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1 
Introduction 

Facilities available to a SunOS user process can be logically divided into groups: 
facilities implemented by code running in the operating system, kernel code in 
libraries, and other system facilities implemented by the system in cooperation 
with a server or daemon process. Such server processes are described in greater 
detail, and the standard system daemons are introduced, in the Network-Based 
Services section of this manual. For a more extended discussion, see the Network 
Services chapter of Network Programming. 

Facilities implemented in the kernel itself are those which define the SunOS vir
tual machine in which processes runs. Like many real machines, the SunOS vir
tual machine has memory management hardware, an interrupt facility, timers and 
counters. The SunOS virtual machine also allows access to files and other 
objects through a set of descriptors. Each descriptor resembles a device con
troller, and supports a set of operations. Like devices on real machines, some of 
which are internal to the machine and some of which are external, parts of the 
descriptor machinery are built-in to the operating system, while other parts are 
often implemented in server processes on other machines. 

System abstractions described in this manual are: 

Directories 
A directory is an object in the file system name space. Operations on files 
and other named objects in a file system are always specified relative to a 
working directory. 

Files 
Files are used to store uninterpreted sequence of bytes on which random 
access read () and write () operations can be made. Pages from files or 
devices may also be mapped into process address space. 

Communications Domains 
A communications domain represents an interprocess communications 
environment, such as socket-based communications facilities, communica
tions in the Internet or the resource sharing protocols and access rights of a 
resource sharing system on a local network. 

Sockets 
A socket is an endpoint of communication and the focal point for Inter
Process Communication (IPC) in a communications domain. Sockets may 
be created in pairs, or given names and used to rendezvous with other 
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4 System Services Overview 

1.1. Manual Organization 

1.2. Notation and Types 

sockets in a communications domain, accepting connections from these 
sockets or exchanging messages with them. These operations model a 
labeled or unlabeled communications graph, and can be used in a wide 
variety of communications domains. Sockets can have different types to 
provide different semantics of communication, increasing the flexibility of 
the model. 

Terminals and other devices 
Devices include tenninals, providing input editing and interrupt generation 
and output flow control and editing, magnetic tapes, disks and other peri
pherals. They often support the generic read () and wr i te () operations 
as well as a number of ioctl () 'so (A much more substantive discussion 
of devices can be found in the Writing Device Drivers manual). 

Processes 
Process identifiers provide the handles needed to schedule, control, execute 
and debug programs. 

Lightweight Processes 
Lightweight Processes provide an efficient, user-level facility for managing 
multiple program threads within one real SunOS process. 

The first few chapters of this manual discuss two key introductory issues - the 
relationship of SunOS to AT&T System V and the role of selVer (daemon) 
processes in SunOS. 

There follows a long chapter - SunOS Kernel Interface - which introduces the 
bulk of the important kernel interfaces. Memory-related interfaces, are also dealt 
with in the course of the detailed discussion contained in the following Memory 
Management chapter. There follows another detailed section on Lightweight 
Processes. 

The notation used to describe system calls is a variant of a C language function 
declaration, consisting of a prototype call followed by declaration of parameters 
and results. An additional keyword resul t, not part of the nonnal C language, 
is used to indicate which of the declared entities receive results. As an example, 
consider the read () call, as described in section 3.B.l. 

cc = read(fd, buf, nbytes); 
result int cc; 
int fd, nbytes; 
result char *buf; 

The first line shows how the read () routine is called,.with three parameters. 
As shown on the second line cc is an integer and read () also returns infonna
tion in the parameter bu f. 

Description of all errorconditions.arising from each.system call is not provided 
here; they appear in the intro (2) manual page of the SunOS Reference 
Manual. All error codes also appear in the index to the SunOS Reference 
Manual. In particular, when accessed from the C language, many calls return a 
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Chapter 1 - Introduction 5 

characteristic -1 value when an error occurs, returning the error code in the glo
bal variable errno. Since some calls return -1 as a legitimate value, you may 
have to check errno to detennine if the return value is genuine or an error. 
Other languages may present errors in different ways. 

A number of system standard types are defined in the < s y s / type s . h> include 
file and used in the specifications here and in many C programs. These include 
caddr_t giving a memory address, off_t giving a file offset, and a set of 
unsigned types u_char, u_short, u_int and u_long, shorthand names for 
unsigned char, unsigned short, and so on. 
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2.1. BSD/System V 
Incompatibilities 

2 
System V Compatibility 

SunOS contains almost all AT&T System V functionality and features. This 
chapter very briefly introduces the few remaining incompatibilities and lists the 
major new system-level functions that are available to users. 

For an introduction to STREAMS and STREAM-related systems facilities, see 
the Writing Device Drivers manual. 

For an introduction to System V compatible shared memory, see the Memory 
Management section of this manual. 

(For a more complete discussion of System V functionality, one which includes 
libraries and applications as well as system facilities, see the System V Program
ming section of the Programming Utilities and Libraries manual). 

The following systems calls suffer incompatibilities between BSD and System V 
variants. SunOS supports both incompatible versions. 

qetpqrp()/setpqrp(): 
The BSD version of getpgrp () takes a single argument, which is inter
preted as a process ID; getpgrp () returns the process group ID of that 
process. The System V version of get pgrp () takes no arguments, and 
returns the process group ID of the current process. There is no way to get 
the BSD behavior of getpgrp () in all cases using the same code in both 
environments. However, the BSD getpgrp () is rarely called with an 
argument other than zero or the current process's process ID; since the 
behavior of the System V getpgrp () is the same as that of the BSD ver
sion when an argument of zero or the current process's process ID is pro
vided, and since the System V getpgrp () ignores any extra argument 
passed to it, calling get pgrp () with a zero argument will give the same 
behavior in both environments. 

The BSD version of setpgrp () takes two arguments, which are inter
preted as a process ID and a process group ID, respectively. It sets the pro
cess group ID of the process specified by the first argument to the value of 
the second argument. The System V version of setpgrp () takes no argu
ments. It sets the process group ID of the cu~ent process equal to its process 
ID, detaches the current process from its controlling tenninal, arranges that 
the next tenninal that it opens that is not already a controlling tenninal will 
become the controlling tenninal for the new process group, and arranges that 
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10 System Services Overview 

when the current process exits, a SIGHUP will be sent to all processes in the 
new process group. There is no way to get the BSD behavior of 
set pgrp () in the System V environment, and there is no 

openO: 
In the BSD environment, opening a file with the O_NDELAY bit set in the 
open mode does not leave the file descriptor returned, nor the object referred 
to by that file descriptor, in non-blocking mode. In the System Venviron
ment it does. Furthermore, the form of no-delay mode selected by the 
0_ NDELAY flag differs between the two environments, as described below 
under read () and writeO. The O_NDELAY bit has a different value in 
the two environments; the BSD behavior is available in both environments if 
the FNDELAY bit is used, and the System V behavior is available in both 
environments if the FNBIO bit is used. 

read() : 
In the BSD environment, a read () on a file descriptor or from an object in 
no-delay mode will return -1 and set errno to EWOULDBLOCK if no data is 
available. In the System V environment, the read () will return a count of 
0, which is indistinguishable from end-of-file, unless the read () is on a 
STREAMS device other than a tenninal, in which case the read () will 
return -1 and set errno to EAGAIN. Again, the BSD behavior is available 
in both environments if the FNDELAY bit is used in an fcntl () F _SETFL 
call, and the System V behavior is available in both environments if the 
FNBIO bit is used in an fcntl () F _SETFL call. 

write 0 : 
As with read () , the two environments differ in how a wr i te () in no
delay mode indicates that there is no buffer space available to store the data 
to be written, and as with read (), the BSD or System V behavior is avail
able in both environments if the FNDELAY or FNBIO bits are used. 

fcnt~ (): 
In the BSD environment, using the F _ SE TFL f c nt 1 () call to turn the 
0_ NDELAY flag on turns it on for the object referred to by the file descriptor 
given as the first argument to fcntl () , so that all other file descriptors 
referring to that object will also act as if they were in no-delay mode, 
although an F _ GETFL f cn t 1 () call will not indicate that no-delay mode 
is on. In the System V environment, it only turns no-delay mode on for the 
file descriptor given as the first argument to fcntl () and file descriptors 
created from that file descriptor by dup ( ). Furthermore, the form of no
delay mode selected by the 0 _NDELAY flag differs between the two 
environments, as described above under read () and writeO. As 
described above, the FNDELAY flag can be used to select BSD-style no
delay mode in either environment, and the FNBIO flag can be used to select 
System V -style no-delay mode in either environment. 
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(See the System V Programming section of the Programming Utilities and 
Libraries manual for a more detailed discussions of these System V derived 
facilities). 

System V introduced first-in-first-out (FIFO) files, which are also called named 
pipes. This allows processes to open this special file, using it for communication 
just like a pipe, but between possibly unrelated processes. FIFO files are created 
using the mknod () system call. 

The System V shared-memory facility provides common areas in memory for 
sharing data between processes. Facilities are also provided to control access to 
shared memory, and to synchronize updating by multiple processes. Shared 
memory is useful for database applications, among other things. 

The System V semaphore facility provides a process synchronization mechan
ism, which can be used to schedule processes that modify shared system 
resources. Resources are locked for updating by one process at a time, and 
update ordering is supported. 

The System V message queue facility provides another fonn of inter-process 
communication. Messages are a convenient way for unrelated processes to share 
data. Since only the message is shared, processes can remain independent of 
each other's internal data structures. The message queue facility is used to estab
lish one or more queues for inter-process communication. Messages are placed 
on specific queues for subsequent retrieval. A control data structure is included 
to allow restricted access to individual message queues. 
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3.1. Processes and 
Protection 

Host and Process Identifiers 

3 
SunOS Kernel Interface 

Each SunOS host has associated with it a 32-bit host id, and a host name of up to 
MAXHOSTNAMELEN characters (as defined in <sys/param.h». The host name is 
accessed and modified with the calls: 

getdornainname(name, namelength); 
char *name; 
int namelength; 

setdornainname(name, namelength); 
char *name; 
int namelength; 

hostid = gethostid(); 
result long hostid; 

sethostname(name, len); 
char *name; 
int len; 

gethostname(buf, buflen); 
result char *buf; 
int buflen; 

getdomainname () returns the name of the domain for the current processor. 
setdomainname () sets the domain of the current processor to name. 

The bufcontaining the host name returned by gethostname () is null
tenninated (if space allows). 

On each host runs a set of processes. Each process is largely independent of 
other processes, having its own protection domain, address space, timers, and an 
independent set of references to system or user implemented objects. 

Each process in a host is named by an integer called the process id. This number 
is in the range 1-30000. A process can discover its process id with the ge t -
pid () routine: 

.\sun ~ microsystems 
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16 System Services Overview 

Creating and Terminating 
Processes 

= getpid(); 
result int pid; 

On each SunOS host this identifier is guaranteed to be unique; in a multi-host 
environment, the (hostid, process id) pairs are guaranteed unique. 

A new process is usually created by copying that mappings that define the 
address space of a parent process, thus making a logical duplicate of the parent. 
(See the Memory Management chapter for a description of mapping). 

[

Pid = fork () ; 
result int pid; 

The fork () call returns twice, once in the parent process, where pid is the pro
cess identifier of the child, and once in the child process where pid is O. 

] 

] 

Since execve () (see below) specifies MAP PRIVATE on all the mappings it 
perfonns, parent and child effectively have copy-on-write access to a single set 
of objects. Any MAP_SHARED mappings in the parent are also MAP_SHARED in 
the child, providing the opportunity for both parent and child to operate on a 
common object. The parent -child relationship induces a hierarchical structure on 
the set of processes in the system. 

A process may tenninate by executing an exit () call: 

[ exit ~status) ; 
l.nt status; 

returning 8 bits of exit status to its parent. 

When a child process exits or tenninates abnonnally, the parent process receives 
infonnation about any event which caused tennination of the child process. A 
second call provides a non-blocking interface and may also be used to retrieve 
infonnation about resources consumed by the process during its lifetime. 

#include <sys/wait.h> 

pid = wait(astatus); 
result int pid; 
result union wait *astatus; 

pid = wait3(astatus, options, arusage); 
result int pid; 
result union waitstatus *astatus; 

int options; result struct rusage *arusagei 

A process can overlay itself with the memory image of another program, passing 
the newly created process a set of parameters, using the call: 

] 

Revision A. of 9 May 1988 



User and Group Ids 

Chapter 3 - SunOS Kernel Interface 17 

execve(name, argv, envp) 
char *name, **argv, **envpi 

execve () specifies MAP _PRIVATE on the mappings which overlay the old 
address space. execve () performs this operation by performing the internal 
equivalent of an mmap () to the file containing the program. The text and initial
ized data segments are mapped to the file, and the program's uninitialized data 
and stack areas are mapped to unnamed objects in the system's virtual memory. 
The boundaries of the mappings it establishes are recorded as representing the 
traditional "segments" of a UNIX process's address space. 

The text segment is mapped with only PROT_READ and PROT_EXECUTE pro
tections, so that write references to the text produce segmentation violations. 
The data segment is mapped as writable; however any page of initialized data 
that does not get written may be shared among all the processes running the pro
gram. 

The specified name must be a file which is in a format recognized by the system, 
either a binary executable file or a ASCII file which causes the execution of a 
specified interpreter program (usually sh(l) or csh(l)) to process its contents. 

Each process in the system has associated with it two user-id's: a real user id and 
an effective user id, both non-negative 16 bit integers. (Note: a user may change 
their effective user id, for example with the su (1) command, but this does not 
change their real user id>. Each process has an real accounting group id and an 
effective accounting group id and a set of access group id's. The group id's are 
non-negative 16 bit integers. Each process may be in several different access 
groups, with the maximum concurrent number of access groups a system compi
lation parameter, the constant NGROUP S in the file <sys/param.h>, guaranteed to 
be at least 8. 

The real and effective user ids associated with a process are returned by: 

ruid = getuid()i 
result int ruidi 

euid = geteuid()i 
result int euidi 

the real and effective accounting group ids by: 

rgid = getgid () i 

result int rgidi 

egid = getegid()i 
result int egidi 

and the access group id set is returned by a getgroups () call: 
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Process Groups and System 
Terminals 

ngroups = getgroups(gidsetsize, gldset); 
result int ngroups, gidset[gidsetsize]; 
int gidsetsize; 

The user and group id's are assigned at login time using the setreuid () , 
setregid (), and setgroups () calls: 

setreuid(ruid, euid); 
int ruid, euid; 

setregid(rgid, egid); 
int rgid, 'egid; 

setgroups(gidsetsize, gidset); 
int gidsetsize, gidset[gidsetsize]; 

The setreuid () call sets both the real and effective user-id's, while the 
setregid () call sets both the real and effective accounting group id's. Unless 
the caller is the super-user, ruid must be equal to either the current real or effec
tive user-id, and rgid equal to either the current real or effective accounting 
group id. The setgroups () call is restricted to the super-user. 

Each process in the system' is also nonnally associated with a process group. 
The group of processes in a process group is sometimes referred to as a job and 
manipulated by high-level system software (such as the shell). The current pro
cess group of a process is returned by the getpgrp () call: 

pgrp = getpgrp(pid); 
result int pgrp; 
int pid; 

The process group associated with a process may be changed by the 
setpgrp () call: 

[

setpgrp(Pid, pgrp); 
. int pid, pgrp; ] 
Newly created processes are assigned process id's distinct from all processes and 
process groups, and the same process group as their parent. A nonnal 
(unprivileged) process may set its process group equal to its process id. A 
privileged process may set the process group of any process to any value. 

When a process is in a specific process group it may receive software interrupts 
affecting the group, causing the group to suspend or resume execution or to be 
interrupted or tenninated. In particular, every system terminal has.a process 
group and only processes which are in the process group of a terminal may read 
from the terminal, allowing arbitration of tenninals among several different jobs. 
A process can examine the process group of a tenninal via the ioctl () call: 
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ioctl(fd, TIOCGPGRP, pgrp)i 
int fdi 
result int *pgrpi 

A process may change the process group of any tenninal which it can write by 
the ioctl () call: 

ioctl(fd, TIOCSPGRP, pgrp)i 
int fd, *pgrpi 

The tenninal's process group may be set to any value. Thus, more than one ter
minal may be in a process group. 

Each process in the system is usually associated with a control terminal, accessi
ble through the file / dev /tty. A newly created process inherits the control ter
minal of its parent. A process may be in a different process group than its control 
tenninal, in which case the process does not receive software interrupts affecting 
the control terminal's process group. 

You can arrange for a process to be detached from the control tenninal, via this 
code sequence: 

if «i = open (n/dev/ttyn) , O_RDONLY) >= 0) 
(void)ioctl(i, TIOCNOTTY, (char *)O)i 

The system defines a set of signals that may be delivered to a process. Signal 
delivery resembles the occurrence of a hardware interrupt: the signal is blocked 
from further occurrence, the current process context is saved, and a new one is 
built. A process may specify the handler to which a signal is delivered, or 
specify that the signal is to be blocked or ignored. A process may also specify 
that a default action is to be taken when signals occur. 

Some signals will cause a process to exit when they are not caught. This may be 
accompanied by creation of a core image file, containing the current memory 
image of the process for use in post-mortem debugging. A process may choose 
to have signals delivered on a special stack, so that sophisticated software stack 
manipulations are possible. 

All signals have the same priority. Ifmultiple signals are pending simultane
ously, the order in which they are delivered to a process is implementation 
specific. Signal routines execute with the signal that caused their invocation 
blocked, but other signals may yet occur. Mechanisms are provided whereby 
critical sections of code may protect themselves against the occurrence of 
specified signals. 
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Signal Handlers 

The signals defined by the system fall into one of five classes: hardware condi
tions, software conditions, input/output notification, process control, or resource 
control. The set of signals is defined in the file <signal. h>. 

Hardware signals are derived from exceptional conditions which may occur dur
ing execution. Such signals include SIGFPE representing floating point and 
other arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV 
for addresses outside the currently assigned area of memory, and SIGBUS for 
accesses that violate memory protection constraints. Other, more cpu-specific 
hardware signals exist, such as SIGIOT, SIGEMT, and SIGTRAP. 

Software signals reflect interrupts generated by user request: S I G INT for the 
normal interrupt signal; SIGQUIT for the more powerful quit signal, that nor
mally causes a core image to be generated; S I GHUP and S I GTERM that cause 
graceful process termination, either because a user has "hung up", or by user or 
program request; and SIGKILL, a more powerful termination signal which a 
process cannot catch or ignore. Programs may define their own asynchronous 
events using SIGUSRI and SIGUSR2. Other software signals (SIGALRM, 
SIGVTALRM, SIGPROF) indicate the expiration of interval timers. 

A process can request notification via a S I G 10 signal when input or output is 
possible on a descriptor, or when a non-blocking operation completes. A process 
may request to receive a SIGURG signal when an urgent condition arises. 

A process may be stopped by a signal sent to it or the members of its process 
group. The SIGSTOP signal is a powerful stop signal, because it cannot be 
caught. Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when 
a user request, input request, or output request respectively is the reason for stop
ping the process. A SIGCONT signal is sent to a process when it is continued 
from a stopped state. Processes may receive notification with a SIGCHLD signal 
when a child process changes state, either by stopping or by terminating. 

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs 
when a process nears its CPU time limit and S I GXF S Z warns that the limit on 
file size creation has been reached. 

A process has a handler associated with each signal. The handler controls the 
way the signal is delivered. The call 

#include <signal.h> 

struct sigvec { 

} ; 

int (*sv_handler) (); 
int sv_mask; 
int sv_flags; 

sigvec(signo, sv, osv) 
int signo; 
struct sigvec *sv; 
result struct sigvec *osv; 

assigns interrupt handler address sv _handler to signal signa. Each handler 
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address specifies either an interrupt routine for the signal, that the signal is to be 
ignored, or that a default action (usually process tennination) is to occur if the 
signal occurs. The constants SIG_IGN and SIG_DFL used as values for 
sv _handler cause ignoring or defaulting of a condition. 

NOTE There are two things that must be done to reset a signal handler from within a 
signal handler. Resetting the routine that catches the signal, which 

signal(n, SIG_DFL); 

does, is only thefirst. It's also necessary to unblock the blocked signal, which is 
done with sigsetmask () or sigblock ( ). The way to think of signals is as 
hardware interrupts. Just resetting the vector for the interrupt is not enough, 
you also have to lower the processor priority level. 

