
Reference Manual Insertion Pages for Release 3.5

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part No: 800-2181-10
Revision A of 20 November 1987

Copyright © 1987 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per
mission from Sun Microsystems.

Commands Reference Manual Insertion Pages

CLEAR (1)

NAME
clear - clear screen

SYNOPSIS
clear

DESCRIPTION

USER COMMANDS CLEAR (1)

Clear clears your screen if this is possible. It looks in the environment for the terminal type and then in
letcltermcap to figure out how to clear the screen.

FILES
/etc/termcap terminal capability data base

Sun Release 3.5 Last change: 12 February 1985 49

USER COMMANDS

NAME
clear _ colormap - make console text visible

SYNOPSIS
clear _ coiormap [-no] [-f framebuffer]

DESCRIPTION
Clear _colormap ensures that text displayed on the console is visible. If no options are specified it clears
the frame buffer and initializes the first two colonnap entries. If the frame buffer has an overlay plane it is
also cleared and the overlay enable plane is set so that the entire overlay plane is displayed

OPTIONS
-n Do not clear the frame buffer or overlay plane.

-0 Do not clear the overlay plane or modify the overlay enable plane.

-f framebuffer
Operate on frame buffer device framebuffer instead of the default, /dev/tb.

50 Last change: 16 January 1987 Sun Release 3.5

CLOCK (1) USER COMMANDS CLOCK(I)

NAME
clock, clocktool- display the time in a window

SYNOPSIS
clock [-s] [-t] [-r] [-d mdyaw] [-f]

DESCRIPTION
clock is a standard tool provided with the SunView environment.

clock displays the current time in its own window. In its open state, clock shows the date and time textual
form. In its closed state, clock appears as a clock face which keeps time.

Note: In previous releases clock was known as clocktool. In the current release, clocktool is retained as a
symbolic link to clock.

OPTIONS
-r causes clock to use a square face with roman numerals in the iconic state. This replaces the

default round clock face.

-d display date information in a small area just below the clock face. The date information to' be
displayed may include:

m
d

Y
a
w

the month,
the day of the month (1-31),
the year,
the string AM or PM, as appropriate,
the day of the week (Sun-Sat).

There is only room for 3 of these, but any 3 may be displayed in any sequence.

-f Display the date and day of week on the clock face.

-s start clock with the seconds turned on. By default, the clock starts with seconds turned off, and
updates every minute. With seconds turned on, it updates every second, and, if iconic, displays a
second hand.

-t Test mode - ignore the real time, and instead run in a loop continuously incrementing the time by
one minute and displaying it.

clock also accepts all of the generic tool arguments discussed in suntools(I).

When open, clock listens for keyboard input, toggling its state on four characters:

s or S toggles the display of seconds.

t or T toggles the 'test' mode.

SEE ALSO

FILES

BUGS

suntools(I), date(l)

lusr/lib/fontslfixedwidthfontslsail.r.6

If you reset the system time, clock will not reflect the new time until you change its state - open it if
closed, close it if open. To reset the system time, see date(l).

The date display doesn't go well with the round clock face.

The clock sometimes freezes. Bringing up the Frame Menu will unstick it.

Sun Release 3.5 Last change: 29 May 1986 53

CMDTOOL(l) USER COMMANDS CMDTOOL(I)

NAME
cmdtool- Run a shell (or other program) from the Sun View text facility

SYNOPSIS
cmdtool [-C] [-P n] [pro gram [args]]

DESCRIPTION
cmdtool is a standard tool provided with the SunView environment.

When invoked, cmdtool runs a program (usually a shell) in a text-based command subwindow. Typed
characters are inserted at the caret. If this program is a shell, it accepts commands and runs programs in
the usual way, including commands that do cursor motion such as vi. (See BUGS below).

Text can be edited anywhere on the command line the same way as in any other text sub window . Com
mands and their output are kept in a log which can be scrolled using the scrollbar, unless the command
does cursor motion. The log file can also be edited, or even saved using the Save command in the text
facility's pop-up menu. The Split command, also in the pop-up menu, can be used to create two or more
independently scrolling views of the log.

DEFAULTS OPTIONS
!Tty/ Append_only_log

TRUE is the standard default; it means that only the command line may be editted. FALSE per
mits editting of the entire log. See the descripton of Enable Edit below.

ITtylInsert_ makes_ caret_visible
This entry determines how hard the command subwindow should try to keep the caret visible.
Same_as _for_text Is the standard default; it means that the setting for

Insert_makes_caret_visible will be taken from the Text category instead
of Tty when a command subwindow is created.

If auto scroll If the caret is showing, and an inserted newline would position it below the
bottom of the screen as determined by ITextlLower _context, the text is
scrolled to keep it showing. The amount scrolled is controlled by
/TextlAuto_scroll_by. See textedit (1) for more information.

Always Upon any input action, if the caret is positioned off the screen, it is scrolled
back into view.

ITty/Checkpoint_frequency
o is the standard default; it means that no checkpointing will take place. For a value n greater than
zero, checkpointing will take place after every nth edit. Each character typed, each Get, and each
Delete counts as an edit. At each checkpoint, an updated copy of the transcript is saved in a file
whose name is constructed by appending two percent signs (%%) to the name of the transcript
file. By default, the transcript file is named Itmpltty.txt.nnnnnn; in this case, the checkpoint file is
named Itmpltty.txt.nnnnnn%%.

/TextlEdit back char - -
Set the character for deleting the character preceding the caret. Note: stty erase has no effect; text
based tools only refer to the defaults database. The standard default is the DEL key.

ITextlEdit back word - -
Set the character for deleting the word preceding the caret Note: stty werase has no effect; text
based tools only refer to the defaults database. The standard default is CfRL-W.

!TextlEdit back line
set the Character for deleting from the newline preceding the caret to the caret Note: stty kill has
no effect; text based tools only refer to the defaults database. The standard default is CTRL-U.

COMMANDLINE OPTIONS

54

-C Redirect system Console output to this instance of the cmdtool. This will prevent system error
messages from being printed in unexpected places on the screen. Moreover, since a cmdtool win
dow is scrollable, console error messages that go off the top of the window can be scrolled back

Last change: 30 September 1985 Sun Release 3.5

CMDTOOL(I) USER COMMANDS CMDTOOL(I)

for re-examination.

-P n Set the checkPoint frequency to n.

cmdtool also takes generic tool arguments; see suntools (I) for a list of these arguments.

program [args]
If a program argument is present, cmdtool executes it Subsequent arguments will be assumed to
be arguments of the program argument, and will be passed to it for execution. If there are no
arguments, cmdtool runs the program corresponding to the SHELL environment variable. If this
environment variable is not available, then cmdtool runs Ibinlsh.

THE COMMAND SUBWINDOW
The subwindow of cmdtool is a command subwindow, which is also found in dbxtool and potentially in
other tools as well. The command sub window is based on the text facility. For more information about the
text facility, see Windows and Window-Based Tools: Beginner's Guide. The pop-up menu associated with
command subwindow is the same as that for the text facility (see textedit (I», with two additional items,
Enable Edit and Disable Scrolling.

Command subwindow now supports cursor motion. In order to do so, a new termcap type has been
invented, sun-cmd. Command subwindow automatically sets the TERM environment variable to sun-cmd
when it starts up. This means that if you rlogin to a machine that does not have sun-cmd defined in its
termcap file, it will complain "Type sun-cmd unknown". To rectify this, "set TERM=sun". This also
means that any program written using the curses package will automatically work in command subwindow,
but a program written specifically for termcap type "sun" will not work. When allowing cursor motion, the
command sub window automatically takes on the appearance and characteristics of a tty subwindow (as in
shelltool), with a wide margin where the scrollbar used to be. When the program doing cursor motion ends
or goes to sleep, it automatically returns to its text subwindow appearance and behavior.

Programs that use CBREAK or RAW mode, or NO ECHO are now supported. Usually this support is invisible.
However, rlogin and script have the unexpected characteristic of turning off the ability to edit the com
mandline with the mouse, although old-fashioned backspace, word and line kill still operate. This is
because they go into RAW mode, demanding that cmdtool ship every character as it is typed, rather than
echo locally.

THE COMMAND SUBWINDOW MENU
The generic text menu items will not be described here except for Put, then Get, as it approximates the
functionality of Stuff in shelltool (1), and is also implemented for shelltool.

Put, then Get
When there is a selection, this item reads Put, then Get. It causes the selection to be copied both
to the shelf and to the caret.

Put, then Get
When there is no selection but there is text on the shelf, Put, then is grayed out, though Get
remains active. Selecting this item causes the contents of the shelf to be copied to the caret. When
there is no selection and nothing is on the shelf, this item is inactive.

Enable Edit
If the defaults entry Append_only_log is set to TRUE, but at some point you want to edit the log,
selecting this menu item makes editting the log possible. When the log is editable, this item reads
Disable Edit, and selecting it makes the log read-only before the start of the command line.

Disable Scrolling

Sun Release 3.5

Normally, command subwindow enters tty sub window mode automatically when you start up a
program that does cursor motion. If it fails to do so, perhaps because the program does not use
curses and does not interpret termcap correctly, or if you want tty sub window mode because it
supports something that command subwindow doesn't (see BUGS below), this menu item lets you
enter tty sub window mode manually. The tty subwindow that comes up has Enable Scrolling
added to its menu to allow manual return to text subwindow mode. Disable and Enable Scrolling

Last change: 30 September 1985 55

CMDTOOL(I) USER COMMANDS CMDTOOL(I)

FILES

correspond to the termcap "ti" and "te" escape sequences for the "sun-cmd" termcap entry, respec
tively. If you manually disable and enable scrolling often, you may find it useful to assign these
sequences to function keys in your .ttyswrc file. Refer to letc/termcap for the escape sequences
and refer to shelltool (1) for a description of .ttyswrc.

Certain text facility accelerators that are especially useful in command subwindows are described here. See
textedit (1) for more information.

CTRL-RETURN

Holding down the control key while typing newline (carriage return) positions the caret at the bot
tom and scrolls it into view, as determined by the defaults option lTextILower _context.

CTRL-P is an accelerator for the Put, then Get menu item described above.

CAPS-lock
Bound to Fl, it causes subsequent keyboard input to be uppercase. This key is a toggle; striking it
a second time undoes the effect of the first strike.

Itmp/tty.txt<pid> (transcript file)

-I.textswrc

-I.ttyswrc

SEE ALSO

BUGS

56

shelltool(I), suntools(I), textedit(l), defaultsedit(l),

Windows and Window-Based Tools: Beginner's Guide

Full terminal emulation is not complete. Some manifestations of this deficiency are:

• File completion in the C-shell does not work.

• Emphasized text (eg. in man pages) does not show up as emphasized

Occasionally the C-shell exits due to a hangup signal after the first command entered by the user. This
causes cmdtool to exit as well, and print a message to either the console or the window it was started from.
The message reads:
A command window has exited because its child exited
Its child's process id was <pid> and it died due to signal 1.

Last change: 30 September 1985 Sun Release 3.5

COMPRESS (1) USER COMMANDS COMPRESS (1)

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

-- not a regular file: unchanged
When the input file is not a regular file, (e.g. a directory), it is left unaltered.

-- has xx other links: unchanged
The input file has links; it is left unchanged. See In(l) for more information.

-- file unchanged
No savings are achieved by compression. The input remains uncompressed.

SEE ALSO

BUGS

A Technique for High Performance Data Compression, Terry A. Welch, IEEE Computer, vol. 17, no. 6
(June 1984), pp. 8-19.

compact(I), pack(l)

Although compressed files are compatible between machines with large memory, -b12 should be used for
file transfer to architectures with a small process data space (64KB or less).

compress should be more fiexible about the existence of the .Z suffix.

Sun Release 3.5 Last change: 17 July 1986 65

CP(I) USER COMMANDS CP(1)

NAME
cp - copy files

SYNOPSIS
cp [-i] [-p] [-rR] filel file2

cp [-i] [-p] [-rR] file ••• directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the mode of the
source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.

Cp refuses to copy a file onto itself.

OPTIONS
-i Interactive: prompt the user with the name of the file whenever the copy would overwrite an old

file. Answering with 'y' means that cp should go ahead and copy the file. Any other answer will
prevent cp from overwriting the file.

-p Preserve: attempt to preserve (duplicate) in its copies the modification times and modes of the
source files, ignoring the present umask.

-r
-R Recursive: if any of the source files are directories, cp copies each subtree rooted at that name; in

this case the destination must be a directory. In the case of a symbolic link, the link itself is not
replicated Instead, cp duplicates the contents of the file pointed to by the symbolic link.

EXAMPLES
To make a backup copy of goodies:

% cp goodies old.goodies

To copy an entire directory hierarchy:

% cp -r lusr/wendy/src lusr/wendylbackup

However, DEW ARE of a recursive copy like this one:

% cp -r lusr/wendy/src lusr/wendy/srclbackup
which keeps copying files until it fills the entire file system.

SEE ALSO

BUGS

66

cat(I), pr(I), mv(I), rcp(IC)

There should be an option to copy timestamps to the new files - for instance, when copying a whole
hierarchy from one file system to another file system, or when making a backup copy.

Last change: 13 November 1986 Sun Release 3.5

OO(1) USER COMMANDS

To read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into the ASCII file x:
tutorial% dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

00(1)

Note the use of raw magtape: dd is especially suited to I/O on the raw physical devices because it allows
reading and writing in arbitrary record sizes.

SEE ALSO
cP(I), tr(1 V)

DIAGNOSTICS

BUGS

f+p records in(out): numbers of full and partial records read(written)

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov, 1968.
The ibm conversion, while less blessed as a standard, corresponds better to certain IBM print train conven
tions. There is no universal solution.

The block and unblock options cannot be combined with the ascii, ebcdic or ibm. Invalid combinations
silently ignore all but the last mutually-exclusive keyword

Sun Release 3.5 Last change: 23 September 1985 113

DEFAULTSEDIT (1) USER COMMANDS DEFAULTSEDIT(1)

NAME
defaultsedit, defaults _merge, defaults _from_input defaults_to _ indentpro, defaults_to _ mailrc,
indentpro _ to_defaults, lockscreen _default, mailrc _to_defaults, scrolldefaults - window- and mouse-based
default parameters editor

SYNOPSIS
deraultsedit

DESCRIPTION
defaultsedit is a standard tool provided with the Sun View environment.

defaultsedit presents a convenient user interface for inspecting and setting default parameters. It can be
viewed as a replacement for the traditional UNIX defaultsedit to manipulate options to the programs
indent, mail and mailtool, stty, and defaultsedit, as well as the menu, scrollbar, text subwindow and tty
subwindow packages and the Sun View environment.

Any program or package which a user can customize by setting or changing a parameter could be written
such that it gets its options from the database manipulated through defaultsedit. For information on how to
do this see the chapter on the Defaults Database in the Sun View System Programmer's Guide.

OPTIONS
defaultsedit accepts all of the generic tool arguments discussed in suntools(I).

SUBWINDOWS
defaultsedit consists of four subwindows. From top to bottom they are:

control contains the name of the category currently displayed, and buttons labeled SAVE, QUIT,
RESET, and EDIT ITEM. To change the category, click on the word CATEGORY with the
left mouse button, or use the menu that pops up when you click with the right mouse button.

message a small text sub window where messages from defaultsedit are displayed.

parameters shows all current default parameter names with corresponding values. Clicking the left
mouse button over a parameter displays a help string in the message subwindow.

edit a small text subwindow which enables text editing of parameter values. This is useful for
very long text values, such as a long mailing list.

USING DEFAULTSEDIT

114

SAVE Saves the current values for all categories in your private database - that is, the .defaults
file in your home directory.

QUIT exits without saving any changes.

RESET resets the default parameters of the current category to the values in your private database.
This is useful if you change some values, then change your mind and want to restore the ori
ginal values.

EDIT ITEM Pressing the right mouse button over the EDIT ITEM button brings up a menu with three
choices: COPY ITEM, DELETE ITEM and EDIT LABEL. Only text or numeric items can
be edited. Also, note that edits made using this menu will appear only in your private
defaults database, not in the master database. The three editing operations are described
below.

COpy ITEM Selecting COPY ITEM causes the current item to be duplicated. You can then edit both the
iabei and the value of the the newiy created item. Oniy items with text or numeric vaiues
can be copied in this way. COpy ITEM is useful when you want to change the number of
instances of a certain type of item - for example, to insert a new mail alias into your
defaults database.

DELETE ITEM
Selecting DELETE ITEM will delete the current item from your private database. It cannot
be permanently deleted if the corresponding node is present in the master database.

Last change: 27 January 1987 Sun Release 3.5

DEFAULTSEDIT (1) USER COMMANDS DEFAULTSEDIT (1)

EDIT LABEL

However, you can make it behave like an undefined node by giving it the special value
\255Undefined\255.

Selecting EDIT LABEL allows you to edit the label of the current item. When you select
EDIT LABEL, the label of the current item changes from bold to normal face. Then you
can select the label and edit it as a normal panel text item.

ENVIRONMENT
DEFAULTS_FILE

FILES

The value of this environment variable indicates the file from which Sun View defaults
are read. When it is undefined, defaults are read from the .defaults file in your home
directory.

-I.defaults lusrllib/defaults/*.d
Note: A performance optimzation may be enabled by setting the Private_only parameter in the Defaults
category. If this is set to True, only the user's private defaults file is consulted.

SEE ALSO

BUGS

Windows and Window-Based Tools: Beginner's Guide

The SunView System Programmer's Guide

Editing of choice items or categories is not supported by defaultsedit. Neither is editing of the master
defaults database - to add a new program to the master defaults database, you have to edit a master
defaults textfile.

Sun Release 3.5 Last change: 27 January 1987 115

DELTA (1) USER COMMANDS DELTA(I)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
lusrlsccsldelta [-r SID] [-s] [-0] [-g list] [-m [mrlist]] [-y [comment]] [-p] file •••

DESCRIPTION
Delta permanently introduces into the named sees file changes that were made to the file retrieved by
get(l) (called the g-file, or generated file).

Delta makes a delta to each named sees file. If a directory is named, delta behaves as though each file in
the directory were specified as a named file, except that non-sees files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the standard input
is read (see WARNINGS); each line of the standard input is taken to be the name of an sees file to be pro
cessed.

Delta may issue prompts on the standard output depending upon certain options specified and flags (see
admin(I» that may be present in the sees file (see -m and -y options below).

OPTIONS

116

Options apply independently to each named file.

-r SID Uniquely identifies which delta is to be made to the sees file. The use of this option is necessary
only if two or more outstanding get's for editing (get -e) on the same sees file were done by the
same person (login name). The SID value specified with the -r option can be either the SID
specified on the get command line or the SID to be made as reported by the get command (see
get(I». A diagnostic results if the specified SID is ambiguous, or, if necessary and omitted on the
command line.

--s Do not display the created delta's SID, number of lines inserted, deleted and unchanged in the
sees file.

-0 Retain the edited g-file which is normally removed at completion of delta processing.

-g list Specifies a list of deltas to be ignored when the file is accessed at the change level (SID) created
by this delta. See get(l) for the definition of list.

-m [mrlist]
If the sees file has the v flag set (see admin(l», a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on the standard
output before the standard input is read; if the standard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the commeots? prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line character ter
minates the MR list

Note that if the v flag has a value (see admin(l», it is taken to be the name of a program (or shell
procedure) which will validate the correctness of the MR numbers. If a non-zero exit status is
returned from MR number validation program, delta terminates (it is assumed that the MR
numbers were not all valid).

-y [comment]
Arbitrary text to describe the reason for making the deita. A nuU string is considered a valid com
ment.

If -y is not specified and the standard input is a terminal, the prompt comments? is issued on the
standard output before the standard input is read; if the standard input is not a terminal, no prompt
is issued. An unescaped new-line character terminates the comment text

-p Display (on the standard output) the sees file differences before and after the delta is applied in a
diff(1) format

Last change: 6 March 1984 Sun Release 3.5

ERROR (1) USER COMMANDS ERROR (1)

Error messages that can be intuited are candidates for insertion into the file to which they refer.

Only true error messages are inserted into source files. Other error messages are consumed entirely by
error or are written to the standard output. Error inserts the error messages into the source file on the line
preceeding the line number in the error message. Each error message is turned into a one line comment for
the language, and is internally flagged with the string '###' at the beginning of the error, and '%%%' at the
end of the error. This makes pattern searching for errors easier with an editor, and allows the messages to
be easily removed. In addition, each error message contains the source line number for the line the mes
sage refers to. A reasonably formatted source program can be recompiled with the error messages still in
it, without having the error messages themselves cause future errors. For poorly formatted source pro
grams in free format languages, such as C or Pascal, it is possible to insert a comment into another com
ment, which can wreak havoc with a future compilation. To avoid this, format the source program so there
are no language statements on the same line as the end of a comment.

OPTIONS

FILES

BUGS

-0 Do not touch any files; all error messages are sent to the standard output.

-q Error asks whether the file should be touched. A 'y' or 'n' to the question is necessary to continue.
Absence of the -q option implies that all referenced files (except those refering to discarded error
messages) are to be touched.

-v After all files have been touched, overlay the visual editor vi with it set up to edit all files touched,
and positioned in the first touched file at the first error. If vi can't be found, try ex or ed from stan
dard places.

-t Take the following argument as a suffix list. Files whose suffices do not appear in the suffix list are
not touched. The suffix list is dot seperated, and '*' wildcards work. Thus the suffix list

tt.c.y.f*.htt

allows error to touch files ending with' .c', '.y', 'J*' and '.h'.

-5 Print out statistics regarding the error categorization. Not too useful.

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly terminate what it is
doing.

-/.errorrc
/dev/tty

function names to ignore for lint error messages
user's teletype

Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor's format of error messages may cause error to not understand the error
message.

Error. since it is purely mechanical, will not filter out subsequent errors caused by 'floodgating' initiated
by one syntactically trivial error. Humans are still much better at discarding these related errors.

Pascal error messages belong after the lines affected (error puts them before). The alignment of the 'I'
marking the point of error is also disturbed by error.

Error was designed for work on CRT's at reasonably high speed It is less pleasant on slow speed termi
nals, and has never been used on hardcopy terminals.

Sun Release 3.5 Last change: 13 March 1984 149

EX(l) USER COMMANDS EX(l)

NAME
ex, edit, e - text editor

SYNOPSIS
ex [-] [-R] [-r] [-t tag] [+eommand] [-v] [-x] [-wnnn] [-I] file . ..
edit [options]

DESCRIPTION
ex, a line editor, is the root of a family of editors that includes edit, ex, and vi (the display editor). In most
cases vi is preferred for interactive use.

OPTIONS
supress all interactive feedback to the user - useful for processing ex scripts in shell files.

-R Read only. Do not overwrite the original file.

-r recover the indicatedfiles after a system crash.

-t tag edit the file containing the tag tag. A tags database must first be created using the ctags(l) com-
mand.

+eommand
start the editing session by executing command.

-v start up in display editing state using vi(I). You can achieve the same effect by simply typing the
vi command itself.

-x prompt for a key to be used in encrypting the file being edited.

-wnnn set the default window (number of lines on your terminal) to nnn- this is useful if you are dial-
ling into the system over a slow 'phone line.

-I set up for editing LISP programs.

ENVIRONMENT

FILES

150

The editor recognizes the environment variable EXINIT as a command (or list of commands separated by I
characters) to run when it starts up. If this variable is undefined, the editor checks for startup commands in
the file 7.exre file, which you must own. However, if there is a .exre owned by you in the current direc
tory, the editor takes its startup commands from this file-overriding both the file in your home directory
and the environment variable.

lusrllib/ex? ?strings
lusrllib/ex? ?recover
lusr/lib/ex? ?preserve
letcltermcap

error messages
recover command
preserve command
describes capabilities of terminals

Last change: 13 November 1986 Sun Release 3.5

EXPAND (1) USER COMMANDS EXPAND(I)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop] [-tab1 ,tab2, . . . ,tabn] [filename...]
unexpand [-a] [filename . ..]

DESCRIPTION
expand copies the named files (or the standard input) to the standard output, with tabs changed into spaces
(blanks). Backspace characters are preserved into the output and decrement the column count for tab cal
culations. expand is useful for pre-processing character files (before sorting, looking at specific columns,
etc.) that contain tabs.

Unexpand copies the named files (or the standard input) to the standard output, putting tabs back into the
data. By default, only leading spaces (blanks) and tabs are converted to strings of tabs, but this can be
overridden by the -a option (see the options section below).

EXPAND OPTIONS
-tabstop

Specified as a single argument sets tabs tabstop spaces apart instead of the default 8.

-tab1 ,tab2, . .. ,tabn
Set tabs at the columns specified by tab1 •••

UNEXPAND OPTIONS
-a Insert tabs when replacing a run of two or more spaces would produce a smaller output file.

152 Last change: 17 July 1986 Sun Release 3.5

GREP(IV) USER COMMANDS GREP(IV)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [-v] [-c] [-I] [-0] [-b] [-i] [-s] [-b] [-w] [-e] expression [file ...]

egrep [-v] [-c] [-I] [-n] [-b] [-i] [-s] [-b] [-e expression] [-r file]
[expression] [file ...]

rgrep [-v] [-x] [-c] [-I] [-0] [-b] [-i] [-s] [-b]
[-e string] [-r file] [string] [file ...]

SYSTEM V SYNOPSIS
grep [-v] [-c] [-I] [-0] [-b] [-i] [-s] expression [file ...]

DESCRIPTION
Commands of the grep family search the inputfiles (standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard output Grep patterns are limited regular expressions in
the style of ed(I). Egrep patterns are full regular expressions including alternation. Fgrep patterns are
fixed strings - no regular expression metacharacters are supported.

In general, egrep is the fastest of these programs.

Take care when using the characters $, *, [, ", I , (,), and \ in the expression, as these characters are also
meaningful to the Shell. It is safest to enclose the entire expression argument in single quotes ' ... '.

When any of the grep utilities is applied to more than one input file, the name of the file is displayed
preceding each line which matches the pattern. The filename is not displayed when processing a single file,
so if you actually want the filename to appear, use /dev/null as a second file in the list

OPTIONS
-v Invert the search to only display lines that do not match.

-x Display only those lines which match exactly - that is, only lines which match in their entirety
ifgrep only).

-c Display a count of matching lines rather than displaying the lines which match.

-I List only the names of files with matching lines (once) separated by newlines.

-0 Precede each line by its relative line number in the file.

-b Precede each line by the block number on which it was found. This is sometimes useful in locat-
ing disk block numbers by context

-i Ignore the case of letters in making comparisons - that is, upper and lower case are considered
identical.

-s Work silently, that is, display nothing except error messages. This is useful for checking the error
status.

-b Do not display filenames.

-w search for the expression as a word as if surrounded by \< and \>. grep only.

-e expression
Same as a simple expression argument, but useful when the expression begins with a-.

-r file Take the regular expression (egrep) or a list of strings separated by newlines ifgrep) from file .

SYSTEM V OPTIONS
The System V version of grep does not recognize the -b, -W, or -e options. The -s option indicates that
error messages for nonexistent or unreadable files should be suppressed, not that all messages should be
suppressed.

Sun Release 3.5 Last change: 12 February 1987 193

GREP(tV) USER COMMANDS GREP(tV)

REGULAR EXPRESSIONS

194

The following one-character regular expressions match a single character:

c An ordinary character (not one of the special characters discussed below) is a one-character regu
lar expression that matches that character.

\c A backslash (\) followed by any special character is a one-character regular expression that
matches the special character itself. The special characters are:

[string]

a. ., *, [, and \ (period, asterisk, left square bracket, andbackslash, respectively), which are
always special, except when they appear within square brackets ([]).

b. "(caret or circumflex), which is special at the beginning of an entire regular expression, or
when it immediately follows the left of a pair of square brackets ([]).

c. $ (currency symbol), which is special at the end of an entire regular expression.

A period (.) is a one-character regular expression that matches any character except newline.

A non-empty string of characters enclosed in square brackets is a one-character regular expression
that matches anyone character in that string. If, however, the first character of the string is a
circumflex C), the one-character regular expression matches any character except newline and the
remaining characters in the string. The" has this special meaning only if it occurs first in the
string. The minus (-) may be used to indicate a range of consecutive ASCII characters; for exam
ple, [0-9] is equivalent to [0123456789]. The -loses this special meaning if it occurs first (after
an initial ", if any) or last in the string. The right square bracket (]) does not terminate such a
string when it is the first character within it (after an initial ", if any); e.g., []a-f] matches either a
right square bracket (]) or one of the letters a through r inclusive. The four characters ., *, [, and \
stand for themselves within such a string of characters.

The following rules may be used to construct regular expressions:

* A one-character regular expression followed by an asterisk (*) is a regular expression that
matches zero or more occurrences of the one-character regular expression. If there is any choice,
the longest leftmost string that permits a match is chosen.

\(A regular expression enclosed between the character sequences \(and \) matches whatever the
unadorned regular expression matches. (grep only).

\n The expression \n matches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same regular expression. Here n is a digit; the sub
expression specified is that beginning with the n -th occurrence of \(counting from the left For
example, the expression "\(.*\)\1$ matches a line consisting of two repeated appearances of the
same string.

concatenation
The concatenation of regular expressions is a regular expression that matches the concatenation of
the strings matched by each component of the regular expression.

\< The sequence \< in a regular expression constrains the one-character regular expression immedi
ately following it only to match something at the beginning of a "word"; that is, either at the
beginning of a line, or just before a letter, digit, or underline and after a character not one of these.

\> The sequence \> in a regular expression constrains the one-character regular expression immedi
ately following it only to match something at the end of a "word"; that is, either at the end of a
line, or just before a character which is neither a letter, digit, nor underline.

A circumflex C) at the beginning of an entire regular expression constrains that regular expression
to match an initial segment of a line.

$ A currency symbol ($) at the end of an entire regular expression constrains that regular expression
to match a final segment of a line.

Last change: 12 February 1987 Sun Release 3.5

GREP(IV) USER COMMANDS GREP(IV)

The construction "entire regular expressionS constrains the entire regular expression to match the entire
line.

egrep accepts regular expressions of the same sort grep does, except for \(, \), \n, \<, and \>, with the addi
tion of:

* A regular expression (not just a one-character regular expression) followed by an asterisk (*) is a
regular expression that matches zero or more occurrences of the one-character regular expression.
If there is any choice, the longest leftmost string that permits a match is chosen.

+ A regular expression followed by a plus sign (+) is a regular expression that matches one or more
occurrences of the one-character regular expression. If there is any choice, the longest leftmost
string that permits a match is chosen.

1 A regular expression followed by a question mark (1) is a regular expression that matches zero or
one occurrences of the one-character regular expression. If there is any choice, the longest left
most string that permits a match is chosen.

Alternation: two regular expressions separated by I or newline match either a match for the first or
a match for the second.

o A regular expression enclosed in parentheses matches a match for the regular expression.

The order of precedence of operators at the same parenthesis level is [] (character classes), then * + 1 (clo
sures), then concatenation, then I (alternation) and newline.

SYSTEM V REGULAR EXPRESSIONS
The System V version of grep does not accept \< or \> in a regular expression, and accepts the following
additional item in a regular expression:

\{m\}
\{m,\}
\{m,n\} A regular expression followed by \{m\}, \{m,\}, or \{m,n\} matches a range of occurrences of the

regular expression. The values of m and n must be non-negative integers less than 256; \{m\}
matches exactly m occurrences; \{m,\} matches at least m occurrences; \{m,n\} matches any
number of occurrences between m and n inclusive. Whenever a choice exists, the regular expres
sion matches as many occurrences as possible.

EXAMPLES
Search a file for a fixed string usingfgrep:

tutorial% fgrep intro /nsr/manlman3/*.3*
Look for character classes using grep:

tutoria1% grep '[1-8]([CJMSNX])' /nsr/man/manl/*.l
Look for alternative patterns using egrep:

tutoria1% egrep '(SallyIFred) (SmithIJonesIParker)' telephone.list
To get the filename displayed when only processing a single file, use /dev/null as the second file in the list

tutoria1% grep 'Sally Parker' telephone.list /dev/null
SEE ALSO

vi(l)
ex(l)
ed(l)
sed(IV)
awk(l)
sh(l)

DIAGNOSTICS

visual display-oriented editor based on ex(l)
line-oriented text editor based on ed(l)
primitive line-oriented text editor
stream editor
pattern scanning and text processing language
Bourne Shell

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.
BUGS

For Ibinl grep the order in which concatenated options appear makes a difference in the resulting output

Sun Release 3.5 Last change: 12 February 1987 195

GREP(IV) USER COMMANDS GREP(IV)

196

Lines are limited to 1024 characters by grep; longer lines are truncated.
If there is a line with embedded nulls, grep will only match up to the first null; if it matches, it will print the
entire line.
The combination of -I and -v options does not produce a list of files in which a regular expression is not
found. To get such a list, use the C-Shell construct

foreach file (*) if ('grep "re" $file I wc -1' == 0) echo $file
end

Ideally there should be only one grep.

Last change: 12 February 1987 Sun Release 3.5

ICONEDIT (1) USER COMMANDS ICONEDIT (1)

Fill (Button) Fill canvas with current rectangular fill pattern.

Invert (Button) Invert each pixel represented on the canvas.

Paintbrush
Select from among five painting modes. Instructions for each painting mode appear above the
canvas. The painting modes are:

dot Paint a single dot at a time.

line Draw a line. To draw a line on the canvas, point to the first endpoint of the line, and
press and hold the left mouse button. While holding the button down, drag the cursor to
the second endpoint of the line. Release the mouse button.

rectangle
Draw a rectangle. To draw a rectangle on the canvas, point to the first comer of the rec
tangle and press and hold the left mouse button. While holding the button down, drag the
cursor to the diagonally opposite comer of the rectangle. Release the mouse button.

In the control panel, the Fill field to the right of the rectangle indicates the current rectan
gle fill pattern. Any rectangles you paint on the canvas will be filled with this pattern.

circle Draw a circle. To draw a circle on the canvas, point to the center of the circle, and press
and hold the left mouse button. While holding the button down, drag the cursor to the
desired edge of the circle. Release the mouse button.

In the control panel, the Fill field to the right of the circle indicates the current circle fill
pattern. Any circles you paint on the canvas will be filled with this pattern.

abc Insert text To insert text, move the painting hand to "abc" and type the desired text
Then move the cursor to the canvas and press and hold the left mouse button. A box will
appear where the text is to go. Position the box as desired and release the mouse button.

In addition, you can choose the font in which to draw the text. Point at the Fill field to
the right of the "abc" and either click the left mouse button to cycle through the avail
able fonts or press and hold the right mouse button to bring up a menu of fonts.

Load This is the rasterop to be used when loading a file in from disk. (See the Pixrect Reference
Manual for details on rasterops).

Fill This is the rasterop to be used when filling the canvas. The source for this operation is the rectan
gle fill pattern, and the destination is the canvas.

