
FORTRAN Prograllllller's Guide

-------_._-----_ .. _---

._--_._----_ .. _ -

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNIX!32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Contents

Preface .. xv

Chapter 1 Introduction .. 3

Chapter 2 Developing and Maintaining FORTRAN programs 7

2.1. Using the FORTRAN 77 Compiler on the Sun Workstation 7

2.2. Compiling and Running Your Program .. 7

2.3. Source Files that 177 Understands .. 8

2.4. Source Input Format .. 9

Standard Source Lines ... 9

UNIX Source Lines .. 10

2.5. Source File Content .. 10

2.6. Options to the 177 Command .. 11

Language Preprocessors .. 13

2.7. Managing Program Builds With make .. 13

Using make ... 14

Macros and Rules ... 16

2.8. Tracking and Controlling Changes to Programs with SCCS 17

Using SCCS ... 18

Editing Files Under SCCS Control ... 21

2.9. Building Libraries ... 22

U sing Libraries 22

ranlib .. 23

2.10. Transporting FORTRAN Programs ... 24

General Hints 24

- iii-

Contents Continued

Time Functions .. 24

F onn.ats ... 28

Carriage Control .. 28

File Equates .. 28

Data representation .. 29

Hollerith. ... 29

Chapter 3 Input and Output ... 33

3.1. The UNIX File System ... 33

3.2. Accessing Files From FORTRAN Programs .. 36

Accessing Named Files ... 37

Accessing Unnamed Files .. 38

Pre connected Units .. 38

Redirection ... :............... 39

Piping ... 39

3.3. Implementation Details .. 40

UNIX File Descriptors ... 40

Logical Units ... 40

Vertical Fonn.at Control .. 41

FORTRAN and UNIX file permissions ... 41

Fonn.at Interpretation .. 42

List-Directed Output ... 42

1/0 Errors ... 42

3.4. Non- 'ANSI Standard' Extensions .. 42

Fonn.at Specifiers .. 42

Print Files .. 44

Scratch Files ... 45

List-Directed lIO ... 45

3.5. Transporting Older Programs ... 45

Logical Unit Pre attachment .. 45

3.6. Magnetic Tape 110 .. 45

Tape File Representation .. 46

End-of-File ... 47

-iv-

Contents Continued

Accessing Files on Multiple-File Tapes .. 47

3.7. Sun FORTRAN I/O Statements .. 47

FORTRAN I/O Concepts ... 47

The open Statement ... 49

The close Statement ... 51

The inquire Statement ... 51

The backspace Statement .. 54

The rewind Statement .. 54

The endfile Statement ... 54

Chapter 4 The Run Time Environment .. 59

4.1. Command Line Arguments .. 59

4.2. Exiting witlI status ... 60

4.3. Storage Allocation .. 60

4.4. Data Representations ... 61

Representation of real and double precision 61

Representation With Extreme Exponents ... 62

Hexadecimal Representation of Selected Numbers 63

Deviations from the IEEE Standard ... 63

AritlImetic Operations on Extreme Values .. 63

4.5. Interprocedure Interface 66

Procedure N ames .. 66

Data Representations 66

Return Values .. 67

Argument Lists ... 68

Examples ... 69

Calling C from FORTRAN ... 70

Calling FORTRAN from C ... 71

Sharing Input/Output Streams ... 73

Chapter 5 Debugging and Profiling FORTRAN Programs 77

5.1. Introduction ... 77

5.2. Using dbx and dbxtool .. 78

-v-

Contents Continued

5.3. Using adb ... 80

5.4. Compiler flags ... 81

5.5. Profiling Tools ... 81

Chapter 6 Deviations from the Fortran 77 Standard 87

6.1. Extensions to the FORTRAN 77 Standard ... 87

Double Complex Data Type ... 87

Internal Files .. 87

The open Statement's f ileopt Parameter .. 87

New Fonnat Specifiers .. 87

Implicit Undefined statement ... 88

Recursion ... 88

Automatic Storage .. 88

Source Input Fonn.at .. 88

incl ude Statement ... 89

Binary Initialization Constants ... 89

Character Strings ... 89

Hollerith ... 90

Equivalence Statements .. 90

One-Trip do Loops .. 90

Commas in Formatted Input ... 90

Short Integers .. 90

Additional Intrinsic Functions ... 91

6.2. Violations of the Standard .. 91

Dummy Procedure Arguments .. 91

T and TL Formats ... 91

Carriage Control .. 91

Assigned goto .. 91

Default files .. 91

Lower case strings .. 92

Exponent representation on Ew.dEe output .. 92

Chapter 7 FORTRAN 77/66 Differences ... 95

-vi-

Contents Continued

7.1. Deleted FORTRAN 66 Features ... 95

Hollerith ... 95

Extended Range ... 95

7.2. Program Form. .. 95

Blank Lines .. 95

Program and Block Data Statements ... 95

entry Statement ... 96

do Loops ... 96

Alternate Returns .. 96

character Data Type ... 96

implicit Statement ... 97

parameter Statement .. 97

Array Declarations ... 97

sa ve Statement .. 98

intrinsic Statement .. 98

7.3. Expressions ... 98

Character Constants ... 98

Concatenation ... 98

Character String Assignment ... 99

Substrings .. 99

EX}J<>nentiation ... 99

Relaxation of Restrictions .. 99

7.4. Executable Statements .. 99

if-then-else ... 99

Alternate Returns .. 100

7.5. Input/Output ... 100

Fonnat Variables ... 100

end, err, and iostat Clauses .. 100

Fonnatted I/O .. 101

Character Constants ... 101

Positional Editing Codes ... 101

Colon .. 101

Optional Plus Signs .. 102

-vii-

Contents Continued

Blanks on Input .. 102

Unrepresentable Values ... 102

iw.m .. 102

Floating Point .. 102

'A' Fonn.at Code .. 102

Standard Units .. 102

List-Directed Fonn.atting .. 103

Direct 1/0 ... 103

Internal Files .. 103

open .. 104

close ... 104

inquire ... 104

Appendix A Ratfor - A FORTRAN Preprocessor ... 107

A.l. Introd.uction ... 108

Using the Rat/or Translator .. 109

A.2. Language Description .. 109

Design ... 109

Statement Grouping .. .

The else Clause

Nested ifis

if-else ambiguity .. .

The switch Statement

The do Statement

109

111

112

113

113

114

break and next .. 115

The while Statement .. 116

The for Statement ... 117

The repeat-until statement ... 119

More on break and next ... 119

return Statement ... 120

Cosmetics .. 121

Free-form Input ... 121

Translation Services ... 121

- viii-

Contents Continued

define Statement ... 122

include Statement ... 123

Pitfalls, Botches, Blemishes and other Failings ... 123

A.3. Implementation ... 124

A.4. Experience ... 126

GO<Xi Things .. 126

Bad Things ... 126

A.S. Conclusions .. . 127

Appendix B ASCII Character Set .. 131

Appendix C Runtime Error Messages ... 135

C.1. UNIX error messages ... 135

C.2. Signal Handler Error Messages .. 135

C.3. FORTRAN I/O Error Messages .. 136

Appendix D Bibliography ... 141

Appendix E FORTRAN Library Routines ... 145

-ix-

Tables

Table 2-1 Filename Suffixes thatj77 Understands .. 9

Table 2-2 Example Makefile Targets and Dependencies .. 14

Table 2-3 Time Functions Available to FORTRAN .. 25

Table 3-1 Characteristics of Three I/O Systems ... 40

Table 3-2 FORTRAN Format Specifiers .. 43

Table 3-3 Summary of FORTRAN Input and Output ... 48

Table 4-1 Single- and Double-Precision Floating-Point Number
Representation ... 62

Table 4-2 Hexadecimal Representation of Selected Numbers 63

Table 4-3 Abbreviations for Numbers .. 64

Table 4-4 FORTRAN and C Declarations ... 67

Table 6-1 Backslash Escape Sequences ... 89

- xi-

Figures

Figure 3-1 Diagram showing UNIX file system structure 34

Figure 3-2 Absolute Path Name .. 35

Figure 3-3 Relative Path Name ... 36

Figure 3-4 Program example showing one way to construct filenames 38

- xiii-

Preface

Purpose and Audience

This Programmer's Guide gives information you need to write FORTRAN pro­
grams on the Sun Workstation. It contains information useful to those who
already know FORTRAN but have little familiarity with UNIX.t We only assume
that you know how to log on and off, and know enough basic commands to find
your way around the UNIX file system. To refresh your memory of these basics,
refer to the Beginner's Guide to the Sun Workstation or an introductory UNIX
book. Also, refer to Appendix B for a summary of the differences between FOR­

TRAN 66 and FORTRAN 77.

Conventions in Examples

Note the following conventions used in this manual to display information. After
logging in, the Sun UNIX system prompt looks something like this:

[~ ____ h_o_s_t_n_a_m_e_~_o __ ~]
The basic UNIX prompt is merely the percent sign (%). However, most Sun
Workstations have distinct hostnames and our examples are more easily dis­
tinguished if we use a symbol longer than a % sign. Hence, the examples in this
manual use hostname% to denote the system prompt.

The system's prompts and replies are shown in the plain typewriter
font shown here and in the example below. Text the user types is shown in
boldface typewriter font.

hostname% echo hello
hello
hostname%

t UNIX is a trademark of AT&T Bell Laboratories.

-xv-

Preface Continued

Organization

This manual is organized as follows:

Chapter 1 is an introduction to FORTRAN programming on the Sun Workstation.
It describes how to gain access to the FORTRAN compiler, indicates tools avail­
able to the programmer, and lists helpful related documents.

Chapter 2 deals with maintaining FORTRAN source and object files. It contains
more detailed information on using the compiler and its options. This chapter
briefly discusses make, a tool for compiling large programs contained in multiple
source files. It also describes how to maintain FORTRAN programs with SCCS
(Source Code Control System) and how to build and use libraries.

Chapter 3 describes input, output, and gaining access to named and unnamed
files and I/O devices.

Chapter 4 describes FORTRAN 77 representations of data in storage. This infor­
mation is necessary for writing C, Pascal and FORTRAN 77 routines that can com­
municate with each other.

Chapter 5 describes debugging tools and their use.

Chapter 6 is a summary of deviations from the ANSI standard for FORTRAN 77.
These deviations consist of extensions and violations.

Chapter 7 contains a brief description of the differences between FORTRAN 66
and FORTRAN 77.

Appendix A is a summary of the Rat/or language.

Appendix B is a table of the ASCII character set.

Appendix C is a list of I/O library error messages.

Appendix D is a bibliography.

Appendix E contains the manual pages for FORTRAN library routines from the
System Interface Manual/or the Sun Workstation.

-xvi-

1
Introduction

Introduction ... 3

1
Introduction

The Sun Workstation provides a FORTRAN 77 compiler with several enhance­
ments. For example, variable names can be up to 16 characters long, but they
must still begin with a letter. Sun FORTRAN also supports recursion. These
enhancements are described in Appendix A, "Deviations From the FORTRAN 77
Standard."

The Sun FORTRAN compiler is invoked with the command f77.

It implements the American National Standard (ANSI) of 1978 for FORTRAN. FOR­

TRAN 77 includes most of the features of the 1966 standard plus new features
such as the character data type, direct 110, and internal I/O.

In addition to the [17 compiler, other tools that you may find useful are summar­
ized here.

Text Editing The major text editor for source programs is vi (vee-eye), the
visual display editor. It has considerable power because it
offers the capabilities of both a line and a screen editor. Vi also
provides several commands specifically for editing programs.
These are options you can set in the editor. Two examples are
the autoindent option, which supplies white space at the
beginning of a line, and the showmatch option, which shows
matching parentheses. For more information, see the Editing
and Text Processing manual section on vi.

Other editors are available for use, such as ed, ex, and textedit (available in the
SunWindows environment on Sun workstations).

FORTRAN Tools

~\sun ,~ microsystems

fpr is a FORTRAN 'output filter' for printing files that
have FORTRAN carriage-control characters in
column one. As noted in Appendix A, describing
deviations from the ANSI standard, the UNIX imple­
mentation on the Sun system does not use carriage
control since UNIX provides no explicit printer
files. Thus, you use fpr when you want to
transform files formatted with FORTRAN carriage
control conventions into files formatted according
to UNIX line printer conventions. For more

3

4

Debug Aids

fsplit

Rat/or

information onfpr, refer to the User's Manualfor
the Sun Workstation.

splits a multi-routine FORTRAN file into several
individual files.

is 'Rational FORTRAN' - a preprocessor intended
to add some control structures to FORTRAN that are
similar to those in C. Rat/or was written in the days
of FORTRAN 66 and is not as useful for FORTRAN

77, which has better control structures.

There are three main debugging tools available on the Sun
system:

dbx is an interactive symbolic debugger that under­
stands FORTRAN 77 programs.

dbxtool is a window- and mouse-based version of dbx.

adb is an interactive, general-purpose low-level
debugger - it is not as easy to use as dbx.

The online documentation consists of pages from the User's Manual that are
called 'man pages'. The most commonly used pages for FORTRAN are:

• f17

fpr

rat/or

fsplit

• dbx

dbxtool

f17 invokes the FORTRAN compiler;fpr,fsplit, and rat/or are FORTRAN tools
briefly explained above. See the manual pages in this manual for descriptions of
other FORTRAN routines.

Other Sun manuals containing infonnation on editing or using FORTRAN are

• Editing and Text Processing on the Sun Workstation

Programming Toolsfor the Sun Workstation

Commands Reference Manual for the Sun Workstation

System Interface Manual for the Sun Workstation

Developing and Maintaining FOR­
TRAN programs

2

Developing and Maintaining FORTRAN programs .. 7

2.1. Using the FORTRAN 77 Compiler on the Sun Workstation 7

2.2. Compiling and Running Your Program .. 7

2.3. Source Files thatj77 Understands .. 8

2.4. Source Input Fonnat .. 9

Standard Source Lines ... 9

UNIX Source Lines .. 10

2.5. Source File Content 10

2.6. Options to thej77 Command .. 11

Language Preprocessors .. 13

2.7. Managing Program Builds With make .. 13

Using make ... 14

Macros and Rules ... 16

2.8. Tracking and Controlling Changes to Programs with SCCS 17

Using SCCS ... 18

Editing Files Under SCCS Control ... 21

2.9. Building Libraries ... 22

Using Libraries 22

ran lib .. 23

2.10. Transporting FORTRAN Programs ... 24

General Hints 24

Time Functions .. 24

Fonnats ... 28

Carriage Control .. 28

File Equates .. 28

Data representation .. 29

Hollerith ... 29

2.1. Using the FORTRAN 77
Compiler on the Sun
Workstation

2.2. Compiling and Running
Your Program

2
Developing and Maintaining

FORTRAN programs

Creating, compiling, and running a FORTRAN 77 program on the Sun Workstation
requires three steps:

1. Write a program in the FORTRAN 77 language using an editor. Give the
file a f suffix.

2. Compile the program using the [77 command.

3. Run the program by typing the name of the executable output file.

The previous chapter contains information about tools you can use to create your
FORTRAN program. Once you have created a FORTRAN 77 source file and named
itfilename.f , invoke the compiler using the [77 command. The specified file is
then compiled, and an object file is generated with the same name as the source
file, but with the suffix .0 appended in place of . f. For example,j77 compiles
greetings. f and puts the resulting object code into a file named
greetings. o. Finally,j77 calls the UNIX linker to create an executable file
with the name (by default) a. out. [77 also understands other filename exten­
sions (such as . r for Ratfor files - these topics are discussed later in this
chapter).

For example, here is a very simple FORTRAN 77 program that displays a message
on the workstation screen.

program greetings
print *, 'Real programmers hack FORTRAN!'
end

Note: Remember to space or tab over to at least column seven before you begin
typing each line of the source code.

Compile the program greetings using thej77 command like this:

hostname% £77 greetings.£
greetings.f:

MAIN greetings:
hostname%

7

8

2.3. Source Files thatf77
Understands

Note thatf77 displays a message indicating the stage of the compilation. If you
do not specify an output filename at compilation, the results end up in an execut­
able file called a.out. You can then run that program by typing a.out on the com­
mand line:

hostname% a.out
Real programmers hack FORTRAN!

hostname%

It is inconvenient to have the result of every FORTRAN 77 compilation end up in a
file called a. out, since if such a file already exists, it is overwritten. To solve
this problem, you can

change the name of a. out after each compilation, using the mv command

use the -0 option to tell thef77 compiler to place the executable file in a
different file (such as one with the same name as the source minus the f
suffix). For example,

hostname% £77 -0 greetings greetings.£
greetings.f:

MAIN greetings:
hostname%

places the executable file into greet ings. Run the program by typing:

hostname% greetings
Real programmers hack FORTRAN!

hostname%

The remainder of this chapter discusses the kinds of files that f77 understands,
the options that you may type on the [17 command line, and other topics such as
Makefiles and using the Source Code Control System (SCCS).

[17 is a general-purpose 'driver' command for compiling and loading FORTRAN

77 and FORTRAN- related files. As mentioned above, FORTRAN 77 source code is
contained in files having a f suffix. Table 2-1 summarizes the filename exten­
sions that f77 understands.

~\Slln ,~ microsystems

Table 2-1

Suffix Language

f FORTRAN 77

. F FORTRAN 77

.c C

.r Ratfor

. s Assembler

.0 Object Files

2.4. Source Input Format

Standard Source Lines

Chapter 2 - Developing and Maintaining FORTRAN programs 9

Filename Suffixes that[17 Understands

Action

FORTRAN 77 source programs are compiled, and the object program
is left in a file in the current directory whose name is that of the
source with .0 substituted for .f .

FORTRAN 77 source programs are processed by the C preprocessor
before being compiled by [17.

C source files are compiled by the C compiler. The [17 and cc com-
mands generate slightly different loading sequences, since FORTRAN
77 programs need a few extra libraries and a different startup routine
than do C programs.

The Ratfor preprocessor processes source files and [17 compiles the
results.

The assembler processes assembly-language source files .

Object files are passed through to the linker.

Note: Files with none of the above filename extensions are simply passed to the
linker.

The [17 compiler accepts two kinds of source lines: standard and UNIX-style.

The standard source lines are in the format specified in the FORTRAN Standard:

the first 72 characters of each line are scanned

the first five columns must be blank or contain a numeric label

column 6 is nonblank if the line is a continuation of the previous line or
lines. [17 pads such lines to 72 characters or truncates them as required.

~\sun ~~ microsystems

10

Padding is significant in lines such as:

1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

data sixtyh/60h
1 /

UNIX Source Lines

2.5. Source File Content

A tab in any of columns 1 though 5 marks the beginning of a UNIX -style source
line. The text following the tab is scanned as if it started in column 7. The line
may be arbitrarily long. Continuation lines are identified by an ampersand (&) in
column 1.

A procedure can contain both kinds of lines, but any statement can contain only
one kind. /

The FORTRAN language places no significance on whether compilation units,
main programs, functions or subroutines reside in the same or different source
files. Anp7 input file can contain any number of compilation units. However,
there are two good reasons to keep each library .0 compilation unit in a separate
source file.

The first reason is to reduce the compilation overhead of changing one procedure.
The second reason is to minimize loading of unreferenced functions. Note that
this applies only to .0 modules in libraries. Files explicitly named in the link
command are unconditionally loaded.

fl7 produces one .0 file for each f file it processes. If any routine in the .0 file is
referenced, the linker Id copies in the entire .0 file. For example, if the file
subs. f defines subroutines a and b, and the file main. f contains a main
program that calls subroutine a but not b, then the a. out file produced by

[

hostname% £77 main.f sub.f

.hostname%

contains the code for subroutine b even though the subroutine is not referenced.
Thefsplit command can be used to break up multiple-routine source files.

A final consideration in maintaining FORTRAN source files, is to maintain source
in lower-case form. The p7 compiler converts keywords and variables to lower
case (unless the -U flag is set), but does not translate characters inside strings.
Thus, tests of the following form fail:

CHARACTER ANSWER*15
INQUIRE (6, SEQUENTIAL=ANSWER)
IF (ANSWER.NE.'YES') STOP 99

99 END

]

2.6. Options to the fl7
Command

Chapter 2 - Developing and Maintaining FORTRAN programs 11

The tr command can be used to translate a source file from upper case to lower
case or vice versa. For example,

(tr A-Z a-z < SBENCH.f > sbench.f

The list below contains the options thatfl7 understands.

-C Compile code to check that subscripts are within declared array bounds.

-c Suppress loading and produce a . 0 file for each source file.

-Dname=def

-Dname
Define name to the C preprocessor, as if by '#define'. If no definition is
given, the name is defined as "1" (.F files only).

-F Apply the Ratfor preprocessor to relevant files and put the result in the file
with the suffix changed to . J, but do not compile.

-£68881

]

Generate code that assumes the presence of the MC68881 floating-point pro­
cessor (not supported on Sun 2).

-££pa
Generate code that assumes the presence of the MC68881 floating-point pro­
cessor board (not supported on Sun 2).

-£sky
Generate code that assumes the presence of a SKyl floating-point processor
board. Programs compiled with this option can only be run in systems that
have a SKY board installed. Programs compiled with the -switch option
use the SKY board, but won't run as fast. If any part of a program is compiled
using the -£sky option, you must also use this option when loading with
the fl7 command, since a different set of startup routines is required.

--q Produce additional symbol table information for dbx or dbxtool. Also, pass
the -1q file to ld (1).

-£soft
Generate code that uses software floating point calls (this is the default
state).

-£switch
Run-time-switched floating point calls. The compiled object code is linked
at run-time to routines that support the MC68881, SKY floating-point board,
or software floating point calls, depending on the system that is running the
program.

1 Sky is a trademark of SKY Computers, Inc.

~\sun
~~ microsystems

12

-1dir

-i2

Search first for '#include' files whose names do not begin with '/' in the
directory of the source file, then in directories named in -I options, and
finally in directories on a standard list (. F suffix files only). Note that this
does not affect FORTRAN's include statement, only the C preprocessor's.

Make the default size of integer and logical constants and variables short (2
bytes).

-m Apply the M4 macro processor to each .r file before transfonning it with the
Ratfor preprocessor.

-N[qxscn]nnn
Make static tables in the compiler bigger. p7 complains if tables overflow
and suggests you apply one or more of these flags. These flags have the fol­
lowing meanings:

q Maximum number of equivalenced variables. The default is 150.

x Maximum number of external names (common block names, subroutine
and function names). The default is 200.

s Maximum number of statement numbers. The default is 401.

e Maximum depth of nesting for control statements (for example, do

loops). The default is 20.

n Maximum number of identifiers. The default is 1009.

-0 Optimize the object code.

-0 output
Name the final output file output instead of a.out.

-onetrip
Compile do loops so that they are performed at least once if reached. FOR­

TRAN 77 do loops are not performed at all if the upper limit is smaller than
the lower limit, unlike FORTRAN 66 do loops.

-p Prepare object files for profiling, see prof(I).

-pq

-Rx

Produce counting code in the manner of -p, but invoke a run-time record­
ing mechanism that keeps more extensive statistics and produces a gmon.out
file at normal termination. An execution profile can then be generated by use
of gprof(I).

Use the string x as a Ratfor option in processing.r files.

-s Compile the named programs, and leave the assembly-language output on
corresponding files suffixed with .s (no .0 file is created).

-0 Do not convert upper case letters to lower case. The default is to convert to
lower case except within character string constants.

~~sun ~~ microsystems

Language Preprocessors

2.7. Managing Program
Builds With make

Chapter 2 - Developing and Maintaining FORTRAN programs 13

-u Make the default type of variables 'undefined' rather than using FORTRAN

implicit typing.

-v Print the version number of the compiler and the name of each pass as the
compiler executes.

-w Suppress all warning messages.

-w66
Suppress only messages generated by programs using obsolete FORTRAN 66
features.

Other arguments are taken to be either linker option arguments or names of [17-
compatible object programs, typically produced by an earlier run, or perhaps
libraries ofJ77-compatible routines. These programs, together with the results of
any compilations specified, are linked (in the order given) to produce an execut­
able program called (by default) a.out or with a filename specified by the -0

option.

cpp is the C language preprocessor, which is invoked during the first pass of a
FORTRAN compilation if the source filename has the extension . F. The main
uses of this preprocessor for FORTRAN programs are for constant definitions and
conditional compilation. The details on cpp syntax and options are found in
cpp (1). (Also see the Dname option in "Options to theJ77 Command.")

M4 is a UNIX macro processor primarily used on Ratfor programs before
transforming them with the Ratfor preprocessor. Ratfor program files must have
an .r extension to be processed. For details about its usage see the section called
"M4 - a Macro Processor" in the Programming Tools/or the Sun Workstation
manual.

make is a program that manages the process of building big programs or libraries.

When you develop programs that depend on only a single source file and possi­
bly a few system-supplied libraries, you simply need to run the compiler every
time you change the program. Even with the simplest compilation, the [17 com­
mand line can involve a lot of typing. If it contains long lists of option flags or
libraries, the command line can also be hard to remember.

To save some time, you can create a simple shell script or csh alias to compile
the source for you every time. For instance, to compile a small program con­
tained in the file example. f, that uses the SunCore graphics library, you
could write a shell script called fexample that contains just one line:

f77 example.f -libcore77 -libcore -0 example

Whenever you want to recompile example. f, you only have to type:

[

hostname% fexample]
hostname%

"-------

14

Using make

Table 2-2

Such simple methods are insufficient when you are developing programs made
from multiple source files. When you develop such programs, you need to
remember which files have been edited since the last time they were compiled,
compile only those files, and then link together the resulting relocatable files
(along with any libraries you use) into a program file.

If you forget to recompile even one of the files that has been edited, the object
will be inconsistent with the source. But if you recompile your whole program
after every editing session, you waste time, since not every source file needs
recompiling. To help you recompile only what needs compiling, use the program
make.

The features of make are fully discussed in the chapter "Make - a Program for
Maintaining Computer Programs" in the Programming Tools manual, and are
summarized in the Sun User's Manual on page make (1). This section shows you
how make is nonnally used to maintain large FORTRAN programs, and provides a
simple example.

In order for make to help you maintain consistent programs, you must tell it what
files depend on other files, and what to do in order to transfonn one object into
another. You encode this infonnation into a file called the Makefile in the
directory where you are developing the program.

When make is invoked with no arguments, it looks for a file named makefile
or Makefile in the current directory, and causes the first program or file for
which it finds a dependency list to be "made," or in other words, created. (Most
people prefer to use the name Makefile, because it is easier to find in the
alphabetized output of Is.)

Suppose that you have a simple program of four files: pattern. f,
cornputepts. f, startupcore. f, and comrnonblock. Assume that
comrnonblock is included by pattern. f and cornputepts. f, and that
you wish to compile them into a program called pattern. The make paradigm
for such simple programs is that programs are made from, and thus depend on,
relocatable (.o) files. And, relocatable files are made from, and thus depend on,
the corresponding source files and any included files. The dependencies for this
example are shown in this table:

Example Make/tie Targets and Dependencies

Target Depends on

pattern pattern.o, computepts.o, startupcore.o

pattern. 0 pattern.f, commonblock

computepts.o computepts.f, commonblock

startupcore.o startupcore.f

Furthermore, the program pattern is made by linking together the three relo­
eatable files (plus a series of libraries). Each FORTRAN source file compilation

~\sun ~ microsystelT1S

Chapter 2 - Developing and Maintaining FORTRAN programs 15

produces corrresponding relocatable files. The Makefile to express this looks
like:

pattern: pattern.o computepts.o startupcore.o
f77 pattern.o computepts.o startupcore.o -lcore77 \

-lcore -lsunwindow -lpixrect -0 pattern

pattern.o: pattern.f commonblock
f77 -c -u pattern.f

computepts.o: computepts.f commonblock
f77 -c -u computepts.f

startupcore.o: startupcore.f
f77 -c -u startupcore.f

The model for a Makefile entry is as follows:

The first line of an entry begins with a list of target files, separated by blank
spaces.

The targets are followed by a colon (:) and a list of the files the targets
depend on.

The second and subsequent lines are shell command lines, each indented by
a tab character.

The execution of these lines causes the target file to be brought up-to-date
with the files it depends on.

Since the command lines executed in order to create the target file are arbitrary
shell commands, they can do much more than simple compilation. To continue
our example, let's say that you want your program to print the time it was com­
piled when it is given a command line argument of -v. You need to add code to
your program that looks like:

if (argstring .eq. "-v") then
print *,COMPILETIME
call exit(O)

endif

and then use the c preprocessor to define the word COMPILETIME as a quoted
string that can be printed. The output of the preprocessor, for example, might be

(print *, "jan15 . .0"

To do this, you must also change the name of the source file containing this code
to pattern. F, so the C preprocessor runs over it. We also change the compi­
lation line for pattern. F in the Makefile to look like this:

f77 n-DCOMPILETIME=\"'date'\"" -c -u pattern.F

J

16

Macros and Rules

pattern: $ (OBJ)

The innermost single quotes are back-quotes or grave accents. They indicate that
the output of the command contained in them (in this case the date command) is
to be substituted in place of the backquoted word(s). The next level of quote
marks is what makes this define a FORTRAN quoted string, so it can be used in the
print statement. These marks must be escaped (or "quoted") by preceding
backslashes because they are nested inside another pair of quote marks. The
outermost marks indicate to the interpreting shell that the enclosed characters are
to be interpreted as a single argument to the [17 command. They are necessary
because the output of the date command contains blanks, so that without the
outermost quoting it would be interpreted as several arguments, which would not
be acceptable to[17.

