
Using UNIX Text Utilities
on the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Acknowledgements

Material in this Using UNIX Text Utilities on the Sun Workstation comes from: Awk-A Pattern Scanning and Pro
cessing Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Bell Laboratories, Murray Hill, New
Jersey; Advanced Editing on UNIX, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; Sed - a Non
Interactive Text Editor, Lee. E. McMahon, Bell Laboratories, Murray Hill, New Jersey; Introducing the UNIX Sys
tem, Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. A Practical Guide to the UNIX System,
Mark G.Sobell, Benjamin/Cummings Publishing Company, Inc., 1984. These materials are gratefully acknowledged.

Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks
of Sun Microsystems, Inc.

UNIX, UNIXI32V, UNIX System ill, and UNIX System V are trademarks of Bell Laboratories.

Copyright © 1986 by Sun Microsystems Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual:
electric, electronic, electro-magnetic, mechanic~, chemical, optical, or otherwise, without prior explicit written per
mission from Sun Microsystems.

Contents

Preface .. ix

Chapter 1 Comparing Files ... 3

1.1. crop .. 3

1.2. cornrn ... 4

1.3. diff ... 7

diff - First Fonn .. 7

di ff - Second Form .. 8

diff - Third Fonn .. 8

1.4. diff3 ... 12

1.5. join ... 13

1.6. uniq ... 14

Chapter 2 Searching Through Files .. 19

2.1. Pattern Scanning and Processing with a w k ... 20

Using awk ... 21

Program Structure ... 21

Records and Fields ... 21

Displaying Text ... 22

Specifying Patterns .. 24

BEGIN and END ... 24

Regular Expressions .. 24

Relational Expressions ... 25

Combinations of Patterns .. 26

Pattern Ranges .. 26

- iii-

Contents Continued

Actions .. 26

Assignments, Variables, and Expressions ... 26

Field V ariables .. 27

String Concatenation ... 28

Built-in Functions ... 28

length Function ... 28

substring Function .. 29

index Function ... 29

sprintf Function .. 29

Arrays ... 29

Flow-of-Control Statements .. 29

2.2. grep ... 30

Searching for Chara.cter StIings ... ~.............. 31

Searching for 'Everything except string' - Inverted Search 32

Regular Expressions .. 32

Match Beginning and End of Line .. 32

Match Any Character .. 33

Character Classes .. 33

Closures - Repeated Pattern Matches ... 35

Fast Searching for Fixed Strings - fgrep ... 35

Finding Full Regular Expressions - egrep .. 36

2.3. look ... 39

2.4. rev .. 39

2.5. Using sed, the Stream Text Editor .. 39

Using sed ... 40

Command Options .. 41

Editing Commands Application Order ... 42

Specifying Lines for Editing .. 42

Line-number Addresses ... 42

Context Addresses .. 42

Number of Addresses .. 44

Functions ... 44

Whole-Line Oriented Functions ... 45

-iv-

Contents Continued

The Substitute Function s .. 46

Input-output Functions ... 48

Multiple Input-line Functions .. 49

Hold and Get Functions ... 50

Flow-of-Control Functions .. 50

Miscellaneous Functions ... 51

2.6. we ... 51

Chapter 3 Modifying Files ... 55

Chapter 4 Printing Files ... 75

-v-

Tables

Table 1-1 diff3 Option Summary .. 13

Table 1-2 join Option Summary .. 14

Table 1-3 uniq Option Summary .. 15

Table 2-1 grep Option Summary .. 37

Table 2-2 grep Special Characters ... 38

-vii-

Summary of Contents

Conventions Used in This
Manual

Preface

Using UNIX,Text Utilities on the Sun Workstation provides reference information
for utilities useful with text files. We assume you are familiar with a terminal
keyboard and the Sun system. If you are not, see the Beginner's Guide to the Sun
Workstation for information on the basics, like logging in and the Sun file sys
tem. If you are not familiar with a text editor or document processor, read" An
Introduction to Text Editing" in Editing Text Files on the Sun Workstation and
"An Introduction to Document Preparation" in Formatting Documents on the Sun
Workstation for descriptions of the basic concepts and simple examples that you
can try. Finally, we assume that you are using a Sun Workstation, although
specific terminal information is also provided.

For additional details on Sun system commands and programs, see the Com
mands Reference Manual for the Sun Workstation.

This manual is divided into four sections based on the type of operation you want
to perfonn. The four sections are titled "Comparing Files", "Searching Through
Files", "Modifying Files", and "Printing Files". The contents of each section are
summarized here:

1. Comparing Files - This first section describes the commands cmp,
corom, diff, diff3, join, look, and uniq.

2. Searching Through Files - This second section covers the commands
awk, grep, rev, sed, and wc.

3. Modifying Files - This third section explains how to use the commands
colrm, compact, expand, fold, sort, split, tr, and tsort.

4. Printing Files - This fourth section clarifies the printing commands lpq,
lpr, lprm, and pro

Throughout this manual we use

hostname%

as the prompt to which you type system commands. Bold face type
writer font indicates commands that you type in exactly as printed on the
page of this manual. Regular typewriter font represents what the
system prints out to your screen. Typewriter font also specifies Sun system com
mand names (program names) and illustrates source code listings. Italics

-ix-

Preface Continued

I
indicates general arguments or parameters that you should replace with a specific
word or string. We also occasionally use italics to emphasize important terms.

-x-

1
Comparing Files

Comparing Files .. 3

1.1. cmp .. 3

1.2. cormn ... 4

1.3. diff ... 7

diff - First FOnTI .. 7

di f f - Second Form .. 8

diff - Third Form .. 8

1.4. diff 3 ... 12

1.5. join ... 13

1.6. uniq ... 14

1.1. cmp

1
Comparing Files

Occasionally you want to know whether two files are identical, or if they are not,
what the differences are. There are several different UNIXt text utilities for com
paring the contents of files. You can choose the command best for the task at
hand based on what kind of information it conveys to you. Most of the com
mands issue no output if the files are the same. Some return terse output stating
barely more than the fact that the files differ. Others give a more complete sum
mary of how the files differ and how you would have to modify one file to match
the other(s).

The command cmp is an example of a command that issues terse output. At
most, cmp prints the byte and line number where the files differ. Two other
functions for directly comparing files are diff and comm. comrn compares
two files, putting the comparison information into three different columns:
column one lists lines only infilel, column two lists lines only infile2, and
column three lists lines common to both files. diff compares files and also
directories. A special version of diff, diff3, also compares three files,
identifying the differing contents with special flags.

The relational database operator join compares a specific field or fields in two
files. Each time join finds the compared fields in the two files identical, it pro
duces one output line.

For comparing adjacent lines in a single file, UNIX provides the command
uniq. uniq can be made to merely report the repeated lines or to count them
or to remove all but the first occurrence.

The command cmp is for comparing two files. The synopsis of the cmp com
mand is:

hostname% cmp [-1] [-8] filel file2
hostname%

cmp comparesfilel andfile2. Iffilel is the standard input ('-'), cmp reads from
the standard input. Under default options, cmp makes no comment if the files
are the same. If the files differ, cmp announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of the other,
that fact is noted.

t UNIX is a trademark of AT&T Bell Laboratories.

3 Revision A of 17 February 1986

4 UNIX Text Utilities

1.2. corom

The options available with cmp are:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-8 Print nothing for differing files; return codes only.

The corom command prints lines that are common to two files. comm reads
filel and fiIe2, which should be ordered in ASCII collating sequence, but at least ir
the same order, and produces a three-column output:

Column 1
lines only in filel

Column 2
lines only infiIe2

The synopsis of the conun command is:

hostname% comm [-[123]] filelfile2
hostname%

Column 3
lines in both files

As an example of the comm command's output, consider these files:

hostname% cat all
Aaron
Bruce
Dave
Elaine
Greg
Joe
Jon
Kevin
Larry G
Larry K
Linda
Mary
Mike B

Mike F
Niel
Pam
Randy
Sid
Tad
Tom
Wanda
hostname%

Revision A of 17 February 1986

hostname% cat women
Christy
Cyndi
Elaine
Gale
Jeanette
Julia
Katherine
Katy
Linda
Lori
Mary
Pam
Pat
Patti
Rose Marie
Susan
Wanda
hostname%

Chapter 1 - Comparing Files 5

Here is the output of comm. The three columns overlap making output from
files with long lines a little difficult to read.

Revision A of 17 February 1986

6 UNIX Text Utilities

hostname% comm women all
Aaron
Bruce

Christy
Cyndi

Dave
Elaine

Gale
Greg

Jeanette
Joe
Jon

Julia
Katherine
Katy

Kevin
Larry G
Larry K

Linda
Lori

Mary
Mike B
Mike F
Niel

Pam
Pat
Patti

Randy
Rose Marie

Sid
Susan

Tad
Tom

Wanda
hostname%

The filename '-' means the standard input. The flags 1,2, or 3, suppress printing
of the corresponding column. Thus:

hostname% comm -12
hostname%

prints only the lines common to the two files, and

hostname% comm -23
hostname%

prints only lines in the first file, but not in the second. (c omrn -123 does noth
ing).

Revision A of 17 February 198f

1.3. diff

di f f - First Form

Chapter 1 - Comparing Files 7

For summarizing the differences between two files or directories, diff is the
appropriate tool. To use the dif f command, you would follow one of these
models:

hostname% diff [-cefh] [-b] filel file2
hostname%

hostname% diff [-Dstring] [-b] filelfile2
hostname%

hostname% diff [-1] [-r] [-s] [] [-Sname] [-cefh] [-b] dirl dir2
hostname%

di f f is a differential file comparator. When run on regular files, and when com
paring text files that differ during directory comparison (see the notes below on
comparing directories), di f f tells what lines must be changed in the files to
bring them into agreement. Except in rare circumstances, di f f finds a smallest
sufficient set of file differences. If neither filel nor file2 is a directory, either may
be given as '-', in which case the standard input is used. Iffilel is a directory, a
file in that directory whose file-name is the same as the file-name offile2 is used
(and vice versa).

There are several options for output format; the default output format contains
lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3 ,n4

These lines resemble ed commands to convertfilel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging 'a' for' d' and reading
backward you can see how to convert file2 into filel. As in ed, identical pairs
where nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these specification lines come all the lines that are affected in
the first file flagged by the character' <' , then all the lines that are affected in the
second file flagged by the '>' character.

If both arguments are directories, di f f sorts the contents of the directories by
name, and then runs the regular file diff program as described above on text
files that are different. Binary files that differ, common subdirectories, and files
that appear in only one directory are listed.

To produce a script of append (a), change (c), and delete (d) commands for the
editor ed, which will recreate file2 fromfilel, use the first form of dif f with
the option -e.

Extra commands are added to the output when comparing directories with dif f
-e, so that the result is a Bourne shell (sh) script for converting text files com
mon to the two directories from their state in dir 1 to their state in dir2.

To produce a script similar to that using -e, but in the opposite order, that is, to
recreatefilel fromfile2, use diff -f. The script generated with the -f
option is not useful with ed, however.

Revision A of 17 February 1986

8 UNIX Text Utilities

diff - Second Form

diff - Third Form

To surround the specification lines the simplest use of diff puts out with some
lines of context, use diff -c. The default is to present three lines of context.
To change this (to to, for example), add to to the -c option (-ctO). With the
-c option, the output format is slightly different from other dif f output. It
begins by identifying the files involved and the dates they were created. Then
each change is separated by a line with a dozen stars (*). The lines removed
from filel are marked with '-'; those added to fiIe2 are marked '+'. Lines that
are changed from one file to the other are marked in both files with '!'.

If you know you've only made small changes to the files you are comparing, and
you want to speed up the'time diff takes to work, you can use diff -h.
This command ,only does a fast, half-hearted job. dif f -h works only when
changed stretches are short and well-separated, but does work on files of unlim
ited length.

Except for the -b option, which my be given with any of the others, the options
-c, -e, -f, and -h are mutually exclusive.

To create a merged version offilel andfile2 on the standard output with C
preprocessor controls included, use the second form of dif f with the option
-Dstring. Compiling the result without defining string is equivalent to compiling
filel, while compiling the result with string defined will yield file2.

If you want diff to ignore trailing blanks (spaces and tabs), use the option -b.
Other strings of blanks compare equal. The way di f f works, when it compares
directories with the -b option specified, di f f first compares the files (as in
cmp), and then decides to run the di f f algorithm if they are not equal. This
may cause a small amount of spurious output if the files then turn out to be ident
ical, because the only differences are insignificant blank string differences.

