
Asun®
• microsystems

----"-_._--"---

Writing Device Drivers

-----_._---

--""--------

Part Number: 800-1780-10
Revision A, of 9 May 1988

Sun™, Sun-2™, Sun-3™, and Sun-4™ are trademarks of Sun Microsystems,
Incorporated. Sun Workstation® is a registered trademark of Sun Microsys
terns, Inc.

Multibus is a trademark of Intel Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

VMEbus is a trademark of Motorola, Incorporated.

V AX is a trademark of Digital Equipment Corporation.

IBM-PC and IBM 370 are trademarks of International Business Machines Cor
poration.

Cray is a trademark of Cray Research.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations

Sun equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause
interference to radio communications. It has been tested and found to comply
with the limits for a Class A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment Operation of Sun
equipment in a residential area is likely to cause interference in which case the
user at his own expense will be required to take whatever measures may be
required to correct the interference.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. Device Independence .. 3

1.2. Types of Devices ... 4

1.3. System V Compatibility .. 6

1.4. Major Development Stages .. 6

1.5. Warning To Microcomputer Programmers ... 6

1.6. Address-Space Terminology ... 7

1.7. Manual Overview .. 8

Regular Drivers .. 8

STREAMS Drivers .. 8

Last Word .. 8

PART ONE: Regular Device Drivers .. 9

Chapter 2 Hardware Context ... 13

2.1. Multibus Machines .. ,,;~;.......... 13

Multibus Memory Address Space and I/O Address Space ~ •.. ;.~ .. ;;. 13

Allocation of Multibus Memory ; ; .. ; ;;.L•....... ;.L

Allocation of Multibus I/O Space , : , , ,., ..

2.2. VMEbus Machines ... , :" ... , ;.

Sun-2 VMEbus Address Spaces .. ; ... """ :.'" ... ; .. ; ,

Sun-3/Sun-4 Address Spaces ... ~~~ .. :.:.u

Allocation of VMEbus Memory .. 22

-iii-

Contents - Continued

The Sun VMEbus to Multibus Adapter ... 24

Interrupt Vector Assignments 24

2.3. AThus Machines .. 25

Loadable Drivers ... 27

DOS and SunOS Environments .. 27

2.4. Hardware Peculiarities to Watch Out For .. 28

Multibus Device Peculiarities .. 28

Multibus Byte-Ordering Issues .. 28

Other Multibus-related Peculiarities .. 30

Sun-4/SP ARC Peculiarities .. 31

Oilier Device Peculiarities ... 32

2.5. DMA Devices .. 33

Sun Main-Bus DVMA ... 33

DMA on A.Thus Machines .. 36

Chapter 3 Overall Kernel Context ... 41

3.1. The System Kernel ... 41

3.2. Devices as "Special" Files ... 42

3.3. Run-Time Data Structures .. 47

The Bus-Resource Interface .. 49

Autoconfiguration-Related Declarations ... 55

Oilier Kernel/Driver Interfaces ... 56

Chapter 4 Kernel Topics and Device Drivers ... 61

4.1. Overall Layout of a Character Device Driver ... 61

4.2. User Space versus Kernel Space ... 63

4.3. User Context and Interrupt Context .. 63

4.4. Device Interrupts .. 64

4.5. Interrupt Levels ... 65

4.6. Vectored Interrupts and Polling Interrupts .. 66

4.7. Some Common Service Routines ... 69

Timeout Mechanisms ... 69

Sleep and Wakeup Mechanism ... 69

- iv-

Contents - Continued

Raising and Lowering Processor Priorities 70

Main Bus Resource Management Routines ... 71

Data-Transfer Functions ... 71

Kernel pr.intf () Function ... 72

Macros to Manipulate Device Numbers .. 72

Chapter 5 Driver Development Topics .. 75

5.1. Installing and Checking the Device .. 75

Setting the Memory Management Unit .. 75

Selecting a Virtual Address ... 76

Finding a Physical Address ... 79

Selecting a Virtual to Physical Mapping 79

Sun-2 Address Mapping ... 81

Sun-3 and Sun-4 Address Mapping ... 84

A Few Example PTE Calculations .. 87

Getting the Device Working and in a Known State 88

A Warning about Monitor U sage .. 90

5.2. Installation Options for Memory-Mapped Devices 90

Memory-Mapped Device Drivers .. 90

Mapping Devices Without Device Drivers .. 92

Direct Opening of Memory Devices .. 95

5.3. Debugging Techniques ... 97

Debugging with pr.intf () .. 98

Event -Triggered Printing .. 100

Asynchronous Tracing ... 101

kadb - A Kernel Debugger .. 102

5.4. Device Driver Error Handling .. 103

Error Recovery .. 103

Error Returns .. 103

Error Signals .. 104

Error Logging .. 104

Kernel Panics ... 104

5.5. System Upgrades ... 105

-v-

Contents - Continued

5.6. Loadable Drivers .. 105

Chapter 6 The "Skeleton" Character Device Driver 111

6.1. General Declarations in Driver .. 114

6.2. Autoconfiguration Procedures .. 115

probe () Routine ... 115

attach () Routine .. 117

6.3. open () and c10se () Routines ... 117

6.4. readO and write 0 Routines ... 119

Some Notes About the VIO Structure ... 120

6.5. Skeleton strategy () Routine ... 121

6.6. Skeleton start () Routine ... 122

6.7. intr 0 and po11 0 Routines ... 124

6.8. ioct1 () Routine .. 126

6.9. Skeleton Driver Variations ... 126

DMA Variations .. 126

Multibus or VMEbus DVMA ... 126

A DMA Skeleton Driver ... 127

Variation with "Asynchronous I/O" Support ... 130

Select Routines ... 131

Adding Asynchronous Notification .. 134

Adding an ioct1 () routine ... 134

Chapter 7 Configuring the Kernel .. 139

7.1. Background Information ... 139

7.2. An Example .. 141

7.3. Devices that use Two Address Spaces .. 145

7.4. Adding and Removing Loadable Drivers .. 146

Chapter 8 Pseudo-Device Drivers - A Ramdisk .. 151

8.1. A Ramdisk Driver ... 152

Ramdisk Source Code .. 152

Ramdisk Installation ... 153

-vi-

Contents - Continued

Ramdisk Test Program .. 156

PART TWO: STREAMS Programming .. 157

Chapter 9 Introduction to STREAMS ... 161

9.1. A Basic View of a Stream .. 162

System Calls .. 163

9.2. Benefits of STREAMS ... 165

Creating Service Interfaces ... 165

Manipulating Modules ... 165

Protocol Portability .. 165

Protocol Substitution .. 166

Protocol Migration ... 166

Module Reusability ... 167

9.3. An Advanced View of a Stream .. 168

Stream Head ... 169

Modules .. 169

Stream End ... 170

9.4. Building a Stream .. 171

Expanded Streams .. 172

Pushable Modules ... 172

9.5. Basic User Level Functions ... 173

STREAMS System Calls ... 173

An Asynchronous Protocol Stream Example ... 174

Initializing the Stream .. 175

Message Types .. 176

Sending and Receiving Messages .. 176

U sing Messages in the Example ... 177

Other User Functions .. 180

9.6. Kernel Level Functions .. 180

Messages .. 180

Message Allocation .. 182

-vii-

Contents - Continued

Put and Service Procedures ... 183

Put Procedures ... 183

Service Procedures ... 183

Kernel Processing ... 184

Read Side Processing .. 185

Driver Processing .. 185

CHARPROC ... 185

CANONPROC .. 186

Write Side Processing ... 186

Analysis .. 187

9.7. OtllerFacilities .. 187

Message Queue Priority .. 187

Flow Control .. 188

Multiplexing .. 190

Monitoring .. 192

Error and Trace Logging .. 193

9.8. Driver Design Comparisons .. 195

Environment .. 195

Drivers ... 195

Modules .. 196

9.9. Glossary .. 196

Chapter 10 STREAMS Applications Programming 201

10.1. Introduction .. 201

Streams Overview .. 201

Development Facilities .. 203

10.2. Basic Operations ... 204

A Simple Stream ... 204

Inserting Modules ... 206

Module and Driver Control ... 207

10.3. Advanced Operations ... 210

Advanced Input/Output Facilities ... 210

Input/Output Polling ... 210

- viii-

Contents - Continued

Asynchronous Input/Output .. 213

Clone Open ... 214

10.4. Multiplexed Streams ... 214

Multiplexor Configurations 214

Building a Multiplexor ,... 216

Dismantling a Multiplexor .. 221

Routing Data Through a Multiplexor .. 222

10.5. Message Handling .. 223

Service Interface Messages 223

Service Interfaces 223

The Message Interface ... 224

Datagram Service Interface Example .. 226

Accessing the Datagram Provider .. 228

Closing the Service 231

Sending a Datagram ... 231

Receiving a Datagram .. 232

Chapter 11 STREAMS Module and Driver Programming 237

11.1. Introduction .. 237

Development Facilities .. 238

11.2. Streams Mechanism .. 238

Stream Construction .. 239

O])ening a Stream 241

Adding and Removing Modules .. 242

Closing 242

11.3. Modules .. 243

Module Declarations ... 243

Module Procedures .. 245

Module and Driver Environment ... 246

11.4. Messages .. 247

Message Format ... 247

Message Generation and Reception .. 249

Filter Module Declarations ... 249

- ix-

Contents - Continued

bappend () Subroutine .. 250

Message Allocation ... 251

Put Procedure .. 251

11.5. Message Queues and SelVice Procedures ... 253

The queue_t Structure ... 253

SelVice Procedures ... 254

Message Queues and Message Priority .. 254

Flow Control.. 255

Example .. 256

Procedures ... 257

11.6. Drivers ... 259

OvelView of Drivers .. 259

Driver Flow Control .. 261

Driver Programming ... 262

Driver Declarations .. 262

Driver Open .. 264

Driver Processing Procedures .. 265

Driver Flush Handling .. 266

Driver Interrupt ... 266

Driver and Module Ioctls ... 267

Driver Close ... 269

11.7. Complete Driver .. 269

Cloning ... 269

Loop-Around Driver ... 270

Write Put Procedure ... 273

Stream Head Messages .. 276

Service Procedures ... 276

Close ... 277

11.8. Multiplexing .. 278

Multiplexing Configurations .. 278

Connecting Lower Streams ... 279

Disconnecting Lower Streams ... 281

Multiplexor Construction Example .. 281

-x-

Contents - Continued

Multiplexing Driver ... 284

Upper Write Put Procedure .. 287

Lower QUEUE Write Service Procedure .. 290

Lower Read Put Procedure .. 292

11.9. Service Interface .. 294

Definition ... 294

Message Usage ... 294

Example .. 295

Declarations .. 295

Service Interface Procedure ... 297

11.10. Advanced Topics .. 299

Recovering From No Buffers ... 299

Advanced Row Control .. 301

Signals ... 302

Control of Stream Head Processing ... 303

Read Options .. 303

Write Offset .. 303

Chapter 12 SunOS STREAMS Topics ... 307

12.1. Configuring STREAMS Drivers .. 307

Module Configuration .. 308

Tunable Parameters ... 309

System Error Messages ... 310

12.2. STREAMS in SunOS ... 311

STREAM Modules .. 311

SunOS STREAMS Extension ... 312

STREAMS Portability ... 312

User Line Disciplines 312

Appendix A Supplementary STREAMS Material... 317

A.l. Kernel Structures .. 317

streamtab ... 317

QUEUE Structures ... 317

- xi-

Contents - Continued

A.2. Message Structures .. 318

i.ocblk ... 319

linkblk .. 319

A.3. Message Types ... 320

Ordinary Messages ... 320

Priority Messages .. 325

A.4. Utilities ... 327

Buffer Allocation Priority .. 328

adjmsq () - Trim Bytes in a Message ... 329

allocb () - Allocate a Message Block ... 329

backq () - Get Pointer to Queue Behind a Given Queue 329

bufcall () - Recover from Failure of allocb () 330

canput () - Test for Room in a Queue ... 330

copyb () - Copy a Message Block ... 330

copymsq() - Copy a Message ... 331

datamsq () - Test Whether Message is a Data Message 331

dupb () - Duplicate a Message Block Descriptor 331

dupmsq () - Duplicate a Message ... 331

enableok () - Re-allow Queue to be Scheduled 332

flushq() -FlushaQueue ... 332

freeb () - Free a Message Block ... 332

freemsq () - Free All Message Blocks in a Message 332

qetq () - Get a Message from a Queue ... 332

i.nsq () - Put a Message at a Specific Place in a Queue 333

linkb () - Concatenate Two Messages into One 333

msqdsi.ze () - Get Number of Data Bytes in a Message 333

noenable () - Prevent a Queue from Being Scheduled 333

OTHERQ () - Get Pointer to the Mate Queue ... 334

pul1upmsq () - Concatenate Bytes in a Message 334

putbq () - Return a Message to the Beginning of a Queue 334

putctl () - Put a Control Message .. 334

putctll () - Put One-byte Parameter Control Message 335

putnext 0 - Put a Message to the Next Queue 335

-xii-

Contents - Continued

putq () - Put a Message on a Queue ... 335

qenable () - Enable a Queue .. 336

qreply () - Send Reverse-Direction Message on Stream 336

qsize () - Find the Number of Messages on a Queue 336

RD () - Get Pointer to the Read Queue .. 336

rmvb () - Remove a Message Block from a Message 336

rmvq () - Remove a Message from a Queue ... 337

splstr () - Set Processor Level ... 337

strlog () - Submit Messages for Logging .. 337

testb () - Check for an Available Buffer ... 337

unlinkb () - Remove Message Block from Message Head 338

WR () - Get Pointer to the Write Queue ... 338

A.5. Design Guidelines .. 338

General Rules .. 338

System Calls .. 339

Data Structures ... 339

Header Files ... 340

Accessible Symbols and Functions .. 340

Rules for Put and Service Procedures ... 341

A.6. STREAMS Glossary .. 343

PART THREE: Non-STREAMS Appendices ... 347

Appendix B Summary of Device Driver Routines .. 351

B.1. Standard Error Numbers ... 351

B.2. Device Driver Routines ... 351

xxattach () - Attach a Slave Device .. 352

xxclose () - Close a Device .. 352

xxintr () - Handle Vectored Interrupts .. 352

xxioctl () - Miscellaneous I/O Control.. 353

x.xmmap () - Mmap a Page of Memory .. 355

xxm.inphys () - Detennine Maximum Block Size 355

- xiii-

Contents - Continued

xxopen () - Open a Device for Data Transfers 356

xxpol.l. () - Handle Polling Interrupts .. 357

x.xprobe () - Detennine if Hardware is There 357

xxread () - Read Data from Device .. 358

xxsel.ect () - Select Support ... 358

xxstrateqy () - High-Level I/O ... 359

xxwri te 0 - Write Data to Device .. 359

Appendix C Kernel Support Routines ... 363

btodb () - Convert Bytes to Disk Sectors ... 363

copyin 0 -Move Data From User to Kernel Space 363

copyout () - Move Data From Kernel to User Space 363

CDELAY () - Conditional Busy Wait .. 364

DELAY () - Busy Wait for a Given Period .. 364

dma _done () - Free the DMA Channel .. 364

dma _setup () - Set Up for a DMA Transfer 364

qsiqnal. () - Send Signal to Process Group 368

hat _qetkpfnum () - Address to Page Frame Number 368

inb () - Read a Byte from an I/O Port .. 368

iodone () - Indicate I/O Complete ... 369

iowait () - Wait for I/O to Complete ... 369

kmem _ al.l.oc () - Allocate Space from Kernel Heap 369

kmem_free () -Return Space to Kernel Heap 369

l.oq () - Log Kernel Errors .. 370

MBI _ ADDR () - Get Address in DVMA Space 370

mapin () - Map Physical to Virtual Addresses 370

mapout () - Remove Physical to Virtual Mappings 372

mbrel.se () - Free Main Bus Resources ... 372

mbsetup () - Set Up to Use Main Bus Resources 372

outb () - Send a Byte to an I/O Port ... 373

panic 0 - Reboot at Fatal Error ... 373

peek (), peekc (), peekl. () - Check and Read 373

physio 0 - Block I/O Service Routine .. 373

-xiv-

Contents - Continued

poke (), pokec (), pokel. () - Check and Write 375

printf 0 - Kernel PrintfFunction ... 376

pritospl. 0 - Convert Priority Level .. 376

psiqnal. () - Send Signal to Process ... 377

rmall.oc () - General-Purpose Resource Allocator 377

rmfree () - Recycle Map Resource ... 378

selwakeup () -Wakeup a Select-blocked Process 378

sl.eep () - Sleep on an Event .. 378

spl.n () - Set CPU Priority Level .. 379

splx () - Reset Priority Level ... 379

suser () - Reset Priority Level ... 380

swab () - Swap Bytes ... 380

timeout () - Wait for an Interval .. 380

uiomove () - Move Data To or From an uio Structure 380

untimeout () - Cancel timeout () Request 381

uprintf () - Nonsleeping Kernel PrintfFunction 381

ureadc 0, uwritec () - uio Structure Read/Write 381

wakeup 0 - Wake Up a Process Sleeping on an Event 382

Appendix D User Support Routines .. 385

free () - Free Allocated Memory .. 385

qetpaqesize () - Return Pagesize .. 385

mmap () - Map Memory from One Space to Another 385

munmap () - Unmap Pages of Memory .. 386

Appendix E Sample Driver Listings ... 389

E.1. Skeleton Board Driver ... 390

E.2. Sun-2 Color Graphics Driver ... 398

E.3. Sky Hoating-Point Driver .. 415

E.4. Versatec Interface Driver .. 423

E.5. Sun386i Parallel Port Driver .. 435

Index ... 445

-xv-

Tables

Table 1-1 VMEbus Address-space Names ... 7

Table 2-1 Sun-2 Multibus Memory Types ... 14

Table 2-2 Sun-2 Multibus Memory Map .. 17

Table 2-3 Sun-2 Multibus I/O Map .. 17

Table 2-4 Sun-2 VMEbus Memory Types ... 18

Table 2-5 Generic VMEbus (Full Set) ... 20

Table 2-6 Sun-3/Sun-4 VMEbus Address Types ... 20

Table 2-7 16-bit VMEbus Address Space Allocation .. 23

Table 2-8 24-bit VMEbus Address Space Allocation .. 23

Table 2-9 32-bit VMEbus Address Space Allocation (Sun-3s and
Sun-4s Only) ... 23

Table 2-10 VMEbus Address Assignments for Some Devices 24

Table 2-11 Vectored Interrupt Assignments ... 25

Table 2-12 Interrupt Channel Assignments ... 26

Table 2-13 Sun386i DMA Channel Assignments .. 27

Table 3-1 A Sample Listing of the /dev Directory ;:;.;;:; ;' :

Table 3-2 Current Major Device Number Assignments ;;:.·i:i:;: ;;;.:.:. ;.;,.·;:; ;·

Table 5-1 Sun-2 PTE Masks ... ,.,,~ " .. ,.;.,.~;;"",;.;" .. ~ ;;;;;; ... ,.~~."

Table 5-2 Sun-3/Sun-4 PTE Masks ... ;;,;" ... " ;.;,;,;.;;:;.,', .. ;;».

Table 5-3 Virtual Memory Devices ... ; .. ,.;.; ,."' .. ;;:. i,,;~.,.;·;;:i:.+ .. ·

- xvii-

Figures

Figure 2-1 Sun-2 Multibus Address Spaces .. 15

Figure 2-2 Sun-2 VMEbus Address Spaces .. 19

Figure 2-3 Sun-3 VMEbus Address Spaces .. 21

Figure 2-4 Sun-4 VMEbus Address Spaces .. 22

Figure 2-5 System DVMA .. 35

Figure 3-1 I/O Paths in the UNIX system .. 44

Figure 5-1 Sun-2 Address Mapping ... 77

Figure 5-2 Sun-3 Address Mapping ... 77

Figure 5-3 Sun-4 Address Mapping ... 78

Figure 5-4 Sun386i Address Mapping .. 78

Figure 5-5 Sun-2 MMU .. 81

Figure 5-6 Sun-3 MMU .. 84

Figure 5-7 Sun-4 MMU .. 85

Figure 9-1 Basic Stream

Figure 9-2 STREAMS-Related Manual Pages " ,;.;;.,.;:,.,.; .• " ••• ,

Figure 9-3 Protocol Module Portability .. ;; ;.; ; ••• ,., .. "".,.;:': ;;";"':'.

Figure 9-4 Protocol Migration ... ;; " "i;.:;;.: ,',.,,,:::':::

Figure 9-5 Module Reusability .. ; ; ;; ;;.; ,;; ;,;,"".

Figure 9-6 Stream In More Detail ... ; ; .. ,;.;.; ;,;.;;; ;.;:; .. ;;

Figure 9-7 Setting Up a Stream .. : ... , ... " .. ; ;<;; _.:,.:_, ..

Figure 9-8 Idle Stream Configuration for Example ; ,

- xix-

Figures - Continued

Figure 9-9 Asynchronous Tenninal Streams .. 179

Figure 9-10 A Message ... 181

Figure 9-11 Messages on a Message Queue .. 182

Figure 9-12 Operational Stream for Example .. 184

Figure 9-13 Module Put and Service Procedures ... 185

Figure 9-14 Streams Message Priority ... 188

Figure 9-15 How Control .. 189

Figure 9-16 Internet Multiplexing Stream ... 190

Figure 9-17 X.25 Multiplexing Stream .. 191

Figure 9-18 Error and Trace Logging ... 194

Figure 10-1 Basic Stream ... 203

Figure 10-2 Stream to Communications Driver .. 205

Figure 10-3 Case Converter Module ... 207

Figure 10-4 Many-to-one Multiplexor ... 215

Figure 10-5 One-to-many Multiplexor ... 215

Figure 10-6 Many-to-many Multiplexor ... 215

Figure 10-7 Protocol Multiplexor ... 216

Figure 10-8 Before Link ... 217

Figure 10-9 IP Multiplexor After First Link ... 218

Figure 10-10 IP Multiplexor .. 219

Figure 10-11 TP Multiplexor ... 220

Figure 10-12 Protocol Substitution .. 223

Figure 10-13 Service Interface .. 224

Figure 11-1 Downstream Stream Construction ... 240

Figure 11-2 QUEUE data structures .. 240

Figure 11-3 Message Fonn and Linkage ... 248

Figure 11-4 Message Queue Priority ... 255

Figure 11-5 Device Driver Streams ... 261

Figure 11-6 Loop Around Streams ... 271

Figure 11-7 Internet Multiplexor Before Connecting .. 282

Figure 11-8 Internet Multiplexor After Connecting ... 283

-xx-

Figures - Continued

Figure 11-9 Example Multiplexor Configuration .. 287

Figure A-I M_PROTO and M_PCPROTO Message Structure 321

- xxi-

1
Introduction

Introduction ... 3

1.1. Device Independence .. 3

1.2. Types of Devices ... 4

1.3. System V Compatibility .. 6

1.4. Major Development Stages .. 6

1.5. Warning To Microcomputer Programmers ... 6

1.6. Address-Space Terminology ... 7

1.7. Manual Overview .. 8

Regular Drivers 8

STREAMS Drivers .. 8

Last Word .. 8

1.1. Device Independence

1
Introduction

This manual is a guide to adding drivers for new devices to the SunOS kernel. It
comes is three parts.

o Part One, Regular Device Drivers, discusses a variety of issues relevant to
standard (non-STREAMS) device drivers. It is intended to be self
contained, and to include all necessary discussion of hardware and kernel
topics.

o Part Two, STREAMS Programming, discusses topics relevant to the con
struction and installation of STREAMS drivers and modules. It also
includes STREAMS-related reference material.

o Part Three, Non-STREAMS Appendices, includes reference material related
to regular (non-STREAMS) drivers.

Throughout the manual, statements that apply only to specific machines, e.g.
Sun-4s or Sun386i's, will be clearly flagged to that effect.

One of SunOS's major services to application programs is to provide a device
independent view of the 110 hardware. In this view, user processes (application
programs), see devices as "special" types of files that can be opened, closed and
manipulated just like regular files. The user process manipulates devices as it
would files, by making system calls.

Once a system call carries process execution into the SunOS kernel, however, it
becomes clear just how "special" devices really are. The kernel distinguishes
between real files and device special files, and translates operations on the latter
into calls to their corresponding device drivers. These drivers control all device
operations; devices do nothing until their drivers tell them to.

Thus, system calls provide the interface between user processes and the SunOS
kernel, while device drivers provide an interface between the kernel itself and its
peripheral devices. Device drivers are thus crucial elements in SunOS's overall
device-independent scheme of things. Device-drivers are the only parts of the
system that know, or care, if a device is DMA (Direct Memory Access), PIO
(Programmed 110), or memory-mapped.

The kernel supplied with the Sun system is a configurable kernel, meaning that it
is possible to add new device driver modules to your system by rebuilding your
kernel, even if you don't have access to the system source code. On Sun386i

+~,!! 3 Revision A, of9 May 1988

4 Writing Device Drivers

1.2. Types of Devices

systems, the loadable driver capability makes it possible to attach a driver to a
system without rebuilding the kernel and rebooting the system. For more infor
mation on how to reconfigure your kernel to include new device drivers, see the
Configuring the Kernel and SunOS STREAMS Topics chapters of this manual, the
Adding Hardware to Your System chapter of Network Programming and the
config (8) man page.

This document is aimed at Sun users who wish to connect new Multibus,
VMEbus or A Thus devices to their system. It does not, however, explain how to
write drivers for all possible Sun devices.

We can classify devices into eight major categories:

1. Co-processors.

2. Disks and tapes.

3. Network interface drivers such as Ethernet or :x.25.

4. SCSI devices.

5. Serial communications multiplexors.

6. General DMA devices such as driver boards for raster-oriented printers or
plotters. DMA devices contain their own processors and, once dispatched,
perform 110 independently of the system CPU by stealing memory cycles.

7. Programmed 110 devices, that is, devices which send and receive data on the
main system bus under direct control of the system CPU.

8. Frame buffers and other memory-mapped devices. Such devices are typi
cally mapped into user-process memory and then accessed directly.

9. So called pseudo devices, which are actually drivers without associated
hardware devices.

This manual does not cover driver development for devices in categories 1, 2, 3,
4 and 5. It does discuss - in Part one - drivers for the devices in categories 6,
7, 8 and 9 and - in Part Two - gives STREAMS-related information of interest
to programmers planning drivers for serial communications devices. The major
ity of the devices which users will want to add to their systems are found in
categories 6 to 9. These include:

o input devices like mice, digital tablets and analog-to-digital converters,

o output and display devices like frame buffers, printers, and plotters,

o utility peripherals like array and graphics processors.

This manual doesn't support the development of co-processor drivers for the sim
ple reason that co-processors, while certainly devices, are so intimately linked to
the CPU that they are integrated below the driver level of the kernel.

It also excludes tape and disk drivers-, or indeed drivers for any structured or
block 110 devices, for such drivers are quite difficult to write well. Besides, most
customers will find that the structured-device drivers provided with the standard

Revision A, of9 May 1988

Chapter 1 - Introduction 5

system software fill their needs quite adequately. The extensive use of standards
within the Sun product line will allow them to use hardware interfaces already
provided by Sun to drive whatever tape and disk units they wish to use. If this
turns out not to be the case, an experienced driver developer will have to be con
sulted. (You will also want to start with an existing driver, and will thus need a
source-code license).

Finally, this manual doesn't really discuss the issues relevant to serial communi
cations and local network interface driver development. Again, such drivers are
rather involved, and users will almost certainly find the Sun product line to con
tain devices adequate to their task. (And again, you will need a source license to
go it alone).

This manual is primarily concerned with unstructured or character (as opposed
to structured or block) devices. This distinction is often made, but seldom
clearly, and it may be helpful then to consider structured devices as only those
upon which SunOS filesystems can be mounted. Such devices (almost always
disks, but tape drives are possible) support random-access I/O by way of the sys
tem buffer-caching mechanism. They almost always support a second,
character-oriented style of 110, often called raw liD, but this doesn't make them
character devices. Their drivers tend to implement raw 110 with the same
mechanisms constructed for the main task of supporting block liD.

Character devices, on the other hand, do not support random-access liD, and
file systems cannot be mounted upon them. Their drivers typically support read
and/or write operations, but these operations are fundamentally different than in
block devices. Sometimes character drivers use mechanisms, routines and struc
tures that are primarily intended for block drivers, but this shouldn't be allowed
to confuse matters; they use them only because it's convenient to do so. 1

The techniques described in this manual can also be used to build pseudo-device
drivers. Such drivers can be useful in a variety of ways. They can be used to
implement virtual devices (for example, windows that behave as virtual tenni
nals) or for extending the capabilities of the kernel in highly localized and port
able fashions (for example, by building a pseudo device to implement a specific
kind of semaphore facility). What they all have in common is the absence of
hardware; the driver actually implements and controls virtual software devices.

1 To jump ahead for a moment, the kernel routines which, though written for block drivers are also used for
character drivers are physio (), mbsetup () and mbrelse (). The driver xxstrategy () routine is also
intended primarily for block devices, though it can be used in character drivers which buffer their 110 (typically
those which don't support a tty-style interface). In such cases it's not, as it is in block drivers, an entry point,
and it doesn't implement any strategy to speak of. But ph y s i 0 () requires its existence,. as it does the use of
the bu f structure, and so they are used. The main point to keep in mind is that character drivers use block
driver mechanisms because it's convenient for them to do so, but this doesn't make them block drivers. In
particular, character drivers never have anything to do with the kernel buffer cache.

~~sun ~ microsystems
Revision A, of 9 May 1988

6 Writing Device Drivers

1.3. System V
Compatibility

1.4. Major Development
Stages

1.5. Warning To
Microcomputer
Programmers

The SunOS applications interface is almost completely compatible with that of
AT &T' s System V UNIX system. The driverlkernel interface, however, is not.
In general, though, drivers that were written for System V (or V7 or 4.1BSD,
which have driver interfaces similar to System V) will be easily ported to SunOS,
because, with the exception of drivers for pseudo devices, drivers are far more
sensitive to the architectural details of-the machines upon which they run than to
the details of the kernels to which they interface.

Sun device drivers differ from typical System V drivers because the Sun operat
ing system has evolved from 4.2BSD and, in 4.2BSD, the kernel driver interface
was significantly restructured. This doesn't mean that programmers with experi
ence developing System V drivers will find Sun drivers to be altogether foreign.
In fact, the overall structure of Sun drivers is largely identical to the structure of
System V drivers. Nevertheless, there are differences, and from some perspec
tives they are quite significant. See the Overall Kernel Context chapter of this
manual for the details of the Sun driver/kernel interface.

The greatest differences between Sun drivers and drivers for other systems are
due not to operating system differences but rather to differences between the Sun
Memory-Mangement Unit (MMU) and the MMUs of other systems. Conse
quently, drivers which map addresses require a lot of Sun-specific code.

To add a new device and its driver to the system you must:

1. Get the device hardware into a state where you know it works as advertised.
It is extremely difficult to debug the driver software if the device hardware
isn't first working properly.

2. Write the device driver itself.

3. Add the driver to a kernel's configuration file to specify a system containing
the new driver, and compile this system. On the Sun386i, if you have writ
ten the driver as a loadable driver, then compile the driver and use the
rnodload (1) command to load the driver into a running system.

4. Debug the driver.

5. Repeat steps 2 to 4 as necessary. Drivers are often written (and debugged)
by stages, with development proceeding long after early versions are
configured into the kernel.

Sun computers are virtual-address machines, and, as such, their addressing
schemes are far more complex than anything that microcomputer programmers
typically confront. In virtual-address machines, physical addresses have a com
plex and rapidly changing relationship to the virtual addresses which user pro
grams manipulate. The kernel continually maps, remaps and unmaps pages of
virtual memory to accommodate the limits of system physical memory. This
means that the kernel (including its device drivers) cannot assume that any physi
cal address in user memory will not be snatched away by the paging daemon
unless it explicitly locks the physical page containing that address into memory.
The details of how this locking is done will be given later, in discussions of the

~~sun ~ microsystems
Revision A, of 9 May 1988

1.6. Address-Space
Terminology

Table 1-1

Chapter 1 - Introduction 7

kernel support routine physio () ; for the moment simply note that physical
addresses have a complex and transient relationship to virtual addresses.
Specific all y:

o Each user process (and, on Sun-2 machines, the kernel as well) has its own
distinct virtual address space. A user process (or the kernel) can make
arrangements to share address space with another process - that is, to have
part of its address space mapped to the same physical memory as a part of
the address space of another process - but this must be done explicitly.

o In similar regard, a user process can elect to have a bus address mapped into
its address space, but this doesn't happen automatically.

In this manual, we will adopt a VMEbus address-space naming convention that
makes both address size and data size explicit. The first number in the name
indicates the number of bits in the address and the second number indicates the
number of bits in the data length. For example, the space with a 24-bit address
and a 16-bit data length will be known as vme 2 4 d16. This naming convention
is used elsewhere, but others are as well, as indicated in the following table.

VMEbus Address-space Names

Address-Space Name

vme16d16
vme24d16
vme32d16
vme16d32
vme24d32
vme32d32

Other Name(s)

VME D16A16 and vme16
VME D16A24 and vme24
VMED16A32
VMED32A16
VMED32A24
VME D32A32 and vme32

The short names in the second column (vme16, vrne24 and vme32) are com
monly used, but they can seem ambiguous to the novice, and will consequently
be avoided in this manual.

Note that there are two situations where the system expects the name of a
VMEbus address space as input. In these situations, either the vme 16 d16 or the
vme 16 forms are acceptable. These situations are:

o within the kernel config file, and

o when naming actual memory devices ("special" files in the / dev directory).
See the Mapping Devices Without Device Drivers section of the Driver

Revision A, of 9 May 1988

8 Writing Device Drivers

1.7. Manual Overview

Regular Drivers

STREAMS Drivers

Last Word

Development Topics chapter for more information.

Chapter 2 is an overview of the hardware environment provided by Sun Worksta
tions to their drivers. The emphasis is on bus and address-space related issues.

Chapter 3 is an overview of the kernel environment within which drivers operate.

Chapter 4 covers a number of topics relevant to drivers: address spaces, inter
rupts and so on, in greater detail. It also surveys the most important classes of
services provided by the kernel to its drivers.

Chapter 5 covers development topics, including the initial installation and
checkout of devices, driver debugging and error handling.

Chapter 6 provides a detailed discussion of a driver for a very simple hypotheti
cal character device.

Chapter 7 explains how to add new drivers to the SunOS kernel.

Chapter 8 explains pseudo-drivers, and provides source and installation instruc
tions for a real ramdisk pseudo-driver.

Chapter 9 is and introduction to the STREAMS mechanism.

Chapter 10 describes the development of user-level STREAMS applications.

Chapter 11 discusses, in detail, the development of STREAMS drivers and
modules.

Chapter 10 discusses those aspects of the STREAMS mechanism that are unique
to SunOS. It covers the few STREAMS-specific configuration topics.

Finally, there are appendices containing information useful to driver developers.
These include a set of STREAMS-specific appendices (included in Part II), a
summary of kernel support functions useful in developing device drivers,
descriptions of user-level routines useful in driver development; and a number of
annotated driver listings.

Remember, spend as much time as you need in the Sun PROM monitor poking,
prodding and cajoling your device until you're thoroughly familiar with its
behavior. This will save you a lot of grief later. The details on how to proceed
with a monitor checkout of your device are found in the Installing and Checking
the Device section of the Driver Development Topics chapter.

And finally, note that if you have no previous experience writing UNIX device
drivers, you should expect to seek some help from the Sun technical support or
consulting organizations, or from an outside consultant experienced with driver
development.

Revision A, of 9 May 1988

PART ONE: Regular Device Drivers

2
Hardware Context

Hardware Context .. 13

2.1. Multibus Machines ... 13

Multibus Memory Address Space and I/O Address Space 13

Allocation of Multibus Memory .. 16

Allocation of Multibus I/O Space ... 17

2.2. VMEbus Machines ... 18

Sun-2 VMEbus Address Spaces ... 18

Sun-3/Sun-4 Address Spaces ... 20

Allocation of VMEbus Memory .. 22

The Sun VMEbus to Multibus Adapter ... 24

Interrupt Vector Assignments .. 24

2.3. ATbus Machines .. 25

Loadable Drivers ... 27

DOS and SunOS Environments .. 27

2.4. Hardware Peculiarities to Watch Out For .. 28

Multibus Device Peculiarities .. 28

Multibus Byte-Ordering Issues .. 28

Other Multibus-related Peculiarities .. 30

Sun-4/SP ARC Peculiarities .. 31

Other Device Peculiarities ... 32

2.5. DMA Devices .. 33

Sun Main-Bus DVMA ... 33

DMA on A Tbus Machines .. 36

2.1. Multibus Machines

Multibus Memory Address
Space and I/O Address Space

2
Hardware Context

Computer 110 architectures are far more dependent upon bus structure than they
are upon CPU type, and device drivers, oriented as they are towards 110, must
have intimate knowledge of the bus characteristics of the machines on which
they are running. For example, many Multibus machines do not support vectored
interrupts 2 and thus drivers for interrupt driven devices which are intended to
run on Multibus machines must provide polling facilities. Fortunately, the Sun
kernel provides facilities (described in the Other Kernel/Driver Interfaces section
of the Overall Kernel Context chapter) by which a driver can determine the type
of the machine upon which it's running.

The MC680XO family of processors does all its I/O via a process known as
"memory mapping." What this means is that the processor sees no difference
between memory and peripheral devices - all input-output operations are per
formed by storing data and fetching data from the same memory space. The
Multibus, on the other hand, was originally designed for processors, like those of
the Intel 8080 family, which have two separate address spaces. Such processors
have one kind of instruction for storing data in memory or fetching data from
memory (instructions such as MOV), and another, different kind of instruction
(such as IN and OUT) for transferring data to or from peripheral devices.
Reflecting the architecture of such processors, the Multibus has'two address
spaces.

Multibus memory space
is used for memory or devices that look like memory. Many devices -
commonly known as "memory mapped" devices - are designed to be
accessed as memory, and drivers for such devices can "map" them into user
virtual memory space and then perform device I/O by simply reading and
writing the device's memory as part of normal address space. Such
memory-mapped drivers tend to be quite simple, and so it's notable that dev
ices not explicitly designed to be memory mapped can, under a restricted set
of circumstances, be driven by memory mapping. The restrictions are,

2 The Multibus itself, as it turns out, actually does support vectored intenupts, but not in a way lhat can
reasonably be used with the MC680XO family of processors.

+§!..!! 13 Revision A, of 9 May 1988

14 Writing Device Drivers

however, fairly severe. Such drivers cannot, for example, have xxioctl ()
routines. See the Mapping Devices Without Device Drivers section of the
Driver Development Topics manual for more details. The Sun-2 Color
Board is a good example of a device that is designed to be memory mapped,
and a listing of its driver can be found in the Sample Driver Listings appen
dix.

M ultibus 110 address space
is another "space" entirely separate from normal memory. Typically used as
an area to which device registers can be mapped, I/O space was originally
introduced to keep such registers out of limited primary address space by
providing a means of making peripherals, rather than system memory,
respond to the bus whenever given I/O control lines were asserted by the
CPU. (Such a setup also reduces hardware costs by keeping the number of
address lines small.) Devices which have their control and status registers
mapped to Multibus I/O address space are said to be "I/O mapped" devices.

The MC680XO family, of course, no longer suffers the addressing limitations that
made the dual-space architecture of the Multibus so attractive. The VMEbus, in
similar regard, is no longer structured around separate "memory" and "I/O"
spaces. (The term "I/O space" does continue to be used, from time to time, with
reference to VMEbus-based systems and devices. Such use, however, is largely
by way of analogy with Multibus systems, and it shouldn't be taken too literally).

Be aware that generic Multibus memory space can be either 20-bit or a 24-bit.
(Sun normally uses 20-bit Multibus memory addresses, though when a Multibus
card is installed in a VMEbus system with a VMEbus/Multibus adapter, 24-bit
addresses are used). In similar regard, a generic Multibus can provide either an
8-bit or 16-bit I/O space, and Sun uses only the 16-bit Multibus I/O space. Note,
however, that some older Multibus boards accept only 8-bit Multibus I/O
addresses.

Sun Multibus systems actually have four "address spaces," corresponding to the
four types of memory (each type has an identifying number associated with it, a
number which is used by the MMU in computing PrE's (Page Table Entries).
See the Sun-2 Address Mapping section of the Driver Development Topics
chapter for details. Though you will seldom deal with the on-board address
spaces, you're best off understanding what they are. The following table thus
contains not only the two Multibus spaces, but the "on board" memory and I/O
spaces as well. It's within these spaces, resident on the CPU board itself, that
SunOS is run.

Table 2-1 Sun-2 Multibus Memory Types

Type Description Address Size Address Range

0 On-Board Memory 23 bits OxO Ox7FFFFF
1 On-Board I/O Space 14 bits OxO Ox3rFF
2 Multibus Memory 20 bits OxO OxFFFFF
3 Multibus I/O Space 16 bits OxO OxFFFF

~~sun ~~ microsystems
Revision A, of 9 May 1988

CPU

Figure 2-1

24 bits

It

:
Vi~ual
Address

(CPU or DVMA)

:

:

Chapter 2 - Hardware Context 15

The following schematic view of the Sun-2 Multibus may help the driver
developer to visualize the larger hardware context within which drivers operate
(when running on a Sun-2 Multibus machine.)

Sun-2 Multibus Address Spaces

16 bits
Multibus

110

type
2 bits - 20 bits

Multibus

23 bits Memory
MMU

It

:

Phy~ical 14 bits OnBoard
Address 110

23 bits OnBoard
Memory

Note some significant aspects of addressing layout as indicated in this table.

D The Memory Management Unit is at the center of the picture, a position that
reflects its importance in the addressing scheme of all Sun machines,
VMEbus based as well as Multibus based. (The centrality of the MMU will
become quite clear when you later set out to allocate a physical address to
your device, and then examine/set it with the PROM monitor.)

.~sun
• microsystems

Revision A, of 9 May 1988

16 Writing Device Drivers

Allocation of Multibus
Memory

D Secondly, the input address of the MMU is a 24-bit virtual address. It may
originate with the CPU, or come from a DMA bus master; it makes no
difference.

D The output is a 23-bit physical address and a 2-bit address type. The
address type specifies one of the four address spaces indicated at the right of
the diagram.

D The four address spaces are to the right. The space corresponding to the
incoming virtual address is a function of both the address and the memory
type. Note that only the top two memory spaces (Multibus 110 and Multibus
Memory) are accessible by way of the Multibus; the two On-Board memory
spaces are accessed directly and are seldom of concern to non-Sun driver
developers.

Programs can only reference driver address spaces in terms of virtual addresses
which are then translated by the MMU into physical addresses within the
appropriate physical address space.

Here are some notes about the allocation of Multibus Memory resources in the
Sun system.

No devices may be assigned addresses below Ox40 000 in Multibus memory
space since the CPU uses these addresses for DVMA. (See the end of this
chapter for a discussion of DVMA).

The table on the next page shows a map of how Multibus Memory space is laid
out in the Sun system. Note that this memory map, as well as all of those that
follow, is only a general guide. To be sure that you are not installing a device at
a location that will put it in conflict with existing devices, it's necessary to check
the configuration of the specific systems into which it will be installed. The best
way to do so is to check the local config file for the physical addresses of the dev
ices installed within the bus of interest. This will probably give you enough
information, but if you still think that there may be a conflict, and if you have a
Sun source license, you can check the driver header files to determine the amount
of space consumed on the bus by existing devices. With the exception of the Sky
board, these devices can be rearranged. Also note the possibility that your
machine will have devices attached to it, and taking up bus space, even though
those devices do not appear in the config file. This possibility exists because the
xxmmap () system call can sometimes be used to drive a device without instal
ling it in the formal sense - see the Mapping Devices Without Device Drivers
section of the Driver Development Topics chapter for more details.

+~I!! Revision A. of 9 May 1988

Chapter 2 - Hardware Context 17

Table 2-2 Sun-2 Multibus Memory Map

Allocation of Multibus I/O
Space

Table 2-3

Address

OxOOOOO - Ox3FFFF
Ox40000 - Ox7FFFF
Ox80000 - Ox83800
Ox84000 - Ox87800
Ox88000 - Ox8B800
Ox8COOO - Ox8F800
Ox90000 - Ox9F800
OxAOOOO - OxAF800
OxBOOOO - OxBF800
OxCOOOO - OxDF800
OxEOOOO - OxE1800
OxE2000 - OxE3800
OxE4000 - OxE7COO
OxE8000 - OxF7800
OxF8000 - OxFF800

Device

DVMA Space (256 Kilobytes)
Sun Ethernet Memory (# 1) (256 Kilobytes)
SCSI (# 1) (16 Kilobytes)
SCSI (#2) (16 Kilobytes)
Sun Ethernet Control Info (# 1) (16 Kilobytes)
Sun Ethernet Control Info (#2) (16 Kilobytes)
*** FREE *** (64 Kilobytes)
Sun Ethernet Memory (#2) (64 Kilobytes)
*** FREE *** (64 Kilobytes)
Sun Model 100/150 Frame Buffer (128 Kilobytes)
3COM Ethernet (#1)
3COM Ethernet (#2)
*** FREE *** (16 Kilobytes)
Reserved for Color Devices (64 Kilobytes)
*** FREE *** (16 Kilobytes)

Multibus 110 address space is specified in the config file as mbio. From the
PROM monitor, Multibus 110 space begins at 0 xEB 0000, and extends to
OxECOOOO.

Prior to Sun Release 3.0, the system made the assumption that any address lower
than 0 x 1 0000 that it found in its config file was a Multibus I/O address. With
current releases this is no longer true; now the bus type of every address must be
explicitly given.

The following table of generic Multibus I/O usage, like the table above, is
intended only as a guide.

Sun-2 Multibus I/O Map

Address

OxOO40 OxOO47
OxOOAO - OxOOA3
Ox0200 - Ox020F
Ox0400 Ox047F
Ox0480 - Ox057F
Ox0620 - Ox069F
Ox2000 - Ox200F
OxEE40 OxEE4F
OxEE60 - OxEE6F

Device Type

Interphase Disk Controllers
CPC TapeMaster Controllers
Archive Tape Drives
Ikon 10071-5 Multibus/Versatec Interface
Systech VPC-2200 Versatec/Centronics Interfaces
Systech MTI-800/1600 terminal Interface
Sky Board
Xylogics 450/451 Disk Controller
Xylogics 472 Multibus Tape Controller

+~t!! Revision A, of 9 May 1988

18 Writing Device Drivers

2.2. VMEbus Machines

Sun-2 VMEbus Address
Spaces

VMEbus machine architecture is generally more complex than Multibus machine
architecture - it makes no distinction between I/O space and Memory space, but
on the other hand it supports multiple address spaces. It does so for reasons of
both cost and flexibility. The VMEbus was designed to be cost-effective for a
range of applications. It is expensive (in terms of money, power, and board
space) to provide the hardware for a full 32-bit address space. If installed dev
ices only respond to 16-bit addresses, it makes sense to be able to put them all
into a 16-bit address space and save the cost of 16-bits' worth of address
decoders and the like. The 24 and 32-bit address spaces are similar compromises
between cost and flexibility.

The driver writer has to understand which address space his board uses (gen
erally, this is completely out of his/her control), and make an appropriate entry in
the config file. For DMA devices, the driver writer has to know the address space
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space).

The Sun-2 VMEbus machines are based upon the 24-bit subset of the generic
VMEbus - they support only a 16-bit and a 24-bit address space. These address
spaces are known as vme16d16 (16 data bits and 16 address bits) and
vrne2 4d16 (16 data bits and 24 address bits). Sun-2 VMEbus machines also
contain on-board memory and 110 space, of course, but these aren't accessed by
way of the VMEbus and are only barely relevant to the driver developer.

There are four types of memory on Sun-2 VMEbus machines:

Table 2-4 Sun-2 VMEbus Memory Types

Description Address Size Address Range

On-Board Memory 23 bits OxO - Ox7FFFFF
On-Board I/O Space 23 bits OxO - Ox7FFFFF
vrne24d16 23+1 bits OxO - OxFEFFFF
vrne16d16 - Stolen from top 64K ofvrne24d16 (OxO - OxFFFF)

The four address spaces are laid out as follows:

Revision A, of 9 May 1988

CPU

Chapter 2 - Hardware Context 19

Figure 2-2 Sun-2 VMEbus Address Spaces

24 bits

~

:

Vit1ual
Addl-ess

(CPU orpVMA)

:

23 bits vme24d16
(High Bank)

L

1\ type
2 bits vme24d16

vme16d16
23 bits (Low Bank)

MMU
23 bits

--'"

{t.

:

:
Phy~ical 23 bits OnBoard

Address 110
:

:

:

23 bits OnBoard
Mem

Note a few details:

o In all Sun-2 machines (as in Sun-3s and Sun-4s), the address input into the
MMU is a virtual address, and may originate with either the CPU or a
DVMA (Direct Virtual Memory Access) bus master. (See the Sun Main-Bus
DVMA section, later in this chapter, for a discussion of DVMA).

o Unlike Sun-2 Multibus systems, in which each memory type maps cleanly to
one address space, vme2 4d16 maps to two different memory banks.
Addresses from OxO to Ox7FFFFF are "type 2" memory, while those from
Ox800000 and up are "type 3". This is because Sun-2 VMEbus machines
have only 23 output address bits, and this trick is necessary to generate the
full range of a 24-bit address space. (See Sun-2 Address Mapping in the

Revision At of9 May 1988

20 Writing Device Drivers

Sun-3/Sun-4 Address Spaces

Table 2-5

Driver Development Topics chapter for more details).

o Multibus boards, connected to VMEbus to Multibus adapters, can be
plugged into physical memory anywhere within vrne24d16 (which means
that they can also be in vrne16d16).

o The 24 bits in the vrne24d16 address space are referred to in the above
table as 23+1 bits. This is because, as should be clear in the diagram above,
the Sun-2 MMU outputs only the lower 23 bits of the address, and the 24th
bit is actually one of the MMU's type bits.

o Note especially that vrne16d16 is stolen from vrne2 4d16. It's selected by
addresses in the form 0 xFFXXXX, that is, addresses which have the 8 high
bits set.

Sun-3 and Sun-4 machines are all based on the full 32-bit VMEbus, so let's begin
their discussion with a listing of the address types supported by the generic
VMEbus.

Generic VMEbus (Full Set)

VMEbus-Space Address Data Transfer Physical Address
Name Size Size Range

vrne32d16 32 bits 16 bits OxO OxFFFFFFFF
vrne24d16 24 bits 16 bits OxO - OxFFFFFF
vrne16d16 16 bits 16 bits OxO OxFFFF
vrne32d32 32 bits 32 bits OxO - OxFFFFFFFF
vrne24d32 24 bits 32 bits OxO - OxFFFFFF
vrne16d32 16 bits 32 bits OxO OxFFFF

Not all of these spaces are commonly used, but they are all nevertheless sup
ported by the Sun-3 and Sun-4 lines. The following table indicates their sizes
and physical address mappings.

Table 2-6 Sun-3/Sun-4 VMEbus Address Types

Type Address-Space Name Address Size Address Range

o On-board Memory 32 bits OxO OxFFFFFFFF
IOn-board 110 24 bits OxO OxFFFFFF
2 vrne32d16 32 bits OxO OxFEFFFFFF
3 vrne32d32 32 bits OxO OxFEFFFFFF
2 vrne24d16 - Stolen from top 16M ofvrne32d16 (OxO - OxFEFFFF)
2 vrne16d16 - Stolen from top 64K ofvrne24d16 (OxO - OxFFFF)
3 vrne2 4d32 - Stolen from top 16M of vrne3 2d32 (OxO - OxFEFFFF)
3 vrne16d32 - Stolen from top 64K of vrne2 4d32 (OxO - OxFFFF)

Sun-3/Sun-4 space overlays are much more complex than those of the Sun-2, as
is evident from both the table above and the diagram below. The principle, how
ever, is the same - when a space overlays a larger space, its memory is stolen
from that larger space and is considered by the MMU to be in the the overlaid

Revision A, of 9 May 1988

CPU

Chapter 2 - Hardware Context 21

space. One simply cannot address above OxFFOOOOOO in 32-bit VMEbus space
or above OxFFOOOO in 24-bit VMEbus space.

As the two following diagrams illustrate, Sun-3 and Sun-4 addressing schemes
are almost identical. They differ only in the size of the virtual address which -
output by the CPU or a DVMA Bus Master - is fed to the MMU.

Figure 2-3 Sun-3 VMEbus Address Spaces

32 bits
vrne32d32

vrne16d32

type vrne24d32

2 bits
32 bits vme32d16

28
MMU

32 bits
bits

It
ft :

: vrne16d16

:
VirEual Phy~ical 24 bits OnBoard
AddIess Addfess I/O

(CPU orpVMA) :
:
:

:

vrne24d16
32 bits OnBoard

Mem

.~sun ~ microsystems
Revision A, of9 May 1988

22 Writing Device Drivers

Figure 2-4 Sun-4 VMEbus Address Spaces

Allocation of VMEbus
Memory

32 bits
vme32d32

vme16d32

This section summarizes the typical use of the 16,24 and 32-bit VMEbus address
spaces by Sun devices. Note well that the usages summarized here are only for
the generic configuration, and there's no guarantee that they match the exact
usage on your machine. They will, however, help you to decide where to attach
your device. The" Allocated From" field shows whether bus space is allocated
from the high end of the given range or from the low end. The idea is to keep the
maximum size "hole" in the middle in case the boundary needs to be shifted
later .

• sun
~ microsystems

Revision A, of 9 May 1988

Table 2-7

Table 2-8

16-bit VMEbus Address Space Allocation

Address Range Allocated
From

Chapter 2 - Hardware Context 23

Description of Use

OxOOOO-Ox7FFF Low
Ox8000-0xFFFF High

Reserved for OEM/user devices
Reserved for Sun devices

16-bit VMEbus space is mapped into the topmost 64K of 24-bit VMEbus space
at OxOOFFOOOO to OxOOFFFFFF (on Sun-2s) or OxFFFFOOOO to
OxFFFFFFFF (on Sun-3s and Sun-4s). Note: The Multibus/VMEbus Adapter
will map the Multibus I/O addresses of Multibus cards that use Multibus I/O into
the same addresses in the 16-bit VMEbus space. This may place the standard
Multibus addresses for some cards into the OEM/user area in the above table.
These addresses can be changed, if necessary, by physically readdressing the
device and then changing its entry in the config file.

24-bit VMEbus Address Space Allocation

Address Range

OxOOOOOO-OxOFFFFF
OxlOOOOO-OxlFFFFF
Ox200000-0x2FFFFF
Ox300000-0x3FFFFF
Ox400000-0x7FFFFF
Ox800000-0xBFFFFF
OxCOOOOO-OxCFFFFF
OxDOOOOO-OxDFFFFF
OxEOOOOO-OxEFFFFF
OxFOOOOO-OxFEFFFF
OxFFOOOO-OxFFFFFF

Allocated
From

Low
High
(Taken)
High
Low
High

Description of Use

CPU board DVMA space
Reserved by Sun
Reserved for small Sun devices
Reserved for large Sun devices
Reserved for huge Sun devices
Reserved for huge OEM/user devices
Reserved for large OEM/user devices
Reserved for small OEM/user devices
Multibus-to-VMEbus memory space
Reserved for the Future
Stolen by 16-bit VMEbus space

Table 2-9 32-bit VMEbus Address Space Allocation (Sun-3s and Sun-4s Only)

Address Range

OxOOOOOOOO - OxOOOFFFFF
OxOOlOOOOO - Ox7FFFFFFF
Ox80000000 - OxFEFFFFFF
OxFFOOOOOO - OxFFFFFFFF

Description of Use

DVMASpace
Reserved by Sun
Reserved for OEM/user devices
Stolen by vme 24 d16

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus
accesses. Note that, at least in the GENERIC kernel, there are some Sun devices

Revision A. of 9 May 1988

24 Writing Device Drivers

Table 2-10

The Sun VMEbus to MuItibus
Adapter

Interrupt Vector Assignments

(trnO, trnl, vpcO, vpcl and rntiO-4) installed in the OEM/user area.
It's always best to check, when choosing an installation address, that you aren't
going to conflict with an already installed device.

VMEbus Address Assignments for Some Devices

Device

VMEbus SKY Board
VMEbus SCSI Board
VMEbus TOD Chip
Graphics Processor
Sun-2 Color Board

Addressing

vrne16d16
vrne24d16
vrne24d16
vrne24d16
vrne24d16

Addresses Used

Ox8000 - Ox8FFF (Sun-2 only)
Ox200000 - Ox2007FF
Ox200800 - Ox2008FF (Sun-2 only)
Ox210000 - Ox210FFF
Ox400000 - Ox4FF7FF

The VMEbus Sky board occupies addresses 8000-8FFF in 16-bit address
space, and it requires that the high nibble of the address be '8'. Unlike other
pre-installed devices, it cannot be moved.

This table is, of course, not complete. There is always a variety of devices on the
bus, as can be easily determined by examining the config file. This table, how
ever, does include the standard devices that use a significant amount of space on
the VMEbus. Note that, in machines which came after the Sun-2line, several of
these devices have been replaced by on-board devices and have thus disappeared
from the VMEbus address space.

Multibus devices that are to be attached to VMEbus machines must be attached
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul
tibus boards). An adapter can be used to take over one and only one chunk of
vrne24d16. However, that chunk can overlap all or part ofvrne16d16
(because vrne16d16 is a proper subset of vrne2 4d16). In any case, the adapter
must be told how much space the board attached to it actually expects, for by
default it will take over a full megabyte. Note that the Multibus Adapter sup
ports fully vectored interrupts, and that drivers for Multibus devices attached by
way of adapters need not poll, since the adapters contain switches by which Mul
tibus devices can be assigned vectors.

The table below shows the assignments of interrupt vectors for those devices that
can supply interrupts through the VMEbus vectored interrupt interface. To pick
one for your device, examine the kernel config file for an unused number in the
range reserved for customer use, 0 xC 8 to 0 xFF .

Revision A, of 9 May 1988

Chapter 2 - Hardware Context 25

Table 2-11 Vectored Interrupt Assignments

2.3. A Tbus Machines

Vector Numbers Description

Ox40 thru Ox43 scO, sc? siD, si? - SCSI Host Adapters
Ox48 thru Ox4B xycO, xycl, xyc? - Xylogics Disk Controllers
Ox4C thru Ox5F future disk controllers
Ox60 thru Ox63 tInO, tIn 1 , tm? - TapeMaster Tape Controllers
Ox64 thru Ox67 xtcO, xtcl, xtc? - Xylogics Tape Controllers
Ox68 thru Oc6F future tape controllers
Ox70 thru Ox73 ec? - 3COM Ethernet Controller
Ox74 thru Ox77 ieD, iel, ie? - Sun Ethernet Controller
Ox78 thru Ox7F future ethernet devices
Ox80 thru Ox83 vpe? - Systech VPC-2200
Ox84 thru Ox87 vp? - Ikon Versatec Parallel Interface
Ox88 thru Ox8B mtiO, mti? - Systech Serial Multiplexors
Ox8C thru Ox8F dcp 1, dcp? - SunLink Comm. Processor
Ox90 thru Ox9F zsO, zsl - Sun-3 TenninallModem Controller
OxAO thru OxA3 future serial devices
OxA4 thru OxA7 peO, pe 1, pe2, pe3 - SunlPC
OxA8 thru OxAB future frame buffer devices
OxAC thru OxAF future graphics processors
OxBO thru OxB3 skyO, ? - SKY Floating Point Board
OxB4 thru OxB7 SunLink Channel Attach
OxB8 thru OxC7 Reserved for Sun Use

OxC8 thru OxFF Reserved for Customer Use

The Intel 80386 processor handles I/O devices placed in either memory space or
in 110 space. On the 80386, memory-mapped I/O provides additional program
ming flexibility. Any memory instruction can access any I/O port located in the
memory space. For example, the MOV instruction transfers data between any
register and any port. The AND, OR, and TEST instructions manipulate bits in
the internal registers of a device.

On some devices, reading a register will not read back what was written. There
fore, instructions such as AND, OR, and TEST can, in some cases, produce unex
pected results because the instruction reads a good location, changes it, and
writes it back. See the Other Device Peculiarities section, ahead.

Memory-mapped I/O can use the full complement of instructions. The 16 MB
memory of AT memory exists in the 4 GB physical address space of the Sun386i
at a xE a a a a a a O. For example, a device that, on an AT, shows up in memory
at DO 0000 will showup in the Sun386i physical memory at OxEODO 0000.
Virtual addresses are assigned during the autoconfiguration process.

If an I/O device is mapped into the I/O space then the IN, OUT, INS, and OUTS
instructions are used to communicate to and from the device. All I/O transfers

.\sun ~ microsystems
Revision A, of 9 May 1988

26 Writing Device Drivers

are perfonned via the AL (8-bit), AX (l6-bit), or EAX (32-bit) registers. The
first 256 bytes of the I/O space are directly addressable. The entire 64 Kbyte I/O
space is indirectly addressable through the DX register.

The Sun386i has 21 interrupt channels, but only 11 are available to devices on
the AT bus. The following list of interrupt channel assignments shows all of the
interrupt channels.

Table 2-12 Interrupt Channel Assignments

3
4
5
6
7
8
9
10
11
12
13
14
15

ATChannel*

* Available to AT Cards

Assignee

ATPinB25
ATPinB24
ATPinB23
Not available (system diskette)
Not available (parallel port)
SCSI
ATPinB04
ATPinD03
AT Pin D04
AT Pin D05
Not available (Ethernet)
ATPinD07
AT Pin D06

When you add an AT card to the AT bus, you must select one of the values in the
Channel column for the AT card's jumpers. For example, if you select channel
10 for a serial card, the "device" line in the config file might look as follows:

device nsO at atio ? csr Ox3f8 irq 10 priority 6

The Sun386i does not permit two AT cards to use the same interrupt channel.

Some cards will also use DMA and will have jumpers to select a DMA channel
to use. The following list shows that DMA channels 0-3 and channel 5 are avail
able for AT cards. Note that channel 0 and 5 can be used with 16-bit DMA dev
ices; 1, 2, and 3 can be used only with 8-bit DMA devices. Note also that chan
nels 4, 6, and 7 are pre-assigned .

• sun
~ microsystems

Revision A, of 9 May 1988

Loadable Drivers

DOS and SunOS
Environments

Table 2-13

Chapter 2 - Hardware Context 27

Sun386i DMA Channel Assignments

Channel Assignee Size (bits)

0 AT Bus 16
1 AT Bus 8
2 AT Bus 8
3 AT Bus 8
4 Software Not Available
5 AT Bus 16
6 Ethernet 16
7 SCSI 16

For example, you might set up a controller that uses DMA channel 3. For this,
the "controller" line in the config file might look like: this:

controller wdsO at atio ? csr Ox320 dmachan 3 irq 3 priority 3

The Sun386i does not permit two AT cards to use the same DMA channel.

In these examples, "priority" refers to the sp1levels used in the driver. That is,
the phrase "priority 3" implies that the driver uses s p 13 () to protect its critical
regions.

On Sun386i machines, device drivers can be dynamically loadable. That is, they
can be attached to a system without rebuilding its kernel and without having to
bring the system down and restart it. See the Adding and Removing Loadable
Drivers section of the Configuring the Kernel chapter for details.

The Sun386i system supports both DOS drivers and SunOS drivers.

You can attach a DOS device driver in the standard DOS way, but it will be
usable only from within the DOS environment. Usually, all you need to do is to
first plug in an add-in board. Then you insert an installation diskette (which
comes with the board) into Drive A> and re-boot the system. TP.e device driver
is already compiled and linked. Generally, the diskette contains programs called
"INSTALL" or something similar. You execute this program by typing its name.
It copies the driver file from the diskette to the hard disk. At the same time, this
procedure will modify the disk's config. sys file.

The DOS system must be re-booted. The device driver will automatically be
loaded into memory, its options will be parsed, and the driver will be initialized.

NOTE The DOS driver on the Sun386i is running under SunOS and DOS, but the driver
is unaware of this. SunOS might switch control to another task during device
operation, so strict timing dependencies could fail. Real time devices,for exam
ple, may not work properly. If a peripheral and controller have strict timing
requirements, their drivers should be written in the standard SunOS style. DOS
drivers do not run at the elevated priority of SunOS drivers .

• ~sun
• microsystems

Revision A, of9 May 1988

28 Writing Device Drivers

2.4. Hardware Peculiarities
to Watch Out For

Multibus Device Peculiarities

Multibus Byte-Ordering Issues

SunOS drivers, of course, are parts of the system kernel. Thus the timing
requirements of most devices can be met under SunOS. SunOS drivers are
accessible from the DOS environment.

There is a variety of device peculiarities that the driver developer must be aware
of. The most common of them are related to the Multibus and Multibus-based
devices, but there are others as well.

The IEEE Multibus is a source of problems for two separate reasons. The first of
these, discussed immediately below, is the fact that the Multibus has a different
notion of byte order than does the either Motorola MC680XO family or the Sun
SP ARC processor (the reduced instruction set CPU upon which Sun-4 machines
are built). The second is simply that the Multibus has been around for a long
time, and thus brings with it a variety of older devices, many of which have
addressing limitations and other characteristics which make for a less than per
fect fit with the Sun architecture.

Sun-2 and Sun-3 processors are members of the Motorola MC680XO family,
while Sun-4 processors are based on the SPARC CPU. All of these processors
address bytes within words by what we shall call IBM conventions - the most
significant byte of a word is stored at the lowest addressed byte of the word. The
Multibus, on the other hand, uses DEC conventions - the least significant byte
of a word is stored at the lowest address, and significance increases with address.

This class of byte-addressing conventions leads to two separate problems,
with two separate solutions:

o The first problem occurs when you're moving a single byte across the inter
face between the MC680XO/SP ARC and the IEEE Multibus. Because the
two devices don't agree about the end of the word that the byte actually
appears in, you have to change the byte address before the move - what
you want to do, in effect, is move every byte to the other side of the word
which it occupies - the most CPU-efficient way of doing so is to toggle the
least significant bit of every byte address.

o The second problem, also related to the Multibus, is a higher level version of
the first It occurs when machine words with significant internal structure
(or structures that contain words) are moved across the bus interface. (If you
write only words, and the device uses only words, there's no problem). The
Multibus byte-ordering incompatibility will cause structures to be scrambled
when they're moved across the bus interface, unless the bytes within them
are physically swapped first.

Here are a few pictures describing the problems in detail:

Revision A, of 9 May 1988

Chapter 2 - Hardware Context 29

Motorola (IBM) Byte Ordering

bit 15 bit 0

Byte 0 Byte 1

Multibus (DEC) Byte Ordering

bit 15 bit 0

Byte 1 Byte 0

That is, the MC680XO and SPARC CPUs place byte 0 in bits 8 through 15 of the
16-bit word, whereas the Multibus places byte 1 in those bits. If you did every
thing with the CPU, or everything on the Multibus, there wouldn't be any
conflict, since things would be consistent. However, as soon as you cross the
boundary between them, the byte order is reversed. Thus, you have to toggle the
least significant bit of the address of any byte destined for the Multibus - this
will have the effect of swapping adjacent addresses and thus reordering the bytes.

To clarify this, consider an interface for a hypothetical Multibus board containing
only two 8-bit I/O registers, namely a control and status register (csr) and a data
register (we actually use this design later on in our example of a simple device
driver). In this board, we place the command and status register at Multibus byte
location 600, and the data register at Multibus byte location 601. The Multibus
picture of that device looks like this:

Hypothetical Board Registers

bit 15

Location 60 1

DATA

bit 0

Location 600

CSR

But the MC680XO and SP ARC processors view that device as looking like this:

.~sun
• microsystem&

Revision A, of 9 May 1988

30 Writing Device Drivers

Other Multibus-related
Peculiarities

Hypothetical Board Registers

bit 15

Location 600

CSR

bit 0

Location 601

DATA

so that if you were to read location 600 from the point of view of the processor,
you'd really end up reading the DATA register off the Multibus instead. So,
when we define the skdevice data structure for that board, we define it by starting
with the register definition in the device manual, and then swapping bytes to take
account of the expected byte swapping:

struct skdevice {

} ;

char
char

sk_data;
sk_csr;

/ * 01: Data Register * /
/* 00: command(w) and status(r) * /

This rule (flipping the least significant bit of the address) holds good for all byte
transfers which cross the line between the MC680XO/SP ARC CPU and the Mul
tibus.

o Many Multibus device controllers are geared for the 8-bit 8080 and Z80
style chips and don't understand 16-bit data transfers. Because of this, such
controllers are quite happy to place what's really a word quantity (such as a
16-bit address which must be two-byte aligned in the MC680XO) starting on
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many
don't know about 24-bit addresses), and it often happens that you have to

chop an address into bytes by shifting and masking, and assign the halves or
thirds of the address one at a time, because the device controller wants to
place word-aligned quantities on odd-byte boundaries. Note also that many
Multibus boards are geared for the 8086 family with its segmented address
scheme. An 8086 (20-bit) address really consists of a 4-bit segment number
and a 16-bit address; you usually have to deal with the 4-bit part and the 16-
bit part separately. For a good example of what we're talking about here,
see the code for vp . c in the Sample Driver Listings appendix to this
manual.

o Although there are a myriad of vendors offering Multibus products,
remember that the Multibus is a "standard" that evolved from a bus for 8-bit
systems to a bus for 16-bit systems. Read vendors' product literature care
fully (especially the fine print) when selecting a Multibus board. The
memory address space of the Multibus is supposed to be 20 or 24 bits wide
and the 110 address space of the Multibus is supposed to be 16 bits wide. In
practice, some older boards are limited to 16 bits of address space and 8 bits

Revision A, of 9 May 1988

Sun-4/SPARC Peculiarities

Chapter 2 - Hardware Context 31

of 110 space. In particular, watch for the following addressing peculiarities:

o For a memory-mapped board, ensure that the board can actually handle
a full twenty bits of addressing. Older Multibus boards often can only
handle sixteen address lines. The Sun system assumes there is a 20-bit
Multibus memory space out there. If the Multibus board you're talking
to can only handle 16-bit addresses, it will ignore the upper four address
lines, and this means that such a board "wraps around" every 64K,
which means that on a Sun the addresses that such a board responds to
would be replicated sixteen times through the one-megabyte address
space on the Multibus. This may conflict with some other device.

o Some Sun-2 Multibus systems, notably Sun-2/170s, have a backplane
structure that complicates the installation of 24-bit memory-mapped
devices. The internal "bus" on these systems (often called the P2 bus) is
divided into multiple segments, each mapped to a portion of the back
plane slots. In such systems, 24-bit memory-mapped devices must be
installed in a different segment than that used by standard Sun-2 dev
ices. See the Sun-2/170 Configuration Guide for more information.

o For an I/O-mapped board (one that uses lID registers), make sure that
the board can handle 16-bit I/O addressing. Some older boards support
only 8-bit I/O addressing. In our system, the address spaces of such
boards would find themselves replicated every 256 bytes in the I/O
address space. Trying to fit such a board into the Sun system would
severely curtail the number of I/O addresses available in the system.

o Finally, watch out for boards containing PROM code that expects to find a
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of
course useless in the Sun system.

There are two peculiarities which are specific to machines built upon the Sun
SP ARC CPU (currently, just Sun-4s) which can impact device drivers. For more
infonnation about the Sun-4 machine architecture, see Porting C, Fortran and
Pascal Programs to the Sun-4.

o The first problem is structure alignment. In MC680XO family processors,
structures are aligned on half-word boundaries, but on Sun-4s, the structure
alignment requirements are imposed by the most strictly-aligned structure
components. For example, a structure containing only bytes and characters
has no alignment restrictions, while a structure containing a double word
must be constructed so as to guarantee that that this word falls on a 64-bit
boundary.

Programmers must be aware of these rules when writing drivers, for Sun-4
compilers will pad structures to enforce them, and such padding will not
always be correct for structures intended to map to device registers. Also,
structures must be carefully designed if drivers are to be portable across
machine architectures.

o The second problem is data alignment. In MC680XO family processors,
characters are aligned on byte boundaries, while integers of all sizes are

Revision At of9 May 1988

32 Writing Device Drivers

Other Device Peculiarities

aligned on 16-bit boundaries. In Sun-4 machines, in contrast, all quantities
must be aligned on their "natural" boundaries: 16-bit half words on 16-bit
boundaries, 32-bit words on 32-bit boundaries and 64-bit double words on
64-bit boundaries.

In normal programs, details such as these are handled by the compiler. In
drivers, however, more care must be taken. SPARC (unlike the MC68010)
doesn't break down 32-bit transactions into successive 16-bit transactions.
Thus, there are times when 32-bit entities have to be broken down by the
driver if they are to get across the bus correctly. More specifically, 32-bit or
64-bit alignment is not possible in the 16-bit VMEbus spaces, and thus 32-
bit and 64-bit data access does not exist. In the 32-bit VMEbus spaces, all
data paths exist.

There are other device peculiarities of interest to the driver developer. These
peculiarities are particularly unfortunate in that they tend to require special han
dling of various kinds - byte swapping, bit shuffling, timing delays, etc. -
whenever the driver contacts the device. Such special handling precludes the
most obvious and desirable means of interfacing the driver to the device, by map
ping the device registers into a C-structure declaration and then accessing them
by way of references to structure fields.

o One of the most infuriating of these peculiarities is internal sequencing
logic. Devices with this strange characteristic (a vestige of microcomputer
systems with extremely limited address space) map multiple internal regis
ters to the same externally addressable address. There are various kinds of
internal sequencing logic:

o The Intel 825lA and the Signetics 2651 alternate the same external
register between two internal mode registers. Thus, if you want to put
something in the first mode register of an 8251, you do so by writing to
the external register. This write will, however, have the invisible side
effect of setting up the sequencing logic in the chip so that the next
read/write operation refers to the alternate, or second, internal register.

o The NEC PD7201 PCC has multiple internal data registers. To write a
byte into one of them, it's necessary to first load the first (register 0)
with the number of the register into which the following byte of data
will go - you then send that byte of data and it goes into the specified
data register. The sequencing logic then automatically sets up the chip
so that the next byte sent will go into data-register O.

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a
data pointer register for pointing at the data register into which a data
byte will go. When you send a byte to the data register, the pointer gets
incremented. The design of the chip is such that you can't read the
pointer register to find out what's in it!

o In fact, it's often true that device registers, when read, don't contain the
same bits that were last written into them. This means that bitwise opera
tions (like register &= -XX_ENABLE) that have the side effect of

Revision A, of 9 May 1988

2.5. DMA Devices

Sun Main-Bus DVMA

NOTE

Chapter 2 - Hardware Context 33

generating register reads must be done in a software copy of the device
register, and then written to the real device register.

o Another problem is timing. Many chips specify that they can only be
accessed every so often. The Zilog Z8530 SCC, which has a "write recovery
time" of 1.6 microseconds, is an example. This means that a delay has to be
enforced (with DELA Y) when writing out characters with an 8530. Things
can get worse, however, for there are instances when it's unclear what delays
are needed, and in such cases it's left to the driver developer to determine
them empirically.

o And peripheral devices can contain chips that use a byte-ordering convention
different from that used by the Sun system into which they're installed. The
Intel 82586, for example, supports DEC byte-ordering conventions; this
makes it perfectly compatible with Multibus-based, but not VMEbus-based,
Sun machines. Drivers for such peripheral devices will have to swap bytes,
as indicated above, and to take care that, in doing so, they don't inadver
tently reorder the bits in any control fields greater than 16 bits in length.

o Finally, there are some common interrupt-related peculiarities worth noting:

o When a controller interrupts, it does not necessarily mean that both it
and one of its slave devices are ready. Some controllers are designed in
this way, but others interrupt to indicate that the controller or one of its
devices but not necessarily both is ready.

o Not all devices power up with interrupts disabled and then start inter
rupting only when told to do so.

o While there should be a way to determine that a board has actually gen
erated an interrupt - an attention bit or something equivalent - some
devices have no such thing.

o Finally, an interrupting board should shut off its interrupts when told to
do so (and also after a bus reset). Not all do.

Many device controller boards are capable of what is known as Direct Memory
Access or DMA. This means that the CPU can tell the device controller for such
devices the address in memory where a data transfer is to take place and the
length of the data transfer, and then instruct the device controller to start the
transfer. The data transfer then takes place without further intervention on the
part of the processor. When it's complete, the device controller interrupts to say
that the transfer is done.

Sun-2, Sun-3, and Sun-4 machines use Direct Virtual Memory Access (DVMA) to
allow devices on the Main Bus (either a VMBbus or a Multibus) to perform DMA
transfers from and to system virtual address space. In the Sun386i system, how
ever, the Memory Management Unit (MMU) is incorporated directly on the Intel
80386 chip itself,· devices need to use physical addresses. Sun386i DMA is

Revision A, of9 May 1988

34 Writing Device Drivers

discussed in the next Section.

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun
Memory Management Unit to allow devices on the Main Bus (either a VMEbus
or a Multibus) to perform DMA directly to Sun processor memory. It also allows
Main Bus master devices to do DMA directly to Main Bus slaves without the
extra step of going through processor memory. DVMA works by ensuring that
the addresses used by devices are processed by the MMU, just as if they were
virtual addresses generated by the CPU. This allows the system to provide the
same memory protection and mapping facilities to DMA devices as it does to the
system CPU (and thus to programs).

When setting up a driver to support DMA, it's necessary to know the device's
DMA address size. This address size is the primary factor used in determining
which of the system address spaces will host the device. Multibus devices gen
erally have a DMA address size of 20 bits, while VMEbus devices generally have
a 24 or 32-bit DMA address size.

D Since, on Sun-2 Multibus machines, DMA addresses are generally 20-bits
long, the system DVMA hardware responds to the first 256K of Multibus
address space (OxO to Ox3FFFF). When an address in this range appears
on the bus, the DVMA hardware adds OxFO 0000 to it (the system places
the Multibus memory address space at OxFOOOOO in the system's virtual
address space) and then uses the MMU to map to the location in physical
memory that will be used for the data transfer.

D On Sun-2 VMEbus systems, the DVM A hardware responds to the entire
lower megabyte of VMEbus address space (0 x 0 to 0 xFFFFF). The system
maps addresses in this range into the most significant megabyte of system
virtual address space (OxFOOOOO to OxFFFFFF).

o On both Sun-3 and Sun-4 systems, the DVMA hardware responds to the
lowest megabyte of VMEbus address space in both the 24-bit and 32-bit
VMEbus spaces. It maps addresses in this megabyte into the most
significant megabyte of system virtual address space (OxFFOOOOO to
OxFFFFFFF for the Sun-3 and OxFFFOOOOO to OxFFFFFFFF for the
Sun-4). Both Sun-3 and Sun-4 DVMA hardware uses supervisor access for
checking protection.

The driver writer must account for these mappings, as should be evident from the
diagram below.

Revision A, of9 May 1988

Chapter 2 - Hardware Context 35

Figure 2-5 System DVMA

DMADevice

;
VMEBUS

~

Slave (If Address in Low megabyte)
Decoder +-1 Map it to High megabyte

I I
..

CPU MMU Buffer

OnBoard
Mem

On-Board Bus Masters
(like the Ethernet chip)

Devices can only make DVMA transfers in memory buffers which are from (or
redundantly mapped into - see below) the low-memory areas reserved as
DVM A space. The memory-management hardware will then recognize refer
ences to dlese aieas and map them into u'e high megabyte of system virtual
address space, an area known as DVMA space. Likewise, if a driver needs to
allocate space for a DMA transfer, it must do so by way of a mechanism that
guarantees its allocation from DVM A space. There are several ways of making
this guarantee:

o rmalloc () can be used with the iopbmap argument. This will get a
small block of memory from the beginning of the DVMA space. Such small
blocks of memory are usually used for control infonnation, and not for large

.sun
~ microsystems

Revision A, of 9 May 1988

36 Writing Device Drivers

blocks of data.

o For a large buffer, the driver can statically declare a buf structure (which is
a buffer header that contains a pointer to the data) and then use mb set up ()
to allocate a buffer for it from DVMA space. This mechanism is primarily
intended for block devices but is perfectly adaptable for use by character
devices that need large DMA buffers.

When dealing with addresses which are in DVMA space, the driver must strip off
the high bits by subtracting the external variable DVMA, which contains the
address of DVMA (declared as an array of ch~racters). DVMA is initialized by the
system to either OxFOOOOO (for Sun-2s) or OxFFOOOOO (for Sun-3s and Sun-
4s). If the driver fails to make this adjustment, the device will attempt to use a
null address - in the high megabyte - and the CPU board will not respond to
it.

NOTE Addresses received by way ofmbsetup () (andMBI_ADDR()) do not have to be
adjusted in this fashion, as mbset up () will have already adjusted them to be
relative to the start of DVMA space.

When the device, in turn, uses the address, the address reference comes down the
bus and through a slave decoder, which adds the machine-specific offset to it to
map it back into the high megabyte of system virtual memory.

Sun DMA is called DVMA because the addresses which the device uses to com
municate with the kernel are virtual addresses like any others. The driver, as part
of the kernel, is privy to implementation dependent information, and knows that
it must chop off the high-bits of any address intended for the device. This allows
the MMU to recognize the addresses destined for the Main Bus and to act accord
ingly. The device, however, knows nothing of this except that its buffers are
mapped to the high megabyte of system virtual memory.

User processes, it should be noted, cannot do DVMA directly into their own
address spaces. The kernel, however, provides a way of getting around this limi
tation by supporting the redundant mapping of physical memory pages into mul
tiple virtual addresses. In this way, a page of user memory (or, for that matter, a
page of kernel memory) can be mapped into DVMA space in such a way that
transferred data immediately appears in (or immediately comes from) the address
space of the process requesting the I/O operation. All that a driver need do to
support such direct user-space DVMA is to set up the kernel page maps with the
routine mbsetup () - the details of the mapping will then be automatically
handled by the kernel.

If you wish to do DMA over the Main Bus, you must make the appropriate
entries in the kernel memory map. There are two functions, mbsetup () and
mbrelse () , to help with this chore.

DMA on A Tbus Machines The Sun386i uses the Intel 80386 chip. This chip has an integrated MMU, so the
I/O devices cannot access the Sun MMU address-translation facility and there
fore must use physical addresses to access memory directly.

To do DMA on the Sun386i, you must make certain changes in the kernel's
memory map (its page tables). Use the mbs et up () , dIna_set up () ,

Revision A, of 9 May 1988

Chapter 2 - Hardware Context 37

mbrelse () , and dIna_done () routines to make these changes. The changes
you must make to the kernel memory map are described with these routines in
the Kernel Support Routines appendix.

Revision A, of 9 May 1988

3
Overall Kernel Context

Overall Kernel Context .. 41

3.1. The System Kernel ... 41

3.2. Devices as "Special" Files ... 42

3.3. Run-Time Data Structures .. 47

The Bus-Resource Interface .. 49

Autoconfiguration-Related Declarations ... 55

Other KernellDriver Interfaces ... 56

3.1. The System Kernel

3
Overall Kernel Context

Device drivers are parts of the SunOS kernel, a fact that must be appreciated to
understand the ways in which drivers differ from user-level programs. The ker
nel is the crucial system program responsible for the control and allocation of
system resources, including the processor, primary memory and the 110 devices.
In most ways it's just like any user program, being a more or less cleverly con
structed structure shaped to its particular goals. In other ways, however, it's
significantly different from a user program:

o For one thing, the kernel is thick with the details of hardware implementa
tion and function. This tends not to be true of user programs, precisely
because the kernel shields them from the need to consider device-specific
details.

o For another, the kernel (and thus its drivers) runs in supervisor mode. This
means that drivers can often perform privileged device operations that can't
be performed by user processes, even if those processes have access to the
necessary device registers.

o The kernel memory context is not entirely paged. Certain parts of the kernel
are paged, but drivers can safely assume that their text and data are resident
and stationary within physical memory.

o Programmers of ordinary user processes rarely need to concern themselves
with physical addresses and virtual-to-physical address mappings. Device
driver developers, however, deal simultaneously with user virtual addresses,
kernel virtual addresses and physical bus addresses. Special functions (see
the Kernel Support Routines appendix) are provided to help drivers with the
various address mappings they're called upon to perform.

o Finally, the kernel provides a far different external interface than do user
processes. It's possible for user processes to communicate with and dispatch
tasks to other user processes by way of system inter-process communications
mechanisms (like signals and pipes) but to do so they must first make special
arrangements with those other processes. The kernel, on the other hand,
exists to provide services to user processes and it provides a special mechan
ism - the system call - by which user processes can call upon it to do so.
This is not to say that user processes and the kernel (that is, the drivers) can't
also use system inter-process communications mechanisms like signals. It's
certainly possible, for example, to write a driver so that it will send a signal
to a user process as part of its handling of a specified event. However, in the

41 Revision A, of 9 May 1988

42 Writing Device Drivers

NOTE

3.2. Devices as "Special"
Files

norm, user processes and the kernel communicate by way of system calls.

On all Sun systems, system calls are defined in
/usr/sys/os/init_sysent. c,. which users may edit to add system calls.
This file is provided with all Sun-2, Sun-3, Sun-4, and Sun386i systems.

System calls can, for all intents and purposes, be understood as calls by user
processes to kernel subroutines; they involve, however, far more profound sys
tem state changes that do regular subroutine calls. When system calls are pro
cessed, the processor is placed in supervisor state (and, in Sun-2 systems, the ker
nel virtual address space becomes current in place of the the user virtual address
space). The user process is suspended and the kernel begins to run, but since it
runs on behalf of that user process which issued the system call, it can be viewed
as that user process continuing execution in kernel mode. Such "kernel-mode"
processes continue to run (with pauses whenever they sleep or yield to a higher
priority process) until the system call processing is completed. At this time the
scheduler is called to choose the next user process to be dispatched.

Some system calls can be completely processed without calling any device driver
routines. The system callI seek () is in this class, it requires only that a
software file position indicator be reset. Like many system calls - those related
to process control, inter-process communication, timing services, and status
information - it can be handled entirely in software. Requests for I/O, however,
usually involve some action on the part of a peripheral device. In this case the
kernel calls (through a branch table mechanism described below) a routine within
the 110 device's driver. The driver will then initiate the I/O operation and, if
necessary, sleep () until the data is available; in the meantime the kernel will
dispatch another user process.

When a user process issues a system call, execution shifts to the kernel. Then,
for liD-related system calls, the kernel distinguishes requests related to regular
named files (that is, files on a block device like a disk) from requests related to
other kinds of 110 devices (like terminals or printers). In the interests of unifor
mity, these devices are viewed as "special" files which (by convention) are col
lected in the /dev directory. These special files are not created in the usual way.
The information in their i-nodes (the system structures that define the state of
files) is quite different from the information maintained for regular files, and, as a
consequence, special files can only be created with the mknod (make a node)
administration command. Instead of the addresses that will locate the contents of
a regular file on a disk, the i-nodes of special files (devices) contain the informa
tion necessary to determine the corresponding device driver (the major device
number), the device class (block or character), and the minor device number.

When a file of any type is accessed, the kernel needs to determine which device
driver is responsible for it To make this determination, it must get the name of
the device associated with the file. From that name it can derive (using a
device-independent kernel subsystem) an i-node and thus a major device number
(as well as a minor device number and a device class).

The connection between the device name and its major number is made by way
of the device entry in the /dev directory (more specifically, by way of the i-node

Revision A, of 9 May 1988

Table 3-1

Chapter 3 - Overall Kernel Context 43

infonnation associated with the device entry). The i-node for a device special
file contains a major device number, which is used to index one of the two device
switches. These switches, bdevsw (the block device switch) and cdevsw (the
character device switch) are actually arrays of structures, and the major device
number selects a driver by indexing one of these structures. (The minor device
number is then passed to the driver for local interpretation).

Using the Is -1 command on the / dev directory shows you the i-node infor
mation associated with special files:

A Sample Listing of the Idev Directory

T per-
y mis-
p sions
e

c rw--w--w-
c rw-r--r--
c rw-------
c rw-------
c rw-r--r--
c rw-rw-rw-
c rw-rw-rw-
c rw-------
c rw-------

c rw-------
c rw-------
b rw-------
b rw-------

b rw------
b rw-------

s own-
er

z
e

1 henry
1 root
1 root
1 root
1 root
1 root
1 root
1 root
1 root

1 root
1 root
1 root
1 root

1 root
1 root

maj-
or

0,
3,
3,
3,
3,

13,
3,
9,
9,

9,
9,
3,
3,

3,
3,

min-
or

0
1
4
3
0
0
2
0
1

6
7
0
1

6
7

date

Feb 21 09:45
Dec 28 16:18
Jan 13 23:07
Jan 13 23:07
Dec 28 16:18
Dec 28 16:18
Feb 22 16:40
Dec 28 16:19
Dec 28 16:19

Feb 25 1984
Dec 28 16:19
Feb 25 1984
Jan 17 20:12

Dec 28 16:19
Dec 28 16:19

name

console
kmem
mbio
mbmem
mem
mouse
null
rxyOa
rxyOb

rxyOg
rxyOh
xyOa
xyOb

xyOg
xyOh

When a user process wishes access to a system service, it makes a system call.
The subsequent flow of control looks somewhat like this:

Revision A, of 9 May 1988

44 Writing Device Drivers

Figure 3-1 I/O Paths in the UNIX system

User Process

/
User Space

1

Kernel Space
1/0-Related

System Calls
Other

System Calls
...

Discriminate File-System I/O
from Raw Device I/O

File-System
Code

.......................... / /

Raw I/O
~

Device Type -> Switch

Major # -> Driver
_.

Minor # -> Device

Hardware

-

.
Resolution to Physical

Device Operations

When you add a new device driver you must add entries to one or both of the
device switches. Since we are discussing only character-oriented devices in this
manual, we will ignore the bdevsw structure and concentrate on the cdevsw
structure. But note that it's common for drivers to appear in both tables; this
happens because block-devices almost always support raw character 110.

Application programs make calls upon the operating system to perform services
such as opening a file, closing a file, reading data from a file, writing data to a
file, and other operations that are done in tenns of the file interface. The operat
ing system code turns these requests into specific requests to the device driver
involved with that particular file. The glue between the specific file operation
involved and the device driver entry-point is through the bdevsw and cdevsw

Revision A, of 9 May 1988

Chapter 3 - Overall Kernel Context 45

tables.

Each entry in bdevsw or cdevsw contains pointers to a driver's entry-point
functions. The position of an entry in the structure corresponds to the major dev
ice number assigned to the device. The minor device number is passed to the
device driver as an argument. Usually, the driver uses it to access one of several
identical physical devices, but it is also possible for it to be encoded so that mul
tiple minor numbers indicate the same device, but different operating modes. For
example, one minor number might indicate a specific tape device, as well as the
fact that the device is to be rewound when being closed, while another indicates
the same device without the rewind. A minor number may also indicate a
controller/device pair. Such breadth of interpretation is possible because the
minor number has no significance other than that attributed to it by the driver
itself.

The cdevsw table specifies the interface routines present for character devices.
Each character device may provide seven functions: xxopen () ,xxclose () ,
xxread (), xxwrite (), xxioctl (), xxselect (), and xxmmap (). (While
character drivers sometimes have "strategy" routines, this name is simply a car
ryover from the world of block drivers, and cdevsw thus has no xxstra
tegy () entry point). If you wish calls on a routine to be ignored - for exam
ple xxopen () calls on non-exclusive devices that require no setup - the
cdevsw entry for that driver can be given as nulldev; if a call should be con
sidered an error - for example xxwri te () on read-only devices - nodev,
which returns immediately with an error code, can be used. For terminals, the
cdevsw structure also contains a pointer to an array oftty structures associ
ated with the driver.

Note: the device switch tables do not include pointers to the driver initialization
and interrupt handler functions. Pointers to these functions appear in separate
mbvar structures (discussed below).

Here's what the declaration of an entry in the character device switch looks like.
Each entry (row) is the only link between the main SunOS code and the driver.
The declaration and initialization of the device switches is in
/usr/sys/sun/conf.c:

struct cdevsw {

} ;

int (*d_open) (); /*
int (*d_close) (); /*
int (*d_read) (); /*
int (*d_write) (); /*
int (*d_ioctl) (); /*
int (*d_stop) (); /*
int (*d_reset) (); /*
struct tty *d_ttys; /*
int (*d_select) (); /*
int (*d_mmap) () ; /*
struct streamtab *d_str;

routine to call to open the device * /
routine to call to close the device * /
routine to call to read from the device * /
routine to call to write to the device * /
special interface routine * /
flow control in tty's * /
reset device and recycle its bus resources * /
tty structure * /
routine to call to select the device * /
routine to call to mmap the device * /
/ * support for STREAMS * /

Revision A, of 9 May 1988

46 Writing Device Drivers

Table 3-2

Only teletype-like devices (such as the the console driver, the rot i driver, and
the z s driver) use the tty structure. All other devices set it to zero.

Routines in the kernel call specific driver routines indirectly by way of the table
with the major device number. A typical kernel call to a driver routine will look
something like:

(*cdevsw[major(dev)] .d_open) (params ...);

And here is a typical line from /usr / sys/ sun/ conf . c, which initializes the
requisite pointers in the cdevsw structure:

All the other cdevsw entries between 0 and 13 appear first

cgoneopen, cgoneclose, nodev, nodev, /*14*/
cgoneioctl, nodev, nodev, 0,
seltrue, cgonemmap,

} ,

Then aIL the other cdevsw entries from 15 up

In the Sun system, a number of devices in cdevsw are preassigned. The table
below shows some of these assignments at the time of this writing. It is not com
plete, and besides, new devices are always being added. In allocating a major
number to the new device which you're installing, make sure that you don't
choose one that's already been allocated. /usr / sys/ sun/ conf . c will give
the major device numbers as currently allocated on your system. Choose yours so
it will go at the end.

