
Asun®
• microsystems

Editing Text Files
on the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Acknowledgements

Material in this Editing and Text Processing on the Sun Workstation comes from a number of sources: An Introduc­
tion to Display Editing with Vi, William Joy, University of California, Berkeley, revised by Mark Horton; Vi Com­
mand and Function Reference, Alan P. W. Hewett, revised by Mark Horton; Ex Reference Manual, William Joy,
revised by Mark Horton, University of California, Berkeley; Edit: A Tutorial, Ricki Blau, James Joyce, University of
California, Berkeley; A Tutorial Introduction to the UNIX Text Editor, Brian W. Kernighan, Bell Laboratories, Mur­
ray Hill, New Jersey; Advanced Editing on UNIX, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey;
Introducing the UNIX System, Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These materi­
als are gratefully acknowledged.

Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix are trademarks
of Sun Microsystems, Inc.

UNIX, UNIXl32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Copyright © 1986 by Sun Microsystems Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per­
mission from Sun Microsystems.

Contents

Preface .. xi

Chapter 1 Introduction to UNIX Text Editing ... 3

1.1. Available Editors 3

1.2. What to Do If Something Goes Wrong .. 4

1.3. Other Text-Handling Programs ... 5

Chapter 2 Using vi, the Visual Display Editor .. 13

2.1. vi and ex

2.2. Getting Started

Editing a File

The Editor's Copy - Editing in the Buffer .. .

Arrow Keys .. .

Special Characters: ESC, CR and CTRL-C

GettingOutof vi- :q, :q!, :W, ZZ, :x, :wq .. .

2.3. Moving Around in the File .. .

Scrolling and Paging - CTRL-D, CTRL-U, CTRL-E, CTRL-Y, CTRL-F,

CTRL-B .. .

Searching, Goto, and Previous Context - /, ?, G

Moving Around on the Screen - h, j, k, 1, +, -, H, M, L

Moving Within a Line - b, w, e, E, B, W .. .

Viewing a File - view

2.4. Making Simple Changes

Inserting - i, I, a, A, 0, and 0

Making Small Corrections - x, r, s, R

-iii-

13

14

14

14

15

15

15

16

16

16

18

18

19

19

19

20

Contents Continued

Deleting, Repeating, and Changing - dw, ., db, c

Operating on Lines - dd, cc, S

Undoing - u, U .. .

2.5. Moving About Rearranging and Duplicating Text .. .

Low-level Character Motions - f, F, ,., .. .

Higher Level Text Objects - (,), {, }, [[,]]

Rearranging and Duplicating Text- y, Y, p, P

2.6. High-Level Commands .. .

Writing, Quitting, and Editing New Files - zz, : w, : q, : e, : n

Escaping to a Shell- :!, : sh, CTRL-Z .. .

Marking and Returning - m

Adjusting the Screen CTRL-L, Z

2.7. Special Topics .. .

Options, the Set Variable, and Editor Start-up Files

Recovering Lost Lines .. .

Recovering Lost Files - the r Option .. .

Continuous Text Input - wrapmargin

Features for Editing Programs

Filtering Portions of the Buffer

Commands for Editing uSP .. .

Macros

Word Abbreviations - : ab, : una

2.8. Nitty-gritty Details .. .

Line Representation in the Display

Command Counts

File Manipulation Commands .. .

More about Searching for Strings .. .

More about Input Mode .. .

2.9. Command and Function Reference

Notation

Commands

Entry and Exit

Cursor and Page Motion .. .

-iv-

21

21

21

22

22

23

23

24

24

25

25

25

26

26

27

28

28

28

29

29

30

31

31

32

32

33

34

35

37

37

38

38

38

Contents Continued

Searches .. .

Text Insertion .. .

Text Deletion

Text Replacement

Moving Text

Miscellaneous Commands .. .

Special Insert Characters

: Commands .. .

Set Commands .. .

Character Functions .. .

2.10. Terminal Information

Specifying Terminal Type .. .

Special Arrangements for Startup .. .

Open Mode on Hardcopy Terminals and 'Glass tty's' .. .

Editing on Slow Tenninals

Upper-case Only Terminals

2.11. Command Summary

Chapter 3 Command Reference for the ex Line Editor

3.1. Using ex

3.2. File Manipulation .. .

Current File

Alternate File

Filename Expansion .. .

3.3. Special Characters

Multiple Files and Named Buffers .. .

Read-Only Mode

3.4. Exceptional Conditions .. .

Errors and Interrupts

Recovering If Something Goes Wrong .. .

3.5. Editing Modes .. .

3.6. Command Structure

Specifying Command Parameters .. .

-v-

41

42

42

42

43

44

45

46

47

51

61

61

62

62

63

64

64

71

71

72

72

72

72

73

73

73

73

73

73

74

74

74

Contents Continued

Invoking Command V ariants .. .

Flags After Commands

Writing Comments

Putting Multiple Commands on a Line

Reporting Large Changes .. .

3.7. Command Addressing .. .

Addressing Primitives .. .

Combining Addressing Primitives

3.8. Regular Expressions and Substitute Replacement Patterns

Regular Expressions

Magic and Nomagic .. .

Basic Regular Expression Summary .. .

Combining Regular Expression Primitives .. .

Substitute Replacement Patterns

3.9. Command Reference

3.10. Option Descriptions .. .

3.11. Limitations .. .

75

75

75

75

75

75

75

76

76

76

76

77

77

78

78

88

94

Chapter 4 Using the ed Line Editor .. 99

4.1. Getting Started .. 99

Creating Text - the Append Command a ... 100

Error Messages - ? .. 101

Writing Text Out as a File - the Write Command w ... 101

Leaving ed - the Quit Command q ... 102

Creating a New File - the Edit Command e ... 102

Exercise: Trying the e Command ... 103

Checking the Filename - the Filename Command f .. 104

Reading Text from a File - the Read Command r ... 104

Printing the Buffer Contents - the Print Command p .. 105

Exercise: Trying the p Command ... 106

Displaying Text - the List Command 1 ... 106

The Current Line - 'Dot' or ' .' .. 107

Deleting Lines - the Delete Command d .. 108

-Vl-

Contents Continued

Exercise: Experimenting ... 109

Modifying Text - the Substitute Command s ... 109

The Ampersand & .. 111

Exercise: Trying the sand g Commands .. 112

Undoing a Command - the Undo Command u ... 112

4.2. Changing and Inserting Text- the c and i Commands .. 113

Exercise: Trying the c Command ... 113

4.3. Specifying Lines in the Editor ... 114

Context Searching ... 114

Exercise: Trying Context Searching ... 115

Specifying Lines with Address Arithmetic - + and ... 115

Repeated Searches - / / and ?? ... 117

Default Line Numbers and the Value of Dot 117

Combining Commands - the Semicolon ; .. 119

Interrupting the Editor .. 120

4.4. Editing All Lines - the Global Commands g and v... 121

Multi-line Global Commands .. 122

4.5. Special Characters .. 123

Matching Anything - the Dot' .' .. 123

Specifying Any Character - the Backslash '\' ... 124

Specifying the End of Line - the Dollar Sign $... 126

Specifying the Beginning of the Line - the Circumflex A................................... 127

Matching Anything - the Star * .. 127

Character Classes - Brackets [<] ... 129

4.6. Cutting and Pasting with the Editor .. 130

Moving Lines Around .. 130

Moving Text Around - the Move Command m .. 130

Substituting Newlines ... 132

Joining Lines - the Join Command j .. 132

Rearranging a Line with <\ (... \) .. 133

Marking a Line - the Mark Command k .. 133

Copying Lines - the Transfer Command t ... 134

4.7. Escaping to the Shell with .. 134

-vii-

Contents Continued

4.8. Supporting Tools ... 135

Editing Scripts ... 135

Matching Patterns with grep ... 135

4.9. Summary of Commands and Line Numbers .. 136

Chapter 5 Using view 141

Chapter6 Using cat 145

Chapter 7 Using head 149

Chapter 8 Using tail 153

Chapter 9 Using more 157

- viii-

Tables

Table 2-1 Editor Options .. 26

Table 2-2 File Manipulation Commands .. 33

Table 2-3 Extended Pattern Matching Characters ... 35

Table 2-4 Input Mode Corrections .. 36

Table 2-5 Common Character Abbreviations ... 37

Table 2-6 Terminal Types ... 61

Table 2-7 Frequently-Used vi Commands ... 65

-ix-

Purpose of This Manual

Assumptions About the Reader

Suggestions

Summary of Contents

Preface

This manual describes the features and options provided by the text editors avail­
able in the standard Sun system software. All you need to use one of these edi­
tors is:

o a Sun workstation (or terminal connected to a Sun workstation), and

o Sun system software.