Proof This is the rasterop to be used when rendering the proof image. The source for this operation is
the proof image, and the destination is the proof background.

Proof background
The proof background can be changed to allow you to preview how the image will appear against
a variety of patterns. The squares just above the proof area show the patterns available for use as
the proof background pattern. To change the proof background, point at the desired pattern and
click the left mouse button.

SEE ALSO
suntools(1)

FILES
lusrlbinliconedit

Sun Release 3.5 Last change: 17 September 1985 203

ID(lV) USER COMMANDS

NAME
id - print user and group IDs and names

SYNOPSIS
lusrlSbinlid

DESCRIPTION

ID(lV)

Note: Optional Software (System V Option). Refer to Installing UNIX on the Sun Workstation for infor
mation on how to install this command.

id writes a message on the standard output giving the user and group IDs, and the corresponding names of
the invoking process. If the effective and real IDs do not match, both are printed.

SEE ALSO
getuid(2)

204 Last change: 20 January 1987 Sun Release 3.5

INDENT(l) USER COMMANDS INDENT (1)

NAME
indent - indent and format C program source

SYNOPSIS
indent [input-file [output-file]] [-baee I-nbaee] [-bad I-nbad] [-bap I -nbap] [-bbb I -nbbb]

[-be I -nbc] [-bl] [-br] [-bs I -nbs] [-en] [-edn] [-edb I -nedb] [-ee I -nee] [-cin]
[-eUn] [-<In] [--din] [-eei I -neei] [-rel I -nfel] [-in] [-ip I -nip] [-In] [-len]
[-Ip I-nip] [-pes I-npes] [-npro] [-psi I -npsl] [-se I-nse] [-sob I-nsob] [-st]
[-troff] [-v I-nv]

DESCRIPTION
Indent is a C program formatter. It reformats the C program in the input-file according to the switches.
The switches which can be specified are described below. They may appear before or after the file names.

NOTE: If you only specify an input-file, the formatting is done 'in-place', that is, the formatted file is writ
ten back into input-file and a backup copy of input-file is written in the current directory. If input-ftle is
named '/blah/blah/file', the backup file is named file.BAK.

If output-file is specified, indent checks to make sure it is different from input-file.

OPTIONS
The options listed below control the formatting style imposed by indent.

-bap,-nbap If -bap is specified, a blank line is forced after every procedure body. Default: -nbap.

-baee,-nbaee If -baee is specified, a blank line is forced around every conditional compilation block.
ie. in front of every #ifdef and after every #endif. Other blanklines surrounding these
will be swallowed. Default: -nbaee.

-bad,-nbad If -bad is specified, a blank line is forced after every block of declarations. Default:
-nbad.

-bbb,-nbbb If -bbb is specified, a blank line is forced before every block comment. Default:
-nbbb.

-be,-nbe If -be is specified, then a newline is forced after each comma in a declaration. -nbc
turns off this option. The default is -be.

-br,-bl Specifying -bllines up compound statements like this:

-bs,-nbs

-en

-edn

-edb,-nedb

Sun Release 3.5

if (...)
{

code
}

Specifying -br (the default) makes them look like this:
if (...) {

code

Enables (disables) the forcing of a blank after sizoof. Some people believe that sizeof
should appear as though it were a procedure call (-nbs, the default) and some people
believe that since sizeof is an operator, it should always be treated that way and should
always have a blank after it.

The column in which comments on code start. The default is 33.

The column in which comments on declarations start. The default is for these comments
to start in the same column as those on code.

Enables (disables) the placement of comment delimiters on blank lines. With this option
enabled, comments look like this:

Last change: 24 December 1986 205

INDENT(I)

-ce,-nce

-cin

-e1in

-dn

-din

-eei,-neei

-fcl,-nfcl

-in

-ip,-nip

-In

-Icn

-Ip,-nlp

206

USER COMMANDS

/*
* this is a comment
*/

Rather than like this:
/* this is a comment */

INDENT(I)

This only affects block comments, not comments to the right of code. The default is
-cdb.

Enables (disables) forcing 'else's to cuddle up to the immediatly preceeding '}'. The
default is -ce •

Sets the continuation indent to be n. Continuation lines will be indented that far from
the beginning of the first line of the statement. Parenthesized expressions have extra
indentation added to indicate the nesting, unless -Ip is in effect -ci defaults to the same
value as -i.

Causes case labels to be indented n tab stops to the right of the containing switch state
ment. -cIiO.S causes case labels to be indented half a tab stop. The default is -cliO.

Controls the placement of comments which are not to the right of code. The default -dl
means that such comments are placed one indentation level to the left of code. Specify
ing -dO lines up these comments with the code. See the section on comment indentation
below.

Specifies the indentation, in character positions, from a declaration keyword to the fol
lowing identifier. The default is -di16.

If -eei is specified, and extra expression indent is applied on continuation lines of the
expression part of if 0 and whileO. These continuation lines will be indented one extra
level - twice instead of just once. This is to avoid the confusion between the continued
expression and the statement that follows the if 0 or whileO. Default -neei.

Enables (disables) the formatting of comments that start in column 1. Often, comments
whose leading 'I' is in column 1 have been carefully hand formatted by the programmer.
In such cases, -nrcl should be used. The default is -fcl.

The number of spaces for one indentation level. The default is 4.

Enables (disables) the indentation of parameter declarations from the left margin. The
default is -ip •

Maximum length of an output line. The default is 75.

Sets the line length for block comments to n. It defaults to being the same as the usual
line length as specified with -I.

Lines up code surrounded by parenthesis in continuation lines. If a line has a left paren
which is not closed on that line, then continuation lines will be lined up to start at the
character position just after the left paren. For example, here is how a piece of contin
ued code looks with -nIp in effect:

pl = first-procedure(second-procedure(p2, p3),
third-procedure(p4, pS»;

With -Ip in effect (the default) the code looks somewhat clearer:
pl = first-procedure(second-procedure(p2, p3),

third-procedure(p4, pS»;
Inserting a couple more newlines we get:

pl = first-procedure(second-procedure(p2,
p3) ,

third-procedure(p4,
p5)) ;

Last change: 24 December 1986 Sun Release 3.5

INDENT (1)

-npro

-pes ,-npes

-psi, -npsl

-sc,-nsc

-sob,-nsob

-st

-Ttypename

-troft"

USER COM:MANDS INDENT (1)

Causes the profile files, 'J .indent.pro' and '-/.indent.pro', to be ignored.

If true (-pes) all procedure calls will have a space inserted between the name and the '(' .
The default is -npes

If true (-psi) the names of procedures being defined are placed in column 1 - their types,
if any, will be left on the previous lines. The default is -psi

Enables (disables) the placement of asterisks ('*'s) at the left edge of all comments.

If -sob is specified, indent will swallow optional blank lines. You can use this to get rid
of blank lines after declarations. Default: -nsob

Causes indent to take its input from stdin, and put its output to stdout.

Adds typename to the list of type keywords. Names accumulate: - T can be specified
more than once. You need to specify all the typenames that appear in your program that
are defined by typedefs - nothing will be harmed if you miss a few, but the program .
won't be formatted as nicely as it should. This sounds like a painful thing to have to do,
but it's really a symptom of a problem in C: typedef causes a syntactic change in the
laguage and indent can't find all typedefs.

Causes indent to format the program for processing by troff. It will produce a fancy
listing in much the same spirit as vgrind. If the output file is not specified, the default is
standard output, rather than formatting in place.

The usual way to get a troff'd listing is with the command
indent -troff program.c I troff -mindent

-v,-nv -v turns on 'verbose' mode, -nv turns it off. When in verbose mode, indent reports
when it splits one line of input into two or more lines of output, and gives some size
statistics at completion. The default is -nv.

FURTHER DESCRIPTION
You may set up your own 'profile' of defaults to indent by creating a file called indent.pro in either your
login directory or the current directory and including whatever switches you like. A' .indent.pro' in the
current directory takes precedence over the one in your login directory. If indent is run and a profile file
exists, then it is read to set up the program's defaults. Switches on the command line, though, always over
ride profile switches. The switches should be separated by spaces, tabs or newlines.

Comments

'Box' comments. Indent assumes that any comment with a dash or star immediately after the start of com
ment (that is, '/*-' or '/**') is a comment surrounded by a box of stars. Each line of such a comment is
left unchanged, except that its indentation may be adjusted to account for the change in indentation of the
first line of the comment.

Straight text. All other comments are treated as straight text. Indent fits as many words (separated by
blanks, tabs, or newlines) on a line as possible. Blank lines break paragraphs.

Comment indentation

If a comment is on a line with code it is started in the 'comment column', which is set by the --en command
line parameter. Otherwise, the comment is started at n indentation levels less than where code is currently
being placed, where n is specified by the -dn command line parameter. If the code on a line extends past
the comment column, the comment starts further to the right, and the right margin may be automatically
extended in extreme cases.

Preprocessor lines

In general, indent leaves preprocessor lines alone. The only reformmatting that it will do is to straighten up
trailing comments. It leaves imbedded comments alone. Conditional compilation (#ifdef ••• #endif) is
recognized and indent attempts to correctly compensate for the syntactic peculiarites introduced.

Sun Release 3.5 Last change: 24 December 1986 207

INDENT(I) USER COMMANDS INDENT(I)

FILES

BUGS

208

C syntax

Indent understands a substantial amount about the syntax of C, but it has a 'forgiving' parser. It attempts to
cope with the usual sorts of incomplete and misformed syntax. In particular, the use of macros like:

idefine forever for(ii)
is handled properly.

J .indent.pro profile file
-/.indentpro profile file
lusrllib/tmac/tmac.indent Troff macro package for' 'indent -trofr' output.

Indent has even more switches than Is.

A common mistake that often causes grief is typing:
indent *.c

to the shell in an attempt to indent all the C programs in a directory. This is probably a bug, not a feature.

The -bs option splits an excessivly fine hair.

Last change: 24 December 1986 Sun Release 3.5

LOCKSCREEN (1) USER COMMANDS LOCKSCREEN (1)

NAME
lockscreen, lockscreen _default - maintain window context, prevent unauthorized access and reduce phos
phorburn.

SYNOPSIS
lockscreeo [-b program] [-e] [-0] [-r] [-t seconds] [gfx-program] [gfx-program-args]

DESCRIPTION
Lockscreen is a standard tool provided under the Sun View environment that preserves the current state of
the display while the machine is not in use. When run, the display is cleared to black and the gfx-pro gram
is run. It is assumed that the gfx-pro gram will provide moving graphics to limit phosphor burn of the video
display that might otherwise occur from leaving the same static window configuration displayed for a long
time. If no gfx-pro gram is provided, a suitable default program is run.

Lockscreen prevents unauthorized access by requiring the user's password before restoring the window
context. When any keyboard or mouse button is pressed, the graphics screen is replaced by a password
screen that displays the user name, a small box with a bouncing logo, and a prompt for the user's password.
If the user has no password, or if the -0 option is used, the user's window context is immediately restored.

When the password screen appears:

1) Restore the window context by entering the user's password followed by a carriage return (this
password is not echoed on the screen) or,

2) Point to the black box and click the left button to return to the graphics display.

If neither of the above actions is taken, gfx yrogram will resume execution after the interval specified with
the -t option, as described below.

OPTIONS

FILES

-b program
Allow an additional program to be run as a child process of lockscreen. This background process
could be a compile server or some other useful program that the user wants run while lockscreen
is running. No arguments are passed to this program.

-e Add the Exit Desktop choice to the password screen. If pointed to and clicked, the Sun View
environment is exited and the current user is logged out.

-0 Require no password to reenter the window environment.

-r Allow the use of the user name root in the Name: field of the password screen. Normally, root is
not accepted as a valid user name.

-tseconds
After seconds seconds, clear the password screen and restart the gfx-program. The default is 5
minutes (300 seconds).

[gfx-program] [gfx-program-args]
Run this program after clearing the screen to black. If no program argument is present, lock
screen will try to run lockscreen _default if it exists on the standard search path, otherwise a
bouncing Sun logo will appear. If gfx-program-args are specified and the gfx-program isn't then
the args are passed to lockscreen _default. Lockscreen _default is typically a life program display
ing the successive generations. Lockscreen will not search for lockscreen _default if the gfx
program is specified explicitly as "".

lusrlbinllockscreen _default
The default gfx-pro gram. If a file named lockscreen _default appears earlier in the
search path, that file is used instead.

SEE ALSO
suntools(I),login(l)

Sun Release 3.5 Last change: 16 June 1986 229

LOGIN (1) USER CO~ANDS LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [username]

DESCRIPTION

FILES

login signs username on to the system initially; login may also be used at any time to change from one
userid to another.

When used with no argument, login requests a user name and password (if appropriate). Echoing is turned
off (if possible) while typing the password.

When successful, login updates accounting files, informs you of the existence of any mail, prints the mes
sage of the day, and displays the time you last logged in (unless you have a .hushlogin file in your home
directory - mainly used by nonhuman users, such as uucp).

login initializes the user and group IDs and the working directory, then starts a command interpreter shell
(usually either Ibinlsh or Ibinlcsh according to specifications found in the file letclpasswd. (Argument 0 of
the command interpreter is "-sh", or more generally, the name of the command interpreter with a leading
dash ("-") prepended.)

login also initializes the environment with information specifying home directory, command interpreter,
terminal-type (if available) and usemame.

If the file letclnologin exists, login prints its contents on the user's terminal and exits. This is used by shut
down(8) to stop logins when the system is about to go down. If the file letclsecuretty exists, only those ter
minals listed in that file provide login access to the super-user root. For example, if the file contained:

console

The super-user could only log in on the console.

The login command, recognized by sh and csh, is executed directly (without forking), and terminates that
shell. To resume working, you must log in again.

login times out and exits if its prompt for input is not answered within a reasonable time.

When the Bourne shell (sh) starts up, it reads a file called .profile from your home directory (that of the
usemame you use to log in). When the C-Shell (csh) starts up, it reads a file called .cshrc from your home
directory, and then reads a file called .login.

The shells read these files only if they are owned by the person logging in.

lusrladmllastlog
lusrladmlwtmp
lusrlspoollmaill*
lusrlttytype
lusrlucblquota
7.hushlogin
letclmotd
letclnologin
letclpasswd

time of last login
accounting
mail
terminal types
quota check
makes login quieter
message-of-the-day
stop login, print message
password file

/ot,,/COO"U1f'oth, """rft'IO ",l" .. lln. n .,J.."" " .. ~ ... _ .. """,,.,. l,.,.n , ""' .. "", ... '"'''' ... " J ",","'~J..I.llI.u.a.., lU..l.vn.L.aJ.6 u .. '" .;,u.}"o'.I.-u..:J""'.1.. ,"V.lUiS lli.

letclutmp accounting

SEE ALSO
init(8), getty(8), mail(l), passwd(l), passwd(5), environ(5V), shutdown(8), utmp(5)

DIAGNOSTICS
"Login incorrect," if the name or the password is bad (or mistyped).
"No Shell", "cannot open password file", "no directory": ask your system administrator for assistance.

230 Last change: 13 January 1987 Sun Release 3.5

LPR(1) USER COMMANDS LPR(1)

NAME
lpr - send job to printer

SYNOPSIS
Ipr [-Pprinter] [-#num] [-Cclass] [-Jjob] [-Ttitle] [-i [num]] [-1234font]

[-wnum] [-B] [-r] [-m] [-b] [-s] [-filter-option] [filename ...]

DESCRIPTION
lpr uses a spooling daemon to print the named files when facilities become available. lpr reads the stndard
input if no files are specified.

OPTIONS
-Pprinter

Send output to the named printer. Otherwise send output to the printer named in the PRINTER
environment variable, or to the default printer, Ip. If there is no entry in letclprintcap for Ip , lpr
supplies a default set of printer capabilities.

-#num Produce multiple copies of output, using num as the number of copies for each file named. For
example,
tutorial% Ipr -#3 new.index.c print.index.c more.c

produces three copies of the file new.index.c , followed by three copies of print .index.c ,etc. On the other
hand,

tutorial% cat new.index.c print.index.c more.c Ilpr-#3
generates three copies of the concatenation of the files.

-C Print class as the job classification on the burst page. For example,
tutorial% Ipr -C Operations new.index.c

replaces the system name (the name returned by hostname) with 'Operations' on the burst page,
and prints the file new .index.c .

-Jjob Print job as the job name on the burst page. Normally, lpr uses the first file's name.

- Ttitle Use title instead of the file name for the title used by pr.

-i[num] Indent output num spaces. If num is not given, eight spaces are used as default.

-I font
-2 font
-3 font
-4 font Mount the specified font on font position I, 2, 3 or 4. The daemon will construct a .railmag file in

the spool directory that indicates the mount by referencing lusrlliblvfontlfont.

-wnum Use num as the page width for pr.

-r Remove the file upon completion of spooling. -B Omit page headers.

-m Send mail upon completion.

-b Suppress printing the burst page.

-s Create a symbolic link from the spool area to the data files rather than trying to copy them (so
large files can be printed). This means the data files should not be modified or removed until they
have been printed. In the absence of this option, files larger than 1 Megabyte in length are trun
cated. Note that the -s option only works on the local host (files sent to remote printer hosts are
copied anyway), and only with named data files - it doesn't work if lpr is at the end of a pipeline.

filter-option

Sun Release 3.5

The following single letter options notify the line printer spooler that the files are not standard text
files. The spooling daemon will use the appropriate filters to print the data accordingly.

-p Use pr to format the files (Ipr -p is very much like pr Ilpr).
-I Print control characters and suppress page breaks.
-t The files contain troff(cat phototypesetter) binary data.

Last change: 13 November 1986 237

LPR(1)

FILES

USER COMMANDS LPR(I)

-0 The files contain data from ditroff (device independent troft).
-d The files contain data from tex (DVI format from Stanford).
-g The files contain standard plot data as produced by the plot(3X) routines (see also

plot(IG) for the filters used by the printer spooler).
-v The files contain a raster image, see rasterfile(5).
-c This option currently is unassigned.
-f Interpret the first character of each line as a standard FORTRAN carriage control charac-

ter.

If no filter-option is given, '%!' as the first two characters indicates that the file contains
Postscript commands.

letc/passwd
letclprintcap
lusrllib/lpd*
lusrlspooll*
lusrlspooll*/cf*
lusrlspooll*/df*
lusrlspooll */tf*

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf" files
temporary copies of "cf' , files

SEE ALSO
Ipq(I), Iprm(I), pr(1 V), printcap(5), Ipc(8), Ipd(8), rasterfile(5), screendump(l)

DIAGNOSTICS

BUGS

238

Ipr: copy file is too large
A file is determined to be too 'large' to print by copying into the spool area. Use the -s option as
defined above to make a symbolic link to the file instead of copying it. A 'large' file is approxi
mately 1 Megabyte in this system.

Ipr: printer: unknown printer
The printer was not found in the printcap database. Usually this is a typing mistake; however, it
may indicate a missing or incorrect entry in the letclprintcap file.

Ipr: printer: jobs queued, but cannot start daemon.
The connection to lpd on the local machine failed. This usually means the printer server started at
boot time has died or is hung. Check the local socket Idevlprinter to be sure it still exists (if it
does not exist, there is no lpd process running).

Ipr: printer: printer queue is disabled
This means the queue was turned off with
tutorial% lusr/etclIpc disable printer

to prevent lpr from putting files in the queue. This is normally done by the system manager when a printer
is going to be down for a long time. The printer can be turned back on by a super-user with [pc.

If the -f and -s flags are combined as follows:

Ipr -fs filename

copies the file to the spooling directory rather than making a symbolic link.

Placing the -s flag first, or writing each as separate arguments makes a link as expected.

Ipr -p is not equivalent to pr I Ipr. Ipr -p puts the current date at the top of each page, rather than the date
last modified, and inserts a header page between each file printed

The -p and -# options don't work well together; the second and subsequent copies do not include the file
name in each page's title.

Last change: 13 November 1986 Sun Release 3.5

LPR(1) USER COMMANDS LPR(1)

Fonts for troff and tex reside on the host with the printer. It is currently not possible to use local font
libraries.

Sun Release 3.5 Last change: 13 November 1986 238a

OD(IV) USER COMMANDS OD(IV)

SEE ALSO

BUGS

adb(I), dbxtool(I), dbx(l)

A file name argument can't start with +. A hexadecimal offset can't be a block count. Only one file name
argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a single character
argument

Sun Release 3.5 Last change: 17 July 1986 287

ON(lC) USER COMMANDS ON(lC)

NAME
on - execute a command remotely

SYNOPSIS
00 [-i] [-0] [-d] host command [argument] ...

DESCRIPTION
The on program is used to execute commands on another system, in an environment similar to that invok
ing the program. All environment variables are passed, and the current working directory is preserved. To
preserve the working directory, the working file system must be either already mounted on the host or be
exported to it. Relative path names will only work if they are within the current file system; absolute path
names may cause problems.

Standard input is connected to standard input of the remote command, and standard output and standard
error from the remote command are sent to the corresponding files for the on command.

OPTIONS
-i

-0

-d

Interactive mode: use remote echoing and special character processing. This option is
needed for programs that expect to be talking to a terminal. All terminal modes and win
dow size changes are propagated.

No Input this option causes the remote program to get end-of-file when it reads from
standard input, instead of passing standard input from the standard input of the on pro
gram. For example, -0 is necessary when running commands in the background with job
control.

Debug mode: print out some messages as work is being done.

SEE ALSO
rexd(8), exports(5)

DIAGNOSTICS

BUGS

288

unknown host Host name not found
cannot connect to server Host down or not running the server
can't find. Problem finding the working directory
can't locate mount point Problem finding current file system

Other error messages may be passed back from the server.

The Sun View window system can get confused by the environment variables.

When the working directory is remote mounted over NFS, a "'z hangs the window.

Last change: 13 November 1986 Sun Release 3.5

OVERVIEW(l) USER COMMANDS OVER VIEW (1)

NAME
overview - run a program from SunView that takes over the screen

SYNOPSIS
overview [-w] [generic _tool.Jlags] program_name [arguments] ...

DESCRIPTION
Bitmap graphics based programs that are not Sun View based can be run from Sun View using overview.
Overview shows an icon in Sun View when overview is brought up iconic (-Wi flag) or when the program
being run by overview is suspended (for example using ctrl-Z). Opening the overview icon, or starting
overview non-iconic, starts the program named on the command line. Overview supresses Sun View so that
Sun View window applications won't interfere with the program's display output or input devices.

Overview runs programs that fit the following profile:

own display

keyboard input from stdin

The program needs to own the bits on the screen. It doesn't use the sunwin
dow or suntoollibraries to arbitrate the use of the display and input devices
between processes.

The program takes keyboard input from stdin directly.

mouse inputfrom ldevlmouse The program takes locator input from the mouse directly.

OPTIONS
-w This flag is used to specify that the program being run creates its own Sun Windows window in

order to receive the serialized input stream from the keyboard and mouse that is provided by the
SunWindows kernel driver. -w tells overview to not convert SunWindows input into ASCII which
is then sent to the program being run under overview via a pty. X and NeWS are programs that fall
in this category (as of Dec 86, which is subject to change in the future).

SEE ALSO

BUGS

Windows and Window-Based Tools: Beginner's Guide

Users of overview on a Sun-3/110 frame buffer multiple frames should be aware of the existence of plane
groups for pre-3.2 applications. You can't successfully run pre-3.2 applications under overview if overview
itself is running in the color buffer. If you start overview so that it is not running in the overlay plane, then
the enable plane isn't be properly set up for viewing the application. This means that you can't run over
view with the -Wf or -Wb generic tool arguments. Also, you can't run overview on a desktop created by
suntools using the -8bit _color_only option.

Sun Release 3.5 Last change: 13 January 1987 289

PACK (1) USER COMMANDS PACK (1)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [-] [-r] filename . ..

peat filename ...

unpack filename ...

DESCRIPTION

290

pack attempts to store the specified files in a packed form using Huffman (minimum redundancy) codes on
a byte-by-byte basis. Wherever possible (and useful), each input file filename is replaced by a packed file
filename.z with the same access modes, access and modified dates, and owner as those of filename. If pack
is successful, filename will be removed.

Packed files can be restored to their original form using unpack or pcat .

The amount of compression obtained depends on the size of the input file and the frequency distribution of
its characters.

Because a decoding tree forms the first part of each .z file, it is usually not worthwhile to pack files smaller
than three blocks unless the distribution of characters is very skewed. This may occur with printer plots or
pictures.

Typically, large text-files are reduced to 60-75% of their original size. Load modules, which use a larger
character set and have a more uniform distribution of characters, show little compression. Their packed
versions come in at about 90% of the original size.

No packing will occur if:
the file appears to be already packed
the file name has more than 12 characters
the file has links
the file is a directory
the file cannot be opened
no disk storage blocks will be saved by packing
a file called name.z already exists
the .z file cannot be created
an I/O error occurred during processing

The last segment of the filename must contain no more than 12 characters to allow space for the appended
.z extension. Directories cannot be packed.

pcat does for packed files what cat(IV) does for ordinary files, except thatpcat cannot be used as a filter.
The specified files are unpacked and written to the standard output. To view a packed file named name.z
use:

peat filename.z

or just:

peat filename

To make an unpacked copy without destroying the packed version, use

ftl'at f,IOMfl"WtO MOUJMfl"WtO r"' J··"··,....·· ~ ,. ~,..~
Failure may occur if:

the filename (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Last change: 9 April 1986 Sun Release 3.5

PACK (1) USER COMMANDS PACK (1)

unpack expands files created by pack. For each file name specified in the command, a search is made for a
file called name.z (or just name, if name ends in .z). If this file appears to be a packed, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name, and has the same access modes,
access and modification dates, and owner as those of the packed file. Failure may occur for the same rea
sons that it may in pcat, as well as for the following:

OPTIONS

a file with the "unpacked" name already exists
the unpacked file cannot be created.

Print compression statistics for the following filename or names on the standard output Subse
quent -'s between filenames toggle statistics off and on.

-f Force packing of filename. This is useful for causing an entire directory to be packed, even if
some of the files will not benefit.

DIAGNOSTICS
pack returns the number of files that it failed to compress.

pcat returns the number of files it was unable to unpack.

unpack returns the number of files it was unable to unpack.

SEE ALSO
cat(l), compact(l)

Sun Release 3.5 Last change: 9 April 1986 290a

PRT(1) USER COMMANDS PRT(1)

-b Causes the printing of the body of the sees file.

-e This key letter implies the d, i, U, f, and t key letters and is provided for convenience.

-y[SID] This keyletter will cause the printing of the delta table entries to stop when the delta just printed
has the specified SID. If no delta in the table has the specified SID, the entire table is printed If no
SID is specified, the first delta in the delta table is printed This keyletter will cause the entire delta
table entry for each delta to be printed as a single line (the newlines in the normal multi-line for
mat of the d keyletter are replaced by blanks) preceded by the name of the sees file being pro
cessed, followed by a :, followed by a tab. This keyletter is effective only if the d keyletter is also
specified (or assumed).

-c[eutoff]
This keyletter will cause the printing of the delta table entries to stop if the delta about to be
printed is older than the specified cutoff date-time (see get(l) for the format of date-time). If no
date-time is supplied, the epoch 0000 GMT Jan. 1, 1970 is used. As with the y keyletter, this
keyletter will cause the entire delta table entry to be printed as a single line and to be preceded by
the name of the sees file being processed, followed by a :, followed by a tab. This keyletter is
effective only if the d keyletter is also specified (or assumed).

-r[rev-eutoff]
This keyletter will cause the printing of the delta table entries to begin when the delta about to be
printed is older than or equal to the specified cutoff date-time (see get(l) for the format of date
time). If no date-time is supplied, the epoch 0000 GMT Jan. 1, 1970 is used (In this case, noth
ing will be printed). As with the y keyletter, this keyletter will cause the entire delta table entry to
be printed as a single line and to be preceded by the name of the sees file being processed, fol
lowed by a :, followed by a tab. This keyletter is effective only if the d keyletter is also specified
(or assumed).

If any keyletter but y, C, or r is supplied, the name of the file being processed (preceded by one newline and
followed by two newlines) is printed before its contents.

If none of the u, f, t, or b keyletters is supplied, the d key letter is assumed.

Note that the s and i keyletters, and the C and r keyletters are mutually exclusive; therefore, they may not
be specified together on the same prt command

The form of the delta table as produced by the y, c, and r keyletters makes it easy to sort multiple delta
tables by time order. For example, the following will print the delta tables of all sees files in directory
sees in reverse chronological order:

prt -c sees I grep • I sort ' -rttab' +2 -3

When both the y and C or the y and r keyletters are supplied, prt will stop printing when the first of the two
conditions is met

SEE ALSO
sccs(l), admin(I), get(I), delta(l), prs(l), what(l), help(l), sccsfile(5)

Programming Utilities/or the Sun Workstation.

DIAGNOSTICS
Use help(1) for explanations.

Sun Release 3.5 Last change: 319

PS(1) USER COMMANDS PS(1)

NAME
ps - process status

SYNOPSIS
ps [acCegklsStuvwx] [num] [kernel_name] [c _dump Jile] [swap Jile]

DESCRIPTION
ps displays information about processes. Normally, only those processes that are started by you and are
attached to a controlling terminal (see termio(4V» are shown. Additional categories of processes can be
added to the display using various options. In particular, the a option allows you to include processes that
are not owned by you (that do not have your user ID), and the x option allows you to include processes
without control terminals. When you specify both a and x, you get processes owned by anyone, with or
without a control terminal. ps displays the process id, under PID; the control terminal (if any), under IT;
the cpu time used by the process so far, including both user and system time), under CPU; the state of the
process, under STAT; and finally, an indication of the COMMAND that is running.

The state is given by a sequence of four letters, for example, 'RWNA'.

First letter indicates the runnability of the process:

Second letter

Third letter

Fourth letter

R Runnable processes,
T Stopped processes,
P Processes in page wait,
D Processes in disk (or other short term) waits,
S Processes sleeping for less than about 20 seconds,
I Processes which are idle (sleeping longer than about 20 seconds).
Z A child processes that has terminated and is waiting for its parent process to do a

wait.

indicates whether a process is swapped out;
blank

(that is, a space) in this position indicates that the process is loaded (in memory).
W Process is swapped out.
> Process has specified a soft limit on memory requirements and has exceeded that

limit; such a process is (necessarily) not swapped.

indicates whether a process is running with altered CPU scheduling priority (nice):
blank

(that is, a space) in this position indicates' that the process is running without special
treatment

N The process priority is reduced,
< The process priority has been raised artificially.

indicates any special treatment of the process for virtual memory replacement. The
letters correspond to options to the vadvise (2) system call. Currently the possibilities
are:
blank

(that is, a space) in this position stands for V A_NORM.
A Stands for VA _ ANOM. An A typically represents a program which is doing gar

bage collection.
S Stands for VA _ SEQL. An S is typical of large image processing programs which

01"'-':' 11l"iftft" ..:71 1'),1 'ft"\o.'ft'\.1"'\~7"'r"\. L"Ol'l'l'lo hnl1 ... Y n,.A .. ~~'" .J'"l ~ " .. '1n ,;In+n
.... '" ~",,,,u5 '"~ u ... ", ... uvJ.;' '"V"'''''iU-vUUCUJ.J "UU.I. ... 0303 YVJ.U-UllUVU-03 \,I.""".

Kernel_name specifies the location of the system namelist. If the k option is given, c _dump Jile tells ps
where to look for core. Otherwise, the core dump is located in the file Ivmcore and this argument is
ignored Swap Jile gives the location of a swap file other than the default, Idevldrum.

OPTIONS
a Include information about processes owned by others.

c Display the command name, as stored internally in the system for purposes of accounting, rather than

320 Last change: 13 November 1986 Sun Release 3.5

PS(1) USER COMMANDS PS(I)

the command arguments, which are kept in the process' address space. This is more reliable, if less
informative, since the process is free to destroy the latter information.

C Display raw CPU time in the %CPU field instead of the decaying average.

e Display the environment as well as the arguments to the command

g Display all processes. Without this option, ps only prints 'interesting' processes. Processes are
deemed to be uninteresting if they are process group leaders. This normally eliminates top-level
command interpreters and processes waiting for users to login on free terminals.

k Normally, kernel_name, defaults to /vmunix, e _dump Jile is ignored, and swap yle defaults to
/dev/drum. With the k option in effect, these arguments default to /vmunix, /vmcore, and !dey/drum,
respectively.

I Display a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and WCHAN as described
below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers) to the basic
output format.

S Display accumulated CPU time used by this process and all of its reaped children.

tx Restrict output to processes whose controlling terminal is x (which should be specified as printed by
ps, for example, t3 for tty3, teo for console, tdO for ttydO, t? for processes with no terminal, etc).
This option must be the last one given.

u Display user-oriented output This includes fields USER, %CPU, NICE, SIZE, and RSS as described
below.

v Display a version of the output containing virtual memory. This includes fields RE, SL, P AGEIN,
SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM, described below.

w Use a wide output format (132 columns rather than 80); if repeated, that is, ww, use arbitrarily wide
output. This information is used to decide how much of long commands to print.

x Include processes with no controlling terminal.

num A process number may be given, in which case the output is restricted to that process. This option
must also be last.

DISPLAY FORMATS
Fields which are not common to all output formats:
USER name of the owner of the process
%CPU cpu utilization of the process; this is a decaying average over up to a minute of previous (real)

NICE
SIZE

RSS
LIM

TSIZ
TRS
%MEM
RE
SL
PAGEIN
UID
PPID
CP

Sun Release 3.5

time. Since the time base over which this is computed varies (since processes may be very
young) it is possible for the sum of all %CPU fields to exceed 100%.
(or NI) process scheduling increment (see setpriority(2) and niee(3C).
virtual size of the process (in kilobyte units). With the u option, values shown include the size
of the text segment. With the v option, values shown do not include the text segment.
real memory (resident set) size of the process (in kilobyte units)
soft limit on memory used, specified via a call to getrlimit(2); if no limit has been specified
then shown as xx
size of text (shared program) image
size of resident (real memory) set of text
percentage of real memory used by this process.
residency time of the process (seconds in core)
sleep time of the process (seconds blocked)
number of disk ito's resulting from references by the process to pages not loaded in core.
numerical user-id of process owner
numerical id of parent of process
short-term cpu utilization factor (used in scheduling)

Last change: 13 November 1986 321

PS(1)

FILES

USER COMMANDS

process priority (non-positive when in non-interruptible wait)
page fram number or swap area position

PS(1)

PRI
ADDR
WCHAN event on which process is waiting (an address in the system), with the initial part of the address

trimmed off, for example, 80004000 prints as 4000.

