 
sc->sc state = 

(sc->sc_state & -VPSC_MODE) 
break; 

default: 
return (ENOTTY); / * "Not a typewriter" * / 
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/* 

/* 
* More careful handling to make sure that one command doesn't get issued until the 
* last one has completed. Wait, then post some state informationfrom 
* sc->sc_softc to the hardware, then wait again, then call vpcmd to 
* fire off the next command. And all in a critical section! 
*/ 
s = splx(pritospl(md->md_intpri»; 
vpwait (dev) ; 
if (sc->sc_state&VPSC_SPP) 

vpaddr->vp_status = VP_SPPIVP_PLOT; 
else if (sc->sc_state&VPSC_PLOT) 

vpaddr->vp_status VP_PLOT; 
else 

vpaddr->vp_status 0; 
while (sc->sc_state & VPSC_CMNDS) 

vpwait (dev) ; 
vpcmd (dev) ; 

(void) splx(s); 
return (0); 

* This is really a polling interrupt routine. The code at the top that checks 
* the polling chain should really be broken out into a vppoll routine 
* that gets plugged into the rob _ dev ice structure. The rest of the code 
* would then be where it properly belongs, in a vpint r routine that can 
* be named in the config file. 
*/ 
vpintr () 
{ 

register int dev; 
register struct rob_device *md; 
register struct vpdevice *vpaddr; 
register struct vp_softc *sc; 
register int found = 0; 

for (dev = 0; dev < NVP; dev++) 
if «md = vpdinfo[dev]) == NULL) 

continue; 
vpaddr = (struct vpdevice *)md->md_addr; 

/* 
* It's not easy to find out if an interrupt has occurred. 
*/ 

vpaddr->vp_icadO = VP_ICPOLL; 
DELAY (1) i 

if (vpaddr->vp_icadO & Ox80) 
found = 1; 

/ * Wake up the guilty device * / 
DELAY (1) ; 
vpaddr->vp_icadO 
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se = &vp_softe[dev]; 

1* Is there a command currently dispatched and does the hardware 
* say it's done with it? 
*1 
if «se->se_state&VPSC_BUSY) && (vpaddr->vp_status & VP_DRDY» 

sc->sc_state &= -VPSC_BUSY; /* clear busy indicator */ 

1* 

if (sc->sc_state & VPSC_SPP) { 

/ *device-specific mode toggle * / 
sc->sc_state &= -vPSC_SPP; 
sc->sc_state 1= VPSC_PLOT; 
vpaddr->vp_status = VP_PLOT; 

iodone(sc->sc_bp); /* break wait in physio */ 
sc->sc_bp = NULL; 

1* 
* Note that the resources being deallocated here were allocated 
* in vpstrategy, in the top half of the driver. This is 
* standardformfor DMA drivers. 
*1 

mbrelse(md->md hd, &Sc->sc_robinfo); 

wakeup ( (caddr _ t) sc); / * break loops in vpstrategy AND vpwait * / 

return (found); 

* vptimo is used to repeatedly kickstart the device, which has a tendency 
* to freeze up if left alone too long. It calls vpintr, and then it sets 
* up a timer to call vptimo again (and again, and again ... ) to make sure 
* that a call to vpintr is always pending. The kernel global hz is set 
* to reflect the clock rate of the system processor chip (it's 50 for a Sun3). 
*1 
vptimo () 
{ 

int s; 
register struct rob_device *md = vpdinfo[O]; 

s = splx(pritospl(md->md_intpri»; 
(void) vpintr(); 
(void) splx (s) ; 
timeout (vptimo, (caddr_t)0, hz); 
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E.S. Sun386i Parallel Port Driver 

1* 
* (ppreg.h) Sun-386i Parallel Port Registers 
* Copyright (c) 1987 by Sun Microsystems, Inc. 
*1 

1* Register addresses. 
*1 

ushort ppregs[] [NPPREGS] = 

{ Ox378, Ox37a, Ox379 }, /* port 1 regs */ 
} ; 

/ * Printer Control Reg bits * / 
*define PC INTENABLE 
*define PC SELECT 
*define PC INIT 
*define PC LINEFEED 
*define PC STROBE 

*define PC NORM 
*define PC OFF 
*define PC RESET 

/ * Printer Status Reg bits * / 
*define PS READY 
*define PS NOTACK 
*define PS NOPAPER 
*define PS SELECT 
*define PS NOERROR 

*define PSREADY(s) 
*define PSSELECT(s) 
*define PSNOPAPER(s) 
*define PSERROR(s) 