The purpose of this manual is to enable Sun workstation users to use the Sun sys­
tem editor of their choice. Editing novices are referred to more elementary texts.

We assume you are familiar with a terminal keyboard and the basic structure of
UNIX.t If you are don't know how to log in or you don't understand how the file
system is structured in UNIX, see Getting Started with UNIX: Beginner's Guide.
If you have never used any of the UNIX text editors, start with the "Editing Files"
chapter in Getting Started with UNIX: Beginner's Guide and also read the intro­
ductory chapter in this manual. Finally, we assume that you are using a Sun
Workstation, although specific terminal information is also provided.

The information in this manual is presented in two styles:

o examples and exercises, and

o reference.

As you are reading sections of this manual, sit down at your workstation and try
the exercises and examples. The reference sections serve two functions: they
explain in greater detail how to use the most-of ten-used features, and also cover
the less-often-used features and options. Another reference source for additional
details on Sun system commands and programs is the Commands Reference
Manual for the Sun Workstation.

This manual is divided into two major sections: Section I: Basic Editors and
Section II: Viewing Files. Section I covers the standard text editors, presented
in decreasing order of use. Section II describes various methods of viewing files
or parts of files in read-only mode. Section I contains four chapters and two

t UNIX is a trademark of AT&T Bell Laboratories.

-xi-

Preface Continued

Conventions Used in This
Manual

quick reference sheets:

Chapter 1 - Introduction to UNIX Text Editing - provides a guide to the avail­
able editing tools, and suggestions for what to if something goes wrong in the
editor. Newcomers to editing on a Sun workstation should .start here.

Chapter 2 - Using vi, the Visual Display Editor - provides tutorial and refer­
ence infonnation on the visual display editor vi.

Quick Reference - vi

Chapter 3 - Command Reference for the ex Line Editor - is a command
reference for the ex and vi editors.

Quick Reference - ex

Chapter 4 - Using the ed Line Editor - provides a user's guide to the ed
tools.

Section II contains information on view, cat, head, tail, and more.

Throughout this manual we use

hostname%

as the prompt to which you type system commands. Bol.d face type­
writer font indicates commands that you type in exactly as printed on the
page of this manual. Regular typewriter font represents what the
system prints out to your screen. Typewriter font also specifies Sun system com­
mand names (program names) and illustrates source code listings. Italics indi­
cates general arguments or parameters that you should replace with a specific
word or string. We also occasionally use italics to emphasize important terms.

-Xll-

1
Introduction to UNIX Text Editing

Introduction to UNIX Text Editing .. 3

1.1. Available Editors 3

1.2. What to Do If Something Goes Wrong .. 4

1.3. Other Text-Handling Programs ... 5

I 1.1. Available Editors

1
Introduction to UNIX Text Editing

If you are familiar with the UNIX text editors, you can refer directly to the
chapter in this manual covering the specific editor in which you are interested.

If you want a quick reference to remind you of a particular feature of either vi
or ex, you can refer to one of the summary sheets for these editors, following
the vi and ex chapters, respectively.

If you are not familiar with UNIX text editors, read the chapter "Editing Files" in
Getting Started with UNIX: Beginner's Guide. It provides a good introduction to
vi, including how to create a file, move the cursor around within a file, and
change the contents of a file.

UNIX provides the text editors vi, ex, edit, and ed. The one you will
probably use most often is vi, although you might want to choose to use the
one that is most familiar to you.

vi is a screen-oriented, or display editor. It is "built on top of" ex, which
means vi has almost all of the features of ex, plus many more features that are
specific to vi. You can issue almost all ex commands from within vi by
preceding them with the colon (:) character. Only a few ex commands require
you to invoke the ex editor explicitly. edi t is a subset of ex, and is there­
fore covered in that chapter.

The following diagram briefly sketches the history of UNIX text editors. ed was
the original line editor, after which all the others were modeled. ex improved
on ed, by being less terse, and providing display options like numbered lines,
by allowing shorthand versions of commands, and by responding with clearer
error messages. However, ex is still a line editor. edi t, another line editor,
provides a subset of ex's features. Later, open mode was added to ex, which
enabled the user to make changes and move the cursor around on only a single
line at a time. The most advanced and most widely-used UNIX text editor as of
this writing is the screen-oriented editor vi.

3 Revision A of 17 February 1986

4 Editing Text Files

terse, hard to use

less terse than ed
Options
Shorthand

r----/--"" Better Error Messages

edit] ~
subset of ex

I open mode of ex I Changes and move around
on single line

visual editor

1.2. What to Do If Something
Goes Wrong

In case you make a mistake, or something goes wrong, here are some suggestions
for what to do.

If you make a mistake in the editor that you cannot recover from easily, don't
panic. As long as you don't write the file and quit the editor, you can retrieve the
original file. In such a case you have two choices:

1) Write ALL (good and bad) changes you just made to a new file and quit
editing the current file, or

2) Quit the editor without saving any changes you just made.

You should write the entire edit buffer into a new file as long as most of the new
changes are valid. In vi, the commands are : w newfilename to write the new
file, then : q! to get out of the editor. You should quit without saving ANY of
the changes if you know they are all wrong. In vi, the command is : q! .

Occasionally, you can get into a state where your workstation or terminal acts
strangely. For example, you may not be able to move the cursor, or your cursor
may disappear, or the terminal won't echo what you type, or typing RETURN may
not cause a linefeed or return the cursor to the left margin. After a suitable length
of time, try the following solutions:

o First, type CTRL-Q. In case you had accidentally typed CTRL-S, freezing the
screen, this would resume the suspended output. Typing CTRL-Q would also
resume suspended output from accidentally typing a NO SCRL key on your
keyboard (also called SET UP/NO SCROLL on some terminals). This also
freezes the keyboard like typing a CTRL-S.

o Next, try pressing the UNEFEED key, followed by typing RESET, and pressing
LINEFEED again.

o If that doesn't help, try logging out and logging back in. If you are using a
terminal, try powering it off and on to regain normal operation.

A'.". _
~if' ~ UII
~ microsystems

Revision A of 17 February 1986

1.3. Other Text-Handling
Programs

Chapter 1 - Introduction to UNIX Text Editing 5

o If you get unwanted messages or garbage on your screen, type CTRL-L to
refresh the workstation screen. (Use CTRL-R on a terminal.)

If your system goes down, the edit buffer is automatically saved in a file.
Depending on the elapsed time since your last change, most to all of your latest
changes are recoverable. After rebooting your system, or doing whatever needs
to be done, you will receive mail indicating that the file has been saved. The
mail message contains instructions on how to recover the file with your edits in
it. First, return to the directory where the file belongs. Then, re-enter the editor
with the -r option to restore the file:

hostname% vi -r filename
hostname%

When you are ready, write the changes to the file by typing : w or : wq.

Other UNIX utility programs such as a wk, sed, grep, f grep, egrep, and
tr operate on a text file, but do not change the original file. You pass the file to
be "edited" through a script (such as awk or sed) or command (such as
grep) and the "changes" appear on your screen, but the file remains intact.
Refer to the following diagram for an outline of how these utility programs work.