The sv~ask and sv_onstack values specify the signal mask to be used 
when the handler is invoked; it implicitly includes the signal which invoked the 
handler. Signal masks include one bit for each signal; the mask for a signal signo 
is provided by the macro sigmask(signo), from <signal. h>. sv _flags 
specifies whether system calls should be restarted if the signal handler returns 
and whether the handler should operate on the nonnal run-time stack or a special 
signal stack (see below). If osv is non-zero, the previous signal vector is 
returned. It also specifies whether the signal action is to be reset to S I G _ DFL, 
and if the signal is to be blocked by setting a bit to the signal mask, when the sig
nal handler is called. This latter behavior is the default; the fonner is for back
ward compatibility with the signal mechanisms of some other versions of the 
UNIX system (V7, BSD4.1, System V, etc.). 

When a signal condition arises for a process, the signal is added to a set of sig
nals pending for the process. If the signal is not currently blocked by the process 
then it will be delivered. The process of signal delivery adds the signal to be 
delivered and those signals specified in the associated signal handler's sv _mask 
to a set of those masked for the process, saves the current process context, and 
places the process in the context of the signal handling routine. The call is 
arranged so that if the signal handling routine exits nonnally the signal mask will 
be restored and the process will resume execution in the original context. If the 
process wishes to resume in a different context, then it must arrange to restore the 
signal mask itself. 

The mask of blocked signals is independent of handlers for delays. It delays the 
delivery of signals much as a raised hardware interrupt priority level delays 
hardware interrupts. Preventing an interrupt from occurring by changing the 
handler is analogous to disabling a device from further interrupts. 

The signal handling routine sv_handler is called by a C call of the fonn 

(*sv_handler) (signa, code, scp, addr); 
int signa, code; 
struct sigcontext *scp; 
char *addr; 

The signo gives the number of the signal that occurred, while code, is a 
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parameter of certain signals that provides additional detail. The scp parameter is 
a pointer to a machine-dependent structure containing the information for restor
ing the context from before the signal. addr is additional address information. 

A process can send a signal to another process or group of processes with the 
calls: 

kill (pid, signa); 
int pid, signo; 

killpgrp(pgrp, -signo); 
int pgrp, signo; 

Unless the process sending the signal is privileged, it must have the same effec
tive user id as the process receiving the signal. 

Signals can also be sent from from a terminal device to the process group associ
ated with the terminal. See kill (1) . 

To block a section of code against one or more signals, a sigblock () call may 
be used to add a set of signals to the existing mask, returning the old mask: 

oldmask = sigblock(mask); 
result long oldmask; 
long mask; 

The old mask can then be restored later with s i g s e tma s k ( ) , 

oldmask = sigsetmask(mask); 
result long oldmask; 
long mask; 

The sigblock () call can be used to read the current mask by specifying an 
empty mask. 

It is possible to check conditions with some signals blocked, and then to pause 
waiting for a signal and restoring the mask, by using: 

[

sigpaUSe(maSk); 
. long mask; ] 

.\sun ~ microsystems 
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Applications that maintain complex or fixed size stacks can use the call 

struct sigstack { 
caddr_t ss_sp; 
int ss_onstack; 

} ; 

sigstack(ss, oss) 
struct sigstack *ss; 
result struct sigstack *oss; 

to provide the system with a stack based at ss _sp for delivery of signals. The 
value ss _ onstack indicates whether the process is currently on the signal stack, a 
notion maintained in software by the system. 

When a signal is to be delivered, the system checks whether the process is on a 
signal stack. If not, then the process is switched to the signal stack for delivery, 
with the return from the signal arranged to restore the previous stack. 

If the process wishes to take a non-local exit from the signal routine, or run code 
from the signal stack that uses a different stack, a sigstack () call should be 
used to reset the signal stack. 

The system's notion of the current Greenwich time and the current time zone is 
set and returned by the calls: 

#include <sys/time.h> 

settimeofday(tvp, tzp)i 
struct timeval *tp; 
struct timezone *tzp; 

gettimeofday(tp, tzp); 
result struct timeval *tp; 
result struct timezone *tzp; 

where the structures are defined in <sys/time. h> as: 

struct timeval { 
long tv_sec; /* secondssincelanl,1970 */ 
long tv_usec; /* and microseconds */ 

} ; 

struct time zone { 
int tz minuteswest; /* of Greenwich * / 
int t z_ dst time; / * type of dst correction to apply * / 

} ; 

The precision of the system clock is hardware dependent. Earlier versions of the 
UNIX system contained only a I-second resolution version of this call, which 
remains as a library routine: 
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Interval Time 

[

time (tvp) ] 
result long *tvp; 

'----------
or 

[

tv = time«long *)0); ] 

~ _____ re __ su __ lt ___ l_O_n_g __ t_v_; ______________________________________ ~ 

returning only the tv_sec field from the gettimeofday () call. 

The system provides each process with three interval timers, defined in 
<sys/time. h>: 

#define ITIMER REAL 0 
#define ITIMER VIRTUAL 1 
#define ITIMER PROF 2 

/ * real time intervals * / 
/ * virtual time intervals * / 
/ * user and system virtual time * / 

The IT IMER _REAL timer decrements in real time. It could be used by a library 
routine to maintain a wakeup service queue. A S I GALRM signal is delivered 
when this timer expires. 

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only 
when the process is executing. A S I GVTALRM signal is delivered when it 
expires. 

The ITIMER_PROF timer decrements both in process virtual time and when the 
system is running on behalf of the process. It is designed to be used by processes 
to statistically profile their execution. A SIGPROF signal is delivered when it 
expires. 

A timer value is defined by the itimerval structure: 

struct itimerval { 
struct timeval it_interval; /* timer interval * / 
struct timeval it_value; /* currentvalue */ 

} ; 

and a timer is set or read by the call: 

getitimer(which, value); 
int which; 
result struct itimerval *value; 

setitimer(which, value, ovalue); 
int which; 
struct itimerval *value; 
result struct itimerval *ovalue; 

The third argument to seti timer () specifies an optional structure to receive 
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the previous contents of the interval timer. A timer can be disabled by specifying 
a timer value of O. 

The system rounds argument timer intervals to be not less than the resolution of 
its clock. This clock resolution can be detennined by loading a very small value 
into a timer and reading the timer back to see what value resulted. 

The alarm () system call of earlier versions of the UNIX system is provided as 
a library routine using the IT IMER _ REAL timer. The process profiling facilities 
of earlier versions of the UNIX system remain because it is not always possible 
to guarantee the automatic restart of system calls after receipt of a signal. The 
profil () call arranges for the kernel to begin gathering execution statistics for 
a process: 

profil(buf, bufsize, offset, scale); 
result char *buf; 
int bufsize, offset, scale; 

This begins sampling of the program counter, with statistics maintained in the 
user-provided buffer. 

Each process has access to resources through descriptors. Each descriptor is a 
handle allowing the process to reference objects such as files, devices and com
munications links. 

Rather than allowing processes direct access to descriptors, the system introduces 
a level of indirection, so that descriptors may be shared between processes. Each 
process has a descriptor reference table, containing pointers to the actual 
descriptors. The descriptors themselves thus have multiple references, and are 
reference counted by the system. 

Each process has a fixed size descriptor reference table, where the size is returned 
by the getdtablesize () call: 

( nds = getdtablesize(); 
result int nds; 

and guaranteed to be at least 20. The entries in the descriptor reference table are 
referred to by small integers; for example if there are 20 slots they are numbered 
Oto 19. 

] 

Each descriptor has a logical set of properties maintained by the system and 
defined by its type. Each type supports a set of operations; some operations, such 
as reading and writing, are common to several abstractions, while others are 
unique. Generic operations applying to many of these types are described in 3.8. 
Naming contexts, files and directories are described in 3.9. Section 4.1. 
describes communications domruns and sockets. Tenninals and (structured and 
unstructured) devices are described in 3.10. 
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Managing Descriptor 
References 

Multiplexing Requests 

Note: Operations are said to be 
multiplexed when they are inter
leaved in real time on the same 
device or communications channel. 
For example, I/O streams A and B 
are multiplexed if B begins before A 
is completed. 

A duplicate of a descriptor reference may be made by doing 

new = dup (old) ; 
result int new; 
int old; 

returning a copy of descriptor reference old indistinguishable from the original. 
The new chosen by the system will be the smallest unused descriptor reference 
slot. A copy of a descriptor reference may be made in a specific slot by doing 

[ 

dup2 (old, new); 

_ int old, new; 

The dup2 () call causes the system to deallocate the descriptor reference 
currently occupying slot new, if any, replacing it with a reference to the same 
descriptor as old. This deallocation is also performed by: 

[

close (old) ; 

_ int old; 

The system provides a standard way to perform synchronous and asynchronous 
multiplexing of operations. 

] 

] 

Synchronous multiplexing is perfonned by using the select () call to examine 
the state of multiple descriptors simultaneously, and to wait for state changes on 
those descriptors. Sets of descriptors of interest are specified as bit masks, as fol
lows: 

iinclude <sys/types.h> 

nds = select(nd, in, out, except, tvp); 
result int nds; 
int nd; 
fd_set *in, *out, *except; 
struct timeval *tvp; 

FD_ZERO(&fdset); 
FD_SET(fd, &fdset); 
FD_CLR(fd, &fdset); 
FD_ISSET(fd, &fdset); 

int fs; 
fs_set fdset; 

The select () call examines the descriptors specified by the sets in, out and 
except, replacing the specified bit masks by the subsets that select true for input, 
output, and exceptional conditions respectively (nd indicates the number of file 
descriptors specified by the bit masks). If any descriptors meet the following cri
teria, then the number of such descriptors is returned in nds and the bit masks are 
updated. 
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o A descriptor selects for input if an input oriented operation such as read () 
or re ce i ve () is possible, or if a connection request may be accepted (see 
Accepting Connections) in section 4.1.1. 

o A descriptor selects for output if an output oriented operation such as 
wri te () or send () is possible, or if an operation that was "in progress", 
such as connection establishment, has completed (see section 3.8.3. 

o A descriptor selects for an exceptional condition if a condition that would 
cause a S IGURG signal to be generated exists (see section 3.2.1) or other 
device-specific events have occurred. 

If none of the specified conditions is true, the operation waits for one of the con
ditions to arise, blocking at most the amount of time specified by t vp. If t vp is 
given as 0, the select () waits indefinitely 

Options affecting I/O on a descriptor may be read and set by the call: 

dopt = fcntl(d, cmd, arg); 
result int dopt; 
int d, cmd, arg; 

/* Interesting values/or cmd * / 
#define F DUPFD 0 /* 
#define F SETFD 1 /* 
#define F GETFD 2 /* 
#define F SETFL 3 /* 
#define F GETFL 4 /* 
#define F SETOWN 5 /* 
#define F GETOWN 6 /* 

Return new descriptor * / 
Set close-on-exec flag * / 
Set close-on-exec flag * / 
Set descriptor options * / 
Set descriptor options * / 
Set descriptor owner (pid/pgrp) */ 
Set descriptor owner (pid/pgrp) */ 

The F _ SE TF L cmd may be used to set a descriptor in non-blocking I/O mode 
and/or enable signaling when I/O is possible. F _ SE TOWN may be used to 
specify a process or process group to be signaled when using the latter mode of 
operation or or when urgent indications arise. 

Operations on non-blocking descriptors will either complete immediately, note 
an error EWOULDBLOCK, partially complete an input or output operation return
ing a partial count, or return an error EINPROGRESS noting that the requested 
operation is in progress. A descriptor which has signaling enabled will cause the 
specified process and/or process group be signaled, with a S I G I 0 for input, out
put, or in-progress operation complete, or a S IGURG for exceptional conditions. 

For example, when writing to a tenninal using non-blocking output, the system 
will accept only as much data as there is buffer space for and return; when mak
ing a connection on a socket, the operation may return indicating that the connec
tion establishment is "in progress". The select () facility can be used to 
determine when further output is possible on the terminal, or when the connec
tion establishment attempt is complete . 

• \sun 
• microsystems 
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3.5. Resource Controls 

Process Priorities 

Resource Utilization 

The system gives CPU scheduling priority to processes that have not used CPU 
time recently. This tends to favor interactive processes and processes that exe
cute only for short periods. It is possible to detennine the priority currently 
assigned to a process, process group, or the processes of a specified user, or to 
alter this priority using the calls: 

#define PRIO PROCESS 
#define PRIO PGRP 
#define PRIO USER 

o 
1 
2 

/ * process * / 
/ * process group * / 
/* user id * / 

prio = getpriority(which, who); 
result int prio; 
int which, who; 

setpriority(which, who, prio); 
int which, who, prio; 

The value prio is in the range -20 to 20. The default priority is 0; lower priori
ties cause more favorable execution. The get pr i 0 r i t Y () call returns the 
highest priority (lowest numerical value) enjoyed by any of the specified 
processes. The setpriority () call sets the priorities of all of the specified 
processes to the specified value. Only the super-user may lower priorities. 

getrusage () returned infonnation about currently consumed resources in a 
structure defined in <sys/resource. h>: 

#def ine RUSAGE SELF 0 / * usage by this process * / 
#define RUSAGE CHILDREN -1 /* usage by all children * / 

getrusage(who, rusage); 
int who; 
result struct rusage *rusage; 

struct rusage { 

} ; 

struct timeval ru_utime; /* user time used * / 
struct timeval ru_stime; /* system time used * / 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

ru_maxrss; / * maximum core resident set size: kbytes * / 
ru_ixrss; /* integral shared memory size (kbytes*sec) * / 
ru _ idrss; / * unshared data memory size * / 
ru _is r s s ; / * unshared stack memory size * / 
ru _ minf 1 t ; / * page-reclaims * / 
ru_majflt; /* page/aults * / 
ru_nswap; /* swaps * / 
ru _ inblock; / * block input operations * / 
ru _ oublock; / * block output operations * / 
ru _ msgsnd; / * messages sent * / 
ru _ msgrcv ; / * messages received * / 
ru _ nsignals; / * signals received * / 
ru _ n vc s w ; / * voluntary context switches * / 
ru _ ni vcsw; / * involuntary context switches * / 
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The who parameter specifies whose resource usage is to be returned. The 
resources used by the current process, or by all the terminated children of the 
current process may be requested. 

The resources of a process for which limits are controlled by the kernel are 
defined in <sys/resource. h>, and controlled by the getrlimit () and 
setrlimit () calls: 

=If: de fine RLIMIT CPU 0 /* cpu time in milliseconds * / 
=If: de fine RLIMIT FSIZE 1 /* maximum file size */ 
#"define RLIMIT DATA 2 /* maximum data segment size * / 
=If: de fine RLIMIT STACK 3 /* maximum stack segment size * / 
=If:define RLIMIT CORE 4 /* maximum core file size * / 
=If: de fine RLIMIT RSS 5 /* maximum resident set size * / 

=If: de fine RLIM NLIMITS 6 

#"define RLIM INFINITY Ox:7fffffff 

struct rlimit { 
int rlim_cur; 
int rlim_max; 

} ; 

/ * current (soft) limit * / 
/ * hard limit * / 

getrlimit(resource, rIp); 
int resource; 
result struct rlimit *rlp; 

setrlimit(resource, rIp); 
int resource; 
struct rlimit *rlp; 

Only the super-user can raise the maximum limits. Other users may only alter 
rlim_cur within the range from 0 to rlim_max or (irreversibly) lower rlim_max. 

The call 

5wapon(blkdev, size); 
char *blkdev; 
int size; 

specifies a device to be made available for paging and swapping. It can be run 
only by a privileged user. 

The call 

[ 

rebo?t (how) ; 

_ l.nt how; 

halts or reboots a machine. It too can be run only by a privileged user. The user 
may request a reboot by specifying how as RB _AUTOBOOT, or that the machine 
be halted with RB HALT. These constants are defined in <sys/reboot. h>. 

] 
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3.7. Memory Management 

3.S. Generic I/O 
Operations 

read () and write () 

The systenl optionally keeps an accounting record in a file for each process that 
exits on the system. The format of this record is beyond the scope of this docu
ment. The accounting may be enabled to a file name by doing 

[ 

acct (path) ; 

. char *path; 

If path is null, then accounting is disabled. Otherwise, the named file becomes 
the accounting file. 

For a synopses of the SunOS memory-management interface, see the Memory 
Mapping Interface section of the Memory Management chapter. 

] 

All filesystem descriptors support the operations read ( ) , wr i te () and 
ioctl (). We describe the basics of these common primitives here, as well as 
the sync () and f sync () primitives. Similarly, the mechanisms whereby nor
mally synchronous operations may occur in a non-blocking or asynchronous 
fashion are common to all system-defined abstractions and are described here. 

The read () and write () system calls can be applied to communications 
channels, files, tenninals and devices. They have the fonn: 

cc = read(fd, buf, nbytes); 
result int cc; 
int fd, nbytes; 
result caddr_t buf; 

cc = write(fd, buf, nbytes); 
result int cC; 
int fd, nbytes; 
caddr_t buf; 

The read () call transfers as much data as possible from the object defined by 
fd to the buffer at address buf of size nbytes. The number of bytes transferred is 
returned in cc, which is -1 if a return occurred before any data was transferred 
because of an error or use of non-blocking operations. 

The wr it e () call transfers data from the buffer to the object defined by fd. 
Depending on the type of fd, it is possible that the write call will accept some 
portion of the provided bytes; in this case the user should resubmit the other 
bytes in a later request. Error returns because of interrupted or otherwise incom
plete operations are possible. 

Scattering of data on input or gathering of data for output is also possible using 
an array of input/output vector descriptors. The type for the descriptors is 
defined in <sys/uio. h> as: 
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struct iovec { 
caddr_t iov_msg; 
int iov_len; 

/ * base of a component * / 
/ * length of a component * / 

} ; 

The calls using an array of descriptors are: 

cc = readv(fd, iov, iovlen); 
result int cc; 
int fd, iovlen 
struct iovec *iov; 

cc = writev(fd, iov, iovlen); 
result int cc; 
int fd, iovlen; 
struct iovec *iov; 

Here iovlen is the count of elements in the iov array. It cannot exceed 16. 

Control operations on an object are perfonned by the ioctl () operation: 

ioctl(fd, request, buffer); 
int fd, request; 
caddr_t buffer; 

This operation causes the specified request to be perfonned on the object fd. The 
request parameter specifies whether the argument buffer is to be read, written, 
read and written, or is not needed, and also the size of the buffer, as well as the 
request. Different descriptor types and subtypes within descriptor types may use 
distinct ioctl () requests. For example, operations on tenninals control flush
ing of input and output queues and setting of tenninal parameters; operations on 
disks cause fonnatting operations to occur, operations on tapes control tape posi
tioning. 

The names for basic control operations are defined in <sys/ ioctl. h>. 

A process that wishes to do non-blocking operations on one of its descriptors sets 
the descriptor in non-blocking mode as described in section 3.4.4. Thereafter the 
read () call will return a specific EWOULDBLOCK error indication if there is no 
data to be read (). The process may select () the associated descriptor to 
determine when a read is possible. 

Output attempted when a descriptor can accept less than is requested will either 
accept some of the provided data, returning a shorter than nonnallength, or 
return an error indicating that the operation would block. More output can be 
perfonned as soon as a select () call indicates the object is writable. 

Operations other than data input or output may be perfonned on a descriptor in a 
non-blocking fashion. These operations will return with a characteristic error 
indicating that they are in progress if they cannot complete immediately. The 
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Naming 

descriptor may then be select () 'ed for write () to find out when the opera
tion has been completed. When select () indicates the descriptor is writable, 
the operation has completed. Depending on the nature of the descriptor and the 
operation, additional activity may be started or the new state may be tested. 

The call 

[
fsYnC(fd); ] 

int fd; 

'-------------" 

moves all modified data and attributes of the file referenced by fd to a permanent 
storage device. When the fsync () call returns, all in-memory modified copies 
of buffers for the associated file have been written to disk. This call is different 
from sync () . 

The call 

(~s_Y_n_C_()_; ________________________________________ --JJ 

schedules input/output to clean all system buffer caches. 

The file system abstraction provides access to a hierarchical file system structure. 
The file system contains directories (each of which may contain other sub
directories) as well as files and references to other objects such as devices and 
inter-process communications sockets. 