When comparing directories, you might be interested in several different things.
If diff puts out a lot of output, you probably want to use the -1 option (for
long output). Each text file diff is piped through the program pr to paginate
it, (see "Printing Files" later in this manual). Other differences are remembered
and summarized after all text file differences are reported.

To compare directories and subdirectories, use the -r option. -r applies
di f f recursively to common subdirectories encountered.

Since di f f ordinarily only outputs information on files and directories that
differ, if a file or several files are identical in directories you are comparing, you
won't see the identical files listed in the output. The -s option reports files that
are the same, in addition to the usual di f f output, which are otherwise not
mentioned.

Here are two directories, macros and new. For this example, here are lists of
their contents.

Revision A of 17 February 1986

hostname% 1. macro.
Makefile
SunMacros.msun
contents.pic
contentsfile.msun
document.styles.msun
intro.msun
hostname%

hostname% 1. Dew

Makefile
SunMacros.msun
contents.pic
contentsfile.msun

making.index.msun
mechanisms.msun
mmemo.7
model.makefile.msun
process.pic
structures .msun

making.index.msun
mechanisms.msun
mmemo.7
model.makefile.msun

document.styles.msun process.pic
intro.msun structures.msun
hostname%

Chapter 1 - Comparing Files 9

summary .msun
test.tr
text.effects.msun
troff.msun

summary. msun
test.tr
text.effects.msun
troff.msun

Right now these two directories are identical. The output of dif f for these two
directories macros and new, if there are no differences is:

hostname% diff macros new
hostname%

The normal output is nothing, no response. Now if we edit some files and
remove some others in the directory new, leaving the files like this:

hostname% 1. macro. De"
macros:
Makefile
SunMacros.msun
contents.pic
contentsfile.msun
document.styles.msun
intro.msun

new:
Makefile
SunMacros.msun
contents.pic
document.styles.msun

making.index.msun
mechanisms.msun
mmemo.7
model.makefile.msun
process.pic
structures .msun

intro.msun
making.index.msun
mechanisms.msun
model.makefile.msun

summary .msun
test.tr
text. effects. msun
troff.msun

structures.msun
summary.msun
text.effects.msun
troff.msun

Revision A of 17 February 1986

10 UNIX Text Utilities

The regular dif f output looks like this:

hostname% diff macros new
diff macros/Makefile new/Makefile
7c7
< FORMATTER /usr/local/iroff

> FORMATTER /usr/doctools/bin/troff
Only in macros: contentsfile.msun
diff macros/intro.msun new/intro.msun
Oa1
> .LP
6,10c7,9
< Document preparation at Sun Microsystems relies on variations of the
< .I troff
< text formatter as the underlying mechanism for turning your wishes into
< printed words and outlines on paper. Using
< . I troff

> Document preparation at Sun Microsystems relies on variations of the
> troff text formatter as the underlying mechanism for turning your wishes
> into printed words and outlines on paper. Using troff
Only in macros: mmemo.7
diff macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pic
Only in macros: test.tr
hostname%

The output of diff is cryptic in true UNIX fashion. But if you look carefully at
the specification lines and the direction of the angle brackets, you can decipher
the results accurately.

To get a more complete picture of how the two directories compare, you might
want to know which files are identical and which files exist only in one directory.
For this, you use diff -so The diff -s output from our example above
looks like this:

Revision A of 17 February 1986

Chapter 1 - Comparing Files 11

hostname% diff -s macros new
diff -s macros/Makefile new/Makefile
7c7
< FORMATTER /usr/local/iroff

> FORMATTER /usr/doctools/bin/troff
Files macros/SunMacros.msun and new/SunMacros.msun are identical
Files macros/contents.pic and new/contents.pic are identical
Only in macros: contentsfile.msun
Files macros/document.styles.msun and new/document.styles.msun are identical
diff -s macros/intro.msun new/intro.msun
Oal
> .LP
6,lOc7,9
< Document preparation at Sun Microsystems relies on variations of the
< .I troff
< text formatter as the underlying mechanism for turning your wishes into
< printed words and outlines on paper. Using
< .I troff

> Document preparation at Sun Microsystems relies on variations of the
> troff text formatter as the underlying mechanism for turning your wishes
> into printed words and outlines on paper. Using troff
Files macros/making.index.msun and new/making.index.msun are identical
Files macros/mechanisms.msun and new/mechanisms.msun are identical
Only in macros: mmemo.7
diff -s macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pic
Files macros/structures.msun and new/structures.msun are identical
Files macros/summary.msun and new/summary.msun are identical
Only in macros: t~st.tr
Files macros/text.effects.msun and new/text.effects.msun are identical
Files macros/troff.msun and new/troff.msun are identical
hostname%

To compare two directories beginning somewhere in the middle of the direc
tories, use the option diff -Sfilename. filename is one of the files in one of
the directories you are comparing. The syntax for this command is

hostname% diff -Sfilename dirl dir2
hostname%

For example, comparing the two directories from the example above, and begin
ning with the file model.makefile .msun:

Revision A of 17 February 1986

12 UNIX Text Utilities

hostname% di.££ -Smode1.make£.il.e .msun macros new
diff macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pic
Only in macros: test.tr
hostname%

1.4. diff3 If you have three versions of a file that you want to compare at once, use the
diff3 command. The synopsis for the diff3 command is:

hostname% di££3 [-ex3] filel file2file3
hostname%

diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

all three files differ

==== 1 file 1 is different

==== 2 file2 is different

==== 3 file3 is different

The type of change requiredto convert a given range ofa given file to a range in
some other file is indicated in one of these ways:

f : nl a

Text is to be appended after line number nl in file/, where! = 1,2, or 3.

f:nl,n2c

Text is to be changed in the range line nl to line n2. If nl = n2, the range may be
abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-numbered
file is suppressed.

Under the -e option, dif f 3 publishes a script for the editor ed that will
incorporate intofilel all changes betweenfile2 andfile3, (that is, the changes that
normally would be flagged ==== and ====3). Option -x produces a script
to incorporate only changes flagged ====. Option -3 produces a script to

Revision A of 17 February 1986

Table 1-1

1.5. join

Chapter 1 - Comparing Files 13

incorporate only changes flagged ====3. The following command will apply
the resulting script to file] .

(cat script; echo ' 1, $p') I ed - filel

Note: Text lines that consist of a single dot (' . ') will defeat the -e option.

diff3 Option Summary

OPTIONS

-e Publish a script for the editor ed that will incorporate into file] all
changes betweenfile2 andfile3, (that is, the changes that nonnally would
be flagged ==== and ====3).

-x Produce a script for ed to incorporate only changes flagged

-3 Produce a script for ed to incorporate only changes flagged ====3.

To compare two files of database information and output a join of two fields, .
there is a UNIX text utility join. join is a relational database operator. The
synopsis of the command is:

hostname% join [-an] [-e string] [-j[112] m] [-0 list] [-tc] fil£lfil£2

hostname%

The program join forms, on the standard output, a join of the two relations
specified by the lines offile] andfile2. Iffile] is '-', the standard input is used.

file] andfile2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines infile] andfile2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line fromfilel, then the rest of the line fromfile2. Fields are
separated by blanks, tabs or newlines. Multiple separators count as one, and
leading separators are discarded.

Note: With default field separation, the collating sequence is that of sort -b.
Using the join -t, the sequence is that of a plain sort.

Revision A of 17 February 1986

14 UNIX Text Utilities

Table 1-2

1.6. uniq

join Option Summary

OPTIONS

-an The parameter n can be one of the values:

-e string

1 produce a line for each unpairable line in/liel.
2 produce a line for each unpairable line infile2.
3 produce a line for each unpairable line in bothfilel andfile2.

in addition to producing the normal output.

Replace empty output fields with string.

-j [1 I 2] m Join on the mth field of file n, where n is 1 or 2. If n is missing,
use the mth field in each file. Note that join counts fields from
1 instead of 0 like sort does.

-0 list

-tc

Each output line comprises the fields specifed in list, each element
of which has the form n.m, where n is a file number and m is a
field number.

Use character c as a separator (tab character). Every appearance of
c in a line is significant.

If you want to check your input file for repeated lines, use uniq uniq reports
repeated lines in a file.

The synopsis of the uniq command is:

hostname% uniq [-ude [+n] [-nl 1 [inputfile [outputfilel 1
hostname%

uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder of the
text (no repeated lines) is written in the output file. Note that repeated lines must
be adjacent in order to be found.

Normally, the lines in the input file that were not repeated and the first
occurrence of the lines that were repeated forms the ,output. If you want to iso
late either of these functions, you can specify either the -u or the -d option.
uniq -u copies only the lines not repeated in the original file to the output file.
uniq -d writes one copy of just the repeated lines to the output file.

In case you are interested in knowing how many occurrences of a given line
appear in the input file, you can use the option uniq -c. With the -c option,
you get first the number of occurrences, then the output in default format (all of
the unique lines and no adjacent repeated lines).

Revision A of 17 February 1986

Chapter 1 - Comparing Files 15

There is also an option to compare the latter parts of lines rather than entire lines.
The n arguments specify skipping an initial portion of each line in the com
parison:

-n The first n fields, together with any blanks before each, are ignored. A field is (
string of non-space, non-tab characters separated by tabs and spaces from its nt

+n The first n characters are ignored. Fields are skipped before characters.

Table 1-3 uniq Option Summary

OPfIONS

-u Copy only those lines that are not repeated in the original file.

-d Write one copy of just the repeated lines.

-c Supersedes -u and -d and generates an output report in default style
but with each line preceded by a count of the number of times it
occurred.

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

Revision A of 17 February 1986

I

2
Searching Through Files

Searching Through Files ... 19

2.1. Pattern Scanning and Processing with awk ... 20

Using awk ... 21

Program Structure ... 21

Records and Fields ... 21

Displaying Text ... 22

SJ)ecifying Patterns .. 24

BEGIN and END ... 24

Regular Expressions .. 24

Relational Expressions ... 25

Combinations of Patterns .. 26

Pattern Ranges .. 26

Actions .. 26

Assignments, Variables, and Expressions ... 26

Field Variables .. 27

String Concatenation ... 28

Built-in Functions ... 28

length Function ... 28

substring Function .. 29

index Function ... 29

sprintf Function .. 29

Arrays ... 29

Flow-of-Control Statements .. 29

2.2. grep ... 30

Searching for Character Strings .. 31

Searching for 'Everything except string' - Inverted Search 32

Regular Expressions .. 32

Match Beginning and End of Line .. 32

Match Any Character .. 33

Character Classes .. 33

Closures - Repeated Pattern Matches ... 35

Fast Searching for Fixed Strings - fgrep ... 35

Finding Full Regular Expressions - egrep .. 36

2.3. look ... 39

2.4. rev .. 39

2.5. Using sed, the Stream Text Editor

Using sed .. .

Command Options

Editing Commands Application Order .. .

Specifying Lines for Editing

Line-number Addresses .. .

Context Addresses

Number of Addresses

Functions .. .

Whole-Line Oriented Functions .. .

The Substitute Function s

Input-output Functions .. .

Multiple Input-line Functions .. .

Hold and Get Functions .. .

Flow-of-Control Functions

Miscellaneous Functions .. .

39

40

41

42

42

42

42

44

44

45

46

48

49

50

50

51

2.6. we ... 51

2
Searching Through Files

Searching through files to find a string or operate on that string or both is a useful
facility to have. UNIX provides several different text utilities that approach the
problem from several different angles. The first one covered here is the program
called awk.

awk searches for a pattern (a string of characters) in a file and performs a
specified action on the pattern. a w k is actually a programming language so it
is very flexible.

There is also a utility for searching for patterns and displaying them (usually on
the standard output). This program, called grep, doesn't perfonn any opera
tions on the pattern. To search for a pattern in a file or files with grep and per
form an operation on the pattern, you would need to pipe the output from grep
to another program. If you specify more than one input file for grep to search,
grep precedes each line that matches the pattern with the name of the file that it
came from.

There are two variations on grep that have similar functions: egrep and
fgrep. egrep finds full regular expressions and fgrep searches only for
fixed strings.

For looking up strings of characters quickly in a dictionary file like
/usr/dict/words, UNIX provides the utility look. look behaves just
like grep but unless you give look a different input file, it searches through a
specific sorted file and prints out all lines that begin with string.

To search through a file and reverse the order of characters on every line, use the
program rev.

UNIX provides a stream editor called sed that you can use to search through a
file and edit it temporarily. sed is particularly useful for transient changes.
sed commands can reside in a file or can be given on the command line. sed
edits a file non-interactively and prints out the edited lines on the standard out
put. The actual file remains unchanged and the changes are not saved per
manently unless you redirect the sed output to a file.