Current Major Device Number Assignments

Major Device
Number

o
1
2
3
4
5
6
7
8
9

en

Device
Abbreviation

Not Available
sy
Memory special files
Not Available
tro
vp
Not Available
ar
xy

Device
Description

Sun Console
No Device
Indirect TTY

No Device
Raw Tapemaster Ta~ Device
Ikon Versatec Parallel Controller
No Device
Archive Tape Controller
Raw Xylogics Disk Device

Revision A, of9 May 1988

Table 3-2

3.3. Run-Time Data
Structures

Chapter 3 - Overall Kernel Context 47

Current Major Device Number Assignments-- Continued

Major Device Device Device
Number Abbreviation Description

10 mti Systech MTI
11 des DES Chip
12 zs UARTS
13 ms Mouse
14 cgone Sun-l Color Graphics Board
15 win Window Pseudo Device
16 Not Available Log Device
17 sd Raw SCSI disk
18 st Raw SCSI tape
19 Not Available No Device
20 pts PseudoTIY
21 pte PseudoTIY
22 fb Sun Console Frame Buffer
23 rope RastetOp Chip
24 sky SKY Floating Point Board
25 pi Parallel input device
26 bwone Sun 1 Monochrome frame buffer
27 bwtwo Sun-2 Monochrome frame buffer
28 vpe Parallel Driver for Versatec printer
29 kbd Sun Console Keyboard Driver
30 xt Raw Xylogics 472 Tape Controller
31 cgtwo Sun-2 Color Frame Buffer
32 gpone Graphics Processor
33 sf Raw SCSI Floppy
34 fpa Floating -Point Accelerator
35 Not Available STREAMS Support
36 Not Available No Device
37 Not Available STREAMS Clone
38 pc Sun PC Driver
39 egfour Sun-3/110 Color Frame Buffer
40 Not Available STREAMS NIT
41 Not Available Dump Device
42 xd Xylogics 7053 SMD Disk Driver

If you skip ahead and read the chapter on Configuring the Kernel you will see a
discussion of the procedures by which Sun systems are reconfigured to include
new devices and drivers. There are two major programs involved in this process.
The first is conf ig, which reads the kernel config file and generates the data
structure tables which specify the configuration of the new kernel. You will also
note, in that chapter, references to the kernel's autoconfiguration process (some
times called autoconfig). The autoconfiguration process verifies that the

Revision A, of 9 May 1988

48 Writing Device Drivers

devices specified in the config file are actually installed and working, and adjusts
the kernel data structures accordingly.

The autoconfiguration approach was first introduced in 4.1BSD as part of a larger
kernel rationalization, and it significantly increases the flexibility of the kernel
configuration process, for example, by allowing multiple device controllers to be
driven by the same instance of a driver.

The auto configuration process is called by the kernel during its boot-time initiali
zation. It does several things:

D It verifies that the information in the kernel config file is correct; that is to
say, it verifies that the devices which the kernel thinks are installed are actu
ally installed. It does this by calling device-specific xxprobe () routines
that are supplied by the driver.

D It completes the initialization of the kernel data structures that were declared
by conf ig and linked into the kernel by way of ioconf . c (a file which
config creates but cannot fully initialize). These structures, which are
defined in <sundev /mbvar. h> and shall hereafter be known as the
mbvar structures, form a good part of the run-time environment of the driver
routines.

D It maps the device registers (or memory) into kernel virtual space.

D It sets up polling interrupts on Multibus systems.

The autoconfiguration code does its work, as its name indicates, without worry
ing the driver developer too much. It's only necessary for the developer to know
what conventions to follow and what options exist. The rest will take care of
itself.

Note: readers who have written only System V drivers will perhaps find this all a
bit mysterious. In System V, as in BSD UNIX systems, the driver interface to the
kernel is defined primarily by thefunction switch (either cdevsw or bdevsw)
by which driver routines are called, by the parameters these routines are passed
and by the values they return. So far so good, but then there are the differences.
In System V drivers, nothing like the mbvar structures exists, and generic kernel
structures (like the user structure) are usedfar more heavily than in 4.2BSD,
where mbvar-like structures are consulted by preference. Sun's operating system
is, of course, derivedfrom 4.2BSD, and its driver interface is quite similar.

The "mb" in the name of the mbvar structures clearly recalls the primary motiva
tion of the kernel rewrite in which they were introduced - to improve the
management of bus resources. The "mb" is derived from the initials of the M ul
tibus, around which older generation Sun machines were built. Newer machines,
while built around the VMEbus, nevertheless continue to bear the traces of the
past in these mbvar structure names, names which are now taken to stand for
"Main Bus" rather than for "Multibus."

During the configuration of the kernel, an edifice is built of the mbvar structures
and its initialization is begun. The edifice consists of a structure which
represents the bus itself, two arrays of structures (one representing system con
trollers; the other, devices) and a number of inter-structure field-to-field links of

~\sun ~ microsystems
Revision A, of9 May 1988

The Bus-Resource Interface

Chapter 3 - Overall Kernel Context 49

various kinds.3 The details of the edifice depend upon the information in the ker
nel config file, and upon the compile-time declarations made by the individual
drivers. During boot time, the initialization that conf ig began is completed by
the autoconfiguration process.

Then, at run time, the mbvar structures are used by both the drivers and the ker
nel to manage the bus and its interaction with the devices. The mbvar structures
are linked to each other in quite a complex fashion, for device characteristics and
thus device driver structures vary greatly, and these structures are intended to
support a great variety of access paths: device to controller, device to driver, con
troller to driver, and so on. Driver developers do not, however, need to concern
themselves with the details of the inter-structure links and access paths. Driver
routines will be called by the kernel with pointers to the mbvar structures of
interest to them. They are then free to build that information into whatever local
structures they find most convenient for the representation of whatever access
paths are of interest to them.

So, to sum up, the Sun kernel/driver runtime interface can be seen as being built
in two different sections. One of these sections is composed of the mbvar struc
tures, constructed into interlinked arrays to represent specific kernel
configurations on specific machines. The other is similar to the generic SunOS
kernel/driver interface, consisting as it does of the two device switches, the user
and proc structures, parameter conventions and a few miscellaneous variables.
We will now discuss the details to these two interfaces.

All controllers are installed on the main system bus, and all slave devices (like
disks and tape drivers) are attached to their controllers.4 Additionally, each con
troller is associated with a device driver, which is really a controller driver. The
mbvar data structures reflect these relationships, not only in terms of the fields
that they contain but in terms of the ways these fields are linked together.

The following mbvar structure fields are the ones most relevant to driver
developers.

mb hd The first data structure, rnb _ hd, is the Main Bus header data struc
ture. There is only one such structure, for Sun systems have only
one Main Bus. It contains a queue of rnb _ ctlr structures, each
one representing a controller waiting for DVMA space. The
queue only contains entries when DVMA space is full. It also
contains other bus-status information. For example, if a driver has

3 It's not always clear just when a device is a "controller", and when it's a "device". The extreme cases are
clear: if a device attaches to the bus, fields interrupts and has other, so-called "slave" devices, then it's a
controller. Likewise, if a device attaches to a controller rather than to the bus, it's a slave device. The confusion
surrounds devices which attach to the device and field interrupts, but which do not have slave devices. Such
"devices" would, in many ways, be better thought of as "controllers" which control only themselves.

4 Sometimes, in this manual, the word "device" will be used in a generic sense to denote either a ''free''
device that attaches directly to the system bus rather than to a separate controller, or a regular slave device. This
generic usage occurs, for example, whenever the tenn "device driver" is used - such programs would more
accurately be described as "controller drivers". In this section, however, we're being extremely precise - free
devices attach to the system bus, and so they're called "controllers", not "devices".

Revision A, of9 May 1988

50 Writing Device Drivers

mb ctlr

~~ slIn ~~ microsystems

exclusive access to the bus, this is noted in rob _ hd. Device
drivers never directly access the fields in rob _ hd.

Each slave-device controller on the Main Bus has an rob ctIr
structure associated with it. (This structure contains all of the
configuration-dependent infonnation which the kernel needs in
interactions with the controller's driver, as well as some status
infonnation. It is rob _ ct Ir that is queued onto rob _ hd during a
wait for DVMA space. The following fields within rob _ ctIr are
of interest even for character devices (there are others that are
used only by block devices):

me ctlr
The controller index for the corresponding controller, for
example, the '0' in scO. Used to index into arrays of driver
specific controller status and control structures.

me addr
The address of the controller (control and status registers and
RAM) in bus space.

me c:lmachan

On the Sun386i only, a field containing the DMA channel.

InC_space
A bit pattern which identifies the address space within which
the controller is installed.

mc_intpri.
The interrupt priority level of the controller. This is to be
given in the config file and should be used, in the driver
source, only as an argument to spIn () - e.g.
spIx(pritospl(mc_intpri}).

InC intr
On Sun-2, Sun-3, and Sun-4 systems, pointer to the vec
structure that specifies vectored interrupt behavior (or NULL
if vectored interrupts are not used). Ifmc_intr is set, then
the fields within the ve c structure become significant:

v func
Pointer to the vector-interrupt function.

v vec
Vector number associated with the function in v func.

v_vptr
A pointer to the 32-bit argument to be passed to the
driver vector-interrupt routine. Defaults to the controller
number of the interrupting device, though it can be reset
within the driver. It's often set by the driver xxat
tach () routine to contain a local structure pointer. On
the Sun386i system, this field contains the irq (interrupt

Revision A, of 9 May 1988

Chapter 3 - Overall Kernel Context 51

request channel). The Sun386i system does not support
vectored interrupts, so the v _ * fields are not present.

me a1ive
Set to one by the autoconfiguration process if the controller is
detennined to be present. Otherwise left at O.

me mbinfo
Main Bus resource allocation information (Used by
MBI _ ADDR () , mbset up () and mbrelseO).

mb device "Free" devices (devices with no separate controllers) as well as
"slave" devices, are represented to the kernel bus-management
routines by an instance of the rnb _device structure. (This is as
it has been since 4.1BSD, but it's not ideal- if free devices were
taken as controllers and represented by an rob _ ct lr structure,
then rnb_device would only be for slave devices and would
contain fewer fields). mb_ctlr contains all of the
configuration-related data for the free or slave device. If a con
troller has multiple slave devices attached to it, there will be as
many rob_device structures associated with its mb_ctlr struc
ture. The following fields within rnb _device (which are set by
the configuration system and are not normally reset by the driver)
are of interest:

md driver
A pointer to the rob _ dr i ve r structure associated with this
device.

md unit
The device index for the corresponding device, for example,
the '0' in xyO. Used to index into arrays of driver-specific
device status and control structures.

md sl.ave
The slave number of the device on its controller.

md addr
The base address of the device (its control/status registers and
perhaps some RAM). For most Multibus devices, this will be
an address in I/O space, though for memory-mapped devices
this will be an address in Memory space. For VMEbus
machines, it's the particular address space within which the
device is attached. Unused for devices on controllers.

md dmachan
On the Sun386i only, a field containing the DMA channel.

md_intpri
The Main Bus priority level of the device (the priority that is
passed to pri tosplO). Used to parameterize the setting of
hardware priorities. Unused for devices on controllers.

Revision A, of 9 May 1988

52 Writing Device Drivers

md intr
On Sun-2, Sun-3, and Sun-4 systems, pointer to the ve c
structure that specifies vectored interrupt behavior (or NULL

if vectored interrupts are not used). Unused for devices on
controllers. On the Sun386i system, this field contains the
interrupt channel.

md_f1ags
The optional flags parameter from the system config file is
copied to this field, to be interpreted by the driver. Only the
driver uses the information in this field. If f lags was not
specified in the config file, then this field will contain a O.

md a11ve
Set by the autoconfiguration process to 1 if xxprobe () finds
the device, otherwise it's left at O. Incidently, if xxprobe ()
fails to find the device, the autoconfiguration process will also
leave the device position in the xxdinfo () array (if the
driver has one) at O. The driver is free to t~st either variable
(in its xxopen () routine) to determine xxprobe () 's ver
dict.

rob drl ver The system assumes that the source code of your driver declares a
rob _ dr i ver structure named xxdr i ve r (). This structure con
tains information relevant to the device driver as a whole, as
opposed to information about individual devices or controllers. It
differs in several important manners from the device and con
troller structures. For one thing, it contains a number of pointers
to driver functions. These pointers, like those in cdevsw and
bdevsw, are used by the kernel as entry points into the driver.
For another, it's initialized not by the configuration system, but
within the driver source code itself - if fact, several of the rou
tines in xxdr i ve r () are actually called by the kernel
autoconfiguration process to complete the driver-related kernel
initialization. (Note: while the driver has responsibility for ini
tializing the fields in xxdr i ve r, it is still limited, at run time, to
reading these fields - it cannot ever change them).

xxdriver () must be known more intimately by the driver developer than
either the driver rod ctlr structure or the driver rod device structure. We
will therefore give its complete definition:

.~sun ~ microsystems
Revision A, of 9 May 1988

Chapter 3 - Overall Kernel Context 53

struct rob driver {

} ;

int (*mdr-probe) () ; / * check device/controller installation * /
/ * check slave device installation * / int (*mdr_slave) ();

int (*mdr_attach) (); / * boot-time device initialization * /
in t (*mdr _go) () ; / * routine to start transfer * /
int (*mdr_done) (); / * routine to finish transfer * /
int
int
char
struct
char
struct
short
struct

(*mdr_intr) ();
mdr size;

*mdr_dname;
rob device **mdr_dinfo;

*mdr_cname;
rob ctlr **mdr_cinfo;
mdr_flags;
rob driver *mdr_link;

/ * polling interrupt routine * /
/ * amount of memory space needed * /
/ * name of a device * /
/ * back pointers to mhdinit structs * /
/ * name of a controller * /
/ * back pointers to mhcinit structs * /
/* want exclusive use of Main Bus */
/ * interrupt routine linked list * /

Here is a brief discussion of the fields in the mb _ dr i ver structure that you will
need to initialize when declaring xxdri ver (). Note that many of the fields in
rob _ dri ver are for the use of block drivers only - they're presented here as
useful background information.

mdrJ>robe
is a pointer to the driver xxprobe () routine. xxprobe () is called for
every controller and every independent device (with no separate controller)
given in the kernel config file. xxprobe () determines if the
device/controller is actually installed. If it is, it returns the amount of bus
space consumed by the device/controller to the autoconfiguration process,
where this space is then mapped into system address space. When
xxprobe () fails, it returns O.

mdr s1ave
is a pointer to an xxslave () function within your driver. xxslave () is
analogous to xxprobe () , and serves the same function for devices which
are driven by separate controllers. Unlike xxprobe () , however,
xxslave () exists only for controllers that may have multiple devices
it's therefore quite rare in character device drivers.

mdr attach
is a pointer to an xxat tach () function within your driver. xxattach ()
is called during the autoconfiguration process, where it does preliminary
setup and initialization for a device or controller. It's commonly used within
disk and tape drivers to perform setup tasks like the reading of labels, and in
character drivers for tasks like initializing interrupt vectors and reserving
blocks of memory. Initialize this field only if there's an xxat tach () rou
tine in your driver.

mdr_<1o
mdr done

are pointers to xxgo () and xxdone () functions within the driver. These
functions usually don't exist for character drivers, and these fields are conse
quently O.

4}\sun
~ microsystems

Revision A, of 9 May 1988

54 Writing Device Drivers

mdr intr
is a pointer to a polling interrupt routine within your driver. Such a polling
routine is used for the "auto-vectoring" of interrupts in systems where the
interrupt "vector" can only be based on the interrupt priority. This is the
case on all Multibus machines, and if there's any chance that your driver
will someday be run on a Multibus machine you should include a polling
interrupt routine and plug it in here.

If you have a Sun source license, and take the opportunity it affords to exam
ine a number of drivers, you may note an inconsistency in the naming of
interrupt routines:

o Some drivers have two interrupt routines: a polling interrupt routine
named .:apoll () and a vector interrupt routine, named xxintr (). In
such cases .:apo 11 () determines the unit number of the interrupting
device and then calls xxintr () to actually handle the interrupt.

o Other drivers have only one interrupt routine. The routine is named
xxintr () and called from rndr _ intr, but it nevertheless contains
polling code. This, like the naming of the field mdr_intr (which
really should be mdr YOll) is an artifact of early Sun systems, in
which drivers were written for the Multibus only - in these systems
xxintr () was the interrupt routine, and it always contained polling
code.

In any case, remember that any routine called from mdr _in t r must check
the polling chain, regardless of its name. If you will not support Multibus
machines, and thus need no polling interrupt routine, put a zero in this field.

mdr size
is the size - in bytes - of the memory required for the device. This field is
initialized with a value identical to that which xxprobe () returns upon
success, and specifies the amount of space that needs to be mapped into sys
tem memory by the autoconfiguration code. The value returned by
xxprobe () , while identical, is used only to indicate if the device was
found.

mdr dname
is the name of the device for which this driver is written.

mdr dinfo
is a pointer to a pointer to the rob_device structure in xxdinfo (). This
pointer is filled in during autoconfiguration (see section below on
Autoconfiguration-Related Declarations) and is necessary to work back from
the device unit number to the correct mb _device structure by way of an
index operation.

mdr cname
is the name of the controller supported by this driver (for example, sc sup
ports the controllers s cO, scI, etc). This field takes the form of a regular
null-terminated C string. Fill it in if you actually have a controller .

• ~sun
• microsystems

Revision A, of9 May 1988

Autoconfiguration-Related
Declarations

Chapter 3 - Overall Kernel Context 55

mdr cinfo
is a pointer to a pointer to an rob _ ctlr structure declared in the driver.
This pointer is filled in during autoconfiguration (see the section below on
Autoconfiguration-Related Declarations) and is necessary to work back from
the device unit number to the correct mb_ctlr structure by way of an index
operation.

mdr_flags
consists of some flags, as follows:
MDR XCLU

The device needs exclusive use of Main Bus while running. This flag is
used only by mbgo () and mbdone () routines (which are not docu
mented in this manual), and it guarantees exclusive use only among
drivers which use it to enforce an exclusive-use protocol. Not all
dri vers do so.

MDR BIODMA

For devices that do DMA on the Main Bus (such drivers call mbgo ()
and mbdoneO). This flag tells the kernel that it must lock other DMA
devices off the bus.

MDR DMA

For devices which use DMA, either to transfer large blocks of data or
simply to transfer small blocks of control information. The drivers for
such devices call mbset up (). This flag tells the kernel that it must
lock other DMA devices off the bus, and all DMA drivers should set it.

MDR SWAB

I/O buffers are to be swab () 'ed - that is, pairs of data bytes are to be
exchanged. This flag is used to push the swab () out of rob go () and
mbdone () and down into the Main Bus driver.

MDR OBIO

The device is installed in on-board I/O space.

Of these, MDR_XCLU, MDR_SWAB and MDR_OBIO are potentially to be
used for user character devices. These flags must be OR' ed together if you
wish to place any of that information there. Place a zero (0) in this field if
none of the flags apply to your driver.

mdr link
This field is used by the autoconfiguration routines and is not for the driver's
use.

At the top of each driver, after the include statements, is a group of declarations
that are used by the autoconfiguration process to finish the initialization of the
mbvar structures. Here, as an example, are the relevant declarations from the
Sky Floating-Point Driver:

Revision A, of 9 May 1988

56 Writing Device Drivers

Other KernellDriver
Interfaces

WARNING

/ * Driver Declarations for Autoconfiguration * /
int skyprobe(), skyattach(), skyintr();
struct mb_device *skyinfo[l]; /* OnlySupportsOneBoard */
struct mb_driver skydriver = {

} ;

skyprobe, 0, skyattach, 0, 0, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, 0,

The first line declares the names of the autoconfiguration-related entry point rou
tines for the driver. In this case there are only three - skyprobe (), skyat
tach () and skyintr (). These declarations are necessary because, in a few
lines, we will use the names to initialize the driver's rob_driver structure.

The second line declares an array (in this case of dimension one) of pointers to
mb_device structures. By the time the driver is linked into the kernel, con
fig will have already declared an array of rob_device structures that contains
an entry for each of the devices named in the kernel config file. When the kernel
is booted, the autoconfiguration process initializes each driver's xxinfo () array
to indicate the rob_device structures corresponding to its devices, with each
device's unit number being used as its subscript into the xxinfo () array. The
Sky driver is slightly atypical in that it only supports one device; normally the
device count provided by config in a macro "NXX" (which is set to the
number of devices noted in the config file) would be the subscript in this declara
tion.

If this was a driver for a controller with slave devices, the second line would be
followed by an analogous one that declared an array of pointers to rob _ ct lr
structures.

The third line both declares and initializes the rob dr i ver structure that
represents this driver. The fields within the structure are described in detail in
the previous section.

The kerneVdriver interface is almost entirely contained within t;he mbvar struc
tures and the parameter conventions of the driver routines. There are, however, a
few other common kemeVrlriver interface points, which are given in this section.

The user structure is validfor the current process only while execution is in
the top half of the driver. It must never be accessedfrom the bottom half.

The kernel user structure contains a few fields of interest to drivers. This struc
ture, which maintains status information for the current user process (and which
is swapped in and out with the process it describes), is used far less by Sun
drivers than it is by System V drivers. This is because, in SunOS, the user
structure does not define the address of the characters to be written (or the place
for characters to be read to). The Sun kernel uses uio structures for this pur
pose, and passes them as parameters to the driver xxread () and xxwri te ()
routines. (See Some Notes About the UIO Structure in the The "Skeleton" Char
acter Device Driver chapter of this manual).

Revision A, of 9 May 1988

Chapter 3 - Overall Kernel Context 57

Still, three fields within the user structure remain of interest to device drivers.
They are:

u.u_qsave
is a set jrnp () environment buffer that can be used to save the current
stack in preparation for a possible longjrnp () return. set jmp () and
longjrnp () are useful in drivers that need to intercept signals, and then to
wake sleeping processes. They can also be used for error handling. For
more information, see the set j rnp (3) man page.

u.u error
If an I/O operation is not successful, the driver must return an error code
(defined in <errno. h», which is plugged into u. u_error. From here
it's normally stored in the per-process global variable errno in the user
context. (Note that in most cases the kernel plugs the value into
u. u _error, and it is not necessary for the driver to do so. In fact, a driver
cannot access u . u _error in its interrupt routine, where transfer errors are
nonnally detected, since the current user structure is unlikely to belong to
the process for which the failed I/O was being performed).

u.uyrocp
The u. u yrocp field in the user structure is a pointer to the processs
(proc) structure for the current process. The proc structure contains the
information that the system needs about a process even when it is swapped
out. u. u yrocp is used by drivers which contain select () routines.
See the Variation with "Asynchronous 110" Support section of the The
"Skeleton" Character Device Driver chapter of this manual for details.

Drivers may occasionally need to know what kind of machine they're running
on. They can find out by querying a variable, cpu, which, while not in the user
structure, is available to them by including .. /rnachine/ cpu. h. This vari
able is initialized by the kernel on the basis of information in the ID PROM, and
is set to one of the following values:

CPU SUN2 50
CPU SUN2 120 - -
CPU SUN3 50
CPU SUN3 110 - -
CPU SUN3 160 - -
CPU SUN3 260 - -
CPU SUN4 260
CPU 1386 AT386

Note that when compiling for a Sun-2 system, only the Sun-2 names are avail
able; likewise for Sun-3s, Sun-4s and Sun386i's.

Related to the CPU SUNX XX names are the SUNX xx ifdefs. These are set at - - -
compile time on the basis of information in the config file, and can be used to
eliminate code or data that is unnecessary for machines of any particular type. In
general, it's possible (and advised) to write drivers that can compile and run on a
variety of Sun machines with no changes.

DVMA drivers will often need to know the address of kernel DVMA space on
the host machine (See the Sun Main-Bus DVMA section in the Hardware Context

Revision A, of 9 May 1988

58 Writing Device Drivers

chapter) so that they can subtract it from system virtual addresses to get
addresses relative to the start of DVMA space. The external variable DVMA,
declared as an array of characters, is available/or this purpose.

The external variable hz gives the number of clock ticks per second on the host
system.

The external variable KERNELBASE gives the start of kernel address spece in the
current memory context.

Revision A, of 9 May 1988

4
Kernel Topics and Device Drivers

Kernel Topics and Device Drivers .. 61

4.1. Overall Layout of a Character Device Driver ... 61

4.2. User Space versus Kernel Space ... 63

4.3. User Context and Interrupt Context .. 63

4.4. Device Interrupts .. 64

4.5. Interrupt Levels ... 65

4.6. Vectored Interrupts and Polling Interrupts .. 66

4.7. Some Common Service Routines ... 69

Timeout Mechanisms 69

Sleep and Wakeup Mechanism ... 69

Raising and Lowering Processor Priorities .. 70

Main Bus Resource Management Routines ... 71

Data-Transfer Functions ... 71

Kernel printf () Function ... 72

Macros to Manipulate Device Numbers .. 72

4.1. Overall Layout of a
Character Device
Driver

4

Kernel Topics and Device Drivers

A first step in writing a device driver is deciding what sort of interface the device
should provide to the system. The way in which read () and write () opera
tions should occur, the kinds of control operations provided via ioctl () , and
whether the device can be mapped into the user's address space using the
mmap () system call, should be decided early in the process of designing the
driver. (For simple memory devices that require neither DMA nor an ioctl ()
routine, and that don't interrupt, it's possible to use the mmap () system call to
avoid writing a driver altogether. See the Mapping Devices Without Device
Drivers section of this manual for more details).

Device drivers have access to the memory management and interrupt handling
facilities of SunOS. The device driver is called each time the user program
issues an open () ,read () ,write (), mmap () , select () or ioctl ()
system call, but only the last time the file is closed. The device driver can
arrange for I/O to happen synchronously, or it can set things up so that I/O
proceeds while the user process continues to run.

Here's a brief summary of the parts that comprise a typical device driver. In any
given driver, some routines may be missing. In a complex driver, all of these
routines may well be present. A typical device driver consists of a number of
major sections, containing the routines introduced below.

Initial Declarations
Device drivers, like all C programs, begin with global declarations of vari
ous sorts. These declarations include the structures that the driver will over
lay on the device registers. (These structures are often conveniently declared
to contain unsigned integers and bit fields chosen to access various parts of
the device registers). They also must include the declarations discussed in
the Autoconfiguration-Related Declarations section of the Overall Kernel
Context chapter of this manual.

Autoconfiguration Support
Then come the xxprobe () ,xxattach () and, perhaps, xxslave () rou
tines. These are called at kernel boot time to determine if devices noted as
being present in the config file are actually installed, and to initialize them if
they are. This initialization may include the resetting of the interrupt vector .

• \sun
• microsystems

61 Revision A, of 9 May 1988

62 Writing Device Drivers

Opening and Closing the Device
xxopen () is called each time the device is opened at the user level; if mul
tiple user processes open the device, xxopen () is called multiple times.
xxc los e () , in contrast, is called only when the last user process which is
using the device closes it.

Reading to and Writing from the Device
xxread () and xxwri te () are called to get data from the device, or to
send data to the device. Drivers for tty-like devices will probably structure
xxread () and xxwri te () in the tenninal-driver style (not described in
this manual), while devices that deal simultaneously with groups of charac
ters will probably have their xxread () and xxwri te () routines imple
mented in terms ofaxxstrategy () routine. Suchxxstrategy () rou
tines are in every way subsets of block-driver xxstrategy () routines
they are integrated with physio () and they use buf structures but they
don't have anything to do with the kernel buffer cache. Character drivers for
DMA device are likely to have s t rat egy () routines, but they can be use
ful for non-DMA devices as well- as long as the devices do I/O in chunks.

Select Routine
xxselect supports the select () system call, by which user processes
can examine various devices (by way ofIJO descriptors which specify them)
to see if they are ready for reading, writing, or have an exceptional condition
pending on them.

Start Routine
xxstart () is needed in drivers that queue requests; it's called from
xxread () ,xxwrite () or xxstrategy () to start the queue and is also
called from xxintr () to send off the next request in the queue.

Mmap Routine
The rrunap () routine is present in drivers for devices which are operated by
being mapped into user memory - for example, frame buffers.

f nterrupt Routines
There are two kinds of interrupt routines: polling (or auto-vectored) routines
and vectored routines. Polling routines are necessary when the host system
doesn't allow unambiguous means of mapping hardware interrupts to dev
ices, as is the case with Multibus-based machines. Vectored-interrupt rou
tines are used on VMEbus-based systems, which can map hardware inter
rupts immediately to devices. Drivers for VMEbus devices that are never
run on Multibus-based systems need only vector interrupt routines, while
drivers for devices which will be run on both Multibus and VMEbus
machines need both types of interrupt routines. In this case the polling rou
tine can determine the interrupting device and then call the vectored routine
to do the rest.

foctI Routine
The xxioctl () routine is called when the user process does an ioct 1
system call. These calls are the great escape hatches in the otherwise gen
erally uniform IJO architecture. They are not, however, panaceas, and you
should not overuse them to solve problems in driver design. Terminals have

~)sun
~ microsystems

Revision A, of9 May 1988

4.2. User Space versus
Kernel Space

4.3. User Context and
Interrupt Context

Chapter 4 - Kernel Topics and Device Drivers 63

many ioctl calls, but they're a special case. They have many ioctl
calls because they're inherently quite complex and yet SunOS still insists
that they look like files.

SunOS, being a multi-tasking operating system, provides for multiple threads of
control at the user level. (These multiple threads are the various user processes).
At the kernel level, however, things are different. The SunOS kernel is monol
ithic monitor type of operating system, and, as such, it cannot be interrupted by
user processes. Instead, it contains code which allocates its time (and other
resources) among the various user processes, as well as to itself. The kernel can
be interrupted by hardware, but when handling interrupts it doesn't run on
behalf of any individual user process.

Device driver functions are invoked by kernel routines after user processes make
system calls. These functions must be able to move data to or from user virtual
space quickly and easily. Kernel functions are provided to help it do so, and to
redundantly map memory so that it can be shared by user programs and the ker
nel.

Device drivers are parts of the kernel, and they inhabit kernel space:

o In the Sun-2 the kernel virtual address space is 16 megabytes, and is com
pletely separate from the individual user virtual address spaces.

o In the Sun-3 and Sun-4, the kernel virtual address space is at the top of the
current context, starting at KERNE LBAS E.

o In the Sun-4, the kernel uses the top 16 megabytes of the current Gigabyte
context, starting at 0 xFF 000000 .

o In the Sun386i, the kernel uses the top 64 Megabytes. Of these, the kernel
has 32 Mbytes reserved for its use; kadb has 16 Mbytes reserved, and the
EPROM uses 16 Mbytes.

In general, drivers don't need to consider the details of kernel address-space
implementation. Routines (like copy in () and copyoutO) which deal in
multiple address spaces will manage the details internally, as will programs like
kadb.

A device driver can usefully be thought of as having a top half and a bottom half.
The top half, consisting of the read () , wr i te () , and ioct 1 () routines, and
of any other routines which run on behalf of the user process making requests on
the driver, is run at I/O request time. The routines in the top half make device
requests that can cause long delays during which the system will schedule a new
user process so that it can continue doing useful work. The bottom half, consist
ing of xxintr () and any routines that it may call, is run at hardware interrupt
time.

Memory-mapped devices are usually not interrupt driven. Their drivers, thus, do
not typically need to include interrupt routines. Memory-mapped devices
operate by being written and read as system memory, and make no split-second
demands (interrupt-time demands) upon their users.

+~t!! Revision A, of 9 May 1988

64 Writing Device Drivers

4.4. Device Interrupts

After starting an I/O request, the top half calls sleep () to wait for the bottom
half to indicate (by way of a call to wakeupO) that the request has been ser
viced. Thus, when a user program issues a read on (say) an AID converter, it is
nonnally suspended when the top half of the corresponding driver calls
sleep () to wait until some input arrives. Alternatively, the top half of the
driver can call iowait () and be put to sleep awaiting the completion of a
buffer-oriented 110 transfer.

The top half contains! not only all the non-interrupt time driver routines, but (for
all practical purposes) the kernel routines above the driver as well. In particular,
it contains the kernel physio () routine, which manages the decomposition of
large 110 requests into a series of smaller ones that can be handled by the device.

The bottom halfmay include anxxstart () routine, which can be called inter
nally to start 110. This allows the device-specific code to be isolated in one rou
tine. xxstart () is not a driver entry point. It's called from either xxstra
tegy () or xxintr () ,depending upon whether the device is busy or not.

Consider an AID converter driver that expected the converter to interrupt when a
sample was available. The kernel interrupt handler would detect the device inter
rupt and dispatch xxintr () , which would then store the sample data in a buffer
and wakeup () the user process sleeping in the top half so it process could
retrieve the data. If there was no user process sleeping in the top half, the
wakeup () would have no effect, but the next process to read the AID driver
would find the data already there and wouldn't have to sleep () .

It must be stressed that, in general, xxintr () doesn't run on behalf of the
current user process - this is, in fact, why it's distinguished so clearly from the
top half. This means is that no infonnation about the current user process is
available, in any way, to xxintr (). It shouldn't examine, let alone change, any
of the variables in the kernel use r structure.

In general, the driver developer has limited control over the interrupt characteris
tics of the device. However, it should be said that some device-interrupt charac
teristics are better than others. In particular, interrupt-processing takes lots of
time, and it's important that devices interrupt as seldom as possible. If, for
example, a device can be made to handle multiple characters for each interrupt it
processes, it should be. It's also preferable that a device not interrupt until its
driver has enabled its interrupts, that it hold its interrupt line high until the driver
asks that it be cleared, and that it remain quiescent after a bus reset (system
boot).

Most hardware devices interrupt, and all interrupts occur at some given priority
level. When an interrupt occurs, the system traps it, suspends the in-process
operation (which may be a process entirely unrelated to the interrupting device or
even the kernel) and resumes execution in the bottom half of the driver associ
ated with the interrupting device. This means that the top half of a device driver
can be interrupted at any time by its bottom half. If they wish to share data, they
must do so in shared data structures, and they must take special provision to see
that those structures remain consistent. An example of such a data structure is a
pointer to a current buffer and a character counter. The top half of the driver

Revision A, of9 May 1988

4.5. Interrupt Levels

Chapter 4 - Kernel Topics and Device Drivers 65

must protect itself so that data structures can be updated as atomic actions, that
is, the bottom half must not be allowed to interrupt during the time that the top
half is Updating some shared data structure. This protection is achieved by
bracketing critical sections of code (sections that update or examine shared data
structures) with subroutine calls that raise the processor priority to levels which
can't be interrupted by the bottom half. Such a section of code looks like:

s = spIn () ;

critical section of code that can't be interrupted

(void)splx(s);

Here we've first raised the hardware priority level and then restored it after the
protected section of code. (Detennining the correct hardware priority will be dis
cussed later). One section of code that almost always needs to be protected is the
section where the top half checks to see if there is any data ready for it to read, or
whether it can write data or start the device. Since the device can interrupt at any
time, the section of code that checks for input in this fashion is wrong:

if (no input ready)
sleep (awaiting input, software-priority)

because the device might well interrupt after the if condition is tested, but
before the process switch. (fhe consequences, if this happens, are grave - the
call to wakeup () will occur before the process has actually gone to sleep, and
thus it will never wake up}.

The above section of code must thus be rewritten to look like this:

s = spIn () ;
while (no input ready)

sleep (awaiting input, software-priority)
(void) splx (s) ;

If the top half executes the sleep () system call, the bottom half will be
allowed to interrupt, because the hardware priority level is reset to 0 as soon as
the sleep () context switches away from this process.

In many cases it is possible to set the device interrupt level by setting switches on
its board. If so, you must decide what processor-interrupt level the device is
going to interrupt at. At first it may seem that your device is very high priority ,
but you must consider the consequences of locking out other devices:

o If you lock out the on-board UARTs (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the SunGS
scheduler will be suspended .

• ~sun ~ microsystems
Revision A, of 9 May 1988

66 Writing Device Drivers

4.6. Vectored Interrupts
and Polling Interrupts

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed.

o If you lock out the disks (level 2), disk rotations may be missed.

o Level 1 is used for software interrupts and cannot be used for real devices.

In general, it's best to use the lowest level that will provide you with the response
that you need.

In Multibus-based Sun-2 machines, the kernel uses only auto-vectored (polling)
interrupts. With auto-vectoring, the interrupt vector associated with a given dev
ice is based solely on the device interrupt priority level. Since many system
configurations will contain more devices than there are interrupt levels, multiple
devices may share the same interrupt level. Still, when processing an interrupt,
the kernel must have a way of determining which device interrupted, and which
driver should process the interrupt. In such configurations, the kernel proceeds
by polling all the drivers at the given interrupt level (in the order that they are
given in the config file), calling each of their polling interrupt routines in tum.
These routines then proceed to interrogate their corresponding devices looking
for the device that has an "attention bit" set, thus indicating that it issued the
interrupt. Devices that don't indicate that they've interrupted can still be
installed - one per system - by putting them at the end of the config file and
thus at the end of the polling chain. Unclaimed interrupts can then be assumed to
be from the last device.

After determining that one of its devices issued an interrupt, the polling routine
services it and returns a non-zero to indicate that it did so (or a 0 to indicate that
no device was found to originate the interrupt).

Polling only works if devices which share interrupt levels continue to interrupt
until the driver tells them to stop. This is because the driver polling-interrupt
routine returns to the kernel with an indication of which of the devices it has ser
viced. If two devices (A & B) are polling at the same interrupt level and both
issue an interrupt, device A will always get serviced first. The kernel will then
go on its merry way unless device B continues to interrupt. If it does, then when
device A has been serviced, device B will be serviced. Fortunately, most Mul
tibus boards continue to interrupt until told to stop. VMEbus boards typically do
not, so it's important that they use vectored interrupts.

Sun VMEbus machines, (even those with Multibus devices installed by way of
adapters) can take advantage of vectored interrupts. When handling a vectored
interrupt, the kernel calls the appropriate driver's vector interrupt routine
directly, passing it an argument to identify which of its devices (or controllers)
interrupted.

It's important to realize that a driver can support both vectored interrupts and
polling interrupts. Such a driver can be run on either ty pe of machine, its polling
interrupt routine will determine which device, if any, originated the interrupt, and
then call the vectored interrupt routine to actually service it.

~~sun ~ microsystems
Revision A, of9 May 1988

Chapter 4 - Kernel Topics and Device Drivers 67

VMEbus devices - if they interrupt - are assigned unique identifying numbers
in the range Ox40 to OxFF when they are described in the config file. It is
these vector numbers that are used by the kernel to directly identify the interrupt
ing device.

There are cases where no separate polling routine is needed. The first is where a
driver knows that it supports only one device, and that no other device will share
its device's interrupt level. In this case only an xxintr () routine need exist. It
can then be specified in rob _ dr i ver->rodr _ intr for use in the auto-vectored
case and in the conf ig file for the vectored interrupt case. Thus, all
configurations will use the same interrupt routine. Remember, this will only work
if there are no other devices of any sort installed at the same interrupt level.

The other case where xxpoll () is not needed is when a driver will never sup
port polling - presumably because it will never be run on a Multibus machine.
In this case xxintr () should be specified in the conf ig file for use as the vec
tored interrupt routine, and the auto-vectored (polling) interrupt routine specified
in rob dr i ver->mdr intr should be O.

Note that in the first case above, where the device will have an interrupt level to
itself, little need be done to make the driver work with vectored interrupts. One
may simply take a polling interrupt routine, (perhaps renaming it xxintr () to
avoid confusion) and install it as the vector interrupt routine by giving its name
in the appropriate place in the conf ig file. This isn't the most efficient thing to
do, for when the routine is called through the kernel's vectoring mechanism, it
will waste the information in its argument (which identifies the device originat
ing the interrupt) and go on to poll its devices. Nevertheless it will work. It's
better, however, if drivers contain both xxintr () and xxpoll () routines, so
that they may be easily transported to a variety of systems.

Another issue of concern only to drivers running on VMEbus machines is related
to setting up the interrupt-vector number. When using the VMEbus-Multibus
adapter or certain VMEbus devices, the vector number is set by switches on the
circuit board. But some devices require that software initialize the device by tel
ling it which vector number to use on interrupts. Presently, the only place where
this can be done is in xxat tach (). The vector number that xxat tach ()
communicates to the device is in the rod intr->v vec field of the - -
rob device structure - a NULL value in this field indicates that the host
machine is Multibus based and does not support vectored interrupts.

A skeleton for a "typical" driver, one supporting both vectored and polling inter
rupts and using software to set interrupt vectors might look like:

1*
* NXX is computed by config/or each device type.
* It can then be used within the driver source code to
* declare arrays of device specific data structures.
*1 l :truct xx device xxdevice [NXX] ;

J

Revision A, of9 May 1988

68 Writing Device Drivers

* Attach routine for a device xx that must be notified of its
* interrupt vector.
*1

xxattach (md)
struct rob_device *md;

register struct xx device *xx &xxdevice[md->md_unit];

#ifndef sun386
1*
* Vector number given in kernel config file and passed by the autoconfiguration
* process during boot. This code does not apply to the Sun386i. which does not
* support vectored interrupts.
*1

if (md->md_intr)

/ * so we will be using vectored interrupts * I

/ * WRITE interrupt number TO THE DEVICE * /
xx->c_addr->intvec = md->md_intr->v_vec;

/* Setup argument to be passed to xxattach * /
* (md->md_intr->v_vptr) = (int)xx;

else { / * WRITE auto-vector code TO THE DEVICE * /
xx->c addr->intvec = AUTOBASE + md->md_intpri;

/ * any other attach code * /
#endif
}

1*
* Handle interrupt - called from xxpo 11 and for vectored interrupts.
*1
xxintr (xx)

struct xx_device *xx;

/ * handle the interrupt here * /

1*
* Polling (auto-vectored) interrupt routine
*1

xxpoll ()
{

register struct xx device *xx;
int serviced = 0;

/ * loop through the device descriptor array * /
for (xx = xxdevice; xx < &xxdevice[NXX]; xx++) {

if (!xx->c-present I I

Revision A, of 9 May 1988

4.7. Some Common Service
Routines

Timeout Mechanisms

Sleep and Wakeup
Mechanism

Chapter 4 - Kernel Topics and Device Drivers 69

(xx->c_iobp->status & XX_INTR) 0)
continue;

serviced = 1;
xxintr (xx) ;

return (serviced);

The kernel provides numerous service routines that device drivers can take
advantage of. The most important of these routines can be clustered into the
functional groups given here. These routines, as well as many others, are
described more completely in the Kernel Support Routines appendix to this
manual:

If a device needs to know about real-time intervals,

timeout (func, arg, interval)
int (*func) () ;
caddr_t arg;
int interval;

is useful. timeout () arranges that after interval clock-ticks, the June is called
with arg as argument, in the style (*fune)(arg). interval is often expressed as a
multiple of the external variable hz, since hz gives the number of ticks per
second on the host machine. (lO*hz, then, specifies a timeout often seconds).
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to terminate an attempt to
read a device if there is no response within a specified number of seconds. Also,
the specifiedfunc is called at "software" interrupt priority from the lower half of
the clock routine, so it should conform to the requirements of interrupt routines
in general- you can't, for example, call sleep () from withinfunc, although
you can call wakeup (). (See also untirneoutO).

Another key set of kernel routines is sleep () and wakeup () . The call

sleep (event, software-priority)
caddr_t address;

l int priority; J
~---------

makes the process wait (allowing other processes to run) until the event occurs; at
that time, the process is marked ready-to-run. When the process resumes execu
tion, it has the priority specified by software yriority.

The call

+~t!! Revision A, of 9 May 1988

70 Writing Device Drivers

Raising and Lowering
Processor Priorities

[wakeup (event)
caddr_t address;

indicates that the event has happened, that is, causes processes sleeping on the
event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker - it must uniquely identify the device. By convention,
event is the address of some data area used by the driver (or by a specific minor
device if there's more than one).

Processes sleeping on an event should not assume that the event has really hap
pened when they are awakened, for wakeup () wakes all processes which are
asleep waiting for the event to happen. Processes which are awakened should
check that the conditions that caused them to go to sleep are no longer true.

Software priorities can range from 0 to 127; a higher numerical value indicates a
less-favored scheduling condition. A distinction is made between processes
sleeping at priority less than or equal to P ZERO and those sleeping at numeri
cally greater priorities.

If a process is blocked in sleep () at a priority less than or equal to PZERO,dt
will not be awakened upon receipt of a signal; the signal will not be processed
until the process is awakened elsewhere and returns to user mode. (This means
that a user cannot interrupt such a process by typing their interrupt character).
Thus, it is a bad idea to sleep with priority less than or equal to P ZERO on an
event that may not occur.

On the other hand, if a process is blocked in sleep () at a priority greater than
P ZERO, and if a signal is sent to the process, it will be awakened. However, the
call to sleep () will not return. This means that the routine that called

]

sleep () cannot clean up after receiving the signal. If the routine needs to do
such clean up, it can arrange for this by DRing the PCATCH flag into the priority
it passes to sleep (). If this is done, and sleep () is interrupted by a signal, it
will return 1; if the process is woken up normally, sleep () will return O.

In general, sleeping at priorities less than or equal to P ZERO should only be used
to wait for events that occur quickly, such as disk and tape liD completion.
Waiting for events that may not occur quickly-for example, the typing of a par
ticular key by a human at a keyboard-should be done at priorities greater than
PZERO.

Incidentally, it is a gross error to call sleep () in a routine called at interrupt
time, since the process that is running is almost certainly not the process that
should go to sleep.

At certain places in a device driver it is necessary to raise the processor priority
so that a section of critical code cannot be interrupted, for example, while adding
or removing entries from a queue, or modifying a data structure common to both
halves of a driver.

The splx () function changes the interrupt priority to a specified level, and then
returns the old value.

~~sun
• microsystems

Revision A, of 9 May 1988

Main Bus Resource
Management Routines

Data-Transfer Functions

Chapter 4 - Kernel Topics and Device Drivers 71

For configuration reasons, the pr i tospl () macro is necessary to convert a
Main Bus priority level to a processor priority level. The Main Bus priority level
can be found in eithermd->md_intpri ormc->mc_intpri, where it is put
by the autoconfiguration process. (These structures are defined in
/usr / include/ sundev /mbvar. h).

Here's how you normally use the pritospl () and splx () functions in a
hypothetical strategy () routine:

hypo_strategy (bp)
register struct buf *bPi

register struct mb_ctlr *mc
hypoinfo[minor(bp->b_dev)]i

int s;

s = splx(pritospl(mc->mc_intpri»;
while (bp->b_flags & B_BUSY)

sleep«caddr_t)bp, PRIBIO);

here is some critical code section

(void)splx(s); / * Set priority to what it was previously * /

Alternatively, spln can be used to set the processor to a certain fixed priority
level.

On the Sun-2, Sun-3 and Sun-4, the routine mbsetup () is called when the dev
ice driver wants to start up a DMA transfer to the device, for DMA transfers
require Main Bus resources. The MBI_ADDR () macro can then be used to
transform the abstract integer returned by mbsetup () into a DVMA transfer
address. At some later time, when the transfer is complete, the device driver
calls the mbrelse () routine to inform the Main Bus resource manager that the
transfer is complete and the resources are no longer required.

On the Sun386i, the mbsetup () and dma_setup () routines are called when
the device driver wants to start up a DMA transfer. After the transfer is com
plete, the driver calls mbrelse () and dma_done ().

The kernel provides a number of routines designed to transfer data between the
user and kernel address spaces. These include copy in () and copyout () ,
general routines designed to move blocks of bytes back and forth. They also
include uiomove () , ureadc () and uwritec () ,routines which are
designed to transfer data to or from a uio structure (see Some Notes About the
UIO Structure in the The "Skeleton" Character Device Driver chapter for more
details about this structure).

Revision A, of9 May 1988

72 Writing Device Drivers

Kernel print f () Function

Macros to Manipulate Device
Numbers

The kernel provides a printf () function analogous to the printf () func
tion supplied by the C library for user programs. The kernel pr in t f () , how
ever, is more limited. It writes directly to the console, and it doesn't support
pr intf () 's full set of formatting conversions. See the Debugging with
printf () section of this manual for more details on the use of the kernel
printf ().

A device number (in this system) is a 16-bit number (typedef short
dev _ t) divided into two parts called the major device number and the minor
device number. There are macros provided for the purpose of isolating the major
and minor numbers from the whole device number. The macro

major (dev)

returns the major portion of the device number dev, and the macro

minor (dev)

returns the minor portion of the device number. Finally, given a major and a
minor number x and y, the macro

dev_tmakedev(x,y)

returns a device number constructed from its two arguments.

Revision A, of9 May 1988

5
Driver Development Topics

Driver Development Topics ... 75

5.1. Installing and Checking the Device 75

Setting the Memory Management Unit .. 75

Selecting a Virtual Address 76

Finding a Physical Address ... 79

Selecting a Virtual to Physical Mapping ... 79

Sun-2 Address Mapping ... 81

Sun-3 and Sun-4 Address Mapping ... 84

A Few Example PrE Calculations .. 87

Getting the Device Working and in a Known State 88

A Warning about Monitor Usage .. 90

5.2. Installation Options for Memory-Mapped Devices 90

Memory-Mapped Device Drivers .. 90

Mapping Devices Without Device Drivers .. 92

Direct Opening of Memory Devices .. 95

5.3. Debugging Techniques ... 97

Debugging with printf () .. 98

Event-Triggered Printing 100

Asynchronous Tracing 101

kadb - A Kernel Debugger .. 102

5.4. Device Driver Error Handling .. 103

Error Recovery 103

Error Returns .. 103

Error Signals .. 104

Error Logging .. 104

Kernel Panics ... 104

5.5. System Upgrades ... 105

5.6. Loadable Drivers .. 105

5.1. Installing and
Checking the Device

Setting the Memory
Management Unit

5
Driver Development Topics

The central processor board (CPU) of the Sun Workstation has a set of PROMs
containing a program generally known as the "Monitor". (See the appropriate
PROM Commands chapter of the PROM User's Manual for detailed descriptions
of the monitor commands and their syntax). The monitor has three basic pur
poses:

1) To bring the machine up from power on, or from a hard reset (monitor k2
command).

2) To provide an interactive tool for examining and setting memory, device
registers, page tables and seg~ent tables.

3) To boot SunOS, stand-alone programs, or the kernel debugger kadb.

If you simply power up your computer and attempt to use its monitor to examine
your device's registers, you will likely fail. This is because, while you may have
correctly installed your device (a process that includes specifying its virtual
memory mapping in the config file) those mappings are SunOS specific, and
don't become active until SunOS is booted. The PROM will, upon power up,
map in a set of essential system devices - like the keyboard - but your device
is almost certainly not among them.

When installing a new device, you will use the monitor primarily as a means of
examining and setting device registers. But before even beginning the develop
ment of your driver, it's a good idea to attach your device to the system bus and
use the monitor to manually probe and test it. This will give you a chance to
become familiar with the details of its operation, and to ensure that it works as
you expect it to.

Upon power-up, the PROM monitor:

D Maps the beginning of on-board memory, up to 6 megabytes, to low virtual
addresses starting at virtual OxO.

D Sun-2 machines only. Maps the bus spaces into virtual address space, for the
purpose of supporting Multibus devices. Multibus 10 space is mapped from
OxEBOOOO to OxEBFFFF on Sun-2 Multibus machines. On Sun-2
VMEbus machines, vme16d16 is mapped from OxEBOOOO to OxEBFFFF
so that Multibus cards attached by way of VMEbus adapter cards can be
accessed. These two address spaces, Multibus 110 and vrne16d16, are not

75 Revision A, of 9 May 1988

76 Writing Device Drivers

Selecting a Virtual Address

remapped by the SunOS kernel. This means that, for example, that kernel
virtual address OxEBEE40 can be used to talk to a device at OxEE40 in
Multibus 10 space without setting up a mapping. (This shortcut is only pos
sible for the two 16-bit Sun-2 spaces).

Later, using the autoconfiguration process, SunOS makes a pass through the
config file (actually, through the ioconf file that was produced as output by
config when it processed the config file). For each device, SunOS selects an
unused virtual address (using an algorithm that doesn't presently concern us) and
maps it into the device's physical address as specified in the config file.

SunOS then calls the xxprobe () routine for each device~ passing it the chosen
virtual address. In this way, xxprobe () is kept from having any knowledge of
the physical address to which the device is mapped. xxprobe () then deter
mines whether or not the device is present. If it isn't, the virtual address can be
reused.

To test a device, ignore the SunOS mappings and use the monitor to manually set
the MMU to map your device registers to a known address in physical memory.
Then you can use the monitor to verify its proper operation. This verification
process will consist primarily of using the monitor's 0 (open a byte), E (open a
word) and L (open a long word) commands to examine and modify the device's
registers. Note that, in Sun-4 machines, words and long words are both 32 bits in
length.

The process of setting up the device for initial testing consists of three discrete
steps.

o The selection of an appropriate virtual address for the testing of the device.

o The determination of the physical address of the device, as well as the
address space that it occupies.

o The use of the monitor to map the system's virtual address to the device's
physical address. Detailed discussion of these three steps follow.

Since Sun OS initializes the MMU in the course of its autoconfiguration process,
it's possible to test a device by actually installing it, and then booting and halt
ing SunOS. (You can halt SunOS by pressing the 'Ll' and 'A' keys simultane
ously, or, on a terminal console, by hitting the <BREAK> key). Having gotten to
the monitor by this route, the MMU will be initialized to its SunOS run-time
state. You can then use the monitor to test the device, or, if you wish, boot
kadb. (A hard reset- the monitor's k2 command-will set the to MMU to its
pre-SunOS power-up state). But while using the SunOS memory maps may occa
sionally be useful, it's not what you want to do during the first stages of device
integration.

First, understand that the MMU, when mapping a virtual address to a physical
address, is actually mapping to a page of physical memory and an offset within
that page. The low-order bits of a virtual address, those that specify the offset,
do not get mapped - an address that is X bytes from the beginning of its virtual
page will be X bytes from the beginning of whatever physical page it gets

Revision A, of 9 May 1988

24 bits
Input

~

Virtual
Addl-ess

28 bits
Input

~

Virtual
Addl-ess

Chapter 5 - Driver Development Topics 77

mapped into.

The mapping mechanism is the essentially the same for all Sun systems, although
the details of address size and page mapping differ. This can be seen in the fol
lowing diagrams:

Figure 5-1 Sun-2 Address Mapping

high
MMU

high 23 bits .. -
"\ 13 12 / Output

" Phy~ical
Addl-ess

low :
11

Figure 5-2 Sun-3 Address Mapping

high
MMU

high 32 bits ...
'\ 15 19 I Output

" Phy~ical
Addl-ess

low
:

13

Revision A, of 9 May 1988

78 Writing Device Drivers

32 bits
Input

'" Vitiual
Address

:

32 bits
Input

'" Vitiual
Addfess

:

Figure 5-3 Sun-4 Address Mapping

high
MMU

high - 32 bits

"'\ 19 19 f Output
Ad~ress

·
Phy~ical

low · · :
13

Figure 5-4 Sun386i Address Mapping

"\
high

MMU
high 32 bits

20 20 / Output
Ad~ress

Phy~ical

low :
12

The easiest way to select a virtual address for PROM-monitor testing is to use
one between Ox4000 and OxlOOOOO on Sun-2, Sun-3, and Sun-4 systems, or
a x 2 a 0 a a and 0 xl 0 a a a a on Sun386i systems. Addresses in these ranges are
unused by the monitor in the respective Sun models, and are thus available.

-

Revision A, of 9 May 1988

Finding a Physical Address

Selecting a Virtual to Physical
Mapping

Chapter 5 - Driver Development Topics 79

(Note that these addresses, while convenient for testing, are not those that the
kernel will choose when your device is finally installed).

It's most convenient to select a virtual address which has only zero's in its low
order bits. This way you select the first address in a virtual page. The low-order
bits in the address you choose will remain unchanged. With' X' representing
the unmapped low-order bits (11 for a Sun-2, 13 for a Sun-3 or Sun-4, 12 for a
Sun386i the test address 0 x4 0 0 0 is, in binary:

Sun-2: 0000 0000 0010 OXXX XXXX XXXX
Sun-3: 0000 0000 0000 100X XXXX XXXX XXXX
Sun-4: 0000 0000 0000 0000 100X XXXX XXXX XXXX

Sun386i: 0000 0000 0000 0000 0100 XXXX XXXX XXXX

(24 bits)
(28 bits)
(32 bits)
(32 bits)

Your board may be preconfigured to some address. If it is, then use that address
unless it conflicts with the address of an already installed device. If it does, you
will have to find an unused physical address at which you can install your device.
To do so, examine the kernel config file for the system upon which you are work
ing. Tables in the Hardware Context chapter show memory layouts correspond
ing to typical configurations, but if your system has departed at all from the
nonn, you will have to consult your kernel's config file (to determine where dev
ices have been installed) and the header files for the corresponding device drivers
(to determine how much space they consume on the bus).

When selecting a virtual to physical mapping, it's best if you understand a bit
about the internals of the Memory Management Unit. To this point we've only
stressed that the MMU maps the top bits of the virtual address, leaving the offset
bits unchanged. Now it will be necessary to explain the mapping process in more
detail.

Some new concepts are necessary to discuss the details of virtual to physical
memory mapping.

o The context register (of real concern only on the Sun-2) is a register specify
ing which of memory contexts should be used when mapping virtual
addresses to physical addresses. Sun-2 and Sun-3 Context Registers contain
3 bits, and specify one of eight memory contexts; Sun-4/260 Context Regis
ters contain four bits, and specify one of 16 memory contexts. Each SunOS
process segment (containing either code, data or stack) is kept within a sin
gle memory context.

o Sun-3s have user and kernel address spaces in the same hardware con
text. That is to say, there is only one virtual address space, a portion of
which is used by the kernel and the rest by user processes. Sun-4 virtual
address spaces are divided into two chunks. One of them is at the top of
the addressable virtual memory space and the other is at the bottom.
The size of the unused space between these two spaces varies with the
model- in the Sun-4/260 each of the two virtual address spaces is 512
megabytes in size, and the space between them consumes 15 Gigabytes.

~), sun Revision A, of 9 May 1988
~ microsystems

80 Writing Device Drivers

o Sun-2s, on the other hand, segregate kernel and user processes into
separate hardware contexts with separate address maps. Kernel
processes are run in the supervisor context (context 0) and only
processes in context 0 have access to the I/O devices.

o The segment map is used in conjunction with the context register to select
the page map entry group (PMEG) corresponding to the virtual address
being mapped. The eight bits in the segment register specify one of a group
of 256 PMEGs.

o Within each page map entry group there are 16 page table entries.

o The page map maps the PMEG returned from the segment mapping with a
second subfield of the incoming virtual address to exactly specify a single
page table entry describing the physical page within which the virtual
address is mapped.

o The page table entry (PrE) is the final output of the MMU. A PrE specifies
the physical address of a page, as well as its type (e.g., on-board memory
space), protection, and the state of its access and modified flags.

Note (for Sun-2 machines only): when testing your device, it's necessary to
ensure both that you are in supervisor state and that you are in context zero (the
kernel context). The monitor normally initializes to supervisor state, but if you
enter it by way of an abortfrom SunOS, you will remain in whatever context you
were in at the time of the abort. To be on the safe side, begin all of your monitor
sessions with the command S 5. This will put you into supervisor data state,
where you want to be. Note one important exception to this rule: if you've
mmap () , ed the device into your (user) program's address space and want to
check that this worked, you must use the S 1 command instead of the S 5 com
mand. This will cause user function codes to be used when accessing page maps
and data.

+~t!! Revision A. of 9 May 1988

Sun-2 Address Mapping

Figure 5-5

supervisor Context
user Register

24 bits 9
Input "\ "'\

Vi~ual
Add~ss

Chapter 5 - Driver Development Topics 81

Note the following diagram of the Sun-2 MMU:

Sun-2MMU

..............
:

:

:

3 : :
: type
:

protection
~

~ accessed
Segment 8

PMEG modified
~

Map

G 12 23 bits

Page / Output

: Map
:

Phy~ical :
Addtess

:
4

11

Note that:

D The lower 11 bits of the incoming virtual address are passed through the
MMU without being mapped - these are the bits that specify the position
within the page, regardless of whether that page is physical or virtua1.

D Multiple segment maps can specify the same PMEG, and often do.

D The PTE, on the output side of the MMU, specifies a variety of kinds of
status information for the specified page, as well as the top bits of its physi
cal address.

The process of mapping a virtual to a physical address consists, in practice, of
plugging the right number into the right PTE. The monitor provides a simple
means of addressing the right PTE, but you will have to calculate the right value
to plug into it.

Revision A, of 9 May 1988

82 Writing Device Drivers

Table 5-1

On Sun-2 systems, hardware PrEs are 32-bit numbers with the following struc
ture.

V r w x r w x Type a m Unused (8) Physical Page # (12)

I I I I I I

Most of the PrEs that we will deal with will have similar structures, and so we
can begin by making a "template" bit mask that we can use to construct our stan
dard PTEs. One acceptable mask will assume values as follows:

v (valid) = 1
rwxrwx = 111111
(a/m) accessed/modified 00
unused = 00000000

Thus, we can see that our template will be:

1111111 Type
1 ,I o 0 0 0 000 0

I I , I I I I I I I I I

Physical Page # (12)

This gives us a mask of OxFEOOOOOO (if we assume that the type field is
0000). Now, as already mentioned, there are four types of memory, represented
in the PTE by values of 0, 1, 2 and 3 in the type field indicated above. (Types 0
and 1 have the same meaning in both Multibus and VMEbus machines, but types
2 and 3 do not. Type 2 is used, on Sun-2 VMEbus machines, to designate the
first 8 megabytes of the 24-bit VMEbus space - OxO to Ox7FFFFF - and type
3 is used to designate the second 8 megabytes - Ox800000 to OxFFFFFF.
(But remember that the top 64K of the 24-bit space is stolen for the 16-bit space).
This use of two memory types to designate physical memory is necessary
because the Sun-2 physical address size, 23 bits, is not sufficient to address all 16
megabytes of vme 2 4 d16.

Sun-2 PTE Masks

Type Description Mask

0 On Board Memory OxFEOOOOOO
1 On Board I/O Space OxFE400000
2 (Multibus) Memory Space OxFE800000
3 (Multibus) I/O Space OxFECOOOOO
2 (VMEbus) VMEbus Low OxFE800000
3 (VMEbus) VMEbus High OxFECOOOOO

To determine the value which we need to plug into the PTE, we must add the
appropriate mask to the appropriate physical page number, thus giving us the full
32-bit number that we need. Here, we will cease to explain details and simply
give a series of rules for calculating physical page numbers.

Revision A, of 9 May 1988

Chapter 5 - Driver Development Topics 83

If Sun-2 Multibus:

If Multibus I/O Space, use Type-3 Template
If Multibus Memory Space, use Type-2 Template

Physical Page Number = Physical Address » 11

If Sun-2 vme24d16:

If Physical Address >= Ox800000
Use Type-3 Template
Physical Page Number =

(Physical Address - Ox800000) » 11

If Physical Address < Ox800000
Use Type-2 Template
Physical Page Number = Physical Address » 11

If Sun-2 vme16d16

sun
microsystems

Use Type-3 Template
Physical Page Number

(Physical Address + Ox7FOOOO) » 11

Revision A, of9 May 1988

84 Writing Device Drivers

Sun-3 and Sun-4 Address
Mapping

Figure 5-6

supervisor Context
user Register

28 bits 11
Input "\ "\

Vi~ual
Addtess

Consider the following diagram of address mapping on the Sun-3.

Sun-3MMU

.............

:

:
:

3
~ : type

:
: protection ...

accessed/modified
Segment 8 ...

PMEG
Map

~
don't cache

11112119 24125132
~

Page bits / bits

Map

Phy4ical
Addtess

4

13

As you can see, the general scheme is the same as it was in the Sun-2, but the
details have changed:

o The MMU is getting a 28-bit virtual address as its input, as opposed to a 24-
bit address in the Sun-2.

o The number of mode and permission bits in the PTE has been reduced.

o The number of high-order bits reported out of the MMU, and thus the size of
the physical address, is variable. The address size is fixed for any given
Sun-3 machine, and varies only with the model- there are different kinds
of Sun-3 machines and they have different physical address sizes.

The Sun-4 MMU is almost the same:

sun
microsystems

Revision A, of 9 May 1988

Figure 5-7

supervisor Context
user Register

Top 2 Bits

32 bitla bits 12
Input Passed '\

Vi~ual
Add~ess

Chapter 5 - Driver Development Topics 85

Sun-4MMU

............

413
type

~

protection
~

accessed/modified
Segment 918 PMEG don't cache Map

~
~

19 32
~ - bits / bits Page

Map
: Phy~ical :

Addtess

5

13

As you can see, the Sun-4 MMU is largely identical to the Sun-3 MMU. The
differences are that:

o The Sun-4 MMU gets a 32-bit virtual address as its input, as opposed to a
28-bit address in the Sun-3. The top two bits are immediately shunted off.
They must be either 00 or 11, and are used to specify one of the two
"chunks" in the virtual address space. (See Selecting a Virtual to Physical
Mapping above).

o The number of bits coming off the Context Register is 4 (to specify one of
16 contexts) on Sun-4/260s and 3 (to specify one of 8 contexts) on Sun-
4/110s.

o The number of bits coming off the Segment map is 9 for Sun-4/260s and 8
for Sun-41l1 Os.

On both Sun-3 and Sun-4 systems, PrEs are 32-bit numbers with the following
structure.

Revision A, of9 May 1988

86 Writing Device Drivers

v w s c Type a m Unused (5) Physical Page Number (19)

I L I

As we did with Sun-2 PrEs, we will make a "template" bit mask that we can use
to construct our standard PrEs. One acceptable mask assumes values as follows:

v (valid) = 1
w/s (write ok/supervisor only) = 11
c (don't cache) = 1
unused = 00000

(A one (1) in the don't cache position only dis'ables caching if the type is zero
(0), since other types of pages are never cached). With the above values, our
template will be:

1 1 1 1 Type o 0 o 0 000 Physical Page Number (19)

I I 1 I I I I

This gives us a mask of 0 xF 0000000 (if we assume that the type field is 00).
Thus, the four masks for the four types of memory are:

Table 5-2 Sun-3/Sun-4 PTE Masks

Type Descri ption Mask

0 On Board Memory OxFOOOOOOO
1 On Board 110 Space OxF4000000
2 vrne16d16 OxF8000000
2 vrne24d16 OxF8000000
2 vrne32d16 OxF8000000
3 vrne16d32 OxFCOOOOOO
3 vrne24d32 OxFCOOOOOO
3 vrne32d32 OxFCOOOOOO

To determine the value to be plugged into the PrE, we must add the appropriate
mask to the appropriate physical page number, thus giving us the full 32-bit
number that we need. Here, again, we will give rules instead of details.

If vme16d16
or vme24d16
or vme32d16

Use Type-2 Template

Revision A, of9 May 1988

l

A Few Example PTE
Calculations

re ..

,;' (,
Chapter 5 - Driver Development Topics

If vme16d32
or vme24d32
or vme32d32

Use Type-3 Template

If vme32d16
or vme32d32

r

Physical Page Number Physical Address » 13

If vme24d16
or vme24d32

Physical Page Number =
(Physical Address +OxFFOOOOOO) » 13

If vme16d16
or vme16d32

Physical Page Number =
(Physical Address +OxFFFFOOOO) » 13

Example One: You wish to map a device which you have attached at physical
Ox280008 onto bus type vrne24d16 on a Sun-3. You will map it at virtual
OxEOOOOOO. What is the corresponding PTE?

Well, since we are mapping the device into vme 24 d16, we will use
OxF8000000 as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to 0 xFF 0 0 0 0 00. This yields
OxFF280008. In binary, this is:

1111 1111 0010 1000 0000 0000 0000 1000

Shifting this right by 13 yields:

XXX X XXXX XXXX X111 1111 1001 0100 0000

Adding the template, 0 xF 8000000, we get values for the 13 bits that are
undefined from the shift. Thus the PTE is:

1111 1000 0000 0111 1111 1001 0100 0000

Which is OxF807F940.

87

A final note: we've now calculated the PTE that maps the virtual page beginning
at OxEOOO 000 to the physical page containing Ox2 8000 8. To get the virtual

Revision A. of 9 May 1988

88 Writing Device Drivers

Getting the Device Working
and in a Known State

address by which to access the device it's necessary to take the lower 13 bits of
the physical installation address - the bits that are just passed through the MMU
- and add them to virtual 0 xE 0 00000. The lower 13 bits of physical
Ox2S000S are OOOS, and adding them to OxEOOOOOO yields OxEOOOOOS,
the virtual address by which the device can be accessed.

Example Two: You wish to map physical OxEE4S on bus type vme16d32 on a
Sun-3. Using virtual address OxEOOOOOO, what is the PTE?

Since we are mapping the device into vrne16d32, we will use
OxFCOOOOOO as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to 0 xFFFF 0 000. This yields
OxFFFFEE4 S. In binary, this is:

1111 1111 1111 1111 1110 1110 0100 1000

Shifting this right by 13 yields:

xxxx XXXX XXXX X111 1111 1111 1111 1111

Adding the template, OxFCOOOOOO, we get values for the 13 bits that are
undefined from the shift. Thus the PrE is:

1111 1100 0000 0111 1111 1111 1111 1111

Which is OxFC07FFFF.

To get the virtual address by which to access the device at physical OxEE4S, add
its lower 13 bits, OxE4S, to OxEOOOOOO -this yields OxEOOOE48.

Before you even think about writing any code you should check out your device.
You must get to know it, finding out early if it has any peculiarities that will
affect its driver. It may, for example, have addressing and data-bandwidth limi
tations. Or, if it's a bus master, it may not implement the release on request
bus-arbitration scheme the Sun supports. Know the peculiarities of your device
early, and then test it to verify that it's working before proceeding further with
driver development.

Make sure that the board is set up as specified in the vendor's manual. Device
characteristics which, in general, have to be set properly before the device can
successfully be used include:

o I/O register addresses for I/O mapped Multibus boards,

o Memory base addresses for Multibus boards that use Multibus memory
space,

o Address and data widths,

o Interrupt levels,

o Interrupt vector numbers for VMEbus device,

o VMEbus address modifiers,

Revision A, of9 May 1988

Chapter 5 - Driver Development Topics 89

o The bus grant level for VMEbus devices should be set at 3.

Then, take down your system and power it off. Plug the device into the card
cage and attempt to bring the system back up. If you can't boot the system, then
there's a problem. Perhaps the board isn't really working, or perhaps it's
responding to addresses used by other system devices. You must resolve this
problem before proceeding further.

Take SunOS down again and attempt to contact the device using the PROM
monitor. To do so, you will need to set up a PTE on the Sun-2, Sun-3, or Sun-4
which maps to the device's physical installation address. Use the procedures
given above to calculate a PrE, then:

o Issue the monitor command that puts you into supervisor data state. This
will be s B for Sun-4 machines and s5 for all others. So, if you have a
Sun-3, give the

>55

command.

o Calculate, using the procedures given above, the PrE appropriate to the phy
sical address you've chosen.

o Set the position in the kernel page map that corresponds to your physical
address to contain the calculated PTE. This will map your chosen physical
address, thus putting you in contact with your device. You may use the
monitor's P command to perform this mapping. The P command takes a
virtual address as its argument, displays the PrE that corresponds to that vir
tual address, and gives you the option of modifying the PTE. For example:

>pF32000

selects the page map entry that corresponds to the virtual address of
o xF 3 2000 and displays it. It also displays a'?', which indicates that you
may type in a new value to replace the one displayed. (See the appropriate
PROM Commands chapter of the PROM User's Manual for more details).
Note that all virtual addresses within a page select the same PTE.

Having contacted the device from the monitor, try some of the following:

o Try reading from the device status register(s), if there are any.

o Try writing to the device control and data registers(s), if there are any. Then
try reading the data back to see if it got written properly (this assumes, of
course, that the device allows the reading of these register(s).

o Try actually getting the device to do something by sending it data.

o If the device is a controller with separate slave devices, then switch a slave
on and off and watch for changes in the controller status bits.

Your goal is to try to actually operate the device, for a moment, from the moni
tor. For example, if you have a line printer, try to print a line with a few charac
ters. Be aware that bit and byte ordering issues are critical in this process. The
reason you're doing this is to ensure that the device works and that you

4}~sun
~ microsystems

Revision A, of 9 May 1988

90 Writing Device Drivers

A Warning about Monitor
Usage

5.2. Installation Options
for Memory-Mapped
Devices

Memory-Mapped Device
Drivers

understand the way it works. When you understand the device's peculiarities,
you can proceed to write a driver for it

When you use the monitor's 0, E or L commands to open a location, the monitor
reads the present contents of that location and displays them before giving you
the option to rewrite them. In the best of all possible worlds, this would present
no problems, but many devices don't respond to reads and writes in as straight
forward a fashion as does normal memory.

For example, the Intel 8251A and the Signetics 2651 use the same externally
addressable register to access two separate internal mode registers, and they have
internal state logic that alternates accesses to the external register between the
two internal registers. So suppose that you want to put something in mode regis
ter 1 of the 8251. You open the external register, the monitor displays its con
tents, and you then do your write. If, being cautious, you then read the external
register to check that the data you wrote is there, you will find that it's not
because the read will sequence you on to the second register.

To deal correctly with such devices, it's necessary to use the monitor's "write
without looking" facility and then read the locations back later to check them.
You can write without looking with any of the monitor commands that "open" an
area of memory; all that's necessary is that you enter a val ue after the
address argument. For example:

>1 [address] [value]

This will cause value to be written into address without first reading its
current contents. For more information on hardware peculiarities and the prob
lems that they can cause for the monitor, the Hardware Peculiarities to Watch
Out For section of the Hardware Context chapter.

Memory-mapped devices are the simplest types of devices to write drivers for.
Frequently, however, their essential simplicity isn't obvious from a quick glance
at their source code. This is because many memory-mapped devices are frame
buffers, and frame-buffer drivers must set up and manage the low-level interface
for the Sun window system as well as the standard device interface. Conse
quently, they tend to be littered with declarations and manipulations related to
the "pixrect" (pixel rectangle) system. See the Purect Reference Manual for
more details.

Memory-mapped devices are most frequently installed into Sun systems with
simple drivers that map them into user address space (there are sometimes alter
natives to such drivers, as you will see below). Such memory-mapped drivers
don't really do much. Obviously, xxprobe () and xxrmnap () must exist, for
the kernel must be able to check the device installation and perform the actual
device mapping. And, in addition, xxi n t r () must be real if the device is

Revision A. of 9 May 1988

Chapter 5 - Driver Development Topics 91

interrupt driven. Butxxopen () and xxclose () are usually stubs, and
xxread () and xxwrite () can be calls to nulldev.

Keep in mind that the major purpose of a memory-mapped driver is to support
the mmap () system call. This is very important because user processes which
call window code must first map the frame buffer into their address space. They
do so with the mmap () system call, which is translated by the kernel into a
series of calls to the driver's mmap routine. Each of these calls returns page
table entry information which the kernel needs to map a single page (the next
page) of frame-buffer memory into a virtual address space. Here's some very
simple driver xxmmap () code.

/*ARGSUSED*/
cgonemmap(dev,off,prot)

dev_t dev;
off_t off;
int prot;

return (fbmmap(dev,off,prot,NCGONE,cgoneinfo,CGlSIZE»;

/*ARGSUSED*/
int fbmmap(dev, off, prot, numdevs, mb_devs, size)

dev_t dev;
off_t off;
int prot, numdevs;
struct mb_device **mb_devs;
int size;

int kpfnum;

if ((u_int) off >= size)
return -1;

kpfnum =
hat_getkpfnum(mb_devs[minor(dev)]->md addr + off);

return kpfnum;

dev is, of course, the device major and minor number, and off is the offset into
the frame buffer (passed down from the user's mmap () system call). prot is also
passed down from the user's call, but it is not currently used. As you can see,
there's a bit of shuffling around and then a call to hat _getkpfnum, which
returns a Page Frame Number whichxxmmap () is expected to return.

Note that rob dev->md addr is the address of the frame buffer from the Main - -
Bus device structure. This is the device installation address as given in the ker
nel config file. The offset is checked to be sure the user isn't mapping beyond
the end of the frame buffer.

Revision A, of 9 May 1988

92 Writing Device Drivers

Mapping Devices Without
Device Drivers

Under a restricted set of circumstances, it's possible to avoid writing a device
driver altogether by using the mmap () system call to overlay the device's regis
ters and memory onto user memory. Having done this, you can read and write
the registers - as if they were normal user memory - from a user program.

What this really amounts to is piggybacking the new device onto an another, sys
tem standard, virtual memory device (and its driver). The mmap () routine of a
system virtual memory device is then used to do the user-device mapping, and
the "installation" is accomplished without the development of a driver specific to
the user device. Instead, a user level program is written, one that calls the
nuna p () system call.

The restrictions on this shortcut are, however, fairly severe.

D The device must not require any special handling of the type that would go
into xxioctl () .

D The device (including all its control registers) must work with user function
codes, since that's what it will get when mapped into and then accessed from
user space.

NOTE MC680XO processors, SPARC processors and the Intel 80386 all run in either
'user' or 'supervisor' state. Many devices, in turn, restrict certain of their
operations, and will only perform them when the processor is in supervisor state.
The Sun CPU is in supervisor state only when executing kernel code. This means
that device drivers, which are part of the kernel, can issue device commands
which are not available from user processes. Also note that, when the CPU is in
supervisor state, as it is when driver code is executing, the device will receive
different VMEbus address modifier codes than when the CPU is in user state.
For details about these codes see the VMEbus specification).

D The device must not require any other sort of special handling - it cannot,
for example, be multiplexed, interrupt driven, or do DMA.

D Finally, there are security problems associated with this sort of installation.
Since the system virtual-memory devices are normally owned by and res
tricted to the superuser, your programs will either have to change their per
missions to allow normal users to access them, or will have to run with
superuser privileges. The former strategy is usually not acceptable in the
long run, because it creates a gaping hole in the security of the system. And
it's far from clear that the second alternative is desirable either.

The virtual-memory devices of interest here are those that support mapping over
the entire range of a virtual address space. They are:

Revision A, of 9 May 1988

Table 5-3 Virtual Memory Devices

Machine Type

Multibus (Sun-2 only)
Multibus (Sun-2 only)
VMEbus
VMEbus
VMEbus (Sun-3 and Sun-4)
VMEbus (Sun-3 and Sun-4)
VMEbus (Sun-3 and Sun-4)
VMEbus (Sun-3 and Sun-4)
ATbus (Sun386i only)

Chapter 5 - Driver Development Topics 93

Memory Device Name

mbmem
mbio
vme16d16
vme24d16
vrne32d16
vme16d32
vme24d32
vme32d32
atmem

In addition, there are memory pseudo-devices that support access to the on-board
devices that users are allowed to access. These are / dev / fb, / dev /mem and
/ dev /kmem (See the mem (4) manual page for details).

/ dev / fb is a memory device which, on any given system, is set up to address
the local frame-buffer device. It can be used as if it were a system memory dev
ice - on any given system, / dev / fb can be mmap () 'ed into user memory and
then written to, with the effect of writing the local frame buffer memory.

To use mmap () with one of the system memory devices, you must do three
things:

o Open the device.

o Calculate the offset which you will need to call mma p (). This offset is
merely the device address on the appropriate system memory device rounded
to a page boundary. That is to say that you get the offset from the device
manual and/or the switches on the device itself.

o Call mmap () to allocate virtual space and map in the physical bus address
of your device, which you must know. (See the Hardware (:ontext chapter
for a discussion on how to pick a good physical address from the informa
tion in the system config file).

The following example program uses / dev / fb rather than one of the virtual
memory devices. It makes a good example because it maps the system frame
buffer into user memory so that it can then be written from a user program. It
uses mmap () to set things up, but doesn't bother with calling munmap () ,
because unmapping occurs automatically when the memory device is closed.
This close occurs implicitly when the program ceases execution. (The machine
segment size is 128K for the Sun-2 and Sun-3; 256K for the Sun-4; and 4Mbytes
for the Sun386i. Areas greater than the machine segment size should be mapped
only with special care. For details, see the discussion ofmmap () in the User
Support Routines appendix).

Once the device has been mapped into user space it can be treated as a piece of
local user memory. (Remember that memory accesses performed by way of this

Revision A, of 9 May 1988

94 Writing Device Drivers

mechanism will be reflected - at the device level - as non-privileged (user)
accesses. This is because mmap () accesses inherit the privilege of the process
that calls mmap (). Thus, if memory is mapped by a driver, subsequent accesses
to it will have the standard supervisor data access privilege, but if it's called from
a user process, as described here, subsequent accesses will be non-privileged.
Attempts to access supervisor-only device registers without supervisor privilege
might produce a bus error, i.e., they're inaccessible from a user program, and
thus a kemellevel driver must be written to manipulate them. The device will
also receive different address modifier codes when accessed from a user process
than when accessed via a device driver).

tinclude <stdio.h>
tinclude <sys/file.h>
tinclude <sys/mman.h>
tinclude <sys/types.h>

/ * Width and Height of Frame Buffer in Bits * /
tdefine WIDTH 1152
tdefine HEIGHT 900

main ()
{

int fd;
unsigned len;
char *addr;

/ * Open the frame-buffer device * /
if «fd = open("/dev/fb",O_RDWR» < 0)

syserr (n open") ;

/ * Compute total number of bytes * /
len = «WIDTH * HEIGHT)/8);

/*
* offset must be page aligned. /dev/fb
* is already aligned withframe-buffer memory
*/

offset = 0;

/ * Map device memory to user space * /
addr = mmap«caddr_t)0, len, PROT_READIPROT_WRITE,

MAP_SHARED, fd, 0);
if (addr == (caddr_t)-1)

syserr("mmap failed");

writeFB(addr) ;
exit(O);

wr i teFB (addr) / * Write to frame buffer * /
char *addr;

sun
microsystems

Revision A, of 9 May 1988

char color;
int i,j;

color = OxFF;

Chapter 5 - Driver Development Topics 95

for (i = 0; i < HEIGHT; i++)
color = -color;
for (j = 0; j < WIDTH/8; j++)

*addr++ = color;

syserr (msg) /* print system call error message and terminate * /
char *msg;

extern int errno, sys_nerri
extern char *sys_errlist[]i

fprintf(stderr,"ERROR: %s (%dn , msg, errno);
if (errno > 0 && errno < sys_nerr)

fprintf(stderr, "; %s)\n", sys_errlist[errno])i
else

fprintf(stderr,")\nn);
exit(l);

NOTE This example uses the special memory device / dey / fb, since this device is
always set up to address the frame buffer memory.

Direct Opening of Memory
Devices

So, despite the plethora of limitations on the sorts of devices that can be installed
by way of mapping them into user space, it's quite an easy thing to do. If your
device characteristics are such that this is an option, you may well wish to take it
And even if such an installation isn't an attractive long-term option (for example,
because of unacceptable security problems) it may still be attractive as a short
term alternative to driver development. Even in environments where security
considerations make it unacceptable in the long term, it can allow you to get your
device up and running very quickly. Sometimes this counts for a lot.

It should be noted, for the purpose of completeness, that there's another approach
to avoiding driver development, one that's even easier than the use ofmrnap ()
described here, and even more limited. That is, it's possible to simply open the
virtual memory device that contains your board, to seek to the location of its
registers, and then to read and write those registers as if they were regular
memory.

This approach has most of the same problems as does the use ofmrnap (), and is
notable mainly because, with it, the device receives supervisor function codes. It
does, however, introduce new problems. It doesn't give you the same degree of
control as does mma pO, and you often need that control when dealing with dev
ices. When you use rrunapO, the device actually becomes part of your user
memory space, and it's left to the compiler to generate exactly the I/O accesses

.\sun ~ microsystems
Revision A, of 9 May 1988

96 Writing Device Drivers

which you implicitly specify in your structure and variable declarations. You
can always access exactly what you want, and the accesses occur directly as
move byte and move word operations. Thus they are very fast

When, however, you simply open a system memory device as a file and then read
and write to it, your communication with your board is mediated by the I/O sys
tem. The I/O systems will always try to do the "right thing" (if you request I/O
at an odd address or for an odd number of bytes it will perform byte access as
appropriate; otherwise it will use short integers), but it still doesn't give you the
kind of control that can be had using mma pO. Furthermore, I/O operations
involve lots of code, and take hundreds of times as long as direct references to
mmap () 'ed references, which proceed by way of the MMU and use low-level
store and move instructions to directly access device registers and memory as
physical memory.

So the bottom line is that, unless you need to access a device only a few times, or
if you need to receive supervisor function codes (and the corresponding VMEbus
address-modifier codes) and performance isn't critical, you can do your installa
tion by opening a system memory device and then seeking to your device regis
ters and memory space. Otherwise, use nunap () or write a driver. If you do
decide to use the open () /1 seek () method, do so with low-level 110 rather
than with the standard I/O library. The standard 110 library implements a buf
fered I/O scheme which will add considerably to your problems.

The following user program is similar to the example above, in that it writes the
same pattern to the memory of a frame buffer. This time, though, the write is
done by way of the I/O system rather than by using mma pO, and the frame buffer
is taken to be installed at OFFSET (whatever the device physical installation
address is) in the vrne24d16 memory space.

NOTE Since all Sun VMEbus machines have a built-in, on-boardframe buffer, this
example is only meaningful/or color frame buffers. On Sun-2 Multibus
machines, however, this code would work with / dev / obmem and an offset of
BW2MB FB.

iinclude <stdio.h>
iinclude <sys/types.h>
iinclude <sys/param.h>
iinclude <sys/buf.h>
iinclude <sys/file.h>

void syserr();
long lseek();

/ * Width and Height of Frame Buffer in Bits * /
idefine WIDTH 1152
idefine HEIGHT 900

main ()
{

int fd;

Revision A, of 9 May 1988

5.3. Debugging Techniques

Chapter 5 - Driver Development Topics 97

/ * Open the system menwry device containing the frame buffer * /
if «fd = open ("/dev/vme24" , O_RDWR)) < 0)

syserr("open");

/ * Seek to the frame buffer menwry * /
if (lseek(fd, (long) OFFSET, L_SET) -lL)

syserr("lseek") ;

writeFB(addr);
exit(O);

writeFB (fd) /* Write toframe buffer * /
int fd;

char color;
int i,j;

color = OxFF;
for (i = 0; i < HEIGHT; i++)

color = -color;
for (j = 0; j < WIDTH/8; j++) {

if (write (fd, &color, 1) == -1)
syserr("write") ;

As described above, it's a good idea to begin debugging by using the monitor to
check that the device has been installed at the intended address, and that it works,
before proceeding to debug your device driver. This allows you to avoid debug
ging the device simultaneously with the driver, and experience that you'd like to
avoid for as long as possible. Alternatively, if you're confident in both yourdev
ice and the correctness of your installation, you can simply make a new kernel,
boot it and proceed with debugging. In this case you should put some
pr in t f () messages - see below - into the xxprobe () routine. Then you
can at least see the device get contacted and initialized.

Debugging drivers is significantly more difficult than debugging regular user pro
grams, for a number of reasons:

o In the first place, device drivers are part of the system kernel. This means
that the system is not protected from their errors. Addressing errors, for
example, will frequently trip hardware traps and crash the system.

o As mentioned above, there's the possibility that the device hardware will be
buggy. For this reason, you can't really trust your environment in the same
way as you can when writing a user program on a mature computer system.

o Some device behave in rather peculiar ways. (See A Warning about Monitor
Usage, above).

Revision A, of 9 May 1988

98 Writing Device Drivers

o Finally, the debugging environment in the kernel is thinner than it is in user
space. There is a kernel debugger, kadb, and this a a big step towards mak
ing life easier for driver developers. Still, life remains more difficult when
debugging in kernel space.

It's possible to prototype drivers in user address space by using techniques
similar to those described in the Mapping Devices Without Device Drivers
section of this chapter. The same constraints given there apply to prototyp
ing. In particular, it's not possible to run an interrupt routine, or to probe
for non-existent devices without generating bus errors from prototype
drivers in user space. If the device generates no interrupts, and if it doesn't
do DMA, the entire driver might be able to run in user space.

For all these reasons, you should give extra care to desk-checking your code, and
check a reference manual when not absolutely sure of the meaning of a given
construction. Don't take chances.

Also, make changes incrementally. Don't try to save time by making many
changes at once. You will save time in the long run if you take the time to add
and test a few parts at a time. Keep your feet on solid ground.

Use trace output from printf(), as described below. Drivers can act in surpris
ing ways, and the best way to proceed is by making the flow of operations highly
visible.

NOTE On the Sun386i system, the loadable drivers feature makes driver development
much easier because the code-compile-reboot-test cycle is reduced to code
compile-load-test.

Debugging with printf () With the availability of kadb, the kernel debugger, the importance of

The window systems should not be
up when you use printf () to
debug a driver because its output
will go to the console window. On
the Sun386i system, it is best to set
the global variable newlog to o.

printf () in the debugging of device drivers has been significantly reduced.
Still, even with kadb available, pr intf () statements remain useful as means
of providing synchronous tracing of overall driver flow and structure. kadb can
be made to provide a similar sort of tracing (by tying print commands to strategi
cally chosen breakpoints) but this won't altogether eliminate the printf ()
statement. The pr intf () has long found application in driver debugging, and,
as a matter of taste and experience, some pI:ogrammers will continue to use it.
For this reason, we will discuss its use in some detail.

The kernel printf () sends its message directly to the systems console,
without going through the tty driver. As a consequence, the printing is
uninterruptible-the characters aren't buffered. Furthermore, pr int f () runs at
high priority, and no other kernel or user process activity takes place while its
output is being produced. printf () thus radically limits overall system perfor
mance (though this is usually ok while device drivers are being debugged).

There is a second kernel print statement, uprintfO. uprintfO, however, is
of little use to driver developers. It attempts to print to the current user tty as
identified in the user structure, and prints to the console only if there's no
current user tty (at which it becomes identical to printfO). uprintf () can
not be called from lower-half routines, which run in interrupt context and cannot
make any assumptions about the user structure (where uprintf () looks to

Revision A. of 9 May 1988

Chapter 5 - Driver Development Topics 99

determine the current user tty). uprintf () is most useful for production
drivers, like tape drivers that encounter media errors, which want to report errors
not to a programmer but to the user.

There are occasions in which the use oJprintf () (or uprintf()) statements
will change the behavioroJyourdriver. printf () statements,Jor example,
can affect the timing oj operations in the driver being tested as well as in other
drivers. The output may be so slow relative to other device operations that inter
rupts are lost and system failures are introduced; thus, it is frequently impossible
to synchronously trace a device interrupt routine. Driver code may begin to fail
only when pr intf () s are introduced, or, even worse, only when printf () s
are disabled. If you' re debugging a tty driver, you may evenface a situation
where printf () -based tracing generates new calls to the driver being
debugged. Thus, there are situations in which it cannot be used. In such situa
tions, you should use kadb or the techniques suggested below in the section on
Asynchronous Tracing.

The best way to use printf () statements for tracing driver execution is by set
ting things up so that you can toggle printing by using the kernel debugger,
kadb (see below) to set and reset print-control variables. Doing so is very sim
ple. At the top of the driver source file, include statements like:

:If:ifdef XXDEBUG
int xxdebug = 0;
:If:define XXDPRINT if (xxdebug > 0) printf
:If:endif

(It's important that the variables like xxdebug be global, so that you can later
access them freely from the debugger - remember that all drivers are part of one
program, the kernel, and name your print-control variables so as to avoid naming
conflicts).

Then, instead of calling printf () inside the driver routines, call XXDPRINT.

Each call should be in the form:

:If:ifdef XXDEBUG
XXDPRINT ("driver name ... ", ...) ;
:If:endif

which will only call printf () if XXDEBUG is defined and xxdebug is set to a
value greater than O.

Make sure that each call to XXDPRINT identifies the driver, for it's possible that
you, or some other programmer, will want to see debugging output from several
drivers at once. And leave the debugging code in for a while after you're
finished - bugs may surface later.

Having set things up like this, you can turn the pr intf () 's on or off at any
time by using kadb to set unset or change the print-control variable xxdebug.
Or you can use adb if you wish, running it at user level in a separate window:

.~sun
• microsystems

Revision A, of 9 May 1988

100 Writing Device Drivers

Event-Triggered Printing

example adb -w /v.munix /dev/kmem

(adb won't allow you to set breakpoints in the kernel, but it will allow you to set
and unset variables - you can change the value of xxdebug, or even reset a
variable which has caused your driver to hang). Remember that you're in the
kernel and BE CAREFUL.

Incidentally, / dev / kmem represents the kernel virtual address space, which is
why it's used here. adb - k / vrnunix / dev / mem, in contrast, generates a
view of the physical address space, because / dev /mem represents the physical
memory. This latter command is useful for examining core :files.

Good places to put printf () statements include:

o driver routine entry points

o before critical subroutine calls

o upon reading status information from the device

o before writing of commands or data to the device

o at intennediate points in complex routines

o at routine exit points

Note again that you don't have to restrict yourself to a single xxdebug variable,
or to binary tests that check to see if a variable is on or off. You can use as many
variables, and as many values for each variable, as necessary to reflect the func
tional divisions most appropriate to your driver. It might even be useful to get
truly esoteric, and send certain trace statements directly to the user tty (by calling
uprintf() while the rest use printf () and go to the console.

In the above discussion, the xxdebug variable was initialized by the compiler,
and toggled with a debugger. However, it's just as easy to have the driver rou
tines themselves set a trigger variable under pre-chosen conditions.

For example, if you wanted to enable tracing after a given condition had
occurred, you could declare xxdebug, just as was shown above, but define
XXDPRINT somewhat differently:

*ifdef XXDEBUG
int xxdebug = 0;
*define XXDPRINT(v,msg,al,a2) \

if (xxdebug> (v)) printf(msg,al,a2);
*endif

and then, in the code that checks for the condition:

*ifdef XXDEBUG
if (condition) xxdebug
*endif

1;

Revision A, of 9 May 1988

Asynchronous Tracing

Chapter 5 - Driver Development Topics 101

Then to call XXDPRINT:

#ifdef XXDEBUG
XXDPRINT (0, "driver name ... \n", a, b) ;
#endif

One major disadvantage of using the kernel pr int f () is that its output doesn't
go through a device driver, and thus can't be paused with Control-S or redirected
to a file. It's possible, then, that printf () will overwhelm you with output.
There are a number of things that you can do if you run into this problem:

D If you haven't used multivalued print-control variables, then do so. This
gives you more control than you have with simple on/off print control, and
will allow you to reduce the amount to trace noise.

D You can use a debugger to set the global variable nopr intf. This will
keep p r i n t f () 's output from being sent to the console, but that output
will still go to a buffer where kernel error messages are kept before being
transferred to /var / adm/messages. You can examine the message
buffer at your leisure, in one of two different ways:

D From a user window, you can use dme s g.

D From kadb (or adb on /dev/kmem) you can type msgbuf+lO/s.

D It's also possible to reconfigure your system so that it uses a hardcopy tenni
nal as its console over a RS-232 line. Then, you won't lose any of the
printf () output.

D Best of all, you can get another machine and connect it to your machine over
a RS-232 line. Having done so, use tip to open a window on the second
machine as the console of the test machine. You can then use tip's record
feature (see the tip man page) to make a record of all the stuff that
p r in t f () is sending to the test machine's console.

As mentioned above, there are occasions when timing problems forbid the use of
the printf statement. In these cases, it's a good idea to give up any attachment
that you might have to printf () statements and use kadb.

Or, if you prefer, it's possible to deal with timing problems by using kadb to
patch the nopr in t f variable, and then to check the message buffer to see
what's going on. Doing so:

D allows you to continue using the debugging code that you installed before
encountering the timing problem, and

D presents you with a sequential list of the events in your driver, a list spelled
out in English phrases and including interrupt-level events.

Or, you can simply use kadb for everything.

Revision A, of 9 May 1988

102 Writing Device Drivers

kadb - A Kernel Debugger

NOTE kadb does not work with versions o/the kernel earlier than 3.2.

kadb is an interactive debugger similar in operation to adb. kadb differs in
several key respects from adb. It runs as a standalone program under the PROM
monitor, rather than as a user process in user address space. And it allows you to
set breakpoints and single step in the kernel!

