
Make User's Guide

Credits
Make -A Program/or Maintaining Computer Programs

by S.I. Feldman, Bell Laboratories, Murray Hill, New Jersey.

Trademarks
Sun Workstation is a trademark of Sun Microsystems Incorporated
UNIX is a trademark of AT&T Bell Laboratories

Copyright © 1987 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per
mission from Sun Microsystems.

Contents

Chapter 1 make User's Guide .. 3

1.1. Overview .. 3

Consistency Control .. 3

Dependency Checking: make vs. Shell Scripts .. 3

make Basics .. 4

Basic Use of Implicit Rules .. 4

Writing a Simple Makefile .. 5

Processing Dependencies ... 7

Missing Targets and Dependencies .. 10

Running Commands Silently ... 11

Ignoring a Command's Exit Status ... 11

Automatic Extraction of sees Files ... 12

Suppressing see s Extraction .. 13

Passing Parameters: Simple make Macros .. 13

Command Dependency Checking and . KEEP_STATE 15

Suppressing or Forcing Command Dependency Checking
for Selected Lines 15

The State File 16

Hidden Dependencies and . KEEP STATE ,,~;~ ~ ... ;.,.;;:;:,:;.;:,., ;;~.: ,.>:<:::

Displaying Information About a make L ULL:::~: •• :;;.,.;.;>;;:; .• ":,:< ••••• ;.;: •• ~~i.;;;,.,;:;:;:;:;:;' .. , .• <::::::::

1.2. Compiling Programs With make ;;,;,: .. :;.:; ... +;;;; • .,,,,",, :.: ;;;;;;;:,;; .. ,;;.:::::'

Compilation Strategies ... ,.,. :.:,.:,.:, ... ,"" , ::::

A Simple Makefile ... ;;.;:,; ... , ... ;:;:.:;: ••. ,.; ... ;:;.:;;:, ... ;: 20

Using make's Predefined Macros ... ,;;:;.;;;;;: 20

- iii-

Contents - Continued

U sing Implicit Rules to Simplify a Makefile .. 22

Explicit Target Entries vs. Implicit Rules .. 24

Implicit Rules and Dynamic Macros ... 24

Dynamic Macro Modifiers ... 25

Dynamic Macros and the Dependency List: Delayed
References ... 25

Adding Implicit Rules .. 26

Pattern Matching Rules: an Alternative to Implicit (Suffix)
Rules ... 27

make's Standard Implicit Rules and Predefined Macros 27

1.3. Building Object Libraries ... 30

Libraries, Members and Symbols .. 30

Library Members and Dependency Checking .. 30

Library Member Name Length Limit .. 31

• PRECIOUS: Preserving Libraries Against Removal Due
to Interrupts ... 31

1.4. Maintaining Programs With make ... 32

U sing Macros for Added Flexibility .. 32

Makefiles as Specifications ... 33

Suffix Replacement in Macro References ... 33

Using lint With make ... 34

Linking With System-Supplied Libraries ... 35

Compiling Programs for Debugging and Profiling 36

Conditional Macro Definitions .. 37

Maintaining a Directory of Header Files ... 40

Compiling and Linking With Your Own Libraries 41

Nested make Commands ... 41

Forcing A Nested make Command to Run ... 42

The MAKEFLAGS Macro .. 43

Macro Definitions and Environment Variables: Passing
Parameters to Nested make Commands ... 44

Compiling Other Source Files ... 46

Compiling and Linking a C Program with Assembly
Language Routines ... 47

-iv-

Contents - Continued

Compiling lex and yaee Sources .. 49

Specifying Target Groups With the + Sign .. 50

Maintaining Shell Scripts with make and sec s 52

Running Tests with make ... 52

Delayed References to a Shell Variable ... 53

1.5. Maintaining Software Projects ... 54

Organizing A Project for Ease of Maintenance ... 54

Using include Makefiles ... 55

Installing Finished Programs and Libraries ... 56

Building the Entire Project .. 57

Maintaining Directory Hierarchies With Recursive Makefiles 58

Recursive install Targets ... 59

Maintaining A Large Library as a Hierarchy of Subsidiaries 61

In Conclusion .. 65

Appendix A make Enhancements Summary ... 69

A.l. New Features .. 69

Default Makefile .. 69

The State File .make. state .. 69

Hidden Dependency Checking .. 69

Command Dependency Checking ... 69

Automatic sees Extraction ... 70

Tilde Rules Superceded ... 70

sees History Files .. 70

Pattern Matching Rules: Convenient Implicit Rules 70

New Options .. 71

Support for Modula-2 ... 71

Naming Scheme for Predefined Macros .. 71

New Special-Purpose Targets .. 71

New Implicit Rule for lint .. 72

Macro Processing Changes ... 72

Macros: Definition, Substitution, and Substring

Replacement ... 72

-v-

Contents - Continued

Improved ar Library Support ... 72

Lists of Members ... 72

Handling of ar's Member-Name Length Limitation 73

Target Groups ... 73

A.2. Incompatibilities With Previous versions of make 73

New Meaning for -d Option .. 73

Dynamic Macros ... 73

Appendix B make Manual Page ... 77

Index .. 89

-vi-

Figures

Figure 1-1 Makefile Target Entry Fonnat ... 5

Figure 1-2 A Trivial Makefile .. 6

Figure 1-3 A Simple Target Entry for Compiling A C Source File 7

Figure 1-4 Simple Makefile for Compiling C Sources: Everything
Explicit .. 20

Figure 1-5 Makefile for Compiling C Sources Using Predefined
Macros ... 22

Figure 1-6 Makefile for Compiling C Sources Using Implicit Rules 22

Figure 1-7 The Standard Suffixes List .. 23

Figure 1-8 Makefile With "Suffix-Replacement" Macro References 35

Figure 1-9 Makefile for a C Program With System-Supplied Libraries 36

Figure 1-10 Makefile for a C Program with Alternate Debugging and
Profiling Variants ... 38

Figure 1-11 Makefile for a C Library with Alternate Variants 40

Figure 1-12 Makefile for C Program With User-Supplied Libraries 43

Figure 1-13 Makefile for a C Program with Assembly Routines 48

Figure 1-14 Makefile for Compiling C Programs With lex and
yacc Sources " .. i .. :%.~............ 51

,- ,.,

Figure 1-15 Recursive Makefile for Building a C Progral11~Ila:«:.
Subdirectories .. ,';; ; D.;~ m~; L.,;~~.;> 61

",> "," .-:. .. :>.:,'.>' -.-,::}\./:>:-::

Figure 1-16 Makefile for a Hierarchy of SubsidiaryJ..iprari~sW#li<
...,- .. .

Variants .. k .. ; .. ,;@ ;.;.U .. , •• ~~ .. ,.5.·;; "k:- .. :Q5:

- vii-

Tables

Table 1-1 make's Standard Implicit Rules ... 28

Table 1-2 make's Predefined and Dynamic Macros .. 29

Table 1-3 Summary of Macro Assignment Order .. 46

-ix-

1
make User's Guide

make User's Guide ... 3

1.1. Overview .. 3

Consistency Control .. 3

Dependency Checking: make vs. Shell Scripts .. 3

make Basics .. 4

Basic Use of Implicit Rules .. 4

Writing a Simple Makefile .. 5

Processing Dependencies ... 7

Missing Targets and Dependencies .. 10

Running Commands Silently ... 11

Ignoring a Command's Exit Status ... 11

Automatic Extraction of sees Files ... 12

Suppressing see s Extraction .. 13

Passing Parameters: Simple make Macros :............................ 13

Command Dependency Checking and . KEEP_STATE 15

Suppressing or Forcing Command Dependency Checking
for Selected Lines .. 15

The State File ;.. 16

Hidden Dependencies and . KEEP_STATE .. 16

Displaying Information About a make Run ... 18

1.2. Compiling Programs With make ... 19

Compilation Strategies .. 19

A Simple Makefile ... 20

Using make's Predefined Macros ... 20

Using Implicit Rules to Simplify a Makefile .. 22

Explicit Target Entries vs. Implicit Rules .. 24

Implicit Rules and Dynamic Macros ... 24

Dynamic Macro Modifiers ... 25

Dynamic Macros and the Dependency List: Delayed
References ... 25

Adding Implicit Rules .. 26

Pattern Matching Rules: an Alternative to Implicit (Suffix)
Rules ... 27

make's Standard Implicit Rules and Predefined Macros 27

1.3. Building Object Libraries ... 30

Libraries, Members and Symbols .. 30

Library Members and Dependency Checking .. 30

Library Member Name Length Limit .. 31

• PRECIOUS: Preserving Libraries Against Removal Due
to Interrupts ... 31

1.4. Maintaining Programs With make ... 32

Using Macros for Added Flexibility .. 32

Makefiles as Sj:>ecifications ... 33

Suffix Replacement in Macro References ... 33

Using lint With make ... 34

Linking With System-Supplied Libraries ... 35

Compiling Programs for Debugging and Profiling 36

Conditional Macro Definitions .. 37

Maintaining a Directory of Header Files ... 40

Compiling and Linking With Your Own Libraries 41

Nested make Commands ... 41

Forcing A Nested make Command to Run ... 42

The MAKEFLAGS Macro .. 43

Macro Definitions and Environment Variables: Passing
Parameters to Nested make Commands ... 44

Compiling Other Source Files ... 46

Compiling and Linking a C Program with Assembly
Language Routines ... 47

Compiling lex and yacc Sources .. 49

Specifying Target Groups With the + Sign .. 50

Maintaining Shell Scripts with make and sces 52

Running Tests with make ... 52

Delayed References to a Shell Variable ... 53

1.5. Maintaining Software Projects ... 54

Organizing A Project for Ease of Maintenance ... 54

Using include Makefiles ... 55

Installing Finished Programs and Libraries ~............................ 56

Building the Entire Project .. 57

Maintaining Directory Hierarchies With Recursive Makefiles 58

Recursive install Targets ... 59

Maintaining A Large Library as a Hierarchy of Subsidiaries 61

In Conclusion .. 65

.1. Overview

his manual describes Sun's
nhanced version of make, which
dudes new features such as hid
en dependency checking, com
land dependency checking, and
utomatic extraction of sees files.
is highly compatible with
lakefiles written for previous ver
ons. Makefiles that rely on Sun's
nhancements may not be compati
Ie with other versions of make.
efer to Appendix A for a complete
Jmmary of enhancements.

:onsistency Control

~ependency Checking: make
s. Shell Scripts

1
make User's Guide

make streamlines the process of generating and maintaining object files and exe
cutable programs. It helps you to compile programs consistently, and eliminates
unnecessary compilation of modules that are unaffected by source code changes.

make provides a number of features that simplify compilations, but you can also
use it to automate any complicated or repetitive task that isn't interactive. For
instance, you can use make to update and maintain object libraries, run test
suites, and install validated files onto a filesystem or tape. In conjunction with
sees, you can use make to insure that all programs are built from the most
recent source versions .. You can also use make and sees to build an entire
software project, and to maintain the source files and directories from which that
project is built.

see s provides facilities for version control over source files. These include file
locking, audit trails and commentary, among others, as described in Section 4 of
Programming Utilities for the Sun Workstation.

make provides facilities for consistency control over the object files or other files
derived from those sources. It rebuilds the files, in a modular and consistent
fashion, when the source files they derive from have changed.

make reads a file that you create, called a makefile, which contains information
about what files to build and how to build them. Once you write and test the
makefile, you can forget about the processing details; make takes care of them.
This gives you more time to concentrate on debugging and correcting your code;
the repetitive portion of the maintenance cycle is reduced to:

think - edit - make - test ...

While it is possible to use a shell script to assure consistency in trivial cases,
scripts are often inadequate in actual practice. On the one hand, you don't want
to wait for a simple-minded script to compile every single program or object
module when only one of them has changed. On the other hand, having to edit
the script for each iteration can defeat the objective of consistent compilation.
Although it is possible to write a script of sufficient complexity to process only
those modules that require it, such scripts can often develop maintenance prob
lems of their own. In any case, make eliminates the need for you to do so.

3 Revision A of 16 March 1987

4 make User's Guide

make assumes that only it will make
changes to files being processed
during the current make run. If a
source file changes in the middle of
the run, the files make produces
may be in an inconsistent state.

make Basics

Basic Use of Implicit Rules

make allows you to write a simple, structured listing of what to build and how to
build it. It uses the mechanism of dependency checking to compare each module
with the source files or intermediate files it derives from. make only rebuilds a
module if one or more of these prerequisite files, called dependency files, has
changed since the module was last built. To determine whether a derived file is
out of date with respect to its sources, make compares the modification time of
the module with that of the source file. If the module is missing, or if it is older
than the source file, it is considered to be out of date; make issues the commands
necessary to rebuild it. Optionally, a target can be treated as out of date if the
commands used to build it have changed.

Because make does a complete dependency scan, changes to a source file are
consistently propagated through any number of intermediate files or processing
steps. This lets you specify a hierarchy of processing steps in a top-down
fashion.

You can think of a makefile as a type of recipe. make reads the recipe, decides
which steps need to be performed, and executes only those steps that are required
to produce the finished product. Each file to build, or step to perform, is called a
target. The makefile entry for a target contains its name, and a list of commands
for building it called a rule, along with a list of dependencies. make treats
dependencies as prerequisite targets, and updates them if necessary, before pro
cessing the target that depends on them.

The file for which the target is named is also referred to as a targetfile. Each file
from which a target is derived (or that the target depends on) is called a depen
dency file with respect to that target.

In addition to any makefile(s) that you supply, make reads in the default
makefile, fusr / include/make/ defaul t . mk, which contains target
entries for implicit rules, as well as other information. 1 An implicit rule, also
known as a suffix rule, is a generic rule for building a target file ending in one
suffix, from a dependency file ending in a different suffix. In some cases, the use
of implicit rules can eliminate the need for writing a make file entirely. For
instance, to build an object module named go. 0 from a single C source file
named go . c, you could use the command

make go.o

as shown:

This would work equally well for building the object file nonesuch. 0 from the
source file nonesuch. c.

1 Implicit rules were hard-coded in earlier versions of make.

Revision A of 16 March 1987

Writing a Simple Makefile

f there is no rule for a target entry.
nake looks for an implicit rule to
Jse.

Figure 1-1

f the dependency list is terminated
Mith a semicolon and followed by a
;ommand, that command is
ncluded in the rule. However,
nakefiles tend to read better if you
ivoid this.

::;ommand lines in a rule start with a
!AID; leading spaces are no sub
jtitute as far as make is concerned.

Chapter 1 - make User's Guide 5

To build an executable file named go (with a null suffix) from go . C, you need
only type the command:

make go

as shown:

The rule for building a . 0 file from a . c file is called the . c . 0 (pronounced
"dot-c-dot-o") rule. The rule for building an executable file from a . c file is
called the . c (dot-c) rule. An implicit rule is named for the target entry in the
default makefile that contains it. The complete set of implicit rules is listed
below in this chapter.

Implicit rules eliminate the need to duplicate target entries with frequently used
compilation commands, such as those shown above. In most cases, judicious use
of implicit rules makes for shorter, more readable makefiles.

The basic format for a makefile target entry is:

[

target . .. : [dependency ...] 1
___ [c_Omma_nd] ____ ____

Make/tie Target Entry Format

In the first line, the target name (or list) is followed by a colon, which is required.
This, in tum, is followed by the dependency list if there is one. Several target
names separated by white space can precede the colon; this indicates a list of
independent targets that are built using the same dependency list and rule.

Subsequent lines that start with a CTAID are taken as the commands lines that
comprise the target's rule. make is awfully fussy about those leading (TAB)'s,
(SPACE) characters simply won't do.

Lines that start with a # are treated as comments up until the next (unescaped)
(NEWLINE), and do not terminate the target entry. The target entry is ter
minated by the next nonempty line that begins with a character other than CTAID
or #, or by the end of the file .

• \sun ~ microsystems
Revision A of 16 March 1987

6 make User's Guide

Figure 1-2

The convention is to use the name
Makefile, since filenames starting
with a capital are listed first by Is;
this highlights the fact that a
makefile is present.

make invokes a Bourne shell to pro
cess a command line if that line
contains any shell metacharacters,
such as a semicolon (;), redirection
symbol «, >, », ...) or pipe sym
bol (I), etc. If a shell isn't required
to parse the command line, etc.
make invokes the command directly
for better performance.

A trivial makefile might consist of just one target:

test:
is test
touch test
'test' is now present
is test

A Trivial Make/lie

When you run make with no arguments, it searches first for a file named
make£ile, or if there is no file by that name, Make£ ile. If either of these
files is under sees control, make extracts the current version and uses it.

If make finds a makefile, it begins the dependency check with the first target
entry in that file. Otherwise you must list the targets to build as arguments on the
command line. make displays each command it runs while building its targets.

Because the file test was not present (and therefore out of date), make per
formed the rule in its target entry. If you run make a second time, it issues a
message indicating that the target is now up to date:

and doesn't perform the rule.

Line breaks within a rule are significant in that each command line is performed
by a separate process or shell.

This means that a rule such as:

[
test:

cd /tmp
pwd

behaves differently than you might expect, as shown below.

:

~~sun ~~ microsystems
Revision A of 16 March 1987

This entry performs the same func
tion with respect to go as in the
second example of implicit rules
shown above; it compiles an exe
cutable program from a C source
file.

Figure 1-3

Processing Dependencies

Chapter 1 - make User's Guide 7

............. <.:: •.•••.••••. ::.:<::.:.::::: •. :.:.

You can use semicolons to specify a sequence of commands to perform in a sin
gle shell invocation:

[test:
cd /tmp ; pwd

Or, you can continue the input line onto the next line in the makefile by escaping
the I NEWLINE) with a backslash (\):

[
test:

cd /tmp
pwd

\

]

1
Here is an example of a simple target entry to compile a C program from a single
source file:

[go: go.c
cc -mc68020 -0 go go.c

A Simple Target Entry for Compiling A C Source File

Once make begins, it processes targets as it encounters them in its depth-first
dependency scan. For example, with the following makefile:

batch: a b
touch batch

b:
touch b

a:
touch a

c:
echo "you won't see me"

make starts with the target batch. Since batch has some dependencies that
haven't been checked yet, namely a and b, make defers checking batch until
after it has checked each of them against any dependencies they might have.

]

Revision A of 16 March 1987

8 make User's Guide

Since a has no dependencies, make processes it; if the file is not present make
performs its rule.

Next, make works its way back up to the parent target batch. Since there is
still an unchecked dependency b, make descends to b and checks it.

b also has no dependencies, so make processes it:

Finally, now that all of the dependencies for batch have been checked and built
if needed, make checks it against those dependency files:

Since both a and b were built just now, and are therefore newer than ba t ch,

make builds it:

Revision A of 16 March 1987

Chapter 1 - make User's Guide 9

Although there is a target entry for c in the makefile, make does not encounter it
while performing its dependency scan. Target entries that aren't encountered in
the dependency scan are omitted from processing. You can select a starting tar
get like c by entering it as an argument to the make command:

In the next example, batch is used to group a set of targets.

batch: abc

a: al a2
touch a

b:
touch b

c:
touch c

al:
touch al

a2:
touch a2

In this case, the targets are checked and processed as shown in the following
diagram:

1. make checks batch, for dependencies and notes that there are three, so it
defers processing it.

2. 'make checks a, the first dependency, and notes that it has two dependencies
of its own. So, continuing in the same fashion, make:

o Checks al, and if necessary, rebuilds it.

o Checks a 2, and rebuilds it if necessary.

o Determines whether to build a.

3. make checks b and rebuilds it if need be, and then:

Revision A of 16 March 1987

10 make User's Guide

Missing Targets and
Dependencies

You can use a dependency with a
null rule to force the target's rule to
be executed. The conventional
name for such a dependency is
FRC.

4. Checks and rebuilds e if needed.

5. After processing all of these nested dependencies, make checks and
processes the topmost target, batch.

If a target entry contains no rule, make attempts to select an implicit rule to build
it. Ifmake cannot find an appropriate rule t~ apply and there is no secs file to
extract it from, make presumes that the target has an empty rule, and continues
processing subsequent targets. With this makefile:

(void:]
make produces:

make stops processing and issues an error message if the target was named either
on the command line or in a dependency list but it:

Cl is missing,
Cl has no target entry,
Cl no implicit rule can be used to build it, and
Cl there is no secs file to extract it from.