Note that this example is for illustrative purposes only, since you are unlikely to
care when the program was last compiled. You may, though, be interested in
when the program was last edited or changed. That information can be obtained
using sees, as described later in this chapter.

make has several other bells and whistles that can make your job easier. Two dis­
cussed here are macros and rules.

In the example above, the list of relocatable files that go into the target program
pattern appears twice: once in the dependencies, and once in the [17 command
that follows. This makes modifying the Makefile error-prone, since the same
changes must be made in two places in the file. To help with this problem, make
does some simple parameterless macro substitution in interpreting a Makefile. In
this case, you can add the following to the beginning of your Makefile:

OBJ = pattern.o computepts.o startupcore.o

and change the description of the program pattern into:

f77 $(OBJ) -lcore77 -lcore -lsunwindow -lpixrect -0 pattern

Note the peculiar syntax in the above example: a use of a macro is indicated by a
dollar sign immediately followed by the name of the macro in parentheses. For
macros with single-letter names, the parentheses may be omitted. To indicate an
actual dollar sign (as when your shell command contains shell variables), type
two dollar signs: $$.

A useful property of make macros is that their initial values can be overridden
with command line options to make. For instance, if you add the line

(FFLAGS~U]

to the top of your Makefile, and change each command for making FORTRAN

source files into relocatable files by deleting that flag, the compilation of
computepts . f looks like this:

~~Slln ~ microsystems

Chapter 2 - Developing and Maintaining FORTRAN programs 17

[~ _______ f_7_7 __ $ __ (F_F_L_A_G __ S_)_-_c ____ c_om_p __ u_t_e_p_t_s_._f ____________________ ~J
and the final link looks like this:

f77 $ (FFLAGS) $(OBJ) -lcore77 -lcore -lsunwindow -lpixrect -0 pattern

When you issue the make command, everything compiles as before. But if you
gi ve the command

(make "FFLAGS~u -0"

then the -0 flag, as well as the -u flag, is passed to [17.

Another form of shorthand make offers you is its set of rules. A rule is a pattern
for creating a command that make issues to create one sort of file from another.
For instance, the make rule for making a relocatable file out of the corresponding
FORTRAN source file is to use the [17 compiler, passing as arguments any flags
specified by the FFLAGS macro, the -c flag, and the name of the source file to
be compiled. Since there are three compilations in our example, two of them the
same, we can make use of this rule. You should still explicitly state the depen­
dencies, and must explicitly state the nonstandard command for compiling
pattern. F. The Makefile now looks like this:

OBJ = pattern.o computepts.o startupcore.o

FFLAGS=-u
pattern: $(OBJ)

f77 $ (OBJ) -lcore77 -lcore -lsunwindow -lpixrect -0 pattern
pattern.o: pattern.F commonblock

f77 $ (FFLAGS) n-DCOMPILETIME=\"'date'\"" -c pattern.F

computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

2.8. Tracking and Controlling
Changes to Programs
with sces

SCCS stands for Source Code Control System. It provides a way to

keep track of a source file's evolution (change history)

prevent different programmers from changing the same source file at the
same time

keep track of the version number by providing version stamps

The SCCS system provided by Sun is explained in several manual sections, the
most approachable of which is "Source Code Control System" in Programming
Tools/or the Sun Workstation. Although addressed mainly to the C language
programmer, that manual provides a thorough introduction to the mechanics of
using SCCS. This section uses the previous program to show how to maintain a
FORTRAN program under SCCS.

J

18

Using sees To begin, you must create the sees subdirectory beneath the directory in which
your program is being developed. Do this with the- command:

[hostname% mkdir sees
hostname%]

Now put your source files under SCCS control. Before doing this, though, you
should put in each file one or more sees "ID keywords," which are filled in with
a version number each time the file is the object of a get or delget sees
command. There are three likely places to put such strings:

• in comment lines,

• in parameter statements, or

in initialized data.

The advantage of the last is that the version information appears in the compiled
object program, and can be printed out using the what command. Included
header files containing only parameter and data definition statements should not
generate any initialized data, so the keywords for those files usually are put in
comments or in parameter statements. Finally, in the case of some files, like
ASCII data files or Makefiles, the source is all there is, so the sees information
can go in comments, if anywhere.

Let's identify the Makefile with a make comment containing the keywords:

%Z%%M% %I% %E%

The source files startupcore. f and computepts. f and pattern. f
can be identified by initialized data of the form:

character*50 sccsid
data sccsid/"%Z%%M% %I% %E%\n"/

You can also replace the word eOMPILETIME by a parameter that is automati­
cally updated whenever the file is accessed with get:

character*(*) COMPILETIME
parameter (COMP1LET1ME="%E%")

]

and correspondingly remove the -DeOMPILETIME from our Makefile. Finally,
the included file" commonblock" is annotated with a FORTRAN comment:

(c %Z%%M% %1% %E%]

'--------------"

Now you can put these files under control of sees with the command

~\sun ~ microsystems

Chapter 2 - Developing and Maintaining FORTRAN programs 19

hostname% sees create Makefile commonblock startupcore.f computepts.f pattern.F
hostname%

Your files now look like this after sees keyword expansion:

Makefile:
@(#)Makefile 1.1 84/03/01
OBJ = pattern.o computepts.o startupcore.o
FFLAGS=-u
pattern: $ (OBJ)
AI f77 $ (OBJ) -lcore77 -lcore -lsunwindow -lpixrect -0 pattern
pattern.o: pattern.F commonblock
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

commonblock:
C @(#)commonblock 1.1 84/03/01

integer nmax, npoints
real x, y
parameter (nmax = 200
common npoints
common x (nmax), y(nrnax)

computepts.f:
subroutine computepts
double precision t, dt, pi
parameter (pi=3.1415927)
include 'commonblock'
integer i
character*50 sccsid
data sccsid/"@(#)cornputepts.f 1.184/03/05\n"/

C compute x/y coordinates of npoints points on a unit circle
C as index i moves from 1 to npoints, parameter t sweeps from
C 0 to pi(2 + npoints/2) in increments of (pi/2)*(1 + 4/npoints)

t = 0.0
dt = (pi/2.0)*(1.0 + 4.0/dble(npoints»
do 10 i = 1, npoints+1

x (i) = cos (t)
y (i) = sin (t)
t = t+dt

10 continue
return
end

~\sun ~~ microsystems

20

startupcore.f :
subroutine startupcore
include '/usr/include/f77/usercore77.h'

C make initializing calls to core library

integer pixwindd, InitializeCore, InitializeVwsurf, SelectVwsurf
external pixwindd
character*4 envreturn
character*50 sccsid
data sccsid/"@(f)startupcore.f 1.184/03/05\n"/

if (InitializeCore(BASIC, NOINPUT, TWOD) .ne.O) call exit (1)
call getenv("WINDOW_ME", envreturn)
if (envreturn .eq. " If) then

write(O,*)"must run in a window"
call exit(2)

endif
if (InitializeVwsurf(pixwindd, FALSE) .ne. 0) call exit(2)
if (SelectVwsurf(pixwindd) .ne. 0) call exit (3)
call SetWindow(-1.5, 1.5, -2.0, 2.0)
call CreateTempSeg()
return
end

subroutine closecore
include '/usr/include/f77/usercore77.h'

C make terminating calls to core library
integer pixwindd
external pixwindd

call CloseTempSeg()
call DeselectVwsurf(pixwindd)
call TerminateCore()
return
end

Chapter 2 - Developing and Maintaining FORTRAN programs 21

pattern.F:
program star

C draw a star of n points, argument n
include 'commonblock'
character*10 argument
integer i, iargc, lnblnk
character*(*) COMPILETIME
parameter (COMPILETIME="84/03/05")
character*50 sccsid

data sccsid/"@ (:#=)pattern.F 1.1 84/03/05\n"/

if (iargc() .It. 1) then
call getarg{ 0, argument)
i = lnblnk(argument)

write (0,*) "usage: ",argument (:i) ," -v or ",argument (:i) ," nnn"
call exit (0)

endif
call getarg(1, argument)
if (argument . eq. II -v") then

print *, COMPILETIME
call exit (O)

endif
read (argument, , (i3)') npoints

npoints = npoints*4
if (npoints .le. 0 .or. npoints .gt. nmax-1) then

write(0,*) npoints/4, "out of range [1 .. ", (nmax-1)/4,"]"
call exit(12)

endif
call computepts
call startupcore
call moveabs2(x(l),y(l)
call polylineabs2(x(2), y(2), npoints)
pause
call closecore
end

Editing Files Under SCCS
Control

Of course, this is an example of how sees operates rather than how it is really
used: you don't need the preprocessor any longer to drop in the compilation date
and the -v argument is without purpose, since you can use the what com­
mand, which gives you much more detail.

Once your source code is under sces control, there are two main tasks you'll be
using sees for: (1) to check out a file so that you can edit it, and (2) to check in
a file you are done editing. A file is checked out using the sees edit com­
mand. The command

hostname% sees edit eomputepts.£
hostname%

makes a writable copy of eomputepts. f in the current directory, and records

22

2.9. Building Libraries

Using Libraries

your login name. Other users cannot check out the file(s) while you have
checked out, but they can find out who has checked out which files.

Check in the file with the sees delget command when you have completed
your current editing.

hostname% sees delget eomputepts.f
hostname%

This causes the SCCS system to do the following:

• make sure that you are the user who checked the file out (by comparing login
names)

make a record of what was changed in this editing session

• delete the write able copy of computepts. f from the current directory

• replace it by a read-only copy with the SCCS keywords expanded

delget is a composite of two simpler SCCS commands, delta and get.
delta does the first three items in the list above, and get does the fourth.

A library is a collection of subprograms. Each member of this collection is
called a library element or module. There are many examples of libraries on the
Sun system. The libraries used implicitly or explicitly in the above example
were the

core graphics libraries: lusr/lib/libcore.a and lusr/lib/libcore77.a

FORTRAN libraries: lusr/lib/libF77.a, lusrllibllibI77.a, and lusr/libllibU77.a

math library: llib/libm.a

C library: Ilib/libc.a

A relocatable library is one whose elements are relocatable (.0) files. Relocat­
able libraries provide an easy way for commonly used subroutines to be shared
among several programs that use them. The programmer need only name the
library when linking the program and those library modules that resolve refer­
ences in the program are loaded. The advantages of doing this are:

only the needed modules are loaded

• the programmer need not change the link command line as subroutine calls
are added and removed during program development.

When the linker searches a library, it extracts elements whose entry points are
referenced in other parts of the program it is linking, such as subprogram or entry
names or names of COMMON blocks initialized in BLOCKDAT A subprograms.

When the linker extracts a library element, it takes the whole thing; since an ele­
ment corresponds to the result of a compilation, this means that routines that are
compiled together are always linked together. This is a difference between UNIX
and some other systems and may affect the way you divide up your libraries.

~\Slln ,~ microsystems

Chapter 2 - Developing and Maintaining FORTRAN programs 23

Another important difference between UNIX and other systems is that when you
link programs, the order really matters. The linker processes its input files in the
order that they appear on the command line, (i.e., left-to-right). When the linker
is to decide whether or not a library element is to be loaded, its decision is based
only on the relocatable modules it has already processed. For example, if our
FORTRAN program is in two files, main. f and graf. f, and only the latter
accesses the SunCore graphics library, it would be an error to reference that
library before graf. f or graf. 0:

(Wrong!) hostname%f77 main. f -lcore77 -lcore graf. f -0 myprog

(Right) hostname%f77 main.f graf.f -lcore77 -lcore -0 myprog

ranlib

Order matters within libraries. If you build a sequential library, elements at the
end of the library should not reference entry points defined in elements that pre­
cede them since these libraries are searched in presentation order (Le., front-to­
back). There are two ways to get around this problem: make sure the library is
constructed in the right order, or build a random library. The programs [order
and tsort are usually sufficient for ordering interdependent library elements for
one-pass linking: see the manual page lorder(l) for instructions.

Random libraries are built from sequential libraries using the program ranlib.
ranlib builds a table of contents for the library, indicating to the linker which
entry points are defined in library elements. Elements in random libraries can
refer to one another indiscriminately. Random libraries are preferred on the Sun
system, and the linker issues a warning message if it encounters any sequential
libraries. Random libraries have the unfortunate property that ranlib must be
rerun on them whenever the library is changed or copied. Extremely careful
individuals use lorder and tsort to sort their libraries, and then apply ranlib.

The -M flag, whichj77 passes to the linker, is useful for detennining what rou­
tines are obtained from libraries.

Using the program example from the previous section, suppose you want to put
the module start upcore .0 into a library. Also suppose that you take out
the calls to the SunCore library from the main program, and encapsulate them in
a routine dr a wpo 1 y, which you place in the file dr a wpo 1 y . f:

subroutine drawpoly(x, y, n)
integer n
real x(n), y(n)
character*50 sccsid
data sccsid/"@(#-)drawpoly.f 1.1 84/03/05\n"/
call moveabs2(x(I),y(l))
call polylineabs2(x(2), y(2), n)
end

The following statement can call this routine from the main program:

~\sun ~~ microsystems

24

(
call drawpoly(x, y, npoints)]

'"---, ------""

The library named poly lib. a is created using the ar and ranlib com­
mands:

hostname% ar cr polylib.a startupcore.o drawpoly.o
hostname% ranlib polylib.a

and can be referenced in anfl7 command line:

hostname% £77 pattern.o computepts.o polylib.a -lcore -lsunwindow
-lpixrect -0 pattern
hostname%

2.10. Transporting
FORTRAN Programs

General Hints

Time Functions

If a library element is recompiled and must be replaced in its library, use ar and
ranlib again:

hostname% ar r polylib.a drawpoly.o
hostname% ranlib polylib.a
hostname%

This time ar is given the r flags; c is used only for creating. A library need not
be specially flagged for the linker; the linker recognizes a library when it
encounters one.

If you have developed FORTRAN code on another system, parts of it may need to
be changed so it can run on Sun Workstations. This section describes some
implementation details you need to know when you transport FORTRAN pro­
grams.

Keep these Sun FORTRAN conventions in mind when transporting your program
from another machine:

Your source filename must have a . f extension to be recognized by the
FORTRAN compiler (j77).

If you are entering programs manually (instead of reading them from tape),
make sure to tab or space at the beginning of each line so that all code,
except for comments and labels, begins after column five.

The FORTRAN 77 standard leaves a number of areas up to the implementor. Dif­
ferent versions of FORTRAN may have more or less equivalent functions that
work differently, or not at all, on the Sun FORTRAN compiler. Some of the differ­
ences between Sun FORTRAN and some other FORTRAN implementations are
described below.

Several time functions are supported in the Sun Extension to standard FORTRAN

and are described in the table below.

Table 2-3

Chapter 2 - Developing and Maintaining FORTRAN programs 25

Time Functions Available to FORTRAN

Name Function Man Page

time Returns the number of time (3f)
seconds elapsed since 1
January, 1970

fdate Returns the current time fdate(3f)
and date as a character
string

idate Returns the current idate(3f)
month, day, and year in
an integer array

itime Returns the current hour, itime(3f)
minute, and second in an
integer array

ctime Converts time returned ctime(3f)
by time function to
character string

Itime Converts time returned ltime(3f)
by time function to
local time

gmtime Converts time returned gmtime (3f)
by time function to
greenwich time

etime Returns elapsed user and etime(3f)
system time for program
execution

dtime Returns elapsed user and dtime(3f)
system time since last
call to dtime

When transporting programs from a different FORTRAN system, you should check
the code to make sure that time functions used in the programs operate like those
in Sun FORTRAN. If they do not, change the program to use equivalent Sun FOR­

TRAN functions. For example, Sun does not directly support these functions
found on some other machines, but you can write subroutines to duplicate their
function:

~\sun ,~ microsystems

26

• time-of-day in 10h format

date in 10h format

• milliseconds of job CPU time

Julian date in ASCII

elapsed wallclock time

For example, to find the current Julian date, you could call timeO to get the
number of seconds since January 1, 1970, convert the result to days (divide by
86,400), and add 2,440,587 (the Julian date of December 31, 1969). The follow­
ing program is an example of how to implement some other FORTRAN time func­
tions that might appear on other systems.

~~sun
~ microsystems

subroutine startclock
common /myclock/mytime
integer my time
integer time
my time = time ()
return
end

function wallclock
integer wallclock
common /myclock/mytime
integer my time
integer time
integer newtime
newtime = time()
wallclock = newtime-mytime
my time = newtime
return
end

program test time
C Play with some system timing functions

integer wallclock, elapsed
character*24 greeting
real dtime
real timediff, timearray(2)

C print a heading
call fdate(greeting)
write(6,10) greeting

10 format('1 hi, it"s' a24,/)
C see how long an Is takes, in seconds

call startclock
call system('ls')
elapsed = wallclock()
write(6, 20) elapsed

Chapter 2 - Developing and Maintaining FORTRAN programs 27

20 format (//,'elapsed time' i4,' seconds'///)
C now test the CPU time for some trivial computing

timediff = dtime(timearray)
q = 0.01
do 30 i = 1, 1000

q = atan (q)
30 continue

timediff = dtime(timearray)
write(6, 40) timediff

40 format (//,'computing atan(q) 1000 times took' f6.3,' seconds' /)
end

~\sun ,~ microsystems

28

Formats

Carriage Control

File Equates

Some Sun FORTRAN format features may be different from the formats provided
in other versions of FORTRAN. Even when the formats used in other FORTRAN

implementations are different, with a little care, programs are still often tran­
sportable to Sun FORTRAN.

Here are some format specifiers that Sun FORTRAN treats differently than some
other implementations:

a used with character type data elements. In FORTRAN 66, this
specifier could be used with any variable type. Sun FORTRAN supports
the older usage, up to four characters to a word

$ suppresses newline character output

is the conditional termination format operator

r sets an arbitrary radix for the following i formats in the descriptor

su select unsigned output for following i formats. For example, you can
convert output to either hexadecimal or octal with the following for­
mats:

for.mat(thingl) => for.mat(su, 16r, i4)
for.mat(thing2) => for.mat(su, 8r, i4)

FORTRAN carriage control grew out of the capabilities of the equipment used
when FORTRAN was originally being developed. For similar historical reasons,
UNIX, which Sun FORTRAN runs under, doesn't have FORTRAN carriage control,
but you can simulate it in two ways:

For simple jobs, use open (N, form=' print'). You then get sin­
gle or double spacing, formfeed, and stripping off of column 1. It is legal
to reopen unit 6 to change the form parameter to 'print', for example
open(6,form='print').

Use the fpr filter to transform FORTRAN carriage control conventions into
the UNIX carriage control format (see theJPr(1) man page) before printing
files using lpr .

For more information, see "Carriage Control" and "Transporting Older Pro­
grams" in Chapter 3.

Early versions of FORTRAN did not use named files, and file equates provided
some ability to open files by name. You can use pipes and I/O redirection, as
well as hard or soft links, in place of file equates in transported programs.

See the section on "Gaining Access to Files" in Chapter 3 for a description of
pi ping and redirection .

• ~sun
~~ microsystems

Data representation

Hollerith

Chapter 2 - Developing and Maintaining FORTRAN programs 29

See the section in Chapter 4 about data representation for the exact representation
of different kinds of data in Sun FORTRAN. This section points out information
necessary for transporting FORTRAN programs. You should remember the fol­
lowing:

Because Sun adheres to the IEEE P754 standard for floating-point, the first
four bytes of a real * 8 are not the same as a real * 41.

The default sizes for reals, integers, and logicals are the same (as they
should be, according to the FORTRAN 77 standard) except when the -:i.2
flag is used, which shrinks integers and logicals to two bytes but leaves
reals as four bytes.

There is no logical *l. Use character*l instead.

Character variables can be freely mixed and equivalenced with variables of
other types, but you should be careful of potential alignment problems.

Integer, logical, real, double-precision, complex, double-complex types
must always be aligned on even-byte boundaries. The compiler does this
for you, but may create holes in common blocks if character variables are
mixed with any of the other types. Programs having knowledge of holes
created by more restrictive alignment on other machines are not portable.

Sun floating-point arithmetic does not cause exceptions on overflow or
divide-by-zero. It does deliver IEEE indeterminate forms in cases where
exceptions would otherwise be signaled. See the data representation sec­
tion in Chapter 4 for more details. The extreme finite, normalized values
may be determined with flminO, flmaxO, etc. functions (see range (3f)).
The indeterminate forms can be written and read using formatted and list­
directed I/O statements.

The information in this section is useful for transporting older programs - not
for writing or heavily modifying a program. It is recommended that you use
character variables for the purpose covered in this section.

You can initialize variables with FORTRAN 66, but remember that Sun Worksta­
tions are 32-bit machines. Thus, the maximum number of characters per data
type is as follows:

Data Type

integer*2
integer*4
logical
integer
real
real*4
double precision
real*8
complex
double complex
complex*16

~\sun ~~ microsystems

Max Characters Per Datum

2
4
4 (or 2 if -i2 flag given)
4 (or 2 if -:i.2 flag given)
4
4
8
8
8
16
16

30

For example:

double complex x(2)
data x 116hHello there, sai, 16hlor, new in town/
write (6,' (4a8, "?")')x
end

You cannot pass Hollerith constants as parameters or used them in expressions,
or even comparisons. They are interpreted as character-type expressions in these
contexts. If you must, you can initialize a data item of a compatible type with a
Hollerith, and then pass it around. For example,

integer function DoYouLoveMe()
double precision fortran, beloved
integer yes, no
data yes,nol 3hyes, 2hno I
data fortranl 7hfortran/

10 format ("Whom do you love? ",$)
write (6,10)
read (5,20) beloved

20 format (a8)
DoYouLoveMe = no
if (beloved .eq. fortran) DoYouLoveMe yes
return
end

program trouble
integer yes, no
integer DoYouLoveMe
data yes,nol 3hyes, 2hno I

if (DoYouLoveMe() .eq. yes) then
print *, 'You are sick'

else
print *, 'See if I ever speak to you again'

endif
end

All these things produce warning messages from the compiler. Use the -w66
flag to suppress these messages .

• \sun ~ microsystems

3
Input and Output

Input and Output ... 33

3.1. The UNIX File System ... 33

3.2. Accessing Files From FORTRAN Programs .. 36

Accessing Named Files ... 37

Accessing Unnamed Files .. 38

Pre connected Units .. 38

Redirection ... 39

Piping ... 39

3.3. Implementation Details .. 40

UNIX File Descriptors ... 40

Logical Units ... 40

Vertical Format Control .. 41

FORTRAN and UNIX file permissions ... 41

Format Interpretation .. 42

List-Directed Output ... 42

1/0 Errors ... 42

3.4. Non-'ANSI Standard' Extensions .. 42

Format Specifiers .. 42

Print Files 44

Scratch Files ... 45

List-Directed 1/0 ... 45

3.5. Transporting Older Programs ... 45

Logical Unit Pre attachment .. 45

3.6. Magnetic Tape I/O .. 45

Tape File Representation .. 46

End-of-File ... 47

Accessing Files on Multiple-File Tapes .. 47

3.7. Sun FORTRAN I/O Statements .. 47

FORTRAN I/O Concepts ... 47

The open Statement ... 49

The close Statement ... 51

The inquire Statement ... 51

The backspace Statement .. 54

The rewind Statement .. 54

The endfile Statement ... 54

3.1. The UNIX File System

3
Input and Output

The first half of this chapter describes the UNIX file system and how it relates to
the FORTRAN I/O system. The second half discusses FORTRAN I/O as imple­
mented on the Sun Workstation. Topics covered include:

UNIX file system structure

Accessing files

• Logical units and preconnected units

• UNIX file descriptors

FORTRAN I/O, file access modes, and file types

FORTRAN 77 implementation

Extensions to FORTRAN 77 liD

Running older programs

• Magnetic Tape 110

For a more detailed discussion of the UNIX file system structure, refer to the
Beginner's Guide to the Sun Workstation.

The UNIX system file structure is analogous to an upside-down tree. The top of
the file system is the root: directories, subdirectories and files all branch down
from the root. Directories and subdirectories are considered nodes on the direc­
tory tree, and can have subdirectories or ordinary files branching down from
them. The only directory that is not a subdirectory is the root directory, so
except for this instance, we do not make a distinction between directories and
subdirectories.

A sequence of branching directory and filenames in the file system tree describes
a path. Files are at the ends of paths, and cannot have anything branching from
them. When moving around in the file system, down means away from the root
and up means toward the root. See Figure 3-1 for a diagram showing the UNIX
file system tree structure.

~\sun ~~ microsystems
33

34

file

file

Figure 3-1

root
directory

subdirectory

file

subdirectory

subdirectory

file

Diagram showing UNIX file system structure

file

All UNIX files have names and all files branch from directories. Directories are
just files with special properties and follow the same naming rules as files. The
only exception is the root directory, which is named slash (/).

While you are logged on to a UNIX system, you are said to be in a directory.
When you first log on, you are in your home directory. At any time, wherever
you are, that directory is called your current working directory. It is often useful
to list your current working directory. The pwd command and the getcwd library
call print the current working directory name. You can change your current
working directory simply by moving to another directory. The cd shell com­
mand and the chdir library call change to a different current working directory.
Additional explanations of the file system organization and relevant shell com­
mands are located in the Beginner's Guide to the Sun Workstation.

You can use almost any character in a filename. The name can be up to 1024
characters long, but individual components can be only 512 characters long.
However, to prevent the shell from misinterpreting certain special punctuation
characters, you should restrict your use of punctuation in filenames to the dot (.),
underscore (_), comma (,), plus (+), and minus (-). The slash (/) character has a
specific meaning in a filename, and is only used to separate components of the

~\sun ~ microsystems

Chapter 3 - Input and Output 35

pathname (as described below). Also, you should avoid using blanks in
filenames.

To describe a file anywhere in the directory structure, you can list the sequence
of directory, subdirectory and filenames, separated by slash characters, between
the root and the file you want to describe. This is called an absolute path name
because it begins at the root of the directory tree (indicated by the first /). It is
also the complete filename for this file. An example of an absolute path name is
shown in Figure 3-2.

/usr/you/maillrecord

/

~

usr

~

you

~

mail

.... ~

record

Figure 3-2 Absolute P ath Name

Alternatively, from anywhere in the directory structure, you can describe a rela­
tive path name of a file. Relative path names begin in the directory you are in
(the current directory) instead of the root. Refer to Figure 3-3 for an illustration
of a relative path name.

A complete UNIX file specification has the general form:

/directory/directory/ ... /directory/file

A typical example of a complete UNIX file specification, or absolute path name
is:

~'\sun ~ microsystems

36

3.2. Accessing Files From
FORTRAN Programs

/usr/src/sun/doc/fortran.manuals/programmers.guide

There can be any number of directory names between the root (/) and the file at
the end of the path as long as the total number of characters in a given path name
is less than or equal to 1024.

mail/record (from /usr/you)

/usr/you

mail

record

Figure 3-3 Relative Path Name

Data is transferred to or from devices or files by specifying a logical unit number
in an I/O statement. FORTRAN I/O statements are described at the end of this
chapter. They are

open

• close

read

• write

• print

backspace

• endfile

rewind

inquire

Logical unit numbers can be nonnegative integers or the character '*'. The '*'
stands for the standard input if it appears in a read statement, or the standard
output if it appears in a write or print statement. Standard input and standard out­
put are explained in the section on preconnected units found later in this chapter.

Chapter 3 - Input and Output 37

Accessing Named Files Before a program can access a file with a read, write, or pr int statement,
the file needs to be created and a connection established for communication
between the program and the file. The file can already exist or be created at the
time the program executes. The FORTRAN 77 open statement establishes a con­
nection between the program and file to be accessed. open can take a filename
parameter (file=filename) to specify the file. Filenames can be

c

quoted character constants
[ex: file=' myfile. out']

character variables
[ex: file=filnam]

character expressions
[ex: file=prefix(:lnblnk(prefix}} II 'I' II
name (: lnblnk (name}}, ...]