Thus, running a kernel under kadb is significantly different than running it
under adb - k. The k option to adb merely makes it simulate the kernel
memory mappings while kadb actually runs in the kernel address space. And
unlike adb, which runs at user level and as a separate process from the process
being debugged, kadb runs in system space as a coprocess. It shares not only
the kernel address space but its CPU supervisor mode as well.

kadb, for all intents and purposes, is a version of adb. It has the same com
mand syntax and almost the same command set. Thus, you can see the kadb and
adb manual pages, as well as Debugging Tools/or the Sun Workstation, for
more details on its use. Note, however, the following points of special interest to
driver developers:

D All interrupts are disabled while interacting with kadb (except non
maskable interrupts). Thus, when using kadb to examine memory, the ker
nel remains stable. However, while single stepped instructions are being
executed, the actual standing priority of the kernel is temporarily restored,
and interrupts can get dispatched, run and return. You won't notice unless
you have a break point set in the interrupt routine, which works just fine.

D kadb is installed so that, when a program is being run under it, an abort
sequence (LI-A) will transfer control not to the PROM monitor but to kadb
itself. Once in kadb, you can abort again and be transferred to the monitor.
The transfer is direct and immediate, so you can use the monitor to examine
control spaces (e.g. page and segment maps) which are not accessible from
kadb. The monitor c command will return you to kadb.

D kadb runs in the same virtual memory space as the kernel itself, and with
the CPU in supervisor mode. This means that kadb uses the kernel memory
maps when calculating virtual addresses, and that it can directly examine
kernel structures. This is in contrast to the situation with adb -k, where
software copies of the page table entries are used to map virtual addresses to
physical pages.

D kadb's memory view is almost the same as that resulting from adb
/vmunix / dev/kmem. In other ways, however, kadb is much different.
To give just one example: on Sun-3 machines, where users and supervisors
share the virtual address space, kadb allows the user to examine the user
virtual address space (this is not true with adb - k).

D Finally, be aware that kadb - as a consequence of the way that adb works
- always does 32-bit memory reads. Even if you tell kadb to read a byte it
will read a long. This leads to a lack of control that can cause problems
when reading device registers. (This problem does not exist on the Sun386i.

.~sun ~ microsystems
Revision A, of 9 May 1988

5.4. Device Driver Error
Handling

Error Recovery

Error Returns

Chapter 5 - Driver Development Topics 103

On the Sun386i, when kadb is told to read a byte, it does. Within kacib,
the B command is used to read a single byte and the v command to write
one).

There are various types of errors: "expected" errors like those generated by
xxprobe () routines, transient errors in operations that can reasonably be
retried, fatal errors that require controlled shutdowns, and others. The kinds of
errors that you will face depends upon the kinds of drivers that you write and the
peculiarities of your devices; few generalizations can usefully be made.

To further complicate matters, the detection and treatment of errors varies greatly
from device to device. You should begin by carefully reading your device
specification manual to determine the error indications that can arise and the
responses that should be made when they do. Most devices have at least an error
bit in the control/status register, and usually more detailed error information is
available. Ideally, you should understand all potential errors, avoid those that
you can and recover from the rest. This ideal isn't always achievable, but try not
to leave any obvious holes. If you do nothing else, checkfor device errors and
use the kernel printf () function to report them to the system console.

There are various error reporting and management mechanisms available to the
driver developer. Most of them have already been mentioned as they've become
relevant; here they are collected and summarized:

It's difficult to generalize about error-recovery mechanisms, for they are largely
device specific. It's worth noting, however, that:

D Some errors are worth retrying and some aren't; the matter is entirely device
specific.

D Error-recovery routines should be able to run at the interrupt level. This is
because errors can occur either synchronously or asynchronously with
respect to the dispatch of device commands, and, therefore, recovery rou
tines must be callable from interrupt routines.

D If you do implement error recovery logic, you must do so consistently. The
data structure that contains retry-status information must be global, and must
be protected by critical sections. Error-recovery routines, like interrupt rou
tines in general, must take special pains to protect data-structure integrity;
indeed, they must restore such integrity upon encountering errors they can't
recover from.

There are three mechanisms by which driver routines can report errors up to their
calling routines. The first, of course, is by way of the values that the driver rou
tines return to their callers. The second, and most important, is the error
reporting mechanism based upon the buffer-header. This is the only mechanism
that can be used when returning errorsfrom xxstrategy (), xxstart () ,and
xxintr (). (See the discussion of xxintr () error reporting in the Swnmary of
Device Driver Routines chapter. Finally, it is possible to directly set the global

Revision A, of 9 May 1988

104 Writing Device Drivers

Error Signals

Error Logging

Kernel Panics

error register, u . u _error, from routines in the top half of the driver.

It is sometimes desirable to have a driver send a software interrupt to the process
or processes. It's possible, for example, that a device will fail in an unrecover
able fashion - in this case it's perhaps a good idea to signal the user processes,
rather than merely returning an extraordinary error code. It's also possible
(though rare) for a driver to encounter serious errors from which it can recover by
restarting the device - user processes may also need to be notified in this case.
The kernel psignal () and gsignal () routines can signal either a single
process or all the processes in a given process group.

When you use the kernel printf () statement to report errors to the console,
those errors are also placed into a system error-message buffer accessible to the
drnesg daemon. dmesg can be, and typically is, run every 30 minutes by the
crontab daemon, for the purpose of appending the messages in the buffer to
/ var / adm/me s sage s. Note that the message buffer is small, and that if a lot
of entries are being written into it, some of them will get lost before being
transferred into /var / adm/mes sages.

The most unequivocal way of dealing with an error is to panic when you get it.
The panic () routine is provided to help you do so in a somewhat controlled
fashion - panic () is called only on unresolvable fatal errors. It prints "panic:
mesg" on the console, and then reboots. (Or, if you're running under the
debugger, it transfers control to kadb). panic () also keeps track of whether
it's already been called, and avoids attempts to sync the disks (by flushing all
pending write buffers) if it has, since this can lead to recursive panics.

The final production version of a driver should call panic () only when
"impossible" situations are encountered; lesser errors should be recovered from.
During debugging, though, panic () can be used to implement a passable assert
mechanism.

#ifdef XXDEBUG
if (inconsistent condition)

panic("Assertion Failed: ... ");
#endif

(It's possible to write a fancier assert mechanism, for example by having an
ASSERT macro which calls an assert () routine which prints error context
information and then calls panic () , but this minimal hack will perhaps do).

Finally, note that in cases where it's very important to halt the system immedi
ately after detecting an inconsistent condition, kadb can be used. The driver
code can test for the inconsistent condition, and then set a debugging variable:

[

if (inconsistent condition) J
junk = 1;

-------------"

Revision A, of 9 May 1988

5.5. System Upgrades

5.6. Loadable Drivers

Chapter 5 - Driver Development Topics 105

kadb can then be used to set a breakpoint at the machine instruction generated
from the assignment to junk.

System upgrades generally have minimal effects on user-written device drivers.
The changes that are necessary are rare and release specific.

Some changes must be made if user-written drivers are to work with new release
software. In Release 2.0, for example, there was a minor change in one of the
bus-interface structures. There wasn't much involved in adapting user-written
drivers, but it had to be done.

In other cases, changes are optional. When VMEbus machines were introduced,
for example, drivers had to be adapted to run on them; however, it was possible
to upgrade Multibus machines without rewriting user-written drivers.

In any case, any release upgrades that imply changes - either optional or man
datory - to user-written device drivers will be documented in the System Sum
mary and Change Notes for the release in question.

The Sun386i supports loadable drivers. This feature allows you to add a device
driver to a running system without rebooting the system or rebuilding the kernel.
The loadable drivers feature reduces time spent on driver development, and
makes it easier for users to install drivers from other vendors.

This section explains how to convert a non-Ioadable driver to be a loadable
driver.

Conversion of a non-Ioadable driver to a loadable driver requires an initialization
or "wrapper" module to be written. The module z zini t . c below is an exam
ple of a wrapper module that contains the same kind of information ordinarily
provided by a config file and by the linker. Almost all wrappers are identical to
the example below. Usually, only the actual structure initialization values are
different.

The following module is a typical example of an initialization routine for a driver
named z z that has one controller and one device on that controller.

iinclude <sys/types.h>
iinclude <sys/conf.h>
iinclude <sys/buf.h>
iinclude <sys/param.h>
iinclude <sys/errno.h>
iinclude <sundev/mbvar.h>
iinclude <sun/autoconf.h>
iinclude <sun/vddrv.h>

extern zzopen(), nulldev(), zzstrategy(), zzdump()i
extern zzsize(), zzread(), zzwrite(), zzioctl()i
extern zzint(), nodev(), seltrue()i

extern struct rob driver zzcdriveri / * defined in driver * /

Revision A, of 9 May 1988

106 Writing Device Drivers

1*
* Driver block device entry points (normally in <sun/ conf . c»
*1
struct bdevsw zzbdev = {

zzopen, nulldev, zzstrategy, zzdump, zzsize, 0
} ;

1*
* Driver character device entry points (normally in <sun/ conf . c»
*1
struct cdevsw zzcdev = {

zzopen, nulldev, zzread, zzwrite, zzioctl, nodev,
nulldev, seltrue, 0

} ;

1*
* Controller structure (normally in ioconf . c) (see <sundev /mbvar. h»
*1
struct mb_ctlr zzcctlr[] = {

&zzcdriver, 0, 0, (caddr_t) OxOOOOl000, 2, 6,
SP_ATMEM, 0

} ;

1*
* Device structure (normally in ioconf. c) (see <sundev/mbvar .h»
*1
struct mb_device zzcdevice[] = {

&zzcdriver, 0, 0, 0, (caddr_t) OxOOOOOOOO, 0, 0, OxO,
0, OxO

} ;

1*
* ThefoUowing structure is defined in <sun/vddrv. h>

*
* If the number of controllers is 0, then the address of the
* controller structure array must be NULL. Similarly, if the number
* of devices is 0, then the address of the device structure array
* must be NULL. The bdevsw or cdevsw entries can be NULL if there
* is no block or character device for the driver.
*1
struct vdldrv vd

VDMAG I C_DRV ,

"zzdrv",
zzcctlr,
&zzcdriver,
zzcdevice,
1,

} ;

1,
&zzbdev,
&zzcdev,
0,
0,

sun
microsystems

{

/ * Type of module. This one is a driver. * /
/* Name of the module. * /
/ * Address of the mb _ ctlr structure array * /
/ * Address of the mb _driver structure * /
/ * Address of the mb _device structure array * /
/ * Number of controllers * /
/ * Number of devices * /
/ * Address of the bdevsw entry * /
/ * Address of the cdevsw entry * /
/ * Block device number. 0 means let system choose. * /
/ * Char. device number. 0 means let system choose. * /

Revision A, of 9 May 1988

Chapter 5 - Driver Development Topics 107

1*
* This is the driver entry point routine. The name of the default entry point
* is xxxinit. It can be changed by using the" -entry" command to mod/oad.

*
* inputs: function code - VDLOAD, VDUNLOAD, or VDSTAT.

* pointer to kernel vddrv structure for this module.
* pointer to appropriate vdioctl structure for this function.
* pointer to vdstat structure (jor VDSTAT only)

*
* return: 0 for success. VDLOAD function must set vdp->vdd _ vdtab.
* non-zero error code (from errno.h) if error.

*
*1

xxxinit(function_code, vdp, vdi, vds)
unsigned int function_code;
struct vddrv *vdp;
addr t vdi;
struct vdstat *vds;

switch (function_code)
case VDLOAD:

vdp->vdd_vdtab
return (0);

case VDUNLOAD:

(struct vdlinkage *)&vd;

return (unload (vdp, vdi»;
case VDSTAT:

return (0);
default:

return (ErO);

static unload(vdp, vdi)
struct vddrv *vdp;
struct vdioctl unload *vdi;

extern struct buf zztab;

struct buf *dp;

dp = &zztab;
if (dp->b_actf)

ret urn (-1); / * The driver still has an active request. * /

/ * The driver can do any device shutdown stuff that it needs to do * /

return(O);

Revision A, of9 May 1988

108 Writing Device Drivers

Your driver routines can be placed in the wrapper module if you like. If your
driver is big, it is more appropriate to break it into several modules.

If you decide to place your driver in the wrapper module, then the driver can be
compiled with the following command line:

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzinit.c

However, if the driver consists of more than one module, then you must use the
link editor, Id(l), with the -r option to preserve relocation information. For
example you might type:

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzinit.c

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zzl.c

examplef cc -c -0 -Dsun386 -Di386 -DTTYSOFTCAR -DWEITEK \
-DVDDRV -DCRYPT -DVPIX -DIPCSHMEM -DIPCSEMAPHORE \
-DIPCMESSAGE -DLOFS -DNFSSERVER -DNFSCLIENT -DUFS \
-DlNET -DSUN386 -DKERNEL -Umc68000 -Di386buq zz2.c

examplet ld -r -0 zz.o zzinit.o zzl.o zz2.0

Thus the object module can be created either by the cc(l) command, when the
driver resides in one module, or by the Id(l) command, when the driver resides
in several modules.

In either case the resulting object file (z z in it. 0 or z z . 0) is a normal COFF
file and can then be used with the modload command.5 The driver is just like
any other program, except its text segment starts somewhere in the range
OxFDOOOOOO to OxFEOOOOOO.

S "COFF' = Common Object File Fonnat, a UNIX object-file standard to which Sun386i assembler and
link-editor output files (nonnaUy a • out) comply. See co f f(5).

Revision A, of 9 May 1988

The "Skeleton" Character Device
Driver

6

The" Skeleton" Character Device Driver .. 111

6.1. General Declarations in Driver .. 114

6.2. Autoconfiguration Procedures .. 115

probe () Routine ... 115

attach () Routine .. 117

6.3. open () and close () Routines ... 117

6.4. read () and wri. te () Routines ... 119

Some Notes About the VIO Structure ... 120

6.5. Skeleton strategy () Routine ... 121

6.6. Skeleton start () Routine ... 122

6.7. i.ntr 0 and pol.l. () Routines ... 124

6.8. i.octl () Routine .. 126

6.9. Skeleton Driver Variations ... 126

DMA Variations .. 126

Multibus or VMEbus DVMA ... 126

A DMA Skeleton Driver ... 127

Variation with "Asynchronous I/O" Support ... 130

Select Routines 131

Adding Asynchronous Notification .. 134

Adding an i.octl. () routine ... 134

6
The "Skeleton" Character Device

Driver

This chapter presents one of the simplest drivers you could ever hope to
encounter, a driver for an imaginary Multibus character device known as the
"Skeleton" device. Both programmed I/O and DMA versions of the driver will
be discussed. There is a complete version of this driver in the Sample Driver
Listings appendix to this manual - the parts are presented piecemeal here with
some discussion of their functions.

What we're doing here is inventing the very simple, I/O mapped, Skeleton con
troller. It's actually a "free device" with no separate controller and no separate
slaves. It has a single-byte command/status register, and a single-byte data regis
ter. It's a write-only device. It's not a slow tty-type device - you can provide
vast blocks of data and the Skeleton board gets it all out very fast. It interrupts
when it's ready for a data transfer, and comes up in the power-on state with inter
rupts disabled and everything else in neutral.

Note: the Skeleton device is capable, in both its simple and its DMA variants, of
writing chunks (not to say "blocks") of data in a single operation. It is, therefore,
a character device that can make good use of xxstrategy () routines, phy
sio () ,buf structures and other block-I/O mechanisms. As explained in Ker
nel Topics and Device Drivers, its use of these mechanisms does not make it a
block driver. Rather, its simple needs are a subset of the needs of block drivers,
and it's convenient here for form to follow function.

Let us assume that we've installed the Skeleton board with its control/status
register at 0 x 600 in Multibus I/O space - this puts its data register at 0 x 60 l.
The control/status register is both a read and a write register, with bit assign
ments as shown in the tables below.

111 Revision A, of 9 May 1988

112 Writing Device Drivers

BIT 7

Read

BIT 7
Write

6 5 4 3

6 5 4 3

2 1

2 1

Reset

o

o
Enable

Interrupt

Here is a brief description of what the bits mean:

When reading from the status register

bit 7 is a 1 when the board is interrupting, 0 otherwise.

bit 3 is a I when the device that the board controls is ready for data
transfers.

bit 2 is a I when the Skeleton board itself is ready for data transfers.

bit 0 is a 1 when interrupts are enabled, 0 when interrupts are dis
abled.

When writing to the status register

bit 2 resets the Skeleton board to its startup state - interrupts are
disabled and the board should indicate that it is ready for data
transfers.

bit 0 enables interrupts by writing a 1 to this bit, disables interrupts
by writing a O.

The header file for this interface is in skreg. h. By convention, we put the
register and control information for a given device (say xy) in a file called
xyreg . h. The actual C code for the xy driver would by convention be placed
in a file called xy. c. The header file for the Skeleton board looks like this:

Revision A, of 9 May 1988

Chapter 6 - The "Skeleton" Character Device Driver 113

/*
* Registers for Skeleton Multibus 110 Interface -- note the byte swap
*/

struct sk_reg {
char sk_data;

} ;

/ * 01: Data Register * /
/* 00: command(w) and status(r) * /

/* sk csr bits (read) */
#"define SK INTR Ox80 /* Device is Interrupting * /
#"define SK_DEVREADY Ox08 /* Device is Ready * /
#"define SK INTREADY Ox04 /* Interface is Ready * /
#"define SK ERROR Ox02 /* Device Error * /
#"define SK INTENAB OxOl /* Interrupts are Enabled */

#"define SK ISTHERE Oxoc /* Existence Check;
Device and Interface Ready * /

/* sk csr bits (write) */
#"define SK RESET Ox04
#"define SK ENABLE OxOl

/ * Reset Device and Interface * /
/ * Enable Interrupts * /

The complete device driver for the Skeleton board consists of the following
parts:

skprobe
is the autoconfiguration routine called at system startup time to determine if
the sk board is actually in the system, and to notify the kernel of its memory
requirements.

skopen and skclose
routines for opening the device for each time the file corresponding to that
device is opened, and for closing down after the last time the file has been
closed.

skwrite
routine that is called to send data to the device.

skstrategy
routine that is called from skwr i te () via physio () to control the actual
transfer of data.

skstart
routine that is called for every byte to be transferred.

skpoll
the polling interrupt routine that services interrupts and arranges to transfer
the next byte of data to the device.

The subsections to follow describe these routines in more detail.

+~,!! Revision A, of 9 May 1988

114 Writing Device Drivers

6.1. General Declarations
in Driver

In addition to including a bunch of system header files, there are some data struc
tures that the driver must define .

.. /h/param.h"

.. /h/buf.h"

.. /h/file.h"

.. /h/dir.h"

.. /h/user.h"

.. /h/uio.h"

iinclude
iinclude
iinclude
:ftinclude
iinclude
:ftinclude
iinclude
iinclude

.. /machine/psl.h"

.. /sundev/mbvar.h"

iinclude "sk.h" 1* file generated by config;
contains the definition of NSK * /

iinclude "skreg.h" 1* registerdefinitions */

idefine SKPRI (PZERO-l) /* software sleep priority for sk * /

idefine SKUNIT(dev) (minor(dev»

struct buf skbufs [NSK] ; /* static buffer headersfor physio * /

/ * autoconfiguration-related declarations * /
int skprobe (), skpoll () ; 1* kernel interface routines * /
struct mb_device *skdinfo[NSK];
struct rob_driver skdriver = { skprobe, 0, 0, 0, 0, skpoll,

sizeof(struct sk_reg), "sk", skdinfo, 0, 0, 0, 0,
} ;

/ * device state information -- global to driver * /
struct sk_device {

char soft_csr;
struct buf *sk_bp;
int sk_count;
char *sk_cp;
char sk_busy;

skdevice[NSK];

/ * software copy of csr * /
/ * current buf * /
/ * number of bytes to send * /
/ * next byte to send * /
/ * true if device is busy * /

Here's a brief discussion on the declarations in the above example.

sk. h file is automatically generated by config. It contains the definition
of NSK, the number of sk devices configured into the system.

SKPRI declaration declares the software priority level at which this device
dri ver will sleep.

SKUNIT macro is a common way of obtaining the minor device number in a
driver. Study just about any device driver and you will find a
declaration like this - it is a stylized way of referring to the minor
device number. One reason for this is that sometimes a driver will
encode the bits of the minor device number to mean things. other
than just the device number, so using the SKUNIT convention is an

~~ sun Revision A, of 9 May 1988
• microsystems

6.2. Autoconfiguration
Procedures

probe () Routine

skbufs

Chapter 6 - The •• Skeleton" Character Device Driver 115

easy way to make sure that if things change, the code will not be
affected.

array is necessary so that the driver will have its own buf headers to
pass to the ph Y s i 0 () routine. Character drivers should never use
buf headers from the kernel's JlO queue. physio () will fill in
certain fields (only a few, really) before calling xxstrategy ()
with the buf structure as the argument.

There then follows a series of declarations, one for each of the
autoconfiguration-related entry points into the device driver. In this driver, the
only such entry points we use are skprobe () (which probes the Main Bus dur
ing system configuration) and skpoll () (the polling interrupt routine).

skdinfo is an array of pointers to the rob_device structures that correspond
to the driver's devices. The autoconfiguration process will initialize
it during kernel boot time.

skdriver
is a definition of the rob driver structure for this driver. An
explanation of the fields in this structure and how they are initialized
appears in the Autoconfiguration-Related Declarations section of
this manual.

This data structure is the major linkage to the kernel. It must be
called driver-namedriver where driver-name is the name of the
device driver. config assumes that all device-driver structures
have names in the fonn driver-namedr i ver.

sk device
is a definition of a structure, global to the driver, that holds driver
specific state information.

Sun device drivers are tightly bound to the Sun autoconfiguration system. They
assume, at compile time, that certain services have been provided for them by
config, and they, in tum, provide boot-time hooks by which the kernel can
determine if the actual system configuration matches that given in its conf ig
file.

There are, essentially, two autoconfiguration routines provided by the driver.
The first is xxp robe () , the second xxa t t a c h (). For more information, see
the Overall Kernel Context section of this manual.

There should be an xxprobe () function in every driver. During the system
boot each device entry in the config file generates a call to the xxprobe () rou
tine in the corresponding driver. xxprobe () has three functions:

1. To detennine if a device is present at the address indicated i~ the config file.

2 To detennine if it's the expected type of device.

3. To notify the kernel of the system resources required for the device.

Revision A, of9 May 1988

116 Writing Device Drivers

Under normal circumstances, addressing non-existent memory or 110 space on
the Multibus or the VMEbus generates a bus error in the CPU. The kernel, how
ever, supports checking for device existence with a set of functions designed to
probe the address space, recover from possible bus errors, and return an indica
tion as to whether the probe generated a bus error.

These functions are peek () ,peekc () , peekl () ,poke () ,pokec () ,and
pokel (). They provide for accessing possibly non-existent addresses on the
bus without generating the bus errors that would otherwise terminate the process
trying to access such addresses. peek () and poke () read and write, respec
tively, 16-bit words ("shorts" on Sun2s and Sun3s, "half-words" on Sun-4s).
peekc () and pokec () read and write 8-bit characters. In general, you will
use the character routines for probing single-byte I/O registers. See the Kernel
Support Routines appendix for details on these routines.

Having determined whether the device exists in the system, the xxprobe ()
function returns either:

o the size (in bytes) of the device structure if it does exist. The kernel uses the
value returned from probe () to reserve memory resources for that device.
For both I/O-mapped and memory-mapped devices, xxprobe () returns the
total amount of space consumed by the device registers and memory.

o a value of 0 (zero) if the device does not exist.

Now we can write skprobe () :

/*ARGSUSED*/
skprobe(reg, unit)

caddr_t reg;
int unit;

register struct sk_reg *sk_reg;
register int Ci

sk_reg = (struct sk_reg *)reg;

/ * contact the device * /
c = peekc«char *)&sk_reg->sk_csr);
if (c == -1 I I (c != SK_ISTHERE»

return (0) i

/ * contact the device * /
if (pokec«char *)&sk_reg->sk_csr, SK_RESET»

return (0);

return (sizeof (struct sk_reg»;

The reg argument is the purported address of the device, as given in the config
file. The unit argument is only needed for controller drivers that must distinguish
among multiple slave devices.

Revision A, of 9 May 1988

attach () Routine

6.3. open () and
close () Routines

Chapter 6 - The "Skeleton" Character Device Driver 117

The xxprobe () routine determines that the device actually exists, resets it to
make sure that it's ready to go, and then returns the amount of bus space that it
uses to the kernel autoconfiguration process. If xxprobe () finds the device, the
rod_ali ve field in the device structure is set to 1, otherwise it's set to O.
rod_ali ve is subsequently used by other driver (and kernel) functions to check
that the device was probed successfully at startup time. (These routines can also
check the device's position in the driver's xxdi n f 0 () array (if it has one) to see
if it's been initialized).

The second autoconfiguration routine is xxa t t a c h (). The purpose of xxa t -
tach () is to do device-specific initialization. Such initialization may include
the issuing of commands to the actual device hardware, for example, the disa
bling of its interrupts, or it may be entirely confined to the initialization of local
device-specific structures. It's up to the driver what kind of initialization is done
inxxattach ().

The Skeleton device is artificially simple, and it requires no initialization besides
the assignment of SK _RESET into its control/status register. This assignment, as
you will note, has already been done in skprobe () , where it serves as a doub
lecheck on the correct installation of the device. Since no further initialization is
necessary, the Skeleton driver needs no attach () routine.

During the processing of an open () call for a special file, the system always
calls the device's xxopen () routine to allow for any special processing required
(rewinding a tape, turning on the data-terminal-ready lead of a modem, and so
on). However, the xxclose () routine is called only when the last process
closes a file, that is, when the i-node table entry for that file is being deallocated.
Thus it is not feasible for a device driver to maintain, or depend on, a count of its
users, although it is quite simple to implement an exclusive-use device that can't
be reopened until it has been closed.

skopen () is quite straightforward. It's called with two arguments, namely, the
device to be opened, and a flag indicating whether the device should be opened
for reading, writing, or both. The first task is to check whether the device
number to be opened actually exists - skopen () returns an error indication if
not. The second check is whether the open is for writing only. Since the Skele
ton device is write only, it's an error to open it for reading. If all the checks
succeed, skopen () enables interrupts from the device, and then returns zero as
an indication of success. Here's the code for skopen () :

.~sun
• microsystems

Revision A, of 9 May 1988

118 Writing Device Drivers

skopen(dev, flags)
dev_t dev;
int flags;

register int unit = SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

if (unit >= NSK II md->md_alive 0)
return (ENXIO);

if (flags & FREAD)
return (ENODEV);

/ * enable interrupts * /
skdevice[unit] .soft_csr

/ * contact the device * /
sk_reg->sk_csr skdevice[unit] .soft_csr;

return (0);

The first if statement checks if the device actually exists. The first clause

(unit >= NSK)

is necessary because, as root, someone could make a special file that has a minor
device number greater than NSK then try to open it. This actually isn't unusual,
many /dev directories have entries for devices that are not really installed. The
second clause tests to see if the probe routine found the device. Note the use of
the SKUNIT macro to obtain the minor device number - we discussed this ear
lier on. Also note that we're maintaining a copy

(skdevice[unit] .soft_csr)

of the control/status register in memory. Each time we write the register we will
do so first in memory and then in the actual hardware register. We will do this
doggedly, to make the point that we must protect ourselves from the potential
side effects of inadvertent calculations within registers. For example

csr &= -SK ENABLE

has the side effect of reading the csr register - and patterns read from this regis
ter are not always identical to those written into it (For more information, see
the Hardware Peculiarities to Watch Out For section of the Hardware Context
chapter).

skclose () is quite straightforward, since all it does is disable interrupts:

Revision A, of 9 May 1988

6.4. read () and
wr i te () Routines

Chapter 6 - The •• Skeleton" Character Device Driver 119

/*ARGSUSED*/
skclose(dev, flags)

dev_t dev;
int flags;

register int unit = SKUNIT(dev);
register struct mb_device *md;
register struct sk_reg *sk_reg;

md = skdinfo[unit];

/ * disable interrupts * /
sk_reg = (struct sk_reg *)md->md_addr;
skdevice[unit] .soft_csr &= -SK_ENABLE;

/ * contact the device * /
sk_reg->sk_csr skdevice[unit] .soft_csri

skclose () could in fact be more complicated than this. It could, for example:

o deallocate resources that were allocated for the device being closed, or

o shut down the device itself, for example by signaling a port to hang up.

The Skeleton device is write-only, but this discussion would apply equally to
reading in such a non-tty oriented character device.

When a read or write takes place, the user's arguments - as well as some
system-maintained information about the file to which the 110 operation is to be
performed - are used to initialize two structures - uio and iovec - that are
used for character 110. The fields of greatest interest within these structures are
iovec. iov_base, iovec. iov_len, and uio. uio_offset which
respectively contain the (user) address of the liD target area, the byte-count for
the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate x:xread () or xxwr i te () routine is
called - this routine is responsible for transferring data and updating the count
and current location appropriately as discussed below.

For most non-tty devices, xxread () and xxwr ite () call xxstrategy ()
through the system physio () routine. physio () ensures that the user's
memory space is locked into core (not paged out) for the duration of the data
transfer. It also provides an automated way of breaking a large transfer into a
series of smaller, more manageable ones. Note that character drivers that use
ph y s io () must declare an array of buf structures, one for each of their dev
ices (here the array is named skbufs). By doing so they avoid any need to use
the kernel's buffer cache, which is provided for the use of system block
structured devices.

xxwr it e () differs from xxread () only in the value of the flag it passes to
physio (). skwrite () looks like this:

Revision A, of 9 May 1988

120 Writing Device Drivers

Some Notes About the UIO
Structure

skwrite(dev, uio)

struct uio *uio; See note on the uio structure below

int unit SKUNIT (dev) ;

if (unit >= NSK)
return (ENXIO);

return (physio(skstrategy, &skbufs [unit] , dev,
B_WRITE, skminphys, uio»;

The skminphys () routine is called by physio to determine the largest rea
sonable block size to transfer at once. If the user requests a larger transfer, phy
sio () will call skstrategy () repeatedly, requesting no more than this
block size each time. This is important when DVMA transfers are done.
(DVMA is covered in more detail below). The reasoning is that only a finite
amount of address space is available for DVMA transfers and it is not reasonable
for any device to tie up too much of it. A disk or a tape might reasonably ask for
as much as 63 Kilobytes; slow devices like printers should only ask for one to
four Kilobytes since they will tie up the resource for a relatively long time.
Here's the skminphy s () routine.

skminphys(bp)
struct buf *bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_count = MAX_SK_BSIZE;

Note that if you don't supply your own minphys () routine, you place the name
of the system supplied minphys () routine, whose name is minphys (), as the
argument to physio () in its place, and the system supplied m'inphys () rou
tine gets used instead. This is not always a good thing, however, for the system
routine divides an 110 operation into 63K chunks, and this can be too large for
optimum system performance when the device in question is slow (like a
printer).

When the system is reading and writing data from or to a device, the uio struc
ture is used extensively (see /usr/ include/ sys/uio. h for more informa
tion). The uio structure is generalized to support what is called gather-write
and scatter-read. That is, when writing to a device, the blocks of data to be writ
ten don't have to be contiguous in the user's memory but can be in physically
discontiguous areas. Similarly, when reading from a device into memory, the
data comes off the device in a continuous stream but can go into physically
discontiguous areas of the user's memory. Each discontiguous area of memory is
described by a structure called an iovec (I/O vector). Each iovec contains a

Revision A, of 9 May 1988

6.5. Skeleton
strategy () Routine

Chapter 6 - The "Skeleton" Character Device Driver 121

pointer to the data area to be transferred, and a count of the number of bytes in
that area. The uio structure describes the complete data transfer. uio contains
a pointer to an array of these iovec structures. Thus when you want to write a
number of physically discontiguous blocks of memory to a device, you can set up
an array of iovec structures, and place a pointer to the start of the array in the
uio structure. In the simplest case, there's just one block of data to be
transferred, and the uio structure is quite simple. Note that physio () will call
the strategy routine at least once for each iovec contained by the uio structure.

xxstrategy () is called by physio () after it has locked the user's buffer
into memory. The name strategy originated in the world of disk drivers, and
implied that the routine could be clever about queuing I/O requests (for example,
by disk address) so as to minimize time wasted by the disk. The skstra
tegy () routine has no such problems, since it doesn't queue I/O requests for a
random-access device. Still, a number of tasks remain - skstrategy ()
must check that the device is ready, initiate the data transfer, and wait for its
completion to be signaled by the interrupt routine. Note that skstrategy ()
can safely assume that physio () has properly initialized a number of variables
- here we will assume that the b dev field in the buf has been set to contain
the device number.

skstrategy(bp)
register struct buf *bPi

register struct rob device *mdi
register struct sk_device *Ski
int S;

md skdinfo[SKUNIT(bp->b_dev)]i
sk &skdevice[SKUNIT(bp->b_dev)];

s = splx(pritospl(md->md_intpri»; /* begincriticalsection */
while (sk->sk_busy)

sleep«caddr_t) sk, SKPRI);

/ * set up for first I/O operation * /
sk->sk_busy = 1;
sk->sk_bp = bPi
sk->sk_cp = bp->b_un.b_addri
sk->sk_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr)i

(void) splx (s) i / * end critical section * /

xxstrategy () doesn't actually do any I/O. It just insures that the device is
not busy, (by sleeping on the address of a data structure that is global to the
driver) sets up for the first I/O operation and then calls xxskstart () to g~t
things rolling. The critical section is necessary because xxs t rat egy () is

Revision A. of 9 May 1988

122 Writing Device Drivers

6.6. Skeleton start ()
Routine

trying to acquire the device on behalf of one, and only one, user process.

xxstart () is actually responsible for getting the data to or from the device.
skstart () is called once directly from skstrategy () to get the very first
byte out to the device. After that, it is assumed that the device will interrupt
every time it is ready for a new data byte, and so skstart () is thereafter
called from skintr (). Here is one possible skstart () routine:

skstart(sk, sk_reg)
struct sk device *sk;
struct sk_reg *sk_reg;

if (--sk->sk_count > 0) {
sk->soft csr = SK_ENABLE;

/ * contact the device * /
sk->soft_csr;

This routine will work, but not very efficiently. There's a lot of overhead in tak
ing a device interrupt on every character. Since we know that the device can
accept characters very quickly, it would be much more efficient to give the char
acters quickly, and thus avoid generating unnecessary interrupts. xxstart ()
should take advantage of device-specific characteristics to win efficiency
enhancements of this type. It can wait for characters, check for ready, etc -
here, we will just check after each character and give another one if the device is
ready for it. Here's the new, more efficient skstart () routine.

Revision A, of 9 May 1988

Chapter 6 - The "Skeleton" Character Device Driver 123

skstart(sk, sk_reg)
struct sk_device *sk;
struct sk_reg *sk_reg;

while(sk->sk_count > 0) { /* stillmore characters */
sk_reg->sk_data
sk->sk_count--;

*sk->sk_cp++;

/ * stop giving characters if device not ready * /
/ * Note: the softcopy isn't needed for reads * /
/ * contact the device * /

/* DELAY(10)mightgohere */

if (! (sk_reg->sk_csr & SK_DEVREADY»
break;

/ * error-retry logic would go here * /

/ * still more characters * /
if (sk->sk_count > 0)

sk->soft_csr = SK_ENABLE;

/ * contact the device * /
sk_reg->sk_csr = sk->soft_csr;

else {
/ * special case: finished command without taking any interrupts! * /

/ * disable interrupts * /
sk->soft_csr = 0;

/ * contact the device * /
sk_reg->sk_csr = sk->soft_csr;
sk->sk_busy =,0;

/ * free device to sleeping strategy routine * /
wakeup«caddr_t) sk);

/* free buffer to waiting physio * /
iodone(sk->sk_bp);

We give characters to the device as long as there are more characters and the
device is ready to receive them. If we run out of characters, we disable interrupts
to keep the device from bothering us and call iodone () to mark the buffer as
done.

It may be that the device is not quite quick enough to take a character and raise
the SK DEVREADY bit in the time we can decrement the counter. If so, it would

Revision A, of 9 May 1988

124 Writing Device Drivers

6.7. intr () and poll ()
Routines

be very worthwhile to busy wait for a short time. The reasoning is that while
busy waiting is a waste, servicing an interrupt costs lots more CPU time, and if
busy waiting works fairly often it is a big win. There is a macro DELAY () that
takes an integer argument which is approximately the number of microseconds to
delay, so we could add

DELAY (10) ;

at the top of the while loop. Clearly this is an area where experimentation with
the real device is called for.

Each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is transformed into a C-compatible call on the device's interrupt rou
tine. After the interrupt has been processed, a return from the interrupt handler
returns from the interrupt itself.

The address of the polling interrupt routine for a particular device driver is con
tained in the per-driver (that is, mb _ dri ver) data structure for that device
driver. It is installed there during the kernel configuration process based upon
information in the config file.

Since (on Multibus machines) devices typically need to share interrupt levels, it's
the specific driver's responsibility to determine if the interrupt is intended for it
or not. The driver does so by providing a polling interrupt routine that queries
the interrupt state of each of its devices in tum - if a driver doesn't provide such
a routine, it won't work correctly on a Multibus machine. Polling interrupt rou
tines that determine that an interrupt belongs to one of their devices must notify
the kernel to that effect (after servicing the interrupt) by returning a non-zero
value. If a polling interrupt routine determines that an interrupt is not from one
of its devices, it must return a zero value.

It's expected that the device actually indicates when it's interrupting. If there are
any more bytes to transfer, the interrupt routine calls xxstart () to transfer the
next byte. If there are no more bytes to transfer, the interrupt routine disables the
interrupt (so that the device won't keep interrupting when there's nothing to do),
and finishes up by calling iodone (). (iodone () , incidentally, is another of
the mechanisms provided primarily for block drivers). Here are the interrupt rou
tines for the Skeleton driver:

Revision A, of 9 May 1988

Chapter 6 - The "Skeleton" Character Device Driver 125

skpoll ()
{

register struct sk_reg *sk_reg;
int serviced, i;

serviced = 0;
for (i = 0; i < NSK; i++) /* tryeachone */

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;

/ * contact the device * /
if (sk_reg->sk_csr & SK_INTR)

serviced = 1;
skintr(i);

return (serviced);

skintr(i)
int i;

register struct sk_reg *sk_reg;
register struct sk_device *sk;

sk reg = (struct sk_reg *)skdinfo[i]->md_addr;
sk = &skdevice[i];

/ * check for an I/O error * /

/ * contact the device * /
if (sk_reg->sk_csr & SK_ERROR)

/ * error-retry logic would go here * /

printf("skintr: I/O errorO);
sk->sk_bp->b_flags 1= B_ERROR;

/ * I/O transfer completed * /
if «sk->sk_bp->b_flag & B_ERROR) != 0 II

sk->sk_count == 0) {

sun
microsystems

/ * clear interrupt * /
sk->soft_csr = 0;

/ * contact the device * /
sk_reg->sk_csr = sk->soft_csr;
sk->sk_busy = 0;

/ * free device to sleeping strategy routine * /
wakeup«caddr_t) sk);

Revision A, of 9 May 1988

126 Writing Device Drivers

/* free buffer to waiting physio * /
iodone(sk->sk_bp);

else
skstart(sk, sk_reg);

skintr () checks the hardware for an error every time it's called, and upon
finding an error, calls pr in t f () , flags the error in the 110 buffer and then
returns. Note that:

o skintr () needs the buffer header associated with the failed transfer so
that it can indicate the error in its b _flags field.

o A retry attempt could be made before giving up and taking the error return.
Whether or not this is advisable is entirely dependent on the specific device
and error characteristics.

o The error return aborts the 110 request that produced the error and then
places both the device and the driver in their normal idle states.

6.8. ioctl () Routine xxioctl () is used to perform any tasks that can't be done by xxopen (),
xxclose () ,xxread () , or xxwri te (). Typical applications are: "what is the
status of this device", or "go into mode X". The Skeleton device, as we've
defined it here, is modeless and has no such special functions so we don't have an
xxioctl () routine. (Though we will add one below in a variation of the Skele
ton driver that supports a form of asynchronous I/O). For details about driver
xxioct 1 () routines, and the other driver routines, see the Summary of Device
Driver Routines appendix.

6.9. Skeleton Driver The Skeleton 110 board isn't particularly realistic, but is does serve to illustrate
Variations the construction of a basic character driver. In this section, we will propose some

variations on the basic device, each designed to illustrate a useful technique.

DMA Variations Devices that are capable of doing DMA are treated differently than the Skeleton
device we've been working with so far. Let's assume that we have a new version
of the Skeleton board; call it the Skeleton II. It can do DMA transfers and we
want to use this feature since it is much more efficient.

NOTE DMA is different on the Sun386i system. For information about it, see the
dIna_setup () and dIna_done () routines in the Kernel Support Routines
appendix.

Multibus or VMEbus DVMA The Sun processor board is always listening to the Multibus or VMEbus for
memory references. When there is a request to read or write any address in the
DVMA space (see the Sun Main-Bus DVMA section of the HardWare Context
chapter for more information) the DVMA hardware adds a machine-specific
offset to the address to find the location in kernel virtual memory that contains
the device RAM being used in the transfer.

Revision A. of 9 May 1988

A DMA Skeleton Driver

Chapter 6 - The •• Skeleton" Character Device Driver 127

On Sun-2 Multibus machines, DVMA space consists of all addresses between 0
and ax3FFFF. On Sun-2 VMEbus machines, it consists of all addresses
between a xO and a xFFFFF. Upon encountering one of these addresses, the
DVMA hardware adds a xF 0 a a 0 a to get the system virtual address of the device
RAM.

On the Sun-3, the DVMA space is defined by the address range axa to

axFFFFF for 24-bit or 32-bit addressing; its system virtual address is
axFFoaaao.

On the Sun-4, the DVMA space is defined by the same address range used on the
Sun-3, axa to OxFFFFF for 24-bit or 32-bit addressing. Its system virtual
address, however, is a xFFF 0 0 0 a o.

If you wish to do DMA over the Main Bus, you must make entries in the kernel
memory map to map your device's RAM into the appropriate DVM A space. As
you might expect, there are subroutines to help with this chore. mbsetup ()
sets up the kernel memory map and mbrelse () clears entries in it to release
DVM A space. Note that all Sun DMA occurs between the bus and kernel virtual
address space - if you wish to do DMA directly into a user buffer, you will have
to first map that buffer into kernel space, then pass it to mbsetup () to map it
into DVMA space.

The addition of DMA to the capabilities of the device opens up several new
options. For the moment, consider only the changes necessary to switch the
driver over to DMA-style I/O. These changes turn out to be surprisingly straight
forward. First we will extend the sk _reg structure which defines the device
registers. We will assume that the Skeleton II board is a bus-master which sup
ports 20-bit transfers, and that the following structure overlays its registers.

struct sk_reg {

} i

char sk_datai
char sk_csri
short sk_counti
caddr t sk_addri

/ * 01: Data Register * /
/* 00: command(w) and status(r) * /
/ * bytes to be transferred * /
/ * 20-bit DMA address * /

Next we assume that bit 5 in the csr is set to initiate a DMA transfer.

idefine SK DMA OxlO / * Do DMA transfer * /
and a definition of the maximum DMA transfer for skminphys () .

idefine MAX SK BSIZE 4096 / * DMA transfer block * /

And we must add another element to the sk _device structure for use by
mbsetup () and mbrelse (). (The alternative would be to use the
mC_rnbinfo structure in the mb_ctlr structure, but since we don't use that
structure for anything else, this seems more reasonable):

int sk_mbinfoi

Now we change skstrategy () to use the DMA feature.

Revision A, of 9 May 1988

128 Writing Device Drivers

skstrategy(bp)
register struct buf *bp;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[SKUNIT(bp->b_dev)];

s = splx (pritospl (md->md_intpri)) ; /* begin critical section * /
while (sk->sk_busy)

sleep«caddr_t) sk, SKPRI);
sk->sk_busy = 1;
sk->sk_bp = bPi

/ * this is the part that is changed * /

/ * grab bus resources * /
sk->sk_mbinfo = mbsetup(md->md_hd, bp, 0);

/ * plug the remainder * /
sk_reg->sk_count = bp->b_bcount;

/ * plug bus transfer address * /
sk_reg->sk_addr = (caddr_t) MBI_ADDR (sk->sk_mbinfo) ;

/ * make sure we didn't overrun the address space limit * /
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF)

printf("sk%d: ", sk_reg->sk_addr);
panic (nexceeded 20 bit address");

sk->soft csr = SK_ENABLE I SK_DMA;
sk_reg->sk_csr = sk->soft_csr; /* contact the device * /

/ * end of DMA-related changes * /

(void) splx(s); / * end critical section * /

There are a number of details here that are worth noting:

o skstart () is no longer needed and may be completely eliminated.

o The return value from mbset up () is being saved for use in calls to
MBI _ ADDR () and mbrelse () .

o The 32-bit address returned by MBI _ ADDR () is being tested to ensure that
it doesn't exceed the 20-bits limits of the device. (This wouldn't be neces
sary if the address was sure to be in the DVMA transfer area, which always

Revision A, of 9 May 1988

Chapter 6 - The •• Skeleton" Character Device Driver 129

ends at OxFFFFF or below. However, the transfer address can also be else
where in the VMEbus address space).

D All the I/O now is started by skstrategy () and continues until
skpoll () is called-thus we can delete the sk_cp and sc_count
fields from the sk device structure.

D There's no longer any need to check the count and sometimes call
skstart (). Instead, iodone () is always called and physio () is
relied upon to proceed with the transfer. Note that, with skstart () elim
inated, the call to wakeup () ,as well as the clearing of sk_busy, have
been moved to skintr () .

D Finally, skintr () needs to free up the Main Bus resources, so it will call
mbrelse ().

Here are the new skintr () and skpoll () routines:

skintr(i)
int ii

register struct rob_device *rndi
register struct sk_reg2 *sk_reg;
register struct sk_device *Ski

rnd = (struct rob_device *)skdinfo[i]i
sk_reg = (struct sk_reg2 *)rnd->rnd_addri
sk = &skdevice2[i]i

/ * check for an 110 error * /
if (sk _ reg->sk _ csr & SK _ERROR) { / * contact the device * /

/ * error-retry logic would go here * /

printf("skintr: I/O error\n")i
sk->sk_bp->b_flags /= B_ERRORi

/ * this is the part that changed * /
sk->soft csr = 0 i / * clear interrupt * /
sk_reg->sk_csr = sk->soft_csri
rnbrelse(rnd->rnd_hd, &sk->sk_rnbinfo)i

sk->sk_busy = 0;
wakeup ((caddr _ t) sk); / * free device to sleeping strategy routine * /
iodone(sk->sk_bp) i /* free buffer to waitingphysio */

+~,!! Revision A, of 9 May 1988

130 Writing Device Drivers

Variation with
"Asynchronous I/O" Support

skpoll ()
{

register struct mb_device *md;
register struct sk_reg *sk_reg;
int serviced, i;

serviced = 0;
for (i 0; i < NSK; i++) {

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

serviced = 1;
skintr(i);

return (serviced);

In this next section, we will assume that we want to further modify the Skeleton
dri ver to support "asynchronous 1/0". This may, at first sight, seem an odd
thing to do, for asynchronous 110 is most commonly used for network and
serial-line devices that have little in common with the Skeleton device. In actual
fact, however, asynchronous I/O is not limited in application to such devices -
its purpose is to support user processes which need to avoid blocking during 110
operations, and such functionality is of interest for serial lines, sockets,
STREAMS and various character devices.

First, note that the term ','asynchronous I/O" is used, in the UNIX world, to indi
cate two separate mechanisms. In practice, these mechanisms are closely related,
and both of them will be be covered in this section:

o The first is "non-blocking 110". This is a type of 110 which, when incapa
ble of immediately proceeding to completion, notifies its user process of this
fact rather than simply going to sleep (). It thus gives the user process a
choice of resJX>nses.

In the UNIX system, non-blocking I/O is traditionally provided by the
select () system call, which allows a user process to query a device to see
if it's ready before making a read () or write () request to it, and thus to
avoid being blocked. (It should be noted that select () isn't really non
blocking 110 proper. It's better thought of as an alternative to device pol
ling, which can waste considerable CPU time).

o The second UNIX asynchronous 110 mechanism is best called "asynchro
nous notification". With this mechanism available, the user process no
longer needs to keep trying an 110 operation until it succeeds, because the
driver will signal () it (with a S IGIO) when one of its 110 channels
clears. The code necessary to support such asynchronous notification is
closely related to that necessary to support select () , and it should rou
tinely be provided at the same time as select () sUpJX>rt.

Revision A, of 9 May 1988

Select Routines

Chapter 6 - The "Skeleton" Character Device Driver 131

The Skeleton driver hasn't really been defined as a device that we would expect
to have a select () routine. Such routines are most useful for devices which
aren't always ready, and since we've defined the Skeleton device as being write
only and arbitrarily fast, we wouldn't expect it to clog. Still, for the purposes of
this example, we will assume that the Skeleton board is sufficiently slow that it's
reasonable to have its driver support select () .

select () is more typically used in serial-line drivers which are multiplexed
between multiple lines. Before reading, for example, a terminal's keyboard, such
drivers need to ensure that there are characters waiting. If they didn't, they
would block so often that their overall performance would be unacceptable.

select () works by providing user processes with a means of determining if
110 is possible on a given file descriptor. Alternatively, it has a multiplexing
feature that makes it possible to determine which of a set of specified descriptors
is ready to go. It can be told to return immediately, or to block the calling pro
cess until at least one descriptor is ready. A timeout argument can be specified to
keep the process from blocking forever, or to allow the process to periodically do
something else. See s e 1 e c t (2) for details.

The driver's select () routine mayor may not support the full functionality of
the select () system call. The minimum that it can reasonably do is allow the
user program to poll the specified device to determine if it's ready:

skseIect(dev, rw)
dev_t dev;
int rw;

register struct rob_device *rod;
register struct sk_reg *sk_reg;
int s = splS () ;

rod = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = rod->md_addr;

/ * Check if the device is ready * /
if (sk_reg->sk_csr & SK_DEVREADY)

(void) splx(s);
return (1);

(void) spIx(s);
return (0);

Note that, in this example, the rw flag has been ignored because the Skeleton
device is write only. If, however, it were a read/write device, skselect ()
would switch on rw, and do a separate readiness test for each of ~e READ and
WRITE cases. Throughout this example we will show only write cases: read
cases would be handled identically.

Revision A, of 9 May 1988

132 Writing Device Drivers

To extend skselect () to allow user processes to block for specified periods
of time (or, for that matter, indefinitely) while waiting for an OK to proceed with
an I/O operation, more must be done. To begin with, we must add two fields to
the sk_device () structure. Both of them must be initialized to O.

struct sk_device {

struct proc *sk_wsel;
int sk_state;

/ * user proc structure * /
/ * select state flag * /

} ;

We also need the flag

#define SK WCOLL OxOl

which will be used to indicate that a write-select collision has occurred, that is to
say, that more than one process has attempted to select the device. -.r

Then, skselect () must be changed, as follows:

skselect(dev, rw)
dev_t dev;
int rw;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;

int s = splS () ;

md = skdinfo[SKUNIT(dev)];
sk_reg = md->md_addr;
sk = &skdevice[SKUNIT(dev)];

/ * Check if the device is ready * /
if (sk_reg->sk_csr & SK_DEVREADY)

(void) splx(s);
return (1);

/ * Here's the new code * /
if (sk->sk_wsel &&

(sk->sk_wsel->p_wchan == (caddr t) &selwait»
sk->sk_state 1= SK_WCOLL;

else
sk->sk wsel = u.u-procp;

(void) splx(s);
return (0);

Revision A, of 9 May 1988

Chapter 6 - The "Skeleton" Character Device Driver 133

selwait (), an external integer imported via <sys/ systm. h>, is the "chan
nel" which the select () system call, and only the select () system call ,
uses when it calls sleep ().

If the device is ready to go, skselect () behaves just as it did above: it returns
immediately with a 1. If, however, the device isn't ready, a check is made to see
if it has already been selected. If it hasn't been, the field sk _ wsel is set to
point to the proc structure of the process doing the select. In effect, we're
remembering the first process to select the device. If no other processes select
the same device, this structure will later be used as a "fast path" to the selecting
process.

If, however, skselect () finds that sk_ wsel has already been set, the test:

(sk->sk_wsel->p_wchan == (caddr_t) &selwait)

is made to see if the process indicated by sk->sk _ wsel is sleeping as a result
of a call to select (). If it is, the code

sk->sk_state 1= SK_WCOLL;

is executed to indicate that a select "collision" has occurred, that is, that a
second (or third, etc.) process attempted to select the device while the first pro
cess was still waiting for it to become available.

The rest of the select-related code is executed at interrupt time, so it goes into
skintr (). One clean way of inserting it is to create a new routine,
skwakeup () , and to call it from skintr () instead of calling wakeup () .
(See the non-DMA version of skintr () , above):

skwakeup(sk)
register struct sk_device *sk;

if (sk->sk_wsel) { 1* select ispending *1

/ * wake up the process * I
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL);

/ * reset the select flags * I
sk->sk_state &= -SK_WCOLL;
sk->sk_wsel = 0;

wakeup«caddr_t) sk);

selwakeup () thus receives a NULL second parameter unless a select collision
occurred. If such a collision did occur, all processes which are sleeping as a
result of a select () (any select) are awakened by a call to wakeup () on the
s e 1 w ai t () channel. Most of them will just go back to sleep, and the ones that
don't will race for the device. This isn't very efficient, but it doesn't happen very
often. Usually, the device will be selected by a single process, and the proc
structure will be used to wake only that process .

• ~sun ~ microsystems
Revision A, of 9 May 1988

134 Writing Device Drivers

Adding Asynchronous
Notification

Adding an ioctl () routine

Note that selwakeup () does nothing if sk->sk_wsel is 0, or if there are no
processes sleeping on selwait (). Thus, if a process has called select () ,
but not gone to sleep (because the device was immediately ready) the subsequent
interrupt will simply reset the flags.

If the driver is to support asynchronous notification as well as select () , a bit
more is necessary. First, a new flag is necessary to indicate that the user has
requested asynchronous notification:

#define SK ASYNC Ox02

And a new field is necessary in the sk_ device structure, which now becomes:

struct sk_device {

struct proc *sk_wsel;
int sk_state;
short pygrp;
} ;

1* user proc structure * I
I * select state flag * I
I * user process group leader * /

The new field, p ygrp must, like the others, be initialized to O. And p _pgrp
must be initialized in skopen () to indicate the process group leader of the user·
process opening the device:

if (sk->pygrp 0)
sk->pygrp = (u.u_procp)->p-pid;

Next, we must provide a way for the user process to request that the driver enable
asynchronous notification. Of course it would be possible for it to always
operate in asynchronous mode, but then user processes would constantly get sent
SIGIO signals by the driver, whether they expected them or not. Besides, if the
Skeleton driver has multiple modes, we must introduce an skioctl () routine
to toggle them, and that gives us an opportunity to discuss ioctl routines. Actu
ally, there are potentially three system calls that can be used to put a driver into
asynchronous mode, or, for that matter, into any mode. The most common of
these is ioctl (2) , and it is it that we will show here. Note, though, that the
other two possibilities are f cnt 1 (2) and open (2) .

The first step in introducing an ioctl () routine is to define the macros which
user processes will use to issue commands to the device and its driver. (For
details, see the discussion of ioctl () routines in the Summary of Device
Driver Routines appendix to this manual).

In the case of skioctl () , these macros are few and simple, for skioctl ()
will only toggle the driver mode between synchronous and asynchronous.
There's no need for the ioctl () macros to either ship data from, or return it to,
the user program.

ioctl- related command codes are exported to user processes by means of
macros kept, by convention, in /usr / include/ sys. In the case of the

.\sun ~ microsystems
Revision A, of 9 May 1988

Chapter 6 - The "Skeleton" Character Device Driver 135

Skeleton driver, only two macros are necessary, and we will put them into
/usr/include/sys/skcmds.h:

#define SKSETSYNC IO(k,O)
#define SKSETASYNC _IO(k,l)

The _10 macro is the simplest of the ioctl () macros, being intended for pur
poses like this, where no argument data need be transferred. Here, all that's
necessary is to define a convention by which 0 indicates synchronous mode (the
default) and 1 indicates asynchronous mode. Note the first parameter, 'k'. It's
used, quite arbitrarily, to identify the ioctl () to be vectored to the Skeleton
driver. It's only necessary to choose a letter that is not already in use by another
driver.

The additions to the driver are very simple. First, it must include the file contain
ing its control macros:

#include <sys/skcmds.h>

Then, in skioctl () it simply takes the information encoded by the _10 macro
to toggle the driver's state:

skioctl(dev, cmd, data, flag)
dev_t dev;
int cmd;
caddr_t data;
int flag;

register struct sk_device *sk;
sk = &skdevice[SKUNIT(dev)];

switch (cmd) {

case SKSETSYNC:
sk->sk state &= -SK_ASYNC;
break;

case SKSETASYNC:
sk->sk state 1= SK_ASYNC;
break;

That's it. And now that skioctl () can set the SK_ASYNC flag,
skwakeup () can reasonably test for it and, if it's set, call gsignal () to send
the SIGIO signal to the user process group. Note that the SK_ASYNC signal
must be cleared after calling gsignal () .

Revision A, of 9 May 1988

136 Writing Device Drivers

skwakeup (sk)
register struct sk_device *sk;

if (sk->sk_wsel) { /* select ispending */

/ * wake up the process * /
selwakeup(sk->sk_wsel, sk->sk state & SK_WCOLL);

/ * reset the select flags * /
sk->sk_state &= -SK_WCOLL;
sk->sk_wsel = 0;

if (sk->sk_state & SK_ASYNC) {
gsignal(sk->p-pgrp, SIGIO);
sk->sk_state &= -SK_ASYNC;
}

wakeup«caddr_t) sk);

The final step in adding a select () routine to a driver is to edit the kernel
conf . c file~ and to plug the name of the new select () routine into the
cdevsw structure in the place of the "nodev" or "seltrue" that is already there.

Revision A. of 9 May 1988

7
Configuring the Kernel

Configuring the Kernel ... 139

7.1. Background Infonnation ... 139

7.2. AnExample .. 141

7.3. Devices that use Two Address Spaces .. 145

7.4. Adding and Removing Loadable Drivers .. 146

7.1. Background
Information

7
Configuring the Kernel

In this chapter, we will assume that you've written your driver. The next step,
obviously, is to build a kernel that includes your new driver. This process isn't
difficult; Sun systems support easy kernel configuration, even without access to
system source code. If the driver is a loadable driver then the kernel is not re
built and therefore the discussion of rebuilding the kernel does not apply. In this
case, see the Loadable Drivers section of the Driver Development Topics
chapter.

In heterogeneous server/client environments, kernels must be configured infairly
general ways. For one thing, they must work on both Multibus and VMEbus
machines, for another, they have to tolerate normal variations among system
devices (e.g. client Ethernet boards may be made by either 3COM or Sun). The
GENERI C config file thus contains configuration lines for all common devices for
both bus types. However, if you're configuring a kernelfor a known system, you
need not carry around extraneous options - you can tailor your configuration
file as appropriate and thus get a smaller (by 100 kilobytes or more!) and more
efficient kernel.

For additional information on kernel configuration, see the Adding Hardware to
Your System section of Network Programming and the config (8) man page.
(Incidently, config is found in the /usr / etc/ directory - so make sure that
your path includes /usr / etc before proceeding).

First, a simple distinction. If your kernel already contains a certain driver, and
you're simply installing a corresponding device, you will only need to edit the
kernel config file - all of the installation specific information about devices
themselves is contained in this file. If, however, you will be adding a new driver
to the kernel, you will need to edit some additional files:

o The first of these is /usr / sys/ sun/ conf . c, a C-Ianguage source-code
file which contains the definitions of the switches cdevsw and bdevsw, as
well as a bit of initialization infrastructure for the installed devices.

o The second is either /usr / sys/ sun2 / conf/files,
/usr/sys/sun3/conf/files,/usr/sys/sun4/conf/files,or
/usr / sys/ sun38 6/ conf/ files, (depending upon the type of your
machine). This file tells conf ig where to find the source code for the ker
nel and its dri verso

139 Revision A, of9 May 1988

140 Writing Device Drivers

The discussion in this chapter concerns config, a utility program that is used
in configuring kernels and initializing the kernel/driver interface structures.
conf ig is altogether different from the autoconfiguration process, sometimes
called autoconfig, which is built into the initialization pass of the SunOS ker
nel, and thus run at system boot time. Autoconfiguration completes the run-time
driver environment initialization that config begins,for example by checking
that the devices indicated as present in the kernel config file are actually present
in the running system. Autoconfiguration is discussed in much greater detail in
the Overall Kernel Context chapter of this manual.

config's goal is to output a set of files that can be directly used to configure a
new kernel. The purpose of the configuration may simply be to install a device
(for which the kernel already contains a driver) or it may be to integrate a new
device and its driver. The kernel configuration system learns of new devices by
way of entries in the config file, whereas new drivers are indicated by editing one
or all of the files conf . c, / us r / conf . common / file s _ cron and
/usr/sys/sun[234]/conf/files(or
/usr/ sys/ sun38 6/ conf/files). The files output by config are used in
the construction of the new kernel, but so are others, notably conf . c itself.

o ioconf. c - the major input to the autoconfiguration process. It contains
arraysofmbvarstructures- struct mb_ctlr mbcinit[] and
struct rob_device robdinit [] - that have been initialized on the
basis of the device and controller information in the config file. (Incidently,
the order of the device declarations in the config file will determine the order
of the structures in ioconf . c, and thus the order in which devices are
polled). The autoconfiguration process assumes that ioconf . c exists and
will complete the initialization of its structures by calling xxprobe () ,
xxattach (), andxxslave (). See the Overall Kernel Context chapter
for more information.

o xx.h - a set of header files, one for each driver. These header files define
macros (e.g. #define NSK 2) that tell the drivers how many devices
they will be managing. The drivers will use these macros at compile time to
control conditional compilation and to size device tables.

o mbglue.s - contains assembly-level code that translates from the hardware
interrupt mechanisms to the device-interrupt routines for the installed dev
ices. It does not exist on Sun-4 or Sun386i machines.

o Makefile - a makefile that, when executed, will actually make the new ker
nel, compiling and linking files as necessary. Note that the entries in
/usr/sys/sun[234]/conf/files(or
/usr / sys/ sun38 6/ conf/ files) refer to source files (Le.
sundev / sk . c), but that if conf ig fails to find a named source file it will
set up to use the corresponding object file (from the OBJ subdirectory of the
configuration directory) instead. Thus, conf ig works on both source
licensed and object licensed machines.

Revision A, of 9 May 1988

7.2. An Example

Chapter 7 - Configuring the Kernel 141

The example that follows assumes that you're adding a driver for the Skeleton
board (sk. c) to your system. To proceed, you will need a configuration direc
tory and a config file for your new kernel. config will create a configuration
directory in / u s r / s y s / with the same name as the new config file in
/usr I sys/conf, so all you have to do is create that file:

example=#:
example=#:

cd /usr/sys/sun[234]/conf
cp GENERIC SKELETON

Then edit the SKELETON config file to reflect the presence, in your system, of
the Skeleton board. As you can see by checking conf ig (8) , each line in the
file describes a different device - thus, you will simply need to add lines that
describe the installation of the Skeleton board. The exact fonnat of those lines
will depend upon the address space within which the board is to be installed.

The address space that's given in the kernel config file will determine the
address-space mappings that are set up by the MMU - the virtual addresses that
the driver receives from the kernel, and then treats as pointers to the device's
registers, will be within the address space given here. What's important is that
the driver writer know and specify, at this point, the number of bits in the device
address, and the number of bits in its data-access length.

The Skeleton board, as we've defined it, is an IIO-mapped Multibus device with
an eight-bit status and an eight-bit data register. Thus, in a Sun-2 Multibus
machine, it would be installed in 110 space; if we put it at offset 0 x 600 within
that space, we'd add the following line to SKELETON:

device skO at mbio ? csr Ox600 priority 2

This says that we have an sk device (the first device is always, by convention,
number 0) on the Multibus. The device has its control/status register (device
register) at Multibus I/O address Ox600 (this is passed to xxprobe () at boot
time) and interrupts at level 2.

If our machine is a VMEbus machine, we will install the Skeleton device within
vme16d16 by way of a Multibus-VMEbus adapter. We choose vrne16d16
because it's the smallest address space:

device skO at vrne16d16 ? csr Ox600 priority 2 vector skintr Oxe8

This says that, when plugged into an adapter board, the vector number OxC8 is
set up to route to the skintr routine. (Vector numbers OxC8 through OxFF are
reserved for user devices). Notice that Ox60 0 within mbio maps directly to
Ox600 within vrne16d16.

On a Sun-3 or Sun-4, it would likewise be reasonable to choose the smallest of
the available address spaces:

Each of these config-file entries specify the installation of the Skeleton device for
either a Multibus or a VMEbus system. It's fine for one config file to contain
both entries - config will know the type of system that it is running on, and
automatically use the right entry.

Revision A, of 9 May 1988

142 Writing Device Drivers

Only very rudimentary error checking is done on the config file. For example, if
you declare a device attached to a controller, you must declare the controller as
well. Also, a sanity check is done on the timezone and date entries. The check
ing, however, is not comprehensive.

One more point about the config file. The number of installed devices will be
determined, for each driver, by config, and it will generate the appropriate
s k . h header file for you in the configuration directory.

Now, you can go on with the process of building the new kernel. The next step is
to edit conf . c, adding to it the names of the entry point routines for the Skele
ton driver, and then installing those routines into the kernel's character device
switch cdevsw. The following code accomplishes these two goals:

4tinclude "sk.h"
#if NSK > 0
int skopen(), skclose(), skread(), skwrite(), skmmap()i
#else
#define skopen nodev
#define skclose nodev
4tdefine skread nodev
#define skwrite nodev
#define skmmap nodev
#endif

struct cdevsw cdevsw[]
{

skopen, skclose, skread, skwrite,
nodev, nodev, nodev, 0,
seltrue, skmmap,

} ,

This will add the driver's routines to cdevsw ifNSK is greater than 0 (NSK is, as
already explained, calculated by config). Note well that the position in the
cdevsw where we've installed our routines (the exact position depends, of
course, upon how many device are already installed) is the same as the major
device number which we will later assign to all devices driven by this driver -
the major number is an index into cdevsw.

The entries in cdevsw are, in order, xxopen () ,xxclose () , .x:xread () ,
xxwrite () ,xxioctl () ,xxstop () and xxreset () , at ty structure
pointer, and finally, xxselect () and xxmmap (). The Skeleton driver doesn't
have an xxioctl () routine so this entry is set to nodev, the special routine
that always returns an error. Since our device is not a tty it doesn't have an

~~sun ~ microsystems
Revision A, of 9 May 1988

Chapter 7 - Configuring the Kernel 143

xxstop () routine (used for flow control) nor does it have a tty structure.
xxreset () is never used so all devices set its entry to nodev. xxselect ()
is called when a user process does a select (2) system call; it returns 1 if the
device can be immediately selected. Since the Skeleton device is write only and
arbitrarily fast, it's always selectable - so we will use the default seltrue
routine that always returns 1.

The next step is to edit the file that tells con fig how to locate the driver source
code. This source code will not be common to all Sun systems, and thus its path
name will go not into /usr /conf. common/files_cmn but into
/usr/sys/sun[234]/conf/files(or
/usr / sys/ sun386/ conf / files). Assuming that the driver source is in
/usr / sys/ sundev, here's the line you must add to
/usr/sys/sun[234]/conf/files(or
/usr / sys/ sun386/ conf/ files):

sundev/sk.c optional sk device-driver

This says that the file sundev / sk. c contains the source code for the optional
sk device and that it is a device driver.

After adding these lines to your configuration file, you can run conf ig:

example# config SKELETON

configuses SKELETON, /usr/conf. common/files_cmn and
/usr/sys/sun[234]/conf/files(or
/usr / sys/ sun38 6/ conf / files) as input, and generates a number of files
in the .. / SKELETON directory. One of these files is the makefile that con
tains a dependency tree for any new C source files you created during the process
of adding new drivers (or whatever) to the kernel. make will use this as its com
mand file when it is actually executed to produce the new kernel. When con
fig finishes generating the makefile, it automatically goes on to generate the
dependencies (unless you tell it not to with the -n command-line flag). The
generation of the dependencies takes a long time, and before it starts, conf ig
will notify you with the message:

Doing a "make depend"

Now you can change directory to the new configuration directory, .. /SKELE
TON in this case, and make the new system:

example# cd .. /SKELETON
example# make

Now you must add a new device entry to the / dev directory. The connections
between the kernel and the device driver are established through the entries in the
/ dev directory. Using the example above as our model, we want to install the
device for the Skeleton driver.

Device entries are made with one of two shell scripts in the / dev directory. The
first, MAKED EV, is for standard system devices and should be left as is. The

.\sun ~ microsystems
Revision A, of 9 May 1988

144 Writing Device Drivers

second, MAKEDEV .local, differs only in that it contains entries for user dev
ices, and it is here that entries for new devices should be placed.

It's worth looking inside MAKEDEV to see the kinds of things it does. The lines
of shell script below reflect what you'd add to MAKEDEV .local for the new
Skeleton device. First, there are some lines of commentary:

4I=! /bin/sh
41= MAKEDEV.local 4.45
41= Graphics
41= sk* Skeleton Board

86/04/15

Then there's the actual shell code that makes the device entries:

sk*)
unit='expr $i : 'sk)"
/etc/mknod sk$unit c 40 $unit
chmod 222 sk$unit
; ;

This code extracts the numeric portion of MAKE DE V • local's argument and
passes it on to rnknod and chrnod. In the simplest case, we simply say:

example 41= MAKEDEV.local skO

MAKEDEV. local then makes the special inode / dev / skO for a character spe
cial device with major device number 40 and minor device number 0, and then
sets the mode of the file so that anyone can write to the device.

Having added the new device entry, you can install the new system and try it out.

example 41= cp /usr/sys/sun[234]/SKELETON/v.munix vrounix+
example 41= halt

The system here goes through the halt sequence, then
the monitor displays its prompt, at which point you can
boot the system in single-user state

> b vmunix+-s

example 41=

The system boots up in single user state and
then you can try things out

If the system appears to work, save the old kernel under a different name and
install the new one in Ivmunix:

example 41= cd /
example 41= mv v.munix v.munix
example 41= mv v.munix+ vmunix
example 41=

Make sure that the new version of the kernel is actually called vrnunix because
programs like ps and netstat () use that exact name in collecting information

Revision A, of9 May 1988

7.3. Devices that use Two
Address Spaces

Chapter 7 - Configuring the Kernel 145

they need from runtime tables. If the running version of the kernel is called
something other than vmunix the results from such programs will be wrong.

Normally, devices interface to the system by way of a single address space.
However, there are exceptions. Some Multibus devices have registers in Mu1-
tibus 110 space and memory in Multibus memory space. And there are any
number of VMEbus devices coming on the market that have memory in 24 or
32-bit VME space while keeping their control and status registers in 16, or even
8-bit, VME space.

Unfortunately, such situations can't currently be handled in a clean fashion
because the kernel configuration program (config) can't cope with dual-space
devices. The xxprobe () routine is the core of the problem, since it deals with
only a single space.

There are, fortunately, two ways to work around the problem:

o The first is easier, but rather inelegant. It consists of treating the device as if
it were two devices, and of writing two separate "drivers" for it. So, for
example, if we were to have a new, dual-space, VMEbus version of the
Skeleton device, we'd add the following two lines to the config file:

* Skeleton Memory Space
device skmO at vrne32d32 ? csr OxDOOOOOOO priority 3 * Skeleton Register Space
device skrO at vrne16d16 ? csr OxDOOO priority 3 vector skintr Ox88

It's also necessary to have two entries in
/usr/sys/sun[234]/conf/files(or
/usr / sys/ sun38 6/ conf/ files):

sundev/skm.c
sundev/skr.c

optional skm device-driver
optional skr device-driver

And it's necessary to have a second "driver". Actually, all of the real driver
code goes into skr. c, which manipulates the device registers. The second
driver, skm. c, consists entirely of a probe () routine - all its other rou
tines are null.

Both sides of the driver, skr . c and skm. c, include the same register
header file skreg. h. skreg. h contains an external declaration for an
array of structures (one for each instance of the device) that contain what
ever information skr. c needs from the memory-side probe () routine:

extern struct sk_devinfo sk_devinfo[NSK];

All that remains is for the memory-side probe () routine to initialize
sk devinfo.

o There's a second procedure for installing dual-space devices. It's a bit
harder to use, but it doesn't require a stub driver containing only a
probe () routine.

+2..!! Revision A, of9 May 1988

146 Writing Device Drivers

7.4. Adding and Removing
Loadable Drivers

Pick one of the two device installation addresses for normal treatment in the
config file. It doesn't matter which one you pick, unless the device is a
memory-mapped Multibus device, in which case you must pick the address
in Multibus Memory space. Otherwise just pick the one that's most con
venient for your xxprobe () routine to use to test the device installation.
The registers and memory in this first space will then be automatically
mapped into kernel virtual space (as usual) by the autoconfiguration process.

Then use the config file flags word to communicate the second space
installation address to your driver. The driver will then find that address in
md->md_flags and be able to access it from either the xxattach () or
xxslave () routine; it's best (for most character devices) to pick it up at
xxat tach () time. The driver can then use rmalloc () to allocate (from
kernelmap) virtual space for the second-space registers/memory, and then
call mapin () to map them into kernel space. (See the Kernel Support Rou
tines appendix for details about mapinO).

The Sun386i supports loadable drivers. A loadable driver doesn't need to be
linked with the kernel . 0 files. Nor does the system have to be rebooted or
rebuilt for loadable drivers to be used. You can simply add a loadable driver to a
running system. Once you have a driver in the loadable form, you can load it
into the running system with the modload(8) command. You must be the
superuser to do this.

Take care when loading an undebugged driver for the first time. Although there
are many consistency checks made when a driver is loaded, it is still possible for
dri vers to crash the system. One of the more common crashes occurs when the
running kernel is not /vmunix. modload assumes by default (unless the-A
switch is provided) that the running kernel is /vmunix. It resolves driver refer
ences to kernel addresses by reading the symbol table from /vmunix. If
/vmunix is not the running system, then the system is likely to crash when the
dri ver is used.

A typical example of the modload command is:

example* mod10ad zz.o -conf <confiq_fi1e> -exec <exec file

This tells the kernel that the driver object module is in z z . o. (See the Loadable
Drivers section of the Driver Development Topics chapter for information about
how to build a loadable driver.)

Configuration information for the driver and optionally the block and character
major numbers are specified in the file config.Jile. If modload is successful, the
file exec .Jile is executed. This file is typically a script used to make the / dev
entries for the driver. modload(8) has many options; see its man page for
details.

Error messages from modload can appear in two places. The modload utility
itself prints error messages to standard output on the terminal from which
modload is run. In addition, modload-related kernel code can print information

Revision A, of9 May 1988

Chapter 7 - Configuring the Kernel 147

to the console. For this reason, we recommend that the console output be visible
when you issue the modload command.

When it is loading a driver, modload may fail for a variety of reasons. For
example, the driver initialization routine may not do all that is required (as
described in the Loadable Drivers section of the Driver Development Topics
chapter). Or the linkage structure in the driver wrapper module may have invalid
addresses. Since it is not possible to return a unique error code for every possible
condition, a single error code is returned and additional information is often
printed on the console. To assist the driver writer in debugging the driver, the
kernel variable vddebug can be set to -1 using adb or kadb. This will cause
the kernel to print additional informational messages when loading a module.

To inquire about device drivers after they are loaded, use the modstat(8) com
mand. It displays the module id of the driver, the name of the device, and the
major numbers of the block and character devices, as well as some additional
information about the module.

The module id is required to unload a driver. A driver can be unloaded by using
the modunload(8) command, as in this example:

example* modunload -id 2 -exec <exec_file>

This example assumes that the rnodstat command displayed the driver's
module id as 2. The file exec Jtle is executed and if the execution is successful
the driver is unloaded. Typically this file is a script that removes the / dev
entries for the driver.

An example of a script that could be used with modload is as follows:

#!/bin/csh -f
if $3 != "0" then

if (! -r /dev/zzO) then
echo /etc/mknod /dev/zzO b $3 0
/etc/mknod /dev/zzO b $3 0

endif
endif

if $4 != "0" then
if (! -r /dev/xrfdOa) then

echo /etc/mknod /dev/xrfdOa c $4 0
/etc/mknod /dev/rzzO c $4 0

endif
endif

The script is invoked with the following arguments:

<module _id> <module_type> <block_major _number> <character_major _number>

modunload could be invoked with the following script to remove the / dev

Revision A, of 9 May 1988

148 Writing Device Drivers

entries for the driver:

#!/bin/csh -f
rm -f /dev/zzO
rm -f /dev/rzzO

Revision A, of 9 May 1988

8
Pseudo-Device Drivers - A Ratndisk

Pseudo-Device Drivers - A Ramdisk .. 151

8.1. A Ramdisk Driver ... 152

Ramdisk Source Code .. 152

Ramdisk Installation ... 153

Ramdisk Test Program .. 156

8
Pseudo-Device Drivers - A Ramdisk

SunOS supports "software devices", sometimes called "pseudo devices", which
have no associated physical devices. Such devices can be quite useful. The sys
tem memory devices, for example, are pseudo devices, and they can be used to
access installed peripheral devices, as is shown in the discussion of frame-buffer
installation in Direct Opening of Memory Devices section of this manual. The
memory devices allow such direct physical-device access by providing a means
by which processes can read and write physical memory outside their own
address space. For example, the ps command uses the kmem pseudo-device
driver to access the kernel's process tables by way of the physical memory to
which the kernel is mapped.

This section will introduce pseudo-devices by way of a real, working pseudo
device ramdisk. As you will see, such a ramdisk requires none of the subtlety
that makes physical disk drivers so difficult.6 Yet it does buy speed, since ram
disks avoid two distinct kinds of file-system overhead:

D In normal use, 10 buffers get paged out, despite the use of the kernel buffer
cache to minimize unnecessary 110 operations. A ramdisk is an especially
big win on reads, since reading processes must normally block while
requested data is brought into the buffer cache.

D During normal file-system operation, file control information (like inodes)
must be written synchronously with data. This overhead doesn't exist with
ramdisks.

Ramdisks can be used for I tmp. This way, if a system crash results in the loss
of ramdisk files, it's not a serious problem. Note that for some applications, par
ticularly those that involve temporary files larger than ramdisk memory, using
Itmp isn't a very good idea. An alternative is to mount the ramdisk as I aux,
and to use it explicitly each time you think it's safe. Ramdisks have only a
minimal impact on applications software - once they're set up they are entirely
transparent. (Note that ramdisks -like devices in general- can be shared by
multiple processes. This driver can thus be used as an indirect means of sharing
memory.)

6 The ramdisk given here is very crude. A production version should have its memory allocated at boot time
and should be pagable. And with the memory-management system introduced in SunOS 4.0, a ramdisk
probably won't improve performance anyway. In general, you' II be better off letting UNIX manage memory as
a page cache, rather than devoting some of that cache to a ramdisk

.~sun ~ microsystems
151 Revision A, of 9 May 1988

152 Writing Device Drivers

8.1. A Ramdisk Driver

Ramdisk Source Code

The following ramdisk driver consumes a half-megabyte of kernel memory,
which is allocated to the ramdisk pseudo-device.
Put the source code for the ramdisk driver into / sys/ sundev frame c.

1*
* Ramdisk pseudo-device to support 110 to real merrwry
* (a statically allocated kernel array).
*1

#include "ram.h"
#if NRAM > 0
#include " .. /h/param.h" /* Includes " . ./hltypes.h" */
#include " .. /h/errno.h"
#include " .. /h/uio.h"
#include " .. /h/buf .h"

#define RAMSIZE (1024*512) /* Half a megabyte */
char ram[NRAM] [RAMSIZE]i

ramopen(dev,wrtflag)
dev_t devi
int wrtflagi

return (minor (dev) >= NRAM ? ENXIO O)i

ramsize(dev)
dev_t devi

return (minor (dev) >= NRAM ? -1

ramread(dev,uio)
dev_t devi
register struct uio *UiOi

btodb(RAMSIZE»i

if «unsigned)uio->uio_offset > RAMSIZE)
return(EINVAL);

return(uiomove(ram[minor(dev)]+uio->uio_offset,
MIN (uio->uio_resid, RAMSIZE - uio->uio_offset),
UIO_READ, UiO»i

ramwrite(dev,uio)
dev_t devi
register struct uio *uio;

if «unsigned)uio->uio_offset > RAMSIZE)
return(EINVAL)i

return(uiomove(ram[minor(dev)]+uio->uio_offset,
MIN (uio->uio_resid, RAMSIZE - uio->uio_offset),
UIO_WRITE, UiO»i

Revision A, of 9 May 1988

Ramdisk Installation

Chapter 8 - Pseudo-Device Drivers - A Ramdisk 153

rarnstrategy(bp)
register struct buf *bp;

register long offset = dbtob(bp->b_blkno);

if «u_long)offset > RAMSIZE)
bp->b_error = EINVAL;
bp->b_flags 1= B_ERROR;

else {
caddr t raddr = ram[rninor(bp->b_dev)]+offset;
unsigned nbytes = MIN(bp->b_bcount, RAMSIZE-offset);

if (bp->b_flags&B_READ)
bcopy(raddr, bp->b_un.b_addr, nbytes);

else
bcopy(bp->b_un.b_addr, raddr, nbytes);

bp->b_resid = bp->b_bcount - nbytes;

iodone(bp) ;

#endif

Pseudo-device drivers, by definition, have no corresponding physical devices.
Thus, they have no probe routines.

Note the routine ramsize. All block drivers provide such a routine, which is
charged with returning the sector size of the device in the peculiar units which
the kernel expects. (This information is then used to maximize the speed of
fsck). ramsize () calls the btodb () ,conversion routine, passing it an
argument in bytes, and receiving from it an appropriately scaled result.

The more detailed discussion of these and related configuration procedures can
be found in the Configuring the Kernel chapter of this manual.

First, create the file I sys I sundev I ram. h containing the line:

4I=define NRAM 1

Then, edit lusrl sysl sun [234] I confl files or
lusr I sys I sun38 61 conf I files, adding the following line to the end of it:

sundev/ram.c optional ram device-driver

Then, edit both the bdevsw and cdevsw arrays in Isys/sun/conf. c,
adding entries for the ramdisk to each of them. (In this discussion, we will only
use the ramdisk as a block device, but the driver provides all the entry points
necessary for use as either a block or a character driver) .

• \sun ~ microsystems
Revision A, of9 May 1988

154 Writing Device Drivers

=If:include "ram.h"
if NRAM > 0
int ramopen(), ramread(), ramwrite();
int ramstrategy(), ramsize();
=If:else
=If:define ramopen nodev
=If:define ramread nodev
=If:define ramwrite nodev
=If:define ramstrategy nodev
=If:define ramsize nodev
=If:endif

ramopen, nulldev, ramstrategy, nulldev, /*8*/
ramsize, nulldev

ramopen, nulldev, ramread, ramwrite, /*30*/
nodev, nodev, nulldev, 0, seltrue, nodev,

}

Next, move into / dev and create device entries to correspond to the entries in
conf. c.

example=lf: cd /dev
example=lf: /etc/mknod ramOc 8 0
example. /etc/mknod rramOc 30 0

The next step is to make a new configuration directory for the variant of you ker
nel that will include the ramdisk. Copy your kernel configuration file and add the
line:

pseudo-device ram

to the pseudo-device section of the copy. If your config file was named GEN
ERI C, you might name the ramdisk variation GENERI C _ RAM.

Then, make a version of the system kernel that includes the ramdisk:

example. mkdir /sys/GENERIC_RAM
example. /etc/config GENERIC_RAM
example. cd .. /GENERIC_RAM
example=lf: make depend
example. make
example. cp /v.munix /v.munix.old
example. cp vmunix /v.munix
example. /etc/reboot

During the reboot, note that the size of the kernel has gotten very large. After the

Revision A, of9 May 1988

Chapter 8 - Pseudo-Device Drivers - A Ramdisk 155

reboot, make and associate a "filesystem" with the block ramdisk device:

/ete/mkfs /dev/ramOc 1024 8 8 4096 1024 16 5 100
fete/mount /dev/ramOe /tmp

That's 1024 blocks total (512 Kb), broken out as 8 sectors of 8 tracks of 4096
bytes per block with 1024 byte fragment size with 16 cylinders per group with
5% minimum free (as in df(I)) and 100 revolutions per second. (This two line
sequence should probably be put in the /etc/rc .local script).

Once the ramdisk filesystem is mounted onto /tmp, then any program which
creates and uses files on / tmp will use the ramdisk. Reads and writes to these
files will be very fast. Measured performance indicates that 1/0 on files of about
10K bytes is about 5 times as fast as with a physical disk, and that this factor
increases to about 10 for very large files.

Revision A, of 9 May 1988

156 Writing Device Drivers

Ramdisk Test Program

I

Here's a test program that proves that the ramdisk works:

fdefine BUFSIZ 1024
fdefine CYCLES 100
fdefine RAMDISK

/*
* Ramdisk test program
*/

main ()
{

int fd;
int nb;
int i;

/ * file descriptor * /
/ * number of bytes traniJerred * /
/ * generic loop counter variable * /

int count=BUFSIZ;
char buffer[BUFSIZ];
int iterations=O, error=O, done=O;

fifndef RAMDISK
/ * Open a file on the regular filesystem * /
if «fd = open("testfile", 2» == -1) {

perror("ramdisk test (normal opening)");
exit(1);

felse
/ * Open a file in the ram disk filesystem * /
if «fd = open("/tmp/testfile", 2» == -1) {

perror("ramdisk test (ram opening)");
exit(l);

fendif

do {
lseek(fd, 0, 0);
if (write (fd, buffer, count) != count) {

perror("ramdisk test (writing)");
exit(l);

lseek (fd, 0, 0);
if (read(fd, buffer, count) != count) {

printf("count= %dO, count);
perror("ramdisk test (reading)");
exit(l);

if (iterations++ CYCLES) done++;

while !error && !done);
close(fd);
exit(O);

Revision A, of 9 May 1988

PART TWO: STREAMS
ProgralDming

9

Introduction to STREAMS

Introduction to STREAMS ... 161

9.1. A Basic View ofa Stream .. 162

System Calls .. 163

9.2. Benefits of STREAMS ... 165

Creating SeIVice Interfaces 165

Manipulating Modules ... 165

Protocol Portability................ 165

Protocol Substitution .. 166

Protocol Migration 166

Module Reusability ... 167

9.3. An Advanced View of a Stream .. 168

Stream Head ... 169

Modules .. 169

Stream End ... 170

9.4. Building a Stream .. 171

Expanded Streams .. 172

Pushable Modules ... 172

9.5. Basic User Level Functions ... 173

STREAMS System Calls ... 173

An Asynchronous Protocol Stream Example ... 174

Initializing the Stream .. 175

Message TyI'Cs .. 176

Sending and Receiving Messages .. 176

U sing Messages in the Example .. .

Other User Functions

9.6. Kernel Level Functions

Messages

Message Allocation

Put and Service Procedures .. .

Put Procedures .. .

Service Procedures .. .

Kernel Processing .. .

Read Side Processing

Driver Processing

CHARPROC .. .

CANONPROC

Write Side Processing .. .

Analysis

9.7. Oilier Facilities

Message Queue Priority

Flow Control

Multiplexing

Monitoring

Error and Trace Logging

9.8. Driver Design Comparisons

Environment

Drivers

Modules

9.9. Glossary

177

180

180

180

182

183

183

183

184

185

185

185

186

186

187

187

187

188

190

192

193

195

195

195

196

196

9

Introduction to STREAMS

STREAMS were designed to systematize the existing UNIX character 110
mechanism and to support the development of communications services.

STREAMS consist of a set of system calls, kernel resources and kernel routines.
For detailed information about the STREAMS-kernel interface, about the internal
structure of STREAMS modules and about STREAMS driver programming, see
the following chapters.

The UNIX system was originally designed as a general-purpose, multi-user,
interactive operating system for minicomputers. Initially developed in the
1970's, the system's communications environment included slow to medium
speed, asynchronous terminal devices. The original design, the communications
environment, and hardware state of the art influenced the character 110 mechan
ism but the character 110 area did not require the same emphasis on modularity
and performance as other areas of the system.

Support for a broader range of devices, speeds, modes, and protocols has since
been incorporated into the system, but the original character 110 mechanism,
which processes one character at a time, made such development difficult. Addi
tionally, a paucity of tools and the absence of a framework for incorporating con
temporary networking protocols added to the difficulty.

Attempts to compensate for the above problems have led to diverse, ad-hoc
implementations; for example, protocol drivers are often intertwined with the
hardware configuration in which they were developed. As a result, functionally
equivalent protocol software often cannot interface with alternate implementa
tions of adjacent protocol layers. Portability, adaptability, and reuse of software
have been hindered.

STREAMS, a general, flexible facility and a set of tools for development of
UNIX system communication services, is intended to remedy these problems.
STREAMS supports services ranging from complete networking protocol suites
to individual device drivers.

STREAMS defines standard interfaces for character 110 within the kernel, and
between the kernel and the rest of the system. The associated mechanism is sim
ple and open-ended. It consists of a set of system calls, kernel resources, and
kernel utility routines. The standard interface and open-ended mechanism enable
modular, portable development and easy integration of higher performance net
work services and their components. STREAMS does not impose any specific

161 Revision A, of9 May 1988

162 Writing STREAMS Device Drivers

9.1. A Basic View of a
Stream

network architecture. Instead, it provides a powetful framework with a con
sistent user interface that is compatible with the existing character I/O
interface-which is still available.

STREAMS modularity and design reflect the "layers and options" characteristics
of contemporary networking architectures. The basic components in a
STREAMS implementation are referred to as modules. These modules, which
reside in the kernel, offer a set of processing functions and associated service
interfaces. From user level, modules can be dynamically selected and intercon
nected to provide any rational processing sequence. Kernel programming,
assembly, and link editing are not required to create the interconnection.
Modules can also be dynamically "plugged into" existing connections from user
level. STREAMS modularity allows:

D User level programs that are independent of underlying protocols and physi
cal communication media.

D Network architectures and higher level protocols that are independent of
underlying protocols, drivers, and physical communication media.

D Higher level services that can be created by selecting and connecting lower
level services and protocols.

D Enhanced portability of protocol modules resulting from STREAMS' well-
defined structure and interface standards.

In addition to modularity, STREAMS provides developers with integral func
tions, a library of utility routines, and facilities that expedite software design and
implementation. The principal facilities are:

o Buffer management - To maintain STREAMS' own, independent buffer
pool.

o Flow control - To conserve STREAMS' memory and processing resources.

o Scheduling - To incorporate STREAMS' own scheduling mechanism.

o Multiplexing - For processing interleaved data streams, such as occur in
SNA, X.25, and windows.

o Asynchronous operation of STREAMS and user processes - Allows
STREAMS-related operations to be performed efficiently from user level.

o Error and trace loggers - For debugging and administrative functions.

"STREAMS" is a collection of system calls, kernel resources, and kernel utility
routines that can create, use, and dismantle a "Stream". A Stream is a full
duplex processing and data transfer path between a driver in kernel space and a
process in user space (see Figure 9-1).

Revision A, of9 May 1988

System Calls

Figure 9-1 Basic Stream

Stream
Head

Module

Driver

User
Process

External
Interface

Chapter 9 - Introduction to STREAMS 163

__ !!~! _S'p~~ __ _
Kernel Space

! downstream

(optional)

t upstream

A Stream has three parts: A Stream head, module(s) (optional), and a driver
(also referred to as the Stream end). The Stream head provides the interface
between the Stream and user processes. Its principal function is to process
STREAMS-related user system calls. A module processes data that travel
between the Stream head and driver. A STREAMS driver may be a device
driver, providing the services of an external 110 device, or an internal software
driver, commonly called a pseudo-device driver.

Using a combination of system calls, kernel routines, and kernel utilities,
STREAMS passes data between a driver and the Stream head in the form of mes
sages. Messages that are passed from the Stream head toward the driver are said
to travel downstream, and messages passed in the other direction travel upstream.

The Stream head transfers data between the data space of a user process and
STREAMS kernel data space. Data sent to a driver from a user process are pack
aged into STREAMS messages and passed downstream. Messages arriving at
the Stream head from downstream are processed by the Stream head, and data are
copied into user buffers. STREAMS can insert one or more modules into a
Stream between the Stream head and driver to perform intermediate processing
of data passing between the Stream head and driver.

Applications programmers can use the STREAMS facilities via a set of system
calls. This system call interface is upward compatible with the existing character
I/O facilities. The open (2) system call will recognize a STREAMS file and
create a Stream to the specified driver. A user process can send and receive data
using read (2) and wr i te (2) in the same manner as with character files and

~~sun ~~ microsystems
Revision A, of 9 May 1988

164 Writing STREAMS Device Drivers

devices. The ioctl (2) system call enables application programs to perfonn
functions specific to a particular device. In addition, a set of generic STREAMS
ioctl () commands (see streamio(4» support a variety of functions for
accessing and controlling Streams. A close (2) will dismantle a Stream.

open (), close (), read (), write (), and ioctl () support the basic set
of operations on Streams. In addition, new system calls support advanced
STREAMS facilities. The po 11 (2) system call enables an application program
to poll multiple Streams for various events. When used with the STREAMS
I_SETS IG ioctl () command, poll () allows an application to process I/O
in an asynchronous manner. The putmsg (2) and getmsg (2) system calls
enable application programs to interact with STREAMS modules and drivers
through a service interface (described next).

These calls are discussed in this chapter and, in more detail, the the chapters that
follow. They are precisely specified in the following manual pages:

Figure 9-2 STREAMS-Related Manual Pages

Man Page
open.2

close.2
read.2

write.2
putmsg.2
getmsg.2

poll.2
clone.4

streamio.4
termio.4

tty_compat.4m
tty_std.4m

kbd.4s
kb.4m

mouse.4s
ms .4m
pty.4

console.4s
mti.4s

zs.4s
nit.4m

nit if. 4m
nityf.4m

nit buf. 4m

Description
Open a stream
Close a stream
Read from a stream
Write to a stream
Send a message on a stream
Get next message off a stream
STREAMS input/output multiplexing
Open any minor device on a STREAMS driver
STREAMS ioctl commands
General terminal interface
V7/4BSD compatibility STREAMS module
Standard tenninal STREAMS module
Sun keyboard device
Sun keyboard STREAMS module
Sun mouse device
Sun mouse STREAMS module
Pseudo terminal driver
Sun console driver and terminal emulator
Systech MfI-80011600 multi-tenninal interface
Zilog 8530 SCC serial communications drive
Network Interface Tap (NIT) Protocol
STREAMS NIT device interface
STREAMS NIT packet filtering module
STREAMS NIT buffering module

Revision A, of 9 May 1988

9.2. Benefits of STREAMS

Creating Service Interfaces

Manipulating Modules

Protocol Portability

Chapter 9 - Introduction to STREAMS 165

STREAMS offers two major benefits for applications programmers: easy crea
tion of modules that offer standard data communications services, and the ability
to manipulate those modules on a Stream.