F :O.ags associated with process as in <sys/proc.h>:
SLOAD 0000001 in core
SSYS 0000002 swapper or pager process
SLOCK 0000004 process being swapped out
SSW AP 0000008 save area :O.ag
STRC 0000010 process is being traced
SWTED 0000020 another tracing :O.ag
SULOCK 0000040 user settable lock in core
SP AGE 0000080 process in page wait state
SKEEP 0000100 another:O.ag to prevent swap out
SOMASK 0000200 restore old mask after taking signal
SWEXIT 0000400 working on exiting
SPHYSIO 0000800 doing physical i/o (bio.c)
SVFORK 0001000 process resulted from vforkO
SVFDONE 0002000 another vfork :O.ag
SNOVM 0004000 no vm, parent in a vforkO
SPAGI 0008000 init data space on demand, from inode
SSEQL 0010000 user warned of sequential vm behavior
SUANOM 0020000 user warned of anomalous vm behavior
STIMO 0040000 timing out during sleep
SOUSIG 0100000 using old signal mechanism
SOWEUPC 0200000 owe process an addupcO call at next ast
SSEL 0400000 selecting; wakeup/waiting danger
SLOGIN 0800000 a login process (legit child of init)
SPTECHG 1000000 pte's for process have changed

A process that has exited and has a parent, but has not yet been waited for by the parent is marked
<defunct>; a process which is blocked trying to exit is marked <exiting>;ps makes an educated guess as to
the file name and arguments given when the process was created by examining memory or the swap area.
The method is inherently somewhat unreliable and in any event a process is entitled to destroy this infor
mation, so the names cannot be counted on too much.

/vmunix
/devlkmem
/dev/drum
/vrncore
/dev

system namelist
kernel memory
swap device
core file
searched to find swap device and terminal names

SEE ALSO
kill(I), w(I), pstat(8), termio(4V)

BUGS
Things can change while ps is running; t;e picture it giveS is only a clOSe approximation to u~e current
state.

322 Last change: 13 November 1986 Sun Release 3.5

RANLIB(I) USER COMMANDS RANLIB(I)

NAME
ranlib - convert archives to random libraries

SYNOPSIS
ranlib [-t] arcmve ...

DESCRIPTION
ranlib converts each archive to a form that can be linked more rapidly. ranlib does this by adding a table
of contents called __ oSYMDEF to the beginning of the archive. ranlib uses ar(l) to reconstruct the
archive. Sufficient temporary file space must be available in the file system that contains the current direc
tory.

OPTIONS
-t option, ranlib only "touches" the archives and does not modify them. This is useful after copying

an archive or using the -t option of make(l) in order to avoid having Id(l) complain about an
"out of date" symbol table.

SEE ALSO

BUGS

1d(1), ar(I), lorder(l), make(l)

Because generation of a library by ar and randomization of the library by ranlib are separate processes,
phase errors are possible. The linker, Id, warns when the modification date of a library is more recent than
the creation date of its dictionary; but this means that you get the warning even if you only copy the
library.

Sun Release 3.5 Last change: 8 April 1986 331

RASFIL TER8TOI (1) USER COMMANDS RASFIL TER8TOl (1)

NAME
rasfilter8tol- convert an 8-bit deep rasterfile to a I-bit deep rasterfile

SYNOPSIS
rasfilter8tol [-d] [-rgba threshold] [infile [outfile]]

DESCRIPTION
Rasfilter8tol reads the 8-bit deep rasterfile infile (standard input default) and converts it to the I-bit deep
rasterfile outfile (standard output default) by thresholding or ordered dither. The output format is Sun stan
dard rasterfile format (see lusrlincludelrasterfile.h). This command is useful for viewing 8-bit rasterfiles
on devices that can only display monochrome images.

OPTIONS
-d Use ordered dither to convert the input file instead of thresholding.

-rgba threshold
Set the threshold for the red, green, blue, and average pixel color values. Pixels whose color
values are greater than or equal to all of the thresholds are given a value of 0 (white) in the output
rasterfile; other pixels are set to 1 (black). The average threshold defaults to 128, the individual
thresholds to zero.

EXAMPLE

FILES

The command
tutorial% screendump -f Idev/cgtwoO I rasfilter8tol Ilpr -Pversatec -v

prints a monochromatic representation of the IdevlcgtwoO frame buffer on the printer named "versatec"
using the "v" output filter (see letc/printcap).

lusrllib/rasfilters/* Filters for non-standard rasterfile formats

SEE ALSO
Ipr(I), rastrepl(I), screendump(I), screenload(l)

File 110 Facilities for Pixrectsin Pixrect Reference Manual

332 Last change: 16 January 1987 Sun Release 3.5

RASTREPL (1) USER COMMANDS

NAME
rastrepl - magnify a raster image by a factor of two

SYNOPSIS
rastrepl [infile [outfile]]]]

DESCRIPTION

RASTREPL (1)

Rastrepl reads the rasterfile infile (standard input default) and converts it to the rasterfile outfile (standard
output default) which is twice as large in width and height Pixel replication is used to magnify the image.
The output file has the same type as the input file.

EXAMPLES
tutorial% screendump I rastrepl I Ipr -Pversatec -v

sends a rasterfile containing the current frame buffer contents to the Versatec plotter, doubling the size of
the image so that it fills a single page.

FILES
lusr/lib/rasfilters/* Filters for non-standard rasterfile formats

SEE ALSO
lpr(1), screendump(1), screenload(1)

File liD Facilities for Pixrects in Pixrect Reference Manual

Sun Release 3.5 Last change: 16 January 1987 333

RATFOR(I)

NAME
ratfor - rational FORTRAN dialect

SYNOPSIS

USER COMMANDS

ratfor [-6c] [-C] [-b] [filename •••]

DESCRIPTION

RATFOR(I)

ratfor converts the rational FORTRAN dialect into ordinary FORTRAN 77. It provides control flow con
structs essentially identical to those in C. See the FORIRAN 77 Programmer's Guide for a description of the
Ratfor language.

OPTIONS
-6c Use the character c as the continuation character in column 6 when translating to FORTRAN. The

default is to use the & character as a continuation character.

--C Pass Ratfor comments through to the translated code.

-b Translate Ratfor string constants to Hollerith constants of the form nnnbstring. Otherwise just

SEE ALSO
f77(1)

pass the strings through to the translated code.

Ratfor in the FORTRAN Programmer's Guide

334 Last change: 21 December 1983 Sun Release 3.5

RCP(lC) USER COMMANDS RCP(lC)

NAME
rcp - remote file copy

SYNOPSIS
rep filename1 filename2

rep [-r]filename ... directory

DESCRIPTION
rep copies files between machines. Eachfilename or directory argument is either a remote file name of the
form:

rhost:path

or a local file name (containing no ':' characters, or a 'I' before any ':'s).

If a filename is not a full path name, it is interpreted relative to your login directory on rhost. A path on a
remote host may be quoted (using \, ", or ') so that the metacharacters are interpreted remotely.

rep does not prompt for passwords; your current local user name must exist on rhost and allow remote
command execution by rsh(IC).

rep handles third party copies, where neither source nor target files are on the current machine. Hostnames
may also take the form rhostJname to copy files relative to the home directory of the user named rname,
rather than the current user name on the remote host

OPTIONS
-p Preserve modification times and access times.

-r copy each subtree rooted at filename; in this case the destination must be a directory.

SEE ALSO

BUGS

ftp(IC), rsh(IC), rlogin(IC)

rep is meant to copy between different hosts; attempting to rep a file onto itself (as with "myhost% rep
tmplfile myhost:ltmplfile ") results in a severely corrupted file.

rep doesn't detect all cases where the target of a copy might be a file in cases where only a directory should
be legal.

rep can become confused by output generated by commands in a .profile, .eshre, or .login file on the
remote host.

rep doesn't copy ownership, mode, and timestamps to the new files.

rep requires that the source host have permission to execute commands on the remote host when doing
third-party copies.

If you forget to quote metacharacters intended for the remote host you get an incomprehesible error mes
sage.

Sun Release 3.5 Last change: 13 November 1986 335

RDIST(1) USER COMMANDS RDIST(1)

NAME
rdist - remote file distribution program

SYNOPSIS
rdist [-nqbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]

rdist [-nqbRhivwy] -c name ... [login@]host[:dest]

DESCRIPTION

336

Rdist is a program to maintain identical copies of files over multiple hosts. It preserves the owner, group,
mode, and mtime of files if possible and can update programs that are executing. Rdist reads commands
from distfile to direct the updating of files and/or directories. If distfile is '-', the standard input is used. If
no -f option is present, the program looks first for 'distfile', then 'Distfile' to use as the input. If no names
are specified on the command line, rdist will update all of the files and directories listed in distfile. Other
wise, the argument is taken to be the name of a file to be updated or the label of a command to execute. If
label and file names conflict, it is assumed to be a label. These may be used together to update specific files
using specific commands.

The -c option forces rdist to interpret the remaining arguments as a small distfile. The equivalent distfile is
as follows.

(name ...) -> [login@]host
install [dest];

Other options:

-d Define var to have value. The -d option is used to define or override variable definitions in the
distfile. Value can be the empty string, one name, or a list of names surrounded by parentheses
and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m arguments can be given to limit updates to
a subset of the hosts listed in the distfile.

-0 Print the commands without executing them. This option is useful for debugging distfile.

-q Quiet mode. Files that are being modified are normally printed on standard output. The -q option
suppresses this:

-R Remove extraneous files. If a directory is being updated, any files that exist on the remote host
that do not exist in the master directory are removed. This is useful for maintaining truely identi
cal copies of directories.

-b Follow symbolic links. Copy the file that the link points to rather than the link itself.

-i Ignore unresolved links. Rdist will normally try to maintain the link structure of files being
transfered and warn the user if all the links cannot be found.

-v Verify that the files are up to date on all the hosts. Any files that are out of date will be displayed
but no files will be changed nor any mail sent.

-w Whole mode. The whole file name is appended to the destination directory name. Normally, only
the last component of a name is used when renaming files. This will preserve the directory struc
ture of the files being copied instead of flattening the directory structure. For example, renaming a
list of files such as (rlir1!f1 rlir2!f2) to ilir3 would create files dir3!dir1!f1 and dir3!dir2!t2 instead
of dir3/fl and dir3/f2.

-y Younger mode. Files are normally updated if their mtime and size (see stat(2» disagree. The-y
option causes rdist not to update files that are younger than the master copy. This can be used to
prevent newer copies on other hosts from being replaced. A warning message is printed for files
which are newer than the master copy.

-b Binary comparison. Perform a binary comparison and update files if they differ rather than

Last change: 17 July 1986 Sun Release 3.5

RDIST(1) USER COMMANDS RDIST(1)

comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the destination hosts, and what
operations to perform to do the updating. Each entry has one of the following formats.

<variable name> '=' <name list>
[label:] <source list> '->' <destination list> <command list>
[label:] <source list> '::' <time_stamp file> <command list>

The first format is used for defining variables. The second format is used for distributing files to other
hosts. The third format is used for making lists of files that have been changed since some given date. The
source list specifies a list of files and/or directories on the local host which are to be used as the master
copy for distribution. The destination list is the list of hosts to which these files are to be copied. Each file
in the source list is added to a list of changes if the file is out of date on the host being updated (second for
mat) or the file is newer than the time stamp file (third format).

Labels are optional. They are used to identify a command for partial updates.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. Comments begin with
'I' and end with a newline.

Variables to be expanded begin with '$' followed by one character or a name enclosed in curly braces (see
the examples at the end).

The source and destination lists have the following format:

<name>
or

'(' <zero or more names separated by white-space> ')'

The shell meta-characters '[', 'r, 'r, '}', '*', and '1' arerecognizedandexpanded(onthelocalhostonly)
in the same way as csh(l). They can be escaped with a backslash. The ,-, character is also expanded in
the same way as csh but is expanded separately on the local and destination hosts. When the -w option is
used with a file name that begins with '-', everything except the home directory is appended to the destina
tion name. File names which do not begin with 'I' or ,-, use the destination user's home directory as the
root directory for the rest of the file name.

The command list consists of zero or more commands of the following format.

'install' <options> opt_dest_name ';'
'notify' <name list>';'
'except' <name list>';'
'exceptyat' <pattern list>';'
'special' <flame list>string ';'

The install command is used to copy out of date files and/or directories. Each source file is copied to each
host in the destination list Directories are recursively copied in the same way. Opt_dest_name is an
optional parameter to rename files. If no install command appears in the command list or the destination
name is not specified, the source file name is used. Directories in the path name will be created if they do
not exist on the remote host. To help prevent disasters, a non-empty directory on a target host will never be
replaced with a regular file or a symbolic link. However, under the '-R' option a non-empty directory will
be removed if the corresponding filename is completely absent on the master host The options are '-R',
'-h', '-i', '-v', '-w', '-y', and '-b' and have the same semantics as options on the command line except
they only apply to the files in the source list The login name used on the destination host is the same as the
local host unless the destination name is of the format' 'login@host' , .

Sun Release 3.5 Last change: 17 July 1986 337

RDIST(1) USER COMMANDS RDIST(1)

FILES

338

The notify command is used to mail the list of files updated (and any errors that may have occured) to the
listed names. If no '@' appears in the name, the destination host is appended to the name (e.g.,
name1@host, name2@host, ...).

The except command is used to update all of the files in the source list except for the files listed in name
list. This is usually used to copy everything in a directory except certain files.

The except yat command is like the except command except that pattern list is a list of regular expressions
(see ed(1) for details). If one of the patterns matches some string within a file name, that file will be
ignored Note that since '\' is a quote character, it must be doubled to become part of the regular expres
sion. Variables are expanded in pattern list but not shell file pattern matching characters. To include a '$',
it must be escaped with '\'.

The special command is used to specify sh(1) commands that are to be executed on the remote host after
the file in name list is updated or installed. If the name list is omitted then the shell commands will be exe
cuted for every file updated or installed. The shell variable 'Fll.E' is set to the current filename before exe
cuting the commands in string. String starts and ends with "" and can cross multiple lines in distfile. Mul
tiple commands to the shell should be separated by ';'. Commands are executed in the user's home direc
tory on the host being updated. The special command can be used to rebuild private databases, etc. after a
program has been Updated.

The following is a small example.

HOSTS = (matisse root@arpa)

FILES = (lbin /lib /usrlbin /usr/games
/usr/include/ {* .h, {stand,sys,vax * ,pascal,machine }/*.h}
/usrllib /usr/man/man? /usr/ucb /usr/local/rdist)

EXLIB = (Mai1.rc aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmai1.st uucp vfont)

${FILES} -> ${HOSTS}
install-R;
except /usrllib/${EXLIB} ;
except /usr/games/lib ;
special /usr/lib/sendmail"/usr/lib/sendmail-bz" ;

srcs:
/usr/srclbin -> arpa

exceptyat (\\.0\$ /SCCS\$) ;

IMAGEN = (ips dviimp catdvi)

imagen:
/usr/local/${IMAGEN} -> arpa

install /usrllocal/lib ;
notify ralph ;

${FILES}:: stamp.cory
notify root@cory ;

distfile input command file
Itmp/rdist* temporary file for update lists

Last change: 17 July 1986 Sun Release 3.5

RDIST(1) USER COMMANDS RDIST(1)

SEE ALSO
sh(I), csh(I), stat(2)

DIAGNOSTICS

BUGS

A complaint about mismatch of rdist version numbers may really stem from some problem with starting
your shell, e.g., you are in too many groups.

Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a directory have been updated.

Variable expansion only works for name lists; there should be a general macro facility.

Rdist aborts on files which have a negative mtime (before Jan 1, 1970).

There should be a 'force' option to allow replacement of non-empty directories by regular files or sym
links. A means of updating file modes and owners of otherwise identical files is also needed.

Sun Release 3.5 Last change: 17 July 1986 339

REFER (1) USER COMMANDS REFER(1)

NAME
refer - find and insert literature references in documents

SYNOPSIS
refer [-ar] [-b] [-cstring] [-e] [-kx] [-lm,n] [-p file] [-0] [-skeys] file •••

DESCRIPTION
Refer is a preprocessor for nroff(I), or troff(I), that finds and formats references. The input files (standard
input by default) are copied to the standard output, except for lines between.[and.J command lines, Such
lines are assumed to contain keywords as for lookbib (1), and are replaced by information from a biblio
graphic data base. The user can avoid the search, override fields from it, or add new fields. The reference
data, from whatever source, is assigned to a set of troff strings. Macro packages such as ms(7) print the
finished reference text from these strings. A flag is placed in the text at the point of reference. By default,
the references are indicated by numbers.

When refer is used with eqn(l), neqn(I), or tbl(I), refer should be used first in the sequence, to minimize
the volume of data passed through pipes.

OPTIONS

FILES

-ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted, all author
names are reversed.

-b Bare mode - do not put any flags in text (neither numbers or labels).

-cstring
Capitalize (with SMALL CAPS) the fields whose key-letters are in string.

-e Accumulate references instead of leaving the references where encountered, until a sequence of
the form:

.[
UST
.]

is encountered, and then write out all references collected so far. Collapse references to the same
source.

-kx Instead of numbering references, use labels as specified in a reference data line beginning with the
characters %x; By default, x is L.

-Im,n Instead of numbering references, use labels from the senior author's last name and the year of
publication. Only the first m letters of the last name and the last n digits of the date are used. If
either ofm or n is omitted, the entire name or date, respectively, is used.

-p Take the next argument as a file of references to be searched. The default file is searched last.

-0 Do not search the default file.

-skeys Sort references by fields whose key-letters are in the keys string, and permute reference numbers
in the text accordingly. Using this option implies the -e option. The key-letters in keys may be
followed by a number indicating how many such fields are used, with a + sign taken as a very
large number. The default is AD, which sorts on the senior author and date. To sort on all authors
and then the date, for instance, use the options -sA + T.

lusr/diet/papers
lusrllib/refer

directory of default publication lists a..lld inilpxes
directory of programs

SEE ALSO
addbib(l), indxbib(I), lookbib(I), roftbib(I), sortbib(l)

340 Last change: 29 April 1983 Sun Release 3.5

SCREENBLANK (1) USER COMMANDS SCREENBLANK (1)

NAME
screenblank: - tum off video when the mouse and keyboard are idle

SYNOPSIS
screenblank [-m] [-k] [-d interval] [-e interval] [-rframe _buffer]

DESCRIPTION
screenblank turns off the display when the mouse and keyboard are idle for an extended period (the default
is 10 minutes).

OPTIONS
-m Do not check whether the mouse has been idle.

-k Do not check whether the keyboard has been idle.

-d interval
Disable after interval seconds. interval is a number of the form xxx.xu where each x is a decimal
digit The default is 600 seconds (10 minutes).

-e interval
Enable within interval seconds. interval is the time between successive polls for keyboard or
mouse activity. If a poll detects keyboard or mouse activity, the display is resumed. interval is a
number of seconds, of the form xxx..ux where each x is a decimal digit The default is 0.25
seconds.

-I frame _buffer
frame_buffer is the path name of the frame buffer on which video disabling/enabling applies. The
defaults is /dev/fb.

SEE ALSO
lockscreen(1)

BUGS
When not running suntools(l), only the RETURN key resumes video display.

Sun Release 3.5 Last change: 21 June 1986 365

SCREENDUMP (1) USER COMMANDS SCREENDUMP (1)

NAME
screendump - dump frame buffer image to file

SYNOPSIS
screendump [-ce] [-r framebuffer] [-t type] [file]

DESCRIPTION
Screendump reads the contents of a frame buffer and writes the display image to file (standard output
default) in Sun standard rasterfile format (see lusrlincludelrasterfile.h).

OPTIONS
-c Dump the frame buffer contents directly without making a temporary copy in a memory pixrect

Saves time and memory but lengthens the time the frame buffer must be inactive to guarantee a
consistent screen dump.

-r framebuffer
Dump the specified frame buffer device (default Idev/fb).

-t type Set the outputrasterfile type (default 1, RT_STANDARD). See lusrlincludelrasterfile.h.

-e Set the output rasterfile type to 2, RT_BYTE_ENCODED. For most images this saves a
significant amount of space compared to the standard format

EXAMPLES

FILES

tutoria1% screendump save. this. image
writes the current contents of the console frame buffer into the file save.this.image.

tutoria1% screendump -r Idev/cgtwoO save.color .image
writes the current contents of the color frame buffer IdevlcgtwoO into the file save.color.image.

tutoria1% screendump I Ipr -Pversatec -v
sends a rasterfile containing the current frame buffer to the lineprinter, selecting the printer named "versa
tec" and the "v" output filter (see letclprintcap).

lusrllib/rasfilters/* Filters for non-standard rasterfile formats

SEE ALSO

BUGS

366

lpr(l), rasfilter8to1 (1), rastrepl(I), screenload(l)

File 110 Facilitiesfor Pixrects in Pixrect Reference Manual

The output file or the screen may be corrupted if the frame buffer contents are modified while the dump is
in progress.

Last change: 16 January 1987 Sun Release 3.5

SCREENLOAD (1) USER COMMANDS SCREENLOAD (1)

NAME
screenload - load frame buffer image from file

SYNOPSIS
screenload [-dp] [-fframebuffer] [-bgw] [-h count data ...] [-i color] [file]

DESCRIPTION
Screenload reads the Sun standard rasterfile file (see lusrlincludelrasterfile.h) and displays its contents on a
frame buffer. Screen load is able to display monochrome images on a color display, but cannot display
color images on a monochrome display. If the input file contains a color image, a frame buffer has not
been explicitly specified, and Idev/fb is a monochrome frame buffer, screenload will look for a color frame
buffer with one of the standard names.

If the image contained in the input file is larger than the actual resolution of the display, screenload clips
the right and bottom edges of the input image. If the input image is smaller than the display (for example,
loading an 1152-by-900 image on a 1600-by-1280 high resolution display), screen load centers the image
on the actual workstation screen and fills the border area with solid black (by default). Various options
may be used to change the fill pattern.

OPTIONS
-d Print a warning message if the display size does not match the rasterfile image.

-p Wait for a newline to be typed on the standard input before exiting.

-f framebuffer
Display the image on the specified frame buffer device (defaultldev/tb).

-b Fill the border area with a pattern of solid ones (default). On a monochrome display this results in
a black border; on a color display the color map value selected by the -i option determines the
border color.

-g Fill the border area with a pattern of "desktop grey". On a monochrome display this results in a
border matching the default background pattern used by SunView; on a color display the color
map value selected by the -i option determines the foreground border color, though the pattern is
the same as on a monochrome display.

-w Fill the border area with a pattern of solid zeros. On a monochrome display this results in a white
border; on a color display the color map value at index 0 determines t.lte border color.

-b count data ...
Fill the border area with the bit pattern described by the following count 16-bit hexadecimal con
stants. Note that a "1" bit is black and a "0" bit is white on the monochrome display; on a color
diplay the color map value selected by the -i option determines the border foreground color. The
number of hex constants in the pattern is limited to 16.

-i color Fill the border area with the given color value (default 255).

EXAMPLES

FILES

tutorial% screenload saved.display.image
loads the raster image contained in the file saved.display.image on the display type indicated by the
rasterfile header in that file.

tutorial% screenload -f/dev/cgtwoO monochrome.image
reloads the raster image in the file monochrome. image on the color frame buffer device IdevlcgtwoO.

tutorial% screenload -hI ffff small.saved.image
is equivalent to the -b option (fill border with black), while

tutorial% screenload -h4 8888 8888 2222 2222 small.saved.image
is equivalent to the -g option (fill border with desktop grey).

lusr/lib/rasfilters/* Filters for non-standard rasterfile formats

Sun Release 3.5 Last change: 16 January 1987 367

SCREENLOAD (1) USER COMMANDS SCREENLOAD (1)

SEE ALSO
rasfilter8tol(1), rastrepl(I), screendump(I), screenload(l)

File lID Facilitiesfor Pixrects in Pixrect Reference Manual

368 Last change: 16 January 1987 Sun Release 3.5

SH(1) USER COMMANDS SH(1)

NAME
sh - shell, the standard UNIX command interpreter and command-level language

SYNOPSIS
sh [-acefbiknstuvx] [arguments]

DESCRIPTION
sh, the Bourne shell, is the standard UNIX command interpreter. It executes commands read from a termi
nal or a file.

Definitions
A blank is a TAB or a SPACE Character. A name is a sequence of letters, digits, or underscores beginning
with a letter or underscore. A parameter is a name, a digit, or any of the characters *, @, #, 1, -, $, and! •

Invocation
If the shell is invoked through exec(2) and the first character of argument zero is -, commands are initially
read from $HOMEI.profile, if such a file exists and is owned by you. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as Ibinlsh.

OPTIONS

USAGE

The flags below are interpreted by the shell on invocation only; unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the remaining arguments are
passed as positional parameters for use with the commands that file contains.

-c string If the -c flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain commands are read from the standard input.

Any remaining arguments specify the positional parameters. Shell output (except for Special
Commands) is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal, this shell is
interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

The remaining flags and arguments- are described under the set command, under Special Commands,
below.

Refer to Doing More With UNIX Beginner's Guide for more information about using the shell as a pro
gramming language.

Commands
A simple command is a sequence of nonblank words separated by blanks. The first word specifies the
name of the command to be executed. Except as specified below, the remaining words are passed as argu
ments to the invoked command The command name is passed as argument 0 (see exec (2». The value of
a command is its exit status if it terminates normally, or (octal) 200+status if it terminates abnormally (see
sigvec(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I (or, for historical compatibility, by'').
The standard output of each command but the last is connected by a pipe (2) to the standard input of the
next command. Each command is run as a separate process; the shell normally waits for the last command
to terminate before prompting for or accepting the next input line. The exit status of a pipeline is the exit
status of its last command.

A list is a sequence of one or more simple commands or pipelines, separated by;, &, &&, or I I , and
optionally terminated by ; or &. Of these four symbols, ; and & have equal precedence, which is lower
than that of && and II . The symbols && and II also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (the shell does not wait for that pipeline to finish). The symbols && and I I are used to
indicate condition execution of the list that follows. With && , list is executed only if the preceding pipe
line (or command) returns a zero exit status. With I I , list is executed only if the preceding pipeline (or

Sun Release 3.5 Last change: 7 July 1986 377

SH(1) USER COMMANDS SH(I)

378

command) returns a nonzero exit status. An arbitrary number of NEWLINEs may appear in a list, instead of
semicolons, to delimit commands.

A command is either a simple command or one of the following constructions. Unless otherwise stated, the
value returned by a command is that of the last simple command executed in the construction.

for name [in word. ..] do list done
Each time a for command is executed, name is set to the next word taken from the in word list. If
in word. .. is omitted, then the for command executes the do list once for each positional param
eter that is set (see Parameter Substitution below). Execution ends when there are no more words
in the list

case word in [pattern[I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that matches word. The form
of the patterns is the same as that used for filename generation (see Filename Generation) except
that a slash, a leading dot, or a dot immediately following a slash need not be matched explicitly.

if list then list [elif list then list] ... [else list] ti
The list following if is executed and, if it returns a zero exit status, the list following the first then
is executed. Otherwise, the list following elif is executed and, if its value is zero, the list follow
ing the next then is executed. Failing that, the else list is executed. If no else list or then list is
executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the whlle list and, if the exit status of the last command in
the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do list
are executed, then the whlle command returns a zero exit status; untll may be used in place of
while to negate the loop termination test.

(list) Execute list in a subshell.
{list;} list is simply executed.
name 0 {list;}

Define a function which is referenced by name. The body of the function is the list of commands
between { and }. Execution of functions is described below (see Execution).

The following words are only recognized as the first word of a command and when not quoted:

if then else elif ti case esac for while untll do done { }

Comments
A word beginning with # causes that word and all the following characters up to a NEWLINE to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents (",,) may be used as part or all of
a word; trailing NEWLINE s are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two types of parameters, posi
tional and keyword If parameter is a digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters (also known as variables) may be assigned values by writing:

name =value [name =value] ...

Pattern-matching is not performed on value. There cannot be a function and a variable with the same
name.

${parameter}
The value, if any, of the parameter is substituted The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If param
eter is * or @, all the positional parameters, starting with $1, are substituted (separated by spaces).
Parameter $0 is set from argument zero when the shell is invoked.

If the colon (:) is omitted from the following expressions, the shell only checks whether parameter is set or
not
${parameter:-word}

Last change: 7 July 1986 Sun Release 3.5

SH(1) USER COMMANDS

If parameter is set and is nonnull, substitute its value; otherwise substitute word.
$ {parameter: =word}

SH(1)

If parameter is not set or is null set it to word; the value of the parameter is substituted. Positional
parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is nonnull, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, the message "parameter null or not set" is printed.

${parameter: + word}
If parameter is set and is nonnull, substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${ d:-, pwd, }

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (horne directory) for the cd command.
PATH The search path for commands (see Execution below).
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the MAILP ATH parameter is not set,

the shell informs the user of the arrival of mail in the specified file.
MAILCHECK

This parameter specifies how often (in seconds) the shell will check for the arrival of
mail in the files specified by the MAILPATH or MAIL parameters. The default value is
600 seconds (10 minutes). If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of filenames. If this parameter is set, the shell informs the user
of the arrival of mail in any of the specified files. Each filename can be followed by %
and a message that will be printed when the modification time changes. The default mes
sage is you have mail.

PSt Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default' '> ".
IFS Internal field separators, normally SPACE, TAB, and NEWLINE.
SHELL When the shell is invoked, it scans the environment (see Environment below) for this

name. If it is found and there is an 'r' in the filename part of its value, the shell becomes
a restricted shell.

The shell gives default values to PATH, PSt, PS2, MAILCHECK and IFS. HOME and MAIL are set by
login(I).

Blank Interpretation
Mter parameter and command substitution, the results of substitution are scanned for internal field separa
tor characters (those found in IFS) and split into distinct arguments where such characters are found.
Explicit null arguments ("" or ,,) are retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

Filename Generation
Following substitution, each command word is scanned for the characters *, ?, and [. If one of these char
acters appears the word is regarded as a pattern. The word is replaced with alphabetically sorted filenames
that match the pattern. If no filename is found that matches the pattern, the word is left unchanged. The

Sun Release 3.5 Last change: 7 July 1986 379

SH(1) USER COMMANDS SH(I)

380

character • at the start of a filename or immediately following aI, as well as the character I itself, must be
matched explicitly.

Quoting

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters separated by - matches

any character lexically between the pair, inclusive. If the first character following the
opening [" is a "!" any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () I A < >NEWUNE SPACE TAB

A character may be quoted (i.e., made to stand for itself) by preceding it with a \. The pair \NEWLINE is
ignored All characters enclosed between a pair of single quote marks ("), except a single quote, are
quoted Inside double quote marks (" "), parameter and command substitution occurs and \ quotes the char
acters \, ", ", and $. "$*" is equivalent to "$1 $2 ... ", whereas "$@" is equivalent to "$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PSI before reading a command. If at any time
a NEWUNE is typed and further input is needed to complete a command, the secondary prompt (Le., the
value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. The following may appear anywhere in a simple command or may precede or follow a com
mand and are not passed on to the invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist it is created;

otherwise, it is truncated to zero length.
> >word Use file word as standard output. If the file exists output is appended to it (by first seek

ing to the end-of-file); otherwise, the file is created.
< <[-]word The shell input is read up to a line that is the same as word, or to an end-of-file. The

resulting document becomes the standard input. If any character of word is quoted, no
interpretation is placed upon the characters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \NEwLINE is ignored, and \ must be used to
quote the characters \, $, ", and the first character of word. If - is appended to < <, all
leading TABs are stripped from word, and from the document.

<&digit Use the file associated with file descriptor digit as standard input. Similarly for the stan-
dard output using >&digit.

<&- The standard input is closed. Similarly for the standard output using >&-.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that
specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order i.., which redirections are specified is si~uifi.cant. The shell evaluates redirections left-to-right.
For example:

... l>xxx2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the file associated with file
descriptor 1 (i.e. xxx). If the order of redirections were reversed, file descriptor 2 would be associated with
the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associated with file xu.

Last change: 7 July 1986 Sun Release 3.5

SH(1) USER COMMANDS SH(1)

If a command is followed by & the default standard input for the command is the empty file Idev/null.
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment (see environ(5V» is a list of name-value pairs that is passed to an executed program in
the same way as a normal argument list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters or creates new parameters,
none of these affects the environment unless the export command is used to bind the shell's parameter to
the environment (see also set -a). A parameter may be removed from the environment with the unset com
mand. The environment seen by any executed command is thus composed of any unmodified name-value
pairs originally inherited by the shell, minus any pairs removed by unset, plus any modifications or addi
tions, all of which must be noted in export commands.

The environment for any simple command may be augmented by prefixing it with one or more assignments
to parameters. Thus:

TERM=450 cmd

and

(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the com
mand name. The following first prints a=b c and c:

Signals

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by &;
otherwise signals have the values inherited by the shell from its parent, with the exception of signal 11 (but
see also the trap command below).

Execution
Each time a command is executed, the above substitutions are carried out. If the command name matches
one of the Special Commands listed below, it is executed in the shell process. If the command name does
not match a Special Command, but matches the name of a defined function, the function is executed in the
shell process (note how this differs from the execution of shell procedures). The positional parameters $1,
$2, are set to the arguments of the function. If the command name matches neither a Special Com
mand nor the name of a defined function, a new process is created and an attempt is made to execute the
command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is :/bin:/usrlbin (specifying /bin, and
/usr/bin, in addition to the current directory). Directories are searched in order. The the current directory
is specified by a null path name, which can appear immediately after the equal sign (PATH=: ...) or
between the colon delimiters (... : : ...) anywhere else in the path list. If the command name contains a I
the search path is not used; such commands will not be executed by a restricted shell. Otherwise, each
directory in the path is searched for an executable file. If the file has execute permission but is not an
binary executable (see a.out(5) for details) it is assumed to be a file containing shell commands. A sub
shell is spawned to read it. A parenthesized command is also executed in a subshell.

Sun Release 3.5 Last change: 7 July 1986 381

SH(1) USER COMMANDS SH(I)

The location in the search path where a command was found is remembered by the shell (to help avoid
unnecessary execs later). If the command was found in a relative directory, its location must be re
determined whenever the current directory changes. The shell forgets all remembered locations whenever
the PATH variable is changed or the hash -r command is executed (see below).

Special Commands

382

Input/output redirection is now permitted for these commands. File descriptor 1 is the default output loca
tion.

No effect; the command does nothing. A zero exit code is returned .
• file Read and execute commands from file and return. The search path specified by PATH is used to

find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified resume at the n-th
enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter HOME is the default arg. The shell
parameter CDPATH defines the search path for the directory containing arg. Alternative directory
names are separated by a colon (:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere else in the path list. If arg begins
with a I the search path is not used. Otherwise, each directory in the path is searched for arg.

echo [arg ...]
Echo arguments. See echo(IV) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell without creating a new
process. Input/output arguments may appear and, if no other arguments are given, cause the shell
input/output to be modified

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted the exit status is that of the
last command executed (an end-of-file will also cause the shell to exit.)

export [name...]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, a list of all names that are exported in this shell is printed
Function names may not be exported.

hash [-r] [name...]
For each name, the location in the search path of the command specified by name is determined
and remembered by the shell. The -r option causes the shell to forget all remembered locations.
If no arguments are given, information about remembered commands is presented. Hits is the
number of times a command has been invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. There are certain situations which require that
the stored location of a command be recalculated. Commands for which this will be done are
indicated by an asterisk (*) adjacent to the hits information. Cost will be incremented when the
recalculation is done.

login [arg . ..]
Equivalent to exec login arg See login(l) for usage and description.

pwd Print the current working directory. See pwd (l) for usage and description.
read [name . ..]