Some ways a program can get filenames are

by reading from a file or terminal keyboard with a FORTRAN read
statement
[ex: read (4,401) filnam]

from the command line by way of the getarg function
[ex: call getarg(argurnentnurnber, filnam)]

• from the environment with getenv
[ex: call getenv(string, filnam)

The program fragment in Figure 3-4 shows one way filenames may be con­
structed.

character*1024 function fullname (name)
character*(*) name
character*1024 prefix

C in path names starting with '-I', replace
C the tilde with the horne directory name;
C prefix relative path names with path to current working directory;
C leave absolute path names unchanged.
C

if (name (1: 1) .eq. ' I') then
fullname = name

else if (name(1:2) .eq. '-I') then
call getenv('HOME', prefix)
fullname = prefix(:lnblnk(prefix» II name(2:lnblnk(name»

else
call getcwd(prefix)
fullname = prefix(:lnblnk(prefix» II ' I' II name(:lnblnk(name»

endif
end

Figure 3-4 Program example showing one way to construct filenames

.\sun ~~ microsystems

38

Accessing Unnamed Files

Preconnected Units

When a program opens a FORTRAN file without a name, the run time system sup­
plies a filename. There are several ways it can do this. If status =
'scratch' is specified in the open statement, then the run-time system

opens a file with a name of the form tmp. Fxnnnnn, where nnnnn is replaced by
the current process ID, and x is a letter that makes the filename unique. This file
is deleted upon termination of the program or execution of a c 10 se statement,
unless status 'keep' is specified in the close statement.

If a FORTRAN program has a file already open, an open statement that specifies
only the file's logical unit number and the parameters to change can be used to
change some of the file's parameters (specifically blank and form). The run­
time system determines that it should not really open a new file, but just
change the parameter values. Thus, this looks like a case where the run-time sys­
tem would make up a name, but is not.

In all other cases, the run-time system opens a file with a name of the form
fort. n, where n is the logical unit number given in the open statement.

The inquire statement can also be used to determine the name of an open file
by giving its logical unit number. More information on the open and
inquire statements is found later in this chapter. The UNIX file system does
not have any notion of temporary filename binding (or file equating) as some
other systems do. Filename binding is the facility that is often used to associate a
FORTRAN logical unit number with a physical file without changing the program.
This mechanism evolved to communicate filenames more easily to the running
program, because in FORTRAN 66 you could not open files by name. With UNIX,
there are several satisfactory ways to communicate filenames to a FORTRAN 77
program including command line arguments and environment variable values.
For example, see the routine ioini t . f in libI77, which is discussed in "Logi­
cal Unit Pre attachment" in this chapter. The program can then use those logical
names to open the files. The next section describes two additional ways to
change a program's input and output files without changing the program, called
piping and redirection.

When a UNIX FORTRAN or C language program begins execution, there are usu­
ally three units already open. These are called preconnected units. Their names
are standard input. standard output, and standard error. In FORTRAN programs,

• standard input is logical unit 5

• standard output is logical unit 6

standard error is logical unit 0

All three are connected to your workstation or window, unless file redirection or
piping is done at the command level.

All other units are preconnected to files named fort. n where n is the
ccorresponding unit number. These files need not exist, and are only created if
their units are used and an open statement does not override the preconnected
name. For example, the program

~\Slln ,~ microsystems

Redirection

Piping

Chapter 3 - Input and Output 39

(~:_:_~_te __ (_1_5_)_2 __]

writes a single unformatted record in file fort. 15.

Redirection is a way of changing the files that a program uses without passing a
filename to the program. Both input to and output from a program can be
redirected. The symbol for redirecting standard input is the 'less than' sign «),
and for standard output is the 'greater than' sign (».

File redirection is a function performed by the command interpreter or shell
when a program is invoked by it. As shown in the example below, the shell
command line

[~h_o_s_t_n_a_m_e_~_~_m_yp __ r_o_g __ < __ m_Y_d __ a_t_a ________________________________ ~J
causes the file mydata (which must already exist) to be connected to the stan­
dard input of the program myprog when it is run. This means that if myprog
is a FORTRAN program and reads from unit 5, it reads from the file mydata.
Similarly, the shell command line

(host name % myprog > myoutput

causes the file myoutput (which is created if it does not exist or rewound and
truncated if it does) to be connected to the standard output of the program
myprog when it is run. So if the FORTRAN program myprog writes to unit 6,
it writes to the file myoutput.

]

Both standard input and standard output may be redirected to and from different
files on the same command line. Standard error may also be redirected so it does
not appear on your workstation's display. (In general, this is not a good idea,
since you usually want to see error messages from the program immediately,
rather than sending them to a file.)

The shell syntax to redirect standard error varies, depending on whether you are
using the Bourne shell or the C shell. Refer to the Beginner's Guide to the Sun
Workstation for more information on redirecting standard error.

It is also possible, in UNIX to connect the standard output of one program
directly to the standard input of another without using an intervening temporary
file. The mechanism to accomplish this is called a pipe. A shell command line
using a pipe looks like this:

[
hostname% firstprog I secondprog J

,-----. ------
This causes the standard output (unit 6) of firstprog to be piped to the stan­
dard input (unit 5) of secondprog. Piping and file redirection can be com­
bined in the same command line. A simple example is:

~\sun ,~ microsysterTlS

40

3.3. Implementation Details

UNIX File Descriptors

Logical Units

hostname% myprog < mydata I we > dataeount

in which the program myprog takes its standard input from the file mydata, and
has its standard output piped into the standard input of the wc command, the
standard output of which is redirected into the file datacount.

Some details of the current Sun FORTRAN implementation that may be useful in
understanding FORTRAN 77 I/O constraints are described below.

In almost every discussion of input and output in FORTRAN 77 programs, I/O
channels are in terms of FORTRAN unit numbers. The UNIX I/O system does not
actually deal with these units, but with UNIX file descriptors. The FORTRAN run­
time system always translates from one to the other, so most FORTRAN programs
don't have to have to know about file descriptors.

The information in this section is of interest mostly to users writing C routines
that interface to FORTRAN 77 programs. More about this is covered in Chapter 4,
"Data Representations." In addition to FORTRAN units and UNIX file descriptors,
many C programs use a set of subroutines called standard 110 (or stdio).
Many of the functions of the FORTRAN 77 I/O system are implemented using
standard 110, which in tum is implemented using the UNIX 110 system calls.
Some of the characteristics of these systems are listed in Table 3-1.

The maximum number of logical units that a program can have open at one time
is the same as the UNIX system limit, currently 30.

The standard logical units, 0, 5, and 6, are named internally stderr, stdin,
and stdout ,respectively. These are not actual filenames and can not be used
for opening these units. I nqui re does not return these names and indicates
that the above units are not named unless they have been opened to real files.
However, these units can be redefined with an open statement.

The names stderr, stdin, and stdout are meant to make error reporting
more meaningful. To preserve error reporting, it is an error to close logical unit 0
although it can be reopened to another file.

If you want to open the default filename for any pre connected logical unit,
remember to close the unit first. Redefining the standard units may impair nor­
mal console 110. An alternative is to use shell redirection to externally redefine
the above units.

To redefine default blank control or the format of the standard input or output
files, use the open statement specifying the unit number and no filename (see
below).

~\sun ,~ microsystems

Table 3-1

Files Open

Attributes

Access

Structure

Form

Vertical Format Control

FORTRAN and UNIX file
permissions

Chapter 3 - Input and Output 41

Characteristics of Three lID Systems

FORTRAN 77 Standard I/O File UNIX file
Units Pointers Descriptors

opened. for reading opened for reading; or opened for reading;
and writing opened for writing; or or opened. for

opened for both; or writing; or opened.
opened for appending for both
see open(3S)

formatted or always unformatted, always unformatted.
unformatted. but can be read or

written with format-
interpreting routines

direct or sequential direct access if the direct access if the
physical file physical file
representation is direct representation is
access, but can always direct access, but
be read sequentially can always be read

seq uentiall y

record character stream character stream

arbitrary, pointers to structures integers from 0-29
nonnegative in the user's address
integers space

Simple vertical format control is provided. The logical unit must be opened for
sequential access with form = 'print.' Control codes '0' and '1' are
replaced in the output file with '\n' and '\f, respectively. The control character
'+' is not implemented and, like any other character in the first position of a
record written to a 'print' file, is dropped. No vertical format control is recog­
nized for direct formatted output or list-directed output. See fpr for an alternative
way of mapping FORTRAN carriage control to ASCII control characters.

In C, programmers traditionally open input files for reading, output files for writ­
ing. Sometimes files are opened for both operations since UNIX allows lets you
open files with reading andlor writing permissions assigned to the owner or oth­
ers. In FORTRAN it's not possible for the system to foresee what use you make of
the file since there's no parameter to the open statement that gives that infor­
mation. Thus, FORTRAN always attempts to open a file with the maximum
permissions possible: first for both reading and writing, then for each separately.
This occurs transparently and should only be of concern if you try to perform a
read, write, or endf ile that you don't have permission for. Magnetic
tape operations are an exception to this general freedom, since you could have
write permission on a file while not having a write ring on the tape.

~\sun ,~ microsystems

42

Format Interpretation

List-Directed Output

I/O Errors

3.4. Non-'ANSI Standard'
Extensions

Format Specifiers

In the Sun implementation, most formats are compiled; only those that are unk­
nown until runtime require parsing at runtime. Upper- as well as lower-case char­
acters are recognized in format statements and all the alphabetic arguments to the
I/O library routines.

If the external representation of a datum is too large for the field width specified,
the specified field is filled with asterisks (*).

Nondestructive tabbing is implemented for both internal and external formatted
I/O. Tabbing left or right on output does not affect previously written portions of
a record. Tabbing right on output causes unwritten portions of a record to be
filled with blanks. Tabbing right off the end of an input logical record is an error.
Tabbing left beyond the beginning of an input logical record leaves the input
pointer at the beginning of the record. The format specifier T must be followed
by a positive nonzero number. Tabbing left requires the ability to seek on the
logical unit. Therefore, it is not allowed in I/O to a terminal or pipe. Likewise,
nondestructive tabbing in either direction is possible only on a unit that can seek.
Otherwise tabbing right or spacing with X writes blanks on the output.

In formatting list-directed output, the I/O system tries to prevent output lines
longer than 80 characters. Each pair of external data is separated by two spaces.
List-directed output of complex values includes an appropriate comma. List­
directed output distinguishes between real and double precision
values and formats them differently. A '\n' in a character string is output as a
carriage return.

If the user's program does not trap I/O errors an appropriate error message is
written to stderr before aborting. An error number is printed in square brack­
ets, [], along with a brief error message showing the logical unit and I/O state.
Error numbers < 100 refer to UNIX errors; these are described in intro in the Sun
System Interface Manual. Error numbers ~ 100 come from the I/O library, and
are described further in Appendix C of this manual. For external I/O, part of the
current record will be displayed if the error was caused during reading from a file
that can backspace. For internal I/O, part of the string is printed with a vertical
bar (I) at the current position in the string.

Several extensions have been added to the I/O system to provide for functions
omitted or poorly defined in the standard. Programmers should be aware that
these are not portable. Refer to Chapter 6 for a complete description of devia­
tions from the FORTRAN 77 standard.

FORTRAN 77 provides additional specifiers to the FORTRAN 66 format
specifications I, F, E, G, D, H, X, A, and L. A brief description of some of
the expanded features follows here. Table 3-3 summarizes FORTRAN 66, FOR­

TRAN 77 and extended p7 format specifiers.

~\sun ~~ microsystems

Table 3-2

Chapter 3 - Input and Output 43

FORTRAN Format Specifiers

Specifier FORTRAN 66 FORTRAN 77 fl7
Extensions

Integer Editing Iw IW.m

Floating-Point Edit- Fw.d, Ew.d, Ew.dEe, Ew.d.e,
ing Gw.d, Dw.d Dw.dEfIe, Dw.d.e,

Gw.dEe Gw.d.e

Character Editing wH, Aw "xxxx" (string
constant), A

Logical Editing Lw

Position Editing wX,/

Position Control Tn, TLn, TRn nT,T

Sign Control S, SP, SS,
SP

Blank Control BN, BZ B

Scale Control nP P

Conditional Newline $

Conditional Termi-
nation of Format
Editing

Signed/Unsigned SU
Integer Control

Radix Control nR

The FORTRAN 66 formats Iw, Ew.d, and Gw.dhave been extended in FOR­

TRAN 77 to include the forms

Iw.m Ew.dEe Gw.dEe

The e field specifies the minimum number of digits or spaces in the exponent
field on output. The form Ew.d.e is allowed but is not standard. If the value of
the exponent is too large, the exponent notation e or d is dropped from the out­
put to allow one more character position. If this is still not adequate, the e field is
filled with asterisks (*). The default value for e is 2.

An additional form of tab control specification has been added. The ANSI stan­
dard forms TRn, TLn, and Tn are supported, where n is a positive nonzero
number. If T or nT is specified, tabbing is to the next (or n-th) 8-column tab
stop. Thus columns of alphanumerics can be lined up without counting.

P by itself is equivalent to OP. It resets the scale factor to the default value, O.

B is an acceptable edit control specifier. It returns interpretation to the default
mode of blank interpretation, consistent with S, which returns to default sign

~\sun ,~ microsystems

44

Print Files

control.

A format control specifier has been added to suppress the newline at the end of
the last record of a formatted sequential write. The specifier is a dollar sign ($)
and is constrained by the same rules as the colon (:). It is used typically for con­
sole prompts. For example:

write (*, "('enter value for x: ',$)")
read (*,*) x

Radixes other than 10 can be specified for formatted integer 110 conversion. The
specifier is patterned after P, the scale factor for floating-point conversion. It
remains in effect until another radix is specified or format interpretation is com­
plete. The specifier is R or nR, where 2 ~ n ~ 36. If n is omitted, the default
decimal radix is restored. The 110 item is treated as a 32-bit integer.

In conjunction with the above, a sign-control specifier has been added to cause
integer values to be interpreted as unsigned during output conversion. The
specifier is S U and remains in effect until another sign control specifier is
encountered, or format interpretation is complete. Radix and 'unsigned'
specifiers could be used to format a hexadecimal dump, as follows:

[2000 format (SU, 16R, 8I10.8))

Note: Unsigned integer values greater than (2**30 - 1), cannot be read by FOR­

TRAN 77 input routines. All internal values are output correctly.

The ANSI standard is ambiguous regarding the definition of a 'print' file. Since
UNIX has no default 'print' file, an additional form specifier is now recognized
in the open statement. Specifying form = 'print' implies formatted out­
put and enables vertical format control for that logical unit. Vertical fonnat con­
trol is interpreted only on sequential formatted writes to a 'print' file (see "Verti­
cal Format Control" earlier in this chapter).

The inquire statement returns print in the form string variable for logi­
cal units opened as 'print' files. It returns -1 for the unit number of an unopened
file.

If a logical unit is already open, an open statement including the form option
or the blank option does nothing but redefine those options. This instance of
the open statement need not include the filename, and must not include a
filename if unit refers to standard input or output. Therefore, to redefine the
standard output as a 'print' file, use

[open (unit-6, form-'print')

~\sun ,~ microsystems

)

Scratch Files

List-Directed I/O

3.5. Transporting Older
Programs

Logical Unit Preattachment

3.6. Magnetic Tape I/O

Chapter 3 - Input and Output 45

A close statement with status= 'keep' must be specified for temporary
files. It is the default for all other files. Remember to get the scratch file's real
name, using inquire, if you want to reopen it later.

List-directed input has been modified to allow reading of a string not enclosed in
quotes. The string must not start with a digit, and cannot contain separators
(commas or slashes (I)) or whites pace (spaces or tabs). A newline terminates the
string unless escaped with a backslash (\). Any string not meeting the above res­
trictions must be enclosed in single or double quotes.

Internal, list-directed I/O is provided. During internal, list-directed reads, charac­
ters are consumed until the input list is satisfied or the 'end-of-file' is reached.
During internal, list-directed writes, records are filled until the output list is
satisfied. The length of an internal array element should be at least 20 characters
to avoid logical record overflow when writing double-precision values. Internal,
list-directed read was implemented to make command line decoding easier.
Internal, list-directed output should be avoided.

Traditional FORTRAN 77 environments usually assume carriage control on all
logical units. They usually interpret blank spaces on input as zeroes and often
provide attachment of global filenames to logical units at runtime. There are
several routines in the I/O library to provide these functions.

If a program reads and writes only units 5 and 6, then including the -l.I 66 flag
in the [17 command causes carriage control to be interpreted on output and cause
blanks to be read as zeroes on input without further modification of the program.
If this is not adequate, the routine ioinit) can be called to specify control parame­
ters separately, including whether files should be positioned at their beginning or
end upon opening.

The ioinit routine can also be used to attach logical units to specific files at run­
time. It looks for names of a user-specified form in the environment and opens
the corresponding logical unit for sequential formatted I/O. Names must be of the
form PREFIXnn, where PREFIX is specified in the call to ioinit and nn is the logi­
cal unit to be opened. Unit numbers < 10 must include the leading '0'.

ioinit should prove adequate for most programs as written. However, it is written
in FORTRAN 77 specifically so that it may serve as an example for similar user­
supplied routines. A copy may be retrieved by issuing the command

hostname% ar x /usr/1ib/libI77.a ioinit.f

Using tape files on UNIX systems is awkward because, historically, UNIX
development was oriented toward small data sets residing on fast disks. Mag­
netic tape was used by early UNIX systems for archival storage and moving data
between different machines. Unfortunately, many FORTRAN programs are
intended to use large data sets from magnetic tape.

46

Tape File Representation

Thef17 tape I/O package implemented at Berkeley (see topen») offers a partial
solution to the problem. FORTRAN programmers can transfer blocks between the
tape drive and buffers declared as FORTRAN character variables. The programmer
can then use internal I/O to fill and empty these buffers. This facility does not
integrate with the rest of FORTRAN I/O (it even has its own set of tape logical
units); thus, its use is discouraged.

Sun FORTRAN provides facilities for transparent access to formatted, sequential
files on magnetic tape. The tape block size may optionally be controlled by the
open statement's fileopt parameter. There is no bound on formatted record
size and records may span tape blocks.

Connecting a magnetic tape for unfonnatted access is less satisfactory. Because
of the implementation of unformatted records as a sequence of characters pre­
ceded and followed by character counts, the first word of the record must be
backpatched after the length of the entire record is known. This is due to the
sequential property of the medium, which makes it impossible to seek back and
rewrite this word. Thus, the size of a record (+ 8 characters of overhead) cannot
be bigger than the buffer size.

As long as this restriction is honored, the I/O system does not write records that
span physical tape blocks, but writes short blocks when necessary. This
representation ofunfonnatted records is preserved (even though it is inappropri­
ate for tape), so files can be freely copied between disk and tapes. (Note that,
since the block-spanning restriction does not apply to tape reads, files can be
copied from disk to tape without any special considerations.)

A FORTRAN file is represented on tape by a sequence of data records followed by
an endfile record. The data is grouped into blocks, the maximum size determined
when the file is opened. The records are represented the same as records in disk
files: formatted records are followed by newlines, unformatted records are pre­
ceded and followed by character counts. In general, there is no relation between
FORTRAN records and tape blocks; that is, records can span blocks, which can
contain parts of several records. The only exception is that FORTRAN won't write
an unformatted record that spans blocks; thus, the size of the largest unformatted
record is eight characters less than the block size.

An endfile record in FORTRAN maps directly into a tape mark. Thus, FORTRAN

files are the same as tape system files. Because the representation of FORTRAN

files on tape is the same as that used in the rest of UNIX , naive FORTRAN pro­
grams cannot read 80-column card images from tape. If you have an existing
FORTRAN program and an existing data tape you wish to read with it, you should
translate the tape using the dd(l) utility, which adds newlines and strips trailing
blanks. For example,

dd if=/dev/rmtO ibs=20b cbs=80 conv=unblock I fort-prog

If you write or modify a program and don't want to use dd, you can use the
getc(3F) library routine to read characters from the tape. You can then assemble

End-of-File

Accessing Files on Multiple­
File Tapes

3.7. Sun FORTRAN I/O
Statements

FORTRAN I/O Concepts

Chapter 3 - Input and Output 47

the characters into a character variable and use internal I/O to transfer fonnatted
data. See also topen(3F).

The end-of-file condition is reached when an endfile record is encountered during
execution of a read statement. The standard states that the file is positioned
after the endfile record. In real life, this means that the tape read head is poised
at the beginning of the next file on the tape. Thus, it would seem that you should
be able to continue reading the next file on the tape; however, this doesn't work
and is prohibited by the standard.

The standard also says that a backspace or rewind statement may be used
to reposition the file. This means that after reaching end-of-file, you can back­
space over the endfile record and further manipulate the file (such as writing
more records at the end), rewind the file, and reread or rewrite it.

Each tape drive can be opened by many names. The name used detennines cer­
tain characteristics of the connection, which are the recording density and
whether the tape is automatically rewound when opened and closed. To access a
file on a multiple-file tape, you should use the mt(l) utility to position the tape to
the correct file, then open the file as a no-rewind magnetic tape such as
"/dev/nnntO." Using the tape with this name also prevents it from being reposi­
tioned when it is closed. This means that if your program reads the file until
end-of-file, then reopens it, it can access the next file on the tape. Any following
programs can access the tape where you left it (preferably at the beginning of a
file, or past the endfile record). If your program tenninates prematurely it could
leave the tape positioned in an unpredictable place.

The rest of this chapter describes Sun FORTRAN I/O statements and the concepts
that direct their use and operation.

UNIX is not as fonnat-oriented as FORTRAN. UNIX treats all files as sequences of
characters instead of collections of record structures. The FORTRAN run-time
system keeps track of file formats and access modes. It provides the FORTRAN file
facilities using the FORTRAN 110 system, which includes the FORTRAN libraries
and the standard liD library.

~\sun ~~ microsystems

48

Table 3-3 Summary of FORTRAN Input and Output

Type of tile Access mode

Formatted

Unformatted

List-directed

Sequential Direct

internal file must be character variable, file must be a character
character array element, character array; each "record" is a
array, or substring single element of the

array

external contains only formatted records of contains only formatted
same or variable length records; all must be the

same length

internal (not allowed) (not allowed)

external contains only unformatted records read: one logical
record at a time.
wr it e : leaves unfilled
part of record
undefined.

internal read: characters are read until the (not allowed)
I/O list is satisfied, or until 'end-
of-file' is reached; implemented to
make command line decoding
easier. wr it e: records are filled
until 110 list is satisfied; writes
SHOULD BE A VOIDED.

external no associated format statement; (not allowed)
values input or output depend on
types in 110 list

Note: On list-directed internal files writes should be avoided because the number
of items written on a line of output and the lengths of the items vary with the
values of the items (see "List-Directed Output" later in this chapter).

~\sun ~~ microsysterns

The open Statement

Chapter 3 - Input and Output 49

The open statement connects a file with a unit, or alters some property of the
connection. It has the following format:

(open (parameter list)
J

where parameter list is a list of optional keywordd specifiers, separated by com­
mas.

open determines the type of file named, whether the connection specified is
legal for the file type (for instance, direct access is illegal for tape and tty
devices), and allocates buffers for the connection if the file is on tape or if the
fileopt = buffer = .. ' subparameter is specified. The default buffer size for
tape is 64K characters. Valid specifiers are as follows:

unit

file

A required nonnegative integer that specifies the FORTRAN unit
number to connect to. If the unit is first in the parameter list, then
uni t can be omitted.

An optional character expression naming the file to open. If not
specified, a default filename can be created. An open statement
need not specify a filename.

If you open a unit that's already open without specifying a filename
(or with the previous filename), FORTRAN thinks you are reopening
the file to change parameters. The only parameters you are allowed
to change are blank (,null' or zero), form (,formatted'
or 'pr int '). To change any other parameters, you must close, then
reopen the file.

If status = 'scratch' is specified, a temporary file with a name
of the form 'tmp.Fnnnn' is opened, and (by default) deleted when
closed or during termination of program execution. Any other
status specifier without an associated filename results in opening
a file named fort. n', where n is the specified logical unit number.
(See below for a general description of the status parameter.)

access An optional character expression. The options are 'sequential'
or 'direct'. If not specified, 'sequential' is assumed.

If access='direct' is specified, recl must also be given, since all I/O
transfers are done in multiples of fixed-size records. Only directly accesible files
are allowed; thus, tty, pipes and magnetic tape are not allowed. If
form='unformatted' the size of each transfer depends upon the data
transferred. If form is not specified, unformatted transfer is assumed.

If access=' sequential', recl is prohibited since records are of varying
size. No padding of records is done and files don't have to be randomly accessi­
ble; thus tty, pipes and tapes can be used. If not specified form='formatted'
is assumed. If form = 'f ormat ted' each record is terminated with a newline
(\n) character. This means that each record actually has one extra character. If
f orm= 'pr in t ' the file acts like a form = 'f orma t ted' file except for the
interpretation of column-l characters on output (0 = double space, 1 = formfeed,

50

and blank = single space). If form = 'unformatted' each record is preceded
and terminated with an integer*4 count, making each record 8 characters
longer than normal. This convention is not shared with other UNIX programs, so
is useful only for communicating between FORTRAN programs.

Each write defines one record and each read reads one record (unread char­
acters are flushed). The magnetic tape fileopt = 'buffer = ... ' suboption
must be at least 8 characters greater than the largest record you write to avoid
spanning tape blocks.

form

recl

err

An optional character expression. The options are 'f 0 rma t ted' ,
'unformatted' or 'print.' If not specified, formatted is
assumed. Interacts with access.

recI=Iength specifies the record length in characters. Required if
access='direct', prohibited if access=' sequential.'

An optional statement label to branch to if an error occurs during the
open.

iostat An optional variable name that receives the error status from an
open.

Note: Either err=labelor iostat=name must be coded to
avoid a disaster when an error occurs on an open.

blank An optional character expression that indicates how blanks are
treated. For formatted input only; the options are 'zero' (blanks
treated as zeroes), and 'null' (blanks ignored during numeric
conversion). If not specified, 'null' is assumed.

status An optional character expression. The possible values are

• 'old' - the file already exists (nonexistence is an error);

• 'new' - the file doesn't exist (existence is an error) and
file=name is required;

'unknown' - existence is unknown (the default); and

• 'scratch' - file=name is prohibited and the file is
removed when closed (exception: if you specify status =

'keep' in an explicit close of the unit).

fileopt An optional character expression. The options are

~\sun ,~ microsystems

• 'nopad' - don't extend records with blanks if you read past
the end-of-record (formatted input only);

'buff er=nnnn' - the size of the I/O buffer to use (magnetic
tape only). buffer is only necessary when writing, since the
I/O system defaults to 64K-character buffers for tape, allowing
reads to anything smaller than that;

'eof' - opens a file at end-of-file rather than at the beginning
(useful for appending data to the file). For example:

Chapter 3 - Input and Output 51

open(7,file='junkfile',form='formatted',fileopt='eof,buffer=2048')

The close Statement

The inquire Statement

Existing files are never truncated on opening. Sequentially accessed, external
files are truncated to the current file position on close, backspace, or rewind only
if the last access to the file was a write. An endfile always causes such files
to be truncated to the current file position.

close severs the connection between a unit and a file. The unit number must be
given. The optional parameters are iostat and err (see open for mean­
ings), and status 'keep' or 'delete.' keep is the default (except for
scratch files). delete means that the file will be removed. A simple example
is

(~C_l_O_S_e __ (_3_, __ e_r_r_=_1_7_) __ ~J

The inquire statement gives information about a unit (inquire-by-unit) or a
file (inquire-by-file). It has the general form

(inquire (parameter list)

It sets values of integer, logical, and character variables by specifing keywords
that correspond to the values of unit, connection, or file properties. These pro­
perties can be grouped as follows:

Unit properties: A unit alone has only the properties of existence and of
being connected or not. Only units that exist can be opened but you can
inquire about a unit even if it doesn't exist.

exist (ifinquire-by-unit)

number (if inquire-by-file)

J

Connection properties: The association between a FORTRAN unit and a file.
It includes properties associated with the open statement: sequential or
direct, formatted or unformatted, and a record length. Its properties interact
with file properties. For example, some types of connections (e.g., direct)
may not be allowed with some files (e.g., magnetic tape).