OxlO / * +IRQ ENABLE: enable ACK interrupts * / 
Ox08 /* +SLCT IN: select printer * / 
OxO 4 / * -INIT: init printer * / 
Ox02 / * +AUTO FD XT: set auto linefeed * / 
OxOI /* +STROBE: strobe data */ 

(PC_INTENABLEIPC_SELECTIPC_INIT) 
(PC_SELECTIPC_INIT) 
o 

Ox80 / * -BUSY: printer not busy * / 
Ox40 /* -ACK: ACK state * / 
Ox20 / * +PE: printer out of paper * / 
OxlO /* +SLCT:printerisselected */ 
OxO 8 / * -ERROR: printer error condition * / 

( (s) &PS_READY) 
( (s) &PS_SELECT) 
( (s) &PS_NOPAPER) 
«(s)&PS_NOERROR) 
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1* 
* Parallel Port (printer) driver. 
* Copyright (c) 1987 by Sun Microsystems, Inc. 
*1 

.:ftinclude "pp.h" 

.:ftif NPP > 0 

.:ftinclude <sys/param.h> 

.:ftinclude <sys/buf.h> 

.:ftinclude <sys/uio.h> 

.:ftinclude <sys/errno.h> 

.:ftinclude <sys/file.h> 

.:ftinclude <sundev/robvar.h> 

1* 
* Buffers for use by physio(). 
*1 
struct bUf ppbuf[NPP]; 
.:ftdefine PPBUFSIZ 64 

1* 

/ * Size of buffer written to printer * / 

* Software state structure, one for each printer 
*1 
struct ppstate { 

int pp_flags; 
.:ftdefine PP OPEN 
.:ftdefine 
.:ftdefine 
.:ftdefine 

PP WANT 
PP TIMER 
PP BUSY 

u char pp_timer; 

OxOl 
Ox02 
Ox08 
OxlO 

u char pp_lostintr; 
u char pp_notready; 
int pp_unit; 

/ * Printer state: * / 
/ * Currently open * / 
/ * Someone waitingfor printer * / 
/ * Watchdog timer is running * / 
/ * 110 in progress * / 
/ * For detecting timeout situations * / 
/ * For tracking lost interrupts* / 
/ * Printer not ready (no paper, etc.) * / 
/ * Unit number* / 

struct rob_device *pp_rnd; 
struct buf *pp_bp; 

/ * Pointer to mb info * / 
/ * Pointer to current' buf * / 
/* Buffer * / char pp_buf[PPBUFSIZ]; 

char *pp_cp; 
int pp_count; 
u_short pp_regbase; 
ppstate[NPP]; 

.:ftdefine 

.:ftdefine 

.:ftdefine 

.:ftdefine 

.:ftdefine 

PPREG DATA 
PPREG CTRL 
PPREG STAT 

PPUNIT(dev) 
PPPRI 

extern int hz; 
.:ftdefine PPWATCHDOG 
.:ftdefine PPTICKS 

/ * Current byte in current buffer * / 
/ * Number of bytes left to print * / 
/ * Device register base in i/o space * / 

(pp->pp_regbase) 
(pp->pp_regbase + 2) 
(pp->pp_regbase + 1) 

(minor (dev) ) 
(PZERO + 1) / * Sleeps are interruptable * / 

3 / * Watchdog interval: see' pptimeout() , * / 
(30/PPWATCHDOG + 1) 
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#define PPMSGTICKS (180/PPWATCHDOG) 

#ifdef DEBUG 
1* 
* Debugging stuff. 
*1 
#define DBlNlT OxOOOI 
#define DBlO OxOO02 
#define DBOPEN OxOO04 
#define DBCLOSE OxOOO8 
#define DBSTRAT OxOOIO 
#define DBSTART OxOO20 
#define DBTMOUT OxOO40 
#define DBlNTR OxOO80 

int ppdebug = Oxffff; 
#define ppprint(flg,x) «(flg)&ppdebug) ? printf x 

#else 
#define ppprint(flg,x) 
#endif DEBUG 

int ppprobe(), ppattach(), ppintr(), pptimeout(); 

struct rob driver ppdriver = { 
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0) 

ppprobe, 0, ppattach, 0, 0, ppintr, 0, "pp", 0, 0, 0, 0, 
} ; 

/*ARGSUSED* / 
ppprobe(reg, unit) 

caddr_t reg; 
int unit; 

ppprint(DBlNlT, ("ppprobe\n"»; 

if (unit >= NPP) 
panic ("pp: too many units"); 

ppstate[unit] .pp_regbase 
return(l) ; 

ppattach(md) 

(u_short) reg; 

register struct rob_device *md; 

register struct ppstate *pp; 

pppr int (DBlNlT, ("ppa t tach \n" ) ) ; 

pp = &ppstate[md->md_unit]; 
pp->pp_md = rod; 

1* Initialize printer . 