The following command produces:

On the other hand, if the target entry has no rule, and make encounters the target
in a dependency list, it does not produce an error, either when processing the
dependency, or when processing the target for which it is a dependency. This
holds true, even if the dependency file is absent.

make finds a target entry for the dependency. It executes the (null) rule for that
dependency without encountering errors. So, thatmakeconcludes the time that
the (null) rule is performed. The dependency is considered newer than the target,
even though no dependency file results from performing the rule. In a case such
as this, make simply goes on to rebuild the parent target (after processing any
remaining dependencies). With this makefile:

haste: FRC
echo "haste makes waste"

FRC:

Revision A of 16 March 1987

Running Commands Silently

Special-function targets begin with
a dot (.). Target names that begin
with a dot are never used as the
starting target, unless specifically
requested as an argument on the
command line.

Ignoring a Command's Exit
Status

Chapter 1 - make User's Guide 11

make performs the rule for making haste, even if a file by that name is up to
date:

You can inhibit the display of a given command line by inserting an @ as the first
non- [TAB] character on that line. For example, the following target:

(quiet:
@ echo you only see me once

produces:

If you want to inhibit the display during a particular make run, you can use the
-s option. If you want to inhibit the display of all command lines in every run,
add the special target . SILENT to your makefile:

.SILENT: .
quiet:

echo you only see me once

make normally issues an error message and stops when a command returns a
nonzero exit code. For example, if you have the target:

]

(______ rrnxy_z: rm_xyz _____]

and there is no file named xyz, make halts after rm returns its exit status.

+~,!! Revision A of 16 March 1987

12 make User's Guide

If - and @ are the first two such
characters, both take effect.

Unless you are testing a makefile, it
is usually a bad idea to ignore non
zero error codes on a global basis.
Specific commands that return
non-zero status can be ignored in
certain circumstances. But, in gen
eral, a non-zero exit code indicates
trouble. It is best for make to stop
so that you can diagnose the prob
lem right away.

Automatic Extraction of
sees Files

To continue processing regardless of the command's exit code, use a dash char
acter (-) as the first non-[TAB) character:

[
rrnxyz: J

-rm xyz

~---------

In this case you get a warning message indicating the exit code make received:

•••••••••••••••••••••••••••••••••• ••••••••••••••••••• • •••••••••••••••••••••••• :.) •• j ••). ,1
..... >:: « jj •••••••••••••••••••••...... » ••. < .:» ••• • >}..» .. < •• : •.•.....•.•.•.• ·.·.·:n: < •...•. ...•...•.•. . •.•

Although it is generally ill-advised to do so, you can have make ignore error
codes entirely within a run with the -i option. You can also have make ignore
exit codes when processing a given makefile, by adding the special target
. I GNORE to your makefile, although this too should normally be avoided.

[

. IGNORE: 1
rrnxyz:

rm xyz

'-----------"

If you are processing a list of targets, and you want make to continue with the
next target on the list, rather than stopping entirely after encountering an non
zero return code, use the - k option.

When source files are named in the dependency list, make treats them just like
any other target :file. Because the source file is presumed to be present in the
directory, there is no need to add an entry for it to the makefile. When a target
has no dependencies, but is present in the directory, make assumes that that file
is up to date. If, however, a source file is under sees control, make does some
additional checking to assure that the source file is the version most recently
checked in. If the file is missing, or if there is a new version has been checked in,
make automatically issues an sees get -Gfilenamefilename command to
extract the most recent version:2 If, however, the source file is writable byany
one, make does not extract it.

2 With other versions of make automatic sees extraction was a feature only of certain implicit rules.
Also, unlike earlier versions, make only looks for history (s .) files in the see s subdirectory; s. files in
the current directory are ignored.

Revision A of 16 March 1987

Suppressing sees Extraction

Passing Parameters: Simple
make Macros

There is a reference to the CFLAGS
macro in both the . c and the . c . 0

implicit rules.

Chapter 1-make User's Guide 13

This makes it unnecessary to add sees commands for extracting current ver
sions of source files; make handles this for you automatically.

The command for extracting see s files is specified in the rule for the
. SCCS _GET special target in the default makefile. To suppress automatic
extraction, simply add an entry for this target, without any rule, to your makefile:

Suppress sces extraction .

. sees GET:

make's macro substitution comes in handy when you want to pass parameters to
commands lines within a makefile. Suppose that you sometimes wish to compile
an optimized version of the program go using e e 's -0 option. You can lend this
sort of flexibility to your make file by adding a macro reference, such as the one
below, to the target for go:

[~ __ g_o __ :_g_o __ ,c __ e_e __ -_m_e_6_8_0_2_0 __ $_(_C_F_LA __ G_S __) __ -_O __ g_O __ g_o_._c ________________ -JJ

The macro reference acts as a placeholder for a value that you define, either in
the makefile itself, or as an argument to the make command. If you then supply
make with a definition for the CFLAGS macro, make replaces the macro refer
ence with the value you have defined.

If a macro is undefined, make replaces references to it with an empty string:

·····B§tine~%,.· ••• ;m. ••••• gc:)
h~#n¢:s.~ ••• · •• ~lc~e.·· •• g()

.. q9 ... itlc68P~() ¢ .go

You can also include macro definitions in the makefile itself. A typical use is to
set CFLAGS to -0 so that make produces optimized object code by default, as
shown below.

Revision A of 16 March 1987

14 make User's Guide

CFLAGS= -0
go: go.c

cc -mc68020 $ (CFLAGS) -0 go go.c

With no arguments, the make command produces:

A macro definition supplied as an argument to make overrides all other
definitions for that macro found in that make run. For instance, to compile go
for debugging with dbx or dbxtool, you can define the value of CFLAGS to be
-g in the make command:

To compile a profiling version for use with gpro f, supply both -0 and -pg in
the value for CFLAGS:

A macro reference must include parentheses when the name of the macro is
longer than one character. If the macro name is only one character, the
parentheses can be omitted. Also, you can use curly braces, { and }, instead of
parentheses. For example:

S= @ echo now and forever
.SILENT:
when:

$S
$ (S)

${S}

are all three equivalent:

Revision A of 16 March 1987

Command Dependency
Checking and
.KEEP STATE

Suppressing or Forcing
Command Dependency
Checking for Selected Lines

Chapter 1 - make User's Guide 15

In addition to the normal dependency checking, you can use the special target
• KEEP _STATE to activate command dependency checking.3 When activated,
make not only checks each target file against its dependency files, it compares
each command line in the rule with the corresponding command line it ran the
last time it built the target. (This information is stored in a state file in the
current directory.) If the command line has changed, make rebuilds the target.
So, if . KEEP_STATE were in effect for the previous few examples, you
wouldn't have had to type in all those rm go commands.

With the makefile:

CFLAGS= -0
.KEEP STATE:
go: go.c

cc -mc68020 -0 go go.c

the following commands work as shown:

This assures you that make compiles a program with the options you want, even
if a different variant of the file is present and newer than its dependencies.

The first make run with. KEEP _STATE in effect recompiles all targets. This
insures that they have, in fact, been built by the command line reported in the
state file.

To inhibit command dependency checking for a given command line, insert a
question mark as the first character after the TAB. For instance, without the ques
tion mark, this makefile:

ARG= redone or not
.KEEP STATE:
x:

echo $(ARG) I tee x

reprocesses x when you define ARG on the command line, as shown below.

3 This feature is not available in earlier versions of make.

Revision A of 16 March 1987

16 make User's Guide

The State File

Hidden Dependencies and
.KEEP STATE

Adding a? as the first character after the crAJD suppresses command depen
dency checking.

ARG= is it redone
.KEEP STATE:
x:

? echo $(ARG) I tee x

With it, x is not reprocessed as a result of changing ARG, as shown:

Command dependency checking is automatically suppressed for lines containing
the dynamic macro $?, This macro stands for the list of dependencies that are
newer than the current target, and can be expected to differ between any two
make runs. (See Implicit Rules and Dynamic Macros for more infonnation.) To
force make to perfonn command dependency checking on a line containing this
macro, prefix the command line with a ! character (following the crAJD).

When the . KEEP _STATE special target is in effect, make writes out a state file
named. make. state, in the current directory. This file lists all targets that
have ever been processed while . KEEP _ S TATE has been in effect, in a format
similar to a makefile. In order to assure that this state file is maintained con
sistently, once you have added the . KEEP _ S TATE special target to a make file,
we recommend that you leave it in effect.4

When a source file contains :11= incl ude directives for interpolating header files,
the target depends just as much on those header files as it does on the sources that
include them. Because such header files may not be listed explicitly as sources
in the compilation command line, they are called hidden dependencies. When
. KEEP_STATE is in effect, make receives a report from the various compilers
and compilation preprocessors indicating which hidden dependency files were
interpolated for each target. 5 It adds this information to the dependency list in the

4 Since this target is ignored in earlier versions of make, it does not introduce any compatibility
problems. Other versions simply treat it as a superfluous target that no targets depend on, with an empty
rule and no dependencies of its own. Since it starts with a dot, it is not used as the starting target

S Also unavailable with earlier versions of make.

Revision A of 16 March 1987

Chapter I-make User's Guide 17

state file. In subsequent runs, these additional dependencies are processed just
like regular dependencies. This feature maintains the hidden dependency list for
each target automatically; this insures that the dependency list for each target is
always accurate and up to date. It also eliminates the need for the complicated
schemes found in some earlier make files to generate complete dependency lists.

A slight inconvenience can arise the first time make processes a target with hid
den dependencies, because there is as yet no record of them in the state file. If a
header file is missing, and make has no record of it, make won't know that it
needs to extract it from sees, before compiling the target. So, even though
there is an sees history file, the current version won't be extracted because it
doesn't yet appear in a dependency list or the state file. So, when the C prepro
cessor attempts to interpolate the header, it won't find it; the compilation fails.

Supposing that an #inelude directive for interpolating the header file
hidden. h is added to go . e, and that the file hidden. h is somehow removed
before the subsequent make run. The results would be:

The workaround is simple. Just make sure that the new header file is present in
the directory before you run make. Or, if the compilation should fail (and
assuming the header file is under sees), extract it from sees manually:

In future cases, should the header file turn up missing, make will know to build
or extract it for you, because it will be listed in the state file as a hidden depen
dency:

...............
,.

.•. l:i~i@~$.~ ..•. ##.·.·gQ ••••• ·hj,.44en·· .• h
.. .ti~trrtes%:in!)teq6
$Cc~<g~tPidden.h
¢(f~m¢68() 2()~O ~o

Revision A of 16 March 1987

18 make User's Guide

Displaying Information About
a make Run
There is an exception to this how
ever. make executes any command
line containing a reference to the
MAKE macro (Le .• $ (MAKE) or
$ {MAKE}), regardless of -no So, it
would be a very bad idea to include
a line like: "$ (MAKE) ; rm -f *"
in your makefile.

Setting an environment variable
named MAKEFLAGS can lead to
complications, since make adds its
value to the list of options. To
prevent puzzling surprises, avoid
setting this variable.

Several-f options indicate the con
catenation of the named makefiles.

Running make with the -n option displays the commands make is to perfonn,
without executing them. This comes in handy when verifying that the macros in
a makefile are expanded as expected. With the following makefile:

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

program: main.o data.o
$ (LINK.c) -0 program main.o data.o

make -n displays:

make has some other options that you can use to keep abreast of what it's doing
and why:

-d Displays the criteria by which make determines that a target is be out
of-date. Unlike -n, it does process targets, as shown below. This
options also displays the value imported from the environment (null by
default) for the MAKEFLAGS macro, which is described in detail in a
later section.

-dd This option displays all dependencies make checks in vast detail.

-D Displays the text of the makefile as it is read.

-DD Displays the makefile and the default makefile, the state file, and hidden
dependency reports for the current make run.

-f makefile
make uses the named makefile (instead of make file or Makefile).

-p Displays the complete set of macro definitions and target entries.

-p Displays the complete dependency tree for each target encountered.

Revision A of 16 March 198,,}

Due to its potentially troublesome
side effects, we recommend against
using the -t (touch) option for
make.

1.2. Compiling Programs
With make

Compilation Strategies

Chapter 1-make User's Guide 19

There is an option that can be used to shortcut make processing, the -t option.
When run with -t, make does not perform the rule for building a target. Instead
it uses touch to alter the modification time. for each target that it encounters in
the dependency scan. This often creates more problems than it supposedly
solves, and so we recommend that you exercise extreme caution if you do use it.
If there is no file corresponding to a target entry touch creates it.

The following is one example of how not to use make -to Suppose you have a
target named clean that performed housekeeping in the directory by removing
target files produced by make:

[

Clean:
~ program main.o data.o

If you give the command:

you then have to remove the file clean before your housekeeping target can
work once again.

For a complete listing of all make options, refer to make(l) in the Commands
Reference Manual.

]

In previous examples you have seen how to compile a simple C program from a
single source file, using both explicit target entries and implicit rules. Most C
programs, however, are compiled from several source files. Many include library
routines, either from one of the standard system libraries or from a local library .
Although it may be easier to recompile and link a single-source program using a
single c c command, it is usually more convenient to compile programs with
multiple sources in stages-first, by compiling each source file into a separate
object (. 0) file, and then by linking the object files to form an executable pro
gram (an a. out format file). This method requires more disk space, but subse
quent (repetitive) recompilations need be performed only on those object files for
which the sources have changed. The time saved is usually worth the extra space
required, since the remaining, up-to-date, object files are simply relinked as is
into a newly produced executable program.

The makefile that follows compiles an executable program from two C source
files. In subsequent examples, this makefile will be refined and enhanced to take
advantage of make's predefined macros and implicit rules. Subsequent sections
describe the mechanics of implicit rules, including how to add new ones of your
own.

Revision A of 16 March 1987

20 make User's Guide

A Simple Makefile

Figure 1-4

Conventions have evolved for the
use of certain target names, such
as all, clean (and install,
among others). There may be other
conventions in your organization. In
general, it is a good idea to avoid
creating files by any such name in
your source directories.

Using make's Predefined
Macros

Then, additional features are introduced that are useful in makefiles for maintain
ing C object libraries. Later sections expand upon these examples to create
sophisticated templates that are easily modified to handle a variety of programs
or libraries.6

Further examples illustrate template makefiles for more complex operations, such
as linking programs with with user-supplied object libraries (from other direc
tories), linking C programs with assembly language routines, and compiling pro
grams from lex and yacc sources.

This make file is not very flexible or elegant, but it does the job:

Simple makefile for compiling a program from
two C source files .

. KEEP STATE:

program: main.o data.o
cc -mc68020 -0 program main.o data.o

main.o: main.c
cc -mc68020 -0 -c main.c

data.o: data.c
cc -mc68020 -0 -c data.c

clean:
rm program main.o data.o

Simple Makefilefor Compiling C Sources: Everything Explicit

In this example, the command

make

produces the object files main. ° and data. 0, and the executable file
program.

The last target, clean, removes these files. This is a common addition to sim
plify housekeeping chores. The name clean is a convention for targets that
removes derived files.

The next example performs exactly the same function, but demonstrates the use
of make's predefined macros for the indicated compilation commands. Using
predefined macros eliminates the need to edit makefiles when the underlying
compilation environment changes. They also provide access to the CFLAGS

6 Makefiles for programs and libraries written in other compiled languages, such as FORTRAN 77,
Pascal, and Modula-2, are analogous.

Revision A of 16 March 1987

Macro names that end in the string
FLAGS are used to pass options to
a related compiler-command macro.
It is good practice to use these
macros for consistency and porta
bility. It is also good practice to
note the desired default values for
the appropriate FLAGS macros in the
makefile.

The complete list of all predefined
macros is shown in Table 1.2,
below.

Chapter I-make User's Guide 21

macro (and other FLAGS macros) for supplying compiler options from the com
mand line. Predefined macros are also used extensively within make's implicit
rules. The predefined macros in the following makefile are listed below. 7 They
are generally useful for compiling C programs.

COMPILE.C The complete ee command line; composed of the values of
CC, CFLAGS, CPPFLAGS, and TARGET_ARCH, as follows,
along with the -e option.

COMPILE.c=$(CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

LINK.e

The root of the macro name, COMPILE, is a convention used
to indicate that the macro stands for an entire compilation
command line. The . e suffix is a mnemonic device to indi
cate that the command line applies to . c (C source) files.

The complete ec command line to link object files: its value is
similar to that of COMP ILE . c, minus the reference to
CPPFLAGS and the -e option, and with the addition of a
reference to the LDFLAGS macro:

LINK.c=$(CC) $ (CFLAGS) $ (LDFLAGS) $ (TARGET_ARCH)

CC

CFLAGS

CPPFLAGS

LDFLAGS

The value ee. (You can redefine the value to be the pathname
of an alternate C compiler.)

Options for the ec command; none by default.

Options for cpp; none by default.

Options for the link editor, Id; none by default.

TARGET ARCH The target-architecture argument to ec used for cross
compiling. Refer to Cross-Compilation on the Sun W orksta
don for details.

7 Predefined macros are used more extensively than in earlier versions of make. Not all of the
predefined macros shown here are available with earlier versions.

Revision A of 16 March 1987

22 make User's Guide

Figure 1-5

Using Implicit Rules to
Simplify a Makefile

Figure 1-6

A complete list of implicit rules
appears in Table 1-1.

Makefile for compiling two C sources
using predefined macros.

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

program: main.o data.o
$ (LINK.c) -0 program main.o data.o

main.o: main.c
$ (COMPlLE.c) main.c

data.o: data.c
$ (COMPILE.c) data.c

clean:
rm program main.o data.o

Makefdefor Compiling C Sources Using Predefined Macros

The command lines for compiling main. 0 and data. 0 from their respective
. c files are now functionally equivalent to the . c . 0 implicit rule. Since this is
so, then for all intents and purposes they are redundant; make performs the same
compilation whether they appear in the makefile or not. This next version of the
makefile takes advantage of make's implicit rules to perform the compilation.

Makefile for a program from two C sources
using implicit rules.

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

program: main.o data.o
$ (LINK.c) -0 program main.o data.o

clean:
rm program main.o data.o

MakeftIe for Compiling C Sources Using Implicit Rules

As make processes the dependencies main. 0 and data. 0, it finds no target
entries for them. So, it checks for an appropriate implicit rule to apply. In this
case, make selects the . c . 0 rule for building a . 0 file from a dependency file
that has the same basename and a . c suffix.

Revision A of 16 March 1987

make uses the order of appearance
in the suffixes list to determine
which dependency file and implicit
rule to use. For instance, if there
were both main. c and main. s
files in the directory, make would
use the. c. 0 rule, since. c is
ahead of • s in the list.

Chapter 1 - make User's Guide 23

First, make scans its suffixes list to see whether or any the suffix for the target
file appears. In the case of main. 0, the string . 0 appears in the list. Next,
make checks for an implicit rule to build it with, and a dependency file to build
it from. The dependency file has the same basename as the target, but a different
suffix. In this case, while checking the . c. 0 rule, make finds a dependency file
named main. c, so it selects that rule. The target entry for the implicit rule is
named for the dependency suffix and the target suffix; the name is composed of
the two suffixes, in this case the target name is . c .0; make uses the rule in this
entry to build the target.

The suffixes list is a special-function target named. SUFFIXES. The various
suffixes are included in the definition for the SUFFIXES macro; the dependency
list for. SUFFIXES is given as a reference to this macro:

SUFFIXES= .0 .c.c .s .s- .S .S- .In .f .f- .F .F- .1 .1- \
.mod .mod- .sym .def .def- .p .p- .r .r- .y .y- .h .h- .sh .sh-

.SUFFIXES: $ (SUFFIXES)

Figure 1-7

Like clean, all is a target name
used by convention. It builds "all"
the targets in its dependency list.
Normally, all is the first target;
make and make all are usually
equivalent.

The Standard Suffixes List

The following example shows a make file for compiling a whole set of executable
programs, each having just one source file. Each executable is to be built from a
source file that has the same basename, and the . c suffix appended. For instance
demo 1 is built from demo 1. c.

Makefile for a set of C programs, one source
per program. The source file names have ".c"
appended.

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

all: demo 1 demo 2 demo 3 demo 4 demo 5

In this case, make does not find a suffix match for any of the targets (demo_1
through demo _ 5). So, it treats each as if it had a null suffix. It then searches for
an implicit rule and dependency file with a valid suffix. In the case of demo _2,
it would find a file named demo _ 2 . c. Since there is a target entry for a
. c(null) rule, namely the . c rule, along with a corresponding . c file make uses
the rule in the . c target entry to build demo _ 2 from demo _ 2 . c.