.\sun ,~ microsystems

open

access

form

recl

nextrec

blank

52

File properties: File properties are its name, existence and how it can be
connected (formatted, unformatted, sequential and direct).

exist (ifinquire-by-file)

named (if inquire-by-unit)

name (if inquire-by-unit)

sequential

direct

formatted

unformatted

Simple examples are:

inquire(unit=3, name=xx)
inquire (file='junk', exist=l, opened=isopen, number=n)

The options to inquire are as follows:

file a character variable specifies the file the inquire is about. Trail­
ing blanks in the filename are ignored. Files have the properties of
name, existence (or nonexistence), and the ability to be connected to
in certain ways (formatted, unformatted, sequential,
or direct). It can be connected to a unit in the current program or
not.

uni t a positive integer variable that refers to files after they are opened.
Exactly one of file or unit must be used.

iostat as in the open statement.

err as in the open statement.

exist a logical variable that is set to . true. if the file or unit exists and
. false. otherwise.

opened a logical variable that is set to . true. if the file is connected to a
unit or the unit is connected to a file, and . false. otherwise.

number an integer variable that is assigned the number of the unit connected
to the file, if any.

named a logical variable that is assigned . true. if the file has a name, or
. false. otherwise.

name a character variable that is assigned the name of the file (inquire­
by-file) or the name of the file connected to the unit (inquire-by­
unit). The name is the full name of the file. When performing an
inquire-by-unit, the name parameter is undefined unless both the
opened and named variable's values are .true.

access a character variable that is assigned the value 'sequential'ifthe
connection is for sequential 110, ' direct' if the connection is for

~\sun ~ microsystems

Chapter 3 - Input and Output 53

direct I/O. The value is undefined if there is no connection.

sequential
a character variable that is assigned the value ' ye s' if the file could
be connected for sequential I/O, 'no' if the file could not be con­
nected for sequential 110, and 'unknown' if the system can't tell.

direct a character variable that is assigned the value 'yes' if the file could
be connected for direct 110, 'no' if the file could not be connected
for direct I/O, and 'unknown' if the system can't tell.

form a character variable which is assigned the value 'formatted'if
the file is connected for formatted I/O, or 'unformatted'ifthe
file is connected for unformatted I/O.

formatted
a character variable that is assigned the value 'yes' if the file could
be connected for formatted 110, 'no' if the file could not be con­
nected for formatted I/O, and 'unknown' if the system can't tell.

unformatted
a character variable that is assigned the value 'yes' if the file could
be connected for unformatted 110, 'no' if the file could not be con­
nected for unformatted I/O, and 'unknown' if the system can't tell.

recl an integer variable that is assigned the record length of the records in
the file if the file is connected for direct access.

nextrec an integer variable that is assigned one more than the number of the
the last record read from a file connected for direct access.

blank a character variable that is assigned the value 'null' if null blank
control is in effect for the file connected for formatted 110, 'z era'
if blanks are being converted to zeros and the file is connected for
formatted I/O.

Remember that the people who wrote the ANSI standard probably weren't think­
ing of your needs. Here is an example, in which declarations are omitted.

[open(l. file-"/dev/console")
J

On a UNIX system this statement opens the console for formatted sequential I/O.
An inquire statement for either unit 1 or file "/dev/console" would reveal that
the file exists, is connected to unit 1, has the name, "/dev/console", is opened for
sequential 110, could be connected for sequential 110, can't be connected for
direct 110 (can't seek), is connected for formatted I/O, can be connected for for­
matted 110, can't be connected for unformatted 110 (can't seek), has neither a
record length nor a next record number, and is ignoring blanks in numeric fields.

In the UNIX system environment, the only way to discover what permissions you
have for a file is to use the access) function. The inquire statement does not
determine permissions .

• \sun ~~ microsystems

54

The backspace Statement

The rewind Statement

The endfile Statement

backspace does one of two things, depending on whether or not end-of-file
has been reached. If it has, then it backs up over the endfile record - on a disk
file, this does nothing but on a tape it corresponds to backing up over the tape
mark, and positioning the tape after the last data record of the file but before the
endfile record. Otherwise, it backs up over the last data record read or written
(Le., the last FORTRAN logical record, which may involve reading one or more
physical records). For format ted records, it will search backwards looking
for the record separator (\n or "J); for unformatted records, use the
character-count trailer that is part of the record.

unit A required nonnegative integer that specifies the FORTRAN unit
number to connect to. If the unit number is first in the parameter list,
then unit can be omitted.

er r An optional statement label (for example, err= 1000) to branch
to if an error occurs during the open.

iostat An optional variable name that receives the error status value from
an open. Forexample, iostat= 'ouch'.

rewind positions you at the beginning of the file you were just reading or writ­
ing. When writing a sequential file (such as one on tape), it does an implicit
endfile action first. If you are reading the endfile record, rewind back­
spaces over that and all the data records preceding.

rewind does not necessarily rewind a tape to its beginning. If you are reading
the second file on a tape, then it rewinds to the beginning of the second file. To
fully rewind a tape, use the mt(l) utility program, which can be invoked from a
FORTRAN program by using the system(3f) library call. The options related to
rewind are as follows:

unit A required nonnegative integer that specifies the FORTRAN unit
number to connect to. If the unit number is first in the parameter list,
then unit can be omitted.

err An optional statement label (for example, err = 1 0 0 0) to branch
to if an error occurs during the rewind operation.

iostat An optional variable name that receives the error status from a
rewind operation. For example, iostat= 'ouch' .

When writing to a UNIX disk file, endfile truncates the file at the current
position. This is because in disk files, the "endfile" record is represented by the
end of the file.

Two endfile records signify the end-of-tape mark. When writing to a tape file,
endf ile writes two endfile records, then the tape backspaces over the second
one. If the file is closed at this point, both end-of-file and end-of-tape are marked.
If more records are written at this point (either by continued write statements or
by another program if you are using no-rewind magnetic tape), the first tape mark
stands (endfile record), and is followed by another data file, then by more tape
marks, and so on. The options related to endfile are as follows:

~\sun
~~ microsystems

Chapter 3 - Input and Output 55

uni t A required nonnegative integer that specifies the FORTRAN unit
number to connect to. If the unit number is first in the parameter list,
then unit can be omitted.

err An optional statement label (for example, err=1000) to branch
to if an error occurs during the endf ile operation.

iostat An optional variable name that receives the error status from end­
file. For example, iostat= 'ouch' .

• \sun
~ microsystems

4
The Run Time Environment

The Run Time Environment .. 59

4.1. Command Line Arguments .. 59

4.2. Exiting with. status ... 60

4.3. Storage Allocation .. 60

4.4. Data Representations ... 61

Representation of real and double precision 61

Representation With Extreme Exponents ... 62

Hexadecimal Representation of Selected Numbers 63

Deviations from the IEEE Standard ... 63

Arithmetic Operations on Extreme Values .. 63

4.5. Interprocedure Interface ... 66

Procedure Names .. 66

Data Representations .. 66

Return Values .. 67

Argument Lists ... 68

Examples ... 69

Calling C from FORTRAN ... 70

Calling FORTRAN from C ... 71

Sharing Input/Output Streams ... 73

4.1. Command Line
Arguments

4

The Run Time Environment

This chapter describes useful run time parameters,j77 data representations, and
the conventions you must be aware of to interface C and FORTRAN 77 pro­
cedures. It is intended as a guide to programmers who want to use modules wit­
ten in languages other than FORTRAN 77 with FORTRAN 77 code. The Pascal­
FORTRAN interface is covered in Appendix C of the Pascal Programmer's
Guide.

It is often useful to pass a program parameters on the command line. The func­
tion iargc returns the number of command line parameters. The subroutine
getarg copies a parameter into a variable in the program. For example,

character arg*70
c
c find out how many command line arguments there were

nargs=iarc ()
c one at a time, get an argument and write it out

do 10 i = 1, nargs
call getarg(i, arg)
print ' (a) " arg

10 continue
end

This program loops through the parameter list copying a parameter into arg
and then writing it to standard output. Since arg is only 70 characters long,
any longer parameter is truncated. If it is compiled in myecho you can test it as
follows:

~\sun ,~ microsystems
59

60

4.2. Exiting with status

4.3. Storage Allocation

hostname% myecho this is a sample
this
is
a
sample

hostname% myecho *
calc.f
mycat.f
myecho
myecho.f
myecho.o

Using the subroutine exit a FORTRAN program can set the shell status vari­
able to indicate whether the program was successful or not. The default is that
stat us is set to zero. The following statement:

[call exit (8)

sets status to 8, then terminates execution of the program. The current value
of status can be displayed by typing

[hostname% echo $status

Note that the echo command sets the variable back to zero after showing its
value. The value of status can be used in shell script conditional statements
or in batch jobs.

abort can be used to tenninate a program setting status to 138, dumping
memory to the file core, and printing a message on standard error as in

call abort(n sample error message n)

and causes a program to terminate after writing out

abort: sample error message
Bus error (core dumped)

)

)

This section describes the way storage is allocated to variables of different types.

In general, any word value (a value that occupies 16 bits) is always aligned on a
word boundary. Anything larger than a word is also aligned on a word boundary
(on a Sun-3, 32-bit or larger unequivalenced local variables are longword­
aligned). Values that can fit into a single character are character-aligned.

integer*2
occupies 16 bits (two characters or one word), aligned on a word boundary.

~\sun
~~ microsystems

4.4. Data Representations

Representation of real and
double precision

Chapter 4 - The Run Time Environment 61

integer or integer*4
occupies 32 bits (four characters or two words), aligned on a word boundary.

real or real * 4
occupies 32 bits (four characters or two words), aligned on a word boundary.
A real element has a sign bit, an 8-bit exponent and a 23-bit fraction.
FORTRAN 77 real elements conform to the IEEE standard2. The layout of
a real element is shown in Table 4-1.

double precision or real*8
elements occupies 64 bits (eight characters or four words), aligned on a word
boundary. A double precision element has a sign bit, an II-bit
exponent and a 52-bit fraction. FORTRAN 77 double precision ele­
ments conform to the IEEE standard for double precision floating-point data
as defined in [25]. The layout of a double precision element is
shown in Table 4-1.

complex
elements are represented by two real elements. The first element
represents the real part of the number, and the second represents the ima­
ginary part.

double complex
elements are represented by two double precision elements. The
first element represents the real part of the number, and the second
represents the imaginary part.

logical
occupies two characters (16 bits) of storage, aligned on a word boundary.
The value 0 represents . false. and 1 represents . true .. Any other
value is an 'undefined' logical value.

logical or logical *4
occupies four characters (32 bits) of storage, aligned on a word boundary.
The value 0 represents the value . false. and 1 represents . true ..
Any other value is an 'undefined' logical value.

Whatever the size of the data element in question, the most significant bit of the
data element is always in the lowest-numbered character of the character
sequence required to represent that object.

real and double precision data elements are represented according to
the IEEE standard:

2 See p.754 [25].

~\sun ,~ microsystems

62

Table 4-1

Representation With Extreme
Exponents

Single- and Double-Precision Floating-Point Number Representation

Single-Precision Double-Precision

Sign bit 31 bit 63

Exponent bits 30-23 bits 62-52
bias 127 bias 1023

Fraction bits 22-0 bits 51-0

Range -3.402823e+38 -1.797693e+308
-1. 175494e-38 -2.22507 4e-308

real and double precision numbers are composed of the following
parts:

a one-bit sign. The sign bit is a 1 if the number is negative.

a biased exponent. The exponent is eight bits for a real number, and is
eleven bits for a double precision number. The values of all zeroes
and ones are special values.

a normalized significand, with the high-order 1 bit 'implicit.' The fraction
is 23 bits for a real number and 52 bits for a double preci sion
number. A real or double precision number is represented by the
form:

(_1)5 * 2exponent-bias

where f is the bits in the mantissa.

zero (signed)
is represented by an exponent of zero and a fraction of zero.

subnormal numbers
are nonzero numbers with an exponent of zero. The form of a subnormal
number is

21-bias * O.f

where f is the bits in the fraction.

signed infinity
(that is, affine infinity) is represented by the largest value that the exponent
can assume (all ones), and a zero fraction.

Not-a-Number (NaN)
is represented by the largest value that the exponent can assume (all ones),
and a nonzero fraction.

Normalized real and double precision numbers have an implicit lead­
ing bit that provides one more bit of precision than usual.

Hexadecimal Representation
of Selected Numbers

Table 4-2

Deviations from the IEEE
Standard

Arithmetic Operations on
Extreme Values

Chapter 4 - The Run Time Environment 63

Hexadecimal Representation of Selected Numbers

Value Single-Precision Double-Precision

+0 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

Deviations from the IEEE standard in Release 3.0 are as follows:

Remainder is not provided

• User-defined rounding modes are not supported. Only round-to-nearest mode
is provided for most operations, except that conversion from a floating-point
number to an integer value in either integer format (INT) or floating format
(AINT) is provided only in round-toward-zero mode

Exceptions are neither recorded nor reported

Signaling NaN s are not provided

This section describes the results of basic arithmetic operations performed on
combinations of extremal and ordinary values. No traps or any other exception
actions are taken. All inputs are assumed to be positive. Overflow and
underflow are assumed not to happen. Table 4-3 summarizes the abbreviations
used in the following tables:

64

Table 4-3 Abbreviations/or Numbers

Abbreviation Meaning

Subnonnal Number
Normalized Number

Sub
Num
Inf
NaN
Uno

Infinity (positive or negative)
Not a Number
Unordered

Addition and Subtraction

Left Right Operand

Operand 0 Sub Num Inf NaN

0 0 Sub Num Inf NaN

Sub Sub Sub Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf See Note NaN

NaN NaN NaN NaN NaN NaN

Note: Inf + Inf = Inf; Inf - Inf = NaN

Multiplication

Left Right Operand

Operand 0 Sub Num Inf NaN

0 0 0 0 NaN NaN

Sub 0 0 NS Inf NaN

Num 0 NS Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Note: NS means either Num or Sub result possible.

Chapter 4 - The Run Time Environment 65

Division

Left Right Operand

Operand 0 Sub Num Inf NaN

0 NaN 0 0 0 NaN

Sub Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

Comparison

Left Right Operand

Operand 0 Sub Num Inf NaN

0 = < < < Uno

Sub > < < Uno

Num > > < Uno

Inf > > > = Uno

NaN Uno Uno Uno Uno Uno

Notes:

• If either x or y is NaN, then x .EQ. y is FALSE and x .NE. y is TRUE, while
x .LT. y, x .LE. y, x .GT. y and x .GE. y are FALSE.

• +0 compares equal to -0.

66

Max

Left Right Operand

Operand 0 Sub Num Inf

0 0 Sub Num Inf

Sub Sub Sub Num Inf

Num Num Num Num Inf

Inf Inf Inf Inf Inf

Min

Left Right Operand

Operand 0 Sub Num Inf

0 0 0 0 0

Sub 0 Sub Sub Sub

Num 0 Sub Num Num

Inf 0 Sub Num Inf

Note: Results of max and min are undefined if any argument is NaN.

4.5. Interprocedure Interface To write C procedures that call or are called by FORTRAN 77 procedures, you
must know the conventions for procedure names, data representation, return
values, and argument lists that both languages use.

Procedure Names

Data Representations

f17 appends an underscore to the name of a common block or procedure to dis­
tinguish it from C procedures or external variables with the same user-assigned
name. If the name has exactly 16 characters, the underscore is not appended.
FORTRAN 77 library procedure names have embedded underscores to avoid
clashes with user-assigned subroutine names.

Table 4-4 summarizes corresponding FORTRAN 77 and C declarations:

~~ slIn ~if' microsystems

Return Values

Chapter 4 - The Run Time Environment 67

Table 4-4 FORTRAN and C Declarations

FORTRAN C

integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character*6 x char x [6] ;

According to FORTRAN 77 rules, integer, logical, and real data
occupy the same amount of memory.

A FORTRAN function of type integer, logical, real, or double
precision is equivalent to (as far as returning values is concerned) a C func­
tion that returns the corresponding type. A complex or double complex
function is equivalent to a C routine having an additional initial argument that
points to the return value storage location. Thus,

(
comPlex function f(...)]

'-----------
is equivalent to

f_ (temp, . . .)
struct { float r, i; } *temp;

A character-valued FORTRAN function is equivalent to a C routine with two extra
initial arguments: data address and length. Thus,

[character'lS function g(. . .)

is equivalent to

g_(result, length, ...)
char result[];
long int length;

and could be invoked in C with

~\sun ~ microsystems

J

68

Argument Lists

char chars[15];

g_(chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose values
specify which alternate return to use. Alternate return arguments (statement
labels) are not passed to the function, but are used to do an indexed branch in the
calling procedure. If the subroutine has no entry points with alternate return
arguments, the returned value is undefined. The statement

(call nret(*l, *2, *3)]
is treated exactly as if it were the computed got 0

[~g_o_t_o ___ (1 __ '_2 __ ' __ 3_)_, __ n __ r_e_t_(__) __________________________________ ~]

All FORTRAN 77 arguments are passed by reference. In addition, for every argu­
ment that is of type character, an argument is passed giving the length of the
value. The string lengths are equivalent to C long int quantities passed by
value. The order of arguments is then:

Extra arguments for the return values of complex and character functions

Address for each datum or function

A long int for each character argument

Thus, the FORTRAN call in

external
character*7 s
integer b(3)

call sam(b(2), s)

is equivalent to the C call in

int f_ () ;
char s[7];
long int b[3];

sam_(&b[l], s, 7L);

Note that the first element of a C array always has subscript zero, but FORTRAN

77 arrays begin at 1 by default, so the FORTRAN b (2) is equivalent to the C
b [1] , as shown above. FORTRAN 77 arrays are stored in column-major order, C
arrays are stored in row-major order .

• ~sun
~ microsystems

Examples

Chapter 4 - The Run Time Environment 69

This section presents two examples that illustrate interlanguage conventions.
The first example shows how a C function can be called from a FORTRAN pro­
gram and the second shows how a FORTRAN function can be called from a C pro­
gram. The called function has the task of building a character string by repeating
a character n times, where the character and n are arguments.

~\sun ~~ microsystems

70

Calling C from FORTRAN file "main.f"

CHARACTER STRING*lOO, REPEAT*50
STRING=REPEAT('*',lO)
PRINT *,STRING
END

file "repeat.c"
iinclude <stdio.h>

repeat_(retval-ptr, retval_len, char-ptr, n-ptr, char_len)
char *retval-ptr, *char-ptr;
int retval_len, *n-ptr, char_len;

int count, i;
char *cp;

count = *n-ptr;
if(count > retval_len) {

fprintf(stderr,"repeat count too largeO);
count = ret val_len;

cp = retval-ptr;
for(i=O;i<count;i++)

*cp++ = *char-ptr;

for (i=count;i<retval_len;i++)
*cp++ = , ';

This program can be compiled with the command

(% 177 main.r repeat.c]
Since the fl7 compiler appends a trailing underscore to all external names in
FORTRAN programs, you need to add an underscore to the name of the C function
called. repeat's list of formal arguments is more complicated than the list of
actual arguments in MAIN. The additional complication is due to housekeeping
details related to the management of character strings. If repeat were a FOR­

TRAN function, the compiler would hide these details; however, since repeat is
written in C, the housekeeping must be explicit.

MAIN declares repeat as a function that returns a character string of length
50. The mechanism used to return character strings is to prepend two additional
arguments to the beginning of the argument list. The first of these
retvalytr points to the start of the string and the second retval_len
gives the string's length. MAIN passes two actual arguments: a character string

~\sun ,~ microsystems

Calling FORTRAN from C

Chapter 4 - The Run Time Environment 71

and an integer. Both char _ptr and nytr are passed by address. Finally,
for every character argument in the list of actuals, an additional argument giving
the character string's length is passed. In this example, char_len gives the
length of the string pointed to by char _ptr. Note that FORTRAN strings are
al ways accompanied by a length and need not terminate with a null character as
required by C.

If MAIN declares repeat as an integer, logical, real, or double
precision function, then the two initial arguments would not be present, so
the return value could be passed back to the FORTRAN program with a return
statement. In the current implementation of the C compiler it is impossible to
return a float, since the language requires it be promoted to a double
whenever it is used in an expression and the value in a return statement is an
expression.

To construct a C function that returns a FORTRAN real it is necessary to use a
trick as is illustrated below. Incr is a FORTRAN callable function that returns a
real value one greater than its real argument.

int 1* returns a single precision floating point value */
incr_(floatytr)
float *floatytr;
{

float f;

f = *floatytr;
f ++;
return *((int*)&f);

Thus, the program

real incr
print *, incr (1.)
end

prints 2 ..

The second example illustrates a C program that calls a FORTRAN function.

~\sun ~ microsystems

72

file "main.c n

#include <stdio.h>

main ()
{

char string[100], repeat_val[SO];
int repeat_(), repeat_len, i, count;

repeat_len = sizeof(repeat_val);
count = 10;
repeat_(repeat_val, repeat_len, n*n, &count, sizeof("*")-l);

strncpy(string,repeat_val,repeat_len);
for(i=repeat_len;i<100;i++) {

repeat_val[i] = , ';

printf("%sO,repeat_val);

file "repeat.f n

function repeat(c,n)
character repeat*(*),c*(*)
if(n.gt.len(repeat» then

write(O,' (a)')'repeat count too large'
n = len (repeat)

endif
repeat = "
do 10 i=l,n

10 repeat(i:i)=c(l:l)
return
end

This program can be compiled with the command

(~ ____ %_C_C_m __ a_in_.c __ re_p_e_a_t._f_-l_F_7_7_-_1I_7_7_-I_U_7_7_-_1c_-_lm __________________ ~J

The observations made above now apply in reverse. The caller must set up more
actual arguments than are apparent as formal parameters to the FORTRAN func­
tion. Arguments that are not lengths of character strings must be passed by
address. The two statements following the call to repeat are equivalent to the
work done by the character assignment statement in repeat. f.

Note that the FORTRAN function attempts to reference the stderr stream (unit
0). Before a FORTRAN program starts, the FORTRAN I/O library is initialized to
connect units 0, 5 and 6 to stderr, stdin and stdout, respectively. In
this example, the initialization does not occur since execution begins with the C
main. Thus output is written to a file named fort. 0 instead of to the
stderr stream. The C program should initialize 110 as described in the follow­
ing section.

~\Slln ,~ microsystems

Sharing Input/Output
Streams

Chapter 4 - The Run Time Environment 73

A C function called from a FORTRAN program must take the FORTRAN I/O
environment into consideration to perform I/O on open file descriptors. The FOR­

TRAN I/O library is implemented largely on top of the C standard I/O library.
Every open unit in a FORTRAN program has an associated standard I/O file struc­
ture. For the stdin, stdout and stderr streams, the file structure need
not be explicitly referenced, so it is easy to share these streams between a FOR­

TRAN program and a C function (as illustrated in the first example).

It is more difficult to share a stream that a FORTRAN program explicitly opens,
since there is no way to obtain and pass the file structure. One possible solution
that allows shared writing is to call flu s h (3f) to empty the stream associated
with a unit, and then to call getfd(3f) to obtain the UNIX file descriptor asso­
ciated with that unit number. This file descriptor can then be passed to the C
function, which can use it as an argument to write(2) calJs.

~\sun ~~ microsystems

Debugging and Profiling FORTRAN
Programs

5

Debugging and Profiling FORTRAN Programs ... 77

5.1. Introduction 77

5.2. Using dbx and dbxtool .. 78

5.3. Using adb ... 80

5.4. Compiler flags ... 81

5.5. Profiling Tools ... 81

5.1. Introduction

5
Debugging and Profiling FORTRAN

Programs

This chapter describes tools for debugging and measuring the resource usage of
FORTRAN programs. The most versatile and powerful tool for debugging FOR­
TRAN programs on the Sun workstation is the symbolic debugger dbx, or its
window- and mouse-based version dbxtool. With dbx you can display and
modify variables, set breakpoints, trace variables and invoke procedures in the
program being debugged without having to recompile.

dbxtool is a Sun workstation debugger that lets you make more effective use of
dbx by replacing the original, terminal-oriented interface with a window- and
mouse-based interface. adb is an older binary-oriented, debugger, which is occa­
sionally useful as a supplement to dbx.

The [17 compiler provides two flags that are useful for debugging:

The -C flag causes the compiler to generate subscript checking code that
catches certain kinds of out-of-bounds array subscripts.

The -u flag causes all variables to be initially declared "UNDEFINED", so
that an error is flagged for variables that are not explicitly declared.

The simplest way to measure resource consumption is with the time (1) com­
mand. The gprof(l) command provides a detailed procedure-by-procedure
analysis of execution time, including how many times a procedure was called,
who called it and who it called, and how much time was spent in the procedure
and by the routines that it called.

To provide examples of how these tools work, the following program is used
throughout this chapter:

file al. f:

program silly
real twobytwo(2,2)
data twobytwo/4*-1/
n=2
call mkidentity(twobytwo,n)
print *,determinant(twobytwo)
end

~\sun ~~ microsystems
77

78

5.2. Using dbx and dbxtool

file a2. f:

subroutine mkidentity(matrix,dim)
real matrix(dim,dim)
integer dim
do 10,m=1,dim
do 20,n=1,dim
if(m.eq.n) then

matrix(m,n) 1.
else

matrix(m,n) O.
endif

20 continue
10 continue

return
end

file a3. f:

real function determinant(m)
real m(2,2)
determinant=m(1,1)*m(2,2) - m(1,2)/m(2,1)
return
end

This section briefly summarizes the use of dbx and describes some of its FOR­

TRAN specific aspects. Complete documentation for dbx and dbxtool can be
found in the dbx (1) and dbxtool (1) man pages.

To use dbx or dbxtool, you must compile and load your program with the -q
flag. For example,

(hostname% f77 -0 silly·g al.Ca2.f a3.f

or

hostname% ii7 -c -g a1.f a2.f a3.f; ii7 -g -0 silly al.o a2.0 a3.0

J

To run the program under the control of dbx, type the following command in the
directory where the sources and programs reside:

(hostname% dbx silly
J

To set a breakpoint before the first executable statement, type

~~sun ,~ microsystems

Chapter 5 - Debugging and Profiling FORTRAN Programs 79

(dbX) stop in MAIN]

afterthe (d.bx) prompt appears, then type "run" to begin execution. When the
breakpoint is reached, dbx displays a message showing that it is stopped at line 4
offile al. f.

The where command shows where in the program execution stopped and how
execution reached this point.

The command print n at this point displays 0, since the statement n=2 has
not been executed yet. The command next advances execution to line 5, and if
the print n command is now repeated it displays a 2.

The command print twobytwo displays the entire matrix, one element per
line. Note that square brackets (not parentheses) are used to reference array ele­
ments. The command print matrix fails because subroutine mkiden­
tity is not active at this point and the bounds of the adjustable array matrix
are not known.

Execution can be continued in three ways: continue resumes execution
without setting further breakpoints, next sets a one-time breakpoint at line 5 of
file al. f and continues execution until that point is reached; and step sets a
breakpoint at the next source line to be executed-in this case, line 4 of file
a2.f.

Throughout a debugging session, dbx defines a procedure and a source file (the
file that contains the source for the current procedure) as "current." Requests to
set breakpoints and to print or set variables are interpreted relative to the current
function and file. Thus, stop at 5 sets one of three different breakpoints
depending on whether the current file is a 1 . f, a2. f or a 3 . f.

Likewise, print n displays a different storage location when the current func­
tion is "MAIN" than when it is mkidentity.

The which command shows exactly which variable n is being referenced.
The func and file commands can be used to alter dbx's definition of the
current procedure.

The status command lists the breakpoints in effect and the delete com­
mand removes breakpoints.

It is possible to call a subroutine or function in the program at any point when
execution has stopped. The effect is exactly as if the source had contained a call
at that point. For example if, after the initial breakpoint described above, you
typed print determinant (twobytwo) the value 0 would display, since
mkidenti ty would not yet have modified twobyt woo

This facility is often useful for special-case printing. For example, in a program it
might be meaningful to trace the row and column sums of different matrices. A
subroutine called mats urn that does this, could be compiled into a program and
invoked by the user at appropriate breakpoints.

~\sun ,~ microsystems

80

Assume that file a3. f was modified as follows:

real function determinant (m,dim)
real m(dim,dim)
integer dim
determinant=m(I,I)*m(2,2) - m(I,2)*m(2,1)
return
end

Execution results in a "segmentation violation" as soon as determinant is
invoked and a core file (a copy of the program's image in memory) is produced.
The command dbx silly core correlates this program image with the pro­
gram, which then allows where commands to determine which routines were
acti ve at the time of the exception:

determinant(m = ARRAY, dim = 16776938), line 5 in "a3.f"
MAIN, line 6 in "al.f"
main(Oxl, OxfffebO, Oxfffeb8) at Ox82fa

5.3. Using adb The adb debugger can also be used to provide a stack traceback but at a lower
level. For example, adb silly core starts up adb and the command $c
displays something like

_abort [d590] () + 4
_sigdie[O] (b,0,fffe30) + 152
__ s igt ramp [llabO] () + 20
determinant[81dc] (1801c) + 36
MAIN[8074] () + 36
_main[82aO] (l,fffebO,fffeb8) + 54

This is interpreted as follows. The startup routine main, called the FORTRAN
MAIN routine, which in turn called the function determinant (note the
underscores appended to FORTRAN external names). Somewhere around 36 (hex)
bytes from the beginning of determinant an exception occurred. The exception is
recorded as a call to the signal dispatcher sigtramp. sigtramp noted that
the particular signal was handled by sigdie, a signal handling routine in the
FORTRAN library, and then called it. sigdie printed a message and then called
abort to halt execution. The command determinant_, 10?ia displays
10(hex) machine instructions and their addresses starting from the entry point
determinant.

adb can be used on any program regardless of whether or not it was compiled
with the -g debugging flag. Variables can be displayed in a variety of formats,
but their addresses must be known. The addresses of some external variables are
easy to determine. For example, the command _BLNK_I D prints the first
four bytes after label _BLNK_ in a decimal format (which is equivalent to the
dbx print n command if n is the first variable in blank common). The
addresses of local variables are usually difficult to determine .