One line is read from the standard input and the first word is assigned to the first name, the second
word to the second name, etc., with leftover words assigned to the last name. The return code is 0
unless an end-of-file is encountered.

Last change: 7 July 1986 Sun Release 3.5

SH(1) USER COMMANDS SH(1)

readonly [name...]
The given names are marked readonly and the values of the these names may not be changed by
subsequent assignment If no arguments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the return status is
that of the last command executed.

set [-aetbkntuvx- [arg . ..]]
-a Mark variables which are modified or created for export
-e Exit immediately if a command exits with a nonzero exit status.
-f Disable filename generation
-h Locate and remember function commands as functions are defined (function commands

are normally located when the function is executed).
-k All keyword arguments are placed in the environment for a command, not just those that

precede the command name.
-0 Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags can also be used upon invo
cation of the shell. The current set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, and so on. If no arguments are given,
the values of all names are printed.

shift [n]
The positional parameters are shifted to the left, from position n+l to position 1, and so on. Previ
ous values between $1 and $n are discarded. If n is not given, it is assumed to be 1.

test Evaluate conditional expressions. See test(IV) for usage and description.
times Print the accumulated user and system times for processes run from the shell.
trap [arg] [n] ...

The command arg is to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the
current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces an error. If
arg is absent all trap(s) n are reset to their original values. If arg is the null string this signal is
ignored by the shell and by the commands it invokes. If n is 0 the command arg is executed on
exit from the shell. The trap command with no arguments prints a list of commands associated
with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a command name.

umask [000]

The user file-creation mode mask is set to 000. The three octal digits refer to read/write/execute
permissions for owner, group, and others, respectively. The value of each specified digit is sub
tracted from the corresponding 'digit' specified by the system for the creation of a file. For exam
ple, umask 022 removes group and others write permission (files normally created with mode 777
become mode 755; files created with mode 666 become mode 644). The current value of the
mask is printed if 000 is omitted

unset [name . ..]
For each name, remove the corresponding variable or function. The variables PATH, PSt, PS2,
MAILCHECK and IFS cannot be unset

wait [n]
Wait for the specified process and report its termination status. If n is not given all currently
active child processes are waited for and the return code is zero.

Sun Release 3.5 Last change: 7 July 1986 383

SH(I) USER COMMANDS SH(I)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status. If the
shell is being used noninteractively execution of the shell file is abandoned. Otherwise, the shell returns
the exit status of the last command executed (see also the exit command above).

$HOME/.profiie
/tmp/sh*
/dev/null

SEE ALSO
csh(I), cd(I), echo(IV), login(I), pwd(I), test(IV), dup(2), exec(2), fork(2), pipe(2), signal(2), umask(2),
wait(2), a.out(5), profile(5), environ(5).

CAVEATS

384

If a command is executed, and a command with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell will continue to exec the original
command Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct response. Use the cd com
mand with a full path name to correct this situation.

Last change: 7 July 1986 Sun Release 3.5

SUNTOOLS (1) USER COMM:ANDS SUNTOOLS (1)

NAME
suntools, othertools, selection _ svc - the Sun View window environment

SYNOPSIS
sun tools [-n l-s startup-file] [-S] [-d display-device] [-m mouse-device] [-k keyboard-device]

[-p] [-b red green blue] [-f red green blue] [-i] [-B I-F I-P]
[-pattern on I orr I gray I iconedit-file-1lIl11U!] [-background raster-file-name]

-8bit_color_only] [-toggle_enable] [-overlay_only]

GETTING STARTED
suntools starts up the SunView environment and (unless you have specified othelWise) a default arrange
ment of a few useful "tools," or window-based utilities.

See Start-up Processing below to learn how to specify your own initial arrangement of tools. Some of the
behavior of suntools is controlled by settings in your defaults database; see SunView Defaults below.

OPTIONS
-n Bypass startup processing by ignoring both the lusrlliblsuntools and -I.suntools files. See Startup

Processing for details.

-s startup-file
Read startup commands from startup file (instead of lusrllibl suntools or -I.suntools).

-S Set "click-to-type" mode, allowing you to select a window by clicking in it. Having done so, input
is directed to that window regardless of the position of the mouse-cursor, until you click to select
some other window.

-d display-device
Use display device as the output device on which to run, rather than the default frame buffer dev
ice,ldev/fb.

-m mouse-device
Use mouse device as the system pointing device (locator), rather than the default mouse device,
ldevlmouse.

-k keyboard-device
Accept keyboard input from keyboard device, rather than the default keyboard device, Idevlkbd.

-p Prints to standard out the name of the window device used for the suntools Root Window.

-b red green blue
Specifies the values of the red. green and blue components of the background color. If this option
is not specified, each component of the background color is 255 (white). Prism users that use this
option should use the -8bit_ color_only option too.

-f red green blue
Specifies the values of the red. green and blue components of the foreground color. If this option
is not specified, each component of the foreground color is 0 (black). Prism users that use this
option should use the -8bit_ color_only option too.

-i Invert the background and foreground colors used on the screen. On a monochrome monitor, this
option provides a video reversed image. On a color monitor, colors that are not used'as the back
ground and foreground are not affected.

-B Use the background color for the Root Window color.

-F Use the foreground color for the Root Window color.

-P Use 'a stipple pattern for the Root Window color. This option is assumed unless -F or -B is
specified.

-pattern [on I orr I gray I iconedit-file-name]

Sun Release 3.5

Use the indicated "pattern" to cover the Root Window. on means to use the default desktop gray
pattern. off means to not use the default desktop gray pattern. gray means to use a 50% gray

Last change: 27 January 1986 411

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

color on color monitors. iconedit-file-name is the name of a file produced with iconedit(l) which
contains an image that is replicated allover the Root Window.

-background raster-file-name
Use the indicated raster file as the image in your Root Window. The raster file can be created with
screendump(I). Screen dumps produced on color monitors currently do not work as input to this
option. Small images are centered on the screen.

-8bit _color_only
For multiple plane group frame buffers, only let windows be created in the 8 bit color plane group.
This frees up the black and white overlay plane to have a separate desktop running on it. This
option is usually used with the -toggle_enable option .. See the section below entitled Multiple
Desktops on the Same Screen.

-toggle_enable
For multiple plane group frame buffers, when sliding the cursor between different desktops run
ning within different plane groups on the same screen, change the enable plane to allow viewing
of the destination desktop. See the section below entitled Multiple Desktops on the Same Screen.

-overlay_only
For multiple plane group frame buffers, only let windows be created in the black and white over
lay plane group. This frees up the 8 bit color plane group to have a separate desktop running in it.
This option is usually used with the -toggle_enable option. See the section below entitled Multi
ple Desktops on the Same Screen.

DESCRIPTION

412

Windows
The Sun View environment always has one window open, called the Root Window, which covers the whole
screen. A solid color is its only content Each tool is given its own window which lies on top of some of
the Root Window (and possibly on top of other tools). A window obscures any part of another window
which lies below it

Input to Windows
Mouse input is always directed to the window the mouse cursor is in. You can have keyboard input follow
mouse input, or you can use the "Click-to-Type" approach. With Click-to-Type, keyboard input contin
ues to be directed to a window, no matter where the mouse is pointing, until you click the left or middle
mouse button in another window. Click-to-Type is an option in your defaults database; see SunView
Defaults below. If you are not using Click-to-Type, and your mouse cursor is in the Root Window, key
board input is discarded.

Your input actions (mouse motions, button pushes, and keystrokes) are synchronized This means that you
can "type-ahead" and "mouse-ahead," even across windows.

The Mouse Buttons
Left button (the select button) Click once to select or choose objects.

Middle button (the adjust button) Click once to shorten or lengthen your selection.

Right button (the menu button) Depress and hold down to invoke menus.

Menus
suntools provides pop-up menus. In the current release, there are two styles of pop-up menus: the original
menu style, called stacking menus, and a new style, called walking menus (also known as "pull-right
menus"). A menu is invoked by pressing and holding the menu button. The menu remains on the screen
as long as you hold the menu button down. To select a menu item, point at it (it will be highlighted), then
release the menu button.

With stacking menus, more than one menu can appear simultaneously. The menus are shown in a stack,
with the label of each menu visible, and with the current menu on top so that its items are visible. To bring
a menu to the top (and make its items available), select its label as you would a menu item. Then push the
menu button again. The menu stack is repainted with the selected menu on top.

Last change: 27 January 1986 Sun Release 3.5

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

With walking menus. any menu item can have an arrow (=>) on the right. Pointing to this arrow invokes
a sub-menu. with additional menu items that can be selected Selecting an item that has an arrow (a
"pull-right item") invokes the first item on the sub-menu.

Walking menus are an option in your defaults databa~e; see SunView Defaults below.

The Root Window Menu
You can use the default Root Window Menu to start ten common tools and perform three functions. To
invoke it. hold down the menu button when the mouse cursor is anywhere in the Root Window.

The items in the default Root Window Menu are:

SheUTool Creates a new shelltool (1). running a new copy of the shell.

CommandTool Creates a new cmdtool(l). a scrollable cousin of the shelltool.

MaiiTool Creates a new mailtool(l).

TextEditor Creates a new textedit(I).

DeraultsEditor Creates a new defaultsedit(I), for browsing or changing your defaults database.

IconEditor Creates a new iconedit(I).

DbxTool Creates a new dbxtool(1). a window-based debugger.

PeriMeter Creates a new perfmeter(I), to monitor system performance.

GraphicsTool Creates a new gfxtool(I). for running graphics programs.

Console Creates a new Console window, a cmdtool with a -C flag, which acts as the system con
sole. In particular, most error messages will be directed to the console. You should
always have a console window on your screen.

Lock Screen Completely covers the screen with a graphics display, and "locks" the workstation until
you type your password. When you "unlock" the workstation, the screen is restored as
it was when you locked it See lockscreen(l) for details.

Redisplay All Redraws all the contents of the screen. Use this to repair damage done by processes that
wrote to the screen without consulting the Sun View system.

Exit Sun tools Exits the suntools program. Closes all tool windows and kills their associated processes
(depending on the processes, this can be fairly slow). You return to the shell which
invoked suntools.
This command requires confirmation: When it prompts you, press the left mouse button
to complete the Exit Suntools command; press the right button to cancel.

You can specify your own Root Window Menu; see SunView Defaults below.

The Frame Menu
A small set of universal functions are available through the Frame Menu. There are also accelerators for
some of these functions; see below.

You can invoke the Frame Menu when the cursor is over any part of the tool which does not provide an
application-specific menu, such as the tool namestripe (black stripe holding the tool's name), the border
stripes of the window, and the whole of the tool's icon.

The items in the Frame Menu are:

Close (Open)

Move

Sun Release 3.5

Only one of Close or Open appears in the menu, depending on the current state of the
window. Close shrinks the tool to a small image (an icon). Open reopens an icon and
places the tool in the spot it occupied when it was open. Icons are placed on the screen
according to the icon policy in your defaults database; see SunView Defaults below.
You can move a closed window just like an open window. When the window is closed,
the tool's process(es) continue to run.

Moves the tool window to another spot on the screen. When invoked, Move instructs

Last change: 27 January 1986 413

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

414

Resize

Expose

Hide

Redisplay

Quit

you with an instruction box that appears in the middle of the screen.
If you are using walking menus, Move has a sub-menu with two items: Constrained
and Unconstrained. Constrained moves are either vertical or horizontal, but not both.
Selecting Move invokes a Constrained move.

Shrinks or stretches the size of a window on the screen. Resize, like Move, instructs
you with an instruction box that appears in the middle of the screen.
If you are using walking menus, Resize has a sub-menu with four items: Constrained,
Unconstrained, Zoom (or UnZoom, depending on the current state of the window) and
FullScreen. Constrained resizes are either vertical or horizontal, but not both. Zoom
makes a window the full height of the screen; UnZoom undoes this. FullScreen makes
a window the full height and width of the screen; UnZoom undoes this. Selecting
Resize invokes a Constrained resize.

Brings the window to 'the top of the pile'. The whole window becomes visible, and
occludes any window it happens to overlap on the screen.

Puts the window on the 'bottom of the pile'. The window is occluded by any window
which overlaps it

Redraws the contents of the window.

Notifies the tool to terminate gracefully. This command requires the same type of
confirmation as the Exit Suntools command in the Root Window Menu.

Frame Menu Accelerators
Accelerators are provided for some of the Frame Menu functions. You can invoke these functions quickly
with a simple button push in the tool window's name stripe or outer boundary, without displaying a menu.
See Windows and Window-Based Tools: Beginner's Guide for more details.

The accelerators for the various functions are:

Open Click the select mouse button when the cursor is over the icon.

Move Depress the adjust mouse button while the cursor is in the tool's name stripe or outer
boundary. A bounding box is displayed which tracks the mouse as long as you hold
the adjust button down.
If the cursor is near a comer when you press the mouse button, the move is Uncon
strained. If it is in the middle third of a side, the move is Constrained.

Resize While holding down the CfRL key, depress the adjust mouse button while the cursor
is in the tool's name stripe or outer boundary. A bounding box is displayed, one side
or comer of which tracks the mouse as long as you hold the adjust button down.
If the cursor is near a comer when you press the mouse button, the resize is Uncon
strained. If it is in the middle third of a side, the resize is Constrained.

Zoom (UnZoom) While holding down the CfRL key, click the select mouse button while the cursor is
in the tool's name stripe or outer boundary.

Expose Click the select mouse button while the cursor is on the tool's name stripe or outer
boundary.

Hide While holding down the SHIff key, click the select mouse button while the cursor is
on the tool's name stripe or outer boundary.

In addition, you can use two function keys as even faster accelerators. To expose a window that is partially
hidden, hit the Expose key (normally L5) while the cursor is anywhere in the tool window, not just on the
tool's name stripe or outer boundary. Or, if the window is completely exposed, use the Expose key to hide
it Similarly, to close an open window, hit the Open key (normally L7) while the cursor is anywhere in the
tool window, not just on the tool's name stripe or outer boundary. Or, if the window is iconic, use the
Open key to open it You can change which keys mean Expose and Open by using setkeys(1).

Last change: 27 January 1986 Sun Release 3.5

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

In many multi-subwindow toolst you can adjust the boundary between two subwindows up or down
without changing the overall size of the tool. While holding down the CfRL keYt depress the adjust mouse
button over the boundary. A bounding box is displayed for the sub window selected. Adjust the size of that
subwindow, exactly as with the Resize operation.

Startup Processing: The .suntools File
Unless you override it, suntools will start up with a predefined arrangement of windows. The default
arrangement is specified by the file lusrlliblsuntools. If there is a file called .suntools in your home direc
tory, that will be used instead. The -s flag on the command line indicates that the initial window arrange
ment should be read from a file with a different name. The -0 switch suppresses this start-up processing
altogether.

To create your own .suntqols, arrange the screen the way you like, then save the arrangement by running
toolplaces and redirecting its standard output to .sun tools. See toolplaces(l) for a description of the format
of this filet or take a look at lusrlliblsuntools.

Sun View Defaults
Sun View allows you to customize the behavior of tools and packages by setting options in a defaults data
base (one for each user). Use defaultsedit(l) to browse and edit your defaults database. Select the "Sun
View" category to see the following items:

Walking_menus If enabled, the Root Window Menu, the Frame Manager Menut and many tools will use
walking menus. Tools that have not been converted will still use stacking menus. If dis
abled, all tools will use stacking menus. Default value is "Disabled".

Click_to _Type If enabled, keyboard input will stay in a window until you click the left or middle mouse
button in another window. If disabled, keyboard input will follow the mouse. Default
value is "Disabled".

Font You can change the Sun View default font by giving the full pathname of the font you
want to use. Some alternate fonts are in the directory lusrlliblfonts!fixedwidthfonts. The
previous (2.0 release) default font is lusrlliblfontslfixedwidthfontslscreen.r.13. Default
value is nullt which gives you the same effect as if you had specified
lusrlliblfontslfixedwidthfontslscreen.r.ll.

Rootmenu filename
You can change the Root Window Menu by giving the full pathname of a file that
specifies your own menu. See Customizing the Root Window Menu below for details.
Default value is nullt which gives you the menu found in lusrlliblrootmenu.

Determines which edge of the screen ("North" t "South" t "East", or "West") icons
will place themselves against Default value is "North".

Icon_close_level Determines whether icons will close ahead of or behind other windows and icons.
Default value is "Ahead of all".

Jump_cursor _ on_resize

Audible bell

Visible bell

Embolden Labels

Root Pattern

Sun Release 3.5

If enabled, during a resize the cursor will jump to the edge of the window. If disabled,
the window edge will move to the current location of the cursor. Default value is "Dis
abled".

If enabledt the "bell" command will result in a beep. Default value is "Enabled".

If enabledt the "bell" command will cause the screen to flash. Default value is
"Enabled" .

If enabled, all tool labels are boldface. Default value is "Disabled".

Used to specify the "pattern" that covers the Root Window. "on" means to use the
default desktop gray pattern. "off' means to not use the default desktop gray pattern.
"gray" means to use a 50% gray color on color monitors. Anything else is the name of

Last change: 27 January 1986 415

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

416

a file produced with iconedit (1) which contains an image that is replicated all over the
Root Window. Default value is "on".

After you have set the options you want, click on the Save button in defaultsedit; then exit suntools and res
tart it

Customizing the Root Window Menu
The file called lusrlliblrootmenu contains the specification of the default Root Window Menu. You can
change the Root Window Menu by creating your own file and giving its name in the Rootmenu _filename
item in the Sun View Defaults (see above).

Lines in the file have the following format: The left side is a menu item to be displayed; the right side is a
command to be executed when that menu item is invoked. You can also include comment lines (beginning
with a 'I') and blank lines.

If you are using stacking menus (' 'Walking_menus Disabled" in Sun View defaults), the menu item must
be a string (strings with embedded blanks must be delimited by double quotes). If you are using walking
menus ("Walking_menus Enabled"), the menu item can be a string or the full pathname of an icon file,
delimited by angle brackets. With care, strings and icons can be mixed in one menu.

There are four reserved-word commands that can appear on the right side.

EXIT

REFRESH

MENU

END

Exit the suntools program, after user confirmation.

Redraw the entire screen.

If you are using stacking menus, a menu is added to the pile with the Root Window
Menu. The menu contents are taken from the filename that follows the MENU com
mand. You must give the full pathname of the file.
If you are using walking menus, this menu item is a pull-right item with a submenu. If a
filename follows the MENU command, the submenu contents are taken from the
filename. Otherwise, all the lines between this MENU command and a matching END
command are added to the submenu.

Marks the end of a nested submenu. The left side of this line should match the left side
of a line with a MENU command. Not valid if you are using stacking menus.

If the command is not one of these four reserved-word commands, it is treated as a command line and exe
cuted. No shell interpretation is done, although you can run a shell as a command.

Here is a menu file that demonstrates some of these features:

Quit

Clock

"Mail reader"

"More tools"

"Click to type"

"Follow mouse"

"Print selection"

EXIT

clock-r-f

mailtool

MENU lusr/foo/me/moretools.menu

swin-c

swin-m

sh -c get_selection Ilpr

Only if you are using walking menus:

"Nested menu" MENU

Cmdtool cmdtool

Shelltool shelltool

"Nested menu" END

"Icon menu" MENU

Last change: 27 January 1986 Sun Release 3.5

SUNTOOLS (1) USER COMMANDS

<1usr/includeJimages/textedit.icon>

<1usr/includeJimagesliconedit.icon>

"Icon menu" END

Multiple I Color Displays

textedit

iconedit

SUNTOOLS (1)

The suntools program runs on either a monochrome or color screen. Each screen on a machine may have
its own invocation of suntools running on it The keyboard and mouse input devices are shared among
multiple screens. The mouse cursor slides from one screen to another when you move the cursor off the
edge of a screen.

A common multiple display configuration is one monochrome and' one color screen. You could set up an
instance of suntools on each screen in the following way:

1. Invoke suntools on the monochrome display by running "suntools". This starts suntools on the
default frame buffer named Idevljb.

2. In a shelltool, run "suntools -d Idev/cgoneO -n &". This starts suntools on a color screen named
ldev/cgoneO.

3. In a shelltool on the monochrome screen, run "adjacentscreens Idev/fb -r Idev/cgoneO". This sets
up cursor tracking so that the cursor slides from the monochrome screen to the color screen when
you move the cursor off the right hand side of the monochrome screen, and back when you move
the cursor off the left hand side of the color screen.

Multiple Desktops on the Same Screen
Given appropriate hardware, the suntools program can be made to run separate desktops on the same
screen. This facility is an extension of the features described in the previous section entitled
Multiple I Color Displays. The Prism is an example of a machine with multiple plane groups that can take
advantage of this facility. Each plane group on a machine may have its own invocation of suntools running
on it Such an invocation is called a desktop. The keyboard and mouse input devices are shared among
multiple desktops. The mouse cursor slides from one desktop to another when you move the cursor off the
edge of the screen.

A common multiple desktop configuration for the Prism is one monochrome and one color desktop. You
could set up an instance of suntools on each plane group in the following way:

1. Invoke suntools in the color plane group by running "suntools -8bit_color_only -toggle_enable".
This starts suntools on the default frame buffer named Idevlfb but limits access to the color plane
group.

2. In a shelltool, run "suntools -d IdevlbwtwoO -toggle_enable -n &". This starts suntools in the
overlay plane that is accessed by Idev/bwtwoO.

3. In a shelltool run "adjacentscreens -c Idev/tb -l/devlbwtwoO". This sets up cursor tracking so
that the cursor slides from the monochrome desktop to the color desktop when you move the cur
sor off the right hand side of the monochrome desktop, and back when you move the cursor off
the left hand side of the color desktop.

Old pre-3.2 applications run on the 8bit_color_only desktop will not appear because they will be writing to
the overlay plane. I.e., don't run old pre-3.2 applications on an 8bit_ color_only desktop.

There is an application called the switcher that is used as an alternative to adjacentscreens for getting
between desktops on the Prism. Clicking the switcher icon gets you to another desktop using some amus
ing video wipe type animation. The switcher can also be used to simply set the enable plane to 0 or 1 if the
enable plane get out of wack. See the man page switcherl(l) for details.

Generic Tool Arguments
Most window-based applications now take the following arguments in their command lines:

FLAG (LONG FLAG)
-Ww (-width)

Sun Release 3.5

ARGS
columns

NOTES

Last change: 27 January 1986 417

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

-Wh (-height) lines
-Ws (-size) xy x and y are in pixels
-Wp (-position) xy x and y are in pixels
-WP (-icon yosition) xy x and y are in pixels
-WI (-label) "string"
-Wi (-iconic) makes the tool start iconic (closed)
-Wt (-font) filename
-Wn (-no_name _stripe)
-Wf (-foreground_color) red green blue 0-255 (no color-full color)
-Wb (-background_color) red green blue 0-255 (no color-full color)
-Wg (-set_ default_color) (apply color to subwindows too)
-WI (-icon_image) filename (for tools with non-default icons)
-WL (-icon_label) "string" (for tools with non-default icons)
-WT (-icon_font) filename (for tools with non-default icons)
-WH (-help) print this table

Each flag option may be specified in either its short form or its long form; the two are completely
synonymous.

Getting Out
To exit any tool, invoke the Quit command in the Frame Menu as described above. To exit the entire win
dow system, invoke Exit Suntools in the Root Window Menu as described above. Make sure that all win
dows are in a safe condition (for example, editors have written out all changes) first

You can exit suntools via the keyboard by typing AD followed by AQ. There is no confirmation. This facil
ity provides an escape if you inadvertently start suntools without a mouse attached to the system.

SEE ALSO
Windows and Window-Based Tools: Beginner's Guide

Some of the applications that run in the Sun View environment

clock(I), cmdtool(I), dbxtool(I), defaultsedit(I),fontedit(l), gfxtool(I), iconedit(I), lock
screen(l), mailtool(I), overview (1), perfmeter(I), perjmon(I), shelltool(I), tektool(I), tex
tedit(I), traJ.7ic(l)

Some of the utility programs that run in or with the Sun View environment:

adjacentscreens(l), clear Junctions(I), get_selection(I), rastps(l), setkeys(I),
stty Jrom _ defaults(I), swin(I), switcher(l), toolplaces(l)

ENVIRONMENT

FILES

418

DEFAULTS_FaE
The value of this environment variable indicates the file from which Sun View defaults
are read When it is undefined, defaults are read from the .defaults file in your home
directory.

-I.suntools
lusrlbinlsuntools
lusrlbinlothertools
iusribiniget_seiection
lusrlbinlselection svc
lusrllib/suntools
lusrllib/rootmenu
lusrllib/fontslfixedwidthfontsl*
ldev/winx
ldev/ptypx
ldev/ttypx

Last change: 27 January 1986 Sun Release 3.5

SUNTOOLS (1) USER COMMANDS SUNTOOLS (1)

BUGS

/dev/fb
/devlkbd
/dev/mouse
/etc/utmp

Messages from the kernel ignore window boundaries unless console messages have been redirected, thus
trashing the display. Recover from this by invoking the Redisplay All item on the Root Window Menu.
Then invoke the Console item to start a console.

To improve interactive performance, the kernel should be reconfigured in order to make more memory
available for applications. See the System Manager's Guide .

With an optical mouse, sometimes the arrow-shaped cursor will not move at start-up; moving the mouse in
large circles on its special pad for a few seconds will bring the cursor to life.

suntools needs the file /etclutmp to have read and write pennission for all users. It should have been
installed with these permissions, but if not, you need to use chmod to change the permissions.

On a color display, all of the colors may "go strange" when the cursor is in certain windows. This is
caused by SunView accommodating a particular window's request for a large number of colors.

When running multiple desktops, be careful to not have more than one shelltool or cmdtool acting as the
console at once. Kill one console before starting another.

Sun Release 3.5 Last change: 27 January 1986 419

SWIN(I) USER COMMANDS SWIN(I)

NAME
swin - set/get Sun View user input options

SYNOPSIS
swin [-c] [-g] [-b] [-m] [-r event value shift_state] [-s event value shift_state] [-t seconds]

DESCRIPTION
The swin (set window; analogous to stty(1) command lets you change some of the input behavior of your
SunViewenvironment. By default, your keyboard input follows your mouse cursor. This means that in
order to type to a window you position the mouse cursor over the window. This is called keyboard
follows-mouse mode.

You can specify that the keyboard input continues to go to the same window, regardless of the mouse cur
sor position, until you take some specific action, like clicking the mouse. When this is done, you can roam
around the screen with the mouse cursor and not change the window to which keyboard input is directed.
Running Sun View like this is said to be operating in click-to-type mode.

When running in click-to-type mode, one user action sets the type-in point in the window that you want to
receive keyboard input. The default user action to do this is the pressing of the left mouse button while
positioning the mouse cursor over the new type-in point This user action can be changed.

Another user action restores the previous type-in point in the window that you want to receive keyboard
input. The default user action to do this is the pressing of the middle mouse button while positioning the
mouse cursor over the window. 'This user action can be changed.

OPTIONS

420

-c Tum on click-to-type mode using the default user actions: the left mouse button sets the type-in
point and the middle button restores the type-in point. You can use the defaultsedit(1) program to
set click-to-type on permanently; see the Sun View/Click_ to_Type option.

-m Run in keyboard-follows-mouse mode.

-s event value shift_state
Set the user action that sets the type-in point and sets the keyboard input window. The event
identifies the particular user action and is one of:

LOC _ WINENTER

the mouse cursor entering a window

the left mouse button

MS_MIDDLE

the middle mouse button

MS_RIGHT

the right mouse button

decimal number
place the decimal number of a firm event here; see list of events in
lusrlincludelsundevlvuid _event.h (avoid function keys, normally unused control-ascii
characters are OK, normally unused shift keys are OK).

value identifies the transition of the event and is one of:

ENTER the mouse cursor entering a window (use with LOC _ WINENTER)

DOWN the button associated with event went down

UP the button associated with event went up (avoid this)

The shift _state identifies the state of the shift keys at the time of the eventlvalue pair in order for
that pair to be used to control the keyboard input window. The shift _state is one of:

SIDFf DONT CARE

Last change: 24 December 1985 Sun Release 3.5

SWITCHER (1)

FILES
lusrlbinlswitcher

SEE ALSO

USER COMMANDS

suntools(I), shelltool(I), adjacentscreens(l)

Sun Release 3.5 Last change: 18 July 1986

SWITCHER (1)

423

SYMORDER (1)

NAME
symorder - rearrange name list

SYNOPSIS
symorder orderlist symbolfile

DESCRIPTION

USER COMMANDS

orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line.

SYMORDER (1)

symbolfile is updated in place to put the requested symbols first in the symbol table, in the order specified.
This is done by swapping the old symbols in the required spots with the new ones. If all of the order sym
bols are not found, an error is generated.

This program was specifically designed to cut down on the overhead of getting symbols from Ivmunix.

SEE ALSO
nlist(3)

424 Last change: 13 November 1986 Sun Release 3.5

GRAPHICS_DEMOS (6) GAMES AND DEMOS GRAPHICS_DEMOS (6)

NAME
graphics _demos, bouncedemo, cframedemo, framedemo, goban, jumpdemo, maze, shaded, show,
show map, spheresdemo, stringart, suncube - graphics demonstration programs

SYNOPSIS
bouncedemo [-d dev] [-ox] [-r] [--q]

cframedemo [-d dev] [-ox] [-r] [--q]

framedemo [-d dey] [-ox] [-r] [-q]

goban game

jumpdemo [-c] [-d dev] [-ox] [-r] [-q]

maze

shaded object [-d dev]

show rasterfile [rasterfile ...]

showmap [-d dey] [--q]

spheresdemo [-d dey] [-ox] [-r] [--q]

stringart [-d dev] [-q]

suncube [-d dev] [--q]

DESCRIPTION
Note: Optional Software (Games and Demos Option). Refer to Installing UNIX on the Sun Workstation

for information on how to install these demos.

Bouncedemo
bouncedemo displays a bouncing square.

Cframedemo
cframedemo displays a series of color frames, each of which contains a 256 by 256 image of eight-bit-deep
pixels. cframedemo looks for the frames in the files frame. 1 throughframe.n in the current working direc
tory, and displays them in numerical order. When run in the directory lusrldemolglobeframes, cframedemo
displays a rotating view of the world.

Framedemo
framedemo displays a series of frames, each of which contains a 256 by 256 image one-bit-deep pixels
(that is, the image is a square monochrome bitmap, with 256 bits on a side). framedemo looks for the
frames in the filesframe.l throughframe.n in the current working directory, and displays them in numeri
cal order. A set of sample frames is available in the directory lusrldemolglobeframesl*. Interactive Com
mands

If you move the cursor onto the image surface, you can type certain commands to affect the rate at which
the frames are displayed. The initial rate is one frame per second:

f removes 1!20th of a second from the interval.

F removes one second from the interval. Ff makes the interval as small as possible.

s adds 1!20th of a second.

S adds one second.

Goban
goban is Japanese for" go board". It is an automatic board, but does not play go. If you invoke it with no
game argument, goban displays an important historical game written about by the Nobel Prize winning
author, Yasunari Kawabata in The Master of Go, a book which conveys the spirit of this ancient and
facinating game.

Sun Release 3.5 Last change: 29 May 1986 529

GRAPHICS _DEMOS (6) GAMES AND DEMOS GRAPHICS _DEMOS (6)

Stones are placed on the board by selecting a grid point with the cursor and pressing the left-button. As
stones are played, the color to play next alternates between black and white. The center-button, when
pressed in the board area, backs up a move (undoes it). The right-button moves forward through the
game's sequence of moves.

Stepping backward and forward does not alter the game until the left-button is pressed to place a stone, at
which time a new branch in the line of play is begun. You can select branches by clicking the left button
on moves with lettered labels on the board.

A text subwindow displays any commentary attached to a move. You can edit these comments, which are
saved along with the game.

Jumpdemo
jwnpdemo simulates the famous Star Wars jump to light-speed-sequence using vector drawing. Colored
stars are drawn on color surfaces.

Maze
maze creates a random maze-pattern and tries a depth-first solution. If used in lockscreen, remember to run
in "nice" mode since this demo consumes lots of cpu cycles.

Shaded
shaded displays shaded objects. Objects are located in usrldemolDATA and include an icosahedron, glass,
soccer ball, space shuttle, egg and pyramid. This demo can take up to 40 seconds to start up with som
objects. Mouse input is required:

Interactive Commands

Click the left- and middle-buttons on the left grid to set the x-y orientation. Click the middle-button on the
right grid to set the z orientation. Click the left-button away from either grid to open the features menu,
from which you can make selections using the left-button.

Mter selecting the desired features, click the left-button away from all objects to exit the features menu.

Click the right-button to begin drawing the object When the figure is finished, click the right-button to
return to the grids and menu, or type q to exit.

Show
show displays rasterfiles in a window or on a raw screen. Sample files are contained in the directory
lusrldemoICOLORPIX. Running

show COLORPIXI*
from lusrldemo will continuously cycle through the sample images.

Spheresdemo
spheresdemo computes a random collection of shaded spheres. Colored spheres are drawn on color sur
faces.

Showmap
showmap displays 10 map projections continuously until interrupted. Each map is displayed for about 5
seconds. The maps are in the directory lusrldemolMAPS.

Stringart
stringart continuously displays a different "work of art" every 5 seconds. A total of 24336 different
designs are possible. On color surfaces the designs will loop through the colors: red, olive, green, tur
quoise, blue, and violet

Suncube
Displays a cube with the SUN logo mapped to each face. Will run continuously until interrupted. On color
surfaces the colors of logo segments change gradually. On monochrome surfaces the logo segments
remain hollow.

OPTIONS
-c Rotate the color map to produce a sparkling effect.

530 Last change: 29 May 1986 Sun Release 3.5

GRAPHICS_DEMOS (6) GAMES AND DEMOS GRAPHICS_DEMOS (6)

-d surface
Run the demo on a surface other than the window or system console, for instance:
bouncedemo -d Idev/cgoneO

-nx Draw x items, or repeat a sequence x times.

-r Retain the window. This allows the image to reappear when uncovered instead of restarting the
demo.

-q Quick exit. Useful for running several demos from within a shell script

SEE ALSO
gp_demos(6), gfxtool(l)

Sun Release 3.5 Last change: 29 May 1986 531

LIFE(6) GAMES AND DEMOS LIFE (6)

NAME
life - John Conway's game of life

SYNOPSIS
life

DESCRIPTION

532

Life is a program that plays John Conway's game of life. It only runs under suntools(I).