Each file is organized as a linear array of bytes. No record boundaries or system 
related information is present in a file. Files may be read and written in a 
random-access fashion. The user may read the data in a directory as though it 
were an ordinary file to determine the names of the contained files, but only the 
system may write into the directories. The file system stores only a small amount 
of ownership, protection and usage information with a file. 

The file system calls take pathname arguments. These consist of a zero or more 
component filenames separated by / characters, where each filename is up to 255 
ASCII characters excluding null and "f'. 

Each process always has two naming contexts: one for the root directory of the 
file system and one for the current working directory. These are used by the sys
tem in the filename translation process. If a patbname begins with a /, it is 
called a full patbname and interpreted relative to the root directory context. If 
the patbname does not begin with a / it is called a relative pathname and inter
preted relative to the current directory context. 

The system limits the total length of a pathname to 1024 characters. 

The filename " .. " in each directory refers to the parent directory of that directory. 
The parent directory of the root of the file system is always that directory. 

The calls 
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chdir(path); 
char *path; 

chroot(path); 
char *path; 

change the current working directory and root directory context of a process. 
Only the super-user can change the root directory context of a process. 

The file system allows directories, files and special devices, to be created and 
removed from the file system. 

A directory is created with the mkdir () system call: 

mkdir(path, mode); 
char *path; 
int mode; 

where the mode is defined as for files (see below). Note that, in SunOS, 
mkdir () supports both the Berkeley and the SystemV group ID semantics. If 
the set-group-id bit on a directory is set, objects created within that directory are 
assigned the group ID of their parent directory, as in the BSD UNIX system. If 
the parent directory group ID bit is clear, objects created within it are assigned 
the group ID of the creating process, as in System V. 

Directories are removed with the rmdir () system call: 

[ 

~ir (path) ; 

. char *path; 

A directory must be empty if it is to be deleted. 

Files are created with the open () system call, 

fd = open(path, of lag, mode); 
result int fd; 
int of lag, mode; 
char *path; 

] 

The path parameter specifies the name of the file to be created. The oflag param
eter must include 0_ CREAT from below to cause the file to be created. The pro
tection for the new file is specified in mode. The protection for the new file is 
specified in mode. Bits for oflag are defined in <sys/file. h>: 
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#define o RDONLY 000 /* open for reading * / 
#define o WRONLY 001 /* open for writing * / 
#define o RDWR 002 /* open for read & write * / 
#define o NDELAY 004 /* non-blocking open * / 
#define o APPEND 010 /* append on each write * 1 
#define o CREAT 01000 1* open withfile create * 1 
#define o TRUNC 02000 1* open with truncation * / 
#define o EXCL 04000 /* error on create if file exists */ 

One of 0_ RDONLY, 0_ WRONLY and 0_ RDWR should be specified, indicating 
what types of operations are desired to be perfonned on the open file. The opera
tions will be checked against the user's access rights to the file before allowing 
the open () to succeed. Specifying 0 APPEND causes writes to automatically 
append to the file. The flag 0 _ CREAT causes the file to be created if it does not 
exist, owned by the current user and the group of the containing directory. The 
protection for the new file is specified in mode. The file mode is used as a three 
digit octal number. Each digit encodes read access as 4, write access as 2 and 
execute access as 1, or' ed together. The 700 bits describe owner access, the 070 
bits describe the access rights for processes in the same group as the file, and the 
007 bits describe the access rights for other processes. 

If the open specifies to create the file with 0_ EXCL and the file already exists, 
then the open () will fail without affecting the file in any way. This provides a 
simple exclusive access facility. If the file exists but is a symbolic link, the open 
will fail regardless of the existence of the file specified by the link. 

The file system allows entries which reference peripheral devices. Peripherals 
are distinguished as block or character devices according by their ability to sup
port block -oriented operations. Devices are identified by their 'major' and 
'minor' device numbers. The major device number detennines the kind of peri
pheral it is, while the minor device number indicates one of possibly many peri
pherals of that kind. Structured devices have all operations perfonned internally 
in 'block' quantities while unstructured devices often have a number of special 
ioctl () operations, and may have input and output perfonned in varying units. 
The mknod () call creates special entries: 

mknod(path, mode, dev); 
char *path; 
int mode, dev; 

where mode is fonned from the object type and access pennissions. The parame
ter dey is a configuration dependent parameter used to identify specific character 
or block I/O devices. 
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A reference to a file or special device may be removed with the unlink () call, 

[ unlink (path) ; 
char *path; 

The caller must have write access to the directory in which the file is located for 
this call to be successful. 

Detailed infonnation about the attributes of a file system may be obtained with 
the calls: 

*include <sys/vfs.h> 

statfs(path, buf); 
char *path; 
result struct statfs *buf; 

fstatfs(fd, buf); 
int fd; 
result struct statfs *buf; 

] 

The s tat f s () structure includes the file system type, file system block size, 
total blocks in the file system, free blocks, free blocks available to non superuser, 
total file nodes in the file system, free file nodes in the file system, and the file 
system ID. 

Directory entries can be obtained in a filesystem-independent fonnat by using the 
getdents () call: 

getdents(uap) 
register struct a { 

int fd; 
char *buf; 
unsigned count; 

*uap; 

Detailed infonnation about the attributes of a file may be obtained with the calls: 

*include <sys/stat.h> 

stat (path, stb); 
char *path; 
result struct stat *stb; 

fstat(fd, stb); 
int fd; 
result struct stat *stb; 

The stat () structure includes the file type, protection, ownership, access times, 
size, and a count of hard links. If the file is a symbolic link, then the status of the 
link itself (rather than the file the link references) may be found using the 
lstat () call: 
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lstat(path, stb); 
char *path; 
result struct stat *stb; 

Newly created files are assigned the user id of the process that created it and the 
group id of the directory in which it was created. The ownership of a file may be 
changed by either of the calls 

chown(path, owner, group); 
char *path; 
int owner, group; 

fchown(fd, owner, group); 
int fd, owner, group; 

In addition to ownership, each file has three levels of access protection associated 
with it. These levels are owner relative, group relative, and global (all users and 
groups). Each level of access has separate indicators for read permission, write 
permission, and execute permission. The protection bits associated with a file 
may be set by either of the calls: 

chmod(path, mode); 
char *path; 
int mode; 

fchmod(fd, mode); 
int fd, mode; 

where mode is a value indicating the new protection of the file as listed above in 
the File Creation section. 

Three additional bits exist: the 04000 'set-user-id' bit can be set on an executable 
file to cause the effective user-id of a process which executes the file to be set to 
the owner of that file; the 02000 bit has a similar effect on the effective group-id. 
The 01000 bit causes an image of an executable program to be saved longer than 
would otherwise be nonnal; this 'sticky' bit is a hint to the system that a program 
is heavily used. 

Finally, the access and modify times on a file may be set by the call: 

utimes(path, tvp); 
char *path; 
struct timeval *tvp[2]; 

This is particularly useful when moving files between media, to preserve rela
tionships between the times the file was modified. 
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Links allow multiple names for a file to exist. Links exist independently of the 
file linked to. 

Two types of links exist, hard links and symbolic links. A hard link is a refer
ence counting mechanism that allows a file to have multiple names within the 
same file system. Symbolic links cause string substitution during the pathname 
interpretation process. 

Hard links and symbolic links have different properties. A hard link insures the 
target file will always be accessible, even after its original directory entry is 
removed; no such guarantee exists for a symbolic link. Symbolic links can span 
file systems boundaries. 

The following calls create a new link, named path2, to path]: 

link (pathl, path2); 
char *pathl, *path2; 

symlink(pathl, path2); 
char *pathl, *path2; 

The unlink () primitive may be used to remove either type of link. 

If a file is a symbolic link, the 'value' of the link may be read with the 
readlink () call, 

len = readlink(path, buf, bufsize); 
result int len; 
int bufsize; 
result char *path, *buf; 

This call returns, in buf, the null-terminated string substituted into pathnames 
passing through path. 

Atomic renaming of file system resident objects is possible with the rename ( ) 
call: 

rename (oldname, newname); 
char *oldname, *newname; 

where both oldname and newname must be in the same file system. If newname 
exists and is a directory, then it must be empty. 

Files are created with zero length and may be extended simply by writing or 
appending to them. While a file is open the system maintains a pointer into the 
file indicating the current location in the file associated with the descriptor. This 
pointer may be moved about in the file in a random access fashion. To set the 
current offset into a file, the lseek () call may be used, 
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oldoffset = lseek(fd, offset, type); 
result off_t oldoffset; 
off_t offset; 
int fd, type; 

where type is given in <sys/ file. h> as one of, 

/ * set absolute file offset * / #define L SET 0 
#define L INCR 1 
#define L XTND 2 

/ * set file offset relative to current position * / 
/ * set offset relative to end-of-file * / 

The call 

( lseek(fd, 0, L_INCR) 
J 

returns the current offset into the file. 

Files may have 'holes' in them. Holes are void areas in the linear extent of the 
file where data has never been written. These may be created by seeking to a 
location in a file past the current end-of-file and writing. Holes are treated by the 
system as zero valued bytes. 

A file may be truncated (or extended) with either of the calls: 

truncate (path, length); 
char *path; 
off_t length; 

ftruncate(fd, length); 
int fd; 
off_t length; 

The truncate () and ftruncate () system calls set the length of a file. If 
the newly specified length is shorter than the file's current length, the file is shor
tened. However, if the new length is longer, the file's size is increased to the 
desired length. When writing a file exclusively through mapped access, trun
cate () and ftruncate () are the only alternatives to MAP _RENAME opera
tions for growing a file. 

A process running with different real and effective user ids may interrogate the 
accessibility of a file to the real user by using the acces s () call: 

accessible = access (path, now); 
result int accessible; 
int how; 
char *path; 

Here how is constructed by or'ing the following bits, defined in 
<sys/file. h>: 
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#define F OK 
#define X OK 
#define W OK 
#define R OK 

o 
1 
2 
4 

/ * file exists * / 
/ * file is executable * / 
/ * file is writable * / 
/ * file is readable * / 

The presence or absence of advisory locks does not affect the result of 
access () . 

The file system provides basic facilities that allow cooperating processes to syn
chronize their access to shared files. A process may place an advisory read () 
or wri te () lock on a file, so that other cooperating processes may avoid 
interfering with the process' access. This simple mechanism provides locking 
with file granularity. More granular locking can be built using the !PC facilities 
to provide a lock manager. The system does not force processes to obey the 
locks; they are of an advisory nature only. 

Locking is perfonned after an open () call by applying the flock () primitive, 

[ flock (fd, how); 
int fd, how; 

where the how parameter is fonned from bits defined in < s y s / f il e . h>: 

#define LOCK SH 1 
#define LOCK EX 2 
#define LOCK NB 4 
#define LOCK UN 8 

/ * shared lock * / 
/ * exclusive lock * / 
/ * don't block when locking * / 
/* unlock * / 

] 

Suc~ssive lock calls may be used to increase or decrease the level of locking. If 
an object is currently locked by another process when a flock () call is made, 
the caller will be blocked until the current lock owner releases the lock; this may 
be avoided by including LOCK_NB in the how parameter. Specifying 
LOCK_UN removes all locks associated with the descriptor. Advisory locks 
held by a process are automatically deleted when the process tenninates. 

The call 

mount (type, dir, flags, data); 
char *type, *dir; 
int flags; 
caddr_t data; 

extends the UNIX name space. The mount () call specifies a block device type 
containing a UNIX file system to be made available starting at dir. Ifjiags is set 
then the file system is read-only; writes to the file system will not be pennitted 
and access times will not be updated when files are referenced. data is a pointer 
to a structure which contains the type specific arguments to mount. 
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The call 

[ 

unmount (dir) ; 
. char *dir; 

unmounts the file system mounted on dir. umount () call will succeed only if 
the file system is not currently being used. 

] 

As an optional facility, each file system may be requested to impose limits on a 
user's disk usage. Two quantities are limited: the total amount of disk space 
which a user may allocate in a file system and the total number of files a user 
may create in a file system. Quotas are expressed as hard limits and soft limits. 
A hard limit is always imposed; if a user would exceed a hard limit, the operation 
which caused the resource request will fail. A soft limit results in the user 
receiving a warning message, but with allocation succeeding. Facilities are pro
vided to tum soft limits into hard limits if a user has exceeded a soft limit for an 
unreasonable period of time. 

To manipulate disk quotas on a file system the quotactl () call is used: 

iinclude <ufs/quota.h> 

quotactl(cmd, special, uid, addr); 
int cmd, uid; 
char *special; 
caddr_t addr; 

where cmd indicates a command to be applied to the user ID uid. Special is a 
pointer to a null-tenninated string containing the path name of the block special 
device for the file system being manipulated. The block special device must be 
mounted. Addr is the address of an optional, command specific, data structure 
which is copied in or out of the system. The interpretation of addr is given with 
each command. 

The system uses a collection of device drivers to access attached peripherals. 
Such devices are generally grouped into two classes: structured devices on which 
block-oriented input/output operations occur (basically disks and tapes), and 
unstructured devices ( anything else). 

Structured devices include disk and tape drives, and are accessed through a sys
tem buffer-caching mechanism, which permits them to be accessed as ordinary 
files, by means of random-access reads and writes. 

The mount command in the system allows a structured device containing a file 
system volume to be accessed through the SunOS 

Tape drives also typically provide a structured interface, although this is rarely 
used . 

• \sun ~ microsystems 
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Unstructured devices are those devices which do not support a randomly 
accessed block structure. 

Communications lines, raster plotters, nonnal magnetic tape access (in large or 
variable size blocks), and access to disk drives pennitting large block transfers 
and special operations like disk fonnatting and labeling all use unstructured dev
ice interfaces. 

Much more infonnation about device drivers can be found in Writing Device 
Drivers. 

ptrace () provides a means by which a process may control the execution of 
another process, and examine and change its memory image. Its primary use is 
for the implementation of breakpoint debugging. 

#include <signal.h> 
#include <sys/ptrace.h> 
#include <sys/wait.h> 

ptrace(request, pid, addr, data, addr2) 
enum ptracereq request; 
int pid, data; 
char *addr, *addr2; 

There are five arguments whose intetpretation depends on the request argument. 
Generally,pid is the process ID of the traced process. A process being traced 
behaves nonnally until it encounters some signal whether internally generated 
like 'illegal instruction' or externally generated like 'interrupt'. See 
sigvec (2) for the list. Then the traced process enters a stopped state and the 
tracing process is notified via w ai t (2). When the traced process is in the 
stopped state, its memory image can be examined and modified using 
ptrace (). If desired, another ptrace () request can then cause the traced 
process either to tenninate or to continue, possibly ignoring the signal. 

Note that several different values of the request argument can make ptrace () 
return data values - since -1 is a possibly legitimate value, to differentiate 
between -1 as a legitimate value and -1 as an error code, you should clear the 
errno global error code before doing a ptrace () call, and then check the value 
of errno afterwards. 

The value of the request argument detennines the precise action of the call: 

PTRACE TRACEME 
This request is the only one used by the traced process; it declares that the 
process is to be traced by its parent. All the other arguments are ignored. 
Peculiar results will ensue if the parent does not expect to trace the child. 

PTRACE_PEEKTEXT, PTRACE_PEEKDATA 
The word in the traced process's address space at addr is returned. addr 
must be even (except on Sun386i machines),' the child must be stopped and 
the input data and addr2 are ignored. 
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PTRACE PEEKUSER 
The word of the system's per-process data area corresponding to addr is 
returned. Addr must be a valid offset within the kernel's per-process data 
structures. This space contains the registers and other infonnation about the 
process; its layout corresponds to the user structure in the system. 

PTRACE_POKETEXT, PTRACE_POKEDATA 
The given data is written at the word in the process's address space 
corresponding to a ddr, which must be even (except on Sun386i machines). 
No useful value is returned. If the instruction and data spaces are separate 
request PTRACE_PEEKTEXT indicates instruction space while 
PTRACE_PEEKDATA indicates data space. The PTRACE_POKETEXT 
request must be used to write into a process's text space even if the instruc
tion and data spaces are not separate. 

PTRACE POKEUSER 
The process's system data is written, as it is read with request 
PTRACE_PEEKUSER. Only a few locations can be written in this way: the 
general registers, the floating point status and registers, and certain bits of 
the processor status word. 

PTRACE CONT 
The data argument is taken as a signal number and the child's execution 
continues at location addr as if it had incurred that signal. Nonnally the sig
nal number will be either 0 to indicate that the signal that caused the stop 
should be ignored, or that value fetched out of the process's image indicating 
which signal caused the stop. If addr is (int *) 1 then execution continues 
from where it stopped. 

PTRACE_KILL 
The traced process tenninates. 

PTRACE SINGLESTEP 
Execution continues as in request PTRACE _ CONT; however, as soon as pos
sible after execution of at least one instruction, execution stops again. The 
signal number from the stop is S I GTRAP. On Sun machines the T -bit is 
used and just one instruction is executed. 

PTRACE ATTACH 
Attach to the process identified by the pid argument and begin tracing it. 
Process pid does not have to be a child of the requester, but the requester 
must have pennission to send process pid a signal and the effective userids 
of the requesting process and process pid must match. 

PTRACE DETACH 
Detach the process being traced. Process pid is no longer being traced and 
continues its execution. The data argument is taken as a signal number and 
the process continues at location addr as if it had incurred that signal. 

PTRACE GETREGS 
The traced process's registers are returned in a structure pointed to by the 
addr argument. The registers include the general purpose registers, the pro
gram counter and the program status word. The 'regs' structure defined in 
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<machine/ reg. h> describes the data that is returned. 

PTRACE SETREGS 

The traced process's registers are written from a structure pointed to by the 
addr argument. The registers include the general purpose registers, the pro
gram counter and the program status word. The 'regs' structure defined in 
<machine/ reg. h> describes the data that is set. 

PTRACE_READTEXT, PTRACE_READDATA 
Read data from the address space of the traced process. If the instruction 
and data spaces are separate, request PTRACE_READTEXT indicates 
instruction space while PTRACE_READDATA indicates data space. The 
addr argument is the address within the traced process from where the data 
is read, the data argument is the number of bytes to read, and the addr2 
argument is the address within the requesting process where the data is writ
ten. 

PTRACE_WRITETEXT, PTRACE_WRITEDATA 

Write data into the address space of the traced process. If the instruction and 
data spaces are separate, request PTRACE _ READTEXT indicates instruction 
space while PTRACE_READDATA indicates data space. The addr argument 
is the address within the traced process where the data is written, the data 
argument is the number of bytes to write, and the addr2 argument is the 
address within the requesting process from where the data is read. 

As indicated, these calls (except for requests PTRACE _ TRACEME and 
PTRACE_ATTACH) can be used only when the subject process has stopped. 
The wait () call is used to determine when a process stops; in such a case the 
'termination' status returned by wait has the value WSTOPPED to indicate a stop 
rather than genuine termination. 

To forestall possible fraud, ptrace () inhibits the set-user-id and set-group-id 
facilities on subsequent execve (2) calls. If a traced process calls execve ( ) , 
it will stop before executing the first instruction of the new image showing signal 
SIGTRAP. 

sun 
microsystems 
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This chapter introduces the socket-based interprocess communications facilities 
which SunOS has adapted from BSD. Much more detail about these facilities 
can be found in part three of Network Programming. For an introduction to the 
networking facilities which Sun has added to its system in the time since 
socket-based IPC was developed, see the Network Services section of this same 
Network Programming manual. (These facilities include the Network File Sys
tem, the Remote Procedure Call mechanisms, and the External Data Representa
tion standard). For detailed infonnation about AT&T-style STREAMS, see 
Writing Device Drivers. 

The system provides access to an extensible set of communication domains. A 
communication domain is identified by a manifest constant defined in the file 
<sys/ socket. h>. Important standard domains supported by the system are 
the UNIX domain, AF _UNIX, for communication within the system, and the 
"internet" domain for communication in the DARPA internet, AF _INET. Other 
domains can be added to the system. 

Within a domain, communication takes place between endpoints known as sock
ets. Each socket has the potential to exchange infonnation with other sockets of 
an appropriate type within the domain. 