• ~,l!

5.4. Compiler flags

5.5. Profiling Tools

Chapter 5 - Debugging and Profiling FORTRAN Programs 81

As another example, consider the program

[
write (4) 4]

_____ en_d ___ ----'"

When executed, this program creates a file named fort. 4 which contains a
single unformatted record. An unformatted record includes two count words
containing the record length at the beginning and end of the record. To examine
this file you could type

[~'_o_a_db ___ f_o_r_t_._4 __ - __ ~]
to invoke adb, and the command 0, 3 ? D to display the first three words of the
file in decimal (location 0 with a repeat count of three).

The compiler provides three optional flags that are useful for debugging FOR­

TRAN programs: -C, -U, and -v. The -C flag causes the compiler to generate
code that tests whether subscript expressions are in bounds. For example, if line 7
of file a2. f were changed to

[~ ____ m_a_t_r_l_·X __ (_2_*m __ '_2_*_n_) __ = __ 1_. __________________________________ -'J

Execution would produce the message

Subscript out of range on file line 7, procedure mkidenti. Attempt to access the
10-th element of variable matrix.

Note that the current implementation does not catch all out of range subscripts.
For example, if dim is greater than 2, then a reference of the form
matr ix (2 *dim, 1) , though illegal, does not produce an error. An error is
flagged only if a subscript expression causes a reference outside the linearized
internal representation of the array.

The -u flag is useful for discovering mistyped variables. When -u is set, all vari­
ables are treated as undefined until explicitly declared. Use of an undefined vari­
able is accompanied by an error message. The -v flag produces a log of the vari-
0us phases of the compiler along with information about the resources used by
each phase. This can be useful in tracking the origin of ambiguous error mes­
sages and in reporting compiler failures.

The simplest way to gather data about the resources consumed by a program is to
use the time command or, in the C shell to issue the set time command.
After the program terminates, the shell prints a line like this:

6.5u 17.1s 1:16 31% 11+21k 354+210io 135pf+Ow

This indicates that the program spent six seconds executing user code, 17
seconds executing kernel code on behalf of the user, and took one minute and 16

~\sun ~~ microsystems

82

[3] 95.5
0.18
0.18
0.24

seconds to complete, so that approximately 31 per cent of the machine's
resources were dedicated to this program. Memory usage during execution aver­
aged 11 kilobytes of shared (program) memory and 21 kilobytes of private (data)
memory. Input and output operations done by the program resulted in 564 disk
accesses of which 354 were reads and 210 were writes. The program caused 135
page faults and was never swapped out

To obtain a more detailed account of how the program spent its time we can
compile and link it with the -pg flag, for example,

(hostnarne% f77 -0 silly -pg al.f a2.f a3.f]
After execution completes, a file named gmon. out is written in the working
directory. This file contains profiling data that can be interpreted with gprofl(I).
To generate meaningful timing information, execution must complete normally.
The command gprof silly invokes gprofand asks it to correlate the
groon. out file with the program in file silly. gprofproduces two summaries
of how the total time (user time plus system time) the program uses is distributed
across the program's procedures. Both user routines and library routines are
accounted for.

The "flat" profile lists the procedures along with the number of times each pro­
cedure was called and the number of seconds spent in the routine. This infonna­
tion can be useful but does not allow you to determine the calling structure of the
program and how time is distributed across it. For example, if you discover that a
vector cross product function that is called from many points in a program is tak­
ing up most of the execution time, you can't tell who calls it most often and
causes it to do the most work. The second summary produced by gprof, the
"graph" profile, can help answer these questions.

For example, if you modify MAIN to call mkidentity 1000 times, then com­
pile your source files with the -pg flag and call gprof to produce timing
profiles, an entry in the graph profile might look like this:

0.24
0.24
0.00

1000/1000
1000
4000/4000

MAIN [4]
mkidentity [3]
lmult [5]

In the graph profile above, the line that begins with" [3]" is called the function
line, the lines above it the "parent lines", and the lines below it the "descendant"
lines. The function line in the example above reveals that mkidenity was
called 1000 times, a total of 0.18 seconds were spent in mkidentity itself and
0.24 seconds were spent in routines called by mkidentity. 95.5 percent of
the program's execution time is attributable to mkidentity and its descen­
dants.

Chapter 5 - Debugging and Profiling FORTRAN Programs 83

The single parent line reveals that MAIN was the only procedure to call
mkidentity, that is, all 1000 invocations of mkidentity came from
MAIN. Thus, all of the 0.18 seconds spent in mkidentity were spent on
behalf of MAIN and all 0.24 seconds of mkidentity's descendants were
spent on behalf of MAIN. If mkidentity had also been called from another
procedure there would be two parent lines and the 0.18 seconds of "self' time
and 0.24 seconds of "descendant time" would be divided between MAIN and the
other caller.

The descendant lines are interpreted similarly. In this example, mkidenti ty
has only called one function, Imul t, the 32-bit integer multiply routine.
Imul t is called 4000 times in this program and all of these calls come from
mkidentity. Imult has a descendant time of zero, which suggests that it
calls no other routines (this could be confirmed by examining the Imul t entry).

When you enable profiling, the running time of a program is significantly
increased. The fact that mcount, the utility routine used to gather the raw
profiling data, is usually at the top of the flat profile shows this. to eliminate this
overhead in the completed version of the program, recompile all source files
without the -pg flag. The overhead incurred by mcount should be ignored
when interpreting the flat profile. The graph profile automatically subtracts time
attributed to mcount when computing percentages of total runtime.

For programs that wish to keep track of their own timing, the FORTRAN library
includes three routines that return the total time used by the calling process -
see dtime (3F), etime (3F), and tcov (1).

~~sun ~~ microsystems

6
Deviations from the Fortran 77 Standard

Deviations from the Fortran 77 Standard ... 87

6.1. Extensions to the FORTRAN 77 Standard ... 87

Double Complex Data Type ... 87

Internal Files .. 87

The open Statement's f ileopt Parameter .. 87

New Format Specifiers .. 87

Implicit Undefined statement ... 88

Recursion ... 88

Automatic Storage .. 88

Source Input Format .. 88

inc 1 ude Statement ... 89

Binary Initialization Constants ... 89

Character Strings ... 89

Hollerith ... 90

Equi valence Statements 90

One-Trip do Loops .. 90

Commas in Formatted Input ... 90

Short Integers .. 90

Additional Intrinsic Functions ... 91

6.2. Violations of the Standard .. 91

Dummy Procedure Arguments .. 91

T and TL Formats ... 91

Carriage Control .. 91

Assigned goto .. 91

Default files .. 91

Lower case strings .. 92

Exponent representation on EW.dEe output .. 92

6.1. Extensions to the
FORTRAN 77 Standard

Double Complex Data Type

Internal Files

The open Statement's
fileopt Parameter

New Format Specifiers

6

Deviations from the Fortran 77 Standard

FORTRAN 77 includes almost all of FORTRAN 66 as a subset. Chapter 7 contains a
brief description of the differences between FORTRAN 66 and FORTRAN 77. The
most important additions are a character string data type, file-oriented
input/output statements, and random access I/O. Also, the language has been
cleaned up considerably.

This chapter is in two major parts. The first part describes extensions to the ANSI

standard that the Sun FORTRAN compiler (f17) and run-time-system implement.
The second part describes areas where this compiler and run time system violate
the ANSI standard, usually because the compiler or run time system cannot
correctly implement the ANSI standard.

In addition to implementing the language specified in the ANSI standard, the Sun
f17 compiler implements some extensions. Some of them are useful additions to
the language. The remaining ones make it easier to communicate with C pro­
cedures or to permit compilation of old FORTRAN 66 programs.

The new type double complex is defined. Each datum is represented by a
pair of double-precision real variables. A double complex version of each
complex built-in function is provided. The specific function names begin with
z instead of c.

The FORTRAN 77 standard introduces 'internal files' (memory arrays) but restricts
their use to formatted sequential I/O statements. The Sunf17 I/O system also
permits internal files to be used in direct formatted reads and writes.

The fileopt parameter, described in Chapter 3, lets you express properties of
the file connection that FORTRAN othelWise cannot express. These include
whether or not records are padded with blanks for formatted reading; whether the
file pointer is initially positioned at the end or beginning; and the physical block
size used for writing records to magnetic tape.

Several new format specifiers have been included in p7. They are described in
Chapter 3 in this manual.

~\sun ~ microsystems
87

88

Implicit Undefined statement

Recursion

Automatic Storage

Source Input Format

FORTRAN 66 has a fixed rule that the type of a variable that does not appear in a
type statement is integer if its first letter is i, j, k, 1, m, or n, and
real othelWise. FORTRAN 77 has an implicit statement for overriding this
rule. As an aid to good programming practice, the Sun177 compiler has an addi­
tional data type named undefined. The statement

(implicit undefined(a-z)

turns off the automatic data typing mechanism, and causes177 to issue a diag­
nostic for each variable that is used but does not appear in a type statement.
Specifying the -u compiler flag on the command line is equivalent to beginning
each procedure with this statement.

Procedures can call themselves, directly or through a chain of other procedures.
But note that a subroutine or function cannot pass its own name as a procedure
parameter. To do so would require the name to appear in an external state­
ment, which is prohibited by the ANSI standard. Note also that use of recursion
may make FORTRAN programs nonportable.

Two new keywords are recognized, static and automatic. These key­
words can appear as 'types' in type statements and in irnplici t statements.
Local variables are static by default; there is exactly one copy of the datum, and
its value is retained between calls. There is one copy of each variable declared
aut orna tic for each invocation of the procedure. Automatic variables cannot
appear in equivalence, data, or save statements.

The standard expects programs to to be in 72-column format. Except in com­
ment lines, the first five characters are the statement number, the sixth is the con­
tinuation character, and the next 66 are the body of the line. If a line of this for­
mat contains fewer than 72 characters,177 pads it with blanks. Characters after
the 72nd are ignored.

J

In order to make it easier to type FORTRAN 77 programs, this compiler also
accepts input in variable-length lines. An ampersand (' &') in the first position of
a line indicates a continuation line; the remaining characters form the body of the
line. A tab character in one of the first six positions of a line signals the end of
the statement number and continuation part of the line; the remaining characters
form the body of the line. A tab elsewhere on the line is treated as another kind
of blank by 177. Lines containing a tab among the first six characters and lines
beginning with an ampersand are not padded with blanks, nor doesfl7 ignore
characters past the 72nd character in lines of this format.

In the standard, there are only 26 letters - FORTRAN 77 is a one-case language.
Consistent with ordinary UNIX system usage, this compiler expects lower-case
input. By default, the compiler converts all upper-case characters to lower-case
except those inside character constants. However, if the -U compiler flag is
specified, upper-case letters are not transformed. In this mode, it is possible to
specify external names with upper-case letters in them, and to have distinct vari­
ables differing only in case. However, when -U is specified, FORTRAN 77 key

~\sun ,~ microsystems

incl ude Statement

Binary Initialization
Constants

Character Strings

Table 6-1

Chapter 6 - Deviations from the Fortran 77 Standard 89

words are only recognized in lower case.

The statement

(~ ____ l_.n_C_l_U_d_e __ '_s_t_U_f_f_' __ ~J
is replaced by the contents of the file stuff. includes can be nested ten
deep.

A logical, real, or integer variable can be initialized in a data state­
ment by a binary constant made up by a letter followed by a quoted string. If the
letter is b, the string is binary, and only zeroes and ones are permitted. If the
letter is 0, the string is octal, with digits 0-7. If the letter is z or x, the string
is hexadecimal, with digits 0-9, a-f. Thus, the statements

integer a(3)
data a / b'10 10', 0'12', z'a' /

initialize all three elements of a to ten.

For compatibility with C usage, the following backslash escapes are recognized:

Backslash Escape Sequences

Character Meaning

\n newline
\t tab
\ b backspace
\f form feed
\ 0 null
\ I apostrophe (does not tenninate a string)
\ " quotation mark (does not terminate a string)
\\ \
\x x, where x is any other character

Standard FORTRAN 77 has only one quoting character - the apostrophe. This
compiler and I/O system recognize both the apostrophe (,) and the double-quote
("). If a string begins with one variety of quotation marks, the other can be
embedded within it without using the repeated quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string
constant is aligned on a word boundary. Each character string constant appearing
outside a data statement is followed by a null character to ease communication
with C routines.

~\sun ,~ microsystems

90

Hollerith

Equivalence Statements

One-Trip do Loops

Commas in Formatted Input

Short Integers

FORTRAN 77 does not have the old Hollerith (n h) notation, although the FOR­
TRAN 77 standard recommends implementing the Hollerith feature in order to
improve compatibility with old programs. In this compiler, Hollerith data can be
used in place of character string constants, and can also be used to initialize non­
character variables in data statements.

As a very special and peculiar case, FORTRAN 66 permits an element of a multidi­
mensional array to be represented by a singly-subscripted reference in
equi valence statements. FORTRAN 77 does not permit this usage, since sub­
script lower bounds may now be different from 1. The Sun[77 compiler permits
single subscripts in equivalence statements, under the interpretation that all
missing subscripts are equal to 1. A warning message is printed for each such
incomplete subscript.

The FORTRAN 77 standard requires that the range of a do loop not be performed
if the initial value is already past the limit value, as in

(dO 10 i - 2, 1 J

The FORTRAN 66 standard states that the effect of such a statement is undefined,
but it is common practice that the range of a do loop is performed at least once.
In order to accommodate old programs, though they violate the FORTRAN 66
standard, the -onetrip compiler flag makes [77 generate loops that are executed
at least once.

The I/O system attempts to be more lenient than described in the standard when
it seems worthwhile. When doing a formatted read of noncharacter variables,
commas can be used as value separators in the input record, overriding the field
lengths given in the format statement. Thus, the format

[(i10, f20 .10, i4) J
reads the record

(~-_3_4_5_'_._O_5_e-_3_'_1_2 __ J

correctly.

[17 accepts declarations of type integer*2. Ordinary integers follow the
FORTRAN 77 rules about occupying the same space as a real variable; they are
assumed to be equivalent to the C type long int, and halfword integers are of
C type short into An expression involving only objects of type
integer*2 is of that type. Generic functions return short or long integers
depending on the actual types of their arguments. If a procedure is compiled
using the -i2 flag, all integer constants that fit are of type integer*2. If the
precision of an integer-valued intrinsic function is not determined by the generic
function rules, one is chosen that returns the prevailing length (integer*2)

~\sun ,~ microsystems

Chapter 6 - Deviations from the Fortran 77 Standard 91

when the -i2 command flag is in effect). When the -i2 option is in effect, all
quantities of type logical are short. Note that these short integer and logical
quantities do not obey the standard rules for storage association.

Additional Intrinsic Functions This compiler supports all of the intrinsic functions specified in the FORTRAN 77
standard. In addition, there are functions for performing bitwise Boolean opera­
tions (or, and, xor, and not) and for accessing the UNIX command argu­
ments (getarg and iargc) and environment (getenv).

6.2. Violations of the
Standard

Dummy Procedure
Arguments

T and TL Formats

Carriage Control

Assigned goto

Default files

There are only a few ways in which this implementation of FORTRAN 77 system
violates the ANSI FORTRAN 77 standard.

If any argument of a procedure is of type character, all dummy procedure
arguments of that procedure must be declared in an external statement. This
requirement arises as a subtle corollary of the way character string arguments are
represented and of the one-pass nature of the compiler. A warning is printed if a
dummy procedure argument is not declared external. Code is correct
without any external declarations if there are no character arguments.

The implementation of the t (absolute tab) and tl (leftward tab) format codes
is defective. These codes allow rereading or rewriting part of the record that has
already been processed. The I/O library uses seeks, so if the unit is not one
which allows seeks, such as a terminal, the program is in error. A benefit of the
implementation chosen is that there is no upper limit on the length of a record,
nor is it necessary to predeclare any record lengths except where specifically
required by FORTRAN 77 or the operating system.

The ANSI standard leaves the logical unites) that are treated as 'printer' files as
implementation-dependent. In this implementation, there are no printer files and
thus carriage control specifiers such as '+' are not implemented. It would be
difficult to implement these carriage-control characters correctly and still provide
UNIX-like file I/O.

Furthermore, the carriage control implementation is asymmetrical. A file written
with carriage control interpretation cannot be read again with the same characters
in column 1.

An alternative to interpreting carriage control internally is to run the output file
through a FORTRAN 'output filter' before printing (see thefprl(1) command in the
Commands Reference Manualfor the Sun Workstation!).

The optional list associated with an assigned goto statement is not checked
against the actual assigned value during execution.

Files created by default uses of rewind or endf ile statements are opened
for sequential formatted access. There is no way to redefine such a file
to allow direct or unformatted access.

~\sun
~~ microsystems

92

Lower case strings

Exponent representation on
Ew.dEe output

It is not clear if the ANSI standard requires internally generated strings to be
upper case or not. As currently written, the inquire statement returns lower­
case strings for any alphanumeric data.

If the field width for the exponent is too small, the ANSI standard allows dropping
the exponent character, but only if the exponent is > 99. This system does not
enforce that restriction .

• \sun ,~ microsystems

7
FORTRAN 77/66 Differences

FORTRAN 77/66 Differences .. 95

7.1. Deleted FORTRAN 66 Features ... 95

Hollerith ... 95

Extended Range ... 95

7.2. Program Form .. 95

Blank Lines .. 95

Program and Block Data Statements ... 95

entry Statement ... 96

do Loops ... 96

Alternate Returns .. 96

character Data Type ... 96

implicit Statement ... 97

parameter Statement .. 97

Array Declarations ... 97

save Statement .. 98

intrinsic Statement .. 98

7.3. Expressions ... 98

Character Constants ... 98

Concatenation ... 98

Character String Assignment 99

Substrings .. 99

Exponentiation ... 99

Relaxation of Restrictions .. 99

7.4. Executable Statements .. 99

if-then-else ... 99

Alternate Returns .. 100

7.5. Input/Output ... 100

FOl11lat Variables ... 100

end, err, and iostat Clauses .. 100

FOl11latted I/O .. 101

Character Constants ... 101

Positional Editing Codes ... 101

Colon .. 101

Optional Plus Signs .. 102

Blanks on Input .. 102

Unrepresentable Values ... 102

iw.m .. 102

Floating Point .. 102

, A' FOllIlat Code .. 102

Standard Units .. 102

List-Directed Formatting .. 103

Direct lID ... 103

Internal Files .. 103

open .. 104

close ... 104

inquire ... 104

7.1. Deleted FORTRAN 66
Features

Hollerith

Extended Range

7.2. Program Form

Blank Lines

Program and Block Data
Statements

7
FORTRAN 77/66 Differences

The following is a very brief description of the differences between the 1966 [2]
and 1977 [1] standard languages. We assume that you are familiar with FOR­

TRAN 66.

The notion of 'Hollerith' (n h) data has officially been removed from the stan­
dard, although this compiler, like almost all in the foreseeable future, still sup­
ports this anachronism.

In FORTRAN 66, under a set of very restrictive and rarely understood conditions,
it is permissible to jump out of the range of a do loop, then jump back into it.
Extended range has been removed in the FORTRAN 77 language. The restrictions
are so special, and the implementation of extended range is so unreliable in many
compilers, that this change really counts as no loss.

Completely blank lines are now legal comment lines.

A main program can now begin with a statement that gives that program an
external name:

(~ ____ p_r_o_g_r_a_m __ w_o_r_k __ ~J
Block data procedures can also have a name:

(block data stuff

There is now a rule that only one unnamed block data procedure can appear in a
program. This system does not enforce that rule. The standard does not specify
the effect of the program and block data names, but they are clearly intended to
aid conventional loaders.

~\sun ~~ microsystems
95

J

96

entry Statement

do Loops

Alternate Returns

character Data Type

Multiple entry points are now legal. Subroutine and function subprograms can
have additional entry points, declared by an entry statement with an optional
argument list.

(entry extra(a, b, c) J
Execution begins at the first statement following the entry line. All variable
declarations must precede all executable statements in the procedure. If the pro­
cedure begins with a subroutine statement, each entry point is a subroutine
name. If it begins with a funct ion statement, each entry is a function entry
point, with the type determined by the declared entry name's type. If any entry is
a character-valued function, then all entries must be. In a function, an entry
name of the same type as that where control entered must be assigned a value.

Arguments do not retain their values between calls. The ancient trick of calling
one entry point with a large number of arguments so that the procedure
'remembers' the locations of those arguments, then invoking an entry with just a
few arguments for later calculation is still illegal. Furthermore, the trick doesn't
work in this implementation, since arguments are not kept in static storage.

do variables and range parameters may now be of integer, real, or dou­
ble precision types. The use offioating-point do variables is very
dangerous because of the possibility of unexpected roundoff, and we strongly
recommend against it. The action of the do statement is now defined for all
values of the do parameters. The statement

(do 10 i ~ 1, u, d J
performs $ max (0"," left floor (u -1) I d" right floor)$ iterations. The do vari­
able has a predictable value when exiting a loop - the value at the time a goto
or ret urn terminates the loop; otherwise, it is the value that failed the limit
test.

In a subroutine or subroutine entry statement, some of the arguments can
be alternate returns, denoted by asterisks, as in

(~ ____ S_U_b_r_o_u_t_l_.n_e __ s __ (a __ '_*_' __ b __ '_*_) ________________________________ J
The meaning of the 'alternate returns' is described in the section named "Alter­
nate Returns" found l~ter in this chapter.

One of the biggest improvements to the language is the addition of a character­
string data type. Local and common character variables must have a length
denoted by a constant expression:

character*17 a, b(3,4)
character*(6+3) c

~~sun ~~ microsystems

implicit Statement

parameter Statement

Array Declarations

Chapter 7 - FORTRAN 77/66 Differences 97

If the length is omitted, it is assumed equal to 1. A character string argument can
have a constant length, or the length can be declared to be the same as that of the
corresponding actual argument at runtime by a statement like

(character*(*) a

There is an intrinsic function len that returns the actual length of a character
string. Character arrays and common blocks containing character variables must
be packed: in an array of character variables, the first character of one element
must follow the last character of the preceding element, without holes.

J

The traditional implicit declaration rules still hold - a variable whose name
begins with i, j, k, 1, m, or n is of type integer, other variables are
of type real, unless otherwise declared. This general rule may be overridden
with an implicit statement:

implicit real(a-c,g) , complex (w-z), character*(17) (s)

declares that variables whose names begin with an a , b, c, or g are real,
those beginning with w, x, y, or z are assumed complex, and so on. It is
still poor practice to depend on implicit typing, but this statement is part of the
standard.

It is now possible to give a constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.14159dO, s='hello')

The type of each parameter name is governed by the same implicit and explicit
rules as for variables. The right side of each equal sign must be a constant
expression (an expression made up of constants, operators, and already defined
parameters).

Arrays can now have as many as seven dimensions - only three were permitted
in FORTRAN 66. The lower bound of each dimension can be declared to be
other than 1 by using a colon. Furthermore, an adjustable array bound can be an
integer expression involving constants, arguments, and variables in common:

(
real a(-5:3, 7, m:n), b(n+l:2*n)]

'-------------"'

The upper bound on the last dimension of an array argument can be denoted by
an asterisk to indicate that the upper bound is not specified:

(
integer a(5, *), b(*), c(O:l, -2:*)]

~\sun ~~ microsystelTlS

98

save Statement

intrinsic Statement

7.3. Expressions

Character Constants

Concatenation

A FORTRAN 66 rule that is not widely known is that local variables in a procedure
do not necessarily retain their values between invocations of that procedure. At
any instant in the execution of a program, if a common block is neither declared
in the currently executing procedure nor in any of the procedures in the chain of
callers, all of the variables in that common block also become undefined. The
only exceptions are variables that have been defined in a data statement and
never changed. These rules permit overlay and stack implementations for the
affected variables. FORTRAN 77 permits one to specify that certain variables and
common blocks are to retain their values between invocations. The declaration

(~ ____ s_a_v_e __ a __ ' __ /b __ /_' __ C __ ~]
leaves the values of the variables a and c and all of the contents of common
block b unaffected by a return. The simple declaration

(save

has this effect on all variables and common blocks in the procedure. A common
block must be saved in every procedure in which it is declared if the desired
effect is to occur.

All of the functions specified in the standard are in a single category, 'intrinsic
functions,' rather than being divided into 'intrinsic' and 'basic external' func­
tions. If an intrinsic function is to be passed to another procedure, it must be
declared intrinsic. Declaring it external (as in FORTRAN 66) passes a
function other than the built-in one.

Character-string constants are marked by strings surrounded by apostrophes. If
an apostrophe is to be included in a constant, it is repeated:

]

[
'abc' J
'ain"t'

"--------~

There are no null (zero-length) character strings in FORTRAN 77. The Sun com­
piler has two different quotation marks, " , " and " " ".

Character string concatenation has been added and is marked by a double slash
('//'). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The values of" ab / /
cd" and" abed" are equal. The strings being concatenated must be of constant
length in all concatenations that are not the right sides of assignments. (The only
concatenation expressions in which a character string declared adjustable with a
'*(*)' modifier, or a substring denotation with nonconstant position values can
appear are on the right sides of assignments).

~\Slln ~ microsystems

Character String Assignment

Substrings

Exponentiation

Relaxation of Restrictions

7.4. Executable Statements
if-then-else

Chapter 7 - FORTRAN 77/66 Differences 99

The left and right sides of a character assignment may not share storage. (The
assumed implementation of character assignment is to copy characters from the
right to the left side.) If the left side is longer than the right, it is padded with
blanks. If the left side is shorter than the right, trailing characters are discarded.

It is possible to extract a substring of a character variable or character array ele­
ment, using the colon notation:

[_____ a_<i_,_j_) __ <m_:_n_) ____________________________________ J

is the string of (n-m+ 1) characters beginning at the $m sup th$ character of the
character array element a(ij). The result is undefined unless m< =n. Substrings
may be used on the left sides of assignments and as procedure actual arguments.

It is now permissible to raise real quantities to complex powers, or complex
quantities to real or complex powers. The principal part of the logarithm is used.
Also, multiple exponentiation is now defined:

(~ ____ a_*_*_b_*_*_c __ = __ a __ *_* __ (b __ **_C_) ____________________________________ J

Mixed mode expressions are now permitted. For instance, it is permissible to
combine integer and complex quantities in an expression.

Constant expressions are permitted where a constant is allowed, except in data
statements. (A constant expression is made up of explicit constants and parame­
ters and the FORTRAN operators, except for exponentiation to a floating-point
power). An adjustable dimension may now be an integer expression involving
constants, arguments, and variables in common.

Subscripts may now be general integerexpressions; the old $c v +- c'$ rules have
been removed. do loop bounds may be general integer, real, or double­
precision expressions. Computed goto expressions and I/O unit numbers can
be general integer expressions.

At last, the if-then-else branching structure has been added to FORTRAN. It is
called a 'Block If. A Block If begins with a statement of the form

(if (. . .) then J

and ends with an

(~end_if _________ J
statement. Two other new statements can appear in a Block If. There can be
several

.\sun ,~ mlcrosystems

100

Alternate Returns

7.5. Input/Output
Format Variables

end, err, and iostat
Clauses

[~e_l_s_e __ ~_'f __ (_. __ . __ ._)_t_h_e_n __ ~)
statements, followed by at most one else statement. If the logical expression
in the Block If statement is . true., the statements following it up to the next
else if, else, or end if are executed. Otherwise, the next else if
statement in the group is executed. If none of the else if conditions is true,
control passes to the statements following the else statement, if any. The
else must follow all else ifs in a Block If. Of course, there may be Block
Ifs embedded inside of other Block If structures. A.case construct can be set up:

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

Some of the arguments of a subroutine call can be statement labels preceded by
asterisks, as in

(call joe(j, *10, m, *2)

A return statement may have an integer expression, such as

[return k

]

]
If the entry point has n alternate return (asterisk) arguments and if $l<=k<=n$,
the return is followed by a branch to the $k sup th$ statement label; otherwise the
usual return to the statement following the call is executed.