~ Original File

~

!
Command Output from Script

Script ~ to Screen or New File

I
I
I
I

V

~ Original File Unchanged

~

For more information, refer to Using UNIX Text Utilities on the Sun Workstation .

• \sun ~ microsystems
Revision A of 17 February 1986

Section I:

Basic Editors

2
Using vi, the Visual Display Editor

Using vi, the Visual Display Editor ... 13

2.1. vi and ex .. 13

2.2. Getting Started .. 14

Editing a File ... 14

The Editor's Copy - Editing in the Buffer .. 14

Arrow Keys .. 15

Special Characters: ESC, CR and CTRL-C .. 15

GettingOutof vi- :q, :q!, :w, ZZ, :x, :wq....................... 15

2.3. Moving Around in the File ... 16

Scrolling and Paging - CTRL-D, CTRL-U, CTRL-E, CTRL-Y,

CTRL-F, CTRL-B ... 16

Searching, Goto, and Previous Context - /, ?, G.............................. 16

Moving Around on the Screen - h, j, k, 1, +, -, H, M,

.............. L.. 18

MovingWithinaLine- b, w, e, E, B, W.. 18

Viewing a File - view ... 19

2.4. Making Simple Changes ... 19

Inserting - i, I, a, A, 0, and 0... 19

Making Small Corrections - x, r, s, R ... 20

Deleting, Repeating, and Changing - dw, ., db, c...................... 21

Operating on Lines - dd, cc, S ... 21

Undoing- u, U .. 21

2.5. Moving About: Rearranging and Duplicating Text 22

Low-level Character Motions - f, F, .. . 22

Higher Level Text Objects - (,), { , } , [[,]] 23

Rearranging and Duplicating Text - y, Y, p, P 23

2.6. High-Level Commands .. 24

Writing, Quitting, and Editing New Files - zz, : W, : q,
:e, :n ... 24

Escaping to a Shell- :!, : sh, CTRL-Z ... 25

Marking and Returning - m .. 25

Adjusting the Screen CTRL-L, Z .. 25

2.7. Special Topics ... 26

Options, the Set Variable, and Editor Start-up Files 26

Recovering Lost Lines ... 27

Recovering Lost Files - the r Option .. 28

Continuous Text Input - wrapmargin .. 28

Features for Editing Programs ... 28

Filtering Portions of the Buffer ... 29

Commands for Editing LISP .. 29

Macros ... 30

Word Abbreviations - : ab, : una .. 31

2.8. Nitty-gritty Details .. 31

Line Representation in the Display.. 32

Command Counts ... 32

File Manipulation Commands ... 33

More about Searching for Strings .. 34

More about Input Mode .. 35

2.9. Command and Function Reference ... 37

Notation .. 37

Commands .. 38

EntIy and Exit ... 38

Cursor and Page Motion ... 38

Searches .. 41

Text Insertion .. 42

Text Deletion ... 42

Text Replacement ... 42

Moving Text .. 43

Miscellaneous Commands ... 44

Special Insert Characters .. 45

: Commands ... 46

Set Commands .. 47

Character Functions ... 51

2.10. Terminal Information ... 61

Specifying Terminal Type ... 61

Special Arrangements for Startup ... 62

Open Mode on Hardcopy Terminals and 'Glass tty's' 62

Editing on Slow Terminals .. 63

Upper-case Only Terminals .. 64

2.11. Command Summary ... 64

2.1. vi and ex

2
Using vi, the Visual Display Editor

This chapter1 describes vi (pronounced vee-eye) the visual, display editor. The
first part of this chapter provides the basics of using vi. The second part pro­
vides a command reference and terminal set-up information. Finally, there is a
quick reference, summarizing the vi commands. Keep this reference handy
while you are learning vi. As the vi editor is the visual display version of the
ex line editor, and because the full command set of the line-oriented ex editor
is available within vi, you can use the ex commands in vi. Some editing,
such as global substitution, is more easily done with ex. So refer to the infor­
mation in the chapter "Command Reference for the ex Line Editor" as it also
applies to vi.

This chapter assumes you are using vi on the Sun Workstation. If you are
using v i on a terminal, refer to the "Terminal Information" section for instruc­
tions on setting up your terminal.

In the examples, input that must be typed as is will be presented in bol.d
typewriter font. Text you should replace with appropriate input is given
in italics.

As noted above, vi is actually one mode of editing within the editor ex.
When you are running vi you can escape to the line-oriented editor ex by typ­
ing Q. All of the : commands introduced in the section on "File Manipulation
Commands" are available in ex. This places the cursor on the command line at
the bottom of the screen. Likewise, most ex commands can be invoked from
vi using :. Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a
diagnostic and be left in the command mode of ex. You can then save your
work and quit if you wish by giving the command x after the : that ex
prompts you with, or you can re-enter vi by giving ex a vi command.

There are a number of things you can do more easily in ex than in vi. Sys­
tematic changes in line-oriented material are particularly easy. Experienced
users often mix their use of ex command mode and vi command mode to
speed the work they are doing. Keep these things in mind as you read on.

1 The material in this chapter is derived from An Introduction to Display Editing with Vi, W.N. Joy, M.
Horton, University of California, Berkeley and Vi Command and Function Reference, A.P.W. Hewett, M.
Horton. .

~~sun ~~ microsystems
13 Revision A of 17 February 1986

14 Editing Text Files

2.2. Getting Started

Editing a File

The Editor's Copy - Editing
in the Buffer

When using vi, changes you make to the file you are editing are reflected in
what you see on your workstation screen.

During an editing session, there are two usual modes of operation: command
mode and insert mode. In command mode you can move the cursor around in
the file. There are commands to move the cursor forward and backward in units
of characters, words, sentences and paragraphs. A small set of operators, like d
for delete and c for change, are combined with the motion commands to fonn
operations such as delete word or change paragraph. You can do other opera­
tions that do not involve entering fresh text. To enter new text into the file, you
must be in insert mode. You get into insert mode with the a or A (append), 0

or 0 (open) and I or i (insert) commands. You get out of insert mode by typ­
ing the ESC (escape) key (or ALT on some keyboards). The significant charac­
teristic of insert mode is that commands can't be used, so anything you type
except ESC is inserted into the file. If you change your mind anytime in insert
mode using vi, typing ESC cancels the command you started and reverses to
command mode. If you had already typed some characters, typing u undoes the
last insert operation. Also, if you are unsure of which mode you are in, type ESC
until the screen flashes; this means that you are back in command mode.

Run vi on a copy of a file you are familiar with while you are reading this. Try
the commands as they are described.

To use vi on the file, type:

hostname% vi filename

replacing filename with the name of the file copy you just created. The screen
clears and the text of your file appears.

If you do not get the display of text, you may have typed the wrong filename.
vi has created a new file for you with the indication "file" [New
file]. Type : q (colon and the 'q' key) and then type the RETURN key. This
should get you back to the command level interpreter. Then try again, this time
spelling the filename correctly.

If vi doesn't seem to respond to the commands you type here, try sending vi
an interrupt by typing a CTRL-C (or INTERRUPT signal) at your workstation (or by
pressing the DEL or RUB keys on your tenninal). Then type the : q command
again followed by a RETURN. If you are using a tenninal and something else hap­
pens, you may have given the system an incorrect tenninal type code. vi may
make a mess out of your screen. This happens when it sends control codes for
one kind of terminal to some other kind of tenninal. Type a : q and RETURN.
Figure out what you did wrong (ask someone else if necessary) and try again.

vi does not directly modify the file you are editing. Rather, vi makes a copy of
this file in a place called the buffer, and remembers the file's name. All changes
you make while editing only change the contents of the buffer. You do not affect
the contents of the file unless and until you write the buffer back into the original
file.