Each socket has an associated abstract type, which describes the semantics of 
communication using that socket. Properties such as reliability, ordering, and 
prevention of duplication of messages are determined by the type. The basic set 
of socket types is defined in <sys/ socket. h>: 

/ * Standard socket types * / 
#define SOCK DGRAM 1 /* datagram */ 
#define SOCK STREAM 2 /* virtual circuit * / 
#define SOCK RAW 3 /* raw socket * / 
#define SOCK RDM 4 /* reliably-delivered message */ 
#define SOCK_SEQPACKET 5 /* sequenced packets * / 
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The SOCK _DGRAM type models the semantics of datagrams in network commun
ication: messages may be lost or duplicated and may arrive out-of-order. A 
datagram socket may send messages to and receive messages from multiple 
peers. The SOCK _RDM type models the semantics of reliable datagrams: mes
sages arrive unduplicated and in-order, the sender is notified if messages are lost. 
The send () and receive () operations (described below) generate 
reliable/unreliable datagrams. The SOCK_STREAM type models connection
based virtual circuits: two-way byte streams with no record boundaries. Connec
tion setup is required before data communication may begin. The 
SOCK_SEQPACKET type models a connection-based, full-duplex, reliable, 
sequenced packet exchange; the sender is notified if messages are lost, and mes
sages are never duplicated or presented out-of-order. Users of the last two 
abstractions may use the facilities for out-of-band transmission to send out-of
band data. 

SOCK_RAW is used for unprocessed access to internal network layers and inter
faces; it has no specific semantics. 

Other socket types can be defined. 

Each socket may have a concrete protocol associated with it. This protocol is 
used within the domain to provide the semantics required by the socket type. 
Not all socket types are supported by each domain; support depends on the \~, 
existence and the implementation of a suitable protocol within the domain. For 
example, within the "internet" domain, the SOCK_DGRAM type may be imple
mented by the UDP user datagram protocol, and the- SOCK _STREAM type may be 
implemented by the TCP transmission control protocol, while no standard proto
cols to provide SOCK_RDM or SOCK_SEQPACKET sockets exist. 

Sockets may be connected or unconnected. An unconnected socket descriptor is 
obtained by the socket () call: 

s = socket (domain, type, protocol); 
result int s; 
int domain, type, protocol; 

The socket domain and type are as described above, and are specified using the 
definitions from <sys/ socket. h>. The protocol may be given as 0, meaning 
any suitable protocol. One of several possible protocols may be selected using 
identifiers obtained from a library routine, getprotobynarne () . 

An unconnected socket descriptor of a connection-oriented type may yield a con
nected socket descriptor in one of two ways: either by actively connecting to 
another socket, or by becoming associated with a name in the communications 
domain and accepting a connection from another socket. Datagram sockets need 
not establish connections before use. 

To accept connections or to receive datagrams, a socket must first have a binding 
to a name (or address) within the communications domain. Such a binding may 
be established by a bind () call: 
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bind(s, name, namelen)i 
int s, namelen; 
struct sockaddr *name; 

Datagram sockets may have default bindings established when first sending data 
if not explicitly bound earlier. In either case, a socket's bound name may be 
retrieved with a getsockname () call: 

getsockname(s, name, namelen); 
int s; 
result struct sockaddr *name; 
result int *namelen; 

while the peer's name can be retrieved with getpeername () : 

getpeername(s, name, namelen); 
int S; 
result struct sockaddr *name; 
result int *namelen; 

Domains may support sockets with several names. 

Once a binding is made to a connection-oriented socket, it is possible to 
listen () for connections: 

[ list~n(S' backlog); 
_ ~nt s, backlog; 

The backlog specifies the maximum count of connections that can be simultane
ously queued awaiting acceptance. 

An accept () call: 

t = accept(s, name, anamelen); 
result int t, *anamelen; 
int Si 

result struct sockaddr *name; 

] 

returns a descriptor for anew, connected, socket from the queue of pending con
nections on s. If no new connections are queued for acceptance, the call will wait 
for a connection unless non-blocking I/O has been enabled. 

An active connection to a named socket is made by the connect () call: 

connect(s, name, namelen); 
int s, namelen; 
struct sockaddr *name; 
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Sending and Receiving Data 

Although datagram sockets do not establish connections, the connect () call 
may be used with such sockets to create an association with the foreign address. 
The address is recorded for use in future send () calls, which then need not sup
ply destination addresses. Datagrams will be received only from that peer, and 
asynchronous error reports may be received. 

It is also possible to create connected pairs of sockets without using the domain's 
name space to rendezvous; this is done with the socketpair () callI: 

socketpair(domain, type, protocol, sv); 
int domain, type, protocol; 
result int sv[2]; 

Here the returned sv descriptors correspond to those obtained with a c c ept ( ) 
and connect ( ) . 

The call 

[

PiPe (pv) ; 
. result int pv[2]; ] 
creates a pair of SOCK_ STREAM sockets in the UNIX domain, with pv [ 0] only 
writable and pv [1] only readable. 

Messages may be sent from a socket by: 

cc = sendto(s, buf, len, flags, to, tolen); 
result int cc; 
int s, len, flags, tolen; 
caddr_t buf, to; 

if the socket is not connected or: 

cc = send(s, buf, len, flags); 
result int cc; 
int s, len, flags; 
caddr_t buf; 

if the socket is connected. The corresponding receive primitives are: 

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr); 
result int *fromlenaddr; 
result int msglen; 
int s, len, flags; 
result caddr t buf, from; 

1 This release supports socketpair () creation only in the "unix" communication domain. 
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and 

msglen = recv(s, buf, len, flags); 
result int msglen; 
int s, len, flags; 
result caddr t buf; 

In the unconnected case, the parameters to and tolen specify the destination or 
source of the message, while the from parameter stores the source of the mes
sage, and *fromlenaddr initially gives the size of the from buffer and is updated 
to reflect the true length of the from address. 

All calls cause the message to be received in or sent from the message buffer of 
length len bytes, starting at address buf The flags specify peeking at a message 
without reading it or sending or receiving high-priority out-of-band messages, as 
follows: 

fdefine MSG PEEK Oxl / * peek at incoming message * / 
fdefine MSG OOB Ox2 /* process out-oj-band data * / 

It is possible to scatter and gather data and to exchange access rights with mes
sages. When either of these operations is involved, the number of parameters to 
the call becomes large. Thus the system defines a message header structure, in 
<sys/ socket. h>, which is used to contain the parameters to the calls: 

struct msghdr { 

} ; 

caddr_t msg_name; 
int msg_namelen; 
struct iov *msg_iov; 
int msg_iovlen; 
caddr_t msg_accrights; 
int msg_accrightslen; 

/ * optional address * / 
/ * size oj address * / 
/ * scatter! gather array * / 
/ * # elements in msg_iov * / 
/ * access rights sent!received * / 
/ * size oj msg_ accrights * / 

Here msg_name and msg_ namelen specify the source or destination address if the 
socket is unconnected; msg_ name may be given as a null pointer if no names are 
desired or required. The msg_iov and msg_iovlen describe the scatter/gather 
locations, as described in section 3.B.1. Access rights to be sent along with the 
message are specified in msg_accrights, which has length msg_accrightslen. In 
the "unix" domain these are an array of integer descriptors, taken from the send
ing process and duplicated in the receiver. 

This structure is used in the operations sendmsg () and recvmsg () : 
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Using readO and 
wri. te () with Sockets 

Shutting Down Halves of Full
Duplex Connections 

Socket and Protocol Options 

sendmsg(s, msg, flags); 
int s, flags; 
struct msghdr *msg; 

msglen = recvmsg(s, msg, flags); 
result int msglen; 
int s, flags; 
result struct msghdr *msg; 

The normal read () and write () calls may be applied to connected sockets 
and translated into send () and receive () calls from or to a single area of 
memory and discarding any rights received. A process may operate on a virtual 
circuit socket, a terminal or a file with blocking or non-blocking input/output 
operations without distinguishing the descriptor type. 

A process that has a full-duplex socket such as a virtual circuit and no longer 
wishes to read from or write to this socket can give the call: 

shutdown(s, direction); 
int s, direction; 

where direction is 0 to not read further, 1 to not write further, or 2 to completely 
shut the connection down. If the underlying protocol supports unidirectional or 
bidirectional shutdown, this indication will be passed to the peer. For example, a 
shutdown for writing might produce an end-of-file condition at the remote end. 

Sockets, and their underlying communication protocols, may support options. 
These options may be used to manipulate implementation specific or protocol
specific facilities. The getsockopt () and setsockopt () calls are used to 
control options: 

getsockopt(s, level, optname, optval, optlen); 
int s, level, optname; 
result caddr_t optval; 
result int *optlen; 

setsockopt(s, level, optname, optval, optlen); 
int s, level, optname; caddr_t optval; int optlen; 

The option optname is interpreted at the indicated protocol level for socket s. If a 
value is specified with optval and optlen, it is interpreted by the software operat
ing at the specified level. The level SOL_SOCKET is reserved to indicate options 
maintained by the socket facilities. Other level values indicate a particular proto
col which is to act on the option request; these values are nonnally interpreted as 
a "protocol number". 
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This section describes briefly the properties of the UNIX communications 
domain. 

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facili
ties, while SOCK _ DGRAM provides datagrams - unreliable message-style com
munications. 

Socket names are strings and the current implementation of the UNIX domain 
embeds bound sockets in the file system name space; this is a side effect of the 
implementation. 

The ability to pass UNIX descriptors with messages in this domain allows migra
tion of service within the system and allows user processes to be used in building 
system facilities. 

This section describes briefly how the Internet domain is mapped to the model 
described in this section. More information will be found in the Networking 
Implementation Notes section of Network Programming. 

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by 
the UDP protocol. Each is layered atop the transport-level Internet Protocol (IP). 
The Internet Control Message Protocol is implemented atop/beside IP and is 
accessible via a raw socket. 

Sockets in the Internet domain have names composed of the 32 bit internet 
address, and a 16 bit port number. Options may be used to provide IP source 
routing or security options. The 32-bit address is composed of network and host 
parts; the network part is variable in size and is frequency encoded. The host 
part may optionally be interpreted as a subnet field plus the host on subnet; this is 
is enabled by setting a network address mask at boot time. 

No access rights transmission facilities are provided in the Internet domain. 

The Internet domain allows the super-user access to the raw facilities of IP. 
These interfaces are modeled as SOCK RAW sockets. Each raw socket is associ
ated with one IP protocol number, and receives all traffic received for that proto
col. This allows administrative and debugging functions to occur, and enables 
user-level implementations of special-purpose protocols such as inter-gateway 
routing protocols. 

SunOS is considerably more sophisticated than the first versions of the UNIX 
system. This is true not only in terms of programming environments and tools, 
though SunOS does include most 4.3BSD enhancements and virtually all AT&T 
System V.III facilities. SunOS is oriented, at a fundamental level, to networks of 
closely linked machines. It is structurally a network system, and is designed to 
evolve with the evolution of computer network technology. 

SunOS began as 4.2BSD, developed at the University of California at Berkeley 
from an early version of UNIX. One of the major enhancements made at 
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NOTE 

4.3. Standard SunOS 
Server-Based Services 

Berkeley was the addition of support for network communication. In particular, 
network services were implemented with special-purpose daemons (server 
processes) working in close cooperation with the kernel, rather than in the kernel 
itself. SunOS has continued this line of development. Its expanding domain of 
network services - from the Network Filing System (NFS) and Network exten
sible Window System (NeWS) to its Remote Execution Facility (REX) and net
work naming service (YP) - is uniformly built upon a server-based architecture. 

When a network service is added to SunOS, it is added by means of a server pro
cess which is executed on all machines providing the service. Each server then 
communicates with the SunOS kernel and with its peers on other machines as 
necessary. Sun servers do differ in one very significant way from those which 
were inherited from Berkeley - they are usually based on Sun's Remote Pro
cedure Call (RPC) mechanism. As a consequence, they automatically benefit 
from the services provided by RPC and the External Data Representation (XDR), 
such as the data portability provided by XDR and the modularity ofRPC's 
authentication system. 

There are a number of benefits to a server-based approach to the provision of net
work services: 

o The kernel itself remains more manageable in size and complexity, and more 
clearly delimited in function. Its job is to implement the SunOS virtual 
machine on the machine that hosts it. It does not negotiate with other 
machines for the non-local resources that it needs. 

o When network services are implemented as independent server processes, 
they are easily tuned and controlled. 

o They can be invoked only when needed (see inetd(8» and thus consume 
no run-time resources when not in use. And they are easily updated to 
accommodate protocol and transport changes. Indeed, when such changes 
are made, multiple versions of the same server can be run simultaneously, 
thus allowing development to proceed without rendering old applications 
obsolete. 

The overall effect is thus an extensible environment in which new network ser
vices can be easily added to the system by building upon XDR, RPC, network 
communications and other services. Network services, then, are analogous to 
SunOS commands - anyone can add one, and when they do they are effectively 
extending the "system". 

See the Network Services section of Network Programming for more information 
about thefundamental network services. 

Networking functions contained within the SunOS kernel include the network 
and transport levels of the system networking support, the network device 
drivers, the IP and TCP protocol code and the NFS itself. Other network services 
are provided by server processes: 

/usr/etc/biod 
Block I/O daemon. Used by a NFS client to handle read-ahead and write
behind for blocks in the buffer cache. 
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/usr/etc/bootparama 
NFS boot daemon. Provides the infonnation that diskless clients need for 
booting. If the Yellow Pages aren't available, it consults either the boot
params database or / etc/bootparams. 

/usr/etc/in.comsat 
Listens to a non-standard UDP socket used for incoming mail notification, as 
enabled by the biff program. 

/usr/etc/rpc.etherd 
etherd collects, summarizes and reports statistics on packet traffic for a 
given network interface. 

/usr/etc/in.finqerd 
in. fingerd provides support for the ARPA-standard finger command, 
which displays infonnation about the current users of a given machine. 

/usr/etc/in.ftpd 
File Transfer Protocol daemon. This is the ARPA standard file transfer pro
tocol, rarely used on Suns. 

/usr/etc/inetd 
Opens sockets for all the selVers listed in / etc/ inetd. conf, and then 
starts them up when requests are made on them. 

/usr/etc/keyserv 
The DES authentication daemon. Generates and stores secret keys and con
trols access to them. Does the public-key encryption and decryption opera
tions. keyserv will not talk to anything but a local root process. 

/usr/etc/rpc.1ockd 
The network lock manager daemon. Provides System-V (SVID) compatible 
advisory file and record locking for both local and NFS mounted files. 

/usr/etc/rpc.mountd 
NSF mount daemon. Handles mount requests for files systems exported 
over the NFS. 

/usr/etc/in.named 
named is the Internet domain name server. 

/usr/etc/nfsd 
Network File System daemon. The real work is done in the kernel by way of 
a magic system call that never returns. 

/usr/etc/portmap 
Demultiplexes UDPs for Remote Procedure Calls, converting RPC program 
numbers to UDP port numbers. 

/usr/etc/rarpd 
r arpd is a daemon that responds to reverse-arp requests. 

/usr/etc/rpc.rexd 
rexd is the Sun RPC server that controls remote program execution. 
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/usr/etc/in.rexecd 
rexecd is the server for the rexec () routine. It provides remote execu
tion facilities with authentication based on user names and encrypted pass
words. 

/usr/etc/in.r1oqind 
Remote Login daemon. 

/usr/etc/rrm:. 
Remote magnetic tape access. Used by the remote dump and restore pro
grams to manipulate a tape driver over the network. 

/usr/etc/in.routed 
Routing table update daemon. Uses a non-standard UDP protocol to update 
kernel routing tables. 

/usr/etc/rpc.rquotad 
rquotad returns quotas for a user of a local file system which is mounted 
by a remote machine over the NFS. The results are used by quota to 
display remote file systems user quotas. 

/usr/etc/in.rshd 
Remote shell daemon. Non-standard TCP protocol to allow remote execu
tion with authentication based on privileged port numbers. 

/usr/etc/rpc.rusersd 
Remote user daemon. Necessary to support the ruser s command. 

/usr/etc/rpc.rwa11d 
Remote write-to-all daemon. Handles rwall and shutdown requests. 

/usr/etc/in.rwhod 
Remote who daemon. Generates broadcasts periodically about the status of 
logged-in users, and listens to the broadcasts of other servers on the local 
network and maintains the database that is printed by rwho. Not used much 
in the Sun environment since the protocol involves lots of broadcast packets. 

/usr/1ib/sendmai1 
Provides mail transport through the Simple Mail Transfer Protocol (SMTP). 

/usr/etc/rpc.sprayd 
Spray daemon. Used by the spray command for network diagnosis. 

/usr/etc/rpc.statd 
Remote status daemon. The primary purposes for this server are returning 
kernel performance statistics for perfmeter, and responding to requests 
from rup. 

/usr/etc/in.sysloq 
Reads a datagram (UDP) socket and logs information it receives according 
to a configuration file. 

/usr/etc/in.talkd 
Listens on a UDP port, and negotiates talk TCP connections. This protocol 
doesn't even work between Vaxes and Suns. 
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/usr/etc/in.te~netd 
The ARPA-standard remote terminal service. 

/usr/etc/in.tftpd 
Trivial file transfer protocol daemon. Can be used for simple, non
authenticated file transfers. Also used to load boot files. 

/usr/etc/in.timed 
The ARPA-standard time service. Note that this service only provides the 
system time to clients who request it, and is not a full network synchroniza
tion service. 

/usr/etc/in.tnamed 
The tnamed daemon supports the DARPA Name Server Protocol. 

/usr/etc/ypbind 
ypbind remembers information that lets client processes on a single node 
communicate with some ypserv process. It must run on every machine 
which has yP client processes. 

/usr/etc/rpc.yppasswdd 
Runs on yP masters only. Supports password change requests for the Yel
low Pages password database. 

/usr/etc/ypserv 
Runs on all yP servers. The ypserv daemon's primary function is to look 
up information in the local Yellow Pages database. 

/usr/etc/rpc.ipa~~ocd 

(Sun386i only). The rpc. ipallocd daemon maps Ethernet addresses to 
IP addresses, allocating temporary IP addresses when necessary. 

/usr/etc/rpc.pnpd 
(Sun386i only). The rpc. pnpd daemon configures new systems onto a 
Sun386i network, and distributes configuration information for systems 
already on the network. It also provides configuration RPCs for diskless 
clients. 
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5.1. The SunOS Virtual 
Memory System 

Virtual Memory, Address 
Spaces and Mapping 

5 
Memory Management 

SunOS includes a complete set of memory-mapping mechanisms, which it uses 
as the basis of system selVices like shared libraries and System V compatible 
shared memory. Process address spaces are composed of a vector of memory 
pages, each of which can be independently mapped and manipulated. Typically, 
the system presents the user with mappings that simulate the traditional UNIX 
process memory environment, but other views of memory are useful as well. 

The SunOS memory-management facilities: 

o Unify the system's operations on memory. 

o Provide a set of kernel mechanisms powerful and general enough to support 
the implementation of fundamental system selVices without special-purpose 
kernel support. 

o Maintain consistency with the existing environment, in particular using the 
UNIX file system as the name space for named virtual-memory objects. 

The system's virtual memory consists of all available physical memory 
resources. (Examples include local and remote file systems, processor primary 
memory, swap space and other random-access devices). Named objects in the 
virtual memory are referenced though the UNIX file system. This does not imply 
that all file system objects are in the virtual memory, but simply that all named 
objects in the virtual memory are named in the file system. Some virtual 
memory objects, such as private process memory and System V shared memory 
segments, do not have names. 

A process's address space is defined by mappings onto system virtual-memory 
objects (usually files). Each mapping is constrained to be sized and aligned with 
the page boundaries of the system on which the process is executing. Each page 
may be mapped (or not) independently. Only process addresses which are 
mapped to some system object are valid, for there is no memory associated with 
processes themselves-all memory is represented by virtual memory objects. 

Each object in the virtual memory has an object address space defined by some 
physical storage. A reference to an object address accesses the physical storage 
that implements the address within the object. The virtual memory's associated 
physical storage is thus accessed by transforming process addresses to object 
addresses, and then to the physical store. 

sun 
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Networking, Heterogeneity 
and Coherence 

A given process page may map to only one object, although a given object 
address may be the subject of many process mappings. An important characteris
tic of a mapping is that the object to which the mapping is made is not affected 
by the mere existence of the mapping. Thus, it cannot, in general, be expected 
than an object has an "awareness" of having been mapped, or of which portions 
of its address space are accessed by mappings; in particular, the notion of a 
"page" is not a property of the object. Establishing a mapping to an object sim
ply provides the potential for a process to access or change the object's contents. 