The last text utility we present here, wc, searches through your input file and
counts the number of lines, words, and characters.

19 Revision A of 17 February 1986

20 UNIX Text Utilities

2.1. Pattern Scanning and
Processing with awk

awk is a utility program that you can program in varying degrees of complexity.
awk's basic operation is to search a set of files for patterns based on selection
criteria, and to perfonn specified actions on lines or groups of lines which con
tain those patterns. Selection criteria can be text patterns or regular expressions.
awk makes data selection, transfonnation operations, infonnation retrieval and
text manipulation easy to state and to perfonn.

Basic awk operation is to scan a set of input lines in order, searching for lines
which match any of a set of patterns that you have specified. You can specify an
action to be. performed on each line that matches the pattern.

awk patterns may include arbitrary Boolean combinations of regular expressions
and of relational and arithmetic operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc
tions as in patterns, as well as arithmetic and string expressions and assignments,
if-else, while, for statements, and multiple output streams.

If you are familiar with the grep utility (see the Commands Reference Manual
for the Sun Workstation), you will recognize the approach, although in awk, the
patterns may be more general than in grep, and the actions allowed are more
involved than merely displaying the matching line.

As some simple examples to give you the idea, consider a short file called sam
ple, which contains some identifying numbers and system names:

125.1303
125.0x0733
125.1313
125.19

krypton loghost
window
core
haley

If you want to display the second and first columns of infonnation in that order,
use the a wk program:

hostname% awk '{print $2, $1}' sample
krypton 125.1303
window 125.0x0733
core 125.1313
haley 125.19

This is good for reversing columns of tabular material for example. The next
program shows all input lines with an a, b, or c in the second field.

hostname% awk '$2 - /alblc/' sample
125.1313 core
125.19 haley

The material in this chapter is derived from Awk - A Pattern Scanning and Processing Language, A Aho,
B.W. Kernighan, P. Weinberger, Bell Laboratories, Murray Hill, New Jersey.

Revision A of 17 February 1986

Using awk

Program Structure

Records and Fields

Chapter 2 - Searching Through Files 21

The general format for using awk follows. You execute the awk commands in
a string that we'll call program on the set of named files:

hostname% awk program files

For example, to display all input lines whose length exceeds 13 characters, use
the program:

hostname% awk '1ength > 13' samp1e
125.1303 krypton loghost
125.0x0733 window
hostname%

In the above example, the program compares the length of the sample file lines to
the number 13 and displays lines longer than 13 characters.

awk usually takes its program as the first argument. To take a program from a
file instead, use the -f (file) option For example, you can put the same state
ment in a file called howlong, and execute it on sample with:

hostname% awk -£ how1ong hos~

125.1303 krypton loghost
125.0x0733 window

You can also execute a w k on the standard input if there are no files. Put single
quotes around the awk program because the shell duplicates most of aWk's
special characters.

A program can consist of just an action to be performed on all lines in a file, as in
the howlong example above. It can also contain a pattern that specifies the lines
for the action to operate on This pattern/action order is represented in awk
notation by:

pattern {action }

In other words, each line of input is matched against each of the patterns in tum.
For each pattern that matches, the associated action is executed. When all the
patterns have been tested, the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not both. If there is no action
for a pattern, the matching line is simply copied to the output. Thus a line which
matches several patterns can be printed several times. If there is no pattern for an
action, the action is performed on every input line. A line which doesn't match
any pattern is ignored. Since patterns and actions are both optional, you must
enclose actions in braces ({ action}) to distinguish them from patterns. See more
about patterns in the "Specifying Patterns" section later in this chapter.

awk input is divided into records terminated by a record separator. The default
record separator is a newline, so by default a wk processes its input a line at a
time. The number of the current record is available in a variable named NR.

Each input record is considered to be divided intofields. Fields are separated by
field separators, normally blanks or tabs, but you can change the input field
separator, as described in the "Field Variables" section later in this chapter.
Fields are referred to as $X where $1 is the first field, $ 2 the second, and so

Revision A of 17 February 1986

22 UNIX Text Utilities

Displaying Text

on as shown above. $ 0 is the whole input record itself. Fields may be
assigned to. The number of fields in the current record is available in a variable
named NF.

The variables F S and RS refer to the input field and record separators; you can
change them at any time to any single character. You may also use the optional
command-line argument -Fe to set FS to any charactere.

If the record separator is empty, an empty input line is taken as the record separa
tor, and blanks, tabs and newlines are treated as field separators.

The variable FILENAME contains the name of the current input file.

The simplest action is to display (or print) some or all of a record with the a w k
command print. print copies the input to the output intact. An action
without a pattern is executed for all lines. To display each record of the sample
file, use:

hostname% awk '{print}' sample
125.1303 krypton loghost
125.0x0733 window
125.1313 core
125.19 haley
hostname%

Remember to put single quotes around the awk program as we show here.

More useful thcpl the above example is to print a field or fields from each record.
For instance, to display the first two fields in reverse order, type:

hostname% awk '{print $2, $1}' sample
krypton 125.1303
window 125.0x0733
core 125.1313
hostname%

Items separated by a comma in the print statement are separated by the
current output field separator when output Items not separated by commas are
concatenated, so to run the first and second fields together, type:

hostname% awk '{print $1 $2}' sample
125. 1303krypton
125.0x0733window
125.1313core
125.19haley
hostname%

You can use the predefined variables NF and NR; for example, to print each
record preceded by the record number and the number of fields, use:

Revision A of 17 February 1986

Chapter 2 - Searching Through Files 23

hostname% awk '{ print NR, NF, $0 }' sample
1 3 125.1303 krypton loghost
2 2 125.0x0733
3 2 125.1313
4 2 125.19
hostname%

window
core
haley

You may divert output to multiple files; the program:

hostname% awk '{print $1 >"foo1"; print $2 >"fo02"}' filename

writes the first field, $1, on the file fool, and the second field on file fo02. You
can also use the > > notation; to append the output to the file foo for example,
say:

hostname% awk ' {print $1 »"foo"}' filename

In each case, the output files are created if necessary. The filename can be a vari
able or a field as well as a constant. For example, to use the contents of field 2 as
a filename, type:

hostname% awk '{print $1 >$2}' filename
hostname%

This program prints the contents of field 1 of filename on field 2. If you run this
on our sample file, four new files are created. There is a limit of 10 output files.

Similarly, you can pipe output into another process. For instance, to mail the
output of an awk program to susan, use:

hostname% awk '{ print NR, NF, $0 }' sample I mail susan

(See the Mail User's Guide in the Beginner's Guide to the Sun Workstation for
details on mai 1.)

To change the current output field separator and output record separator, use the
variables OFS and ORS. The output record separator is appended to the output
of the print statement

awk also provides the printf statement for output formatting. To format the
expressions in the list according to the specification informat and print them,
use:

printf format, expr, expr, ...

To print $1 as a floating point number eight digits wide, with two after the
decimal point, and $2 as a 10-digit long decimal number, followed by a new
line, use:

hostname% awk '{printf ("%8. 2f %10ld\n", $1, $2) }' filename

Notice that you have to specifically insert spaces or tab characters by enclosing
them in quoted strings. Otherwise, the output appears all scrunched together.
The version of printf is identical to that provided in the C Standard 110
library (see print/in C Library Standard I/O (3S) in the System Interface Manual
for the Sun Workstation).

Revision A of 17 February 1986

24 UNIX Text Utilities

Specifying Patterns

BEGIN and END

Regular Expressions

A pattern in front of an action acts as a selector that determines whether the
action is to be executed. You may use a variety of expressions as patterns: regu
lar expressions, arithmetic relational expressions, string-valued expressions, and
arbitrary Boolean combinations of these.

awk has two built-in patterns, BEGIN and END. BEGIN matches the beginning of
the input, before the first record is read. The pattern END matches the end of the
input, after the last record has been processed. BEGIN and END thus provide a way
to gain control before and after processing, for initialization and wrapup.

As an example, the field separator can be set to a colon by:

BEGIN {FS = ":" }
... rest of program ...

Or the input lines may be counted by:

END {print NR }

If BEGIN is present, it must be the first pattern; END must be the last if used.

The simplest regular expression is a literal string of characters enclosed in
slashes, like

/smith/

This is actually a complete awk program which displays all lines which contain
any occurrence of the name 'smith'. If a line contains 'smith' as part of a larger
word, it is also displayed. Suppose you have a file testfile that contains:

summertime
smith
blacksmithing
Smithsonian
hammersmith

If you use awk on it, the display is:

hostname% awk /smith/ test file
smith
blacksmithing
hammersmith

a wk regular expressions include the regular expression forms found in the text
editor ed and in grep (see the Commands Reference Manualfor the Sun
Workstation). In addition, awk uses parentheses for grouping, I for alterna
tives, + for 'one or more', and ? for 'zero or one', all as in lex. Character
classes may be abbreviated. For example:

/[a-zA-ZO-9]/

is the set of all letters and digits. As an example, to display all lines which con
tain any of the names 'Adams,' 'West' or 'Smith,' whether capitalized or not,
use:

, / [Aa] dams I [Ww] est I [Ss]mith/'

Revision A of 17 February 1986

Relational Expressions

Chapter 2 - Searching Through Files 25

Enclose regular expressions (with the extensions listed above) in slashes, just as
in ed and· sed. For example:

hostname% awk '/[Ss]mith/' testfi1e
smith
blacksmithing
Smithsonian
hammersmith

finds both 'smith' and 'Smith'.

Within a regular expression, blanks and the regular expression metacharacters are
significant. To tum off the magic meaning of one of the regular expression char
acters, precede it with a backslash. An example is the pattern

/\/.*\//

which matches any string of characters enclosed in slashes.

Use the operators - and ! - to find if any field or variable matches a regular
expression (or does not match it). The program

$1 - /[sS]mith/

displays all lines where the first field matches 'smith' or 'Smith.' Notice that this
will also match 'blacksmithing', 'Smithsonian', and so on. To restrict it to
exactly [sS]mith, use:

hostname% awk '$1 - /A[sS]mith$/' testfi1e
smith
hostname%

The caret '" refers to the beginning of a line or field; the dollar sign $ refers to
the end.

An awk pattern can be a relational expression involving the usual relational and
arithmetic operators <, <=, ==, ! =, >=, and >, the same as those in C. An
example is:

'$2 > $1 + 100'

which selects lines where the second field is at least 100 greater than the first
field.

In relational tests, if neither operand is numeric, a string comparison is made;
otherwise it is numeric. Thus,

hostname% awk '$1 >= "s'" testfi1e
smith

selects lines that begin with an 's', 't', 'u', etc. In the absence of any other infor
mation, fields are treated as strings, so the program

$1 > $2

performs a string comparison between field 1 and field 2.

Revision A of 17 February 1986

26 UNIX Text Utilities

Combinations of Patterns

Pattern Ranges

Actions

Assignments, Variables, and
Expressions

A pattern can be any Boolean combination of patterns, using the operators I
(or), && (and), and ! (not). For example, to select lines where the first field
begins with's', but is not 'smith', use:

hostname% awk '$1 >= nan " $1 < ntn " $1 != namdthn, testfile
summertime

& & and I I guarantee that their operands will be evaluated from left to right;
evaluation stop~ as soon as the truth or falsehood is determined.

The program:

$1 !=prev {print; prev=$l}

displays all lines in which the first field is different from the previous first field.

The pattern that selects an action may also consist of two patterns separated by a
comma, as in

patternl, pattern2 { ... }

In this case, the action is performed for each line between an occurrence of pat
tern} and the next occurrence of pattern2 inclusive. For example, to display all
lines between the strings 'sum' and 'black', use:

hostname% awk '/sum/, /black/' test file
summertime
smith
blacksmithing
hostname%

while

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

An a wk action is a sequence of action statements terminated by newlines or
semicolons. These action statements can be used to do a variety of bookkeeping
and string manipulating tasks.

The simplest action is an assignment. For example, you can assign 1 to the vari
able x:

x = 1

The '1' is a simple expression. awk variables can take on numeric (floating
point) or string values according to context. In

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to numbers and vice versa whenever
context demands it. For instance, to assign 7 to x, use:

Revision A of 17 FebruaI}' 1986

Field Variables

Chapter 2 - Searching Through Files 27

x = "3" + "4"

Strings that cannot be interpreted as numbers in a numerical context will gen
erally have numeric value zero, but it is unwise to count on this behavior.