When invoked, life will display a window with a small control panel at the top, and a large drawing area at
the bottom. You can create pieces in the drawing area with the left button, and erase them with the middle
button. When you select Run in the control panel, the pieces will begin to evolve, and the drawing region
will update itself at a speed controlled by the slider labeled with Fast and Slow. Life keeps track of all the
pieces even if they are not visible. The scroll bars surrounding the drawing region can be used to see
pieces that have moved out of view. There are some standard patterns that can be drawn by popping up a
menu in the drawing subwindow.

The meaning of the items in the first row of the control panel (from left to right) are as follows. If you
click on the picture which looks like a tic-tac-toe board, a grid will appear in the drawing region. If you
click on Step, the mode will change from run mode (where the pieces update continuously) to step mode
(where an update is only done when you click on Step). Following Gen is a number indicating the number
of generations that have occur~. The button marked Find will scroll so that at least one piece is in view.
This is useful when all the pieces dissappear from view. The button marked Clear will clear the drawing
region, but leave the other controls unchanged. Reset will reset all the panel controls, but will not erase
any of the pieces, and Quit causes the tool to exit. The second row contains two sliders. The first controls
the update speed when in run mode, the second controls the size of the pieces.

Last change: 2 May 1986 Sun Release 3.5

INTRO(7) PUBLIC FILES, TABLES AND TROFF MACROS

NAME
miscellaneous - miscellaneous useful information pages

DESCRIPTION

INTRO(7)

This section contains miscellaneous documentation, mostly in the area of text processing macro packages
for troff(I).

ascii(7)
eqnchar(7)
hier(7)
man(7)
me(7)
ms(7)

Sun Release 3.5

map of ASCII character set
special character definitions for eqn
file system hierarchy
macros to format manual pages
macros for formatting papers
macros for formatting manuscripts

Last change: 9 February 1983 535

ASCII(7) PUBLIC FILES, TABLES AND TROFF MACROS ASCII(7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat lusr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:
Decimo:l- Character

o mI.1 1 &H 2 S1X1 3 EIXI 4 mr 5 Eml 6 ACKI 7 BELl
8 BS I 9 lIT 10 NL I 11 vr I 12 NP 13 CR I 14 ro I 15 SI I

16 DIE I 17 OCI 18 IX.21 19 OC31 20 OC4 21 NAK 22 SYN 23 Em
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 SP 33 34 " 35 # 36 $ 37 % 38 & 39

,

40 , (41) 42 * 43 + 44 , 45 - 46 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 59 ; 60 < 61 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 0
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 y 90 Z 91 [92 \ 93] 94 A 95
96 .. 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 1 109 m 110 n 111 0

112 P 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 I 125 } 126 - 127 DELI

Octal- Character

1000 NULIOOI SOHI002 S1X1003 EIXI004 EOTI005 Eml006 ACKI007 BELl
1010 BS 1011 HT 1012 NL 1013 vr 1014 NP 1015 CR 1016 ro 1017 SI I
1020 DIEI021 OCI1022 DC21023 DC31024 OC41025 NAKI026 SYNI027 Em
1030 CANI031 EM 1032 SUBI033 ESCI034 FS 1035 GS 1036 RS 1037 US
1040 SP 1041 1042 " 1043 # 1044 $ 1045 % 1046 & 1047

,

1050 (1051) 1052 * 1053 + 1054 , 1055 - 1056 . 1057 /
1060 o 1061 1 1062 2 1063 3 1.064 4 1065 5 1066 6 1067 7
1070 8 1071 9 1072 : 1073 ; 1074 < 1075 = 1076 > 1077 ?
1100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 0
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 1127 W
1130 X 1131 y 1132 Z 1133 [1134 \ 1135] 1136 A 1137
1140 .. 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 g
1150 h 1151 i 1152 j 1153 k 1154 1 1155 m 1156 n 1157 0

1160 p 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w
1170 x 1171 y 1172 z 1173 { 1174 I 1175 } 1176 - 1177 DELI

536 Last change: 2 June 1986 Sun Release 3.5

ASCII (7) ruBLIC FIlES t TABLES AN) 1ROFF M6(:R05 ASCII (7)

Hexadecimal- Character

00 l'UL1 01 ~ 02 S1X1 03 EIXI 04 BJr 05 e-QI 06 A£XI 07 BELl
08 BS I 09 Hr OANL I OB vr I OCNP OD CR I OE ro I OF SI I
10 DIE I IIOCI 12 OC21 13 OC31 14 OC4 15 NAK 16 SYN 17 Em
18 CAN 19 1M: lA SUB IB ESC lC FS lDGS IE RS IF US
20 SP 21 22 " 23 # 24 $ 25 % 26 & 27

,

28 (29) 2A * 2B + 2C t 2D - 2E 2F I
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A 3B ; 3C < 3D 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 y 5A Z 5B [5C \ 50] 5E A 5F
60 .. 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 6A j 6B k 6C I 6D m 6E n 6F 0

70 P 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C I 7D } 7E - 7F DELI

FILES
lusr/pub/ascii

Sun Release 3.5 Last change: 2 June 1986 536a

HIER(7) PUBLIC FILES, TABLES AND TROFF MACROS HIER(7)

SEE ALSO

/usr/preserve

/usr/sccs

/usr/spool
/usr/spool/mail
/usr/spool/lpd

/usr/tmp

/usr/ucb
/u8r/ucb/Mail
/usr/ucb/biff
/usr/ucb/ccat
/usr/ucb/checknr
/usr/ucb/chsh

ls(l), whatis(I), whereis(I), which(I), ncheck(8), find(I), grep(l)

BUGS
The position of files is subject to change without notice.

Sun Release 3.5 Last change: 1 February 1985

preserves editor files from crashes

sccs programs

delayed execution files
system mailboxes
printer queue(s)

temporary files

programs developed at U.C. Berkeley

541

MAN(7) PUBLIC FILES, TABLES AND TROFF MACROS MAN(7)

NAME
man - macros to format Reference Manual pages

SYNOPSIS
DrotT -man filename . . .

trotT -man filename . . .

DESCRIPTION

FILES

These macros are used to layout the reference pages in this manual.

Any text argument t may be zero to six words. Quotes may be used to include blanks in a 'word'. If text is
empty, the special treatment is applied to the next input line with text to be printed. In this way .1 may be
used to italicize a whole line, or .SM followed by .B to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset to default
value upon reaching a non-indented paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing font and size set
ting macros.

These strings are predefined by -man:

*R '®', '(Reg)' in nroff.

*S Change to default type size.

lusrllib/tmac/tmac.an

SEE ALSO
troff(I), nroff(I), man(l)

The -man Macro Package, in Formatting Documents on the Sun Workstation.

REQUESTS
Request

. B t

. BI t

. BRt
DT
.HPi
.It
.IB t
.IPxi
. IR t
LP
. PDd
.PP
.RE
.RB t
.RIt
.RS i

Cause If no Explanation
Break Argument
no t=n.ll.* Text t is bold .
no t=n.ll. Join words of t alternating bold and italic .
no t=n.ll. Join words of t alternating bold and Roman .
no .5i Ii... Restore default tabs.
yes i=p.i. * Set prevailing indent to i. Begin paragraph with hanging indenl
no t=n.ll. Text t is italic .
no t=n.ll. Join words of t alternating italic and bold .
yes x="" Same as.TP with tag x ..
no t=n.ll. Join words of t alternating italic and Roman .
yes Same as .PP .
no
yes
yes
no
no
yes

d=.4v

t=n.ll.
t=n.ll.
i=pJ.

Interparagraph distance is d.
Begin paragraph. Set prevailing indent to .5i.
End of relative indent. Set prevailing indent to amount of starting .RS.
Join words of t alternating Roman and bold.
Join words of t alternating Roman and italic.
Start relative indent, move left margin in distR-nce i, Set prevailing indent to ,5i for
nested indents .

. SH t yes t=n.ll.
t=n.ll.

Subhead.
.SMt no
.TH n s dim yes

.TPi yes

542

Text t is small.
Begin page named n of section s; d is the date of the most recent change. If present,
I is the left page footer; m is the main page (center) header. Sets prevailing indent
and tabs to .5i.
Set prevailing indent to i. Begin indented paragraph with hanging tag given by next

Last change: 3 February 1987 Sun Release 3.5

MAN(7) PUBLIC F~ES, TABLES AND TROFF MACROS MAN(7)

text line. If tag doesn't fit, place it on separate line .

... n.tl. = next text line; p.i. = prevailing indent

CONVENTIONS
A typical manual page for a command or function is laid out as follows:

.TH TITLE [1-8]
The name of the command or function in upper-case, which serves as the title of the manual page.
This is followed by the number of the section in which it appears .

. SH NAME name (or comma-separated list of names) - one-line summary
The name, or list of names, by which the command is called, followed by a dash and then a one
line summary of the action performed. All in roman font, this section contains no troff(1) com
mands or escapes, and no macro requests. It is used to generate the whatis(1) database .

. SH SYNOPSIS

Commands:

The syntax of the command and its arguments as typed on the command line. When in
boldface, a word must be typed exactly as printed When in italics, a word can be
replaced with text that you supply. Syntactic symbols appear in roman face:

[] An argument, when surrounded by brackets is optional.

Functions:

Arguments separated by a vertical bar are exclusive. You can supply only item
from such a list.

Arguments followed by an elipsis can be repeated. When an elipsis follows a
bracketed set, the expression within the brackets can be repeated.

If required, the data declaration, or #include directive, is shown first, followed by the
function declaration. Otherwise, the function declaration is shown .

. SH DESCRIPTION
A narrative description of the command or function in detail, including how it interacts with files
or data, and how it handles the standard input, standard output and standard error.

Filenames, and references to commands or functions described elswhere in the manual, are itali
cised. The names of options, variables and other literal terms are in boldface .

. SHOPTIONS
The list of options along with a description of how each affects the commands operation .

. SHFILES
A list of files associated with the command or function .

. SH "SEE ALSO"
A comma-separated list of related manual pages, followed by references to other published
materials. This section contains no troff(l) escapes or commands, and no macro requests .

. SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each .

. SHBUGS
A description of limitations, known defects, and pbs sible problems associated with the command
or function.

Sun Release 3.5 Last change: 3 February 1987 543

ME(7) PUBLIC FILES, TABLES AND TROFF MACROS

NAME
me - macros for formatting papers

SYNOPSIS
nrotT -me [options] file .. .
troff -me [options] file .. .

DESCRIPTION

ME(7)

This package of nroff and troff macro definitions provides a canned formatting facility for technical papers
in various formats. When producing 2-column output on a terminal, filter the output through col(l).

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction with this
package, however these requests may be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n=l single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn, neqn, refer, and tbl(l) preprocessors for equations and tables is acceptable as input.

FILES
lusrllib/tmac/tmac.e
lusrllib/me/*

SEE ALSO
eqn(l), nroff(l), troff(1), refer(l), tbl(l)

The -me Macro Package, in Formatting Documents on the Sun Workstation.

REQUESTS
In the following list, "initialization" refers to the first .pp, .Ip, .ip, .np, .sh, or .uh macro. This list is incom
plete; see The -me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c yes Begin centered block

.(d no Begin delayed text

.(f no Begin footnote

.(1 yes Begin list

.(q yes Begin major quote

.(x x no Begin indexed item in index x

.(z no Begin floating keep

.)c yes End centered block

.)d yes End delayed text

.)f yes End footnote

.)1 yes End list

.)q yes End major quote

.)x yes End index item
yes End floating keep .)z

.++mH no Define paper section. m defines the part of the paper, and can be C (chapter), A (appen-

. +cT

. lc I

.2c 1

544

dix), P (preliminary, e.g., abstract, table of contents, etc.), B (bibliography), RC (chapters
renumbered from page one each chapter), or RA (appendix renumbered from page one).

yes Begin chapter (or appendix, etc., as set by .++). T is the chapter title .
yes One column format on a new page .
yes Two column format.

Last change: 5 June 1986 Sun Release 3.5

BOOT(8S) MAINTENANCE COMMANDS BOOT(8S)

FILES

c is a controller number,O if there only one controller for the indicated type of device.

u is a unit number, 0 if only one driver. (Over the network, the unit number is the host portion of
the file server's IP address).

p designates a partition. The value you supply is exclusive-or' d with that of the default partition
(indicated by the selected boot program, see Booting a Sun-3 Over the Network, above).

filename
is the name of a standalone program in the selected partition, such as standldiagor vmunix. Note
thatfilename is relative to the root of the selected device and partition. It never begins with I. If
filename is not given, the boot program uses a default value (normally vmunix). This is stored in
the "vmunix" variable in the boot executable file supplied by Sun, but can be patched to indicate
another standalone program loaded using adb(1).

-a prompt interactively for the device and name of the file to boot.

boot-flags
The boot program passes all boot-flags to the kernel or standalone program. They are typically
arguments to that program or, as with those listed below, arguments to progams that it invokes.

-b Pass the -b flag through the kernel to init.(8) to skip execution of the rc.local script.

-b Halt after loading UNIX.

-s Pass the -s flag through the kernel to init(8) for single-user operation.

lboot
Itftpbootl????????
Itftpbootlndboot.sun3.pubIOll
Itftpbootlndboot.sun3.private
Itftpbootlndboot.sun2.*
lusrlmdeclinstallboot

the standalone boot program
a symbolic link to the boot program for a client
programs to boot from a public nd partition
program to boot from a private nd partition
Sun-2 boot programs (currently unusable)
script to install boot blocks from a remote host

SEE ALSO

BUGS

init(8), kadb(8S), monitor(8s), rc(a), reboot(8)

System Administration for the Sun Workstation

Installing UNIX on the Sun Workstation

On the Sun-2, the PROM passes in the default name "vmunix", overriding the the boot program's patch
able default.

Sun Release 3.5 Last change: 30 June 1986 563

CATMAN(8) MAINTENANCE COMMANDS CATMAN(8)

NAME
catrnan - create the cat files for the manual

SYNOPSIS
lusr/etc!catmao [-p] [-0] [-w] [-t] [-M directory] [- T tmac.an] [sections]

DESCRIPTION
Caiman creates the preformatted versions of the on-line manual from the nroff input files. Each manual
page is examined and those whose preformatted versions are missing or out of date are recreated. If any
changes are made, catman recreates the whatis database.

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to look in. For
example

catmaol23

only updates manual sections 1,2, and 3.

If an unformatted source file contains only a line of the form ".so manx/yyy.x", a symbolic link is made in
the catx or fmtx directory to the appropriate preformatted manual page. This feature allows easy distribu
tion of the preformatted manual pages among a group of associated machines with rdist(I), since it makes
the directories of preformatted manual pages self-contained and independent of the unformatted entries.

OPTIONS

FILES

-0 Do not (re)create the whatis database.

-p Print what would be done instead of doing it

-w Only create the whatis database. No manual reformatting is done.

-t Create troffed entries in the appropiate fmt subdirectories instead of nroffmg into the cat subdirec-
tories.

-M update manual pages located in the specified directory (Iusrlman by default).

- T Use lmac .an in place of the standard manual page macros.

lusr/man
lusr/manlman?I*. *
lusr/manlcat?I*. *
lusr/manlfmt?I*. *
lusr/man/whatis
lusr/lib/makewhatis

default manual directory location
raw (nroff input) manual sections
preformatted nroffed manual pages
preformatted troffed manual pages
whatis database location
command script to make whatis database

ENVIRONMENT
TROPP The name of the formatter to use when the -t flag is given. If not set, 'troIT' is used.

DIAGNOSTICS
man?/xxx.? (.so'ed from man?/yyy. ?): No such file or directory

The file outside the parentheses is missing, and is referred to by the file inside them.

target of .so in man?/xxx.? must be relative to lusr/man
caiman only allows references to filenames that are relative to the directory lusrlman.

opendir:man?: No such file or directory
A harmless warning message indicating that one of the directories catman normally looks for is
missing.

.: No such file or directory
A harmless warning message indicating catman came across an empty directory.

SEE ALSO
man(I), whatis(l)

564 Last change: 13 November 1986 Sun Release 3.5

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

NAME
dump, rdump - incremental file system dump

SYNOPSIS
/etc/dump [options [arguments]] filesystem

DESCRIPTION
Dump backs up all files in filesystem, or files changed after a certain date, to magnetic tape. Options is a
string that specifies dump options, as shown below. Any arguments supplied for specific options are given
as subsequent words on the command line, in the same order as that of the options listed.

If no options are given, the default is 9u.

OPTIONS
0-9 The "dump level." All files in the filesystem that have been modified since the last dump at a

lower dump level are copied to the tape. For instance, if you did a "level 2" dump on Monday,
followed by a "level 4" dump on Tuesday, a subsequent "level 3" dump on Wednesday would
contain all files modified or added since the "level 2" (Monday) backup. A "level 0" dump copies
the entire filesystem to tape.

b factor Blocking factor. Specifies the blocking factor for tape writes. The default is 10 blocks per write.
Note that a tape block is 1024 bytes in size, or twice the size of a disk block. The highest blocking
factor available with some 6250bpi tape drives is 126.

c Cartridge. Use a cartridge instead of the standard half-inch reel. This sets the density to l000bpi
and the length to 1700 feet. When dumping to a high-density (9-track) cartridge, include the s
(size) option with the 3825 (feet) argument to properly fill each cartridge. (This option is incom
patible with the d option, unless you specify a density of l000bpi with that option).

d bpi Tape density. The density of the tape, expressed in BPI, is taken from bpi. This is used to keep a
running tab on the amount of tape used per reel. The default density is 1600. Unless a higher
density is specified explicitly, dump uses its default density--even if the tape drive is capable of
higher-density operation (for instance, 6250bpi).

f dump-file
Dump file. Use dump-file as the file to dump to, instead of Idevlrmt8. If dump-file is specified as
'-', dump to the standard output. If the filename argument is of the form machine:device, dump
to a remote machine. Since dump is normally run by root, the name of the remote machine must
appear in the .rhosts file of the local machine. If dump is called as rdump, the tape defaults to
dumphost:/dev/rmt8. To direct the output to a desired remote machine, set up an alias for dum
phost in the file letelhosts.

n Notify. When this option is specified, if dump requires attention, it sends a terminal message
(similar to wall(l» to all operators in the "operator" group.

s size Specify the size of the tape or cartridge in feet. When the specified size is reached, dump waits for
you to change the reel or cartridge. The default size is 2300 feet, except when c (cartridge) is
specified, in which case the default is 1700. To estimate the size for a tape or cartridge of a non
standard length, use the formula:

(length * tracks) * .9,

u Update the dump record. Add an entry to the file letcldumpda.tes, for each filesystem successfully
dumped that includes the filesystem name, date, and dump level. This file can be edited by the
super-user.

w List the filesysterns that need backing up. This information is gleaned from the files
letcldumpda.tes and letc/fstab. When the w option is used, all other options are ignored. After
reporting, dump exits immediately.

W Like w, but includes all filesysterns that appear in letcldumpdates, along with information about
their most recent dump dates and levels. Filesystems that need backing up are highlighted.

Sun Release 3.5 Last change: 22 July 1986 583

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

Operator Intervention
dump requires operator intervention on these conditions: end of tape, end of dump, tape write error, tape
open error or disk read error (if there are more than a threshold of 32). In addition to alerting all operators
implied by the n option, dump interacts with the operator on dump's control terminal at times when dump
can no longer proceed, or if something is grossly wrong. All questions dump poses must be answered by
typing "yes" or "no", as appropriate.

Since backing up a disk can involve a lot of time and effort, dump checkpoints at the start of each tape
volume. If writing that volume fails for some reason, dump will, with operator permission, restart itself
from the checkpoint after a defective tape has been rewound and replaced.

dump reports periodically, and in verbose fashion. Each report includes estimates of the percentage of the
dump completed and how long it will take to complete the dump.

Suggested Dump Schedule
It is vital to perform full, "level 0", dumps at regular intervals. When performing a full dump, bring the
machine down to single-user mode using shutdown(8). While preparing for a full dump, it is a good idea
to clean the drive and heads.

Incremental dumps allow for convenient backup and recovery on a more frequent basis of active :files, with
a minimum of tape and time. However there are some tradeoffs. First, the interval between backups should
be kept to a minimum (once a day at least). To guard against data loss as a result of a media failure (a rare,
but possible occurrence), it is a good idea to capture active :files on (at least) two dump tapes. Another con
sideration is the desire to keep unnecessary duplication of files to a minimum to save both operator time
and tape storage. A third consideration is the ease with which a particular backed-up version of a :file can
be located and restored. The following four-week schedule offers a reasonable tradeoff between these
goals.

Sun Mon Tue Wed Thu Fri
Week 1: Full 5 5 5 5 3
Week 2: 5 5 5 5 3
Week 3: 5 5 5 5 3
Week 4: 5 5 5 5 3

Although the Tuesday-Friday incrementals contain "extra copies" of files from Monday, this scheme
assures that any file modified during the week can be recovered from the previous day's incremental dump.

FILES
Idevfrmt8
letcldumpdates
fetelfstab
fetclgroup

default tape unit to dump to
new format dump date record
dump table: :file systems and frequency
to find group operator

SEE ALSO
restore(8), dump(5), fstab(5)

DIAGNOSTICS
While running, dump emits many verbose messages.

Exit Codes

BUGS

o
1
2
3

normal exit when w or W options are used.
normal exit
error - restart writing from last checkpoint
abort - no checkpoint attempted.

Sizes are based on 1600 BPI blocked tape; the raw tape device has to be used to approach these densities.

Fewer than 32 read errors on the filesystem are ignored.

584 Last change: 22 July 1986 Sun Release 3.5

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

Each reel requires a new process, so parent processes for reels already written just hang around until the
entire tape is written.

Sun Release 3.5 Last change: 22 July 1986 584a

DUMPFS(8) MAINTENANCE COMMANDS

NAME
dumpfs - dump file system information

SYNOPSIS
lusr/etc/dumprs device

DESCRIPTION

DUMPFS(8)

Dumpfs prints out the super block and cylinder group information for the file system or special device
specified. The listing is very long and detailed. This command is useful mostly for finding out certain file
system information such as the file system block size and minimum free space percentage.

SEE ALSO
fs(5), tunefs(8), newfs(8), fsck(8)

Sun Release 3.5 Last change: 4 March 1983 585

EDQUOTA(8) MAINTENANCE COMMANDS EDQUOTA(8)

NAME
edquota - edit user quotas

SYNOPSIS
lusr/etcledquota [-p proto-user] users . ..
lusr/etc/edquota -t

DESCRIPTION
Edquota is a quota editor. One or more users may be specified on the command line. For each user a tem
porary file is created with an ASCII representation of the current disk quotas for that user and an editor is
then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the edi
tor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(I) unless the EDITOR environment variable specifies otherwise.

Only the super-user may edit quotas. (In order for quotas to be estabished on a file system, the root direc
tory of the file system must contain a file, owned by root, called quotas. See quotaon (1) for details.)

OPTIONS

FILES

-p

-t

duplicate the quotas of the prototypical user specified for each user specified. This is the normal
mechanism used to initialize quotas for groups of users.

edit the soft time limits for each file system. If the time limits are zero, the default time limits in
<ufslquota.h> are used. Time units of sec(onds), min(utes), hour(s), day(s), week(s), and
month(s) are understood. Time limits are printed in the greatest possible time unit such that the
value is greater than or equal to one.

quotas
letc/mtab

quota file at the file system root
mounted file systems

SEE ALSO
quota(I), quotacd(2), quotacheck(8), quotaon(8), repquota(8)

BUGS
The format of the temporary file is inscrutible.

586 Last change: 5 February 1987 Sun Release 3.5

FASTBOOT (8) MAINTENANCE COMMANDS

NAME
fastboot, fasthalt - reboot/halt the system without checking the disks

SYNOPSIS
fetc/fastboot [boot-options]
fetc/fastbalt [halt-options]

DESCRIPTION

FASTBOOT (8)

lastboot and lasthalt are shell scripts that reboot and halt the system without checking the file systems.
This is done by creating a file Ifastboot, then invoking the reboot program. The system startup script,
letc/re, looks for this file and, ifpresent, skips the normal invocation oflsek(8).

SEE ALSO
halt(8), init(8), rc(8), reboot(8)

Sun Release 3.5 Last change: 30 June 1986 591

FINGERD (8C) MAINTENANCE COMMANDS FINGERD (8e)

NAME
fingerd - remote user information server

SYNOPSIS
lusr/etc/in.fingerd

DESCRIPTION
fingerd is a simple protocol based on RFC742 that provides an interface to the Name and Finger programs
at several network sites. The program is supposed to return a friendly, human-oriented status report on
either the system at the moment or a particular person in depth. There. is no required format and the proto
col consists mostly of specifying a single' 'command line" .

fingerd listens for TCP requests at port 79. Once connected it reads a single command line terminated by a
<CRLF> which is passed tofinger(1). fingerd closes its connections as soon as the output is finished.

If the line is null (Le. just a <CRLF> is sent) then finger returns a "default" report that lists all people
logged into the system at that moment.

If a user name is specified (e.g. eric<CRLF» then the response lists more extended information for only
that particular user, whether logged in or not. Allowable "names" in the command line include both
"login names" and "user names". If a name is ambiguous, all possible derivations are returned.

SEE ALSO
finger(1)

BUGS
Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program
can result in meaningless attempts at option negotiation being sent to the server, which will foul up the
command line interpretation. fingerd should be taught to filter out lAC's and perhaps even respond nega
tively (lAC WON'T) to all option commands received

Sun Release 3.5 Last change: 12 February 1987 591a

FPAREL(8) MAINTENANCE COMMANDS FPAREL(8)

NAME
fparel - Sun FP A online reliability tests

SYNOPSIS
(parel [-pn] [-v]

DESCRIPTION
fparel is a command to execute the Sun FPA online confidence and reliability test program. fparel tests
about 90% of the functions of the FP A board, and tests all FP A contexts not in use by other processes.
fparel runs under UNIX without disturbing other processes that may be using the FP A. fparel can only be
run by the super-user.

After a successful pass, fparel writes

time, date: Sun FP A Passed The contexts tested are: 0, 1, ... 31

to the file lusrladmldiaglog.

If a pass fails,fparel writes

time, date: Sun FPA failed

along with the test name and context number that failed, to the file lusrladmldiaglog.fparel then broadcasts
the message

time, date: Sun FP A failed, disabled, service required

to all users of the system. Next, fparel causes the kernel to disable the FP A. Once the kernel disables the
FP A, the system must be rebooted to make it accessible.

The file letclrc.local should contain an entry to causefparel to be invoked upon reboot to be sure that the
FPA remains unaccessible in cases where rebooting doesn't correct the problem. See rc(8).

lusrlliblcrontab should contain an entry indicating that cron(8) is to runfparel daily, such as:

7 2 * * * lusr/etc/fpa/fparel

which causesfparel to run at seven minutes past two, every day. See cron(8) and crontab(5) for details.

OPTIONS
-pn Perform n passes. Default is n=1. -pO means perform 2147483647 passes.

-v Run in verbose mode with detailed test results to standard output.

FILES
lusrladmldiaglog Log of fparel diagnostics.

592 Last change: 30 June 1986 Sun Release 3.5

ICHECK(8) MAINTENANCE COMMANDS ICHECK(8)

NAME
icheck - file system storage consistency check

SYNOPSIS
lusr/etclicheck [-s] [-b numbers] [filesystem]

DESCRIPTION

FILES

Note: Icheck has been superceded for normal consistency checking by fsck(8).

[check examines a file system, builds a bit map of used blocks, and compares this bit map against the free
list maintained on the file system. If the file system is not specified, a set of default file systems is checked.
The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and character special
files.

The total number of blocks in use and the numbers of single-, double-, and triple-indirect blocks
and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

The -s option causes icheck to ignore the actual free list and reconstruct a new one by rewriting the super
block of the file system. The file system should be dismounted while this is done; if this is not possible (for
example if the root file system has to be salvaged) care should be taken that the system is quiescent and that
it is rebooted immediately afterwards so that the old, bad in-core copy of the super-block will not continue
to be used. Notice also that the words in the super-block which indicate the size of the free list and of the
i-list are believed. If the super-block has been curdled these words will have to be patched. The -s option
causes the normal output reports to be suppressed.

Following the -b option is a list of block numbers; whenever any of the named blocks turns up in a file, a
diagnostic is produced.

Icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks at a time.

Default file systems vary with installation.

SEE ALSO
fsck(8), dcheck(8), ncheck(8), fs(5), clri(8)

DIAGNOSTICS

BUGS

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty, the
i-number, and the kind of block involved. If a read error is encountered, the block number of the bad block
is printed and icheck considers it to contain O. 'Bad freeblock' means that a block number outside the
available space was encountered in the free list. 'n dups in free' means that n blocks were found in the free
list which duplicate blocks either in some file or in the earlier part of the free list

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

It believes even preposterous super-blocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

Sun Release 3.5 Last change: 4 February 1983 605

IFCONFIG (8C) MAINTENANCE COMMANDS IFCONFIG (8C)

NAME
ifconfig - configure network interface parameters

SYNOPSIS
letC/ifconfig interface [Ethernet_address] [hostname] fparameters]

DESCRIPTION
ifconfig is used to assign an address to a network interface and/or to configure network interface parame
ters. ifconfig is used at boot time to define the network address of each interface present on a machine.
You can use ifconfig at a later time to redefine an interface's address or other operating parameters. Used
without options, ifconfig displays the current configuration for a network interface. Only the super-user
may modify the configuration of a network interface.

The interface parameter is a string of the form name_unit. for example, ieO.

OPTIONS
Ethernet address

hostname

PARAMETERS

The hardware Ethernet address of a given machine. The address is a six-byte hex
adecimal value; each byte of the address is separated by a colon. A typical Ether
net adddress is 8:0:20:1:1:A3. This address is contained in the ID PROM on the
Sun CPU Board, and is reported at boot time as one of the PROM monitor's sign
on messages. The Ethernet_address option is normally not used-the hardware
supplies the default. Use the option only when trying to talk to a device that does
not support ARP.

May be either the hostname of a given machine (present in the hostname database,
hosts(5», or the complete Internet address consisting of your system's network
number and the machine's unique host number. A typical Internet address might
be 192.9.200.44, where 192.9.200 is the network number, and 44 is the machine's
hostnumber. To find a machine's Internet address, consult the local/etc/hosts file.

The following parameters may be set with ifconfig :

up

down

trailers

-trailers

arp

-arp

netmask mask

606

Marks an interface "up." You can use it to enable an interface after an "ifconfig
down." It happens automatically when you set the first address on an interface. If
the interface was reset when previously marked down, the hardware will be re
initialized

Marks an interface "down." When an interface is marked down, the system does
not attempt to transmit messages through that interface. If possible, the interface is
reset to disable reception, as well. This action does not automatically disable
routes using the interface.

Enables the use of a "trailer" link level encapsulation when sending messages (the
default). If a network interface supports trailers, the system, when possible,
encapsulates outgoing messages in a manner that minimizes the number of
memory-to-memory copy operations performed by the receiver. This feature is
machine-dependent, and therefore not recommended.

Disables the use of a '~trailer" link level encapsulation.

Enables the use of the Address Resolution Protocol in mapping between network
level ad<lresses and link level addresses (default). This is currently implemented
for mapping between DARPA Internet addresses and 10Mb/s Ethernet addresses.

Disables the use of the Address Resolution Protocol.

Specifies how much of the address to reserve for subdividing networks into sub
networks. The mask includes the network part of the local address and the subnet
part, which is taken from the host field of the address. You can specify the mask
as a single hexadecimal number with a leading Ox, with a dot-notation Internet

Last change: 3 October 1986 Sun Release 3.5

IFCONFIG (8C)

broadcast address

EXAMPLE

IFCONFIG (8C)

address, or with a pseudo-network name listed in the network table networks(5).
The mask contains 1 's for the bit positions in the 32-bit address that are to be used
for the network and subnet parts, and 0' s for the host part. The mask should con
tain at least the standard network portion, and the subnet field should be contigu
ous with the network portion.

Specifies the address to use to represent broadcasts to the network. The default
broadcast address is the address with a host part of all O's.

If your workstation is not attached to an Ethernet, you should mark down the ieO interface as follows:

ifconfig ieO down

DIAGNOSTICS
Messages indicating that the specified interface does not exist, that the requested address is unknown, or
that a user without proper privileges tried to alter an interface's configuration.

SEE ALSO
rc(8), intro(3N), netstat(8C)

Sun Release 3.5 Last change: 3 October 1986 606a

IOSTAT(8) MAINTENANCE COMMANDS IOSTAT(8)

NAME
iostat - report 110 statistics

SYNOPSIS
iostat [interval [count]]

DESCRIPTION

FILES

Iostat iteratively reports the number of characters read and written to terminals, and, for each disk, the
number of seeks and transfers per second, and the milliseconds per average seek. It also gives the percen
tage of time the system has spent in user mode, in user mode running low priority (niced) processes, in sys
tem mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and number of words
transferred are counted; for terminals collectively, the number of input and output characters are counted.
Also, each fiftieth of a second, the state of each disk is examined and a tally is made if the disk is active.
From these numbers and given the transfer rates of the devices it is possible to determine average seek
times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first report is for all
time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

ldevlkmem
Ivrnunix

SEE ALSO
vrnstat(8)

Sun Release 3.5 Last change: 1 February 1985 611

KADB(8S) MAINTENANCE COMMANDS KADB(8S)

NAME
kadb - adb-like kernel and standalone-program debugger

SYNOPSIS
> b kadb [-d] [boot-flags]

DESCRIPTION
kadb is an interactive debugger that is similar in operation to adb (1), and runs as a· standalone program
under the PROM monitor. You can use kadb to debug the UNIX kernel, or to debug any standalone pro
gram.

Unlike adb, kadb runs in the same supervisor virtual address space as the program being debugged -
although it maintains a separate context. The debugger runs as a co process that cannot be killed (no :k) or
rerun (no :r). There is no signal control (no :i, :t, or $i), although the UNIX keyboard facilities ("C,"S and
"Q) are simulated.

While the kernel is running under kadb, the abort sequence (LI-A or BREAK) causes UNIX to drop into kadb
for debugging - as will a system panic. When running other standalone programs under kadb , the abort
sequence will pass control to the PROM monitor. kadb is then invoked from the monitor by jumping to the
starting address for kadb found in <debugldebug.h> (currently this can be done for both Sun-2 and Sun-3
machines with the monitor command g fdOOOOO). kadb's user interface is similar to adb. Note that kadb
prompts with

kadb>

Most adb commands function in kadb as expected. Typing an abort sequence in response to the prompt
returns you to the PROM monitor, from which you can examine control spaces that aren't accessible within
adb or kadb. The PROM monitor command c will return control to kadb. As with "adb -k", $p works
when debugging UNIX kernels (by actually mapping in new user pages). The verbs? and I are equivalent
in kadb , since there is only one address space in use.