A format can be the value of a character expression (constant or otherwise), or be
stored in a character array, as in

[write (6, '(i5)') x

A read or write statement can contain end=, err=, and iostat=
clauses, as in

write(6, 101, err=20, iostat=a(4»
read(S, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the 110 is done, 101 is the statement number

)

Formatted I/O

Character Constants

Positional Editing Codes

Colon

Chapter 7 - FORTRAN 77/66 Differences 101

of the associated format, 20 and 30 are statement numbers, and a and x are
integers. If an error occurs during I/O, control returns to the program at state­
ment 20. If the end of the file is reached, control returns to the program at state­
ment 30. In any case, the variable referred to in the iostat= clause is given a
value when the I/O statement finishes (the value is assigned to the name on the
right side of the equal sign). This value is zero if all went well, negative for end
of file, and positive for an error.

Character constants in formats are copied literally to the output. Character con­
stants cannot be read into.

write(6,'(i2," isn""t ",i1)') 7, 4

produces

(7 isn't 4

Here the format is the character constant

((i2,' isn"t ',ill

and the character constant

J

J

(,--isn_'t _________ J
is copied into the output.

t, tl, tr, and x codes control where the next character is in the record. trn
or nx specifies that the next character is n to the right of the current position.
t In specifies that the next character is n to the left of the current position, allow­
ing parts of the record to be reconsidered. tn says that the next character is to
be character number n in the record.

A colon in the fonnat tenninates the I/O operation if there are no more data items
in the VO list, otherwise it has no effect. In the fragment

x='("heIIo", :, " there", i4)'
write(6, x) 12
write(6, x)

the first wr it e statement prints:

(hello there 12

4j\sun
,~ microsystems

J

102

Optional Plus Signs

Blanks on Input

Unrepresentable Values

iw.m

Floating Point

'A' Format Code

Standard Units

while the second only prints

(hello]
According to the standard, each implementation has the option of putting plus
signs in front of nonnegative numeric output. The sp format code can be used
to make the optional plus signs actually appear for all subsequent items while the
format is active. The s s format code guarantees that the I/O system does not
insert the optional plus signs, and the s format code restores the default
behavior of the I/O system. Sincep7 doesn't normally put out optional plus
signs, the s s and s codes have the same effect.

Blanks in numeric input fields, other than leading blanks are ignored following a
bn code in a format statement, and are treated as zeros following a bz code in a
format statement. The default for a unit can be changed by using the open
statement. Blanks are ignored by default.

The ANSI standard requires that if a numeric item cannot be represented in the
form required by a fonnat code, the output field must be filled with asterisks.

A new integer output code iw.m. is the same as iw, except that there are at
least m digits in the output field, including, if necessary, leading zeros. The
case i$w.O$ is special, since if the value being printed is 0, the output field is
entirely blank. i w . 1 is the same as i w.

On input, exponents can start with the letter E, D , e, or d. All have the
same meaning. On output, e is always used. The e and d format codes also
have identical meanings. A leading zero before the decimal point in e output
without a scale factor is optional with the implementation. fl7 does not print it.
There is a gw.d format code which is the same as ew.d and fw.d on input, but
which chooses f or e formats for output depending on the size of the number
and ofd.

a codes are used for character values. aw use a field width of w, while a
plain a uses the length of the character item.

There are default formatted input and output units. The statement

(~r_e_a_d __ 1 __ 0_,_a __ '_b __ -J]
reads from the standard input unit using format statement 10. The default unit
may be explicitly specified by an asterisk, as in

(
read(*, 10) a,b J

"----------
Similarly, the standard output unit is specified by a print statement or an

~~sun ,~ microsystems

List-Directed Formatting

DirectIJO

Internal Files

Chapter 7 - FORTRAN 77/66 Differences 103

asterisk unit in a wr it e :

[

print 10
write(*, 10)

List-directed I/O is a kind offree-fonn input for sequential I/O. It is invoked by
using an asterisk as the fonnat identifier, as in

(read(6, *) a,b,c

]

J
On input, values are separated by strings of blanks and (possibly) a comma.
Values, except for character strings, cannot contain blanks. End of record counts
as a blank, except in character strings, where it is ignored. Complex constants
are given as two real constants separated by a comma and enclosed in
parentheses. A null input field, such as between two consecutive commas, means
that the corresponding variable in the 110 list is not changed. Values can be pre­
ceded by repetition counts, as in

(4* (3.,2.) 2*, 4*'hello' J

which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, a suitable format is chosen for each item. The values of character
strings are printed; they are not enclosed in quotes, so they cannot be read back
using list-directed input.

A file connected for direct access consists of a set of equal-sized records each of
which is uniquely identified by a positive integer. The records can be written or
read in any order, using direct access I/O statements.

Direct access read and write statements have an extra argument, rec=,
which gives the record number to be read or written.

(read(2, rec=13, err=20) (a(i), i=l, 203)

reads the thirteenth record into the array a.

J

The size of the records must be given by an open statement (see below). Direct
access files can be connected for either formatted or unformatted 110.

Internal files are character string objects such as variables or substrings, or arrays
of type character. In the former case, there is only a single record in the file but
in the latter case, each array element is a record. The ANSI standard includes
only sequential formatted I/O on internal files. (I/O is not a very precise term to
use here, but internal files are dealt with using read and write.) Internal files
are used by giving the name of the character object in place of the unit number,
as in

~\sun ~ microsystems

104

open

close

inquire

character*80 x
read (5, ' (a) ') x
read (x,' (i3, i4) ') nl, n2

which reads a card image into x and then reads two integers from the front of it.
A sequential read or write always starts at the beginning of an internal file.

fl7 also supports a compatible extension, direct I/O on internal files. This is like
direct liD on external files, except that the number of records in the file cannot be
changed. In this case, a record is a single element of an array of character
strings.

The open statement connects a file with a unit, or alters some property of the
connection.

It has the following format:

open (parameter list)

where

parameter list is a list of optional specifiers, separated by commas. For valid
specifiers see the section called" open" in Chapter 3.

close severs the connection between a unit and a file. The unit number must be
given. The optional parameters are iostat= and err= with their usual
meanings, and status= either 'keep' or 'delete.' Scratch files cannot be
kept; otherwise keep is the default. delete means the file will be removed.
A simple example is

(~C_l_O_S_e __ (3_, __ e_r_r_= __ 1_7_) __ ~J

The inquire statement gives information about a unit (inquire by unit) or a
file (inquire by file). It sets values of integer, logical, and character variables by
specifing keywords that correspond to the values of unit, connection, or file pro­
perties. For the semantics of this command see "inquire" in Chapter 3.

~~Slln ~~ microsystems

A
Ratfor - A FORTRAN Preprocessor

Ratfor - A FORTRAN Preprocessor .. 107

A.1. Introduction .. .

Using the Raifor Translator

A.2. Language Description

Design .. .

Statement Grouping .. .

The else Clause

Nested ifis

if-else ambiguity

The switch Statement

The do S tatement

break and next

The while Statement

The for Statement .. .

108

109

109

109

109

111

112

113

113

114

115

116

117

The repeat-until statement ... 119

More on break and next ... 119

ret urn Statement ... :... 120

Cosmetics .. 121

Free-form Input .. . 121

Translation Services ... 121

define Statement ... 122

include Statement ... 123

Pitfalls, Botches, Blemishes and other Failings ... 123

A.3. Implementation .. .

A.4. Experience .. .

Good Things

Bad Things .. .

A.5. Conclusions .. .

124

126

126

126

127

A
Ratfor - A FORTRAN Preprocessor

Since Ratfor was designed, the new FORTRAN 77 language has appeared. FOR­

TRAN 77 provides some of the control structures that were the major reasons for
Ratfor's existence and so Ratfor might not be as appropriate in the Sun system
(which supports FORTRAN 77) but is still useful for porting programs written in it
to Sun Workstations.

FORTRAN has the advantages of universality and relative efficiency. The Ratfor
language attempts to conceal the main deficiencies of FORTRAN 66 while retain­
ing its desirable qualities by providing decent control flow statements. Ratfor
features include:

statement grouping
using { and } in the style of C

decision making
via if-else and switch statements

looping constructs
using while, for, do, and repeat-until statements

controlled exits fron loops
using break and next statements

free-form input
multiple statements per line and automatic continuation

unobtrusive comments
signalled by a # sign anywhere on the line

translation
of >, >=, etc., into .GT., .GE., etc.

return (expression)
statement for functions

symbolic parameters
via the define statement

source file inclusion
via the include statement

~\sun
~ microsystems

107

108

A.1. Introduction

Ratfor is implemented as a preprocessor that translates this language into FOR­

TRAN 66.

Once the control flow and cosmetic deficiencies of FORTRAN are hidden, the
resulting language is remarkably pleasant to use. Rat/or programs are markedly
easier to read, write, debug, maintain, and modify than their FORTRAN 66
equivalents.

You can easily write Rat/or programs that are portable to other environments.
Rat/or itself is written in this way, making it portable; versions of Rat/or are now
available on at least two dozen different types of computers at over 500 loca­
tions.

This appendix discusses design criteria for a FORTRAN preprocessor, the Ratfor
language and its implementation, and user experience.

FORTRAN is often chosen, since it is frequently the only language supported on a
local computer. It is the closest thing to a universal programming language
currently available - with care you can write large, truly portable FORTRAN 66
programs. Finally, FORTRAN 66 is often the most 'efficient' language available,
particularly for programs requiring much computation.

But FORTRAN can be unpleasant. Perhaps the worst deficiency is in the control
flow statements - conditional branches and loops, which express the logic of the
program. The conditional statements in FORTRAN are primitive. The arithmetic
if forces the user into at least two statement numbers and two (implied)
goto's; it leads to unintelligible code. The logical if is better in that the test
part can be stated clearly, but is hopelessly restrictive because only one FORTRAN

statement can follow the if statement. And of course there can be no ELSE part
to a FORTRAN if - you can't specify an alternative action if the if is not
satisfied.

The FORTRAN do restricts the user to going forward in an arithmetic progres­
sion. It is fine for '1 to N in steps of 1 (or 2 or ...)' , but there is no direct way to
go backwards, or even (in ANSI FORTRAN) to go from 1 to N-l. The do is also
useless if one's problem doesn't map into an arithmetic progression.

The result of these failings is that FORTRAN programs must be written with
numerous labels and branches. The resulting code is particularly difficult to read
and understand, and thus hard to debug and modify.

Ratfor defines a new language that overcomes these deficiencies, and translates it
into the unpleasant one with a preprocessor. The preprocessor idea is not new. A
recent listing shows more than 50 preprocessors, at least half a dozen of which
are widely available.

2 This chapter is a revised and expanded version of a paper published in Software - Practice and
Experience. October 1975.

Using the Rat/or Translator

A.2. Language Description
Design

Statement Grouping

Appendix A - Ratfor - A FORTRAN Preprocessor 109

Rat/or is the basic translator; it takes either a list of file names or the standard
input and writes FORTRAN on the standard output. Options include -6x, which
causes the character given for x to be used as a continuation character in column
6 (UNIX uses & in column 1), and -C, which copies Rat/or comments into the
generated FORTRAN.

Rc provides an interface to the Rat/or command, which is much the same as cc.
Thus

(hostname% ratfor [options 1 file ...

compiles the specifiedjiles. Files with names ending in . r are Rat/or source;
other files are assumed to be for the loader. The flags -C and -6x described
above are recognized, as are

-c compile without loading

-f save intennediate FORTRAN .f files

-r Ratfor only; implies -c and - f

-u flag undeclared variables (not universally available). Other flags are passed
on to the loader.

J

The language is the same as standard FORTRAN 66 except for two aspects. First,
since control flow is central to any program regardless of the specific application,
the primary task of Rat/or is to conceal this part of FORTRAN from the user by
providing decent control flow structures. These structures are sufficient and com­
fortable for structured programming without goto's. Second, since the prepro­
cessor must examine an entire program to translate the control structure, it is pos­
sible at the same time to clean up many of the 'cosmetic' deficiencies of FOR­

TRAN, to provide a language that is easier and more pleasant to read and write.

Beyond these two aspects - control flow and cosmetics - Rat/or does nothing
about the host of other weaknesses of FORTRAN 66. Although it would be
straightforward to extend it to provide character strings, they are not needed by
everyone, and the preprocessor would be harder to implement. Throughout, the
design principle used has been that Rat/or doesn't know any FORTRAN. Any
language feature requiring that Rat/or really understand FORTRAN has been omit­
ted.

The rest of this appendix contains an infonnal description of the Rat/or language.
The control flow aspects and cosmetic changes will look familiar if you are used
to languages like Algol, PL/I, and Pascal.

FORTRAN 66 provides no way to group statements together, short of making them
into a subroutine. The standard construction 'if a condition is true, do this group
of things,' for example,

~\sun ,~ microsystems

110

if (x > 100)
(call error("x>100"); err = 1; return}

can't be written directly in FORTRAN. Instead a programmer is forced to translate
this relatively clear thought into murky FORTRAN, by stating the negative condi­
tion and branching around the group of statements:

10

if (x .le. 100) goto 10
call error(5hx>100)
err = 1
return

When the program doesn't work or must be modified, it must be translated back
into a clearer form before you can be sure what it's doing.

Ratfor eliminates this error-prone and confusing back and forth translation; the
first form is the way the computation is written in Rat/or. A group of statements
can be treated as a unit by enclosing them in braces { and }. This is true
throughout the language - wherever a single Rat/or statement can be used, there
can be several enclosed in braces. (Braces seem clearer and less obtrusive than
begin and end, do and end.

Cosmetics contribute to the readability of code. The character '>' is clearer than
'.GT.', so Rat/or translates it appropriately. Although many FORTRAN compilers
permit character strings in quotes (like "" n x> 100"""), they are not
allowed in ANSI FORTRAN, so Rat/or converts quoted strings into the right
number of L 's: computers count better than people do.

Ratfor is a free-form language - statements can appear anywhere on a line, and
several can appear on one line if they are separated by semicolons. The example
above could also be written as

if (x > 100) (
call error("x>100")
err = 1
return

In this case, no semicolon is needed at the end of each line, since Ratfor assumes
there is one statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor or
otherwise), no braces are needed:

(

if (Y <= 0.0 & z <= 0.0)
. write(6, 20) y, z

No continuation is needed here because the statement on the first line is clearly
continued on the second. In general Rat/or continues lines when it seems

~~sun ,~ microsystems

]

The e 1 s e Clause

Appendix A - Ratfor - A FORTRAN Preprocessor 111

obvious that they are not yet done. (The continuation convention is discussed in
detail later.)

Although a free-form language allows freedom in formatting styles, it is wise to
pick one that is readable, then stick to it. In particular, proper indentation is vital
to make the logical structure of the program clear.

Ratfor provides an else statement to handle the construction 'if a condition is
true, do this, otherwise do that.'

if (a <= b)
{sw 0; write (6, 1) a, b

else
sw 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the larger, and sets sw appropri­
ately.

The FORTRAN equivalent of this code is circuitous indeed:

if (a .gt. b) gata 10
sw = 0
write(6, 1) a, b
gata 20

10 sw = 1
write (6, 1) b, a

20

This is a mechanical translation, so shorter forms exist but all translations suffer
from the same problem: they are less clear and understandable than untranslated
code. To understand the FORTRAN version, you must scan the entire program to
make sure that no other statement branches to statements 10 or 20 before you
know that this is an if-else construction. With the Rat/or version, there is
no question about how you get to the parts of the statement, since the if-else
is a single unit that can be read, understood, or ignored as required.

As mentioned before, if the statement following an if or an else is a single
statement, then no braces are needed:

if (a <= b)
sw 0

else
sw 1

The syntax of the if statement is

~\sun ~~ microsystems

112

Nested if's

if (Ie gal FORIRAN condition)
Rat/or statement

else
Rat/or statement

where the else part is optional. The legal FOKTRAN condition is anything that
can legally go into a FORTRAN Logical if. Rat/or does not check this clause,
since it does not know enough FORTRAN to know what is pennitted. The Rat/or
statement is any Rat/or FORTRAN statement, or a collection of them surrounded
by braces.

Since the statement that follows an if or an else can be any Rat/or state­
ment, it is possible for another if or else to follow it. As a useful example,
consider this problem: the variable f is to be set to -1 if x is less than zero, to
+ 1 if x is greater than 100, and to 0 otherwise. In Rat/or, you would write

if (x < 0)
f = -1

else if (x > 100)
f +1

else
f a

Here the statement after the first else is another if-else. Logically it is
just a single statement, although it is rather complicated.

Any version written in straight FORTRAN is necessarily indirect because FOR­

TRAN does not let you say what you mean.

Following an else with an if is one way to write a mUlti-way
branch inRat/or. In general, the structure

if (...)

else if (...)

else if (...)

else

provides a way to specify the choice of exactly one of several alternatives. (Rat­
for also provides a s wit c h statement that does the same job in certain special
cases; in more general situations, you must make do with spare parts.) The tests
are laid out in sequence, and each one is followed by the code associated with it.
Read down the list of decisions until one is satisfied. The code associated with
this condition is executed, and then the entire structure is exited. The trailing
else part handles the 'default' case, where none of the other conditions apply.

if-else ambiguity

The switch Statement

Appendix A - Ratfor - A FORTRAN Preprocessor 113

If there is no default action, this final e 1 s e part is omitted:

if (x < 0)
x = 0

else if (x > 100)
x = 100

There is one thing to notice about complicated structures involving nested if's
and else's. Consider

if (x > 0) if (y > 0)
write(6, 1) x, y

else
write(6, 2) y

There are two if's and only one else, so you don't know which if goes
with the else.

This is a genuine ambiguity in Rat/or. The ambiguity is resolved by saying that
in such cases the else goes with the closest previous else' ed un- if. In
this case, the else goes with the inner if, as is indicated by the indentation.

It is a wise practice to resolve such cases by explicit braces. In the case above,
you would write

if (x > 0) {

if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

which does not change the meaning but leaves no doubt in the reader's mind. If
you want the other association, you must write

if (x > 0) {

if (y > 0)
write(6, 1) x, y

else
write(6, 2) Y

The switch statement provides a clean way to express multi-way branches
that branch on the value of some integer-valued expression. The syntax is

.\sun ,~ microsystems

114

The do Statement

switch (expression)

case exprl :
statements

case expr2, expr3
statements

default:
statements

Each case is followed by a list of comma-separated integer expressions. The
expression following sw itch is compared against the case expressions expr 1 ,
expr2, and so on in tum until one matches, at which time the statements follow­
ing that case are executed. Ifno case matches expression, and there is a
defaul t section, the statements in it are executed; if there is no default,
nothing is done. In all situations, as soon as some block of statements is exe­
cuted, the entire switch is exited immediately. (Readers familiar with C
should beware that this behavior is not the same as the C s wit c h.)

The do statement in Rat/or is quite similar to the do statement in FORTRAN,
except that it uses no statement number. The statement number, serves only to
mark the end of the do, and this can be done just as easily with braces. Thus

do i = 1, n {
x(i) 0.0
y(i) 0.0
z(i) 0.0

is the same as

do 10 i = 1, n
x(i) 0.0
y (i) 0.0
z (i) 0.0

10 continue

The syntax is:

[

do legal-FORTRAN-DO-text J
Rat/or statement

"---------~

The part that follows the keyword do has to be something that can legally go
into a FORTRAN do statement. Thus, if a local version of FORTRAN allows do
limits to be expressions (which is not permitted in ANSI FORTRAN 66), they can
be used in a Ratfor do.

~~sun ~~ microsystems

break and next

Appendix A - Ratfor - A FORTRAN Preprocessor 115

The Rat/or statement part is often enclosed in braces, but like the if, a single
statement need not have braces around it. This code sets an array to zero:

[

dO i = 1, n

~(i) = 0.0

A slightly more complicated routine,

]

[

dO i = 1, n 1
do j = 1, n

~ ___ rn(_i,_j)_=O ______________ ~

sets the entire array m to zero.

do i = 1, n

do j = 1, n
if (i < j)

m(i, j) -1
else if (i -- j)

m(i, j) 0
else

m(i, j) +1

sets the upper triangle of m to -1, the diagonal to zero, and the lower triangle to
+ 1. (The operator == is 'equals' , that is, '.EQ.'.) In each case, the statement that
follows the do is logically a single statement, even though complicated, and
thus needs no braces.

Rat/or provides a statement for leaving a loop early, and one for beginning the
next iteration. break causes an immediate exit from the do; in effect it is a
branch to the statement after the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done. For example, this code skips over
negative values in an array:

do i = 1, n {
if (x(i) < 0.0)

next
process positive element

break and next also work in the other Rat/or looping constructions which are
discussed in the next few sections.

break and next can be followed by an integer that indicates the level to break
or iterate the enclosing loop; thus,

(_____ brea_k 2 __________ J

~\sun ~~ microsystems

116

The while Statement

exits from two levels of enclosing loops, and break 1 is equivalent to
break. next 2 iterates the second enclosing loop. (Realistically, multi-level
break's and next's are not likely to be much used because they lead to code
that is hard to understand and somewhat risky to change.)

One of the problems with the FORTRAN 66 do statement is that it generally must
be done at least once, regardless of its limits. If a loop begins

(DO I ~ 2, 1 J

it is typically done once with I set to 2, even though commonsense suggests that
perhaps it shouldn't be. Of course a Rat/or do can easily be preceded by a test
such as

if (j <= k)
do i = j, k

but is often overlooked by programmers.

A more serious problem with the do statement is that it encourages a program to
be written in terms of an arithmetic progression with small positive steps, even
though that may not be the best way to write it. If code has to be adjusted to fit
the requirements imposed by the FORTRAN do, it is that much harder to write
and understand.

To overcome these difficulties, Rat/or provides a while statement, which is
simply a loop: 'while some condition is true, repeat this group of statements.' It
has no preconceptions about why looping is happening. For example, the routine
to compute sin(x) using the Maclaurin series combines two termination criteria.

real function sin (x, e)
returns sin (x) to accuracy e, by
sin(x) = x - x**3/3! + x**5/5! -

sin = x
term = x

i = 3
while (abs(term»e & i<100) {

term = -term * x**2 / float(i*(i-l))
sin sin + term
i = i + 2

return
end

Notice that if the routine is entered with term already smaller than e, the loop

The for Statement

Appendix A - Ratfor - A FORTRAN Preprocessor 117

is done zero times, that is, no attempt is made to compute x * * 3; thus, a poten­
tial underflow is avoided. Since the test is made at the top of a while loop
instead of the bottom, a special case disappears - the code works at one of its
boundaries. (The test i < 100 is the other boundary - making sure the routine
stops after some maximum number of iterations.)

As an aside, a sharp character 'I' in a line marks the beginning of a comment.
Comments and code can coexist on the same line, which is not possible with
FORTRAN's 'C in column l' convention. Blank lines are also permitted anywhere
(they are not in FORTRAN 66) to emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal FORTRAN condition)
Ratfor statement

As with if, legal FORTRAN condition is something that can go into a FORTRAN
logical if, and Rat/or statement is a single statement or multiple statements in
braces.

The while encourages a style of coding not normally practiced by FORTRAN
programmers. For example, suppose nextch is a function that returns the next
input character both as a function value and in its argument. Then a loop to find
the first nonblank character is

(Whi17 (nextch(ich) ~~ iblank)]
A semicolon by itself is a null statement, which is necessary here to mark the end
of the while; ifit were not present, the while would control the next state­
ment. When the loop is exited, i ch contains the first nonblank. Of course the
same code can be written in FORTRAN as

100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers (and a few compilers) believe this line is ille­
gal. The language at one's disposal strongly influences how one thinks about a
problem.

The for statement is another Rat/or loop, which attempts to carry the separa­
tion of loop body from reason-for-Iooping a step further than the while. A
for statement allows explicit initialization and increment steps as part of the
statement. For example, a do loop is just

(for (i ~ 1; i <~ n; i ~ i + 1)

This is equivalent to

.\sun ,~ microsy&tems

]

118

i = 1
while (i <= n)

i = i + 1

Initializing and incrementing i has been moved into the for statement, mak­
ing it easier to see at a glance what controls the loop.

The for and while versions have the advantage that they are done zero times
if n is less than 1; this is not true of the do.

The loop of the sine routine in the previous section can be rewritten with a for
as

for (i=3; abs(term) > e & i < 100; i=i+2)
term = -term * x**2 / float(i*(i-1»
sin = sin + term

The syntax of the for statement is

for (init ; condition ; increment
Rat/or statement

init is any single FORTRAN statement, which gets done once before the loop
begins. increment is any single FORTRAN statement that gets done at the end of
each pass through the loop before the test. condition is anything that is legal in a
logical if. Any of init, condition, and increment can be omitted, although the
semicolons must always be present. A nonexistent condition is treated as always
true, so "for (; ;) " is an infinite repeat. (But see the repeat -until in
the next section.)

The for statement is particularly useful for such things as backward loops,
chaining along lists, and loops that might be done zero times, which are hard to
express with a do statement as well as obscure to write out with if's and
goto's. For example, here is a backwards do loop that finds the last nonblank
character on a card:

for (i = 80; i > 0; i = i-I)
if (card(i) != blank)

break

(' !=' is the same as '.NE.'). The code scans the columns from 80 down to 1. If a
nonblank is found, the loop is immediately exited. break and next work in
for's and while's just as in do's. If i reaches zero, the card is all blank.

This code is rather nasty to write with a regular FORTRAN do, since the loop
must go forward, and you must explicitly set up proper conditions when you fall

~\sun ~ microsystems

The repeat-until
statement

More on break and next

Appendix A - Ratfor - A FORTRAN Preprocessor 119

out of the loop. Forgetting this is a common error. Thus,

DO 10 J = 1, 80
I = 81 - J
IF (CARD (I) .NE. BLANK) GO TO 11

10 CONTINUE
I = 0

11

The version that uses the for handles the termination condition properly for
free; i is zero when you fall out of the for loop.

The increment in a f or need not be an arithmetic progression; the following
program walks along a list (stored in an integer array ptr) until a zero pointer is
found, adding up elements from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i

sum = sum + value(i)
ptr(i»

Notice that the code works correctly if the list is empty. Again, placing the test
at the top of a loop instead of the bottom eliminates a potential boundary error.

In spite of warnings, there are times when you really need a loop that tests at the
bottom after one pass through. This service is provided by the repeat­
until:

repeat
Ratfor statement

until (legal FOKfRAN condition)

The Rat/or statement part is done once, then the condition is evaluated. If it is
.true., the loop is exited; if it is .false., another pass is made.

The until part is optional, so a bare repeat is the cleanest way to specify
an infinite loop. Of course such a loop must ultimately be broken by some
transfer of control such as stop, return, or break, or an implicit stop such
as running out of input with a READ statement.

As a matter of observed fact, the repeat-until statement is much less used
than the other looping constructions; in particular, it is typically outnumbered ten
to one by for and while. Be cautious about using it, for loops that test only
at the bottom often don't handle null cases well.

break exits immediately from do, while, for, and repeat-until.
next goes to the test part of do, while and repeat-until, and to the
increment step of a for.

~\sun ~ microsystems

120

ret urn Statement The standard FORTRAN mechanism for returning a value from a function uses the
name of the function as a variable that can be assigned to. The last value stored
in it is the function value upon return. For example, here is a routine equal
that returns 1 if two arrays are identical, and zero if they differ. The array ends
are marked by the special value -1.

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(100), str2(100)
integer i

for (i = 1; strl(i) == str2(i); i
if (strl(i) -1) {

equal = 1
return

equal 0
return
end

In many languages (e.g., PL/I) one instead says

(return (expression)

i + 1)

J
to return a value from a function. Since this is often clearer, Rat/or provides such
a return statement-in a function F, return (expression) is
equi valent to

({ F = expression; return J

For example, here is equal again:

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(100), str2(100)
integer i

for (i = 1; strl(i) == str2(i); i
if (strl(i) == -1)

return(l)
return (0)
end

i + 1)

If there is no parenthesized expression after ret urn, a normal RETURN is
made. (Another version of equal is presented shortly.)

()~!!I!!

J

Cosmetics

Free-form Input

Translation Services

Appendix A - Ratfor - A FORTRAN Preprocessor 121

As we said above, the visual appearance of a language has a substantial effect on
how easy it is to read and understand. Accordingly, Rat/or provides a number of
cosmetic facilities that can be used to make programs more readable.

Statements can be placed anywhere on a line. Long statements are continued
automatically, as are long conditions in if, while, for, and until.
Blank lines are ignored. Multiple statements can appear on one line if they are
separated by semicolons. No semicolon is needed at the end of a line, if Rat/or
can make some reasonable guess about whether the statement ends there. Lines
ending with any of these characters

+ * & (

are assumed to be continued on the next line. Underscores are discarded wher­
ever they occur; all others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a FORTRAN

label, and placed in columns 1-5 upon output. Thus

write(6, 100); 100 forrnat("hello")

is converted into

[

write (6, 100)]

~1_0_0 __ f_o_r_m_a_t_(_5_h_h_e_l_lO __) ____________________________________ ~

Text enclosed in matching single or double quotes is converted to nH. . . but is
otherwise unaltered (except for formatting - it may get split across card boun­
daries during the reformatting process). Within quoted strings, the backslash '\'
serves as an escape character: the next character is taken literally. This provides
a way to get quotes (and of course the backslash itself) into quoted strings:

is a string containing a backslash and an apostrophe. (This is not the standard
convention of doubled quotes, but it is easier to use and more general.)