~~sun
~ microsystems

Revision A of 17 February 1986

Arrow Keys

Special Characters: ESC, CR
andCTRL-C

Getting Out of vi - : q,
:q!, :w, ZZ, :x, :wq

Chapter 2 - Using vi. the Visual Display Editor 15

The editor command set is independent of the workstation or tenninal you are
using. On most tenninals with cursor positioning keys, these keys will also work
within the editor.2 If you don't have cursor positioning keys, that is, keys with
arrows on them, or even if you do, you can use the h, j, k, and 1 keys as cur­
sor positioning keys. As you will see later, h moves back to the left (like CTRL­
H, a backspace), j moves down (in the same column), k moves up (in the same
column), and 1 moves the cursor to the right.

Several of these special characters are very important, so be sure to find them
right now. Look on your keyboard for a key labelled ESC (or ALT on some tenni­
nals). It is near the upper left comer of your workstation keyboard. Try typing
this key a few times. vi flashes the screen (or beeps) to indicate that it is in a
quiescent state. You can cancel partially fonned commands with ESC. When
you insert text in the file, you end the text insertion with ESC. This key is a fairly
harmless one to press, so you can just press it until the screen flashes if you don't
know what is going on.

Use RETURN (orCR for carriage return) key to tenninate certain commands. It is
at the right side of the workstation keyboard, and is the same key used at the end
of each shell command.

Use the special characterCTRL-C (or DEL or RUB key), to send an interrupt, to tell
vi to stop what it is doing. It is a forceful way of making vi listen to you, or to
return vi to the quiescent state if you don't know or don't like what is going on.

Try typing the 'I' key on your keyboard. Use this key to search for a string of
characters. vi displays the cursor at the bottom line of the screen after a 'I' is
displayed as a prompt. You can get the cursor back to the current position by
pressing BACK SPACE (or DEL); try this now. This cancels the search. Typing
CTRL-C also cancels the search. From now on we will simply refer to typing
CTRL-C (or pressing the DEL or RUB key) as 'sending an interrupt.,3

vi often echoes your commands on the last line of the screen. If the cursor is on
the first position of this last line, then v i is perfonning a computation, such as
locating a new position in the file after a search or running a command to refor­
mat part of the buffer. When this is happening, you can stop v i by sending an
interrupt.

When you want to get out of vi and end the editing session, type : q to quit. If
you have changed the buffer contents and type : q, vi responds with No
write since last change (: quit! overrides). If you then want
to quit vi without saving the changes, type : q!. You need to know about
: q! in case you change the editor's copy of a file you wish only to look at. Be
very careful not to give this command when you really want to save the changes
you have made.

2 Note for the HP2621: on this tenninal the function keys must be shifted to send to the machine. othelWise
they only act locally. Unshifted use leaves the cursor positioned incorrectly.

3 On some systems. this interruptibility comes at a price: you cannot type ahead when the editor is
computing with the cursor on the bottom line .

• \sun ~ microsystems
Revision A of 17 February 1986

16 Editing Tex\ Files

2.3. Moving Around in the
File

Scrolling and Paging -
CTRL-D, CTRL-U, CTRL-E,

CTRL-Y, CTRL-F, CTRL-B

Searching, Goto, and Previous
Context - /, ?, G

Do not type : q! if you want to save your changes. To save or write your
changes without quitting vi, type : w. While in the middle of an editing session,
if you are sure about the changes you have made, it's a good idea to save your
changes from time to time by typing : w.

To write the contents of the buffer back into the file you are editing, saving any
changes you have made, and then to quit, type Z Z or : x. And finally, to write
the file even if no changes have been made, and exit vi, type : wq.

You can terminate all commands that read from the last display line with an ESC

as well as a RETURN.

vi has a number of commands for moving around in the file. You can scroll
forward and backward through a file, moving part of the text on the screen. You
can page forward and backward through a file, by moving a whole screenful of
text. You can also display one more line at the top or bottom of the screen.

The most useful way to move through a file is to type the control (CfRL) and D
keys at the same time, sending a CTRL-D. We use this notation to refer to control
sequences from now on. When coupled with the CfRL key, the shift key is
ignored, so CfRL-D and CfRL-d are equivalent.

Try typing CfRL-D to see that this command scrolls down in the file. The com­
mand to scroll up is CfRL-U. (Many dumb terminals cannot scroll up at all. In
that case type CfRL-U to clear and refresh the screen, placing a line that is farther
back in the file at the top of the screen.)

If you want to see more of the file below where you are, you can type CfRL-E to
expose one more line at the bottom of the screen, leaving the cursor where it is.
The CTRL-Y (which is hopelessly non-mnemonic, but next to CfRL-U on the key­
board) exposes one more line at the top of the screen.

You can also use the keys CfRL-F and CfRL-B to move forward and backward a
page, keeping a couple of lines of continuity between screens so that it is possi­
ble to read through a file using these rather than CfRL-D and CTRL-U if you wish.
CTRL-F and CfRL-B also take preceding counts, which specify the number of
pages to move. For example, 2CfRL-F pages forward two pages.

Notice the difference between scrolling and paging. If you are trying to read the
text in a file, typing CTRL-F to page forward leaves you only a little context to
look back at. Scrolling with CTRL-D on the other hand, leaves more context, and
moves more smoothly. You can continue to read the text as scrolling is taking
place.

Another way to position yourself in the file is to give v i a string to search for.
Type the character' /' followed by a string of characters terminated by RETURN.

vi positions the cursor at the next occurrence of this string. Try typing n to go
to the next occurrence of this string. The character '?' searches backward from
where you are, and is otherwise like ' /' . N is like n, but reverses the direction
of the search .

• \sun ~~ microsystems
Revision A of 17 February 1986

Chapter 2 - Using vi, the Visual Display Editor 17

You can string several search expressions together, separated by a semicolon in
visual mode, the·same as in command mode in ex. For example:

/today/;/tomorrow

moves the cursor to the first 'tomorrow' after the next 'today'. This also works
within one line.

These searches normally wrap around the end of the file, so you can find the
string even if it is not on a line in the direction you search, provided it is some­
where else in the file. You can disable this wraparound with the command : s e
nowrapscanCR, or more briefly : se nowsCR.

If the search string you give vi is not present in the file, vi displays Pat­
tern not found on the last line of the screen, and the cursor is returned to
its initial position.

If you wish the search to match only at the beginning of a line, begin the search
string with a caret character (A). To match only at the end of a line, end the
search string with a dollar sign ($). So to search for the word 'search' at the
beginning of a line, type:

/"'search<CR>

and to search for the word 'last' at the end of a line, type:

/last$<CR>

Actually, the string you give to search for here can be a regular expression in the
sense of the editors ex and ed. Jfyou don't wish to learn about this yet, you
can disable this more general facility by typing

: se nomagic<cR>

By putting this command in EXINIT in your environment, you can have always
this nomagic option in effect. See the section on "Special Topics" for details on
how to do this.

The command G, when preceded by a number, positions the cursor at that line in
the file. Thus IG moves the cursor to the first line of the file. Jfyou do not give
G any count, it positions you at the last line of the file.

If you are near the end of the file, and the last line is not at the bottom of the
screen, vi places only the character tilde (-) on each remaining line. This indi­
cates that the last line in the file is on the screen; that is, the - lines are past the
end of the file.

You can find out the state of the file you are editing by typing a CTRL-G. vi
shows you the name of the file you are editing, the number of the current line, the
number of Hnes in the buffer, and the percentage of characters already displayed
from the buffer. For example:

"data.file" [Modified] line 329 of 1276 --8%--

Try doing this now, and remember the number of the line you are on. Give a G
command to get to the end and then another G command with the line number to
get back where you were.