One benefit of STREAMS is that it simplifies the creation of modules that
present a service interface to any neighboring application program, module, or
device driver. A service interface is defined at the boundary between two neigh
bors. In STREAMS, a service interface is a specified set of messages and the
rules for allowable sequences of these messages across the boundary. A module
that implements a service interface will receive a message from a neighbor and
respond with an appropriate action (for example, send back a request to
retransmit) based on the specific message received and the preceding sequence of
messages.

STREAMS provides feature~ that make it easier to design various application
processes and modules to common service interfaces. If these modules are writ
ten to comply with industry-standard service interfaces, they are called protocol
modules.

In general, any two modules can be connected anywhere in a Stream. However,
rational sequences are generally constructed by connecting modules with compa
tible protocol service interfaces. For example, a module that implements an X.25
protocol layer, as shown in Figure 9-3, presents a protocol service interface at its
input and output sides. In this case, other modules should only be connected to
the input and output side if they have the compatible X.25 service interface.

STREAMS provides the capabilities to manipulate modules from user level, to
interchange modules with common service interfaces, and to present a service
interface to a Stream user process. As mentioned above, these capabilities yield
benefits when implementing networking services and protocols, including:

D User level programs can be independent of underlying protocols and physi
cal communication media.

D Network architectures and higher level protocols can be independent of
underlying protocols, drivers and physical communication media.

D Higher level services can be created by selecting and connecting lower level
services and protocols. Below are examples of the benefits of STREAMS
capabilities to developers for creating service interfaces and manipulating
modules.

Figure 9-3 shows how the same X.25 protocol module can be used with different
drivers on different machines by implementing compatible service interfaces.
The X.25 protocol module interfaces are Connection Oriented Network Service
(CONS) and Link Access Protocol - Balanced (LAPB) dri ver.

Revision A, of 9 May 1988

166 Writing STREAMS Device Drivers

Figure 9-3 Protocol Module Portability

MACHINE A

Protocol Substitution

Protocol Migration

------ ------

X.25
Protocol Layer

Module

------ ------
It

I LAPB
Driver

\
Machine A

,

J

CONS
INTERFACE

SAME

MODULE

LAPB
INTERFACE

DIFFERENT
DRIVER

MACHINEB

------ ------

X.25
Protocol Layer

Module

I'

------ ------
I,

I LAPB
,

Driver

\
Machine B

J

Alternative protocol modules (and device drivers) can be interchanged on the
same machine if they are implemented to an equivalent service interface(s).

Figure 9-4 illustrates how STREAMS can migrate functions between kernel
software and front end finnware. A common downstream service interface
allows the transport protocol module to be independent of the number or type of
modules below. The same transport module will connect without modification to
either an X.25 module or X.25 driver that has the same service interface.

By shifting functions between software and firmware, developers can produce
cost effective, functionally equivalent systems over a wide range of
configurations. They can rapidly incorporate technological advances. The same
transport protocol module can be used on a lower capacity machine, where
economics may preclude the use of front-end hardware, and also on a larger scale
system where a front-end is economically justified.

~~sun
• microsystems

Revision A, of 9 May 1988

Module Reusability

Figure 9-4 Protocol Migration

Class 1
Transport
Protocol

,
------- -------,

X.25
Packet Layer

Protocol

I \
LAPB

-I Driver ~

\ I

Chapter 9 - Introduction to STREAMS 167

SAME
MODULES

CONS

Interface

KERNEL
------------1

I

Class 1
Transport
Protocol

,

\

f----

X.25
Packet Layer

Driver HARDWARE \ J
'----------'

Figure 9-5 shows the same canonical module (for example, one that provides
delete and kill processing on character strings) reused in two different Streams.
This module would typically be implemented as a filter, with no downstream ser
vice interface. In both cases, a TTY interface is presented to the Stream's user
process since the module is nearest the Stream head.

~\sun ~~ microsystems
Revision A, of 9 May 1988

168 Writing STREAMS Device Drivers

Figure 9-5 Module Reusability

9.3. An Advanced View of
a Stream

User
Process

- - - -- - - - --
~

~

Canonical
Module

I'

~

Class 1
Transport
Protocol

~

v
X.25

Packet Layer
Protocol

,
LAPB
Driver

\ J

SAME
INTERFACE

SAME
MODULE

User
Process

- - - -- r-----
~

\~

Canonical
Module

~

Raw
TTY

Driver

The STREAMS mechanism constructs a Stream by serially connecting kernel
resident STREAM$ components, each constructed from a specific set of struc
tures. As described earlier and shown in Figure 9-6, the primary STREAMS
components are the Stream head, optional module(s), and Stream end.

~\sun
• microsystems

Revision A, of 9 May 1988

Figure 9-6

Stream Head

Modules

Chapter 9 - Introduction to STREAMS 169

Stream In More Detail

Module

B

Module

A

KemelSpace

~ ~ 13 ~=~e
: QUEUE QUEUE : . .
: "Ad" "Au" : . .

.--------~-.... :.
Message

"Ad"

Module

External

Interface

Stream

End

The Stream head provides the interface between the Stream and an application
program. The Stream head processes STREAMS-related system calls from the
application and performs the bidirectional transfer of data and information
between the application (in user space) and messages (in STREAMS' kernel
space).

Messages are the only means of transferring data and communicating within a
Stream. A STREAMS message contains data, status/control information, or a
combination of the two. Each message includes a specified message type indica
tor that identifies the contents.

A module performs intermediate transformations on messages passing between
Stream head and driver. There may be zero or more modules in a Stream (zero
when the driver performs all the required character and device processing).

Each module is constructed from a pair of QUEUE structures (see Au! Ad and
BulBd in Figure 9-6). A pair is required to implement the bidirectional and sym
metrical attributes of a Stream. One QUEUE performs functions on messages

Revision A, of 9 May 1988

170 Writing STREAMS Device Drivers

Stream End

passing upstream through the module (Au and Bu in Figure 9-6). The other set
(Ad and Bd) perfonns another set of functions on downstream messages. (A
QUEUE, which is part of a module, is different from a message queue, which is
described later.)

Each of the two QUEUEs in a module will generally have distinct functions, that
is, unrelated processing procedures and data. The QUEUEs operate indepen
dently so that Au will not know if a message passes through Ad unless Ad is pro
grammed to infonn it. Messages and data can be shared only if the developer
specifically programs the module functions to perfonn the sharing.

Each QUEUE can directly access the adjacent QUEUE in the direction of mes
sage flow (for example, Au to Bu or Stream head to Bd). In addition, within a
module, a QUEUE can readily locate its mate and access its messages (for exam
ple, for echoing) and data.

Each QUEUE in a module may contain or point to messages, processing pro
cedures, or data:

o Messages - These are dynamically attached to the QUEUE on a linked list
("message queue", see Au and Bd in Figure 9-6) as they pass through the
module.

o Processing procedures - A put procedure, to process messages, must be
incorporated in each QUEUE. An optional service procedure, to share the
message processing with the put procedure, can also be incorporated.
According to their function, the procedures can send messages upstream
and/or downstream, and they can also modify the private data in their
module.

o Data - Developers may provide private data if required by the QUEUE to
perfonn message processing (for example, state infonnation and translation
tables).

In general, each of the two QUEUEs in a module has a distinct set of all of these
elements. Additional module elements will be described later. Although dep
icted as distinct from modules (see Figure 9-6), a Stream head and the Stream
end also contain a pair of QUEUEs.

A Stream end is a module in which the module's processing procedures are the
driver routines. The procedures in the Stream end are different from those in
other modules because they are accessible from an external device and because
the STREAMS mechanism allows multiple Streams to be connected to the same
driver.

The driver can be a device driver, providing an interface between kernel space
and an external communications device, or an internal pseudo-device driver. A
pseudo-device driver is not directly related to any external device, and it per
fonns functions internal to the kernel. The multiplexing driver discussed in the
Other Facilities chapter is a pseudo-device driver.

Device drivers must transform all data and status/control infonnation between
STREAMS message formats and their external representation. Differences

Revision A, of 9 May 1988

9.4. Building ~ Stream

Figure 9-7

Chapter 9 - Introduction to STREAMS 171

between STREAMS and character device drivers are discussed in the Driver
Design Comparisons chapter.

A Stream is created on the first open (2) system call to a character special file
corresponding to a STREAMS driver. A STREAMS device is distinguished
from other character devices by a field contained in the associated cdevsw dev
ice table entry.

A Stream is usually built in two steps. Step one creates a minimal Stream con
sisting of just the Stream head and device driver, and step two adds modules to
produce an expanded Stream (see Figure 9-7). The first step has three parts:
head and driver structures are allocated and initialized; the modules in the head
and end are linked to each other to form a Stream; the driver open routine is
called.

Setting Up a Stream

Minimal
STREAM

-------:-------
ST~AM

HEAD

\

I QUEUP pair I
rawTIY

device driver

Expanded
STREAM

STREAM
HEAD

CANONPROC
module

raw TTY
device driver

If the driver performs all character and device processing required, no modules
need be added to a Stream. Examples of STREAMS drivers include a raw tty
driver (one that passes along input characters without change) and a driver with
multiple Streams open to it (corresponding to multiple minor devices opened to a
character device driver).

When the driver receives characters from the device, it places them into mes
sages. The messages are then transferred to the next Stream component, the
Stream head, which extracts the contents of the message and copies them to user
space. Similar processing occurs for downstream character output; the Stream
head copies data from user space into messages and sends them to the driver.

Revision A, of 9 May 1988

172 Writing STREAMS Device Drivers

Expanded Streams

Subsequent use of the word
"module" will refer to those push
able modules between Stream head
and end.

Pushable Modules

As the second step in building a Stream, modules can be added to the Stream. In
the right-hand Stream in Figure 9-7, the CANONPROC module was added to
provide additional processing on the characters sent between head and driver.

Modules are added and removed from a Stream in last-in-first-out (LIFO) order.
They are inserted and deleted at the Stream head via the ioctl (2) system call.
In the Stream on the left of Figure 9-5, the X.25 module was the first added to the
Stream, followed by Class 1 Transport and Canonical modules. To replace the
Class 1 module with a Class 0 module, the Canonical module would have to be
removed first, then the Class 1 module, then a Class 0 module would be added
and the Canonical module put back.

Because adding and removing modules resembles stack operations, the add is
called a push and the remove a pop. Push and pop are two of the ioctl ()
functions included in the STREAMS subset of ioctl () system calls. These
commands perform various manipulations and operations on Streams. The
modules manipulated in this manner are called pushable modules, in contrast to
the modules contained in the Stream head and end. This stack terminology
applies only to the setup, modification, and breakdown of a Stream.

The Stream head processes the ioctl () and executes the push, which is analo
gous to opening the Stream driver. Modules are referenced by a unique symbolic
name, contained in the STREAMS fmodsw module table (similar to the
cdevsw table associated with a device file). The module table and module
name are internal to STREAMS and are accessible from user space only through
STREAMS ioctl () system calls. The fmodsw table points to the module
template in the kernel. When a module is pushed, the template is located, the
module structures for both QUEUEs are allocated, and the template values are
copied into the structures.

In addition to the module elements described in A Basic View of a Stream, each
module contains pointers to an open routine and a close routine. The open is
called when the module is pushed, and the close is called when the module is
popped. Module open and close procedures are similar to a driver open and
close.

As in other files, a STREAMS file is closed when the last process open to it
closes the file by a close (2) system call. This system call causes the Stream
to be dismantled (modules popped and the driver close executed).

Modules are pushed onto a Stream to provide special functions and/or additional
protocol layers. In Figure 9-7, the Stream on the left is opened in a minimal
configuration with a raw tty driver and no other module added. The driver
receives one character at a time from the device, places the character in a mes
sage, and sends the message upstream. The Stream head receives the message,
extracts the single character, and copies it into the reading process buffer to send
to the user process in response to a read (2) system call. When the user pro
cess wants to send characters back to the driver, it issues a wr it e (2) system
call, and the characters are sent to the Stream head. The head copies the charac
ters into one or more multi -character messages and sends them downstream. An
application program requiring no further kernel character processing would use

Revision A, of 9 May 1988

9.5. Basic User Level
Functions

STREAMS System Calls

Chapter 9 - Introduction to STREAMS 173

this minimal Stream.

A user requiring a more terminal-like interface would need to insert a module to
perform functions such as echoing, character-erase, and line-kill. Assuming that
the CANONPROC module in Figure 9-7 fulfills this need, the application pro
gram first opens a raw tty Stream. Then, the CANONPROC module is pushed
above the driver to create a Stream of the form shown on the right of the figure.
The driver is not aware that a module has been placed above it and therefore con
tinues to send single character messages upstream. The module receives single
character messages from the driver, processes the characters, and accumulates
them into line strings. Each line is placed into a message and sent to the Stream
head. The head now finds more than one character in the messages it receives
from downstream.

Stream head implementation accommodates this change in format automatically
and transfers the multiple-character data into user space. The Stream head also
keeps track of messages partially transferred into user space (for example, when
the current user read () buffer can only hold part of the current message).
Downstream operation is not affected: the head sends, and the driver receives,
multiple character messages.

Note that the Stream head provides the interface between the Stream and user
process. Modules and drivers do not have to implement user interface functions
other than open and close.

After a Stream has been opened, STREAMS-related system calls allow a user
process to insert and delete (push and pop) modules. That process can then com
municate with and control the operation of the Stream head, modules, and
drivers, and can send and receive messages containing data and control informa
tion. This chapter presents an example of some of the basic functions available
to STREAMS-based applications via the system calls. Additional functions are
described at the end of this chapter and in the Other Facilities chapter.

The full set of STREAMS-related system calls is:

open ()
Open a Stream

close ()
Close a Stream

read ()
Read data from a Stream

write ()
Write data to a Stream

ioctl ()
Control a Stream

~\sun ~ microsystems
Revision A, of 9 May 1988

174 Writing STREAMS Device Drivers

An Asynchronous Protocol
Stream Example

qetmsq ()
Receive the message at Stream head

putmsq()
Send a message downstream

po11 ()
Notify the application program when selected events occur on a Stream

The following two-part example describes a Stream that controls the data com
munication characteristics of a connection between an asynchronous terminal and
a tty port. It illustrates basic user level STREAMS features, then shows how
messages can be used. The Kernel Level Functions chapter discusses the kernel
Stream operations corresponding to the user operations described in this intro
duction.

In the example, our computer supports different kinds of asynchronous terminals,
each logging in on its own port. The port hardware is limited in function; for
example, it detects and reports line and modem status, but does not check parity.

Communications software support for these terminals is provided via a
STREAMS implemented asynchronous protocol. The protocol includes a variety
of options that are set when a terminal operator dials in to log on. The options
are determined by a get ty-type STREAMS user process, getstrm () , which
analyzes data sent to it through a series of dialogs (prompts and responses)
between the process and terminal operator.

The process sets the terminal options for the duration of the connection by push
ing modules onto the Stream or by sending control messages to cause changes in
modules (or in the device driver) already on the Stream. The options supported
include:

o ASCII or EBCDIC character codes

o For ASCII code, the parity (odd, even or none)

o Echo or not echo input characters

o Canonical input and output processing or transparent (raw) character han
dling

These options are set with the following modules:

CHARPROC
Provides input character processing functions, including dynamically sett
able (via control messages passed to the module) character echo and parity
checking. The module's default settings are to echo characters and not
check character parity.

CANONPROC

Performs canonical processing on ASCII characters upstrea~ and down
stream (note that this performs some processing in a different manner from
the standard UNIX character I/O tty subsystem) .

• ~sun ~ microsystems
Revision A, of 9 May 1988

Initializing the Stream

Figure 9-8

Chapter 9 - Introduction to STREAMS 175

ASCEBC
Translates EBCDIC code to ASCII upstream and ASCII to EBCDIC down
stream.

At system initialization a user process, getstrm () , is created for each tty port.
getstrm () opens a Stream to its port and pushes the CHARPROC module onto
the Stream by use of an ioctl () I_PUSH command. Then, the process issues
a getmsg () system call to the Stream and sleeps until a message reaches the
Stream head. The Stream is now in its idle state.

The initial idle Stream, shown in Figure 9-8, contains only one pushable module,
CHARPROC. The device driver is a limited function raw tty driver connected to a
limited-function communication port. The driver and port transparently transmit
and receive one unbuffered character at a time.

Idle Stream Configuration/or Example

~ __ -=c __
S~AM

HEAD

CHAR?ROC
module

rawTIY
device driver

Upon receipt of initial input from a tty port, getstrm () establishes a connec
tion with the terminal, analyzes the option requests, verifies them, and issues
STREAMS system calls to set the options. After setting up the options,
getstrm () creates a user application process. Later, when the user terminates
that application, get s t rm () restores the Stream to its idle state by use of sys
tem calls.

The next step is to analyze in more detail how talJe Stream sets up the communi
cations options. Before doing so, let's examine how messages are handled in
STREAMS.

Revision A, of9 May 1988

176 Writing STREAMS Device Drivers

Message Types

Sending and Receiving
Messages

All STREAMS messages are assigned message types to indicate their intended
use by modules and drivers and to determine their handling by the Stream head.
A driver or module can assign most types to a message it generates, and a
module can modify a message's type during processing. The Stream head will
convert certain system calls to specified message types and send them down
stream, and it will respond to other calls by copying the contents of certain mes
sage types that were sent upstream. Messages exist only in the kernel, so a user
process can only send and receive buffers. The process is not explicitly aware of
the message type, but it may be aware of message boundaries, depending on the
system call used (see the distinction between getmsg () and read () in the
next section).

Most message types are internal to STREAMS and can only be passed from one
STREAMS module to another. A few message types, including M _DATA,
M_PROTO, and M_PCPROTO, can also be passed between a Stream and user
processes. M_DATA messages carty data within a Stream and between a Stream
and a user process. M _PROTO or M _ P CPROTO messages carry both data and
control information. However, the distinction between control information and
data is generally determined by the developer when implementing a particular
Stream. Control information includes service interface information, carried
between two Stream entities that present service interfaces, and condition or
status information, which may be sent between any two Stream entities regard
less of their interface. An M _ PCPROTO message has the same general use as an
M _PROTO, but the former moves faster through a Stream (see Message Queue
Priority in the Other F acUities chapter).

putmsg () is a STREAMS-related system call that sends messages; it is similar
to write (). putmsg () provides a data buffer which is converted into an
M_DATA message, and can also provide a separate control buffer to be placed
into anM_PROTO orM_PCPROTO block. write () provides byte-stream data
to be converted into M_DATA messages.

getmsg () is a STREAMS-related system call that accepts messages; it is simi
lar to read (). One difference between the two calls is that read () accepts
only data (messages sent upstream to the Stream head as message type M_DATA),
such as the characters entered from the terminal. getmsg () can simultaneously
accept both data and control information (message sent upstream as types
M_PROTO orM_PCPROTO). getmsg () also differs from read () in that it
preserves message boundaries so that the same boundaries exist above and below
the Stream head (that is, between a user process and a Stream). re ad () gen
erally ignores message boundaries, processing data as a byte stream.

Certain STREAMS ioctl () commands, such as I_STR, also cause messages
to be sent or received on the Stream. 1_ STR provides the general "ioctl" capa
bility of the character 110 subsystem. A user process above the Stream head can
issue putmsg (), getmsg () ,the I_STR ioctl () command, and certain
other STREAMS related system calls. Other STREAMS ioctl' s perform
functions that include changing the state of the Stream head, pushing and pop
ping modules, or returning special information.

Revision A, of9 May 1988

Using Messages in the Example

Chapter 9 - Introduction to STREAMS 177

In addition to message types that explicitly transfer data to a process, some mes
sages sent upstream result in information transfer. When these messages reach
the Stream head, they are transformed into various forms and sent to the user pro
cess. The forms include signals, error codes, and call return values.

Returning to the asynchronous protocol example, the Stream was in its idle
configuration (see Figure 9-8). getstrm () had issued a getmsg () and was
sleeping until the arrival of a message from the Stream head. Such a message
would result from the driver detecting activity on the associated tty port.

An incoming call arrives at port one and causes a ring detect signal in the
modem. The driver receives the ring signal, answers the call, and sends upstream
an M _PROTO message containing information indicating an incoming call.
getstrm () is notified of all incoming calls, although it can choose to refuse
the call because of system limits. In this idle state, get st rm () will also accept
M _PROTO messages indicating, for example, error conditions such as detection
of line or modem problems on the idle line.

The M _PROTO message containing notification of the incoming call flows
upstream from the driver into CHARPROC. CHARPROC inspects the message
type, determines that message processing is not required, and passes the
unmodified message upstream to the Stream head. The Stream head copies the
message into the getmsg () buffers (one buffer for control information, the
other for data) associated with getstrm () and wakes up the process.
getstrm () sends its acceptance of the incoming call with a putmsg () sys
tem call which results in a downstream M_PROTO message to the driver.

Then, getstrm () sends a prompt to the operator with a wri te () and issues a
getmsg () to receive the response. A read () could have been used to receive
the response, but the getmsg () call allows concurrent monitoring for control
(M _PROTO and M _PCP ROTO) information. ge t s t rm () will now sleep until
the response characters, or information regarding possible error conditions
detected by modules or driver, are sent upstream.

The first response, sent upstream in a M_DATA block, indicates that the code set
is ASCII and that canonical processing is requested. get strm () implements
these options by pushing CANONPROC onto the Stream, above CHARPROC, to
perform canonical processing on the input ASCII characters.

The response to the next prompt requests even parity checking. get strm ()
sends an ioctl () I_STR command to CHARPROC, requesting the module to
perform even parity checking on upstream characters. When the dialog indicate
protocol option setting is complete, getstrm () creates an application process.
At the end of the connection, get s t rm () will pop CANONP ROC and then send
a 1_ STR to CHARPROC requesting the module to restore the no-parity idle state
(CHARPROC remains on the Stream).

As a result of the above dialogs, the terminal at port one operates in the following
configuration:

o ASCII, even parity

Revision A, of9 May 1988

178 Writing STREAMS Device Drivers

o Echo

o Canonical processing

In similar fashion, an operator at a different type of tenninal on port two requests
a different set of options, resulting in the following configuration:

o EBCDIC

o No Echo

o Canonical processing

The resultant Streams for the two ports are shown in Figure 9-9. For port one, on
the left, the modules in the Stream are CANONPROC and CHARPROC.

For port two, on the right, the resultant modules are CANONPROC, ASCEBC and
CHARPROC. ASCEBC has been pushed on this Stream to translate between the
ASCII interface at the downstream side of CANONPROC and the EBCDIC inter
face of the upstream output side of CHARPROC. In addition, getstrrn () has
sent an I_STR to the CHARPROC module in this Stream requesting it to disable
echo. The resultant modification to CHARPROC' s functions is indicated by the
word "modified" in the right Stream of Figure 9-9.

Revision A, of9 May 1988

Chapter 9 - Introduction to STREAMS 179

Figure 9-9 Asynchronous Terminal Streams

User
Process

STR~AM
HEAD

CANO&PROC

CHARPROC

PORT
1

RAW TTY
DRIVER

User
Process

ST~AM
HEAD

CANO&PROC

ASCEBC

CHAR?ROC
(mod!fied)

PORT
2

User Space
Kernel Space -

Since CHARPROC is now perfonning no function for port two, it might have
been popped from the Stream to be reinserted by getstrm () at the end of con
nection. However, the low overhead of STREAMS does not require its removal.
The module remains on the Stream, passing messages unmodified between
ASCEBC and the driver. At the end of the connection, getstrm () restores this
Stream to its idle configuration of Figure 9-8 by popping the added modules and
then sending an I _ STR to CHARPROC to restore the echo default.

Note that the tty driver shown in Figure 9-9 handles minor devices. Each minor
device has a distinct Stream connected from user space to the driver. This ability
to handle multiple devices is a standard STREAMS feature, similar to the minor
device mechanism in character I/O device drivers.

Revision A. of 9 May 1988

180 Writing STREAMS Device Drivers

Other User Functions

9.6. Kernel Level
Functions

Messages

The previous example illustrates basic STREAMS concepts. Alternate, more
efficient, STREAMS calls or mechanisms could have been used in place of those
described earlier. (Some of the alternatives are described in the Other Facilities
chapter. For details, see following chapters and the SunOS Reference Manual.

For example, the initialization process that created a get strm {) for each tty
port could have been implemented as a "supergetty" by use of the STREAMS
related poll {} system call. As described in the Other Facilities chapter,
poll {} allows a single process to efficiently monitor and control multiple
Streams. The "supergetty" process would handle all of the Stream and terminal
protocol initialization and would create application processes only for established
connections.

The M_PROTO notification sent to getstrm () could have been sent by the
dri ver as an M _ S I G message that causes a specified signal to be sent to the pro
cess. As discussed previously under Message Types, error and status information
can also be sent upstream from a driver or module to user processes via different
message types. These messages will be transformed by the Stream head into a
signal or error code.

Finally, an ioctl I_STR command could have been used in place of a
putmsg M _PROTO message to send information to a driver. The sending pro
cess must receive an explicit response from an 1_ S TR by a specified time period
or an error will be returned. A response message must be sent upstream by the
destination module or driver to be translated into the user response by the Stream
head.

This chapter introduces the use of the STREAMS mechanism in the kernel and
describes some of the tools provided by STREAMS to assist in the development
of modules and drivers. In addition to the basic message passing mechanism and
QUEUE Stream linkage described previously, the STREAMS mechanism consists
of various facilities including buffer management, the STREAMS scheduler, pro
cessing and message priority, flow control, and multiplexing. Over 30
STREAMS utility routines and macros are available to manipulate and utilize
these facilities.

The key elements of a STREAMS kernel implementation are the processing rou
tines in the module and drivers, and the preparation of required data structures.
The structures are described in the STREAMS section of Writing Device Drivers.
The following sections provide further information on messages and on the pro
cessing routines that operate on them. The example of the previous chapter is
continued, associating the user-level operations described there with kernel
operations.

As shown in Figure 9-10, a STREAMS message consists of one or more linked
message blocks. That is, the first message block of a message may be attached to
other message blocks that are part of the same message. Multiple blocks in a
message can occur, for example, as the result of processing that adds header or
trailer data to the data contained in the message, or because of message buffer
size limitations which cause the data to span multi pIe blocks. When a message is
composed of multiple message blocks, the message type of the first block

.\sun
• microsystems

Revision A, of 9 May 1988

Figure 9-10

Chapter 9 - Introduction to STREAMS 181

detennines the type of the entire message, regardless of the types of the attached
message blocks.

A Message

Message
Block
(type)

,

Message
Block

Message
Block

I

I

V

STREAMS allocates a message as a single block containing a buffer of a certain
size (see the next section). If the data for a message exceed the size of the buffer
containing the data, the procedure can allocate a new block containing a larger
buffer, copy the current data to it, insert the new data and de-allocate the old
block. Alternately, the procedure can allocate an additional (smaller) block,
place the new data in the new message block and link it after or before the initial
message block. Both alternatives yield one new message.

Messages can exist standalone, as shown in Figure 9-10 when the message is
being processed by a procedure. Alternately, a message can await processing on
a linked list of messages, called a message queue, in a QUE UE. In Figure 9-11,
Message 1 is linked to Message 2.

Revision A, of 9 May 1988

182 Writing STREAMS Device Drivers

Figure 9-11

Message Allocation

Messages on a Message Queue

I
I
I

queue I

header <- - - r-;;>

Message
Block
(type)

!
Message

Block

!
Message

Block

I

Message
1

next
message

Message

I Block
(type)

!
Message

Block

*

Message
2

next
- - - - - - - - - - -> i<" message

When a message is on a queue, the first block of the message contains links to
preceding and succeeding messages on the same message queue, in addition to
containing a link to the second block of the message (if present). The message
queue head and tail are contained in the QUEUE.

STREAMS utility routines enable developers to manipulate messages and mes
sage queues.

STREAMS maintains its own storage pool for messages. A procedure can
request the allocation of a message of a specified size at one of three message
pool priorities. The allocb () utility will return a message containing a single
block with a buffer of at least the size requested, providing there is a buffer avail
able at the priority requested. When requesting priority for messages, developers
must weigh their process' need for resources against the needs of other processes
on the same machine.

Message pool priority generally has no effect on allocation until the pool falls
below internal STREAMS thresholds. When this occurs, allocb () may refuse
a lower priority request for a message of size "x" while granting a higher priority
request for the same size message. As examples of priority usage, storage for an
urgent control message, such as an M_ HANG UP or M _ PCPROTO could be
requested at high priority. An M_DATA buffer for holding input might be
requested at medium priority, and an output buffer (presuming the output data
can wait in user space) at lowest priority.

Revision A, of 9 May 1988

Put and Service Procedures

Put Procedures

Service Procedures

Chapter 9 - Introduction to STREAMS 183

The procedures in the QUEUE are the software routines that process messages as
they transit the QUEUE. The processing is generally performed according to the
message type and can result in a modified message, new message(s) or no mes
sage. A resultant message is generally sent in the same direction in which it was
received by the QUEUE, but may be sent in either direction. A QUEUE will
always contain a put procedure and may also contain an associated service pro
cedure.

A put procedure is the QUEUE routine that receives messages from the preceding
QUEUE in the Stream. Messages are passed between QUEUEs by a procedure in
one QUEUE calling the put procedure contained in the following QUEUE. A call
to the put procedure in the appropriate direction is generally the only way to pass
messages between modules (unless otherwise indicated, "modules" infers
"module, driver and Stream head"). QUEUEs in pushable (see Building a
Stream) modules contain a put procedure. In general, there is a separate put pro
cedure for the read and write QUEUEs in a module because of the "full duplex"
operation of most Streams.

A put procedure is associated with immediate (as opposed to deferred, see below)
processing on a message. Each module accesses the adjacent put procedure as a
subroutine. For example, consider that modA, modB, and mode are three con
secutive modules in a Stream, with mode connected to the Stream head. If modA
receives a message to be sent upstream, modA processes that message and calls
modB's put procedure, which processes it and calls mode's put procedure, which
processes it and calls the Stream head's put procedure. Thus, the message will
be passed along the Stream in one continuous processing sequence. On one
hand, this sequence has the benefit of completing the entire processing in a short
time with low overhead (subroutine calls). On the other hand, if this sequence is
lengthy and the processing is implemented on a multi-user system, then this
manner of processing may be good for this Stream but may be detrimental for
others since they may have to wait "too long" to get their turn at bat.

In addition, there are situations where the put procedure cannot immediately pro
cess the message but must hold it until processing is allowed. The most typical
examples of this are a driver which must wait until the current output completes
before sending the next message and the Stream head, which may have to wait
until a process initiates a read (2) on the Stream.

STREAMS allows a service procedure to be contained in each QUEUE, in addi
tion to the put procedure, to address the above cases and for additional purposes.
A service procedure is not required in a QUEUE and is associated with deferred
processing. If a QUEUE has both a put and service procedure, message process
ing will generally be divided between the procedures. The put procedure is
always called first, from a preceding QUEUE. After the put procedure completes
its part of the message processing, it arranges for the service procedure to be
called by passing the message to the putq () routine. putq () .does two things:
it places the message on the message queue of the QUEUE (see Figure 9-11) and
links the QUEUE to the end of the STREAMS scheduling queue. When putq ()
returns to the put procedure, the procedure typically exits. Some time later, the
service procedure will be automatically called by the STREAMS scheduler.

Revision A, of 9 May 1988

184 Writing STREAMS Device Drivers

The STREAMS scheduler is separate and distinct from the SunOS system pro
cess scheduler. It is concerned only with QUEUEs linked on the STREAMS
scheduling queue. The scheduler calls the service procedure of the scheduled
QUEUE in a FIFO manner, one at a time.

Having both a put and service procedure in a QUEUE enables STREAMS to pro
vide the rapid response and the queuing required in multi-user systems. The put
procedure allows rapid response to certain data and events, such as software
echoing of input characters. Put procedures effectively have higher priority than
any scheduled service procedures. When called from the preceding STREAMS
component, a put procedure executes before the scheduled service procedures of
any QUEUE are executed.

The service procedure implies message queuing. Queuing results in deferred
processing of the service procedure, following all other QUEUEs currently on the
scheduling queue. For example, terminal output and input erase and kill process
ing would typically be performed in a service procedure because this type of pro
cessing does not have to be as timely as echoing. Use of a service procedure also
allows processing time to be more evenly spread among multiple Streams. As
with the put procedure there will generally be a separate service procedure for
each QUEUE in a module. The flow control mechanism (see the Other Facilities
-chapter) uses the service procedures.

Kernel Processing The following continues the example of the previous chapter, describing
STREAMS kernel operations and associating them, where relevant, with the
user-level system calls already discussed. As a result of initializing operations
and pushing a module, the Stream for port one has the following configuration:

Figure 9-12 Operational Stream for Example

write I
CANONPROC

m04ule

raw TTY
device driver

As shown in Figure 9-12 the upstream QUEUE is also referred to as the read
QUEUE, reflecting the message flow in response to a read () system call.
Correspondingly, downstream is referred to as the write QUEUE. Read side pro
cessing is discussed first .

• \sun ~ microsystems
Revision A, of9 May 1988

Read Side Processing

Driver Processing

CHARPROC

Figure 9-13

Chapter 9 - Introduction to STREAMS 185

In our example, read side processing consists of driver processing, CHARPROC
processing, and CANONPROC processing.

In the example, the user process has blocked on the getmsg (2) system call
while waiting for a message to reach the Stream head, and the device driver
independently waits for input of a character from the port hardware or for a mes
sage from upstream. Upon receipt of an input character interrupt from the port,
the driver places the associated character in an M _DATA message, allocated pre
viously. Then, the driver sends the message to the CHARPROC module by cal
ling CHARPROC's upstream put procedure. On return from CHARPROC, the
driver calls the allocb () utility routine to get another message for the next
character.

CHARPROC has both put and service procedures on its read side. In the example,
the other QUEUEs in the modules also have put and service procedures:

Module Put and Service Procedures

write read

... · . · .
CANONPROC: (Pl;lt) (service)

Ii Module

\!
(service) (put)

CHARPROC: (service)
Ii Module

\!.
(servIce) (put)

·

When the driver calls CHARPROC's read QUEUE put procedure, the procedure
checks private data flags in the QUEUE. In this case, the flags indicate that echo
ing is to be performed (recall that echoing is optional and that we are working
with port hardware which can not automatically echo). CHARPROC causes the
echo to be transmitted back to the terminal by first making a copy of the message
with a STREAMS utility. Then, CHARPROC uses another utility to obtain the
address of its own write QUEUE. Finally, the CHARPROC read put procedure
calls its write put procedure and passes it the message copy. The write procedure
sends the message to the driver to effect the echo and then retum~ to the read pro
cedure.

This part of read side processing is implemented with put procedures so that the
entire processing sequence occurs as an extension of the driver input character

Revision A. of 9 May 1988

186 Writing STREAMS Device Drivers

CANONPROC

Write Side Processing

interrupt. The CHARPROC read and write put procedures appear as subroutines
(nested in the case of the write procedure) to the driver. This manner of process
ing is intended to produce the character echo in a minimal time frame.

After returning from echo processing, the CHARPROC read put procedure checks
another of its private data flags and determines that parity checking should be
performed on the input character. Parity should most reasonably be checked as
part of echo processing. However, for this example, parity is checked only when
the characters are sent upstream. This relaxes the timing in which the checking
must occur, that is, it can be deferred along with the canonical processing.
CHARPROC uses putq () to schedule the (original) message for parity check
processing by its read service procedure. When the CHARPROC read service pro
cedure is complete, it fOlWards the message to the read put procedure of
CANONPROC. Note that if parity checking were not required, the CHARPROC
put procedure would call the CANONPROC put procedure directly.

CANONPROC performs canonical processing. As implemented, all read QUEUE

processing is performed in its service procedure so that CANONPROC's put pro
cedure simply calls putq () to schedule the message for its read service pro
cedure and then exits. The service procedure extracts the character from the mes
sage buffer and place it in the "line buffer" contained in another M_DATA mes
sage it is constructing. Then, the message which contained the single character is
returned to the buffer pool. If the character received was not an end-of-line,
CANONPROC exits. OthelWise, a complete line has been assembled and
CANONPROC sends the message upstream to the Stream head which unblocks the
user process from the getmsg () call and passes it the contents of the message.

The write side of this Stream carries two kinds of messages from the user pro
cess: ioctl () messages for CHARPROC, and M_DATA messages to be output
to the terminal.

ioctl () messages are sent downstream as a result of an I_STR ioctl sys
tem call. When CHARPROC receives an ioctl () message type, it processes
the message contents to modify internal QUEUE flags and then uses a utility to
send an acknowledgement message upstream (read side) to the Stream head. The
Stream head acts on the acknowledgement message by unblocking the user from
the ioctl () .

For terminal output, it is presumed that M_DATA messages, sent by write ()
system calls, contain multiple characters. In general, STREAMS returns to the
user process immediately after processing the wri te () call so that the process
may send additional messages. Flow control, described in the next chapter, will
eventually block the sending process. The messages can queue on the write side
of the driver because of character transmission timing. When a message is
received by the driver's write put procedure, the procedure will use putq () to
place the message on its write-side service message queue if the driver is
currently transmitting a previous message buffer. However, there is generally no
write QUEUE service procedure in a device driver. Driver output interrupt pro
cessing takes the place of scheduling and performs the service procedure func
tions, removing messages from the queue.

Revision A, of 9 May 1988

Analysis

9.7. Other Facilities

Message Queue Priority

Chapter 9 - Introduction to STREAMS 187

For reasons of efficiency, a module implementation would generally avoid plac
ing one character per message and using separate routines to echo and parity
check each character, as was done in this example. Nevertheless, even this
design yields potential benefits. Consider a case where alternate, more intelligent
port hardware was substituted. If the hardware processed multiple input charac
ters and performed the echo and parity checking functions of CHARPROC, then
the new driver could be implemented to present the same interface as CHAR
PROC. Other modules such as CANONPROC could continue to be used without
modification.

The previous chapters described the basic concepts of constructing a Stream and
utilizing the STREAMS mechanism. Additional STREAMS features are pro
vided to handle characteristic problems of protocol implementation, such as flow
control, and to assist in development.

There are also kernel and user-level facilities that support the implementation of
advanced functions, such as multiplexors, and allow asynchronous operation of a
user process and STREAMS input and output.

As mentioned in the previous chapter, the STREAMS scheduler operates strictly
FIFO so that each QUEUE's service procedure receives control in the order it was
scheduled. When a service procedure receives control, it may encounter multiple
messages on its message queue. This buildup can occur if there is a long interval
between the time a message is queued by a put procedure and the time that the
STREAMS scheduler calls the associated service procedure. In this interval,
there can be multiple calls to the put procedure causing multiple messages. The
service procedure always processes all messages on its message queue unless
prevented by flow control (see next section). Each message must pass through
all the modules connecting its origin and destination in the Stream.

If service procedures were used in all QUEUEs and there was no message priority,
then the most recently scheduled message would be processed after all the other
scheduled messages on all Streams had been processed. In certain cases, mes
sage types containing urgent information (such as a break or alarm conditions)
must pass through the Stream quickly. To accommodate these cases, STREAMS
provides two classes of message queuing priority, ordinary and high. STREAMS
prevents high-priority messages from being blocked by flow control and causes a
service procedure to process them ahead of all ordinary priority messages on the
procedure's queue. This results in the high-priority message transiting each
module with minimal delay.

Revision A. of 9 May 1988

188 Writing STREAMS Device Drivers

Figure 9-14

Flow Control

Flow control is only applied to nor
mal priority messages (see previous
section) and not to high priority
messages.

Streams Message Priority

QUEUE

queue
header

Message queue

.... ·1 I I I I I I I I I I I 1
~----..I : High: Ordinary :

,E Priority :;., E Priority :;.,
" ,

Head Tail

The priority mechanism operates as shown in Figure 9-14. Message queues are
generally not present in a QUEUE unless that QUEUE contains a service pro
cedure. When a message is passed to putq () to schedule the message for ser
vice procedure processing, putq () places the message on the message queue in
priority order. High priority messages are placed ahead of all ordinary priority
messages, but behind any other high priority messages on the queue. STREAMS
utilities deliver the messages to the processing service procedure FIFO within
each priority class. The service procedure is unaware of the message priority and
simply receives the next message.

Message priority is defined by the message type; once a message is created, its
priority cannot be changed. Certain message types come in equivalent
high/ordinary priority pairs (for example, M _ PCPROTO and M _PROTO), so that a
module or device driver can choose between the two priorities when sending
information.

Even on a well-designed system, general system delays, malfunctions, and exces
si ve message accumulation on one or more Streams can cause the message buffer
pools to become depleted. Additionally, processing bursts can arise when a ser
vice procedure in one module has a long message queue and processes all its
messages in one pass. STREAMS provides two independent mechanisms to
guard its message buffer pools from being depleted and to minimize long pro
cessing bursts at anyone module.

The first flow control mechanism is global and automatic. When the Stream head
requests a message buffer in response to a putmsg () or wr i te () system call,
it uses the lowest level of priority. Since buffer availability is based on priority
and buffer pool levels, the Stream head will be among the first modules refused a
buffer when the pool becomes depleted. In response, the Stream head will block
user output until the STREAMS buffer pool recovers. As a result, output has a
lower priority than input.

The second flow control mechanism is local to each Stream and advisory (volun
tary), and limits the number of characters that can be queued for processing at
any QUEUE in a Stream. This mechanism limits the buffers and related

~~sun
• microsystems

Revision A. of 9 May 1988

Figure 9-15

Chapter 9 - Introduction to STREAMS 189

processing at anyone QUEUE and in anyone Stream, but does not consider
buffer pool levels or buffer usage in other Streams.

The advisory mechanism operates between the two nearest QUEUEs in a Stream
containing service procedures (see diagram on next page). Messages are gen
erally held on a message queue only if a service procedure is present in the asso
ciated QUE UE.

Messages accumulate at a QUEUE when its service procedure processing does not
keep pace with the message arrival rate, or when the procedure is blocked from
placing its messages on the following Stream component by the flow control
mechanism. Pushable modules contain independent upstream and downstream
limits, which are set when a developer specifies high-water and low-water control
values for the QUEUE. The Stream head contains a preset upstream limit (which
can be modified by a special message sent from downstream) and a driver may
contain a downstream limit.

Flow control operates as follows:

D Each time a STREAMS message handling routine (for example, putqO)
adds or removes a message from a message queue in a QUEUE, the limits are
checked. STREAMS calculates the total size of all message blocks on the
message queue.

D The total is compared to the QUEUE high-water and low-water values. If the
total exceeds the high-water value, an internal full indicator is set for the
QUEUE. The operation of the service procedure in this QUEUE is not
affected if the indicator is set, and the service procedure continues to be
scheduled.

D The next part of flow control processing occurs in the nearest preceding
QUEUE that contains a service procedure. In the diagram below, if D is full
and C has no service procedure, then B is the nearest preceding QUEUE.

Flow Control

~QU:UE~Q~UE~QU~UE~
i I
I I

V
Message

V
Message

Queue Queue

D The service procedure in B uses a STREAMS utility routine to see if a
QUEUE ahead is marked full. If messages cannot be sent, the scheduler
blocks the service procedure in B from further execution. B remains
blocked until the low-water mark of the full QUEUE, D, is reached.

D While B is blocked, any non-priority messages that arrive at B will accumu
late on its message queue (recall that priority messages are not blocked). In
tum, B can reach a full state and the full condition will propagate back to the
last module in the Stream .

• \sun ~ microsystems
Revision A, of 9 May 1988

190 Writing STREAMS Device Drivers

Multiplexing

o When the service procedure processing on D causes the message block total
to fall below the low water mark, the full indicator is turned off. Then,
STREAMS automatically schedules the nearest preceding blocked QUEUE
(B in this case), getting things moving again. This automatic scheduling is
know as back-enabling a QUEUE.

Note that to utilize flow control, a developer need only call the utility that tests if
a full condition exists ahead, plus perform some housekeeping if it does. Every
thing else is automatically handled by STREAMS.

STREAMS multiplexing supports the development of internetworking protocols
such as IP and ISO CLNS, and the processing of interleaved data streams such as
in SNA, X.25, and terminal window facilities.

STREAMS multiplexors (also called pseudo-device drivers) are created in the
kernel by interconnecting multiple Streams. Conceptually, there are two kinds of
multiplexors that developers can build with STREAMS: upper and lower multi
plexors. Lower multiplexors have multiple lower Streams between device
drivers and the multiplexor, and upper multiplexors have multiple upper Streams
between user processes the multiplexor.

Figure 9-16 Internet Multiplexing Stream

Module

Ethernet
Driver

User
Processes

ftftft

..•.... '1. '1. 'l
Upper

Multiplexor or
Module

IP
Multiplexor

Driver

Module

LAPB
Driver Driver

Figure 9-16 shows an example of a lower multiplexor. This configuration would
typically occur where internetworking functions were included in the system.
This Stream contains two types of drivers: the Ethernet, LAPB, and IEEE 802.2

~\sun ~ microsystems
Revision A, of9 May 1988

Figure 9-17

Chapter 9 - Introduction to STREAMS 191

are hardware device drivers that terminate links to other nodes; the IP (Internet
Protocol) is a multiplexor.

The IP multiplexor switches messages among the various nodes (lower Streams)
or sends them upstream to user processes in the system. In this example, the
multiplexor expects to see an 802.2 interface downstream; for the Ethernet and
LAPB drivers, the Net 1 and Net 2 modules provide service interfaces to the two
the non-802.2 drivers and the IP multiplexor.

Figure 9-16 depicts the IP multi plexor as part of a larger Stream. The Stream, as
shown in the dotted rectangle, would generally have an upper TCP multiplexor
and additional modules. Multiplexors could also be cascaded below the IP driver
if the device drivers were repl(lced by multiplexor drivers.

X.25 Multiplexing Stream

PVC
Processes

SVC
Processes Processes

Ii -.- - - - -

Modules Modules

LAPB Driver
or

Lower Multiplexor

.'

........ \l.

~ Modules
....... :-¥

. '
.'

Figure 9-17 shows an upper multiplexor. In this configuration, the driver routes
messages between the lower Stream and one of the upper Streams. This Stream
performs X.25 multiplexing to multiple independent SVC (Switched Virtual Cir
cuit) and PVC (Permanent Virtual Circuit) user processes. Upper multiplexors
are a specific application of standard STREAMS facilities that support multiple
minor devices in a device driver. This figure also shows that more complex
configurations can be built by having one or more multiplexed LAPB drivers
below and multiple modules above.

Developers can choose either upper or lower multiplexing, or both, when design
ing their applications. For example, a window multiplexor would have a similar

Revision A, of 9 May 1988

192 Writing STREAMS Device Drivers

Monitoring

configuration to the X.25 configuration of Figure 9-16, with a window driver
replacing Packet Layer, a tty driver replacing LAPB, and the child processes of
the terminal process replacing the user processes. Although the X.25 and win
dow multiplexing Streams have similar configurations, their multiplexor drivers
would differ significantly. The IP multiplexor of Figure 9-15 has a different
configuration than the X.25 multiplexor and the driver would implement its own
set of processing and routing requirements.

In addition to upper and lower multiplexors, more complex configurations can be
created by connecting Streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to pro
vide general purpose multiplexor drivers. Rather, STREAMS provides a general
purpose multiplexing facility. The facility allows users to set up the inter
module/driver plumbing to create multiplexor configurations of generally unlim
ited interconnection.

The connections are created from user space through specific STREAMS
ioct I () system calls. In a lower multiplexor, multiple Streams are connected
below an application-specific, developer-implemented multiplexing driver. The
multiplexing facility will only connect Streams to a driver. The ioctl () call
configures a multiplexor by connecting one Stream at a time below the opened
multiplexor driver. As each Stream is connected to the driver, the connection
setup procedure identifies the Stream to the driver. The driver will generally
store this setup infonnation in a private data structure for later use.

Subsequently, when messages flow into the driver on the various connected
Streams, the identity of the associated Stream is passed to the driver as part of the
standard procedure call. The driver then has available the Stream identification,
the previously stored setup information for this Stream, and any internal routing
information contained in the message. These data are used, according to the
application implemented, to process the incoming message and route the output
to the appropriate outgoing Stream.

Additionally, new Streams can be dynamically connected to a operating multi
plexor without interfering with ongoing traffic, and existing Streams can be
disconnected with similar ease.

STREAMS allows user processes to monitor and control Streams so that system
resources (such as CPU cycles and process slots) can be used effectively. Moni
toring is especially useful to user-level multiplexors, in which a user process can
create multiple Streams and switch messages among them (similar to STREAMS
kernel-level multiplexing, described previously).

User processes can efficiently monitor and control multiple Streams with two
STREAMS system calls: poll (2) and the ioctl (2) I_SETSIG command.
These calls allow a user process to detect events that occur at the Stream head on
one or more Streams, including receipt of a data or protocol message on the read
queue and cessation of flow control.

Synchronous monitoring is provided by use of poll () alone; in this case, the
user process cannot continue processing until after the system call completes.
When the calls are used together, they allow asynchronous, or concurrent,

Revision A, of9 May 1988

Error and Trace Logging

Chapter 9 - Introduction to STREAMS 193

operation of the process and STREAMS inputJoutput. This allows the user pro
cess to monitor the Stream while carrying on other activities.

To monitor Streams with po 11 () , a user process issues that system call and
specifies the Streams to be monitored, the events to look for, and the amount of
time to wait for an event. poll () will block the process until the time expires
or until an event occurs. If an event occurs, poll () will return the type of
event and the Stream on which the event occurred.

Instead of waiting for an event to occur, a user process may want to monitor one
or more Streams while processing other data. It can do so by issuing the ioctl
I SETSIG command, specifying one or more Streams and events (as with
polIO). Unlike a poll () , this ioctl () does not force the user process to
wait for the event but returns immediately and will issue a signal when an event
occurs. The process must also request signal (2) or sigset (2) to catch the
resultant SIGPOLL signal.

If any selected event occurs on any of the selected Streams, STREAMS will
cause the SIGPOLL catching function to be executed in all associated requesting
processes. However, the process(es) will not know which event occurred, nor on
what Stream the event occurred. A process that issues the I_SETSIG can get
more detailed information by issuing a poll () after it detects the event.

STREAMS includes error and trace loggers useful for debugging and administer
ing modules and drivers.

Any module or driver in any Stream can call the STREAMS logging function
strlog () ,described in log(4). When called, strlog () will send formatted
text to the error logger strerr(8V), the trace logger strace(8V), or both.
The call parameters for strlog () include the module/driver identification, a
severity level, and the formatted text describing the condition causing the call.
The call also identifies the process (strerr () and/or straceO) to receive the
resultant output message.

Revision A, of 9 May 1988

194 Writing STREAMS Device Drivers

Figure 9-18 Error and Trace Logging

Error
Log File

Strerr

I module ~--

Trace
Log File

Strace

Trace
Messages

Log
Software

Driver

User User

--1 driver

strerr () is intended to operate as a daemon process initiated at system
startup. A call to str log () requesting an error to be logged causes an
M_PROTO message to be sent to strerr (), which fonnats the contents and
places them in a daily file. The utility strclean (8V) is provided to periodi
cally purge aged, unreferenced daily log files.

A call to strlog () requesting trace infonnation to be logged causes a similar
M _PROTO message to be sent to strace (8V) , which places it in a user desig
nated file. strace () is intended to be initiated by a user. The user can desig
nate the modules/drivers and severity level of the messages to be accepted for
logging by strace () .

A user process can submit its own M _PROTO messages to the log driver for
inclusion in the logger of its choice through putmsg (2). The messages must
be in the same format required by the logging processes and will be switched to
the logger(s) requested in the message.

The output to the log files is fonnatted, ASCII text. The files can be processed
by standard system commands such as grep (1) or ed (1) , or by developer
provided routines.

~~ slIn
• microsytltems

Revision A, of9 May 1988

9.8. Driver Design
Comparisons

Environment

Drivers

Chapter 9 - Introduction to STREAMS 195

This chapter compares operational features of character I/O device drivers with
STREAMS drivers and modules. It is intended for experienced developers of
UNIX system character device drivers. Details are provided in the STREAMS
section of Writing Device Drivers.

No user environment is generally available to STREAMS module procedures and
drivers. The exception is the module and driver open and close routines, both of
which have access to the user structure of the calling process and can sleep.
Otherwise, a STREAMS driver, module put procedure, and module service pro
cedure has no user context and can neither sleep nor access any user structure.

Multiple Streams can use a copy of the same module (that is, the same fmodsw),
each containing the same processing procedures. This means that module code is
reentrant, so care must be exercised when using global data in a module. Put and
service procedures are always passed the address of the QUEUE (for example, in
Figure 9-6 Au calls Bu's put procedure with Bu as a parameter). The processing
procedure establishes its environment solely from the QUEUE contents, typically
the private data (for example, state information).

At the interface to hardware devices, character I/O drivers have interrupt entry
points; at the system interface, those same drivers generally have direct entry
points (routines) to process probe () , open () , close () , read () ,
write () and ioctl () system calls.

STREAMS device drivers have similar interrupt entry points at the hardware
device interface and have direct entry points only for open () and close ()
system calls. These entry points are accessed via STREAMS, and the call for
mats differ from character device drivers. The put procedure is a driver's third
entry point, but it is a message (not system) interface. The Stream head
translates wr i te () and ioctl () calls into messages and sends them down
stream to be processed by the driver's write QUEUE put procedure. read () is
seen directly only by the Stream head, which contains the functions required to
process system calls. A driver does not know about system interfaces other than
open {} and close () , but it can detect absence of a read () indirectly if flow
control propagates from the Stream head to the driver and affects the driver's
ability to send messages upstream.

For input processing, when the driver is ready to send data or other information
to a user process, it does not wake up the process. It prepares a message and
sends it to the read QUEUE of the appropriate (minor device) Stream. The
driver's open routine generally stores the QUEUE address corresponding to this
Stream.

For output processing, the driver receives messages in place of a write () call.
If the message can not be sent immediately to the hardware, it may be stored on
the driver's write message queue. Subsequent output interrupts can remove mes
sages from this queue.

Dri vers and modules can pass signals, error codes, and return values to processes
via message types provided for that purpose.

Revision A, of 9 May 1988

196 Writing STREAMS Device Drivers

Modules

9.9. Glossary

Downstream

Driver

Message

Message Queue

Message Type

Module

Multiplexor

As described above, modules have user context available only during the execu
tion of their open and close routines. Otherwise, the QUEUEs forming the
module are not associated with the user process at the end of the Stream, nor with
any other process. Because of this, QUEUE procedures must not sleep when they
cannot proceed; instead, they must explicitly return control to the system. The
system saves no state information for the QUEUE. The QUEUE must store this
information internally if it is to proceed from the same point on a later entry.

When a module or driver that requires private working storage (for example, for
state information) is pushed, the open routine must obtain the storage from exter
nal sources. STREAMS copies the module template from fmodsw for the
I _PUSH, so only fixed data can be contained in the module template.
STREAMS has no automatic mechanism to allocate working storage to a module
when it is opened. The sources for the storage typically include a module
specific kernel array, installed when the system is configured, or the STREAMS
buffer pool. When using an array as a module storage pool, the maximum
number of copies of the module that can exist at anyone time must be deter
mined. For drivers, this is typically determined from the physical devices con
nected, such as the number of ports on a multiplexor. However, certain types of
modules may not be associated with a particular external physical limit. For
example, the CANONICAL module shown in Figure 9-5 could be used on dif
ferent types of Streams.

The direction from Stream head to driver.

The end of the Stream closest to an external interface. The principal functions of
the driver are handling any associated device, and transforming data and infor
mation between the external interface and Stream. It can also be a pseudo-driver,
not directly associated with a device, which performs functions internal to a
Stream, such as a multiplexor or log driver.

One or more linked blocks of data or information, with associated STREAMS
control structures containing a message type. Messages are the only means of
transferring data and communicating within a Stream.

A linked list of messages connected to a QUEUE.

A defined set of values identifying the contents of a message.

Software that performs functions on messages as they flow between Stream head
and driver. A module is the STREAMS counterpart to the commands in a Shell
pipeline except that a module contains a pair of functions which allow indepen
dent bidirectional (downstream and upstream) data flow and processing.

A mechanism for connecting multiple Streams to a multiplexing driver. The
mechanism supports the processing of interleaved data Streams and the process
ing of internetworking protocols. The multiplexing driver routes messages
among the connected Streams. The other end of a Stream connected to a multi
plexing driver is typically connected to a device driver.

Revision A, of 9 May 1988

Chapter 9 - Introduction to STREAMS 197

pushable module A module between the Stream head and driver. A driver is a non-pushable
module and a Stream head includes a non-pushable module.

Q UEU E The set of structures that forms a module. A module is composed of two
QUEUEs, a read (upstream) QUEUE and a write (downstream) QUEUE.

Read Queue The message queue in a module or driver containing messages moving upstream.
Associated with input from a driver.

Stream The kernel aggregate created by connecting STREAMS components, resulting
from an application of the STREAMS mechanism. The primary components are
a Stream head, a driver and zero or more pushable modules between the Stream
head and driver. A Stream forms a full duplex processing and data transfer path
in the kernel, between a user process and a driver. A Stream is analogous to a
Shell pipeline except that data flow and processing are bidirectional.

Stream Head The end of the Stream closest to the user process. The Stream head provides the
interface between the Stream and the user process. The principal functions of the
Stream head are processing STREAMS-related system calls, and bidirectional
transfer of data and information between a user process and messages in
STREAMS' kernel space.

STREAMS A kernel mechanism that supports development of network services and data
communication drivers. It defines interface standards for character input/output
within the kernel, and between the kernel and user level. The STREAMS
mechanism comprises integral functions, utility routines, kernel facilities and a
set of structures.

Upstream The direction from driver to Stream head.

Write Queue The message queue in a module or driver containing messages moving down
stream. Associated with output from a user process .

• \sun ~ microsystems
Revision A, of 9 May 1988

10
STREAMS Applications Programming

STREAMS Applications Programming .. 201

10.1. Introduction .. 201

Streams Overview .. 201

Development Facilities .. 203

10.2. Basic Operations ... 204

A Simple Stream ... 204

Inserting Modules 206

Module and Driver Control ... 207

10.3. Advanced Operations ... 210

Advanced Input/Output Facilities ... 210

Input/Output Polling 210

Asynchronous Input/Output .. 213

Clone Open ... 214

10.4. Multiplexed Streams ... 214

Multiplexor Configurations ... 214

Building a Multiplexor .. 216

Dismantling a Multiplexor .. 221

Routing Data Through a Multiplexor .. 222

10.5. Message Handling .. 223

Service Interface Messages ... 223

Service Interfaces .. 223

The Message Interface ... 224

Datagram Service Interface Example .. 226

Accessing the Datagram Provider .. 228

Closing the Service .. 231

Sending a Datagram ... 231

Receiving a Datagram .. 232

10.1. Introduction

Streams Overview

10
STREAMS Applications Programming

This chapter provides detailed information about the STREAMS mechanism and
system call interface. It includes the following topics.

o The Streams Overview, below, reintroduces the STREAMS mechanism.

o Basic Operations describes the basic operations available for constructing,
using, and dismantling streams. These operations are performed using
open(2), close(2), read(2), write(2), and ioctl(2).

o Advanced Operations presents advanced facilities provided by STREAMS,
including: poll(2), a user level I/O polling facility; asynchronous I/O pro
cessing support; and a method to sample drivers for available resources.

o Multiplexed Streams describes the construction of sophisticated, multiplexed
stream configurations.

o Message Handling describes how users can process STREAMS messages
using putmsg (2) and getmsg (2) in the context of a service interface
example.

The following STREAMS Module and Driver Programming chapter is the com
panion to this chapter-it provides an analogous discussion of system-level
STREAMS. Both chapters assume a working knowledge ofUNIXt system pro
gramming, data communication facilities, and the material covered in the previ
ous Introduction to STREAMS chapter.

This section reviews the STREAMS mechanism, a general, flexible facility and a
set of tools for development of SunOS and UNIX system communication ser
vices. It supports the implementation of services ranging from complete net
working protocol suites to individual device drivers. The STREAMS mechanism
defines standard interfaces for character I/O within the kernel, and between the
kernel and the rest of the system. The associated mechanism is simple and
open-ended. It consists of a set of system calls, kernel resources, and kernel rou
tines.

The standard mechanism enables modular, portable development and easy
integration of higher performance network services and their components.
STREAMS provide a framework; they do not impose any specific network

t UNIX is a registered trademark of AT&T .

• \sun
• microsystems

201 Revision A. of 9 May 1988

202 Writing STREAMS Device Drivers

architecture. The STREAMS user interface is upward compatible with the char
acter I/O user interface, and both user interfaces are available.

A stream is a full-duplex processing and data transfer path between a STREAMS
driver in kernel space and a process in user space (see the figure below). In the
kernel, a stream is constructed by linking a stream head, a driver, and zero or
more modules between the stream head and driver. The stream head is the end of
the stream closest to the user process. Throughout this guide, the word
"STREAMS" refers to the mechanism, and the word stream refers to the data
path between a user and a driver.7

A STREAMS driver may be a device driver that provides the services of an
external I/O device, or a software driver, commonly referred to as a pseudo
device driver, that performs functions internal to a stream. The stream head pro
vides the interface between the stream and user processes. Its principal function
is to process STREAMS-related user system calls.

Data are passed between a driver and the stream head in messages. Messages
that are passed from the stream head toward the driver are said to travel down
stream. Similarly, messages passed in the other direction travel upstream. The
stream head transfers data between the data space of a user process and
STREAMS kernel data space. Data to be sent to a driver from a user process are
packaged into STREAMS messages and passed downstream. When a message
containing data arrives at the stream head from downstream, the message is pro
cessed by the stream head, which copies the data into user buffers.

7 The word' 'stream" is also used by 4.x BSD to refer to a nonseekable data source such as a pipe or socket.
A STREAMS stream need not be restricted in this way .

• sun
" microsystems

Revision A, of 9 May 1988

Chapter 10 - STREAMS Applications Programming 203

Figure 10-1 Basic Stream

Development Facilities

Stream
Head

Module

Driver

External
Interface

User Space
- -Kernel space - -

! downstream

(optional)

t upstream

Within a stream, messages are distinguished by a type indicator. Certain mes
sage types sent upstream may cause the stream head to perform specific actions,
such as sending a signal to a user process. Other message types are intended to

carry information within a stream and are not directly seen by a user process.

One or more kernel-resident modules may be inserted into a stream between the
stream head and driver to perform intermediate processing of data as it passes
between the stream head and driver. STREAMS modules are dynamically inter
connected in a stream by a user process. No kernel programming, assembly, or
link editing is required to create the interconnection.

General and STREAMS-specific system calls provide the user level facilities
required to implement application programs. This system call interface is
upwardly compatible with the character 110 facilities. The open (2) system call
will recognize a STREAMS file and create a stream to the specified driver. A
user process can receive and send data on STREAMS files using read (2) and
wr it e (2) in the same manner as with character files. The io ct 1 (2) system
call enables users to perform functions specific to a particular device and a set of
generic STREAMS ioctl () commands, described by streamio(4), support
a variety of functions for accessing and controlling streams. A close (2) dis
mantles a stream .

• \sun
• microsyslems

Revision A, of9 May 1988

204 Writing STREAMS Device Drivers

10.2. Basic Operations

A Simple Stream

In addition to the generic ioctl () commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The po 11 (2) system call
enables a user to poll multiple streams for various events. The putmsg (2) and
getmsg(2) system calls enable users to send and receive STREAMS messages,
and are suitable for interacting with STREAMS modules and drivers through a
service interface.

STREAMS provide kernel facilities and utilities to support development of
modules and drivers. The stream head handles most system calls so that the
related processing does not have to be incorporated in a module and driver. The
configuration mechanism allows modules and drivers to be incorporat~d into the
system.

Examples are used throughout both parts of this document to highlight the most
important and common capabilities of STREAMS. The descriptions are not
meant to be exhaustive. For simplicity, the examples reference fictional drivers
and modules.

This section describes the basic set of operations for manipulating STREAMS.

A STREAMS driver is similar to a character 110 driver in that it has one or more
nodes associated with it in the file system and it is accessed using the open ()
system call. Typically, each file system node corresponds to a separate minor
device for that driver. Opening different minor devices of a driver will cause
separate streams to be connected between a user process and the driver. The file
descriptor returned by the open () call is used for further access to the stream.
If the same minor device is opened more than once, only one stream will be
created; the first open () call will create the stream, and subsequent open ()
calls will return a file descriptor that references that stream. Each process that
opens the same minor device will share the same stream to the device driver.

Once a device is opened, a user process can send data to the device using the
write () system call and receive data from the device using the read () sys
tem call. Access to STREAMS drivers using read () and wr i te () is compa
tible with the character 110 mechanism.

The close () system call will close a device and dismantle the associated
stream.

The following example shows how a simple stream is used. In the example, the
user program interacts with a generic communications device that provides
point-to-point data transfer between two computers. Data written to the device is
transmitted over the communications line, and data arriving on the line can be
retrieved by reading it from the device.

Revision A, of9 May 1988

Figure 10-2

Chapter 10 - STREAMS Applications Programming 205

finclude <fcntl.h>

main ()
{

char buf[1024];
int fd, count;

if «fd = open("/dev/conunOl", O_RDWR» < 0) {
perror("open failed");
exit(l);

while «count = read(fd, buf, 1024» > 0)
if (write (fd, buf, count) != count) {

perror("write failed");
break;

exit(O);

In the example, / dev / cormnO 1 identifies a minor device of the communications
device driver. When this file is opened, the system recognizes the device as a
STREAMS device and connects a stream to the driver. The figure below shows
the state of the stream following the call to open () .

Stream to Communications Driver

Stream
head

communications
driver

____ ~s:,"-Space

Kernel Space

This example illustrates a user reading data from the communications device and
then writing the input back out to the same device. In short, this program echoes
all input back over the communications line. The example assumes that a user is
sending data from the other side of the communications line. The program reads
up to 1024 bytes at a time, and then writes the number of bytes just read.

The re ad () call returns the available data, which may contain fewer than 1024
bytes. If no data are currently available at the stream head, the read () call
blocks until data arrive.

Revision A, of 9 May 1988

206 Writing STREAMS Device Drivers

Inserting Modules

Similarly, the wr it e () call attempts to send count bytes to / dev / commO 1.
However, STREAMS implements a flow control mechanism that prevents a user
from flooding a device driver with data, thereby exhausting system resources. If
the stream exerts flow control on the user, the wri te () call blocks until the
flow control has been relaxed. The call will not return until it has sent count
bytes to the device. exi t(2) is called to terminate the user process. This system
call also closes all open files, thereby dismantling the stream in this example.

An advantage of STREAMS over the existing character 110 mechanism stems
from the ability to insert various modules into a stream to process and manipulate
data that passes between a user process and the driver. The following example
extends the previous communications device echoing example by inserting a
module in the stream to change the case of certain alphabetic characters. The
case converter module is passed an input string and an output string by the user.
Any incoming data (from the driver) is inspected for instances of characters in
the module's input string and the alphabetic case of all matching characters is
changed. Similar actions are taken for outgoing data using the output string. The
necessary declarations for this program are shown below:

iinclude <string.h>
iinclude <fcntl.h>
iinclude <stropts.h>
/*
* These defines would typically be
* found in a header file for the module
*/
idefine OUTPUT STRING 1
idefine INPUT STRING 2

main ()
{

char buf[1024];
int fd, count;
struct strioctl strioctl;

The first step is to establish a stream to the communications driver and insert the
case converter module. The following sequence of system calls accomplishes
this:

if «fd = open(tf/dev/commOl", O_RDWR)) < 0) {
perror("open failed");
exit(l);

if (ioctl(fd, I_PUSH, "case_converter") < 0) {
perror("ioctl I PUSH failed");
exit(2);

The I_PUSH ioctl () call directs the stream head to insert the case converter
module between the driver and the stream head, creating the stream shown in the

Revision A, of 9 May 1988

Chapter 10 - STREAMS Applications Programming 207

figure below. As with any driver, this module resides in the kernel and must
have been configured into the system before it was booted. I_PUSH is one of
several generic STREAMS i 0 c t 1 () commands that enable a user to access and
control individual streams (see the streamio(4) man page).

Figure 10-3 Case Converter Module

Module and Driver Control

Stream
head

case
converter

communications
driver

___ _ l!.s:r_ Space

Kernel Space

An important difference between STREAMS drivers and modules is illustrated
here. Drivers are accessed through a node or nodes in the file system and may be
opened just like any other device. Modules, on the other hand, do not occupy a
file system node. Instead, they are identified through a separate naming conven
tion, and are inserted into a stream using I_PUSH. The name of a module is
defined by the module developer, and is typically included on the manual page
describing the module (manual pages describing STREAMS drivers and modules
are found in section 7 of the SunOS Reference Manual).

Modules are pushed onto a stream and removed from a stream in Last-In-First
Out (LIFO) order. Therefore, if a second module was pushed onto this stream, it
would be inserted between the stream head and the case converter module.

The next step in this example is to pass the input string and output string to the
case converter module. This can be accomplished by issuing ioctl () calls to
the case converter module as follows:

.~sun ~ microsystems
Revision A, of 9 May 1988

208 Writing STREAMS Device Drivers

/ * Set input conversion string * /
strioctl.ic_cmd = INPUT_STRING;
strioctl.ic_timout = 0;

/ * Command type * /
/* Default = 15 sec * /

strioctl.ic_dp = "ABCDEFGHIJ";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror("ioctl I STR failed");
exit (3) ;

/ * Set output conversion string * /
strioctl.ic_cmd = OUTPUT_STRING; / * Command type * /
strioctl.ic_dp = "abcdefghij";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl (fd, I_STR, &strioctl) < 0) {
perror("ioctl I STR failed");
exit(4);

ioctl () requests are issued to STREAMS drivers and modules indirectly,
using the I_STR ioctl () call (see the streamio(4) man page). The argu
ment to I_STR must be a pointer to a strioctl structure, which specifies the
request to be made to a module or driver. This structure is defined in
<stropts. h> and has the following format:

struct strioctl {
int ic_cmd;
int ic_timout;
int ic_len;
char *ic_dp;

/ * ioetl request * /
/ * ACKINAK timeout * /
/ * Length of data argument * /
/ * Ptr to data argument * /

where ic _ cmd identifies the command intended for a module or driver, ic _ timout
specifies the number of seconds an I_STR request should wait for an ack
nowledgement before timing out, ie_len is the number of bytes of data to accom
pany the request, and ic _ dp points to that data.

1_ STR is intercepted by the stream head, which packages it into a message, using
information contained in the strioctl structure, and sends the message down
stream. The request will be processed by the module or driver closest to the
stream head that understands the command specified by ic _cmd. The ioctl ()
call will block up to ic _ timout seconds, waiting for the target module or driver to
respond with either a positive or negative acknowledgement message. If an ack
nowledgement is not received in ic _timout seconds, the ioctl () call will fail.

I_STR is actually a nested request; the stream head intercepts I_STR and then
sends the driver or module request (as specified in the str ioct"l structure)
downstream. Any module that does not understand the command in ic _ cmd will
pass the message further downstream. Eventually, the request will reach the tar
get module or driver, where it is processed and acknowledged. If no module or

Revision A, of9 May 1988

NOTE

Chapter 10 - STREAMS Applications Programming 209

driver understands the command, a negative acknowledgement will be generated
and the ioctl () call will fail.

In the example, two separate commands are sent to the case converter module.
The first contains the conversion string for input data, and the second contains
the conversion string for output data. The ic _ cmd field is set to indicate whether
the command is setting the input or output conversion string. For each com
mand, the value of ic _timout is set to zero, which specifies the system default
timeout value of 15 seconds. Also, a data argument that contains the conversion
string accompanies each command. The ic _ dp field points to the beginning of
each string, and ic _len is set to the length of the string.

Only one 1_ STR request can be active on a STREAM at one time. Further
requests will block until the active 1_ STR request is acknowledged and the system
call completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR
request. If data are returned by the target module or driver, ic _ dp must point to a
buffer large enough to hold that data, and ic _len will be set on return to indicate
the amount of data returned.

The remainder of this example is identical to the previous example:

while «count = read(fd, buf, 1024) > 0)
if (write (fd, buf, count) ! = count) {

perror("write failed");
break;

exit(O);

The case converter module will convert the specified input characters to lower
case, and the corresponding output characters to upper case. Notice that the case
conversion processing was realized with no change to the communications
driver.

As with the previous example, the exit () system call will dismantle the stream
before terminating the process. The case converter module will be removed from
the stream automatically when it is closed. Alternatively, modules may be
removed from a stream using the I_POP ioctl () call described in
streamio(4). This call removes the topmost module on the stream, and
enables a user process to alter the configuration of a stream dynamically, by
pushing and popping modules as needed.

A few of the important ioctl () requests supported by STREAMS have been
discussed. Several other requests are available to support operations such as
determining if a given module exists on the stream, or flushing the data on a
stream. These requests are described fully in the streamio(4) man page).

Revision A, of9 May 1988

210 Writing STREAMS Device Drivers

10.3. Advanced Operations

Advanced Input/Output
Facilities

Input/Output Polling

This section introduces advanced features provided by STREAMS, such as an
110 polling facility, asynchronous 110 processing support, and a method to sam
ple drivers for available resources.

The traditional input/output open () , facilities- close () , read () ,
write (), and ioctl () -have been discussed, but STREAMS supports new
user capabilities that will be described in the remaining sections of this guide.
This section describes a facility that enables a user process to poll multiple
streams simultaneously for various events. Also discussed is a signaling feature
that supports asynchronous 110 processing. Finally, this section presents a new
mechanism for finding available minor devices, called clone open.

The poll (2) system call provides users with a mechanism for monitoring
input and output on a set of file descriptors that reference open streams. It
identifies those streams over which a user can send or receive data. For each
stream of interest users can specify one or more events about which they should
be notified. These events include the following:

POLL IN
Input data are available on the stream associated with the given file descrip
tor.

POLLPRI
A priority message is available on the stream associated with the given file
descriptor. Priority messages are described in the section of Chapter 4 enti
tled "Accessing the Datagram Provider."

POLLOUT
The stream associated with the given file is writable. That is, the stream has
relieved the flow control that would prevent a user from sending data over
that stream.

po 11 () will examine each file descriptor for the requested events and, on
return, will indicate which events have occurred for each file descriptor. If no
event has occurred on any polled file descriptor, poll () blocks until a
requested event or timeout occurs. The specific arguments to poll () are the
following: e

o an array of file descriptors and events to be polled

o the number of file descriptors to be polled

o the number of milliseconds poll () should wait for an event if no events
are pending (-1 specifies wait forever)

The following example shows the use ofpollO. Two separate minor devices of
the communications driver presented earlier are opened, thereby establishing two
separate streams to the driver. Each stream is polled for incoming data. If data
arrives on either stream, it is read and then written back to the ot\ler stream. This
program extends the previous echoing example by sending echoed data over a
separate communications line (minor device). The steps needed to establish each
stream are as follows:

+~t!! Revision A, of 9 May 1988

Chapter 10 - STREAMS Applications Programming 211

#include <fcntl.h>
#include <poll.h>

#define NPOLL 2 / * Number offile descriptors to poll * /
main ()
{

struct pollfd pollfds[NPOLL];
char buf[1024];
int count, i;

if «pollfds[O] .fd =
open ("/dev/comm01" , O_RDWRIO_NDELAY» < 0) {

perror("open failed for /dev/comm01");
exit(1);

if «pollfds[1] .fd
open ("/dev/comm02" , O_RDWRIO_NDELAY» < 0) {

perror("open failed for /dev/comm02");
exit(2);

The variable poll/ds is declared as an array ofpollfd structures, where this
structure is defined in <poll. h> and has the following format:

struct pollfd {
int
short
short

fd;
events;
revents;

/ * File descriptor * /
/ * Requested events * /
/ * Returned events * /

For each entry in the array,/d specifies the file descriptor to be polled and events
is a bitmask that contains the bitwise inclusive OR of events to be polled on that
file descriptor. On return, the revents bitmask will indicate which of the
requested events has occurred.

The example opens two separate minor devices of the communications driver and
initializes the poll/ds entry for each. The remainder of the example uses
po 11 () to process incoming data as follows:

/ * Set events to poll for incoming data * /
pollfds[O] .events POLLIN;
pollfds[1] .events = POLLIN;

while (1) {
/ * Poll and use -1 timeout (infinite) * /
if (poll (pollfds, NPOLL, -1) < 0) {

perror("poll failed");
exit(3);

for (i = 0; i < NPOLL; i++) {
switch (pollfds[i] .revents)
defaul t : / * Default err case * /

Revision A, of 9 May 1988

212 Writing STREAMS Device Drivers

perror("error event");
exit(4);

case 0:
break;

case POLLIN:

/ * No events * /

/ * Echo incoming data on "other" Stream * /
while « count =

read(pollfds[i] .fd, buf, 1024» > 0)
1*
* write loses data if flow control
* prevents transmit at this time.
*1
if (write«i == 0 ?

break;

pollfds[1] .fd: pollfds[O] .fd),
buf, count) != count)

fprintf(stderr,"write lost data\n");

The user specifies the polled events by setting the events field of the pollfd
structure to POLLIN. This requested event directs poll () to notify the user of
any incoming data on each Stream. The bulk of the example is an infinite loop,
where each iteration will poll both streams for incoming data.

The second argument to poll () specifies the number of entries in the pollfds
array (2 in this example). The third argument is a timeout value indicating the
number of milliseconds po 11 () should wait for an event if none has occurred.
On a system where millisecond accuracy is not available, timeout is rounded up
to the nearest legal value available on that system. Here, the value of timeout is
-1, specifying that poll () should block indefinitely until a requested event
occurs or until the call is interrupted.

If po 11 () succeeds, the program looks at each entry in pollfds. If revents is set
to 0, no event has occurred on that file descriptor. If revents is set to POLL IN,
incoming data are available. In this case, all available data are read from the
polled minor device and written to the other minor device.

If revents is set to a value other than ° or POLLIN, an error event must have
occurred on that stream, because the only requested event was POLLIN. The
following error events are defined for po 11 (). These events may not be polled
for by the user, but will be reported in revents whenever they occur. As such,
they are only valid in the revents bitmask:

POLLERR
A fatal error has occurred in some module or driver on the stream associated
with the specified file descriptor. Further system calls will fail.

POLLHUP
A hangup condition exists on the stream associated with the specified file
descriptor.

~~sun ~ microsystems
Revision A, of 9 May 1988

Asynchronous Input/Output

Chapter lO-STREAMS Applications Programming 213

POLLNVAL
The specified file descriptor is not associated with an open stream.

The example attempts to process incoming data as quickly as possible. However,
when writing data to a stream, the wr it e () call may block if the stream is
exerting flow control. To prevent the process from blocking, the minor devices
of the communications driver were opened with the 0_ NDELA Y flag set. If
flow control is exerted and 0 _NDELA Y is set, wr i te () will not be able to
send all the data. This can occur if the communications driver is unable to keep
up with the user's rate of data transmission. If the stream becomes full, the
number of bytes wr i te () sends will be less than the requested count. For sim
plicity, the example ignores the data if the stream becomes full, and a warning is
printed to stderr.

This program will continue until an error occurs on a stream, or until the process
is interrupted.

The poll () system call described above enables a user to monitor multiple
streams in a synchronous fashion. The po 11 () call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, however,
it is desirable to process incoming data asynchronously. For example, an appli
cation may wish to do some local processing and be interrupted when a pending
event occurs. Some time-critical applications cannot afford to block, but must
have immediate indication of success or failure.

A new facility is available for use with STREAMS that enables a user process to
request a signal when a given event occurs on a stream. When used with
polIO, this facility enables applications to asynchronously monitor a set of file
descriptors for events.

The I_SETSIG ioctl () call (see the streamio(4) man page) is used to
request that a SIGPOLL signal be sent to a user process when a specific event
occurs. Listed below are the events for which an application may be signaled:

S INPUT
Data has arrived at the stream head, and no data existed at the stream head
when it arrived.

S HIPRI
A priority STREAMS message has arrived at the stream head.

S OUTPUT
The stream is no longer full and can accept output. That is, the stream has
relieved the flow control that would prevent a user from sending data over
that stream.

S MSG
A special STREAMS signal message that contains a SIGPOLL signal has
reached the front of the stream head input queue. This mess~ge may be sent
by modules or drivers to generate immediate notification of data or events to

follow.

Revision A, of 9 May 1988

214 Writing STREAMS Device Drivers

Clone Open

The polling example could be written to process input from each communica
tions driver minor device by issuing 1_ SETSIG to request a signal for the
S _ INPUT event on each stream. The signal catching routine could then call
poll () to determine on which stream the event occurred. The default action
for SIGPOLL is to terminate the process. Therefore, the user process must catch
the signal using signal(2). SIGPOLL will only be sent to processes that
request the signal using 1_ SETSIG.

In the earlier examples, each user process connected a stream to a driver by open
ing a particular minor device of that driver. Often, however, a user process wants
to connect a new stream to a driver regardless of which minor device is used to

access the driver.

In the past, this typically forced the user process to poll the various minor device
nodes of the driver for an available minor device. To alleviate this task, a facility
called clone open is supported for STREAMS drivers. If a STREAMS driver is
implemented as a cloneable device, a single node in the file system may be
opened to access any unused minor device. This special node guarantees that the
user will be allocated a separate stream to the driver on every open () call.
Each stream will be associated with an unused minor device, so the total number
of streams that may be connected to a cloneable driver is limited by the number
of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environment
where a protocol pseudo-device driver requires each user to open a separate
stream over which it will establish communication. Typically, the users would
not care which minor device they used to establish a stream to the driver.
Instead, the clone device can find an available minor device for each user and
establish a unique stream to the driver. Chapter 3 describes this type of transport
protocol driver.

NOTE A user program has no control over whether a given driver supports the clone
open. The decision to implement a STREAMS driver as a cloneable device is
made by the designers of the device driver.

10.4. Multiplexed Streams This section describes the construction of multiplexed stream configurations.

Multiplexor Configurations In the earlier sections, streams were described as linear connections of modules,
where each invocation of a module is connected to at most one upstream module
and one downstream module. While this configuration is suitable for many
applications, others require the ability to multiplex streams in a variety of
configurations. Typical examples are terminal window facilities, and intemet
working protocols (which might route data over several subnetworks).

An example of a multiplexor is one that multiplexes data from several upper
streams over a single lower stream, as shown in the figure below. An upper
stream is one that is upstream from a multiplexor, and a lower stream is one that
is downstream from a multiplexor. A terminal windowing facility might be
implemented in this fashion, where each upper stream is associated with a
separate window.

Revision A, of9 May 1988

Figure 10-4

Figure 10-5

Figure 10-6

Chapter 10 - STREAMS Applications Programming 215

Many-to-one Multiplexor

MUX

A second type of multiplexor might route data from a single upper stream to one
of several lower STREAMS, as shown in the figure below. An intemetworking
protocol could take this form, where each lower stream links the protocol to a
different physical network.

One-to-many Multiplexor

MUX

A third type of multiplexor might route data from one of many upper streams to
one of many lower streams, as shown in the figure below.

Many-to-many Multiplexor

MUX

A STREAMS mechanism is available that supports the multiplexing of streams
through special pseudo-device drivers. Using a linking facility, users can

~\sun ~ microsystems
Revision A, of 9 May 1988

216 Writing STREAMS Device Drivers

Building a Multiplexor

dynamically build, maintain, and dismantle each of the above multiplexed stream
configurations. In fact, these configurations can be further combined to form
complex, multi-level multiplexed stream configurations.

The remainder of this section describes multiplexed stream configurations in the
context of an example (see figure below). In this example, an intemetworking
protocol pseudo-device driver (IP) is used to route data from a single upper
stream to one of two lower streams. This driver supports two STREAMS con
nections beneath it to two distinct sub-networks. One sub-network supports the
IEEE 802.3 standard for the CSMAlCD medium access method. The second
sub-network supports the IEEE 802.4 standard for the token-passing bus medium
access method.

The example also presents a transport protocol pseudo-device driver (TP) that
multiplexes multiple virtual circuits (upper streams) over a single stream to the
IP pseudo-device driver.

The figure below shows the multiplexing configuration to be created. This
configuration will enable users to access the services of the transport protocol.
To free users from the need to know about the underlying protocol structure, a
user-level daemon process will build and maintain the multiplexing
configuration. Users can then access the transport protocol directly by opening
the TP driver device node.

Figure 10-7 Protocol Multiplexor

Stream
head

802.4
Driver

TP
Driver

IP
Driver

802.3
Driver

__ _ l!. S!,- Sy~ce
Kernel Space

The following example shows how this daemon process sets up the protocol

.\sun ~ microsystems
Revision A, of 9 May 1988

Figure 10-8

Chapter 10 - STREAMS Applications Programming 217

multiplexor. The necessary declarations and initialization for the daemon pro
gram are as follows:

#include <fcntl.h>
#include <stropts.h>

main ()
{

int fd_802_4,
fd_802_3,
fd_ip,
fd_tp;

/ * Daemon-ize this process * /
switch (fork (» {
case 0:

break;
case -1:

perror("fork failed");
exit(2);

default:
exit(O);

setpgrp ();

This multi-level multiplexed stream configuration will be built from the bottom
up. Therefore, the example begins by constructing the IP multiplexor. This mul
tiplexing pseudo-device driver is treated like any other software driver. It owns a
node in the file system and is opened just like any other STREAMS device
driver.

The first step is to open the multiplexing driver and the 802.4 driver, creating
separate streams above each driver as shown in the figure below. The stream to
the 802.4 driver may now be connected below the multiplexing IP driver using
the I_LINK ioctl () call.

Before Link

C2aemo0
_ L _____ ~ _____ _ l!..S!'- !iP!!ce

802.4
Driver

IP
Driver

Kernel Space

The sequence of instructions to this point is:

4}\sun
• microsystems

Revision A, of 9 May 1988

218 Writing STREAMS Device Drivers

if «fd_802_4 = open(If/dev/B02_41f, O_RDWR» < 0) {
perror(lfopen of /dev/B02_4 failed lf);
exit(l);

if «fd_ip = open (If /dev/iplf, O_RDWR» < 0) {
perror(lfopen of /dev/ip failed lf);
exit(2);

/ * Now link 802.4 to underside of IP * /
if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) {

perror(lfI_LINK ioctl failed");
exit(3);

I_LINK takes two file descriptors as arguments. The first file descriptor,/d_ip,
must reference the stream connected to the multiplexing driver, and the second
file descriptor,jd _802_4, must reference the stream to be connected below the
multiplexor. The figure .. below shows the state of these streams following the
I_LINK call. The complete stream to the 802.4 driver has been connected below
the IP driver, including the stream head. The stream head of the 802.4 driver will
be used by the IP driver to manage the multiplexor.

Figure 10-9 IP Multiplexor After First Link

IP
Driver

802.4
Driver

_________ _ l!.S!~ Sp~ce
Kernel Space

I_LINK will return an integer value, called a mux id, which is used by the multi
plexing driver to identify the stream just connected below it This mux id is
ignored in the example, but may be useful for dismantling a multiplexor or rout
ing data through the multiplexor. Its significance is discussed later.

The following sequence of system calls is used to continue building the internet
working multiplexor (IP):

Revision A, of 9 May 1988

Figure 10-10

Chapter 10 - STREAMS Applications Programming 219

if «fd_802_3 = open("/dev/802_3", O_RDWR» < 0) {
perror("open of /dev/802_3 failed");
exit(4);

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {
perror(III_LINK ioctl failed");
exit(5);

All links below the IP driver have now been established, giving the configuration
in the figure below.

IP Multiplexor

controlling 3"
stream

802.4
Driver

IP
Driver

__________ '!. S!'"-. s:p~ce

802.3
Driver

Kernel Space

The stream above the multiplexing driver used to establish the lower connections
is the controlling stream and has special significance when dismantling the multi
plexing configuration, as will be illustrated later in this section. The stream
referenced by fd _ip is the controlling stream for the IP multiplexor.

NOTE The order in which the streams in the multiplexing configuration are opened is
unimportant. If, however, it is necessary to have intermediate modules in the
stream between the IP driver and media drivers, these modules must be added to
the streams associated with the media drivers (using I _PUSH) before the media
drivers are attached below the multiplexor.

The number of streams that can be linked to a multiplexor is restricted by the
design of the particular multiplexor. The manual page describing each driver
(typically found in section 7 of the SunOS Reference Manual) should describe
such restrictions. However, only one I_LINK operation is allowed for each
lower stream; a single stream cannot be linked below two multiplexors simul
taneously .

• \sun
• microsystems

Revision A, of 9 May 1988

220 Writing STREAMS Device Drivers

Figure 10-11

Continuing with the example, the IP driver will now be linked below the tran
sport protocol (TP) multiplexing driver. As seen earlier in the figure below, only
one link will be supported below the transport driver. This link is formed by the
following sequence of system calls:

if «fd_tp = open (" /dev/tp", O_RDWR» < 0) {
perror("open of /dev/tp failed");
exit(6);

if (ioctl(fd_tp, I_LINK, fd_ip) < 0)
perror ("I_LINK ioctl failed");
exit(7);

The multi-level multiplexing configuration shown in the figure below has now
been created.

TP Multiplexor

controlling J
stream

802.4
Driver

TP
Driver

IP
Driver

_________ _ l!. s:r:.. Sp~ce
Kernel Space

802.3
Driver

Because the controlling stream of the IP multiplexor has been linked below the
TP multiplexor, the controlling stream for the new multi-level multiplexor
configuration is the stream above the TP multiplexor.

At this point the file descriptors associated with the lower drivers can be closed
without affecting the operation of the multiplexor. Closing these file descriptors
may be necessary when building large multiplexors, so that many devices can be
linked together without exceeding the system limit on the number of

Revision A, of 9 May 1988

Dismantling a Multiplexor

Chapter 10 - STREAMS Applications Programming 221

simultaneously open files per process. If these file descriptors are not closed, all
subsequent read (), write (), ioctl (), poll () ,getmsg (), and
pu tms g () system calls issued to them will fail. That is because I_LINK asso
ciates the stream head of each linked stream with the multiplexor, so the user
may not access that stream directly for the duration of the link.

The following sequence of system calls will complete the multiplexing daemon
example:

close(fd_B024);
close(fd_B02_3);
close (fd_ip) ;
/ * Hold multiplexor openforever * /
pause () ;

The figure below shows the complete picture of the multi-level protocol multi
plexor. The transport driver is designed to support several, simultaneous virtual
circuits, where these virtual circuits map one-to-one to streams opened to the
transport driver. These streams will be multiplexed over the single stream con
nected to the IP multiplexor. The mechanism for establishing multiple streams
above the transport multiplexor is actually a by-product of the way in which
streams are created between a user process and a driver. By opening different
minor devices of a STREAMS driver, separate streams will be connected to that
driver. Of course, the driver must be designed with the intelligence to route data
from the single lower stream to the appropriate upper stream.

Notice in the figure below that the daemon process maintains the multiplexed
stream configuration through an open stream (the controlling stream) to the tran
sport driver. Meanwhile, other users can access the services of the transport pro
tocol by opening new streams to the transport driver; they are freed from the
need for any unnecessary knowledge of the underlying protocol configurations
and sub-networks that support the transport service.

Multi-level multiplexing configurations, such as the one presented in the above
example, should be assembled from the bottom up. That is because STREAMS
does not allow ioctl () requests (including I_LINK) to be passed through
higher multiplexing drivers to reach the desired multiplexor; they must be sent
directly to the intended driver. For example, once the IP driver is linked under
the TP driver, ioctl () requests cannot be sent to the IP driver through the TP
driver.

streams connected to a multiplexing driver from above with open () , can be dis
mantled by closing each stream with close (). In the protocol multiplexor,
these streams correspond to the virtual circuit streams above the TP multiplexor.
The mechanism for dismantling streams that have been linked below a multiplex
ing driver is less obvious, and is described below in detail.

The I_UNLINK ioctl () call is used to disconnect each multiplexor link below
a multiplexing driver individually. This command takes the following form:

.~sun ~ microsystems
Revision A, of9 May 1988

222 Writing STREAMS Device Drivers

Routing Data Through a
Multiplexor

where fd is a file descriptor associated with a stream connected to the multiplex
ing driver from above, and mux _id is the identifier that was returned by I_LINK
when a driver was linked below the multiplexor. Each lower driver may be
disconnected individually in this way, or a special mux _id value of -1 may be
used to disconnect all drivers from the multiplexor simultaneously.

]

In the multiplexing daemon program presented earlier, the multiplexor is never
explicitly dismantled. That is because all links associated with a multiplexing
driver are automatically dismantled when the controlling stream associated with
that multiplexor is closed. Because the controlling stream is open to a driver,
only the final call of close () for that stream will close it. In this case, the dae
mon is the only process that has opened the controlling stream, so the multiplex
ing configuration will be dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multi-level, multiplexed
stream configuration, the controlling stream for each multiplexor at each level
must be linked under the next higher level multiplexor. In the example, the con
trolling stream for the IP driver was linked under the TP driver. This resulted in
a single controlling stream for the full, multi-level configuration. Because the
multiplexing program relied on closing the controlling stream to dismantle the
multiplexed stream configuration instead of using explicit I_UNLINK calls, the
mux id values returned by I_LINK could be ignored.

An important side effect of automatic dismantling on close () is that it is not
possible for a process to build a multiplexing configuration and then exit. That is
because exi t(2) will close all files associated with the process, including the
controlling stream. To keep the configuration intact, the process must exist for
the life of that multiplexor. That is the motivation for implementing the example
as a daemon process.

As demonstrated, STREAMS has provided a mechanism for building multi
plexed stream configurations. However, the criteria on which a multiplexor
routes data is driver dependent. For example, the protocol multiplexor shown in
the last example might use address information found in a protocol header to
determine over which sub-network a given packet should be routed. It is the
multiplexing driver's responsibility to define its routing criteria.

One routing option available to the multiplexor is to use the mux id value to
determine to which stream data should be routed (remember that each multi
plexor link is associated with a mux id). I_LINK passes the mux id value to the
driver and returns this value to the user. The driver can therefore specify that the
mux id value must accompany data routed through it. For example, if a multi
plexor routed data from a single upper stream to one of several lower streams (as
did the IP driver), the multiplexor could require the user to insert. the mux id of
the desired lower stream into the first four bytes of each message passed to it.
The driver could then match the mux id in each message with the mux id of each
lower stream, and route the data accordingly.

Revision A, of9 May 1988

10.5. Message Handling

Service Interfa<;e Messages

Service Interfaces

Chapter 10 - STREAMS Applications Programming 223

This section describes how to process STREAMS messages in a service inter
face.

A STREAMS message format has been defined to simplify the design of service
interfaces. Also, two new system calls, getmsg(2) and putmsg (2) are avail
able for sending these messages downstream and receiving messages that are
available at the stream head. This section describes these system calls in the con
text of a service interface example. First, a brief overview of STREAMS service
interfaces is presented.