There is no transitive closure for implicit rules. If you had an implicit rule for
building, say, a . y file from a . x file, and another for building a . z file from a
. y file, make would not combine their rules to build a . z file from a . x file.
You must specify the intermediate steps as targets, as in the next example.

Revision A of 16 March 1987

24 make User's Guide

Explicit Target Entries vs.
Implicit Rules

Implicit Rules and Dynamic
Macros

Because they aren't explicitly
defined in a makefile, the conven
tion is to document dynamic macros
with the $-sign prefix attached (in
other words, by showing the macro
reference).

Whenever you build a target from multiple dependency files, you must provide
make with an explicit target entry that contains a rule for doing so. When build
ing a target from a single dependency file, it is often convenient to use an impli
cit rule.

As the previous examples show, make is happy to compile a single source file
into a corresponding object file or executable. However, it has no built-in
knowledge whatsoever about how to collate several files into one. For instance,
it has no idea of the order in which to link a list of object files into an executable
program. Also, make only compiles those object files that it encounters in its
dependency scan. It needs a starting point-a target for which each object file in
the list (and ultimately, each source file) is a dependency.

So, for a target built from multiple dependency files, make needs an explicit rule
that provides a collating order, and a dependency list that accounts for all of its
dependency files. On the other hand, if each of those dependency files is built
from just one source, you could use an implicit rule to build them.

make maintains a set of macros dynamically, on a target-by-target basis. These
macros are used quite extensively, especially in the definitions of implicit rules.
So, it is important to understand what they mean.

They are:

$ @ The name of the current target.

$? The list of dependencies newer than the target.

$ < The name of the dependency file, as if selected by make for use with an
implicit rule.

$ * The basename of the current target (the target name stripped of its suffix).

$ % For libraries, the name of the member being processed. See Building Object
Libraries, below, for more information.

Implicit rules make use of these dynamic macros in order to supply the name of a
target or dependency file to a command line within the rule itself. For instance,
in the . c . 0 rule, shown in the next example.

Revision A of 16 March 1987

The macro OUTPUT OPTION has
an empty value by default. While
similar to CFLAGS in function, it is
provided as a separate macro,
intended for passing in the -0

filename compiler option, as needed,
to force compiler output to a given
filename.

Dynamic Macro Modifiers

Dynamic Macros and the
Dependency List: Delayed
References

Chapter 1 - make User's Guide 25

[~ ___ '_C_'_O_: ____ $_(_C_O_M_P_I_L_E_'_C_) __ $_< __ $_(_O_U_T_P_U_T_-_O_P_T_I_O_N_) ______________ ~]
$< is replaced by the name of the dependency file (in this case the . c file) for
the current target.

In the . c rule:

[____ ._C_: _____ $_(L_I_N_K_._C_) __ $< __ -_O __ $_@ ________________________ ~]
$ @ is replaced with the name of the current target.

Because values for the < and * macros depend upon both the order of suffixes in
the suffixes list, you may get surprising results when you use them in an explicit
target entry. See Suffix Replacement in Macro References for a strictly deter
ministic method for deriving a filename from a related filename.

Dynamic macros can be modified by including F and D in the reference. If the
target being processed is in the form of a pathname, $ (@F) indicates the
filename part, while $ (@D) indicates the directory part. If there are no / charac
ters in the target name, then $ (@D) is assigned the dot character (.) as its value.
For example, with the target named / tmp / t est, $ (@D) has the value / tmp;
$ (@F) has the value test.

Dynamic macros are assigned while processing any and all targets. They can be
used within the target's rule as is, or in the dependency list by prepending an
additional $ character to the reference. A reference beginning with $ $ is called a
delayed reference to a macro. For instance, the entry:

[X.O y.o z.O: $$@.BAK
cp $@.BAK $@

could be used to copy x . 0 from a backup copy named x . 0 • BAK, and so forth
for y. 0 and z . o.

]
The dependency list is read twice, once while building the dependency list for the
target, and again while checking each dependency. make resolves macros it
encounters in each pass. Before processing any dependencies, the dynamic mac
ros aren't defined. Unless the references are delayed until the second pass, make
resolves them to an empty value. $$ is a reference to the $ predefined macro.
This macro, conveniently enough, has the value $, and when make resolves it in
the first pass, the string $ $ * is interpreted as $ *. In the second pass, $ * has
been assigned a value, so make uses it's value.

+~,!! Revision A of 16 March 1987

26 make User's Guide

Adding Implicit Rules

Pattern matching rules, which are
described in the next section, are
much easier to use. The procedure
for adding implicit rules is given
here for compatibility with previous
versions of make.

Although make supplies you with a number of useful implicit rules, you can add
new ones of your own if you wish. Historically, implicit rules are also refened to
as "suffix" rules, since with the default set of implicit selection is based on the
suffixes of the target and dependency.

Now, however, there is an easier and more general method for building one type
of file from another with a common basename. Pattern matching rules,8 which
are described in the next section, provide a method for selecting implicit rules
based on prefixes, suffixes, or- both.9 This section describes the traditional
method of adding implicit rules. Makefiles that use this method will be compati
ble with earlier versions of make.

Adding an implicit rule is a two-step process. First, you must add the suffixes of
both target and dependency file to the suffixes list by providing them as depen
dencies to the . SUFFIXES special target Because dependency lists accumu
late, you can add suffixes to the list simply by adding another entry for this tar
get, for example:

(. SUFFIXES: .ms .tr

Second, you must add a target entry for the implicit rule:

(.ms.tr:
troff -t -ms $< > $@

A makefile with these entries can be used to format document source files con
taining ms macros (. ms files) into t r 0 f f output files (. t r files):

Entries in the suffixes list are contained in the SUFFIXES 10 macro. To insert
suffixes at the head of the list, first clear its value by supplying an entry for the
. SUFFIXES target that has no dependencies (an exception to the rule that
dependency lists accumulate):

(.SUFFIXES:

and then add another entry containing the new suffixes, followed by a reference
to the SUFFIXES macro, as shown below.

8 Not available with earlier versions of make.

\I The implicit rules provided in the default makefile are written as suffix rules, for compatibility with
earlier versions of make. They could just as well have been written as pattern matching rules.

10 Note that there is no leading dot

)

]

]

Revision A of 16 March 1987

Pattern Matching Rules: an
Alternative to Implicit (Suffix)
Rules

make checks for pattern matching
rules before it checks for implicit
rules. Although you can use them
to override the standard set of impli
cit rules, it is usually a bad idea to
do so.

make's Standard Implicit Rules
and Predefined Macros

Chapter 1 - make User's Guide 27

(

.SUFFIXES:]

~ ___ ._S_U_F_F_I_X_E_s_: __ ._m_s __ ._t_r __ $_(_S_U_F_F_I_X_E_S_) ________________________ ~

A pattern matching rule is similar to an implicit rule in function. Pattern match
ing rules are easier to write, and more powerful, because you can specify a rela
tionship between a target and a dependency based on prefixes and suffixes both.
A pattern matching rule is a target entry of the form:

tp%ts: dp%ds
rule

where tp and ts are the optional prefix and suffix in the target name, respectively,
dp and ds are the (optional) prefix and suffix in the dependency name, and % is a
wild card that stands for a basename common to both.

If there is no rule for building a target, make searches for a pattern matching
rule, before checking for an implicit (suffix) rule. If it can use a pattern matching
rule, it does so.

If the target pattern matches the target name, and there is a dependency file
matching the dependency pattern, and if the target is out of date with respect to
that dependency file, make rebuilds the target. If the target is up to date with
respect to the dependency, make does not rebuild it, and continues processing
with the next target in the dependency hierarchy.

If the target entry for a pattern matching rule contains no rule, make processes
the target file as if it had an explicit target entry with no rule; it searches for a
suffix rule, attempts to extract a version of the target file from sees, finally it
treats the target as having a null rule (flagging the target as having been updated
which forces a parent target to be rebuilt).

A pattern matching rule for formatting a troff source file into a troff output
file looks like:

(
%.tr: %.ms J

troff -t -ms $< > $@

""------------"

As you can see, this is much easier to write, and much simpler to follow than the
equivalent suffix rule from the previous section.

The following tables list the standard set of implicit rules and predefined macros
supplied with make.

Revision A of 16 March 1987

28 make User's Guide

Table 1-1 make' s Standard Implicit Rules

Use Implicit Rule Name Command Line(s)

Assembly .s.o $ (COMPILE. s) $< -0 $@

Files, .S.o $ (COMPILE. S) $< -0 $@

C .c $(LINK.c) $< -0 $@

Files .c.In $(LINT.c) -i $< $ (OUTPUT_OPTION)

.C.o $ (COMPILE. c) $< $ (OUTPUT_OPTION)

FORTRAN 77 .f $ (LINK.f) $< -0 $@

Files .f.o $ (COMPILE. f) $< $ (OUTPUT_OPTION)

.F $(LINK.F) $< -0 $@

.F.o $ (COMPILE.F) $< $ (OUTPUT_OPTION)

lex .1 $(RM) $*.c
Files $ (LEX. 1) $< > $*.c

$(LINK.c) $*.c -0 $@
$ (RM) $*.c

.l.c $ (RM) $@
$ (LEX. 1) $< > $@

.l.ln $ (RM) $*.c
$ (LEX. 1) $< > $*.c
$(LINT.c) -i $*.c -0 $@
$ (RM) $*.c

.1.0 $ (RM) $*.c

$ (LEX. 1) $< > $*.c
$ (COMPILE. c) $*.c -0 $@
$ (RM) $*.c

Modula 2 .mod $ (COMPILE. mod) -e $@ $< -0 $@
Files .mod.o $ (COMPILE. mod) $< -0 $@

.def.sym $ (COMPILE. def) $< -0 $@

Pascal .p $(LINK.p) $< -0 $@

Files .p.o $ (COMPILE. p) $< $ (OUTPUT_OPTION)

Ratfor .r $(LINK.r) $< -0 $@

Files .r.o $ (COMPILE. r) $< $ (OUTPUT_OPTION)

Shell .sh cp $< $@
Scripts chmod +x $@

yacc .y $ (YACC.y) $<
Files $(LINK.c) y.tab.c -0 $@

$ (RM) y.tab.c

.y.c $ (YACC.y) $<

mv y.tab.c $@

.y.ln $ (YACC.y) $<

$(LINT.c) -i y.tab.c -0 $@

$ (RM) y.tab.c

Revision A of 16 March 1987

Use

Use
Assembler

Commands

C Compiler

Commands

FORTRAN 77

Compiler

Commands

Link Editor

Command

lex

Command

lint

Command

Modula2

Commands

Pascal

Compiler

Commands

Rat/or

Compilation

Commands

Chapter 1 - make User's Guide 29

Table 1-1 make's Standard Implicit Rules- Continued

Implicit Rule Name Command Line(s)

.y.o

Table 1-2

Macro

AS

ASFLAGS

COMPILE.s

COMPILE.S

CC

CFLAGS

CPPFLAGS

COMPILE.c

LINK.c

FC

FFLAGS

COMPILE.f

LINK.f

COMPILE.F

LINK.F

LD

LDFLAGS

LEX

LFLAGS

LEX. 1

LINT

LINTFLAGS

LINT.c

M2C

M2FLAGS

MODFLAGS

DEFFLAGS

COMPILE.def

COMPILE. mod

PC

PFLAGS

COMPILE.p

LINK.p

RFLAGS

COMPILE.r

LINK.r

$ (YACC.y) $<

$ (COMPILE. c) y.tab.c -0 $@

$ (RM) y.tab.c

make's Predefined and Dynamic Macros

Default Value

as

$ (AS) $ (ASFLAGS) $ (TARGET_ARCH)

$ (CC) $ (ASFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

cc

$ (CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

$ (CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)

f77

$ (FC) $ (FFLAGS) $ (TARGET_ARCH) -c

$ (FC) $ (FFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)

$ (FC) $ (FFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

$ (FC) $ (FFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)

ld

lex

$ (LEX) $ (LFLAGS) -t

lint

$ (LINT) $ (LINTFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH)

m2c

$ (M2C) $ (M2FLAGS) $ (DEFFLAGS) $ (TARGET_ARCH)

$ (M2C) $ (M2FLAGS) $ (MODFLAGS) $ (TARGET_ARCH)

pc

$ (PC) $ (PFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

$ (PC) $ (PFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)

$ (FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET_ARCH) -c

$ (FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)

~~sun ~~ microsystems
Revision A of 16 March 1987

30 make User's Guide

Table 1-2

Use Macro

rmCommand RM

yacc YACC

Command YFLAGS

YACC.y

Suffixes

List SUFFIXES

1.3. Building Object
Libraries

Libraries, Members and
Symbols

Library Members and
Dependency Checking

make's Predefined and Dynamic Macros-- Continued

Default Value

rm -f

yacc

$ (YACC) $ (YFLAGS)

.0 .c .c- . s .s- .S .s- .In .f .f- .F .F- .1

.1- .mod .mod- .sym .def .def- .p .p- .r .r -

.y .y- .h .h- . sh .sh-

An object library is a set of object files contained in an ar library archive.11

Various languages make use of object libraries to store compiled functions of
general utility, such as those in the C library.

ar reads in a set of one or more files to create a library. Each member contains
the text of one file, preceded by a header. This header contains infonnation taken
from the file's directory entry when the text is read in, including the modification
time. mak e can treat the library member as a separate entity for dependency
checking using this header.

When you compile a program that uses functions from an object library (specify
ing the proper library either by filename, or with the -1 option to cc), selects
and links with the library member that contains a needed function or symbol.

You can use ranlib to generate a symbol table for a library of object files. Id
uses this table for random access to symbols within the library-to locate and
link object files in which functions are defined. Alternatively, you can use
10rder and tsort to put members in order within the library. (See
10rder(l) for details.) For very large libraries, it is a good idea to do both.

make recognizes a target or dependency of the form

lib.a (member ...)

as a reference to a library member, or a space-separated list of members. 12 For
example, the following target entry indicates that the library named 1ibrpn. a
is built from members named stacks. 0 and fifos. o. The pattern matching
rule indicates that each member depends on a corresponding object file, and that
object file is built from its corresponding source file using an implicit rule.

11 See ar(1), ar(S), lorder(l), and ranlib(l) in the Commands Reference Manualfordetails
about library archive files.

12 Earlier versions make recognize this notation. However, only the first item in a parenthesized list of
members was processed. In this version of make, all members in a parenthesized list are processed.

Revision A of 16 March 1987

Library Member N arne Length
Limit

. PRECIOUS: Preserving
Libraries Against Removal Due
to Interrupts

Chapter 1 - make User's Guide 31

librpn.a: librpn.a(stacks.o fifos.o)
ar rv $@ $?
ranlib $@
rm -f $?

lib. a (% .0): %.0

The rm command in the target entry removes the object file. Since there is an
exact duplicate of that file contained in the library that the link editor can use, the
file is not needed. When you update the source files and run make, the outdated
object files are rebuilt. 13 When used with library-member notation, the dynamic
macro $? contains the list of files that are newer than their corresponding
members:

The name of an ar library member cannot exceed 15 characters. If a filename is
longer than that, ar truncates the name of its corresponding member to the first
15 characters. If a library depends upon a member whose corresponding
filename is too long, make attempts to match the name of the member to the first
15 characters of a file in the directory. make uses the first filename that matches
as the file from which to build the member.

Nonnally, if you interrupt make in the middle of a target, the target file is
removed. For individual files this is a good thing, otherwise incomplete files
with brand new modification times might be left in the directory. For libraries,
which consist of several members, the story is different. It is often better to leave
the library intact, even if one of the members is still out of date. This is espe
cially true for large libraries, especially since a subsequent make run will pick up
where the previous one left off-by processing the object file or member whose
processing was interrupted .

. PRECIOUS is a special target that is used to indicate which files should be
preserved against removal on interrupts; make does not remove targets that are
listed as its dependencies. If you add the line:

(.PRECIOUS: librpn.a

13 This is only true for object files in the current working directory. Object files from other directories
that correspond to library members aren't necessarily rebuilt.

J

Revision A of 16 March 1987

32 make User's Guide

1.4. Maintaining Programs
With make

Using Macros for Added
Flexibility

to the makefile shown above, run make, and interrupt the processing of
librpn. a, the library is preserved.

The $ % dynamic macro is provided specifically for use with libraries. When a
library member is the target, the member name is assigned to the $ % macro. For
instance, this make file:

(libx.a(demo.o) :
echo $%

produces the results shown in the next example.

]

In previous sections you have learned how make can help compile simple pro
grams and build simple libraries. The focus of this section is on developing
makefiles for more complex compilations. When things get complicated it is
often a good idea to put each module into a separate directory of its own. This
eliminates confusion about which source files pertain to which programs or
libraries. This scheme allows you to create makefiles that operate consistently
between various parts of a software project. Subsequent sections describe how to
maintain a project that spans several directories as a single entity.

You have seen how to use predefined and dynamic macros within rules, and for
passing parameters from the command line. make also allows you to define your
own macros within a makefile. Macros allow you to simplify makefiles and
make them more flexible (for use in building other modules within the same pro
ject, or l?etween projects; makefiles for this version of make are not necessarily
portable across versions). With judicious use of macros, you can develop tem
plate makefiles that can be re-used for similar tasks after only minor edits. This
section begins to develop template makefiles for C programs and libraries.

Macro references' can appear anywhere in a makefile; they can be used to abbre
viate long target lists or expressions, or as shorthand to replace long strings that
would otherwise have to be repeated. And, macro references can be nested
they can contain other macro references.14

Once you have developed a powerful makefile that works the way you like,
chances are that you won't want to make extensive edits in order to re-use it for a
similar program or library.

For example, the make file for compiling a C program that used implicit rules can
be made to accommodate other programs. By replacing key words with macros,
and by editing the definitions of those macros, it becomes a simple task to alter

14 Nested references are expanded from innennost to outennost. This is not the case with previous
versions of make.

Revision A of 16 March 1987

Makefiles as Specifications

No one should have to scan an
entire makefile just to puzzle out
what it builds.

Suffix Replacement in Macro
References

Chapter 1 - make User's Guide 33

the basic makefile for use with yet another program:

* Flexible makefile for a C program.

SOURCES= main.c data.c
OBJECTS= main.o data.o
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

$ (PROGRAM) : $ (OBJECTS)
$(LINK.c) -0 $@ $ (OBJECTS)

clean:
rm $ (PROGRAM) $ (OBJECTS)

In this case, you need only edit the SOURCES, OBJECTS and PROGRAM macros
and you can compile a different program entirely, albeit in the same way.

Although in a simple case like this the changes to the makefile might not seem
worth the extra trouble, the added flexibility becomes increasingly important as
apply more powerful techniques. With judicious use of macros you can avoid
having to puzzle over which specific changes you can or should (or even dare)
make to a hard -coded make file.

A makefile performs an important function by documenting what object files,
programs, or libraries get built from which sources files, and what compilation
options are used by default to build them. Specifying this information with a set
of macro definitions at the top of a makefile is a great aid the reader, especially
when makefiles are similar in format or at all complicated.

In the flexible makefile shown above, the value of OBJECT S is a bit redundant.
It would be better to derive the names of the object files from the names of the
source files. In fact, there are any number of filenames that can be derived from
the names of source files, simply by altering their suffix. For this reason, make
provides a mechanism for temporarily replacing suffixes of words in a macro's
value, when the reference to that macro is of the form: 15

$ (macro: old-suffix=new-suffix)

This suffix replacement macro reference allows you to express the list of object
files in terms of the list of sources:

[~ ____ O_B_J_E_C_T_S_= ___ $_(S_O_U_R_C_E_S_:_._C_=_'_O_) _______________________________________]

IS Although conventional suffixes start with dots, a suffix may consist of any string of characters.