Revision A of 17 February 1986

18 Editing Text Files

Moving Around on the Screen
h, j, k, 1, +, -, H, M,

L

Moving Within a Line - b,
W, e, E, B, W

You can get back to a previous position by using the command ., , (two apos­
trophes). This returns you to the first non-blank space in the previous location.
You can also use ' , (two back quotes) to return to the previous position. The
former is more easily typed on the keyboard. This is often more convenient than
G because it requires no advance preparation. Try typing a G or a search with /
or ? and then a " to get back to where you were. If you accidentally type n
or any command that moves you far away from a context of interest, you can
quickly get back by typing , '.

Now try just moving the cursor around on the screen. Try the arrow keys as well
as h, j, k, and 1. You will probably prefer these keys to arrow keys, because
they are right underneath your fingers. These are very common keys for moving
up and down lines in the file. Notice that if you go off the bottom or top with
these keys then the screen scrolls down (and up if possible) to bring a line at a
time into view.

Type the + key. Each time you do, notice that the cursor advances to the next
line in the file, at the first non-blank position on the line. The - key is like +
but the cursor goes to the first non-blank character in the line above.

The RETURN key has the same effect as the + key.

vi also has commands to take you to the top, middle and bottom of the screen.
H takes you to the top (home) line on the screen. Try preceding it with a number
as in 3 H. This takes you to the third line on the screen. Try M, which takes you
to the middle line on the screen, and L, which takes you to the last line on the
screen. L also takes counts, so 5 L takes you to the fifth line from the bottom.

Now pick a word on some line on the screen, not the first word on the line. Move
the cursor using h, j, k, 1 or RETURN and - to be on the line where the word
is. Try typing the w key. This advances the cursor to the next word on the line.
w advances to the next word ignoring any punctuation. Try typing the b key to
back up words in the line. Also try the e key which advances you to the end of
the current word rather than to the beginning of the next word. Also try SPACE

(the space bar) which moves right one character and the BACKSPACE (or CfRL-H)

key which moves left one character. The key h works as CTRL-H does and is
useful if you don't have a BACKSPACE key.

If the line had punctuation in it, you may have noticed that the wand b keys
stopped at each group of punctuation. You can also go backward and forward
words without stopping at punctuation by using wand B rather than the lower
case equivalents. You can think of these as bigger words. The E command
advances to the end of the current word, but unlike e, ignores punctuation. Try
these on a few lines with punctuation to see how they differ from the lower case
e, w, and b.

The word keys wrap around the end of line, rather than stopping at the end. Try
moving to a word on a line below where you are by repeatedly typing w.

~\sun ,~ microsysterns
Revision A of 17 February 1986

ViewingaFile- view

2.4. Making Simple Changes

Inserting - i, I, a, A, 0,

and 0

Chapter 2 - Using vi, the Visual Display Editor 19

If you want to use the editor to look at a file, rather than to make changes, use
view instead of vi. This sets the readonly option which prevents you from
accidently overwriting the file. For example, to look at a file called kubla, type:

hostname% view kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.
"kubla" [Read only] 5 lines, 149 characters
hostname%

To scroll through a file longer than one screenful, use the characters described in
the previous section on "Scrolling and Paging". To get out of view, type : q.
If you accidentally made changes to the file while the readonly option was set,
type : q! to exit.

Simple changes involve inserting, deleting, repeating, and changing single char­
acters, words, and lines of text. In vi, you can also undo the previous change
with ease in case you change your mind.

There are two basic commands for inserting new text: i to insert text to the left
of the cursor, and a to append text to the right of the cursor. After you type i,
everything you type until you press ESC is inserted into the file. Try this now;
position yourself at some word in the file and try inserting text before this word.
(If you are on an dumb terminal it will seem, for a minute, that some of the char­
acters in your line have been overwritten, but they will reappear when you type
ESC.)

Now try finding a word that can, but does not, end in an's'. Position the cursor
at this word and type e (move to end of word), then a (for append), 's', and ESC

to terminate the text insert. Use this sequence of commands to easily make a
word plural.

Try inserting and appending a few times to make sure you understand how this
works.

It is often the case that you want to add new lines to the file you are editing,
before or after some specific line in the file. Find a line where this makes sense
and then give the command ° to create a new line after the line you are on, or
the command 0 to create a new line before the line you are on. After you create
a new line in this way, text you type up to an ESC is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only
in that one is given by a lower-case key and the other is given by an upper-case
key. In these cases, the upper-case key often differs from the lower-case key in
its sense of direction, with the upper-case key working backward or up, while the
lower-case key moves forward or down.

Whenever you are typing in text, you can give many lines of input or just a few
characters. To type in more than one line of text, type a RETURN at the middle of
your input. A new line will be created for text, and you can continue to type. (If

Revision A of 17 February 1986

20 Editing Text Files

Making Small Corrections -
x, r, s, R

you are on a slow, dumb tenninal vi may choose to wait to redraw the tail of
the screen, and will let you type over the existing screen lines. This avoids the
lengthy delay that would occur if vi attempted to always keep the tail of the
screen up to date. The tail of the screen will be fixed up, and the missing lines
will reappear, when you type ESC.)

While you are inserting new text, you can use the DEL key at the system com­
mand level to backspace over the last character you typed. (This may be CTRL-H
on a tenninal.) Use CTRL-U (this may be CTRL-X on a tenninal) to erase the input
you have typed on the current line. In fact, the character CTRL-H (backspace)
always works to erase the last input character here, regardless of what your erase'
character is.

CTRL-Werases a whole word and leaves you after the space after the previous
word; use it to quickly back up when inserting.

Notice that when you backspace during an insertion, the characters you back­
space over are not erased; the cursor moves backward, and the characters remain
on the display. This is often useful if you are planning to type in something simi-
1ar. In any case the characters disappear when when you press ESC; if you want
to get rid of them immediately, hit an ESC and then a again.

Notice also that you can't erase characters you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to
make a correction, just hit ESC and move the cursor back to the previous line.
After making the correction you can return to where you were and use the insert
or append command again.

You can make small corrections in existing text quite easily. Find a single char­
acter that is wrong or just pick any character. Use the arrow keys to find the
character, or get near the character with the word motion keys and then either
backspace with h (or the BACKSPACE key orCTRL-H) or type a SPACE (using the
space bar) until the cursor is on the character that is wrong. If the character is not
needed, type the x key; this deletes the character from the file. It is analogous to
the way you x' out characters when you make mistakes on a typewriter, except
it's not as messy.

If a single character is incorrect, you can replace it with the correct character by
typing the command rc, where c is replaced by the correct character. You don't
need to type ESC. If you want to replace or type over more than one character,
type R and then the ESC key to get out of insert mode when you are finished.
Finally if the character that is incorrect should be replaced by more than one
character, type s which substitutes for the single character, a string of charac­
ters, and end the substituion with ESC. If there are a small number of characters
that are wrong you can precede s with a count of the number of characters to be
replaced. You can use counts with x to specify the number of characters to be
deleted and with r, such as 4rx to specify that a character be replaced with
four x's.

Use xp to correct simple typos in which you have inverted the order of two
letters. The p for put is described later.

~\sun ,~ microsystems
Revision A of 17 February 1986

Deleting, Repeating, and
Changing - dw, ., db, c

Operating on Lines - dd,
CC, S

Undoing - u, U

Chapter 2 - Using vi, the Visual Display Editor 21

You already know almost enough to make changes at a higher level. All you
need to know now is that the d key acts as a delete operator. Try the command
dw to delete a word. Try typing , . ' a few times. Notice that this repeats the
effect of the dw. The'.' repeats the last command that made a change. You
can remember it by analogy with an ellipsis ' ... '.

Now try db. This deletes a word before the cursor, namely the preceding word.
Try dSPACE. This deletes a single character, and is equivalent to the x com­
mand.

Use D to delete the rest of the line the cursor is on.

Another very useful operator is c or change. Thus cw changes the text of a sin­
gle word. You follow it by the replacement text ending with an ESC. Find a
word that you can change to another, and try this now. Notice that the end of the
text to be changed is marked with the dollar sign character ($) so that you can
see this as you are typing in the new material.