J

Any line that begins with the character '%' is left absolutely unaltered except for
stripping off the '%' and moving the line one position to the left. This is useful
for inserting control cards, and other things that should not be transmogrified
(like an existing FORTRAN program). Use '%' only for ordinary statements, not
for the condition parts of if, while, etc., or the output may come out in an
unexpected place.

The following character translations are made, except within single or double
quotes or on a line beginning with a '%':

~\sun ,~ microsystems

122

def ine Statement

character translation character translation

.eq. != .ne .
> . gt. >= .ge.
< .It. <= .Ie.
& .and. .or .

. not. . not.

In addition, the following translations are provided for input devices with res­
tricted character sets.

character translation character translation

[{] }
($ { $) }

Any string of alphanumeric characters can be defined as a name; thereafter,
whenever that name occurs in the input (delimited by nonalphanumerics) it is
replaced by the rest of the definition line. (Comments and trailing whitespace are
stripped oft). A defined name can be arbitrarily long, and must begin with a
letter.

define is typically used to create symbolic parameters:

define ROWS 100
define COLS 50

dimension a (ROWS) , b(ROWS, COLS)

if (i > ROWS j > COLS)

Alternately, definitions can be written as

(define (ROWS, 100)

In this case, the defining text is everything after the comma up to the balancing
right parenthesis, which allows for multi-line definitions.

It is generally a wise practice to use symbolic parameters for most constants,
since they help clarify the function of what would otherwise be mysterious
numbers. As an example, here is the routine equal again, this time with sym­
bolic constants.

~~sun ,~ microsystems

J

incl ude Statement

Pitfalls, Botches, Blemishes
and other Failings

Appendix A - Ratfor - A FORTRAN Preprocessor 123

define YES 1
define NO a
define EOS -1
define ARB 100

* equal - compare str1 to str2; * return YES if equal, NO if not
integer function equal(str1, str2)
integer str1(ARB) , str2(ARB)
integer i

for (i = 1; str1(i) == str2(i); i
if (str1(i) == EOS)

return (YES)
return (NO)
end

The statement

i + 1)

(~ _____ in __ c_l_u_d_e __ f_i_l_e ___]

inserts the file found on input stream file into the Rat/or input in place of the
incl ude statement. The standard usage is to place COMMON blocks on a file,
and include that file whenever a copy is needed:

subroutine x
include commonblocks

end

subroutine y
include commonblocks

end

This ensures that all copies of the COMMON blocks are identical

Ratfor catches certain syntax errors, such as missing braces, e 1 s e clauses
without an if, and most errors involving missing parentheses in statements.
Beyond that, since Rat/or knows no FORTRAN, the FORTRAN compiler reports any
errors, so you will need to occasionally have to relate a FORTRAN diagnostic back
to the Rat/or source.

Keywords are reserved - using if, else, etc., as variable names typically
wreak havoc. Don't leave spaces in keywords or use the Arithmetic if.

The FORTRAN nH convention is not recognized anywhere by Rat/or; use quotes
instead.

~\Slln ~~ microsystems

124

A.3. Implementatibn Ratfor was originally written in C on the UNIX operating system. The language is
specified by a context-free grammar, and the compiler constructed using the
YACC compiler-compiler.

The Ratfor grammar is simple and straightforward, being essentially

prog stat
I prog stat

stat if (...) stat
I if (...) stat else stat
I while (...) stat
I for (... ; ... ; ...) stat
I do ... stat
I repeat stat
I repeat stat until (...)
I switch (...) { case prog ...

return
break
next

default: prog }

digits stat
{ prog
anything unrecognizable

The observation that Rat/or knows no FORTRAN follows directly from the rule
that says a statement is 'anything unrecognizable.' In fact, most of FORTRAN

falls into this category, since any statement that does not begin with one of the
keywords is by definition 'unrecognizable.'

Code generation is also simple. If the first thing on a source line is not a key­
word (like if, else, etc.) the entire statement is simply copied to the output
with appropriate character translation and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more complicated actions. For exam­
ple, when if is recognized, two consecutive labels Land L+1 are generated and
the value ofL is stacked. The condition is then isolated, and the code

(
if (.not. (condition» goto L J

----. ----------"
is output The statement part of the if is then translated. When the end of the
statement is encountered (which may be some distance away and include nested
irs), the code

continue

is generated, unless there is an else clause, in which case the code is

]

Appendix A - Ratfor - A FORTRAN Preprocessor 125

gote L+l
continue

In this latter case, the code

(L+l continue

is produced after the statement part of the e 1 s e. Code generation for the vari-
0us loops is equally simple.

One might argue that more care should be taken in code generation. For exam­
ple, if there is no trailing else,

]

]

(
if (i > 0) x = a]

'-------------'

should be left alone and not converted into

if (.not. (i .gt. 0» geto 100
x = a

100 continue

But what are optimizing compilers for, if not to improve code? It is a rare pro­
gram where this kind of 'inefficiency' makes even a measurable difference. In
the few cases where it is important, the offending lines can be protected by '%'.

The use of a compiler-compiler is definitely the preferred method of software
development. The language is well-defined, with few syntactic irregularities.
Implementation is quite simple; the original construction took under a week. The
language is sufficiently simple, however, that an ad hoc recognizer can be readily
constructed to do the same job if no compiler-compiler is available.

The C version of Rat/or is used on UNIX. C compilers are not as widely available
as FORTRAN, however, so there is also a Rat/or written in itself and originally
bootstrapped with the C version. The Rat/or version was written so it could be
translated into the portable subset of FORTRAN described in [22]. Thus it is port­
able, having been run essentially without change on at least twelve distinct
machines. The main restrictions of the portable subset are: only one character
per machine word; subscripts in the form c*V±c; avoiding expressions in places
like do loops; consistency in subroutine argument usage and in COMMON

declarations. Rat/or itself does not generate nonstandard FORTRAN.

The Ratfor version is about 1500 lines of Rat/or (compared to about 1000 lines
of C); this compiles into 2500 lines of FORTRAN. This expansion ratio is some­
what higher than average, since the compiled code contains unnecessary
occurrences of COMMON declarations. The execution time of the Rat/or version
is dominated by two routines that read and write cards. Clearly these routines
could be replaced by machine-coded local versions; unless this is done, the
efficiency of other parts of the translation process is largely irrelevant.

~\sun
~ microsystems

126

A.4. Experience

Good Things

Bad Things

'It's so much better than FORTRAN' is the most common response of users when
asked how well Rat/or meets their needs. Although cynics might consider this to
be vacuous, it does seem to be true that decent control flow and cosmetics con­
vert FORTRAN 66 from a bad language into quite a reasonable one, assuming that
FORTRAN data structures are adequate for the task at hand.

Although there are no quantitative results, users feel that coding in Rat/or is at
least twice as fast as in FORTRAN. More important, debugging and subsequent
revision are much faster than in FORTRAN. Partly this is because the code can be
read. The looping statements that test at the top instead of the bottom seem to
eliminate or at least reduce the occurrence of a wide class of boundary errors.
And of course it is easy to do structured programming in Rat/or; this self­
discipline also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Rat/or tend to be
as readable as programs written in languages like Pascal. Once you are freed
from the shackles of FORTRAN's clerical detail and rigid input format, it is easy to
write code that is readable, even esthetically pleasing. For example, here is a
Rat/or implementation of the linear table search discussed by Knuth in [17]:

A (rn+l) = X

for (i 1; A(i) != X; i

if (i > rn)

rn = i
B (i) 1

else
B(i) = B(i) + 1

i + 1)

A large corpus (5400 lines) of Rat/or, including a subset of the Ratfor preproces­
sor itself, can be found in [15].

The biggest single problem is that the FORTRAN compiler detects many syntax
errors - not Rat/or. The compiler then prints a message in terms of the gen­
erated FORTRAN, which in a few cases may be difficult to relate back to the
offending Ratfor line, especially if the implementation conceals the generated
FORTRAN. This problem could be dealt with by tagging each generated line with
some indication of the source line that created it, but this is inherently
implementation-dependent, so no action has yet been taken. Error message
interpretation is actually not as difficult as you might think. Since Ratfor gen­
erates no variables (only a simple pattern of if's and goto's), data-related
errors like missing dimension statements are easy to find in FORTRAN. Furth­
ermore, Rat/or'S ability to catch trivial syntactic errors like unbalanced
parentheses and quotes has steadily improved.

There are a number of implementation weaknesses that are a nuisance, especially
to new users. For example, keywords are reserved. This rarely makes any

~\sun ~~ microsystems

A.5. Conclusions

Appendix A - Ratfor - A FORTRAN Preprocessor 127

difference, except for those hardy souls who want to use an Arithmetic if. A
few standard FORTRAN constructions are not accepted by Rat/or, which could be
a problem to users with many existing FORTRAN programs. Protecting every line
with a '%' is not really a complete solution, although it serves as a stopgap. The
best long-term solution is provided by the program Struct [3], which converts
arbitrary FORTRAN programs into Rat/or.

Users who export programs often complain that the generated FORTRAN is
'unreadable' because it is not tastefully formatted and contains extraneous CON­

TINUE statements. To some extent this can be ameliorated (Rat/or now has an
option to copy Rat/or comments into the generated FORTRAN), but it has always
seemed that effort is better spent on the input language than on the output esthet­
ics.

One final problem is partly attributable to success - since Rat/or is relatively
easy to modify, there are now several dialects of Rat/or. Fortunately, most of the
differences so far are in character set, or in invisible aspects like code generation.

Rat/or demonstrates that with modest effort it is possible to convert FORTRAN

from a bad language into a good one. A preprocessor is clearly a useful way to
improve the facilities of a base language.

When designing a language, it is important to concentrate on the essential
requirement of providing the user with the best language possible for a given
effort. One must avoid throwing in 'features' - things that the user can trivially
construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems
pointless for Rat/or to prepare a neatly formatted listing of its input or output.
You are presumably capable of the self-discipline required to prepare neat input
that reflects your thoughts. It is much more important that the language provide
free-form input so you can format it neatly. No one should read the output any­
way except in the most dire circumstances.

~\sun ,~ microsystems

B
ASCII Character Set

ASCII Character Set ... 131

B
ASCII Character Set

dec oct hex name dec oct hex name dec oct hex name dec oct hex name

0 000 00 NUL 32 040 20 SP 64 100 40 @ 96 140 60
,

1 001 01 SOH 33 041 21 ! 65 101 41 A 97 141 61 a
2 002 02 STX 34 042 22 " 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 # 67 103 43 C 99 143 63 C

4 004 04 EOT 36 044 24 $ 68 104 44 D 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27

,
71 107 47 a 103 147 67 g

8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29) 73 111 49 I 105 151 69 i

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 6B k

12 014 OC FF 44 054 2C , 76 114 4C L 108 154 6C 1
13 015 00 CR 45 055 20 - 77 115 40 M 109 155 60 m
14 016 OE SO 46 056 2E 78 116 4E N 110 156 6E n
15 017 OF SI 47 057 2F / 79 117 4F 0 111 157 6F 0

16 020 10 DLE 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 DCI 49 061 31 I 81 121 51 Q 113 161 71 q
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 S

20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t

21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 75 U

22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 W

24 030 18 CAN 56 070 38 8 88 130 58 X 120 170 78 X

25 031 19 EM 57 071 39 9 89 131 59 Y 121 171 79 Y
26 032 lA SUB 58 072 3A 90 132 5A Z 122 172 7A z
27 033 1B ESC 59 073 3B , 91 133 5B [123 173 7B {

28 034 lC FS 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 10 as 61 075 30 = 93 135 50] 125 175 70 }
30 036 IE RS 62 076 3E 94 136 5E " 126 176 7E ->
31 037 IF US 63 077 3F ? 95 137 5F 127 177 7F DEL

~~sun ,~ microsystems
131

c
Runtime Error Messages

Runtime Error Messages ... 135

C.1. UNIX error messages ... 135

C.2. Signal Handler Error Messages .. 135

C.3. FORTRAN I/O Error Messages ... 136

C.1. UNIX error messages

C.2. Signal Handler Error
Messages

c
Runtime Error Messages

The FORTRAN I/O library, the FORTRAN signal handler, and parts of the UNIX
operating system (when called by FORTRAN library routines) can all generate
FORTRAN error messages. UNIX error messages include system call failures, C
library errors, and shell diagnostics.

UNIX error messages include system call failures, C library errors, and shell
diagnostics. The system call error messages are found in intro (2) in the Sun Sys­
tem Interface Manual. System calls made via the FORTRAN library do not pro­
duce error messages directly. The following system routine in the FORTRAN

library calls C library routines which produce an error message.

[

call system (" rm /") 1
_____ end ___ ______

The following message is printed:

(rrn: / directory

Before beginning execution of a program, the FORTRAN library sets up a signal
handler (sigdie) for signals that could cause termination of the program. sigdie
prints a message that describes the signal, flushes any pending output and gen­
erates a core image.

J

Presently the only arithmetic exception caught is the integer*2 division with
a denominator of zero. All other arithmetic exceptions are silently ignored.

A signal handler error example follows when the subroutine sub tries to access
parameters that are not passed to it:

call sub ()
end
subroutine sub(i,j,k)
i=j+k
return
end

.\sun ~~ microsystems
135

136

C.3. FORTRAN I/O Error
Messages

The following error message is printed:

*** Segmentation violation
Illegal instruction (core dumped)

The following error messages are generated by the FORTRAN I/O library. The
error numbers are returned in the iostat variable if the err return is taken.

As an example of what the error messages look like, the following program tries
to do an unformatted write to a file opened for formatted output:

write(6) 1
end

sue: [103] unformatted io not allowed
logical unit 6, named 'stdout'
lately: writing sequential unformatted external IO
Illegal instruction (core dumped)

100 error in format
See error message output for the location of the error in .the format. Can be
caused by more than 10 levels of nested parentheses, or an extremely long
format statement.

101 illegal unit number
It is illegal to close logical unit O. Negative unit numbers are not allowed.
The upper limit is 231_1.

102 formatted io not allowed
The logical unit was opened for unformatted I/O.

103 unformatted io not allowed
The logical unit was opened for formatted I/O.

104 direct io not allowed
The logical unit was opened for sequential access, or the logical record
length was specified as O.

105 sequential io not allowed
The logical unit was opened for direct access I/O.

106 can't backspace file
The file associated with the logical unit can't seek. May be a device or a
pipe.

107 off beginning of record
The format specified a left tab beyond the beginning of an internal input
record.

108 can't stat file
The system can't return status information about the file. Perhaps the

~\sun ,~ microsystems

directory is unreadable.

109 no * after repeat count

Appendix C - Runtime Error Messages 137

Repeat counts in list-directed I/O must be followed by an * with no blank
spaces.

110 off end of record
A fOlmatted write tried to go beyond the logical end-of-record. An unfonnat­
ted read or write will also cause this.

111 truncation failed
The truncation of an external sequential file on close, backspace, or
rewind could not be done.

112 incomprehensible list input
List input has to be as specified in declaration.

113 out of free space
The library dynamically creates buffers for internal use. You ran out of
memory for this (i.e., your program is too big).

114 unit not connected
The logical unit was not open.

115 read unexpected character
Certain format conversions can't tolerate nonnumeric data.

116 blank logical input field

117 'new' file exists
You tried to open an existing file with status=' new' .

118 can'tfind' old' file
You tried to open a nonexistent file with s tat us = , old' .

119 unknown system error
Shouldn't happen, but

120 requires seek ability
Direct access requires seek ability. Sequential unformatted I/O requires seek
ability on the file due to the special data structure required. Tabbing left also
requires seek ability.

121 illegal argument
Certain arguments to open, etc. will be checked for legitimacy. Often only
non-default forms are looked for.

122 negative repeat count
The repeat count for list-directed input must be a positive integer.

123 illegal operation for unit
An operation was requested, which was not possible for a device associated
with the logical unit. This error is returned by the tape I/O routines if
attempting to read past end-of-tape, etc.

~\sun
~~ microsystems

D
Bibliography

Bibliography ... 141

D
Bibliography

The following books or documents describe aspects of FORTRAN 66, FORTRAN

77, Rat/or and related subjects. This list is not necessarily complete. No particu­
lar endorsement is implied.

1. American National Standards Institute. 1978. American National Standard
Programming Language FORTRAN, ANSI X3.9-1978. New York.

2. -. 1966. American National Standard FORTRAN. New York.

3. Brainerd, Walter S., et al. 1978. FORTRAN 77 Programming. Harper and
Row.

4. Day, A. C. 1979. Compatible Fortran. Cambridge University Press.

5. Dock, V. Thomas. 1979. Structured FORTRAN 77 Programming. West.

6. Feldman, S. I. June 1979. The Programming Language EFL. Bell Labora­
tories Technical Report.

7. For-word: FORTRAN Development Newsletter, August 1975.

8. Hall, A. D. August 1971. The Altran System for Rational Function Mani­
pulation - A Survey. CACM.

9. Hume, J. N., and R. C. Holt. 1979. Programming FORTRAN 77. Reston.

10. Johnson, S. C. January 1978. A Portable Compiler: Theory and Practice.
Proc. 5th ACM Symp. on Principles of Programming Languages

11. Johnson, S. C. 1978. Y ACC - Yet Another Compiler-Compiler. Bell
Laboratories Computing Science Technical Report #32.

~\sun ,~ microsystems
141

142

12. Katzan, Harry, Jr. 1978. FORTRAN-77. Van Nostrand-Reinhold.

13. Kernighan, B. W., and D. M. Ritchie. 1978. The C Programming Language,
Prentice-Hall.

14. Kernighan, B. W. January 1977. RATFOR - A Preprocessor for a
Rational Fortran. Bell Laboratories Computing Science Technical Report
#55,

15. Kernighan, B. W., and P. J. PI auger. 1976. Software Tools. Addison­
Wesley.

16. Knuth, D. E. December 1974. Structured Programming with goto State­
ments. Computing Surveys.

17. Meissner, Loren P., and Elliott I. Organick. 1979. FORTRAN-77 Featuring
Structured Programming. Addison-Wesley.

18. Merchant, Michael J. 1979. ABC's of FORTRAN 77 Programming. Wads­
worth.

19. Page, Rex, and Richard Didday. 1980. FORTRAN 77 for Humans. West.

20. Ritchie, D. M., and K. L. Thompson. July 1974. The UNIX Time-sharing
System. CACM.

21. Ryder, B. G. October 1974. The PFORT Verifier. Software-Practice &
Experience.

22. United States of America Standards Institute. March 7, 1966. USA Stan­
dard FORTRAN, USAS X3.9-1966. New York. Clarified in Comm. ACM 12,
289 (1969) and Comm. ACM 14, 628 (1971).

23. Wagener, Jerrold L. 1980. Principles of FORTRAN 77 Programming.
Wiley.

24. A Proposed Standard For Binary Floating-Point Arithmetic, Draft 10.0 of
IEEE Task, p754. December 1982.

~\sun ~~ microsystems

E
FORTRAN Library Routines

FORTRAN Library Routines .. 145

E
FORTRAN Library Routines

~\sun ~~ microsystems
145

INTRO(3F) FORTRAN LIBRARY ROUTINES INTRO(3F)

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FORTRAN run-time library. The functions listed here
provide an interface from[17 programs to the system in the same manner as the C library does for C pro­
grams. They are automatically loaded as needed by the FORTRAN 77 compilerj77(1).

Most of these functions are in libU77.a. Some are in libF77.a or libI77.a. A few intrinsic functions are
described for the sake of completeness.

For efficiency, the SCCS ill strings are not normally included in the a.out file. To include them, simply
declare

external t77lid

in any [17 module.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort.3f terminate abruptly with memory image
access access.3f determine accessibility of a file
alarm alarm.3f execute a subroutine after a specified time
bessel functions besse1.3fof two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, lshift, bic, bis, bit, setbit functions
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
ctime time.3f return system time
dflmax range.3f return extreme values
dflmin range.3f return extreme values
drand rand.3f return random values
dtime etime.3f return elapsed execution time
etime etime.3f return elapsed execution time
exit exit.3f terminate process with status
fdate fdate.3f return date and time in an ASCII string
fgetc getc.3f get a character from a logical unit
flmax range.3f return extreme values
flmin range.3f return extreme values
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
fputc putc.3f write a character to a FORTRAN logical unit
fseek fseek.3f reposition a file on a logical unit
fstat stat.3f get file status
ftell fseek.3f reposition a file on a logical unit
gerror perror.3f get system error messages
getarg getarg.3f return command line arguments
getc getc.3f get a character from a logical unit
getcwd getcwd.3f get pathname of current working directory
getenv getenv.3f get value of environment variables
getfd getfd.3f get the file descriptor of an external unit number
getgid getuid.3f get user or group ill of the caller
getlog getlog.3f get user's login name
getpid getpid.3f get process id
getuid getuid.3f get user or group ill of the caller

Sun Release 3.0 Last change: 15 May 1985 147

INTRO(3F) FORTRAN LmRARY ROUTINES INTRO(3F)

gmtime time.3f return system time
hostnm hostnm.3f get name of current host
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
iermo perror.3f get system error messages
index index.3f tell about character objects
inmax range.3f return extreme values
ioinit ioinit.3f change f77 I/O initialization
irand rand.3f return random values
isatty ttynam.3f find name of a terminal port
itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a proeess
len index.3f tell about character objects
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loe loe.3f return the address of an object
long long.3f integer object conversion
lstat stat.3f get file status
ltime time.3f return system time
perror perror.3f get system error messages
putc putc.3f write a character to a FORTRAN logical unit
qsort qsort.3f quick sort
rand rand.3f return random values
rename rename.3f rename a file
rindex index.3f tell about character objects
short long.3f integer object conversion
signal signal.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
stat stat.3f get file status
symlnk link.3f make a link to an existing file
system system.3f execute a UNIX command
tclose topen.3f f77 tape I/O
time time.3f return system time
topen topen.3f f77 tape I/O
tread topen.3f f77 tape I/O
trewin topen.3f f77 tape I/O
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f f77 tape I/O
tstate topen.3f f77 tape I/O
ttynam ttynam.3f find name of a terminal port
twrite topen.3f f77 tape I/O
unlink unlink.3f remove a directory entry
wait wait.3f wait for a process to terminate

148 Last change: 15 May 1985 Sun Release 3.0

ABORT(3F) FORTRAN LmRARY ROUTINES

NAME
abort - terminate abruptly with memory image

SYNOPSIS
subroutine abort (string)
character*(*) string

DESCRIPTION

ABORT (3F)

Abort cleans up the I/O buffers and then aborts producing a core file in the current directory. If string is
given, it is written to logical unit 0 preceeded by "abort:" .

FILES
/usr/lib/libF77.a

SEE ALSO
abort(3)

Sun Release 3.0 Last change: 13 149

ACCESS (3F) FORTRAN LIBRARY ROUTINES

NAME
access - detennine accessibility of a file

SYNOPSIS
integer function access (name, mode)
character*(*) name, mode

DESCRIPTION

ACCESS (3F)

Access checks the given file, name, for access ability with respect to the caller according to mode. Mode
may include in any order and in any combination one or more of:

FILES

r test for read permission

w test for write permission

x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of the specified
modes. 0 is returned if the specified access would be successful.

lusrllib/lib U77.a

SEE ALSO
access(2), perror(3F)

150 Last change: 23 August 1983 Sun Release 3.0

ALARM (3F) FORTRAN LIBRARY ROUTINES

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc

DESCRIPTION

ALARM (3F)

This routine arranges for subroutine proc to be called after time seconds. If time is "0", the alarm is turned
off and no routine will be called The returned value will be the time remaining on the last alarm.

FILES
lusr/lib/libU77.a

SEE ALSO
alarm(3C), sleep(3F), signal(3F)

BUGS
A subroutine cannot pass its own name to alarm because of restrictions in the standard.

Sun Release 3.0 Last change: 16 February 1984 151

BESSEL(3F) FORTRAN LIBRARY ROUTINES

NAME
bessel functions - of two kinds for integer orders

SYNOPSIS
function besjO (x)

function besjl (x)

function besjn (n, x)
integer*4 n

function besyO (x)

function besyl (x)

function besyn (n, x)
integer*4 n

double precision function dbesjO (x)
double precision x

double precision function dbesjl (x)
double precision x

double precision function dbesjn (n, x)
integer*4 n
double precision x

double precision function dbesyO (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyn (n, x)
integer*4 n
double precision x

DESCRIPTION

BESSEL(3F)

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord­
ers.

DIAGNOSTICS
Negative arguments cause besyO, besyl, and besyn to return a huge negative value. The system error code
will be set to EDOM (33).

FILES
lusr/lib/libF77.a

SEE ALSO
j0(3m), perror(3F)

152 Last change: 9 January 1984 Sun Release 3.0

BIT(3F) FORTRAN LIBRARY ROUTINES BIT(3F)

NAME
bit - and, or, xor, not, rshift, lshift, bic, bis, bit, setbit functions

SYNOPSIS
(generic) function and (word!, word2)

(generic) function or (word!, word2)

(generic) function xor (word!, word2)

(generic) function not (word)

(generic) function rshift (word, nbits)

(generic) function Ishift (word, nbits)

subroutine bic (bitnum, word)
integer*4 bitnum, word

subroutine bis (bitnum, word)
integer*4 bitnum, word

subroutine setbit (bitnum, word, state)
integer*4 bitnum, word, state

logical function bit (bitnum, word)
integer*4 bitnum, word

DESCRIPTION

FILES

The and, or, xor, not, rshift, and lshift functions are generic functions expanded inline by the compiler.
Their arguments must be integer or logical values (short or long). The returned value has the data type of
the first argument.

and computes the bitwise 'and' of its arguments.

or computes the bitwise 'or' of its arguments.

xor computes the bitwise 'exclusive or' of its arguments.

not returns the bitwise complement of its argument.

lshift is a logical left shift with no end around carry.

rshift is an arithmatic right shift with sign extension. No test is made for a reasonable value of nbits.

Bic, bis, and setbit are external subroutines which operate on integer*4 arguments.

bis sets bitnum in word.

bie clears bitnum in word.

setbit sets bitnum in word to 1 if state is nonzero and clears it otherwise.

bit is an external function which tests bitnum in word and returns .true. if bitnum is a 1 (one), and
returns .false. if bitnum is a 0 (zero).

lusr/lib/libF77.a

Sun Release 3.0 Last change: 9 January 1984 153

CHDIR(3F) FORTRAN LffiRARY ROUTINES

NAME
chdir - change default directory

SYNOPSIS
integer function chdir (dirname)
character*(*) dirname

DESCRIPTION

CHDIR(3F)

The default directory for creating and locating files will be changed to dirname. Zero is returned if success­
ful; an error code otherwise.

FILES
/usrllib/libU77.a

SEE ALSO

BUGS

154

chdir(2), cd(I), perror(3F)

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.

Certain FORTRAN file operations reopen files by name. Using chdir while doing I/O may result in the
run-time system to lose track of files created with relative pathnames (including files created by OPEN
statements without file names).

Last change: 13 June 1983 Sun Release 3.0

CHMOD(3F)

NAME
chmod - change mode of a file

SYNOPSIS

FORTRAN LIBRARY ROUTINES

integer function chmod (name, mode)
character*(*) name, mode

DESCRIPTION

CHMOD(3F)

This function changes the filesystem mode of file name. Mode can be any specification recognized by
chmod(I). Name must be a single pathname.

The normal returned value is O. Any other value will be a system error number.

FILES
/usr/lib/libU77.a
/binlchmod

SEE ALSO
chmod(l)

BUGS

exec'ed to change the mode.

Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

Sun Release 3.0 Last change: 13 June 1983 155

ETIME(3F) FORTRAN LIBRARY ROUTINES

NAME
etime, dtime - return elapsed execution time

SYNOPSIS
real function etime (tarray)
real tarray(2)

real function dtime (tarray)
real tarray(2)

DESCRIPTION

ETIME(3F)

These two routines return elapsed runtime in seconds for the calling process. Dtime returns the elapsed
time since the last call to dtime, or the start of execution on the first call.

FILES

The argument array returns user time in the first element and system time in the second element. Elapsed
time, the returned value, is the sum of user and system time.

The resolution is determined by the system clock frequency.

lusr/lib/libU77.a

SEE ALSO
getrusage(2)

156 Last change: 9 January 1984 Sun Release 3.0

EXIT (3F) FORTRAN LIBRARY ROUTINES

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESCRIPTION

EXIT (3F)

Exit flushes and closes all the process's files, and notifies the parent process if it is executing a wait. The
low-order 8 bits of status are available to the parent process. (Therefore status should be in the range 0-
255)

This call will never return.