A principal advantage of the STREAMS mechanism is its modularity. From user
level, kernel-resident modules can be dynamically interconnected to implement
any reasonable processing sequence. This modularity reflects the layering
characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like function.
For example, two distinct transport protocols, implemented as STREAMS
modules, may provide a common set of services. An application or higher layer
protocol that requires those services can use either module. This ability to substi
tute modules enables user programs and higher level protocols to be independent
of the underlying protocols and physical communication media.

Each STREAMS module provides a set of processing functions, or services, and
an interface to those services. The service interface of a module defines the
interaction between that module and any neighboring modules, and therefore is a
necessary component for providing module substitution. By creating a well
defined service interface, applications and STREAMS modules can interact with
any module that supports that interface. The figure below demonstrates this.

Figure 10-12 Protocol Substitution

Application
A

- - - -- ~----

.........

TCP
Transport

Protocol

Lower Layer
Protocol
Suite A

Application
A

----- - - - --

.

ISO

Transport
Protocol

Lower Layer
Protocol
Suite B

_ '! :er Space

Kernel Space

By defining a service interface through which applications interact with a tran
sport protocol, it is possible to substitute a different protocol below that service

.~sun ~ microsystems
Revision A, of9 May 1988

224 Writing STREAMS Device Drivers

Figure 10-13

The Message Interface

interface in a manner completely transparent to the application. In this example,
the same application can run over the Transmission Control Protocol (TCP) and
the ISO transport protocol. Of course, the service interface must define a set of
services common to both protocols.

The three components of any service interface are the service user, the service
provider, and the service interface itself, as seen in the figure below.

Service Interface

Request
Primitives

~

Service
User

,

....

Service
Provider

..... ~t;':Y!~!: !r'terface

t
R esponse and
E vent Primitives

Typically, a user makes a request of a service provider using some well-defined
service primitive. Responses and event indications are also passed from the pro
vider to the user using service primitives. The service interface is defined as the
set of primitives that define a service and the allowable state transitions that
result as these primitives are passed between the user and provider.

A message format has been defined to simplify the design of service interfaces
using STREAMS. Each service interface primitive is a distinct STREAMS mes
sage that has two parts: a control part and a data part. The control part contains
information that identifies the primitive and includes all necessary parameters.
The data part contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to estab
lish a connection with another transport user. The parameters associated with
this primitive may include a destination protocol address and specific protocol
options to be associated with that connection. Some transport protocols also
allow a user to send data with the connect request. A STREAMS message would
be used to define this primitive. The control part would identify the primitive as
a connect request and would include the protocol address and options. The data
part would contain the associated user data.

STREAMS enables modules to create these messages and pass them to neighbor
modules. However, the read () and wr i te () system calls are not sufficient to
enable a user process to generate and receive such messages. First, read () and
wr it e () are byte-stream oriented, with no concept of message boundaries. To
support service interfaces, the message boundary of each service primitive must

Revision A, of9 May 1988

Chapter 10 - STREAMS Applications Programming 225

be preserved so that the beginning and end of each primitive can be located.
Also, read () and wri te () offer only one buffer to the user for transmitting
and receiving STREAMS messages. If control information and data were placed
in a single buffer, the user would have to parse the contents of the buffer to
separate the data from the control information.

Two new STREAMS system calls are available that enable user processes to
create STREAMS messages and send them to neighboring kernel modules and
dri vers or receive the contents of such messages from kernel modules and
drivers. These system calls preserve message boundaries and provide separate
buffers for the control and data parts of a message.

The putmsg () system call enables a user to create STREAMS messages and
send them downstream. The user supplies the contents of the control and data
parts of the message in two separate buffers. Likewise, the ge tms g () system
call retrieves such messages from a stream and places the contents into two user
buffers.

The syntax of pu tmsg () is as follows:

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

fd identifies the stream to which the message will be passed, ctlptr and dataptr
identify the control and data parts of the message, andjlags may be used to

specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a mes
sage, and has the following format:

struct strbuf {
int maxlen;
int len;
char *buf;

/ * Maximum buffer length * /
/ * Length of data * /
/ * Pointer to buffer * /

buf points to a buffer containing the data and len specifies the number of bytes of
data in the buffer. maxlen specifies the maximum number of bytes the given
buffer can hold, and is only meaningful when retrieving information into the
buffer using getmsg () .

The ge tms g () system call retrieves messages available at the stream head, and
has the following syntax:

Revision A, of 9 May 1988

226 Writing STREAMS Device Drivers

Datagram Service Interface
Example

int getmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

The arguments to getmsg () are the same as those for putmsg ().

The remainder of this section presents an example that demonstrates how
putmsg () and getmsg () may be used to interact with the service interface of
a simple datagram protocol provider. A potential provider of such a service
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example
implements a user level library that would free the user from knowledge of the
underlying STREAMS system calls. The Transport Interface of the Network
Services Library in UNIX System V Release 3.0 provides a similar function for
transport layer services. The example here illustrates how a service interface
might be defined, and is not an example of a complete IEEE 802.2 service inter
face.

The example datagram service interface library presented below includes four
functions that enable a user to do the following:

o establish a stream to the service provider and bind a protocol address to the
stream

o send a datagram to a remote user

o receive a datagram from a remote user

o close the stream connected to the provider

First, the structure and constant definitions required by the library are shown.
These typically will reside in a header file associated with the service interface.

Revision A, of9 May 1988

Chapter 10 - STREAMS Applications Programming 227

1*
* Primitives initiated by the service user.
*1
fdefine BIND_REQ
fdefine UNITDATA_REQ
1*

1
2

/ * Bind request * /
/ * Unitdata request * /

* Primitives initiated by the service provider.
*1
tdefine OK ACK
fdefine ERROR ACK
fdefine UNITDATA IND
1*

3
4

5

/ * Bind acknowledgment * /
/ * Error acknowledgment * /
/ * Unitdata indication * /

* The following structure definitions define the format
* of the control part of the service interface message
* of the above primitives.
*1
struct bind_req {

long PRIM_type;
long BIND_addr;

} ;

struct unitdata_req {
long PRIM_type;
long DEST_addr;

} ;

struct ok_ack {
long

} ;

struct error_ack {
long PRIM_type;
long UNIX_error;

} ;

struct unitdata_ind {
long PRIM_type;
long SRC_addr;

} ;

union primitives {
long

} ;

struct bind_req
struct unitdata_req
struct ok ack
struct error ack
struct unitdata ind

/ * Bind request * /
/ * Always BIND _ REQ * /
/ * Addr to bind * /

/ * Unitdata request * /
/ * Always UNITDATA _ REQ * /
/ * Destination addr * /

/ * Positive acknowledgment * /
/* Always OK_ACK */

/ * Error acknowledgment * /
/ * Always ERROR _ ACK * /
/ * UNIX error code * /

/ * Unitdata indication * /
/ * Always UNITDATA _IND * /

/ * Source addr * /

/ * Union of all primitives * /
type;
bind_req;
unitdata_req;
ok_acki
error_ack;
unitdata_indi

/ * Header files needed by library * /
finclude <stropts.h>
tinclude <stdio.h>
finclude <errno.h>

Five primitives have been defined. The first two represent requests from the ser
vice user to the service provider. These are:

Revision A, of 9 May 1988

228 Writing STREAMS Device Drivers

Accessing the Datagram
Provider

BIND_REQ
This request asks the provider to bind a specified protocol address. It
requires an acknowledgement from the provider to verify that the contents of
the request were syntactically correct

UNITDATA_REQ
This request asks the provider to send a datagram to the specified destination
address. It does not require an acknowledgement from the provider.

The three other primitives represent acknowledgements of requests, or indica
tions of incoming events, and are passed from the service provider to the service
user. These are:

OK ACK
This primitive informs the user that a previous bind request was received
successfully by the service provider.

ERROR ACK
This primitive informs the user that a non-fatal error was found in the previ
ous bind request. It indicates that no action was taken with the primitive that
caused the error.

UNITDATA IND
This primitive indicates that a datagram destined for the user has arrived.

The structures defined above describe the contents of the control part of each ser
vice interface message passed between the service user and service provider. The
first field of each control part defines the type of primitive being passed.

The first routine presented below, inter _open, opens the protocol driver device
file specified by path and binds the protocol address contained in addr so that it
may receive datagrams. On success, the routine returns the file descriptor associ
ated with the open stream; on failure, it returns -1 and sets errno to indicate the
appropriate error value.

Revision A, of 9 May 1988

Chapter 10 - STREAMS Applications Programming 229

inter_open (path, of lags , addr)
char *path;
{

int fd;
struct bind_req bind req;
struct strbuf ctlbuf;
union primitives rcvbuf;
struct error_ack *error_ack;
int flags;

if «fd = open(path, of lags)) < 0)
return (-1) ;

/ * Send bind request msg down stream * /
bind_req.PRIM_type = BIND_REQ;
bind_req.BIND_addr = addr;
ctlbuf.len = sizeof(struct bind_req);
ctlbuf.buf = (char *)&bind_req;
if (putmsg(fd, &ctlbuf, NULL, 0) < 0)

close (fd) ;
return(-l) ;

After opening the protocol driver, inter _open packages a bind request message to
send downstream. putmsg () is called to send the request to the selVice pro
vider. The bind request message contains a control part that holds a bind _req
structure, but it has no data part. etibu/ is a structure of type s t r bu f, and it is
initialized with the primitive type and address. Notice that the ma:xlen field of
etibu/is not set before calling putmsgO. That is because putmsg () ignores
this field. The dataptr argument to putmsg () is set to NULL to indicate that
the message contains no data part. Also, the flags argument is 0, which specifies
that the message is not a priority message.

After inter_open sends the bind request, it must wait for an acknowledgement
from the selVice provider, as follows:

~~sun ~ microsystems
Revision A, of 9 May 1988

230 Writing STREAMS Device Drivers

NOTE

/ * Wait for ack of request * /
ctlbuf.maxlen = sizeof(union primitives);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&rcvbuf;
flags = RS_HIPRI;
if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) {

close (fd) ;
return(-l);

/ * Did we get enough to determine type * /
if (ctlbuf.len < sizeof(long»

close(fd);
errno = EPROTO;
return(-l);

/ * Switch on type (first long in rcvbuf) * /
switch (rcvbuf.type) {

default:
errno = EPROTO;
close(fd);
return(-l);

case OK ACK:
ret urn (fd) ;

case ERROR ACK:
if (ctlbuf.len < sizeof(struct error_ack»

errno = EPROTO;
close(fd);
return(-l);

error_ack = (struct error_ack *)&rcvbuf;
errno = error_ack->UNIX_error;
close(fd);
return(-l);

getmsg () is called to retrieve the acknowledgement of the bind request. The
acknowledgement message consists of a control part that contains either an
ok_ ack or error _ ack structure, and no data part.

The acknowledgement primitives are defined as priority messages. Two classes
of messages can arrive at the stream head: priority and normal. Normal mes
sages are queued in a first-in-first-out manner at the stream head, while priority
messages are placed at the front of the stream head queue. The STREAMS
mechanism allows only one priority message per stream at the stream head at one
time; any further priority messages are discarded until the first message is pro
cessed. Priority messages are particularly suitable for acknowledging service
requests when the acknowledgement should be placed ahead of any other mes
sages at the stream head.

These messages are not intended to support the expedited data capabilities of
many communication protocols, as evidenced by the one-at-a-time restriction

Revision A, of 9 May 1988

Closing the Service

Sending a Datagram

Chapter 10 - STREAMS Applications Programming 231

just described.

Before calling getmsgO, this routine must initialize the strbuf structure for
the control part. buf should point to a buffer large enough to hold the expected
control part, and maxlen must be set to indicate the maximum number of bytes
this buffer can hold.

Because neither acknowledgement primitive contains a data part, the dataptr
argument to getmsg () is set to NULL. The flags argument points to an integer
containing the value RS_HIPRI. This flag indicates that getmsg () should
wait for a STREAMS priority message before returning, and is set because the
acknowledgement primitives are priority messages. Even if a normal message is
available, getms g () will block until a priority message arrives.

On return from getmsgO, the len field is checked to ensure that the control part
of the retrieved message is an appropriate size. The example then checks the
primitive type and takes appropriate actions. An OK _ ACK indicates a successful
bind operation, and in t e r _ope n () returns the file descriptor of the open
stream. An ERROR _ACK indicates a bind failure, and errno is set to identify
the problem with the request.

The next routine in the datagram service library is inter_close, which closes the
stream to the service provider.

inter_close (fd)
{

close(fd) ;

The routine simply closes the given file descriptor. This will cause the protocol
driver to free any resources associated with that stream. For example, the driver
may unbind the protocol address that had previously been bound to that stream,
thereby freeing that address for use by some other service user.

The third routine, inter _snd, passes a datagram to the service provider for
transmission to the user at the address specified in addr. The data to be transmit
ted is contained in the buffer pointed to by buf and contains Ie n bytes. On suc
cessful completion, this routine returns the number of bytes of data passed to the
service provider; on failure, it returns -1 and sets errno to an appropriate system
error value.

~~sun ~ microsystems
Revision A, of 9 May 1988

232 Writing STREAMS Device Drivers

Receiving a Datagram

inter_snd(fd, buf, len, addr)
char *buf;
long addr;
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_REQ;
unitdata_req.DEST_addr = addr;
ctlbuf.len = sizeof(struct unitdata_req);
ctlbuf.buf = (char *)&unitdata_req;
databuf.len = len;
databuf.buf = buf;
if (putmsg(fd, &ctlbuf, &databuf, 0) < 0)

return(-l);
return(len);

In this example, the datagram request primitive is packaged with both a control
part and a data part. The control part contains a unitdata _req structure that
identifies the primitive type and the destination address of the datagram. The
data to be transmitted is placed in the data part of the request message.

Unlike the bind request, the datagram request primitive requires no acknowledge
ment from the service provider. In the example, this choice was made to minim
ize the overhead during data transfer. Since datagram services are inherently
unreliable, this is a valid design choice. If the putmsg () call succeeds, this
routine assumes all is well and returns the number of bytes passed to the service
provider.

The final routine in this example, inter _rev, retrieves the next available
datagram. buf points to a buffer where the data should be stored, len indicates
the size of that buffer, and addr points to a long integer where the source address
of the datagram will be placed. On successful completion, inter _rev returns the
number of bytes in the retrieved datagram; on failure, it returns -1 and sets the
appropriate system error value.

Revision A, of 9 May 1988

Chapter 10 - STREAMS Applications Programming 233

inter_rcv(fd, buf, len, addr}
char *buf;
long *addr;
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata ind unitdata_ind;
int retval;
int flags;

ctlbuf.maxlen = sizeof(struct unitdata_ind};
ctlbuf.len = 0;
ctlbuf.buf = (char *)&unitdata_ind;
databuf.maxlen = len;
databuf.len 0;
databuf.buf buf;
flags = 0;
if ((retval getmsg(fd,&ctlbuf,&databuf,&flags» < 0)

return(-l);
if (unitdata_ind.PR1M_type != UNITDATA_IND)

errno = EPROTO;
return(-l);

if (retval) {
errno = E10;
return(-l);

*addr = unitdata_ind.SRC addr;
return(databuf.len);

getmsg () is called to retrieve the datagram indication primitive, where that
primiti ve contains both a control and data part. The control part consists of a
unitdata _ind structure that identifies the primitive type and the source address of
the datagram sender. The data part contains the data itself.

In ctlbuJ, buJ must point to a buffer where the control information will be stored,
and maxlen must be set to indicate the maximum size of that buffer. Similar ini
tialization is done for databuf

Theflags argument to getmsg () is set to zero, indicating that the next message
should be retrieved from the stream head, regardless of its priority. Datagrams
will arrive in normal priority messages. If no message currently exists at the
stream head, getmsg () will block until a message arrives.

The user's control and data buffers should be large enough to hold any incoming
datagram. If both buffers are large enough, getmsg () will process the
datagram indication and return 0, indicating that a full message was retrieved
successfully. However, if either buffer is not large enough, getinsg () will only
retrieve the part of the message that fits into each user buffer. The remainder of
the message is saved for subsequent retrieval, and a positive, non-zero value is
returned to the user. A return value of MORECTL indicates that more control

Revision A. of 9 May 1988

234 Writing STREAMS Device Drivers

infonnation is waiting for retrieval. A return value of MORE DATA indicates that
more data are waiting for retrieval. A return value of MORECTL I MOREDATA
indicates that data from both parts of the message remain. In the example, if the
user buffers are not large enough (that is, getmsg () returns a positive, non-zero
value), the function will set errno to EID and fail.

The type of the primitive returned by getmsg () is checked to make sure it is a
datagram indication. The source address is then set and the number of bytes of
data in the datagram is returned.

The above example presented a simplified service interface. The state transition
rules for such an interface were not presented for the sake of brevity. The intent
was to show typical uses of the putmsg () and getmsg () system calls. See
putmsg (2) and getmsg (2) for further details.

~)sun
~ microsystems

Revision A, of 9 May 1988

11
STREAMS Module and Driver Pro-

.
grammlng

STREAMS Module and Driver Programming ... 237

11.1. Introduction .. 237

Development Facilities .. 238

11.2. Streams Mechanism .. 238

Stream Construction .. 239

Opening a Stream ... 241

Adding and Removing Modules .. 242

Closing .. 242

11.3. Modules .. 243

Module Declarations ... 243

Module Procedures .. 245

Module and Driver Environment ... 246

11.4. Messages .. 247

Message FOI1Ilat ... 247

Filter Module Declarations ... 249

Message Allocation ... 251

Put Procedure .. 251

11.5. Message Queues and Service Procedures ... 253

The queue_t Structure ... 253

Service Procedures ... 254

Message Queues and Message Priority .. 254

Flow Control.. 255

Example .. 256

11.6. Drivers ... 259

Overview of Drivers .. 259

Driver Flow Control .. 261

Driver Programming ... 262

Driver Processing Procedures .. 265

Driver and Module Ioctls ... 267

Driver Close ... 269

11.7. Complete Driver .. 269

Cloning ... 269

Loop-Around Driver ... 270

11.8. Multiplexing .. 278

Multiplexing Configurations .. 278

Multiplexor Construction Example .. 281

Multiplexing Driver ... 284

11.9. Service Interface .. 294

Definition ... 294

Example .. 295

11.10. Advanced Topics .. 299

Recovering From No Buffers ... 299

Advanced Flow Control .. 301

Signals ... 302

Control of Stream Head Processing ... 303

11.1. Introduction

11
STREAMS Module and Driver

Programming

This chapter provides detailed information on the use of the STREAMS mechan
ism at the kernel level, including examples, information on development
methods and design philosophy. It describes the use of STREAMS kernel facili
ties for developing and installing modules and drivers, and is intended for system
programmers with knowledge of UNIX kernel programming, device driver
development, networking and other data communication facilities.

Examples are used throughout this chapter to highlight the most important and
common capabilities of STREAMS. The descriptions are not meant to be
exhaustive. For simplicity, the examples reference fictional drivers and modules.

The preceding STREAMS Application Programming chapter is the companion to
this chapter-it provides an analogous discussion of the STREAMS applications
level.

Both of these chapters assumes a working knowledge of the material covered in
the preceding Introduction to STREAMS chapter (hereafter simply called the
Introduction to STREAMS). This introduction includes a useful Glossary of
STREAMS-related terms. STREAMS kernel utilities are summarized in the
Utilities section of the Supplementary STREAMS Material chapter of this
manual. STREAMS system calls are specified in Section 2 of the SunOS Refer
ence Manual. The STREAMS modules and drivers available with SunOS are
described in section 4 of the SunOS Reference Manual. STREAMS-specific
ioctl () calls are specified in streamio (4) .

STREAMS was incorporated into SunOS to augment the existing character
input/output (I/O) mechanism and to support the development of communication
services. A STREAMS driver may be a device driver that provides the services
of an external 110 device, or a software driver, commonly referred to as a
pseudo-device driver, that performs functions internal to a Stream. The Stream
head provides the interface between the Stream and user processes. Its principal
function is to process STREAMS-related user system calls so that this processing
does not have to be incorporated in a module and driver.

Data is passed between a driver and the Stream head in messages. Messages that
are passed from the Stream head toward the driver are said to travel downstream.
Similarly, messages passed in the other direction travel upstream. The Stream
head transfers data between the data space of a user process and STREAMS ker
nel data space. Data to be sent to a driver from a user process are packaged into
STREAMS messages and passed downstream. When a message containing data

~~sun ~ microsyslems
237 Revision A, of 9 May 1988

238 Writing STREAMS Device Drivers

Development Facilities

11.2. Streams Mechanism

arrives at the Stream head from downstream, the message is processed by the
Stream head, which copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain mes
sage types sent upstream may cause the Stream head to perform specific actions,
such as sending a signal to a user process. Other message types are intended to
carry infonnation within a Stream and are not directly seen by a user process.

One or more kernel-resident modules may be inserted into a Stream between the
Stream head and driver to perfonn intennediate processing of data as it passes
between the Stream head and driver. STREAMS modules are dynamically inter
connected in a Stream by a user process. No kernel programming, assembly, or
link editing is required to create the interconnection.

General and STREAMS-specific system calls provide the user level facilities
required to implement application programs. This system call interface is
upwardly compatible with the character 110 facilities. The open (2) system call
recognizes a STREAMS file and creates a Stream to the specified driver. A user
process can receive and send data on STREAMS files using read (2) and
wr i te (2) in the same manner as with character files. The ioctl (2) system
call enables users to perfonn functions specific to a particular device and a set of
generic STREAMS ioctl () commands (see streamio(4» support a variety
of functions for accessing and controlling Streams. A close (2) will dismantle
a Stream.

In addition to the generic ioctl () commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The poll (2) system call
enables a user to poll multiple Streams for various events. The putmsg (2) and
getmsg (2) system calls enable users to send and receive STREAMS mes
sages, and are suitable for interacting with STREAMS modules and drivers
through a service interface.

STREAMS provides module and driver developers with integral functions, a set
of utility routines, and facilities that expedite design and implementation. The
principle development facilities are:

o Message storage management - to maintain STREAMS' own memory
resources for message storage

o Flow control - to conserve STREAMS memory and processing resources

o Scheduling - to control the execution of service procedures

o Multiplexing - to switch data among multiple Streams

A Stream implements a connection within the kernel between a driver in kernel
space and a process in user space. It provides a general character input/output
(I/O) interface for user processes which is upwardly compatible with the inter
face of the preexisting character I/O facilities. A Stream is analogous to a shell
pipeline except that data flow and processing are bidirectional to support con
current input and output.

Revision A, of9 May 1988

Stream Construction

Chapter 11 - STREAMS Module and Driver Programming 239

The components that form a Stream are the Stream head, driver and optional
modules. A Stream is initially constructed as the result of a user process
open (2) system call referencing a STREAMS file. The call causes a kernel
resident driver to be connected with a Stream head to form a Stream. Subsequent
ioctl (2) calls select kernel resident modules and cause them to be inserted in
the Stream. A module represents intermediate processing on messages flowing
between the Stream head and driver. A module can function as, for example, a
communication protocol, line discipline or data filter. STREAMS allows a user
to connect a module with any other module. The user determines the module
connection sequences that result in useful configurations.

A process can send and receive characters on a Stream using wr i te (2) and
read (2) , as on character files. When user data enters the Stream head or exter
nal data enters the driver, the data is placed into messages for transmission on the
Stream. All data passed on a Stream is carried in messages, each having a
defined message type identifying the message contents. Internal control and
status information is transmitted among modules or between the Stream and user
process as messages of certain types interleaved on the Stream. Modules and
drivers can send certain message types to the Stream head to cause the generation
of signals or errors to be received by the user process.

A module is comprised of two identical sets of data structures called QUEUEs.
One QUEUE is for upstream processing and the other is for downstream process
ing. The processing performed by the two QUEUEs is generally independent so
that a Stream operates in a full-duplex manner. The interface between modules
is uniform and simple. Messages flow from module to module. A message from
one module is passed to the single entry point of its neighboring module.

The last close (2) system call dismantles the Stream and closes the file,
semantically identical to character 110 drivers.

STREAMS supports implementation of user level applications with extensions to
the above general system calls and STREAMS specific system calls:
putmsg (2) , getmsg (2) , poll (2) and a set of STREAMS generic
ioctl (2) functions.

STREAMS constructs a Stream as a linked list of kernel resident data structures.
In a STREAMS file, the vnode points to the Stream header structure. The
header is used by STREAMS kernel routines to perform operations on this
Stream generally related to system calls. Figure 11-1 depicts the downstream
(write) portion of a Stream (see Building a Stream, in the Introduction to
STREAMS) connected to a header. There is one header per Stream. From
the header onward, a Stream is constructed of QUEUEs. The upstream (read)
portion of the Stream (not shown here) parallels the downstream portion in the
opposite direction and terminates at the Stream header structure.

Revision A, of9 May 1988

240 Writing STREAMS Device Drivers

Figure 11-1

Figure 11-2

Downstream Stream Construction

At the same relative location in each QUEUE is the address of the entry point, a
procedure to be executed on any message received by that QUEUE. The pro
cedure for QUEUE H, at one end of the Stream, is the STREAMS provided
Stream head routine. QUEUE H is the downstream half of the Stream head. The
procedure for QUEUE D, at the other end, is the driver routine. QUEUE D is the
downstream half of the Stream end. PI and P2 are pushable modules, each con
taining their own unique procedures. That is, all STREAMS components are of
similar organization.

This similarity results in the uniform manner of navigating in either direction on
a Stream: messages move from one end to the other, from QUEUE to the next
linked QUEUE, executing the procedure specified in the QUEUE.

Figure 11-2 shows the data structures forming each QUEUE: queue_t, qinit,
module_info and module_stat. queue_t contains various modifiable
values for this QUEUE, generally used by STREAMS. qinit contains a
pointer to the processing procedures, module _ inf 0 contains limit values and
module_stat is used for statistics. The two QUEUEs in a module will gen
erally each contain a different set of these structures. The contents of these struc
tures are described in following sections.

QUEUE data structures

earn. upstr downstream

9 qinfo
<--- -- -

read write
fcc·

queue_t

'XI q_ne

-
read

9 qinfo
<--- --

q qinfo
--::.--->

write
fcc·

queue_t

earn downstream upstr

module
stat

module
info

Figure 11-1 shows QUEUE linkage in one direction while figure 11-2 shows two
neighboring modules with links (solid vertical arrows) in both directions. When

Revision A, of 9 May 1988

Opening a Stream

Chapter 11 - STREAMS Module and Driver Programming 241

a module is pushed onto a Stream, STREAMS creates two QUEUEs and links
each QUEUE in the module to its neighboring QUEUE in the upstream and
downstream direction. The linkage allows each QUEUE to locate its next neigh
bor. The next relation is implemented between queue _ ts in adjacent modules
by the ~ next pointer. Within a module, each queue _ t locates its mate (see
dotted arrows in figure 11-2) by use of STREAMS macros, since there is no
pointer between the two queue_ts. The existence of the Stream head and
driver is known to the QUEUE procedures only as destinations towards which
messages are sent

When a file is opened [see open (2)] , a STREAMS file is recognized by a
non-null value in the d_str field of the associated cdevsw entry. d str
points to a streamtab structure:

struct streamtab
struct qinit
struct qinit
struct qinit
struct qinit
char

*st_rdinit; /*definesreadQUEUE */
st_wrinit; / defines write QUEUE * /
st_muxrinit; / for multiplexing drivers only * /
st_muxwinit; / for multiplexing drivers only * /
* * s t _ modl i s t ; / * list of modules to be pushed * /

streamtab defines a module or driver and points to the read and write qini t
structures for the driver.

If this open () call is the initial file open, a Stream is created. First, the single
header structure and the Stream head (see figure 11-1) queue _ t structure pair
are allocated. Their contents are initialized with predetermined values including,
as noted above (see QUEUE H), the Stream head processing routines.

Then, a queue _ t structure pair is allocated for the driver. The queue _ t con
tents are zero unless specifically initialized (see the Message Queues and Service
Procedures section). A single, common qinit structure pair is shared among
all the Streams opened from the same cdevsw entry, as is the associated
module_info and module_stat structures (see figure 11-2.)

Next, the <L next values are set so that the Stream head write queue _ t points
to the driver write queue_t and the driver read queue_t points to the Stream
head read queue _ t. The ~ next values at the ends of the Stream are set to
NULL. Then, the driver open procedure (located via qini t) is called.

If the st_modlist pointer is not NULL, it is assumed to point to the first
member of an array of pointers to module names. After the driver's open ()
procedure has been called, the modules whose names are pointed to be the
members of that array are pushed onto the stream, in the order that they appear in
the array. (See Adding and Removing Modules, below). If one of these modules
cannot be pushed, the open () fails.

If this open () is not the initial open of this Stream, the only actions performed
are to call the driver open and the open procedures of all pushable modules on
the Stream.

Revision A, of9 May 1988

242 Writing STREAMS Device Drivers

Adding and Removing
Modules

Closing

As part of constructing a Stream, a module can be added with an ioctl ()
I_PUSH (see the streamio (4) man page) system call (push). The push
inserts a module beneath the Stream head. Because of the similarity of
STREAMS components, the push operation is similar to the driver open. First,
the address of the qini t structure for the module is obtained via an fmodsw
entry.

fmodsw is an array, analogous to cdevsw. Each fmodsw entry corresponds to
a unique module and contains the name of the module (used by I_PUSH and cer
tain other STREAMS ioctl () s) and a pointer to the module's streamtab.
Next, STREAMS allocates queue _ t structures and initializes their contents as
in the driver open, above. As with the driver, the read and write qini t struc
tures are shared among all the modules opened from this fmodsw entry (see
figure 11-2.)

Then, ~next values are set and modified so that the module is interposed
between the Stream head and the driver or module previously connected to the
head. Finally, the module open procedure (located via qini t) is called. Unlike
open () ,no other module or driver open procedure is called.

Each push of a module is independent, even in the same Stream. If the same
module is pushed more than once onto a Stream, there will be multiple
occurrences of that module in the Stream. The total number of pushable modules
that may be contained on anyone Stream is limited by the kernel parameter
NSTRPUSH (see the SunOS STREAMS Topics chapter).

An ioctl () I_POP (see the streamio (4) man page) system call (pop)
removes the module immediately below the Stream head. The pop calls the
module close procedure. On return from the module close, any messages left on
the module's message queues are freed (deallocated). Then, STREAMS con
nects the Stream head to the component previously below the popped module
and deallocates the module's two queue_t structures. I_POP enables a user
process to dynamically alter the configuration of a Stream by pushing and pop
ping modules as required. For example, a module may be removed or a new one
inserted below a module. In the latter case, the original module is popped and
pushed back after the new module has been pushed.

An I POP cannot be used on a driver.

The last close () system call to a STREAMS file dismantles the Stream. Dis
mantling consists of popping any modules on the Stream, closing the driver and
closing the file. Before a module is popped by close () , it may delay to allow
any messages on the write message queue of the module to be drained by module
processing. IfO_NDELAY [see open (2)] is clear, close () will wait up to
15 seconds for each module to drain If 0_ NDELA Y is set, the pop is performed
immediately. close () will also wait for the driver's write queue to drain.
Messages can remain queued, for example, if flow control (see Other Facilities,
in the Introduction to STREAMS). is inhibiting execution of the write QU~UE.
When all modules are popped and any wait for the driver to drain is completed,
the driver close routine is called. On return from the driver close, any messages
left on the driver's message queues are freed, and the queue_t and header

Revision A, of 9 May 1988

NOTE

11.3. Modules

Module Declarations

NOTE

Chapter 11 - STREAMS Module and Driver Programming 243

structures are deallocated.

STREAMS frees only the messages contained on a message queue. Any messages
used internally by the driver or module must be freed by the driver or module
close procedure.

Finally, the file is closed.

A module and driver will contain, as a minimum, declarations of the following
fonn:

iinclude <sys/types.h>
iinclude <sys/stream.h>
iinclude <sys/param.h>

/ * required in all modules and drivers * /
/ * required in all modules and drivers * /

static struct module info rminfo = {O,"mod",O,INFPSZ,O,O};
static struct module info wminfo = {O,"mod",O,INFPSZ,O,O};
static int modopen(), modrput(), modwput(), modclose();

static struct qinit rinit =
modrput, NULL, modopen, modclose, NULL, &rminfo, NULL

} ;

static struct qinit winit =
modwput, NULL, NULL, NULL, NULL, &wminfo, NULL

} ;

struct streamtab modinfo = { &rinit, &winit, NULL, NULL };

The contents of these declarations are constructed for the null module example in
this section. This module perfonns no processing: Its only purpose is to show
linkage of a module into the system. The descriptions in this section are general
to all STREAMS modules and drivers unless they specifically reference the
example.

The declarations shown are: the header set; the read and write QUEUE (rminfo
and wminfo) module_info structures (see figure 11-2); the module open,
read-put, write-put and close procedures; the read and write (rinit and winit)
qini t structures; and the streamtab structure.

The minimum header set for modules and drivers is type s . hand s t r earn. h.
par am. h contains definitions for NULL and other values for STREAMS
modules and drivers as shown in the Accessible Symbols and Functions section
of the Supplementary STREAMS Material chapter.

Configuring a STREAMS module or driver (see the SunOS STREAMS Topics
chapter) does not require any procedures to be externally accessible, only
streamtab. The streamtab structure name must be the prefix used in
configuring, appended with "info."

Revision A, of 9 May 1988

244 Writing STREAMS Device Drivers

As described in the previous section, streamtab contains qini t values for
the read and write QUEUEs, pointing to a module _info and an optional
module stat structure. The two required structures, shown in figure 11-2),
are these:

struct qinit {

} ;

int (*qi-putp) ();
int (*qi_srvp) ();
int (*qi_qopen) ();
int (*qi_qclose) ();
int (*qi_qadmin) ();
struct module info
struct module stat

struct module info
ushort mi idnum; -
char *mi_idname;
short mi_minpsz;
short mi_maxpsz;
short mi_hiwat;
ushort mi lowat;

} ;

/ * put procedure * /
/ * service procedure * /
/ * called on each open or a push * /
/ * called on last close or a pop * /
/ * reserved for future use * /
qi_minfo; / information structure */
*qi _ msta t; / * optional statistics structure *

/ * module ID number * /
/ * module name */
/ * min packet size accepted, for developer use */
/ * max packet size accepted, for developer use */
/ * hi-water mark,/or flow control * /
/* lo-water mark,/or flow control * /

qini t contains the QUEUE procedures. All modules and drivers with the same
streamtab (i.e., the same fmodsw or cdevsw entry) point to the same
upstream and downstream qini t structure(s}. The structure is meant to be
software read-only, as any changes to it affect all instantiations of that module in
all Streams. Pointers to the open and close procedures must be contained in the
read qinit. These fields are ignored in the write side. The example has no ser
vice procedure on the read or write side.

module info contains identification and limit values. All modules and
drivers with the same streamtab point to the same upstream and downstream
module_info structure(s). As with qinit, this structure is intended to be
software read-only. However, the four limit values are copied to queue _ t (see
the Message Queues and Service Procedures section). where they are
modifiable. In the example, the flow control high and low water marks (see the
Drivers section). are zero since there are no service procedures and messages are
not queued in the module.

Three names are associated with a module: the character string in fmodsw; the
prefix for streamtab, used in configuring the module; and the module name
field in the module info structure. The module name value used in the
I_PUSH or other STREAMS ioctl () commands is contained in fmodsw.
Each module ID and module name should be unique in the system. The module
ID is currently used only in logging and tracing (see Other Facilities, in the
-Introduction to STREAMS). For the example in this section, the module ID is
zero.

Minimum and maximum packet size are intended to limit the total number of
characters contained in all (if any) of the M _DATA blocks in each message

Revision A, of 9 May 1988

Module Procedures

Chapter 11- STREAMS Module and Driver Programming 245

passed to this QUEUE. These limits are advisory except for the Stream head.
For certain system calls that write to a Stream, the Stream head will observe the
packet sizes set in the write QUEUE of the module immediately below it. Other
wise, the use of packet size is developer dependent. In the example, INFPSZ
indicates unlimited size on the read (input) side.

module_stat is optional, intended for future use. Currently, there is no
STREAMS support for statistical information gathering. The structure is
described in Kernel Structures in the Supplementary STREAMS Material chapter.

The null module procedures are as follows:

static int modopen(q, dev, flag, sflag)
queue _ t *q; / * pointer to read queue * /
dev _ t dev; / * major/minor device number -- zero for modules * /
in t flag; / * file open jlags -- zero for modules * /
int sflag; / * stream openjlags * /

/ * return success * /
return 0;

static int modwput (q, mp) /* write put procedure *1
queue _ t *q; / * pointer to the write queue * /
mblk t *mp; / * message pointer * /

put next (q, mp); / * pass message through * /

static int modrput (q, mp) 1* readputprocedure */
queue _ t *q; / * pointer to the read queue * I
mblk t *mp; / * message pointer * /

putnext(q, mp); /*passmessagethrough */

static int modclose(q, flag)
queue _ t *q; / * pointer to the read queue * /
int flag; / * file openjlags - zero for modules * /

The form and arguments of these four procedures are the same in all modules and
all drivers. Modules and drivers can be used in multiple Streams and their pro
cedures must be reentrant.

modopen () illustrates the open call arguments and return value. The argu
ments are the read queue pointer (q), the major/minor device number (dev, in
drivers only), the file open flags (flag, defined in sys/ file. h), and the
Stream open flag (sflag). For a module, the value of flag and dev are
always zero. The Stream open flag can take on the following values:

Revision A, of 9 May 1988

246 Writing STREAMS Device Drivers

Module and Driver
Environment

STREAMS driver and module put
procedures and service procedures
have no user context. They cannot
access the user structure of a pro
cess and must not sleep.

11.4. Messages

LBMODOPEN
nonnal module open

LBO
nonnal driver open (see the Drivers section).

LBCLONEOPEN
clone driver open (see the Complete Driver section).

The return value from open is >= 0 for success and OPENF AIL for error. The
open procedure is called on the first I_PUSH and on all subsequent open ()
calls to the same Stream. During a push, a return value of OPENF AIL causes the
I PUSH to fail and the module to be removed from the Stream. If OPENF AIL is
returned by a module during an open () call, the open () fails, but the Stream
remains intact. For example, it can be returned by a module/driver that only
wishes to be opened by a superuser:

if (!suser()) return OPENFAIL;

In the example, modopen () simply returns successfully. modrput () and
modwput () illustrate the common interface to put procedures. The arguments
are the read or write queue _ t pointer, as appropriate, and the message pointer.
The put procedure in the appropriate side of the QUEUE is called when a mes
sage is passed from upstream or downstream. The put procedure has no return
value. In the example, no message processing is perfonned. All messages are
forwarded using the putnext () macro (see Utilities in the Supplementary
STREAMS Material chapter. putnext () calls the put procedure of the next
QUEUE in the proper direction.

The close procedure is only called on an I_POP oron the last close {} call of
the Stream (see the last two sections of the (see the last two sections of Streams
Mechanism). The arguments are the read queue_t pointer and the file open
flags as in modopen (). For a module, the value of flag is always zero. There
is no return value. In the example, modclose () does nothing.

User context is not generally available to STREAMS module procedures and
drivers. The exception is during execution of the open and close routines.
Dri ver and module open and close routines have user context and may access the
user structure (defined in user. h, see Accessible Symbols and Functions in
the Supplementary STREAMS Material) chapter. These routines are allowed to
sleep, but must always return to the caller. That is, if they sleep, it must be at
priority <= PZERO, or with PCATCH set in the sleep priority. (A process which
is sleeping at priority > PZERO and is sent a signal via kill (2) , never returns
from the sleep call. Instead, the system call is aborted.)

Revision A, of 9 May 1988

Message Format

Chapter 11 - STREAMS Module and Driver Programming 247

Messages are the means of communication within a Stream. A message contains
data or information identified by one of 18 message types (see Message Types in
the Supplementary STREAMS Material chapter. Messages may be generated by
a driver, a module, or the Stream head. The contents of certain message types
can be transferred between a process and a Stream by use of system calls.
STREAMS maintains its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message block is
a linked triplet, two structures and a variable length buffer block. The structures
aremsgb (rnblk_t), the message block, and datab (db1k_t), the data block:

struct msgb {
struct msgb
struct msgb
struct msgb
unsigned char
unsigned char
struct datab

} ;

*b _next; / * next message on queue * /
*b yrev; / * previous message on queue * /
*b _con t ; / * next message block of message * /
*b _ rpt r ; / * first unread byte in buffer * /
*b _ wpt r ; / * first unwritten byte in buffer * /
b_datap; / data block * /

typedef struct msgb mblk_t;

struct datab {
struct datab *db_freep; / * used internally * /
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

} ;

* db _ ba se ; / * first byte of buffer * * /
*db_1im; /*lastbyte+1ofbuffer */
db _ re f ; / * count of messages pointing to this block* /
db _type; / * message type * /
db _ clas s ; / * used internally * /

typedef struct datab dblk_t;

mb1k_ t is used to link messages on a message queue, link the blocks in a mes
sage and manage the reading and writing of the associated buffer. b _ rpt rand
b _ wptr are used to locate the data currently contained in the buffer. As shown
in figure 11-3, mblk_t points to the data block of the triplet. The data block
contains the message type, buffer limits and control variables. STREAMS allo
cates message buffer blocks of varying sizes (see below). db_bas e and
db _1 im are the fixed beginning and end (+ 1) of the buffer.

A message consists of one or more linked message blocks. Multiple message
blocks in a message can occur, for example, because of buffer size limitations, or
as the result of processing that expands the message. When a message is com
posed of multiple message blocks, the type associated with the first message
block determines the message type, regardless of the types of the attached mes
sage blocks.

~~sun ~ microsystems
Revision A, of 9 May 1988

248 Writing STREAMS Device Drivers

Figure 11-3 Message Form and Linkage

I
I

queue I

<- - - - ...
header mblk t

mblk t

mblk t

Message
1

data

block

(type)

data

block

b next

byrev mblk t

mblk t

rnblk t

Message
2

b next
- - - - - = - - - - - - -:

data

block

(type)

\
~-r-~ \

I

*
\

\

~

A message may occur singly, as when it is processed by a put procedure, or it
may be linked on the message queue in a QUEUE, generally waiting to be pro
cessed by the service procedure. Message 1, as shown in figure 11-3, links to
message 2. In the first message on a queue, b _prev points back to the header in
the QUEUE. The last b_next points to the tail.

Note that a data block in message 1 is shared between message 1 and another
message. Multiple message blocks can point to the same data block to conserve
storage and to avoid copying overhead. For example, the same data block, with
associated buffer, may be referenced in two messages, from separate modules
that implement separate protocol levels. (Figure 11-3 illustrates the concept, but
data blocks would not typically be shared by messages on the same queue). The
buffer can be retransmitted, if required by errors or timeouts, from either protocol
level without replicating the data. Data block sharing is accomplished by means
of a utility routine (see dupmsg () in the Utilities section of the Supplementary
STREAMS Material chapter. STREAMS maintains a count of the message
blocks sharing a data block in the db _ re f field.

STREAMS provides utility routines and macros, specified in the Utilities section
of the Supplementary STREAMS Material chapter, to assist in managing mes
sages and message queues, and to assist in other areas of module and driver
development. A utility should always be used when operating on a message
queue or accessing the message storage pool.

~\sun ~ microsystems
Revision A, of 9 May 1988

Message Generation and
Reception

Filter Module Declarations

Chapter 11 - STREAMS Module and Driver Programming 249

As discussed in the Introduction to STREAMS, most message types can be gen
erated by modules and drivers. A few are reserved for the Stream head. The
most commonly used types are M_DATA, MYROTO and M_PCPROTO.
These, and certain other message types, can also be passed between a process and
the topmost module in a Stream, with the same message boundary alignment
maintained on both sides of the kernel. This allows a user process to function, to
some degree, as a module above the Stream and maintain a service interface (see
the Service Interface section). M _PROTO and M _PCPROTO messages are
intended to carry service interface information among modules, drivers and user
processes. Some message types can only be used within a Stream and cannot be
sent or received from user level.

As discussed previously, modules and drivers do not interact directly with any
system calls except open () and close (). The Stream head handles all mes
sage translation and passing. Message transfer between process and Stream head
can occur in different forms. For example, M _ DATA, M _PROTO or
M _ PCPROTO messages can be transferred in their direct form by getmsg (2)
and putmsg (2) system calls (see the Service Interface section). Alternatively,
a write () causes one or more M_DATA messages to be created from the data
buffer supplied in the call. M _ DATA messages received from downstream at the
Stream head will be consumed by read (2) and copied into the user buffer. As
another example, M _ SIG causes the Stream head to send a signal to a process
(see the Advanced Topics section).

Any module or driver can send any message type in either direction on a Stream.
However, based on their intended use in STREAMS and their treatment by the
Stream head, certain message types can be categorized as upstream, downstream
or bidirectional. M _DATA, M _PROTO or M _ PCPROTO messages, for exam
ple, can be sent in both directions. Other message types are intended to be sent
upstream to be processed only by the Stream head. Downstream messages are
silently discarded if received by the Stream head.

The module shown below, crmod, is an asymmetric filter. On the write side,
newline is converted to carriage return followed by newline. On the read side, no
conversion is done. The declarations are essentially the same as the null module
of the preceding section:

Revision A, of 9 May 1988

250 Writing STREAMS Device Drivers

bappend () Subroutine

/ * Simple filter - converts newline -> carriage return, newline * /

finclude "sys/types.h"
#include "sys/param.h"
finclude "sys/stream.h"

static struct module_info minfo = {O,"crmod",O,INFPSZ,O,O};

static int modopen(), modrput(), modwput(), modclose();
static struct qinit rinit = {

modrput, NULL, modopen, modclose, NULL, &minfo, NULL
} ;

static struct qinit win it =
modwput, NULL, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab crmdinfo = { &rinit, &winit, NULL, NULL };

Note that, in contrast to the null module example, a single module_info struc
ture is shared by the read and write sides.

modopen (), modrput () and modclose () are the same as in the null
module of the preceding section.

The module makes use of a subroutine, bappend () , which appends a character
to a message block:

/*
* Append a character to a message block.
* If (*bpp) is null, it will allocate a new block
* Returns 0 when the message block is full, 1 otherwise
*/

#define MODBLKSZ 128 / * size of message blocks * /

static bappend(bpp, ch)
mblk_t **bpp;
int Chi

mblk t *bp;

if (bp = *bpp)
if (bp->b_wptr >= bp->b_datap->db_Iim)

return 0;
else if
«*bpp = bp allocb(MODBLKSZ, BPRI_MED»

return 1;
*bp->b_wptr++ Chi
return 1;

NULL)

4}\sun ,~ microsystems
Revision A, of9 May 1988

Message Allocation

Put Procedure

Chapter 11 - STREAMS Module and Driver Programming 251

bappend () receives a pointer to a message block pointer and a character as
arguments. If a message block is supplied (*bpp ! = NULL), bappend ()
checks if there is room for more data in the block. If not, it fails. If there is no
message block, a block of at least MODBLKSZ is allocated through allocb (),
described below.

If the allocb () fails, bappend () returns success, silently discarding the
character. This mayor may not be acceptable. For tty-type devices, it is gen
erallyaccepted. If the original message block is not full or the allocb () is
successful, bappend () stores the character in the block.

The allocb () utility (see the Utilities section of the Supplementary STREAMS
Material chapter) is used to allocate message storage from the STREAMS pool.
Its declaration is:

mblk_t *allocb(buffersize, priority)

allocb () will return a message block containing a buffer of at least the size
requested, providing there is a buffer available at the message pool priority
specified, or it will return NULL on failure. Three levels of message pool prior
ity can be specified (see the Utilities section of the Supplementary STREAMS
Material chapter). Priority generally does not affect allocb () until the pool
approaches depletion. In this case, for the same internal level of pool resources,
allocb () will fail low priority requests while granting higher priority requests.
This allows module and driver developers to use STREAMS memory resources
to their best advantage and for the common good of the system. Message pool
priority does not affect subsequent handling of the message by STREAMS.
BPRI _HI is intended for special situations. This transmission of urgent messages
relating to time sensitive events, conditions that could result in loss of state, loss
of data or inability to recover. BPRI_MED might be used, for example, when
requesting an M _ DATA buffer for holding input, and BPRI _ LO might be used
for an output buffer (presuming the output data can wait in user space). The
Stream head uses BPRI _ LO to allocate messages to contain output from a pro
cess (e.g., by write () orputmsgO). Note that allocb () will always return
a message of type M _ DATA. The type may then be changed if required.
b_rptr and b_wptr are set to db_base (see mblk_t and dblk_t).

allocb () may return a buffer larger than the size requested. In bappend () ,
if the message block contents were intended to be limited to MODBLKSZ, a
check would have to be inserted.

If allocb () indicates buffers are not available, the bufcall () utility can be
used to defer processing in the module or the driver until a buffer becomes avail
able (buf call () is described in the Advanced Topics section).

modwput () processes all the message blocks in any downstream data (type

Revision A, of 9 May 1988

252 Writing STREAMS Device Drivers

M _ DATA) messages.

/ * Write side put procedure * /
static modwput(q, mp)
queue_t *q;
mblk_t *mp;
{

switch (mp->b_datap->db_type) {
default:

putnext (q, mp); /* Don't do these,pass them along * /
break;

case M_DATA: {
register mblk_t *bp;
struct mblk_t *nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b_cont)
while (bp->b_rptr < bp->b_wptr) {

if (*bp->b_rptr == '\n')
if (!bappend(&nbp, '\r'»

goto newblk;
if (!bappend(&nbp, *bp->b_rptr»

goto newblk;

bp->b_rptr++;
continue;

newblk:
if (nmp == NULL)

nmp = nbp;

/ * link message block to tail of nmp * /
else linkb(nmp, nbp);

nbp = NULL;

if (nmp == NULL)
nmp = nbp;

else linkb(nmp, nbp);
f reemsg (mp); / * de-allocate message * /
if (nmp)

put next (q, nmp);
break;

Data messages are scanned and filtered. modwput () copies the. original mes
sage into a new block(s), modifying as it copies. nbp points to the current new
message block. nmp points to the new message being formed as multiple
M _ DATA message blocks. The outer forO loop goes through each message
block of the original message. The inner whileO loop goes through each byte .

• ~sun ~ microsystems
Revision A, of 9 May 1988

11.5. Message Queues and
Service Procedures

The queue _ t Structure

Chapter 11 - STREAMS Module and Driver Programming 253

bappend () is used to add characters to the current or new block. Ifbap
pend () fails, the current new block is full. If nmp is NULL, nmp is pointed at
the new block. If nmp is non-NULL, the new block is linked to the end of nrnp
by use of the linkb utility.

At the end of the loops, the final new block is linked to nmp. The original mes
sage (all message blocks) is returned to the pool by freemsg (). If a new mes
sage exists, it is sent downstream.

Service procedures, message queues and priority, and basic flow control are all
intertwined in STREAMS. A QUEUE will generally not use its message queue
if there is no service procedure in the QUEUE. The function of a service pro
cedure is to process messages on its queue. Message priority and flow control
are associated with message queues.

The operation of a QUEUE revolves around the queue _ t structure:

struct queue {

} ;

struct qinit *CLqinfo; I*proceduresandlimitsforqueue *1
struct msgb *CLfirst; 1* head of message queuefor this QUEUE * I
struct msgb *CLlast; l*tailofmessagequeueforthisQUEUE */
struct queue *CL next; I * next QUEUE in Stream * I
struct queue *CLlink; I * link to next QUEUE on scheduling queue * /
caddr t qJ'tr; / * to private data structure * I
ushort ~ count; I * weighted count of characters on message queue * /
ushort CL flag; / * QUEUE state * /
sho rt CL minps z ; I * min packet size accepted by this QUEUE * I
short ~maxps z; / * max packet size accepted by this QUEUE * I
ushort CL hiwat; / * message queue high water mark, for flqw control * I
ushort ~lowat; / * message queue low water mark, for flow control * /

typedef struct queue queue_t;

As described previously, two of these structures fonn a module. When a
queue _ t pair is allocated, their contents are zero unless specifically initialized.
The following fields are initialized by STREAMS:

o ~qinfo - from streamtab

o ~minpsz, ~rnaxpsz, ~hiwat, ~lowat - from module_info
Copying values from module_info allows them to be changed in the
queue_t without modifying the template (i.e., streamtab and
module_info) values.

~ count is used in flow control calculations and is the weighted sum of the
sizes of the buffer blocks currently on the message queue. The actual number of
bytes in the buffer is not used. This is done to encourage the use of the smallest
buffer that will hold the data intended to be placed in the buffer .

• \sun ~ microsystems
Revision A, of 9 May 1988

254 Writing STREAMS Device Drivers

Service Procedures

A service routine must never sleep
and it has no user context. It must
always return to its caller.

Message Queues and Message
Priority

Put procedures are generally required in pushable modules. Service procedures
are optional. The general processing flow when both procedures are present is as
follows: A message is received by the put procedure in a QUEUE, where some
processing may be performed on the message. The put procedure transfers the
message to the service procedure by use of the putq () utility. putq () places
the message on the tail (see CLlast in queue_t) of the message queue. Then,
putq () will generally schedule (using CLlink in queue_t) the QUEUE for
execution by the STREAMS scheduler following all other QUEUEs currently
scheduled. After some indeterminate delay (intended to be short), the scheduler
calls the service procedure. The service procedure gets the first message
(CLfirst) from the message queue with the getq () utility. The service pro
cedure processes the message and passes it to the put procedure of the next
QUEUE with putnext (). The service procedure gets the next message and
processes it. This FIFO processing continues until the queue is empty or flow
control blocks further processing. The service procedure returns to caller.

If no processing is required in the put procedure, the procedure does not have to
be explicitly declared. Rather, putq () can be placed in the qini t structure
declaration for the appropriate QUEUE side, to queue the message for the service
procedure, e.g.:

static struct qinit win it = { putq, modwsrv, ... };

More typically, put procedures will, as a minimum, process priority messages
(see below) to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is delayed
processing. When a service procedure is used in a module, the module developer
is implying that there are other, more time-sensitive activities to be performed
elsewhere in this Stream, in other Streams, or in the system in general. The pres
ence of a service procedure is mandatory if the flow control mechanism is to be
utilized by the QUEUE.

The delay for STREAMS to call a service procedure will vary with implementa
tion and system activity. However, once the service procedure is scheduled, it is
guaranteed to be called before user level activity is resumed.

Also see the Put and Service Procedures section of the Introduction to
STREAMS.

Figure 11-3 depicts a message queue linked by b _next and b yrev pointers.
As discussed in the Introduction to STREAMS, message queues grow when the
STREAMS scheduler is delayed from calling a service procedure because of sys
tem activity, or when the procedure is blocked by flow control. When it is called
by the scheduler, the service procedure processes enqueued messages in FIFO
order. However, certain conditions require that the associated message (e.g., an
M _ERROR) reach its Stream destination as rapidly as possible. STREAMS does
this by assigning all message types to one of the two levels of message queueing
priority-priority and ordinary. As shown in figure Message Queue Priority,
when a message is queued, the putq () utility will place priority messages at the
head of the message queue, FIFO within their order of queueing.

~\sun ~ microsystems
Revision A, of9 May 1988

Figure 11-4

Flow Control

Chapter 11 - STREAMS Module and Driver Programming 255

Message Queue Priority

QUEUE Message queue

::;:'::r::: ·1 I I I I I I I I I I I 1
: Priority: Ordinary :
E ~E ~

I Messages I Messages I

Head Tail

Priority messages are not subject to flow control. When they are queued by
putq () ,the associated QUEUE is always scheduled (in the same manner as any
QUEUE; following all other QUEUEs currently scheduled). When the service
procedure is called by the scheduler, the procedure uses getq () to retrieve the
first message on queue, which will be a priority message, if present. Service pro
cedures must be implemented to act on priority messages immediately (see next
section). The above mechanisms-priority message queueing, absence of flow
control and immediate processing by a procedure-result in rapid transport of
priority messages between the originating and destination components in the
Stream.

The priority level for each message type is shown in the Message Types section
of the Supplementary STREAMS Material chapter. Message queue management
utilities are provided for use in service procedures (see the Utilities section of the
Supplementary STREAMS Material chapter).

The elements of flow control are discussed in the Other Facilities, section of the
Introduction to STREAMS. Flow control is only used in a service procedure.
Module and driver coding should observe the following guidelines for message
priority. Priority messages, determined by the type of the first block in the mes
sage,

(bp->b_datap->db_type > QPCTL),

are not subject to flow control. They should be processed immediately and for
warded, as appropriate.

For ordinary messages, flow control must be tested before any processing is per
formed. The canput () utility determines if the forward path from the QUEUE
is blocked by flow control. The manner in which STREAMS determines flow
control status for modules and drivers is described under Driver Flow Control in
the Drivers section.

This is the general processing for flow control: Retrieve the message at the head
of the queue with get q (). Determine if the type is priority and not to be pro
cessed here. If both are true, pass the message to the put procedure of the follow
ing QUEUE with putnext (). If the type is ordinary, use canput () to deter
mine if messages can be sent onward. If canput () indicates messages should

Revision A, of9 May 1988

256 Writing STREAMS Device Drivers

Example

not be forwarded, put the message back on the queue with putbq () and return
from the procedure. In all other cases, process the message.

The canonical representation of this processing within a service procedure is as
follows:

while (getq != NULL)
if (priority message I I canput)

process message
put next

else
putbq
return

NOTE A service procedure must process all messages on its queue unless flow control
prevents this.

When an ordinary message is enqueued by putq (), putq () will cause the ser
vice procedure to be scheduled only if the queue was previously empty. If there
are messages on the queue, putq () presumes the service procedure is blocked
by flow control and the procedure will be automatically rescheduled by
STREAMS when the block is removed. If the service procedure cannot complete
processing as a result of conditions other than flow control (e.g., no buffers), it
must assure it will return later (e.g., by use of bufcall () , see the Advanced
Topics section) or it must discard all messages on queue. If this is not done,
STREAMS will never schedule the service procedure to be run unless the
QUEUE's put procedure queues a priority message with putq ().

pu tbq () replaces messages at the beginning of the appropriate section of the
message queue in accordance with their message type priority (see figure Mes
sage Queue Priority). This might not be the same position at which the message
was retrieved by the preceding getq (). A subsequent getq () might return a
different message.

The filter module example of the Messages section is here modified to have a ser
vice procedure. The declarations from the example are unchanged except for the
following lines (changes are shown in bold):

'include "sys/stropts.h"

static struct module_info minfo = {
0, "ps_crmod", 0, INFPSZ, 512,128

} ;

static int modopen(), modrput(), modwput();
static int modwsrvO, modclose () ;

static struct qinit winit = {

modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL
} ;

Revision A, of 9 May 1988

Procedures

Chapter 11 - STREAMS Module and Driver Programming 257

stropt s . h is generally intended for user level. However, it includes
definitions of flush message options common to user level, modules and drivers.
module_info now includes the flow control high- and low-watermarks (512
and 128) for the write QUEUR(even though the same module_info is used
on the read QUEUE side, the read side has no service procedure so flow control
is not used). qini t now contains the service procedure pointer. modopen () ,
modclose () and modrput () (read side put procedure) are unchanged from
the Modules and Messages sections. The bappend () subroutine is also
unchanged from the Messages section.

The write side put procedures and the beginning of the service procedure are
shown below:

static int modwput(q, mp)
queue_t *q;
register mblk_t *mp;
{

if (mp->b_datap->db_type > QPCTL &&
mp->b_datap->db_type != M_FLUSH)

putnext(q, mp);
else
putq (q, mp); / * Put it on the queue * /

static int modwsrv(q) queue_t *q; {
mblk t *mp;

while «mp getq(q)!= NULL) {
switch (mp->b_datap->db_type)

default:
/ * always putnext priority messages * /
if (mp->b_datap->db_type > QPCTL I I
canput(q->~next» {

putnext (q, mp);
continue;

else {
putbq (q, mp);
return;

case M FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
putnext(q, mp);
continue;

ps _ crmod performs a similar function to crmod of the previous section, but it
uses a service routine.

Revision A, of9 May 1988

258 Writing STREAMS Device Drivers

modwput () , the write put procedure, switches on the message type. Priority
messages that are not type M_FLUSH are putnext () to avoid scheduling.
The others are queued for the service procedure. An M_FLUSH message is a
request to remove all messages on one or both QUEUEs. It can be processed in
the put or service procedure.

modwsrv () is the write service procedure. It takes a single argument, a pointer
to the write queue _ t. modwsrv () processes only one priority message,
M _FLUSH. All other priority messages are passed through. Actually, no other
priority messages should reach modwsrv () . The check is included to show the
canonical form when priority messages are queued by the put procedure.

For an M_FLUSH message, modwsrv () checks the first data byte. If
FLUSHW (defined in stropts . h) is set in the byte, the write queue is flushed
by use of flushq (). flushq () takes two arguments, the queue pointer and a
flag. The flag indicates what should be flushed, data messages (FLUSHDATA)
or everything (FLUSHALL). In this case, data includes M_DATA, M_PROTO,
and M _PCPROTO messages. The choice of what types of messages to flush is
module specific. As a general rule, FLUSHDAT A should be used.

Ordinary messages will be returned to the queue if

canput(q->~next)

returns false, indicating the downstream path is blocked.

In the remaining part ofmodwsrv (), M_DATA messages are processed simi
larly to the previous example:

case M DATA:
mblk t *nbp NULL;
mblk_t *next;

if (!canput(q->~next»
putbq(q, mp);
return;

/ * Filter data, appending to queue * /
for (; mp ! = NULL; mp next)

while (mp->b_rptr < mp->b_wptr)

if (*mp->b_rptr == '\n')
if (!bappend(&nbp, '\r'»

goto push;
if (!bappend(&nbp, *mp->b_rptr»

goto push;
mp->b_rptr++;
continue;

push:
putnext(q, nbp);
nbp = NULL;
if (!canput(q->~next»

if (mp->b_rptr >= mp->b_wptr)

Revision At of 9 May 1988

11.6. Drivers

Overview of Drivers

Chapter 11 - STREAMS Module and Driver Programming 259

next = mp->b_conti
freeb(mp) ;
mp=next;

if (mp)
putbq (q, mp);

return;

next = rnp->b_cont;
freeb (mp) ;

if (nbp)
putnext (q, nbp);

The differences in M _ DATA processing between this and the previous example
relate to the manner in which the new messages are forwarded and flow control.
For the purpose of demonstrating alternative means of processing messages, this
version creates individual new messages rather than a single message containing
multiple message blocks. When a new message block is full, it is immediately
forwarded with putnext () rather than being linked into a single, large mes
sage (as was done in the previous example). This alternative may not be desir
able because message boundaries will be altered and because of the additional
overhead of handling and scheduling multiple messages.

When the filter processing is performed (following pushO), flow control is
checked (canputO) after, rather than before, each new message is forwarded.
This is done because there is no provision to hold the new message until the
QUEUE becomes unblocked. If the downstream path is blocked, the remaining
part of the original message is returned to the queue. Otherwise, processing con
tinues.

Another difference between the two examples is that each message block of the
original message is returned to the pool with freeb () when its processing is
completed.

This section describes the organization of a STREAMS driver, and discusses
some of the processing typically required in drivers. Certain elements of driver
flow control are discussed. Procedures for handling user ioctls, common to
modules and drivers, are described.

As discussed under Stream Construction in the Streams Mechanism section,
dri ver and module organization are very similar. The call interfaces to all the
driver procedures are identical to module interfaces and driver procedures must
be reentrant. As described under Environment in the Modules section, the driver

Revision A, of 9 May 1988

260 Writing STREAMS Device Drivers

put and service procedures have no user environme~t and cannot sleep. Other
than with open () and close () , a driver interfaces with a user process by
messages, and indirectly, through flow control.

There are two significant differences between modules and drivers. First, a dev
ice driver must also be accessible from an interrupt as well as from the Stream,
and second, a driver can have multiple Streams connected to it. Multiple connec
tions occur when more than one minor device uses the same driver and in the
case of multiplexors (see the Multiplexing section). However, these particular
differences are not recognized by the STREAMS mechanism: They are handled
by developer-provided code included in the driver procedures.

Figure 11-5 shows multiple Streams (corresponding to minor devices), to a com
mon driver. This depiction of two Streams connected to a single driver is some
what misleading. These are really two distinct Streams opened from the same
cdevsw (Le., same major device). Consequently, they have the same stream
tab and the same driver procedures. Modules opened from the same fmodsw
might be depicted similarly if they had any reason to be cognizant, as do drivers,
of common resources or alternate instantiations.

Multiple instantiations (minor devices) of the same driver are handled during the
initial open for each device. Typically, the queue _ t address is stored in a
driver-private structure indexed by the minor device number. The structure is
typically pointed at by <LPtr (see the Message Queues and Service Procedures
section). When the messages are received by the QUEUE, the calls to the driver
put and service procedures pass the address of the queue _ t, allowing the pro
cedures to detennine the associated device.

In addition to these differences, a driver is always at the end of a Stream. As a
result, drivers must include standard processing for certain message types that a
module might simply be able to pass to the next component .

• ~sun ~ microsystems
Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 261

Figure 11-5 Device Driver Streams

Driver Flow Control

Module(s)

Port
o

Dri ver Procedures
and

Interrupt Code

Module(s)

Port
1

The same utilities (described in the Message Queues and Service Procedures sec
tion), and mechanisms used for module flow control are used by drivers. How
ever, they are typically used in a different manner in drivers, because a driver
generally does not have a service procedure. The developer sets flow control
values (mi_hiwat and mi_lowat) in the write side module_info structure,
which STREAMS will copy into ~hiwat and ~lowat in the queue_t
structure of the QUEUE. A device driver typically has no write service pro
cedure, but does maintain a write message queue. When a message is passed to
the driver write side put procedure, the procedure will detennine if device output
is in progress. In the event output is busy, the put procedure cannot immediately
send the message and calls the putq () utility (see the Utilities section of the
Supplementary STREAMS Material chapter) to queue the message. (Note that
the driver might have elected to queue the message in all cases.) put q () recog
nizes the absence of a service procedure and does not schedule the QUEUE.

When the message is queued, putq () increments the value of ~count
(approximately the enqueued character count, see the beginning of the Message
Queues and Service Procedures section) by the size of the message and compares
the result against the driver's write high water limit (~hiwat) value. If the
count exceeds ~hiwat, putq () will set the internal FULL (see Flow Control
in the Introduction to STREAMS). indicator for the driver write QUEUE. This
will cause messages from upstream to be halted (canput () retorns FALSE)
until the write queue count reaches ~ Iowa t. The driver messages waiting to
be output are dequeued by the driver output interrupt routine with getq () ,
which decrements the count. If the resulting count is below ~lowat, getq ()

~\sun ~ microsystems
Revision A, of 9 May 1988

262 Writing STREAMS Device Drivers

Driver Programming

Driver Declarations

will back-enable any upstream QUEUE that had been blocked. The above
STREAMS processing also applies to modules on both write and read sides of
the Stream.

Device drivers typically discard input when unable to send it to a user process.
However, STREAMS allows flow control to be used on the driver read side, pos
sibly to handle temporary upstream blocks. This is described in the Advanced
Topics section in the Advanced Flow Control section.

To some extent, a driver or module can control when its upstream transmission
will become blocked. Control is available through the M _ SETOPTS message
(see the Advanced Topics section, here, and the Message Types section of the
Supplementary STREAMS Material) to modify the Stream head read side flow
control limits.

The example below shows how a simple interrupt-per-character line printer
driver could be written. The driver is unidirectional and has no read side pro
cessing. It demonstrates some differences between module and driver program
ming, including the following:

Open handling
A driver is passed a minor device number or is asked to select one (see next
section).

Flush handling
A driver must loop M _FLUSH messages back upstream.

loctl handling
A driver must nak ioctl messages it does not understand. This is discussed
under Driver and Module Ioctls, below. Write side flow control is also illus
trated as described above.

The driver declarations are as follows:

/ * Simple line printer driver. * /

=ltinclude "sys/types.h"
=ltinclude "sys/param.h"
=ltinclude "sys/sysmacros.h"
=ltifdef u3b2
=ltinclude "sys/psw.h"
=ltinclude "sys/pcb.h"
=ltendif
=ltinclude "sys/stream.h"
=ltinclude "sys/stropts.h"
=ltinclude "sys/dir.h"
=ltinclude "sys/signal.h"
=ltinclude "sys/user.h"
=ltinclude "sys/errno.h"

/ * required/or user.h * /
/ * required/or user.h * /

/ * required/or user.h * /
/ * required/or user.h * /

static struct module info minfo
0, "lp" , 0, INFPSZ, 150, 50

} ;

Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 263

static int lpopen(), lpclose(), lpwput();

static struct qinit rinit = {
NULL, NULL, lpopen, lpclose, NULL, &minfo, NULL

} ;

static struct qinit winit = {
lpwput, NULL, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab lpinfo = { &rinit, &winit, NULL, NULL };

#define SET_OPTIONS «'1'«8) 11) / * really must be in a .h file * /
1*
* This is a private data structure ,one per minor device number.
*1
struct 1p {

short flags; /*.flags--seebelow */
mb1k _ t *msg; / * current message being output * /
queue _ t * qpt r ; / * back pointer to write queue * /

} ;

/ * Flags bits * /
#define BUSY 1 /*deviceisrunningandinterruptispending */

extern struct 1p 1p_1p[]; /*perdevicelpstructurearray */
extern int lp_cnt; /* number of valid minor devices */

As noted for modules in the Modules section, configuring a STREAMS driver
does not require the driver procedures to be externally accessible; only
streamtab must be. All STREAMS driver procedures would typically be
declared static.

There is no read side put or service procedure. The flow control limits for use on
the write side are 50 and 150 characters. The private Ip structure is indexed by
the minor device number and contains these elements:

flags
A set of flags. Only one bit is used: BUSY indicates that output is active
and a device interrupt is pending.

msg
A pointer to the current message being output.

qptr
A back pointer to the write queue. This is needed to find the write queue

~\sun ~~ microsystems
Revision A, of 9 May 1988

264 Writing STREAMS Device Drivers

Driver Open

during interrupt processing.

The driver open, lpopen (), has the same interface as the module open:

static int lpopen(q, dev, flag, sflag)
queue _ t *q / * read queue * /
{

struct lp *lp;

/ * Check if non-driver open * /
if (sflag)

return OPENFAIL;

/ * Dev is major/minor * /
dev = minor(dev);
if (dev >= lp_cnt)

return OPENFAIL;

/ * Check if open already. qytr is assigned below * /
if (q->qytr) {

u. u _error = EBUSY; / * only 1 user of the printer at a time * /
return OPENFAIL;

Ip = &lp_lp[dev];
Ip->qptr = WR(q);
q->qytr = (char *) Ip;
WR(q)->qytr = (char *) lp;
return dev;

The Stream flag, sflag, must have the value 0, indicating a normal driver open.
dev holds both the major and minor device numbers for this port. After check
ing sflag, the open flag, lpopen () extracts the minor device from de v,
using the minor () macro defined in sysmacros. h.

NOTE The use o/major devices, minor devices and the minor () macro may be
machine dependent.

The minor device number selects a printer and must be less than lp _ cnt.

The next check, if (q->qyt r) ... , determines if this printer is already
open. In this case, EBUSY is returned to avoid merging printouts from multiple
users. qyt r is a driver/module private data pointer. It can be used by the
driver for any purpose and is initialized to zero by STREAMS. In this example,
the driver sets the value of ~ptr, in both the read and write queue_t struc
tures, to point to a private data structure for the minor device, lp _lp [dev] .

WR is one of three QUEUE pointer macros. As discussed in the Stream Con
struction section, there are no physical pointers between QUEUEs, and these
macros (see Utilities in the Supplementary STREAMS Material section) generate
the pointer. WR(q) generates the write pointer from the read pointer, RD (q)

~~sun ~ microsystems
Revision A, of 9 May 1988

Driver Processing Procedures

Chapter 11 - STREAMS Module and Driver Programming 265

generates the read pointer from the write pointer and OTHER(q) generates the
mate pointer from either.

This example only has a write put procedure:

static int Ipwput(q, mp)
queue _ t *q; / * write queue * /
register mblk_t *mp; /* message pointer * /
{

register struct lp *lp;
int s;

lp = (struct lp *)q->~tr;

switch (mp->b_datap->db_type)
default:

freemsg(mp);
break;

case M FLUSH:
/ * Canonical flush handling * /
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
s = splS () ;
/ * also flush lp->msg since it is logically
* at the head of the write queue * /
if (lp->msg) {

freemsg(lp->msg);
lp->msg = NULL;

splx(s);

if (*mp->b_rptr & FLUSHR) {
flushq(RD(q), FLUSHDATA);
*mp->b_rptr &= -FLUSHW;
qreply(q, mp);

else
freemsg (mp) ;

break;

case M IOCTL:
case M DATA:

putq (q, mp);
s = splS();
if (! (lp->flags & BUSY»

lpout(lp);
splx(s);

.~ sun Revision A, of 9 May 1988 ~ microsystems

266 Writing STREAMS Device Drivers

Driver Flush Handling

Driver Interrupt

The write put procedure, Ipwput (), illustrates driver M_FLUSH handling:
Note that all drivers are expected to incorporate this flush handling. If FLUSHW
is set, the write message queue is flushed, and also (for this example) the leading
message (1 P - >ms g). s P 15 is used to protect the critical code, assuming the
device interrupts at level 5. If FLUSHR is set, the read queue is flushed, the
FLUSHW bit is cleared, and the message is sent upstream using qreply (). If
FLUSHR is not set, the message is discarded.

The Stream head always perfonns the following actions on flush requests
received on the read side from downstream. If FLUSHR is set, messages waiting
to be sent to user space are flushed. IfFLUSHW is set, the Stream head clears
the FLUSHR bit and sends the M _FLUSH message downstream. In this manner,
a single M _FLUSH message sent from the driver can reach all QUEUEs in a
Stream. A module must send two M _FLUSH messages to have the same affect.

Ipwput () enqueues M_DATA and M_IOCTL (see the Driver and Module
Ioctls section, below) messages and, if the device is not busy, starts output by
calling Ipout (). Messages types that are not recognized are discarded.

Ipintr () is the driver interrupt routine:

/ * Device interrupt routine. * /

Ipintr(dev)
int dev; / * minor device number of Ip * /
{

register struct Ip *lp;

Ip = &lp_lp[dev];
if (! (lp->flags & BUSY» {

printf("lp: unexpected interrupt\n");
return;

Ip->flags &= -BUSY;
Ipout(lp);

/ * Start output to device - used by put procedure and driver * /

Ipout(lp)
register struct Ip *lp;
{

register mblk_t *bp;
queue_t *q;

q = Ip->qptr;
loop:

if «bp = Ip->msg) == NULL) {
if «bp = getq (q» == NULL)

return;
if (bp->b_datap->db_type

Ipdoioctl(lp, bp);

Revision A, of 9 May 1988

Driver and Module loctls

Chapter 11 - STREAMS Module and Driver Programming 267

goto loop;

lp->msg = bPi

if (bp->b rptr >= bp->b_wptr)
bp = lp->msg->b_cont;
lp->msg->b_cont = NULL;
freeb(lp->msg) ;
lp->msg = bPi
goto loop;

lpoutchar(lp, *bp->b_rptr++);
lp->flags 1= BUSY;

Ipout () simply takes a character from the queue and sends it to the printer.
The processing is logically similar to the service procedure in the Message
Queues and Service Procedures section. For convenience, the message currently
being output is stored in p->rns g.

Two mythical routines need to be supplied:

Ipoutchar
send a character to the printer and interrupt when complete

Ipsetopt
set the printer interface options

Drivers and modules interface with ioctl (2) system calls through messages.
Almost all STREAMS generic ioctl () s (see the streamio (4) man page)
go no further than the Stream head. The capability to send an ioctl () down
stream, is similar to the ioctl () of character device drivers, is provided by the
I_STR ioctl. The Stream head processes an I_STR by constructing an
M _ IOCTL message (see Message Types in the Supplementary STREAMS
Material chapter) from data provided in the call, and sends that message down
stream. In addition, since i 0 c t 1 () codes in SunOS inel ude the size of the
parameter used for the ioctl () as well as an indication of whether this param
eter is to be copied to or from the user process, the 1_ STR ioctl need not be
used if the parameter contains 255 or fewer bytes as is of a fixed size.

The user process that issued the ioctl () is blocked until a module or driver
responds with either an M_IOCACK (ack) or M_IOCNAK (nak) message, or
until the request "times out" after a user specified interval. The STREAMS
module or dri ver that generates an ack can also return infonnation to the process.
If the Stream head does not receive one of these messages in the specified time,
the ioctl () call fails.

A module that receives an unrecognized M_IOCTL message should pass it on
unchanged. A driver that receives an unrecognized M _ IOCTL should nak it.

.~sun ~ microsystems
Revision A, of 9 May 1988

268 Writing STREAMS Device Drivers

Ipout () traps M_IOCTL messages and calls Ipdoioctl () to process them:

Ipdoioctl(lp, mp)
struct lp *lp;
mblk_t *mp;
{

struct iocblk *iocp;
queue_t *q;

q = lp->qptr;

/ * 1 st block contains iocblk structure * /
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {
case SET OPTIONS:

/ * Count should be exactly one short's worth * /
if (iocp->ioc_count != sizeof(short»

goto iocnak;
/ * Actual data is in 2nd message block * /
Ipsetopt(lp, *(short *)mp->b_cont->b_rptr);

/ * ACK the ioctl * /
mp->b_datap->db_type
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:

/ * NAK the ioctl * /
mp->b_datap->db_type
qreply(q, mp);

M_IOCACK;

M_IOCNAK;

Ipdoioctl () illustrates M_IOCfL processing: The first part also applies to
modules. An M_IOCTL message contains a struct iocblk in its first
block. The first block is followed by zero or more M _ DATA blocks. The
optional M _ DAT A blocks typically contain any user supplied data.

The fonn of an iocblk is as follows:

struct iocblk {

} ;

int
ushort
ushort
uint

ioc_cmd;
ioc_uid;
ioc_gid;
ioc_id;

uint ioc_count;
int ioc_error;
int ioc_rval;

~~sun ~ microsystems

/ * ioctl command type * /
/ * effective uid of user * /
/ * effective gid of user * /
/ * ioctl id * /
/ * count of bytes in data field * f
/ * error code * /
/ * return value * /

Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 269

ioc _ cmd contains the command supplied by the user. In this example, only one
command is recognized, SET_OPTIONS. ioc_count contains the number of
user supplied data bytes. For this example, it must equal the size of a short (2
bytes). The user data is sent directly to the printer interface using
Ipsetopt (). Next, the M_IOCTL message is changed to type M_IOCACK
and the ioc count field is set to zero to indicate that no data is to be returned
to the user. Finally, the message is sent upstream using qr ep 1 y (). If
ioc_count was left non-zero, the Stream head would copy that many bytes
from the 2nd - Nth message blocks into the user buffer.

If the M _ IOCTL message is not understood or in error for any reason, the driver
must set the type to M_IOCNAK and send the message upstream. No data can
be sent to a user in this case. The Stream head will cause the ioctl () call to
fail with the error number EINV AL. The driver has the option of setting
ioc error to an alternate error number if desired.

NOTE ioc_error can be set to a non-zero value by bothMJOCACK and

Driver Close

11.7. Complete Driver

Cloning

M IOCNAK. This will cause that value to be returned as an error number to the
process that sent the ioctl () .

The driver close clears any message being output. Any messages left on the mes
sage queue will be automatically removed by STREAMS.

static int Ipclose(q)
queue_t *qi 1* read queue */
{

struct Ip *lPi
int Si

lp = (struct Ip *) q->~ptri
/ * Free message, queue is automatically flushed by STREAMS * /
s = sp15()i
if (lp->msg) {

freemsg(lp->msg) i

Ip->msg = NULL;

splx(s) i

The clone mechanism has been developed as a convenience. It allows a user to
open a driver without specifying the minor device. When a Stream is opened, a
flag indicating a clone open is tested by the driver open routine. If the flag is set,
the driver returns an unused minor device number. The clone driver (see the
clone (4) man page) is a system dependent STREAMS pseudo driver.

Knowledge of clone driver implementation is not required to use it. A descrip
tion is presented here for completeness and to assist developers who must

~~sun ~ microsystems
Revision A, of9 May 1988

270 Writing STREAMS Device Drivers

Loop-Around Driver

implement their own clone driver. A clone-able device has a device number in
which the major number corresponds to the clone driver and the minor number
corresponds to the target driver. When an open (2) system call is made to the
associated (STREAMS) file, open () causes a new Stream to be opened to the
clone driver and the open procedure in clone to be called with dev set to
clone/target. The clone open procedure uses minor (dev) to locate the
cdevsw entry of the target driver. Then, clone modifies the contents of the
newly instantiated Stream queue _ ts to those of the target driver and calls the
target driver open procedure with the Stream flag set to CLONEOPEN. The tar
get driver open responds to the CLONEOPEN by returning an unused minor dev
ice number. When the clone open receives the returned target driver minor
device number, it allocates a new inode (which has no name in the file system)
and associates the minor device number with the inode.

The loop-around driver is a pseudo-driver that loops data from one open Stream
to another open Stream. The user processes see the associated files as a full
duplex pipe. The Streams are not physically linked. The driver is a simple mul
tiplexor (see the next section), which passes messages from one Stream's write
QUEUE to the other Stream's read QUEUE.

To create a pipe, a process opens two Streams, obtains the minor device number
associated with one of the returned file descriptors, and sends the device number
in an ioctl (2) to the other Stream. For each open () , the driver open places
the passed queue _ t pointer in a driver interconnection table, indexed by the
device number. When the driver later receives the I_STR as an M_IOCfL mes
sage, it uses the device number to locate the other Stream's interconnection table
entry, and stores the appropriate queue _ t pointers in both of the Streams' inter
connection table entries.

Subsequently, when messages other than M_IOCTL or M_FLUSH are received
by the driver on either Stream's write side, the messages are switched to the read
QUEUE following the driver on the other Stream's read side. The resultant logi
cal connection is shown in figure Loop Around Streams. Flow control between
the two Streams must be handled by special code since STREAMS will not
automatically propagate flow control information between two Streams that are
not physically interconnected.

~\'sun ~ microsystems
Revision A, of 9 May 1988

Figure 11-6

Chapter II-STREAMS Module and Driver Programming 271

Loop Around Streams

CLONE/

~ Module(s)

The declarations for the driver are:

1*
* Loop around driver
*1

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/user.h>
#include <sys/errno.h>

CLONE/

Module(s)

static struct module info minfo = {
0, "loop", 0, INFPSZ, 512, 128

} ;

static int loopopen(), loopclose(), loopwput();
static int loopwsrv(), looprsrv();

static struct qinit rinit = {
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL

} ;

static struct qinit win it = {
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab loopinfo { &rinit, &winit, NULL, NULL };

Revision A, of 9 May 1988

272 Writing STREAMS Device Drivers

struct loop
queue _ t *qptr; I * back pointer to write queue * I
queue _ t * oqpt r ; I * pointer to connected read queue * I

} ;

*define LOOP SET _IOW(l, 1, int) I*shouldbeina.hfile */

extern struct loop loop_loop[];
extern int loop_cnt;

The loop structure contains the interconnection infonnation for a pair of
Streams. loop_loop is indexed by the minor device number. When a Stream
is opened to the driver, the address of the corresponding loop_loop element is
placed in <Lpt r (private data structure pointer) of the read and write side
queue_ts. Since STREAMS clears <LPtr when the queue_t is allocated, a
NULL value of <Lptr indicates an initial open () . loop_loop is used to
verify that this Stream is connected to another open Stream.

The open procedure includes canonical clone processing which enables a single
file system node to yield a new minor device/inode each time the driver is
opened:

static int loopopen(q, dev, flag, sflag)
queue_t *q;
{

struct loop *loop;

1*
* If CLONEOPEN, pick a minor device number to use.
* Otherwise, check the minor device range.
*1
if (sflag == CLONEOPEN) {

else

for (dev = 0; dev < loop_cnt; dev++)
if (loop_loop [dev] .qptr == NULL)

break;

dev = rninor(dev);

if (dev >= loop_cnt)
return OPENFAIL; / * default = ENXIO * I

I * Setup data structures * I
if (q->qytr) 1* already open * I

return dev;

loop = &loop_loop[dev];
WR(q)->qytr = (char *) loop;
q->~tr = (char *) loop;
loop->qptr = WR(q);

1*

.sun
~ microsystems

Revision A, of 9 May 1988

Write Put Procedure

Chapter 11 - STREAMS Module and Driver Programming 273

* The return value is the minor device.
* For CLONEOPEN case, this will be used for
* newly allocated inode
*/
return dev;

In loopopen () , sflag can be CLONEOPEN, indicating that the driver
should pick a minor device (Le., the user does not care which minor device is
used). In this case, the driver scans its private loop_loop data structure to find
an unused minor device number. If sflag has not been set to CLONEOPEN,
the passed-in minor device is used.

The return value is the minor device number. In the CLONEOPEN case, this
value will be used by the clone driver for the newly allocated inode and will
then be passed to the user.

Since the messages are switched to the read QUEUE following the other
Stream's read side, the driver needs a put procedure only on its write side:

static int loopwput(q, mp)
queue_t *q;
mblk_t *mpi
{

register struct loop *lOOPi

loop = (struct loop *)q->~tri

switch (mp->b_datap->db_type)
case M_IOCTL: {

struct iocblk *iOCPi
int errori

iocp = (struct iocblk *)mp->b_rptri
switch (iocp->ioc_cmd) {
case LOOP_SET: {

int to i / * other minor device * /
/*
* Sanity check. ioc _count contains the amount of
* user supplied data which must equal the size of an into
*/

if (iocp->ioc_count != sizeof(int)) {
error = EINVALi
goto iocnaki

/ * fetch other dey from 2nd message block * /

to = *(int *)mp->b_cont->b_rptri

Revision A, of9 May 1988

274 Writing STREAMS Device Drivers

~\sun ~~ microsystems

1*
* More sanity checks. The minor must be in range, open already.
* Also, this device and the other one must be disconnected.
*1

if (to >= loop_cnt I I to < 0 I I
! loop_loop [to] .qptr) {
error = ENXIO;
goto iocnak;

if (loop->oqptr I I loop_loop [to] .oqptr) {
error = EBUSY;
goto iocnak;

1*
* Cross connect streams via the loop structures
*1

loop->oqptr = RD(loop_loop[to] .qptr);
loop_loop [to] .oqptr = RD(q);

1*
* Return successful ioctl. Set ioc _count
* to zero, since there is return no data.
*1

mp->b_datap->db_type
iocp->ioc_count = 0;
qreply (q, mp);
break;

M_IOCACK;

default:
error

iocnak:
1*

EINVAL;

* Bad ioctl. Setting ioc _error causes the
* ioctl call to return that particular errno.
* By default, ioctl will return EINVAL onfailure
*1
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = error; /*setreturnederrno */
qreply(q, mp);

break;

Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 275

loopwput () shows another use of an ioct 1 () call (see Driver and Module
[oetls in the Drivers section, below. The driver supports a LOOP_SET value of
ioc_cmd in the iocblk of the M_IOCTL message. LOOP_SET instructs the
driver to connect the current open Stream to the Stream indicated in the message.
The second block of the M _ IOCTL message holds an integer that specifies the
minor device number of the Stream to connect to.

The driver performs several sanity checks: Does the second block have the
proper amount of data? Is the "to" device in range? Is the "to" device open? Is
the current Stream disconnected? Is the "to" Stream disconnected?

If everything checks out, the read queue _ t pointers for the two Streams are
stored in the respective oqptr fields. This cross-connects the two Streams
indirectly, via loop_loop.

Canonical flush handling is incorporated in the put procedure:

case M FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, 0);
if (*mp->b_rptr & FLUSHR)

flushq(RD(q), 0);
*mp->b_rptr &= -FLUSHW;
qreply(q, mp);

else
freemsg(mp);

break;
default:

1*
* If this stream isn't connected, send an M _ERROR upstream.
*1
if (loop->oqptr == NULL) {

putctll(RD(q)->~next, M_ERROR, ENXIO);
freemsg (mp) ;
break;

putq(q, mp);

Finally, loopwput () enqueues all other messages (e.g., M_DATA or
M _PROTO) for processing by its service procedure. A check is made to see if
the Stream is connected. If not, an M _ERROR is sent upstream to the Stream
head (see below).

putctll () and putctl () (see below) are utilities that allocate a non-data
(i.e., not M_DATA, M_PROTO orM_PCPROTO) type message, place one byte
in the message (forputctllO) and call the put procedure of the specified
QUEUE (see Utilities in the Supplementary STREAMS Material "chapter).

Revision A, of 9 May 1988

276 Writing STREAMS Device Drivers

Stream Head Messages

Service Procedures

Certain message types (see Message Types in the Supplementary STREAMS
Material chapter) can be sent upstream by drivers and modules to the Stream
head where they are translated into actions detectable by user process(es). The
messages may also modify the state of the Stream head:

M ERROR
Causes the Stream head to lock up. Message transmission between Stream
and user processes is terminated. All subsequent system calls except
c 10 se (2) and po 11 (2) will fail. Also causes an M _FLUSH clearing all
message queues to be sent downstream by the Stream head.

M BANGUP
Terminates input from a user process to the Stream. All subsequent system
calls that would send messages downstream will fail. Once the Stream head
read message queue is empty, EOF is returned on reads. Can also result in
SIGHUP signal to the process group.

M_SIG/M_PCSIG
Causes a specified signal to be sent to a process (see the Advanced Topics
section).

Service procedures are required on both the write and read sides for purposes of
flow control:

static int loopwsrv(q)
register queue_t *qi
{

mblk_t *mpi
register struct loop *lOOPi

loop = (struct loop *)q->~tr;

while «mp = getq(q» != NULL) {

1*
* Check ifwe can put the message up the other stream read queue
*1

if (mp->b_datap->db_type <= QPCTL &&
!canput(loop->oqptr->~next» {

putbq (q, mp) i / * read side is blocked * /
breaki

/ * send message * /
/ * To queue following other stream read queue * /

putnext(loop->oqptr, mp)i

static int looprsrv(q)
queue_t *qi

Revision A, of 9 May 1988

Close

Chapter 11 - STREAMS Module and Driver Programming 277

/ * Enter only when "back enabled" by flow control * /

struct loop *loop;

loop = (struct loop *)q->~tr;
if (loop->oqptr == NULL)

return;

/ * manually enable write service procedure * /

qenable(WR(loop->oqptr»;

The write service procedure, loopwsrv () , takes on the canonical fonn (see the
Message Queues and Service Procedures section) with a difference. The
QUEUE being written to is not downstream, but upstream (found via oqptr) on
the other Stream.

In this case, there is no read side put procedure so the read service procedure,
looprsrv () , is not scheduled by an associated put procedure, as has been
done previously. looprsrv () is scheduled only by being back-enabled when
its upstream becomes unstuck from flow control blockage. The purpose of the
procedure is to re-enable the writer (loopwsrvO) by using oqptr to find the
related queue_to loopwsrv () can not be directly back-enabled by
STREAMS because there is no direct queue_t linkage between the two
Streams. Note that no message ever gets queued to the read service procedure.
Messages are kept on the write side so that flow control can propagate up to the
Stream head. There is a defensive check to see if the cross-connect has broken.
qenable () schedules the write side of the other Stream.

loopclose () breaks the connection between the Streams.

static int loopclose(q)
queue_t *q;
{

register struct loop *loop;

loop = (struct loop *)q->~tr;
loop->qptr = NULL;

/*
* If we are connected to another stream, break the
* linkage, and send a hangup message.
* The hangup message causes the stream head to fail writes,
* allow the queued data to be read completely, and then
* return EOF on subsequent reads.
*/

if (loop->oqptr) {
«struct loop *)loop->oqptr->~tr)->qptr NULL;

+ ~t!! Revision A, of 9 May 1988

278 Writing STREAMS Device Drivers

«struct loop *)loop->oqptr->~tr)->oqptr
putctl(loop->oqptr->~next, M_HANGUP);
loop->oqptr = NULL;

NULL;

loopclose () sends an M_HANGUPmessage (see above) up the connected
Stream to the Stream head.

NOTE This driver can be implemented much more cleanly by actually linking the
~ next pointers of the queue _ t pairs of the two Streams.

11.8. Multiplexing

Multiplexing Configurations This section describes how STREAMS multiplexing configurations are created
and discusses multiplexing drivers. A STREAMS multiplexor is a pseudo-driver
with multiple Streams connected to it. The primary function of the driver is to
switch messages among the connected Streams. Multiplexor configurations are
created from user level by system calls. The Other Facilities, section of the
Introduction to STREAMS contains the required introduction to STREAMS mul
tiplexing.

STREAMS related system calls are used to set up the "plumbing," or Stream
interconnections, for multiplexing pseudo-drivers. The subset of these calls that
allows a user to connect (and disconnect) Streams below a pseudo-driver is
referred to as the multiplexing facility. This type of connection will be referred
to as a I-to-M, or lower, multiplexor configuration This configuration must
always contain a multiplexing pseudo-driver, which is recognized by STREAMS
as having special characteristics.

Multiple Streams can be connected above a driver by use of open (2) calls.
This was done for the loop-around driver of the previous section and for the
driver handling multiple minor devices in the Drivers section. There is no differ
ence between the connections to these drivers, only the functions performed by
the driver are different. In the multiplexing case, the driver routes data between
multiple Streams. In the device driver case, the driver routes data between user
processes and associated physical ports. Multiplexing with Streams connected
above will be referred to as an N-to-l, or upper, multiplexor. STREAMS does
not provide any facilities beyond open () and close (2) to connect or discon
nect upper Streams for multiplexing purposes.

From the driver's perspective, upper and lower configurations differ only in the
way they are initially connected to the driver. The implementation requirements
are the same: route the data and handle flow control. All multiplexor drivers
require special developer-provided software to perform the multiplexing data
routing and to handle flow control. STREAMS does not directly support flow
control among multiple Streams.

M-to-N multiplexing configurations are implemented by using both of the above
mechanisms in a driver. Complex multiplexing trees can be created by cascading

.~sun
• microsystems

Revision A, of 9 May 1988

Connecting Lower Streams

Chapter 11 - STREAMS Module and Driver Programming 279

multiplexing Streams below one another.

As discussed in the Drivers section, the multiple Streams that represent minor
devices are actually distinct Streams in which the driver keeps track of each
Stream attached to it. The Streams are not really connected to their common
driver. The same is true for STREAMS multiplexors of any configuration. The
multiplexed Streams are distinct and the driver must be implemented to do most
of the work. As stated above, the only difference between configurations is the
manner of connecting and disconnecting. Only lower connections have use of
the multiplexing facility.