It is often the case that you want to operate on lines. Find a line you want to
delete, and type dd, the d operator twice. This deletes the line.

If you are on a dumb terminal, vi may just erase the line on the screen, replac­
ing it with a line with only an at-sign (@) on it. This line does not correspond to
any line in your file, but only acts as a place holder. It helps to avoid a lengthy
redraw of the rest of the screen which would be necessary to close up the hole
created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this changes a whole line, erasing its previous
contents and replacing them with text you type up to an ESC. The command S is
a convenient synonym for cc, by analogy with s. Think of S as a substitute
on lines, while s is a substitute on characters.

You can delete or change more than one line by preceding the dd or cc with a
count, such as Sdd, which deletes 5 lines. You can also give a command like
dL to delete all the lines up to and including the last line on the screen, or d3 L

to delete through the third from the bottom line. Try some commands like this
now.4 Notice that vi lets you know when you change a large number of lines so
that you can see the extent of the change. It also always tells you when a change
you make affects text you cannot see.

Now suppose that the last change you made was incorrect; you could use the
insert, delete and append commands to put the correct material back. However,
since it is often the case that we regret a change or make a change incorrectly,
vi provides a u command to undo the last change you made. Try this a few
times, and give it twice in a row to notice that a u also undoes a u.

The undo command lets you reverse only a single change. After you make a
number of changes to a line, you may decide that you would rather have the

4 One subtle point here involves using the '/' search after a d. This nonnally deletes characters from the
current position to the point of the match. If what is desired is to delete whole lines including the two points,
give the pattern as /pat/ +0, a line address.

tt\sun ~~ mlcrosystems
Revision A of 17 February 1986

22 Editing Text Files

2.5. Moving About:
Rearranging and
Duplicating Text

Low-level Character Motions
- f, F,

original state of the line back. The u command restores the current line to the
state before you started changing it, only as long as you do not move the cursor
off the line. If you move the cursor away from the line you changed, U does
nothing.

You can recover text that you delete, even if u (undo) will not bring it back; see
the section on "Recovering Lost Lines" on how to recover lost text.

This describes more commands for moving in a file and explains how to rear­
range and make copies of text

Now move the cursor to a line where there is a punctuation or a bracketing char­
acter such as a parenthesis, a comma or a period. Try the command fx to find
the next x character to the right of the cursor in the current line. Try then hitting
a ; which finds the next instance on that line of the same character. By using
the f command and then a sequence of ; s you can often get to a particular
place in a line much faster than with a sequence of word motions or SPACEs.
There is also an F command, which is like f, but searches backward. After
instituting a search, the ; repeats the search in the same direction as it was
begun, and a comma (,) repeats the search in the opposite direction.

When you are operating on the text in a line, it is often desirable to deal with the
characters up to, but not including, the first instance of a character. Try dfx for
some x now and notice that the x character is deleted. Undo this with u and then
try dtx; the t here stands for to, that is, delete up to the next x, but not the x.
The command T is the reverse of t.

When working with the text of a single line, a , , moves the cursor to the first
non-blank position on the line, and a $ moves it to the end of the line. Thus $ a
appends new text at the end of the current line (as does A which is easier to
type).

Your file may have tab (CTRL-I) characters in it. These characters are represented
as a number of spaces expanding to a tab stop, where tab stops are every eight
positions.5 When the cursor is at a tab, it sits on the last of the several spaces that
represent that tab. Try moving the cursor back and forth over tabs so you under­
stand how this works.

On rare occasions, your file may have non-printing characters in it. These charac­
ters are displayed as control sequences, and look like a caret character (....) adja­
cent to another character. For example, the symbol for a new page (CTRL-L),
looks like L in the input file. However, spacing or backspacing over the char­
acter reveals that the two characters displayed represent only a single character.

The editor sometimes discards control characters, depending on the character and
the setting of the beautify option, if you attempt to insert them in your file. You
can get a control character in the file by beginning an insert and then typing a
CTRL-V before the control character. The CTRL-V quotes the following character,

S You can set this with a command of the fonn : se t s=X<CR>. where x is four to set tabstops every four
columns. for example. This affects the screen representation within the editor.

Revision A of 17 February 1986

Higher Level Text Objects -
(,), {, }, [[,]]

Rearranging and Duplicating
Text - y, Y, p, P

Chapter 2 - Using vi, the Visual Display Editor 23

causing it to be inserted directly into the file.

In working with a document it is often advantageous to work in terms of sen­
tences, paragraphs, and sections. The operations ' (' and ') , move to the begin­
ning of the previous and next sentences respectively. Thus the command d)

deletes the rest of the current sentence; likewise d (deletes the previous sen­
tence if you are at the beginning of the current sentence, or the current sentence
up to where you are if you are not at the beginning of the current sentence.

A sentence 'is defined as ending at a '.', '!' or '?' followed by either the end of a
line, or by two spaces. Any number of closing ')', ']" '"' and " , characters may
appear after the '.', '!' or '?' before the spaces or end of the line.

The operations ' {' and '} , move over paragraphs and the operations ' [[' and
']] , move over sections. The ' [[' and ']] , operations require the operation
character to be doubled because they can move the cursor far from where it
currently is. While it is easy to get back with the command , " these com­
mands would still be frustrating if they were easy to type accidentally.

A paragraph begins after each empty line, and also at each of a set of paragraph
macros, specified by the pairs of characters in the definition of the string-valued
option paragraphs. The default setting for this option defines the paragraph mac­
ros of the -ms macro package, that is the . IP, . LP, . PP, and . QP macros.
You can easily change or extend this set of macros by assigning a different string
to the paragraphs option in your EXINIT. See the section on "Special Topics" for
details. The . bp directive is also considered to start a paragraph. Each para­
graph boundary is also a sentence boundary. The sentence and paragraph com­
mands take counts to operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally
• NH and . SH, and each line with a formfeed CfRL-L in the first column. Sec­
tion boundaries are always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure
how they work. If you have a large document, try looking through it using the
section commands. The section commands interpret a preceding count as a dif­
ferent view size in which to redraw the screen at the new location, and this size is
the base size for newly-drawn screens until another size is specified. (This is
very useful if you are on a slow terminal and are looking for a particular section.
You can give the first section command a small count to then see each successive
section heading in a small screen area.)

vi has a single unnamed buffer where the last deleted or changed text is saved
away, and a set of named buffers a-z that you can use to save copies of text and
to move text around in your file and between files.

The operator y yanks a copy of the object that follows into the unnamed buffer.
If preceded by a buffer name, "x y, where x here is replaced by a letter a-z, it
places the text in the named buffer. The text can then be put back in the file with
the commands p and P; p puts the text after or below the cursor, while P puts
the text before or above the cursor.

Revision A of 17 February 1986

24 Editing Text Files

2.6. High-Level Commands

Writing, Quitting, and Editing
New Files - zz, : w, : q,
: e, : n

If the text you yank fonn.s a part of a line, or is an object such as a sentence that
partially spans more than one line, then when you put the text back, it will be
placed after the cursor (or before if you use P). If the yanked text forms whole
lines, they will be put back as whole lines, without changing the current line. In
this case, the put acts much like an 0 or 0 command.

Try the command YP. This makes a copy of the current line and leaves the cur­
sor on this copy, which is placed before the current line. The command Y is a
convenient abbreviation for yy. The command Yp will also make a copy of
the current line, and place it after the current line. You can give y a count of
lines to yank, and thus duplicate several lines; try 3 YP •

To move text within the buffer, you need to delete it in one place, and put it back
in another. You can precede a delete operation by the name of a buffer in which
the text is to be stored as in "aSdd deleting 5 lines into the named buffer a.
You can then move the cursor to the eventual resting place of the lines and do a
" a p or "aP td put them back. In fact, you can switch and edit another file
before you put the lines back, by giving a command of the form : e nameCR

where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made
changes before vi will let you switch to the other file. An ordinary delete com­
mand saves the text in the unnamed buffer, so that an ordinary put can move it
elsewhere. However, the unnamed buffer is lost when you change files, so to
move text from one file to another you must use a named buffer.