The establishment of mappings provides an access method that renders an object 
directly addressable by a process. Applications may find it advantageous to 
access the storage resources they use directly rather than indirectly through 
read () and write (). Potential advantages include efficiency (elimination of 
unnecessary data copying) and reduced complexity (single-step updates rather 
than the read () ,modify buffer, write () cycle). The ability to access an 
object and have it retain its identity over the course of the access is unique to this 
access method, and facilitates the sharing of common code and data. 

Sun's VM system is designed to fit well with the larger Sun heterogeneous 
environment. This environment makes extensive use of networking to access file 
systems-file systems that are now part of the system's virtual memory. Sun's 
NFS-based networks are not constrained to consist of similar hardware or to be 
based upon a common operating system; in fact, the opposite is encouraged, for 
such constraints create serious barriers to accommodating heterogeneity. While a 
given set of processes may apply a set of mechanisms to establish and maintain 
the properties of various system objects- properties such as page sizes and the 
ability of objects to synchronize their own use-a given operating system should 
not impose such mechanisms on the rest of the network. 

As it stands, the access method view of a virtual memory maintains the potential 
for a given object (say a text file) to be mapped by systems running Sun's 
memory management system and also to be accessed by systems for which vir
tual memory and storage management techniques such as paging are totally 
foreign, such as PC-DOS. Such systems can continue to share access to the 
object, each using and providing its programs with the access method appropriate 
to that system. The unacceptable alternative would be to prohibit access to the 
object by less capable systems. 

Another consideration arises when applications use an object as a communica
tions channel, or otherwise attempt to access it simultaneously. In both of these 
cases, the object is being shared, and thus the applications must use some syn
chronization mechanism to guarantee the coherence of their transactions with it. 
The scope and nature of the synchronization mechanism is best left to the appli
cation to decide. For example, file access on systems which do not support vir
tual memory access methods must be indirect, by way of read () and 
wr it e ( ). Applications sharing files on such systems must coordinate their 
access using semaphores, file locking or some application-specific protocols. 
What is required in an environment where mapping replaces read and write as 
the access method is that an operation comparable to fsync be provided to sup
port atomic update operations . 

• \sun 
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The nature and scope of synchronization over shared objects is application
defined from the outset. If the system attempted to impose any automatic seman
tics for sharing, it might prohibit other useful forms of mapped access that have 
nothing whatsoever to do with communication or sharing. By providing the 
mechanism to support coherency, and leaving it to cooperating applications to 
apply the mechanism, the needs of applications are met without erecting barriers 
to heterogeneity. Note that this design does not prohibit the creation of libraries 
that provide coherent abstractions for common application needs. Not all 
abstractions on which an application builds need be supplied by the "operating 
system". 

The applications programmer gains access to the facilities of the VM system 
through several sets of system calls. This section briefly summarizes these calls. 
For details, see the SunOS Reference Manual. 

caddr t 
mmap(addr, len, prot, flags, fd, off) 

caddr_t addr; 
int len, prot, flags, fd; 
off_t off; 

mma p () establishes a mapping between the process's address space at an 
address addr for len bytes to the object specified by fd at offset ojffor len bytes. 
(The value of paddr is an implementation-dependent function of the parameter 
addr and the value ofjlags, further described below). A successful call to 
mmap () returns paddr as its result. The address ranges covered by [paddr, 
paddr + len) and [off, off + len) must be legitimate for the address space of a pro
cess and the object in question, respectively. The mapping established by 
mma p () replaces any previous mappings for the process's pages in the range 
[paddr,paddr+ len). 

The parameter prot determines whether read, execute, write or some combination 
of accesses are permitted to the pages being mapped. The values desired are 
expressed by or'ing the flags values PROT_READ, PROT_EXECUTE, and 
PROT_WRITE. A write access must fail if PROT_WRITE has not been set, 
though its behavior can be influenced by setting MAP_PRIVATE in thejlags 
parameter. 

The jlags parameter provides other information about the handling of mapped 
pages. 

MAP _SHARED and MAP _PRIVATE specify the mapping type, and one of them 
must be specified. If MAP_SHARED is specified, write references will change the 
mapped pages; if MAP _PRIVATE is specified, an initial write reference will 
create a private copy of the mapped pages and redirect the mapping to the copy. 
The mapping type is retained across a fork (). The mapping type only affects 
the disposition of stores by the calling process - there is no isolation from 
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changes made by other processes. If an application desires such isolation, it 
should use read () to make a copy of the data it wishes to keep protected. 

MAP _FIXED infonns the system that the value of paddr must be addr, exactly. 
The use of MAP _FIXED is discouraged, as it may prevent an implementation 
from making the most effective use of system resources. When MAP _F IXED is 
not set, the system uses addr as a hint to arrive at paddr. The paddr so chosen 
will be an area of the address space that the system deems suitable for a mapping 
of len bytes to the specified object. An addr value of zero grants the system 
complete freedom in selecting paddr, subject to constraints described below. A 
non-zero value of addr is taken as a suggestion of a process address near which 
the mapping should be placed. When the system selects a value for paddr, it will 
never place a mapping at address 0, nor will it replace any extant mapping, nor 
map into areas considered part of the potential data or stack "segments". The 
system strives to choose alignments for mappings that maximize the perfonnance 
of the its hardware resources. 

msync(addr, len, flags) 
caddr_t addr; 
int len, flags; 

msync () supports applications which require coherency. It causes all modified 
copies of pages over the range [addr, addr + len) to be flushed to the objects 
mapped by those addresses. msync () optionally invalidates such cache entries 
so that further references to the pages will cause the system to obtain them from 
their penn anent storage locations. The flags argument provides a bit-field of 
values which influences msync () 's behavior. The bit names and their interpre
tations are: 

MS ASYNC Return immediately 
MS INVALIDATE Invalidate caches 

MS_ASYNC causes msync () to return immediately once all I/O operations are 
scheduled; nonnally, msync () will not return until all I/O operations are com
plete. MS _ INVALIDATE causes all cached copies of data from mapped objects 
to be invalidated, requiring them to be re-obtained from the object's storage upon 
the next reference. 

mprotect(addr, len, prot) 
caddr_t addr; 
int len, prot; 

mprotect () has the effect of assigning protection prot to all pages in the 
range [addr, addr + len). 
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munmap(addr, len) 
eaddr_t addr; 
int len; 

munmap () has the effect of removing all pages in the range [addr, addr + len) 
from the address space of the calling process. 

(pageSize = getpagesize(); 

getpagesize () returns the system-dependent size of a memory page. 

mineore(addr, len, vee) 
eaddr_t addr; 
int len; 
char *prot; 

] 

mincore () determines the residency of the memory pages in the address space 
covered by mappings in the range [addr, addr + len). The status is returned as a 
char-per-page in the character array referenced by *vec (which the system 
assumes to be large enough to encompass all the pages in the address range) 

The AT&T System V Interface Definition (SVID) defines a number of operations 
on "shared memory segments". These operations are all supported in SunOS 
exactly as defined in the SVID. 
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5.3. Address Space Layout 

"Segments" 

Figure 5-1 

Traditionally, the address space of a UNIX process has consisted of three seg
ments: one each for write-protected program code (text), a heap of dynamically 
allocated storage (data), and the process's stack. Text and data segments grow 
from higher to lower address spaces, while the stack grows from lower to higher 
addresses. This can be illustrated as follows: 

Traditional UNIX Address-space Layout 

Text 

Data 

Stack 

Under SunOS, a process's address space is simply a vector of pages and there 
exists no clear division between different address-space segments. Process text 
and data spaces are simply groups of pages.2 There are often multiple text and 
data "segments", some belonging to specific programs and some belonging to 
code running in shared libraries. An illustration of one possible layout of an 
address space is: 

2 For compatibility purposes, the system maintains address ranges that "should" belong to such segments to 
support operations such as extending or contracting the data segment's "break". These are initialized when a 
program is initiated with execve ( ) . 
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Figure 5-2 SunOS Address-space Layout 

<-- Page 0 left unmapped 

~Forsome execve'ed program 
text 
text 
Gata 
Gata 

<-- Unmapped Area 

text 
Gata For Shared Libraries 

text 
Gata 
aata 

<-- Other Voids 
linker 

.............. .. ... .. Stack Limit 

t 
stack 
stack 
stack 

Process address spaces are often constructed through dynamic linking when a 
program is execve'ed. As can be seen from the above picture, the system 
address space is sparsely populated, with data and text pages intenningled. Stack 
space remains in high address space, and grows down to the stack limit as stack 
pages are allocated. By convention, page 0 is not used. Link editing can produce 
errors; for details see the Shared Libraries chapter of the Programming Utilities 
and Libraries. 

In SunOS, as in traditional UNIX systems, process memory can be viewed as 
composed of three logical "segments"- text, data and stack. These segments 
behave as one would expect, the text segment is read-only and shared, while the 
data and stack segments are private to the process. The stack expands as neces
sary to accommodate the process's stack usage. 

The process can manipulate its own data and stack segments by calling br k ( ) 
and sbrk (): 

caddr_t brk(addr) 
caddr_t addr; 

caddr t = sbrk(incr); 
int incr; 

brk () sets the system's idea of the' lowest data segment location not used by the 
caller to addr (rounded up to the next multiple of the system's page size). 
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sbrk () , the alternate function, adds incr bytes to the caller's data space and 
returns a pointer to the start of the new data area. 
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6.1. Introduction 

Definition 

Functionality 

6 

Lightweight Processes 

This tutorial provides some examples of how to use the lightweight process 
library. Although the term "lightweight processes" is often used, it is really a 
misnomer since the fundamental property of lightweight processes is not that 
they are somehow "lighter" than ordinary processes, but that a lightweight pro
cess represents a thread of control not bound to an address space. If threads 
appear to operate more efficiently than ordinary SunOS processes, it is because 
threads communicate via shared memory instead of a filesystem. Because 
threads can share a common address space, the cost of creating tasks and inter
task communication is substantially less than the cost of using more "heavy
weight" primitives. The availability of lightweight processes provides an 
abstraction well-suited to writing programs which react to asynchronous events 
such as servers. In addition, lightweight processes are useful for simulation pro
grams which model concurrent situations. 

The idea is to provide a process abstraction: a thread is a data type representing a 
flow of control. A number of operations are available to manipulate threads, 
including ways to control their scheduling and communication. Lightweight 
processes exist independently of virtual memory, I/O, resource allocation, and 
other operating system -supported objects, but are able to smoothly work with 
these objects. 

The lightweight process abstraction for managing asynchrony is superior to the 
UNIX signal abstraction. Under the UNIX system, a signal causes a sort of con
text switch (to a new instruction and optionally, to a new location on the stack) 
but the thread is the same: for example, you can longjmp () to the main pro
gram (the signal handler and main program can't run in parallel). Critical sec
tions are implemented by disabling interrupts. With lightweight processes, the 
only way to manage an asynchronous activity is via a thread. There are no asyn
chronous exceptions in a thread. Critical sections are implemented with moni
tors. There is no need to lock out interrupts, with the concomitant possibility of 
losing information while in the critical section. 

The Sun lightweight process library provides primitives for manipulating 
threads, as well as for controlling all events (interrupts and traps) on a processor. 
The present library is supported for user-level processes only. This means that 
the time slice given to a process by the operating system is shared by all the 
threads within that process. Further, L WP objects are not accessible outside of 

sun 
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Tutorial Goals 

6.2. Threads 

the containing UNIX process. Briefly, the primitives supported by the library 
include: 

o Thread creation, destruction, status gathering, scheduling manipulation, 
suspend and resume 

o Multiplexing the clock (any number of threads can sleep concurrently) 

o Individualized context switching (e.g., it is possible to specify that a given 
set of threads will touch floating point registers and only those threads will 
context switch these registers) 

o Monitors and condition variables to synchronize threads 

o Extended rendezvous (message send-receive-reply) between threads 

o An exception handling facility that provides both notify and escape excep
tions 

o A way to map interrupts into extended rendezvous 

o A way to map traps into exceptions 

o Utilities to allocate red-zone-protected stacks, and to provide some stack 
integrity checking for environments that lack sophisticated memory manage
ment 

Scheduling is by default, priority-based, non-preemptive within a priority. How
ever, sufficient primitives are available that it is possible to write your own 
scheduler. For example, to provide a round-robin time-sliced scheduler, a high
priority thread may periodically reshuffle the queue of time-sliced threads which 
are at a lower priority. Although pure coroutine scheduling is possible, it is not 
required and purely preemptive scheduling may be used. Threads currently lack 
kernel support, so system calls still serialize thread activity, although the non
blocking I/O library (libnbio.a) mitigates this problem somewhat. When a set of 
threads are running, it is assumed that they all share memory. 

This tutorial provides some practical examples of how to program using light
weight processes. Also included is some discussion of the rationale for the light
weight process primitives. Syntax details of the lightweight process primitives 
are not supplied in this tutorial, though they can be found in the SunOS Reference 
Manual. 

The lightweight process mechanism allows several threads of control to share the 
same address space. Each lightweight process is represented by a procedure 
which will be converted into a thread by the lwp _create () primitive. Once 
created, a thread is an independent entity, with its own stack as supplied by its 
creator. lwp _create () performs a number of actions: a thread context is allo
cated, the stack is initialized, and the thread is made eligible to run. A collection 
of threads runs within a single ordinary process. This collection is sometimes 
called a pod. 

Lightweight processes (LWP's or threads) are scheduled by priority. It is always 
the case that the highest priority non-blocked thread is executing. Threads may 
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block on certain occurrences, such as the arrival of a message or the procurement 
of a monitor lock. Within a priority, threads execute on a first-come, first-served 
basis. Thus, if two threads are created at the same priority, they will execute in 
the order of creation. 

Here is an example of how to do something simple with lightweight processes. 
The program below creates a thread which prints out the "hello world" message 
and then terminates (by "falling through" the procedure). main () becomes a 
lightweight process as soon as aLWP primitive (here, pod_setmaxpri()) is 
called. Note that main () is created with a priority OfMAXPRIO so that it may 
set things up as it wishes before allowing other threads to run. 

*include <lwp/lwp.h> 
*include <lwp/stackdep.h> 
*define MAXPRIO 10 
main (argc, argv) 

int argc; 
char **argv; 

thread_t tid; 
int task(); 

printf("main here\n"); 
(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(1000, 2); 
lwp_create(&tid, task, MAXPRIO, 0, 

lwp_newstk(), 0); 

task () 
printf("hello world\n"); 

/* 1 */ 
/* 2 */ 
/* 3 */ 

/* 4 */ 

/ * now, "fall through" and terminate this thread * / 

The command to compile this program (call it foo.c) is: 

example CC -0 foo foo.c -llwp 

Let's go through this program line by line. We begin by printing a message 
"main here" at line 1. Then, pod _setmaxpri () turns main () into a light
weight process (as it's the first L WP primitive to be called). 
pod _ setmaxpr i () also specifies the maximum scheduling priority: in this 
case, 10. The range of scheduling priorities 1..10 is now available to the client. 
If we didn't use pod_setmaxpri () the available priority would be just 
MINPRIO. Now, main () is a thread running at a priority of 10, the maximum 
priority. In other words, main () will execute until it explicitly blocks or other
wise yields control to another thread. 

lwp _setstkcache () initializes a cache of stacks that can be used by subse
quent lwp_newstk () calls. lwp_newstk () will return a stack of at least 
the size specified in the lwp_setstkcache () call (here, 1000 bytes), and this 
stack is red-zone protected. The second argument to lwp _ setstkcache () 
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Stack Size 

Protecting Against Stack 
Overflow 

specifies how big the cache should be initially (how many stacks it should con
tain). Larger numbers will require more memory, but will make cache faults less 
likely. On a fault, an additional cache of the same size will be allocated. A stack 
allocated from the stack cache will automatically be freed when the thread that 
uses it dies. Allocation from this cache is almost as efficient as using statically 
allocated stacks. 

At line 4, we create a new thread. This thread will begin execution at task () , 
have a scheduling priority of 10, use the stack cache for a stack, and take no 
arguments initially. Even though it will run at the same priority as main () , 
task 0 will not run until main () relinquishes control because of the FCFS 
scheduling policy for threads at the same priority, and t ask () is at the same 
priority as main (). (It is not a good programming practice to rely on the order
ing of threads within a priority since this assumption may not hold on a multipro
cessor or in the presence of external scheduling). The identity of the new thread 
is returned in tid. This identity may be used in subsequent L WP primitives. 

When the main () thread "falls through", it tenninates. At this point, task () 
will run, print its message, and tenninate. The L WP library will notice that no 
more threads remain, and the program will tenninate. 

Be careful not to confuse threads with ordinary heavyweight processes. For 
example, there are no inheritance rules about lightweight processes, and light
weight processes do not have their own set of descriptors. 

A major problem is to detennine how big to make the thread stacks. Once this 
detennination is made, you can decide how or if you need protection against 
exceeding this limit. UNIX presents the same problem to the user, but it rarely 
causes trouble because the maximum stack length is very big. Allocating large 
stacks is not a big perfonnance drain because pages are onI y allocated if actually 
used. Hence, you can allocate very large stacks fairly casually. 

lwp _ newstk () automatically allocates red-zone protected stacks (references 
beyond the stack limit will generate a SIGSEGV event). There are two ways to 
ensure stack integrity when not using lwp_newstk (). One way is to use the 
CHECK () macro at the beginning of each procedure (before any locals are 
assigned), in conjunction with the lwp _ checkstkset () primitive. If the 
procedure exceeds the thread stack limit, the procedure will return and set a glo
bal variable. Another way is to use the lwp_stkcswset () primitive. This 
enables stack checking on context switching. Although this is transparent to the 
client programs, it may not detect errors until after the stack limit has been 
exceeded. Thus, with 1 wp _ s t kc s w set ( ) , an error is considered fatal. 
CHECK () detects errors before any damage is done, so error recovery is possi
ble. 

It is possible to assign a statically allocated stack to a thread. Thus, in the pro
gram above, we could declare a stack as follows, using the macros defined in 

Revision A, of 9 May 1988 



Coroutines 

Chapter 6 - Lightweight Processes 75 

stackdep. h to declare the stack portably. MINSTACKSZ () is added to 
include any stack room needed by the L WP library to execute the L WP primi
tives. 

#include <lwp/lwpmachdep.h> 
#include <lwp/stackdep.h> 

stkalign_t stack[lOOO+MINSTACKSZ]; 
main () 
{ 

int task(); 
thread_t tid; 

(void)pod_setmaxpri(MAXPRIO); 
lwp_create(&tid, task, MAXPRIO, 0, STKTOP(stack), 0); 

It is possible to use threads as pure coroutines in which one thread explicitly 
yields control to another. lwp_yield () allows a thread to yield to either a 
specific thread at the same priority, or the next thread in line at the same priority. 
Here is an example of three coroutines: main (), coroutine (), and 
other (). The result should be the numbers 1 through 7 printed in sequence. 
In the case where a generic yield is done (lwp_yield (THREADNULL»), the 
current thread goes to the end of its scheduling queue. When a specific yield is 
done, the specified thread butts in front of the current one at the front of the 
scheduling queue. Since we are just using coroutines, a single priority 
(MINPRIO) is sufficient and we do not increase the number of available priori
ties with pod_setmaxpri (). 

#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 

thread t col; 
thread t co2; 
thread t c03; 
main (argc, argv) 

int argc; 
char **argv; 

/ * main's tid * / 
/ * coroutine's tid * / 
/ * other's tid * / 

int coroutine(), other(); 
lwp_self(&col); 

lwp_setstkcache(lOOO, 3); 
lwp_create(&c02, coroutine, MINPRIO, 0, 

lwp_newstk(), 0); 
lwp_create(&c03, other, MINPRIO, 0, lwp_newstk(), 0); 
printf(nl\nn); 
lwp_yield(THREADNULL); /* yieldtocoroutine */ 
printf(n4\nn); 
lwp_yield(c03); /* yield to other */ 
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printf(n6\nn); 
exit(O); 

coroutine () 
printf(n2\nn); 
if (lwp_yield(THREADNULL) < 0) 

lwpyerror(nbad yieldn); 
return; 

printf(n7\nn); 

other () 
printf(n3\nn); 
lwp_yield(THREADNULL); 
printf(n5\nn); 

There are three ways to provide scheduling control of threads to the client. One 
way is to do nothing and simply provide the client a pointer to a thread context 
which can be scheduled at will. This method suffers from the fact that most 
clients don't want to be bothered by constructing their own scheduler from 
scratch. Another way to do it is to provide a single scheduling policy, with very 
little client control over what runs next. The UNIX system provides such a pol
icy. While this is the simplest (from the point of view of the client) way to go, it 
makes it difficult to implement policies that take into account the differing 
response time needs of client threads. We chose to take a middle ground in an 
effort to avoid these problems. There is a default scheduling policy, but enough 
primitives are provided that it is possible to construct a wide variety of schedul
ing policies based on it. 