The C function exit may cause cleanup actions before the final 'sys exit' .

FILES
lusr/lib/libF77.a

SEE ALSO
exit(2), fork(2), fork(3t), wait(2), wait(3t)

Sun Release 3.0 Last change: 13 June 1983 157

FDATE(3F) FORTRAN LIBRARY ROUTINES

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
character*24 string

character*24 function fdateO

DESCRIPTION

FDATE(3F)

Fdate returns the current date and time as a 24 character string in the format described under ctime(3).
Neither 'newline' nor NULL will be included.

F date can be called either as a function or as a subroutine. If called as a function, the calling routine must
define its type and length. For example:

FILES

character*24 fdate
write (*, *) fdateO

lusr/lib/libU77.a

SEE ALSO
ctime(3), time(3F), idate(3F)

158 Last change: 9 January 1984 Sun Release 3.0

FLUSH(3F) FORTRAN LffiRARY ROUTINES

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (Iunit)

DESCRIPTION

FLUSH (3F)

Flush causes the contents of the buffer for logical unit lunit to be flushed to the associated file. This is most
useful for logical units 0 and 6 when they are both associated with the control terminal.

FILES
lusr/lib/libI77.a

SEE ALSO
fclose(3S)

Sun Release 3.0 Last change: 13 June 1983 159

FORK(3F) FORTRAN LIBRARY ROUTINES FORK(3F)

NAME
fork - create a copy of this process

SYNOPSIS
integer function forkO

DESCRIPTION

FILES

Fork creates a copy of the calling process. The only distinction between the 2 processes is that the value
returned to one of them (referred to as the 'parent' process) will be the process id if the copy. The copy is
usually referred to as the 'child' process. The value returned to the 'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplkation of the contents of I/O
buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system error code. See
perror(3F) .

A corresponding exec routine has not been provided because there is no satisfactory way to retain open
logical units across the exec. However, the usual function ofJorklexec can be performed using system (3F).

/usr/lib/libU77.a

SEE ALSO
fork(2), wait(3F), kill(3F), system(3F), perror(3F)

160 Last change: 13 June 1983 Sun Release 3.0

FSEEK(3F) FORTRAN LIBRARY ROUTINES

NAME
fseek, ftell - reposition a file on a logical unit

SYNOPSIS
integer function fseek (lunit, offset, from)
integer offset, from

integer function ftell (Innit)

DESCRIPTION

FSEEK(3F)

Zunit must refer to an open logical unit. offset is an offset in bytes relative to the position specified by from.
Valid values for from are:

o meaning 'beginning of the file'
1 meaning 'the current position'
2 meaning 'the end of the file'

The value returned by fseek will be 0 if successful, a system error code otherwise. (See perror(3F»

Ftell returns the current position of the file associated with the specified logical unit. The value is an offset,
in bytes, from the beginning of the file. If the value returned is negative, it indicates an error and will be
the negation of the system error code. (See perror(3F»

FILES
/usr/lib/lib U77.a

SEE ALSO
fseek(3S), perror(3F)

Sun Release 3.0 Last change: 13 June 1983 161

GETARG(3F) FORTRAN LmRARY ROUTINES

NAME
getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (k, arg)
character*(*) arg

function iargc 0
DESCRIPTION

GETARG(3F)

A call to getarg will return the kth command line argument in character string argo The Oth argument is the
command name.

large returns the index of the last command line argument.

FILES
lusrllib/lib U77.a

SEE ALSO
execve(2), getenv(3F)

162 Last change: 13 June 1983 Sun Release 3.0

GETC(3F) FORlRAN LIBRARY ROUTINES

NAME
getc, fgetc - get a character from a logical unit

SYNOPSIS
integer function getc (char)
character char

integer function fgetc (lunit, char)
character char

DESCRIPTION

GETC(3F)

These routines return the next character from a file associated with a fortran logical unit, bypassing normal
fortran I/O. Getc reads from logical unit 5, normally connected to the control terminal input.

The value of each function is a system status code. Zero indicates no error occured on the read; -1 indi­
cates end of file was detected. A positive value will be either a UNIX system error code or an f77 I/O error
code. See perror(3F).

FILES
lusrllibllib U77.a

SEE ALSO
getc(3S), intro(2), perror(3F)

Sun Release 3.0 Last change: 13 June 1983 163

GETCWD(3F) FORTRAN LIBRARY ROUTINES

NAME
getcwd - get pathname of current working directory

SYNOPSIS
integer function getcwd (dirname)
character*(*) dirname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in dirname. The value
of the function will be zero if successful; an error code otherwise.

FILES
lusr/lib/lib U77. a

SEE ALSO
chdir(3F), perror(3F), getwd(3)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

164 Last change: 13 June 1983 Sun Release 3.0

GETENV(3F) FOR1RAN LmRARY ROUTINES

NAME
getenv - get value of environment variables

SYNOPSIS
subroutine getenv (ename, evalue)
character*(*) ename, evalue

DESCRIPTION

GETENV(3F)

Getenv searches the environment list (see environ(5» for a string of the form ename=value and returns
value in evalue if such a string is present, otherwise fills evalue with blanks.

FILES
lusr/lib/libU77.a

SEE ALSO
execve(2), environ(5)

Sun Release 3.0 Last change: 13 June 1983 165

GETFD(3F) FORTRAN LmRARY ROUTINES

NAME
getfd - get the file descriptor of an external unit number

SYNOPSIS
integer function getfd(unitn)
integer unitn

DESCRIPTION

GETFD(3F)

Getfd returns the 'file descriptor' of an external unit number if the unit is connected and -1 otherwise.

FILES
/usr/lib/libI77.a

SEE ALSO
open(2)

166 Last change: 13 June 1983 Sun Release 3.0

GETLOG(3F)

NAME
getlog - get user's login name

SYNOPSIS
subroutine getlog (name)
character*(*) name

FORTRAN LIBRARY ROUTINES

character*(*) function getiogO

DESCRIPTION

GETLOG(3F)

Getlog will return the user's login name or all blanks if the process is running detached from a tenninal.

FILES
/usr/lib/lib U77.a

SEE ALSO
getlogin(3)

Sun Release 3.0 Last change: 13 June 1983 167

GETPID(3F)

NAME
getpid - get process id

SYNOPSIS
integer function getpidO

DESCRIPTION

FORTRAN LIBRARY ROUTINES

Getpid returns the process ID number of the current process.

FILES
lusr/lib/libU77.a

SEE ALSO
getpid(2)

168 Last change: 13 June 1983

GETPID(3F)

Sun Release 3.0

GETUID(3F) FORTRAN LffiRARY ROUTINES

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
integer function getuid()

integer function getgid()

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
/usr/lib/lib U77 .a

SEE ALSO
getuid(2)

Sun Release 3.0 Last change: 13 June 1983

GETUID(3F)

169

HOSTNM(3F) FOR1RAN LffiRARY ROUTINES

NAME
hostnm - get name of current host

SYNOPSIS
integer function bostnm (name)
cbaracter*(*) name

DESCRIPTION

HOSTNM(3F)

This function puts the name of the current host into character string name. The return value should be 0;
any other value indicates an error.

FILES
lusrllib/libU77.a

SEE ALSO
gethostname(2)

170 Last change: 13 June 1983 Sun Release 3.0

IDATE(3F) FORTRAN LIBRARY ROUTINES

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
subroutine idate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION

IDATE(3F)

Idate returns the current date in iarray. The order is: day, mon, year. Month will be in the range 1-12. Year
will be ~ 1969.

Itime returns the current time in iarray. The order is: hour, minute, second.

FILES
lusr/lib/libU77.a

SEE ALSO
ctime(3F), fdate(3F)

Sun Release 3.0 Last change: 13 June 1983 171

INDEX(3F) FORTRAN UBRARY ROUTINES INDEX (3F)

NAME
index, rindex, lnblnk, len - tell about character objects

SYNOPSIS
(intrinsic) function index (string, substr)
character*(*) string, substr

integer function rindex (string, substr)
character*(*) string, substr

function lnblnk (string)
character*(*) string

(intrinsic) function len (string)
character*(*) string

DESCRIPTION

FILES

172

Index (rindex) returns the index of the first (last) occurrence of the substring substr in string, or zero if it
does not occur. Index is an f77 intrinsic function; rindex is a library routine.

Lnblnk returns the index of the last non-blank character in string. This is useful since all f77 character
objects are fixed length, blank padded. Intrinsic function len returns the size of the character object argu­
ment

lusr/lib/libF77.a

Last change: 13 June 1983 Sun Release 3.0

IOINIT(3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

NAME
ioinit - change f77 I/O initialization

SYNOPSIS
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cctl, bzro, apnd, vrbose
character*(*) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 I/O system, and attach externally defined
files to logical units at run time. The effect of the flag arguments applies to logical units opened after ioinit
is called. The exception is the preassigned units, 5 and 6, to which ccll and bzro will apply at any time.
Ioinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cctl is .true. then carriage control will
be recognized on formatted output to all logical units except unit 0, the diagnostic channel. Otherwise the
default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then such blanks
will be treated as zero's. Otherwise the default will be res tored.

By default, all files opened for sequential access are positioned at their beginning. It is sometimes neces­
sary or convenient to open at the END-OF-FILE so that a write will append to the existing data. If apnd is
.true. then files opened subsequently on any logical unit will be positioned at their end upon opening. A
value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when a program
is run. There is no such automatic association in f77. However, if the argument prefix is a non-blank
string, then names of the form prefixNN will be sought in the program environment. The value associated
with each such name found will be used to open logical unit NN for formatted sequential access. For
example, if f77 program mypro gram included the call

call ioinit (.true., .false., .false., 'FORT', .false.)

then when the following sequence

% setenv FORTOI mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresults. Both files
would be positioned at their beginning. Any formatted output would have column 1 removed and inter­
preted as carriage control. Embedded and trailing blanks would be ignored on input.

If the argument vrbose is .true. then ioinit will report on its activity.

The effect of

call ioinit (.true., .true., .false., ", .false.)

can be achieved without the actual call by including" -1166" on the p7 command line. This gives carriage
control on all logical units except 0, causes files to be opened at their beginning, and causes blanks to be
intetpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

Sun Release 3.0

integer*2 ieof, ict!, ibzr
common lioifigl ieof, ict!, ibzr

Last change: 13 June 1983 173

IOINIT(3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

FILES
/usrllib/JibI77.a
/usr/lib/JibI66.a

f77 I/O library
sets older fortran I/O modes

SEE ALSO

BUGS

174

getarg(3F), getenv(3F), "Introduction to the f77 I/O Library"

Prefix can be no longer than 30 characters. A pathname associated with an environment name can be no
longer than 255 characters.

The "+" carriage control does not work.

Last change: 13 June 1983 Sun Release 3.0

KILL (3F)

NAME
kill- send a signal to a process

SYNOPSIS
function kill (pid, signum)
integer pid, signum

DESCRIPTION

FORTRAN LIBRARY ROUTINES KILL (3F)

Pid must be the process id of one of the user's processes. Signum must be a valid signal number (see sig­
nal(3». The returned value will be 0 if successful; an error code otherwise.

FILES
/usrllib/lib U77.a

SEE ALSO
kill(2), signal(3), signal(3F), fork(3F), perror(3F)

Sun Release 3.0 Last ch~ge: 26 August 1983 175

LINK(3F) FORTRAN LIBRARY ROUTINES

NAME
link:, symlnk - make a link to an existing file

SYNOPSIS
function link (name I, name2)
character*(*) namel, name2

integer function symInk (name I, name2)
character*(*) name I, name2

DESCRIPTION

LINK (3F)

Namel must be the pathname of an existing file. Name2 is a patbname to be linked to file namel. Name2
must not already exist. The returned value will be 0 if successful; a system error code otherwise.

Symlnk creates a symbolic link to namel.

FILES
/usr/lib/lib U77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

176 Last change: 13 June 1983 Sun Release 3.0

LOC(3F) FORTRAN LIBRARY ROUTINES

NAME
loe - return the address of an object

SYNOPSIS
function loe (arg)

DESCRIPTION
The returned value will be the address of argo

FILES
lusrllibllib U77.a

Sun Release 3.0 Last change: 13 June 1983

LOC(3F)

177

LONG (3F) FOR1RAN LmRARY ROUTINES

NAME
long, short - integer object conversion

SYNOPSIS
integer*4 function long (int2)
integer*2 int2

integer*2 function short (int4)
integer*4 int4

DESCRIPTION

LONG (3F)

These functions provide conversion between short and long integer objects. Long is useful when constants
are used in calls to library routines and the code is to be compiled with' -i2'. Short is useful in similar con­
text when an otherwise long object must be passed as a short integer.

FILES
lusr/lib/libF77.a

178 Last change: 9 January 1984 Sun Release 3.0

PERROR(3F) FORTRAN LIBRARY ROUTINES PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
character*(*) string

subroutine gerror (string)
character*(*) string

character*(*) function gerrorO

function ierrnoO

DESCRIPTION

FILES

Perror will write a message to fortran logical unit 0 appropriate to the last detected system error. String
will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called either as a sub­
routine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated only when an
error actually occurs. Most routines and I/O statements that might generate such errors return an error code
after the call; that value is a more reliable indicator of what caused the error condition.

lusr/lib/libU77.a

SEE ALSO
intro(2), perror(3), "Introduction to the f77 I/O Library"

BUGS
String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

NOTES
UNIX system error codes are described in intro(2). The f77 I/O error codes and their meanings are:

100 ' 'error in format"
101 "illegal unit number"
102 "formatted io not allowed"
103 "unformatted io not allowed"
104 "direct io not allowed"
1 05 ' 'sequential io not allowed' ,
106 "can't backspace file"
107 "off beginning of record' ,
108 "can't stat file"
109 "no * after repeat count"
110 ' 'off end of record' ,
111 "truncation failed"
112 "incomprehensible list input' ,
113 "out of free space"
114 "unit not connected"
115 "read unexpected character"
116 "blank logical input field"
117 "'new' file exists"
118 "can't find 'old' file"
119 "unknown system error"

Sun Release 3.0 Last change: 13 June 1983 179

PERROR(3F) FORTRAN LIBRARY ROUTINES PERROR(3F)

120 "requires seek ability"
121 "illegal argument"
122 "negative repeat count"
123 "illegal operation for unit"

180 Last change: 13 June 1983 Sun Release 3.0

PUTC(3F) FORTRAN LIBRARY ROUTINES

NAME
putc, fputc - write a character to a FORTRAN logical unit

SYNOPSIS
integer function putc (char)
character char

integer function fputc (Iunit, char)
character char

DESCRIPTION

PUTC(3F)

These funtions write a character to the file associated with a FORTRAN logical unit bypassing normal
FORTRANI/O. Pule writes to logical unit 6, normally connected to the control tenninal output.

The value of each function will be zero unless some error occurred; a system error code otherwise. See
perror(3F).

FILES
/usr/lib/libU77.a

SEE ALSO
putc(3S), intro(2), perror(3F)

Sun Release 3.0 Last change: 13 June 1983 181

QSORT(3F) FORTRAN LIBRARY ROUTINES

NAME
qsort - quick sort

SYNOPSIS
subroutine qsort (array, len, isize, com par)
external com par
integer*2 compar

DESCRIPTION

QSORT(3F)

One dimensional array contains the elements to be sorted. len is the number of elements in the array. isize
is the size of an element, typically -

FILES

4 for integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer*2 function that will determine the sorting order. This func­
tion will be called with 2 arguments that will be elements of array. The function must return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

lusr/lib/libU77.a

SEE ALSO
qsort(3)

182 Last change: 13 June 1983 Sun Release 3.0

RAND(3P) FORTRAN LffiRARY ROUTINES

NAME
rand, drand, irand - return random values

SYNOPSIS
function irand (ifIag)

function rand (iflag)

double precision function drand (ifIag)

DESCRIPTION

RAND (3F)

These functions use random(3) to generate sequences of random numbers. If iflag is '1', the generator is
restarted and the first random value is returned. If ijlag is othelWise non-zero, it is used as a new seed for
the random number generator, and the first new random value is returned. The three functions share the
same 256 byte state array.

[rand returns positive integers in the range 0 through 2147483647. Rand and drand return values in the
range 0.0 through 1.0 .

FILES
lusr/lib/libF77.a

SEE ALSO
random(3)

Sun Release 3.0 Last change: 9 January 1984 183

RANGE (3F) FORTRAN LIBRARY ROUTINES RANGE (3F)

NAME
flmin, flmax, dflmin, dfimax, inmax - return extreme values

SYNOPSIS
function ftminO

function ftmaxO

double precision function dftminO

double precision function dftmaxO

function inmaxO

DESCRIPTION

FILES

184

Functions flmin and flmax return the minimum and maximum positive normalized single precision floating
point values respectively. Functions dflmin and dflmax return the minimum and maximum positive normal­
ized double precision floating point values. Function inmax returns the maximum positive integer value.

These functions can be used by programs that must scale algorithms to the numerical range of the proces­
sor.

The values returned by flmin and dflmin are the smallest normalized IEEE format floating point values. The
values returned by flmax and dflmax are the largest finite IEEE format floating point values.

The approximate values of these functions for the Sun Workstation are:

ftmin 1. 175494e-38

ftmax 3.402823e+38

dftmin 2.225073859Oe-308

dftmax 1.797 693134ge+ 308

inmax 2147483647

lusr/lib/libF77.a

Last change: 16 February 1984 Sun Release 3.0

RENAME(3F) FORTRAN LffiRARY ROUTINES

NAME
rename - rename a file

SYNOPSIS
integer function rename (from, to)
character*(*) from, to

DESCRIPTION

RENAME (3F)

From must be the pathname of an existing file. To will become the new pathname for the file. If to exists,
then bothfrom and to must be the same type of file, and must reside on the same filesystem. If to exists, it
will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATIILEN as defined in <sys/param.h>.

Sun Release 3.0 Last change: 13 June 1983 185

SIGNAL(3F) FORTRAN LIBRARY ROUTINES SIGNAL(3F)

NAME
signal- change the action for a signal

SYNOPSIS
integer function signal(signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal (3» the default action is usually to clean up and abort The user
may choose to write an alternative signal handling routine. A call to signal is the way this alternate action
is specified to the system.

Signum is the signal number (see signal(3». Ifflag is negative, thenproc must be the name of the user sig­
nal handling routine. If flag is zero or positive, then proc is ignored and the value of flag is passed to the
system as the signal action definition. In particular, this is how previously saved signal actions can be
restored. Two possible values for flag have specific meanings: 0 means "use the default action" (See
NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the address of a rou­
tine that was to have been called on occurrence of the given signal. The returned value can be used in sub­
sequent calls to signal in order to restore a previous action definition. A negative returned value is the
negation of a system error code. (See perror(3F»

lusrllibllib U77.a

SEE ALSO

NOTES

186

kill(1), signal(3), kill(3F)

n7 arranges to trap certain signals when a process is started. The only way to restore the default n7 action
is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

Last change: 26 August 1983 Sun Release 3.0

SLEEP(3F) FORTRAN UBRARY ROUTINES

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (itime)

DESCRIPTION

SLEEP(3F)

Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to 1 second
less than itime due to granularity in system timekeeping.

FILES
lusrllib/libU77.a

SEE ALSO
sleep(3)

Sun Release 3.0 Last change: 13 June 1983 187

STAT(3F) FORTRAN LffiRARY ROUTINES

NAME
stat, lstat, fstat - get file status

SYNOPSIS
integer function stat (name, statb)
character*(*) name
integer statb(12)

integer function Istat (name, statb)
character*(*) name
integer statb(12)

integer function fstat (Iunit, statb)
integer statb(12)

DESCRIPTION

STAT (3F)

These routines return detailed information about a file. Stat and Istat return information about file name;
Jstat returns information about the file associated with fortran logical unit lunit. The meaning of the infor­
mation returned in array statb is as described for the structure stat under stat(2). 'Spare' values are not
included, the order is shown below.

FILES

The value of either function will be zero if successful; an error code otherwise.

statb(1)
statb(2)
statb(3)
statb(4)
statb(5)
statb(6)
statb(7)
statb(8)
statb(9)
statb(10)
statb(ll)
statb(12)
statb(13)

device inode resides on
this inode's number
protection
number of hard links to the file
user-id of owner
group-id of owner
the device type, for inode that is device
total size of file
file last access time
file last modify time
file last status change time
optimal blocksize for file system i/o ops
actual number of blocks allocated

lusr/lib/libU77.a

SEE ALSO
stat(2), access(3F), perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

188 Last change: 9 January 1984 Sun Release 3.0

SYSTEM(3F) FORTRAN LIBRARY ROUTINES

NAME
system - execute a UNIX command

SYNOPSIS
integer function system (string)
character*(*) string

DESCRIPTION

SYSTEM (3F)

System causes string to be given to your shell as input as if the string had been typed as a command. If
environment variable SHELL is found, its value will be used as the command interpreter (shell); otherwise
sh(l) is used.

The current process waits until the command terminates. The returned value will be the exit status of the
shell. See wait(2) for an explanation of this value.

FILES
/usr/lib/lib U77 . a

SEE ALSO
execve(2), wait(2), system(3)

BUGS
String can not be longer than NCARGS-50 characters, as defined in <sys/param.h>.

Sun Release 3.0 Last change: 13 June 1983 189

TIME (3F) FORTRAN LffiRARY ROUTINES TIME (3F)

NAME
time, ctime, ltime, gmtime - return system time

SYNOPSIS
integer function timeO

character*24 function ctime (stime)
integer*4 stime

subroutine Itime (stime, tarray)
integer*4 stime, tarray(9)

subroutine gmtime (stime, tarray)
integer*4 stime, tarray(9)

DESCRIPTION

FILES

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the value of the
UNIX system clock.

Ctime converts a system time to a 24 character ASCII string. The format is described under ctime(3). No
'newline' or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as GMT. The
order and meaning of the 9 elements returned in tarray is described under ctime(3).

/usr/lib/lib U77 . a

SEE ALSO
ctime(3), idate(3F), fdate(3F)

190 Last change: 9 January 1984 Sun Release 3.0

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

NAME
topen, oclose, tread, twrite, trewin, tskipf, tstate - f77 tape I/O

SYNOPSIS
integer function topen (tIu, devnam, label)
integer tIu
character*(*) devnam
logical label

integer function tclose (tIu)
integer tIu

integer function tread (tIu, buffer)
integer tIu
character*(*) buffer

integer function twrite (tIu, buffer)
integer tIu
character*(*) buffer

integer function trewin (tIu)
integer tIu

integer function tskipf (tIu, nfiles, nrecs)
integer tIu, nfiles, nrecs

integer function tstate (tIu, fileno, recno, errf, eoff, eotf, tcsr)
integer tIu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between f77 and magnetic tape devices. A "tape logical unit",
tiu, is "topen"ed in much the same way as a normal f77 logical unit is "open"ed. All other operations are
performed via the tlu. The tlu has no relationship at all to any normal f77 logical unit.

Topen associates a device name with a tlu. TZu must be in the range 0 to 3. The logical argument label
should indicate whether the tape includes a tape label. This is used by trewin below. Topen does not move
the tape. The normal returned value is O. If the value of the function is negative, an error has occured. See
perror(3f) for details.

Tclose closes the tape device channel and removes its association with tlu. The normal returned value is O.
A negative value indicates an error.

Tread reads the next physical record from tape to buffer. Buffer must be of type character. The size of
buffer should be large enough to hold the largest physical record to be read. The actual number of bytes
read will be returned as the value of the function. If the value is 0, the end-of-file has been detected. A
negative value indicates an error.

Twrite writes a physical record to tape from buffer. The physical record length will be the size of buffer.
Buffer must be of type character. The number of bytes written will be returned. A value of 0 or negative
indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape is a labelled
tape (see topen above) then the label is skipped over after rewinding. The normal returned value is O. A
negative value indicates an error.

Sun Release 3.0 Last change: 13 June 1983 191

TOPEN(3F} FORTRAN LmRARY ROUTINES TOPEN(3F}

FILES

Tskipf allows the user to skip over files and/or records. First, nfiles end-of-file marks are skipped. If the
current file is at EOF, this counts as 1 file to skip. (Note: This is the way to reset the EOF status for a tlu.)
Next, nrees physical records are skipped over. The normal returned value is O. A negative value indicates
an error.

Finally, tstate allows the user to determine the logical state of the tape I/O channel and to see the tape drive
control status register. The values of fileno and reeno will be returned and indicate the current file and
record number. The logical values errj, eoff, and eotf indicate an error has occurred, the current file is at
EOF, or the tape has reached logical end-of-tape. End-of-tape (EOT) is indicated by an empty file, often
referred to as a double EOF mark. It is not allowed to read past EOT although it is allowed to write. The
value of tesr will reflect the tape drive control status register. See tm(4S} for details.

lusrllib/libU77.a

SEE ALSO
tm(4S}, perror(3t)

192 Last change: 13 June 1983 Sun Release 3.0

TRPFPE(3F) FORmAN LIBRARY ROUTINES TRPFPE(3F)

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (numesg, rtnval)
double precision rtnval

integer function fpecnt 0

common Ifpe8tJ fperr
logical fperr

DESCRIPTION

FILES

NOTE: This routine applies only to Vax computers. It is a null routine on the PDP1!.

Trpjpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a floating point
arithmetic fault, the result of the operation is replaced with the rtnval specified. R tnval must be a double
precision value. For example, "OdD" or "dflmaxO".

The first numesg occurrences of a floating point arithmetic error will cause a message to be written to the
standard error file. Any exception that can't be repaired will result in the default action, typically an abort
with core image.

Fpecnt returns the number of faults since the last call to trpfpe.

The logical value in the common block labelledfpeflt will be set to .true. each time a fault occurs.

/usr/lib/libF77.a

SEE ALSO

BUGS

signal(3t), range(3t)

This routine works only for faults, not traps. This is primarily due to the Vax architecture.

If the operation involves changing the stack pointer, it can't be repaired. This seldom should be a problem
with the f77 compiler, but such an operation might be produced by the optomizer.

The POLY and EMOD opcodes are not dealt with.

Sun Release 3.0 Last change: 13 June 1983 193

TfYNAM(3F) FORTRAN LIBRARY ROUTINES

NAME
ttynam, isatty - find name of a terminal port

SYNOPSIS
character*(*) function ttynam (Iunit)

logical function isatty (Iunit)

DESCRIPTION

TTYNAM(3F)

Ttynam returns a blank padded path name of the terminal device associated with logical unit Zunit.

FILES

/satty returns .true. if Zunit is associated with a terminal device, .false. otherwise.

ldev/*
lusrllib/lib U77. a

DIAGNOSTICS

194

Ttynam returns an empty string (all blanks) if Zunit is not associated with a terminal device in directory
'/dev' .

Last change: 13 June 1983 Sun Release 3.0

UNLINK(3F) FORTRAN LIBRARY ROUTINES

NAME
unlink - remove a directory entry

SYNOPSIS
integer function unlink (name)
character*(*) name

DESCRIPTION

UNLINK(3F)

Unlink causes the directory entry specified by pathname name to be removed. If this was the last link to
the file, the contents of the file are lost. The returned value will be zero if successful; a system error code
otherwise.

FILES
/usr/lib/lib U77.a

SEE ALSO
unlink(2), link(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Sun Release 3.0 Last change: 13 June 1983 195

WAIT(3F) FORTRAN UBRARY ROUTINES

NAME
wait - wait for a process to terminate

SYNOPSIS
integer function wait (status)
integer status

DESCRIPTION

WAIT (3F)

Wait causes its caller to be suspended until a signal is received or one of its child processes terminates. If
any child has terminated since the last wait, return is immediate; if there are no children, return is immedi­
ate with an error code.

FILES

If the returned value is positive, it is the process ID of the child and status is its termination status (see
wait (2». If the returned value is negative, it is the negation of a system error code.

/usr/lib/lib U77 . a

SEE ALSO
wait(2), signal(3F), kiIl(3F), perror(3F)

196 Last change: 13 June 1983 Sun Release 3.0

Index

c
C preprocessor

example, 16
current working directory, 34

D
directory, 34

E
environment, 37

file
F

directory, 34
equation, 38
pipe, 39
redirection, 39
standard error, 38
standard input, 38
standard output, 38

file system, 33
filenames, 37

G
getcwd,34

L
library, 22

random, 23
sequential, 23

M
make

makefile, 14

P
path name, 35

absolute, 35
relative, 35

pipes, 39

R
redirection, 39

S
shell script, 13

-197-

Revision History

Version Date Comments

A 15 July 1983 First release of this Programmer's
Guide.

B 1 November 1983 Incorporates corrections.

C 7 January 1984 Reorganized and some extra material
added.

Da 19 November 1984 2.0 a release.

Df3 5 February 1985 2.0 f3 release.

D 15 May 1985 2.0 release.

Ef3 26 November 1985 3.0 f3 release.

E 16 January 1986 3.0 release.

Notes