By default, variables other than built-ins are initialized to the null string, which
has numerical value zero; this eliminates the need for most BEGIN sections. For
example, the sums of the first two fields can be computed by:

s1 += $1; s2 += $2 }
END { print s1, s2 }

Arithmetic is done internally in floating point. The arithmetic operators are +,
-, *, /, and % (mod). For example:

NF % 2 == 0

displays lines with an even number of fields. To display all lines with an even
number of fields, use:

NF % 2 == 0

The C increment + + and decrement - - operators are also available, and so are
the assignment operators +=, -=, *=, / =, and %=.

An awk pattern can be a conditional expression as well as a simple expression
as in the 'x = l' assignment above. The operators listed above may all be used in
expressions. An awk program with a conditional expression specifies condi
tional selection based on properties of the individual fields in the record.

Fields in awk share essentially all of the properties of variables - they may be
used in arithmetic or string operations, and may be assigned to.

To replace the first field of each line by its logarithm, say:

{ $1 = log($1); print}

Thus you can replace the first field with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

if ($3 > 1000)
$3 = "too big"

print

which replaces the third field by 'too big' when it is, and in any case prints the
record.

Field references may be numerical expressions, as in

{ print $i, $ (i+1), $ (i+n) }

Revision A of 17 February 1986

28 UNIX Text Utilities

String Concatenation

Built-in Functions

length Function

Whether a field is considered numeric or string depends on context; fields are
treated as strings in ambiguous cases like:

if ($1 == $2) ...

Each input line is split into fields automatically as necessary. It is also possible
to split any variable or string into fields. To split the string's' into 'array[l]' ... ,
'array[n]' , use:

n = split(s, array, sep)

This returns the number of elements found. If the s ep argument is provided, it
is used as the field separator; otherwise FS is used as the separator.

Strings may be concatenated. For example:

length($l $2 $3)

returns the length of the first three fields. Or in a print statement,

print $1 n is n $2

prints the two fields separated by , is '. Variables and numeric expressions may
also appear in concatenations.

awk provides several built-in functions.

The length function computes the length of a string of characters. This pro
gram shows each record, preceded by its length:

hostname% awk '{print length, SO}' testfile
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith
hostname%

length by itself is a 'pseudo-variable' that yields the length of the current
record; length (argument) is a function which yields the length of its argu
ment, as in the equivalent:

hostname% awk '{print length($O), SO}' testfi1e
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith

The argument may be any expression.

awk also provides the arithmetic functions sqrt, log, exp, and int, for
square root, base e logarithm, exponential, and integer part of their respective
arguments.

Revision A of 17 February 1986

substring Function

index Function

sprintf Function

Arrays

Flow-of-Control Statements

Chapter 2 - Searching Througb Files 29

The name of one of these built-in functions, without argument or parentheses,
stands for the value of the function on the whole record. The program

length < 10 I I length > 20

displays lines whose length is less than 10 or greater than 20.

The function substr (s, ro, n) produces the substring of s that begins at
position m (origin 1) and is at most n characters long. If n is omitted, the sub
string goes to the end of s.

The function index (sl, s2) returns the position where the string s2 occurs
in sl, or zero if it does not.

The function sprintf if, el, e2, ...) produces the value of the expressions el,
e2, and so on, in the printf fonnat specified by f. Thus, for example, to set x
to the string produced by formatting the values of $1 and $2, use:

x = sprintf("%8.2f %10Id", $1, $2)

Array elements are not declared; they spring into existence by being mentioned.
Subscripts may have any non-null value, including non-numeric strings. As an
example of a conventional numeric subscript, the statement

x [NR] = $0

assigns the current input record to the NR -th element of the array x. In fact, it is
possible in principle though perhaps slow to process the entire input in a random
order with the awk program

{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the array x.

Array elements may be named by non-numeric values, which gives awk a capa
bility rather like the associative memory of Snobol tables. Suppose the input
contains fields with values like 'apple', 'orange', etc. Then the program

/apple/ { x ["apple"] ++ }
/orange/' {x ["orange"] ++ }
END { print x["apple"], x["orange"]

increments counts for the named array elements, and prints them at the end of the
input.

awk provides the basic :flow-of-control statements if-else, while, for,
and statement grouping with braces, as in C. We showed the if statement in
the "Field Variables" section without describing it The condition in parentheses
is evaluated; if it is true, the statement following the if is done. The else
part is optional.

The while statement is exactly like that of C. For example, to print all input
fields one per line,

Revision A of 17 February 1986

30 UNIX Text Utilities

2.2. grep

i = 1
while (i <= NF)

print $i
++i

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for statement which is suited for accessing the
elements of an associative array:

for (i in array)
statement

does statement with i set in turn to each element of array. The elements are
accessed in an apparently random order. Chaos will ensue if i is altered, or if any
new elements are accessed during the loop.

The expression in the condition part of an if, while or for can include
relational operators like <, <=, >, >=, == ('is equal to'), and ! = ('not equal
to'); regular expression matches with the match operators - and ! -; the logical
operators I I, & &, and !; and of course parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or
for; the continue statement causes the next iteration to begin.

The statement next causes awk to skip immediately to the next record and
begin scanning the patterns from the top. The statement exit causes the pro
gram to behave as if the end of the input had occurred.

You may put comments in a wk programs: begin them with the character 4#: and
end them with the end of the line, as in

print x, y * this is a comment

There are many occasions when you will want to determine which file contains
something you are looking for, or whether a particular string of characters exists
in any of a number of files. One of the most useful text utilities that UNIX pro
vides is grep. grep stands for 'global regular expression printer', a mouthful
of non-mnemonic syllables. However, it is a very useful tool for searching
through one or many files for a string of characters.

The synopsis of the grep command and its two related commands:

hostname% qrep [-v] [-c] [-1] [-n] [-b] [-i] [-s] [-h] [-w]

[-eexpression] expression [filename ...]
hostname%

Revision A of 17 February 1986

Searching for Character
Strings

Chapter 2 - Searching Through Files 31

hostname% 8grep [-v] [-c] [-1] [-n] [-b] [-s] [-h]
[-eexpression] [-ffile] [expression] [filename] .••]
hostname%

hostname% fgrep [-v] [-x] [-c] [-1] [-n] [-b] [-i] [-s] [-h]
[-eexpression] [-ffile] [strings] (filename] •..]
hostname%

grep is a utility program that searches a file or files for lines that contain strings
of a specified pattern. When grep finds the lines that match the pattern, it
prints them out on the standard output.

The two variations on grep, egrep and fgrep, have functions similar to
grep. egrep finds full regular expressions and fgrep searches only for
fixed strings. In general, egrep is the fastest of these programs. We will
explain these two commands later in this section.

The simplest form of grep searches for a pattern that consists of a fixed charac
ter string. grep's power lies in its ability to describe more complex patterns,
called regular expressions.

gr ep in its simplest form looks for a fixed character string. For example, if you
are trying to discover if a specific word exists in a file, you use the form grep
word file. An example of the command, using the same input files as in the ear
lier example, is:

hostname% grep Linda women
Linda
hostname%

This command searches for the string 'Linda' in the file 'women'. Since the
gr ep command uses spaces to separate arguments on the command line, you
have to be careful what you tell grep to search for. If the string you want to
search for contains spaces or tabs, you must surround the string with some kind
of delimiter like quotation marks (single or double). Another example:

hostname% grep 'Larry G' all
Larry G
hostname%

This command searches for the string 'Larry G' in the file 'all'. Because the
string 'Larry G' contains a space, we used single quotes to delimit the second
argument to grep.

When any of the grep utilities is applied to more than one input file, the name
of the file is displayed preceding each line that matches the pattern. For exam
ple:

hostname% grep Linda women all
women: Linda
all: Linda
hostnarn~%

Revision A of 17 February 1986

32 UNIX Text Utilities

Searching for 'Everything
except string' - Inverted
Search

Regular Expressions

Match Beginning and End of
Line

This command searches through the two files 'women' and 'all' for the string
'Linda' . grep displays the names of the files in which it found the string.

grep has an option to print every line except those that match string. This is
done with the -v option. An example would be:

hostname% qrep -v "chicken soup" recipes.file
hostname%

if you wanted to list the titles of your recipes to decide what to have for dinner,
knowing only that you didn't want chicken soup. This command will print out
everything except the line containing the string chicken soup.

Many times you can't exactly remember the entire string you want to find. You
might remember how it begins, or how it ends, or some other feature. Or, you
might want to perform some operation on every occurrence of a particular string
in a particular position on a line in the file. You should take advantage of
grep's powerful feature of searching for regular expressions in text.

You can ask forpattems like ' ... all six-letter words starting with 'st", or ' ... all
strings looking like . IP and at the beginning of a line' .

Such a pattern or template is called a 'regular expression'. Regular expressions
are possible because certain characters have special meanings. These characters
are often called 'metacharacters' because they represent something other than
their literal meaning.

Take care when using the characters $, * , [, ... , I, (,), and \, in the regu
lar expression as these characters are also meaningful to the Bourne and C shells.
Enclose the entire expression argument in single quotes (' ,) to avoid having
the shell interpret the metacharacter. Double quotes will work most of the time
also.

Two of the simplest metacharacters to use are the caret ("") and the dollar sign
($). These match the beginning and end of a line, respectively. For example:

hostname% grep 'panic' file
hostname%

matches any occurrence of the word 'panic' in the file file. But if you slightly
alter the command to:

hostname% grep , panic' file
hostname%

you will locate only occurrences of the word 'panic' at the beginnings of lines.
Similarly, $ appearing at the end of a string matches the end of a line:

hostname% grep 'panic$' file
hostname%

This last example will find only those occurrences of the word 'panic' that fall at
the ends of lines.

Revision A of 17 February 1986

Match Any Character

Character Classes

Chapter 2 - Searching Through Files 33

Logically, you can specify with:

hostname% grep , Do not push the panic button. $' file
hostname%

because of the beginning-of-line and end-of-line match requirement, that you find
only lines that consist entirely of this pattern and nothing else. Blank lines can
be matched with the pattern ~ $. If there are spaces or tabs or other non-printing
characters on the line, the A$ pattern will not match such lines.

A text pattern that matches at a specific place on a line is called an 'anchored
match' because it is anchored to a specific position. The ... and $ characters lose
their special meanings if they appear in places other than the beginning of the
pattern, or the end of the pattern, respectively.

The period, or dot character, as it's usually known in the UNIX system, is a meta
character that matches any character at all. So the string It st.... It selects
all words beginning with 'st' and having four other characters, provided the word
is preceded and followed by a space. To find such words at the beginning of a
line, you use

hostname% grep ,,. st ' file
hostname%

or the end of a line

hostname% grep , st $' file
hostname%

What grep really finds is not only words starting with 'st', but any string of six
characters starting with 'st' and preceded by a space. So

hostname% grep , st.... ' file
hostname%

finds any of the patterns:

string st[10]
starti stop-g
search story!

Specifying that you only want to search for letters is possible with character
classes explained in the next section. Text patterns never match across lines;
they only match within a line. This is because the dot metacharacter never
matches a newline character.

Characters enclosed in brackets ([]) specify a set of characters that grep is to
search for. The match is on anyone of the characters inside the brackets. For
example:

hostname% grep [Tt]his file
hostname%

Revision A of 17 February 1986

34 UNIX Text Utilities

finds both 'this' and 'This'. The expression ... [abcxyz] finds all lines begin
ning with 'a' or 'b' or 'c' or 'x' or 'y' or 'z'. Inside square brackets, the hyphen
character (-) specifies a range of characters. The patterns:

[a-z]
[A-Z]

[0-9]

all lower-case letters
all upper-case letters
all digits

are very common regular expressions. So, in the previous example of words
beginning with 'st', to really limit the search to letters, we could specify:

hostname% grep , st[a-z] [a-z] [a-z] [a-z] , fik
hostname%

If the caret character (...) is the :first character inside the square brackets, it does
not mean 'beginning of line' anymore. Instead, it means anything except the
search string. For example, the pattern:

hostname\ grep A[Aa_z] fik
hostname%

finds all lines except those beginning with lower-case letters.

Note that ranges of letters refer to the Ascn character set so the range [A - z]
not only finds all upper- and lower-case letters, but also all the other characters
that fall in that range of ASCII character values, namely:

\

There are a few pitfalls you can avoid by paying close attention to syntax in
specifying ranges of characters. For example, the pattern:

[1-30]

does not mean 'numbers in the range 1 through 30'. It means 'digits in the range
1 through 3, OR 0'. This is the same as specifying the pattern:

[1230]

or

[0-3]

If you want to include the hyphen character (-) in the class of characters, you just
need to ensure that it won't be confused with a range specification. For example,
a hyphen at the beginning of the pattern stands for itself:

[-ab]

This example means the pattern '-' or 'a' or 'b'. You should threat the charac
ters [and] with this same caution.