It is possible to custom-build your own scheduler by using the primitives 
lwp_suspend(),lwp_yield(),lwp_resume(),lwp_setpri(),and 
lwp_resched (). lwp_suspend () may also be used in debugging, to 
ensure that a thread is stopped before inspecting it. Here, we give an example of 
how to build a round-robin time-sliced scheduler. The idea is to have a high 
priority thread act as a scheduler, with the other threads at a lower priority. This 
scheduler thread simply sleeps for the desired quantum. When the quantum 
expires, the scheduler issues a lwp _resched () command for the priority of 
the scheduled threads. This causes a reshuffling of the run queue at that priority. 

#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 
#define MAXPRIO 10 
main (argc, argv) 

int argc; 
char **argv; 

int scheduler(), task(), i; 
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(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(1000, 5); 
(void) lwp_create«thread_t *)0, scheduler, MAXPRIO, 0, 

lwp_newstk(), 0); 
for (i = 0; i < 3; i++) 

(void) lwp_create«thread_t *)0, task, MINPRIO, 0, 
lwp_newstk(), 1, i); 

exit(O); 

scheduler () 
struct timeval quantum; 
quantum. tv_sec = 0; 
quantum.tv_usec = 10000; 
for ( ; ;) { 

lwp_sleep(&quantum); 
lwp_resched(MINPRIO); 

/ * these tasks are scheduled round-robin, preemptive * / 
task (arg) { 

for (; ;) 
printf("task %d\n", arg); 

A thread can pretend to be the only activity executing on its machine even 
though many threads are running. The L WP library is the entity that provides 
this illusion. As such, the L WP library provides for context switches between 
threads which cause volatile machine resources to be multiplexed so that each 
thread operates with its own set of machine resources. In many cases, a context 
switch requires only that machine registers and the stack be multiplexed. In 
other cases, floating point state, memory management registers, and even 
software state may be multiplexed as well. The L WP library allows threads to 
have differing amounts of switchable state to efficiently allow processes with dif
ferent resource needs to coexist. 

In addition to switchable state, a thread will possess state that is updated by other 
primitives. This per-thread state includes such information as messages sent to a 
thread, and monitor locks it holds. The only per-thread state maintained by the 
library is that used to support the L WP primitives, whereas heavyweight 
processes entail a considerable amount of per-process state. With threads, this 
amount of state is much smaller with the intent that only those threads which 
need to should maintain additional state. Thus, operating-system-specific infor
mation such as signal state, accounting information, and file descriptors is not 
found in the thread context. It is up to the clients to provide as much "weight" as 
is required. 

The reason that special contexts are not directly incorporated into the context of a 
thread is that not all threads will use these contexts and there is no reason to 
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make a thread pay for something it won't use. The LWP library will allocate a 
new context buffer for each special context a thread is initialized with, and pass a 
pointer to this context to the save and restore routines defined for this context. 
The id of the previous and new threads to use the context are also passed in, in 
case the save and restore routines maintain per-thread infonnation about a special 
context. This infonnation could be used, for example, by a memory
management special context to avoid doing work if the previous and current 
threads access the exact same memory management registers. 

To use the special context mechanism, you first define a special context with the 
1 wp _ ct x s et () primitive. This requires that you figure out how to save and 
restore the state required by your context and provide procedures to do this. In 
the example below, which context-switches the C-library global errno, the rou
tines_libc_save () and_libc_restore () are provided, and the con
text they will save into and restore from is of type libc_ctxt_t. The routine 
libcenable () is used to define the context, and the global LibcCtx 
remembers the cookie that defines the context. 

Once a special context is defined, you may initialize any thread to use the 
resource multiplexed by the special context by using 1 wp _ ctxini t ( ). The 
initialization of a given thread to use a special context can be done directly, or, if 
the resource pennits, by catching a trap when the resource is first used by a 
thread. In the example below, we expect that each thread accessing errno will 
be initialized via libcset () to use the speciallibc context. Threads protected 
with this special context can read errno without fear that another thread can 
change errno (e.g., via a system call) from underneath them. Because this 
errno multiplexing is quite useful, it is available in the routine 
1 wp _libc set () which does all of the work for you. 

typedef struct libc_ctxt_t 
int libc_errno; 

} libc_ctxt_t; 
static int LibcCtx; 

/ * enable libc special contexts * / 
libcenable ( ) 
{ 

extern void ___ libc_save(); 
extern void ___ libc_restore(); 

LibcCtx = lwp_ctxset( ___ libc_save, ___ libc_restore, 
sizeof (libc_ctxt_t), TRUE); 

/ * set a thread to have libc context * / 
lwp_libcset(tid) 

thread_t tid; 

(void) lwp_ctxinit(tid, LibcCtx); 

/* routines/or saving/restoring global library data. */ 
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void 
__ I ibc_s ave (cntxt, old, new) 

caddr_t cntxt; 
thread told; 
thread_t new; 

extern int errno; 
fifdef lint 

old = old; 
new = new; 

fendif lint 

void 
__ libc_restore(cntxt, old, new) 

caddr_t cntxt; 
thread told; 
thread_t new; 

extern int errno; 
fifdef lint 

old = old; 
new = new; 

fendif lint 
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errno; 

errno = «libc_ctxt_t *)cntxt)->libc_errno; 

There are two predominant types of process synchronization in use today: the 
rendezvous paradigm and the monitor paradigm. The lightweight process pack
age provides both, in part to avoid denying a large number of people their favor
ite primitives, and in part because each has compelling reasons. 

Rendezvous has the advantages that it maps cleanly to Sun interprocess
communications facilities (Sun RPC), can potentially support communication 
across different address spaces, is higher-level than monitors because both data 
transmission and synchronization are combined into a single concept, and is a 
natural way to map asynchronous events into higher-level abstractions since mes
sages are reliable and conditions are not. 

The big advantage with monitors are their familiarity to UNIX programmers (via 
similarity to sleep () and wakeup () in the kernel), and the efficiency win 
when protected data is accessed: with rendezvous, a context switch is always 
required; with monitors, a context switch is only necessary if the monitor lock is 
busy at the time of access. 
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Rendezvous Semantics 

Messages and Threads 

To use messages, one thread issues a msg_ send () and another thread issues a 
msg_ recv (). Whichever thread gets to the corresponding primitive first waits 
for the other, hence the tenn rendezvous. When the rendezvous takes place, the 
sender remains blocked until the receiver decides to issue a msg_ reply () . 
Immediately aftermsg_reply () returns, both threads are unblocked. 

It is the responsibility of the sender to provide the buffer space both for a mes
sage to be sent to the receiver, and for a reply message from the receiver. Either 
of these messages may be empty. While the sender is blocked, the receiver has 
access to the buffers provided by the sender. When the receiver replies, she is 
undertaking not to use these buffers any more: the transaction is complete. If 
memory management was used to share address spaces, the sender' sbuffers 
would be mapped into the receiver's address space only for the duration of the 
rendezvous. Because both send and receive buffers are provided by the sender, 
there is no need for further synchronization to tell the receiver that her reply was 
accepted by the sender. 

Sometimes it is desired to perfonn a non-blocking send in which the sender does 
not block on a send request. We did not provide this as a primitive because it is 
easily implemented by using an additional thread to do the send. 

Messages are sent to threads, and each thread has exactly one queue associated 
with it to receive messages on. We could have provided message queues (ports) 
as objects not bound to processes. This would give more flexibility, but would 
require a more complex selection primitive to really justify the extra functional
ity. In addition, it would complicate the implementation because we desire to 
tenninate a rendezvous on behalf of the remaining thread should one of the ren
dezvousing threads be destroyed. 

To receive a rendezvous request, a process specifies the identity of the sending 
thread it wishes to rendezvous with. Optionally, a receiver may specify that any 
sender will do. There is no other fonn of selection available. If more power is 
needed, the client can build server processes which act as intelligent ports capa
ble of perfonning complex selection criteria. Note that the id of the sending 
thread or agent is supplied to the receiver by the L WP library, so that it is not 
possible to forge the identity of the sender. 

Here is an example of basic message passing. main () creates two threads, 
sender () and receiver (). Because it has a higher priority, the receiver 
starts first and blocks, awaiting a rendezvous. Then, the sender runs and prepares 
a message. However, the sender sleeps for 2 seconds before sending it. In this 
time, the receiver gave up waiting and tried again, now waiting with infinite pati
ence. The sender wakes up a second later and attempts to rendezvous with the 
receiver. This rendezvous immediately succeeds, the receiver reads the message, 
prepares a reply, and replies. At this point, the rendezvous is complete and both 
sender and receiver are runnable processes. Because the receiver has a higher 
priority, the message "done receiving" is printed ahead of the "got reply" mes
sage. Note that the receiver should not touch any of the data mentioned in the 
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send once the reply has been made. 

#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 
#include <lwp/lwperror.h> 
#define MAXPRIO 10 

thread_t c1, c2; 

main (argc, argv) 
int argc; 
char **argv; 

int sender(), receiver(); 

(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(1000, 3); 
lwp_create(&c1, sender, MINPRIO, 0, lwp_newstk(), 0); 
lwp_create(&c2, receiver, MINPRIO+1, 0, 

lwp_newstk(), 0); 
exit(O); 

sender () 
char out[20); 
char in[30); 
int i; 
struct timeval wait; 

wait.tv_sec = 2; 
wait.tv_usec = 0; 

for (i = 0; i < 19; i++) 
out[i) = (int) 'A' + i; 

out [19] = , '; 
lwp_sleep(&wait); 
if (msg_send(c2, out, 20, in, 26) -1) 

lwpyerror (nmsg_sendn ) ; 
return; 

printf(ngot reply %s\nn, in); 

receiver () 
int i; 
struct timeval wait; 
char *arg, *res; 
int asz, rsz; 
thread_t sender; 

wait. tv_sec = 1; 
wait.tv usec = 0; 
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Intelligent Servers 

/ * try one second * / 
sender = THREADNULL; /* take message/rom anyone * / 
if (msg_recv(&sender, &arg, &asz, &res, &rsz, &wait) 

== -1) { 
if (lwp_geterr() != LE_TIMEOUT) 

lwpyerror ("msg_recv") ; 
return; 

/ * wait/orever or until message arrives from sender * / 
if (msg_recv(&sender, &arg, &asz, &res, &rsz, 

INFINITY) == -1) { 
lwp yerror ("msg_ recv") ; 
return; 

printf("got message %s\n", arg); 
for (i = 0; i < rsz - 1; i++) 

res[i] = (int)'B' + i; 
res[rsz - 1] = , '; 
msg_reply(sender); 
printf("done receiving\n"); 

Because the reply can be done at any time, a receiver can receive a number of 
messages before replying to them. This makes it possible to implement complex 
selVers. In the following example, processes send requests in a random order to a 
selVer thread. The selVer serializes the requests and processes them in the order 
associated with the request. 

*include <lwp/lwp.h> 
*include <lwp/stackdep.h> 
thread t pt; 

typedef struct port_msg { 
int order; 
char *msg; 

port_msg; 

*define MAXPRIO 10 
main (argc, argv) 

int argc; 
char **argv; 

int process(); 
int port () ; 

(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(lOOO, 3); 

/ * argument to new thread is order # * / 
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lwp_create«thread_t *)0, process, MINPRIO, 0, 
lwp_newstk(), 1, 3); 

lwp_create«thread_t *)0, process, MINPRIO, 0, 
lwp_newstk(), 1, 0); 

lwp_create«thread_t *)0, process, MINPRIO, 0, 
lwp_newstk(), 1, 2); 

lwp_create«thread_t *)0, process, MINPRIO, 0, 
lwp_newstk(), 1, 1); 

lwp_create(&pt, port, MAXPRIO, 0, lwp_newstk(), 0); 
exit(O); 

process (id) 
int id; 

1* 

port_msg m; 
char buf[10]; 

m.order = id; 
m.msg = buf; 
printf("sending %d\n", id); 
msg_send(pt, (char *)&m, sizeof(port_msg), 0, 0); 
printf("%d replied to\n", id); 

* collect messages in any order, process them in order 
*1 
port () 
{ 

thread_t sender; 
char *arg; 
int asz; 
port_msg *request; 
thread t senders[4]; 
int i; 

for(i = 0; i < 4; i++) 
/ * convenient way to receive from any sender * / 
MSG_RECVALL(&sender, &arg, &asz, 0, 0, INFINITY); 
request = (port_msg *)arg; 
printf("got %d\n", request->order); 
senders [request->order] = sender; 

for (i = 0; i < 4; i++) { 
msg_reply(senders[i]); 
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6.4. Agents Some environments will present asynchronous interrupts to the client. For exam
ple, on a bare machine, a character typed at a tty can cause an interrupt to ran
domly steal control away from the executing program. Similarly, a UNIX signal 
can interrupt the current thread. Because of the random nature of interrupts, it is 
hard to understand programs that deal with them. The lightweight process 
library provides a simple way to transform asynchronous events into synchronous 
ones. 

A message paradigm (as opposed to a monitor paradigm) was chosen for map
ping interrupts because an interrupt cannot wait for a monitor lock if held by a 
client. Even if condition variables are used outside of a monitor, it is still neces
sary to add memory to the condition variable to prevent races Gust before the 
client decides to sleep, an interrupt comes in, causing a condition to be notified, 
which is missed by the client, who then sleeps, resulting in deadlock). Adding a 
flag to a condition to prevent this is analogous to converting the condition into a 
I-bit message. 

With asynchronous interrupts, an event causes a sort of context switch within the 
same thread. With LWP's, a thread must synchronously rendezvous with an 
interrupt. Thus, to have an event do something asynchronously, it is necessary to 
use a separate thread to handle it. To simulate typical UNIX signal handling, you 
would create two threads: one thread to represent the main program, and another 
thread at a higher priority to represent the signal handler. The latter thread would 
have an agent set up to receive signals. 

The agent mechanism is provided to map asynchronous events into messages to a 
lightweight process. A message from an agent looks exactly like a message from 
another thread. When you create an agent, you also provide a portion of the 
pod's address space for the agent to store its message. You cannot receive the 
next message from an agent until you reply to the current one. Because the L WP 
scheduler is preemptive, when a UNIX signal is mapped into a message, it will 
cause the highest priority thread blocked on the agent to run next. Client threads 
which have agents can use all of the L WP library facilities (monitors, condition 
variables, messages) to synchronize with other threads. 

The agent mechanism does its best to process UNIX signals as rapidly as possi
ble. Nonetheless, it is possible that events will be missed because the kernel does 
not remember more than one signal occurring while a signal is being processed. 
Furthermore, signals are not delivered for each occurrence of I/O. Therefore, a 
thread which wakes up from a S I G I 0 agent for example, should not sleep again 
until read () on the descriptor fails, indicating that another SIGIO will be 
delivered when more I/O is available. 

When an interrupt arrives, the L WP library saves only volatile infonnation about 
the interrupt, and wakes up any threads waiting on the agent. On a bare machine, 
volatile information would include for example, the character typed in from atty. 
Under SunOS, volatile information includes the state normally delivered to a sig
nal handler as well as the identity of the thread running at the time of the event. 
This volatile infonnation is passed as a message to the client thread. 
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A set of heavyweight processes can execute concurrently in the kernel. For 
example, three heavyweight processes can concurrently initiate writes to the 
same device. This is not the case for lightweight threads. Some relief can be 
provided by marking descriptors asynchronous with fen t 1 (2 ). This allows 
threads to block on SIGIO agents and only block on a system call when it is 
likely to be immediately productive (Le., without blocking indefinitely). Simi
larly, a thread can block on a SIGCHLD agent instead of blocking on a 
wai t (2) system call. However, there is no general solution to the problem of 
having several threads execute system calls concurrently until the L WP primi
tives are made available as true system calls operating on a shared set of descrip
tors. The use of the non-blocking I/O library can help by automatically blocking 
a thread attempting any I/O until such I/O is likely to succeed immediately. The 
blocked thread will try the system call again automatically when a SIGIO event 
occurs. 

Here is an example of how to use the non-blocking 10 library. We have a pro
cedure compute yi that runs at low priority, and a procedure reader that runs at 
high priority. If we link this program without the non-blocking 10 library, the 
reader will prevent the compute-bound thread from running since the read ( ) 
system call blocks. However, if we link in the non-blocking 10 library, the 
compute-bound procedure will execute until some 10 is made available (in this 
case, by the user typing something at the terminal). 

*include <lwp/lwp.h> 
*include <lwp/stackdep.h> 
#define MAXPRIO 10 

main (argc, argv) 
int argc; 
char **argv; 

int reader(); 
thread_t tid; 

pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(3000, 2); 
lwp_create(&tid, reader, MAXPRIO, 0, lwp_newstk(), 0); 
lwp_setpri(SELF, MINPRIO); 
computeyi(); 
exit(O); 

reader () 
{ 

char buf[256]; 
int cnt; 

for(;;) 
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cnt = read(O, buf, 256); 
buf[cnt] = 0; 
printf("\ngot %s\n", buf); 

compute yi ( ) 
{ 

for ( ; ;) { 
/ * compute pi to a zillion places * / 

Here is another example of how to use the non-blocking I/O library. The first 
program is a server which accepts requests over the wire. When a request 
arrives, a thread is created to handle the request so that accepting and processing 
the requests can proceed in parallel. The processing of the request consists in 
sleeping for the amount of time specified in the request message. Note that if the 
non-blocking I/O library is not linked in, the main program loop prevents any 
(lower priority) request-processing threads from executing. 1 wp _ da t as tk ( ) 
is used to put the message on the stack of the newly-created thread. Thus, there 
is no need to keep the message in main. 

/* 
* sleep server program. 
*/ 

*include <lwp/lwp.h> 
*include <lwp/stackdep.h> 
*include <lwp/lwperror.h> 
*include <netinet/in.h> 
*include <sys/socket.h> 
*include <errno.h> 

*define MYPORT 8889 
*define MAXPRIO 10 
*define BUFSIZE 10 

struct message { 
int timeout; 
int msgsize; 
char buf[BUFSIZE]; 

message; 
extern int errnOi 

main () 
{ 

int s; 
struct sockaddr_in addr; 
int len = sizeof(struct sockaddr_in); 
int fromlen; 
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int rlen; 
void compute () ; 
stkalign_t sp; 
caddr_t loc; 
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if (pod_setmaxpri(MAXPRIO) < 0) 
1wpyerror("pod_setmaxpri"); 
_exit(1); 

if (1wp_setstkcache(5000, 5) < 0) 
1wpyerror("lwp_setstkcache"); 
_exit(1); 

if «s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP» < 0) 

perror("can't get socket"); 
_exit(1); 

addr.sin_addr.s_addr = INADDR ANY; 
addr.sin_fami1y = AF_INET; 
addr.sinyort = MYPORT; 
if (bind(s, (struct sockaddr *)&addr, len) < 0) 

perror ("bind") ; 
close(s); 
_exit(1); 

if (getsockname(s, (caddr_t)&addr, &len) != 0) 
perror("can't get name"); 
c10se(s); 
_exit(1); 

for ( ; ;) { 
do { 

fromlen = len; 
rlen = recvfrom(s, (caddr t)&message, 

sizeof(struct message), 0, 
&addr, &fromlen); 

while «rlen == -1) && (errno == EINTR»; 
if (rlen == -1) { 

perror("recvfrom"); 
_exit(1); 

sp = lwp_datastk(message.buf, 
message.msgsize, &10c); 

1wp_create«thread_t *)0, compute, MINPRIO, 
0, sp, 2, message.timeout, loc); 

exit(O); 

compute (timeout, msg) 
int timeout; 
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char *msg; 

struct timeval time; 
time.tv_sec = timeout; 
time.tv usec = 0; 

printf("%s\n", msg); 
lwp_sleep(&time); 
printf("%s slept %d secs\n", msg, timeout); 

/* 
* program to send a message to the sleep-server. 
* usage: sip <servername> <timeout in seconds> <message> 
*/ 

#include <sys/types.h> 
#include <netinet/in.h> 
#include <sys/socket.h> 
#include <netdb.h> 
#include <errno.h> 

#define MYPORT 8889 
#define BUFSIZE 10 

struct messsage 
int timeout; 
int msgsize; 
char buf[BUFSIZE]; 

message; 

extern int errno; 

main (argc, argv) 
int argc; 
char **argv; 

int s; 
struct sockaddr_in addr; 
int len = sizeof(struct sockaqdr_in); 
int err; 
struct hostent *hp; 
char *server; 

if (argc != 4) { 
printf("usage: %s server seconds message\n", 

argv[O]); 
exit(2); 

server = argv[I]; 
message.timeout = atoi(argv[2]); 
message.msgsize = strlen(argv[3]) + 1; 
bcopy(argv[3], message.buf, message.msgsize); 
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if «hp = gethostbyname(server» == 0) 
printf("can't get host name\n"); 
exit(1); 

bcopy(hp->h_addr, &addr.sin_addr, hp->h_length); 
addr.sin_family = AF_INET; 
addr.sin-port = MYPORT; 

if «s = socket (AF_INET, S OCK_D GRAM , IPPROTO_UDP» < 0) 
{ 

do 

perror("can't get socket"); 
exit(1); 

err = sendto(s, (caddr_t)&message, 
sizeof(message) , 0, &addr, len); 

while «err == -1) && (errno == EINTR»; 
if (err == -1) { 

perror (" sendto") ; 
exit(1); 

exit(O); 

A final example of the non-blocking I/O library illustrates how the wait (2) 

system call can be used. Here, the parent UNIX process forks two children. The 
children do something (in this case, they just sleep) and terminate with an exit 
status. The parent would like to reap the children, but does not want to block in 
the process. The solution is to link in the non-blocking I/O library which lets the 
parent block without stopping other threads. Behind the scenes, a SIGCHLD 
agent thread is watching for terminating UNIX processes. If the non-blocking 
I/O library is not linked in, the wait will succeed, but the otherwork thread will 
not get a chance to run. Note that threads using system calls remapped by the 
non-blocking I/O library automatically receive the C-library special context, so 
errno is not lost across context switches. 