A description of high-level commands that do more than juggle text follows.

So far you have seen how to enter vi and to write out your file using either z z
or : wCR. The first exits from vi, writing if changes were made, and the
second writes and stays in vi. We have also described that if you have changed
the editor's copy of the file but do not wish to save your changes, either because
you messed up the file or decided that the changes are not an improvement to the
file, you type

:q!<CR>

to quit from the editor without writing the changes.

You can also re-edit the same file and start over by typing : e ! CR. Use the '!'
command rarely and with caution, as it is not possible to recover the changes you
have made after you discard them in this manner.

You can also edit a different file without leaving vi by giving the command
: e nameCR. If you have not written out your file before you try to do this, vi
tells you this, ('No write since last change: (:edit! overrides)') and delays editing
the other file. You can then type : wCR to save your work, followed by the
: e nameCR command again, or carefully give the command :e! nameCR, which
edits the other file discarding the changes you have made to the current file. To
save changes automatically, include set autowrite in your EXINIT, and use
: n instead of : e. See the "Special Topics" section for details on EXINIT .

• \sun ,~ microsystems
Revision A of 17 February 1986

Escaping to a Shell -
: sh, CTRL-Z

• I .. ,

Marking and Returning - m

Adjusting the Screen CTRL-L,

z

Chapter 2 - Using vi, the Visual Display Editor 25

You can get to a shell to execute a single command by giving a vi command of
the fonn :! cmdCR. The system runs the single command cmd and when the
command finishes, vi asks you to Press RETURN to continue. When
you have finished looking at the output on the screen, type RETURN, and vi
redraws the screen. You can then continue editing. You can also give another
command when it asks you for a RETURN; in this case the screen will not be
redrawn.

If you wish to execute more than one command in the shell, give the command
: shCR. This gives you a new shell, and when you finish with the shell, ending it
by typing a CTRL-D, vi clears the screen and continues.

Use CTRL-Z to suspend vi and to return to the top level shell. The screen is
redrawn when vi is resumed. This is the same as : stop.

The command " returned to the previous place after a motion of the cursor by
a command such as /, ? or G. You can also mark lines in the file with single
letter tags and return to these marks later by naming the tags. Try marking the
current line with the command InX, where you should pick some letter for x, say
a .. Then move the cursor to a different line (any way you like) and type 'a.
The cursor will return to the place you marked. Marks last only until you edit
another file.

When using operators such as d and referring to marked lines, it is often desir­
able to delete whole lines rather than deleting to the exact position in the line
marked by m. In this case you can use the fonn 'x rather than 'x. Used
without an operator, ' x will move to the first non-blank character of the marked
line; similarly "moves to the first non-blank character of the line containing
the previous context mark ".

If the screen image is messed up because of a transmission error to your worksta­
tion, or because some program other than vi wrote output to your workstation,
you can type a CTRL-L, the ASCII fonn-feed character, to refresh the screen. (On a
dumb tenninal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing CTRL-R to retype the screen,
closing up these holes.6)

If you wish to place a certain line on the screen at the top middle or bottom of the
screen, position the cursor to that line, and give a z command. Follow the z
command with a RETURN if you want the line to appear at the top of the window,
a ' . ' if you want it at the center, or a '-' if you want it at the bottom.

If you want to change the window size, use the z command as in z 5 <CR> to
change the window to five lines.

6 This includes Televideo 9121920 and ADM31 tenninals.

Revision A of 17 February 1986

26 Editing Text Files

2.7. Special Topics There are several facilities that you can use to customize an editing session.

Options, the Set Variable, and
Editor Start-up Files

v i has a set of options, some of which have been mentioned above. The most
useful options are described in the following table.

Table 2-1 Editor Options

Option

auto indent
auto write
CTRL-A, !
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
CTRL-T
showmatch
slowopen
tenn

Default Description

noai Supply indentation automatically
noaw Automatic write before : n, : t a,

noic Ignore letter case in searching
nolisp ({)} commands deal with S-expressions
nolist Tabs print as AI, end of lines marked with $
magic The characters. [and * are special in scans
nonu Lines are displayed prefixed with line numbers
para=IPLPPPQPbpP LI Macro names that start paragraphs
nore Simulate a smart tenninal on a dumb one
sect=NHSHH HU Macro names that start new sections
sw=8

nosm
slow
dumb

Shift distance for <, > and input CTRL-D and

Show matching (or { as) or } is displayed
Postpone display updates during inserts
The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle
options. You can set numeric and string options by a statement of the fonn:

set opt=val

and toggle options can be set or unset by statements of one of the fonns

set opt
setnoopt

Put these statements in your EXINIT in your environment (described below), or
use them while you are running vi by preceding them with a : and following
them with a RETURN. For example, to display line numbers at the beginning of
each line, use:

:se nu

You can get a list of all options that you have changed:

: set<CR>
redraw term=sun wrapmargin=8

or the value of a single option with

: set opt?<CR>

~~sun ~~ microsystems
Revision A of 17 February 1986

Recovering Lost Lines

Chapter 2 - Using vi, the Visual Display Editor 27

: set noai ?<CR>
noautoindent

The

: set all<cR>

command generates a list of all possible options and their values~ You can abbre­
viate set to s e. You can also put multiple options on one line, such as,

:se ai aw nU<CR>

When you set options with the set command, they only last until you terminate
the editin session in vi. It is common to want to have certain options set when­
ever you use the editor. To do this, create a list of ex commands to be run
every time you start up vi, ex, or edit. All commands that start with a
colon (:) are ex commands. A typical list includes a set command, and pos­
sibly a few rna p commands. Put these commands on one line by separating
them with the pipe (I) character. If you use the c shell, csh, put a line like this in
the

setenv EXINIT 'set ai aw terse I map @ ddlmap i x'

This sets the options autoindent, autowrite, terse, (the set command), and
makes @ delete a line, (the first map), and makes :# delete a character, (the
second map). (See the "Macros" section for a description of the map com­
mand.)

If you use the Bourne shell, put these lines in the file .profile in your home direc­
tory:

EXINIT='set ai aw terselmap @ ddlmap i x'
export EXINIT

Of course, the particulars of the line depend on the options you want to set.

You might have a serious problem if you delete a number of lines and then regret
that they were deleted. Despair not, vi saves the last nine deleted blocks of text
in a set of numbered registers 1-9 . You can get the nth previous deleted text
back in your file by "n p. The "here says that a buffer name is to follow, n is
the number of the buffer you wish to try (use the number 1 for now), and p, that
puts text in the buffer after the cursor. If this doesn't bring back the text you
wanted, type U to undo this and then (period) . to repeat the p. In general the
, . ' command repeats the last change you made. As a special case, when the last
command refers to a numbered text buffer, the ' . ' command increments the
number of the buffer before repeating the command. Thus a sequence of the
form:

"lpu.u.u.

will, if repeated long enough, show you all the deleted text that has been saved
for you. You can omit the u commands here to gather up all this text in the
buffer, or stop after any . command to keep just the recovered text You can
also use P rather than p to put the recovered text before rather than after the
cursor .

• \sun ~~ microsystems
Revision A of 17 February 1986

28 Editing Text Files

Recovering Lost Files - the
-r Option

Continuous Text Input -
wrapmargin

Features for Editing
Programs

If something goes wrong so the system goes down, you can recover the work you
were doing up to the last few changes. You will normally receive mail when you
next log in giving you the name of the file that has been saved for you. You
should then change to the directory where you were when the system went down
and type:

hostname% vi -r filename

replacing filename with the name of the file you were editing. This will recover
your work to a point near where you left off. In rare cases, some of the lines of
the file may be lost. vi will give you the numbers of these lines and the text of
the lines will be replaced by the string 'LOST'. These lines will almost always be
among the last few that you changed. You can either choose to discard the
changes you made (if they are easy to redo) or to replace the few lost lines by
hand.