~~sun ~'" microsystems
Revision A of 16 March 1987

34 make User's Guide

Using lint With make

We encourage you to lint your C
programs for easier debugging and
maintenance. lint also checks for
C constructs that are not con
sidered portable across machine
architectures. It can be a real help
in writing portable C programs.

lint, the C program verifier,16 is an important tool for forestalling the kinds of
bugs that are most difficult and tedious to track down. These include uninitial
ized pointers, parameter mismatches in function calls, and nonportable uses of C
constructs. As with the clean target, lint is a target name used by conven
tion; it is usually a good practice to include it in makefiles that operate on C pro
grams. lint produces output files that have been preprocessed through cpp
and its own first (parsing) pass. These files characteristically end in the .In
suffix, and can also be derived from the list of sources through suffix replace
ment:

(~ ___ L_I_N_T_F_I_L_E_S_= __ $_(_S_O_U_R_C_E_S_:_'_C_=_._l_n_) __________________________ ~J
The lint target entry appears as follows:

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

There is an implicit rule for building each . In file from its corresponding • c
file, so there is no need for target entries for the . In files. As sources change,
the . 1 n files are updated whenever you run

make l.int

Since the LINT. c predefined macro includes a reference to the LINTFLAGS
macro, it is a good idea to specify the lint options to use by default (none in
this case). Since lint entails the use of cpp, it is a good idea to use
CPPFLAGS, rather than CFLAGS for compilation preprocessing options (such as
-I).

Also, when you run make clean you will want to get rid of any .In files pro
duced by this target. It is a simple enough matter to add another such macro
reference to the clean target:

clean:
r.m -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES)

With these changes, the new version of the makefile appears as follows.

16 See Debugging Tools for the Sun Workstation for more information about lint.

Revision A of 16 March 1987

Figure 1-8

Linking With System
Supplied Libraries

You can also link with a library by
specifying its path name name as an
argument to cc.

Chapter I-make User's Guide 35

* Makefile for a C program with an entry for lint.

SOURCES= main.c data.c
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LINTFlLES= $(SOURCES:.c=.1n)

.KEEP STATE:

$ (PROGRAM) : $ (OBJECTS)
$(LINK.c) -0 $@ $ (OBJECTS)

1int: $ (LINTFlLES)
$(LINT.c) $ (LINTFILES)

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES)

Makefile With • 'Suffix-Replacement" Macro References

This make file is easily altered to compile a program that uses system-supplied
library packages. The next example shows a makefile that compiles a program
that uses the curses and termlib library packages for screen-oriented cursor
motion.

A makefile link with user-supplied libraries appears later on.

Revision A of 16 March 1987

36 make User's Guide

Makefile for a C program with curses and termlib.

SOURCES= main.c data.c
LIBS= -lcurses -lter.mlib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $(SOURCES:.c=.ln)

.KEEP STATE:

$ (PROGRAM) : $ (OBJECTS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (LIBS)

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES)

Figure 1-9 Make/tie for a C Program With System-Supplied Libraries

Compiling Programs for
Debugging and Profiling

Since the link editor resolves undefined symbols as they are encountered, it is
normally a good idea to place library references at the end of the list of files to
(compile and) link.

This make file produces:

Compiling programs for debugging or profiling introduces a new twist to the pro
cedure, and to the makefile. These variants are produced from the same source
code, but are built with different options to the C compiler. The cc option to
produce object code that is suitable for debugging is -g, and it is important to
omit the -0 option in this case. The c c options that produce code for profiling
are -0 and -pg.

Since the compilation procedure is the same otherwise, you could give make a
definition for CFLAGS on the command line. Since this definition overrides the
definition in the makefile, and . KEEP _ STATE assures any command lines
affected by the change are performed, the command:

make "CFLAGS= -0 -pg"

produces the following results.

Revision A of 16 March 1987

Conditional Macro Definitions

nake must know which targets the
jefinition applies to, so you can't
use a conditional macro definition to
alter a target name.

Chapter 1 - make User's Guide 37

Of course, you may not want to memorize these options or type a complicated
command like this, especially when you can put this information in the makefile.
What is needed is a way to tell make how to produce a debugging or profiling
variant, and some instructions in the makefile that tell it how. One way to do this
might be to add two new target entries, one named debug, and the other named
profile, with the proper compiler options hard-coded into the command line.

A better way would be to add these targets, but rather than hard-coding their
rules, include instructions to alter the definition of CFLAGS depending upon
which target it starts with. Then, by making each one depend on the existing tar
get for progr am make could simply make use of its rule, along with the
specified options.

Instead of saying "make "CFLAGS= -g", you could say "make debug" to
compile a variant for debugging. The question is, how do you tell make that you
want a macro defined one way for one target (and its dependencies), and another
way for a different target?

A conditional macro definition is a line of the form:

target-name : = macro = value

which assigns the given value to the indicated macro while make is processing
the target named target-name and its dependencies. The following lines give
CFLAGS an appropriate value for processing each program variant.

[

debug := CFLAGS= -g]
profile := CFLAGS= -pg -0

'-----------'

The following makefile produces your choice of optimized, debugging, or
profiling variants of a C program, depending on which target you specify (the
default is the optimized variant) .. Command dependency checking guarantees
that the program and its object files will be recompiled whenever you switch
between variants .

• \sun ,~ microsystems
Revision A of 16 March 1987

38 make User's Guide

Figure 1-10

all is a conventional target for
building "all" final, or "finished" tar
gets. Debugging and profiling vari
ants aren't normally considered part
of a finished program.

41=

41= Makefile for a C program with alternate
41= debugging and profiling variants.

SOURCES= main.c data.c
LlBS= -lcurses -ltermlib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LlNTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LlNTFlLES= $(SOURCES:.c=.ln)

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug : = CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS)
$ (LlNK.c) -0 $@ $ (OBJECTS) $ (LlBS)

lint: $ (LlNTFlLES)
$(LlNT.c) $ (LlNTFlLES)

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (LlNTFlLES)

Makefilefor a C Program with Alternate Debugging and Profiling Variants

Going through the makefile, all of the lines above . KEEP_STATE seem fami
liar. The subsequent target entry specifies three targets, with all appearing first

all traditionally appears as the first target in makefiles with alternate starting
targets (or those that process a list of targets). It's dependencies are "all" targets
that go into the final build, whatever that may be. In this case, the final target is
the optimized program variant This entry also indicates that debug and pro
file depend on program (the value of $ (PROGRAM)).

The next two lines contain conditional macro definitions for CFLAGS, when it
appears in profile or debug, or their dependencies:

[debug := CFLAGS= -g
profile := CFLAGS= -pg -0

Next comes the familiar target entry that starts with $ (PROGRAM). Finally, the
remainder of the make file looks familiar.

Revision A of 16 March 198~

With this make file ,

make

or

make a1.1.

produces:

make debug

produces:

and

make profi1.e

produces:

Chapter 1 - make User's Guide 39

The next example applies similar techniques to maintaining a C object library.

Revision A of 16 March 1987

40 make User's Guide

* * Makefile for a C library with alternate * variants.

SOURCES= calc.c rnap.c draw.c
LIBRARY= libpkg.a

CFLAGS= -0
CPPFLAGS=
LINTFLAGS=

MEMBERS= $ (SOURCES: .c=.o)
LINTFILES= $(SOURCES:.c=.ln)

all debug profile: $ (LIBRARY)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

.KEEP STATE:

.PRECIOUS: $ (LIBRARY)

$ (LIBRARY) : $ (LIBRARY) ($(MEMBERS»
ar rv $@ $?
ranlib $@
rrn -f $?

$ (LIBRARY) (% .0): %.0

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean:
rrn -f $ (LIBRARY) $ (MEMBERS) $ (LINTFILES)

Figure 1-11 Makefde for a C Library with Alternate Variants

Maintaining a Directory of
Header Files

The makefile for maintaining an include directory of header files, is really
quite simple. Since header files are maintained as plain text, all that is needed is
a target, all that lists them all as dependencies. Automatic sees extraction
takes care of the rest. If you use a macro for the list of header files, this same list
can be used in other target entries that may be added later for project manage
ment purposes.

* /usr/include/make/h.rnk

* * Makefile for maintaining an include directory.

FILES.h= calc.h map.h draw.h

all: $(FILES.h)

clean:
rrn -f $(FILES.h)

.\sun ~ microsystems
Revision A of 16 March 1987

Compiling and Linking With
Your Own Libraries

It is not a good idea to have things
pop up all over the file system as a
result of running make.

Nested make Commands

The MAKE macro, which is set to the
value "make" in the default file,
overrides the -n option. Any com
mand line in which it is referred to is
executed, even though -n may be
in effect. Since this macro is used
to invoke make, and since the make
it invokes inherits -n from the spe
cial MAKEFLAGS macro, make can
trace a hierarchy of nested make
commands with the -n option.

Chapter 1 - make User's Guide 41

When preparing your own library packages, it often makes sense to treat each
library as a separate entity from programs that use it, as well as the header files
used by both. Separating programs, libraries and header files into distinct direc
tories often makes it easier to prepare makefiles for each type of module. And, it
clarifies the structure of a software project.

A courteous and necessary convention of makefiles is that they only build files in
the working directory, or in temporary subdirectories. Unless you are using
make specifically to install files into a specific directory on an agreed-upon file
system, it is regarded as very poor form for a makefile to produce output in
another directory.

Building programs that rely on user-supplied libraries in other directories adds
several new wrinkles to the makefile. Up until now, everything needed has been
in the directory, or else in one of the standard directories that are presumed to be
stable. This is not true for user-supplied libraries that are part of a project under
development, especially when their contents are subject to change.

More importantly, since these libraries aren't built automatically (there is no
equivalent to automatic sees extraction for them), there must be an explicit tar
get entry to build them. So, a problem arises (until such time as the library has
been completed tested and can be presumed to be stable).

On the one hand, you need to assure the libraries you link with are up to date.
On the other hand, you need to observe the convention that a make file should
only maintain files in the local directory. In addition, the makefile should not
contain duplicate information that could get out of sync with a makefile in
another directory. The whole purpose of make, after all, is to provide consistent,
modular processing.

The solution is to use a nested make command, running in the directory the
library resides in, to rebuild it (according to the target entry in the makefile
there).

First cut entry for target in another
directory.

.. /lib/libpkg.a:
cd .. /lib ; $ (MAKE) libpkg.a

The library is specified with a pathname relati ve to the current directory. In gen
eral, it is better to use relative pathnames. If the project is moved to a new root
directory or machine, so long as its structure remains the same relative to that
new root directory, all the target entries will still point to the proper files.

Within the nested make command line, the dynamic macro modifiers F and 0
come in handy, as does the MAKE predefined macro. If the target being pro
cessed is in the form of a pathname, $ (@ F) indicates the filename part, while
$ (@D) indicates the directory part. If there are no / characters in the target
name, then $ (@D) is assigned the dot character (.) as its value.

Revision A of 16 March 1987

42 make User's Guide

Forcing A Nested make
Command to Run

These lines are produced by the
nested make run.

The target entry can be rewritten as:

* Second cut .

.. /lib/libpkg.a:
cd $(@D)i $ (MAKE) $(@F)

Because it has no dependencies, this target will only run when the file named
. . /1 ib / 1 ibpk g . a is missing. If the file is a library archive protected by
. PRECIOUS, this could be a rare occurrence. The current make invocation nei
ther knows nor cares about what that file depends on, nor should it. It is the
nested invocation that decides whether and how to rebuild that file. After all, just
because a file is present in the file system doesn't mean that it is up to date. This
means that you have to force the nested make to run, regardless of the file's pres
ence, by making it depend on a target with a null rule:

* Reliable target entry for a nested make * command .

.. /lib/libpkg.a: FRC
cd $(@D)i $ (MAKE) $(@F)

FRC:

In this way, make reliably cd's to the directory .. / lib and builds libpkg. a
if necessary, using the entry in the makefile found in that directory (. • / lib):

The following makefile uses a nested make command to process local libraries
that a program depends on.

Revision A of 16 March 1987

Chapter 1 - make User's Guide 43

* * Makefile for a C program with user-supplied * libraries and nested make commands.

SOURCES= main.c data.c
ULIBS= .. /lib/libpkg.a
SLIBS= -lcurses -ltermlib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $(SOURCES:.c=.ln)

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (ULIBS) $ (SLIBS)

$ (ULIBS) : FRC
cd $(@D); $ (MAKE) $(@F)

FRC:

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean:
rm -f $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)

Figure 1-12 Make/tie for C Program With User-Supplied Libraries

The MAKEFLAGS Macro
Do not define MAKEFLAGS in your
makefiles.

When .. / lib/ libpkg. a is up to date, this makefile produces:

Like the MAKE macro, MAKEFLAGS is also a special case. As its name suggests,
it contains options for make. Its value is composed of the MAKEFLAGS environ
ment variable, if set, in combination with the command-line options that make is
invoked with (except for -f). This combination of options takes effect for the
current make run.

~~sun ~~ microsystems
Revision A of 16 March 1987

44 make User's Guide

Macro Definitions and
Environment Variables:
Passing Parameters to Nested
make Commands

The value of MAKEFLAGS is always exported, whether set in the environment or
not, and the options it contains are passed to any nested make commands
(whether invoked by $ (MAKE), make or /bin/make). This insures you that
nested make commands are always passed the options that the parent make was
invoked with. Because MAKEFLAGS is maintained automatically, defining it in
the makefile would only be misleading; such a definition has no effect whatso
ever on the value exported by MAKEF LAGS.

With the exception of MAKE FLAGS , 17 make imports variables from the environ
ment and treats them as if they were defined macros. In tum, make propagates
those environment variables and their values to commands it invokes, including
nested make commands. Macros can also be defined as command line argu
ments, or a macro can be defined in the default file. This can lead to conflicts
when a macro is defined in more than one place. make has precedence rules for
evaluating macros with conflicting definitions.

First of all, conditional macro definitions always take effect within the targets
(and their dependencies) for which they are defined.

If make is invoked with a macro-definition argument, that definition takes pre
cedence over definitions given either within the makefile, or imported from the
environment. (This does not necessarily hold true for nested make commands,
however.) Otherwise, if you define (or redefine) a macro within the makefile, the
most recent definition applies. The latest definition normally overrides the
environment. Lastly, if the macro is defined in the default file and nowhere else,
that value is used.

The -e option alters this scheme. With -e, macros defined in the environment
override any and all makefile definitions (but not the command line).

With nested make commands, definitions made in the makefile normally override
the environment, but only for the make file in which each definition occurs; the
value of the corresponding environment variable is propagated regardless.
Command-line definitions override both environment and makefile definitions,
but only for the topmost make run. Although values from the command line are
propagated to nested make commands, they are overridden both by definitions in
the nested makefiles, and by environment variables imported by the nested make
commands.

The -e option behaves more consistently. The environment overrides macro
definitions made in any makefile, and command-line definitions are always used
ahead of definitions in the makefile and the environment. One drawback to -e is
that it introduces a situation in which information that is not contained in the
make/tie can be critical to the success or failure of a build.

This is an awful lot to remember, so a good rule of thumb when passing parame
ters to nested make commands is: supply them as command-line definitions, and
use -e. However, before you run make with the -e option, it is important to

17 and SHELL. The SHELL environment variable is neither imported nor exported in this version of
make. See Commands Reference Manual, the make reference manual page, Appendix B, for more
information about the SHELL macro.

Revision A of 16 March 1987

Chapter 1 - make User's Guide 45

eliminate all extraneous or improperly defined environment variables, since
make -e will propagate whatever is in the environment to the entire hierarchy
of nested make commands:

make -e CFLAGS=-E

Environment variables don't go away when you're done with them (i.e, they stay
around to haunt you, especially when you attempt to build something else with
make later on). One way to avoid lingering environment variables is to invoke
make within a subshell. When you set environment variables and run make in
the subshell, their values are isolated within that subshell and any processes it
spawns (like the one for make):

(setenv CFLAGS -E ; make -e)

This next example illustrates the difference in parameters between the top make
run and the nested make runs, using the two makefiles shown below.

and:

* top.mk

MACRO= "Correct if unexpected."

top:

@echo ,,------------------------------ top"
echo $ (MACRO)

@echo ,,------------------------------"
$ (MAKE) -f nested.mk

@echo ,,------------------------------ clean"
clean:

rm nested

* nested.mk

MACRO=nested

nested:

@echo ,,------------------------------ nested"
touch nested
echo $ (MACRO)
$ (MAKE) -f top.mk
$ (MAKE) -f top.mk clean

With these makefiles, the command:

make -f top.mk MACRO=top

produces the results that follow.

Revision A of 16 March 1987

46 make User's Guide

This pair of makefiles can be helpful if you decide to review the various cases
yourself.

Table 1-3 Summary of Macro Assignment Order

Without -e With -e in effect

top-level make command:

conditional definitions conditional definitions
make command line make command line
latest makefile definition environment value
environment value latest make file definition
predefined value, if any predefined value, if any

nested make commands:

conditional definitions conditional definitions
make command line make command line
latest makefile definition parent make cmd. line
environment variable environment value
predefined value, if any latest make file definition
parent make cmd. line predefined value, if any

Conlpiling Other Source Files The following examples illustrate the use of make to maintain C programs that
contain assembly routines, and programs produced with lex and yacc.

Revision A of 16 March 1987

Compiling and Linking a C
Program with Assembly
Language Routines

ASFLAGS passes options for as to
the . s .0 and • S. 0 implicit rules.

Chapter I-make User's Guide 47

The makefile in the next example maintains a program with C source files linked
with assembly language routines. IS There are two varieties of assembly source
files, those that contain cpp preprocessor directives, and those that don't. By
convention, assembly source files without preprocessor directives have the . S

suffix. Assembly sources that require preprocessing have the . S suffix.

Assembly sources are assembled to form object files in a fashion similar to that
used to compile C sources. The object files can then be linked into a C program.
make has implicit rules for transforming . sand . S files into object files, so at a
minimum, a target entry for a C program with assembly routines need only
specify how to link the objects files. You can use the familiar cc command to
link object files produced by the assembler:

CFLAGS= -0
ASFLAGS= -0

.KEEP STATE:

driver: c driver.o s_routines.o S_routines.o
cc -0 driver c driver.o s routines.o S routines.o

The next example shows a more flexible makefile for this sort of compilation.

18 Refer to the Assembly Reference Manual for more information about assembly language source
files.

Revision A of 16 March 1987

48 make User's Guide

Makefile for a C program linked with assembly routines.

SOURCES.c= c driver.c
SOURCES.s= s routines.s
SOURCES.S= S routines.S
ULIBS=
SLIBS=
PROGRAM= driver

AS F LAGS =
CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=
OBJECTS= $(SOURCES.c:.c=.o) $(SOURCES.s:.s=.o) $(SOURCES.S:.S=.o)
LINTFILES= $(SOURCES.c:.c=.ln) # not for assembly sources

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $(OBJECTS) $ (ULIBS) $(SLIBS)

$ (ULIBS): FRC
cd $ (@D); $ (MAKE) $ (@F)

FRe:

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES)

Figure 1-13 Makefilefor a C Program with Assembly Routines

This makefile compiles the executable program dr i ver as shown:

Note that the . S files are processed using the cc command, which invokes the C
preprocessor cpp, and invokes the assembler implicitly.

Revision A of 16 March 1987

Compiling lex and yacc
Sources

Chapter I-make User's Guide 49

lex and yacc produce C source files as output Source files for lex end in the
suffix .1, while those for yacc end in . y. When used separately, the compila
tion process for each is similar to that used to produce programs from C sources
alone. There are implicit rules for compiling the lex or yacc sources into. c
files; from there the files are further processed with the implicit rules for compil
ing object files from C sources. Typically, however, there is no need to keep the
c file, which in this simple case serves as an intermediate file, and so it is typical
when compiling ale x or y ace file to use either the . 1 . 0 rule, or the . y . 0

rule, respectively, to produce the object files and remove the . c files. For exam
ple, the makefile:

CFLAGS= -0
.KEEP STATE:

all: I_grammar y_compiler

I_grammar: l_grammar.o

y_compiler: y_compiler.o

produces:

Things get to be a bit more complicated when you use lex and yacc in combi
nation. In order for the object files to work together properly, the C code from
lex must include a header file produced by yacc. -So, it may be necessary to
recompile the C source file produced by lex when the yacc source file
changes. In this case, it is better to retain the . c (intermediate) files produces by
lex, as well as the additional . h file that yacc provides, so as to avoid running
lex whenever the yacc source changes.

The following makefile maintains a program built from a lex source, a yacc
source, and a C source file.

Revision A of 16 March 1987

50 make User's Guide

yacc produces output files named
y.tab.c and y.tab.h. If you
want the output files to have the
same basename as the source file,
you must rename them.