Revision A of 17 February 1986

:losures - Repeated Pattern
Matches

Fast Searching for Fixed
Strings - fgrep

Chapter 2 - Searching Through Files 35

A number enclosed in braces { } following an expression specifies the number
of times the preceding expression is to be repeated. For example, in the earlier
search for six-letter words beginning with 'st' could be expressed:

, st[a-z]{4} ,

This repeat number specification is known as a 'closure'. The general format of
the closure is {n, m} , where n is the minimum number of repeats and m is
assumed to be infinity (or at least huge). There are shorthand ways of expressing
some closures:

asterisk *

plus sign +

is equivalent to {O,} ,
meaning the preceding
pattern is to be repeated
zero or more times.

is equivalent to {l,} ,

meaning the preceding
pattern is to be repeated
one or more times.

question mark ? is the same as {O, 1 } ,
which means that the
preceding pattern can be
repeated zero or once only.

Closures are the reason that text patterns do not span across lines. If you just
type a grep pattern like this:

hostname% grep '. *, file
hostname%

the pattern is trying to specify 'match zero to infinity amounts of any character' .
If patterns could span lines, this would try to digest an entire file. Like any other
utility, grep has some limit to the size of the pattern it can hold internally. A
whole file could be too large for grep.

Since patterns can not match a newline, the grep '. *' command in the
example above finds and displays every line in/de.

The fgrep utility is another text processing utility in the same family as
grep and egrep (described in the following section). The fgrep command
only handles fixed character strings as text patterns. The grep command can
not process wild-card matches, character classes, anchored matches, or closures.
For these reasons, fgrep is faster than grep when all you want to search for
is a fixed character string.

An example of fgrep usage:

Revision A of 17 February 1986

36 UNIX Text Utilities

Finding Full Regular
Expressions - egrep

hostname% fgrep 'comma in' awk.usun
Items separated by a comma in the print statement
hostname%

You can also give fgrep a file of fixed strings. Each string appears on a line
by itself, but the newline characters have to be escaped with the backslash char
acter (\).

Another variation on the basic grep utility is egrep. egrep stands for
'extended grep'. The egrep command is an extension to the basic grep to
allow full regular expressions.

egrep can handle more complex regular expressions, of the form: 'find a pat
tern, followed by this or that or one of those, followed by something else'. Alter
native patterns are specified by separating the alternative patterns with the I
(vertical bar)character. This form of regular expression is technically called
'alternation' .

Alternate patterns within regular expressions can be grouped by enclosing the
patterns within parentheses (). For example:

hostname% egrep 'Roman (typelfont)' font.change
This paragraph might appear in either Roman font or Italics
If this is Roman type, .LP resets the font; if Italic, .LP
hostname%

In this example, egrep searches through the file font.change either for the
string 'Roman type' or the string 'Roman font'. In the example, egrep found
both so it printed two different lines each containing one of the patterns it
searched for.

Note that the alternatives are in parentheses. If you had typed the command:

hostname% egrep 'Roman typelfont' font.change
hostname%

you would be searching for the strings 'Roman type' or 'font' and you would get
a different result:

hostname% egrep 'Roman type I font' font.change
This paragraph might appear in either Roman font or Italics
depending o~ whether a .LP macro request resets the font.
If this is Roman type, .LP resets the font; if Italic, .LP
hostname%

Here the first and second lines matched the pattern 'font' and the third line
matched the pattern 'Roman type' .

There are other less-used options to grep, not covered in depth in this section,
and they are summarized below.

Revision A of 17 February 1986

Table 2-1

Chapter 2 - Searching Through Files 37

grep Option Summary

-v

-x

-c

-1

-n

-b

-i

-s

-w

OPTIONS

Invert the search to only display lines that do not match.

Display only those lines that match exactly - that is, only
lines that match in their entirety (f gr ep only).

Display a count of matching lines.

List once the names of files with matching lines separated by
newlines.

Precede each line by its relative line number in the file.

Precede each line by the block number on which it was
found. This is sometimes useful in locating disk block
numbers by context

Ignore the case of letters in making comparisons - that is,
upper- and lower-case are considered identical. This applies
to grep and f grep only.

Work silently, that is, display nothing except error messages.
This is useful for checking the error status.

Search for the expression as a word as if surrounded by '\<'
and '\>' - grep only. (See ex).

-e expression Same as a simple expression argument, but useful when the
expression begins with a dash (-).

-f file Take the regular expression (egrep) or string list (fgrep)
from file.

Revision A of 17 February 1986

38 UNIX Text Utilities

Table 2-2 grep Special Characters

\

$

c

[string]

*

+

?

Characters

Escape character. 1 Backslash (\) followed by any single
character other than newline matches that character.

Anchored match: matches the beginning of a line.

Anchored match: matches the end of a line.

Dot (or period). Matches any character.

Matches any single character not otherwise endowed with
special meaning.

Character class: match any single character from string. Ranges
of Ascn character codes may be abbreviated as in [a - z 0 - 9] .
A right-side square bracket (]) may occur only as the first
character of the string. A literal - must be placed where it can't
be mistaken as a range indicator. A caret ("') character
immediately after the open bracket negates the sense of the
character class, that is, the pattern matches any character except
those in the character class.

Closure: a regular expression followed by an asterisk (*)
matches a sequence of zero or more matches of the regular
expression.

Closure: a regular expression followed by a plus (+) matches a
sequence of one or more matches of the regular expression.

Closure: a regular expression followed by a question mark (?)
matches a sequence of zero or one matches of the regular
expression.

concatenation Two regular expression concatenated match a match of the first
followed by a match of the second.

()

Alternation: two regular expressions separated by a vertical bar
(I) or newline match either a match for the first or a match for
the second (egrep only).

A regular expression enclosed in parentheses matches a match
for the regular expression.

1 In this table, the tenn 'character' excludes newline.

+~ Revision A of 17 February 1986

2.3. look

2.4. rev

2.5. Using sed, the Stream
Text Editor

Chapter 2 - Searching Through Files 39

The order of precedence of operators at the same parenthesis level is

[]

* + -
concatenation
I and newline

character classes
closures

alternation

For looking up strings of characters quickly in a dictionary file like
/usr / diet/words, UNIX provides the utility look. look behaves just
like grep but unless you give look a different input file, it searches through a
specific sorted file and prints out all lines that begin with string.

look's function is to find lines in a sorted list. The synopsis of the look com
mand is:

hostname% look [-df] string [file]
hostname%

The options to look are:

-d 'Dictionary' order: only letters, digits, tabs and blanks participate in
comparisons.

- f Fold: upper-case letters compare equal to lower-case.

If no file is specified, look uses / usr / diet / words with collating sequence
-df.

To search through a file and reverse the order of characters on every line, use the
program rev.

To search through a file and reverse the order of characters on every line, use the
program rev.

The synopsis of the rev command is:

hostname% rev [file] ••.
hostname%

rev copies the named files to the standard output, reversing the order of charac
ters in every line. If no file is specified, the standard input is copied.

This chaptef2 describes sed, the non-interactive context or stream editor. Use
sed for editing files too large for comfortable interactive editing, editing any
size file when the sequence of editing commands is too complicated to be com
fortably typed in interactive mode, and performing multiple global editing func
tions efficiently in one pass through the input. Because the default mode is to

2. The material in this chapter is derived from Sed - a Non-Interactive Text Editor I L.E. McMahon, Bell
Laboratories, Murray Hill, New Jersey.

Revision A of 17 February 1986

40 UNIX Text Utilities

Using sed

apply edit commands globally, and because its output is to the standard output,
your workstation or terminal screen, sed is good for making changes of a tran
sient nature, rather than permanent modifications to a file.

You can create a complicated editing script separately and use it as a command
file. For complex edits, this saves considerable typing, and its attendant errors.
Running sed from a command file is much more efficient than any interactive
editor even if that editor can be driven by a pre-written script.

Whereas the ed editor copies your original file into a buffer, sed: does not use
temporary files so you can edit any size file. The only space requirement is that
the input and output fit simultaneously into the available second storage. Addi
tionally, ed lets you explore the text in whatever order you want, while sed
works on your file from beginning to end, and allows you no choice of edit com
mands once you have started it. Basically sed passes some data through a set
of transformations called editor functions.

By default sed copies the standard input to the standard output, perhaps per
forming one or more editing commands on each line before writing it to the out
put. You can modify this behavior by adding a command-line option; see the
"Command Options" section below.

As a lineal descendant of the ed editor, sed recognizes basically the same reg
ular expressions as ed. The range of pattern matches is called the pattern
space. Ordinarily, the pattern space is one line of text, but you can read more
than one line into the pattern space if necessary. But because of the differences
between interactive and non-interactive operation, ed and sed are different
enough that even experienced ed users should read this chapter. You cannot
use relative addressing with sed as you can with an interactive editor because
sed operates a line at a time. sed also does not give you any immediate
verification that a command has done what was intended.

Refer to the chapter on "Using the ed Line Editor" in Editing Text Files on the
Sun Workstation for more information on ed and to the man pages for sed and
ed in the Commands Reference Manual for the Sun Workstation.

The general format of an editing command is:

hostname% sed [linel[,line2]]/unction [arguments]

There is an optional line address, or two line addresses separated by a comma, a
single-letter edit function, followed by other arguments, which may be required
or optional, depending on which function you use. See the section" Specifying
Lines for Editing" for the format of line addresses. Any number of blanks or tabs
may separate the line addresses from the function. sed ignores tab characters
and spaces at the beginning of lines. The function must be present; the available
commands are discussed in the "Functions" section under each individual func
tion name. You can either put the edit commands on the sed command line or
put the commands in a file, which is then applied to the file you want to edit. If
the commands are few and simple, put them on the sed command line. For
example, assume the following input text in a file called kubla:

Revision A of 17 February 1986

Command Options

Chapter 2 - Searching Through Files 41

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Let's copy the first two lines of input as a simple example:

hostname% sed 2q kub1a
In Xanadu did Kubla Khan
A stately pleasure dome decree:

As another example, suppose that you want to change the 'Khan' to 'KHAN.'
Then the command:

hostname% sed s/Khan/KHAN/g kub1a

applies the command 's/Khan/KANI' to all lines from kubla and copies all lines
to the standard output. The advantage of using sed in such a case is that you
can use it with input too large for ed to handle. All the output can be collected
in one place, either in a file or perhaps piped into another program.

If the editing transformation is so complicated that more than one editing com
mand is needed, commands can be supplied from a file or on the command line
with a slightly more complex syntax. To take commands from a file, for exam
ple:

hostname% sed -£ cmdfile input-files ...

sed has three options that modify sed's action. If you invoke sed with the
-f (file) option, the edit commands are taken from a file. For example:

hostname% sed -£ edcomds o1d£i1e > new£i1e
hostname%

The name of the file containing the edit commands must immediately follow the
-f option. Here, the edit commands in the edcomds file are applied to the file
oldfile, and the standard output is redirected to new/de.

You use the -e (edit) option to place editing commands directly on the sed
command line. If you are only using one edit command, you can omit the -e,
but we include it in the example below for instructive purposes. For example, to
delete a line containing the string 'Khan' from kubla, you type:

hostname% sed -e /Khan/d kub1a > newkub1a
hostname%

If you put more than one edit command on the sed command line, each one
must be preceded by -e. For example:

hostname% sed -e /Khan/d -e s/decree/DECREE/ newkub1a
hostname%

You can also use both the -e and the -f options at the same time.

sed normally copies all input lines that are changed by the edit operation to the
output. If you want to suppress this normal output, and have only specific lines

Revision A of 17 February 1986

42 UNIX Text Utilities

;Editing Commands
Application Order

Specifying Lines for Editing

Line-nuDlber~ddIesses

Context Addresses

appear on the output, use the -n option with the p (print) flag. For example:

hostname% sed -n -e s/to/by/p kub1a
Through caverns measureless by man
Down by a sunless sea.
hostname%

As a quick reference, these options are:

-f Use the next argument as a filename; the file should contain one edit
ing cOmDland to a line.

-e Use the next argument as an editing cODlDland.

-n Send only those lines to the output specified by p functions or p
functions after substitute functions (see the "Input-Output
Functions" section).