A lower multiplexor is connected as follows: The initial open () to a multiplex
ing driver creates a Stream, as in any other driver. As usual, open () uses the
first two streamtab structure entries (see Opening a Stream in the Streams
Mechanism section) to create the driver QUEUEs. At this point, the only distin
guishing characteristic of this Stream are non-NULL entries in the streamtab
st_mux [rw] init (mux) fields:

struct streamtab
struct qinit
struct qinit
struct qinit
struct qinit
char

} ;

st_rdinit; / defines read QUEUE */
*st_wrinit; / * defines write QUEUE * /
* s t _muxr ini t ; / * for multiplexing drivers only * /
* s t _ muxw in it; / * for multiplexing drivers only * /
**st_modlist; / * list of modules to be pushed * /

These fields are ignored by the open () (see the rightmost Stream in figure
Internet Multiplexor Before Connecting). Any other Stream subsequently
opened to this driver will have the same streamtab and thereby the same mux
fields.

Next, another file is opened to create a (soon to be) lower Stream. The driver for
the lower Stream is typically a device driver (see the leftmost Stream in figure
Internet Multiplexor Before Connecting). This Stream has no distinguishing
characteristics. It can include any driver compatible with the multiplexor. Any
modules required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with an
I_LINK ioctl () call (see the streamio (4) man page). As shown in figure
11-1, all Stream components are constructed in a similar manner. The Stream
head points to the stream-he ad-routines as its procedures (known via its
queue_t). An I_LINK to the upper Stream, referencing the lower Stream,
causes STREAMS to modify the contents of the Stream head in the lower
Stream. The pointers to the stream-he ad-routines , and other values, in the
Stream head are replaced with those contained in the mux fields of the multiplex
ing driver's streamtab. Changing the stream-head-routines on the lower
Stream means that all subsequent messages sent upstream by the·lower Stream's
driver will, ultimately, be passed to the put procedure designated in
st_ffiuxrinit, the multiplexing driver. The I_LINK also establishes this
upper Stream as the control Stream for this lower Stream. STREAMS

~~sun ~ microsystems
Revision A, of9 May 1988

280 Writing STREAMS Device Drivers

remembers the relationship between these two Streams until the upper Stream is
closed, or the lower Stream is unlinked.

Finally, the Stream head sends to the multiplexing driver an M_IOCTL message
with ioc _ crnd set to I_LINK (see discussions of the iocb1k structure in the
Drivers section, above, and in the Kernel Structures section of Supplementary
STREAMS Material chapter). The M_DATA part of the M_IOCTL contains a
linkb1k structure:

struct Iinkbik
queue_t *I_qtop;
queue_t *I_qbot;
int I_index;

} ;

/ * lowest level write queue of upper stream * /
/ * highest level write queue of lower stream * /
/ * system-unique index for lower stream. * /

The multiplexing driver stores information from the 1 inkb1k in private storage
and returns an M _IOCACK message (ack). 1_ index is returned to the process
requesting the I_LINK. This value can be used later by the process to disconnect
this Stream, as described below. linkblk contents are further discussed below.

An I_LINK is required for each lower Stream connected to the driver. Addi
tional upper Streams can be connected to the multiplexing driver by open ()
calls. Any message type can be sent from a lower Stream to user process(es)
along any of the upper Streams. The upper Stream(s) provides the only interface
between the user process(es) and the multiplexor.

Note that no direct data structure linkage is established for the linked Streams.
The <L next pointers of the lower Stream still appear to connect with a Stream
head. Messages flowing upstream from a lower driver (a device driver or another
multiplexor) will enter the multiplexing driver (Le., Stream head) put procedure
with 1_ qbot as the queue _ t value. The multiplexing driver has to route the
messages to the appropriate upper (or lower) Stream. Similarly, a message com
ing downstream from user space on the control, or any other, upper Stream has to
be processed and routed, if required, by the driver.

Also note that the lower Stream (see the headers and file descriptors in figure
Internet Multiplexor After Connecting) is no longer accessible from user space.
This causes all system calls to the lower Stream to return EINV AL, with the
exception of close (). This is why all modules have to be in place before the
lower Stream is linked to the multiplexing driver. As a general rule, the lower
Stream file should be closed after it is linked (see following section). This does
not disturb the multiplexing configuration.

Finally, note that the absence of direct linkage between the upper and lower
Streams means that STREAMS flow control has to be handled by special code in
the multiplexing driver. The flow control mechanism cannot see across the
driver.

In general, multiplexing drivers should be implemented so that new Streams can
be dynamically connected to, and existing Streams disconnected from, the driver
without interfering with its ongoing operation. The number of Streams that can
be connected to a multiplexor is developer dependent. However, there is a

Revision A, of 9 May 1988

Disconnecting Lower Streams

Multiplexor Construction
Example

Chapter 11 - STREAMS Module and Driver Programming 281

system limit, NMUXLINK, to the number of Streams that can be linked in the
system.

Dismantling a lower multiplexor is accomplished by disconnecting (unlinking)
the lower Streams. Unlinking can be initiated in three ways: an I_UNLINK
ioctl () referencing a specific Stream, an I_UNLINK indicating all lower
Streams, or the last close () (i.e., causes the associated file to be closed) of the
control Stream. As in the link, an unlink sends a linkblk structure to the
dri ver in an M _ IOCTL message. The I_UNLINK call, which unlinks a single
Stream, uses the I_index value returned in the I_LINK to specify the lower
Stream to be unlinked. The latter two calls must designate a file corresponding
to a control Stream which causes all the lower Streams that were previously
linked by this control Stream to be unlinked. However, the driver sees a series of
individual unlinks.

If the file descriptor for a lower Stream was previously closed, a subsequent
unlink will automatically close the Stream. Otherwise, the lower Stream must be
closed by close () following the unlink. STREAMS will automatically dis
mantle all cascaded multiplexors (below other multiplexing Streams) if their con
trolling Stream is closed. An I_UNLINK will leave lower, cascaded multiplex
ing Streams intact unless the Stream file descriptor was previously closed.

This section describes an example of multiplexor construction and usage. A
multiplexing configuration similar to the Internet figure in the Other Facilities
section of the Introduction to STREAMS is discussed. Figure Internet Multi
plexor Before Connecting shows the Streams before their connection to create the
multiplexing configuration of figure Internet Multiplexor After Connecting. Mul
tiple upper and lower Streams interface to the multiplexor driver. The user
processes of figure Internet Multiplexor After Connecting are not shown in figure
Internet Multiplexor Before Connecting.

Revision A, of 9 May 1988

282 Writing STREAMS Device Drivers

Figure 11-7 Internet Multiplexor Before Connecting

r--
I Setup and Supervisory Process
I

~ I-fi~e-~~~ ~ -1-1-~l: $:' ~ -'-1- ~;e -~s~.-~ -1-'- ~~e ~s~~ -'-1--~:!e~c~ _.
.

Stream Head

QUEU~Pr. A

Stream Head

QUEU~Pr. B

Stream Head

QUEU~Pr. C

802.2
Driver

Stream Head

QUEU~Pair

Stream Head

QUEU~Pair

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other
nodes. IP (Internet Protocol) is a multiplexor driver. IP switches datagrams
among the various nodes or sends them upstream to a user(s) in the system. The
Net modules would typically provide a convergence function which matches the
IP and device driver interface.

Figure Internet Multiplexor Before Connecting depicts only a portion of the full,
larger Stream. As shown in the dotted rectangle above the IP multiplexor, there
generally would be an upper TCP multiplexor, additional modules and, possibly,
additional multiplexors in the Stream. Multiplexors could also be cascaded
below the IP driver if the device drivers were replaced by multiplexor drivers .

• ~sun ~ microsystems
Revision A, of9 May 1988

Figure 11-8

Chapter 11- STREAMS Module and Driver Programming 283

Internet Multiplexor After Connecting

r---------------------------, U
I Setup and Supervisory I p ser
I Process I rocesses

------ ------ ---~-----4-----------
...... " .'J
: fds : '/\ '/i '/i'

........ ~~.'J

. Upper
~ Multiplexor or
: Module

Internet Protocol
Multiplexor Driver

Streams A, Band C are opened by the process, and modules are pushed as
needed. Two upper Streams are opened to the IP multiplexor. The rightmost
Stream represents multiple Streams, each connected to a process using the net
work. The Stream second from the right provides a direct path to the multiplexor
for supervisory functions. It is the control Stream, leading to a process which
sets up and supervises this configuration. It is always directly connected to the IP
driver. Although not shown, modules can be pushed on the control Stream.

After the Streams are opened, the supervisory process typically transfers routing
information to the IP drivers (and any other multiplexors above the IP), and ini
tializes the links. As each link becomes operational, its Stream is connected
below the IP driver. If a more complex multiplexing configuration is required,
the IP multiplexor Stream with all its connected links can be connected below
another multiplexor driver.

As shown in figure Internet Multiplexor After Connecting, the file descriptors for
the lower device driver Streams are left dangling. The primary purpose in creat
ing these Streams was to provide parts for the multiplexor. Those not used for
control and not required for error recovery (by reconnecting them through an
I_UNLINK ioctlO) have no further function. As stated above, these lower
Streams can be closed to free the file descriptor without any effect on the

.~sun ~ microsystems
Revision A, of 9 May 1988

284 Writing STREAMS Device Drivers

Multiplexing Driver

multiplexor. A setup process installing a configuration containing a large
number of drivers should do this to avoid running out of file descriptors.

This section contains an example of a multiplexing driver that implements an N
to-l configuration. This configuration might be used for terminal windows,
where each transmission to or from the terminal identifies the window. This
resembles a typical device driver, with two differences: the device handling func
tions are performed by a separate driver, connected as a lower Stream, and the
device information (Le., relevant user process) is contained in the input data
rather than in an interrupt call.

Each upper Stream is connected by an open (2). A single lower Stream is
opened and then it is linked by use of the multiplexing facility. This lower
Stream might connect to the tty driver. The implementation of this example is a
foundation for an M to N multiplexor.

As in the loop-around driver, flow control requires the use of standard and special
code, since physical connectivity among the Streams is broken at the driver. Dif
ferent approaches are used for flow control on the lower Stream, for messages
coming upstream from the device driver, and on the upper Streams, for messages
coming downstream from the user processes.

The multiplexor declarations are:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>

static int muxopen(), muxclose(), muxuwput();
static int muxlwsrv(), muxlrput();

static struct module_info info = {
0, "mux", 0, INFPSZ, 512, 128

} ;

static struct qinit urinit = { /* upper read * /
NULL, NULL, muxopen, muxclose, NULL, &info, NULL

} ;

static struct qinit uwinit = { / * upper write */
muxuwput, NULL, NULL, NULL, NULL, &info, NULL

} ;

static struct qinit lrinit = { / * lower read * /
muxlrput, NULL, NULL, NULL, NULL, &info, NULL

} ;

static struct qinit lwinit = { /* lower write * /
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL

} ;

struct streamtab muxinfo =
{&urinit, &uwinit, &lrinit, &lwinit};

Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 285

struct mux {
queue_t *qptr; /* back pointer to read queue */

} ;

extern struct mux mu x_mu x [];
extern int mux_cnt;

queue t *muxbot; / * linked lower queue * /
in t muxe r r ; / * set if error of hang up on lower stream * /

The four streamtab entries correspond to the upper read, upper write, lower
read, and lower write qini t structures. The multiplexing qini t structures
replace those in each (in this case there is only one) lower Stream head after the
I_LINK has completed successfully. In a multiplexing configuration, the pro
cessing performed by the multiplexing driver can be partitioned between the
upper and lower QUEUEs. There must be an upper Stream write, and lower
Stream read, put procedures. In general, only upper write side and lower read
side procedures are used. Application specific flow control requirements might
modify this. If the QUEUE procedures of the opposite upper/lower QUEUE are
not needed, the QUEUE can be skipped over, and the message put to the follow
ingQUEUE.

In the example, the upper read side procedures are not used. The lower Stream
read QUEUE put procedure transfers the message directly to the read QUEUE
upstream from the multiplexor. There is no lower write put procedure because
the upper write put procedure directly feeds the lower write service procedure, as
described below.

The driver uses a private data structure, mux. mux _ mux [dev] points back to
the opened upper read QUEUE. This is used to route messages coming upstream
from the driver to the appropriate upper QUEUE. It is also used to find a free
minor device for a CLONEOPEN driver open case.

Revision A, of 9 May 1988

286 Writing STREAMS Device Drivers

The upper QUEUE open contains the canonical driver open code:

static int muxopen(q, dev, flag, sflag)
queue_t *q;
{

struct mux *mux;

if (sflag == CLONEOPEN)
for (dev = 0; dev < mux_cnt; dev++)

if (mux_mux[dev] .qptr 0)
break;

else
dev = minor(dev);

if (dev >= mux_cnt)
return OPENFAIL;

mux = &mux_mux[dev];
mux->qptr = q;
q->~tr = (char *) mux;
WR(q)->~tr = (char *) mux;
return dev;

muxopen checks for a clone or ordinary open call. It loads ~ptr to point at
the rnux _ rnux[] structure.

The core multiplexor processing is the following: downstream data written to an
upper Stream is queued on the corresponding upper write message queue. This
allows flow control to propagate towards the Stream head for each upper Stream.
However, there is no service procedure on the upper write side. All M _ DAT A
messages from all the upper message queues are ultimately dequeued by the ser
vice procedure on the lower (linked) write side. The upper write Streams are ser
viced in a round-robin fashion by the lower write service procedure. A lower
write service procedure, rather than a write put procedure, is used so that flow
control, coming up from the driver below, may be handled.

On the lower read side, data coming up the lower Stream is passed to the lower
read put procedure. The procedure routes the data to an upper Stream based on
the first byte of the message. This byte holds the minor device number of an
upper Stream. The put procedure handles flow control by testing the upper
Stream at the first upper read QUEUE beyond the driver. That is, the put pro
cedure treats the Stream component above the driver as the next QUEUE .

• \sun ~ microsystems
Revision A, of9 May 1988

Figure 11-9

Upper Write Put Procedure

Chapter 11 - STREAMS Module and Driver Programming 287

Example Multiplexor Configuration

Multiplexor Routines

This is shown (sort of) in figure Example Multiplexor Configuration. Multi
plexor Routines are all the above procedures. Ul and U2 are queue _ t pairs,
each including a write queue _ t pointed at by an 1_ qtop in a 1inkblk (see
the beginning of this section). L is the queue _ t pair which contains the write
queue_t pointed at by l_qbot. Nl and N2 are the modules (or Stream head
or another multiplexing driver) seen by L when read side messages are sent
upstream.

muxuwput, the upper QUEUE write put procedure, traps ioctls, in particular
I LINK and I UNLINK: - -

static int muxuwput(q, mp)
queue_t *q;
mblk t *mp;

int s;
struct mux *muxi

mux = (struct mux *)q->~ptri
switch (mp->b_datap->db_type)
case M_IOCTL: {

struct iocblk *iOCPi
struct linkblk *linkpi

/*

* loctl. Only channel 0 can do ioctls. Two
* calls are recognized: UNK, and UNLINK
*/

if (mux != mux_mux)
goto iocnaki

iocp = (struct iocblk *) mp->b_rptri

Revision A, of 9 May 1988

288 Writing STREAMS Device Drivers

switch (iocp->ioc_cmd)
case I LINK:

1*
* Link. The data contains a linkblk structure
* Remember the bottom queue in muxbot.
*1

if (muxbot != NULL)
goto iocnak;

linkp = (struct linkblk *) mp->b_cont->b_rptr;
muxbot = linkp->l_qbot;
muxerr = 0;
mp->b_datap->db_type
iocp->ioc_count = 0;
qreply(q, mp);
break;

case I UNLINK:
1*

M_IOCACK;

* Unlink. The data contains a linkblk structure.
* Should not fail an unlink. Null out muxbot.
*1

linkp = (struct linkblk *) mp->b_cont->b_rptr;
muxbot = NULL;
mp->b_datap->db_type M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:

/ * fail ioctl * /

mp->b_datap->db_type
qreply(q, mp);

break;

M_IOCNAK;

First, there is a check to enforce that the Stream associated with minor device 0
will be the single, controlling Stream. Ioctls are only accepted on this Stream.
As described previously, a controlling Stream is the one that issues the I_LINK.
Having a single control Stream is a recommended practice. I_LINK and
I_UNLINK include a linkblk structure, described previously, 'containing:

l_qtop
The upper write QUEUE from which the ioctl is coming. It should always
equal q.

~\sun ~ microsystems
Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 289

1._qbot
The new lower write QUEUE. It is the fonner Stream head write QUEUE.
It is of most interest since that is where the multi plexor gets and puts its
data.

1. index
A unique (system wide) identifier for the link. It can be used for routing, or
during selective unlinks, as described above. Since the example only sup
ports a single link, I_index is not used.

For I_LINK, 1_ qbot is saved in muxbot and an ack is generated. From this
point on, until an I_UNLINK occurs, data from upper queues will be routed
through muxbot. Note that when an I_LINK, is received, the la-wer Stream has
already been connected. This allows the driver to send messages downstream to
perfonn any initialization functions. Returning an M _IOCNAK message (nak) in
response to an I _LINK will cause the lower Stream to be disconnected.

The I_UNLINK handling code nulls out rnuxbot and generates an ack. A nak
should not be returned to an I UNLINK. The Stream head assures that the lower
Stream is connected to a multiplexor before sending an I_UNLINK M _IOCTL.

muxuwput handles M_FLUSHmessages as a nonnal driver would:

case M FLUSH:
if (*rnp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
if (*rnp->b_rptr & FLUSHR)

flushq(RD(q), FLUSHDATA);
*rnp->b_rptr &= -FLUSHW;
qreply(q, rnp);

else
freernsg(rnp);

break;
case M DATA:

1*
* Data. Ifwe have no bottom queue --> fail
* Otherwise, queue the data, and invoke the lower
* service procedure.
*1
if (rnuxerr I I muxbot == NULL)

goto bad;
putq (q, rnp); / * place message on upper write message queue * /
qenable (rnuxbot) ; / * lower service write procedure * /
break;

default:
bad:

1*
* Send an error message upstream.
*1
rnp->b_datap->db_type = M_ERROR;
rnp->b_rptr = rnp->b_wptr = rnp->b_datap->db_base;
*rnp->b_wptr++ = EINVAL;
qreply(q, rnp);

Revision A, of9 May 1988

290 Writing STREAMS Device Drivers

Lower QUEUE Write Service
Procedure

]
M _ DATA messages are not placed on the lower write message queue. They are
queued on the upper write message queue. putq () recognizes the absence of
the upper service procedure and does not schedule the QUEUE. Then, the lower
service procedure, muxlwsrv is scheduled with qenable () (see Utilities in
the Supplementary STREAMS Material chapter) to start output. This is similar to
starting output on a device driver. Note that muxuwput can not access
rnuxlwsrv (the lower QUEUE write service procedure, contained in muxbot)
by the conventional STREAMS calls, putq () or putnext () (to a
rnuxlwput). Both calls require that a message be passed, but the messages
remain on the upper Stream.

rnuxlwsrv, the lower (linked) queue write service procedure is scheduled
directly from the upper service procedures. It is also scheduled from the lower
Stream, by being back-enabled when the lower Stream becomes unblocked from
downstream flow control.

static int muxlwsrv(q)
register queue_t *q;
{

register mblk_t *mp, *bp;
register queue_t *nq;

1*
* While lower stream is not blocked, find an upper queue to
* service (get_next _ q) and send one message from it downstream.
*1
while (canput(q->~next»

nq = get_next_q();
if (nq == NULL)

break;
mp = getq (nq) ;
1*
* Prepend the outgoing message with a single byte header
* that indicates the minor device number it came from.
*1
if «bp = allocb(1, BPRI_MED» == NULL)

printf("mux: allocb failed (size 1)\n");
freemsg (mp) ;
continue;

*bp->b_wptr++ = (struct mux *)nq->~tr - mux_mux;
bp->b_cont = mp;
putnext(q, bp);

Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 291

muxlwsrv takes data from the upper queues and puts it out throughmuxbot.
The algorithm used is simple round robin. While we can put to
muxbot->~ next, we select an upper QUEUE (via get_next _ q) and move
a message from it to muxbot. Each message is prepended by a one byte header
that indicates which upper Stream it came from.

Finding messages on upper write queues is handled by get_next _ q () =

/*
* Round-robin scheduling.
* Return next upper queue that needs servicing.
* Returns NULL when no more work needs to be done.
*/

static queue t *
get_next_q ()
{

static int next;
int if start;
register queue_t *q;

start = next;
for (i = next; i < rnux_cnt; i++)

if (q = mux_mux[i] .qptr) {
q = WR(q);

if (q-><Lfirst)
next = i+l;
return q;

for (i = 0; i < start; i++)
if (q = mux_mux[i] .qptr)

q = WR(q);

if (q-><Lfirst)
next = i+l;
return q;

return NULL;

get_next_queue () searches the upper queues in a round robin fashion look
ing for the first one containing a message. It returns the queue _ t pointer or

Revision A, of9 May 1988

292 Writing STREAMS Device Drivers

Lower Read Put Procedure

NULL if there is no work to do.

The lower (linked) queue read put procedure is:

static int muxlrput(q, mp)
queue_t *q;
mblk_t *mp;
{

queue t *uq;
mblk_t *b_cont;
int dev;

switch (mp->b_datap->db_type)
case M FLUSH:

1*
* Flush queues. NOTE: sense of tests is reversed
* since we are acting like a "stream head"
*1

if (*mp->b_rptr & FLUSHR)
flushq(q, 0);

if (*mp->b_rptr & FLUSHW)
*mp->b_rptr &= -FLUSHR;
qreply (q, mp);

else
freemsg (mp) ;

break;

case M ERROR:
case M HANGUP:

muxerr = 1;
freemsg (mp) ;
break;

case M DATA:
1*
* Route message. First byte indicates
* device to send to. No flow control.

*
* Extract and delete device number. If the leading block is
* now empty and more blocks follow, strip the leading block.
* The stream head interprets a leading zero length block
* as an EOF regardless of what follows (sigh).
*1

dev = *mp->b_rptr++;
if (mp->b_rptr == mp->b_wptr &&

(b_cont = mp->b_cont)) {
freeb (mp) ;
mp = b_cont;

Revision A, of 9 May 1988

Chapter 11 - STREAMS Module and Driver Programming 293

/ * Sanity check. Device must be in range * /

if (dev < 0 I I dev >= mux_cnt)
freemsg(mp);
break;

1*
* If upper stream is open and not backed up.
* send the message there. otherwise discard it.
*1

uq = mux_mux[dev] .qptr;
if (uq != NULL && canput(uq->~next»

putnext(uq, mp);
else

freemsg(mp);
break;

default:
freemsg(mp);

muxlrput receives messages from the linked Stream. In this case, it is acting
as a Stream head. It handles M _FLUSH messages. Note the code is reversed
from that of a driver, handling M _FLUSH messages from upstream.

muxlrput also handles M_ERROR and M_HANGUP messages. If one is
received, it locks-up the upper Streams.

M _ DATA messages are routed by looking at the first data byte of the message.
This byte contains the minor device of the upper Stream. If removing this byte
causes the leading block to be empty, and more blocks follow, the block is dis
carded. This is done because the Stream head interprets a leading zero length
block as an EOF [see .L read(2)]. Several sanity checks are made: Does the mes
sage have at least one byte? Is the device in range? Is the upper Stream open?
Is the upper Stream not full?

This mux does not do end-to-end flow control. It is merely a router (like the
Department of Defense's IP protocol). If everything checks out, the message is
put to the proper upper QUEUE. Other.~ise, the message is silently discarded.

The upper Stream close routine simply clears the mux entry so this queue will no

Revision A. of 9 May 1988

294 Writing STREAMS Device Drivers

11.9. Service Interface

Definition

Message Usage

longer be found by get_next _queue () :

1*
* Upper queue close
*1
static int muxclose(q)
queue_t *q;
{

«struct mux *)q->~tr)->qptr NULL;

STREAMS provides the means to implement a service interface between any two
components in a Stream, and between a user process and the topmost module in
the Stream. A service interface is defined at the boundary between a service user
and a service provider. A service interface is a set of primitives and the rules for
the allowable sequences of primitives across the boundary. These rules are typi
cally represented by a state machine. In STREAMS, the service user and pro
vider are implemented in a module, driver, or user process. The primitives are
carried bidirectionally between a service user and provider in M _PROTO and
M _ PCPROTO (generically, PROTO) messages. M _ PCPROTO is the priority
version of M PROTO.

As described in the Message Types section of the Supplementary STREAMS
Material chapter), PROTO messages can be multi-block, with the second
through last blocks of type M _ DATA. The first block in a PROTO message con
tains the control part of the primitive in a form agreed upon by the user and pro
vider and the block is not intended to carry protocol headers. (Although its use is
not recommended, upstream PROTO messages can have multiple PROTO blocks
at the start of the message. getmsg () will compact the blocks into a single
control part when sending to a user process.) The M_DATA block(s) contains
any data part associated with the primitive. The data part may be processed in a
module that receives it, or it may be sent to the next Stream component, along
with any data generated by the module. The contents of PROTO messages and
their allowable sequences are determined by the service interface specification.

PROTO messages can be sent bidirectionally (up and downstream) on a Stream
and bidirectionally between a Stream and a user process. putmsg (2) and
getmsg (2) system calls are analogous, respectively, to wri te (2) and
read (2) except that the former allow both data and control parts to be
(separately) passed, and they observe message boundary alignment across the
user-Stream boundary. putmsg () and getmsg () separately copy the control
part (M _PROTO or M _PCP ROTa block) and data part (M _DATA blocks)
between the Stream and user process.

An M _ PCPROTO message is normally used to acknowledge M _PROTO mes
sages and not to carry protocol expedited data. M_PCPROTO insures that the

.\sun ~ microsystems
Revision A. of 9 May 1988

Example

Declarations

Chapter 11 - STREAMS Module and Driver Programming 295

acknowledgement reaches the service user before any other message. If the ser
vice user is a user process, the Stream head will only store a single
M _ PCPROTO message, and discard subsequent M _PCPROTO messages until
the first one is read with getmsg (2) .

The following rules pertain to selVice interfaces:

o Modules and drivers that support a service interface must act upon all
PROTO messages and not pass them through.

o Modules may be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these modules
may not alter the contents of the control part (PROTO block, first message
block) nor alter the boundaries of the control or data parts. That is, the mes
sage blocks comprising the data part may be changed, but the message may
not be split into separate messages nor combined with other messages. In
addition, modules and drivers must obselVe the rule that priority messages
are not subject to flow control and forward them accordingly (e.g., see the
beginning ofmodwsrv () in the Message Queues and Service Procedures
section). Priority messages also bypass flow control at the user-Stream
boundary [e.g., see putmsg (2)] •

The example below is part of a module which illustrates the concept of a service
interface. The module implements a simple datagram interface.

The selVice interface primitives are defined in the declarations:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/errno.h>

/*
* Primitives initiated by the service user:
*/

/ * bind request * / #define BIND_REQ
#define UNITDATA_REQ
/*

1
2 / * unitdata request * /

* Primitives initiated by the service provider:
*/

#define OK ACK
#define ERROR ACK
#define UNITDATA IND

3
4
5

/ * bind acknowledgment * /
/ * error acknowledgment * /
/ * unitdata indication * /

/*
* The following structures define the format of the
* stream message block of the above primitives.
*/

struct bind_req { /* bind request */
long PRIM_type; /* alwaysBIND_REQ */
long BIND _addr; / * addr to bind * /

} ;

Revision A, of 9 May 1988

296 Writing STREAMS Device Drivers

struct unitdata_req {
long PRIM_type;
long DEST_addr;

} ;

struct ok_ack {
long PRIM_type;

} ;

/ * unitdata request * /
/ * always UNITDATA_REQ * /
/* destaddr */

/ * ok acknowledgment * /
/* always OK_ACK * /

struct error_ack { /* error acknowledgment */
long PRIM_type; /* always ERROR_ACK * /
long UNIX_error; / * Sun OS error code * /

} ;

struct unitdata_ind { / * unitdata indication * /
long PRIM_type; / * always UNITDATA _IND * /
long SRC_addr; / * source addr * /

} ;

union primitives { /* union of all primitives * /
long type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;

} ;

struct dgproto {
short state;
long addr;

} ;

/ * Provider states * /

idefine IDLE 0
idefine BOUND 1

/ * structure per minor device * /
/ * current provider state * /

/ * net address * /

In general, the M _PROTO or M _PCPROTO block is described by a data struc
ture containing the service interface infonnation. In this example, union
pr imi t i ve s is that structure.

Two commands are recognized by the module:

BIND_REQ
Give this Stream a protocol address, i.e. give it a name on the network.
After a BIND _ REQ is completed, datagrams from other senders will find
their way through the network to this particular Stream.

ON I TDATA_REQ
Send a datagram to the specified address.

Three messages are generated:

OK ACK
A positive acknowledgement (ack) of BIND _ REQ.

ERROR ACK
A negative acknowledgement of BIND _ REQ .

• ~sun ~ microsystems
Revision A, of9 May 1988

Service Interface Procedure

Chapter 11 - STREAMS Module and Driver Programming 297

UNITDATA IND
A datagram from the network has been received (this code is not shown).

The ack of a BIND _REQ informs the user that the request was syntactically
correct (or incorrect ifERROR_ACK). The receipt of a BIND _REQ is ack
nowledged with an M _PCPROTO to insure that the acknowledgement reaches
the user before any other message. For example, a UNITDAT A _IND could
come through before the bind has completed, and the user would get confused.

The driver uses a per-minor device data structure, dgproto, which contains the
following:

state
current state of the Stream (endpoint) IDLE or BOUND

addr
network address that has been bound to this Stream

It is assumed (though not shown) that the module open procedure sets the write
queue <LPt r to point at one of these structures.

The write put procedure is:

static int protowput(q, mp)
queue_t *q;
mblk_t *mp;
{

union primitives *proto;
struct dgproto *dgproto;
int err;

dgproto = (struct dgproto *) q->~tr;

switch (mp->b_datap->db_type)
default:

/ * don't understand it * /
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);
break;

case M FLUSH:
/ * standard flush handling goes here ... * /
break;

case M PROTO:
/ * Protocol message -> user request * /
proto = (union primitives *) mp->b_rptr;

switch (proto->type) {
default:

mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);

Revision At of9 May 1988

298 Writing STREAMS Device Drivers

return;

case BIND_REQ:
if (dgproto->state != IDLE) {

err = EINVAL;
goto error_ack;

if (mp->b_wptr - mp->b_rptr
!= sizeof(struct bind_req))

err = EINVAL;
goto error_ack;

if (err = chkaddr(proto->bind_req.BIND_addr))
goto error_ack;

dgproto->state = BOUND;
dgproto->addr = proto->bind_req.BIND_addr;
mp->b_datap->db_type = M_PCPROTO;
proto->type = OK_ACK;
mp->b_wptr =

mp->b_rptr + sizeof(struct ok_ack);
qreply(q, mp);
break;

error ack:
mp->b_datap->db_type = M_PCPROTO;
proto->type = ERROR_ACK;
proto->error_ack.UNIX_error = err;
mp->b_wptr =

mp->b_rptr + sizeof(struct error_ack);
qreply(q, mp);
break;

case UNITDATA_REQ:
if (dgproto->state != BOUND)

gote bad;
if (mp->b_wptr - mp->b_rptr

!= sizeof(struct unitdata_req))
gote bad;

if (err=chkaddr(prote->unitdata_req.DEST_addr))
geto bad;

if (mp->b_cont) {
putq(q, mp->b_cont);

/ * start device or mux output ... * /

break;
bad:

freemsg (mp) ;
break;

Revision A, of 9 May 1988

11.10. Advanced Topics

Recovering From No Buffers

Chapter 11 - STREAMS Module and Driver Programming 299

The write put procedure switches on the message type. The only types accepted
are M _FLUSH and M _PROTO. For M _FLUSH messages, the driver will per
form the canonical flush handling (not shown). For M_PROTO messages, the
driver assumes the message block contains a union primitive and
switches on the type field. Two types are understood: BIND _ REQ, and
UNITDATA_REQ.

For a BIND _ REQ, the current state is checked; it must be IDLE. Next, the mes
sage size is checked. If it is the correct size, the passed-in address is verified for
legality by calling chkaddr. If everything checks, the incoming message is
converted into an OK _ ACK and sent upstream. If there was any error, the
incoming message is converted into an ERROR _ ACK and sent upstream.

For UNITDATA_REQ, the state is also checked; it must be BOUND. As above,
the message size and destination address are checked. If there is any error, the
message is simply discarded. (This action may seem rash, but it is in accordance
with the interface specification, which is not shown. Another specification might
call for the generation of a UNITDAT A_ERROR indication.) If all is well, the
data part of the message, if it exists, is put on the queue, and the lower half of the
driver is started.

If the write put procedure receives a message type that it does not understand,
either a bad b_datap->db_type or a bod proto->type, the message is
converted into an M _ERROR message and sent upstream.

Another piece of code not shown is the generation of UNITDAT A _IND mes
sages. This would normally occur in the device interrupt if this is a hardware
driver (like ST ARLAN) or in the lower read put procedure if this is a multi
plexor. The algorithm is simple: The data part of the message is prepended by an
M_PROTO message block that contains a unitdata_ind structure and sent
upstream.

The bufcall () utility (see Utilities in the Supplementary STREAMS Material
chapter) is used to recover from an allocb () failure. The call syntax is as fol
lows:

bufcall(size, pri, func, arg)i
int size, pri, (*func) () i

long argi

bufcall() will call (*func) (arg) when a buffer of size bytes atpri
priority is available. When func is called, it has no user context and must return
without sleeping. Also, because of interrupt processing, there is no guarantee
that when func is called, a buffer will actually be available (someone else may
steal it). buf call () returns 1 on success, indicating that the request has been
successfully recorded, or 0 on failure. On a failure return, the requested function
will never be called.

~\sun ~ microsystems
Revision A, of 9 May 1988

300 Writing STREAMS Device Drivers

Care must be taken to avoid
deadlock when holding resources
while waiting for bufcall () to call
(*func) (arg). bufcall ()
should be used sparingly.

Two examples are provided. Example one is a device receive interrupt handler:

iinclude <sys/types.h>
iinclude <sys/param.h>
iinclude <sys/stream.h>

dev_rintr(dev)
{

1*

/ * process incoming message... * /

/ * allocate new buffer for device * /
dev_re_load(dev);

* Reload device with a new receive buffer
*1
dev_re_load(dev)
{

if «bp = allocb(DEVBLKSZ, BPRI_MED» == NULL) {
log (LOG_ERR (lfdev: allocb failure (size %d)\n",

DEVBLKSZ)i
1*
* Allocation failed. Use bufcall to
* schedule a call to ourself.
*1
(void) bufcall(DEVBLKSZ, BPRI_MED, dev_re_load,

dev) ;
return;

/ * pass buffer to device... * /

dev _ rintr is called when the device has posted a receive interrupt. The code
retrieves the data from the device (not shown). dev _ rintr must then give the
device another buffer to fill by a call to dev _re_load, which calls allocb ()
with the appropriate buffer size (DEVBLKSZ, definition not shown) and priority.
If allocb () fails, dev _re_Ioad uses bufcall () to call itself when
STREAMS determines a buffer of the appropriate size and priority is available.

NOTE Since bufcall () may fail, there is still a chance that the device may hang. A
better strategy, in the event buf call () fails, would be to discard the current
input message and resubmit that buffer to the device. Losing input data is gen
erally better than hanging.

The second example is a write service procedure, mod _wsrv () ; which needs to
prepend each output message with a header (similar to the multiplexor example
of the Multiplexing section). mod wsrv () illustrates a case for potential

Revision A, of 9 May 1988

Advanced Flow Control

Chapter 11 - STREAMS Module and Driver Programming 301

deadlock:

static int mod_wsrv(q)
queue_t *q;
{

int qenable () ;
mblk_t *mp, *bp;

while (mp = getq(q»

1* check/or priority messages and canput ... * I
1*
* Allocate a header to prepend to the message. If
* the allocb fails, use bufcall to reschedule ourself
*1
if «bp = allocb(HDRSZ, BPRI_MED» == NULL) {

if (!bufcall(HDRSZ, BPRI_MED, qenable, q»

1*

1*
* The bufcall request has failed. Discard
* the message and keep running to avoid hanging.
*1
freemsg(mp);
continue;

* Put the message back and exit, we will be re-enabled later
*1
putbq (q, mp);
return;

I * process message * I

However, if allocb () fails, mod _ wsrv () wants to recover without loss of
data ands calls buf call (). In this case, the routine passed to buf call () is
qenable () (see below and in the Utilities section of the Supplementary
STREAMS Material chapter). When a buffer is available (of size HDRSZ,
definition not shown), the service procedure will be automatically re-enabled.
Before exiting, the current message is put back on the queue. This example deals
with buf call () failure by discarding the current message and continuing in
the service procedure loop.

Streams provides mechanisms to alter the normal queue scheduling process.
putq () will not schedule a QUEUE if noenable (q) had been previously
called for this QUEUE. noenable () instructs putq () to queue the message
when called by this QUEUE, but not to schedule the service procedure. noen
able () does not prevent the QUEUE from being scheduled by a flow control
back-enable. The inverse of noenable () is enableok (q) .

4}\sun
~ microsystems

Revision A, of 9 May 1988

302 Writing STREAMS Device Drivers

Signals

An example of this is driver upstream flow control. Although device drivers typ
ically discard input when unable to send it to a user process, STREAMS allows
driver read side flow control, possibly for handling temporary upstream blocks.
This is done through a driver read service procedure which is disabled during the
driver open with noenable (). If the driver input interrupt routine detennines
messages can be sent upstream (from canputO), it sends the message with
putnext (). Otherwise, it calls putq () to queue the message. The message
waits on the message queue (possibly with queue length checked when new mes
sages are enqueued by the interrupt routine) until the upstream QUEUE becomes
unblocked. When the blockage abates, STREAMS back-enables the driver read
service procedure. The service procedure sends the messages upstream using
getq () and canput () , as in Message Queues and Service Procedures. This
is similar to loopr srv () in the Complete Driver where the service procedure
is present only for flow control. '

qenable () , another flow control utility, allows a module or driver to cause one
of its QUEUEs, or another module's QUEUEs, to be scheduled. In addition to
the usage shown in the Complete Driver and Multiplexing sections, qenable ()
might be used when a module or driver wants to delay message processing for
some reason. An example of this is a buffer module that gathers messages in its
message queue and forwards them as a single, larger message. This module uses
noenable () to inhibit its service procedure and queues messages with its put
procedure until a certain byte count or "in queue" time has been reached. When
either of these conditions is met, the put procedure calls qenable () to cause
its service procedure to run.

Another example is a communication line discipline module that implements
end-to-end (i.e., to a remote system) flow control. Outbound data is held on the
write side message queue until the read side receives a transmit window from the
remote end of the network. Then, the read side schedules the write side service
procedure to run.

STREAMS allows modules and drivers to cause a signal to be sent to user
process(es) through an M_SIG or M_PCSIG message (see Message Types in the
Supplementary STREAMS Material chapter) sent upstream. M_PCSIG is a prior
ity version ofM_SIG. For both messages, the first byte of the message specifies
the signal for the Stream head to generate. If the signal is not SIGPOLL [see
signal (2) and sigset (2)], then the signal is sent to the process group
associated with the Stream (see below). If the signal is SIGPOLL, the signal is
only sent to processes that have registered for the signal by using the 1_ SETSIG
ioctl (2) (see also the streamio (4) call).

A process group is associated with a stream during the open of the driver or
module. If the NEWCTTY flag is ORed into the value returned by the open ()
procedure, the process on whose behalf the module or driver is being <?pened has
become-a "session process group leader" by executing the set spgldr () call
(which is executed by the setpgrp () call in the System V environment, but
not in the 4BSD environment). If that process does not already have a control
ling tty, and the stream does not already have a process group, then the stream is
assigned to the process group that the process is the leader of and becomes that

Revision A, of9 May 1988

Control of Stream Head
Processing

Read Options

Write Offset

Chapter 11 - STREAMS Module and Driver Programming 303

process' controlling tty.

If the driver or module wants to have a process group associated with the stream,
it should OR the NEWCTTY flag into its return value.

M _ SIG can be used by modules or drivers that wish to insert an explicit inband
signal into a message stream. For example, an M_SIG message can be sent to
the user process immediately before a particular service interface message to gain
the immediate attention of the user process. When the M _ SIG reaches the head
of the Stream head read message queue, a signal will be generated and the
M _ SIG message will be removed. This leaves the service interface message as
the next message to be processed by the user. Use of M _ SIG would typically be
defined as part of the service interface of the driver or module.

The M_SETOPTS message (see Message Types in the Supplementary STREAMS
Material chapter) allows a driver or module to exercise control over certain
Stream head processing. An M _ SETOPTS can be sent upstream at any time.
The Stream head responds to the message by altering the processing associated
with certain system calls. The options to be modified are specified by the con
tents of the stroptions structure (see Message Types) contained in the mes
sage.

Six Stream head characteristics can be modified. As described in Message Types,
four correspond to fields contained in queue _ t (minimax packet sizes and
high/low water marks). The other two are discussed here.

The value for read options (so_readopt) corresponds to the three modes a
user can set via the I_SRDOPf ioctl () (see streamio) call:

byte-stream (RNORM)
The read (2) call completes when the byte count is satisfied, the Stream
head read queue becomes empty, or a zero length message is encountered.
In the last case, the zero length message is put back on the queue. A subse
quent read () will return 0 bytes.

message non-discard (RMSGN)
The read () call completes when the byte count is satisfied or at a message
boundary, whichever comes first. Any data remaining in the message is put
back on the Stream head read queue.

message discard (RMSGD)
The read () call completes when the byte count is satisfied or at a message
boundary. Any data remaining in the message is discarded.

Byte-stream mode approximately models pipe data transfer. Message non
discard mode approximately models a tty in canonical mode.

The value for write offset (so _ wroff) is a hook to allow more efficient data
handling. It works as follows: In every data message generated by a wr i te (2)

system call and in the first M _ DATA block of the data portion of every message
generated by a putmsg (2) call, the Stream head will leave so_wroff bytes
of space at the beginning of the message block. Expressed as a C language

Revision A. of9 May 1988

304 Writing STREAMS Device Drivers

construct:

bp->b_rptr = bp->b_datap->db_base + write offset

The write offset value must be smaller than the maximum STREAMS message
size, STRMSGSZ (see Tunable Parameters in the Supplementary STREAMS
Material). In certain cases (e.g., if a buffer large enough to hold the offset+data
is not currently available), the write offset might not be included in the block. To
be general, modules and drivers should not assume that the offset exists in a mes
sage, but should always check the message.

The intended use of write offset is to leave room for a module or a driver to place
a protocol header before user data in the message rather than by allocating and
pre pending a separate message. This feature is not general, and its use is
discouraged. A more general technique is to put protocol header infonnation in a
separate message block and link the user data to it.

~~sun ~~ microsystems
Revision A, of 9 May 1988

12
SunOS STREAMS Topics

SunOS STREAMS Topics .. 307

12.1. Configuring STREAMS Drivers .. 307

Module Configuration .. 308

Tunable Parameters ... 309

System Error Messages ... 310

12.2. STREAMS in SunOS ... 311

STREAM Modules .. 311

SunOS STREAMS Extension ... 312

STREAMS Portability ... 312

User Line Disciplines 312

12.1. Configuring
STREAMS Drivers

12
SunOS STREAMS Topics

The configuration of STREAMS device drivers is not fundamentally different
from the configuration of regular device drivers. This section, therefore,
presumes familiarity with the Configuring the Kernel section of this manual,
which explains in some detail how new drivers are configured into the kernel.

Note that, while STREAMS give programmers a good deal of flexibility in
regard to configuration issues, STREAMS drivers and protocol modules must
still be precomplied into the kernel. STREAMS drivers are not dynamically
loadable.

SunOS STREAMS drivers use exactly the same autoconfiguration interface as
do regular SunOS drivers. This interface is designed to allow drivers (and
modules) to easily define their per-instance data structures, using the information
supplied by config. However, if a given driver or module chooses to use some
other scheme for allocating its resources (such as using kmem_alloc () when a
previously unopened device is opened), it is free to do so. This differs
significantly from the System V driver/kernel interface, which arranges for such
storage to be allocated elsewhere.

Each character device that is configured into the Sun kernel results in an entry
being placed in the kernel cdevsw table. Entries for STREAMS drivers are no
exception - they too are placed in cdevsw. However, since system calls to
STREAMS drivers must be processed by the STREAMS routines, their cdevsw
interface differs from that of non-STREAMS drivers. conf ig, it should be
noted, knows nothing about STREAMS drivers. It handles them correctly
because, as far it it's concerned, they are just regular character drivers. There is
nothing in the format of entries in a config file that distinguishes STREAMS
devices/modules from other character devices.

There is, however, a difference between STREAMS and non-STREAMS
cdev s w entries, in that STREAMS entries have only the d _ s t r field set while
other entries never have this field set. d _ str provides the appropriate single
entry point for all system calls on STREAMS files, as shown below:

307 Revision A, of 9 May 1988

308 Writing STREAMS Device Drivers

Module Configuration

extern struct cdevsw {

struct streamtab *d_str;
cdevsw[];

The d _ str entry name is formed by appending the string "info" to the
STREAMS driver prefix. The "info" entry is a pointer to the driver/module
declared streamtab structure (see Kernel Structures). The streamtab
structure contains pointers to the qini t structures for the driver/module's read
and write queues. Its declaration must be externally visible:

struct streamtab xxinfo = { ...

If the driver declares a streamtab namedxxinfo, the d_str entry will contain
a non-NULL pointer and the kernel will recognize the driver as a STREAMS
driver and will call it by way of the appropriate STREAMS routines. If the
d_str entry is NULL, the normal character 110 cdevsw interface will be used.
Note that only streamtab must be externally visible in STREAMS drivers and
modules, since it is used to uniquely identify the appropriate open, close, put,
service and administration routines. These driver/module routines should gen
erally be declared stat ic.

When adding a new STREAMS module to a kernel, one must add an entry to the
fmodsw array in /sys/sun/str_conf. C. This file is analogous to
/ sys / sun/ conf . c (see the Configuring the Kernel chapter) and its entries
should be similarly conditional on the number of module instances being posi
tive. For example, for the xx device:

#if NXX > 0
extern struct streamtab xx_info;
#endif

struct fmodsw fmodsw[]
{

#if NXX > 0
{ "xx", &xx_info),

#endif

~~ sun Revision A, of 9 May 1988
• microsystems

Tunable Parameters

Chapter 12 - SunOS STREAMS Topics 309

The first of the two fields in each fmodsw entry is the name of the module,
which will be used in all STREAMS-related ioctl () calls upon this module.
The second is a pointer to the module's streamtab structure.

Certain system parameters referenced by STREAMS are configurable when
building a new kernel. They can be reset from their default values, values which
are calculated to correspond to the value of MAXUSERS, by using the config file
OPTIONS mechanism. (See config(8)). In this discussion, the term
"queues" refers to queue _ t structures. The tunable parameters are:

NSTREAM
Total number of Streams that may be open at one time in a system.

NBLK4096
Total number of 4096 byte data blocks available for STREAMS operations.
The pool of data blocks is a system-wide resource, so enough blocks must be
configured to satisfy all Streams.

NBLK2048
Total number of 2048 byte data blocks available for STREAMS operations.

NBLK1024
Total number of 1024 byte data blocks available for STREAMS operations.

NBLK512
Total number of 512 byte data blocks available for STREAMS operations.

NBLK256
Total number of 256 byte data blocks available for STREAMS operations.

NBLK128
Total number of 128 byte data blocks available for STREAMS operations.

NBLK64
Total number of 64 byte data blocks available for STREAMS operations.

NBLK16
Total number of 16 byte data blocks available for STREAMS operations.

NBLK4
Total number of 4 byte data blocks available for STREAMS operations.

NMUXLINK
Total number of Streams in system that can be linked as lower Streams to
multiplexor drivers (by an I_LINK ioct 1(2), see st reamio(4)).

NSTREVENT
Initial number of internal event cells available in system to support bu f
call () and poll (2) calls.

MAXSEPGCNT
The number of additional pages of memory that can be dynamically allo
cated for event cells. If this value is 0, only the allocation defined by
NSTREVENT is available for use. If the value is not 0 and if the kernel runs
out of event cells, it will under some circumstances attempt to allocate an

Revision A, of 9 May 1988

310 Writing STREAMS Device Drivers

System Error Messages

extra page of memory from which new event cells can be created. MAX
S EP GCNT places a limit on the number of pages that can be allocated for
this purpose. Once a page has been allocated for event cells, however, it
cannot be recovered later for use elsewhere.

NSTRPUSH
Maximum number of modules that may be pushed onto a single Stream.

STRMSGSZ
Maximum bytes of information that a single system call can pass to a Stream
to be placed into the data part of a message (in M_DATA blocks). Any
wr it e (2) exceeding this size will be broken into multi pIe messages. A
putmsg (2) with a data part exceeding this size will fail.

STRCTLSZ
Maximum bytes of information that a single system call can pass to a Stream
to be placed into the control part of a message (in an M _PROTO or
M _PCPROTO block). A putmsg (2) with a control part exceeding this size
will fail.

STRLOFRAC
The percentage of data blocks of a given class at which low priority block
allocation requests are automatically failed. For example, if STRLOFRAC is
80 and there are 48 256-byte blocks, a low priority allocation request will
fail when more than 38 256-byte blocks are already allocated. This value is
used to prevent deadlock situations in which a low priority activity might
starve out more important functions. For example, if S TRLOFRAC is 80 and
there are 100 blocks of 256 bytes, then when more than 80 of such blocks
are allocated, any low priority allocation request will fail. This value must
be in the range 0 -<=-STRLOFRAC-<=- STRMEDFRAC.

STRMEDFRAC
The percentage of data blocks of a given class at which medium priority
block allocation requests are automatically failed.

Messages are reported to the console as a result of various error conditions
detected by STREAMS. These messages and the action to be taken on their
occurrence are described below. In certain cases, a tunable parameter (see previ
ous section) may have to be changed.

sftopen:outofsfteams
A Stream head data structure could not be allocated during the open () of a
STREAMS device. If this occurs repeatedly, increase NSTREAM.

aJlocq: out of queues
A pair of queues could not be allocated for the Stream head during the
open () of a driver, or a pair of queues could not be allocated for a push
able module (I_PUSH ioctl). This error message should never be seen,
as additional space for queues is allocated dynamically when needed.

strinit: can not allocate stream data blocks
During system initialization, the system was unable to allocate enough
memory for the STREAMS data blocks. The system must be rebuilt with

.\sun
• microsystems

Revision A. of 9 May 1988

12.2. STREAMS in SunOS

STREAM Modules

Chapter 12 - SunOS STREAMS Topics 311

fewer data blocks specified.

bufcall: could not allocate stream event
A call to buf call () has failed because all Stream event cells have been
allocated. If this occurs repeatedly, increase NS TREVENT.

munlink: could not perform ioctl, closing anyway
A linked multiplexor could not be unlinked when the controlling Stream for
that link was closed. The linked Stream will be unlinked and the controlling
Stream will be closed anyway.

SunOS 4.0 includes reimplementations of two fundamental system mechanisms
in terms of STREAMS. These are:

1. The system terminal driver, which controls serial-line 110, and

2. The Network Interface Tap (NIT) mechanism, which pennits a process to
talk to the "raw" Ethernet. NIT is the only networking facility which is thus
far implemented in tenns of STREAMS, though a TCP/IP implementation
that can be accessed via STREAMS is planned.

The following STREAMS modules, necessary to support the tty driver and the
Network Interface Tap, are included in SunOS 4.0.

o The' 'standard tty driver" module, which implements most of the standard
tty driver behavior; it's a replacement for the current standard tty line discip
line. (See tty_std(4M)).

o The "ioctl mapping" module, which maps old V7 and 4BSD ioctl ()
calls into new-style ioctl () calls. This gets pushed on top of the standard
tty driver module, giving a stream that responds either to the old-style or
new-style ioctl () calls. (See tty_cornpat(4M)).

o The keyboard and mouse modules, which replace the old keyboard and
mouse line disciplines. (See kb (4M) and ms (4M) .

o The NIT "packet filter" module, which is given a set of criteria for selecting
Ethernet packets, and passes only the selected packets upstream, discarding
the others. Thus, the Reverse ARP daemon could request that it receive only
Reverse ARP packets; filtering can be done more efficiently in this fashion
than if all packets were handed to the program and it had to do the filtering
itself. This also makes it easier to handle a high rate of arrival of packets,
since the program doesn't have to handle the ones it's not interested in. (See
nityf(4M)).

o The NIT "buffering" module, which buffers up received Ethernet packets
and delivers them to the user program in a single chunk. Such buffering
reduces the number of read () calls done while monitoring the Ethernet, as
is necessary when the rate at which packets arrive is very high. (See
nit_buf(4M)).

~~sun ~ microsystems
Revision A, of 9 May 1988

312 Writing STREAMS Device Drivers

SunOS STREAMS Extension

STREAMS Portability

User Line Disciplines

In order to support STREAMS tenninal and pseudo-terminal drivers, SunOS has
extended the AT&T STREAMS mechanism. SunOS STREAMS includes a
mechanism by which STREAMS drivers can specify a list of STREAMS
modules to be automatically pushed onto the stream at device open time. This
(or a similar) feature is necessary to allow tty drivers to present an interface com
patible with that which existed in previous system releases.

The set of internal interfaces and utility routines defined by the SunOS kernel
differs considerably from that defined by the System V kernel. The
STREAMS/kernel interface is well specified, however, and System V
STREAMS modules and drivers that use only the interfaces it defines (see Acces
sible Symbols and Functions in the Supplementary STREAMS Material chapter
of this manual) should be able to be adapted to the SunOS kernel without many
problems. However, it's easy to use kernel facilities (data structures and rou
tines) other than those defined in the STREAMS interface. Any such use is
likely to be non-portable between System V and SunOS.

Similarly, STREAMS modules and drivers written for SunOS will only be port
able to System V systems if their kernel interfaces are confined to the explicitly
listed Accessible Symbols and Functions. If System V -compatibility is not an
issue, then STREAMS modules and drivers can use any of the driver-support
routines listed in the Kernel Support Routines appendix.

Note that STREAMS drivers, as opposed to modules, will always require a cer
tain degree of rewriting for use on System V machines, since the SunOS
autoconfiguration interface differs significantly from that used in System V. See
the The Bus-Resource Interface section of this manual for the details of the Sun
interface.

Note that user-built line disciplines will have to be converted into STREAMS
form before they will be compatible with release 4.0. This is because they prob
ably access tty-specific internal structures, such as clist buffers. These struc
tures no longer exist, having been replaced by STREAMS structures, so any rou
tines that access them will no longer work. For information on how to proceed
with the conversion of a line discipline, contact the Sun consulting department.

Character drivers that do not implement line disciples can also be converted to
STREAMS fonn, though in this case the conversion is entirely optional. This is
because the SunOS STREAMS implementation preserves the external interfaces
to the character devices and drivers (e.g. through the standard tty compatibility
module, tty _ cornpat (4M) , that implements most of the 4BSD tty interfaces
under STREAMS). Thus, drivers which do not directly access underlying system
data structures will continue to work without changes.

Drivers that have fancy read and write routines (routines that do anything more
than just import parameters and perhaps start another routine) are probably not
good candidates for conversion into STREAMS form, since STREAMS
read/write modules should just set up data for the STREAMS queues.

A line-printer driver is an example of a character driver that could be written in
terms of STREAMS, but doesn't need to be, and doesn't need to be converted to

~\sun ~ftfIi microsystems
Revision A, of 9 May 1988

Chapter 12 - SunOS STREAMS Topics 313

STREAMS if it already exists. After all, while a line-printer driver does
transform a stream of characters (this transformation could certainly be built into
a STREAMS module), its transfonnation is unlikely to be of interest to other pro
grams. Thus, there's little to be gained by encapsulating it in a module. And,
since line-printer drivers implement no line discipline, they will continue to work
with SunOS 4.0.

Revision A, of 9 May 1988

A
Supplell1entary STREAMS Material

Supplementary STREAMS Material ... 317

A.1. Kernel Structures .. 317

streamtab ... 317

QUEUE Structures ... 317

A.2. Message Structures .. 318

iocbl.k ... 319

l.inkbl.k .. 319

A.3. Message Types ... 320

Ordinary Messages ... 320

Priority Messages .. 325

A.4. Utilities ... 327

Buffer Allocation Priority .. 328

adjmsg () - Trim Bytes in a Message ... 329

al.l.ocb () - Allocate a Message Block ... 329

backq () - Get Pointer to Queue Behind a Given Queue 329

bufcal.l. () - Recover from Failure of al.l.ocb 330

canput () - Test for Room in a Queue ... 330

copyb () - Copy a Message Block ... 330

copymsg () - Copy a Message ... 331

datamsg () - Test Whether Message is a Data Message 331

dupb () - Duplicate a Message Block Descriptor 331

dupmsg () - Duplicate a Message ... 331

enableok () - Re-allow Queue to be Scheduled 332

flusbq 0 - Flush a Queue ... 332

freeb () - Free a Message Block ... 332

freemsg () - Free All Message Blocks in a Message 332

getq () - Get a Message from a Queue ... 332

insq 0 - Put a Message at a Specific Place in a Queue 333

linkb () - Concatenate Two Messages into One 333

msgdsize 0 - Get Number of Data Bytes in a Message 333

noenable () -Prevent a Queue from Being Scheduled 333

OTHERQ () - Get Pointer to the Mate Queue ... 334

pullupmsg () - Concatenate Bytes in a Message 334

putbq () - Return a Message to the Beginning of a Queue 334

putctl () - Put a Control Message .. 334

putctl1 () - Put One-byte Parameter Control Message 335

putnext () - Put a Message to the Next Queue 335

putq () - Put a Message on a Queue ... 335

qenable () -Enable a Queue .. 336

qreply () - Send Reverse-Direction Message on Stream 336

qsize () - Find the Number of Messages on a Queue 336

RD () - Get Pointer to the Read Queue .. 336

nnvb () - Remove a Message Block from a Message 336

nnvq () - Remove a Message from a Queue ... 337

splstr () - Set Processor Level ... 337

strl.og () - Submit Messages for Logging .. 337

testb () - Check for an Available Buffer ... 337

unlinkb () - Remove Message Block from Message Head 338

1m () - Get Pointer to the Write Queue ... 338

A.5. Design Guidelines .. 338

General Rules .. 338

System Calls .. 339

Data Structures ... 339

Header Files ... 340

Accessible Symbols and Functions .. 340

Rules for Put and Service Procedures ... 341

A.6. STREAMS Glossary .. 343

A.I. Kernel Structures

streamtab

QUEUE Structures

A
Supplementary STREAMS Material

This appendix summarizes previously described kernel structures commonly
encountered in STREAMS module and driver development.

STREAMS kernel structures are contained in <sys/ stream. h>.

As discussed in the Streams Mechanism section of the STREAMS Module and
Driver Programming chapter, this structure defines a module or driver:

struct streamtab

} i

struct
struct
struct
struct
char

qini t * s t _ rdini t i / * defines read QUEUE * /
qinit *st_wriniti /* defines write QUEUE */
qinit *st_muxrinit i / * for multiplexing drivers only * /
qinit *st muxwinit i / * for multiplexing drivers only * /

**st_modlist; /* list of modules to be pushed * /

Two sets of QUEUE structures fonn a module. The structures, discussed in the
Streams Mechanism and Message Queues and Service Procedures sections of the
STREAMS Module and Driver Programming chapter, are queue_t, qinit,
module_info and, optionally, module_stat:

struct queue {

} i

struct qinit *~qinfo i / * procedures and limitsfor queue * /
struct msgb *~first i /* head of message queuefor this QUEUE */
struct msgb *~last; / * tail of message queuefor this QUEUE * /
struct queue *~next; /*nextQUEUEinStream*/
struct queue *~link.; / * link to next QUEUE on scheduling queue * /
caddr t CLpt r ; / * to private data structure * /
ushort ~ count; / * weighted count of characters on message queue * /
ushort CL flag; / * QUEUE state * /
sho rt ~ minps z / * min packet size accepted by this QUEUE * /
short CL maxps z; / * max packet size accepted by this QUEUE * /
ushort ~hiwat; /* message queue high water mark, for flow control *
ushort ~lowat; /* message queue low water mark, for flow control * /

typedef struct queue queue_ti

~\sun ~ microsystems
317 Revision A, of 9 May 1988

318 Writing STREAMS Device Drivers

A.2. Message Structures

When a queue _ t pair is allocated, their contents are zero unless specifically ini
tialized. The following fields are initialized:

o <Lqinfo - from streamtab.st_[rdlwr]init (or st_mux[rw]init)

o <Lminpsz, <Lmaxpsz, <Lhiwat, <Llowat - from module_info

o CLPtr - optionally, by the driver/module open routine

struct qinit {

} ;

int (*qi-putp) ();
int (*qi_srvp) ();
int (*qi_qopen) ();
int (*qi_qclose) ();
int (*qi_qadmin) () ;
struct module info
struct module stat

/ * put procedure * /
/ * service procedure * /
/ * called on each open or a push * /
/ * called on last close or a pop * /
/ * reserved for future use * /
*qi_minfo; / * information structure * /
*qi_mstat; / * optional stats structure * /

struct module_info {
ushort mi_idnum;
char *mi_idname;
short mi_minpsz;
short mi_maxpsz;
short mi_hiwat;
ushort mi_lowat;

/ * module ID number * /
/ * module name * /

} ;

struct module_stat {

} ;

long
long
long
long
long
char
short

ms-pcnt;
ms_scnt;
ms_ocnt;
ms_ccnt;
ms_acnt;

*ms_xptr;
ms_xsize;

/ * min packet size accepted,for developer use * /
/ * max packet size accepted, for developer use * /
/ * hi-water mark, for flow control * /
/ * lo-water mark,for flow control * /

/ * count of calls to put proc * /
/ * count of calls to service proc * /
/ * count of calls to open proc * /
/ * count of calls to close proc * /
/ * count of calls to admin proc * /
/ * pointer to private statistics * /
/ * length of private statistics buffer * /

Note that in the event these counts are calculated by modules or drivers, the
counts will be cumulative over all instantiations of modules with the same
fmodsw entry and drivers with the same cdevsw entry.

As described in the Messages section of STREAMS Module and Driver Program
ming, a message is composed of a linked list of triples, consisting of two struc
tures and a data buffer:

Revision A, of 9 May 1988

iocblk

linkblk

Appendix A - Supplementary STREAMS Material 319

struct msgb {

} ;

struct msgb *b_next;
struct msgb *b_prev;
struct msgb *b_cont;
unsigned char *b_rptr;
unsigned char *b_wptr;
struct datab *b_datap;

/ * next message on queue * /
/ * previous message on queue * /
/ * next message block of message * /
/ * first unread data byte in buffer * /
/ * first unwritten data byte in buffer * /
/ * data block * /

typedef struct msgb mblk_t;

struct datab {
struct datab *db_freep; /* used internally */
unsigned char *db_basei /* first byte of buffer * */
unsigned char *db_Iim; /* last byte+l of buffer * /
unsigned char db_ref; /* count of messages pointing to this block * /
unsigned char db_type; /* message type * /
unsigned char db_class; /* used internally */

} ;

typedef struct datab dblk t;

As described in the Drivers section of the STREAMS Module and Driver Pro
gramming chapter and in Message Types, below, this is contained in an
M_ IOCTL message block:

struct iocblk {

} ;

int ioc_cmd;
ushort ioc_uid;
ushort ioc_gid;
uint
uint
int
int

ioc_idi
ioc_count;
ioc_error;
ioc_rval;

/ * iocll command type * /
/ * effective uid of user * /
/ * effective gid of user * /
/ * ioctl id * /
/ * count of bytes in data field * /
/ * error code * /
/ * return value * /

As described in the Multiplexing section of STREAMS Module and Driver Pro
gramming, this is used in lower multiplexor drivers:

struct linkblk {
queue_t *l_qtop;
queue_t *l_qbot;
int I_index;

} ;

/ * lowest level write queue of upper stream * /
/ * highest level write queue of lower stream * /
/ * system-unique index for lower stream. * /

Revision A, of 9 May 1988

320 Writing STREAMS Device Drivers

A.3. Message Types

Ordinary Messages

Eighteen STREAMS message types are defined. The message types differ in
their intended purposes, their treatment at the Stream head, and in their message
queueing priority (see the Message Queues and Service Procedures section of the
STREAMS Module and Driver Programming chapter.

STREAMS does not prevent a module or driver from generating any message
type and sending it in any direction on the Stream. However, established pro
cessing and direction rules should be observed. Stream head processing accord
ing to message type is fixed, although certain parameters can be altered.

The message types are described below, classified according to their message
queueing priority. Ordinary messages are described first, with priority messages
following. In certain cases, two message types may perform similar functions,
differing in priority. Message construction is described in the Messages section
of the STREAMS Module and Driver Programming chapter. The use of the word
module will generally imply "module or driver."

These message types are subject to flow control. These are referred to as non
priority messages when received at user level.

M DATA
Intended to contain ordinary data. Messages allocated by the allocb ()
routine (see Message Types, below) are type M _DATA by default. M _DATA
messages are generally sent bidirectionally on a Stream and their contents
can be passed between a process and the Stream head. In the getmsg (2)
and putmsg (2) system calls, the contents ofM_DATA message blocks are
referred to as the data part. Messages composed of multiple message blocks
will typically have M_DATA as the message type for all message blocks fol
lowing the first.

M PROTO
Intended to contain internal control information and associated data. The
message format is one M _PROTO message block followed by zero or more
M_DATA message blocks as shown below: The semantics of the M_DATA
and M _PROTO message block are determined by the STREAMS module that
receives the message.

The M_PROTO message block will typically contain implementation depen
dent control information. M _PROTO messages are generally sent bidirec
tionally on a Stream, and their contents can be passed between a process and
the Stream head. The contents of the first message block of an M_ PROTO
message is generally referred to as the control part, and the contents of any
following M_DATA message blocks are referred to as the data part. In the
getmsg (2) and putmsg (2) system calls, the control and data parts are
passed separately. These calls refer to M _PROTO messages as non-priority
messages.

Note that, although its use is not recommended, the format ~f M _PROTO and
M_PCPROTO (generically PROTO) messages sent upstream to the Stream
head allows multiple PROTO blocks at the beginning of the message.
getmsg () will compact the blocks into a single control part when passing
them to the user process.

+~t!! Revision A, of 9 May 1988

Figure A-I

Appendix A - Supplementary STREAMS Material 321

M PROTO and M _PCPROTO Message Structure

M PROTO
or

M PCPROTO

~
M DATA

~
M DATA

roo

control
info.

M IOCTL
Generated by the Stream head in response to an 1_ S TR, and certain other,
ioctl (2) system calls (see the streamio (4) man page.) When one of
these ioctl () s is received from a user process, the Stream head uses
values from the process and supplied in the call to create an M _ IOCTL mes
sage containing them, and sends the message downstream. M_IOCTL mes
sages are intended to perform the general ioctl functions of character device
drivers.

The user values are supplied in a structure of the following form, provided as
an argument to the ioctl () call (see 1_ STR in the streamio (4) man
page.

struct strioctl
int ic_cmd;
int ic_timouti
int ic_len;
char *ic_dp;

/ * downstream request * /
/ * ACK/NAK timeout * /
/ * length of data arg * /
/ * plr to data arg * /

} ;

where ic _ cmd is the request (or command) defined by a downstream module or
driver, ic_tirnout is the time the Stream head will wait for acknowledgement
to the M _ IOCTL message before timing out, ic _ dp is a pointer to an optional
data argument. On input, ie_len contains the length of the data argument
passed in and, on return from the call, it contains the length of the data, if any,
being returned to the user.

The form of an M _ IOCTL message is one M _ IOCTL message block linked
to zero or more M_DATA message blocks. STREAMS constructs an
M _ IOCTL message block by placing an iocblk structure in its data buffer:

.~sun ~ microsystems
Revision A, of 9 May 1988

322 Writing STREAMS Device Drivers

struct iocblk {

} i

int ioc_cmd;
ushort ioc_uid;
ushort ioc_gid;
uint ioc_id;
uint ioc_counti
int ioc_error;
int ioc_rvali

/ * ioctl command type * /
/ * effective user id number * /
/ * effective group id number * /
/ * ioctl identifier * /
/ * byte count for ioctl data * /
/ * error code * /
/ * return value * /

The iocblk structure is defined in <sys/stream. h>. ioc cmd
corresponds to ic_cmd. ioc_uid and ioc_gid are the effective user
and group IDs for the user sending the ioct 1 () , and can be tested to deter
mine if the user issuing the ioctl () call is authorized to do so.
ioc _count is the number of data bytes, if any, contained in the message
and corresponds to ic _len.

ioc _ id is an identifier generated internally, and is used to match each
M _ IOCTL message sent downstream with a response which must be sent
upstream to the Stream head. The response is contained in an M_IOCACK
(positive acknowledgement) or an M _ IOCNAK (negative acknowledgement)
messages. Both these message types have the same format as an M_IOCTL
message and contain an iocblk structure in the first block with optional
data blocks following. If one of these messages reaches the Stream head
with an identifier which does not match that of the currently-outstanding
M_IOCTL message, the response message is discarded. A common means
of assuring that the correct identifier is returned, is for the replying module
to convert the M _ I OCTL message type into the appropriate response type
and set ioc _count to 0, if no data is returned. Then, the qreply () util
ity (see Utilities, below) is used to send the response to the Stream head.

ioc _error holds any return error condition set by a downstream module.
If this value is non-zero, it is returned to the user in errno. Note that both
an M_IOCNAK and an M_IOCACK may return an error. ioc_rval holds
any M_IOCACK return value set by a responding module.

If a user supplies data to be sent downstream, the Stream head copies the
data, pointed to by iC_dp in the strioctl structure, into M_DATA mes
sage blocks and links the blocks to the initial M _ IOCTL message block.
ioc _count is copied from ic _len. If there is no data, ioc _ count is
zero.

If a module wants to send data to a user process as part of its response, it
must construct an M _ IOCACK message that contains the data. The first mes
sage block of this message contains the iocblk data structure, with any
data stored in one or more M _DATA message blocks linked to the first mes
sage block. The module must set ioc _count to the number of data bytes
sent. On completion of the call, this number is passed to the user in
ic _len. Data associated with an M _ IOCNAK message is not returned to
the user process, and is discarded by the Stream head.

Revision A, of 9 May 1988

Appendix A - Supplementary STREAMS Material 323

The first module or a driver that understands the request contained in the
M_IOCTL acts on it, and generally returns an M_IOCACK message. Inter
mediate modules that do not recognize a particular request must pass it on.
If a driver does not recognize the request, or the receiving module can not
acknowledge it, an M _I OCNAK message must be returned.

The Stream head waits for the response message and returns any information
contained in an M IOCACK to the user. The Stream head will "time out" if
no response is received in ie_timeout interval.

M CTL
Generated by modules that wish to send information to a particular module
or type of module. M _ CTL messages are typically used for inter-module
communication, as when adjacent STREAMS protocol modules negotiate
the terms of their interface. An M _ CT L message cannot be generated by a
user-level process and is always discarded if passed to the Stream head.

M BREAK
Sent to a driver to request that BREAK be transmitted on whatever media the
dri ver is controlling.

The message format is not defined by STREAMS and its use is developer
dependent. This message may be considered a special case of an M _ CTL
message. An M _BREAK message cannot be generated by a user-level pro
cess and is always discarded if passed to the Stream head.

M DELAY
Sent to a media driver to request a real-time delay on output. The data
buffer associated with this message type is expected to contain an integer to
indicate the number of machine ticks of delay desired. M _DELAY messages
are typically used to prevent transmitted data from exceeding the buffering
capacity of slower terminals.

The message format is not defined by STREAMS and its use is developer
dependent. Not all media drivers may understand this message. This mes
sage may be considered a special case of an M _ CTL message. An M _DELAY

message cannot be generated by a user-level process and is always discarded
if passed to the Stream head.

M PASSFP
This is used by STREAMS to pass a file pointer from the Stream head at one
end of a Stream pipe to the Stream head at the other end of the same Stream
pipe. (A Stream pipe is a Stream that is terminated at both ends by a Stream
head; one end of the Stream can always find the other by following the
CL next pointers in the Stream. The means by which such a structure is
created is not described in this document.)

The message is generated as a result of an 1_ SENDFD ioct 1 () (see the
streamio (4) man page) issued by a process to the sending Stream head.
STREAMS places the M PAS SFP message directly on the destination
Stream head's read queue to be retrieved by an I _RECVFD ioctl () (see
the streamio (4) man page). The message is placed without passing it
through the Stream (i.e., it is not seen by any modules or drivers in the

~~sun ~~ microsystems
Revision A, of 9 May 1988

324 Writing STREAMS Device Drivers

Stream). This message type should never be present on any queue except
the read queue of a Stream head. Consequently, modules and drivers do not
need to recognize this message type, and it can be ignored by module and
driver developers.

M SETOPTS

Alters some characteristics of the Stream head. It is generated by any down
stream module, and is interpreted by the Stream head. The data buffer of the
message has the following structure:

struct stroptions {
short so_flags;
short so_readopt;
ushort so_wroff;
short so_minpsz;
short so_maxpsz;
ushort so_hiwat;
ushort so_lowat;

/ * options to set * /
/ * read option * /
/ * write offset * /
/ * minimum read packet size * /
/ * maximum read packet size * /
/ * read queue high-water mark * /
/ * read queue low-water mark * /

} ;

where so _flags specifies which options are to be altered, and can be any com
bination of the following:

SO ALL
Update all options according to the values specified in the remaining
fields of the stroptions structure.

SO READOPT
Set the read mode (see the read (2) man page) to RNORM (byte
stream), RMSGD (message discard), or RMSGN (message non-discard) as
specified by the value of so_readopt.

SO WROFF
Direct the Stream head to insert an offset specified by so_wroff into
the first message block of all M _ DATA messages created as a result of a
wr it e () system call. The same offset is inserted into the first
M_DATA message block, if any, of all messages created by a
putmsg () system call. The default offset is zero.

The offset must be less than the maximum message buffer size (system
dependent). Under certain circumstances, a write offset may not be
inserted. A module or driver must test that b _ rptr in the mblk_ t
structure is greater than db_base in the dblk _ t structure to deter
mine that an offset has been inserted in the first message block.

SO MINPSZ

~~sun
• microsystems

Change the minimum packet size value associated with the Stream head
read queue to so_minpsz (see ~minpsz in the queue_t structure,
in the Kernel Structures section, above) This value is advisory for the
module immediately below the Stream head. It is intended to limit the
size of M _DATA messages that the module should put to the Stream
head. There is no intended minimum size for other message types. The

Revision A, of 9 May 1988

Priority Messages

Appendix A -Supplementary STREAMS Material 325

default value in the Stream head is O.

SO MAXPSZ
Change the maximum packet size value associated with the Stream head
read queue to so_maxpsz (see ~maxpsz in the queue_t structure,
in the Kernel Structures section, above). This value is advisory for the
module immediately below the Stream head. It is intended to limit the
size of M _DATA messages that the module should put to the Stream
head. There is no intended maximum size for other message types. The
default value in the Stream head is INFP S z, the maximum STREAMS
allows.

SO HIWAT
Change the flow control high water mark on the Stream head read queue
to the value specified in so _ hiwat.

SO LOWAT

M SIG

Change the flow control low water mark (see q_ minps z in the
queue_t structure, in the Kernel Structures section, above) on the
Stream head read queue to the value specified in so_lowat.

Sent upstream by modules or drivers to post a signal to a process. When the
message reaches the Stream head, the first data byte of the message is
transformed into a signal, as defined in <sys / signal. h>, to the
process(es) according to the following.

If the signal is not SIGPOLL and the Stream containing the sending module
or driver is a controlling TTY, the signal is sent to the associated process
group. If the Stream does not have a process group, and the calling process
does not have a controlling TTY, the Stream may become the controlling
TTY for the caller's process group. This happens if the NEWCTTY flag is
ORed into the value returned from a call to open (2) .

If the signal is SIGPOLL, it will be sent only to those processes that have
explicitly registered to receive the signal (see I_SETSIG in the
streamio (4) man page).

Priority messages are not subject to flow control.

M PCPROTO
This message type has the same format and characteristics as the M _PROTO
message type, except for priority and the following additional attributes.

When an M _ PCPROTO message is placed on a queue, its service procedure
is always enabled. The Stream head will allow only one M _PCPROTO mes
sage to be placed in its read queue at a time. If an M _ PCPROTO message is
already in the queue when another arrives, the second message is silently
discarded and its message blocks freed.

This message type is intended to allow data and control information to be
sent outside the normal flow control constraints.

~~sun ~ microsyslems
Revision A, of 9 May 1988

326 Writing STREAMS Device Drivers

The getrnsg {2} and putrnsg (2) system calls refer to M _PCPROTO mes
sages as priority messages.

M ERROR
This message type is sent upstream by modules or drivers to report some
downstream errer condition. When the message reaches the Stream head,
the Stream is marked so that all subsequent system calls issued to the
Stream, excluding close (2) and poll (2) , will fail with errno set to
the first data byte of the message. POLLERR is set if the Stream is being
poll () ed (see the poll (2) man page. All processes sleeping on a sys
tem call to the Stream are awakened. An M_FLUSH message with an
FLUSHRW argument is sent downstream.

M BANGUP
This message type is sent upstream by a driver to report that it can no longer
send data upstream. As example, this might be due to an error, or to a
remote line connection being dropped. When the message reaches the
Stream head, the Stream is marked so that all subsequent wr it e {2} and
putmsg {2} system calls issued to the Stream will fail and return an
ENXIO error. Those ioctl () s that cause messages to be sent downstream
are also failed. POLLHUP is set if the Stream is being poll () ed (see the
poll (2) man page.

However, subsequent read (2) or getrnsg {2} calls to the Stream will not
generate an error. These calls will return any messages (according to their
function) that were on, or in transit to, the Stream head read queue before the
M _ HANGUP message was received. When all such messages have been read,
read () will return 0, and getrnsg () will set each of its two length fields
to O.

This message also causes a S IGHUP signal to be sent to the process group, if
the device is a controlling TTY (see M _ S IG).

M IOCACK
This message type signals the positive acknowledgement of a previous
M _ IOCTL message. The message may contain information sent by the
receiving module or driver. The Stream head returns the information to the
user if there is a corresponding outstanding M_IOCTL request. The format
and use of this message type is described further under M _ IOCTL.

M IOCNAK
This message type signals the negative acknowledgement (failure) of a pre
vious M _ IOCTL message. When the Stream head receives an M_ IOCNAK,
the outstanding i 0 c t I () request, if any, will fail. The format and usage of
this message type is described further under M _ IOCTL.

M FLUSH
This message type requests all modules and drivers that receive it to flush
their message queues (discard all messages in those queues) as indicated in
the message. An M_FLUSH can originate at the Stream head, or in any
module or driver. The first byte of the message contains flags that specify
one of the following actions:

.~sun ~ microsystems
Revision A. of 9 May 1988

A.4. Utilities

The utilities contained in this appen
dix represent an interface that will
be maintained in subsequent ver
sions of SunOS. Other than these
utilities (see also the Accessible Sym
bols and Functions section, below)
functions contained in the
STREAMS kernel code may change
in future releases.

Appendix A - Supplementary STREAMS Material 327

FLUSHR:
Flush the read queue of the module.

FLUSHW:
Flush the write queue of the module.

FLUSHRW:
Flush both the read and the write queue of the module.

Each module passes this message to its neighbor after flushing its appropri
ate queue(s), until the message reaches one of the ends of the Stream.

Drivers are expected to include the following processing for M _FLUSH mes
sages. When an M _FLUSH message is sent downstream through the write
queues in a Stream, the driver at the Stream end discards it if the message
action indicates that the read queues in the Stream are not to be flushed (only
FLUSHW set). If the message indicates that the read queues are to be
flushed, the driver sets the M_FLUSH message flag to FLUSHR, and sends
the message up the Stream's read queues. When a flush message is sent up a
Stream's read side, the Stream head checks to see if the write side of the
Stream is to be flushed. If only FLUSHR is set, the Stream head discards the
message. However, if the write side of the Stream is to be flushed, the
Stream head sets the M_FLUSH flag to FLUSHW and sends the message
down the Stream's write side. All modules that enqueue messages must
identify and process this message type.

M PCSIG
This message type has the same format and characteristics as the M_ S IG

message type except for priority.

M START and M STOP - -
These messages request devices to start or stop their output. They are
intended to produce momentary pauses in a device's output, not to tum dev
ices on or off.

The message format is not defined by STREAMS and its use is developer
dependent. These messages may be considered special cases of an M _ CTL
message. These messages cannot be generated by a user-level process and
each is always discarded if passed to the Stream head.

This appendix specifies the set of utilities that STREAMS provides to assist
development of modules and drivers. There are over 30 utility routines and mac
ros.

The general purpose of the utilities is to perform functions that are commonly
used in modules and drivers. However, some utilities also provide the required
interrupt environment. A utility must always be used when operating on a mes
sage queue and when accessing the buffer pool.

The utilities are contained in either the system source file os / str _ buf . c or, if
they are macros, in <sys/ stream. h>.

Revision A, of 9 May 1988

328 Writing STREAMS Device Drivers

Buffer Allocation Priority

All structure definitions are contained in the Kernel Structures section, above,
unless otherwise indicated. All routine references are found in this section unless
otherwise indicated. The following definitions are used.

Blocked
A queue that can not be enabled due to flow control (see the Flow Control
section in the Introduction to STREAMS chapter of the System Services
Overview.

Enable
To schedule a queue.

Free
De-allocate a STREAMS storage.

Message block (bp)
A triplet consisting of an mblk _ t structure, a dblk _ t structure, and a data
buffer. It is referenced by its mblk _ t structure (see the Messages section of
the STREAMS Module and Driver Programming chapter.

Message (mp)
One or more linked message blocks. A message is referenced by its first
message block.

Message queue
Zero or more linked messages associated with a queue (queue_t structure),

Queue (q)
A queue _ t structure. This is generally the same as QUEUE in the rest of
this document (e.g., see the definitions for enable and schedule). When it
appears with "message" in certain utility description lines, it means "mes
sage queue."

Schedule
Place a queue on the internal linked list of queues which will subsequently
have their service procedure called by the STREAMS scheduler.

The word module will generally mean "module and/or driver." The phrase
"next/following module" will generally refer to a module, driver, or Stream head.
Message queueing priority (see the Message Queues and Service Procedures sec
tion of the STREAMS Module and Driver Programming chapters and the Mes
sage Types section, above) can be ordinary or Priority (to avoid "priority prior
ity").

STREAMS buffers are normally allocated with allocb (), described above.
An associated set of allocation priorities has been established, which are also
used in other utility routines:

BPRI LO
Low priority. At this priority, allocb () may fail even though the
requested buffer size is available. This priority is used by the Stream head
write routine to hold data associated with user calls.

~\sun
• microsystems

Revision A, of 9 May 1988

adjmsq 0 - Trim Bytes in a
Message

allocb () - Allocate a
Message Block

backq () - Get Pointer to
Queue Behind a Given Queue

Appendix A - Supplementary STREAMS Material 329

BPRI NED
Medium priority. This priority is typically used for normal data and control
block allocation. As above, allocb () may fail at this priority even
though a buffer of the requested size is available. However, for a given
block size, an BPRI _ LO allocb () call will fail before a BPRI MED
allocb () call.

BPRI HI
High priority. This priority is typically used only for critical control mes
sage allocations. Calls to allo cb () will succeed if a buffer of the
appropriate size is available. Developers should exercise restraint in use of
BPRI _HI allocation requests.

The values BPRI_LO, BPRI_MED, and BPRI_HI are defined in
<sys/ stream. h>.

STREAMS does not guarantee successful buffer allocation-any set of resources
can be exhausted under the right (wrong?) conditions. The bufcall () func
tion will help modules recover from buffer allocation failures, but it does not
guarantee that the resources will ever be available. Developers should be aware
of this when implementing modules.

int adjmsg(mp, len)
mblk_t *mp;
int len;

adjrnsg () trims bytes from either the head or tail of the message specified by
mp. Iflen is greater than zero, it removes len bytes from the beginning of mp. If
len is less than zero, it removes (-)len bytes from the end of mp. If len is zero,
adjrnsg () does nothing. adjrnsg () only trims bytes across message blocks
of the same type. It will fail if mp points to a message containing fewer than len
bytes of similar type at the message position indicated. adjmsg () returns 1 on
success, and 0 on failure.

mblk_t *allocb(size, pri)
int size, pri;

allocb () returns a pointer to a message block of type M_DATA, in which the
data buffer contains at least size bytes. pri indicates the priority of the allocation
request, and can have the values BPRI_LO, BPRI_MED or BPRI_HI (see
Buffer Allocation Priority, below). If a block can not be allocated as requested,
allocb () returns a NULL pointer.

[

queue_t *backq(q)]
queue_t *q;

'--------~

backq () returns a pointer to the queue behind a given queue. That is, it returns
a pointer to the queue whose <L next (see queue _ t structure) pointer is q. If

Revision A, of 9 May 1988

330 Writing STREAMS Device Drivers

bufcall () - Recover from
Failure of all!=>cb

canput () - Test for Room
in a Queue

copyb () - Copy a Message
Block

no such queue exists (as when q is at a Stream end), backq () returns NULL.

int bufcall(size, pri, func, arg)
int (*func) () ;
int size, pri;
long arg;

bufcall () is provided to assist in the event of a block allocation failure. If
allocb () returns NULL, indicating a message block is not currently available,
bufcall () may be invoked.

bufcall () arranges for (*func)(arg) to be called when a buffer of size bytes
at pri priority (see Buffer Allocation Priority, below) is available. Whenfunc is
called, it has no user context It cannot reference the user structure and must
return without sleeping. buf call () does not guarantee that the desired buffer
will be available whenfunc is called since interrupt processing may acquire it

bufcall () returns 1 on success, indicating that the request has been success
fully recorded, or 0 on failure. On a failure return,junc will never be called. A
failure indicates a (temporary) inability to allocate required internal data struc
tures.

canput (q)
queue_t *q;]

canput () determines if there is room left in a message queue. If q does not
have a service procedure, canput () will search further in the same direction in
the Stream until it finds a queue containing a service procedure (this is the first
queue on which the passed message can actually be enqueued). If such a queue
cannot be found, the search terminates on the queue at the end of the Stream.
canput () tests the queue found by the search. If the message queue in this
queue is not full (see the Flow Control section in the Introduction to STREAMS
chapter of the System Services Overview) canput () returns 1. This return indi
cates that a message can be put to queue q. If the message queue is full, can
put () returns O. In this case, the caller is generally referred to as blocked.

]
copyb () copies the contents of the message block pointed at by bp into a
newly-allocated message block of at least the same size. copyb () allocates a
new block by calling allocb () with pri set to BPRI _ MED (see Buffer Alloca
tion Priority, below). All data between the b _rptr and b _wptr pointers of a mes
sage block are copied to the new block, and these pointers in the new block are
gi ven the same offset values they had in the original message block. On success
ful completion, copyb () returns a pointer to the new message block containing
the copied data. Otherwise, it returns a NULL pointer.

Revision A, of 9 May 1988

copymsq () - Copy a
Message

datamsq () - Test Whether
Message is a Data Message

dupb () - Duplicate a
Message Block Descriptor

dupmsq () - Duplicate a
Message

Appendix A - Supplementary STREAMS Material 331

[

mblk_t *copymsg(mp)]
mblk_t *mpi

copymsg () uses copyb () to copy the message blocks contained in the mes
sage pointed at by mp to newly-allocated message blocks, and links the new mes
sage blocks to fonn the new message. On successful completion, copymsg ()
returns a pointer to the new message. Otherwise, it returns a NULL pointer.

(fdefine datamsg(mp) ...
J

The datamsg macro returns TRUE if mp (declared as mblk t *mp) points to
a data type message. In this case, types M_DATA, M_PROTO, or
theM _PCPROTO(see Message Types section, above). If mp points to any other
message type, datamsg returns FALSE.

]
dupb () duplicates the message block descriptor (mblk_ t structure) pointed at
by bp by copying it into a newly allocated message block descriptor. A message
block is fonned with the new message block descri ptor pointing to the same data
block as the original descriptor. The reference count in the data block descriptor
(dblk _ t structure) is incremented. dupb () does not copy the data buffer, only
the message block descriptor.

On successful completion, dupb () returns a pointer to the new message block.
If dupb () cannot allocate a new message block descriptor, it returns NULL.

This routine allows message blocks that exist on different queues to reference the
same data block. In general, if the contents of a message block with a reference
count greater than 1 are to be modified, copyb () should be used to create a new
message block and only the new message block should be modified. This insures
that other references to the original message block are not invalidated by
unwanted changes.

[mblk_t *dupmsg(mp)
mblk_t *mpi

dupmsg () calls dupb () to duplicate the message pointed at by mp, by copy
ing all individual message block descriptors, and then linking the new message
blocks to fonn the new message. dupmsg () does not copy data buffers, only
message block descriptors. On successful completion, dupmsg () returns a
pointer to the new message. Otherwise, it returns NULL.

]

Revision A, of 9 May 1988

332 Writing STREAMS Device Drivers

enableok () - Re-allow
Queue to be Scheduled

flushq () - Flush a Queue

freeb () - Free a Message
Block

freemsg 0 - Free All
Message Blocks in a Message

getq () - Get a Message
from a Queue

(
*define enableok(q) ...]

,---, --------
The enableok () macro cancels the effect of an earlier noenable () on the
same queue q (declared as queue_t *q). It allows a queue to be scheduled
for service that had previously been excluded from queue service by a call to
noenable ().

int flushq(q, flag)
queue_t *q;
int flag;

flushq () removes messages from the message queue in queue q and frees
them, using freemsg (). Ifjlag is set to FLUSHDATA, then flushq () dis
cards all M_DATA, M_PROTO, andM_PCPROTO messages (see datamsg), but
leaves all other messages on the queue. Ifflag is set to FLUSHALL, all messages
are removed from the message queue and freed. FLUSHALL and FLUSHDATA
are defined in <sys/ stream. h>.

If a queue behind q is blocked, flushq () may enable the blocked queue, as
described in putq () .

[int freeb (bp)
mblk_t *bp;

freeb () will free (de-allocate) the message block descriptor pointed at by bp,
and free the corresponding data block if the reference count (see dupbO) in the
data block descriptor (dblk _ t structure) is equal to 1. If the reference count is
greater than 1, freeb () will not free the data block, but will decrement the
reference count.

[int freemsg (mp)
mblk_t *mp;

freemsg () uses freeb () to free all message blocks and their corresponding
data blocks for the message pointed at by mp.

J

J

(
mblk_t *getq(q) J

queue_t *q;

'------------"

getq () gets the next available message from the queue pointed at by q.
getq () returns a pointer to the message and removes that message from the
queue. If no message is queued, getq () returns NULL. .

getq () , and certain other utility routines, affect flow control in the Stream as
follows: If getq () returns NULL, the queue is internally marked so that the next

~\sun ~ microsysterns
Revision A, of 9 May 1988

insq () - Put a Message at a
Specific Place in a Queue

li.nkb () - Concatenate
Two Messages into One

msqdsize () - Get Number
of Data Bytes in a Message

noenable () - Prevent a
Queue from Being Scheduled

Appendix A - Supplementary STREAMS Material 333

time a message is placed on it, it will be scheduled for service (enabled, see qen
ableO). Also, if the data in the enqueued messages in the queue drops below
the low-water mark, ~ lowat, and a queue behind the current queue had previ
ously attempted to place a message in the queue and failed (Le., was blocked, see
canputO), then the queue behind the current queue is scheduled for service (see
the Flow Control section in the Introduction to STREAMS chapter).

int insq(q, emp, nmp)
queue_t *q;
mblk_t *emp, *nmpi

insq () places the message pointed at by nmp in the message queue contained
in the queue pointed at by q immediately before the already-enqueued message
pointed at by emp. If emp is NULL, the message is placed at the end of the
queue. If emp is non-NULL, it must point to a message that exists on the queue q,
or a system panic could result.

Note that the message is placed where indicated, without consideration of mes
sage queueing priority. The queue will be scheduled in accordance with the rules
described in putq () for ordinary priority messages.

int linkb(mpl, mp2)
mblk_t *mpl;
blk_t *mp2;

1 i nkb () puts the message pointed at by mp2 at the tail of the message pointed
at by mpl.

[int msgdsize(mp)
mblk_t *mp;

msgdsize () returns the number of bytes of data in the message pointed at by
mp. Only bytes included in data blocks of type M_DATA are included in the
total.

(tdefine noenable(q) ...

]

J
The noenable () macro prevents the queue q (declared as queue_t *q)
from being scheduled for service by putq () or putbq () when these routines
enqueue an ordinary priority message, or by insq () when it enqueues any mes
sage. noenable () does not prevent the scheduling of queues when a Priority
message is enqueued, unless it is enqueued by insq () .

• \sun ~ microsystems
Revision A, of 9 May 1988

334 Writing STREAMS Device Drivers

OTHERQ () - Get Pointer to
the Mate Queue

pullupmsq () -
Concatenate Bytes in a
Message

putbq () - Return a
Message to the Beginning of a
Queue

putctl () - Put a Control
Message

[
tdefine OTHERQ(q) ...]

,,--. --------
The OTHERQ () macro returns a pointer to the mate queue of q (declared as
queue _ t *q). If q is the read queue for the module, it returns a pointer to the
module's write queue. If q is the write queue for the module, it returns a pointer
to the read queue.

int *pullupmsg(mp, len)
mblk_t *mp;
int len;

pull upmsg () concatenates and aligns the first len data bytes of the passed
message into a single, contiguous message block. Proper alignment is
hardware-dependent. To perform its function, pullupmsg () allocates a new
message block by calling allocb () with pri set to BPRI _ MED (see Buffer
Allocation Priority, below). pull upmsg () only concatenates across message
blocks of similar type. It will fail if mp points to a message of less than len bytes
of similar type. A len value of -1 requests a pull-up of all the like-type blocks in
the beginning of the message pointed at by mp.

At completion of concatenation, pull upmsg () replaces mp with a pointer to
the new message block, so that mp still points to the same message block at the
end of the operation. However, the contents of the message block may have been
altered. On success, pullupmsg () returns 1. On failure, it returns O.

int putbq(q, bp)
queue_t *q;
mblk_t *bp;

pu tbq () puts the message pointed at by bp at the beginning of the queue
pointed at by q, in a position in accordance with the message's type. Priority
messages are placed at the head of the queue, and ordinary messages are placed
after all Priority messages, but before all other ordinary messages. The queue
will be scheduled in accordance with the same rules described in putq () . This
utility is typically used to replace a message on a queue from which it was just
removed.

int putctl(q, type)
queue_t *q;
int type;

putctl () creates a control (not data, see datamsg, above) m~ssage of type
type, and calls the put procedure in the queue pointed at by q, with a pointer to
the created message as an argument. putctl () allocates new blocks by calling
allocb () with pri set to BPRI _HI (see the Buffer Allocation Priority section,
below). On successful completion, putctl () returns 1. It returns 0 ifit cannot

~\sun ,~ microsystems
Revision A, of9 May 1988

putctll () -. Put One-byte
Parameter Control Message

putnext () - Put a Message
to the Next Queue

putq () - Put a Message on
a Queue

Appendix A - Supplementary STREAMS Material 335

allocate a message block, or if type M_DATA, M_PROTO or M_PCPROTO was
specified.

int putctll(q, type, p)
queue_t *qi
int typei
int Pi

putctll () creates a control (not data, see datamsg, above) message of type
type with a one-byte parameter p, and calls the put procedure in the queue
pointed at by q, with a pointer to the created message as an argument.
putctll () allocates new blocks by calling allocb () withpri set to
theBPRI _ HI(see Buffer Allocation Priority section, below). On successful com
pletion, putctll () returns 1. It returns 0 if it cannot allocate a message block,
or if type M _DATA, M_PROTO or M _ PCPROTO was specified.