Specifying Target Groups With
the + Sign

CFLAGS= -0
.KEEP STATE:

a2z: c functions.o l_grammar.o y_compiler.o
cc -0 $@ c functions.o I_grammar.o y_compiler.o

l_grammar.c:

y_compiler.c + y_compiler.h: y_compiler.y
yacc -d y_compiler.y
mv y.tab.c y_compiler.c
mv y.tab.h y_compiler.h

Since there is no transitive closure for implicit rules, you must supply a target
entry for I_grammar. c. This entry bridges the gap between the .1. c implicit
rule and the . c . 0 implicit rule, so that the dependency list for 1_ gr amrnar . 0

extends to 1_ gr ammar • 1. Since there is no rule in the target entry,
1_ gr ammar . c is built using the . I . c implicit rule.

The next target entry describes how to produce the yacc intermediate files.
Because there is no implicit rule for producing both the header file and the C
source file using yacc -d, a target entry must be supplied that includes a rule
for doing so.

In the target entry for y_compi1er. c and y_compi1er. h, the + sign
separating the target names indicates that the entry is for a target group.19 A tar
get group is a set of files, all of which are produced when the rule is performed.
Taken as a group, the set of files is what comprises the target. Without the +
sign, each item listed would comprise a separate target. With a target group,
make checks the modification dates separately against each target file, but per
fonns the target's rule only once, if necessary, per mak e run.

The next example shows a makefile for the more general case of a lex source, a
yacc source, and any number of C source files.

19 Not available with earlier versions of make.

Revision A of 16 March 1987

Chapter 1 - make User's Guide 51

Makefile to a compile C program with lex and yacc sources.

SOURCES.c= c functions.c
LEXFILE.l= 1_9rammar.1
YACCFILE.y= y_compiler.y
ULIBS=
SLIBS=
PROGRAM= a2z

LFLAGS=
YFLAGS=
CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

LEXFILE.c= $(LEXFILE.l:.l=.c)
YACCFILE.c= $(YACCFILE.y:.y=.c)
YACCFILE.h= $(YACCFILE.y:.y=.h)
SOURCES= $(SOURCES.c) $ (LEXFILE.c) $ (YACCFILE.c)
OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $ (SOURCES: .c=.ln)

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $(OBJECTS) $ (ULIBS) $ (SLIBS)

$ (LEXFILE.c) : $ (YACCFILE.h)

$ (YACCFILE.c) + $ (YACCFlLE.h) : $ (YACCFILE.y)
$ (YACC.y) -d $ (YACCFILE.y)
mv y.tab.c $(YACCFlLE.c)
mv y.tab.h $(YACCFILE.h)

$ (ULIBS) : FRC
cd $ (@D); $ (MAKE) $ (@F)

FRC:

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean:
rm -f $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)

Figure 1-14 Makefilefor Compiling C Programs With lex and yacc Sources

Revision A of 16 March 1987

52 make User's Guide

Maintaining Shell Scripts with
make and sees

Running Tests with make

Although a shell script is a plain text file, it must be executable in order to run.
Since sees removes execute permission for files under its control and a shell
script must have execute permission in order to run, a distinction must be drawn
between a shell script and it's "source" file under sees control. make has an
implicit rule for deriving a script from its "source" file under sees. The suffix
for a shell script source file is . sh. Even though the contents of the script and
the . s h file are the same, the script has execute permissions, while the . s h file
does not. make's implicit rule for scripts "derives" the script from its source
file, making a copy of the . sh file (extracting it first, if necessary) and changing
the mode of the resulting script file to allow execution. For example:

Shell scripts often come in handy for running tests, and performing other routine
tasks that are either interactive, or don't require make's dependency checking.
Test suites, in particular, often entail providing a program with specific, repeat
able input that a program might expect to receive from a terminal.

In the case of a library, a set of programs that exercise its various functions may
be written in C, and then executed in a specific order, with specific inputs from a
script. In the case of a utility program, there may be a set of benchmark pro
grams that exercise and time its functions. In each of these cases, the commands
to run each test can be incorporated into a shell script repeatability and easy
maintenance.

Once you have developed a test script that suits your needs, including a target to
run it is easy. Although make's dependency checking may not be needed within
the script itself, you can use it to make sure that the program or library is updated
before running those tests.

Revision A of 16 March 1987

Delayed References to a Shell
Variable

Chapter 1 - make User's Guide 53

In the following target entry for running tests, test depends on the library
named as a dependency to all. If the library is out of date, make rebuilds it and
proceeds with the test. This insures that you always test with an up to date ver
sion:

test: all testscript
set -x ; testscript > /tmp/test.$$$$

testscript: testscript.sh test_l test_2 test_3

test 1 test_2 test_3: $$@.c $ (LIBRARY)
$(LINK.c) -0 $@ $< $(LIBRARY) $(SLIBS)

test also depends on testscr ipt, which in turn depends on the three test
programs. This assures that they too are up to date before make initiates the test
procedure. all is built according to its target entry in the makefile;
testscript is built using the . sh implicit rule; and the test programs are
built using the rule in the last target entry, assuming that there is just one source
file for each test program. (The. c implicit rule doesn't apply to these programs,
because they must link with the proper libraries in addition to their respective . c
files).

The string $ $ $ $, in the rule for t est is, in fact, a pair of references to make's
$ macro (each written as $$). make resolves each such reference into a single
$, and the command line is passed to the shell as:

set -x ; testscript > /usr/tmp/test.$$

In this way, the variable reference is delayed from final expansion until it reaches
the shell, which interprets it as a reference to $ $, the value of which is the pro
cess number of the shell. This number is appended to the output filename so that
the results of each successive test is written to a unique filename with a standard
format. The set -x command forces the shell to display the command on the
terminal. This allows you to see the actual filename containing the test results.

This make file produces:

Revision A of 16 March 1987

54 make User's Guide

1.5. Maintaining Software
Projects

Organizing A Proj eet for Ease
of Maintenance

A more flexible set of entries for testing a library looks like:

TESTSCRIPT= test script
TESTPROGS= test 1 test 2 test 3 - -
test: all $(TESTSCRIPT)

set -x ; $ (TESTSCRIPT) > /tmp/test.$$$$

$ (TESTSCRIPT) : $ (TESTSCRIPT) .sh $(TESTPROGS)

$ (TESTPROGS) : $$@.c $(LIBRARY)
$(LINK.c) -0 $@ $< $(LIBRARY) $ (SLIBS)

In the case of a program, testing routines written in C may not be necessary;
leaving TESTPROGS undefined will mean the target entry for test programs is
omitted from the dependency scan. TESTSCRIPT depends only upon its
corresponding. sh file. If there are test programs that don't depend on a library
(the LIBRARY macro is undefined) this method is still applicable; it is the
equivalent of the . e implicit rule. If, there is a test program that depends on the
same libraries as the program does, you can either replace references to the
LIBRARY macro with references to ULIBS:

$ (TESTPROGS) : $$@.c $ (ULIBS)
$(LINK.c) -0 $@ $< $ (ULIBS) $(SLIBS)

make is especially useful when a software project consists of a system of pro
grams and libraries. By taking advantage of nested make commands, you can
use it to maintain object files, executables, and libraries in a whole hierarchy of
directories. You can use make in conjunction with sees, to assure that sources
are maintained in a controlled manner, and that programs built from them are
consistent. This means that you can provide other programmers with duplicates
of the directory hierarchy for simultaneous development and testing if you wish
(although there are tradeoffs to consider).

You can use make to build the entire project and install final copies of various
modules onto another filesystem for integration and distribution.

As mentioned earlier, one good way to organize a project is to segregate each
major piece into its own directory. A project broken out this way usually resides
within a single file-system or directory hierarchy. Header files could reside in
one subdirectory, libraries in another, and programs in still another. Documenta
tion, such as Reference Pages, may also be kept on hand in another subdirectory.
Suppose that a project is composed of one executable program, one library that
you supply, a set of header files for the library routines, and some documentation,
structured as shown.

Revision A of 16 March 1987

sees

Chapter 1 - make User's Guide 55

project

bin lib include doc

Makefile Makefile Hakefile Makefile
data.c

main.c

calc.c pkgdefs.h project.ms

draw.c pkg.3x

map.c program. 1

sees sees sees

The makefiles in each subdirectory can be borrowed from examples in earlier
sections, but something more is needed to manage the project as a whole. A
carefully structured makefile in the root directory, the root makefile for the pro
ject, provides target entries for managing the project as a single entity.

As a project grows, the need for consistent, easy-to-use makefiles also grows.
Macros and target names should have the same meanings no matter which
makefile you are reading. Conditional macro definitions and compilation options
for output variants should be consistent across the entire project.

Where feasible, a template approach to writing makefiles makes sense. This
makes it easy for you keep track of how the project gets built. All you have to do
to add a new type of module is to make a new directory for it, copy an appropri
ate makefile into that directory, and make a few minor edits to change macro
values. (Of course, you also need to add the new module to the list of things to
build in the root makefile, but that comes later.)

Although a makefile should document exactly what it builds, it does not neces
sarily have to contain an explanation of every step. After all, the idea is to spend
time working on the code, not the makefiles.

Conventions for macro names, such as those for the various source files in the
above examples, should be instituted and observed throughout the project.
Mnemonic macro names mean that although you may not remember the exact
value of the macro, you'll know the type of value it represents (and that's usually
more valuable when deciphering a makefile anyway).

Using include Makefiles One method of simplifying makefiles, while providing a consistent compilation
environment, is to use make's

inc 1 ude filename

directive to read in the contents of a named makefile. For instance, there is no
need to duplicate the pattern-matching rule for processing troff sources in
each makefile, when you can include it's target entry. When reading a makefile
that contains the include directive:

.\sun
• microsystems

Revision A of 16 March 1987

56 make User's Guide

Installing Finished Programs
and Libraries

SOURCES= main.c data.c

clean: $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)
include .. /pm.rules.mk

make reads in the contents of .. /pm. rules .rnk, shown here:

41= pm.rules.mk
41=

41= Simple "include" makefile for pattern matching
41= rules.

%.tr: %.ms
troff -t -ms $< > $@

%.nr: %.ms
nroff -ms $< > $@

While it may seem silly to propagate something like this, keeping the document
source for a module's specification in the same directory as the source code
makes it easy to find. Having an implicit rule to fonnat the document whenever
it is updated makes updating it a whole lot easier.

Although you might not want to rebuild the specification along with the module,
and probably don't want its pattern matching rules cluttering up the makefile,
ancillary little tidbits like this are handy when you want them.

When a program is ready to be released for outside testing or general use, you
can use make to install it. Adding a new target and new macro definition to do
so is easy:

DESTDIR= /proto/project/bin

install: $ (PROGRAM)
-mkdir $(DESTDIR)
cp $ (PROGRAM) $ (DESTDIR)

A similar target entry can be used for installing a library under the macro naming
scheme used in this manual:

DESTDIR= /proto/project/lib

install: $ (LIBRARY)
-mkdir $(DESTDIR)
cp $ (LIBRARY) $ (DESTDIR)

4}\sun
~ microsystems

Revision A of 16 March 1987

Building the Entire Project

A list of header files might appear as:

DESTDIR= /proto/project/include

install: $(LIST)
-mkdir $ (DESTDIR)
cp $(LIST) $ (DESTDIR)

Chapter 1 - make User's Guide 57

Finally, a list of Reference Manual Pages, which are typically distributed in
source fonn, are installed just like header files (these may comprise a subset of
the items in the doc subdirectory).

From time to time it is necessary to take a snapshot of the sources, and the object
files that they produce. This can either be done as a checkpoint in the develop
ment process, or as an intermediate or final build for release to users. Building
an entire project is simply a matter of invoking make successively in each sub
directory to build and install each module.

Subsequent examples show how to incorporate these make commands in the
root make file. The root make file should also allow you to build debugging and
profiling variants of the project, clean the directories, and install completed
modules. The following simple example uses the shell for construct to loop
through the list of subdirectories and invoke a nested make command in each.

* Simple makefile to maintain a project.

DIRS= bin include lib doc

all debug profile lint clean test install: FRe
for i in $(DIRS) ; do \

cd $$i ; $ (MAKE) $@; \
done

FRe:

The delayed reference, $ $ i, is used to pass a reference to the index variable for
the loop, $ i, to the shell. It is important to note that the shell ignores the return
status of commands running in the loop. If a make command in one directory
fails for some reason, processing continues with the next iteration and the next
value for i.

4}\sun
~ microsyslems

Revision A of 16 March 1987

58 make User's Guide

Maintaining Directory
Hierarchies With Recursive
Makefiles

If you extend your project hierarchy to include more layers:

, ,
~

chances are that not only will the makefile in each intermediate directory have to
produce target files, but it will also have to invoke nested make commands for
its subdirectories. Files in the current directory can sometimes depend on files in
subdirectories. Their target entries need to depend on their nested counterparts ill
the subdirectories.

This means that the nested make command for each such target should run
before the command in the local directory does. One way to assure that the com
mands run in the proper order is to make a separate entry for the nested part, and
another for the local part. If you add these new targets to the dependency list for
the original target, its action will encompass them both.

Targets that encompass equivalent actions in both the local directory and in sub
directories are referred to as recursive targets.20 A makefile with recursive targets
is referred to as a recursive makefile.

In the case of all, the the nested dependency can be named all. nested; the
local dependency, all. local:

all: all.nested all. local

all.nested:
for i in $(DIRS) ; do \

cd $$i $ (MAKE) all \
done

all.local: $ (PROGRAM)

Note that the nested target invokes make with the argument all, not
all. nested. The nested make must also be recursive, unless it is at the bot
tom of the hierarchy. Either way, it should be invoked with the same target name
as its parent target. In the make file for a leaf directory (one with no subdirec
tories to descend into), you can simply give a null definition to the DIRS macro.
This will halt any further descent by all. nested. When the shell begins a

20 Strictly speaking, any target that calls make, with its name as an argument, is recursive. However,
here the term is reserved for the narrower case of targets that have both nested and local actions. Targets
that only have nested actions are referred to as "nested" targets .

• \sun ~~ microsystems
Revision A of 16 March 1987

Recursive install Targets

Chapter 1 - make User's Guide 59

for loop with an empty list for the index variable, it performs zero iterations of
the loop; the loop terminates without having issued any nested make commands;
the shell exits gracefully. You can also use one of the earlier make files that
omits the recursive functions, however, if you add yet another layer of subdirec
tories later on, you may have to switch makefiles at that time.

This same principle can be extended to all of the generic targets. The install
target, however, is something of a special case. If the destination is a parallel
directory hierarchy (such as when you are installing completed source code), the
parent directories must be created before the destination subdirectories can be.
This often means that the make install target in the current directory (which
creates the destination directory if needed) must be performed before that in any
subdirectory can succeed. So, install. local must appear ahead of
install. nested in the dependency list for install.21

This next example shows a recursive makefile in a directory with a C program
and subdirectories.

21 If the local target depends on files within a subdirectory. this may
force make to descend into that subdirectory twice during a make install run.

Revision A of 16 March 1987

60 make User's Guide

Recursive makefile for a C program and subdirectories.
Also includes test and install targets.

SOURCES= main.c data.c
ULIBS= .. /lib/libpkg.a
SLIBS= -lcurses -ltermlib
PROGRAM= program

DIRS= sun2 sun3
TESTSCRIPT= testscript
TESTPROGS= test_l test_2 test 3
DESTDIR= /proto/project/bin

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $ (SOURCES: .c=.ln)
TARGETS.nested= all.nested debug.nested profile.nested \

lint.nested clean.nested test.nested in~tall.nested

.KEEP STATE:

debug := CFLAGS= -g
profile := CFLAGS= -pg -0
debug. local := CFLAGS= -g # as in: "make debug.local"
profile.local := CFLAGS= -pg -0 # "make profile.local"

Recursive targets:

all debug profile lint clean test: $$@.nested $$@.local
install: $$@.local $$@.nested

Nested targets:

$ (TARGETS.nested) :
for i in $(DIRS) ; do \

cd $$i ; $ (MAKE) $(@:.nested=) \
done

Local target entries:

all.local debug.local profile. local: $ (PROGRAM)

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (ULIBS) $(SLIBS)

$ (ULIBS) : FRC
cd $(@D); $ (MAKE) $(@F)

FRC:

lint.local: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean. local:
rm -f $ (PROGRAM) $ (OBJECTS) $ (LINTFILES) $ (TESTSCRIPT) $ (TESTPROGS)

~\sun ~ microsystems
Revision A of 16 March 1987

Chapter I-make User's Guide 61

test. local: all $(TESTSCRIPT)
set -x ; $ (TESTSCRIPT) > /tmp/test.$$$$

$ (TESTSCRIPT) : $ (TESTSCRIPT) .sh $ (TESTPROGS)
$ (TESTPROGS) : $$@.c $ (ULIBS)

$(LINK.c) -0 $@ $< $ (ULIBS) $(SLIBS)

install. local: $ (PROGRAM)
-mkdir $ (DESTDIR)
-cp $ (PROGRAM) $ (DESTDIR)

Figure 1-15

Maintaining A Large Library as
a Hierarchy of Subsidiaries

Recursive Makefile for Building a C Program and Subdirectories

Notice that you can still use make to build a local target~ simply by appending
the .local suffix to the target name that you~re used to. The command "make
all. local" does exactly what you~d expect. However~ we recommend
against making a habit of this practice~ especially where local targets rely on
modules in nested targets. If the files in the subdirectories are up to date~ it
doesn~t take very long for make to check them. If they aren't up to date~ and
you've built the local target~ there is a strong possibility that the local target file
will be inconsistent with those lower-level files~ at least until it is clean'ed and
remade.

When maintaining a very large library, it is sometimes easier to break it up into
smaller, subsidiary libraries~ and use make to combine them into a complete
package. Although you cannot combine libraries directly with ar, you can
extract the member files from each subsidiary library, and then archive those files
in another step:

A subsidiary library is maintained using a makefile in its own directory, along
with the (object) files it is built from. The makefile for the complete library typi
cally makes a symbolic link to each subsidiary archive, extracts their contents
into a temporary subdirectory, and archives the resulting files to form the com
plete package.

Revision A of 16 March 1987

62 make User's Guide

In general, use of shell filename
wildcards is considered to be bad
form in a makefile. If you do use it,
you need to take steps to insure
that it excludes spurious files,
perhaps by isolating affected files in
a temporary subdirectory.

The next example updates the subsidiary libraries, creates a temporary directory
in which to extracted the files, and extracts them. It uses the * (shell) wild card
within that temporary directory to generate the collated list of files. While
filename substitutions are generally frowned upon, this use of the wild card is
acceptable because the directory is created afresh whenever the target is built
This guarantees that it will contain only files extracted during the currentmake
run.

The example relies on a naming convention for directories. The name of the
directory is taken from the basename of the library it contains. For instance, if
libx. a is a subsidiary library, the directory that contains it is named libx. It
makes use of suffix replacements in dynamic-macro references to derive the
directory name for each specific subdirectory . (You can verify yourself that this
is necessary.)

It uses a shell command substitution to collate the object files into proper
sequence for linking (using lorder and tsort) as it archives them into the
package. Finally, it removes the temporary directory and its contents.

* Simple makefile for collating a library from * subsidiaries.

LIBRARY= libz.a
LIBS= libx.a liby.a

ARFLAGS=
CFLAGS= -0
CPPFLAGS=

.KEEP STATE:

.PRECIOUS: libz.a

all: $ (LIBRARY)

$ (LIBRARY) : $ (LIBS)
-rm -rf tmp
-mkdir tmp
set -x ; for i in $ (LIBS) ; do \

(cd tmp ar x .. /$$i) ; \
done
(cd tmp ; rm -f .SYMDEF; ar cr .. /$@ 'lorder * I tsort')
-ranlib $@
-rm -rf tmp $(LIBS)

$(LIBS): FRC

FRC:

-cd $(@: .a=) ; $ (MAKE) $@
-In -s $(@:.a=)/$@ $@

For the sake of clarity, this example omits support for alternate variants, as well
as the targets for clean, install, and test (lint does not apply since the
source files are in the subdirectories). This material is added in later examples.

The rm -f . SYMDEF command embedded in the collating line prevents a
symbol table in asubsidiary (produced by running ranlib on that library) from

Revision A of 16 March 1987

Chapter 1 - make User's Guide 63

being archived in this library.

Since the nested make commands build the subsidiary libraries before the
currently library is processed, it is a simple matter to extend this makefile to
account for libraries built from both subsidiaries and object files in the current
directory. You need only add the list of object files to the dependency list for the
library, and a command to copy them into the temporary subdirectory for colla
tion with object files extracted from subsidiary libraries.