OPTIONS
kadb is booted from the PROM monitor as a standalone program. If you omit the -d flag, kadb automati
cally loads and runs vmunix from the file system kadb was loaded from. The kadb "vrnunix" variable can
be patched to change the default program to be loaded.

-d Interactive startup. Prompts with

kadb:

for a file to be loaded. >Prom here, you can enter a boot sequence line to load a standalone pro
gram. Boot flags entered in response to this prompt are included with those already set and passed
to the program. If you type a carriage return only, kadb loads vmunix from the filesystem that
kadb was loaded from.

boot-flags
You can specify boot flags as arguments when invoking kadb. Note that kadb always sets the -d
(debug) boot flag, and passes it to the program being debugged.

USAGE

612

Refer to adb in Program Debugging Toolsfor the Sun Workstation.

Kernel Macros
As with adb, kernel macros are supported. With kadb, however, the macros are compiled into the
debugger itself, rather than being read in from the filesystem. The kadb command $M lists macros known
tokadb.

Setting Breakpoints
Self-relocating programs such as the Sun-3 kernel need to be relocated before breakpoints can be used. To
set the first breakpoint for such a program, start it with :s; kadb is then entered after the program is relo
cated (when UNIX initializes its interrupt vectors). Thereafter, :s single-steps as with adb. Otherwise, use
:c to start up the program.

Last change: 7 April 1987 Sun Release 3.5

KADB(8S) MAINTENANCE COMMANDS KADB(8S)

Automatic Rebooting with Kadb
You can set up your workstation to automatically reboot kadb by patching the "vmunix" variable in Iboot
with the string "kadb" instead of "vmunix". (Refer to adb in Program Debugging Tools for the Sun
Workstation for details on how to patch executables.)

Kadb on a Diskless Workstation

FILES

If your workstation is set up to boot over the network from a partition other than pubO, then you should
patch the short kadb variable "ndbootdev" to be "OxO", for the private nd partition, or "Ox41", for the
pub1 nd partition. This will insure that the file to be debugged and kadb come from the same nd filesystem.

If "ndbootdev" is not patched, then you must be explicit when booting with kadb. Use the command

> bkadb-d

so that kadb will prompt for the program to be debugged At the prompt use the commmand

kadb: device(, , p)filename

where pis' 'Ox 1" for the pub1 nd partition or "Ox40" for the private nd partition. Note that these values
for p (partition) will work if the file to be debugged is in the same filesystem as kadb.

Ivrnunix
lboot
1ka4b
lusr/include/debugldebug.h

SEE ALSO

BUGS

adb(I), boot(8S)
Program Debugging Tools for the Sun Workstation
Writing Device Drivers for the Sun Workstation

There is no 1l0ating-point support.

kadb cannot reliably single-step over instructions that change the status register.

When sharing the keyboard with UNIX the monitor's input routines can leave the keyboard in a confued
state. If this should happen, disconnect the keybooard momentariIy and then reconnect it This forces the
keyboard to reset as well as initiating an abort sequence.

Most of the bugs listed in adb(l) also apply tokadb.

Sun Release 3.5 Last change: 7 April 1987 613

KGMON(8) MAINTENANCE COMMANDS KGMON(8)

NAME
kgmon - generate a dump of the operating system's profile buffers

SYNOPSIS
lusr/etclkgmoD [-b] [-b] [-r] [-p] [system] [memory]

DESCRIPTION
Kgmon is a tool used when profiling the operating system. When no arguments are supplied, kgmon indi
cates the state of operating system profiling as running, off, or not configured (see config(8». If the -p flag
is specified, kgmon extracts profile data from the operating system and produces a gmon.out file suitable for
later analysis by gprof(I).

OPTIONS

FILES

-b

-h

-p

-r

Resume the collection of profile data.

Stop the collection of profile data.

Dump the contents of the profile buffers into a gmon.out file.

Reset all the profile buffers. If the -p flag is also specified, the gmon.out file is generated before
the buffers are reset

If neither -b nor -b is specified, the state of profiling collection remains unchanged For example, if the
-p flag is specified and profile data is being collected, profiling is momentarily suspended, the operating
system profile buffers are dumped, and profiling is immediately resumed.

Ivrnunix - the default system
ldevlkmem - the default memory

SEE ALSO
gprof (1), config(8)

DIAGNOSTICS

614

Users with only read permission on Idev/kmem cannot change the state of profiling collection. They can
get a gmon.out file with the warning that the data may be inconsistent if profiling is in progress.

Last change: 21 April 1983 Sun Release 3.5

MKPROTO(8) MAINTENANCE COMMANDS MKPROTO(8)

NAME
rnkproto - construct a prototype file system

SYNOPSIS
/usr/etc/mkproto special proto

DESCRIPTION
Mkproto is used to bootstrap a new file system. First a new file system is created using newjs(8). Mkproto
is then used to copy files from the old file system into the new file system according to the directions found
in the prototype file proto. The prototype file contains tokens separated by spaces or new lines. The first
tokens comprise the specification for the root directory. File specifications consist of tokens giving the
mode, the user-id, the group id, and the initial contents of the file. The syntax of the contents field depends
on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The
characters -bed specify regular, block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and other
read, write, execute permissions, see chmod(IV).

Two decimal number tokens come after the mode; they specify the user and group ID's of the owner of the
file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the major and
minor device numbers.

If the file is a directory, mkproto makes the entries. and •• and then reads a list of names and (recursively)
file specifications for the entries in the directory. The scan is terminated with the token $.

A sample prototype specification follows:

d-77731
usr d-77731

sh -7553 l/binlsh
ken d-75561

$
bO b-6443100
cO c-644 3100
$

$

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8)

There should be some way to specify links.

There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into existent file sys
tems.

Sun Release 3.5 Last change: 10 May 1981 629

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

NAME
monitor - system PROM monitor and command interpreter

SYNOPSIS
Ll-a

BREAK

DESCRIPTION
The CPU board of the Sun workstation contains a PROM (or set of PROMs), called the monitor, that con
trols the system during startup. The monitor tests the system and then searches for and attempts to boot
UNIX. If you interrupt the boot procedure, or by typing either Ll-a or BREAK, it issues the prompt:

>

and accepts commands interactively.

COMMANDS

630

A[n] [action •. •]
open A-register (cpu address register) n, and perform indicated actions. n can be from 0 to 7. The
default is O. action is a data value in hex; a non-hex character terminates command input.

B [device [(c,u,p)]] fpathname]
boot Resets appropriate parts of the system, then bootstraps. This allows bootstrap loading of
programs from various devices (such as a disk, tape, or Ethernet connection).

device is one of:

ie Intel Ethernet

Ie Lance Ethernet

sd SCSI disk

st SCSI 1/4" tape

mt Tape Master 9-track 1/2" tape

xt Xylogics 1/2" tape

xy Xylogics 440/450 disk

c is a controller number (0 if only one controller),

u is a unit number (0 if only one driver), and,

p is a partition.

pathname
is a pathname for a program such as 1 stand/diag. Ivmunix is the default.

B with no arguments will cause a default boot, either from the disk, or from the Ethernet con
troller.

B? displays all boot devices and their device arguments.

C [addr]
continue a program. When given, addr is the address at which execution will begin. The default is
the current PC. Registers are restored to the values shown by A, D, and R commands.

D [n] [action ••.]
open D-register (cpu data register) n, and perform indicated actions. n can be from 0 to 7. The
default is O.

E [addr] fparam]
open the 16 bit word at addr (default zero) in the address space defined by the S command.

Last change: 9 Apri11986 Sun Release 3.5

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

F addr} addr2 [pattern] [size] Sun 3 only.

Fill address space from (lower) addr} to (higher) addr2 with the constant, pattern, specified by
size:

b byte format (the default),

w word format, or

long word format.

For example, the following command fills the address block from Oxl000 to Ox2000 with the word
pattern, OxABCD:

F 1000 2000 ABeD W

G [addr]
Start the program by executing a subroutine call to the address addr if given, or else to the current
PC. The values of the address and data registers are undefined. The status register is set to Ox2700.

GO When the monitor is running as a result of being interrupted, force a panic and produce a crash
dump.

G4 When the monitor is running as a result of being interrupted, force a kernel stack trace.

D Sun 3 only

Display the menu of monitor commands, and their descriptions.

K[number]
If number is:
o cpu reset only. This is the default

1 reset cpu and mmu.

2 reboot. Resets and clears memory, as with a' power-on reset Runs the PROM-based
diagnostic self test, which can take from 5 to 180 seconds depending upon how much
memory is being tested.

KB display the system banner.

L [addr] [actions]
open the long (32 bit) word at memory address addr (default zero) in the address space defined by
the S command (below).

M [addr] [actions]
open the segment map entry that maps virtual address addr (default zero) in the 'address space
defined by the S command (below). The segment map address is the virtual address field from
address bit 27 thru bit 17 of the virtual address presented by the cpu to the mmu.

o [addr] [actions]
open the byte location specified by addr (default zero) in the address space defined by the S com
mandbelow.

P [addr] [actions]
open the page map entry that maps virtual address addr (default zero) in the address space defined
by the S command.

Q [addr] [actions] Sun 3 only.

Sun Release 3.5

open the EEPROM address addr (default zero) in the EEPROM address space. All addresses are
referenced from the beginning or base of the EEPROM in physical address space, and a limit
check is performed to insure that no address beyond the EEPROM physical space is accessed.
This command is used to examine/modify configuration parameters specifying such things as
amount of memory to test during self test, whether to display a standard or custom banner, if a
serial port (A or B) is to be the system console, etc.

Last change: 9 Apri11986 631

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

632

R [reg] [actions]
open the miscellaneous registers. reg can be one of:

CA 68020 Cache Address Register

CC 68020 Cache Control Register

CX 68020 System and User Context

DF Destination Function code

IS 68020 Interrupt Stack Pointer

MS 68020 Master Stack Pointer

PC Program Counter

SC 68010 System Context

SF Source Function code

SR Status Register

SS 68010 Supervisor Stack Pointer

UC 68010 User Context

US User Stack Pointer

VB Vector Base

Alterations to these registers (except SC and UC, or CX) do not take effect until the next C com
mand.

S [code] set or query the address space to be used by subsequent memory access commands. code is one of:

o undefined

1 user data space.

2 user program space.

3 user control space.

4 undefined.

5 supervisor data space.

6 supervisor program space.

7 supervisor control space.

T[command] Sun 3 only

trace command. Works with standalone programs that do not affect interrupt vectors.

U [arg] manipulate the serial ports and switches the current operator I/O device. arg can have any of the
following values ([AB] indicates one of A or B):

[AB] select serial port A or B as input and output device

[AB]io select serial port A or B as input and output device

[AB]i select serial port A or B for input only

[AB]o select serial port A or B for output only

k select keyboard for input

ki select keyboard for input

s select screen for output

so select screen for output

Last change: 9 April 1986 Sun Release 3.5

MONITOR (8S) MAThITENANCECO~ANDS MONITOR (8S)

ks,sk select keyboard for input and screen for output

[AB]# set speed of serial port A (or B) to # (such as 1200,9600, ..)

e echo input to output

ne don't echo input to output

u addr set virtual serial port address to addr .

If no serial port is specified when changing speeds, the current input device is changed.

At power-up, the following default settings are used: the default console input device is the Sun
keyboard or if the keyboard is unavailable, serial port A. The default console output device is the
Sun screen or if the graphics board is unavailable, serial port A. All serial ports are set to 9600
Baud.

Vaddrl addr2 [size] Sun 3 only

display the contents of addresses from (lower) addr 1 to (higher) address addr2 in the format
specified by size:

b byte format (the default),

w word format, or

I long word format.

Enter return to pause for viewing; enter another return character resume the display. To
terminate the display at any time, press the space bar. Or, you can use AS and AQ to stop
and start the display.

For example, the following command displays the contents of virtual address space from
address OxlOOO to Ox2000 in word format:

V 1000 2000W

W [addr] [arg] Sun 3 only.

Vector to addr. arg is one of:

print prints the contents of virtual address addr as a string.

dump initiates a crash dump.

trace produces a stack trace.

X Sun 3 only

display a menu of extended tests to be presented, with loop and print options also selectable.
These test commands are provided to permit additional testing of such things as the I/O port con

. nectors at the handle edge of the CPU board, Video memory, workstation memory and the works
tation keyboard, as well as permit the bootc;1evice paths to be tested.

Z [addr] Sun 3 only.

seta breakpoint at addr in the address space selected by the S command.

Sun Release 3.5 Last change: 9 April 1986 633

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

NAME
mount, umount - mount and dismount filesystems

SYNOPSIS
letc/mount [-p]
letc/mount -a[fv] [-t type]
letc/mount[-frv] [-t type] [-0 options]fsname dir
let~mount [-vf] [-0 options]fsname I dir

letc/umount [-t type] [-b host]
letc/umount -a[v]
letc/umount [-v]

DESCRIPTION
mount announces to the system that a filesystemfsname is to be attached to the file tree at the directory dir.
The directory dir must already exist It becomes the name of the newly mounted root. The contents of dir
are hidden until theftlesystem is unmounted. If fsname is of the form host:path the filesystem type is
assumed to be nfs.

umount announces to the system that the filesystemfsname previously mounted on directory dir should be
removed. Either the filesystem name or the mounted-on directory may be used.

mount and umount maintain a table of mounted filesystems in fetclmtah. described in mtab(5). If invoked
without an argument, mount displays the table. If invoked with only one of fsname or dir mount searches
the file fetc/fstab (see fstab(5» for an entry whose dir or fsname field matches the given argument For
example, if this line is in fetc/fstab:

Idev/xyOg lusr 4.2 rw 11

then the commands mount lusr and mount Idev/xyOg are shorthand for mount Idev/xyOg lusr

MOUNT OPTIONS

634

-p Print the list of mounted filesystems in a format suitable for use in fetc/fstah.

-a Attempt to mount all the filesystems described in letc/fstab. (In this case,fsname and dir are taken
from fetc/fstab.) If a type is specified all of the filesystems in fetc/fstab with that type is mounted.
Filesystems are not necessarily mounted in the order listed in fetc/fstab.

-f Fake a new fetclmtab entry,. but do not actually mount any filesystems.

-v Verbose - mount displays a message indicating the filesystem being mounted.

-t The next argument is the filesystem type. The accepted types are: 4.2, and nfs; see fstab(5) for a
description of these filesystem types.

-r Mount the specified filesystem read-only. This is a shorthand for:

mount -0 ro fsname dir

Physically write-protected and magnetic tape filesystems must be mounted read-only, or errors
occur when access times are updated., whether or not any explicit write is attempted.

-0 Specify options. a list of comma seperated words from the list below. Some options are valid for
all filesystem types, while others apply to a specific type only.

options valid on all file systems (the default is rw,suid):

rw

ro

suid

nosuid

noauto

read/write.

read-only.

set-uid execution allowed.

set-uid execution not allowed

do not mount this file system automatically (mount -a).

Last change: 13 January 1987 Sun Release 3.5

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

options specific to 4.2 file systems (the default is noquota).

quota

noquota

usage limits enforced.

usage limits not enforced.

options specific to nrs (NFS) file systems (the defaults are:

rg,retry=10000,timeo=7 ,retrans=3,port=NFS _PORT ,hard

with defaults for rsize and wsize set by the kernel):

bg

fg

retry=n

rsize=n

wsize=n

timeo=n

retrans=n

port=n

soft

hard

intr

if the first mount attempt fails, retry in the background.

retry in foreground

set number times to retry mount to n.

set read buffer size to n bytes.

set write buffer size to n bytes.

set NFS timeout to n tenths of a second.

set number of NFS retransmissions to n.

set server IP port number to n.

return error if server doesn't respond.

retry request until server responds.

allow keyboard interrupts on hard mounts.

The bg option causes mount to run in the background if the server's mountd(8) does not respond.
mount attempts each request retry=n times before giving up. Once the filesystem is mounted,
each NFS request made in the kernel waits timeo=n tenths of a second for a response. If no
response arrives, the time-out is multiplied by 2 and the request is retransmitted. When retrans=n
retransmissions have been sent with no reply a soft mounted filesystem returns an error on the
request and a hard mounted filesystem prints a message and retries the request. Filesystems that
are mounted rw (read-write) should use the hard option. 1]te intr option allows keyboard inter
rupts to kill a process that is hung waiting for a response on a hard mounted filesystem. The
number of bytes in a read or write request can be set with the rsize and wsize options.

UMOUNT OPTIONS
-h host Unmount all filesystems listed in letc/mtab that are remote-mounted from host.

-a Attempt to unmount all the file systems currently mounted (listed in letc/mtab). In this case,
fsname is taken from letc/mtab.

-v Verbose - umoun~ displays a message indicating the filesystem being unmounted.

EXAMPLES

FILES

mount Idev/xyOg lusr
mount -ft 4.2/dev/ndO I
mount -at 4.2
mount -t nfs serv:/usrlsrc lusrlsrc
mount serv:/usrlsrc lusrlsrc
mount -0 hard serv:/usrlsrc lusrlsrc
mount -p > letc/fstab

mount a local disk
fake an entry for nd root
mount all 4.2 filesystems
mount remote filesystem
same as above
same as above but hard mount
save current mount state

letc/mtab
letc/fstab

table of mounted filesystems
table of filesystems mounted at boot

Sun Release 3.5 Last change: 13 January 1987 635

MOUNT(8) MAThnENANCECOMMANDS MOUNT(8)

SEE ALSO

BUGS

636

mount(2), unmount(2), fstab(5), mountd(8C), nfsd(8C)

Mounting filesystems full of garbage crashes the system.

No more than one ND client should mount an ND disk partition "read-write" or the file system may
become corrupted.

If the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on the
directory to which the symbolic link refers. rather than being mounted on top of the symbolic link itself.

Last change: 13 January 1987 Sun Release 3.5

SETUP(8S) MAINTENANCE COMMANDS SETUP(8S)

NAME
setup - Sun UNIX installation program

SYNOPSIS
setup

DESCRIPTION

FILES

BUGS

setup is the program supplied by Sun to install major Sun Unix releases such as 2.0 or 3.0. setup allows a
system administrator to install major Sun Unix release on new hardware, upgrade between major releases,
and add additional hardware to existing machines.

setup provide both a tty interface for cursor addressable terminals and a SunWindows system interface for
use on bit mapped displays. The Setup Reference Manual contains a detailed description of the use of
setup.

Initially, setup asks the following questions in a menu format before entering the tty or SunWindows inter
face. For all menus respond to the » prompt with the corresponding number of the menu item you choose.

The first question asked is the mode of use of setup.
Are you running setup:

1) to install on a new system
2) re-entrantly
3) to upgrade an existing system
4) in demonstration mode

»
The next question is to determine the type of interface to be used. Note that the cursor addressable inter
face can be used within a shelltool(1) under SunWindows.

Will you be running setup from:
1) a Sun bit mapped display device
2) a cursor addressable terminal

»
If you have selected the tty interface for cursor addressable terminals, setup asks for the terminal type.

Select your terminal type:
1) Televideo 925
2) Wyse Model 50
3) Sun Workstation
4) Other

»
If you select "Other", the name of the terminal must correspond to a name in the termcap(5) database.

Enter the terminal type (your terminal type must be in /etc/termcap) :
»

setup begins running the interface for the tenninal-type you have selected.

letclhosts
letc!nd.local
I etc! ethers
I etclrc .local
I etc!rc .boot
letc!setup.info
lusrllibl sendmail.cf

setup will not run on tty devices that do not support cursor addressing and are not registered in the
termcap(5) data base.

Sun Release 3.5 Last change: 13 January 1987 693

SHOWMOUNT(8) MAINTENANCE COMMANDS SHOWMOUNT (8)

NAME
showmount - show all remote mounts

SYNOPSIS
lusr/etclshowmount [-a] [-d] [-e] [host]

DESCRIPTION
Showmount lists all the clients that have remotely mounted a filesystem from host. This information is
maintained by the mountd(8C) server on host, and is saved across crashes in the file letclrmtab. The
default value for host is the value returned by hostname (1).

OPTIONS
-d List directories that have been remotely mounted by clients.

-a Print all remote mounts in the format

hostname:directory

where hostname is the name of the client, and directory is the root of the file system that has been
mounted.

-e Print the list of exported file systems.

SEE ALSO
rmtab(5), rnountd(8), exports(5)

BUGS
If a client crashes, its entry will not be removed from the list until it reboots and executes umount -a.

694 Last change: 1 February 1985 Sun Release 3.5

STATD(8C)

NAME
statd - network status monitor

SYNOPSIS
I etc/rpc.statd

DESCRIPTION

MAINTENANCE COMMANDS STATD(8C)

Statd is an intermediate version of the status monitor. It interacts with lockd(8c) to provide the crash and
recovery functions for the locking services on NFS.

FILES
/etc/statmon/cu"ent
/etc/statmon/backup
/ etc/ statmon/ state

SEE ALSO
lockd(8C), statmon(5)

BUGS
The crash of a site is only detected upon its recovery.

Sun Release 3.5 Last change: 16 July 1986 699

STICKY(8) MAINTENANCE COMMANDS STICKY(8)

NAME
sticky - executable files with persistent text

DESCRIPTION

700

While the 'sticky bit', mode 01000 (see chmod(2», is set on a sharable executable file, the text of that file
will not be removed from the system swap area. Thus the file does not have to be fetched from the file sys
tem upon each execution. As long as a copy remains in the swap area, the original text cannot be overwrit
ten in the file system, nor can the file be deleted. Directory entries can be removed so long as one link
remains.

Sharable files are made by the -z option of ld(l).

To replace a sticky file that has .been used:

1. Clear the sticky bit with chmod (1 V).

2. Execute the old program to flush the swapped copy. This can be done safely even if others are
using it.

3. Overwrite the sticky file. If the file is being executed by any process, writing will be prevented; it
suffices to simply remove the file and then rewrite it, being careful to reset the owner and mode
with chmod and chown(2).

4. Set the sticky bit once again, if still needed

A directory for which the 'sticky bit' is set restricts deletion of files it contains. A file in a sticky directory
may only be removed or renamed by a user who has write permission on the directory, and either owns the
file, owns the directory, or is the super-user. This is useful for directories such as Itmp, which must be pub
licly writable, but which should deny users access to arbitrarily delete or rename the files of others.

Any user may create a sticky directory. Only the super-user can set the sticky bit on a non-directory file.

Last change: 28 October 1983 Sun Release 3.5

UNIX Interface Reference Manual Insertion Pages

CHMOD(2) SYSTEM CALLS CHMOD(2)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
#include lusr/include/sys/stat.h

chmod(path, mode)
char *patb;
intmode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed to mode.
Modes are constructed by or' ing together some combination of the following:

S ISUID
S ISGID
S ISVTX
S IREAD
S !WRITE
S IEXEC

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution (sticky bit)
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

These bit patterns are defined in lusr/include/sys/stat.h.

The effective user ID of the process must match the owner of the file or be super-user to change the mode
ofa file.

If the effective user ID of the process is not super-user and the process attempts to set the set group ID bit
on a file owned by a group which is not in its group access list, mode bit 02000 (set group ID on execution)
is cleared.

If an executable file is set up for sharing (this is the default) then mode 01000 (save text image after execu
tion) prevents the system from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. If this mode is set on a directory, an unprivileged user may not delete or
rename files of other users in that directory. If the effective user ID of the process is not super-user and the
object is not a directory, this bit is cleared.

If a user other than the super-user writes to a file, the set user ID and set group ID bits are turned off. This
makes the system somewhat more secure by protecting set-user-ID (set-group-ID) files from remaining
set-user-ID (set-group-ID) if they are modified, at the expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
chmod will fail and the file mode will be unchanged if:

ENOIDIR A component of the path prefix of path is not a directory.

EINV AL path contains a byte with the high-order bit set

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

EACCES

Sun Release 3.5

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Last change: 14 January 1987 23

CHMOD(2) SYSTEM CALLS CHMOD(2)

FILES

ELOOP

EPERM

Too many sYll1bolic links were encountered in translating path.

The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.

EINVAL

EROFS

fd refers to a socket, not to a file.

The file referred to by path resides on a read-only file system.

EFAULT path points outside the process's allocated address space.

EIO An 110 error occurred while reading from or writing to the file system.

fchnwd will fail if:

EBADF The descriptor is not valid.

EROFS The file referred to by fd resides on a read-only file system.

EPERM

EIO

The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.

An 110 error occurred while reading from or writing to the file system.

lusr/include/sys/stath

SEE ALSO
open(2V), chown(2), stat(2), sticky(8)

24 Last change: 14 January 1987 Sun Release 3.5

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rip)
iot resource;
struct rlimit *rlp;

setrlimit(resource, rip)
iot resource;
struct rlimit *rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it creates may be
obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT _CPU the maximum amount of cpu time (in seconds) to be used by each process.

RLIMIT FSIZE

RLIMIT DATA

RLIMIT STACK

RUMIT CORE

RLIMIT RSS

the largest size, in bytes, of any single file that may be created.

the maximum size, in bytes, of the data segment for a process; this defines how far a
program may extend its break with the sbrk(2) system call.

the maximum size, in bytes, of the stack segment for a process; this defines how far a
program's stack segment may be extended automatically by the system.

the largest size, in bytes, of a core file that may be created.

the maximum size, in bytes, to which a process's resident set size may grow. This
imposes a limit on the amount of physical memory to be given to a process; if
memory is tight, the system will prefer to take memory from processes that are
exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and
soft limits on a resource,

struct rlimit {
int
int

};

rlim_cur;
dim_max;

1* current (soft) limit *1
1* hard limit *1

Only the super-user may raise the maximum limits. Other users may only alter rlim _cur within the range
from 0 to rlim _ max or (irreversibly) lower rlim _max.

An "infinite" value for ~ limit is defined as RLIM _INFINITY (Ox7fffffft).

Because this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(I).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way:
a brk or sbrk call will fail if the data space limit is reached, or the process will be killed when the stack
limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file I/O operation which would create a file that is too large will cause a signal SIGXFSZ to be gen
erated; this normally terminates the process, but may be caught. When the soft CPU time limit is exceede~
a signal SIGXCPU is sent to the offending process.

Sun Release 3.5 Last change: 6 January 1987 57

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A return value
of -I indicates that an error occurred, and an error code is stored in the global location errno.

ERRORS
The possible errors are:

EFAULT

EINVAL

EPERM

SEE ALSO
csh(I), quota(2)

BUGS

The address specified for rip is invalid.

An invalid resource was specified; or in a setrlimit call, the new rUm_cur exceeds the
new rlim max.

The limit specified to setrlimit would have raised the maximum limit value, and the
caller is not the super-user.

There should be limit and un limit commands in sh(l) as well as in csh.

58 Last change: 6 January 1987 Sun Release 3.5

GETTIMEOFDA Y (2) SYSTEM CALLS GETTIMEOFDA Y (2)

NAME
gettimeofday t settimeofday - get or set the date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is obtained with the get
timeo/day call, and set with settimeofday. The current time is expressed in elapsed seconds and
microseconds since, January It 1970 (zero hour). The resolution of the system clock is hardware depen
dent; the time may be updated continuouslYt or in "ticks."

The structures pointed to by tp and tzp are defined in <sysltirn£.h> as:

stroct timeval {
long
long

};

struct timezone {

1* seconds since Jan. 1, 1970 *1
. 1* and microseconds *1

int tz _ minuteswest; 1* of Greenwich *1
int tz _ dsttime; 1* type of dst correction to apply *1

};

The timezone structure indicates the local time zone (measured in minutes westward from Greenwich), and
flag that indicates the type of Daylight Saving Time correction to apply. Note that this flag does not indi
cate whether DST is currently in effect.

If tzp is a zero pointer, the timezone information is not returned or set.

Only the super-user may set the time of day or the time zone.

RETURN
A -1 return value indicates an error occurred; in this case an error code is stored in the global variable
e"no. Other return codes indicate the type of Daylight Savings Time currently in effect (as defined in
lusrlincludel sysltime.h):

o DST _NONE: Daylight Savings Time not observed
1 DST _USA: United States DST
2 DST _ AUST: Australian DST
3 DST _WET: Western European DST
4 DST _ MET: Middle European DST
5 DST _ EET: Eastern European DST
6 DST _CAN: Canadian DST
7 DST _ GB: Great Britian and Eire DST
8 DST _RUM: Rumanian DST
9 DST TUR: Turkish DST
10 DST _ AUSTALT: Australian-style DST with shift in 1986

ERRORS
The following error codes may be set in e"no:

EFAULT An argument address referenced invalid memory.

Sun Release 3.5 Last change: 5 February 1987 63

GETTIMEOFDA Y (2) SYSTEM CALLS GETTIMEOFDAY (2)

EPERM A user other than the super-user attempted to set the time.

SEE ALSO
date(1), adjtime(2), ctirne(3)

BUGS

Time is never correct enough to believe the microsecond values. There should a mechanism by which, at
least, local clusters of systems might synchronize their clocks to millisecond granularity.

Daylight Savings Time correction tables aren't guaranteed to be correct for specific locales.

Sun Release 3.5 Last change: 5 February 1987 63a

GETUID(2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
uid = getuidO
int uid;

euid = geteuidO
int euid;

DESCRIPTION

SYSTEM CALLS

Getuid returns the real user ID of the current process, geteuid the effective user ID.

GETUID(2)

The real user ID identifies the person who is logged in. The effective user ID gives the process additional
permissions during execution of "set-user-ID" mode processes, which use getuid to determine the real
user-id of the process that invoked them.

SEE ALSO
getgid(2), setreuid(2)

64 Last change: 16 July 1986 Sun Release 3.5

READ(2V) SYSTEM CALLS READ (2V)

NAME
read, ready - read input

SYNOPSIS
cc = read(d, bur, nbytes)
int cc, d;
char *buf;
intnbytes;

#include <sys/types.h>
#include <syS/uio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

DESCRIPTION
read attempts to read nbytes of data from the object referenced by the descriptor d into the buffer pointed to
by buf. readv performs the same action, but scatters the input data into the iovcnt buffers specified by the
members of the iov array: iov[O], iov[I], ... , iov[iovcnt-l]. _

For readv, the iovec structure is defined as

struct iovec {
caddr t iov _base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
readv will always fill an area completely before proceeding to the next

On objects capable of seeking, the read starts at a position given by the pointer associated with d (see
Iseek(2». Upon return from read, the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the pointer
associated with such an object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and placed in the
buffer. The system guarantees to read the number of bytes requested if the descriptor references a normal
file which has that many bytes left before the end-of-file, but in no other case.

If the returned value is 0, then end-of-file has been reached.

When attempting to read from a descriptor associated with an empty pipe, socket, or FIFO:

If 0_ NDELA Y is set, the read will return a -1 and errno will be set to EWOULDBLOCK.

If 0_ NDELA Y is clear, the read will block until data is written to the pipe or the file is no longer
open for writing.

When attempting to read from a descriptor associated with a tty that has no data currently available:

If 0_ NDELA Y is set, the read will return a -1 and errno will be set to EWOULDBLOCK.

If 0_ NDELA Y is clear, the read will block until data becomes available.

If 0_ NDELA Y is set, and less data are available than are requested by the read or readv, only the data that
are available are returned, and the count indicates how many bytes of data were actually read.

SYSTEM V DESCRIPTION
When an attempt is made to read a descriptor which is in no-delay mode, and there is no data currently
available, read will return a 0 instead of returning a -1 and setting errno to EWOULDBLOCK. Note that this
is indistinguishable from end-of-file.

Sun Release 3.5 Last change: 25 July 1986 95

READ(2V) SYSTEM CALLS READ(2V)

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and the global vari
able e"no is set to indicate the error.

ERRORS
read and readv will fail if one or more of the following are true:

EBADF d is not a valid file descriptor open for reading.

EISDIR

EFAULT

EIO

EINTR

d refers to a directory which is on a file system mounted using the NFS.

but points outside the allocated address space.

An I/O error occurred while reading from or writing to the file system.

A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

EINV AL The pointer associated with d was negative.

EWOULDBLOCK

EINVAL

EINVAL

EINVAL

EFAULT

The file was marked for non-blocking 110, and no data were ready to be read. In addi
tion, readv may return one of the following errors:

Iovcnt was less than or equal to 0, or greater than 16.

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit integer.

Part of iov points outside the process's allocated address space.

SEE ALSO
dup(2), fcnt1(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

96 Last change: 25 July 1986 Sun Release 3.5

SHM:GET(2) SYSTEM CALLS SHM:GET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmct1(2), shmop(2)

Sun Release 3.5 Last change: 29 April 1986 117

SHMOP(2) SYSTEM CALLS SHMOP(2)

NAME
shmop, shrnat, shmdt - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shm8g)
intshmid;
char *shmaddr
intshm8g;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process. The segment is attached at the address specified by one of
the following criteria:

H shmaddr is equal to zero, the segment is attached at the first available address as selected by the
system.

H shmaddr is not equal to zero and (shmjlg & SHM_RND) is "true", the segment is attached at
the address given by (shmaddr - (shmaddr modulus SHMLBA».

H shmaddr is not equal to zero and (shmflg & SHM_RND) is "false", the segment is attached at
the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true" {READ}, otherwise it is
attached for reading and writing {READIWRITE}.

shmdt detaches from the calling process's data segment the shared memory segment located at the address
specified by shmaddr.

ERRORS

118

shmat will fail and not attach the shared memory segment if one or more of the following are true:

EINV AL Shmid is not a valid shared memory identifier.

EACCES Operation permission is denied to the calling process (see intro(2».

ENOMEM

EINVAL

EINVAL

EMFll...E

The available data space is not large enough to accommodate the shared memory seg-
ment.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA» is an illegal address.

shmaddr is' not equal to zero, (shmjlg & SHM_RND) is "false", and the value of
shmaddr is an illegal address.

The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.

shmdt will fail and not detach the shared memory segment if:

EINV AL shmaddr is not the data segment start address of a shared memory segment.

Last change: 29 April 1986 Sun Release 3.5

SHMOP(2) SYSTEM CALLS

RETURN VALUES
Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

Sun Release 3.5 Last change: 29 April 1986

SHMOP(2)

119

SHUTDOWN (2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
iot s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a fu1l-duplex connection on the socket associated with s to be shut
down. If how is 0, then further receives will be disallowed If how is 1, then further sends will be disal
lowed. If how is 2, then further sends and receives will be disallowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

S is not a valid descriptor.

S is a file, not a socket

The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

BUGS
The how values should be defined constants.