(fdefine putnext(q, mp) .,.

The pu t next () macro calls the put procedure of the next queue in a Stream,
and passes it a message pointer as an argument. The parameters must be
declared as queue_t *q and mblk_t *mp. q is the calling queue (not the
next queue) and mp is the message to be passed. putnext () is the typical
means of passing messages to the next queue in a Stream.

int putq(q, bp)
queue_t *qi
mblk_t *bPi

putq () puts the message pointed at by bp on the message queue contained in
the queue pointed at by q and enables that queue. put q () queues messages
appropriately by type (i.e., message queueing priority, see the Message Queues
amd Service Procedures section of the STREAMS Module and Driver Program
ming chapter).

pu t q () will always enable the queue when a Priority message is queued.

J

pu t q () will enable the queue when an ordinary message is queued if the fol
lowing condition is set, and enabling is not inhibited by noenable () : The con
dition is set if the module has just been pushed (see I_PUSH in streamio(4)),
or if no message was queued on the last getq () call and no message has been
queued since.

pu t q () is intended to be used from the put procedure in the same queue in
which the message will be queued. A module should not call put q () directly
to pass messages to a neighboring module. put q () may be used as the
qiyutp put procedure value in either or both of a module's qinit structures.
This effectively bypasses any put procedure processing and uses only the
module's service procedure(s).

~\sun
• microsyslems

Revision A, of 9 May 1988

336 Writing STREAMS Device Drivers

qenable () - Enable a
Queue

qreply () - Send Reverse
Direction Message on Stream

qsize () - Find the
Number of Messages on a
Queue

RD () - Get Pointer to the
Read Queue

rmvb () - Remove a
Message Block from a
Message

[
int qenable(q)]

_____ q_u_eu_e_-_t __ *_q_; ______________________________________ ~

qenable () places the queue pointed at by q on the linked list of queues that
are ready to be called by the STREAMS scheduler (see the definition for
"Schedule" above, and the Put and Service Procedures section in the Introduc
tion to STREAMS chapter).

int qreply(q, bp)
queue_t *q;
mblk_t *bp;

qreply () sends the message pointed at by bp up (or down) the Stream in the
reverse direction from the queue pointed at by q. This is done by locating the
partner of q (see OTHERQ () , below}, and then calling the put procedure of that
queue's neighbor (as in putnextO). qreply () is typically used to send back
a response (M _I OCACK or M_ I OCNAK message) to an M _ I OCTL message (see
Message Types, above).

[int qsize (q)
queue_t *q;

qs i z e () returns the number of messages present in queue q. If there are no
messages on the queue, qsize () returns O.

(idefine RD(q) ...

The RD () macro accepts a write queue pointer, q (declared as queue_t *q),
as an argument and returns a pointer to the read queue for the same module.

mblk_t *rmvb(mp, bp)
mblk t *mp;
mblk_t *bp;

]

]

rmvb () removes the message block pointed at by bp from the message pointed
at by mp, and then restores the linkage of the message blocks remaining in the
message. rmvb () does not free the removed message block. rmvb () returns a
pointer to the head of the resulting message. If bp is not contained in mp,
rmvb () returns a -1. If there are no message blocks in the resulting message,
rmvb () returns a NULL pointer.

+~t!! Revision A, of 9 May 1988

rmvq () - Remove a
Message from a Queue

splstr () - Set Processor
Level

strlog () - Submit
Messages for Logging

testb () - Check for an
Available Buffer

Appendix A -Supplementary STREAMS Material 337

int rmvq(q, mp)
queue_t *q;
mblk_t *mp;

rmvq () removes the message pointed at by mp from the message queue in the
queue pointed at by q, and then restores the linkage of the messages remaining on
the queue. If mp does not point to a message that is present on the queue q, a
system panic could result.

(int splstr ()

splstr () increases the system processor level to block interrupts at a level
appropriate for STREAMS modules when those modules are executing critical
portions of their code. splstr () returns the processor level at the time of its
invocation. Module developers are expected to use the standard kernel function
splx (s) , where s is the integer value returned by splstr () , to restore the
processor level to its previous value after the critical portions of code are passed.

int strlog(mid, sid, level, flags, fmt, argl, ...)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned argl;

strlog () submits messages containing specified information to the log (4)
driver. Required definitions are contained in <sys/ strlog. h> and
< s y s / log. h >. mid is the STREAMS module id number for the module or
driver submitting the log () message. sid is an internal sub-id number usually
used to identify a particular minor device of a driver. level is a tracing level that
allows selective screening of messages from the tracer. flags are any combina
tion of SL _ERROR (the message is for the error logger), SL_ TRACE (the mes
sage is for the tracer), SL _FATAL (advisory notification of a fatal error), and
SL_NOTIFY (request that a copy of the message be mailed to the system
administrator). Imt is a printf (3S) style format string, except that %s, %e,
%E, %g, and %G conversion specifications are not handled. Up to NLOGARGS
numeric or character arguments can be provided. (See Other Facilities in the
Introduction to STREAMS chapter of the System Services Overview and
log (4) .)

J

[int ~estb~size, ~ri)
lnt Slze, prl.;]

te stb () checks for the availability of a message buffer of size size at priority
pri (see Buffer Allocation Priority, below) without actually retrieving the buffer.
te stb () returns 1 if the buffer is available, and 0 if no buffer is available. A

+m.!! Revision A, of 9 May 1988

338 Writing STREAMS Device Drivers

unl.i.nkb () - Remove
Message Block from Message
Head

WR () - Get Pointer to the
Write Queue

A.S. Design Guidelines

General Rules

successful return value from testb () does not guarantee that a subsequent
allocb () call will succeed (e.g., in the case of an interrupt routine taking
buffers).

[

mblk_t *unlinkb(mp)]
mblk_t *mp;

"-----------"

unlinkb () removes the first message block pointed at by mp and returns a
pointer to the head of the resulting message. unlinkb () returns a NULL
pointer if there are no more message blocks in the message.

[~t_d_e_f_i_n_e __ W_R_(_q_) __ ._._. __ ~]
The WR macro accepts a read queue pointer, q (declared as queue_t *q), as
an argument and returns a pointer to the write queue for the same module.

This appendix summarizes STREAMS module and driver design guidelines and
rules presented in previous chapters. Additional rules that developers must
observe are included. Where appropriate, the section of this document contain
ing detailed information is named. The end of the appendix contains a brief
description of error and trace logging facilities.

Unless otherwise noted, "module" implies "modules and drivers".

The following are general rules that developers should follow when writing
modules.

1. Modules cannot access information in the user structure associated with a
process. Modules are not associated with any process, and therefore have no
concept of process or user context.

The capability to pass user structure information upstream using messages
has been provided where required. This can be done in M _ IOCTL handling
(see the Drivers section of the STREAMS Module and Driver Programming
chapter and also Message Types, above. A module can send error codes
upstream in a M_IOCACK or M_IOCNAK message, where they will be
placed in u_error by the Stream head. Return values may also be sent
upstream in a M_IOCACK message, and will be placed in u_rvall. Infor
mation can also be passed to the user structure via a M_ERROR message
(see the Complete Driver section of the STREAMS Module and Driver Pro
gramming chapter and also Message Types, above. The Stream head will
recognize this message type and inform the next system call that an error has
occurred downstream by setting u_error. Note that in both instances, the
downstream module cannot access the user structure, but it informs the
Stream head to do so.

2. In general, modules should not require the data in an M _ DATA message to
follow a particular format, such as a specific alignment. This makes it easier
to arbitrarily push modules on top of each other in a sensible fashion. Not

~~sun ~~ microsystems
Revision A, of9 May 1988

System Calls

Data Structures

Appendix A - Supplementary STREAMS Material 339

following this rule may limit module re-usability (the ability to use the
module in multiple applications).

3. Every module must process an M_FLUSH message according to the value of
the argument passed in the message. (See the Message Queues and Service
Procedures and Drivers chapters of STREAMS Module and Driver Program
ming, and also Message Types, above.

4. A module should not change the contents of a data block whose reference
count is greater than 1 (see dupmsg () in the Utilities section, above)
because other modules that have references to the block may not want the
data changed. To avoid problems, it is recommended that the module copy
the data to a new block and then change the new one.

5. Modules should only manipulate message queues and manage buffers with
the routines provided for those purpose, (see the Utilities section, above).

6. Filter modules pushed between a service user and a service provider (see the
Service Interface section of the STREAMS Module and Driver Programming
chapter) may not alter the contents of the M _PROTO or M _ PCPROTO block
in messages. The contents of the data blocks may be manipulated, but the
message boundaries must be preserved.

These rules pertain to module and drivers as noted.

1. open and close routines may sleep, but the sleep must return to the routine in
the event of a signal. That is, if they sleep, they must be at priority <=
PZERO, or with PCATCH set in the sleep priority.

2. The open routine must return >= 0 on success or OPENF AI L if it fails. This
ensures that a failure will be reported to the user process. errno may be set
on failure. However, if the open routine returns OPENFAIL and errno is
not set, STREAMS will automatically set errno to ENXIO.

3. If a module or driver recognizes and acts on an M _ I OCTL message, it must
reply by sending aM _ IOCACK message upstream. A unique id is associated
with each M _ IOCTL, and the M _ IOCACK or M _ IOCNAK message must con
tain the id of the M_IOCTL it is acknowledging.

4. A module (not a driver) must pass on any M _ I OCTL message it does not
recognize (see Message Types, above). If an unrecognized M_ IOCTL
reaches a driver, the driver must reply by sending aM _ IOCNAK message
upstream.

Only the contents of qytr, ~minpsz, CLmaxpsz, CLhiwat,and
CL lowat in a queue _ t structure may be altered. The latter four quantities are
set when the module or driver is opened, but may be modified subsequently.

As described in the SunOS STREAMS Topics chapter, every module and driver is
configured in with the address of a streamtab structure (see also the Streams
Mechanism section of the STREAMS Module and Driver Programming chapter.
For a driver, a pointer to its streamtab is included in cdevsw. For a module,
a pointer to its streamtab is included in fmodsw .

• \sun ~~ microsystems
Revision A, of 9 May 1988

340 Writing STREAMS Device Drivers

Hepder Files

Accessible Symbols and
Functions

The following header files are generally required in modules and drivers:

types.h
contains type definitions used in the STREAMS header files

stream.h
contains required structure and constant definitions

stropts.h
primarily for users, but contains definitions of the arguments to the
M _FLU S H message type also required by modules

One or more of the header files described below may also be included (also see
the following section). No standard SunOS system header files should be
included except as described in the following section. The intent is to prevent
attempts to access data that cannot or should not be accessed.

errno.h
defines various system error conditions, and is needed if errors are to be
returned upstream to the user

sysmacros.h
contains miscellaneous system macro definitions

param.h
defines various system parameters, particularly the value of the P CATCH

sleep flag

siqnal.h
defines the system signal values, and should be used if signals are to be pro
cessed or sent upstream

file.h
defines the file open flags, and is needed if 0 _NDELAY is interpreted

The following lists the only symbols and functions that modules or drivers may
refer to (in addition to those defined by STREAMS), if hardware and UNIX
system release independence is to be maintained. Drivers and modules which
use symbols not listed here will not be compatible with System V systems.

user. h (from open/close procedures only)

struct proc *u_procp
char u error
ushort u uid
ushort ll_gid
ushort u ruid
ushort u_rgid

1* process structure pointer *1
1* system call error number *1
1* effective user ID *1
1* effective group ID *1
1* real user ID *1
1* real group ID *1

proc . h (from open/ close procedures only)

short pyid
short pygrp

1* process ID *1
1* process group ID *1

Functions accessible from open/close procedures only

Revision A, of 9 May 1988

Rules for Put and Service
Procedures

Appendix A - Supplementary STREAMS Material 341

fIg = sleep(chan, pri) 1* sleep until wakeup *1

Universally accessible functions

bcopy (f rom, to, nbytes) 1* copy data quickly *1
bzero (buffer, nbytes) 1* zero data quickly *1
t = max (a, b) 1* return max of args *1
t = min (a, b) 1* return min of args *1
mem=rm_alloc (map, size) 1* allocate resource *1
rmfree (map, size, addr) 1* de-allocate resource *1
rminit (mp, size, addr, name, mapsize) /* initialize resource map */
printf (format, ...) 1* print message *1
s = spIn () 1* set priority level *1
timeout (tunc, arg, ticks) /* schedule event */
untimeout (tunc, arg) /* cancel event */
wakeup (chan) 1* wake up sleeper *1

sysmacros.h

t = major (dev)
t = minor (dev)

kernel.h

1* return major device *1
/* return minor device *1

struct timeval boot time 1* time since system came up *lhz
struct timeval time /* current time */

param.h

PZERO
PCATCH

hz
NULL

types.h

dev t
time t

/* zero sleep priority */
1* catch signal sleep flag *1
1* clock ticks per second *1
1* 0 *1

1* combined major/minor device *1
1* time counter *1

All data elements are software read-only except:

u error 1* may be set on afailure return of open */

To ensure proper data flow between modules, the following rules should be
observed in put and service procedures. The following rules pertain to put pro
cedures.

1. A put procedure must not sleep.

2. Each QUEUE must define a put procedure in its qini t (see Kernel Struc
tures, above) structure for passing messages between modules.

3. A put procedure must use the putq () (see Utilities, above) utility to
enqueue a message on its own message queue. This is necessary to ensure
that the various fields of the queue _ t structure are maintained consistently.

4. When passing messages to a neighbor module, a module may not call
putq () directly, but must call its neighbor's put procedure (see

+~ll,!! Revision A, of 9 May 1988

342 Writing STREAMS Device Drivers

putnext () in Utilities) Note that this rule is distinct from the one above
it. The previous rule states that a module must call putq () to place mes
sages on its own message queue, whereas this rule states that a module must
not call putq () directly to place messages on a neighbor's queue.

However, the <L-qinfo structure that points to a module's put procedure
may point to putq () (i.e. putq () is used as the put procedure for that
module). When a module calls a neighbor's put procedure that is defined in
this manner, it will be calling putq () indirectly. If any module uses
putq () as its put procedure in this manner, the module must define a ser
vice procedure. Otherwise, no messages will ever be sent to the next
module. Also, because put q () does not process M _FLUSH messages, any
module that uses putq () as its put procedure must define a service pro
cedure to process M _FLUSH messages.

5. The put procedure of a QUEUE with no service procedure must call the put
procedure of the next QUEUE directly, if a message is to be passed to that
QUEUE. If flow control is desired, a service procedure must be provided.

Service procedures must observe the following rules:

1. A service procedure must not sleep.

2. The service procedure must use get q () to remove a message from its mes
sage queue, so that the flow control mechanism is maintained.

3. The service procedure should process all messages on its message queue.
The only exception is if the Stream ahead is blocked (i.e., canput () fails,
see Utilities, above). Adherence to this rule is the only guarantee that
STREAMS will enable (schedule for execution) the service procedure when
necessary, and that the flow control mechanism will not fail.

If a service procedure exits for any other reason (e.g., buffer allocation
failure), it must take explicit steps to assure it will be re-enabled.

4. The service procedure must follow the steps below for each message that it
processes. STREAMS flow control relies on strict adherence to these steps.

Step 1:
Remove the next message from the message queue using ge t q (). It is pos
sible that the service procedure could be called when no messages exist on
the queue, so the service procedure should never assume that there is a mes
sage on its message queue. If there is no message, return.

Step 2:
If all the following conditions are met:

o canput () fails and

o the message type is not a priority type (see Message Types) and

o the message is to be put on the next QUEUE.

then, continue at Step 3. Otherwise, continue at Step 4.

Revision A, of9 May 1988

A.6. STREAMS Glossary

Appendix A - Supplementary STREAMS Material 343

Step 3:
The message must be replaced on the head of the message queue from which
it was removed using putbq () (see Utilities). Following this, the service
procedure is exited. The service procedure should not be re-enabled at this
point. It will be automatically back-enabled by flow control.

Step 4:
If all the conditions of Step 2 are not met, the message should not be
returned to the queue. It should be processed as necessary. Then, return to
Step 1.

Back Enable To enable (by STREAMS) a preceding blocked QUEUE when STREAMS deter
mines that a succeeding QUEUE has reached its low water mark.

Blocked A QUEUE that cannot be enabled due to flow control.

Clone Device A STREAMS device that returns an unused minor device when initially opened,
rather than requiring the minor device to be specified in the open (2) call.

Close Procedure The module routine that is called when a module is popped from a Stream and
the driver routine that is called when a driver is closed.

Control Stream In a multiplexor, the upper Stream on which a previous I_LINK ioctl (to the
associated file, see streamio(4» caused a lower Stream to be connected to the
multiplexor driver at the end of the upper Stream.

Downstream The direction from Stream head towards driver.

Device Driver In the STREAMS context, the term "device driver" refers to the end of the
Stream closest to an external interface. The principle functions of a device driver
are handling an associated physical device, and transforming data and informa
tion between the external interface and Stream.

Driver

Enable

Flow Control

Lower Stream

Message

Message block

A module that forms the Stream end. It can be a device driver or a pseudo-device
driver. In STREAMS, a driver is physically identical to a module (Le., com
posed of two QUEUEs), but it has additional attributes.

Schedule a QUEUE.

The STREAMS mechanism that regulates the flow of messages within a Stream
and the flow from user space into a Stream.

A Stream connected below a multiplexor pseudo-device driver, by means of an
I LINK ioctl. The far end of a lower Stream terminates at a device driver or
another multiplexor driver.

One or more linked message blocks. A message is referenced by its first message
block and its type is defined by the message type of that block.

Carries data or information, as identified by its message type, in a Stream. A
message block is a triplet consisting of a data buffer and associated control struc
tures, an mblk _ t structure and a dblk _ t structure.

~~sun ~ microsystems
Revision A, of 9 May 1988

344 Writing STREAMS Device Drivers

Message Queue A linked list of zero or more messages connected to a QUEUE.

Message type A defined set of values identifying the contents of a message block and message.

Module A pair of QUEUEs. In general, module implies a pushable module.

Multiplexor A STREAMS mechanism that allows messages to be routed among multiple
Streams in the kernel. A multiplexor includes at least one multiplexing pseudo
device driver connected to one or more upper Streams and one or more lower
Streams.

Open Procedure The routine in each STREAMS driver and module called by STREAMS on each
open (2) system call made on the Stream. A module's open procedure is also
called when the module is pushed.

Pop A STREAMS ioctl () (see streamio(4» that causes the pushable module
immediately below the Stream head to be removed (popped) from a Stream
(modules can also be popped as the result of a close (2)) •

Pseudo-device Driver A software driver, not directly associated with a physical device, that performs
functions internal to a Stream such as a multiplexor or log driver.

Push A STREAMS ioctl () (see streamio(4» that causes a pushable module to
be inserted (pushed) in a Stream immediately below the Stream head.

Pushable Module A module interposed (pushed) between the Stream head and driver. Pushable
modules perform intermediate transformations on messages flowing between the
Stream head and driver. A driver is a non-pushable module and a Stream head
includes a non-pushable module.

Put Procedure The routine in a QUEUE which receives messages from the preceding QUEUE.
It is the single entry point into a QUEUE from a preceding QUEUE. The pro
cedure may perform processing on the message and will then generally either
queue the message for subsequent processing by this QUEUE's service pro
cedure, or will pass the message to the put procedure of the following QUEUE.

QUEUE A STREAMS defined set of C-Ianguage structures. A module is composed of a
read (upstream) QUEUE and a write (downstream) QUEUE. A QUEUE will
typically contain a put and service procedure, a message queue, and private data.
The read QUEUE (cf. read queue) in a module will also contain the open pro
cedure and close procedure for the module.

The primary structure is the queue _ t structure, occasionally used as a synonym
for a QUEUE.

Read Queue The message queue in a module or driver containing messages moving upstream.
Associated with a read (2) system call and input from a driver.

Schedule Place a QUEUE on the internal list of QUEUEs which will subsequently have
their service procedure called by the STREAMS scheduler.

Service Interface A set of primitives that define a service at the boundary between a service user
and a service provider and the rules (typically represented by a state machine) for
allowable sequences of the primitives across the boundary. At a Stream/user
boundary, the primitives are typically contained in the control part of a message;

Revision A, of 9 May 1988

Appendix A - Supplementary STREAMS Material 345

within a Stream, in M _PROTO or M _ PCPROTO message blocks.

Service Procedure The routine in a QUEUE which receives messages queued for it by the put pro
cedure of the QUEUE. The procedure is called by the STREAMS scheduler. It
may perlorm processing on the message and will generally pass the message to
the put procedure of the following QUEUE.

Service Provider In a service interface, the entity (typically a module or driver) that responds to
request primitives from the service user with response and event primitives.

Service User In a service interface, the entity that generates request primitives for the service
provider and consumes response and event primitives.

Stream The kernel aggregate created by connecting STREAMS components, resulting
from an application of the STREAMS mechanism. The primary components are
the Stream head, the driver, and zero or more pushable modules between the
Stream head and driver.

Stream End The end of the Stream furthest from the user process, containing a driver.

Stream Head The end of the Stream closest to the user process. It provides the interface
between the Stream and the user process.

STREAMS A kernel mechanism that supports development of network services and data
communication drivers. It defines interlace standards for character input/output
within the kernel, and between the kernel and user level. The STREAMS
mechanism comprises integral functions, utility routines, kernel facilities and a
set of structures.

Upper Stream A Stream terminating above a multiplexor pseudo-device driver. The far end of
an upper Stream originates at the Stream head or another multiplexor driver.

Upstream The direction from driver towards Stream head.

Water Marks Limit values used inflow control. Each QUEUE has a high water mark and a
low water mark. The high water mark value indicates the upper limit related to
the number of characters contained on the message queue of a QUEUE. When
the enqueued characters in a QUEUE reach its high water mark, STREAMS
causes another QUEUE that attempts to send a message to this QUEUE to
become blocked. When the characters in this QUEUE are reduced to the low
water mark value, the other QUEUE will be unblocked by STREAMS.

Write queue The message queue in a module or driver containing messages moving down
stream. Associated with a wr i te (2) system call and output from a user pro
cess.

Revision A, of 9 May 1988

PART THREE: Non-STREAMS
Appendices

B
Summary of Device Driver Routines

Summary of Device Driver Routines .. 351

B.1. Standard Error Numbers ... 351

B.2. Device Driver Routines ... 351

xxattach () - Attach a Slave Device .. 352

xxclose () - Close a Device .. 352

xxint r () - Handle Vectored Interrupts 352

xxioctl () - Miscellaneous I/O Control .. 353

x.xmmap () - Mmap a Page of Memory .. 355

x.uninphys 0 - Detennine Maximum Block Size 355

xxopen () - Open a Device for Data Transfers 356

xxpoll () - Handle Polling Interrupts 357

xxprobe () - Determine if Hardware is There 357

xxread () - Read Data from Device .. 358

xxselect () - Select Support ... 358

xxstrategy () - High-Level I/O ... 359

xxwri te () - Write Data to Device .. 359

B.l. Standard Error
Numbers

B.2. Device Driver
Routines

B
Summary of Device Driver Routines

The system has a collection of standard error numbers that a driver can return to
its callers. These numbers are described in detail in intro (2) , the introduc
tory pages of the System Interface Manual. A complete listing of the error
numbers appears in <sys/ errno. h>.

These routines actually compose the bulk of the device driver. Some of them,
like xxioctl () , are optional. Others, like xxprobe () , must appear in every
driver. Omitted from this section is the xxslave () routine, which appears pri
marily in block-device drivers. See the The' 'Skeleton" Character Device
Driver chapter for additional information about many of these routines.

When a user program makes a system call that involves I/O devices, it's
translated by the kernel into a call to the appropriate driver routine. However,
when that driver routine is called, its parameters are no longer the same as the
parameters that the user program passed to the system call - they will have been
translated into parameters reflecting the actual run-time environment of the
drivers, an environment set up and initialized by config and the
autoconfiguration process and then maintained by the kernel and the drivers
themselves. For example, a user program will call

write (fileno, address, nbytes)
int fileno;
char *address;
int nbytes;

but the kernel will translate this into

xxwrite(dev, uio)
dev_t dev;
struct uio *UiOi

by the time it calls the driver's xxwri te () routine .

• \sun ~~ microsystems
351 Revision A, of 9 May 1988

352 Writing STREAMS Device Drivers

xxat tach () - Attach a Slave
Device

xxclose () - Close a Device

xxintr 0 - Handle Vectored
Interrupts

r xxattach(md) J l _____ s_t __ ru_c_t __ mh __ -__ d_e_v_i_c_e __ *_m_d_; ________________________________ --J

xxat tach () does boot-time, device-specific setup and initialization. It's com
monly used in disk and tape drivers for setup tasks like reading labels, and in
character drivers for the initialization of interrupt vectors and the reserving of
blocks of memory. Its proper tasks are not limited to the initialization of actual
hardware devices - xxattach () is also used to set up and initialize local data
structures.

When it needs to set a device interrupt-vector number, xxat tach () finds it in
the rod intr->v vec field of the rob device structure. A NULL value in - - -
this field indicates that the host machine is Multibus based and does not support
vectored interrupts. On VMEbus machines md _ intr->v _ vec is the
interrupt-vector number given for the device in the kernel config file and must be
present

xxat tach () can also be used to set the 32-bit argument that's subsequently
passed to xxintr (). This argument (contained in rod_intr->v _ vptr is ini
tially set to the unit number of the interrupting device, but it's often convenient
to reset it to contain a pointer to a local structure.

xxclose(dev, flags)
dev_t dev;
int flags;

xxclose () does whatever it has to do to indicate that data transfers can't be
made on the device until it's been reopened. This may involve nothing at all, or
it may include resetting and quieting the device, flushing data buffers"and releas
ing or unlocking resources (or unlocking the device itself if it's opened
exclusively). Since xxclose () is called only when the last user process which
is using the device closes it, xxc 10 se () must clean up for all user processes
which have had the device open. xxclose () doesn't need to report an error,
although it can. flags, incidently, is the same as it is for xxopen () .

[
xxintr(ctrl_nUm) J

int ctrl_num;

'-------""

xxintr () is responsible for fielding vectored interrupts from the device. As
such, it is specified (with its interrupt vector) in the kernel config file. As an
interrupt routine, xxintr () (and any routines that it calls) is ab~olutely prohi
bited from calling sleep () or referencing the kernel user structure.

xxintr () receives one 32-bit parameter, which is, by default, the unit number
of the device that interrupted. However, you can arrange for it to receive

Revision A, of 9 May 1988

Note that the driver xxintr () rou
tine cannot itself set the errno regis
ter, since that register is actually a field
in the user structure (u . u error),
and the user structure mustnot be
accessed at interrupt time. Instead,
xxint r () passes the error to the ker
nel via the buffer, and the kernel sets
u.u error.

xxioct 1 () - Miscellaneous
I/O Control

Appendix B - Summary of Device Driver Routines 353

something else by changing the value in rnd_intr->v _ vptr. (See xxat
tach () , above).

In character drivers which, like block drivers, make use ofphysio () and its
associated structures, mechanisms and routines, xxintr () is used to indicate
when the device is finished with one chunk and ready for the next. xxintr () is
also instrumental in certain tasks which, by their nature, must be shared with
top-half routines. Examples of such tasks are the maintenance of character I/O
buffers and select () -related bookkeeping structures. (In the select ()
case, xxintr () also has the job of calling selwakeup () to wakeup sleeping
processes).

Note that whenever xxintr () maintains a data structure or resource in coopera
tion with top-level routines, the top-level code must be protected by a mutual
exclusion lock. Interrupts are automatically disabled when an interrupt routine is
called, so it is generally unnecessary for xxintr () to disable interrupts before it
does its part of the job.

xxintr () is also responsible for error handling and reporting. More
specifically:

o xxintr () should check the device for an error every time it's called. It can
also check the driver state against the device state to ensure that the device
is, in fact, doing what the driver expects it to be doing. Upon finding an
"impossible" or unrecoverable error, xxintr () should panic (). But for
regular errors it should call printf () (or uprintfO), flag the error in
the I/O buffer, and then return.

o The error is flagged by setting the B _ ERROR bits in the buffer header
b_flags field (and, if an error code other than EIO is desired, by assigning
that error code into the buffer b _error field). The error code will then be
propagated up to the user by way ofphysio (). physio () checks to see
if the error flag has been set in the buffer, and if it has, passes the error code
up to the user program, which usually plugs it into the global error register
errno. xxintr () doesn't itselfretum anything.

o A retry attempt can be made before giving up and taking the error return.

o

Whether or not this is advisable is entirely dependent on the specific device
and error characteristics. (Note that the b _ re sid field in the buffer header
will typically indicate the number of bytes of data that were still
untransferred at the error return).

The error return should abort the I/O request that produced the error and then
place the device in its normal idle state.

xxioctl(dev, cmd, data, flag)
dev_t dey;
int cmd;
caddr_t data;
int flag;

.\sun ~ microsystems
Revision A, of 9 May 1988

354 Writing STREAMS Device Drivers

The device-driver entry routines, taken as a set, are intended to constitute a uni
fonn abstract interface capable of accommodating all possible I/O devices.
Obviously, such devices differ greatly, and thus the need for this xxioctl (). It
is the escape mechanism by which miscellaneous operations are accommodated.

These functions vary greatly - almost anything is possible. The range ofpossi
bilities requires a very general interface, and xxioctl () has one. The cmd
variable identifies a specific device control operation, and is typically used by
xxioctl () as the index into a switch statement. The data parameter is the real
escape hatch, a pointer to an array up to 255 bytes in length. This array, over
which the driver and its users will overlay a driver-specific structure, can be
treated as both an input parameter by which user programs send data to the driver
and as an output parameter by which the driver returns data to its users. flag is
set to the f_flags field of the file structure. The file structure, together
with the file-mode flags to which its f_flags field can be set (FREAD,
FWRlTE, and so on) is defined in <sys/file. h>. The driver is free to use
flag to make its operation sensitive to the manner in which the file was opened by
the user.

In <sys/ ioctl. h> will be found a collection of macros which encode param
eter size and read/write control infonnation into ioctl () command codes.
These macros tell the kernel, on a command by command basis:

o How many of the maximum of 127 bytes in the ioctl () parameter are
significant when that parameter is read.

o How many of these bytes are significant when the parameter is written.

o If the parameter bytes should be read into kernel space before calling
xxioctl ().

o If they should be read into user space after calling xxioctl ().

The Versatec Interface driver in the Sample Driver Listings appendix of this
manual contains some simple examples of the use of these ioctl () macros.
(More complex examples can be found in <sys/ioctl. h». The Versatec
Interface driver defines two ioctl () command codes (in
/usr / include/ sys/vcmd. h):

=ltdefine
=It de fine

VGETSTATE _IOR(v, 0, int)
VSETSTATE _IOW(v, 1, int)

The first parameter of the ioctl () macros is an ASCII character that serves to
group together each driver's command codes. It must be different for each dev
ice - in this case, it's "v" for "Versatec". The second parameter is the com
mand code itself. The third is the size of the ioctl () argument, which cannot
exceed 127 bytes. Note that the size is given as the name of the structure which
will be used to interpret the parameter array. The macros _lOR, _lOW and
_ I OWR then use the s i z eo f () operator to determine the number of bytes con
sumed by the structure.

The definitions of such ioctl () -related structures, together with the
command-code definitions themselves, must be collected into a user accessible
include file. Such include files are usually, though not necessarily, kept in

.\sun ~ microsystems
Revision A, of 9 May 1988

xxmmap () - Mmap a Page of
Memory

xxminphys () - Determine
Maximum Block Size

Appendix B - Summary of Device Driver Routines 355

/usr/include/sys.

When the kernel processes the ioctl () system call, translating its parameters
into the terms appropriate to anxxioctl () driver routine, it consults the
read/write encode bits in the command code. If the read bit is set, then the argu
ment is read into a buffer in kernel space, and a pointer to that buffer is passed to
the driver ioctl () routine. Likewise, if the write bit is set, the argument is
copied back into user space after command execution is completed.

xxioctl () does whatever it has to do, then returns 0 if there were no errors, an
error code if there were. ENOTTY is the code used if the requested command did
not apply to the device. The kernel passes error codes up to the user program,
which usually plugs them into errno.

xonmap(dev, off, protection)
dev_t dev;
off_t off;
int protection;

xxmrnap () is called for PrE information about the page (at offset off) of dev's
memory. (This information is what the kernel needs to map the page to a virtual
address). xxmmap () should first check that of f doesn't exceed the device
memory size:

if (off >= XXSIZE) return (-1);

for this would cause the mapping of an area greater than the device memory.
xxmrnap () returns the subset of the page table entry (PrE) containing the page
frame number and the page type to its caller in the kernel. xxmmap () is called
iteratively to perform a mapping requested by a call to rmnap () - the looping
and all of its bookkeeping, as well as the actual mapping, is performed by the
kernel in a way that's transparent to the driver.

xxmrnap () returns -1 to the kernel if it can't do the mapping, otherwise it returns
its PTE subset. Upon receipt of a -1, the kernel returns the error code E I NVAL

(Illegal argument) to the user program, where it's usually plugged into the global
error variable errno.

unsigned xxminphys(bp)
register struct buf *bp;

xxminphys () determines a "reasonable" block size for transfers, so as to avoid
tying up too many resources. xxminphy s () is passed as an argument to phy
sio. The system version of the xxminphys () function, minphys, may be
used by any driver. xxminphys () should perform the calculation:

~\sun ~ microsystems
Revision A, of 9 May 1988

356 Writing STREAMS Device Drivers

xxopen () - Open a Device
for Data Transfers

int block; 1* some reasonable block sixefor transfers * I

if (bp->b_bcount > block)
bp->b_bcount block;

xxopen(dev, flags)
dev_t dev;
int flags;

xxopen () is called each time the device is opened, and may include any
device-specific initialization. Typically, it will:

o begin by validating the minor device number and doing other device-specific
error checking.

o Then if everything is ok, it will initialize the device (for example by clearing
registers, enabling interrupts or checking for power-up errors) and possibly
the local data structures. This structure initialization may include locking
the device if it's exclusive use, or allocating driver resources - for example
allocating dynamic buffers that will be needed later).

o Finally, xxopen () will typically wait for the device to come on-line, and
return an error if it doesn't.

NOTE If xxopen () supports "clone open", that is to say, if it will allow a user to open
a driver without specifying a minor device, then it is important that it does any
thing that may lead to its being blocked before it actually chooses the minor dev
ice that it is going to clone. Otherwise, there's a possibility of someone else
grabbing the device while xxopen () is blocked.

The integer argument flags indicates if the open is for reading, writing, or for
both. The constants FREAD and FWRITE (from <sys/file. h» are avail
able to be AND' ed with flags.

The minor device number encoded in dey is of concern only to the device driver
itself. It can itself be encoded to contain various kinds of information, as needed
by the driver. The driver developer will want to provide macros to break out
encoded subfields. dey may encode a unit or driver number, a special feature, or
an operating mode.

xxopen () returns ENXIO (No such device or address) if the minor device
number is out of range, ENODEV (No such device) if an attempt was made to
open the device with an inappropriate mode or E 10 (110 Error) to indicate an 110
error in the course of an attempted initialization. If the open is successful, xxo
pen () returns O. The kernel will return the error code to the user program,
where it is usually plugged into the global error variable errno .

• \sun ~ microsystems
Revision A, of 9 May 1988

xxpol.l. () - Handle Polling
Interrupts

xxprobe () - Detennine if
Hardware is There

Appendix B - Summary of Device Driver Routines 357

[xxpoll ())
xxpol1 () is responsible for fielding non-vectored interrupts from the device. In
situations where multiple devices share the same interrupt level, xxpoll () must
determine if the interrupt was actually destined for this driver or not . .:apoll ()
returns 0 to indicate that the interrupt was not serviced by this driver, and non
zero to indicate that the interrupt was serviced. It is a gross error for xxpo 11 ()
to say that it serviced an interrupt when it did not.

If a device driver handles both vectored interrupts and polling interrupts,
xxpoll () typically calls the xxintr () routine with the proper arguments, nor
mally the unit number of the device that interrupted. sleep may never be
called from xxpoll () , or, for that matter, from any of the lower-half routines.

xxprobe(reg, unit)
caddr_t reg;
int unit;

xxprobe () detennines whether the device at the kernel virtual address reg actu
ally exists and is the correct device for this driver. The method by which it
accomplishes this is impossible to standardize, for devices provide no uniform
means of identification. Indeed, some devices fail to provide even reasonable
non-standard means of identification.

The kernel provides a set of functions to help with probing. These functions can
probe an address, recover from the bus error that will occur if no device is
installed at that address, and return with an indication as to whether such a bus
error occurred. These functions are peek () , peekc () , peekl () , poke () ,
pokec () and pokel () .

It's possible for probe () to check the value of the reg parameter to ensure that
the device isn't installed at an address that it can't itself address. The device's
entry in the kernel config file detennines which address space it's mapped into,
but it's sometimes possible for the device itself to be configured differently. The
driver can check, for example, that reg doesn't contain an address greater than
OxFFFFF (that is, an address with more than 20 significant bits) if the device is
configured for 20-bit references.

It's also possible for xxprobe () to do some device initialization, even though
such initialization is properly the job of xxattach (). This can make sense if
such initialization allows xxprobe () to identify and verify the device, but it
should only do the amount of initialization necessary to determine if the device is
really there. It definitely should not allocate any memory that won't be used if
the device isn't found, and it should not assume that just because. it found a dev
ice that the system will choose to include that device in its configuration

If the correct device is found at the probed location, xxprobe () returns (sizeof
(struct xxdevice () ». (This is the size of the device registers in I/O space if the

Revision A, of9 May 1988

358 Writing STREAMS Device Drivers

xxread () - Read Data from
Device

xxselect () - Select Support

device is an I/O mapped Multibus device; otherwise it's the size of the device
registers in memory space). If no device is found at the expected location, or if
the device found is not the one that was expected, xxprobe () returns a O. Ifit
doesn't, the kernel will be incorrectly led to believe that a device is present, and
future attempts to contact it will cause the kernel to panic () with a bus error.

Note that the amount of memory mapped in by the autoconfiguration code is
determined by the size given in the mb _ dr i ve r->mdr _ S i z e field, and not by
the value returned from xxprobe () , which is used only for the go/nogo test.

xxread (dev , uio)
dev_t dev;
struct uio *uio;

xxread () is the high-level routine called (in character device drivers) to per
form data transfers from the device. xxread () must check that the minor dev
ice number passed to it is in range. If the minor device number is out of range,
xxread () returns like so:

if (XXUNIT(dev) >= NXX)
return (ENXIO);

Subsequent actions of xxread () differ depending on whether the device is a
tty-style character-at-a-time device or a device that buffers its I/O into blocks.

For block transfers, xxread () uses physio () , its associated mechanisms, and
the xxstrategy (). buf is here an array of locally declared buffers:

return (physio(xxstrategy, &buf[minor(dev)],
dev, B_READ, minphys, uio»;

If the read operation fails, xxread () passes the error code which xxintr () set
in the buffer header up to the kernel. The kernel then passes it on to the user pro
gram, which usually plugs it into the global error variable errno.

xxselect(dev, rw)
dev_t dev;
int rw;

The xxselect () routine is necessary if the driver is to support the select ()
system call. rw is either FREAD, FWRITE or O. (Simple character devices won't
have occasion to use the 0 value, which is intended for exceptional conditions. It
is used by network devices). These constants are defined in <sys/ file. h>.

If xxselect () only supports polling, then it simply determines if the device
specified by (the major/minor pair encoded within) dev is ready to go, returning
a 1 if it is and a 0 if it's not. Interrupts must be disabled while this check is per
formed, so xxselect () should always do a

~~sun
• microsystems

Revision A, of 9 May 1988

xxstrategy 0 - High-Level
I/O

xxwrite () - Write Data to
Device

s = sp15()i

immediately, and a

splx(s)

before returning.

Appendix B - Summary of Device Driver Routines 359

If, however, xxselect () allows user processes to wait for a device to become
ready, it must do somewhat more work. In this case, the driver will have to
maintain a local per-device structure which can associate a process with each
device. It can do so with the current process proc structure, a pointer to which
can be found in u. uyrocp. (If the device can read and write independently,
separate processes must be tracked for the two cases). The local structures must
also contain some state information, which will be used by xxselect () (as
well as xxintr (» for bookkeeping purposes. The details are somewhat com
plicated, and are illustrated in the Variation with "Asynchronous /10" Support
section of the The "Skeleton" Character Device Driver chapter of this manual.

xxstrategy (bp)
register struct buf *bp;

xxstrategy () is a high-level I/O routine designed to be called from phy
sio (). Its name derives from its role in block-device drivers, where xxstra
tegy () has responsibility for reordering the I/O request queue so as to increase
the overall 110 bandwidth. In character devices (even those which queue I/O)
such reordering is to no advantage, and xxstrategy () 's major function is
structural. It allows the xxread () and xxwr i te () routines to share their com
mon code in a routine designed to be called from physio (). xxstrategy ()
returns no error code to its caller in the kernel. Instead, errors that occur in the
course of the I/O operation are reported by xxintr () by way of the buffer
header and passed along by xx s t rat e gy () .

xxwrite(dev, uio)
dev_t dev;
struct uio *uio;

xxwr i te () is the high-level routine called (in character device drivers) to per
form data transfers to the device. xxwr i te () must check that the minor device
number passed to it is in range. If the minor device number is out of range,
xxwr i te () returns like so:

if (XXUNIT(dev) >= NXX)
return (ENXIO);

Subsequent actions of xxwr it e () differ depending on whether the device is a
tty-style character-at-a-time device or a device that buffers its I/O into blocks .

• ~sun ~ microsystems
Revision A, of 9 May 1988

360 Writing STREAMS Device Drivers

For block transfers, xxwri te () uses physio () ,its associated mechanisms,
and the xxstrategy (). buf is here an array of locally declared buffers:

return (physio(xxstrategy, &buf[rninor(dev)],
dev, B_WRITE, minphys, uio));

If the write operation fails, xxwr it e () passes the error code which xxi n t r ()
set in the buffer header up to the kernel. The kernel then passes it on to the user
program, which usually plugs it into the global error variable errno.

~~sun ~ microsystems
Revision A, of 9 May 1988

c
Kernel Support Routines

Kernel Support Routines ... 363

btodb () - Convert Bytes to Disk Sectors ... 363

copyin () - Move Data From User to Kernel Space 363

copyout () - Move Data From Kernel to User Space 363

CDELAY () - Conditional Busy Wait .. 364

DELAY () - Busy Wait for a Given Period .. 364

dma_done () -Free the DMA Channel .. 364

dma_setup () - Set Up for a DMA Transfer 364

qsigna1 () - Send Signal to Process Group 368

hat _qetkpfnum () - Address to Page Frame Number 368

iob () - Read a Byte from an I/O Port .. 368

iodone () - Indicate I/O Complete ... 369

iowait () - Wait for I/O to Complete ... 369

kmem _ a110c () - Allocate Space from Kernel Heap 369

kmem _free 0 - Return Space to Kernel Heap 369

10q () - Log Kernel Errors .. 370

MBI _ ADDR () - Get Address in DVMA Space 370

mapi.n () - Map Physical to Virtual Addresses 370

mapout () - Remove Physical to Virtual Mappings 372

mbre1se () - Free Main Bus Resources ... 372

mbsetup () - Set Up to Use Main Bus Resources 372

outb () - Send a Byte to an I/O Port ... 373

pani.c () - Reboot at Fatal Error ... 373

peek (), peeke (), peek1 () - Check and Read 373

physio () - Block I/O Service Routine .. 373

poke (), pokee (), poke1 () - Check and Write 375

printf () - Kernel PrintfFunction ... 376

pritospl () - Convert Priority Level .. 376

psignal. () - Send Signal to Process ... 377

rma1.1oe () - General-Purpose Resource Allocator 377

rmfree () - Recycle Map Resource ... 378

selwakeup () -Wakeup a Select-blocked Process 378

sl.eep () - Sleep on an Event .. 378

spln () - Set CPU Priority Level .. 379

splx () - Reset Priority Level ... 379

suser () - Reset Priority Level ... 380

swab () - Swap Bytes ... 380

timeout () - Wait for an Interval .. 380

uiomove () - Move Data To or From an uio Structure 380

untimeout () - Cancel timeout Request 381

uprintf () - Nonsleeping Kernel Printf Function 381

ureadc (), uwritee () - uio Structure Read/Write 381

wakeup () - Wake Up a Process Sleeping on an Event 382

btodb () - Convert Bytes to
Disk Sectors

copyin () - Move Data
From User to Kernel Space

copyout () - Move Data
From Kernel to User Space

c
Kernel Support Routines

These routines are in alphabetical order, on the assumption that this will make
them easier to find than any "logical" order.

[btodb (bytes)
int bytes;

Converts bytes into standard kernel block-size units. btodb () is called (for
block drivers) from xxsize (). It is listed here because it is called from the
example ramdisk pseudo-device driver.

copyin () moves data from the user address space to the kernel address space.
It is commonly used when writing xxioctl () routines. See copyout () .

copyin(udaddr, kaddr, n)
caddr_t udaddr, kaddr;
u int n;

where kaddr is a kernel virtual address, udaddr is a user virtual address, and n is
the number of bytes to copy in. Returns 0 ifno error occurs, EFAULT on a
memory error, and other Exxx errors on page faults which cannot be resolved.

]

copyou t () moves data from the kernel address space to the user address space.
It is commonly used when writing xxioctl () routines. See copyin () .

copyout(kaddr, udaddr, n)
caddr_t kaddr, udaddr;
u_int n;

where kaddr is a kernel virtual address, udaddr is a user virtual address, and n is
the number of bytes to copy out. Returns 0 if no error occurs, EF AULT on a
memory error, and other Exxx errors on pagefaults which cannot be resolved.

~~sun ~ microsystems
363 Revision A, of 9 May 1988

364 Writing STREAMS Device Drivers

CDELAY () - Conditional
Busy Wait

DELAY () - Busy Wait for a
Given Period

dma _done () - Free the
DMAChannel

dma_setup 0 - Set Up for a
DMA Transfer

CDELAY(condition, time)
int condition, time;

CDELAY () is like DELAY () (see below) in that it busy waits for a specified
number of microseconds. It differs, however, in that it has a second argument
condition. Each time it goes through its busy wait loop, CDELAY () checks con
dition, and, if it's true, it immediately returns. In typical usage, condition is a
masked subset of the bits in a device register.

(
DELAY (time)]

int time;

DELAY busy waits for a specified minimum number of microseconds. That is, it
just spins around using CPU time. It can be useful in situations where a device is
not quite slow enough to justify having its driver go to sleep. In such cases, it's
useful to busy wait for a short time. The reasoning is that while busy waiting is a
waste, servicing an interrupt costs a lot more CPU time.

DELAY () is also useful in introducing pauses between accesses to a device with
write latency. A device register may, for example, require multiple sequential
writes, and yet also require delays between the writes. See vpprobe in the
Sample Driver Listings appendix for an example. See CDELAY () .

[dma_done (chan)
int chani

On Sun386i only. After a DMA transfer completes, dIna_done () must be
called to mark the channel as not busy so that another transfer can proceed.

(dma setup (dma)
struct drna_request *drnai

]

]
OnSun386i only. dma_setup () is called after the driver has gotten a contigu
ous set of virtual addresses from mbsetup () and before the device is pro
grammed to start sending or receiving data. The dma _request structure
(defined in /usr/ include/ sun386/dma. h) contains all the information
required to set up the 82380 DMA chip on the Sun386i.

Unlike the Sun-2, Sun-3, Sun-4line of machines, the Sun386i ha.s a memory
management unit as an integral part of the CPU (the 80386). Therefore, to use
the DMA facility of the Sun386i for a device driver, you must interface to the
82380 chip, which contains the DMA controller.

Revision A, of 9 May 1988

Appendix C - Kernel Support Routines 365

The primary interface to the DMA chip is the drna _request structure. You
must fill in the fields in this structure and then call drna _ set up () with a
pointer to the structure. drna _ set up () takes the contiguous virtual addresses,
which were obtained from a call to rnbsetup () , and sets up a linked list of phy
sical addresses to be loaded into the DMA chip as needed.

drna _ setup () returns a value of zero if the setup was successful, and non-zero
if there is a problem. Reasons for failure are: the channel was busy, the transfer
was zero pages long, or memory could not be allocated for the linked list of
buffers.

The fields in dIna_request structure are defined as follows:

1*
* DMA request structure passed to dma _set up () .
* See the Intel 82380 Tech Reffor more info.
*1
struct dma_request {

u_char drna_channel;
u char drna_xfer_mode;

#define DMA DEMAND MODE 0 - -
#define DMA SINGLE MODE 1 - -
#define
#define

char
#define
#define

DMA BLOCK MODE 2 - -
DMA CASCADE MODE 3

dma_rdwr;
DMA READ
DMA WRITE

u_long dma_count;
u_long drna_re~space;

2
1

#define DMA MEMORY 0
#define DMA IO 1

u int
#define
#define
#define

dma_re~size;

DMA BUS 32 1
2
3

} ;

- -
DMA BUS 16 - -
DMA BUS 8

char
caddr t
u_long
u int
char
caddr t

- -
dma_re~hold;

drna _ re~ addr ;
dma_target_space;
dma_target_size;
dma_target_hold;
dma_target_addr;

/ * Channel number: 0 - 7 * /
/ * Transfer mode * /

/ * Transfer direction * /
/ * (Relative to requester) * /

/ * Transfer count * /
/ * Requester address space * /

/ * Memory or memory-mapped * /
/* 110 mapped * /

/ * Size of xfers tolfrom requester * /
/ * 32-bit transfers * /
/ * 16-bit transfers * /
/ * 8-bit transfers * /

/* 1 = hold address, 0 = increment *
/ * Requester (virtual) address * /
/ * Target address space * /
/ * Size of xfers tolfrom target * /
/ * H oldlincrement target address * /
/ * Target (virtual) address * /

In this context, the "requester" is the device that requests service from the 82380
(normally a peripheral such as a disk controller). The "target" is the "device"
with which the requester wants to communicate (normally system memory).

The fields of the dIna_request structure are used as follows:

drna channel
Specifies the channel that the requester will use for the transfer.

Revision A, of 9 May 1988

366 Writing STREAMS Device Drivers

dIna xfer mode - -
Refers to the type of transfer that the requester is capable of supporting. The
SCSI controller, for instance, uses the DMA _ S INGLE_MODE of transfer, as
does the floppy controller. Refer to the peripheral manufacture's
specification sheet and the the 82380 data sheet for more details.

dIna rdwr
is the direction of data transfer relative to the requestor. DMA _ WRI TE
means transfer from the requester to the target and DMA _READ means
transfer from the target to the requester.

dIna count
is the byte count for the transfer.

dIna_re~space

is the address space in which the requester resides, i.e., whether the device is
memory mapped (DMA_MEMORY) or 110 mapped (.DMA_IO)

dIna_re~size

is the size of the requester's data path (DMA _BUS _ 8 = 8 bits,
DMA_BUS_16 = 16 bits, DMA_BUS_32 = 32 bits) and therefore the amount
of data transferred with each DMA bus cycle.

dIna_re~hold

indicates whether the 82380 should hold the requester address constant
throughout the DMA transfer, or increment it with each bus cycle. Typically
the requester address is the address of the device's I/O register, which is
fixed, so dma _ re~ hold is set to tt 1 tt •

dIna_re~addr

is the requester's virtual address.

dIna_target_space
is the address space in which the target resides (usually DMA _MEMORY).

dIna_target_size
is the size of the target's data path (DMA_BUS_32 for system memory).

dIna_target_hold
indicates whether the 82380 should hold or increment the target address dur
ing the DMA transfer. For memory devices, the 82380 should increment the
target address with each bus cycle, so "dma _ target_hold" is set to O.

dIna_target_addr
is the target's virtual address.

Once all these fields are set up by the driver, the driver calls the dIna_set up ()
routine. The following pseudo-code routines demonstrate how to use the DMA

Revision A, of9 May 1988

Appendix C - Kernel Support Routines 367

routines:

#include <machine/dma.h>
#include <sundev/mbvar.h>

struct
caddr t

rob_device *xxinfo; I * Device info * I
xx ioaddr XX_ADDR; I *Address of device's 110 port * I

xx_example (bp)
struct buf *bp;

1*

struct rob device *md = xxinfo[O];
unsigned int target_addr;
unsigned int transfer count;
int channel;
int readflag;

* Set up DMA transfer.
*1

target_addr = MBI_ADDR(robsetup(md->md_hd, bp, 0»;
transfer_count = bp->b_bcount
channel = md->md_dmachan;
readflag = «bp->b_flags & B_READ) ? 1 : 0);

if (xx_dma_setup(target_addr, transfer_count,

1*

channel, readflag) ! = 0)

return(-l) ;

* Code to talk to the device, initiate the transfer,
* and wait for transfer completion.
*1

1*
* Free DMA resources.
*1

xx_dma_done(channel);
mbrelse(md->md_hd, &target_addr);

return(O);

xx_dma_setup(addr, count, chan, rdflag)
unsigned int addr;
unsigned int count;
int chan;
int rdflag;

struct dma_request dreq;

dreq.dma channel = chan;
dreq.dma_xfer_mode

DMA_SINGLE_MODE;

sun
microsystems

1* Dma channel * I

I * Single mode transfer * I

Revision A, of 9 May 1988

368 Writing STREAMS Device Drivers

qsigna1 () - Send Signal to
Process Group

hat_qetkpfnum() -
Address to Page Frame Number

1nb () - Read a Byte from an
I/O Port

dreq.dma_rdwr =
(rdflag ? OMA_WRITE : DMA_READ); /* Direction */

dreq.dma_count = count; /* Transfercount */

dreq.dma_re~space

dreq.dma_re~size

dreq.dma_re~hold

dreq.dma_re~addr

OMA_MEMORY;
OMA_BUS_8;
1;
xx_ioaddr;

/*Memory-mapped requester * I
/ * 8-bit data path * /
/ * Hold address constant * /
/ * 110 port virt. address * /

dreq. dma _target_space = DMA _MEMORY; / * Target is system memory * /
dreq.dma_target_size OMA_BUS_32; /* 32-bitdatapath */
dreq.dma_target_hold = 0; /*Incrementaddr. each cycle * I
dreq.dma_target_addr = addr; /* Buffervirtualaddress */
return(dma_setup(&dreq»;

xx_dma_done(chan)
int chan;

dma_done(chan);

gsignal(pgrp, sig)
int pgrp;
int sig;

Sends signal sig to all of the processes in the process group pgrp. See psig
nal ().

unsigned int
hat_getkpfnurn(addr)

addr_t addr;

hat_getkpfnum takes a virtual address and returns it associated Page Frame
Number. This number has already been masked down to one that can appropri
ately be returned by the driver xxmmap () routine.

[

inb (port)
_ short port;

Sun386i only. inb () returns the byte value from the specified J?Ort address in
the I/O space. (See QutbO).

]

Revision A, of 9 May 1988

iodone 0 - Indicate I/O
Complete

iowait 0 - Wait for I/O to
Complete

kmem _ al.l.oc () - Allocate
Space from Kernel Heap

kmem_free () - Return
Space to Kernel Heap

Appendix C - Kernel Support Routines 369

[

iodone (bp)
_ struct buf *bp;

iodone is called to indicate that I/O associated with the buffer header bp is
complete, and that it can be reused. iodone sets the DONE flag in the buffer
header, then does a wakeup call with the buffer pointer as argument.

]

iodone () is called from the bottom half right after the call to wakeup (). See
iowait ().

[

int iowait(bp)
_ struct buf *bp;

iowait waits on the buffer header addressed by bp for the DONE flag to be set
iowait actually does a sleep on the buffer header and is called from the top
half in place of sleep (). iowait () also returns the error value. See
iodone ().

caddr_t kmem_alloc(nbytes)
u int nbytes;

]

Allocates nbytes of contiguous kernel memory and returns a pointer to it. If
called from an interrupt routine, kmem_alloe () can return a NULL. (Though
kmem _alloe () generally should not be called from the interrupt level.) It calls
panic () if its request can't be satisfied. Note that kmem_alloc () takes a
while, and shouldn't be used frivolously. (Also note that it can't, in system
releases prior to 3.2, be called by probe () or at tach () , since the kernel
heap from which it allocates is not yet initialized). Memory allocated with
kmem _alloe () can be recycled with kmem _ free () .

kmem_free(ptr, nbytes)
caddr_t ptr;
u int nbytes;

Returns the block (allocated by kmem_alloeO) atptr to the kernel heap. If the
block has already been freed, or if ptr doesn't indicate an address within the
heap, kmem _ free () panics. When the block is freed, it is coalesced with adja
cent free blocks to ensure that the free blocks in the heap are as large as possible.
kmem_free () ,like kmem_alloc () ,should not be called from the interrupt
level.

Revision A. of 9 May 1988

370 Writing STREAMS Device Drivers

10g () - Log Kernel Errors

MEl _ ADDR () - Get Address
in DVMA Space

mapin () - Map Physical to
Virtual Addresses

[lOg(~ri_CO~e, ...) 1
l.nt prl._code;

"---------
The kernel provides a log () function analogous to the syslog (3) function
supplied with the C library for user programs. The first argument to log () is a
priority code, as defined in <sys/ syslog. h>, and is identical to the priority
codes used by syslog (3); The subsequent arguments are a printf () for
mat string and the values to be printed under its control. Unlike syslog (), the
format string must be terminated with a newline (\n) if a newline is to be printed
at the end of the message.

Messages logged with log () will not pass though the normal kernel
printf () mechanism if the syslogd daemon is running. They will get writ
ten to the system message buffer just as p r i n t f () messages are. The s y s
logd daemon will read them using a special device driver, and will log them as
messages from the "kern" facility with the given priority.

If such a message is to be printed on the console, syslogd will do so, using its
standard format which includes a time stamp. Messages printed with
pr in t f () will get logged as messages from the "kern" facility with a priority
of LOG_CRIT, except that syslogd will not print them on the console as they
have already been printed there by the kernel. The kernel does not time stamp
messages that it prints; thus, messages logged with log () will be time stamped
if they are printed on the console, while messages printed with printf () will
not. Furthermore, syslogd does not lock out interrupts while printing mes
sages, so messages logged with log () will not tie up the machine while they
are being printed, unless syslogd is not printing and the kernel must print the
message itself.

[MBI_ADDR(mb_cookie)
int rob_cookie;]

MBI ADDR () is a macro that takes the "cookie" (abstract number) returned by
mbsetup () and converts it into a 32-bit transfer address, which may be either
in the DVMA space or a VMEbus address space. This is the address that is then
given to the bus-master device, though it may first need to be checked (especially
for older devices) to ensure that it is not larger than the device capacity. See
mbsetup () and mbrelse ().

mapin(ppte, vpagenum, physpagenum, sizeinpages, access)
struct pte *ppte;
u_int vpagenum, physpagenum;
int sizeinpages, access;

Revision A, of 9 May 1988

Appendix C - Kernel Support Routines 371

mapin () maps physical addresses to virtual addresses. Device drivers use it to
set up kernel virtual memory so that device registers and memory can be directly
accessed. This is useful for devices which:

o interface to the kernel by way of two different memory spaces. Since the
autoconfiguration process only sets up one space, such cases are best han
dled by having the xxat tach () routine use mapin () to set up the other.

o can consume variable amounts of virtual memory space, and for which,
therefore, an optimum mapping cannot be made at autoconfiguration time.
This is the case, for example, with certain kinds of variable-resolution frame
buffers.

Drivers that call mapin () in their xxat tach () routines must first call
rmalloc (kernelmap, ...) to get the kernel virtual addresses which
mapin () requires. (Actually, rmalloc () will return indexes to kernel virtual
addresses-see below). Note that, when a driver calls mapin () , it should also
call mapout () to return the mapped virtual memory when its no longer needed.

ppte is a pointer to the PrE which performs the mapping. This is the PrE in
S y sma p (defined in < s un [234] / pt e . h» which corresponds to the map
index returned from rmalloc (kernelmap, ...). That is,ppte can be
given as &Sysmap [kmx] , where kmx is the map index returned by rmal
loc ().

vpagenum is the number of the virtual page where the physical memory is to be
mapped. krnx, the map index returned by rmalloc () , can be used to calculate
a virtual address, which can then be converted to a virtual page number like so:

vpagenum = btoc«Sysbase» + kmx;

Here Sysmap is the external array of page table entries used to map virtual
addresses, starting at the (kernel virtual) base address Sysbase. btoc () is a
macro (see machine/paramo h) which converts addresses to page numbers,
and, if necessary, performs the appropriate rounding.

Note that there are a number of general-purpose macros designed to convert
between kernel map indexes and virtual addresses. These macros are in
<sys/vmmac. h>. One of them, kmxtob expects an (integer) kernel map
index and returns the virtual address by page number. Another, btokrnx expects
a (caddr_t) virtual address and returns the integer kernel map index.

physpagenum is the physical page number of the memory being mapped into ker
nel virtual memory. Actually, it is the physical page number with the appropriate
type bits for the given physical memory space-these types bits (PGT _ *) are
given in <sys/pte. h>.

sizeinpages is the size in pages of the memory being mapped. It can be easily
computed by using the btoc () macro to convert the size (in bytes) of the
memory being mapped into pages (since btoc () will round up as needed).

access is the PrE-level access flags. The flags (PG _ *) are defined in
<sys/pte. h>. The value passed by the auto-configuration process when it
calls mapin () (the standard device driver case) is "PG_ VIPG_KW", which
indicates valid system pages with their write-enable flags set.

Revision A, of 9 May 1988

372 Writing STREAMS Device Drivers

map out () - ~emove

Physical to Virtual Mappings

mbrel. se () - Free Main Bus
Resources

mbsetup () - Set Up to Use
Main Bus Resources

See fmmapin () and fbmapout () in fbutils. c (in the Sample Driver
Listings appendix) for examples of real mapin () and mapout () calls.

mapout (ppte, sizeinpages)
struct pte *ppte;
int sizeinpages;

mapout () is used to unmap a chunk of physical memory from the virtual
memory that mapin () associated it with. Its parameters are as given in
mapin () ,above. Drivers typically need to call mapout () only when they
have made their own calls to rmalloc () and rmfree (). It should be called
just before rmfree ().

mbrelse(mb_hd, mbinfop)
struct mb_hd *mb_hd;
int *rnbinfop;

mbrelse releases the Main Bus DVMA resources allocated by mbsetup.
Note that the second parameter is a pointer to the integer returned by robs et up.

mbsetup(mb_hd, bp, flag)
struct mb_hd *mb_hd;
struct buf *bp;
int flag;

mbsetup is called to set up the memory map for a single Main Bus DVMA
transfer. It assumes that bp's fields have been set up to define the transfer, which
is generally true, since physio () sets them up before calling the driver
xxstrategy () routine. (These fields are b_un .b_addr, b_flags and
b _ be oun t). jiag is MB _ CANTWAI T if the caller desires not to wait for map
resources (slots in the map or DVMA space) if none are available - it's highly
unlikely that this will ever happen, but if it does mbsetup will return immedi
ately with a O. In this case its caller can, presumably, wait before trying again.
If, on the other hand,jiag is 0, the requesting process will be put to sleep until the
necessary map resources become available.

mbsetup () is typically called from the driver strategy () routine, so when
physio () breaks up a large I/O request, one result is the generation of a series
of calls to mbsetup (). (mbrelse () is then called from the driver xxintr ()
routine). mbsetup (), like physio () ,is intended primarily for the use of
block drivers, though character drivers can use it as long as they don't use buffer
headers from the kernel cache. The buffer is double mapped so that the system
will consider it as being in kernel DVMA space as well as in the address space of
the program being serviced .

• SUD
• microsystems

Revision A, of9 May 1988

Appendix C - Kernel Support Routines 373

NOTE Don't set B _ PHYS in bp's b _flags field if DVMA is from kernel address space
to the device.

outb () - Send a Byte to an
I/O Port

panic () - Reboot at Fatal
Error

peek 0, peekc (),
peekl. () - Check and Read

physio 0 - Block I/O
Service Routine

Upon success, mbset up returns an number which must be saved for the call to
mbrelse. This number can also be passed to MBI _ ADDR () , which will
transform it into a transfer address.

outb(port, data)
short port;
u char data;

Sun386i only. On the Sun386i, many devices, such as the floppy, are accessed by
way of the I/O space. outb () sends a byte value to the I/O address specified.
I/O device addresses are in the range of 0 to OxFFFF. (See inbO).

[panic (message)
char *message;]

panic can be called upon encountering an unresolvable fatal error. It prints its
message to the system console, and then reboots the system, so don't take its use
lightly. (It does have the sense to avoid the reboot if it has already been called -
thus preventing recursive calls to panicO). A kernel core image is dumped.

peek (value)
short *value;

peekc(value)
char *value;

peekl(address, value)
long *address;
long *value;

pe e k and its variants are called with an address from which they read. They
return -1 if the addressed location doesn't exist, otherwise they return the value
that was fetched from that location. They are for use only in xxprobe (). See
poke and its variants, below.

4)\sun
~ microsystems

Revision A, of9 May 1988

374 Writing STREAMS Device Drivers

physio(strategy, buf, dev, flag, minphys, uio)
void (*strategy) ();
struct buf *buf;
dev t dev;
int rw_flag;
void (*rninphys) ();
struct uio *uio;

Character drivers sometimes do block 110, and when they do it's convenient for
them to use physio (). Such drivers resemble simple block drivers in that they
havexxread () and/or xxwrite () andxxstrategy () routines, call those
xxstrategy () routines indirectly through physio () ,and use buf struc
tures. Too much, however, should not be made of the similarity. Character
driver xxstrategy () routines typically implement no strategy, and they are
not driver entry points. And while character drivers can use physio () (and
rnbsetup () and iowait () and the few other kernel support routines that
manipulate buffer headers) they do not use buffers from the kernel buffer cache.

physio () serves two major purposes:

o It ensures that pages of user memory are locked down (physically available
and not paged out) during the duration of a data transfer. This is the only
way to lock down pages of user memory.

o It breaks large transfers (those greater than the value returned by min
physO) into smaller pieces, thus keeping slow devices from monopolizing
the bus.

If the size of the transfer is greater than the system determined maximum, phy
sio () calls the driver xxstrategy () routine repeatedly, making sure that all
relevant pointers and counters are updated correctly. Basically, physio ()
looks like:

Revision A, of 9 May 1988

poke (), pokec (),
pokel () - Check and Write

Appendix C - Kernel Support Routines 375

loop:
error and termination checking (based on values in mo)
s = sp16();
while (buf->b_flags & B_BUSY)

buf->b_flags 1= B_WANTED;
sleep(buf);

(void) splx () ;
set up buffer for I/O;
while (more data) {

buf->b_flags = B_BUSY B PHYS I rw_flag;
more buffer I/O set up;
(*minphys) (buf);
lock down pages of user memory
(*strategy) ();
sp16();
unlock buffer;
if (buf->b_flags & B_WANTED)

wakeup(buf);
(void) splx(s);
bookkeeping;

buf->b_flags &= -(B_BUSYIB WANTEDIB PHYS);
error checking and bookkeeping (based on values in mo)
goto loop:

bu f is a buffer header for this device. ph Y s i 0 () wants excl usi ve use of this
buffer header and its associated buffer, and when called it checks to see if it has
it. If it doesn't, it will sleep () until it gets it. dev is the device to which the
transfer is taking place. rw Jlag is B _READ or B _WRITE to indicate the direc
tion of the transfer. minphys () is a function that detennines the amount of
data to be transferred in one call to the xxstrategy () routine. uio is a pointer
to the uio structure.

physio () returns one of the error codes defined in errno. h if an I/O error
occurs, and a 0 upon success. Error codes are not returned on the stack, but by
way of the b _error field in the buffer header.

poke (address, value)
short *address;
short value;

pokec(address, value)
char *address;
char value;

pokel(address, value)
long *address;
long value;

.\sun ~ microsystems
Revision A, of 9 May 1988

376 Writing STREAMS Device Drivers

pri.ntf () - Kernel Printf
Function

pri. tospl () - Convert
Priority Level

poke and its variants are called with an address to store into, and a value to be
stored. They return 1 if the addressed location doesn't exist, and 0 if it does.
They are for use only in xxprobe (). See peek and its variants, above.

The kernel provides a printf () function analogous to the printf () func
tion supplied with the C library for user programs. The kernel pr in t f () , how
ever, is more limited than is the version in the C library. It writes directly to the
console tty, its output cannot be easily redirected, and it supports only a subset of
pr intf () 's formatting conversions. Furthermore, it's not interrupt driven, and
thus causes all system activities to be suspended while it outputs its message.
Nevertheless, printf () is useful as a debugging tool, and for reporting error
messages. See uprintf ().

The formatting conversions supported by the kernel pr in t f () are:

%x, %X - Hexadecimal numbers
%d, %D - Decimal numbers
%0, %0 - Octal numbers
%c - Single characters
%s - Strings
%b - Bit values

Note that floating-point conversions are not supported. Also note that a special
format %b is provided to decode error registers. Its usage is:

printf("reg=%b\n", regval, "<base><arg>*");

Where <base> is the output base expressed as a control character. For exam
ple, \ 10 gives octal and \ 20 gives hex. Each arg is a sequence of characters,
the first of which gives the bit number to be inspected (counting from 1), and the
rest of which (up to a control character, that is, a character <= 32), give the name
of the register. Thus:

printf("reg=%b\n", 3, "\10\2BITTWO\lBITONE\n");

would produce the output:

reg=3<BITTWO,BITONE>

Also note that no conversion modifiers (field widths and so on) are supported
only a single character can follow the %.

The kernel pr intf () function raises the priority level and therefore locks out
interrupts while it is sending data to the console. And it displays its messages
directly on the console, unless specifically redirected by the TIOCCONS ioctl.

(

pritosPl(Value>]
int value;

"----------

pritospl is a macro that converts the hardware priority level given by value,
which is a Main Bus priority level, to the processor priority level that splx

~~sun ~ microsystems
Revision A, of9 May 1988

psignal () - Send Signal to
Process

nnal10c () - General
Purpose Resource Allocator

Appendix C - Kernel Support Routines 377

expects. The Main Bus priority level can be found in either
rnb_device .md_intpri orrnb_ctlr .mc_intpri, where it is put by the
autoconfiguration process. pritospl is used to parameterize the setting of
priority levels. See spIn and splx () .

psignal(p, sig)
struct proc *p;
int sig;

Sends signal sig to the process specified by the proc structure. See gsig
nal ().

u_long rmalloc(mp, size)
struct map *mp;
long size;

rmalloc (for resource map allocator) is a rather specialized sort of resource
allocator. In fact, it doesn't really allocate resources at all, but rather names of
resources (that is, lists of numbers). Such lists are initialized by rminit () and
are called resource "maps". Given such a map, rmalloc () can parcel out the
names in it. The relationship of such names to real resources (virtual address
space, physical memory, and so on) is entirely a matter of usage conventions.
Names allocated with rmalloc () are recycled with rmfree.

rmalloc is a low-level routine, and shouldn't be used casually. If you just
want some kernel virtual memory, use kmem_alloc (). rmalloc () is called
by drivers that need to allocate kernel virtual address space during their
xxprobe () andxxattach () routines. They call it, rather than
kroem_alloc () , because they want an address space without physical memory
mapped to it.

rminit () is not documented here, for device drivers only have occasion to use
two pre-initialized rmalloc () maps:

D The map kernelmap (in <sys/map. h» is used to allocate chunks of
generic kernel virtual address space.

D The map iopbmap (in <sundev /rnbvar. h» contains addresses that are
guaranteed to be in the high megabyte and thus suitable for use as DVMA
buffer addresses. iopbmap is quite small, and should be used only for tem
porary or very small buffers .

• \sun ~ microsystems
Revision A, of 9 May 1988

378 Writing STREAMS Device Drivers

rmfree () - Recycle Map
Resource

selwakeup () -Wakeup a
Select-blocked Process

rmfree(mp, size, addr)
struct map *mpi
long sizei
u_Iong addri

rmfree recycles the map resource allocated with rmalloc.

selwakeup(p, colI)
register struct proc *Pi
int colli

selwakeup () is called from driver intenupt routines to wakeup () processes
which are asleep as a result of calls to s e 1 e c t (). If both of its parameters are
0, it does nothing. If coll is 0, thus indicating that no select () collision
occurred - that only one process is waiting for the device - selwakeup ()
just wakes up the waiting process indicated by p. If, however, a collision did
occur, it issues a wakeup «caddr_t) &selwait), thus waking all select
sleeping processes. (The selwait channel is used exclusively to indicate
select-related sleeping). These waking processes then race for access to the dev
ice, with the first selector getting no special treatment.

sleep 0 - Sleep on an Event
sleep (address, priority)

caddr_t addressi
int prioritYi

sleep is called to put the calling process to sleep, typically while it awaits the
availability of some system resource. address is the address of a location in
memory, usually a field in some global driver structure that is being used as a
"semaphore" (such fields are not true semaphores, see below). priority is the
software priority the calling process will have after being awakened.

sleep must never be called from the intenupt-Ievel side of a driver. This is
because sleep () is always executed on behalf of a specific process. It
suspends that process while the scheduler picks and executes another waiting
process. And since, when handling an interrupt, the kernel isn't running on
behalf of any process, it makes no sense to call sleep (). Incidently, the kernel
will panic () if sleep is called while it's running on the intenupt stack.

A process that has called sleep () will be reawakened by any wakeup call
issued with the same address. However it s not guaranteed that, upon waking,
the process will find the resource that it was waiting for to be available. It must,
therefore, check again before proceeding, and go back to sleep ifnecessary. This
is because the SunOS sleep () and wakeup () facilities do not constitute true
semaphore primitives in the usual P/V sense. wakeup will wakeup every pro
cess that is sleeping on that event, where a true 'V' semaphore will wake only

~\sun ~ microsystems
Revision A, of9 May 1988

spIn () - Set CPU Priority
Level

spIx () - Reset Priority
Level

Appendix C - Kernel Support Routines 379

one sleeper (the highest priority one or whichever).

Thus in SunOS you always do:

s = spln(high-priority);
while (resource_busy)

sleep (resource, high-priority);
make_resource_busy;
(void) splx(s);

<critical section>

wakeup(resource);

whereas with real semaphores you would simply do:

P (resource) ;

<critical section>

V(resource);

which is a much simpler and cleaner design.

However, semaphores are not easy to use to implement lockouts around hardware
interrupts so SunOSjustuses the sleep () /wakeup () mechanism for both
situations.

The spIn functions are available for setting the CPU priority level to n, where n
ranges from 0 to 7 (higher numbers indicate higher priorities). Note that
sp16 () actually gets you splS () on Sun systems to avoid lockout of the level
6 on-board UART interrupts. When you allocate a CPU priority level to your
device, choose one that's high enough to give you the performance you need, but
don't overdo it or you will interfere with the operation of the system:

o If you lock out the on-board U ARTS (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the SunOS
scheduler will be suspended.

o If you lock out the Ethernet (level 3), packets may be lost and retransmis
sions needed.

o And if you lock out the disks (level 2), disk rotations may be missed.

The spIn functions return the previous priority level.

[
splx ~s)]

l.nt s;

'----------"

spix called with an argument s sets the priority level to s, which was returned
from a previous call to spIn, pr i tospi () , or spix () . spix is typically
used to restore the priority level to a previously stored level. spix () returns

4}\sun
~ micr05ystems

Revision A, of 9 May 1988

380 Writing STREAMS Device Drivers

suser () - Reset Priority
Level

swab () - Swap Bytes

timeout () - Wait for an
Interval

uiomove () - Move Data To
or From an uio Structure

the previous level.

(suser ()

Returns a 1 if the current user is root, 0 if not. suser () is commonly called by
ioct 1 () routines that are restricted to the superuser, and that thus need to
check who's calling them.

swab(from, to, nbytes)
caddr_t {-rom;
caddr t to;
int nbytes;

swab swaps bytes within 16-bit words. nbytes is the number of bytes to swap,
and is rounded up to a multiple of two. No checking is done to ensure that the
from and to areas do not overlap each other.

timeout (func, arg, interval)
int (*func) () ;
caddr_t arg;
int interval;

J

timeout arranges that after interval clock-ticks,func will be called with arg as
its argument, in the sty Ie (*func)(arg). A clock tick is about a fiftieth of a second
for Sun-2, Sun-3, and Sun386i machines, a hundredth of a second for Sun-4s.
The precise number of clock ticks per second is given in the external variable hz.
Timeouts are used, for example, to provide real-time delays after function char
acters like new-line and tab in typewriter output, and to cancel read or write
requests that have received no response within a specified amount of time (if
there's a lost interrupt or if the device otherwise flakes out). The specifiedjunc is
eventually called from the lower half of the clock-interrupt routine, so it must
conform to the requirements of interrupt routines in general. In particular, it
can't call sleep (). See untimeout () .

uiomove(cp, n, rw, uio)
caddr t cp;
int n;
enum uio rw rw;
struct *uio;

uiomove () is the most common way for device drivers to move a specified
number of bytes between a byte array in kernel address space and an area defined
by a uio structure (which mayor may not be in kernel address space). If the

Revision A, of 9 May 1988

untimeout () - Cancel
timeout Request

uprint f () - Nonsleeping
Kernel Printf Function

ureade (), uwri tee () -
uio Structure ReadIWrite

Appendix C - Kernel Support Routines 381

uio_seg field in the uio structure is set to UIOSEG_USER, uiomove () will
assume the uio pointer to be in user space; if it is UIOSEG _KERNEL, it will
assume it to be in kernel space (see <sys/uio. h». uiomove () moves n
bytes between the uio structure and the area defined by the cp parameter. The
read/write flag is interpreted as follows: - U I a_READ indicates a transfer from
kernel to user space (a call to copyoutO), and UIO _WRITE a transfer from
user to kernel space (a call to copyinO). uiomove () returns 0 upon success,
Exxx upon failure.

For more information about the uio structure, see Some Notes About the VIO
Structure in the The' 'Skeleton" Character Device Driver chapter of this manual.

untirneout(func, arg)
int (*func) () ;
caddr t arg;

untimeout is called to cancel a prior timeout request. June and arg are the
same as in timeout () .

uprintf () is like printf () , with two important differences. The first is
that it checks to see if the process' "controlling tenninal" is open, and if it is the
message is sent to it rather than to the system console (uprintf () consults the
user structure, so it must not be called from the lower-half routines). If there's
no controlling terminal, upr intf () executes as would printf (). The
second difference is that uprintf () is interruptible, and thus reasonably
efficient.

uprintf () is often called from open () routines to report errors to the user.
It's used for errors which, like tape-read errors, are likely to indicate operator
error rather than system failure. See pr intf () .

ureadc(c, uio)
int c;
struct *uio;

ureade () transfers the character c into the uio structure (which is normally
passed to the driver when it is called). ureade () is normally used when "read
ing" a character in from a device.

[uwritec (uio)
struct *uio;

uwr i tee () returns the next character in the uio structure (which is nonnally
passed to the driver when it is called), or returns -Ion error. uwri tee () is
normally used when "writing" a character to a device .

J

• \sun ~~ microsyslems
Revision A, of 9 May 1988

382 Writing STREAMS Device Drivers

wakeup 0 - Wake Up a
Process Sleeping on an Event

Note that "read" and "write" are slightly confusing in the above contexts, since
ureade () actually obtains a character from somewhere and places it into the
uio structure, whereas uwri tee () obtains a character from the uio structure
and "writes" it somewhere else. The "read" and the "write," then, are from the
perspective of the user program.

ureade () and uwri tee () replace the routines epass () and passe (),
which are no longer supported.

[wakeup (address)
caddr_t address;

wakeup is called when a process waiting on an event must be awakened.
address is typically the address of a location in memory. wakeup is typically
called from the low level side of a driver when (for instance) all data has been
transferred to or from the user's buffer and the process waiting for the transfer to
complete must be awakened. See sleep () .

]

~~sun
• microsystems

Revision A, of 9 May 1988

D
User Support Routines

User Support Routines .. 385

free () - Free Allocated Memory .. 385

qetpagesize () - Return Pagesize .. 385

mmap () - Map Memory from One Space to Another 385

munmap () - Unmap Pages of Memory .. 386

free () - Free Allocated
Memory

getpagesize () - Return
Pagesize

mmap () - Map Memory from
One Space to Another

D
User Support Routines

These routines are often useful in user-level programs that manipulate devices.

[free (ptr)
char *ptr;

free (3) can be used to recycle the virtual memory allocated by a variety of
memory allocators, including valloe (3) and malloe (3) (the most general
purpose of the allocators).

(int getpagesize()

]

]
getpagesize (2) returns the number of bytes in a page. The page size is the
system page size and may not be identical with the page size in the underlying
hardware - it is, however, the pagesize of interest in all of the memory manage
ment functions.

caddr t
mmap(addr, len, protection, flags, fd, off)

caddr_t addr;
int len, protection, flags, fd;
off t off;

rnrnap () maps pages of memory space from the memory device associated with
the file fd into the address space of the calling process (or into the kernel address
space). The mapping is perfonned one page at a time, by iteratively calling the
memory device's rnrnap () routine.

The memory is mapped from the memory device, beginning at off (the device's
physical installation address withinfd's memory), into the caller's address space
beginning at addr and continuing for len bytes. (By default, mrnap () will pick a
good value for addr). The mapping established by mmap () replaces any previ
ous mappings for the process's pages in the range [addr, addr + len).

~\sun ~ microsystems
385 Revision A, of 9 May 1988

386 Writing STREAMS Device Drivers

munmap () - Unmap Pages of
Memory

fd is a file descriptor obtained by opening the character special device to be
rnmap () 'ed. protection specifies the read/write accessibility of the mapped
pages. The values desired are expressed by or'ing the flags values PROT_READ,

PROT_EXECUTE, and PROT_WRITE. A write () must fail if PROT_WRITE

has not been set, though its behavior can be influenced by setting
MAP _PRIVATE in the flags parameter.

flags provides additional information about the handling of mapped pages. Its
possible values are:

MAP SHARED Share Changes
MAP PRIVATE Changes are Private
MAP TYPE Mask for Type of Mapping
MAP FIXED Interpret addr Exactly
MAP RENAME Assign Page to File

addr and off must be multiples of the page size (which can be found by using
getpagesizeO). Pages are automatically unmapped whenfd is closed - they
should be explicitly unmapped with rnunrnap (). rnmap () returns a -1 on error,
o on success. '

For an detailed overview of SunOS memory mapping, see the Memory Manage
ment chapter of the Sun System Services Overview. For specific details about
rnmap () and its related facilities, see rnunrnap () below and the mrnap (2) ,

rnunrnap (2) , rnincore (2) , rnprotect (2) , and rns ync (2) manual
pages.

munmap(addr, len)
caddr_t addr;
int len;

rnunrnap () causes the pages starting at addr and continuing for len bytes to be
unmapped, that is, marked invalid. If an address within an unmapped page is
subsequently referenced, and if that page is in the "data segment" of a UNIX pro
cess, then a page of zeros will be created under the address. However, if the
address is outside a data segment, such a reference will cause a segmentation vio
lation. munrnap () returns a -1 on error, 0 on success. See mrnap () above and
the rnmap (2) manual page for more details.

Revision A, of 9 May 1988

E
Sample Driver Listings

Sample Driver Listings .. 389

E.1. Skeleton Board Driver ... 390

E.2. Sun-2 Color Graphics Driver ... 398

E.3. Sky Floating-Point Driver .. 415

EA. Versatec Interface Driver .. 423

E.5. Sun386i Parallel Port Driver .. 435

E
Sample Driver Listings

The following source listings are for sample Sun device drivers. There are four
drivers listed here; the first being the skeleton driver and the other three being
real production drivers. (These three drivers, it should be mentioned, have been
chosen as relatively simple illustrations of the three major types of drivers - not
as software ideals to be closely emulated).

SKELETON
is the driver for the "skeleton board" discussed earlier in this manual.

CGIWO

SKY

is a device driver for the Sun-2 Color Graphics board. It is one of the sim
plest drivers around, being memory mapped.

is a programmed I/O driver for the Sky floating-point board, with both pol
ling interrupts and vectored interrupts. However, the interrupt routines don't
do a whole lot.

VP is a driver for the Versatec Printer Interface. It's a fairly good example of a
DMA device driver.

PP is the listing of the Sun386i Parallel Port Driver .