• \sun ~ microsystems 
Revision A, of 9 May 1988 



438 Writing STREAMS Device Drivers 

* Holding PC _INIT low for 50 usecs does the trick. 
*1 
outb(PPREG_CTRL, PC_RESET); 
DELAY(SO) ; 
outb(PPREG_CTRL, PC_OFF); 
DELAY(lO) ; 

ppopen(dev, flags) 
dev_t dev; 
int flags; 

register struct ppstate *pp 
int status; 

&ppstate[PPUNIT(dev)]; 

ppprint(DBOPEN, ("ppopen: unit %d\n", PPUNIT(dev»); 

if (PPUNIT(dev) >= NPP II pp->pp_md->md_alive == 0) 
return (ENXIO) ; 

if (flags & FREAD) 
return(ENODEV); 

/ * Can't read a write-only device * / 

pp->pp_unit = PPUNIT(dev); 

while (pp->pp_flags & PP_OPEN) /*Enforceexclusiveaccess*/ 
ppprint(DBOPEN, ("ppopen: in use - waiting ... \n"»; 
if (flags & FNDELAY) 

return(EBUSY); 
pp->pp_flags 1= PP_WANT; 
if (sleep«caddr_t)&pp->pp_flags, PPPRIIPCATCH» { 

return(EINTR); 

status = inb(PPREG_STAT); 
if (PSNOPAPER(status) II! PSSELECT(status) 1 I PSERROR(status» 

if (PSNOPAPER(status» 
uprintf("pp%d: printer out of paper\n", pp->pp_unit); 

else 
uprintf(npp%d: printer not ready\n", pp->pp_unit); 

(void)wakeup«caddr_t)&pp->pp_flags); 
pp->pp_flags = 0; 
return(EIO); 

outb (PPREG_CTRL, PC_NORM); /* Enable interrupts * / 

if «pp->pp_flags & PP_TIMER) 0) { 
/* 
* Kick of/watchdog timer. 
*/ 

timeout (pptimeout, (caddr_t)pp, PPWATCHDOG*hz); 
pp->pp_timer = 0; 
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1* 

pp->pp_flags 1= PP_OPENi 
return(O)i 

* ppclose: 
* Close the printer device. 
* Turn ofJinterrupts. 
* Wake up anyone waiting to open the printer. 
*1 
ppclose(dev) 

dev_t devi 

register struct ppstate *pp = &ppstate[PPUNIT(dev)]; 

ppprint(DBCLOSE, ("ppclose: unit %d\n", PPUNIT(dev) »; 

/ * Disable interrupts * / 

if (pp->pp_flags & PP_WANT) 
wakeup«caddr_t)&pp->pp_flags)i 

pp->pp_flags = Oi 

ppwrite(dev, uio) 
dev_t devi 
struct uio *UiOi 

1* 

int ppminphys(), ppstrategY()i 

ppprint(DBIO, ("ppwrite\n"»; 

return (physio (ppstrategy, &ppbuf[PPUNIT(dev)], dev, B_WRITE, 
ppminphys, uio»; 

* ppstrategy: 
*1 
ppstrategy(bp) 

register struct buf *bPi 

register struct ppstate *pp = &ppstate[PPUNIT(bp->b_dev)]; 

ppprint(DBSTRATIDBIO, ("ppstrategy\n"»; 

pp->pp_bp = bpi 
pp->pp_count = bp->b_bcounti 
pp->pp_cp pp->pp_buf; 
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if (copyin(bp->b_un.b_addr, pp->pp_buf, bp->b_bcount)) { 
bp->b_flags 1= B_ERROR; 
bp~>b_error = EFAULT; 
ppiodone(pp) ; 
return; 

pp->pp_flags 1= PP_BUSY; 
pp->pp_timer = PPTICKS; 
pp->pp_lostintr 0; 
pp->pp_notready = 0; 
ppintr () ; 
ppiowait(pp, bp); 
pp->pp_timer = 0; 

/ * Set timer * / 
/ * Reset "lost interrupt" counter * / 
/ * Reset "notready" counter * / 

/ * Turn off timer * / 

ppprint(DBSTRAT, (nppstrategy: ***done\nn); 

ppminphys(bp) 

1* 

register struct buf *bp; 

if (bp->b_bcount > PPBUFSIZ) 
bp->b_bcount = PPBUFSIZ; 