* Simple makefile for collating a library from * subsidiaries and local object files.

LIBRARY= libz.a
LIBS= libx.a liby.a
SOURCES= map.o calc.o draw.o
ULIBS= $(LIBRARY)

ARFLAGS=
CFLAGS= -0
CPPFLAGS=

OBJECTS= $(SOURCES.c=.o)

.KEEP STATE:

.PRECIOUS: libz.a

all: $ (LIBRARY)

$ (LIBRARY) : $ (LIBS) $ (OBJECTS)
-rm -rf tmp
-mkdir tmp

-cp $(OBJECTS) tmp
set -x ; for i in $(LIBS) ; do \

(cd tmp ; ar x . . /$$i) ; \
done
(cd tmp ; r.m -f __ .SYMDEF ; ar cr .. /$@ 'lorder * I tsort')
-ranlib $@
-rm -rf tmp $(LIBS)

$(LIBS): FRC

FRC:

-cd $(@: .a=) ; $ (MAKE) $@
-In -8 $(@:.a=}/$@ $@

The next example includes support for debugging and profiling variants, along
with recursive targets for clean, lint, test, and install.

~\sun \~ microsystems
Revision A of 16 March 1987

64 make User's Guide

Makefile for collating a library from local object files and
subsidiary libraries. Supports alternate variants, and maintains
subdirectories recursively.

LIBRARY= libz.a
LIBS= libx.a liby.a
SOURCES= map.c calc.c draw.c
ULIBS= $ (LIBRARY)
SLIBS= -lcurses -ltermlib

DIRS= $(LIBS:.a=)
TESTSCRIPT= testscript
TESTPROGS= test 1 test 2 test 3 - -
DESTDIR= /proto/project/lib

ARFLAGS=
CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=
TARGETS= all

OBJECTS= $ (SOURCES.c: .c=.o)
LINTFILES= $(SOURCES.c:.c=.ln)
TARGETS.nested= lint.nested clean.nested test.nested \

install.nested

.KEEP STATE:

.PRECIOUS: libz.a

all profile debug: $ (LIBRARY)

debug := CFLAGS= -g
profile := CFLAGS= -0 -pg
debug := TARGET= debug
profile := TARGET= profile

$ (LIBRARY) : $(LIBS) $ (OBJECTS)
-rm -rf tmp
-mkdir tmp

-cp $ (OBJECTS) tmp
set -x ; for i in $(LIBS) ; do \

(cd tmp ; ar x .. / $ $i) ; \
done
(cd tmp ; rm -f .SYMDEF; ar cr .. /$@ 'lorder * I tsort')
-ranlib $@
-rm -rf tmp $(LIBS)

$(LIBS): FRC
-cd $(@: .a=) ; $ (MAKE) $ (TARGET)
-In -s $(@: .a=)/$@ $@

FRC:

Recursive targets:

lint clean test: $$@.nested $$@.local
install: $$@.local $$@.nested

.\sun ,~ microsystems
Revision A of 16 March 1987

Chapter 1 - make User's Guide 65

* Nested targets:

$ (TARGETS.nested) :
for i in $(DIRS) ; do \

cd $$i ; $ (MAKE) $(@: .nested=) \
done

* Local target entries:

lint.local: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean.local:
rm -f $ (LIBRARY) $ (OBJECTS) $ (LINTFILES) $ (TESTSCRIPT) $ (TESTPROGS)

test.local: all $(TESTSCRIPT)
set -x ; $ (TESTSCRIPT) > /tmp/test.$$$$

$ (TESTSCRIPT) : $ (TESTSCRIPT) .sh $(TESTPROGS)
$ (TESTPROGS) : $$@.c $ (ULIBS)

$(LINK.c) -0 $@ $< $ (ULIBS) $(SLIBS)

install.local: $ (LIBRARY)

In Conclusion

-mkdir $ (DESTDIR)
-cp $(PROGRAM) $ (DESTDIR)

Figure 1-16 Makefilefor a Hierarchy of Subsidiary Libraries with Variants

make has evolved into a powerful and flexible tool for consistently processing
files that stand in a hierarchical relationship to one another. The methods and
examples shown in this manual are intended to provide you with an exposure to
the kinds of problems that lend themselves to solution with make. There is a
large body of folklore about make; strong and varied opinions about its "best"
use abound. This manual does not make the claim that anyone approach or
example is necessarily the best available. Compromises between clarity and
functionality were made in many of the examples.

Also, there is considerable opinion both pro and against makefiles that use mac
ros extensively. Some experts prefer to tailor makefiles for specific situations.
Others prefer that all makefiles look the same and work the same way.

This manual takes the latter approach. The examples are intended to be useful,
just as they are, in a wide variety of not-too-complicated settings. As procedures
become more complicated, so do the makefiles that implement them. The trick is
to know which approach will yield a reasonable makefile that works in a given
situation. The examples are intended to give you a flavor for common situations,
and some fairly straightforward methods to simplify them using make.

If a template approach is used in a project from the outset, chances are that cus
tom makefiles that evolve from the templates will be more familiar, and therefore
easier to understand, to integrate, to maintain, and more importantly, to re-use.
After all, the less time you spend tinkering with the makefiles, the more time you
have to develop your program or project.

Revision A of 16 March 1987

A
nake Enhancements Summary

nake Enhancements Summary .. 69

A.I. New Features .. 69

Default Makefile .. 69

The State File . make. sta te .. 69

Hidden Dependency Checking .. 69

Command Dependency Checking ... 69

Automatic sees Extraction ... 70

Tilde Rules Superceded ... 70

sees History Files .. 70

Pattern Matching Rules: Convenient Implicit Rules ... :............................ 70

New Options .. 71

Support for Modula-2 ... 71

Naming Scheme for Predefined Macros .. 71

New Special-Purpose Targets .. 71

New Implicit Rule for lint .. 72

Macro Processing Changes ... 72

Macros: Definition, Substitution, and Substring
Replacement ... 72

Improved ar Library Support ... 72

Lists of Members ... 72

Handling of ar's Member-Name Length Limitation 73

Target Groups ... 73

A.2. Incompatibilities With Previous versions of make 73

New Meaning for -d Option .. 73

Dynamic Macros ... 73

l.l. New Features

~efault Makefile

'he State File
make. state

Iidden Dependency Checking

~ommand Dependency
:hecking

A
make Enhancements Summary

make's implicit rules and macro definitions are no longer hard-coded within the
program itself. They are now contained in the default makefile
/ usr / inc I ude/make/ def aul t . mk. make reads this file automatically,
unless there is a file in the local directory named defaul t . mk. When you use
a local default .mk file, you must add an include
/usr/include/make/default .mk directive to get the standard implicit
rules and predefined macros.

make also reads from a state file, . make. state in the directory. When the
special-function target. KEEP _STATE is used in the makefile, make writes out
a cumulative report for each target containing a list of hidden dependencies (as
reported by compilation processors such as cpp), and the most recent rule used
to build each target. The state file is very similar in format to an ordinary
makefile.

When activated by the presence of the . KEEP_STATE target, make uses infor
mation reported from cpp, f77, make, pc and other compilation commands,
and performs a dependency check against any header files (or in some cases,
libraries) that are incorporated into the target file. These "hidden" dependency
files do not appear in the dependency list, and often do not reside in the local
directory.

When . KEEP_STATE is in effect, if any command line used to build a target
should changes between make runs, perhaps by editing the makefile, or supply
ing a command-line definition for (a macro like) CFLAGS, the target is treated as
if it were out of date; make rebuilds it (even if it is newer that the files it depends
on).

69 Revision A of 16 March 1987

70 make User's Guide

Automatic see s Extraction

Tilde Rules Superceded

see s History Files

Pattern Matching Rules:
Convenient Implicit Rules

This version of make automatically runs sees get, as appropriate, when there
is no rule to build a target file. A tilde appended to a suffix in the suffixes list
indicates that see s extraction is appropriate for files having that suffix. There
are no longer special versions of implicit rules that include commands to extract
current versions of sees files.

To inhibit or alter the procedure for automatic extraction of the current sees
version, redefine the . sees _GET special-function target. An empty rule for this
target inhibits automatic extraction entirely.

make no longer searches the current directory for sees history (s.) files.
These files must now reside in an sees subdirectory.

Pattern matching rules have been added to simplify the process of adding new
implicit rules of your own design. A target entry of the form:

tp %ts : dp %ds
rule

defines a pattern matching rule for building a target from a a related dependency
file. tp is the target's prefix; ts, its suffix. dp is the dependency's prefix; ds, its
suffix. The % symbol is a wild card that matches a contiguous string of zero or
more characters appearing in both the target and the dependency filename. For
example, the following target entry defines a pattern matching rule for building a
troff output file, ending in . tr from a file that uses the -ms macro package
ending in . ms:

%.tr: %.ms
troff -t -ms $< > $@

With this entry in the makefile, the command:

make doc.tr

produces:

Using that same entry, if there is a file named doe2. ms the command:

make doc2.tr

produces:

An explicit target entry overrides any pattern matching rule that might apply to a
target. Pattern matching rules, in tum, normally override implicit rules. An
exception to this is when the pattern matching rule has no commands in the rule

Revision A of 16 March 1987

New Options

Support for Modula-2

Naming Scheme for
Predefined Macros

New Special-Purpose Targets
The . KEEP STATE target should
not be remOVed once it has been
used in a make run.

Appendix A - make Enhancements Summary 71

portion of its target entry. In this case, make continues the search for a rule to
build the target, and using as its dependency the file that matched the (depen
dency) pattern.

There are a number of new options:

-d Display dependency-check results for each target processed. Displays all
dependencies that are newer, or indicates that the target was built as the
result of a command dependency.

-dd The same function as -d had in earlier versions of make. Displays a great
deal of output about all details of the make run, including internal states,
etc.

-D Display the text of the makefile.

-DD Display the text of the makefile, and of the default makefile being used.

-p Print macro definitions and target entries.

-P Report on dependency checks without rebuilding targets.

This version of make contains predefined macros and implicit rules for compil
ing Modula-2 sources.

The naming scheme for predefined macros has been rationalized, and the implicit
rules have been rewritten to reflect the new scheme. The macros and implicit
rules are upward compatible with existing makefiles.

For example, there is now a macro called SUFFIXES, that contains the default
entries for the suffixes list; the target entry for the default suffixes list looks like:

.SUFFIXES: $ (SUFFIXES)

If you want to insert new suffixes at the head of the list, you can do so quite sim
ply as follows:

.SUFFIXES:

.SUFFIXES: .ms .tr $ (SUFFIXES)

Other examples include the macros for standard compilations commands:

LINK.c
COMPILE.c

Standard cc command line for producing executable files.
Standard cc command line for producing object files.

. KEEP STATE When included in a makefile, this target enables hidden depen
dency and command dependency checking. In addition, make
updates the state file. make. state after each run.

. INIT and . DONE
These targets can be used to supply commands to perform at
the beginning and end, respectively, of each make run.

Revision A of 16 March 1987

72 make User's Guide

New Implicit Rule for lint

Macro Processing Changes

Macros: Definition,
Substitution, and Substring
Replacement

Improved ar Library Support
Lists of Members

.sees GET This target contains the rule for extracting current versions
from sec s history files.

Implicit rules have been added to support incremental verification with lint.

A macro's value can now be of virtually any length.

New Append Operator: +=
This operator appends a (SPACE), followed by a word or
words, onto the existing value of the macro.

Conditional Macro Definitions: : =

This operator indicates a conditional (targetwise) macro
definition. A makefile entry of the form:

target : = macro = value

indicates that macro takes the indicated value while processing target and
its dependencies.

Substring Replacement Precedence
Substring replacement now takes place following expansion of
the macro being referred to. Previous versions of make
applied the substitution first, with results that were counterin
tuitive.

Nested Macro References
make now expands inner references before parsing the outer
reference. So, a nested reference as in this example:

CFLAGS-g = -I .. /include
OPTION = -g
$(CFLAGS$(OPTION»

now yields the value -I .. / include, rather than a null
value, as it would have in previous versions.

Cross-Compilation Macros
The predefined macros HOST_ARCH and TARGET_ARCH are
available for use in cross-compilations. The HOST_ARCH
macro is automatically set to the type of processor in your
workstation.

make automatically updates an ar library member from a file having the same
name as the member. Also, make now supports lists of members as dependency
names of the form:

lih.a: lih.a (member member .. .)

Revision A of 16 March 1987

Handling of ar's Member
Name Length Limitation

Target Groups

A.2. Incompatibilities With
Previous versions of
make

New Meaning for -d Option

Dynamic Macros

Appendix A - make Enhancements Summary 73

make now copes with the IS-character member-name length limitation in ar. It
now recognizes a member name that matches the first 15 characters of a filename
as the member corresponding to the file.

It is now possible to specify that a rule produces a set of target files. A + sign
between target names in the target entry indicates that the named targets
comprise a group. The target group's rule is performed once, at most, in a make
invocation.

The -d option now reports the reason why a target is considered out of date.

Although the dynamic macros < and * were documented being assigned only for
implicit rules and the . DEFAULT target, in some cases they actually were
assigned for explicit target entries. The assignment action is now documented
properly.

The actual value assigned to each of these macros is derived by the same pro
cedure used within implicit rules (this hasn't changed). This can lead to unex
pected results when they are used in explicit target entries.

Even if you supply explicit dependencies, make doesn't use them to derive
values for these macros. Instead, it searches for an appropriate implicit rule and
dependency file. For instance, if you have the explicit target entry:

test: test.f
echo $<

and the files: t est. c and t est. f, you might expect that $ < would be
assigned the value test. f. This is not the case. It is assigned test. c,
because . c is ahead of . f in the suffixes list:

For explicit entries, we recommend a strictly detenninistic method for deriving a
dependency name using macro references and suffix replacements. For example,
you could use: $@ . f instead of $< to derive the dependency name. To derive
the basename of a . 0 target file, you could use the suffix replacement macro
reference: $ (@ : • 0=) instead of $ * .

• \sun
,,, microsystems

Revision A of 16 March 1987

B
make Manual Page

make Manual Page ... 77

MAKE (1) USER COMMANDS MAKE(I)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] ... [-d] [-dd] [-D] [-DD] [-e] [-i] [-k] [-0] [-p] [-p]

[-q] [-r] [-s] [-s] [-t] [target ...] [macro=value ...]

DESCRIPTION
make executes a list of shell commands associated with each target. typically to create or update a file of
the same name. makefile contains entries that describe how to bring a target up to date with respect to oth
ers on which it depends. These prerequisite targets are called dependencies. Since each dependency is a
target, it may have dependencies of its own.

Targets, dependencies, and sub-dependencies comprise a tree structure that make traces when deciding
whether or not to rebuild a target. make recursively checks each target against its dependencies, beginning
with the first target entry in makefile if none is supplied on the command line. If, after processing its all of
its dependencies, a target file is found either to be missing, or to be older than any of its dependency files,
make rebuilds it Optionally with this version of make, a target can be treated as out-of-date when the
commands used to generate it have changed.

To build a given target, make executes the list of commands, called a rule. This rule may be listed expli
citly in the target's makefile entry, or it may be supplied implicitly by make.

If no makefile is specified with a -f option, make attempts to:

• read a file named makefile. Or, if there is an sees(l) history file for it, make attempts to extract and read
the most recent version of that file.

• read, or extract and read, the current version of a file named M akefile.

If no target is specified on the command line, make uses the first target defined in makefile.

If a target has no makefile entry, or if its entry has no rule, make attempts to derive a rule by each of the
following methods, in turn, until a suitable rule is found. (Each method is described under USAGE below.)

• Pattern matching rules.

• Implicit rules, read in from a user-supplied makefile.

• Standard implicit rules (also known as suffix rules), typically read in from the file
lusrlincludelmakeldefault.mk .

• sees(1) extraction. make extracts the most recent version from the sees history file (if any). See the
description of the .sees _GET: special-function target for details.

• the rule from the .DEFAULT: target entry, if there is such an entry in the makefile.

If there is no makefile entry for a target, if no rule can be derived for building it, and if no file by that name
is present, make issues an error message and stops.

OPTIONS
-fmakefile

Use the description file makefile. A - as the makefile argument denotes the standard input The
contents of makefile. when present, override the standard set of implicit rules and predefined mac
ros. When more than one -f makefile argument pair appears, make uses the concatenation of
those files, in order of appearance.

-d When a target is rebuilt, show the criteria by which make found it to be out-of-date. make
displays any and all dependencies that are newer. In addition, make displays options read in from
the MAKEFLAGS environment variable.

-dd Display the dependency check and processing in vast detail.

-D Show the text of the makefile.

-DD Display the text of the makefile, the default file, the state file, and all hidden-dependency reports.

SunPro make Last change: 11 March 1987 77

MAKE (1) USER COMMANDS MAKE(I)

USAGE

-e Environment variables override assignments within makefiles.

-i Ignore error codes returned by commands. Equivalent to the special-function target .IGNORE:.

-k When a nonzero error status is returned by a command, abandon work on the current target, but
continue with other branches that do not depend on that target.

-0 No execution mode. Print commandst but do not execute them. Even lines beginning with an @
are printed. Howevert if a command line contains a reference to the $(MAKE) macrot that line is
always executed (see the discussion of MAKE FLAGS in Reading Makefiles and the Environment).

-p Print out the complete set of macro definitions and target descriptions.

-p Report dependencies recursively to show the entire dependency hierarchYt without rebuilding any
targets.

-q Question mode. make returns a zero or nonzero status code depending on whether or not the tar
get file is up to date.

-r Do not read in the default file.

-s Silent mode. Do not print command lines before executing them. Equivalent to the special-
function target .SILENT:.

-S Undo the effect of the -k option. Stop processing when a non-zero exit status is returned by a
command

-t Touch the target files (bringing them up to date) rather than performing their rules. This ean be
dangerous when files are maintained by more than one person. When the .KEEP _STATE: target
appears in the makefilet this option updates the state file just as if the rules had been performed.

maero=value
Macro definition. This definition remains fixed for the make invocation. It overrides any regular
definition for the specified macro within the niakefile itself, or in the environment. However, this
definition can still be overridden by conditional macro assignments and delayed macro assign
ments in target entries.

Refer to Doing More With UNIX: Beginner's Guide, and Make in Programming Utilitiesfor the Sun Works
tation for tutorial infonnation about make.

Reading Makefiles and the Environment

78

When make first starts, it reads the MAKEFLAGS environment variable to obtain a list of options. Then it
reads the command line for additional options that also take effect

Next, make reads in a default makefile that typically contains predefined macro definitions, target entries
for implicit rules, and additional rules, such as the rule for extracting sees(l) files. If present, make uses
the file default.1nk in the current directory; otherwise it reads the file lusrlincludelmakeldefault.mk, which
contains the standard definitions and rules. Use the directive include lusr/include/makeldefault.mk. in
your local default.1nk file to include them.

Next, make imports variables from the environment (unless the -e option is in effect), treating them as
defined macros. Because make uses the most recent definition it encounters, a macro definition in the
makefile normally overrides an environment variable of the same name. When -e is in effect, however,
environment variables are read in after all makefiles have been read. In that case, the environment variable
takes precedence over any makefile definition.

Next, make reads the state file, .make.state in the local directory if it exists, and then any makefiles you
specify with -f, or one of makefile or J.:fakefile as described above.

Finally, (after reading the environment if -e is in effect), make reads in any macro definitions from the
command line. These override macro definitions in the makefile and the environment both. But, if there is
a definition for the macro in a makefile used by a nested make command, that definition takes effect for the
nested make t unless you use the --e option. With -e, the nested make also uses the value set on the

Last change: 11 March 1987 SunPromake

MAKE (1) USER COMMANDS MAKE(I)

command line.

make exports its environment variables to each command or shell that it invokes. It does not export macros
defined in the makefile. If an environment variable is set, and a macro with the same name is defined on
the command line, mo.ke exports its value as defined on the command line. Unless -e is in effect, macro
definitions within the makefile take precedence over those imported from the environment.

The macros MAKEFLAGS, MAKE and SHELL are special cases. See Special-Purpose Macros below, for
details.