Before any editing is done (in fact, before any input file is even opened), all the
editing comDlands are compiled into a moderately efficient form for execution
when the commands are actually applied to lines of the input file. The com
mands are compiled in the order in which they are encountered; this is generally
the order in which they will be attempted at execution time. The commands are
applied one at a time; the input to each command is the output of all preceding
commands.

You can change the default linear order of application of editing commands by
the fiow-of-control commands, t and b (see the "Flow-of-Control Functions"
section). Even when you change the order of application by these cODlmands, it
is still true that the input line to any command is the output of any previously
applied command.

Use addresses to select lines in the input file(s) to apply the editing comDlands to.
Addresses may be either line numbers or context addresses.

Group one address or address-pair with curly braces '{ }' to control the applica
tion of a group of commands. See the "Flow-of-Control Functions" section for
more on this.

A line number is a deciDlal integer. As each line is read from the input, a line
number counter is incremented; a line-number address matches or 'selects' the
input line which causes the internal counter to equal the address line-number.
The counter runs cumulatively through multiple input files; it is not reset when a
new input file is opened.

As a special case, the character $ matches the last line of the last input file.

A context address is a pattern or regular expression enclosed in slashes (j).
sed recognizes the regular expressions that are constructed as follows:

ordinary character
M ordinary character (not one of those discussed below) is a regular

Revision A of 17 Februuy 1986

Chapter 2 - Searching Through Files 43

expression, and matches that character.

A circumflex ,. at the beginning of a regular expression matches the
null character at the beginning of a line.

$ A dollar-sign $ at the end of a regular expression matches the null
character at the end of a line.

\ n The characters backslash and en \ n match an embedded newline
character, but not the newline at the end of the pattern space.

A period . matches any character except the terminal newline of
the pattern space.

* A regular expression followed by an asterisk '*' matches any
number (including 0) of adjacent occurrences of the regular expres
sion it follows.

[character string]
A string of characters in square brackets [] matches any character
in the string, and no others. If, however, the first character of the
string is a circumflex ", the regular expression matches any charac
ter except the characters in the string and the terminal newline of the
pattern space.

concatenation
A concatenation of regular expressions is a regular expression which
matches the concatenation of strings matched by the components of
the regular expression.

\ (\) A regular expression between the sequences \ (and \) is identical
in effect to the unadorned regular expression, but has side-effects
which are described in the section entitled "The Substitute Function
s" and immediately below.

\d This stands for the same string of characters matched by an expres
sion enclosed in \ (and \) earlier in the same pattern. Here d is a
single digit; the string specified is that beginning with the dth
occurrence of \ (counting from the left. For example, the expres
sion ... \ (. * \) \ 1 matches a line beginning with two repeated
occurrences of the same string.

null The null regular expression standing alone (such as, / /) is
equivalent to the last regular expression compiled.

To use one of the special characters (... $. * [] \ /) as a literal, that is,
to match an occurrence of itself in the input, precede the special character by a
backslash \.

For a context address to 'match' the input requires that the whole pattern within
the address match some portion of the pattern space.

Revision A of 17 February 1986

44 UNIX Text Utilities

Number of Addresses

Functions

The commands described in the "Functions" section can have 0, 1, or 2
addresses. Specifying more than the maximum number of addresses allowed is
an error. If a command has no addresses, it is applied to every line in the input
If a command has one address, it is applied to all lines that match that address. If
a command has two addresses, it is applied to the inclusive range defined by
those two addresses.

The command is applied to the first line that matches the first address, and to all
subsequent lines until and including the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the
first address, and the process is repeated. A comma separates two addresses.

For example:

lanl matches lines 1,3,4 in our sample kublafile
In Xanadu did Kubla Khan
Where Alph, the sacred river, ran
Through caverns measureless to man

Ian. *anl matches line 1
In Xanadu did Kubla Khan

I"'anl matches no lines

1.1 matches all lines
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

1\.1 matches line 5
Down to a sunless sea.

Ir*anl matches lines 1,3,4 (number = zero!)
In Xanadu did Kubla Khan
Where Alph, the sacred river, ran
Through caverns measureless to man

1\ (an\) .*\11 matches line 1
In Xanadu did Kubla Khan

All functions are named by a single character. In the following summary, the
maximum number of allowable addresses is enclosed in parentheses, followed by
the single character function name and possible arguments in italics. The sum
mary provides an expanded English translation of the single-character name, and
a description of what each function does.

~),sun
, micros,ate".

Revision A of 17 Febnlluy 1986

Whole-Line Oriented Functions

Chapter 2 - Searching Through Files 45

The functions that operate on a whole line of input text are as follows:

(2) d Delete lines. The d function deletes from the file all those lines
matched by its address(es); that is, it does not write the indicated
lines to the output, No further commands are attempted on a deleted
line; as soon as the d function is executed, a new line is read from
the input, and the list of editing commands is re-started from the
beginning on the new line.

(2) n Next line. The n function reads the next line from the input, replac
ing the current line. The current line is written to the output if it

(1) a\

. should be. The list of editing commands is continued following the
ncommand.

text Append lines. The a function writes the argument text to the output
after the line matched by its address. The a function is inherently
multi-line; a must appear at the end of a line, and text may contain
any number of lines. To preserve the one command to a line, the
interior newlines must be hidden by a backslash character (\)
immediately preceding the newline. The text argument is terminated
by the first unhidden newline (the first one not immediately preceded
by backslash). Once an a function is successfully executed, text
will be written to the output regardless of what later commands do to
the line that triggered it. The triggering line may be deleted entirely;
text will still be written to the output The text is not scanned for
address matches, and no editing commands are attempted on it. It
does not change the line-number counter.

(1) i\

text Insert lines. The i function behaves identically to the a function,
except that text is written to the output before the matched line. All
other comments about the a function apply to the i function as
well.

(2) c\

text Change lines. The c function deletes the lines selected by its
address(es), and replaces them with the lines in text. Like a and i,
put a newline hidden by a backslash after c; interior new lines in
text must also be hidden by backslashes. The c function may have
two addresses, and therefore select a range of lines. If it does, all the
lines in the range are deleted, but only one copy of text is written to
the output, not one copy per line deleted. As with a and i, text is
not scanned for address matches, and no editing commands are
attempted on it. It does not change the line-number counter.

No further commands are attempted on a line deleted by a c func
tion

If text is appended after a line by a or r functions, and the line is
subsequently changed, the text inserted by the c function will be

Revision A of 17 February 1986

46 UNIX Text Utilities

The Substitute Function s

placed before the text of the a or r functions. See the section
"Multiple Input-Hne Functions" later in this chapter for a description
of the r function.

Note: Leading blanks and tabs are not displayed in the output produced by these
functions. To get leading blanks and tabs into the output, precede the first
desired blank or tab by a backslash; the backslash does not appear in the output.

For example, put the following list of editing commands in a file called Xkubla:

hostname% cat > Xkubla
n
a\
XXXX

d
AD
hostname% sed -f Xkubla kubla
In Xanadu did Kubla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.
hostname%

In this particular case, the same effect would be produced by either of the two
following command lists:

n
i\
XXXX
d

or

n
c\
XXXX

The s (substitute) function changes parts of lines selected by a context search
within the line. The standard format is the same as the ed substitute command:

(2) s pattern replacement flags

The s function replaces part of a line, selected by pattern, with replacement. It
can best be read 'Substitute for pattern, replacement.'

The pattern argument contains a pattern, exactly like the patterns described in the
"Specifying Lines for Editing" section. The only difference between pattern and
a context address is that the context address must be delimited by slash (/) char
acters; you can delimit pattern by any character other than space or newline.

By default, only the first string matched by pattern is replaced. See the g flag
below.

Revision A of 17 February 1986

Chapter 2 - Searching Through Files 47

The replacement argument begins immediately after the second delimiting char
acter of pattern, and must be followed immediately by another instance of the
delimiting character. Thus there are exactly three instances of the delimiting
character.

The replacement is not a pattern, and the characters which are special in patterns
do not have special meaning in replacement. Instead, other characters are spe
cial:

& Is replaced by the string matched by pattern.

\d Is replaced by the dth substring matched by parts of pattern enclosed
in \ (and \) where d is a single digit If nested substrings occur
in pattern, the dth is determined by counting opening delimiters
('\(').

As in patterns, you can make the special characters (&, +, and \) literal by
preceding them with a backslash (\).

The flags argument may contain the following flags:

g

p

w filename

Substitute replacement for all (non-overlapping) instances of pattern
in the line. After a successful substitution, the scan for the next
instance of pattern begins just after the end of the inserted charac
ters; characters put into the line from replacement are not rescanned.

Print or 'display' the line if a successful replacement was done. The
p flag writes the line to the output if and only if a substitution was
actually made by the s function. Notice that if several s functions,
each followed by a p flag, successfully substitute in the same input
line, multiple copies of the line will be written to the output: one for
each successful substitution.

Write the line to a file if a successful replacement was done. The w

flag writes lines which are actually substituted by the s function to
a file named by filename. Iffilename exists before sed is run, it is
overwritten; if not, it is created. A single space must separate wand
filename. The possibilities of multiple, somewhat different copies of
one input line being written are the same as for p. You can specify
a maximum of 10 different filenames after w flags and w functions
(see below), combined.

For example, applying the following command to the the kubla file produces on
the standard output:

hostname% sed --e "s/to/by/w changes" kub1a
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

Note that if the edit command contains spaces, you must enclose it with quotes.

Revision A of 17 February 1986

48 UNIX Text Utilities

Input-output Functions

It also creates a new file called changes that contains only the lines changed as
you can see using the more command:

hostname% more changes
Through caverns measureless by man
Down by a sunless sea.
hostname%

If the nocopy option -n is in effect, you see those lines that are changed:

hostname% sed --e "s/[.,;?:]/*P&*/gp" -n kubla
A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*
hostname%

Finally, to illustrate the effect of the 9 flag assuming nocopy mode, consider:

hostname% sed --e "/X/s/an/AN/p" -n kubla
In XANadu did Kubla Khan
hostname%

and the command:

hostname% sed --e "/X/s/an/AN/gp" -n kubla
In XANadu did Kubla KhAN
hostname%

The following functions affect the input and output of text. The maximum
number of allowable addresses is in parentheses.

(2) p Print The print function writes the addressed lines to the standard
output file. They are written at the time the p function is encoun
tered, regardless of what succeeding editing commands may do to
the lines.

(2) w filename
Write to filename. The write function writes the addressed lines to
the file named by filename. If the file previously existed, it is
overwritten; if not, it is created. The lines are written exactly as they
exist when the write function is encountered for each line, regardless
of what subsequent editing commands may do to them. Put only one
space between wand filename. You can use a maximum of ten dif
ferent files in write functions and with w flags after s functions,
combined.

(1) r filename
Read the contents of a file. The read function reads the contents of
filename, and appends them after the line matched by the address.
The file is read and appended regardless of what subsequent editing
commands do to the line which matched its address. If you execute
r and a functions on the same line, the text from the a functions
and the r functions is written to the output in the order that the

Revision A of 17 February 1986

Multiple Input-line Functions

Chapter 2 - Searching Through Files 49

functions are executed. Put only one space between the rand
filename. If a file mentioned by a r function cannot be opened, it is
considered a null file, not an error, and no diagnostic is displayed.

Note: Since there is a limit to the number of files that can be opened simultane
ously, put no more than ten files in w functions or flags; reduce that number by
one if any r functions are present. Only one read file is open at one time.

Assume that the file note} has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

Then the following command reads in note} after the line containing 'Kubla':

hostname% sed -e "/Kub1a/r notel" kub1a
In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Three functions, all spelled with capital letters, deal specially with pauern spaces
containing embedded newlines; they are intended principally to provide pattern
matches across lines in the input A pattern space is the range of pattern matches.
Ordinarily, the pattern space is one line of the input text, but more than one line
can be read into the pattern space by using the N function described below.

The maximum number of allowable addresses is enclosed in parentheses.

(2) N

(2) D

(2) P

Next line. The next input line is appended to the current line in
the pattern space; an embedded newline separates the two input
lines. Pattern matches may extend across the embedded
newline(s).

Delete first part of the pattern space. Delete up to and including
the first newline character in the current pattern space. If the pat
tern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the
list of editing commands again from its beginning.

Print or 'display' first part of the pattern space. Print up to and
including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there
are no embedded newlines in the pattern space.

Revision A of 17 February 1986

50 UNIX Text Utilities

Hold and Get Functions

Flow-of-Control Functions

Four functions save and retrieve part of the input for possible later use.