120 Last change: 29 August 1983 Sun Release 3.5

SOCKET(2) SYSTEM CALLS SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The at parameter specifies an address format with which addresses specified in later operations using the
socket should be interpreted These formats are defined in the include file <syslsocket.h>. The currently
understood formats are

AF UNIX
AF INET
AFPUP
AF IMPLINK

(UNIX path names),
(ARPA Internet addresses),
(Xerox PUP-I Internet addresses), and
(IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication~ Currently defined types
are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK _ SEQPACKET
SOCK RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams with an
out-of-band data transmission mechanism. A SOCK _ DGRAM socket supports datagrams (connectionless,
unreliable messages of a fixed (typically small) maximum length). SOCK_RAW sockets provide access to
internal network interfaces. The types SOCK_RAW, which is available only to the super-user, and
SOCK_ SEQPACKET and SOCK_ROM, which are planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket Normally only a single protocol
exists to support a particular socket type using a given address format However, it is possible that many
protocols may exist in which case a particular protocol must be specified in this manner. The protocol
number to use is particular to the "communication domain" in which communication is to take place; see
services(5) and protocols (5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be
in a connected state before any data may be sent or received on it A connection to another socket is
created with a connect(2) call. Once connected, data may be transferred using read(2V) and write(2V)
calls or some variant of the send (2) and recv (2) calls. When a session has been completed a close (2) may
be performed. Out-of-band data may also be transmitted as described in send(2) and received as described
in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered' broken and calls will indicate an error
with -1 returns and with ETIMEDOUT as the specific code in the global variable ermo. The protocols
optionally keep sockets "warm" by forcing transmissions roughly every minute in the absence of other
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit

Sun Release 3.5 Last change: 13 November 1986 129

SOCKET(2) SYSTEM CALLS SOCKET (2)

SOCK _ DGRAM and SOCK_RAW sockets allow sending .. of datagrarns to correspondents named in
send(2) calls. It is also possible to receive datagrams at-such a socket with recv(2).

Anfcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the file
<SJslsocket.h> and explained below. Setsockopt and getsockopt(2) are used to set and get options, respec
tively.

SO_DEBUG tum on recording of debugging information
SO REUSEADDR allow local address reuse
SO KEEP ALIVE keep connections alive
SO _ DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present
SO DONTLINGER do not linger on close

SO ~EBUG enables debugging in the underlying protocol modules. SO _ REUSEADDR indicates the
rules used in validating addresses supplied in a bind(2) call should allow reuse of local addresses.
SO_KEEP ALIVE enables. the periodic transmission of messages on a connected socket. Should the con
nected party fail to respond to these messages, the connection is considered broken and processes using the
socket are notified via a SIGPIPE signal. SO _ DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address. SO _LINGER and SO _ DONTLINGER control
the actions taken when unsent messags are queued on socket and a close(2) is performed. If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when SO_LINGER is
requested). If SO _ DONTLINGER is specified and a close is issued, the system will process the close in a
manner which allows the process to continue as quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket call fails if:

EAFNOSUPPORT The specified address family is not supported in this version of the system.

ESOCKTNOSUPPORT

EPROTONOSUPPORT

EMFILE

ENOBUFS

EPROTOTYPE

The specified socket type is not supported in this address family.

The specified protocol is not supported

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

The protocol is the wrong type for the socket.

SEE ALSO

BUGS

130

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioct1(2), listen(2), recv(2), select(2),
send(2), shutdown(2), socketpair(2)

Inter-Process Communication Primer in Networking on the Sun Workstation

The use ofkeepalives is a questionable feature for this layer.

Last change: 13 November 1986 Sun Release 3.5

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

NAME
intro - introduction to library functions

DESCRIPTION

FILES

Section 3 describes library routines. The main C library is Ilibllibc.a, which contains all system call entry
points described in section 2, as well as functions described in several subsections here. The primary func
tions are described in the main section 3. Functions associated with the "standard I/O library" used by
many C programs are found in section 3S. The main C library also includes Internet network functions,
described in section 3N, and routines providing compatibility with other UNIX systems, described in sec
tion 3C.

Other sections are:

(3F) This section, for FORTRAN library routines and functions, is contained in the FOKI'RAN
Programmer's Guide.

(3M) The Math Library. C declarations for the types of functions are be obtained from the include file
<math.h>. To use these functions with C programs compile them with the -1m option with cc(l).
They are automatically loaded as needed by the FORTRAN and Pascal compilersj77(1) andpc(l).

(3V) The System V Compatibility Library. System V versions of functions that are not yet merged into
the standard Sun libraries. To use these functions, compile programs with lusrl5binlcc , instead of
Ibinlcc.

(3X) Various specialized libraries have not been given distinctive captions. Files in which such
libraries are found are named on appropriate pages if they don't appear in the libc library.

llibllibc.a
lusrllib/libc ..,p.a
lusrllib/libm.a
lusrllib/libm ..,p.a
lusr/lib/libcurses.a
lusr/lib/libdbm.a
lusrllib/libmp.a
lusrllib/libtermcap.a
lusr/lib/libtermcap ..,p.a
lusrllib/libtermlib
lusrllib/libtermlib ..,p.a
lusrllib/libplot* .a

C Library «2), (3), (3N) and (3C) routines)
Profiling C library (for gprof(l»
Math Library -1m (see section 3M)
Profiling version of -1m
screen management routines (see curses(3X)
data base management routines (see dbm(3X»
multiple precision math library (see mp(3X»
terminal handling routines (see termcap(3X»
"

(link to lusr/libllibtermcap.a)
(link to lusr/libllibtermcap ..,p.a)
plot routines (see plot(3X»

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(1), ld(1), cc(1), f77 (1), intro(2)

DIAGNOSTICS
Functions in the math library (section 3M) may return conventional values when the function is undefined
for the given arguments or when the value is not representable. In these cases the external variable errno
(see intro(2» is set to the value EDOM (domain error) or ERANGE (range error). The values of EDOM.
and ERANGE are defined in the include file <errno.h>.

LIST OF FUNCTIONS
Name

a641
abort
abs
acos
acosh
addmntent
alarm

Sun Release 3.5

Appears on Page

a64I(3)
abort(3)
abs(3)
sin(3M)
asinh(3M)
getmntent(3)
alarm(3C)

Description

convertbase-64 ASCII to long
generate a fault
integer absolute value
trigonometric functions
inverse hyperbolic function
get file system descriptor file entry
schedule signal after specified time

Last change: 13 November 1986 153

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

alloca rnalloc(3) memory allocator
alphasort scandir(3) scan a directory
asctime ctime(3) convert date and time to ASCn
asin sin(3M) trigonometric functions
asinh asinh(3M) inverse hyperbolic function
assert assert(3) program verification
atan sin(3M) trigonometric functions
atanh asinh(3M) inverse hyperbolic function
atof atof(3) convert ASCn to numbers
atoi atof(3) convert ASCII to numbers
atol atof(3) convert ASCII to numbers
bcmp bstring(3) bit and byte string operations
bcopy bstring(3) bit and byte string operations
bsearch bsearch(3) binary search a sorted table
bzero bstring(3) bit and byte string operations
cabs hypot(3M) Euclidean distance
calloc rnalloc(3) memory allocator
cbc_crypt des _ crypt(3) fast DES encryption
cbrt sqrt(3M) cube root
ceil fioor(3M) ceiling
cfree malloc(3) memory allocator
clearerr ferror(3S) stream status inquiries
clock clock(3C) report CPU time used
closedir directory(3) directory operations
closelog syslog(3) control system log
copysign ieee(3M) copysign remainder exponent manipulations
cos sin(3M) trigonometric functions
cosh sinh(3M) hyperbolic functions
crypt crypt(3) DES encryption
ctermid ctermid(3S) generate filename for terminal
ctime ctime(3) convert date and time to ASCn
cuserid cuserid(3S) get character login name of user
des_crypt des _ crypt(3) fast DES encryption
des _setparity des _ crypt(3) fast DES encryption
drand48 drand48(3) generate uniformly distributed pseudo-random numbers
drem ieee(3M) copysign remainder exponent manipulations
dysize ctime(3) convert date and time to ASCn
ecb_crypt des _ crypt(3) fast DES encryption
ecvt ecvt(3) output conversion
edata end(3) last locations in program
encrypt crypt(3) DES encryption
end end(3) last locations in program
endfsent getfsent(3) get file system descriptor file entry
endgrent getgrent(3) get group file entry
endhostent gethostent(3N) get network host entry
endmntent getmntent(3) get file system descriptor file entry
endnetent getnetent(3N) get network entry
endnetgrent getnetgrent(3N) get network group entry
endprotoent getprotoent(3N) get protocol entry
endpwent getpwent(3) get password file entry
endservent getservent(3N) get service entry
environ execl(3) execute a file
erand48 drand48(3) generate uniformly distributed pseudo-random numbers

154 Last change: 13 November 1986 Sun Release 3.5

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

erf erf(3M) error functions
ermo perror(3) system error messages
etext end(3) last locations in program
ether ether(3R) monitor traffic on the Ethernet
ether aton ethers(3N) Ethernet address mapping
ether hostton ethers(3N) Ethernet address mapping
ether _line(3N) ethers Ethernet address mapping
ether ntoa ethers(3N) Ethernet address mapping
ether ntohost ethers(3N) Ethernet address mapping
execl execl(3) execute a file
execle execl(3) execute a file
execlp execl(3) execute a file
execv execl(3) execute a file
execvp execl(3) execute a file
exit exit(3) terminate a process after performing cleanup
exp exp(3M) exponential function
fabs floor(3M) absolute value
fclose fclose(3S) close or flush a stream
fcvt ecvt(3) output conversion
fdopen fopen(3S) open a stream
feof ferror(3S) stream status inquiries
ferror ferror(3S) stream status inquiries
fflush fclose(3S) close or flush a stream
ffs bstring(3) bit and byte string operations
fgetc getc(3S) get character or integer from stream
fgets gets(3S) get a string from a stream
fileno ferror(3S) stream status inquiries
finite ieee(3M) copysign remainder exponent manipulations
floor floor(3M) floor function
fopen fopen(3S) open a stream
fprintf printf(3S) formatted output conversion
fputc putc(3S) put character or word on a stream
fputs puts(3S) put a string on a stream
fread fread(3S) buffered binary input/output
free malloc(3) memory allocator
freopen fopen(3S) open a stream
frexp frexp(3) split into mantissa and exponent
fscanf scanf(3S) formatted input conversion
fseek fseek(3S) reposition a stream
ftell fseek(3S) reposition a stream
ftime time(3C) get date and time
ftok ftok(3) standard interprocess communication package
ftw ftw(3) walk a file tree
fwrite fread(3S) buffered binary input/output
gcvt ecvt(3) output conversion
getc getc(3S) get character or integer from stream
getchar getc(3S) get character or integer from stream
getcwd getcwd(3) get pathname of current working directory
getenv getenv(3) value for environment name
getfsent getfsent(3) get file system descriptor file entry
getfsfile getfsent(3) get file system descriptor file entry
getfsspec getfsent(3) get file system descriptor file entry
getfstype getfsent(3) get file system descriptor file entry

Sun Release 3.5 Last change: 13 November 1986 155

INTRO(3)

156

getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlogin
getrnntent
getnetbyaddr
getnetbynarne
getnetent
getnetgrent
getopt
getpass
getprotobynarne
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
getrpcbyname
getrpcbynumber
getrpcent
getrpcport
gets
getservbyname
getservbyport
getservent
getw
getwd
grntime
gsignal
gtiy
hasrnntopt
havedisk
hcreate
hdestroy
hsearch
htonl
htons
hypot
ieee
index
inet addr
inet lnaof
inet rnakeaddr
inet netof
inet network
inet ntoa
initgroups
initstate
innetgr

C LffiRARY FUNCTIONS INTRO(3)

getgrent(3)
getgrent(3)
getgrent(3)
gethostent(3N)
gethostent(3N)
gethostent(3N)
getlogin(3)
getmntent(3)
getnetent(3N)
getnetent(3N)
getnetent(3N)
getnetgrent(3N)
getopt(3)
getpass(3)
getprotoent(3N)
getprotoent(3N)
getprotoent(3N)
getpw(3)
getpwent(3)
getpwent(3)
getpwent(3)
getrpcent(3N)
getrpcent(3N)
getrpcent(3N)
getrpcport(3R)
gets(3S)
getservent(3N)
getservent(3N)
getservent(3N)
getc(3S)
getwd(3)
ctime(3)
signal(3)
stty(3C)
getmntent(3)
rstat(3R)
hsearch(3)
hsearch(3)
hsearch(3)
byteorder(3N)
byteorder(3N)
hypot(3M)
ieee(3M)
string(3)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
initgroups(3)
random(3)
getnetgrent(3N)

get group file entry
get group file entry
get group file entry
get network host entry
get network host entry
get network host entry
get login name
get file system descriptor file entry
get network entry
get network entry
get network entry
get network group entry
get option letter from argv
read a password
get protocol entry
get protocol entry
get protocol entry
get name from uid
get password file entry
get password file entry
get password file entry
get RPC entry
get RPC entry
get RPC entry
get RPC port number
get a string from a stream
get service entry
get service entry
get service entry
get character or integer from stream
get current working directory pathname
convert date and time to ASCn
software signals
set and get terminal state
get file system descriptor file entry
get remote host performance data
manage hash search tables
manage hash search tables
manage hash search tables
convert values between host and network byte order
convert values between host and network byte order
Euclidean distance
copysign remainder exponent manipulations
string operations
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
initialize group access list
better random number generator
get network group entry

Last change: 13 November 1986 Sun Release 3.5

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

insque insque(3) insert/remove element from a queue
isalnum ctype(3) character classification and.conversion macros
isalpha ctype(3) character classification and conversion macros
isascii ctype(3) character classification and conversion macros
isatty ttyname(3) find name of a terminal
iscntrl ctype(3) character classification and conversion macros
isdigit ctype(3) character classification and conversion macros
isgraph ctype(3) character classification and conversion macros
isinf isinf(3) test for indeterminate floating point values
islower ctype(3) character classification and conversion macros
isnan isinf(3) test for indeterminate floating point values
isprint ctype(3) character classification and conversion macros
ispunct ctype(3) character classification and conversion macros
isspace ctype(3) character classification and conversion macros
isupper ctype(3) character classification and conversion macros
isxdigit ctype(3) character classification and conversion macros
jO jO(3M) Bessel functions
jl jO(3M) Bessel functions
jn jO(3M) Bessel functions
jrand48 drand48(3) generate uniformly distributed pseudo-random numbers
164a a641(3) convert long to base-64 ASCn
lcong48 drand48(3) generate uniformly distributed pseudo-random numbers
ldexp frexp(3) split into mantissa and exponent
lfind Isearch(3) linear search and update
19arnma Igarnma(3M) log gamma function
localtirne ctime(3) convert date and time to ASCn
lockf lockf(3) advisory record locking on files
log exp(3M) exponential functions
log 10 exp(3M) exponential functions
10gb ieee(3M) copysign remainder exponent manipulations
longjmp setjmp(3) non-local goto
lrand48 drand48(3) generate uniformly distributed pseudo-random numbers
Isearch Isearch(3) linear search and update
rnalloc rnalloc(3) memory allocator
rnalloc _debug malloc(3) memory allocator
rnalloc _verify malloc(3) memory allocator
matherr matherr(3M) math library error-handling function
mernalign rnalloc(3) memory allocator
memccpy memory(3) memory operations
memchr memory(3) memory operations
memcmp memory(3) memory operations
memcpy memory(3) memory operations
memset memory(3) memory operations
rnkstemp rnktemp(3) make a unique file name
rnktemp rnktemp(3) make a unique file name
modf frexp(3) split into mantissa and exponent
moncontrol monitor(3) prepare execution profile
monitor monitor(3) prepare execution profile
monstartup monitor(3) prepare execution profile
mrand48 drand48(3) generate uniformly distributed pseudo-random numbers
nice nice(3C) set program priority
nlist nlist(3) get entries from name list
nrand48 drand48(3) generate uniformly distributed pseudo-random numbers

Sun Release 3.5 Last change: 13 November 1986 157

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

ntohl byteorder(3N) convert values between host and network byte order
ntohs byteorder(3N) convert values between host and network byte order
on exit onexit(3) name termination handler
opendir directory(3) directory operations
openlog syslog(3) control system log
optarg getopt(3) get option letter from argv
optind getopt(3) get option letter from argv
pause pause(3C) stop until signal
pelose popen(3S) initiate 110 to/from a process
perror perror(3) system error messages
popen popen(3S) initiate 110 to/from a process
pow exp(3M) exponential functions
printf printf(3S) formatted output conversion
prof prof(3) profile within a function
psignal psignal(3) system signal messages
putc putc(3S) put character or word on a stream
putchar putc(3S) put character or word on a stream
putenv utenv(3) change or add value to environment
putpwent putpwent(3) write password file entry
puts puts(3S) put a string on a stream
putw putc(3S) put character or word on a stream
qsort qsort(3) quicker sort
rand rand(3C) random number generator
random random(3) better random number generator
rcmd rcmd(3N) routines for returning a stream to a remote command
re_comp regex(3) regular expression handler
re exec regex(3) regular expression handler
readdir directory(3) directory operations
realloc malloc(3) memory allocator
regexp regexp(3) regular expression compile and match routines
remque insque(3) insert/remove element from a queue
rewind fseek(3S) reposition a stream
rewinddir directory(3) directory operations
rex rex(3R) remote execution protocol
rexec rexec(3N) return stream to a remote command
rindex string(3) string operations
rint floor(3M) round to nearest integer
rousers musers(3R) return info about users on remote hosts
rquota rquota(3R) implement quotas on remote hosts
rresvport rcmd(3N) routines for returning a stream to a remote command
rstat rstat(3R) get remote host performance data
roserok rcmd(3N) routines for returning a stream to a remote command
rosers musers(3R) return info about users on remote hosts
rwall rwall(3R) write to remote host
scalb ieee (3M) copysign remainder exponent manipulations
scandir scandir(3) scan a directory
scanf scanf(3S) formatted input conversion
seed48 drand48(3) generate uniformly distributed pseudo-random numbers
seekdir directory(3) directory operations
setbuf setbuf(3S) assign buffering to a stream
setbuffer setbuf(3S) assign buffering to a stream
setegid setuid(3) set user and group ID
seteuid setuid(3) set user and group ID

158 Last change: 13 November 1986 Sun Release 3.5

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

setfsent getfsent(3) get file system descriptor file entry
setgid setuid(3) set user and group ID
setgrent getgrent(3) get group file entry
sethostent gethostent(3N) get network host entry
setjmp setjmp(3) non-local goto
setkey crypt(3) DES encryption
setlinebuf setbuf(3S) assign buffering to a stream
setlinebuf setbuf(3S) assign buffering to a stream
setmntent getrnntent(3) get file system descriptor file entry
setnetent getnetent(3N) get network entry
setnetgrent getnetgrent(3N) get network group entry
setprotoent getprotoent(3N) get protocol entry
setpwent getpwent(3) get password file entry
setrgid setuid(3) set user and group ID
setruid setuid(3) set user and group ID
setservent getservent(3N) get service entry
sets tate random(3) better random number generator
setuid setuid(3) set user and group ID
setvbuf setbuf(3S) assign buffering to a stream
siginterrupt siginterrupt(3) allow signals to interrupt system calls
signal signal(3) simplified software signal facilities
sin sin(3M) trigonometric functions
sinh sinh(3M) hyperbolic functions
sleep sleep(3) suspend execution for interval
spray spray(3R) scatter packets to check network
sprintf printf(3S) formatted output conversion
sqrt sqrt(3M) square root
srand rand(3C) random number generator
srand48 drand48(3) generate uniformly distributed pseudo-random numbers
srandom random(3) better random number generator
sscanf scanf(3S) formatted input conversion
ssignal ssignal(3) software signals
stdio intro(3S) standard buffered inputJoutput package
strcat string(3) string operations
strcmp string(3) string operations
strcpy string(3) string operations
strlen string(3) string operations
strncat string(3) string operations
strncmp string(3) string operations
strncpy string(3) string operations
strtod strtod(3) convert string to double-precision number
strtol strtol(3) convert string to integer
stty stty(3C) set and get terminal state
swab swab(3) swap bytes
sys _ errlist perror(3) system error messages
sys_nerr perror(3) system error messages
sys _ siglist psignal(3) system signal messages
syslog syslog(3) control system log
system system(3) issue a shell command
tan sin(3M) trigonometric functions
tanh sinh(3M) hyperbolic functions
tdelete tsearch(3) manage binary search trees
telldir directory(3) directory operations

Sun Release 3.5 Last change: 13 November 1986 159

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

tfind tsearch(3) manage binary search trees
time time(3C) get date and time
times times(3C) get process times
timezone ctime(3) convert date and time to ASCII
tmpfile tmpfile(3S) create a temporary file
tmpnam tmpnam(3S) create a name for a temporary file
toascii ctype(3) character classification and conversion macros
tolower ctype(3) character classification and conversion macros
toupper ctype(3) character classification and conversion macros
tsearch tsearch(3) manage binary search trees
ttyname ttyname(3) find name of a terminal
ttyslot ttyname(3) find name of a terininal
twalk tsearch(3) manage binary search trees
ualarm ualarm(3) schedule signal after microsecond interval
ulimit ulimit(3C) get and set user limits
ungetc ungetc(3S) push character back into input stream
usleep usleep(3S) suspend execution for micorsecond interval
utime utime(3C) set file times
valloc valloc(3) aligned memory allocator
values values(3) machine-dependent values
varargs varargs(3) variable argument list
vfprintf vprintf(3S) print formatted output of a varargs argument list
vlimit vlimit(3C) control maximum system resource consumption
vprintf vprintf(3S) print formatted output of a varargs argument list
vsprintf vprintf(3S) print formatted output of a varargs argument list
vtimes vtimes(3C) get information· about resource utilization
yO jO(3M) Bessel functions
yl jO(3M) Bessel functions
yn jO(3M) Bessel functions
yp all ypclnt(3N) yP client interface routines
yp_bind ypclnt(3N) yP client interface routines
yp_first ypclnt(3N) yP client interface routines
yp _get_ default_domain ypclnt(3N) yP client interface routines
yp master ypclnt(3N) yP client interface routines
yp_match ypclnt(3N) yP client interface routines
yp next ypclnt(3N) yP client interface routines
yp order ypclnt(3N) yP client interface routines,
yp unbind ypclnt(3N) yP client interface routines
ypclnt ypclnt(3N) yP client interface routines
yperr _string ypclnt(3N) yP client interface routines
yppasswd yppasswd(3R) update user yP password
ypprot_err ypclnt(3N) yP client interface routines

160 Last change: 13 November 1986 Sun Release 3.5

DIRECTORY (3) C LIBRARY FUNCTIONS DIRECTORY (3)

NAME
directory, opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loe)
DIR *dirp;
long loe;

rewinddir(dirp)
DIR *dirp;

c1osedir(dirp)
DIR *dirp;

DESCRIPTION
opendir opens the directory named by filename and associates a directory stream with it. opendir returns a
pointer to be used to identify the directory stream in subsequent operations. The pointer NULL is returned
if filename cannot be accessed or is not a directory, or if it cannot malloc(3) enough memory to hold the
whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end of the direc
tory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream. The new position reverts to
the one associated with the directory stream when the telldir operation was performed. Values returned by
telldir are good only for the lifetime of the DIR pointer from which they are derived. If the directory is
closed and then reopened, the telldir value may be invalidated due to undetected directory compaction. It
is safe to use a previous telldir value immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

closedir closes the named directory stream and frees the structure associated with the DIR pointer.

Sample code which searchs a directory for entry "name" is:

SEE ALSO

len = strlen(name);
dirp = opendir(tt. tt);
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp»

if (dp->d _ namlen == len && !strcmp(dp->d _name, name» {
closedir(dirp);

}
closedir(dirp);

return FOUND;

return NOT_FOUND;

open(2), close(2), read(2), Iseek(2), getwd(3), dir(5)

Sun Release 3.5 Last change: 17 July 1986 173

DIRECTORY (3) C LIBRARY FUNCTIONS DIRECTORY (3)

NOTES

BUGS

174

All UNIX programs that examine directories must be convened to use this package in Sun release 3.0 and
beyond. Direct reading of directories is no longer allowed.

The new directory format is not obvious.

Last change: 17 July 1986 Sun Release 3.5

FREXP(3) C LIBRARY FUNCTIONS FREXP(3)

NAME
frexp, ldexp, modf - floating point analysis and synthesis

SYNOPSIS
double frexp(value, eptr)
double value;
iot *eptr;

double Idexp(value, exp)
double value;
int exp;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the significand of a double value as a double quantity, x, of magnitude less than 1 and stores
an integer n, indirectly through eptr, such that value = x * 2n.

The results are not defined when value is an IEEE infinity or NaN.

ldexp returns the quantity:

value * 2cxP.

modi returns the fractional part of value and stores the integral part indirectly through iptr. Thus the argu
ment value and the returned values mod/and *iptr satisfy, in the absence of rounding error,

(*iptr + mod/) == value

and

0<= abs(mod/) < abs(value).

The signs of *iptr and modi are the same as the signs of value. The results are not defined when value is an
IEEE infinity or NaN.

Since Sun's definition of modf conforms to the System V Interface Definition and the VAX 4.2BSD imple
mentation but differs from the 4.2BSD documentation, results vary from some other Unix implementations
whose modi conforms to the 4.2BSD documentation but not the V AX 4.2BSD implementation. Therefore
avoid modi in code intended to be portable.

SEE ALSO
floor(3m)

Sun Release 3.5 Last change: 16 September 1986 183

FrOK(3) C LmRARY FUNCTIONS FrOK(3)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>

key _ t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used by the msgget(2),
semget(2), and shmget(2) system calls to obtain interprocess communication identifiers. One suggested
method for forming a key is to use the /tok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining portion as a sequence number.
There are many other ways to form keys, but it is necessary for each system to define standards for forming
them. If some standard is not adhered to, it will be possible for unrelated processes to unintentionally inter
fere with each other's operation. Therefore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across a given system.

/tok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget system
calls. path must be the path name of an existing file that is accessible to the process. id is a character
which uniquely identifies a project. Note that/tok will return the same key for linked files when called with
the same id and that it will return different keys when called with the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS
/tok returns (key _t) -1 if path does not exist or if it is not accessible to the process.

WARNING

184

If the file whose path is passed to /tok is removed when keys still refer to the file, future calls to /tok with
the same path and id will return an error. If the same file is recreated, then/tok is likely to return a dif
ferent key than it did the original time it was called.

Last change: 30 April 1986 Sun Release 3.5

MONITOR(3) C LIBRARY FUNCTIONS MONITOR(3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, butTer, bufsize, nfunc)
int (*lowpc)O, (*highpc)O;
short butTer[];

monstartup(lowpc, highpc)
int (*lowpc)O, (*highpc)O;

moncontrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc-p ...

automatically includes calls for the prof(l) monitor and includes an initial call to its start-up routine mon
startup with default parameters; monitor need not be called explicitly except to gain fine control over profil
buffer allocation. An executable program created by:

cc-pg ...

automatically includes calls for the gprof(l) monitor.

Monstartup is a high level interface to profil(2). Lowpc and high pc specify the address range that is to be
sampled; the lowest address sampled is that of lowpc and the highest is just below highpc. Monstartup
allocates space using sbrk(2) and passes it to monitor (see below) to record a histogram of periodically
sampled values of the program counter, and of counts of calls of certain functions, in the buffer. Only calls
of functions compiled with the profiling option -p of cc(l) are recorded.

To profile the entire program, it is sufficient to use

extern etext();

monstartup(Ox2000, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

then prof(1) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either prof(l) or
gprof(l) type profiling. When the program starts, profiling begins. To stop the collection of histogram
ticks and call counts use moncontrol(O); to resume the collection of histogram ticks and call counts use
moncontrol(l). This allows the cost of particular operations to be measured. Note that an output file will
be produced upon program exit irregardless of the state of moncontrol.

Monitor is a low level interface to profil(2). Lowpc and high pc are the addresses of two functions; buffer is
the address of a (user supplied) array of bufsize short integers. At most nfunc call counts can be kept. For
the results to be significant, especially where there are small, heavily used routines, it is suggested that the
buffer be no more than a few times smaller than the range of locations sampled. Monitor divides the buffer
into space to record the histogram of program counter samples over the range lowpc to high pc , and space
to record call counts of functions compiled with the -p option to cc(l).

To profile the entire program, it is sufficient to use

extern etextO;

monitor(Ox2000, etext, buf, bufsize, nfunc);

Sun Release 3.5 Last change: 19 January 1983 215

MONITOR(3) C LIBRARY FUNCTIONS MONITOR(3)

FILES
mOD.out

SEE ALSO
cc(1), prof(1), gprof(1), profil(2), sbrk(2)

216 Last change: 19 January 1983 Sun Release 3.5

UTIME(3C) COMPA TIBll..ITY FUNCTIONS UTIME(3C)

NAME
utime - set file times

SYNOPSIS
#include <sys/types.h>

utime{file, timep)
char *file;
time_t timep[2];

DESCRIPTION
The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file is set to the
current time.

SEE ALSO
utimes(2), stat(2)

Sun Release 3.5 Last change: 1 April 1983 269

VLIMIT(3C) COMPATIBILITY FUNCTIONS VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vlimit(resource, value) int resource, value;

DESCRIPTION
This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually exceed value
on the specified resource. If value is specified as -1, then the current limit is returned and the limit is
unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the super-user
may remove the noraise restriction.

LIM CPU

LIM_FSIZE

LIM DATA

the maximum number of cpu-seconds to be used by each process

the largest single file which can be created

the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro
gram text

the maximum size of the automatically-extended stack region

the size of the largest core dump that will be created

LIM MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the program. If
memory is tight, the system will prefer to take memory from processes which are
exceeding their declared LIM _ MAXRSS.

Because this information is stored in the per-process information this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(I).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way;
a break call fails if the data space limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to be gen
erated, this normally terminates the process, but may be caught. When the cpu time limit is exceeded, a
signal SIGXCPU is sent to the offending process; to allow it time to process the signal it is given 5 seconds
grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS

270

If LIM _ NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in sh(l) as well as in csh.

Last change: 13 January 1987 Sun Release 3.5

FOPEN(3S) STANDARD I/O LIBRARY FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
/open opens the file named by filename and associates a stream with it. If the open succeeds, /open returns
a pointer to be used to identify the stream in subsequent operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append: open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

/reopen opens the file named by filename and associates the stream pointed to by stream with it. The type
argument is used just as in/open. The original stream is closed, regardless of whether the open ultimately
succeeds. If the open succeeds,/reopen returns the original value of stream.

/reopen is typically used to attach the preopened streams associated with stdin, stdout, and stderr to other
files.

/dopen associates a stream with a file descriptor. File descriptors are obtained from calls like open, dup,
creat, or pipe (2), which open files but do not return streams. Streams are necessary input for many of the
Section 3S library routines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening/seek or rewind, and input may not be
directly followed by output without an intervening/seek, rewind, or an input operation which encounters
end-of-file.

SEE ALSO
open(2V), fclose(3S), fseek(3S), fopen(3V)

DIAGNOSTICS

BUGS

/open,/reopen, and/dopen retllI1l a NULL pointer on failure.

In order to support the same number of open files as the system does, jopen must allocate additional
memory for data structures using calloc after 30 files have been opened. This confuses some programs
which use their own memory allocators.

Sun Release 3.5 Last change: 13 January 1987 335

FREAD(3S) STANDARD I/O LmRARY FREAD (3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

rread(ptr, size, nitems, stream)
FILE *stream;

rwrite(ptr, size, nitems, stream)
FILE *stream;

DESCRIPTION
fread reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It returns the number
of items actually read. fread stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. fread leaves the file pointer in stream, if defined, point
ing to the byte following the last byte read if there is one. fread does not change the contents of stream.

If the standard output is line-buffered, fread flushes its output before reading from the standard input. This
is also true for the standard error.

fwrite appends at most nitems of data from the block pointed to by ptr to the named output stream. It
returns the number of items actually written. /write stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. fwrite does not change the contents of the block
pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeofspecifies the length of an item
pointed to by ptr. If ptr points to a data type other than char it should be cast into a pointer to char.

If size or nitems is non-positive, no characters are read or written and 0 is returned by both fread and
fwrite.

SEE ALSO
read(2V), write(2V), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S), fread(3V)

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error.

336 Last change: 15 April 1986 Sun Release 3.5

PUTS(3S) STANDARD I/O LIBRARY

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)
char *s;

(puts(s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS(3S)

puts writes the null-terminated string pointed to by s, followed by a newline character, to the standard out
put stream stdout.

fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminal null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that has not been
opened for writing.

SEE ALSO
fopen(3S), putc(3S), printf(3S), ferror(3S), fread(3S)

NOTES
puts appends a newline while fputs does not.

Sun Release 3.5 Last change: April 15 1986 345

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer] . ..)
char *s, *format;

DESCRIPTION

346

scan! reads from the standard input stream stdin. fscanf reads from the named input stream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control stringformat, described below,
and a set of pointer arguments indicating where the converted input should be stored

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, or new-lines) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing character

*, an optional numerical maximum field width, an optional I (ell) or h indicating the size of the receiv
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted For all descriptors except" [" and "c", white space leading an input
field is ignored.
The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:
% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an unsigned

o
x
e,f,g

s

c

integer pointer.
an octal integer is expected; the corresponding argument should be a integer pointer.
a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
a floating point number is expected; the next field is converted accordingly and stored through the
corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, -, or space, followed
by an integer.
a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.
a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use % Is. If
a field width is given, the corresponding argument should refer to a character array, and the indi
cated number of characters is read.

Last change: 18 February 1987 Sun Release 3.5

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scan set. The
circum1J.ex (A), when it appears as the first character in the scanset, serves as a complement opera
tor and redefines the scan set as the set of all characters not contained in the remainder of the scan
set string. There are some conventions used in the construction of the scanset. A range of charac
ters may be represented by the construct first-last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal to last, or else, the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circum1lex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized or preceded by I or h to indicate that a pointer
to long or to short rather than to int is in the argument list Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather than to 80at is in the argument list The I or
h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scanfreturns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string.

If the input ends before the first conflict or conversion, EOF is returned If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES
The call:

int i, n; Boat x; char narne[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; Boat x;. char name [50] ;
(void) scanf("%2d%f%*d %[0--9]", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123,and place the string 56\0 in name. The next call to getchar (see
getc (3S» will return 8.

SEE ALSO
getc(3S), printf(3S) strtod(3), strtol(3), scanf(3V)

DIAGNOSTICS
These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not direcdy determinable.

scanf cannot read the strings which print/(3S) generates for IEEE indeterminate Boating point values.

Sun Release 3.5 Last change: 18 February 1987 347

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

scan/provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi
tional C conventions (leading 0 or Ox).

Sun Release 3.5 Last change: 18 February 1987 347a

SETBUF(3S) STANDARD I/O LIBRARY SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, bul)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)
FILE *stream;
char *buf;
int size;

setlinebuf(stream)
FILE *stream;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

348

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. !flush (see /close(3S» may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon
the first getc or putc(3S) on the file. If the standard stream stdout refers to a terminal it is line buffered. If
the standard stream stderr refers to a terminal it is line buffered.