Makefile Target Entries
A target entry has the following format:

target .. . [: I ::] [dependency] ... [; command] ...
[command]

The first line contains the name of a target (or a space-separated list of target names), terminated with a
colon or double colon. This may be followed by a dependency, or a dependency list that make checks in
order. The dependency list may be terminated with a semicolon (;), which in tum can be followed by a
Bourne shell command. Subsequent lines in the target entry begin with a TAB, and contain Bourne shell
commands. These commands comprise a rule for building the target

Shell commands may be continued across input lines by escaping the NEWLINE with a backslash (\). The
continuing line must also start with a TAB.

To rebuild a target, make expands macros, strips off initial TABs and either executes the command directly
(if it contains no shell metacharacters), or passes each command line to a Bourne shell for execution.

The first line that does not begin with a TAB or # begins another target or macro definition.

Makefile Special Characters
Global

Start a comment The comment ends at the next NEWLINE. If the # follows the TAB in a com
mand line, that line is passed to the shell (which also treats # as the start of a comment).

include filename
If the word include appears as the first seven letters of a line and is followed by a SPACE or TAB,
the string that follows is taken as a filename to interpolate at that line. include files can be nested
to a depth of no more than about 16.

Targets and Dependencies

.. ..

Target list terminator. Words following the colon are added to the dependency list for the target
or targets. If a target is named in more than one colon-terminated target entry, the dependencies
for all its entries are added to form that target's complete dependency list

Target terminator for alternate dependencies. When used in place of a colon (:) the double-colon
allows a target to be checked and Updated with respect to alternate dependency lists. When the
target is out-of-date with respect to dependencies listed in one entry, it is built according to the
rule for that entry. When out-of-date with respect to dependencies in an alternate entry, it is built
according the rule in that alternate entry. Implicit rules do not apply to double-colon targets; you
must supply a rule for each entry. If no dependencies are specified, the rule is always performed.

target [+ target . ..] :
Target group. The rule in the target entry builds all the indicated targets as a group. It is normally
performed only once per make run, but is checked for command dependencies every time a target
in the group is encountered in the dependency scan.

% Pattern matching rule wild card character. Like the * shell wild card, % matches any string of
zero or more characters occurring in both a target and the name of a dependency file. See Pattern
Matching Rules, below for details.

SunPromake Last change: 11 March 1987 79

MAKE (1) USER COMMANDS MAKE(I)

80

Macros

=

$

()
{}

$$

+=

Rules

Macro definition. The word to the left of this character is the macro name; words to the right
comprise its value. Leading white space between the = and the first word of the value is ignored.
A word break following the = is implied. Trailing white space is included in the value.

Macro reference. The following character, or the parenthesized or bracketed string, is interpreted
as a macro reference: make expands the reference (including the $) by replacing it with the
macro's value.

Macro-name delimiters. A parenthesized or bracketed word appended to a $ is taken as the name
of the macro being referred to. Without the delimiters, make recognizes only the first character as
the macro name.

A reference to the dollar-sign macro, the valu~ of which is the character $. Used to pass variable
expressions beginning with $ to the shell, to refer to environment variables which are expanded by
the shell, or to delay processing of dynamic macros within the dependency list of a target, until
that target is actually processed.

When used in place of =, appends a string to a macro definition (must be surrounded by white
space, unlike =).

Conditional macro assignment. When preceded by a list of targets with explicit target entries, the
macro definition that follows takes effect when processing only those targets, and their dependen
cies.

make ignores any nonzero error code returned by a command line for which the first non-TAB
character is a -. This character is not passed to the shell as part of the command line. make nor
mally terminates when a command returns nonzero status, unless the -i or -k options, or the
.IGNORE: special-function target is in effect

@ If the first non-TAB character is a @, make does not print the command line before executing it.
This character is not passed to the shell.

1 Escape command-dependency checking. Command lines starting with this character are not sub
ject to command dependency checking.

Force command-dependency checking. Command-dependency checking is applied to command
lines for which it would otherwise be suppressed. This checking is normally suppressed for lines
that contain references to the 1 dynamic macro (for example, $1).

When any combination of -, @, 1, or! appear as the first characters after the TAB, all apply. None are
passed to the shell.

Special-Function Targets
When incorporated in a makefile, the following target names perform special-functions:

.DEFAULT:
If it has an entry in the rnakefile, the rule for this target is used to process a target when there is no
other entry for it, no rule for building it, and no sees (1) history file from which to extract a current
version. make ignores any dependencies for this target .

• DONE: If defined in the makefile, make processes this target and its dependencies after all other targets
are built

.IGNORE:
Ignore errors. When this target appears in the rnakefile, make ignores non-zero error codes
returned from commands .

.INIT: If defined in the makefile, this target and its dependencies are built before any other targets are
processed

Last change: 11 March 1987 SunPromake

MAKE (1) USER COMMANDS MAKE (1)

.KEEP _STATE:
If this target appears in the makefile, make updates the state file, .make.state, in the current direc
tory. This target also activates command dependencies, and hidden dependency checks .

• MAKE _VERSION:
A target-entry of the form:

.MAKE_VERSION: VERSION-number

enables version checking. If the version of make differs from the version indicated, make issues a
warning message .

. PRECIOUS:
List of files not to delete. make does not remove any of the files listed as dependencies for this tar
get when interrupted make normally removes the current target when it receives an interrupt.

.SCeS_GET:
This target contains the rule for extracting the current version of an sccs(l) file from its history
file. To suppress automatic extraction, add an entry for this target, with an empty rule. to your
makefile .

• SILENT:
Run silently. When this target appears in the makefile, make does not echo commands before exe
cuting them .

• SUFFIXES:
The suffixes list for selecting implicit rules (see The Suffixes List).

Command Dependencies
When the .KEEP _ STATE: target appears in the makefile, make checks the command for building a target
against the state file, .make.state. If the command has changed since the last make run, make rebuilds the
target.

Hidden Dependencies
When the .KEEP_STATE: target appears in the makefile, make reads reports from cpp(l) and other compi
lation processors for any "hidden" files, such as #include files. If the target is out of date with respect to
any of these files, make rebuilds it.

Macros
Entries of the form

macro =value

define macros. macro is the name of the macro, and value, which consists of all characters up to a comment
character or unescaped NEWLINE, is the value.

Subsequent references to the macro, of the forms: $(name) or ${name} are replaced by value. The
parentheses or brackets can be omitted in a reference to a macro with a single-character name.

Macro definitions can contain references to other macros, in which case nested references are expanded
first.

Suffix Replacement Macro References
Substitutions within macros can be made as follows:

$(name:strl =str2)

where str 1 is either a suffix, or a word to be replaced in the macro definition, and str2 is the replacement
suffix or word. Words in a macro value are separated by SPACE, TAB, and escaped NEWLINE characters.

Appending to a Macro

Words can be appended to macro values as follows:·

macro += word . ..

SunPromake Last change: 11 March 1987 81

MAKE(I) USER COMMANDS MAKE(I)

82

The space preceding the + is required. make inserts a leading space between the previous value and the first
appended word.

Special-Purpose Macros
When the MAKEFLAGS variable is present in the environment, make takes options (except for-f) from it,
in combination with any llags entered on the command line. make retains this combined value as the
MAKEFLAGS macro, and exports it automatically to each command or shell it invokes.

Note, however that llags passed with MAKEFLAGS are only displayed when the -d, or -dd options are in
effect.

The MAKE macro is another special case. It has the value "make" by default, and temporarily overrides
the -D option for any line in which it is referred to. This allows nested invocations of make written as:

$(MAKE) ...

to run recursively, with the -D flag in effect for all commands but make. This lets you use make -0 to test
an entire hierarchy of makefiles.

For compatibility with the 4.2 BSD make, the MFLAGS macro is set from the MAKEFLAGS variable by
prepending a "_It. MFLAGS is not exported automatically.

The SHELL macro, when set to a single-word value such as Ibinlcsh, indicates the name of an alternate
shell to use. Note, however, that make executes commands containing no shell metacharacters directly.
Builtin commands, such as dirs in the C-Shell, are not recognized unless the command line includes a
metacharacter (for instance, a semicolon). This macro is neither imported from, nor exported to the
environment, regardless of -e. To be sure it is set properly, you must define this macro within every
mak:efile that requires it.

The KEEP_STATE environment variable, has the same effect as the .KEEP _ STATE: special-function tar
get, enabling command dependencies, hidden dependencies and writing of the state file.

Predefined Macros
make supplies the macros shown in the table that follows for compilers and their options, host architec
tures, and other commands.

Last change: 11 March 1987 SunPromake

MAKE (1) USER COMMANDS MAKE(l)

Table of Predefined Macros

Use Macro Default Value

Assembler AS as
Commands ASFLAGS

COMPILE.s $ (AS) $ (ASFLAGS) $ (TARGET_ARCH)
COMPILE.S $ (CC) $ (ASFLAGS) $ (CPPFLAGS) $ (TARGET ARCH) -c

CCompiler CC cc
Commands CFLAGS

CPPFLAGS
COMPILE.c $ (CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.c $ (CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET ARCH) $ (LDFLAGS)

FOKIRAN77 FC f77
Compiler FFLAGS
Commands COMPILE.f $ (FC) $ (FFLAGS) $ (TARGET_ARCH) -c

LINK.f $ (FC) $ (FFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)
COMPILE.F $ (FC) $ (FFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.F $ (FC) $ (FFLAGS) $ (CPPFLAGS) $ (TARGET ARCH) $ (LDFLAGS)

Link Editor LD ld
Command LDFLAGS
lex LEX lex
Command LFLAGS

LEX.l $ (LEX) $ (LFLAGS) -t

lint LINT lint
Command LINTFLAGS

LINT.c $ (LINT) $ (LINTFLAGS) $ (CPPFLAGS) $(TARGET ARCH)
Modula2 M2C m2c
Commands M2FLAGS

MODFLAGS
DEFFLAGS
COMPILE.def $ (M2C) $ (M2FLAGS) $ (DEFFLAGS) $ (TARGET_ARCH)
COMPILE.mod $ (M2C) $ (M2FLAGS) $ (MODFLAGS) $ (TARGET ARCH)

Pascal PC pc
Compiler PFLAGS
Commands COMPILE.p $ (PC) $ (PFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

LINK.p $ (PC) $ (PFLAGS) $ (CPPFLAGS) $ (TARGET ARCH) $ (LDFLAGS)

Rat/or RFLAGS
Compilation COMPlLE.r $ (FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET_ARCH) -c
Commands LINK.r $ (FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET ARCH) $ (LDFLAGS)

rmCommand RM rm -f
yacc YACC yacc
Command YFLAGS

YACC.y $ (YACC) $ (YFLAGS)
Suffixes .0 .c .c- .5 .5- .s .s- .In .f .f- .F .F- .1
List SUFFIXES .1- .mod .mod- .sym .def .def- .p .p- .r .r-

.y .y- .h .h- .sh .sh-

Unless these macros are read in as environment variables, their values are not exported by make. If you
run make with any of these set in the environment, it is a good idea to add commentary to the makefile to
indicate what value each is expected to take.

If -r is in effect, nuzke does not supply these macro definitions.

SunPromake Last change: 11 March 1987 83

MAKE (1) USER COMMANDS MAKE(I)

84

Dynamic Macros
There are several dynamically maintained macros that are useful as abbreviations within rules. They are
shown here as references; it is best not to define them explicitly.

$* The basename of the current target, derived as if selected for use with an implicit rule. In the case
of pattern matching rules, the value is the string matched by the % •

$< The name of a dependency file, derived as if selected for use with an implicit rule.

$@ The name of the current target

$? The list of dependencies that are newer than the target Command-dependency checking is
automatically suppressed for lines that contain this macro, just as if the command had been
prefixed with a? See the description of?, under Makefile Special Characters, above. You can
force this check with the! command-line prefix.

$% The name of the library member being processed. See Library Maintenance for more informa-
tion.

To refer to a dynamic macro within a dependency list, precede the reference with an additional $ character
(for example, $$<). Because make assigns $< and $* as it would for implicit rules (according to the
suffixes list and the directory contents), they may be unreliable when used within explicit target entries.

All of these macros but $? can be modified to apply either to the filename part, or the directory part of the
strings they stand for, by adding an upper case F or D, respectively (and enclosing the resulting name in
parentheses or braces). Thus, $(@D) refers to the directory part of the string $@; if there is no directory
part, • is assigned $(@F) refers to the filename part.

Pattern Matching Rules
A target entry of the form:

Tp%Ts: Dp%Ds
rule

where Tp is a target prefix, Ts is a target suffix, Dp is a dependency prefix, and Ds is a dependency suffix
(any of which may be null) forms a target-dependency pattern. When make encounters a target for which
there is no rule, it attempts to match that target name against the target pattern. A match occurs when the
target has the indicated prefix and/or suffix, in which case make looks for a dependency file that matches
the dependency pattern and has the same root (basename) as the target. When such a file is found, make
uses the rule in the target entry for the pattern matching rule to build the target from the dependency file.
These rules typically make use of the @ and < dynamic macros as placeholders for the target and depen
dency names, respectively. The dynamic macro * is set to the string matched by the % wild card

Implicit Rules
When a target has no explicit target entry and no pattern matching rule applies, make checks the target
name to see if it contains a suffix in the suffixes list If so, checks for an implicit rule, and a dependency
file (with same basename as the target, but a different suffix) from which to build the target. The implicit
rule has a target entry with a name composed of the dependency suffix and target suffix. make uses the rule
in that target entry to build the desired target from the selected dependency file. Unlike pattern matching
rules, different prefixes between a target and a dependency are not recognized. Implicit rules are also
referred to as suffix rules.

An implicit rule is a target of the form:

DsTs:
rule

where Ts is the suffix of the target, Ds is the suffix of the dependency file, and rule is the implicit rule for
building such a target from such a dependency file. Both Ds and Ts must appear in the suffixes list

An implicit rule with only one suffix describes how to build a target having a null (or no) suffix, from a
dependency having the indicated suffix. For instance, the .c rule describes how to build the executable file
from a C source file.

Last change: 11 March 1987 SunPromake

MAKE (1) USER COMMANDS MAKE (1)

Table of Standard Implicit Rules

Use Implicit Rule Name Command Line
Assembly .s.o $ (COMPILE. s) $< -0 $@

Files .S.o $ (COMPILE.S) $< -0 $@

C .c $ (LINK.c) $< -0 $@
Files .c.ln $(LINT.c) -i $< $ (OUTPUT OPTION)

.c.o $ (COMPILE. c) $< $ (OUTPUT OPTION)
FOKI'RAN77 .f $(LINK.f) $< -0 $@

Files .f.o $ (COMPILE. f) $< $ (OUTPUT OPTION)
.F $ (LINK.F) $< -0 $@

.F.o $ (COMPILE. F) $< $ (OUTPUT OPTION)

lex .1 $(RM) $*.c
Files $ (LEX. 1) $< > $*.c

$(LINK.c) $*.c -0 $@
$ (RM) $*.c

.1. c $(RM) $@
$ (LEX. 1) $< > $@

.l.ln $ (RM) $*. c
$ (LEX. I) $< > $*.c
$(LINT.c) -i $*.c -0 $@
$ (RM) $*.c

.1. 0 $(RM) $*.c
$ (LEX. 1) $< > $*.c
$ (COMPILE. c) $*.c -0 $@
$ (RM) $*.c

Modula2 . mod $ (COMPILE. mod) -e $@ $< -0 $@
Files .mod.o $ (COMPILE. mod) $< -0 $@

.def. sym $ (COMPILE.def) $< -0 $@
Pascal .p $ (LINK.p) $< -0 $@
Files .p.o $ (COMPILE.p) $< $ (OUTPUT OPTION)
Rat/or .r $(LINK.r) $< -0 $@
Files .r.o $ (COMPILE. r) $< $ (OUTPUT OPTION)
Shell .sh cp $< $@
Scripts chmod +x $@
yacc .y $ (YACC.y) $<
Files $(LINK.c) y.tab.c -0 $@

$ (RM) y.tab.c
.y.c $ (YACC.y) $<

mv y.tab.c $@

.y.ln $ (YACC.y) $<
$(LINT.c) -i y.tab.c -0 $@
$(RM) y.tab.c

.y.o $ (YACC.y) $<
$ (COMPILE. c) y.tab.c -0 $@
$(RM) y.tab.c

make reads in the standard set of implicit rules from the file /usr/include/make/default.mlc, unless -r is in
effect, or there is a default.mlc file in the local directory that does not include it.

The Suffixes List
The suffixes list is given as the list of dependencies for the .SUFFIXES: special-function target. The default
list is contained in the SUFFIXES macro (See Table of Predefined Macros for the standard list of suffixes).
You can define additional .SUFFIXES: targets; a .SUFFIXES target with no dependencies clears the list of
suffixes. Order is significant within the list; make selects a rule that corresponds to the target's suffix and

SunPromake Last change: 11 March 1987 85

MAKE (1) USER COMMANDS MAKE(I)

the first dependency-file suffix found in the list To place suffixes at the head of the list, clear the list and
replace it with the new suffixes, followed by the default list:

.SUFFIXES:

.SUFFIXES: SUffixes $(SUFFIXES)

A tilde C) indicates that if a dependency file with the indicated suffix (minus the -) is under sccs(I), its
most recent version should be extracted, if necessary, before the target is processed

Library Maintenance
A target name of the form:

lib(member ...)

refers to a member, or a space-separated list of members, in an ar(l) library.

The dependency of the library member on the corresponding file must be given as an explicit entry in the
makefile. This can be handled by a pattern matching rule of the form:

lib(%.s): %.s
where .s is the suffix of the member; this suffix is typically .0 for object libraries.

A target name of the form
lib «symbol»

refers to the member of a randomized object library (see ranlib(1» that defines the entry point named sym
bol.

Command Execution
Command lines are executed one at a time, each by its own process or shell. Shell commands, notably cd,
are ineffectual across an unescaped NEWLINE in the makefile. A line is printed (after macro expansion)
just before being executed This is suppressed if it starts with a @, if there is a .SILENT: entry in the
makefile, or if make is run with the -s option. Although the -0 option specifies printing without execution,
lines containing the macro $(MAKE) are executed regardless, and lines containing the @ special character
are printed. The -t (touch) option updates the modification date of a file without executing any rules. This
can be dangerous when sources are maintained by more than one person.

To use the Bourne shell if control structure for branching, use a command line of the form:
if expression ; \
then command; \
command;\

elif expression; \

else command; \
fi

Although composed of several input lines, the escaped NEWLINEs insure that make treats them all as one
command line.

To use the Bourne shell for control structure for loops, use a command line of the form:
for var in list; do \

command; \

done
To write shell variables, use double dollar-signs ($$). This escapes expansion of the dollar-sign by make.

Signals
INT and QUIT signals received from the keyboard cause make to halt, and to remove the target file being
processed unless that target is in the dependency list for .PRECIOUS:.

EXAMPLES
This makefile says that pgm depends on two files a.o and b.o, and that they in turn depend on their

86 Last change: 11 March 1987 SunPromake

MAKE(l) USER COMMANDS MAKE(I)

FILES

corresponding source files (a.c and b.c) along with a common file incLh:

pgm: ao b.o
cc ao b.o -0 $@

a.o: incl.h a.c
cc-c a.c

b.o: incl.h b.c
cc -c b.c

The following makefile uses implicit rules to express the same dependencies:

pgm: ao b.o
cc ao b.o -0 pgm

a.o b.o: incl.h

[mM]akefile
SCCS/s.[mM]akefile
default.rnk
lusr/includelmakeldefault.rnk
. make.state

Current version(s) of make description file.
sees(l) history files for the above makefile(s).
Default file for user-defined targets, macros, and implicit rules.
Makefile for standard implicit rules and macros (not read if default.mk is).
The state file in the local directory .

DIAGNOSTICS
make returns a exit status of 1 when it halts as a result of an error. Otherwise it returns and exit status of O.

Don't know how to make target. Stop.
There is no makefile entry for target, and none of make's implicit rules apply (there is no depen
dency file with a suffix in the suffixes list, or the target's suffix is not in the list).

*** target removed.
make was interrupted while building target. Rather than leaving a partially-completed version that
is newer than its dependencies, make removes the file named target.

*** target not removed.
make was interrupted while building target and target was not present in the directory.

** * target could not be removed, ...
make was interrupted while building target, which was not removed for the indicated reason.

Read of include file 'file' failed
The makefile indicated in an include directive was not found, or was inaccessible.

Loop detected when expanding macro value 'macro'
A reference to the macro being defined was found in the definition.