(2) h Hold pattern space. The h function copies the contents of the

(2) H

(2) g

(2) G

(2) x

pattern space into a hold area, destroying the previous contents of
the hold area.

Hold pattern space. The H function appends the contents of the
pattern space to the contents of the hold area; the fonner and new
contents are separated by a newline.

Get contents of hold area. The g function copies the contents of
the hold area into the pattern space, destroying the previous con
tents of the pattern space.

Get contents of hold area. The G function appends the contents
of the hold area to the contents of the pattern space; the fonner
and new contents are separated by a newline.

Exchange. The exchange command interchanges the contents of
the pattern space and the hold area.

For example, if you want to add : In Xanadu to our standard example, create
a file called test containing the following commands:

1h
lsI did.*//
1x
G
s/\nl :1

Then run that file on the kubla file:

hostname% sed -£ test kubla
In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu
hostname%

These functions do not edit the input lines, but control the application of func
tions to the lines that are addressed.

(2) !

(2) {

Called 'Don't', the ' !' function applies the next command, writ
ten on the same line, to all and only those input lines not selected
by the address part.

Grouping. The grouping command '{' applies (or does not
apply) the next set of commands as a block to the input lines that
the addresses of the grouping command select. The first of the
commands under control of the grouping command may appear on
the same line as the {or on the next line.

A matching } standing on a line by itself tenninates the group of
commands. Groups can be nested.

Revision A of 17 February 1986

Miscellaneous Functions

2.6. we

(0) : label

(2) b label

(2) t label

Chapter 2 - Searching Through Files 51

Place a label. The label function marks a place in the list of edit
ing commands which may be referred to by b and t functions.
The label may be any sequence of eight or fewer characters; if two
different colon functions have identical labels, a compile time
diagnostic will be generated, and no execution attempted.

Branch to label. The branch function restarts the sequence of edit
ing commands being applied to the current input line immediately
after the place where a colon function with the same label was
encountered. If no colon function with the same label can be
found after all the editing commands have been compiled, a com
pile time diagnostic is produced, and no execution is attempted.

A b function with no label is taken to be a branch to the end of
the list of editing commands. Whatever should be done with the
current input line is done, and another input line is read. The list
of editing commands is restarted from the beginning on the new
line.

Test substitutions. The t function tests whether any successful
substitutions have been made on the current input line; if so, it
branches to label; if not, it does nothing. Either reading a new
input line or executing a t function resets the flag which indi
cates that a successful substitution has occurred.

Two additional functions are:

(1)

(1) q

Equals. The = function writes to the standard output the line
number of the line matched by its address.

Quit. The q function writes the current line to the output if it
should be, writes any appended or read text, and terminates execu
tion.

UNIX provides a facility,we, which searches through your input file and counts
the number of lines, words, and characters.

The synopsis for the we command is:

hostname% we [-lwc] [file •••
hostname%

we counts lines, words, and characters in the named files, or in the standard input
if no file names appear. A word is a string of characters delimited by spaces,
tabs, or newlines.

If an argument beginning with one of the letters 1, w, or e, is present, we
may:

Revision A of 17 February 1986

52 UNIX Text Utilities

I

Count lines.

w Count words.

c Count characters.

The default is to use all of the options in the order -lwc (count lines, words,
and characters). Some examples are:

hostname% we wc.1
38 153

hostname%

hostname% we -1 wc.1
38 wc.1

hostname%

hostname% we -w wc.1
153 wc.1

hostname%

hostname% we -c wc.1
943 wc.1

hostname%

hostname% we wc.1
943 wc.1

hostname%

943 wc.1

hostname% we awk.1 grep.1 1ook.1
224 1141 6713 awk.1
246 1113 6548 grep.1

22 95 614 look.1
12 58 307 rev.1

211 1053 6253 sed.1
715 3460 20435 total

hostname%

rev.l sed.l

Revision A of 17 February 1986

3
Modifying Files

Modifying Files .. 55

3
Modifying Files

Revision A of 17 February 1986

COLRM(I) USER COMMANDS COLRM(l)

NAME
colrm - remove columns from a file

SYNOPSIS
colrm [stancol [endcol]]

DESCRIPTION
Colrm removes selected columns from a text file. The text is is taken from standard input and copied to the
standard output with the specified columns removed.

If only startcol is specified, the columns of each line are removed starting with startcol and extending to
the end of the line. If both startcol and endcol are specified, all columns between startcol and endcol,
inclusive, are removed.

Column numbering starts with column 1.

SEE ALSO
expand(I)

Sun Release 3.0 Last change: 13 April 1983 57

COMPAcr(I) USER COMMANDS COMPACT(I)

NAME
compact, uncompact, ccat - compress and uncompress files, and cat them

SYNOPSIS
compact [filename •••]
uncompact [filename. ••]
ccat [filename •••]

DESCRIPTION

FILES

Compact compresses the named files using an adaptive Huffman code. If no file names are given, the stan
dard input is compacted to the standard output. Compact operates as an on-line algorithm. Each time a
byte is read, it is encoded immediately according to the current prefix code. This code is an optimal Huff
man code for the set of frequencies seen so far. It is unnecessary to prepend a decoding tree to the
compressed file since the encoder and the decoder start in the same state and stay synchronized Further
more, compact and uncompact can operate as filters. In particular:

••• \compact\uncompact\ •••
operates as a (very slow) no-oPe

When an argument file is given, it is compacted and the resulting file is placed infile.C; file is removed.
The first two bytes of the compacted file code the fact that the file is compacted. This code is used to
prohibit recompaction.

The amount of compression to be expected depends on the type of file being compressed. Typical values
of compression are: Text (38%), Pascal Source (43%), C Source (36%) and Binary (19%). These values
are the percentages of file bytes reduced.

Uncompact restores the original file from a file ca1ledfile.C which was compressed by compact. If no file
names are given, the standard input is uncompacted to the standard output

Ccat cats the original file from a file compressed by compact, without uncompressing the file.

*.C

SEE ALSO

compacted file created by compact, removed by uncompact

Gallager, Robert G., 'Variations on a Theme of Huffman', I.E.E.E. Transactions on Information Theory,
vol. IT-24, no. 6, November 1978, pp. 668 - 674.

Sun Release 3.0 Last change: 1 November 1983 59

EXPAND(l) USER COMMANDS EXPAND(I)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop] [-tab l,tab2, ••• ,tabn] [file. ••]
unexpand [-a] [file .••]

DESCRIPTION
Expand copies the named files (or the standard input) to the standard output, with tabs changed into spaces
(blanks). Backspace characters are preserved into the output and decrement the column count for tab cal
culations. Expand is useful for pre-processing character files (before sorting, looking at specific columns,
etc.) that contain tabs.

Unexpand copies the named files (or the standard input) to the standard output, putting tabs back into the
data. By default only leading spaces (blanks) and tabs are converted to strings of tabs, but this can be over
ridden by the -a option (see the options section below).

EXPAND OPTIONS
-tabstop

Specified as a single argument sets tabs tabstop spaces apart instead of the default 8.

-tabl,tab2, ... ,tabn
Set tabs at the columns specified by tab1 •••

UNEXPAND OPTIONS
-a Insert tabs when replacing a run of two or more spaces would produce a smaller output file. This

option only applies to unexpand.

Sun Release 3.0 Last change: 11 November 1983 61

FOLD(l) USER COMMANDS

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-width] [file. ••]

DESCRIPTION

FOLD(l)

Fold is a filter which folds the contents of the specified files, or the standard input if no files are specified,
breaking the lines to have maximum width width. The default for width is 80. Width should be a multiple
of 8 if tabs are present, or the tabs should be expanded using expand(l) before usingfold.

SEE ALSO
expand(l)

BUGS
Folding may not work correctly if underlining is present

Sun Release 3.0 Last change: 27 April 1983 63

SORT (1) USER COMMANDS SORT(l)

NAME
sort - sort or merge files

SYNOPSIS
sort [-mubdrmrtx] [+posl [-pos2]]... [--0 name] [- T directory] [file] •••

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output. The name '-'
means the standard input If no input file 's are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine collating
sequence.

The notation +posl -pos2 restricts a sort key to a field beginning at posl and ending just before pos2.
Posl and pos2 each have the form m.n, optionally followed by one or more of the flags bdfinr, where m
tells a number of fields to skip from the beginning of the line and n tells a number of characters to skip
further. If any flags are present they override all the global ordering options for this key. If the b option is
in effect n is counted from the first nonblank in the field; b is attached independently to pos2. A missing .n
means .0; a missing -pos2 means the end of the line. Under the -tx option, fields are strings separated by
x; otherwise fields are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal. Lines
that otherwise compare equal are ordered with all bytes significant.

OPTIONS
The ordering is affected globally by the following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d 'Dictionary' order: only letters, digits and blanks are significant in comparisons.

r Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or more digits
with optional decimal point, is sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless the file is out
of sort.

m Merge only, the input files are already sorted.

o name
name is the name of an output file to use instead of the standard output This file may be the same as
one of the inputs.

T directory
directory argument is the name of a directory in which temporary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do not partici
pate in this comparison.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words. Capitalized words differ from uncapi
talized.

sort -u +Of +0 list

Sun Release 3.0 ~tchange: 8 August 1983 65

SORT(l) USER COMMANDS SORT(l)

FILES

Print the password file (passwd(5» sorted by user id number (the 3rd colon-separated field).

sort -t: +2n letclpasswd

Print the first instance of each month in an already sorted file of (month day) entries. The options -um
with just one input file make the choice of a unique representative from a set of equal lines predictable.

sort -urn +0 -1 dates

lusr/trnp/stm*,/trnp/* first and second tries for temporary files

SEE ALSO
uniq(1), cornrn(I), rev(l), join(l)

DIAGNOSTICS

BUGS

Comments and exits with nonzero status for various trouble conditions and for disorder discovered under
option-c.

Very long lines are silently truncated.

Sun Release 3.0 Last change: 8 August 1983 66

SPLIT (1)

N.M1E
split - split a file into pieces

SYNOPSIS
split [-number] [in/de [outfile]]

DESCRIPTION

USER COMMANDS SPLIT (1)

Split reads file and writes it in n-line pieces (default 1000) onto a set of output files (as many files as neces
sary). The name of the first output file is outfile I with aa appended, the second file is outfileab, and so on
lexicographically.

If no outfile is given, x is used as default (output files will be called xaa, xab, etc.).

If no infile is given, or if - is given in its stead, then the standard input file is used.

OPTIONS
-number Number of lines in each piece.

Sun Release 3.0 Last change: 1 February 1985 67

TR(I) USER COMMANDS TR(I)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected characters. The
arguments string1 and string2 are considered sets of characters. Input characters found in string1 are
mapped into the corresponding characters of string2. When string2 is short it is padded to the length of
string1 by duplicating its last character.

In either string the notation a-b means a range of characters from a to b in increasing ASCII order. The
character '\' followed by 1,2 or 3 octal digits stands for the character whose ASCII code is given by those
digits. A '\' followed by any other character stands for that character.

OPTIONS
Any combination of the options -cds may be used:

-c Complement the set of characters in string1 with respect to the universe of characters whose
ASCII codes are 01 through 0377 octal;

-d Delete all input characters in string1 ;

-s Squeeze all strings of repeated output characters that are in string2 to single characters.

EXAMPLE
The following example creates a list of all the words in 'file 1 ' one per line in 'file2', where a word is taken
to be a maximal string of alphabetics. The second string is quoted to protect '\' from the Shell. 012 is the
ASCII code for newline.

tr -cs A-Za-z '\012' <filel >file2

SEE ALSO
ed(1), ascii(7), expand(l)

BUGS
Won't handle ASCII NUL in string1 or string2; always deletes NUL from input.

Sun Release 3.0 Last change: 13 March 1984 69

TSORT(1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

USER COMMANDS TSORT(1)

Tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of
items mentioned in the input file . If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items indi
cate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

Sun Release 3.0 Last change: 8 August 1983 71

I

4
Printing Files

Printing Files .. 75

4
Printing Files

Revision A of 17 February 1986

LPQ(1) USER COMMANDS LPQ(1)

NAME
lpq - spool queue examination program

SYNOPSIS
lpq [+ [num]] [-I] [-Pprinter] [job # ...] [user ...]

DESCRIPTION
Ipq examines the spooling area used by Ipd(8) for printing files on the line printer, and reports the status of
the specified jobs or all jobs associated with a user.