#include <lwp/lwp.h> 
#include <lwp/lwpmachdep.h> 
#include <signal.h> 

main () 
{ 

int child; 
union wait stat; 
void otherwork(); 

(void)pod_setmaxpri(lO); 
(void) lwp_setstkcache (1000, 2); 
(void)lwp_create«thread_t *)0, otherwork, 

MINPRIO, 0, lwp_newstk(), 0); 
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Examples of Agents 

if ( for k () == 0) { 
sleep(5); 
_exit(7); 

else if (fork () 0) { 
sleep(3); 
_exit (5) ; 

for (;;) { 1* reap children * 1 
child = wait(&stat); 
printf("%d got %d\n", child, stat.w_retcode); 
if (child == -1) { 

exit(O); 

void 
otherwork () 
{ 

perror ("wait") ; 
break; 

struct timeval time; 
time.tv_sec = 2; 
time.tv_usec = 0; 
for ( ; ;) { 

printf("otherwork here\n"); 
lwp_sleep(&time); 

We present two examples of agent use below. The first example shows how a 
traditional UNIX signal handler can be emulated. Note the use of monitors to 
protect access to shared state. The second example shows the use of a SIGIO 
agent. 

1 * Example showing UNIX style signal handling * 1 
*include <lwp/lwp.h> 
*include <lwp/stackdep.h> 
*include <signal.h> 

*define MAXPRIO 10 
mon_t mid; 
int shared_state; 

main (argc, argv) 
int argc; 
char **argv; 

int sigint_catch(); 
int task(); 
int task1 () ; 
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(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(3000, 3); 
mon_create(&mid); 
(void) lwp_create«(thread_t *)0, sigint_catch, MAXPRIO, 

0, lwp_newstk(), 0); 

1* 
* the signal handler will preempt the main program 
* so we give it the higher priority 
*/ 
lwp_setpri(SELF, MINPRIO); 
for ( ; ;) { 

/ * do other work * / ; 
mon_enter (mid) ; 
/ * access shared_state * / 
mon _ exi t (mid) ; 

exit(O); 

sigint_catch{) 
{ 

event info t sigmem; 
char *arg; 
int asz; 
thread_t sender; 

agt_create(&sender, SIGINT, (char *)&sigmem); 
fore;;) { 

(void) msg_recv(&sender, &arg, &asz, 
0, 0, INFINITY); 

(void) msg_reply(sender); 
printf("got -C\n"); 
mon _enter (mid) ; 
/ * access shared_state * / 
mon _ exi t (mid) ; 

/* Example showing how to process SIGIO */ 

1* 
* Some points about this code: 
* 1. because the system call could be interrupted, we check for E INTR. 
* In order that errno is accurate, we make sigio _catch a libc thread 
* (else, it may be lost on a context switch). 

* 
* 2. We reset stdin before returning so the shell won't get confused. 
* (It would otherwise get EWOULDBLOCK trying to read stdin, and 
* bomb out with an error). 
*/ 
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#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 
#include <signal.h> 
#include <fcntl.h> 
#include <errno.h> 
#define TRUE 1 
#define MAXPRIO 10 

main (argc, argv) 
int argc; 
char **argv; 

int sigio_catch(); 
thread_t tid; 

(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(3000, 3); 
lwp_create(&tid, sigio_catch, MAXPRIO, 

0, lwp_newstk(), 0); 
lwp_libcset(tid); 
lwp_setpri(SELF, MINPRIO); 
/* domain'swork */ 

sigio_catch () 
{ 

int cnt; 
char buf[256]; 
int fd = 0; /* stdin */ 
extern int errno; 
int emask, rmask, wmask; 
eventinfo_t agtmemory; 
thread_t sender; 
char *arg; 
int asz; 
int inputbits 01 « fd; 

1* 
* Enable SIGIO on stdin. When we actually read, it may still 
* return EWOULDBLOCK (SIGINT before SIGIO deliveredflushes 
* input leaving nothing to read), so need to read again. 
*1 
fcntl(fd, F_SETFL, FASYNCIFNDELAY); 
rmask = inputbits; 
emask = wmask = 0; 
agt_create(&sender, SIGIO, &agtmemory); 

for(;;) 

+!!.!! 

1* 
* block pending notification that reading would be useful 
* meanwhile, main can get work done. 
*1 

Revision A, of 9 May 1988 



/* 

Chapter 6 - Lightweight Processes 93 

(void) msg_recv(&sender, &arg, &asz, 
0, 0, INFINITY); 

(void) msg_reply(sender); 
select (32, &rmask, &wmask, &emask, 

(struct timevel *)0); 
if (rmask & inputbits) { 

cnt = read(fd, buf, 256); 
if (cnt != -1 I I errno != EWOULDBLOCK I I 

errno != EINTR) 
break; 

buf[cnt] = 0; 
printf("\ngot %s\n", buf); 
fcntl(fd, F_SETFL, 0); /* resetstdinsonoshellconfusion */ 

* To do simple signal handling within main, we could just write: 
*/ 

main (argc, argv) 
int argc; 
char **argv; 

int cnt; 
char buf[256]; 
int fd = 0; / * stdin * / 
extern int errno; 
int emask, rmask, wmask; 
eventinfo_t agtmemory; 
thread_t sender; 
char *arg; 
int asz; 
int inputbits = 01 « fd; 

(void)pod_setmaxpri(l); 
fcntl(fd, F_SETFL, FASYNCIFNDELAY); 
rrnask = inputbits; 
ernask = wmask = 0; 
agt_create(&sender, SIGIO, &agtmemory); 

for ( ; ;) { 

sun 
microsystems 

(void) msg_recv(&sender, &arg, &asz, 
0, 0, INFINITY); 

(void) msg_reply(sender); 
select (32, &rmask, &wmask, &emask, 

(struct timeval *)0); 
if (rmask & inputbits) { 

cnt = read(fd, buf, 256); 
if (cnt != -1 I I errno != EWOULDBLOCK I I 

errno != EINTR) 
break; 
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6.5. Monitors and 
Conditions 

Monitors vs. Interrupt 
Masking 

buf[cnt] = 0; 
printf("\ngot %s\n", buf); 
fcntl(fd, F_SETFL, 0); 
exit(O); 

The monitor-condition variable paradigm is a familiar one to UNIX kernel pro
grammers because of the analogue to sleep () and wakeup () in the UNIX 
kernel. 

A monitor implements a critical section. This is a reentrant region of code in 
which access is serialized. As a result, shared data accessed by this code is pro
tected against races that can lead to incorrect interpretations of the data. Once a 
thread is executing within a monitor, other threads block until that monitor is 
exited. When thread priorities are equal, they are queued first-come-first-served 
for access to the monitor. This ensures fair, serial access to the protected data. 

As an example, a producer and consumer thread may use a monitor to protect 
access to a buffer of data being produced or consumed (so that the state of the 
buffer's "fullness" is consistent). When the producer has filled the buffer, it must 
wait for the consumer to drain the buffer. This sort of synchronization is pro
vided by condition variables. When a thread waits on a condition, it atomically 
gives up the monitor and blocks pending a notification. The result of the 
notification is that the blocked thread will eventually reacquire the monitor in 
order to attempt access to the buffer again. 

One goal of lightweight processes is to avoid the use of sigsetmask' s or other 
primitives which lock out interrupts to prevent races. By using monitors as a 
synchronization tool, and by using threads with agents to handle interrupts, the 
use of interrupt masking can be eliminated, and the risk of dropping interrupts 
reduced. 

Within the L WP library itself, most critical sections are implemented by disa
bling the scheduler (and not by disabling interrupts) for the duration of the criti
cal section. If an interrupt arrives during a critical section, it is processed only to 
the point of saving the volatile interrupt state. At the end of a critical section, if 
there are any accumulated events, scheduling decisions are made based upon the 
agents associated with the events. Interrupts are only masked to ensure that a) 
the nugget stack is not grown indefinitely by repeated interrupts and b) as a 
thread is being resumed, to ensure that the new context is loaded atomically. 
Thus, interrupts are only disabled as a consequence of an interrupt occurring, and 
never preventively. 
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Typically, there is some state associated with a condition. When the state 
acquires a given value, a thread can take some action. Otherwise, it will wait 
until the state changes. For example, if a buffer is full, a thread writing to the 
buffer will wait until the state of the buffer indicates that it is no longer full. 
Another thread reading from the buffer will cooperate by notifying any such 
waiting thread when the buffer is no longer full. Because the buffer state is 
accessed by several threads, it is protected by a monitor. Otherwise, a thread 
could decide to wait for a state change, only to have the state change before the 
wait can be executed, resulting in deadlock. Therefore, both the waiter and the 
notifier must access the state in a monitor, and the wait primitive (cv _ wai t ) 
must atomically release the monitor. The typical wait code looks like this: 

men_enter (m) ; 

while (! state) 
cv_wait (cv) ; 

The while loop is there because if there are several threads waiting in the monitor 
when the condition is broadcast, all of them wake up, but the first thread to gain 
entry to the monitor may alter the state, invalidating it for the other awakened 
threads. In our current example, if two producers are awakened because the 
buffer is no longer full, the first one may fill the buffer again and wait, leaving 
the second one to run. The second producer must not add to the buffer now, 
because it is full again. 

Some subtle points about thread scheduling priority should be mentioned. Note 
that threads queue for monitors and conditions based upon thread priority. No 
context switch necessarily takes place when a monitor is exited. Thus, a monitor 
that is repeatedly reentered by a high-priority thread can starve other threads 
wanting access to the monitor. Care should be taken in assigning priorities to 
threads using monitors, since a low-priority thread which owns a monitor can 
still prevent a higher priority thread from accessing that monitor. If a low
priority thread owning a monitor is preempted, it may cause long delays to more 
important threads needing monitor access. 

Since events are processed by threads, state manipulated by a thread receiving 
agent messages can be protected by monitors and condition variables. Thus, 
after receiving an agent message, a thread may enter a monitor before accessing 
some global state. Since the L WP library has a large memory for events, no 
events should be lost if this thread has to block for access to the monitor. . 

cv _broadcast () awakens all threads blocked on a condition. 
cv _notify () awakens only a single thread blocked on a condition. 
cv _ not if y () can result in deadlock states if the awakened thread is not the 
particular one that should notice a state change and should only be used when it 
is known that a single other thread is involved. cv _notify () is available 
because it is more efficient to awaken only a single thread. Note that an 
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Enforcing the Monitor 
Discipline 

Nested Monitors 

Reentrant Monitors 

awakened thread will be queued to reacquire the monitor. When the thread actu
ally resumes, it will own the monitor it released when it waited for the condition 
with cv_wait (). 

Because it is both confusing to the programmer and expensive to implement, no 
provision for a condition to be shared by several monitors is made. Instead, con
dition variables are bound to a monitor when they are created. It would be possi
ble to let them be bound when the condition is waited upon, but it would allow 
the very improbable case of having a waiter awaken in a state testing loop, only 
to find that his condition was reassigned. 

mon_destroy () will remove any conditions bound to the monitor being 
removed. Ifmon_destroy () fails because some threads are still waiting on 
an associated condition, you can use c v _ wa iter s () to see which threads are 
blocked on conditions associated with the monitor, followed by 
1 wp _ de s t roy () to teIminate the blocked threads. After the offending threads 
are terminated, mo n _ de s t ro y () should succeed. 

Because a thread which forgets to exit a monitor may deadlock the system, it is 
convenient to use the exception handler mechanism to enforce the enter-exit dis
cipline. The MONITOR () macro enforces this discipline by ensuring that 
mon _ exi t () is called when the procedure that embodies the monitor exits. (It 
is good form to use a single procedure to contain a monitor, viz:) 

foo () { 
MONITOR (m) ; 

This method ensures that no matter how the procedure is exited (barring 
longjmpO), the monitor will be exited. That is, if the procedure raises an 
exception or returns explicitly or implicitly, the monitor is freed. 

When a thread blocks on a condition while holding several (nested) monitor 
locks, all of the locks except the current one are held. This ensures that the 
thread does not need to painfully reacquire all of its locks, with the concomitant 
possibility of deadlock if not all of the locks remain available. If thread Tl holds 
monitor Ml and wants to acquire monitor M2, and thread T2 holds monitor M2 
and wants to acquire monitor MI, deadlock results. One way to avoid this error 
is to require that the monitors are always acquired in a certain order. 

When a monitor is used to protect a data structure, it may happen, for informa
tion hiding reasons, that two different procedures wish to use the same monitor. 
It may also happen that one of those procedures wishes to use the facilities pro
vided by the other. If these procedures are accessed by the same thread the moni
tor calls are reentrant. If you anticipate such use, you should program your mon
itors as 
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if (mon_enter(m) < 0) { 
error ("bad monitor"); 
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However, if you wish to catch reentrant monitor use as an error, you should pro
gram monitors as: 

if (mon_enter(m) != 0) { 
error("reentrant monitor"); 

The following is a simple example of monitor use. As described above, we have 
a producer and a consumer thread, synchronizing with condition variables. To 
spice it up a bit, we've added some scheduling to make things more realistic. 

#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 

thread t c1, c2, sched; 
mon_t m1; 
cv_t notempty, notfull; 
int cnt = 0; 
int in = 0; 
int out = 0; 
#define MAXBUF 20 
char buf[MAXBUF]; 
#define MAXPRIO 10 

main (argc, argv) 
int argc; 
char **argv; 

int producer(), consumer(); 
int sch () ; 

(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(3000, 3); 
lwp_create(&c1, producer, MINPRIO+1, 0, 

lwp_newstk(), 0); 
lwp_create(&c2, consumer, MINPRIO, 0, 

lwp_newstk(), 0); 
lwp_create(&sched, sch, MAXPRIO, 0, lwp_newstk(), 0); 
mon_create (&m1) ; 
cv_create(&~otempty, m1); 
cv_create(&notfull, m1); 
exit(O); 

pu t (c) / * add a character to the buffer * / 
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char c; 

MONITOR (m1) ; 

while (cnt == MAXBUF) { / * never> MAXBUF chars in buffer * / 
printf("waiting on notfull\n"); 
cv_wait(notfull); 

buf[in] = c; 
in = (in + 1) % MAXBUF; 
cnt++; 
cv_broadcast(notempty); /* maybeano-op */ 

get (c) 
char *c; 

MONITOR (m1) ; 

while (cnt == 0) { / * never < 0 characters in the buffer * / 
printf("waiting on notempty\n"); 
cv_wait(notempty); 

*c = buf[out]; 
out = (out + 1) % MAXBUF; 
cnt--; 
cv_broadcast(notfull); 

producer () 
char c; 
int i; 
int j; 

for (j = 0; j < 50 0 ; j ++ ) { 
c = "abcdefghijklmnopqrstuvwxyz" [cnt]; /* produce */ 
put(c); 

printf("producer done\n"); 

consumer () 
char c; 
int i; 
int j; 

for(j = 0; j < 500; j++) { 
get(&c); 
/ * consume the character * / 

printf("consumer done\n"); 

sch () 
int k; 
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thread_t x = e1; 
struet timeval wait; 

wait.tv_see = 0; 
wait.tv usee 100000; 

for(k = 0; k < 100; k++) 
lwp_sleep(&wait) ; 
lwp_setpri(x, MINPRIO); 
if (x == e1) 

x e2; 
else 

x e1; 
lwp_setpri(x, MINPRIO+1); 
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The exception primitives can be used to manage synchronous exceptional condi
tions in a lightweight process. There are no asynchronous exceptions supported 
by threads because asynchrony can be managed completely with threads and 
agents, and in a more well-structured fashion. For example, when parsing com
mands and anticipating an interrupt from the keyboard, you can simply create a 
thread to parse the command and a thread with an agent to catch the interrupt. 
When the agent thread catches the interrupt it can simply destroy the parsing 
thread. This is more elegant than doing a longjrnp () from a signal handler 
when an interrupt occurs. 

There are several aspects of exceptions. First, you can use exit_handlers to be 
invoked automatically any time a procedure exits. Second, you can provide an 
exception handler which assumes control anywhere back on the procedure calling 
chain (escape exceptions). Third, you can provide an exception handler which is 
invoked at the time of an exception and leaves the flow of control alone when it 
returns (notification exceptions). Finally, you can map machine faults (synchro
nous traps) into exceptions. An exception is an event caused by the explicit (or 
implicit, in the case of synchronous traps) invocation of exc _raise () . 

When a procedure can exit via a large number of ret urn statements or excep
tion raises, it is difficult to monitor the flow of control. Thus, exit handlers can 
be established by exc _on _ exi t () to ensure that a particular action is taken on 
procedure exit, no matter how the procedure exits. For this reason, no primitive 
to remove an exit handler is provided, because this provides a way to defeat the 
whole purpose of exit handlers. 

setjrnp () and longjrnp () support non-local gotos, but do not give the pro
grammer a disciplined way to invoke them. Pattern-directed handler invocation 
gives the client an opportunity to establish a set of handlers which are matched 
by particular patterns. For example, an exception in a memory allocation routine 
can be raised in such a way that a particular handler (say, a garbage collector) can 
be explicitly invoked by using a well-known pattern. The CATCHALL pattern 
can be used by a thread either to implement more general sorts of pattern 
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Synchronous Traps 

Implementation 

matching (by handling those patterns it wants and discarding those patterns it is 
not interested in and reraising the exception), or to catch exceptions which must 
always be caught (e.g., a routine which normally allocates some memory per
manently and returns should free the memory if an exception occurs). 

exc _notify () is provided for those exceptions which require an action to be 
executed on behalf of the exception handler and control to be returned to the 
raiser of the exception. The handler of a notify exception establishes a function, 
as well as an argument which can refer to an execution-time environment. By 
providing a null function, a handler can indicate that only escape exceptions 
(invoked by exc _ raiseO) are to be used. 

Exception handling is useful for assisting disciplined use of lightweight process 
primitives. The MONITOR () macro is one example. Another is the fork () 
example discussed in the next section. 

Some events are completely synchronous, such as division by zero faults. For 
such events, it is not logical to allocate a separate thread, since threads are 
intended to handle asynchronous events. In the lightweight process world, syn
chronous events appear to be exceptions. Use agt_trap () to enable excep
tion mapping for a given event. Note that unhandled exceptions cause termina
tion of the offending thread. 