Could not write state file 'file'
You used the .KEEP _ STATE: target, but do not have write permission on the state file.

SEE ALSO

BUGS

cc(I), ar(I), cd(I), get(I), lex(I), ranlib(I), sh(I), sccs(l)

SunPro make User's Guide

Doing More with UNIX: Beginner's Guide

Some commands return nonzero status inappropriately; use -i to overcome the difficulty.

Filenames with the characters =,:, or@, don't work.

You cannot build file.o from llb(file.o).

SunPromake Last change: 11 March 1987 87

MAKE (1) USER COMMANDS MAKE(I)

88

Options supplied by MAKEFLAGS should be reported for nested make commands. Use the -d option to
find out what options the nested command picks up from MAKEFLAGS.

This version of make is incompatible in certain respects with previous versions:

The -d option output is much briefer in this version. -dd now produces the equivalent volumi
nous output.

make attempts to derive values for the dynamic macros $* and $<, while processing explicit tar
gets. It uses the same method as for implicit rules; in some cases this can lead either to unex
pected values, or to an empty value being assigned. (Actually, this was true for earlier versions as
well, even though the documentation stated otherwise.)

Make no longer searches the current directory for sees history files.

Suffix replacement in macro references is now applied after the macro is expanded.

There is no guarantee that rnakefiles created for this version of make will work with earlier versions.

If there is no default.mk file in the current directory, and the file lusrlincludelmakeldefault.mk is missing,
make stops before processing any targets. To force make to run anyway, create an empty default.mk file in
the current directory.

Once a dependency is made, make assumes the dependency file is present for the remainder of the run. If a
rule subsequently removes that file and future targets depend on its existence, unexpected errors may result.

Last change: 11 March 1987 SunPromake

Index

Special Characters
force command dependency checking, 15

$ macro reference indicator, 13
$ $ delayed references to macros, 25
$% dynamic macro: library member, 24
$* dynamic macro: derived target basename, 24
$< dynamic macro: derived dependency, 24
$? dynamic macro: newer dependencies, 24
$@ dynamic macro: current target, 24
% pattern matching wild card, 27
(macro reference delimiters, 13

ignore exit status command prefix, 11
target entry name list terminator, 5, 33

: = conditional macro definition indicator, 37
macro definition indicator, 13, 33

? suppress command dependency checking, 15
@ execute silently command prefix, 11
i comment indicator, 5
\ escape NEWLINE for command continuation, 6
TAB leading character in rule entry, 5
SPACE not suitable as leading character in rule entry, 5
NEWLINE command and comment terminator, 5
{} macro reference delimiters, 14

A
added flexibility

and user-defined macros, 32
all, convention for "all" final targets, 23, 38
all. local- example convention -local subtarget for recur

sive all,58
all. nested - example convention - nested sub target for

recursive all,58
automatic extraction, 12

. SCCS _ GET special target, 13
suppressing, 13

B
building an entire project, 57

c
. c - suffix convention - predefined macros for processing . c

files, 21
CC - macro for cc command name, 21
CFLAGS prcdcfined macro, 13, 21
check builds, 57

- 89-

clean, convention for housekeeping, 20
closing remarks about make, 65
command dependency checking, 15

force or suppress, 15
. commands

and predefined macros, 20
checked against state file, 15
ignored exit status, 11
nested make commands, 41
one shell (or process) per line in rule, 6
performed by a shell vs. directly executed, 6
silent execution, 11

comment
indicator, i,5
terminator, NEWLINE, 5

compilation
and system-supplied libraries, 35
and user-supplied libraries, 41
complex compilations and make, 32
debugging object files, 14
debugging programs and object files, 36
example for compiling program from lex, yacc and C

sources, 51
example makefile for compiling alternate library variants, 40
example makefile for compiling alternate program variants, 38
example of linking a C program with assembly routines, 48
example of linking with system-supplied libraries, 36
example of linking with user-supplied libraries, 43
optimized object files, 13
profiling object files, 14
profiling programs and object files, 36
program variants, 37

CaMP I LE - basename convention - pred~1iIiM;tll.a2fus for com-
piling object files, 21 .. .::.<:. :-:-»".:. :.

COMPILE. c - macro for compiliIlg .c:.file!t!nt(»()bjectfiles,21
compiler options

-g, 14, 36
- I and the CPPFLAGS macro,34«
-1,35
-0,13
-pg, 14,36

complex compilations and make, 32
conditional macro definitions, 37
conditional macro definitions - example, 37
conventions

. 10 ca 1 - example convention - suffix of sub target, 58

. ne sted - example convention - suffix of subtarget, 58

Index - Continued

conventions, continued
clean - housekeeping target, 20
all-list of final targets, 23
all. local- example convention -local subtarget for

recursive all,58
all. nested- example convention - nested subtarget for

recursive all,58
• c - suffix of predefined macros for processing . c files, 21
COMP I LE - basename of predefined macros for compiling

object files, 21
debug - example convention - target for debugging vari

ant, 38
DIRS - example convention - user-defined macro for list

of subdirectories, 57
FILES - example convention - basename of user-defined

macros for misc. files, 40
FLAGS - suffix convention - predefined macros for com

mand arguments, 21
FRC - dummy target name, 10
• h - example convention - suffix of user-defined macros

for header files, 40
install- target for installing finished programs or

libraries, 56
LIBRARY - example convention - user-defined macros for

object library, 40
LINK - basename of predefined macros for compiling and

linking executable programs, 21
lint - example convention - target for lint, 34
LINTFILES - example convention - derived macro for

lint intermediate files, 34, 35
makefiles only maintain targets in the directory they reside in,

41
naming conventions for directory of library - basename of

the archive (. a) file, 62
needed increasingly as project grows, 55
OBJECTS - example convention - user-defined macros for

object files, 33
profile - example convention -target for profiling vari

ant, 38
PROGRAM - example convention - user-defined macros for

object files, 33
SLIBS - example convention - user-defined macro for

system-supplied libraries, 43
SOURCES - example convention - user-defined macros for

source files, 33
test - example convention - target for testing, 53
TESTPROGS - example convention - macro for test pro

grams, 54
TESTSCRIPT - example convention - macro for test

script, 54
ULIBS - example convention - user-defined macro for

user-supplied libraries, 43
CPPFLAGS - macro for cpp options, 21
curses and termlib libraries, linking with, 35

D
D dynamic macro modifier: directory part, 25, 41
-d option, display dependency check, 18
-dd option, display entire depcndcncy scan, 18
debugging and profiling

library variants, 40
program variants, 38

dependencies

-90-

dependencies, continued
and conditional macro definitions, 37
and the suffixes list, 23
as distinguished from dependency files, 4
as prerequisites, 4
as targets, 4
command dependency checking, 15
hidden dependencies - missing file startup problem, 17
hidden dependency checking, 16
introduced, 4
missing entries or rules, 10
scanning and processing of, 7
with null rules, 10

directories and makefiles (warning to maintain targets in same
directory), 41

directory hierarchies and recursive makefiles, 58
D IRS - example convention - user-defined macro for list of

subdirectories, 57
dynamic macros

$ % -library member, 24
$* -derived target basename, 24
$< -derived dependency, 24
$? - newer dependencies, 24
$ @ - current target, 24
and implicit rules, 24
and references delayed with $$,25
and the dependency list, 25
introduced, 24
value modifiers D and F, 25

E
-e option

environment overrides makefile macro definitions, 44
make files for testing macro definition precedence, 45

errors
Don't know how to make 'target'. Stop., 10

examples
compiling alternate library variants, 40
compiling alternate program variants, 38
compiling program from lex, yacc and C sources, 51
conditional macro definitions, 37
implicit rules and makefiles, 22
linking a C program with assembly routines, 48
linking with system-supplied libraries, 36
linking with user-supplied libraries, 43
pattern matching rules, 27
predefined macro usage, 22
recursive make file for C programs and subdirectories, 61
recursive makefile for hierarchical C library and subdirec-

tories, 65
shell loop construct in makefile, 57
simple example for hierarchical library, 62
simple recursive target entry, 58
simple root makefile for project, 57
simple target entry for library, 30
suffix replacement, 34
testing with make, 53

exit status, ignored, 11
extraction from sees, automatic, 12

F
F dynamic macro modifier: filename part, 25, 41
-f option, read named makefile, 18
FLAGS - suffix convention - predefined macros for command

arguments, 21
forcing execution of a target's rule: dummy dependencies, 10
FRC - convention for dummy target, 10, 42

H
header files as hidden dependencies, 16
header files, maintaining a directory of, 40
hidden dependencies, startup problem when file is missing, 17
hidden dependency checking, 16
hierarchical libraries, 61

I
- i option, ignore exit status throughout, 11
• IGNORE - special target, 11
ignored exit status of commands, 11
implicit rules

adding suffix rules, 26
and dynamic macros, 24
and macro references, 13
and the suffixes list, 23
basic use, 4
• c - suffix rule,S
• c . In - suffix rule, 34
• c • 0 - suffix rule,S
example of use with makefiles, 22
introduced, 4
lint, 34
· I . 0 - suffix rule, 49
no transitive closure, 23
· sh - suffix rule, 52
table of, 27
usage within makefiles, 22
vs. explicit target entries, 24
· y. 0 - suffix rule, 49

include makefile - make directive, 55
#include files as hidden dependencies, 16,40
installing finished programs and libraries, 56

K
• KEEP_STATE - special target, 15

L
LDFLAGS: macro for ld options, 21
libraries

IS-character member name length limit and make, 31
and ar, ranlib, lorder and tsort,30
curses and termlib,35
description of, 30
example of a simple target entry, 30
hierarchical, 61
installing finished, 56
linking with system-supplied, 35
linking with user-supplied, 41
require explicit target entry, 41
special notation for members, 30
testing with make, 52

LIBRARY - example convention - user-defined macro for

-91-

object library, 40
line breaks in rules, 6

Index - Continued

LINK - basename convention - predefined macros for compil
ing and linking executable programs, 21

LINK. c - macro for compiling and linking . c files into execut
able programs, 21

LINT - basename convention - lint command, 34
lint

and make, 34
target entry for, 34

LINT. c - macro for lint, 34
LINTFILES - example convention - derived macro for lint

intermediate files, 34
loop, shell for construct, in a makefile, 57

M
macros

$ % dynamic macro: library member, 24
$ * dynamic macro: derived target basename, 24
$< dynamic macro: derived dependency, 24
$? dynamic macro: newer dependencies, 24
$@ dynamic macro: current target, 24
and added flexibility, 32
CC - macro for cc command name, 21
CFLAGS, 13, 21
COMPILE. c - macro for compiling . c files into object

files, 21
conditional macro definitions, 37
CPPFLAGS - macro for cpp options, 21
definitions in makefiles, 13
definitions on command line, 13
definitions: makefiles for testing definition precedence, 45
definitions: order of precedence for nested make commands

46 '
delayed references, 25
D IRS - example convention - user-defined macro for list

of subdirectories, 57
dynamic, 24
FILES. h - example convention - user-defined macro for

list of • h files, 40
LDFLAGS - macro for ld options, 21
LINK. c - macro for compiling and linking • c files into

executable programs, 21
LINT. c - macro for lint, 34
LINTFILES - example convention - derived macro for

I in t intermediate files, 35
MAKE - make command -overrides -n option, 18,41
MAKEFLAGS - make command options (and macro pecu

liarities), 18
OUTPUT _ OPTION - macro for -0 filename compiler

option, 25
passing command-line parameters, 13
passing parameters to nested make commands, 44
predefined for commands, 20
reference delimiters: () or { }, 14
references in implicit rules, 13
references in make file, 13
SHELL environment variable - neither imported nor

exported (footnote), 44
SLI BS - example convention - user-defined macro for

system-supplied libraries, 43
suffix replacement macro references, 33

Index Continued

macros, continued
SUFFIXES - macro for suffix-list entries, 23
table of predefined and dynamic, 29
TARGET ARCH - macro for cross-compilation target archi-

-tecture, 21
ULIBS - user-defined macro for user-supplied libraries, 43
undefined values: set to empty string, 13
usage of predefined, 20
various uses for, 32

maintaining software projects, organization issues, 54
MAKE -predefined macro - make command (overrides -n

option), 18,41
make

and lint, 34
assumes static source files, 4
vs. sees,3
vs. shell scripts, 3

make command
-t (touch) option (warning against use), 19
command line options to display information, 18
passing command-line parameters, 13
passing parameters to nested make commands, 44

. make. state the state file, 16
makefiles

and implicit rules, 22
and macro definitions, 13
and macro references, 13
and protecting shell filename wild cards, 62
as recipes, 4
as specifications for compilation procedures, 33
display while processing, 18
example for compiling lex and yaee sources, 51
example of compiling alternate library variants, 40
example of compiling alternate program variants, 38
example of linking with assembly routines, 48
example of linking with system-supplied libraries, 36
example of linking with user-supplied libraries, 43
example with conditional macro definitions for alternate vari-

ants, 37
example with suffix-replacement macro references, 35
- f option, read named makefiie, 18
leading TABs in rule entry, 5
nested make commands vs. recursive targets, 58
only maintain targets in current directory, 41
recursive, and directory hierarchies, 58
root makefile for project hierarchy, 55
shell,57
simple target entry for a library, 30
the state file, . make. state, 16
with suffix replacement macro references, 34
writing a simple, 5

MAKEFLAGS
always exported, 43
introduced, 18
predefined macro (warning against defining in makefile), 43
value taken from environment value and command line

options, 43
members, library

name length limit of 15 characters and make, 31
special notation, 30

metacharacters (shell) in rules, 6
multiple commands on one line in rule, 6

-92-

N
nested make commands

introduced, 41
simple target entry, 42

o
OBJECTS - example convention - derived macro for object

files, 33
options

-d - display dependency check, 18
-dd - display entire dependency scan, 18
-e - environment overrides makefile macro definitions,

44
- f - read named makefile, 18
- i-ignore exit status throughout, 11
-p - display macro definitions and targets, 18
- s - execute commands silent! y, 11
-t - toueh all targets (warning against use), 19

OUTPUT _ OPTION - macro for -0 filename compiler option, 25

p
-p option, display macro definitions and targets, 18
parameters

makefiles for testing macro definition precedence, 45
order of precedence for macro definitions, nested make com

mands,46
passing to nested make commands, 44
simple passing of, 13

pattern matching rules
%: wild card character, 27
adding, 27
and null rules, 27
example, 27
override implicit (suffix) rules, 27

. PRECIOUS - special target, 31
predefined macros

and commands, 20
CFLAGS,13
COMP I LE . c - macro for compiling . c files into object

files, 21
CPPFLAGS - macro for cpp options, 21
example, 22
LDFLAGS - macro for ld options, 21
LINK. c - macro for compiling and linking . c files into

executable programs, 21
LINT. e - macro for lint, 34
MAKE - overrides -n option, 18
MAKEFLAGS - make command options (and macro pecu

liarities), 18
OUTPUT OPTION - macro for -ofilename compiler

-option, 25
SUFFIXES - macro for suffix-list entries, 23
table of, 29
TARGET ARCH - macro for cross-compilation target archi

tecture,21
usage, 20

prefixes
! - force command dependency check, 15
- - ignored exit status, 11
? - suppress command dependency check, 15
@ - silent command line, 11

preserve target file (library) against interrupts, 31

PROGRAM - example convention - user-defined macro for exe
cutable program, 33

programs
installing finished, 56
simple entry for a C program, 7
testing with make, 52

projects
and nested make commands, 57

R
recursive makefiles and directory hierarchies, 58
recursive targets, as distinct from nested make commands, 58
recursive targets, nested before local subtargets (except

install),59
root makefile of project hierarchy, 55
rules

and line breaks, 6
and shell metacharacters, 6
· e - suffix rule, 5
· e . 0 - suffix rule, 5
forcing execution: dummy dependencies, 10
ignoring command's exit status, 11
leading TABs in make file entry, 5
· 1 . 0 - suffix rule, 49
multiple commands per line, 6
null rules in target entries, 10
one shell (or process) per command line, 6
pattern matching rules override implicit (suffix) rules, 27
running commands based on changes in, 15
running commands silently, 11
· sh - suffix rule, 52
table of implicit rules, 27
target entries for implicit (suffix) rules, 26
target entries for pattern matching, 27
· y . 0 - suffix rule, 49

running tests with make, 52

s
-s option, execute commands silently, 11
sees

automatic extraction, 12
extraction command: sees get -Gfilenamefilename, 12
· SCCS GET - special target, 13
suppresSing automatic extraction, 13
vs. make, 3

. sces _GET special target, 13
SHELL environment variable - neither imported nor exported

(footnote),44
shell commands

for, 57
set -x, 53

shell metacharacters
in rules, 6
protecting filename wild cards in makefiles, 62

shell scripts
maintained with makefP and sees, 52
vs. make, 3

shell variables, delayed references with $$,53
silent execution of commands, 11
. SILENT - special target, 11
SLIBS - example convention - user-defined macro for system-

-93-

supplied libraries, 43
source files must be static, 4

Index - Continued

SOURCES - example convention - user-defined macro for
source files, 33

special targets
· IGNORE, 11
.KEEP STATE,15
· PRECIOUS, 31
· secs GET,13
. SILENT, 11
· SUFF IXES, 23

(the) state file, . make. state, 16
suffix replacement

example in makefile, 34
in macro references, 33

suffix rules
adding, 26
and the suffixes list, 23
· e - suffix rule, 5
· e . In - suffix rule, 34
· e . 0 - suffix rule, 5
introduced, 4
· 1.0 - suffix rule, 49
· sh - suffix rule, 52
table of, 27
· y . 0 - suffix rule, 49

SUFFIXES - macro for suffix-list entries, 23
suffixes

(null) - executable (a. out format) file, 5
· e - C source file, 5
· h - C header file, 40
.1- lex source file, 49
.In - lint intermediate file, 34
• rnk - makefiles, 55
• 0 - object file, 5
· s - assembly source file, 47
· sh - shell script source under sees, 52
· y - yaee source file, 49

suffixes list, the, 23
. SUFF IXES - special target, 23
suppressing automatic sees extraction, 13

T
-t option, touch all targets (warning against use), 19
table of implicit (suffix) rules, 27
table of predefined macros, 29
TARGET_ARCH - macro for cross-compilation target architec

ture, 21
targets

clean - housekeeping target, 20
all-list of final targets, 23
all. local - example convention -local subtarget for

recursive all, 58
all. nested - example convention - nested subtarget for

recursive all,58
and command dependencies, 15
and conditional macro definitions, 37
and dependency checking, 7
and hidden dependencies, 16
and the suffixes list, 23
as distinguished from target files, 4
debug - example convention - target for debugging vari-

Index - Continued

ant,
targets, continued

38
dependencies with null rules, 10
entries for implicit (suffix) rules, 26
entries for pattern matching rules, 27
for grouping a list of dependencies, 9
• IGNORE, 11
in other directories - nested make commands, 42
install- target for installing finished programs or

libraries, 56
introduced, 4
· KEEP STATE, 15
librarieS-require explicit entry, 41
1 in t - example convention - target for 1 in t, 34
missing (null) rules, 10
missing dependencies, 10
missing target entries, 10
nested make command, 42
not in the dependency tree, 8
omitted from processing, 8
prof i le - example convention - target for profiling vari-

ant, 38
· sees GET, 13
• SILENT, 11
simple entry for a library, 30
• SUFFIXES, 23
-t (touch) option (warning against use), 19
target entry for lint, 34
target entry format, 5
when to use explicit entries vs. implicit rules, 24

termlib and curses libraries, linking with, 35
test scripts and programs, 52
transitive closure, none for implicit rules, 23

U
ULIBS - example convention - user-defined macro for user

supplied libraries, 43

V
variant object files and programs from the same sources, 37

-94-

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
TLX287815

For U.S. Sales Office
locations, call:
800821-4643
In CA: 800821-4642

European Headquarters
Sun Microsystems Europe, Inc.
Sun House
31-41 Pembroke Broadway
Camberlcy
Surrey GU15 3XD
England
027662111
TLX ~59017

Australia: 61-2-436-4699
Canada: 416477-6745
France: (1) 46 30 23 24
Germany: (089) 95094-0
Japan: (03) 221-7021
The Netherlands: 02155 24~~~
UK: 027662111

Europe, Middle East, and Africa,
call European Headquarters:
027662111

Elsewhere in the world, call
Corporate Headquarters:
415 960-1300
Intercontinental Sales