* ppintr: 
* Handle 'ack' interrupts from printer. 
*1 
ppintr () 
{ 

register struct ppstate *pp; 
int status; /* printer status */ 
int s; 

ppprint(DBINTR, (nppintr\nn)); 

pp = &ppstate[O]; / * XXX - only works for unit #0 * / 

s = splx(pritospl(pp->pp_md->md_intpri)); 

status = inb(PPREG_STAT); 
ppprint(DBINTR, (nppintr: status 

/ * Were we expecting an interrupt? * / 
if ( ! (pp->pp_flags & PP_BUSY» 

Ox%x\n", status»); 

ppprint(DBINTR, ("ppintr: unsolicited interrupt\nn»); 
splx(s); 
return; 

if (pp->pp_count > 0) 
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/* 

else 

/* AT Tech Ref says data must be in data reg at least 
* 0.5 usec before and after we strobe, and strobe must 
* last at least 0.5 usec. 
*/ 
outb(PPREG_DATA, *pp->pp_cp); 
pp->pp_cp++; 
pp->pp_count--; 
DELAY(l) ; 
outb(PPREG_CTRL, PC_NORM I PC_STROBE) ; 
DELAY(l) ; 
outb(PPREG_CTRL, PC_NORM); 

ppiodone(pp) ; 

splx(s) ; 

* pptimeout: 
* Check occasionally for lost interrupts or 
* printer errors (no paper, printer off line, etc.). 
*/ 
pptimeout(arg) 

caddr_t arg; 

register struct ppstate *pp = (struct ppstate *)arg; 
int status; 1* Printer status */ 
int error = 0; 
int s; 

ppprint(DBTMOUT, ("pptimeout\n"); 

s = splx(pritospl(pp->pp_md->md_intpri»); 

I * If we're not currently doing anything, we can go away. * I 
if «pp->pp_flags & PP_OPEN) 0) { 1* Not open *1 

splx(s); 
return; 

else if (pp->pp_timer <= 0) { 1* Not currently active */ 
timeout (pptimeout, (caddr_t)pp, PPWATCHDOG*hz); 
splx(s); 
return; 

status = inb(PPREG_STAT); 

1* Check for printer errors. * I 
if (PSNOPAPER(status») 

if «pp->pp_notready++ % PPMSGTICKS) 0) 
uprintf("pp%d: printer out of paper\n", pp->pp_unit); 

sun 
microsystems 

Revision A, of 9 May 1988 



442 Writing STREAMS Device Drivers 

else if ( ! PSSELECT (status) 1 1 PSERROR (status» { 
if «pp->pp_notready++ % PPMSGTICKS) 0) 

uprintf("pp%d: printer not ready\n", pp->pp_unit); 
else if (--pp->pp_timer == 0) { 

/ * "Timer has expired - see what's wrong. * / 
ppprint(DBTMOUT, ("pptimeout: status Ox%x\n", status»; 

if (PSREADY(status» { 
1* 
* We must have dropped an interrupt. 
* If this is the first one we've dropped, assume 
* it's afluke and carryon. Otherwise, give up. 
*1 
if (pp->pp_lostintr++ == 0) { 

ppprint(DBTMOUT, ("pptimeout: dropped intr\n"»; 
pp->pp_timer = PPTICKS; /* Reset timer * / 
ppintr () ; 

else { 
printf("pp%d: not getting interrupts\n", 

pp->pp_unit); 
error = 1; 

else 
/ * Printer is hung * / 
error = 1; 

if ( ! error) { 
timeout (pptimeout, (caddr_t)pp, PPWATCHDOG*hz); 

else { 
pp->pp_bp->b_flags 1= B_ERROR; 
ppiodone (pp) ; 
pp->pp_flags &= -PP_TIMER; 

splx(s); 

/*ARGSUSED* / 
ppioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

return(ENOTTY); 

1* 
* ppiowait: 
* Private version of' biowait() , . 
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*1 
ppiowait(pp, bp) 

1* 

struct ppstate *pp; 
register struct buf *bp; 

int s; 

s = splx(pritospl(pp->pp_md->md_intpri»; 
while ( ! (bp->b_flags&B_DONE») { 

if (sleep((caddr_t)bp, PPPRIIPCATCH» 
bp->b_flags 1= (B_ERRORIB_DONE); 
bp->b_error = EINTR; 

splx(s); 

* ppiodone: 
* Private version of' biodone()' . 
*1 
ppiodone(pp) 

register struct ppstate *pp; 

register struct buf *bp = pp->pp_bp; 

bp->b_flags 1= B_DONE; 
wakeup((caddr_t)bp); 

#endif NPP 
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