One possible way to implement an exception mechanism at the language level 
would be to use a L WP special context to contain a pointer to the current excep
tion handler for each thread. Using this context, it would be possible to search 
backwards on the exception chain looking for pattern matches. 

Rather than require the client to explicitly pass in a context variable to be used to 
save and restore exception context, the L WP implementation allocates the con
text automatically. This is less efficient because by using local variables as con
texts, allocation and freeing of the context are free. However, in addition to the 
more pleasant interface, there are several advantages to the implicit allocation 
strategy. Because the stack is reset when an exit handler runs, there is no room 
for local variables to be used by the library code that implements exit handlers 
(note that the exit handler can make procedure calls ofundetennined depth!). 
This is especially problematic when several exit handlers have been established. 
Also, if the system being used can't take interrupts on a separate stack, a fair 
amount of interrupt masking may be required to protect the stack once it is reset. 

Exception handling is really a language issue. However, since synchronous traps 
may be mapped into exceptions, the L WP library itself must be able to access the 
exception contexts. Thus, the exception handling facility is part of the L WP 
library and not a separate language facility. In the future, a more flexible inter
face to agt _ tr ap () may be provided so languages can provide their own style 
of exception handling. 
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In the following example, we use the exception handling mechanisms to facili
tate a garbage collector. In the event that a resource is exhausted, the client 
attempts to correct things by notifying the garbage collector. If the next attempt 
to obtain the resource fails, the client gives up by raising an exception. As an 
exercise, pretend that the client had resources that needed to be freed as a result 
of the fatal exception. Use CATCHALL handlers to allow procedures higher up 
the calling chain to free the resources they allocated. 

#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 

#define ATTRIBUTE 9 
#define FATAL 7 
#define MAXPRIO 10 

main (argc, argv) 
char **argv; 

int task(); 

(void)pod_setmaxpri(MAXPRIO); 
lwp_setstkcache(1000, 3); 
(void) lwp_create«thread_t *)0, task, MINPRIO, 0, 

lwp_newstk(), 0); 
exit(O); 

task () 
{ 

int garb_collect(); 

/ * establish garbage collector for ATTRIBUTE-type resources * / 
(void) exc_handle(ATTRIBUTE, garb_collect, ATTRIBUTE); 

/ * establish handler for unrecoverable errors * / 
if (exc_handle(FATAL, 0, 0) == 0) 

someprocedure(); 
else 

abort(); 

someprocedure ( ) 
{ 

char *r; 
char *getresource(); 

r = getresource(ATTRIBUTE); 
/ * use resource * / 

char * 
getresource(attribute) 
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6.7. Big Example 

int attributei 

int (*f) () i 

char *resourcei 
char *obtain()i 

resource = obtain(attribute)i 
if (resource == 0) { 

(void) exc_notify(attribute)i 
resource = obtain(attribute)i 
if (resource == 0) 

exc_raise(FATAL)i 

return(resource)i 

garb_collect (atr) 
int atri 

1* 
* garbage collect resource of type atr such that 
* obtain might succeed if tried again. 
*1 

char * 
obtain (atr) 

int atri 

1* 
* try to allocate resource of type at r 
* return 0 if unable to get the resource. 
*1 

/ * try to get resource * / 
/ * couldn't get it * / 
/ * garbage collect * / 
/* try again * / 
/ * still couldn't get it * / 
/* give up * / 

This example illustrates many of the L WP features: exit handlers, monitors, con
dition variables, messages, threads. It is a parallel binary tree fringe comparator. 
Given two binary trees Tl and TI, they have the same fringe if and only if their 
leaf nodes are equivalent when read left to right. 

Part of the program relies on a fork () and join () mechanism. The idea is 
that a thread may wish to start some threads and wait for n of them to terminate. 
(To wait for one specific thread to die, use lwp --ioin.) Thus, a program could 
look like: 

Revision A, of 9 May 1988 



proc() { 

tfork(threadl); 
tfork(thread2); 
tfork(thread3); 
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join (2) ; / * wait for any 2 tforked threads to die * / 

join(l); / * wait for last thread to die * / 

To make this work, we have tfork () create its thread via an intennediary 
which uses an exit handler (see exc _on _ exi t(3L)) to ensure that the thread 
calls die () when it tenninates. die () will keep track of the number ofter
minated threads. Since a tfork () 'ed thread may be destroyed by another 
thread, lwp_destroy () should be encapsulated by a procedure that calls 
die () as well. This is an illustration of how the exception handling facility can 
be used to create new protocols (enforced exit actions, for example). 

The program begins by declaring two trees (which don't, in this case, have the 
same fringe). Then, we create three threads: one thread to evaluate each tree, and 
one thread to compare leaf values and serve as an infonnation exchanger. The 
two tree evaluators proceed in parallel, sending a message to the comparator con
taining the leaf value when a leaf is encountered. When the comparator finds a 
mismatch, it tenninates the tree evaluators. When the main program joins suc
cessfully, the two evaluators are dead. It then sends a message to the comparator 
to find out what the results were. 

The tree evaluators are simple: they merely recurse down their subtree, pausing 
to tell the comparator when a leaf is encountered. The comparator is fairly com
plex. It first receives a message from either of the two tree evaluators (which, 
after all, are running in parallel. As an exercise, add preemptive round-robin 
scheduling to this program!). Then, it waits for a message from the other tree 
evaluator (else, it could get another value from the same tree evaluator). If the 
answers disagree, the comparator tenninates the evaluators to prevent further 
(useless and confusing) messages from being sent. Finally, because the two trees 
being compared may be structurally quite different, one evaluator may finish 
while the other remains active. As a result, the comparator could do a 
msg_ recv () on a non-existent thread. Therefore, we check this condition by 
noting ifmsg_recv () fails. Just to show that it's possible, this program lints 
when linted with the LWP lint library! 

#include <lwp/lwp.h> 
#include <lwp/stackdep.h> 
#include <lwp/lwperror.h> 
#define NULL 0 
thread_t cmp, pl, p2; 
thread_t driver; 
int tfork(); 
cv_t cv; 
mon t mon; 
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/ 

int numdead = 0; 
typedef. struct tree_t 

int val; 
struct tree_t *left, *right; 

tree_t; 
#define TREENULL «tree_t *) 0) 
#define TRUE 1 
#define FALSE 0 
#define MAXPRIO 10 

tree_t t1 [] = { 

} ; 

to, &t1[1], &t1[2]}, 
{1, &t1[3], &t1[4]}, 
{4, TREENULL, TREENULL}, 
{l, TREENULL, TREENULL}, 
{3, TREENULL, &tl[5]}, 
{5, TREENULL, TREENULL}, 

tree_t t2[] = { 

} ; 

to, &t2[1], &t2[2]}, 
{1, TREENULL, TREENULL}, 
{2, &t2[3], &t2[4]}, 
{3, TREENULL, TREENULL}, 
{4, TREENULL, TREENULL}, 

main () 
{ 

int compare(), parsetree(); 
int answer; 

if (pod_setmaxpri(MAXPRIO) == -1) 
lwpyerror("setmaxpri"); 

(void)lwp_setstkcache(lOOOO, 5); 
(void)lwp_self(&driver); 
tfork(&cmp, compare, 0); 
tfork(&p1, parsetree, (int)t1); 
tfork (&p2, parsetree, (int) t2) ; 
join(2); 
(void)msg_send(cmp, (caddr_t)0, 0, 

(caddr_t)&answer, sizeof (answer»; 
if (answer) 

(void) printf("same fringe\n"); 
else 

(void) printf("not same fringe\nn); 
exit(O); 

compare () 
{ 

int vall; 
thread t next; 
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thread t sender; 
int samefringe TRUE; 
int *resbuf; 
int ressize; 
int *argbuf; 
int argsize; 
int err; 

fore;;) { 
err = MSG_RECVALL(&sender, (caddr_t *)&argbuf, 

&argsize, (caddr_t *)&resbuf, 
&ressize, INFINITY); 

if (err < 0) 

lwpyerror ("MSG_RECVALL n ) ; 

if (SAMETHREAD(sender, driver» 
*resbuf = samefringe; 
(void) msg_reply(driver); 
return; 

vall = *argbuf; 
next = (SAMETHREAD(sender, pl) ? p2 : pl); 
(void) msg_reply(sender); 
err = msg_recv(&next, (caddr_t *)&argbuf, 

&argsize, (caddr_t *)&resbuf, 
&ressize, INFINITY); 

if (err < 0) { /* hedied */ 
samefringe = FALSE; 
destroy(sender); 

else { 
samefringe = (*argbuf 
if (!samefringe) { 

destroy(pl); 
destroy(p2); 

vall); 

else 
(void)msg_reply(next); 

parsetree(t) 
tree_t *t; 

if (t == TREENULL) 
return; 

if «t->left == TREENULL) && (t->right == TREENULL» { 
/* leaf * / 
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(void)msg_send(cmp, (caddr t)&t->val, 
sizeof (int), (caddr_t) 0, 0); 

else { 
parsetree(t->left); 
parsetree(t->right); 
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tfork(new, adr, arg) 
thread_t *new; 
int (*adr) () ; 
int arg; 

extern void prochelp(); 
static int in it = 0; 

if (init == 0) { 
init = 1; 
(void)mon_create(&mon); 
(void)cv_create(&cv, mon); 

(void)lwp_create(new, prochelp, MINPRIO, 0, 
lwp_newstk(), 2, adr, arg); 

void 
prochelp(proc, arg) 

int (*proc) () ; 

extern void die(); 

(void)exc_on_exit(die, (caddr_t)O); 
proc (arg) ; 

void 
die () 
{ 

MONITOR (mon) ; 
numdead++; 
(void)cv_notify(cv); 

join(cnt) 
{ 

MONITOR (mon) ; 
while. (numdead < cnt) 

(void)cv_wait(cv); 
numdead -= cnt; 

/ * use this instead of lwp _destroy with tfork and join * / 
destroy (pid) 

thread t pid; 

die () ; 
(void)lwp_destroy(pid); 

Revision A, of 9 May 1988 



Index 

A 
accept () , 49 
accessibility of a file, 38 
access (), 38 
acct (), 30 
agt _trap () , 100 
attributes 

of a file, 35 
of a file system, 35 

B 
bind (), 49 
binding sockets, 48 
/usr/etc/biod, 54 
/usr/etc/bootparams,55 
brk (), 67 
BSD/System V Incompatibilities, 9 

C 
CATCHALL, 99 
chdir (), 33 
chmod(),36 
chown (), 36 
chroot () , 33 
close (), 26 
connect () , 50 
connecting to sockets, 49 
control operations, 31 
control terminal, 19 
copying descriptors, 26 
creating 

devices, 34 
directories, 33 
files, 33 
processes, 16 
sockets, 48 

cv_broadcast(),95 
cv _notify (), 95 
cv_wait (), 96 

D 
daemons, 53 
debugging support, 41 

ptrace () , 41 
descriptors, 2S 

-107-

descriptors, continued 
close (), 26 
copying, 26 
dopt (), 27 
dup (), 26 
dup2 (), 26 
duplicating, 26 
getdtablesize(),25 
reference table, 25 
removing, 26 
select () , 26 
setting options, 27 
synchronous multiplexing, 26 
type,25 

device 
removal,35 

devices, 40 
creating, 34 
structured, 40 
unstructured, 41 

disk quotas, 40 
dopt (), 27 
dup (), 26 
dup2 (), 26 
duplicating descriptors, 26 

E 
EWOULDBLOCK error number, 10 
exc_notify (), 100 
exc_on_exit(),99 
exc_raise,loo 
exceptions, 96 

in a programming language, 100 
execve (), 17 
exit (), 16 
extending files, 37 

F 
fchmod (), 36 
f chown () , 36 
file 

access times, 36 
accessibility,38 
attributes, 35 
creation, 33 
extending, 37 
hard links, 37 



Index - Continued 

file, continued 
links, 37 
locking, 39 
modify times, 36 
ownership, 36 
permission, 36 
protection, 36 
removal, 35 
renaming, 37 
seeking in, 37 
symbolic links, 37 
truncating, 38 

file permission 
changing, 36 
set group-id, 36 
set user-id, 36 
sticky bit, 36 

file system, 32 
attributes, 35 
chdir (), 33 
chroot ( ) , 33 
creating directory, 33 
naming, 32 
removing directories, 33 

flock (), 39 
FNBIO,1O 
FNDELAY,10 
fork (), 16 
fstat (), 35 
fstatfs (), 35 
fsync () , 32, 62 
ftruncate (), 38 

G 
gather write, 30 
getdents (), 35 
getdomainname(),15 
getdtablesize(),25 
getegid(),17 
geteuid (), 17 
getgid (), 17 
gethostname(),15 
geti timer ( ) , 24 
getpagesize(),65 
getpeername(),49 
getpgrp () , 9, 18 
getpid () , 16 
getpriority (), 28 
getrlimit (), 29 
getrusage (), 28 
getsockname(),49 
getsockopt (), 52 
gettimeofday(),23 
getuid () , 17 
groupID's,17 

H 
hard links, 37 
host identifiers, 15 
hostid (), 15 

-108-

I 
1/0 operations, generic, 30 
/usr/etc/in.comsat,55 
/usr/etc/in.fingerd,55 
/usr/etc/in. ftpd, 55 
/usr/etc/in.named,55 
/usr/etc/in.rexecd,56 
/usr/etc/in.rlogind,56 
/usr/etc/in.routed,56 
/usr/etc/in. rshd, 56 
/usr/etc/in.rwhod,56 
/usr/etc/in.syslog,56 
/usr/etc/in.talkd,56 
/usr/etc/in.telnetd,57 
/usr/etc/in.tftpd,57 
/usr/etc/in. timed, 57 
/usr/etc/in.tnamed,57 
/usr/etc/inetd, 55 
interprocess communication, 47 
interval timers, 24 
ioctl (), 19,31 

K 
/usr/etc/keyserv,55 
kill (), 22 
killpgrp (), 22 

L 
Lightweight Processes, 71 

agents, 84 
asynchronous interrupts, 84 
asynchrony, 71 
big example, 102 
condition variables, monitors, 95 
coroutines, 75 
critical sections, 94 
custom schedulers, 76 
definition, 71 
example, 73 
examples of agents, 90 
exception handling example, 101 
exceptions, 99 
exit handlers, 99 
functionality, 71 
intelligent servers, 82 
introduction, 71 
library, 71 
message paradigm, 84 
message queues, 80 
messages, 79, 80 
messages vs. monitors, 79 
monitor-based programs, 95 
monitors, 79 
monitors and conditions, 94 
monitors vs. interrupt masking, 94 
monitors, enforcing discipline, 96 
monitors, nested, 96 
pods, 72 
primitives, 71 
reentrant monitors, 96 
rendezvous semantics, 80 



Lightweight Processes, continued 
scheduling, 72 
special context switching, 77 
stack issues, 74 
synchronous traps, 100 
system calls, 85 
threads of control, 72 

link (), 37 
links,37 

hard,37 
symbolic, 37 

Ii sten () , 49 
locking files, 39 
longjmp (), 71, 96, 99 
lseek (), 38 
lstat (), 36 
LWP,71 
Iwp_checkstkset(),74 
lwp_create (), 72 
lwp_ctxinit (), 78 
lwp_ctxset (), 78 
Iwp_datastk(),86 
lwp _destroy () , 96 
Iwp_Iibcset (), 78 
lwp_newstk (), 73 
lwp_resched (), 76 
lwp_resume (), 76 
lwp_setpri (), 76 
Iwp_setstkcache(),73 
Iwp_stkcswset(),74 
lwp_suspend (), 76 
lwp_yield(), 75 

M 
Memory Management 

Address spaces, 61 
address-space layout, 66 
coherence, 62 
concepts, 61 
external interfaces, 63 
heterogeneity,62 
madvi se () , 63 
mapping, 61 
min co re () , 63 
rnrna p () , 63 
mprotect () , 63 
msync () , 63 
munrnap ( ) , 63 
networking, 62 
segments, 66 
system calls, 63 
text, stack and data, 67 
virtual memory, 61 

mincore ( ) , 65 
rnkdir (), 33 
rnknod () , 11, 34 
rnrnap () , 63 
mon_destroy (), 96 
MONITOR () , 96 
mount () , 39 
mprotect () , 64 

-109-

MS _ ASYNC, 64 
MS_INVALIDATE,64 
msg_ recv ( ) , 80 
msg_ reply () , 80 
msg_ send () , 80 
msync () , 64 
multiplexing requests, 26 
munrnap () , 64 

N 
network daemons, 53 
NeWS, 54 
/usr/etc/nfsd,55 
non-blocking I/O library, 85 
notation and types, 4 

o 
O_NDELAY,10 
operations support, 29 
options for descriptors, 27 
organization, 4 
ownership of a file, 36 

P 
pod _ setrnaxpri (), 73, 75 
/usr/etc/portrnap,55 
processes 

and protection, 15 
creation, 16 
groups, 18 
identifiers, 15 
priorities, 28 
termination, 16 
tracing with ptrace () , 41 
waiting for, 16 

profil () , 25 
PROT_EXECUTE, 63 
PROT_READ, 63 
PROT_WRITE,63 
ptrace () ,41,43 

Q 
quotactl (), 40 
quotas, 40 

R 
/usr/etc/rarpd, 55 
read (), 10,30 
readlink (), 37 
readv (), 31 
reboot () , 29 
receiving from sockets, 50 
recv (), 51 
recvfrom (), 51 
recvmsg () , 52 
reference table, 25 
removing 

descriptors, 26 
devices, 35 

Index - Continued 



Index - Continued 

removing, continued 
directories, 33 
files, 35 

rename () , 37 
renaming files, 37 
resource controls, 28 
REX, 54 
rmdir (), 33 
/usr/etc/rmt,56 
/usr/etc/rpc.etherd,55 
/usr/etc/rpc.ipallocd,57 
/usr/etc/rpc.lockd,55 
/usr/etc/rpc.mountd,55 
/usr/etc/rpc.pnpd,57 
/usr/etc/rpc.rexd,55 
/usr/etc/rpc.rquotad,56 
/usr/etc/rpc.rusersd,56 
/usr/etc/rpc.rwalld,56 
/usr/etc/rpc.sprayd,56 
/usr/etc/rpc.statd,56 
/usr/etc/rpc.yppasswdd,57 

S 
sbrk (), 67 
scatter read, 30 
seeking in files, 37 
select () , 26 
send 0,50 
sending to sockets, 50 
/usr/lib/sendmail,56 
sendmsg () , 52 
sendto () , 50 
server processes, 53 
server-based services, 54 
setdomainname(),15 
setgroups (), 18 
sethostname () , 15 
seti timer () , 24 
setjmp (), 99 
setpgrp () , 9, 18 
setpriority (), 28 
setregid (), 18 
setrlimit (), 29 
setruid () , 18 
setsockopt () , 52 
settimeofday(),23 
setting options for descriptors, 27 
Shared Memory, 65 
shutdown () , 52 
sigblock () , 22 
SIGHUP,10 
signals, 19 

types, 20 
sigpause (), 22 
sigsetmask () , 22 
sigstack () , 23 
sigvec () , 20 
socket () , 48 

-110-

socketpair (), 50 
sockets, 47 

binding, 48 
connecting, 49 
creating, 48 
options, 52 
receiving from, 50 
sending to, 50 

stat (), 35 
statfs (), 35 
structured devices, 40 
SunOS, origin of, 53 
swapon ( ) , 29 
symbolic links, 37 
symlink () , 37 
sync 0,32 
synchronization, 62 
synchronous multiplexing of descriptors, 26 
system abstractions 

communications domain, 3 
device, 4 
directory, 3 
file, 3 
lightweight process, 4 
process, 4 
socket, 3 

System V 
BSD Incompatibilities, 9 
message queues, 11 
named pipes, 11 
new facilities, 11 
semaphores, 11 
shared memory, 11, 65 

T 
terminating a process, 16 
time (), 24 
timers, 23 

interval, 24 
trace process - ptrace (), 41 
truncate (), 38 
truncating files, 38 

U 
unlink (), 35 
unmount () , 40 
unstructured devices, 41 
user ID's, 17 
utimes () , 36 

V 
virtual-memory management, 61 

W 
wait (), 16 
wait3 0,16 
waiting for a process, 16 
write 0,30 
writev (), 31 



y 
/usr/etc/ypbind, 57 
/usr/etc/ypserv,57 

Index - Continued 

-111-



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 