Lpq reports on any jobs currently in the queue when invoked without any options. See the OPTIONS sec
tion below for a list of options. Arguments supplied that are not recognized as options are interpreted as
user names or job numbers to filter out only those jobs of interest

For each job submitted (that is, invocation of Ipr(I» Ipq reports the user's name, current rank in the queue,
the names of files comprising the job, the job identifier (a number which may be supplied to Iprm(l) for
removing a specific job), and the total size in bytes. The -I option causes information about each of the
files comprising the job to be printed Normally, only as much information as will fit on one line is
displayed. Job ordering is dependent on the algorithm used to scan the spooling directory and is supposed
to be FIFO (First in First Out). File names comprising ajob may be unavailable (when Ipr(l) is used as a
sink in a pipeline) in which case the file is indicated as '(standard input)'.

If Ipq warns that there is no daemon present (that is, due to some malfunction), the lpc(8) command can be
used to restart the printer daemon.

OPTIONS

FILES

Lpq reports on any jobs currently in the queue when invoked without any options.

-Pprinter
route the output to the printer specified by printer. In the absence of the -P option, the default
line printer is used (or the value of the PRINTER variable in the environment).

+nnn display the spool queue until it empties. Supplying a number nnn immediately after the + sign
indicates that Ipq should sleep nnn seconds in between scans of the queue.

letc/termcap
I etclprintcap
lusrlspooll*
lusrlspooll*/cf*
lusrlspooll*/lock

for manipulating the screen for repeated display
to determine printer characteristics
the spooling directory, as determined from printcap
control files specifying jobs
the lock file to obtain the currently active job

SEE ALSO

BUGS

Ipr(I), Iprm(I), Ipc(8), Ipd(8)

The + option doesn't wait until the entire queue is empty; it only waits until the local machine's queue is
empty.

Due to the dynamic nature of the information in the spooling directory Ipq may report unreliably.

Output formatting is sensitive to the line length of the terminal; this can result in widely-spaced columns.

Ipq is sometimes unable to open various files because the lock file is malformed.

DIAGNOSTICS
waiting for printer to become ready

Sun Release 3.0

The daemon could not open the printer device. This can happen for a number of reasons; the most
common is that the printer is turned off-line. This message can also be generated if the printer is
out of paper, the paper is jammed, and so on. The actual reason is dependent on the meaning of
error codes returned by system device driver. Not all printers supply sufficient information to dis
tinguish when a printer is off-line or having trouble (for example, a printer connected through a

Last change: 13 March 1984 77

LPQ(1) USER COMMANDS LPQ(1)

serial line). Another possible cause of this message is some other process, such as an output filter,
has an exclusive open on the device. Your only recourse here is to kill off the offending
program(s) and restart the printer with lpc.

printer is ready and printing

The lpq program checks to see if a daemon process exists for printer and prints the file status. If
the daemon is hung, a super user can use lpc to abort the current daemon and start a new one.

waiting for host to come up

Indicates that there is a daemon trying to connect to the remote machine named host in order to
send the files in the local queue. If the remote machine is up, lpd on the remote machine is prob
ably dead or hung and should be restarted as mentioned for lpr.

sending to host

The files should be in the process of being transferred to the remote host. If not, the local daemon
should be aborted and started with lpc.

Warning: printer is down

The printer has been marked as being unavailable with lpc.

Warning: no daemon present

Sun Release 3.0

The lpd process overseeing the spooling queue, as indicated in the "lock" file in that directory,
does not exist This normally occurs only when the daemon has unexpectedly died. The error log
file for the printer should be checked for a diagnostic from the deceased process. To restart an
lpd, use

% Ipc restart printer

Last change: 13 March 1984 78

LPR(1) USER COMMANDS LPR(1)

NAME
lpr - off line print

SYNOPSIS
lpr [-Pprinter] [-#num] [-Cclass] [-Jjob] [-Ttitle] [-i [num]] [-1234font]
[-wnum] [-r] [-m] [-b] [-s] [-filter_option] [filename •••]

DESCRIPTION
Lpr uses a spooling daemon to print the named files when facilities become available. Lpr reads the
stndard input if no files are specified.

OPTIONS
-Pprinter

Force output to the named printer. Normally, the default printer is used (site dependent), or the
value of the PRINTER environment variable is used.

-#num Produce multiple copies of output, using num as the number of copies for each file named. For
example,

tutoria1% lpr -#3 new.index.c print.index.c more.c
produces three copies of the file new .index.c , followed by three copies of print .index.c , etc. On
the other hand,

tutoria1% cat new.index.c print.index.c more.c Ilpr-#3
generates three copies of the concatenation of the files.

-C Print class as the job classification on the burst page. For example,
tutoria1% lpr -C Operations new.index.c

replaces the system name (the name returned by hostname(l» with 'Operations' on the burst
page, and prints the file new .index.c .

-Jjob Print job as the job name on the burst page. Normally, lpr uses the first file's name.

-Ttitle Use title instead of the file name for the title used by pr(l).

-i[num] Indent output num spaces. If num ~ not given, eight spaces are used as default

-1234font.
Mount the specified font on font position i. The daemon will construct a .railmag file referencing
lusrlliblvJontlname.size.

-wnum Use num as the page width for pr(l).

-r Remove the file upon completion of spooling.

-m Send mail upon completion.

-b Suppress printing the burst page.

-s Create a symbolic link from the spool area to the data files rather than trying to copy them (so
large files can be printed). This means the data files should not be modified or removed until they
have been printed. In the absence of this option, files larger than 1 Megabyte in length are trun
cated. Note that the -s option only works if you are specifically naming data files - it doesn't
work if lpr is at the end of a pipeline.

filter _option

Sun Release 3.0

The following single letter options notify the line printer spooler that the files are not standard text
files. The spooling daemon will use the appropriate filters to print the data accordingly.

-p Use pr(l) to format the files (equivalent to print).
-I Print control characters and suppress page breaks.
-t The files contain data from troff(l) (cat phototypesetter commands).
-n The files contain data from ditroff (device independent troft).
-d The files contain data from tex (DVI format from Stanford).
-g The files contain standard plot data as produced by the plot(3X) routines (see also

Last change: 1 February 1985 79

LPR(l)

FILES

USER COMMANDS LPR(1)

plot(1G) for the filters used by the printer spooler).
-v The files contain a raster image for devices like the Versatec.
-c This option currently is unassigned.
-f Interpret the first character of each line as a standard FORTRAN carriage control charac-

letclpasswd
letclprintcap
lusrllibllpd*
lusrlspooll*
lusrlspoo1J*/cf*
lusrlspooll*/df*
lusrlspoo1J*/tf*

ter.

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf" files
temporary copies of "cf" files

SEE ALSO
lpq(l), lprm(l), pr(l), symlink(2), printcap(5), Ipc(8), Ipd(8)

DIAGNOSTICS
Ipr: copy file is too large

A file is determined to be too 'large' to print by copying into the spool area. Use the -s option as
defined above to make a symbolic link to the file instead of copying it. A 'large' file is approxi
mately 1 Megabyte in this system.

Ipr: printer: unknown printer
The printer was not found in the printcap database. Usually this is a typing mistake; however, it
may indicate a missing or incorrect entty in the letclprintcap file.

Ipr: printer: jobs queued, but cannot start daemon.
The connection to lpd on the local machine failed. This usually means the printer server started at
boot time has died or is hung. Check the local socket Idevlprinter to be sure it still exists (if it
does not exist, there is no lpd process running).

Ipr: printer: printer queue is disabled
This means the queue was turned off with

tutoria1% Ipc disable printer
to prevent Ipr from putting files in the queue. This is normally done by the system manager when
a printer is going to be down for a long time. The printer can be turned back on by a super-user
with Ipc.

If the -f and -s flags are combined as follows:

Jpr -fs filename

copies the file to the spooling directory rather than making a symbolic link.

Placing the -s flag first, or writing each as separate arguments makes a link as expected.

Sun Release 3.0 Last change: 1 February 1985 80

LPRM(I) USER COMMANDS LPRM(I)

NAME
lprm - remove jobs from the line printer spooling queue

SYNOPSIS
Iprm [-Pprinter] [-] [job # ...] [user ...]

DESCRIPTION

FILES

Lprm removes a job, or jobs, from a printer's spool queue. Since the spooling directory is protected from
users, using lprm is normally the only method by which a user may remove ajob.

Lprm without any arguments will delete the currently active job if it is owned by the user who invoked
lprm.

If the - flag is specified, lprm will remove all jobs which a user owns. IT the super-user employs this flag,
the spool queue will be emptied entirely. The owner is determined by the user's login name and host name
on the machine where the lpr command was invoked.

Specifying a user's name, or list of user names, will cause lprm to attempt to remove any jobs queued
belonging to that user (or users). This form of invoking lprm is useful only to the super-user.

A user may dequeue an individual job by specifying its job number. This number may be obtained from
the lpq(l) program. For example:

tutorial% Ipq -Pimagen
imagen is ready and printing
Rank Owner Job Files
active wendy 385 standard input
tutorial% Jprm -Pimagen 305

Total Size
35501 bytes

Lprm announces the names of any files it removes and is silent if there are no jobs in the queue which
match the request list.

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a daemon is
killed, a new one is automatically restarted upon completion of file removals.

The -P option may be used to specify the queue associated with a specific printer (otherwise the default
printer, or the value of the PRINfER variable in the environment is used).

letclprintcap printer characteristics file
lusrlspooV* spooling directories
lusrlspooV*/lock lock file used to obtain the pid of the current

daemon and the job number of the currently active job

SEE ALSO
Ipr(I), Ipq(I), 1pd(8)

DIAGNOSTICS
Iprm: printer: cannot restart printer daemon

Sun Release 3.0

The connection to lpd on the local machine failed. This usually means the printer server started at
boot time has died or is hung. Check the local socket ldevlprinter to be sure it still exists (if it
does not exist, there is no lpd process running). Use

% ps ax I fgrep Ipd

to get a list of process identifiers of running lpd's. The lpd to kill is the one which is not listed in
any of the "lock" files (the lock file is contained in the spool directory of each printer). Kill the
master daemon using the following command.

%killpid

Then remove ldevlprinter and restart the daemon (and printer) with the following commands.

Last change: 7 March 1984 81

LPRM(1)

BUGS

USER COMMANDS LPRM(l)

% rm /dev/printer % lusr/lib/lpd

Another possibility is that the lpr program is not setuid root, setgid spooling. This can be checked
with

% Is -Ig lusr/ucb/lpr

Since there are race conditions possible in the update of the lock file, the currently active job may be
incorrectly identified.

Sun Release 3.0 Last change: 7 March 1984 82

PR(1) USER COMMANDS PR(1)

NAME
pr - print file(s), possibly in multiple columns

SYNOPSIS
pr [-n] [+n] [-b string] [-wn] [-f] [-In] [-t] [-sn] [-m] [file] ...

DESCRIPTION
Pr prepares one or more files's for printing. The output is separated into pages headed by a date, the name
of the file or a specified header, and the page number. Pr prints its standard input if there are no fiie argu
ments.

Inter-terminal messages via write (1) are forbidden during apr.

OPTIONS
Options apply to all following file's but may be reset between file's:

-n Produce n-column output. This option overrides the -t option (see below).

+n Begin printing with page n.

-b string
Use string as a header for the page instead of the default header.

-wn For purposes of multi-column output, take the width of the page to be n characters instead of the
default 72.

-f Use formfeeds instead of newlines to separate pages. A formfeed is assumed to use up two blank
lines at the top of a page. Thus this option does not affect the effective page length.

-In Take the length of the page to be n lines instead of the default 66.

-t Do not print the 5-line header or the 5-line trailer normally supplied for each page. Fonnfeed
characters are not generated when this option is used, even if the -f option was used. The-t
option is intended for applications where the results should be directed to a file for further process
ing.

-sc Separate columns by the single character c instead of by the appropriate amount of white space.
A missing c is taken to be a tab.

-m Print allfile's simultaneously, each in one column,

EXAMPLES
Print a file called dreadnaught on the printer - this is the simplest use of pr:

krypton% pr dreadoaught Ilpr
krypton%

Produce three laminations of a file called ridings side by side in the output, with no headers or trailers, the
results to appear in the file called Yorkshire:

FILES

krypton% pr -m -t ridings ridings ridings > Yorkshire
krypton%

/dev/tty? to suspend messages.

SEE ALSO
cat(1),lpr(1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

BUGS
The options described above interact with each other in strange and as yet to be defined ways.

Sun Release 3.0 Last change: 16 February 1984 83

Revision History

Revision Date Comments

A 17 February 1986 First release of Using UNIX Text Utili-
ties on the Sun Workstation.

Notes