• \sun ~ microsystems
389 Revision A. of 9 May 1988

390 Writing STREAMS Device Drivers

E.I. Skeleton Board Driver

1*
* (skreg.h) Registers for Skeleton Board -- note the byte swap
*1

struct sk_reg {
char sk_data;
char sk_csr;

/ * 01: Data Register * /
/ * 00: command(w) and status(r) * /

} ;

/ * sk_csr bits (read) * /
#define SK INTR
#define SK DEVREADY
#define
#define
#define

#define

SK INTREADY
SK ERROR
SK INTENAB

SK ISTHERE

/ * sk _csr bits (write) * /
#define SK RESET Ox04
#define SK ENABLE OxOl

1*

Ox80 / * Device is Interrupting * /
OxO 8 / * Device is Ready * /
OxO 4 / * Interface is Ready * /
Ox02 / * Device Error * /
OxO 1 / * Interrupts are Enabled * /

Oxoc / * Existance Check; Device and Interface Ready * /

/ * Reset Device and Interface * /
/ * Enable Interrupts * /

* Further definitions for DMA skeleton board
*1

#define
#define

SK DMA OxlO / * Do DMA transfer * /
/ * DMA tranfer block * / MAX SK BSIZE 4096

struct sk_reg2 {

} ;

char sk_data;
char sk_csr;
short sk_counti
caddr t sk_addri

/ * 01: Data Register * /
/ * 00: command(w) and status(r) * /
/ * bytes to be transferred * /
/ * DMA address * /

.\sun ~ microsystems
Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 391

1*
* (sk.c) The "Skeleton Board" Driver"
*1

1* This listing is not heavily annotated. This is because it's identical to
* the Skeleton driver discussed at length in the main body of the manual.
* It appears here for purposes of completeness.
*1

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/uio.h>
#include <machine/psl.h>
#include <sundev/mbvar.h>

#include "sk. h" / * file generated by config (defines NSK) * /
inc 1 ude "s kreg . h" / * register definitions * /

#define SKPRI (PZERO-l) / * software sleep priority for sk * /

#define SKUNIT(dev) (minor(dev»

struct buf skbufs[NSK];

int skprobe(), skpoll();

struct rob_device *skdinfo[NSK];
struct rob driver skdriver = { skprobe, 0, 0, 0, 0, skpoll,

sizeof(struct sk_reg), "sk", skdinfo, 0, 0, 0, 0,
} ;

struct sk_device {
char soft_csr;
struct buf *sk_bp;
int sk_count;
char *sk_cp;
char sk_busy;

skdevice[NSK];

/*ARGSUSED*/
skprobe(reg, unit)

caddr_t reg;
int unit;

/ * software copy of control/status register * /
/ * current buf * /
/ * number of bytes to send * /
/ * next byte to send * /
/ * true if device is busy * /

register struct sk_reg *sk_reg;
register int c;

sk_reg = (struct sk_reg *)reg;

c = peekc«char *)&sk_reg->sk_csr); /* contactthedevice*1

sun
microsystems

Revision A, of 9 May 1988

392 Writing STREAMS Device Drivers

if (c == -1 I I (c != SK_ISTHERE»
return (O)i

if (pokec «char *) &sk_reg->sk_csr, SK_RESET» /* contact the device *1
return (0);

return (sizeof (struct sk_reg»i

skopen(dev, flags)
dev_t devi
int flagsi

register int unit = SKUNIT(dev)i
register struct rob_device *mdi
register struct sk_reg *sk_reg;

md = skdinfo[unit]i

if (unit >= NSK I I md->md_alive 0)
return (ENXIO);

if (flags & FREAD)
return (ENODEV)i

/ * enable interrupts * /
skdevice[unit] .soft_csr

/ * contact the device * /

SK_ENABLEi

sk_reg->sk_csr skdevice[unit] .soft_csri

return (0);

/*ARGSUSED*/
skclose(dev, flags)

dev_t devi
int"flagsi

register int unit = SKUNIT(dev)i
register struct rob_device *mdi
register struct sk_reg *sk_regi

md = skdinfo[unit]i

/ * disable interrupts * /
sk_reg = (struct sk_reg *)md->md_addri
skdevice[unit] .soft_csr &= -SK_ENABLEi

/ * contact device * /
sk_reg->sk_csr = skdevice[unit] .soft_csri

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 393

skrninphys(bp)
struct buf *bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_bcount = MAX_SK_BSIZE;

skstrategy(bp)
register struct buf *bp;

register struct rob device *md;
register struct sk device *sk;
int S;

md skdinfo[SKUNIT(bp->b_dev)]; /* physioputthedevicenumberintobp */
sk &skdevice[SKUNIT(bp->b_dev)];

s = splx (pritospl (md->md_intpri)); /* begin critical section * /
while (sk->sk_busy)

sleep«caddr_t) sk, SKPRI);

/ * set up for first write * /
sk->sk_busy = 1;
sk->sk_bp = bPi
sk->sk_cp = bp->b_un.b_addr;
sk->sk_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr);

(void) splx(s);

skwrite(dev, uio)
dev_t dev;
struct uio *uio;

register int unit

if (unit >= NSK)
return (ENXIO);

/ * end critical section * /

SKUNIT(dev);

return (physio(skstrategy, &skbufs[unit],
dev, B_WRITE, skrninphys, uio»;

skstart(sk, sk_reg)
struct sk_device *sk;
struct sk_reg *sk_reg;

while (sk->sk_count > 0) /* still more characters */
sk_reg->sk_data = *sk->sk_cp++;
sk->sk_count--;

sun
microsystems

Revision A, of 9 May 1988

394 Non-STREAMS Appendices

/ * stop giving characters if device not ready * /
/* Note: the softcopy isn't neededfor reads * /

/ * DELAY(10) might go here * /

if (! (sk_reg->sk_csr & SK_DEVREADY» /* contactthedevice */
break;

/* error-retry logic would go here * /

if (sk->sk count > 0) { / * still more characters * /
sk->soft csr = SK_ENABLE;
sk_reg->sk_csr = sk->soft_csr; /*contactthedevice*/

else {

skpoll ()
{

/ * special case: finished the command without taking any interrupts! * /
s k - > so f t _ c s r = 0; / * disable interrupts * /
sk_reg->sk_csr = sk->soft_csr; /* contact the device * /
sk->sk_busy = 0;
wakeup ((caddr _ t) sk); / *free device to sleeping strategy routine * /
iodone (sk->sk_bp) ; / *free buffer to waiting physio * /

register struct sk_reg *sk_reg;
int serviced, i;

serviced = 0;
for (i = 0; i < NSK; i++) { /* try each one */

sk reg = (struct sk_reg *)skdinfo[i]->md_addr;
if (sk_reg->sk_csr & SK_INTR) { /* contactthedevice */

serviced = 1;
skintr(i);

return (serviced);

skintr (i)
int i;

register struct sk_reg *sk_reg;
register struct sk_device *sk;

sk_reg = (struct sk_reg *)skdinfo[i]->md_addr;
sk = &skdevice[i];

/ * check for an 110 error * /
if (sk_reg->sk_csr & SK_ERROR) { /* contactthedevice */

/ * error-retry logic would go here * /

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 395

printf("skintr: 1/0 error\n");
sk->sk_bp->b_flags 1= B_ERROR;
goto error_return;

if (sk->sk_count == 0) { 1* 110 transfer completed *1
error return:

sk->soft csr = 0; 1* clear interrupt * I
sk_reg->sk_csr sk->soft_csr; /* contact the device */
sk->sk_busy = 0;
wakeup ((caddr _ t) sk); I * free device to sleeping strategy routine * /
iodone(sk->sk_bp); 1* free buffer to waitingphysio *1

else skstart(sk, sk_reg);

/* DMA VARIATIONS FOLLOW *1

struct sk_device {
char soft_csr;
struct buf *sk_bp;
char sk_busy;

I * software copy of control/status register * I
/ * current buf * I
I * true if device is busy * I

int sk_mbinfo; I * Information stash/or DMA * /
skdevice[NSK];

skstrategy(bp)
register struct buf *bp;

register struct mb device *md;
register struct sk_reg *sk_reg;
register struct sk device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[SKUNIT(bp->b_dev)];

s = splx(pritospl(md->md_intpri»;
while (sk->sk_busy)

sleep«caddr_t) sk, SKPRI);
sk->sk_busy = 1;
sk->sk_bp = bPi

I * this is the part that is changed * /

I * grab bus resources * /

I * begin critical section * /

sk->sk mbinfo = mbsetup(md->md_hd, bp, 0);

I * the remainder * I
sk_reg->sk_count = bp->b_bcount;

I * plug bus transfer address * /
sk_reg->sk_addr = (caddr_t)MBI ADDR(sk->sk mbinfo);

Revision A, of9 May 1988

396 Writing STREAMS Device Drivers

1* make sure we didn't overrun the address space limit *1
if (sk_reg->sk_addr > (caddr_t) OxOOOFFFFF) {

printf("sk%d: If, sk_reg->sk_addr);
panic ("exceeded 20 bit address");

sk->soft csr = SK_ENABLE 1 SK_DMA;
sk_reg->sk_csr = sk->soft_csr;

I * end of DMA-related changes * I

I * contact the device * I

(void) splx(s); I * end critical section * I

skpoll ()
{

register struct mb_device *md;
register struct sk_reg *sk_reg;
int serviced, i;

serviced = 0;
for (i = 0; i < NSK; i++) {

md = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

serviced = 1;
skintr(i);

return (serviced);

skintr (i)
int i;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;

rod = (struct mb_device *)skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
sk = &skdevice[i];

I * check for an liD error * I
if (sk_reg->sk_csr & SK_ERROR) { 1* contactthedevice *1

I * error-retry logic would go here * I

printf("skintr: I/O errorO);
sk->sk_bp->b_flags 1= B_ERROR;

I * this is the part that changed * I

Revision A, of9 May 1988

Appendix E - Sample Driver Listings 397

sk->soft csr = 0; I * clear interrupt * I
sk_reg->sk_csr = sk->soft_csr;
mbrelse(md->md_hd, &sk->sk_mhinfo);
sk->sk_busy = 0;
wakeup (~caddr_t) sk); /* free device to sleeping strategy routine * I
iodone (sk->sk_bp) ; 1* free buffer to waiting physio * I

Revision At of 9 May 1988

398 Writing STREAMS Device Drivers

E.2. Sun-2 Color Graphics Driver

1*

*
* (cg2reg.h) Description ofSUN-2 hardware color frame buffer.
* Copyright (c) 1983 by Sun Microsystems. Inc.
*1

1*
* Structure defining the way in which the address bits to the
* SUN-2 color frame buffer are decoded.
*1

*define CG2 WIDTH 1152
*define CG2 HEIGHT 900
*define CG2_SQUARE 1024
*define CG2 DEPTH 8

struct cg2memfb {

} ;

union bitplane /* Word nwde menwry * /
short word[CG2_HEIGHT] [CG2 WIDTH/(8*sizeof(short))];
short sword [CG2_SQUARE] [CG2_SQUARE/(8*sizeof(short))];

memplane[8];
union byteplane { / * Pixel nwde menwry * I

u char pixel [CG2_HEIGHT] [CG2 WIDTH];
u char spixel[CG2_SQUARE] [CG2_SQUARE];

pixplane;

struct cg2statusreg {
unsigned unused : 4;
unsigned resolution : 4;

/ * Reserved for future use * /
/ * Screen resolution * /

} ;

unsigned
unsigned
unsigned
unsigned
unsigned

retrace 1;
inpend 1;
ropmode 3;
inten 1;
update_cmap : 1;

unsigned video enab 1;

/ * 0 = 900 x 1152 * /
1* 1 = 1024 x 1024 */

/ * rdonly: monitor in retrace * /
/ * rdonly: interrupt pending * I
/ * Rasterop nwde * /
I * Enable interrupt at end of retrace * /

/ * Copy ITL cmap to ECL cmap next vert retrace * /
/ * Silently disables writing to ITL cmap * /
/ * Enable video DACs * /

struct cg2fb {
union { / * ROP mode memory * /

union bitplane ropplane [8] ; / * Word mode memory with ROP * /
union byteplane roppixel; / * Pixel mode memory with ROP * /

ropio;
union { / * Rasterop unit control * /

() ~!I!! Revision A. of 9 May 1988

} ;

Appendix E - Sample Driver Listings 399

struct memropc ropregs; / * Normal register access * /
struct {

char pad [2048] ; / * For pixmode src reg prime * /
struct memropc ropregs; / * Byte xfer loads alternate * /

pr ime; / * Source register bits * /
char pad[4096];

ropcontrol[9];
union { / * Status register * /

struct cg2statusreg reg;
short word;
char pad[4096];

status;
union {

unsigned short reg;
char pad[4096];

ppmask;
union {

unsigned short reg;

char pad[4096];
wordpan;

union {
struct

unsigned unused
unsigned lineoff
unsigned pixzoom

reg;
short word;
char pad[4096];

zoom;
union {

struct
unsigned unused
unsigned lorigin
unsigned pixeloff

reg;
short word;
char pad[4096];

pixpan;
union {

unsigned short reg;
char pad[4096];

varzoom;
union {

unsigned short reg;
char pad[4096];

} intrptvec;
u short redmap[256];
u short greenmap[256];
u short bluemap[256];

sun
microsystems

8;

/ * Per plane mask register * /
/ * 8 bits 1 bit -> wr to plane * /

/ * Word pan register * /
/* High 16 bits of20-bit pixel address * /
/ * Pixel addr = eG2 _ WID TH*y +x * /

/ * Zoom and line offset register * /

4; / * y offset into zoomed pixel * /
4; / * Zoomed pixel size - 1 * /

/ * Pixel pan register * /

8;
4;
4;

/* Low 4 bits of pix addr* /
/ * Zoomed pixel x offsetl4 * /

/ * Variable zoom register * /
/ * Reset zoom after line no * /
/ * Line nwnber 0 .. 102414 * /

/* Interrupt vector register * /
/ * Line nwnber 0 .. 102414 * /

/* Shadow color maps * /

Revision A, of 9 May 1988

400 Writing STREAMS Device Drivers

/*

* ROPMODES -- Parallel, W _SDT, LS_SRC, Read/Write,
* on read or write?, on wrdmode or pixrrwde?
*/

idefine PRWWRD 0 /* parallel 8 plane, read write, wrdmode
idefine SRWPIX 1 /* single pixel, read write, pixmode
idefine PWWWRD 2 /* parallel 8 plane, write write, wrdmode
idefine SWWPIX 3 /* single pixel, write write, pixmode
idefine PRRWRD 4 /* parallel 8 plane, read read, wrdmode
idefine PRWPIX S /* parallel 16 pixel, read write, pixmode
idefine PWRWRD 6 /* parallel 8 plane, write read, wrdmode
idefine PWWPIX 7 /* parallel 16 pixel, write write, pixmode

/*

* ROP control unit numbers
*/

:fI:define CG2 ROPO 0 /* Rasterop unit for bit plane 0 */
:fI:define CG2 ROP1 1 /* Rasterop unit for bit plane 1 */
:fI:define CG2 ROP2 2
:fI:define CG2 ROP3 3
:fI:define CG2 ROP4 4
:fI:define CG2 ROPS S
:fI:define CG2 ROP6 6
:fI:define CG2 ROP7 7
:fI:define CG2 ALLROP 8 /* Writes to all units enabled by PPMASK, */

/* reads from plane zero * /

:fI:define CG SRC OxCC
:fI:define CG DEST OxAA
:fI:define CG MASK OxfO
:fI:define CG NOTMASK OxOf
:fI:define CGOP_NEEDS_MASK(op) ((((op) »4) A (op)) & CG_NOTMASK)

/*

* Defines for accessing the rasterop units
*/

:fI:define

:fI:define

:fI:define

:fI:define

:fI:define

:fI:define

cg2_setrsource(fb, ropunit, val)\
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_source1 (val»
cg2_setlsource(fb, ropunit, val)\
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_source2 (val»
cg2_setfunction(fb, ropunit, val)\
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_op = (val»
cg2_setpattern(fb, ropunit, val)\
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_pattern = (val»
cg2_setshift(fb, ropunit, shft, dir)\
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_shift =\
(shft) I ((dir) «8))

cg2_setwidth(fb, ropunit, w, count)\
«fb)->ropcontrol[(ropunit)].ropregs.mrc_width = (w»;\
«fb)->ropcontrol[(ropunit)] .ropregs.mrc_opcount = (count»

*/
*/
*/
*/
*/
*/
*/
*/

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 401

/*
* Defines for accessing the zoom and pan registers
*/

#define

#define

#define

#define

cg2_setzoom(fb, pixsize)\
«fb)->zoom.reg.pixzoom = (pixsize)-l)
cg2_setpanoffset(fb, xoff, yoff)\
«fb)->pixpan.reg.pixeloff = (xoff»>2;\
(fb)->zoom.reg.lineoff = (yoff)

cg2_setpanorigin(fb, x, y)\
«y) = «fb)->status.reg.resolution == 1) ?\

(y)*CG2_SQUARE+(x) : (y)*CG2_WIDTH+(X)i\
(fb)->pixpan.reg.lorigin = (y)&OXfi\
(fb)->wordpan.reg = (y»>4)

cg2_setzoomstop(fb, y) «fb)->varzoom.reg (y»>2)

/*

* Defines that facilitate addressing the frame buffer
*/

#define

#define

#define

#define

#define

#define

#define

#define
#define

cg2-pixaddr(fb, x, y)\
«(fb)->status.reg.resolution) ?\
&(fb)->pixplane.spixel[(y)] [(x)] :\
&(fb)->pixplane.pixel[(y)] [(x)])

cg2_wordaddr(fb, plane, x, y)\
«(fb)->status.reg.resolution) ?\
& (fb) ->memplane [(plane)] . sword [(y)] [(x) »4] : \
&(fb)->memplane[(plane)] .word[(y)] [(x»>4])

cg2_roppixaddr(fb, x, y)\
«(fb)->status.reg.resolution) ?\
&(fb)->ropio.roppixel.spixel[(y)] [(x)] :\
&(fb)->ropio.roppixel.pixel[(y)] [(x)])

cg2_ropwordaddr(fb, plane, x, y)\
«(fb)->status.reg.resolution) ?\
&(fb)->ropio.ropplane[(plane)] .sword[(y)] [(x»>4]:\
&(fb)->ropio.ropplane[(plane)] .word[(y)] [(x»>4])

cg2_width (fb) \
(«fb)->status.reg.resolution) ? CG2_SQUARE CG2_WIDTH)
cg2_height(fb)\
(«fb)->status.reg.resolution) ? CG2_SQUARE CG2 HEIGHT
cg2_linebytes(fb, mode)\
(«fb)->status.reg.resolution)\
? («mode)&1)?CG2_SQUARE:CG2_SQUARE/8)\
: «(mode)&1)?CG2_WIDTH:CG2_WIDTH/8 »

cg2-prskew(x) «x) & 15)
cg2_touch(a) «a)=O)

~~sun ~ microsystems
Revision A, of 9 May 1988

402 Writing STREAMS Device Drivers

/* (cg2var.h) More Sun-2 color frame buffer definitions
* Copyright (c) 1983 by Sun Microsystems, Inc.
*/

/*
* Information pertaining to the Sun-2 color buffer but not to pixrects in
* general is stored in the struct pointed to by the pr _data attribute of the
* pixrect. One property of the color buffer not shared with all pixrects is
* that it has a color map. The color map type and colormap contents are
* specified by the putcolormap operation.
*/

struct cg2pr
struct
int

cg2fb *cgpr_va;
cgpr_fd;

int
struct

cgpr ylanes ; / * Color bit plane mask register * /
pryos cgpr_offset;

} ;

#define cg2_d(pr) «struct cg2pr *) (pr)->pr_data)
#define cg2_fbfrompr(pr) «(struct cg2pr *) (pr)->pr_data)->cgpr_va)
#define cg2_ropword(cgd, plane, ax, ay)\

(cg2_ropwordaddr«cgd)->cgpr_va, (plane),\
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay»

fdefine cg2yixel(cgd, ax, ay)\
(cg2yixaddr«cgd)->cgpr_va,\
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay»

#define cg2_roppixel(cgd, ax, ay)\
(cg2_roppixaddr«cgd)->cgpr_va,\
(cgd)->cgpr_offset.x+(ax), (cgd)->cgpr_offset.y+(ay»

#define cg2_prd_skew(cgd, ax)\
«(cgd)->cgpr_offset.x+(ax» & 15)

extern struct pixrectops cg2_ops;

int cg2_rop();
int cg2yutcolormap();
int cg2yutattributes();

#ifndef KERNEL
int
int
struct
int
int
int
int
struct
int
int
#endif

cg2_stencil () ;
cg2_batchrop () ;
pixrect *cg2_make();
cg2_destroy () ;
cg2_get();
cg2yut();
cg2_vector () ;
pixrect *cg2_region();
cg2_getcolormap();
cg2_getattributes();

!KERNEL

.~sun ~ microsystems
Revision A, of 9 May 1988

1*
* (cgtwo.c) Sun2 (Memory Mapped) Color Board Driver
* Copyright (c) 1984 by Sun Microsystems, Inc.
*/

1*
* As a driver for aframe-buffer device, cgtwo.c must provide not only the
* standard device-driver functionality, but also low-level support for the
* Sun virtual desktop. That is to say, frame-buffer drivers not only
* implement the standard device-driver hardware interface, but also declare,
* initialize and export the pixrect structures which allow the kernel to
* view the frame-buffer memory as a large rectangle within which it can
* rapidly paint a cursor. As a consequence, some of the code here is pixrect
* related, though among the muck you'll find the operations common to all
* memory-mapped drivers.

*
* The kernel does not context switchframe buffers, despite thefact that some
* of them (including the Sun2 Color Board which this driver controls) do hnve
* context. In general, the kernel assumes that frame buffers either have no
* context that needs to be switched, or are used in a manner that doesn't
* require them to be context switched. Sun Windows takes the second of these
* tacks, arbitratingframe-buffer access (with pixwin locking) so that no
* process can use the frame buffer while another process has "context" in it.

*
*/

:#=include "cgtwo.h"
:#=include "win.h"
:#=if NCGTWO > 0

/ * installed device count --from conf ig * /

/ * general kernel parameters * /
/ * I/O buffers * /
/ * system error reporting * /
/ * ioctl definitions * /
/ * resource allocation maps * /

Appendix E - Sample Driver Listings 403

:#=include <sys/param.h>
:#=include <sys/buf.h>
:#=include <sys/errno.h>
:#=include <sys/ioctl.h>
:#=include <sys/map.h>
:#=include <sys/vrnrnac.h> / * virtual memory related conversion macros * /

/ * <machine> is a symbolic link to sun/234] * /
:#=include <machine/pte. h> /* page table entries * /
:#=include <machine/mrnu .h> /* memory-management unit */
:#=include <machine/psI. h> / * process status register * /

:#=include <sun/fbio.h> / * frame buffer definitions * /

/ * < sundev > is the device driver source directory * /
:#=include <sundev/rnbvar.h> /* bus-interface definitions */

/ * <pixrect> contains pixrect-related source * /
:#=include <pixrect/pixrect .h> /* basicpixrectdefinitions */
:#=include <pixrect/pr_impl_util. h> /* pixrect utilities * /
:#= include <pixrect /memreg . h> / * rasterop hardware registers * /
:#=include <pixrect/cg2reg.h> /* Sun2 color frame buffer definitions */
:#=include <pixrect/cg2var. h> /* more Sun2 color frame buffer * /

sun
microsystems

Revision A, of 9 May 1988

404 Writing STREAMS Device Drivers

/ * probe size in bytes -- enough for the useful part of the board * /
#define CG2 PROBESIZE CG2 MAPPED SIZE

/* Mainbus device data * /
int cgtwoprobe(), cgtwoattach();

struct rob device *cgtwoinfo[NCGTWO];
struct rob driver cgtwodriver = {

cgtwoprobe, 0, cgtwoattach, 0, 0, 0,
CG2_PROBESIZE, "cgtwo", cgtwoinfo, 0, 0, 0, a

} ;

/ * Driver per-unit data * /
struct cg2_softc {

int flags; /* misc.flags;bitsdefinedincg2var.h */
/ * (struct cg2pr, flags member) * /

struct cg2fb *fb; /* virtual address */
int w, h; / * resolution * /

#if NWIN > a
Pixrect pr;
struct cg2pr prd;

#endif NWIN > 0
} cg2_softc[NCGTWO];

/ * kernel pixrect and private data * /

/ * default structure for FBIOGAITRIFBIOGTYPE ioctls * /
static struct fbgattr fbgattr_default {
/ * real_type owner * /

FBTYPE_SUN2COLOR, 0,
/ * fbtype: type h w depth cms size * /

{ FBTYPE_SUN2COLOR, 0, 0, 8, 256, CG2 MAPPED SIZE },
/ * fbsattr:flags emu_type * /

{ FB_ATTR_DEVSPECIFIC, -1,
/ * dey _specific: FLAGS, BUFFERS, PRFLAGS * /

{ FB_ATTR_CG2_FLAGS_PRFLAGS, 1, a } },
/ * emu_types * /

{ -1, -1, -1, -I}
} ;

/ * Double buffering enable flag * /
int cg2_dblbuf_enable = 1;

#if NWIN > a

/ * SunWindows specific stuff * /

/ * kernel pixrect ops vector * /
static struct pixrectops pr_ops

cg2_rop,

} ;

cg2yutcolormap,
cg2yutattributes

#endif NWIN > a

Revision A. of 9 May 1988

cgtwoprobe(reg, unit)
caddr_t reg;
int unit;

register struct cg2fb *fb = (struct cg2fb *) reg;
register struct cg2_softc *softc;

/*
* Check if board is present and strapped for 2M decoding.
* If this fails, remap for 4M decoding and try again.
*/
if (probeit (fb» {

fbmapin«caddr_t) fb, fbgetpage«caddr_t) fb) +

Appendix E - Sample Driver Listings 405

(int) btop(CG2_MAPPED_OFFSET), CG2_MAPPED_SIZE);

if (probeit (fb))
return 0;

softc = &cg2_softc[unit];
softc->fb = fb;
softc->flags = 0;

/ * check for supported resolution * /
switch (fb->status.reg.resolution)
case CG2 SCR 1152X900: - -

softc->w = 1152;
softc->h = 900;
softc->flags = CG2D_STDRES;
break;

case CG2 SCR 1024X1024: - -
softc->w 1024;
softc->h = 1024;
break;

default:
printf("%s%d: unsupported resolution (%d)O,

cgtwodriver.mdr_cname, unit,
fb->status.reg.resolution);

return 0;

return CG2_PROBESIZE;

static
probeit(fb)

register struct cg2fb *fb;

union {
struct cg2statusreg reg;
short word;

status;

Revision A, of 9 May 1988

406 Writing STREAMS Device Drivers

=If:define
=If:define

allrop(fb, reg) ((short *) & (fb)->ropcontrol[CG2_ALLROP] .ropregs.reg)
pixelO(fb) ((char *) &fb->ropio.roppixel.pixel[O] [0])

1*
* Probe sequence:

*
* set board for pixel mode access
* enable all planes
* set rasterop function to CG _ SRC
* disable end masks
* set fifo shift/direction to zerolleft-to-right
* write Oxa5 to pixel at (0,0)
* check pixel value
* enable subset of planes (Oxcc)
* set rasterop function to ·CG _DEST
* write to pixel at (0,0) again
* enable all planes again
* read pixel value .. should be 0xa5 A Oxcc = Ox69
*/
status.word = peek(&fb->status.word);
status.reg.ropmode = SWWPIX;
if (poke (&fb->status.word, status.word) I I

poke ((short *) &fb->ppmask.reg, 255) II
poke(allrop(fb, mrc_op), CG_SRC) I I
poke (allrop (fbi mrc_mask1) I 0) I I
poke (allrop (fbi mrc_mask2), 0) I I
poke(allrop(fb, mrc shift), 1 «8) II
pokec (pixelO (fb), Oxa5) I I
pokec(pixelO(fb), 0) I I
peekc(pixelO(fb» != Oxa5 I I
poke((short *) &fb->ppmask.reg, Oxcc) I I
poke(allrop(fb, mrc_op), -CG_DEST) I I
pokec(pixelO(fb), 0) I I
poke((short *) &fb->ppmask.reg, 255) I I
peekc(pixelO(fb» != (Oxa5 A Oxcc»
return 1;

return 0;

4tundef
4tundef
}

allrop
pixelO

cgtwoattach(md)
struct rob device *md;

register struct cg2_softc *softc = &cg2_softc[md->md_unit];
register struct cg2fb *fb = softc->fb;
register int flags = softc->flags;

4tdefine dummy flags

Revision A, of 9 May 1988

/ * set interrupt vector * /
if (md->rnd_intr)

fb->intrptvec.reg
else

Appendix E - Sample Driver Listings 407

printf(nWARN1NG: no interrupt vector specified in config fileO);

1*
* Determine whether this is a Sun-2 or Sun-3 color board
* by setting the wait bit in the double buffering register
* and seeing ifit clears itself during retrace.

*
* On the Sun-2 color board this just writes a bit in the
* "wordpan" register.
*/
fb->misc.nozoom.dblbuf.word = 0;
fb->misc.nozoom.dblbuf.reg.wait = 1;

/ * wait for leading edge. then trailing edge of retrace * /
while (fb->status.reg.retrace)

/ * nothing * / ;
while (!fb->status.reg.retrace)

/ * nothing * / ;
while (fb->status.reg.retrace)

/ * nothing * / ;

if (fb->misc.nozoom.dblbuf.reg.wait)

else

/ * Sun-2 color board * /
fb->misc.nozoom.dblbuf.reg.wait 0;
flags 1= CG2D_ZOOM;

/ * Sun-3 color board (or better) * /
flags 1= CG2D_32B1T 1 CG2D_NOZOOM;

if (fb->status.reg.fastread)
flags 1= CG2D_FASTREAD;

if (fb->status.reg.id)
flags 1= CG2D 1D 1 CG2D_ROPMODE;

1*
* Probe for double buffering feature.
* Write distinctive values to one pixel in both buffers.
* then two pixels in buffer B only.
* Read from buffer B and see what we get.

*
* Warning: assumes we were called right after cgtwoprobe
*1
cg2_setfunction(fb, CG2_ALLROP, CG_SRC);
fb->ropio.roppixel.pixel[O] [0] = Ox5a;
fb->ropio.roppixel.pixel[O] [0] = Oxa5;
fb->misc.nozoom.dblbuf.reg.nowrite_a = 1;
fb->ropio.roppixel.pixel[O] [0] = Oxc3;

sun
microsystems

Revision A, of 9 May 1988

408 Writing STREAMS Device Drivers

fb->ropio.roppixel.pixel[O] [4] = dummy;
if (fb->ropio.roppixel.pixel[O] [0] == OxSa)

fb->misc.nozoom.dblbuf.reg.read_b = 1;

if (fb->ropio.roppixel.pixel[O] [0] == OxaS &&
fb->ropio.roppixel.pixel[O] [4] == Oxc3 &&
cg2_dblbuf_enable)
flags 1= CG2D_DBLBUF;

fb->misc.nozoom.dblbuf.word = 0;

softc->flags flags;

=If:ifndef sun2
/ * re-map into correct VME space if necessary * /
{

int page = fbg.etpage «caddr_t) fb);

if «(flags & CG2D_32BIT) != 0) !=
«page & PGT_MASK) == PGT_VME_D32»
fbmapin«caddr_t) fb,

page A (PGT_VME_D16 A PGT_VME_D32),
CG2_MAPPED_SIZE);

=If:endif !sun2

/ * print informative message * /
printf("%s%d: Sun-%c color board%s%sO,

md->md_driver->mdr_dname, md->md_unit,
flags & CG2D_ZOOM ? '2' : '3',
flags & CG2D_DBLBUF ? ", double buffered" . ""
flags & CG2D_FASTREAD ? ", fast read" : "");

cgtwoopen(dev, flag)
dev_t dev;
int flag;

return fbopen(dev, flag, NCGTWO, cgtwoinfo);

/*ARGSUSED*/
cgtwoclose(dev, flag)

dev_t dev;

register struct cg2_softc *softc = &cg2_softc[minor(dev)];
register struct cg2fb *fb = softc->fb;

/ * fix up zoom and/or double buffering on close * /

if (softc->flags & CG2D_ZOOM) {
fb->misc.zoom.wordpan.reg 0; / * hi pixel adr = 0 * /

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 409

fb->misc.zoom.zoom.word = 0; /* zoom=O,yoff=O */
fb->misc. zoom. pixpan. word 0; / * pix adr=O, xoff=O * /
fb->misc.zoom.varzoom.reg = 255; /* unzoomatline4*255 */

if (softc->flags & CG2D_NOZOOM)
fb->misc.nozoom.dblbuf.word 0;

return 0;

cgtwomrnap(dev, off, prot)
dev_t dev;
off_t off;
int prot;

return fbmrnap(dev, off - CG2_MAPPED_OFFSET,
prot, NCGTWO, cgtwoinfo, CG2_MAPPED_SIZE);

/ *ARGSUSED * /
cgtwoioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr_t data;
int flag;

register struct cg2_softc *softc

switch (cmd) {

case FBIOGTYPE:

&cg2_softc[minor(dev)];

register struct fbtype *fbtype = (struct fbtype *) data;

*fbtype = fbgattr_default.fbtype;
fbtype->fb_height softc->h;
fbtype->fb_width = softc->w;

break;

case FBIOGATTR:
register struct fbgattr *gattr (struct fbgattr *) data;

*gattr = fbgattr_default;
gattr->fbtype.fb_height = softc->h;
gattr->fbtype.fb_width = softc->w;

if (softc->flags & CG2D_NOZOOM)
gattr->sattr.dev_specific[FB_ATTR CG2 FLAGS] 1=

FB_ATTR_CG2_FLAGS_SUN3;

if (softc->flags & CG2D_DBLBUF)
gattr->sattr.dev_specific[FB_ATTR_CG2_BUFFERS] 2;

Revision A, of 9 May 1988

410 Writing STREAMS Device Drivers

softc->flags;

break;

case FB'IOSATTR:
break;

iif NWIN > 0

case FBIOGPIXRECT:
«struct fbpixrect *) data)->fbpr-pixrect

/ * initialize pixreet * /
softc->pr.pr_ops = &pr ops;
softc->pr.pr_size.x = softc->w;
softc->pr.pr_size.y = softc->h;
softc->pr.pr_depth = CG2_DEPTH;
softc->pr.pr_data = (caddr_t) &softc->prd;

/ * initialize private data * /

&softc->pr;

bzero«char *) &softc->prd, sizeof softc->prd);
softc->prd.cgpr_va = softc->fb;
softc->prd.cgpr_fd = 0;
softc->prd.cgpr-planes = 255;
softc->prd.ioctl_fd = minor(dev);
softc->prd.flags = softc->flags;
softc->prd.linebytes = softc->w;

/ * enable video * /
softc->fb->status.reg.video_enab 1;

break;

iendif NWIN > 0

/ * get info for GP * /
case FBIOGINFO: {

register struct fbinfo *fbinfo

fbinfo->fb-physaddr =

(struct fbinfo *) data;

(fbgetpage«caddr_t) softc->fb) « PGSHIFT) -
CG2_MAPPED_OFFSET & Oxffffff;

fbinfo->fb_hwwidth = softc->w;
fbinfo->fb_hwheight = softc->h;
fbinfo->fb_ropaddr (u_char *) softc->fb;

break;

/ * set video flags * /
case FBIOSVIDEO:

softc->fb->status.reg.video_enab
(* (int *) data) & FBVIDEO ON ? 1 0;

break;

Revision A, of 9 May 1988

Appendix E - Sample Driver pstings 411

/ * get video flags * /
case FBIOGVIDEO:

* (int *) data = softc->fb->status.reg.video_enab
? FBVIDEO_ON FBVIDEO_OFF;

break;

case FBIOVERTICAL:
cgtwo_wait(minor(dev»;
break;

default:
return ENOTTY;

return 0;

/ * wait for vertical retrace interrupt * /
cgtwo_wait(unit)

int unit;

register struct mb device *md = cgtwoinfo[unit & 255];
register struct cg2_softc *softc = &cg2_softc[unit & 255];
int s;

if (md->md_intr 0)
return;

s = splx(pritospl(md->md_intpri»;
softc->fb->status.reg.inten = 1;
(void) sleep«caddr_t) softc, PZERO - 1);
(void) splx(s);

/ * vertical retrace interrupt service routine * /
cgtwointr(unit)

int unit;

register struct cg2_softc *softc

softc->fb->status.reg.inten = 0;
wakeup«caddr_t) softc);

#-ifdef lint
cgtwointr(unit);

#-endif
}

&cg2_softc[unit];

Revision A, of9 May 1988

412 Writing STREAMS Device Drivers

1*
* (fbutil.c) Frame Buffer Driver Support Utilities
* Copyright (c) 1985, 1987 by Sun Microsystems, Inc.
*1

1*
* The routines in this file, calledfrom many the Sunframe buffer drivers,
* perform the essential operations necessary for all memory-mapped drivers.
*1

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/errno.h
#include <sys/mman.h>
#include <sys/vrnmac.h>

/ * machine dependent kernel parameters * /
/ * 110 buffers * /
/ * System error reporting * /
/ * Memory-mapping definitions * /
/ * Virtual memory related conversion macros * /

/ * <machine> is a symbolic link set to sun[234] * /
#include <machine/pte.h> /* page table entries */

/ * < sundev > is the device driver source directory * /
#include <sundev /mbvar. h> / * bus-interface definitions * /

1*
* Makes the necessary error checks and then returns. Everything is OK if the
* device is predefined in the config file and if the probe routine found it as
* expected.
*1
int fbopen(dev, flag, numdevs, mb_devs)

dev_t dev;
int flag, numdevs;
struct mb device **mb_devs;

register struct mb_device *md;

if (minor (dev) >= numdevs I I
(md = mb_devs [minor (dev)]) 0 I I

md->md alive == 0)
return ENXIO;

return 0;

1*
* Work from the device address and an offset within its address
* space to get the page frame number for the page to be mapped.
*1
int fbmmap(dev, off, prot, numdevs, mb_devs, size)

dev_t dev;
off_t off;
int rot;
int numdevs;
struct mb device **mb_devs;
int size;

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 413

if «u_int) off >= size)
return -1;

return fbgetpage(mb_devs[minor(dev)]->md_addr + off);

/ * Get page frame number and page type * /
fbgetpage (addr)

caddr_t addr;

return (int) hat_getkpfnum«addr_t) addr);

1*
* Simplified mapin and mapout. Note that, since these
* routines are implemented in terms ofUsrptmap (which has been
* preservedfor compatibility reasons) they will work with either SunOS
* release 4.0 or with earlier releases.
fbmapin(virt, phys, size)

caddr_t virt;
int phys;
int size;

mapin(&Usrptmap[btokmx«struct pte *) virt)], btop(virt),
(u_int) phys, btoc(size), PG V I PG_KW);

fbmapout(virt, size)
caddr_t virt;
int size;

mapout(&Usrptmap[btokmx«struct pte *) virt)], btoc(size»;

4tifdef sun2
1*
* Some Sun-2 frame-buffer devices allowed the user to enable/disable interrupts, and
* even to change the interrupt level. Thus, fbintr is necessary so that the
* kernel will always be able to find the interrupting device. If fbint r finds
* an interrupting device, it returns with a 1 after calling intclear to turn
* off its interrupt.
*1
fbintr(numdevs, rob_devs, intclear)

int numdevs;
register struct rob_device **mb_devs;
int (*intclear) ();

register struct rob_device *md;

while (--numdevs >= 0)

Revision A, of 9 May 1988

414 Writing STREAMS Device Drivers

if ((md = *mb_devs++) &&
md->md alive &&
(*intclear) (md->md_addr)
return 1;

return 0;

#"endif sun2

~~sun ~ microsystems
Revision A, of9 May 1988

E.3. Sky Floating-Point Driver

/*
* (skyreg.h) Sky Floating Point Processor Registers
* Copyright (c) 1983 by Sun Microsystems. Inc.
*/

struct skyreg {
u short sky_command;
u short sky_status;
union {

short skyu_dword[2];
long skyu_dlong;

skyu;
#define sky_data skyu.skyu_dlong
#define sky_dlreg skyu.skyu_dword[O]

long sky_ucode;
u short sky_vector; / * VME interrupt vector number * /

} ;

/ * command masks * /
#define SKY SAVE OxlO40
#define SKY RESTOR OxlO41
#define SKY NOP OxlO63
#define SKY STARTO OxlOOO
#define SKY STARTl OxlOOl

/ * status masks * /
#define SKY IHALT OxOOOO
#define SKY INTRPT OxOOO3
#define SKY INTENB OxOO1O
#define SKY RUNENB OxOO40
#define SKY SNGRUN OxOO60
#define SKY RESET OxOO80
#define SKY IODIR Ox2000
#define SKY IDLE Ox4000
#define SKY IORDY Ox8000

~\sun ~<f$ microsystems

Appendix E - Sample Driver Listings 415

Revision A, of 9 May 1988

416 Writing STREAMS Device Drivers

1*
* (sky.c) SKY Floating-point Processor Driver
* Copyright (c) 1985 by Sun Microsystems. Inc.
*1

1*
* The Sky driver is quite unusual in that maintains some state information
* in the kernel user structure. This is because the kernel must context
* switch the Sky board among the processes that wish to use it. This is not
* typical, and, intact. there is currently no way for users to add new
* devices which, like the Sky board, must be context switched by the kernel.

*
* The Sky board is used only with Sun2 machines, and machines with Sky boards
* are known to have only one installed.
*1

1*
* Most device drivers include about the same set of system header files,
* with variation reflecting driver differences in functionality. The system
* include files are located in directories whose location is fixed relative
* to the configuration directories (for both source and object distributions.)
* Note that there is not a sky.hfile included here; the sky board is a
* special case and we know that there's only one installed.
*1

#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/dir.h>
#include <sys/user.h>

/ * general kernel parameters * /
/ * 110 buffers * /
/ * open file information * /
/ * file system directories * /
/ * kernel per-process status * /

/ * <machine> is a symbolic link set to either sun2 or sunJ * /
#include <machine/pte. h> / * page table entries * /
#include <machine/mmu.h> /* memory management unit */
#include <machine/cpu. h> / * architecture-related defs * /
#include <machine/ scb. h> / * system control block * /

/ * . .Isundev is the device driver source directory * /
#include <sundev /mbvar. h> / * bus interface definitions * /
include <sundev / skyreg. h> / * sky register definitions * /

1*
* The ''page'' size (jor the VME sky board only) is an offset which must be
* added to the device base address to get access to the full set of device
* registers. The second page (page 1) is taken as the supervisor page and
* allows access to all the registers; the first (0) page is the user page and
* does not, thus preventing access to the registers needed to load microcode
* and context switch the device. In user mode it's only possible to access the
* registers needed to control floating-point operations.
*1
#define SKYPGSIZE Ox800

/ * auto-configuration information * /

Revision A. of 9 May 1988

int skyprobe(), skyattach(), skyintr();
struct rob_device *skyinfo[l]; I*OnlyoneSkyboard*/
struct rob_driver skydriver = {

skyprobe, 0, skyattach, 0, 0, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, 0, 0,

} ;

1*
* The global variable skyaddr is set in skyprobe to contain the
* base address of the "supervisor page" (page 1) of the Sky board (the base
* address of the device registers.)
*1
struct skyreg *skyaddr;

1*
* These two global variables are used to control extraordinary aspects of the
* Sky driver logic:
* skyinit is set to 1 when the device (during system initialization)
* is openedfor microcode loading. When the microcode loader closes the
* device, skyinit is set to 2, indicating that the device is available
* for general use. This mechanism is necessary to handle the special open
* state needed for microcode loading.
* skyisnew is even more peculiar, being necessary only to distinguish
* two slightly different versions of the Sky board.
*1
int skyinit = 0, skyisnew = 0;

/ *ARGSUSED* I
skyprobe(reg, unit)

caddr_t reg;
int unit;

Appendix E - Sample Driver Listings 417

register struct skyreg *skybase (struct skyreg *)reg;

I * Is something there? * /
if (peek«short *)skybase) -1)

return (0);

I * If so, is it a Sky board? * I
if (poke«short *)&skybase->sky_status, SKY_IHALT))

return (0);

skyaddr = (struct skyreg *) (SKYPGSIZE + reg);
if (cpu == CPU_SUN2_120 I I

poke«short *)&skyaddr->sky_status, SKY_IHALT))

/ * old VMEbus or Multibus version of the Sky board * /
skyaddr = (struct skyreg *)reg;
skyisnew 0;

else
skyisnew 1;

return (sizeof (struct skyreg));

sun
microsystems

Revision A, of9 May 1988

418 Writing STREAMS Device Drivers

1*
* If it's the new version of the board, then it has to be told what interrupt
* to respond to. This is true for both vectored and auto-vectored interrupts.
* In the auto-vectored case, the VME interrupt vector is set to be identical
* to the 68000 auto-vector for the appropriate interrupt level. For the old
* version of the Sky board, skyattach does nothing.
*1
skyattach(md)

struct rob device *md;

if (skyisnew) {
if (!md->md_intr) {

/ * auto-vectored interrupts * /
(void) poke«short *)&skyaddr->sky_vector,

AUTOBASE + md->md_intpri);
else {

/* vectored interrupts * /
(void) poke«short *)&skyaddr->sky_vector,

md->md_intr->v_vec);

/*ARGSUSED* /
skyopen(dev, flag)

dev_t dev;
int flag;

int i;
register struct skyreg *s = skyaddr;

if (skyaddr == 0) /* skyprobe didn'tfind the device */
return (ENXIO);

if (skyinit == 2) {
1*
* skyinit is 2 only when skyclose has previously been
* called. This is true only in the case where skyclose was
* called by the microcode loader, and so it's used here to recognize
* the first time that the device is opened for use by a user
* process. Thus, it's here that the device (and its related
* bookkeeping fields) need to be initialized.
*1
s->sky_status = SKY_RESET;
s->sky_command SKY_STARTO;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_START1;
s->sky_status = SKY_RUNENB;
u.u_skyctx.usc_used = 1;
u.u_skyctx.usc_cmd = SKY_NOP;

Revision A, of 9 May 1988

for (i=O; i<8; i++)
u.u_skyctx.usc_regs[i] 0;

skyrestore();

else if (flag & FNDELAY)
/*
* This open isfor the the user program that loads the microcode.
* This is a special case that allows it to open the device, even
* though it isn't initialized.
*/
skyinit = 1;

else
return (ENXIO);

return (0);

/*ARGSUSED* /
skyclose(dev, flag)

dev_t dev;
int flag;

1*
* Call skysave in case a user aborted and left the board in an
* unclean state. We're really not saving the device state here, but
* rather calling skysave to ensure that the state is safe for the
* next user.
*1
if (skyinit == 2)

skysave();

1*
* This is not the normal case. sky ini t is being set to 2 to indicate to
* skyopen that the device has been initialized.
*1
if (skyinit == 1)

skyinit = 2;
u.u_skyctx.usc_used 0;
return (0);

/*ARGSUSED* /
skymmap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

if (off)
return (-1);

1*

+~t!!

Appendix E - Sample Driver Listings 419

Revision A. of 9 May 1988

420 Writing STREAMS Device Drivers

1*

* If this is a VME Sky board, and the board has been initialized (its
* microcode loaded), then allow the user process to have access only to
* the "user" page. This allows users to do floating-point operations,
* but not to load microcode. The Multibus Sky board doesn't offer such
* protection, so any process can load microcode and screw up other users
* of the board. If this is a VME board, but we've still in the
* microcode-loading state, allow access to the "supervisor" version of
* the registers so we can load the microcode.
*1
off = (off_t)skyaddr;
if (skyisnew && skyinit 2) /* useuserpage */

off -= SKYPGSIZEi

return (hat_getkpfnum«addr_t) off»;

* skyintr is also quite atypical, being used only for error reporting
* and to disable interrupts. It must disable interrupts because they may (on
* the Multibus versionfor sure) have been accidently set by a user process
* with access to the device registers. The kernel must be able to handle
* all the interrupts which can be generated by all the devices, even if it
* doesn't use them for anything.
*1

1* ARGSUSED* I
skyintr(n)

int n;

static u short skybooboo = 0;

if (skyaddr && (skyaddr->sky_status & (SKY_INTENBISKY_INTRPT») {
if (skyaddr->sky_status & SKY_INTENB) {

printf("skyintr: sky board interrupt enabled, status Ox%x\n",
skyaddr->sky_status);

skyaddr->sky_status &= -(SKY_INTENBISKY_INTRPT);
return (1);

if (!skybooboo && (skyaddr->sky_status & SKY_INTRPT» {
printf("skyintr: sky board unrecognized status, status Ox%x\n",

skybooboo = skyaddr->sky_status);
return (0);

return (0);

1*
* skysave does the actual work of saving the device state. It has to
* jump through some hoops to do so, but these hoops are completely device
* specific.
*1
skysave ()
{

Revision A, of 9 May 1988

register short i;
register struct skyreg *s
register u_short stat;

for (i = Oi i < 100; i++)
stat = s->sky_statusi
if (stat & SKY_IDLE) {

u.u_skyctx.usc_cmd
goto sky_save;

if (stat & SKY_IOROY)
goto sky_ioready;

printf("skyO: hung\n");
skyinit = 0;
u.u_skyctx.usc_used = 0;
return;

skyaddr;

1* 110 is ready, is it a read or write? * I
sky_ioready:

s->sky_status = SKY_SNGRUNi 1* set single step mode *1
if (stat & SKY_IODIR)

i = s->sky_dlregi
else

s->sky_d1reg = i;

1*
* Check again since data may have been in a long word.
*1

stat = s->sky_status;
if (stat & SKY_IORDY)

1*

if (stat & SKY_IODIR)
i = s->sky_d1reg;

else
s->sky_d1reg = i;

* Read and save the command register. Decrement it by 1 since it's
* actually Sky program counter and must be backed up.
*1

s->sky_command - 1;

/*
* Reinitialize the board.
*/

s->sky_status = SKY_RESET;
s->sky_command SKY_STARTOi
s->sky_command = SKY_STARTO;
s->sky_command = SKY_STARTl;
s->sky_status SKY_RUNENBi

/*
* Do the actual context save. (Unrolled loop for efficiency.)

sun
microsystems

Appendix E - Sample Driver Listings 421

Revision A, of 9 May 1988

422 Writing STREAMS Device Drivers

*/
sky_save:

s->sky_command = SKY_Nap; /* set device to a clean nwde * /
s->sky_command = SKY_SAVE;
u.u_skyctx.usc_regs[O] s->sky_data;
u.u_skyctx.usc_regs[l] s->sky_data;
u.u_skyctx.usc_regs[2] s->sky_data;
u.u_skyctx.usc_regs[3] s->sky_data;
u.u_skyctx.usc_regs[4] s->sky_data;
u.u_skyctx.usc_regs[5] s->sky_data;
u.u_skyctx.usc_regs[6] s->sky_data;
u.u_skyctx.usc_regs[7] s->sky_data;

skyrestore ()
{

register struct skyreg *s skyaddr;

if (skyinit != 2) {
u.u_skyctx.usc_used 0;
return;

s->sky_command

/*
* Do the actual context restore.
*/

/ * set device to a clean nwde * /

s->sky_command = SKY_RESTOR;
s->sky_data u.u skyctx.usc_regs[O];
s->sky_data u.u_skyctx.usc_regs[l];
s->sky_data u.u_skyctx.usc_regs[2];
s->sky_data u.u_skyctx.usc_regs[3];
s->sky_data u.u_skyctx.usc_regs[4];
s->sky_data u.u_skyctx.usc_regs[5];
s->sky_data u.u_skyctx.usc_regs[6];
s->sky_data u.u skyctx.usc regs[7];
s->sky_command = u.u_skyctx.usc_crnd;

~\sun ~ microsystems
Revision A, of9 May 1988

E.4. Versatec Interface Driver

/*
* (vcmd.h) Includefilefor user programs that'll give ioctl commands to the
* Ikon 10071-5 Multibus/Versatec interface.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*/

#ifndef IOCTL
#include <sys/ioctl.h>
#endif

#define VPRINT 0100
#define VPLOT 0200
#define VPRINTPLOT 0400
#define VPC TERMCOM 0040
#define VPC FFCOM 0020
#define VPC EOTCOM 0010
#define VPC CLRCOM 0004
#define VPC RESET 0002

/*
* lOR and lOW encode read/write instructions to the kernel within the ioct 1

- -
* command code. These instructions cause the kernel to read the ioctl
* command argument into user space (_lOR), or to write it into kernel space ClaW).
*/
#define
#define

VGETSTATE
VSETSTATE

IOR(v, 0, int)
IOW(v, 1, int)

.\sun ~ microsystems

Appendix E - Sample Driver Listings 423

Revision A, of 9 May 1988

424 Writing STREAMS Device Drivers

1*
* (vpreg.h) Registers/or Ikon 10071-5 MultibuslVersatec interface.
* Copyright (c) 1983 by Sun Microsystems, Inc.
*1

1*
* Note that the vpdevice structure actually spans the registers of several
* contiguous IC devices (a 8259 and a 8237.) Only the low byte of each
* (short) word is used.
*1

struct vpdevice {
u short vp_status;
u short vp_cmd;
u short vp-pioout;
u short vp_hiaddr;
u short vp_icadOi
u short vp_icadli

/ * 00: mode(w) and status(r) * /
/ * 02: special command bits(w) * /
/ * 04: PI 0 output data(w) (unused) * /
/ * 06: hi word of Multibus DMA address(w) * /
/ * 08: adO of 8259 interrupt controller * /
/ * OA: ad1 of 8259 interrupt controller * /

/ * The rest of the fields are for the 8237 DMA controller * /
u short vp_addr i /* OC: DMA word address * /
u short VP_WCi /*OE:DMAwordcount*/
u short vp_dmacsri /* 10: command and status (unused) */
u short vp_dmareq; /* 12: request (unused) */
u short vp _smb i / * 14: single mask bit (unused) * /
u short vp_modei /* 16: dma mode */
u short vp_clrffi /* 18: clearfirstllastflip-flop */
u short vp_clear i /* 1A: DMA master clear * /
u short vp_clrmaski /* 1C:clearmaskregister */
u short vp_allmaski /* 1E:allmaskbits(unused) */

} ;

1*
* Warning - this is one of those devices in which the read bits are not
* identical to write bits.
*1

/ * vp _status bits (read) * /
#define VP IS8237 Ox80 / * 1 if 8237 (sanity checker) * /
#define VP REDY Ox40 / * printer ready * /
#define VP DRDY Ox20 / * printer and interface ready * /
#define VP IRDY OxlO / * interface ready * /
#define VP PRINT Ox08 / * print mode * /
#def.ine VP NOSPP Ox04 /* not in SPP mode * /
#define VP ONLINE Ox02 / * printer online * /
#define VP NOPAPER OxOI / * printer out of paper * /

/ * vp _status bits (write) * /
#define VP PLOT Ox02 / * enter plot mode * /
#define VP SPP OxOI / * enter SPP mode * /

/ * vp _ cmd bits * /
#define VP RESET OxlO / * reset the plotter and interface * /

Revision A, of 9 May 1988

#define VP CLEAR Ox08 / * clear the plotter * /
#define VP FF Ox04 / * form feed to plotter * /
#define VP EOT Ox02 / * EOT to plotter * /
#define VP TERM OxOl / * line terminate to plotter * /

/ * vp _ mode bits * /
#define VP DMAMODE Ox47 / * put interface in DMA mode * /

1*
* These two values are used to set the device (which is reticent to disclose
* that it has issued an interrupt) so that the polling routine can find out.
*1
#define
#define

VP ICPOLL OxOC
VP ICEOI Ox20

.\sun ~~ microsystems

Appendix E - Sample Driver Listings 425

Revision A, of 9 May 1988

426 Writing STREAMS Device Drivers

/*
* (vp.c) DMA driver for Ikon 10071-5 Versatec matrix printer/plotter driver.
* Copyright (c) 1985 by Sun Microsystems, Inc.
*/

/*
* Most device drivers include about the same set of system header files, with
* variation reflecting driver differences infunctionality. The system include
* files are located in directories whose location is fixed relative to the
* configuration directories (for both source and object distributions.) vp.h
* is presumed to be in the configuration directory, where config will have
* left it andfrom which it is assumed that driver source files (like this one)
* are compiled.
*/

4tinclude "vp.h"
4tinclude <sys/param.h>
4tinclude <sys/dir.h>
4tinclude <sys/user.h>
4tinclude <sys/buf.h>
4tinclude <sys/systm.h>
4tinclude <sys/kernel.h>
4tinclude <sys/map.h>
4tinclude <sys/ioctl.h>
4tinclude <sys/vcmd.h>
4tinclude <sys/uio.h>

/ * installed device count -- from config * /
/ * general kernel parameters * /
/ * file system directories * /
/ * kernel per-process status * /
/ * I/O buffers * /
/ * miscellaneous kernel variables * /
/ * kernel global variables * /
/ * resource allocation maps * /
/ * ioctl definitions * /
/ * for all Versatec interface drivers * /
/ * uio structures * /

/ * <machine> is a symbolic link set to either sun2 or sunJ * /
4tinclude <machine/psI. h> /* processor status codes * /
4tinclude <machine/mmu. h> /* memory-management unit * /

/ * < sundev > is the device driver source directory * /
4tinclude <sundev/vpreg.h> /* vpregisterdefinitions */
4tinclude <sundev/mbvar.h> /* bus-interface definitions */

/*
* Define the Versatec sleeping priority to be lower than PZERO, that is, make
* its sleep be uninterruptible by signals. This is appropriate because the
* events which we'll be waitingfor, slow as they may be, are relatively fast
* and sure (unlike user input) to occur.
*1
4tdefine VPPRI (PZERO-l)

/*
* Define an array ofvp_softc structures, one for each of the NVP
* installed devices. By convention, the names xx_softc and
* xx_device are usedfor the private,per-device software state
* structure.
*/
struct vp_softc {

int sc_state;
struct buf *sc_bp;
int sc_mbinfo;

/ * current device state * /
/ * buffer mapped to device * /
/ * stash for mbsetup's return code * /

Revision A, of 9 May 1988

} vp_softc[NVP];

/*
* sc_state bits - passed in VGETSTATE and VSETSTATE ioctl calls.
* The user-level ioctl command codes are in vcrnd. h, normally found
* in /usr/include/sys
*/
#define VPSC BUSY 0400000
#define VPSC MODE 0000700
#define VPSC SPP 0000400
#define VPSC PLOT 0000200
#define VPSC PRINT 0000100
#define VPSC CMNDS 0000076
#define VPSC OPEN 0000001

/ * no special encoding in minor device number * /
#define VPUNIT(dev) (rninor(dev»

/*
* Declare an array ofprivate buf headers, by convention named rvpbuf, onefor
* each of the NVP installed devices.
*/
struct buf rvpbuf[NVP];

/ * The autoconfig-related declarations. * /
int vpprobe(), vpintr();
struct rob_device *vpdinfo[NVP];
struct rob driver vpdriver = {

vpprobe, 0, 0, 0, 0, vpintr,
sizeof (struct vpdevice), "vp", vpdinfo, 0, 0, 0,

} ;

/*

* vpprobe already indicates the persnickety nature of the device, a
* nature that will become more clear as we proceed.
*/
vpprobe(reg)

caddr t reg;

Appendix E - Sample Driver Listings 427

register struct vpdevice *vpaddr
register int x;

(struct vpdevice *)reg;

x = peek((short *)&vpaddr->vp_status);

/*
* Note that the device provides a sanity check bit, which
* we can use to ensure that vpprobe is accurate
*/

if (x == -1 I I (x & VP _IS 8 2 3 7) == 0)
return (0);

/* Now reset the 8259; also return 0 ifresetfails * /
if (poke((short *)&vpaddr->vp_crnd, VP_RESET»

sun
microsystems

Revision A, of 9 May 1988

428 Writing STREAMS Device Drivers

return (0);

1*
* Device-specific magic to shut up the device, by setting the 8259 -- it
* doesn't have enough sense to wait for the driver's instructions, and
* starts interrupting after being reset. Note that even this isn't
* straightforward because of register write latency.
*1
vpaddr->vp_icadO
DELAY(l) ;
vpaddr->vp_icad1
DELAY(l);
vpaddr->vp_icad1

Ox12; / * ICW1, edge-trigger * /

OxFF; / * ICW2 - don't care (non-zero) * /

OxFE; / * IRO - interrupt on DRDY edge * /

/ * Also reset the 8237 * /
vpaddr->vp_clear = 1;

return (sizeof (struct vpdevice»;

vpopen(dev)
dev_t dev;

register struct vp_softc *sc;
register struct rob_device *md;
register int s;
static int vpwatch = 0;

1* Do a variety of error checks upon opening the device. Fail if dev
* is greater than the configured number of devices, or if the device
* (which is exclusive open) has already been opened, or ifvpprobe
* failed to find the device as expected.

*
* Note that, if the device wasn'tfound by the probe routine, both
* vpdinfo [VPUNIT (dev)] andmd->md_alive will be O. Any given
* driver may chose, for its convenience, to make either test, but it's
* paranoid to -- as is done here -- make both. (All drivers have
* access to md->md _ali ve; this isn't the case with xxdinfo).
*1
if (VPUNIT(dev) >= NVP I I

1*

«sc = &vp_softc[minor(dev)])->sc_state&VPSC OPEN) I I
(md = vpdinfo[VPUNIT(dev)]) == 0 I I md->md alive == 0)
return (ENXIO);

* vpwatch is a static local which is set to 0 the first time
* vpopen is called. This code sets vpwatch to one and then
* calls vptimo -- the effect is that vptimo gets called only once,
* the first time a user process calls vpopen. But if you examine
* vpt imo, you'll see that it arranges matters so that it's called
* repeatedly. This helps to keep the device from locking up.
*1
if (! vpwatch)

sun
microsystems

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 429

1*

vpwatch = 1;
vptimo () ;

* Initialize softc state variable. Here we are, among other things, setting
* sc->sc_state = VPSC_OPEN, which indicates that the device (which is
* exclusive use) is tied up, and that no one else can open it. We are also
* dispatching two commands, CLRCOM and VPC_RESET.
*1
sc->sc_state = VPSC_OPENIVPSC_PRINT VPC_CLRCOM 1 VPC_RESET;

/ * Loop while any command is in process * /
while (sc->sc_state & VPSC_CMNDS)

1*
* This critical section ensures that only one instance of the driver can
* vpwa it / vpcmd at any time. vpcmd clears command request
* bits as it processes commands. This is absolutely necessary, since
* vpcmd intends to actually dispatch a command (posted in
* sc->sc_state) to the hardware.
*1
s = splx(pritospl(md->md_intpri));
vpwait (dev) ;
vpcmd (dev) ;
(void) splx(s);

return (0);

vpclose(dev)
dev_t dev;

register struct vp_softc *sc

sc->sc state = 0;

vpstrategy(bp)
register struct buf *bp;

&vp_softc[VPUNIT(dev)];

register struct vp softc *sc = &vp_softc[VPUNIT(bp->b_dev)];
register struct rob_device *md = vpdinfo[VPUNIT(bp->b_dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addri
int Si

int pa, wc;

1*
* The hardware doesn't support writes to odd addresses or DMA requests
* of less than two bytes in length.
*1
if «(int)bp->b_un.b_addr & 1) 1 1 bp->b_bcount < 2)

bp->b_flags 1= B_ERROR;
iodone (bp) ;

sun
microsystems

Revision A, of 9 May 1988

430 Writing STREAMS Device Drivers

1*

return;

s = splx(pritospl(md->md_intpri»;
while (sc->sc_bp != NULL)

sleep«caddr_t)sc, VPPRI);

sc->sc_bp = bPi

vpwait(bp->b_dev);
/ * Map next request for the now idle device onto the bus for a DMA transfer* /
sc->sc_mbinfo = mbsetup(md->rnd_hd, bp, 0);

vpaddr->vp_clear = 1;

/ * Get the address in DVMA space * /
pa MBI_ADDR(sc->sc_mbinfo);

1*
* Now comes some VERY device-specific code, as we set the DMA transfer
* address on the device.
*1
vpaddr->vp_hiaddr = (pa » 16) & OxF;
pa = (pa » 1) & Ox7FFF;
wc = (bp->b_bcount » 1) - 1;
bp->b_resid = 0;

1*
* Note the 2 sequential 8-bit writes into the same address to indicate
* a 16-bit address!
*1
vpaddr->vp_addr
vpaddr->vp_addr

pa & OxFF;
pa » 8;

vpaddr->vp_wc = wc & OxFF;
vpaddr->vp_wc = wc » 8;
vpaddr->vp_mode = VP_DMAMODE;
vpaddr->vp_clrmask = 1;

1*
* By setting the VPSC_BUSY bit in sc->sc_state, we indicate that the device
* is to sleep, and that vpwai t is to loop. This is because we want to insure
* that another command doesn't get issued until this DMA transfer is completed.
*1
sc->sc_state 1= VPSC_BUSY;

(void) splx(s); / * end of critical section * /

* There is no read routine, as this is a write-only device.
*1

1* ARGSUSED* 1

+~,!! Revision A, of9 May 1988

Appendix E - Sample Driver Listings 431

vpwrite(dev, uio)
dev_t dev;
struct uio *uio;

1*

if (VPUNIT(dev) >= NVP)
return (ENXIO);

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE,
minphys, UiO»i

* vpwai t kills time, but not by busy waiting. Instead, it relies on the
* fact that sleep and wakeup aren't proper semaphores, and that ALL
* processes which are sleeping on a channel wake when a wakeup is issued
* on that channel. vpwait's sleep, then, is awaken by vpintr.
*1
vpwait(dev)

dev_t devi

register struct vpdevice *vpaddr =
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)]i

for (;;)
if «sc->sc_state & VPSC BUSY) == 0 &&

vpaddr->vp_status & VP_DRDY)
break;

sleep«caddr_t)sc, VPPRI);

return;

struct pair
char soft;
char hard;

/ * software bit * /
/ * hardware bit * /

} ;

1*

vpbits[] = {

VPC_RESET,
VPC_CLRCOM,
VPC_EOTCOM,
VPC_FFCOM,
VPC_TERMCOM,
0,

VP_RESET,
VP_CLEAR,
VP_EOT,
VP_FF,
VP_TERM,
0,

* vpcmd is designed to be called after vpwa it has returned, thus
* indicating that the hardware is quiet and ready to receive a new command.
* When it's called, it runs through the possible command bits in
* sc->sc_state, and, finding one set, issues the corresponding hardware
* command to the actual device. At the same time it clears the commandfrom
* sc->sc_state, so that the next time vpcmd is called another
* command will be issued to the hardware. Note that vpcmd waits a long

Revision A, of 9 May 1988

432 Writing STREAMS Device Drivers

* time, probably too long, for the' device to recover before it returns.
*/
vpcmd(dev)

dev_t;

register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr =

(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;
register struct pair *bit;

for (bit = vpbits; bit->soft != 0; bit++)
if (sc->sc_state & bit->soft) {

vpaddr->vp_cmd = bit~>hard;
sc->sc_state &= -bit->soft;
DELAY (100) ; / * time/or DRDY to drop * /
return;

/*ARGSUSED*/
vpioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr_t data;
int flag;

register int m;
register struct rob_device *md = vpdinfo[VPUNIT(dev)];
register struct vp_softc *sc = &vp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;
int s;

switch (cmd) {

case VGETSTATE:
*(int *)data
break;

sc->sc_state;

1*
* Turn ojfVPSC _MODE; restrict the user to resetting itand setting
* VPSC CMNDS
*/
case VSETSTATE:

m = *(int *)data;
sc->sc state =

(sc->sc_state & -VPSC_MODE)
break;

default:
return (ENOTTY); / * "Not a typewriter" * /

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 433

/*

/*
* More careful handling to make sure that one command doesn't get issued until the
* last one has completed. Wait, then post some state informationfrom
* sc->sc_softc to the hardware, then wait again, then call vpcmd to
* fire off the next command. And all in a critical section!
*/
s = splx(pritospl(md->md_intpri»;
vpwait (dev) ;
if (sc->sc_state&VPSC_SPP)

vpaddr->vp_status = VP_SPPIVP_PLOT;
else if (sc->sc_state&VPSC_PLOT)

vpaddr->vp_status VP_PLOT;
else

vpaddr->vp_status 0;
while (sc->sc_state & VPSC_CMNDS)

vpwait (dev) ;
vpcmd (dev) ;

(void) splx(s);
return (0);

* This is really a polling interrupt routine. The code at the top that checks
* the polling chain should really be broken out into a vppoll routine
* that gets plugged into the rob _ dev ice structure. The rest of the code
* would then be where it properly belongs, in a vpint r routine that can
* be named in the config file.
*/
vpintr ()
{

register int dev;
register struct rob_device *md;
register struct vpdevice *vpaddr;
register struct vp_softc *sc;
register int found = 0;

for (dev = 0; dev < NVP; dev++)
if «md = vpdinfo[dev]) == NULL)

continue;
vpaddr = (struct vpdevice *)md->md_addr;

/*
* It's not easy to find out if an interrupt has occurred.
*/

vpaddr->vp_icadO = VP_ICPOLL;
DELAY (1) i

if (vpaddr->vp_icadO & Ox80)
found = 1;

/ * Wake up the guilty device * /
DELAY (1) ;
vpaddr->vp_icadO

sun
microsystems

Revision A, of 9 May 1988

434 Writing STREAMS Device Drivers

se = &vp_softe[dev];

1* Is there a command currently dispatched and does the hardware
* say it's done with it?
*1
if «se->se_state&VPSC_BUSY) && (vpaddr->vp_status & VP_DRDY»

sc->sc_state &= -VPSC_BUSY; /* clear busy indicator */

1*

if (sc->sc_state & VPSC_SPP) {

/ *device-specific mode toggle * /
sc->sc_state &= -vPSC_SPP;
sc->sc_state 1= VPSC_PLOT;
vpaddr->vp_status = VP_PLOT;

iodone(sc->sc_bp); /* break wait in physio */
sc->sc_bp = NULL;

1*
* Note that the resources being deallocated here were allocated
* in vpstrategy, in the top half of the driver. This is
* standardformfor DMA drivers.
*1

mbrelse(md->md hd, &Sc->sc_robinfo);

wakeup ((caddr _ t) sc); / * break loops in vpstrategy AND vpwait * /

return (found);

* vptimo is used to repeatedly kickstart the device, which has a tendency
* to freeze up if left alone too long. It calls vpintr, and then it sets
* up a timer to call vptimo again (and again, and again ...) to make sure
* that a call to vpintr is always pending. The kernel global hz is set
* to reflect the clock rate of the system processor chip (it's 50 for a Sun3).
*1
vptimo ()
{

int s;
register struct rob_device *md = vpdinfo[O];

s = splx(pritospl(md->md_intpri»;
(void) vpintr();
(void) splx (s) ;
timeout (vptimo, (caddr_t)0, hz);

Revision A, of 9 May 1988

Appendix E ~ Sample Driver Listings 435

E.S. Sun386i Parallel Port Driver

1*
* (ppreg.h) Sun-386i Parallel Port Registers
* Copyright (c) 1987 by Sun Microsystems, Inc.
*1

1* Register addresses.
*1

ushort ppregs[] [NPPREGS] =

{ Ox378, Ox37a, Ox379 }, /* port 1 regs */
} ;

/ * Printer Control Reg bits * /
*define PC INTENABLE
*define PC SELECT
*define PC INIT
*define PC LINEFEED
*define PC STROBE

*define PC NORM
*define PC OFF
*define PC RESET

/ * Printer Status Reg bits * /
*define PS READY
*define PS NOTACK
*define PS NOPAPER
*define PS SELECT
*define PS NOERROR

*define PSREADY(s)
*define PSSELECT(s)
*define PSNOPAPER(s)
*define PSERROR(s)

OxlO / * +IRQ ENABLE: enable ACK interrupts * /
Ox08 /* +SLCT IN: select printer * /
OxO 4 / * -INIT: init printer * /
Ox02 / * +AUTO FD XT: set auto linefeed * /
OxOI /* +STROBE: strobe data */

(PC_INTENABLEIPC_SELECTIPC_INIT)
(PC_SELECTIPC_INIT)
o

Ox80 / * -BUSY: printer not busy * /
Ox40 /* -ACK: ACK state * /
Ox20 / * +PE: printer out of paper * /
OxlO /* +SLCT:printerisselected */
OxO 8 / * -ERROR: printer error condition * /

((s) &PS_READY)
((s) &PS_SELECT)
((s) &PS_NOPAPER)
«(s)&PS_NOERROR)

~~sun ~ microsystems

0)

Revision A, of 9 May 1988

436 Writing STREAMS Device Drivers

1*
* Parallel Port (printer) driver.
* Copyright (c) 1987 by Sun Microsystems, Inc.
*1

.:ftinclude "pp.h"

.:ftif NPP > 0

.:ftinclude <sys/param.h>

.:ftinclude <sys/buf.h>

.:ftinclude <sys/uio.h>

.:ftinclude <sys/errno.h>

.:ftinclude <sys/file.h>

.:ftinclude <sundev/robvar.h>

1*
* Buffers for use by physio().
*1
struct bUf ppbuf[NPP];
.:ftdefine PPBUFSIZ 64

1*

/ * Size of buffer written to printer * /

* Software state structure, one for each printer
*1
struct ppstate {

int pp_flags;
.:ftdefine PP OPEN
.:ftdefine
.:ftdefine
.:ftdefine

PP WANT
PP TIMER
PP BUSY

u char pp_timer;

OxOl
Ox02
Ox08
OxlO

u char pp_lostintr;
u char pp_notready;
int pp_unit;

/ * Printer state: * /
/ * Currently open * /
/ * Someone waitingfor printer * /
/ * Watchdog timer is running * /
/ * 110 in progress * /
/ * For detecting timeout situations * /
/ * For tracking lost interrupts* /
/ * Printer not ready (no paper, etc.) * /
/ * Unit number* /

struct rob_device *pp_rnd;
struct buf *pp_bp;

/ * Pointer to mb info * /
/ * Pointer to current' buf * /
/* Buffer * / char pp_buf[PPBUFSIZ];

char *pp_cp;
int pp_count;
u_short pp_regbase;
ppstate[NPP];

.:ftdefine

.:ftdefine

.:ftdefine

.:ftdefine

.:ftdefine

PPREG DATA
PPREG CTRL
PPREG STAT

PPUNIT(dev)
PPPRI

extern int hz;
.:ftdefine PPWATCHDOG
.:ftdefine PPTICKS

/ * Current byte in current buffer * /
/ * Number of bytes left to print * /
/ * Device register base in i/o space * /

(pp->pp_regbase)
(pp->pp_regbase + 2)
(pp->pp_regbase + 1)

(minor (dev))
(PZERO + 1) / * Sleeps are interruptable * /

3 / * Watchdog interval: see' pptimeout() , * /
(30/PPWATCHDOG + 1)

Revision A, of 9 May 1988

#define PPMSGTICKS (180/PPWATCHDOG)

#ifdef DEBUG
1*
* Debugging stuff.
*1
#define DBlNlT OxOOOI
#define DBlO OxOO02
#define DBOPEN OxOO04
#define DBCLOSE OxOOO8
#define DBSTRAT OxOOIO
#define DBSTART OxOO20
#define DBTMOUT OxOO40
#define DBlNTR OxOO80

int ppdebug = Oxffff;
#define ppprint(flg,x) «(flg)&ppdebug) ? printf x

#else
#define ppprint(flg,x)
#endif DEBUG

int ppprobe(), ppattach(), ppintr(), pptimeout();

struct rob driver ppdriver = {

Appendix E - Sample Driver Listings 437

0)

ppprobe, 0, ppattach, 0, 0, ppintr, 0, "pp", 0, 0, 0, 0,
} ;

/*ARGSUSED* /
ppprobe(reg, unit)

caddr_t reg;
int unit;

ppprint(DBlNlT, ("ppprobe\n"»;

if (unit >= NPP)
panic ("pp: too many units");

ppstate[unit] .pp_regbase
return(l) ;

ppattach(md)

(u_short) reg;

register struct rob_device *md;

register struct ppstate *pp;

pppr int (DBlNlT, ("ppa t tach \n")) ;

pp = &ppstate[md->md_unit];
pp->pp_md = rod;

1* Initialize printer .

• \sun ~ microsystems
Revision A, of 9 May 1988

438 Writing STREAMS Device Drivers

* Holding PC _INIT low for 50 usecs does the trick.
*1
outb(PPREG_CTRL, PC_RESET);
DELAY(SO) ;
outb(PPREG_CTRL, PC_OFF);
DELAY(lO) ;

ppopen(dev, flags)
dev_t dev;
int flags;

register struct ppstate *pp
int status;

&ppstate[PPUNIT(dev)];

ppprint(DBOPEN, ("ppopen: unit %d\n", PPUNIT(dev»);

if (PPUNIT(dev) >= NPP II pp->pp_md->md_alive == 0)
return (ENXIO) ;

if (flags & FREAD)
return(ENODEV);

/ * Can't read a write-only device * /

pp->pp_unit = PPUNIT(dev);

while (pp->pp_flags & PP_OPEN) /*Enforceexclusiveaccess*/
ppprint(DBOPEN, ("ppopen: in use - waiting ... \n"»;
if (flags & FNDELAY)

return(EBUSY);
pp->pp_flags 1= PP_WANT;
if (sleep«caddr_t)&pp->pp_flags, PPPRIIPCATCH» {

return(EINTR);

status = inb(PPREG_STAT);
if (PSNOPAPER(status) II! PSSELECT(status) 1 I PSERROR(status»

if (PSNOPAPER(status»
uprintf("pp%d: printer out of paper\n", pp->pp_unit);

else
uprintf(npp%d: printer not ready\n", pp->pp_unit);

(void)wakeup«caddr_t)&pp->pp_flags);
pp->pp_flags = 0;
return(EIO);

outb (PPREG_CTRL, PC_NORM); /* Enable interrupts * /

if «pp->pp_flags & PP_TIMER) 0) {
/*
* Kick of/watchdog timer.
*/

timeout (pptimeout, (caddr_t)pp, PPWATCHDOG*hz);
pp->pp_timer = 0;

Revision A. of 9 May 1988

Appendix E - Sample Driver Listings 439

1*

pp->pp_flags 1= PP_OPENi
return(O)i

* ppclose:
* Close the printer device.
* Turn ofJinterrupts.
* Wake up anyone waiting to open the printer.
*1
ppclose(dev)

dev_t devi

register struct ppstate *pp = &ppstate[PPUNIT(dev)];

ppprint(DBCLOSE, ("ppclose: unit %d\n", PPUNIT(dev) »;

/ * Disable interrupts * /

if (pp->pp_flags & PP_WANT)
wakeup«caddr_t)&pp->pp_flags)i

pp->pp_flags = Oi

ppwrite(dev, uio)
dev_t devi
struct uio *UiOi

1*

int ppminphys(), ppstrategY()i

ppprint(DBIO, ("ppwrite\n"»;

return (physio (ppstrategy, &ppbuf[PPUNIT(dev)], dev, B_WRITE,
ppminphys, uio»;

* ppstrategy:
*1
ppstrategy(bp)

register struct buf *bPi

register struct ppstate *pp = &ppstate[PPUNIT(bp->b_dev)];

ppprint(DBSTRATIDBIO, ("ppstrategy\n"»;

pp->pp_bp = bpi
pp->pp_count = bp->b_bcounti
pp->pp_cp pp->pp_buf;

Revision A, of 9 May 1988

440 Writing STREAMS Device Drivers

if (copyin(bp->b_un.b_addr, pp->pp_buf, bp->b_bcount)) {
bp->b_flags 1= B_ERROR;
bp~>b_error = EFAULT;
ppiodone(pp) ;
return;

pp->pp_flags 1= PP_BUSY;
pp->pp_timer = PPTICKS;
pp->pp_lostintr 0;
pp->pp_notready = 0;
ppintr () ;
ppiowait(pp, bp);
pp->pp_timer = 0;

/ * Set timer * /
/ * Reset "lost interrupt" counter * /
/ * Reset "notready" counter * /

/ * Turn off timer * /

ppprint(DBSTRAT, (nppstrategy: ***done\nn);

ppminphys(bp)

1*

register struct buf *bp;

if (bp->b_bcount > PPBUFSIZ)
bp->b_bcount = PPBUFSIZ;

* ppintr:
* Handle 'ack' interrupts from printer.
*1
ppintr ()
{

register struct ppstate *pp;
int status; /* printer status */
int s;

ppprint(DBINTR, (nppintr\nn));

pp = &ppstate[O]; / * XXX - only works for unit #0 * /

s = splx(pritospl(pp->pp_md->md_intpri));

status = inb(PPREG_STAT);
ppprint(DBINTR, (nppintr: status

/ * Were we expecting an interrupt? * /
if (! (pp->pp_flags & PP_BUSY»

Ox%x\n", status»);

ppprint(DBINTR, ("ppintr: unsolicited interrupt\nn»);
splx(s);
return;

if (pp->pp_count > 0)

Revision A, of 9 May 1988

Appendix E - Sample Driver Listings 441

/*

else

/* AT Tech Ref says data must be in data reg at least
* 0.5 usec before and after we strobe, and strobe must
* last at least 0.5 usec.
*/
outb(PPREG_DATA, *pp->pp_cp);
pp->pp_cp++;
pp->pp_count--;
DELAY(l) ;
outb(PPREG_CTRL, PC_NORM I PC_STROBE) ;
DELAY(l) ;
outb(PPREG_CTRL, PC_NORM);

ppiodone(pp) ;

splx(s) ;

* pptimeout:
* Check occasionally for lost interrupts or
* printer errors (no paper, printer off line, etc.).
*/
pptimeout(arg)

caddr_t arg;

register struct ppstate *pp = (struct ppstate *)arg;
int status; 1* Printer status */
int error = 0;
int s;

ppprint(DBTMOUT, ("pptimeout\n");

s = splx(pritospl(pp->pp_md->md_intpri»);

I * If we're not currently doing anything, we can go away. * I
if «pp->pp_flags & PP_OPEN) 0) { 1* Not open *1

splx(s);
return;

else if (pp->pp_timer <= 0) { 1* Not currently active */
timeout (pptimeout, (caddr_t)pp, PPWATCHDOG*hz);
splx(s);
return;

status = inb(PPREG_STAT);

1* Check for printer errors. * I
if (PSNOPAPER(status»)

if «pp->pp_notready++ % PPMSGTICKS) 0)
uprintf("pp%d: printer out of paper\n", pp->pp_unit);

sun
microsystems

Revision A, of 9 May 1988

442 Writing STREAMS Device Drivers

else if (! PSSELECT (status) 1 1 PSERROR (status» {
if «pp->pp_notready++ % PPMSGTICKS) 0)

uprintf("pp%d: printer not ready\n", pp->pp_unit);
else if (--pp->pp_timer == 0) {

/ * "Timer has expired - see what's wrong. * /
ppprint(DBTMOUT, ("pptimeout: status Ox%x\n", status»;

if (PSREADY(status» {
1*
* We must have dropped an interrupt.
* If this is the first one we've dropped, assume
* it's afluke and carryon. Otherwise, give up.
*1
if (pp->pp_lostintr++ == 0) {

ppprint(DBTMOUT, ("pptimeout: dropped intr\n"»;
pp->pp_timer = PPTICKS; /* Reset timer * /
ppintr () ;

else {
printf("pp%d: not getting interrupts\n",

pp->pp_unit);
error = 1;

else
/ * Printer is hung * /
error = 1;

if (! error) {
timeout (pptimeout, (caddr_t)pp, PPWATCHDOG*hz);

else {
pp->pp_bp->b_flags 1= B_ERROR;
ppiodone (pp) ;
pp->pp_flags &= -PP_TIMER;

splx(s);

/*ARGSUSED* /
ppioctl(dev, cmd, data, flag)

dev_t dev;
int cmd;
caddr_t data;
int flag;

return(ENOTTY);

1*
* ppiowait:
* Private version of' biowait() , .

• \sun ~~ microsystems
Revision A, of9 May 1988

*1
ppiowait(pp, bp)

1*

struct ppstate *pp;
register struct buf *bp;

int s;

s = splx(pritospl(pp->pp_md->md_intpri»;
while (! (bp->b_flags&B_DONE») {

if (sleep((caddr_t)bp, PPPRIIPCATCH»
bp->b_flags 1= (B_ERRORIB_DONE);
bp->b_error = EINTR;

splx(s);

* ppiodone:
* Private version of' biodone()' .
*1
ppiodone(pp)

register struct ppstate *pp;

register struct buf *bp = pp->pp_bp;

bp->b_flags 1= B_DONE;
wakeup((caddr_t)bp);

#endif NPP

~\sun ,~ microsystems

Appendix E - Sample Driver Listings 443

Revision A, of 9 May 1988

Index

8
80386,25

A
accessing the datagram provider, STREAMS, 228
adb command, 99
adding STREAMS modules, 242
addresses

convenient testing, 78
DVMA virtual, 19
finding physical, 79
kernel space, 63
mapping of, 76
mapping Sun-2, 77, 81
mapping Sun-3, 77, 84
mapping Sun-4, 78, 84
mapping Sun386i, 78
selection of virtual, 76
space terminology, 7
user space, 63
virtual space warning, 6
virtual to physical mapping, 79

advanced operations, STREAMS, 210
advanced topics, STREAMS, 299
assert mechanism, 104
asynchronous

I/O, STREAMS, 213
tracing, 101

asynchronous notification, 134
ATbus Machines, 25
attach () routine, 67, 117
auto configuration, 61

and initialization, 48
related declarations, 55
Skeleton example, 115

B
bappend () , 250
basic operations, STREAMS, 204
bdevsw,42

definition, 139
block driver mechanisms, 5
bottom half of driver, 63, 64
4.2BSD,48
buffer allocation priority, STREAMS, 328
building a kernel, 139

-445-

building a multiplexor, STREAMS, 216
byte order, 28

C
CANONPROC, 186
cdevsw, 42, 142

definition, 139
character driver overview, 61
clone open, STREAMS, 214
cloning, STREAMS, 269
close () routine, 117
closing STREAMS, 242, 277
computer architecture, 13
config command, 140
configuration, 139, 140

auto configuration, 140
conf .c, 142
config file, 141
configuration makefile, 140
device installation. 140
dual address-space devices, 145
example, 141
file, 141
GENERIC file, 23
MAKEDEV shell script, 143
mknod command, 144

context registers, 79
controllers, 49
CPU PROM monitor, 75 thru 90

warning, 90
CPU state, 80
critical sections, 64

D
data structures

kemel,48
STREAMS, 339

data. routing multiplexed, STREAMS.2Z2
datagram .

receiving a datagram, STREAMS. 232
sending a datagram. STREAMS, 231
service interface. STREAMS. 226

Debugging Techniques, 97
definition of "Stream" in STREAMS context, 202
/ dev directory, 42
development facilities, STREAMS. 203

Index - Continued

device
as special files, 42
block devices, 42
character devices, 42
classes, 42
devices and controllers, 49
independence, 3
initial checkout, 88
installation, 144
major numbers, 42
major types, 4
memory-mapped installation, 90
minor numbers, 42
names, 42
number macros, 72
numbers,42
peculiarities, 28
preassigned devices, 46
slave vrs free devices, 49
testing, 76
tty-like devices, 46
virtual-memory, 92
warnings, 28

Device Drivers
introduction, 3
kernel space, 63
regular drivers, 9
types of devices, 4

dismantling a multiplexor, STREAMS, 221
DMA

devices, 33, 126
Multibus, 126
Skeleton Board DVMA, 127
VMEbus, 126

dmesg command - See system messages, 101
DOS and SunOS drivers, 27
driver

kernel interaction, 41
kernel interface, 56
overview, 61
source code, 143
STREAMS close, 269
STREAMS declarations, 262
STREAMS development facilities, 238
STREAMS environment, 246
STREAMS flow control, 261
STREAMS flush handling, 266
STREAMS interrupt, 266
STREAMS ioctls, 267
STREAMS open, 264
STREAMS processing procedures, 265
STREAMS programming, 237, 262
user processes, 41

driver example, 111
driver listing

color graphics driver, 398
skeleton driver, 390
Sky floating-point driver, 415
Sun386i parallel port driver, 435
Versatec interface driver, 423

driver routines, 351
xxattach (), 352, 357
xxclose () , 352

-446-

driver routines, continued
xxintr () , 352
xxioctl (), 353
xxminphy s () , 355
xxmmap () , 355
xxopen () , 356
xxpoll () , 356
xxprobe () , 357
xxread () , 358
xxselect () , 358
xxstrategy (), 359
xxwrite (), 359

dual address-space devices, 145
DVMA,33

DVMA hardware, 34
DVMA space, 35
DVMA variable, 36
no user-level DVMA, 36
rmalloc () , 35
Sun Main Bus DVMA, 34

E
error

10 gging, 104
numbers, 351
recovery, 103
returns, 103
signals, 104
STREAMS error messages, 310
STREAMS logging, 193

example
configuration, 141
mapping without drivers, 94, 96
mmap(),91
PTE calculations, 87
ramdisk pseudodevice, 151
STREAMS asynchronous protocol, 174
STREAMS message use, 177
STREAMS multiplexing, 281
STREAMS multiplexor configuration, 287
STREAMS, big example, 269

example driver, 111
external STREAMS variables, 243

F
filesystems, 5
filter module declarations, STREAMS, 249
flow control, STREAMS, 188, 255, 342
frame buffers, 90

mapping without drivers, 93
freeing messages, 243

H
hardware peculiarities, 28
hat_getkpfnum(),91
heterogeneous networks, 139

I/O
I

and signals, 130
asynchronous, 130
asynchronous notification, 130

I/O, continued
non-blocking, 130
paths,43
STREAMS advanced, 210
STREAMS asynchronous, 213
STREAMS polling, 210

initial
checkout, 88
declarations, 61
device tests, 89

inserting modules, STREAMS, 206
installation of device, 144
Intel 80386, 25
interface, message, STREAMS, 224
interrupt

context, 63
levels, 65
number setting, 67
related problems, 33
routines, 54, 62
vector assignments, 24

interrupts, 64
polling,66
vectored, 66

intr () routine, 62, 124
ioctl ()

macros, 354
routine, 62, 126, 134

K
kadb - the kernel debugger, 102

abort to monitor, 102
and virtual spaces, 102
limitation, 102

kernel
buffer cache, 5
config file, 141
configuration, 139
data structures, 48
interface, 48
interface points, 115
kernel/driver interface, 56
memory context, 41
panics, 104
run-time data structures, 47
space, 63
STREAMS functions, 180
STREAMS structures, 317

KERNELBASE, 63

L
limitations of this manual, 5
line disciplines, 312
Loadable Drivers, 27, 105

Adding, 146
Removing, 146

log command, 193
loop-around driver, STREAMS, 270

-447-

M
Main Bus, 48

resource management, 48
rna j or () macro, 72
MAKEDEV shell script, 143
makedev () macro, 72
manual overview, 8
MAP_FIXED, 386
MAP_PRIVATE, 386
MAP_RENAME,386
MAP_SHARED, 386
MAP_TYPE,386
mapping without drivers, examples, 94, 96
mb_ctlr structure, 50, 67
mb_device structure, 51,67
mb _ dr i ver structure, 52
mb _ hd structure, 49
mbglue. s, 140
mbvar structures, 48
mc _ addr field, 50
mc_alive field, 51
mc _ ct 1 r field, 50
mc _ dmachan field, 50
mc_intpri field, 50
mc _ in t r field, 50
mc_mbinfo field, 51
mc _ space field, 50
MC680XO,13
md _ addr field, 51
md_alive field, 52
md_dmachan field, 51
md _ dr i ver field, 51
md_flags field, 52
md_intpri field, 51
md _ intr field, 52
md _ slave field, 51
md_unit field, 51
mdr_attach field, 53
XDR_BIODMA, 55
mdr _ cinfo field, 54
mdr _ cname field, 54
mdr_dinfo field, 54
XDR_DMA,55
mdr _ dname field, 54
mdr _done field, 53
mdr_flags field, 55
mdr _go field, 53
mdr _ intr field, 53
mdr_link field, 55
XDR_OBIO,55
mdr _probe field, 53
mdr_size field, 54
mdr_slave field, 53
XDR _SWAB, 55
XDR _ XCLU, 55

memory contexts, 79
Memory Management Unit, 15
memory mapping, 13, 90

Index Continued

Index - Continued

memory-mapped
device installation options, 90
devices, 63, 90
drivers, 90

message allocation, STREAMS, 182,251
message blocks, STREAMS, 181
message form and linkage, STREAMS, 247
message format, STREAMS, 247
message generation, STREAMS, 249
message handling, STREAMS, 223 Ihru 234
message interface, STREAMS, 224
message priority, STREAMS, 254
message queues, STREAMS, 180, 253, 254
message reception, STREAMS, 249
message structures, STREAMS, 318
message types, STREAMS, 176,320
minor () macro, 72
minphys () routine, 120
mknod command, 144
mmap (), 90, 62

direct opening of devices, 95
mmap 0, 91
without drivers, 92

MMU
setting the, 75
SWl-2,81
SWl-3,84
SWl-4,84

modularity STREAMS, 162
module and driver control, STREAMS. 207
module configuration. STREAMS. 308
module declarations, STREAMS, 243
module environment, 246
module ioctls, STREAMS, 267
module procedures, 245
Module Programming, 237
module reusability, STREAMS, 167
monitor, 75 Ihru 90

warning, 90
Multibus,13

3.0 changes, 17
adapter, 24
adapter warning, 31
byte-ordering issues, 28
device peculiarities, 28
DMA,126
I/O mapped devices, 14
I/O space, 13
I/O Space allocation, 17
memory allocation, 16
memory mapped devices, 14
memory space, 13
memory types, 14
MMU, 15
multibus resource management, 71
other peculiarities, 30
Sun-2 Multibus, 15
SWl-2 Multibus memory map, 16

mUltiple address-space devices, 145
multiplexed data, routing, STREAMS, 222
multiplexed Streams, STREAMS, 214 Ihrlt 222

-448-

multiplexing driver, STREAMS, 284
multiplexing,

STREAMS", 278

N
noprintf variable, 101

o
open () routine, 117
opening a Stream, 241
overview of STREAMS drivers, 259

P
P2 bus, 31
Page Map Entry Groups, PMEGs, 80
page maps, 80
Page Table Entries, PTEs, 80
pixrects, 90
PMEGS,80
poll () routine, 62,67, 124
polling

chain,54
interrupts, 66
restrictions on, 66
STREAMS I/O, 210

printf ()
event triggered, 100
restrictions on, 99
usage hints, 100
with debuggers, 99

priority messages, STREAMS, 325
probe () routine, 115
proc structure, 57
processes, 80
processor priority, 64

raising and lowering, 70
processor state, 80
PROM monitor, 75 Ihru 90

warning, 90
PROT_EXECUTE, 386
PROT_READ, 386
PROT_WRITE, 386
protocol portability, STREAMS, 165
protocol substitution, STREAMS, 166
pseudo devices, 151

ramdisk example, 151
PTE,80

calculations, 87
SWl-2 masks, 82
SWl-2 PTE, 82
Sun-3 masks, 86
SWl-4 masks, 86
templates, 82, 86

put procedure rules, STREAMS, 341
put procedure, STREAMS, 251
put procedures, STREAMS, 183

Q
QUEUE data structures, 240
queue priority, STREAMS, 254
queue _ t, 253

R
ramdisk

driver, 152
installation, 153
source code, 152
test program, 156

read () routine, 62, 119
receiving messages, STREAMS, 176
receiving, a datagram, STREAMS, 232
register

peculiarities, 28
sequencing logic, 32
warnings, 28

removing STREAMS modules, 242
routing multiplexed data. STREAMS, 222
run-time data structures, 47

S
sample listings, 389
segment maps, 80
Select Routines, 131
select (), 62, 131

and ioctl (), 134
interrupt time, 133

select () routine, 130
selwait (), 133
semaphores, 379
sending messages, STREAMS, 176
service functions, 69

change processor priorities, 70
data-transfer functions, 71
multibus resource management, 71
printf (), 72
sleep and wakeup, 69
timeout, 69
untimeout, 69

service interface messages, STREAMS, 223
service interface, datagram, STREAMS, 226
service interface, STREAMS, 294
service procedure rules, STREAMS, 341
service procedures, STREAMS, 183,253, 254, 276
service, closing a, STREAMS, 231
Skeleton driver, 111
Skeleton driver declarations, 114
sleep and wakeup mechanism, 69
sleep () system call, 64, 65
software devices, ramdisk example, 151
software priorities, 70
SPARC

and MC680XO, 29
and Multibus, 28
peculiarities, 31

start () routine, 62, 122
strace command, 193
strategy () routine, 121

-449-

Stream construction, 239
Stream end, 170
Stream head, 169
Stream head messages, 276
STREAMS

accessible functions, 340
accessible symbols, 340
adding modules, 242
advanced operations, 210
advanced topics, 299
advanced topics, flow control, 301
advanced topics, read options, 303

Index - Continued

advanced topics, recovering from no buffers, 299
advanced topics, signals, 302
advanced topics, Stream head processing, 303
advanced topics, write offset, 303
advanced view, 168
asynchronous protocol example, 174
bappend () , 250
basic operations, 204
basic view, 162
benefits, 165
big example, 269
buffer allocation priority, 328
building a mUltiplexor, 216
building a Stream, 171
CANONPROC, 186
clone open, 214
cloning, 269
close, 277
closing, 242
closing a service, 231
configuring drivers, 307
creating service interfaces, 165
data structures, 339
datagram provider access, 228
datagram service interface, 226
datagram, receiving a, 232
definition of "Stream", 202
design and system calls, 339
design guidelines, 338
development facilities, 203
device driver Streams, 261
dismantling a mUltiplexor, 221
driver cdevsw interface, 307
driver close, 269
driver declarations, 262
Driver development facilitief, .:~g
driver environment, 246
driver flow control, 261
driver flush handling, 266
driver interrupt, 266
driver ioctls, 267
driver open, 264
driver processing, 185
driver programming, 262
drivers, 195
environment, 195
error and trace logging, 193
error messages, 310
expanded Streams, 172
external variables, 243
filter module declarations, 249

Index - Continued

STREAMS, continued
flow control, 188, 255, 342
freeing messages, 243
fixnctionalparts, 163
fixnctions, accessible, 340
general design rules, 338
glossary, 196, 343
header files, 340
I/O, advanced, 210
I/O, asynchronous, 213
I/O, polling, 210
inserting modules, 206
Internet multiplexing, 190
Internet multiplexor after connecting, 283
Internet mUltiplexor before connecting, 282
introduction, 161
ioctls, 267
kernel level functions, 180
kernel processing, 184
kernel structures, 317
kernel structures, iocblk,319
kernel structures, linkblk,319
kernel structures, QUEUE, 317
kernel structures, st reamtab, 317
line disciplines, 312
loop-around driver, 270
M PCPROTO messages, 321
M - PROTO messages, 321
marupulating modules, 165
manipulating STREAMS modules, 165
manual pages, 164
mechanism, 238
message allocation, 182, 251
message blocks, 181
message form and linkage, 247
message format, 247
message generation, 249
message handling, 223 thru 234
message interface, 224
message priority, 254
message queue priority, 187
message queues, 180,253,254
message reception, 249
message structures, 318
message types, 176,320
message types, ordinary, 320
message use in example, 177
modularity, 162
module and driver control, 207
module configuration, 308
module declarations, 243
module environment, 246
module ioctls, 267
module procedures, 245
module reusability, 167
modules, 169, 196
monitoring, 192
multiplexed Streams, 214 thru 222
multiplexing, 190, 278
multiplexing configurations, 278
mUltiplexing driver, 284
mUltiplexing, connecting lower Streams, 279
multiplexing, disconnecting lower Streams, 281
mUltiplexing, example, 281

-450-

STREAMS, continued
multiplexor configuration, example, 287
multiplexor, lower QUEUE write, 290
multiplexor, lower read put. 292
multiplexor, upper write put, 287
opening a Stream, 241
overview of drivers, 259
portability,312
primer, 161
priority messages, 325
protocol migration. 166
protocol portability, 165
protocol substitution, 166
pushable modules, 172
put and service procedures, 183
put procedure, 251
put procedure rules, 341
QUEUE data structures. 240
queue priority, 254
queue t.253
receiving a datagram. 232
removing modules, 242
routing multiplexed data, 222
sending a datagram, 231
sending and receiving messages. 176
service interface. 294
service interface messages, 223
service interface procedure. 297
service interface. declarations. 295
service interface. messages. 294
service procedure rules. 341
service procedures. 253. 25~, t'7,)

single 1/0 pathway, 202
standard SunOS modules. 311
Stream construction, 239
Stream end. 170
Stream head. 169
Stream head messages, 276
streamtab.308
SunOS,311
SunOS extension, 312
SunOS modules, 311
SunOS STREAMS Topics, 307
supplementary material, 317
symbols. accessible. 340
system calls. 163
system error messages, 310
tunable parameters, 309
user line disciplines, 312
utilities, 327
write put procedure, 273
write side processing, 186
X.25 mUltiplexing. 191

STREAMS application programming. 201 thru 234
STREAMS Drivers, 8
STREAMS service interfaces, 165
STREAMS System Calls. 173
STREAMS utilities

adjmsg (). 329
allocb (). 329
backq () , 329
bufcall (), 330
can put () , 330

STREAMS utilities, continued
copyb () , 330
copymsg () , 331
dupbO, 331
dupmsg (), 331
enableok () , 332
flushq (), 332
freeb () , 332
freemsg (), 332
insq (), 333
1 inkb () , 333
msgdsize 0, 333
noenable 0, 333
OTHERQ () , 334
pullupmsg () ,334
putbq () , 334
putctl (), 334
putctll (), 335
putnext () , 335
putq (), 335
qenable () , 336
qreply (), 336
qsi ze () , 336
RD (). 336
rmvbO, 336
rmvq (), 337
setq (), 332
splstr (), 337
strlog (), 337
sx (), 331
testb () , 337
unlinkb (), 338
WBO,338
x (), 330

strerr command, 193
strlog (), 193
Sun-4 Peculiarities, 31
Sun386i

address mapping', 78
DMA,71
DMA Channels, 27
DMA on A Thus machines, 36
dma done (), 364
dma -setup (), 364
DOS-driver, 27
inb (), 368
interrupts, 26
loadable drivers, 27, 105, 146
noDVMA,33
no vectored interrupts, 51
outb (), 373

SunOS source license, 5
support routines

btodb () , 363
CDELAY () , 364
copyin (), 363
copyout () , 363
DELAY () , 364
dma done () , 364
dma -setup (), 364
gsignal (), 368
hat getkpfnum (), 368
inb() , 368

-451-

support routines, continued
iodone () , 369
iowait (), 369
kmem alloc () , 369
kmem - free () , 369
log (f, 370
mapin () , 370
mapout () , 372
MBl ADDR () , 370
mbr;l se () , 372
mbsetup (), 372
outb (), 373
panic (), 373
peek (), 373
peekc () , 373
peekl () , 373
physio () ,373
poke (), 375
pokec () , 375
pokel () , 375
printf () ,376
pri tospl () , 376
psignal () , 377
rmalloc (). 377
rmfree (), 377
selwait (), 378
sel wakeup () , 378
sleep () , 378
spln(),379
splx (), 379
suser () , 380
swab (), 380
timeout (), 380
uiomove () , 380
untimeout (), 381
uprintf (), 381
ureadc (), 381
uwritec (), 381
wakeup () , 382

system calls, 42, 63
system calls, STREAMS, 163
system configuration, 139
System DVMA, 35
system memory devices, 92
system reset, 75
system upgrades, 105
System V compatibility, 6
System V differences, 48

T
timeout mechanisms, 69
timing problems, 33
top half of driver, 63
trace logging, STREAMS, 193
tracing, 101
tunable parameters, STREAMS, 309

u
u structure, 56
uio structure, 120
upgrades, 105
user context, 63

Index - Continued

Index - Continued

user space, 63
user structure, 56
user-level routines

free (), 385
getpagesize (), 385
mmap () ,385 .
rnunmap () , 386

utilities. STREAMS, 327

v
v _ fune field, 50
v_vee field, 50
v _ vptr field, 50 .
vector numbers, 67
vectored interrupts, 66
virtual memory devices, 92
virtual to physical mapping, 79
VMEbus,18

16-bit allocation, 22
24-bit allocation, 23
32-bit allocation, 23
allocation of VMEbus memory, 22
device address assignments, 24
DMA, 126
generic, 20
Multibus Adapter, 24
Sun-2 VMEbus, 18
Sun-2 VMEbus address spaces, 18
Sun-2 VMEbus memory types, 18
Sun-3 address spaces, 20
Sun-3 VMEbus, 21
Sun-3 VMEbus address types. 20
Sun-4 address spaces, 20
Sun-4 VMEbus, 22
Sun-4 VMEbus address types. 20

VMEbus machines, 18

W
write put procedure, STREAMS, 273
write () routine, 62,119

-452-

Notes

Notes

Notes

Notes

Notes

Notes