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by but to be used instead of an automatically allocated buffer. If but is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbu/, can be used after a stream has been opened but before it is read or
written. It causes the character array buf whose size is determined by the size. argument to be used instead
of an automatically allocated buffer. If but is the NULL pointer, input/output will be completely unbuf
fered.

setvbu/ can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values ~or type (defined in <stdio.h» are:

IOFBF causes input/output to be fully buffered.

IONBF

causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

causes input/output to be completely unbuffered. If but is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebu/ is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbu/, setbuffer, and setvbu/, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using/reopen (see/open(3S».
A file can be changed from block buffered or line buffered to unbuffered by using/reopen followed by set
bu/with a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.5

SCANF(3V) SYSTEM V LIBRARY FUNCfIONS SCANF(3V)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char .format;

fscanf(stream, format [, pointer] ...)
FILE .stream;
char .format;

sscanf(s, format [, pointer]. ..)
char .s, .format;

DESCRIPTION
scanf reads from the standard input stream stdin. fscanf reads from the narned input stream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control stringformat, described below,
and a set of pointer arguments indicating where the converted input should be stored

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in two cases described
below, cause input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing character

*, an optional numerical maximum field width, an optional I (ell) or h indicating the size of the receiv
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by •. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except "[" and "c", white space leading an input
field is ignored.
The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:
% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an unsigned

integer pointer.
o an octal integer is expected; the corresponding argument should be a integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
e,f,g a floating point number is expected; the next field is converted accordingly and stored through the

corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, -, or space, followed
by an integer.

s a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

c a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use % 15. If
a field width is given, the corresponding argument should refer to a character array, and the indi
cated number of characters is read.

Sun Release 3.5 Last change: 18 February 1987 381

SCANF(3V) SYSTEM V LIBRARY FUNCTIONS SCANF(3V)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of char~ters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumflex (A), when it appears as the first character in the scanset, serves as a complement opera
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan
set string. There are some conventions used in the construction of the scanset. A range of charac
ters may be represented by the construct first-last, thus [0123456789] may be expressed [0-9].
Using this convention,first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized or preceded by 1 or h to indicate that a pointer
to long or to short rather than to int is in the argument list. Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather than to float is in the argument list The I or
h modifier is ignored for other conversion characters.

scan[conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scanf returns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string.

If the input ends before the first conflict or conversion, EOF is returned If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; float x; char name [50] ;
(void) scanf("%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc (3S» will return a.

SEE ALSO
getc(3S), printf(3V) strtod(3), strtol(3), scanf(3S)

DIAGNOSTICS
These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

scanf cannot read the strings which printf(3V) generates for IEEE indeterminate floating point values.

382 Last change: 18 February 1987 Sun Release 3.5

SCANF(3V) SYSTEM V LIBRARY FUNCTIONS SCANF(3V)

scalifprovides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi
tional C conventions (leading 0 or Ox).

Sun Release 3.5 Last change: 18 February 1987 383

SETBUF(3V) SYSTEM V UBRARY FUNCTIONS SETBUF(3V)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, bul)
FILE *stream;
char *bur;

setburrer(stream, bur, size)
FILE *stream;
char *buf;
int size;

setlinebuf(stream)
FILE *stream;

int setvbur (stream, bur, type, size)
FILE *stream;
char *bur;
int type, size;

DESCRIPTION

384

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as Written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. fJlush (seefclose(3S» may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon
the first getc or pute (3S) on the file.

By default, output to a terminal is line buffered and all other input/output is fully buffered.

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuf, can be used after a stream has been opened but before it is read or
written. It causes the character array buf whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely unbuf
fered.

setvbuf can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values for type (defined in <stdio.h» are:

IOFBF causes input/output to be fully buffered.

IOLBF

IONBF

causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

causes input/output to be completely unbuffered. If buf is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuf is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuf, setbuffer, and setvbuf, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by usingfreopen (see fopen (3S».
A file can be changed from block buffered or line buffered to unbuffered by usingJreopen followed by set
buf with a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.5

INTRO(3X) MISCELLANEOUS FUNCTIONS INTRO(3X)

NAME
intro - introduction to other libraries

DESCRIPTION

FILES

This section contains manual pages describing other libraries, which are available only from C. The list
below includes libraries which provide device independent plotting functions, terminal independent screen
management routines for two dimensional non-bitmap display terminals, and functions for managing data
bases with inverted indexes. All functions are located in separate libraries indicated in each manual entry.

lusrllib/libcurses.a
lusrllib/libdbm.a
lusrllib/libmp.a
lusrllib/libplot.a
lusrllib/lib300.a
lusrllib/lib 300s.a
lusrllib/lib450.a
lusrllib/lib4014.a
lusrllib/libtermcap.a
lusrllib/libtermcap y.a
lusrllib/libtermlib.a
lusrllib/libtermlib y.a

screen management routines (see curses(3X»
data base management routines (see dbm(3X»
multiple precision math library (see mp(3X»
plot routines (see plot(3X»
"
"

"
terminal handling routines (see termcap(3X»

(link to lusr/libllibtermcap.a)
(link to lusr/libllibtermcap y.a)

Sun Release 3.5 Last change: 13 November 1986 393

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES(3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -lcurses -ltermcap [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They keep an
image of the current screen, and the user sets up an image of a new one. Then the refreshO tells the rou
tines to make the cu,rrent screen look like the new one. In order to initialize the routines, the routine
initscrO must be ca1l&t before any of the other routines that deal with windows and screens are used. The
routine endwinO should be called before exiting.

SEE ALSO

394

ioct1(2), getenv(3), tty(4), termcap(5)
Programmer's Reference Manual for Curses
addch(ch)
addstr(str)
box(win, vert,hor)
cbreakO
clearO
clearok(scr,boolt)
clrtobotO
clrtoeolO
delchO
deletelnO
delwin(win)
echoO
endwinO
eraseO
flusok(win,boolt)
getchO
getcap(name)
getstr(str)

.. gettmodeO
getyx(win,y,x)
inchO
initscrO
insch(c)
insertlnO
leaveok(win,boolt)
longname(termbuf,name)
move(y,x)
mvcur(1asty ,lastx,newy ,newx)
newwin(lines,cols,begin _y,begin _x)
nlO
nocbreakO
noecho()
nonlO
norawO
oveday(winl, win2)
overwrite(win 1, win2)
printw(fmt,argl,arg2, ...)
raw 0
refreshO

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
set flush-on-refresh flag for win
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y ,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay winl on win2
overwrite winl on top of win2
printf on stdscr
set raw mode
makecurrentscreen look like stdscr

Last change: 17 July 1986 Sun Release 3.5

BWONE(4S) DEVICES AND NETWORK INTERFACES

NAME
bwone - Sun-l black and white frame buffer

SYNOPSIS - SUN-2
device bwoneO at mbmem ? csr OxcOOOO priority 3

DESCRIPTION

BWONE(4S)

The bwone intetface provides access to Sun-l black and white graphics controller boards. It supports the
ioctls described injbio(4S).

FILES
IdevlbwonelO-9]

SEE ALSO

BUGS

mmap(2), fb(4S), fbio(4S)

Use of vertical-retrace interrupts is not supported.

The video state returned by the FBIOGVIDEO ioctl may be incorrect. It is not possible for the driver to
determine the state of the hardware video enable bit, so it reports the last state stored by the FBIOSVIDEO
ioctl. User processes which map the frame buffer can directly enable or disable the video, unknown to the
driver.

Sun Release 3.5 Last change: 16 January 1987 413

BWTWO(4S) DEVICES AND NETWORK INTERFACES BWTWO(4S)

NAME
bwtwo - Sun-3/Sun-2 black and white frame buffer

SYNOPSIS - SUN-3
device bwtwoO at obmem 1 csr OxffOOOOOO priority 4
device bwtwoO at obmem 2 csr OxlOOOOO priority 4
device bwtwoO at obmem 3 csr OxffOOOOOO priority 4
device bwtwoO at obmem 4 csr OxffOOOOOO

The first synopsis line given above should be used to generate a kernel for a Sun-3/75 or Sun-3/160; the
second, for a Sun-3/50; the third, for a Sun-3/260; and the fourth, for a Sun-3/110.

SYNOPSIS - SUN-2
device bwtwoO at obmem 1 csr Ox700000 priority 4
device bwtwoO at obio 2 csr OxO priority 4

The first synopsis line given above should be used to generate a kernel for a Sun-2/120 or Sun-2/170; the
second, for a Sun-2/50 or Sun-2/160.

DESCRIPTION

FILES

The bwtwo interface provides access to Sun monochrome memory frame buffers. It supports the ioctls
described injbio(4S).

If Bags Oxl is specified, frame buffer write operations are buffered through regular high-speed RAM. This
"copy memory" mode of operation speeds frame buffer accesses, but consumes an extra 128K bytes of
memory. Only the Sun-3/50, Sun-3175, and Sun-3/160 support copy memory; on other systems a warning
message will be printed and the flag will be ignored.

Reading or writing to the frame buffer is not allowed - you must use the mmap (2) system call to map the
board into your address space.

IdevlbwtwolO-91

SEE ALSO
mmap(2), fb(4S), fbio(4S), cgfour(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

414 Last change: 16 January 1987 Sun Release 3.5

CGFOUR(4S) DEVICES AND NETWORK INTERFACES CGFOUR(4S)

NAME
cgfour - Sun-3 color memory frame buffer

SYNOPSIS - SUN-J
device cgfourO at obmem 4 csr

DESCRIPTION

FILES

The cgfour is a color memory frame buffer with a monochrome overlay plane and an overlay enable plane
implemented on the Sun-3/110 and Sun-3/160. It provides the standard frame buffer interface as defined in
jbio(4S).

In addition to the iocds described under jbio(4s), the cgfour interface responds to two cgfour-specific
colormap iocds, FBIOPlITCMAP and FBIOGETCMAP. FBIOPUTCMAP returns no information other than
success/failure via the iocd return value. FBIOGETCMAP returns its information in the arrays pointed to by
the red, green, and blue members of its fbcmap structure argument; fbcmap is defined in < sunlfbio.h> as:

struct fbcmap {
int

};

int
unsigned char
unsigned char
unsigned char

index;
count;
*red;
* green;
* blue;

1* first element (0 origin) *1
1* number of elements *1
1* red color map elements *1
1* green color map elements *1
1* blue color map elements *1

The driver uses color board vertical-retrace interrupts to load the colormap.

IdevlcgfourO

SEE ALSO
rnmap(2), tbio(4S)

Sun Release 3.5 Last change: 31 March 1987 415

CGONE(4S) DEVICES AND NETWORK INTERFACES CGONE(4S)

NAME
cgone - Sun-l color graphics interface

SYNOPSIS - SUN-2
device cgoneO at mbmem ? csr OxecOOO priority 3

DESCRIPTION

FILES

The cgone interface provides access to the Sun-l color graphics controller board, which is normally sup
plied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer interface as defined in
fbio(4S).

It supports the FBIOGPIXRECT ioctl which allows SunWindows to be run on it; seejbio(4S)

The hardware consumes 16 kilobytes of Multibus memory space. The board starts at standard addresses
OxE8000 or OxECOOO. The board must be configured for interrupt level 3.

/dev/cgone[O-9]

SEE ALSO
mmap(2)t tbio(4S)

BUGS
Use of color board vertical-retrace interrupts is not supported.

416 Last change: 16 September 1985 Sun Release 3.5

FBIO(4S) DEVICES AND NETWORK INTERFACES FBIO(4S)

NAME
fbio - general properties of frame buffers

DESCRIPTION
All of the Sun frame buffers support the same general interface. Each responds to a FBIOGTYPE ioctl
which returns information in a structure defined in < sunljbio.h>:

struct fbtype{
int fb _type;
int tb _height;
int tb_width;
int tb _depth;
int tb _ crnsize;
int tb _size;

};

1* as defined below *1
1* in pixels *1
1* in pixels *1
1* bits per pixel *1
1* size of color map (entries) *1
1* total size in bytes *1

#define FBTYPE SUNIBW 0
#define FBTYPE SUNICOLOR 1
#define FBTYPE SUN2BW 2
#define FBTYPE SUN2COLOR 3
#define FBTYPE SUN2GP 4
#define FBTYPE SUN4COLOR 8

Each device has an FBTYPE which is used by higher-level software to determine how to perform raster-op
and other functions. Each device is used by opening it, doing an FBIOGTYPE ioctl to see which frame
buffer type is present, and thereby selecting the appropriate device-management routines.

Full-fledged frame buffers (that is, those that run SunWindows) implement an FBIOGPIXRECf ioctl, which
returns a pixrect. This call is made only from inside the kernel. The returned pixrect is used by win(4S)
for cursor tracking and colormap loading.

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctls for controlling possible video features of frame
buffers. They are defined in <sunlfbio.h> . These ioctls either set or return the value of a flags integer. At
this point, only the FBVIDEO _ ON option is available, controlled by FBIOSVIDEO. FBIOGVIDEO returns the
current video state.

The FBIOSATIR and FBIOGATIR ioctls allow access to special features of newer frame buffers. They use
the following structures as defined in <sunljbio.h>:

Sun Release 3.5

#define FB _ ATTR _NDEVSPECIFIC
#define FB ATTR NEMUTYPES

8
4

1* no. of device specific values *1
1* no. of emulation types *1 - -

struct fbsattr {
int flags; 1* misc flags *1

#define FB _ ATTR _ AUTOINIT 1 1* emulation auto init flag *1
#define FB _ ATTR _DEVSPECIFIC 2 1* dev. specific stuff valid flag *1

int emu_type; 1* emulation type (-1 if unused) *1
int dev_specific[FB_ATTR_NDEVSPECIFIC];I* catchall *1

};

struct fbgattr {
int real_type; 1* real device type *1
int owner; 1* PID of owner, 0 if myself *1
struct tbtype fbtype; 1* fbtype info for real device *1
struct tbsattr sattr; 1* see above *1
int emu_types[FB_ATTR_NEMUTYPES]; 1* possible emulations *1

1* (-1 if unused) *1
};

Last change: 16 January 1987 429

FBIO(4S) DEVICES AND NETWORK. INTERFACES FBIO(4S)

SEE ALSO
mmap(2), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), cgfour(4S), gpone(4S), tb(4S), win(4S)

BUGS
FBIOSATI'R andFBIOGATIR are only supported by the cgfour(4S) frame buffer.

The FBVIDEO_ON flag my be incorrect for Sun-l black and white frame buffers; see bwone(4S).

430 Last change: 16 January 1987 Sun Release 3.5

GPONE(4S) DEVICES AND NETWORK INTERFACES GPONE(4S)

NAME
gpone - Sun-3/Sun-2 graphics processor

SYNOPSIS - SUN-3
device gponeO at vme24d16 ? csr

SYNOPSIS - SUN-2
device gponeO at vme24 ? csr

DESCRIPTION
The gpone interface provides access to the optional Graphics Processor Board (GP).

The hardware consumes 64 kilobytes of VME bus address space. The GP board starts at standard address
0x210000 and must be configured for interrupt level 3.

GPIOCTL
The graphics processor responds to a number of ioctl calls as described here. One of the calls uses a
gpltbinfo structure that looks like this:

struct gpltbinfo {
int

};

int
int
int
caddr t
int

The ioctl call looks like this:
ioctl(fiIe, request, argp)
int file, request;

tb _ vrneaddr;
fb _ hwwidth;
fb _ hwheight;
addrdelta;
tb _ ropaddr;
tbunit;

1* physical color board address *1
1* fb board width *1
1* tb board height *1
1* phys addr diffbetween tb and gp *1
1* cg2 va thru kemelmap *1
1* tb unit to use for a,b,c,d *1

argp is defined differently for each GP ioctl request and is specified in the descriptions below.

The following ioctl commands provide for transferring data between the graphics processor and color
boards and processes.

GPlIO _PUT_INFO
Passes information about the frame buffer into driver. argp points to a structgplfbinfo which is
passed to the driver.

GPlIO_GET_STATIC_BLOCK
Hands out a static block from the GP. argp points to an int which is returned from the driver.

GPlIO_FREE_STATIC_BLOCK
Frees a static block from the GP. argp points to an int which is passed to the driver.

GPlIO GET GBUFFER STATE - - -
Checks to see if there is a buffer present on the GP. argp points to an int which is returned from
the driver.

GPlIO CHK GP - -
Restarts the GP if necessary. argp points to an int which is passed to the driver.

GPlIO GET RESTART COUNT - - -
Returns the number of restarts of a GP since power on. Needed to differentiate SIGXCPU calls in
user processes. argp points to an int which is returned from the driver.

GPlIO REDIRECT DEVFB - -
Configures Idevlfb to talk to a graphics processor device. argp points to an int which is passed to
the driver.

GPlIO_GET_REQDEV
Returns the requested minor device. argp points to a dev _ t which is returned from the driver.

Sun Release 3.5 Last change: 31 March 1987 431

GPONE(4S) DEVICES AND NETWORK INTERFACES GPONE(4S)

FILES

GPlIO _GET _ TRUMINORDEV
Returns the true minor device. argp points to a char which is returned from the driver.

The graphics processor driver also responds to the FBIOGTYPE, ioctl which a program can use to inquire as
to the characteristics of the display device, the FBIOGINFO, ioctl for passing generic information, and the
FBIOGPIXRECf ioctl so that SunWindows can run on it. Seejbio(4S).

ldevl gpone[O-3] [abed]
lusr/includel sun/ gpio.h
lusrlincludelpurectl {gpl cmds.h,gpl reg .h,gpl var.h}

SEE ALSO
fbio(4S), mmap(2), gpconfig(8)
Software Interface Manualfor the Sun Graphics Processor (part Number: 800-1571-01)

DIAGNOSTICS
The Graphics Processor has been restarted. You may see display garbage as a result.

432 Last change: 31 March 1987 Sun Release 3.5

MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S)

NAME
mcp, alm - Sun MCP Multiprotocol Communications Processorl ALM-2 Asynchronous Line Multiplexer

CONFIG - SUN-3
MCP and ALM-2

device mcpO at vme32d32 ? csr OxlOOOOOO flags Oxlffff priority 4 vector mcpintr Ox8b
device mcpl at vme32d32 ? csr OxlOlOOOO flags Oxlffff priority 4 vector mcpintr Ox8a
device mcp2 at vme32d32 ? csr Oxl020000 flags OxlftTf priority 4 vector mcpintr Ox89
device mcp3 at vme32d32 ? csr Oxl030000 flags OxlftTf priority 4 vector mcpintr Ox88

ALM-2
pseudo-device mcpa64

DESCRIPTION
MCP

The Sun MCP Multiprotocol Communications Processor board supports up to four synchronous serial
lines. For more information about the MCP, consult the SunLink™ Multiple Communication Protocol pro
duct manuals.

ALM-2
The Sun ALM -2 Asynchronous Line Multiplexer provides 16 asynchronous serial communication lines
with modem control and one Centronics-compatible parallel printer port.

Each serial line behaves as described in tty(4). Input and output for each line may independently be set to
run at any of 16 speeds; see tty(4) for the encoding.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be
treated as hard-wired with carrier always present Thus specifying flags Ox0004 in the specification of
mcpO would cause line ttyh2 to be treated in this way.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a
special feature, controlled by the minor device number, has been added. Minor device numbers in the
range 0-63 correspond directly to the normal tty lines. They are named ttyXY where X represents the phy
sical board as one of the characters h. i. i. or k. and Y is the line number on the board as a single hexade
cimal digit. (Thus the first line on the first board is IdevlttyhO. and the sixteenth line on the third board is
ldevlttyif.)

Minor device numbers in the range 128-191 correspond to the same physical lines as those above (that is,
the same line as the minor device number minus 128) and are (conventionally) named cua*. The cua lines
are special in that they can always be opened with or without a carrier on the line. Once a cua line is
opened, the corresponding tty line can not be opened until the cua line is closed. Also, if the tty line has
been opened successfully (usually only when carrier is recognized on the modem) the corresponding cua
line can not be opened.

This allows a modem to be attached to IdevlttyhO (usually renamed to IdevlttydO) and used for dialin (by
enabling the line for login in letclttys) and also used for dialout (by tip(lC) or uucp(IC» as IdevlcuaO when
no one is logged in on the line. Note that the bit in the flags word in the configuration file (see above) must
be zero for this line, which enables hardware carrier detection.

PRINTER PORT
The printer port is Centronics-compatible and is suitable for most common parallel printers. Devices
attached to this interface are normally handled by the line printer spooling system, and should not be
accessed directly by the user.

Minor device numbers in the range 64-67 access the printer port, and the recommended naming is
Idevlmcpp[O-3J.

Device Status
Normally, the interface only reports the status of the device when attempting an open(2) call.

Sun Release 3.5 Last change: 14 October 1987 462a

MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S)

Errors

FILES

Opening the device ldevlmcpp* may yield one of two errors:

ENXIO indicates that the device is already in use

EIO indicates that the device is offline or out of paper.

Bit 17 of the configuration flags may be specified to say that the interface should ignore Centronics SLCT
and RDY/PE- when attempting to open the device, but this is normally useful only for configuration and
troubleshooting: if the SLCT- and ROY lines are not asserted during an actual data transfer (as with a
write(2) call), no data is transferred

Optionally, the interface may be set to print a message to the console when either the paper-out or offline
conditions obtain. To set this mode, you should include <sundev/mcpcmd.h> and use the ioctl (2) call:

unsigned char mode;
ioctl(fd, MCPIOSPR, &mode);

The bits in are defined as follows:

The ioctl call:

MCPRINTSLCT
MCPRINTPE
MCPRDIAG

Ox20
Oxl0
Ox04

notify on console if device goes offline
notify on console if device runs out of paper
set self-test mode (not ordinarily useful)

ioctl(fd, MCPIOGPR, &mode);

returns in mode the current status of the parallel port, defined as follows:

MCPRIGNSLCf Ox02 set if interface ignoring SLCT - on open
MCPRDIAG Ox04 set if in self-test loopback mode
MCPRVMEINT Ox08 set if VME bus interrupts enabled
MCPRINTPE Ox 10 set if paper-out notification enabled
MCPRINTSLCT 0x20 set if omine notification enabled
MCPRPE Ox40 set if device ready, cleared if device out of paper
MCPRSLCf Ox80 set if device online (Centronics SLCf asserted)

Idev/mcpp[0-3]
Idev/tty[h-k][0-9a-f]
Idev/ttyd[O-9a-f]
Idev/cua[0-9a-f]

parallel printer port
hardwired tty lines
dialin tty lines
dialout tty lines.

SEE ALSO
tty(4)

DIAGNOSTICS

462b

Most of these diagnostics "should never happen;" their occurrence usually indicates problems elsewhere
irl. the system as well.

mcpn : silo overflow.
More than k characters (1 very large) have been received by the mcp hardware without being read
by the software;

port;1 suppo..;s RS449 interface
Probably an incorrect jumper configuration. Consult the hardware manual.

mcp port n receive buffer error
The mcp encountered an error concerning the synchronous receive buffer.

Printer on mcppn is out of paper

Printer on mcppn paper ok

Last change: 14 October 1987 Sun Release 3.5

MCP(4S) DEVICES AND NETWORK INTERFACES

Printer on mcppn is offline

Printer on mcppn online
Assorted printer diagnostics, if enabled as discussed above.

Sun Release 3.5 Last change: 14 October 1987

MCP(4S)

462c

XY(4S) DEVICES AND NETWORK INTERFACES XY(4S)

NAME
xy - Disk driver for Xylogics SMD Disk Controllers

SYNOPSIS - SUN·3
controller xycO at vme16d16 ? csr Oxee40 priority 2 vector xyintr Ox48
controller xycl at vme16d16 ? csr Oxee48 priority 2 vector xyintr Ox49
disk xyO at xycO drive 0
disk xyl at xycO drive 1
disk xy2 at xycl drive 0
disk xy3 at xycl drive 1

The two controller lines given in the synopsis sections above specify the first and second Xylogics 450
SMD disk controller in a Sun system.

SYNOPSIS - SUN·2
controller xycO at vme16 ? csr Oxee40 priority 2 vector xyintr Ox48
controller xycl at vme16 ? csr Oxee48 priority 2 vector xyintr Ox49
controller xycO at mbio ? csr Oxee40 priority 2
controller xycl at mbio ? csr Oxee48 priority 2
disk xyO at xycO drive 0
disk xyl at xycO drive 1
disk xy2 at xycl drive 0
disk xy3 at xycl drive 1

The first two controller lines specify the first and second Xylogics 450 SMD disk controllers in a Sun-
21160 VMEbus based system. The third and fourth controller lines specify the first and second Xylogics
450 SMD disk controllers in a Sun-21120 or a Sun-21170 Multibus based system.

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8 through
15 refer to drive 1, and so on. The standard device names begin with 'xy' followed by the drive number
and then a letter a-h for partitions 0-7 respectively. The character? stands here for a drive number in the
range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a "raw" interface which provides for direct transmis
sion between the disk and the user's read or write buffer. A single read or write call usually results in only
one I/O operation; therefore raw I/O is considerably more efficient when many words are transmitted. The
names of the raw files conventionally begin with an extra 'r'.

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek(2) calls should specify a
multiple of 512 bytes.

If flags Oxl is specified, the overlapped seeks feature for that drive is turned off. Note that to be effective,
the flag must be set on all drives for a specific controller. This action is necessary for controllers with older
firmware, which have bugs preventing overlapped seeks from working properly.

DISK SUPPORT

FILES

This driver handles all SMD drives by reading a label from sector 0 of the drive which describes the disk
geometry and partitioning.

The xy?a partition is normally used for the root file system on a disk, the xy?b partition as a paging area,
and the xy?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor
mally the xy?g partition.

Idevlxy[O-7][a-h]
Idevlrxy[O-7][a-h]

block files
raw files

Sun Release 3.5 Last change: 31 March 1987 511

XY(4S) DEVICES AND NETWORK. INTERFACES XY(4S)

SEE ALSO
dkio(4S)

DIAGNOSTICS

BUGS

512

xycn: self test error
Self test error in controller, see the Maintenance and Reference Manual.

xycn: WARNING: n bit addresses
The controller is strapped incorrectly. Sun systems use 20-bit addresses for Multibus based sys
tems and 24-bit addresses for VMEbus based systems.

xyn: unable to read bad sector info
The bad sector forwarding information for the disk could not be read

xyn and xyn are of same type (n) with different geometries.
The 450 does not support mixing the drive types found on these units on a single controller.

xyn: initialization failed
The drive could not be successfully initialized.

xyn: unable to read label
The drive geometry/partition table information could not be read.

xyn: Corrupt label
The geometry/partition label checksum was incorrect

xyn: offline
A drive ready status is no longer detected, so the unit has been logically removed from the system.
If the drive ready status is restored, the unit will automatically come back online the next time it is
accessed.

xync: cmd how (msg) blk #n abs blk #n
A command such as read or write encountered an error condition (how): either it/ailed, the con
troller was reset, the unit was restored, or an operation was retry' ed The msg is derived from the
error number given by the controller, indicating a condition such as "drive not ready", "sector not
found" or "disk write protected". The blk # is the sector in error relative to the beginning of the
partition involved. The abs blk # is the absolute block number of the sector in error. Some fields
of the error message may be missing since the information is not always available.

In raw I/O read(2) and write(2) truncate file offsets to 512-byte block boundaries, and write(2) scribbles
on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2), write(2)
and Iseek(2) should always deal in 512-byte multiples.

Older revisions of the firmware do not properly support overlapped seeks. This will only affect systems
with multiple disks on a single controller. If a large number of "zero sector count" errors appear, you
should use the flags field to disable overlapped seeks.

Last change: 31 March 1987 Sun Release 3.5

ACCT(5)

NAME
acct - execution accounting file

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION

FILE FORMATS ACCT(5)

The acct(2) system call makes entries in an accounting file for each process that terminates. The account
ing file is a sequence of entries whose layout, as defined by the include file is:

/* @(#)acct.h 1.1 86/(J7/07 SMI; from UCB 6.1 83/(J7/29*/

/*
* Accounting structures;
* these use a comp _ t type which is a 3 bits base 8
* exponent, 13 bit fraction "lloating point" number.
*/

typedef u _short comp _ t;

struct acct
{

char ac_comm[10];
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time t ac_btime;
short ac_uid;
short ac_gid;
short ac_mem;
comp~t ac_io;
dev t ac_tty;
char ac_llag;

};

#define AFORK 0001
#define ASU 0002
#define ACOMPAT 0004
#define ACORE 0010
#define AXSIG 0020

#ifdefKERNEL
#ifdef SYSACCT
struct acet
struct vnode
#else
#define acetO
#endif
#endif

acctbuf;
*acctp;

/* Accounting command name */
/* Accounting user time */
/* Accounting system time */
/* Accounting elapsed time */
/* Beginning time */
/* Accounting user 10 */
/* Accounting group ID */
/* average memory usage */
/* number of disk 10 blocks *1
/*conttoltypewri~*1
/* Accounting flag *1

/* has executed fork, but no exec */
/* used super-user privileges */

. /* used compatibility mode */
1* dumped core */
/* killed by a signal */

If the process does an execve (2), the first 10 characters of the filename appear in ac _ comm. The accounting
llag contains bits indicating whether execve(2) was ever accomplished, ·and whether the process ever had
super-user privileges.

SEE ALSO
acet(2), execve(2), sa(8)

Sun Release 3.5 Last change: 15 January 1983 521

ALIASES (5) FILE FORMATS ALIASES (5)

NAME
aliases, addresses, forward - addresses and aliases for sendrnail(8)

SYNOPSIS
letc/passwd
lusrlIib/aliases
lusrlIib/aliases.dir
lusrlIib/aliases.pag
~/.forward

DESCRIPTION
These files contain mail addresses or aliases, recognized by sendmail (8), for the local host:

letclpasswd Mail addresses (usemames) of local users.

lusrlliblaliases Aliases for the local host, in ASCII format. This file can be edited to add, update, or
delete local mail aliases.

lusrllibl aliases. { dir ,pag}

-Iforward

The aliasing information from lusrlliblaliases, in binary, dbm(3X) format for use by
sendmail(8). The program newaliases(8), which is invoked automatically by send
mail (8), maintains these files.

Addresses to which a user's mail is forwarded (see Automatic Forwarding, below).

In addition, the Yellow Pages aliases map mail. aliases contains addresses and aliases available for use
across the network.

ADDRESSES

522

As distributed, sendmail (8) supports the following types of addresses:

• Local usemames. These are listed in the local host's letclpasswd file.

• Local filenames. When mailed to an absolute pathname, a message can be appeneded to a file.

• Commands. If the first character of the address is a vertical bar, (I), sendmail (8) pipes the message
to the standard input of the command the bar precedes.

• DARPA-standard mail addresses of the form:

name@domain

If domain does not contain any dots (.), then it is interpreted as the name of a host in the current
domain. Otherwise, the message is passed to a mailhost that determines how to get to the specified
domain. Domains are divided into subdomains separated by dots, with the top-level domain on the
right Top-level domains include:

.COM Commerical organizations .

. EDU Educational organizations .

. GOV Government organizations .

. MIL Military organizations.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named "jsmachine" at Podunk University.

• uucp(IC) addresses of the form:

... [host!]host!username

These are sometimes mistakenly referred to as "Usenet" addresses. uucp(lC) provides links to
numerous sites throughout the world for the remote copying of files.

Last change: 13 November 1986 Sun Release 3.5

ALIASES (5) FILE FORMATS ALIASES(5)

Other site-specific forms of addressing can be added by customizing the sendmail configuration file. See
the sendmail(8), and Sendmaillnstallation and Operation in System Administration/or the Sun Worksta
tion for details. Standard addresses are recommended.

ALIASES
Local Aliases

lusrlliblaliases is formatted as a series of lines of the form

name: address [, address]

name is the name of the alias or alias group, and address is the address of a recipient in the group. Aliases
can be nested. That is, an address can be the name of another alias group. Lines beginning with white
space are treated as continuation lines for the preceding alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner--aliasname: address

directs error-messages resulting from mail to alias-name to address, instead of back to the person who sent
the message.

An alias of the form:

aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname alias. This allows a
private list to be maintained separately from the aliases file.

YP Domain Aliases
Normally, the aliases file on the master yP server is used for the mail. aliases yP map, which can be made
available to every yP client Thus, the lusrlliblaliases* files on the various hosts in a network will one day
be obsolete. Domain-wide aliases should ultimately be resolved into usemames on specific hosts. For
example, if the following were in the domain-wide alias file:

jsrnith:js@jsmachine

then any yP client could just mail to "jsrnith" and not have to remember the machine and user name for
John Smith. If a yP alias does not resolve to an address with a specific host, then the name of the yP

domain is used. There should be an alias of the domain name for a host in this case. For example, the
alias:

jsrnith:root

sends mail on a yP client to "root@podunk-u" if the name of the yP domain is "podunk-u".

Automatic Forwarding
When an alias (or address) is resolved to the name of a user on the local host, sendmail checks for a for
ward file, owned by the intended recipient, in that user's home directory, and with universal read access.
This file can contain one or more addresses or aliases as described above, each of which is sent a copy of
the user's mail.

Care must be taken to avoid creating addressing loops in the forward file. When forwarding mail between
machines, be sure that the destination machine does not return the mail to the sender through the operation
of any yP aliases. Otherwise, copies of the message may "bounce." Usually, the solution is to change the
yP alias to direct mail to the proper destination.

A backslash before a usemame inhibits further aliasing. For instance, to invoke the vacation (1) program,
user js creates a forward file that contains the line:

\js, "I/usr/ucb/vacation js"

Sun Release 3.5 Last change: 13 November 1986 523

ALIASES(5) FILE FORMATS ALIASES (5)

so that one copy of the message is sent to the user, and another is piped into the vacation (1) program.

SEE ALSO

BUGS

524

newaliases(8), dbm(3X), sendmail(8), uucP(IC), vacation(l)

System AdministrationJor the Sun Workstation

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 characters. Nested
aliases can be used to circumvent this limit.

Last change: 13 November 1986 Sun Release 3.5

Notes

Notes

Corporate Headquarters
Sun Microsystems, Inc.
2250 Garcia Avenue
Mountain View, CA 94043
415960-1300
TLX 287815

For U.S. Sales Office
locations, call:
800 821-4643
In CA: 800821-4642

European Headquarters
Sun Microsystems Europe, Inc.
Sun House
31-41 Pembroke Broadway
Camberley
Surrey GU15 3XD
England
027662111
TLX 859017

Australia: 61-2-436-4699
Canada: 416477-6745
France: (1) 46 30 23 24
Germany: (089) 95094-0
Japan: (03) 221-7021
The Netherlands: 02155 24888
UK: 027662111

Europe, Middle East, and Africa,
call European Headquarters:
027662111

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