You can get a listing of the files that are saved for you by typing:

hostname% vi -r

If there is more than one instance of a particular file saved, vi gives you the
newest instance each time you recover it. You can thus get an older saved copy
back by first recovering the newer copies.

The invocation 'vi -r' will not always list all saved files, but they can be
recovered even if they are not listed.

When you are typing in large amounts of text it is convenient to have lines bro­
ken near the right margin automatically. To do this, use the set wrapmargin
option:

: se wm=10<cR>

This rewrites words on the next line that you type past the right margin.

If vi breaks an input line and you wish to put it back together, you can tell it to
join the lines with J. You can give J a count of the number of lines to be
joined as in 3J to join 3 lines. vi supplies blank space, if appropriate, at the
juncture of the joined lines, and leaves the cursor at this blank space. You can
delete the blank space with x if you don't want it.

If you want to split a line into two, put the cursor where you want the break, and
type rCR.

vi has a number of commands for editing programs. To generate correctly­
indented programs, use the autoindent option:

: se ai<cR>

Now try opening a new line with o. Type a few tabs on the line and then some
characters. If you type a CR and start another line, notice that vi supplies blank
space at the beginning of the line to align the text of the new line with that of the
previous line.

After you have started a new line, you might want to indent your current line less
than the previous line. You are still in insert mode, and cannot backspace over

~~sun ,~ microsystems
Revision A of 17 February 1986

Filtering Portions of the
Buffer

Commands for Editing LISP

Chapter 2 - Using vi, the Visual Display Editor 29

the automatic indentation. However, you can type CfRL-D to backtab over each
level of indentation. Each time you type CfRL-D, you back up one position, nor­
mally to an eight-column boundary . You can set the number of columns that a
tab shifts with the shiftwidth option. Try giving the command:

: se SW=4<CR>

and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >.
These shift the lines you specify right or left by one shiftwidth. Try «and > >
which shift one line left or right, and <L and > L shifting the rest of the text left
and right.

If you have a complicated expression and wish to see how the parentheses match,
put the cursor at a left or right parenthesis and type %. This shows you the
matching parenthesis. This works also for braces { and }, and brackets [and].

If you are editing C programs, you can use [[and]] to advance or retreat to a
line starting with a {, that is, a function declaration at a time. When you use
]] with an operator, it stops after a line that starts with }; this is sometimes use­
ful with y]].

You can run system commands over portions of the buffer using the operator' ! '.
You can use this to sort lines in the buffer, or to reformat portions of the buffer
with a pretty printer. Try typing in a list of random words, one per line and end­
ing them with a blank line. Back up to the beginning of the list, and then give
the command:

! }sort<CR>

This says to sort the next paragraph of material, and that the blank line ends a
paragraph. The result is sorted text in your file.

If you are editing a LISP program, set the option lisp by doing:

: se lisp<cR>

This changes the (and) commands to move backward and forward over s­
expressions. The {and } commands are like (and) but don't stop at atoms.
Use { and} to skip to the next list, or through a comment quickly.

The autoindent option works differently for LISP, supplying indentation to align
at the first argument to the last open list. If there is no such argument, the indent
is two spaces more than the last level.

The showmatch option shows matching parentheses. Try setting it with:

: se sm<CR>

and then try typing a '(' some words and then a')'. Notice that the cursor briefly
shows the position of the '(' which matches the ')'. This happens .only if the
matching '{' is on the screen, and the cursor stays there for at most one second.

vi also has an operator to realign existing lines as though they had been typed in
with lisp and autoindent set. This is the = operator. Try the command =% at

~\sun ,~ microsystems
Revision A of 17 February 1986

30 Editing Text Files

Macros

the beginning of a function. This realigns all the lines of the function declara­
tion.

When you are editing LISP, the [[and]] advance and retreat to lines begin­
ning with a (, and are useful for dealing with entire function definitions.

vi has a parameterless macro facility you can set up so that when you type a sin­
gle keystroke, vi will act as though you had typed some longer sequence of
keys. Set this up if you find yourself repeatedly typing the same sequence of
commands or text.

Briefly, there ate two kinds of macros:

1. Ones where you put the macro body in a buffer register, say x. You can then
type @ x to invoke the macro. The @ may be followed by another @ to
repeat the last macro.

2. You can use the map command from vi (typically in your EXINIT) with a
command of the form:

: rna p Ihs rhs<cR> 7

mapping rhs into lhs. There are restrictions: lhs should be one keystroke
(either one character or one function key) since it must be entered within one
second unless notimeout (see the "Option Descriptions" section) is set. In
that case you can type it as slowly as you wish, and vi will wait for you to
finish before it echoes anything). The lhs can be no longer than ten charac­
ters, the rhs no longer than 100. To get a space, tab or newline into lhs or
rhs, escape them with a CTRL-V. It may be necessary to double the CTRL-V
if you use the map command inside vi, rather than in ex . You do not
need to escape spaces and tabs inside the rhs.

Thus to make the q key write and exit vi, type:

:rnap q :wqAVAV<CR> <CR>

which means that whenever you type q, it will be as though you had typed the
four characters : wqCR. A CTRL-V is needed because without it the CR would
end the : command, rather than becoming part of the map definition. There are
two CTRL-Vs because from within vi, you must type two CTRL-Vs to get one.
The first CR is part of the rhs , the second terminates the : command.

You can delete macros with

:unmap Ihs

If the lhs of a macro is '#0' through '#9', this maps the particular function key
instead of the two-character 'I' sequence. So that terminals without function
keys can access such definitions, the form 'Ix' will mean function key x on all
terminals and need not be typed within one second. You can change the charac­
ter 'I' by using a macro in the usual way:

7 Ihs is an abbreviation for left hand side. rhs is an abbreviation for right hand side .

• sun
~ microsystems

Revision A of 17 February 1986

Word Abbreviations - : ab,
:una

2.8. Nitty-gritty Details

Chapter 2 - Using vi, the Visual Display Editor 31

:map "v"v"r :/1=

to use tab, for example. This won't affect the map command, which still uses
:8=, but just the invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any
changes.

Placing a ! after the word map applies the mapping to input mode, rather than
command mode. So, to arrange for CfRL-T to be the same as four spaces in input
mode, type:

:map! "T "VkS~~~

where 16 represents a blank. The CfRL-V prevents the blanks from being taken as
blank space between the Ihs and rhs. Type simply:

:map!

to list macros that apply during input mode and

:map

to list macros that apply during command mode.

A feature similar to macros in input mode is word abbreviation. You can type a
short word and have it expanded into a longer word or words with : abbrevi­
ate (: ab). For example:

:ab foo find outer otter

always changes the word 'foo' into the phrase 'find outer otter'. Word abbrevia­
tion is different from macros in that only whole words are affected. If 'foo' were
typed as part of a larger word, it would be left alone. Also, the partial word is
echoed as it is typed. There is no need for an abbreviation to be a single keys­
troke, as it should be with a macro. This only operates in visual mode and uses
the same syntax as the map command, except that there are no '!' forms.

Use : unabbreviate (: una) to tum off the abbreviation. To unabbreviate
the above, for example, type:

:una foo

The vi editor has a number of short commands that abbreviate the longer com­
mands we have introduced here. You can find these commands easily in the "ex
Commands" section of the "ex Quick Reference". They often save a bit of typ­
ing, and you can learn them when it's convenient.

The following presents some functional details and some ex commands (see the
"File Manipulation Commands" section) that are particularly useful in vi.

Revision A of 17 February 1986

32 Editing Text Files

Line Representation in the
Display

Command Counts

v i folds long logical lines onto many physical lines in the display. Commands
that advance lines advance logical lines and skip over all the segments of a line
in one motion. The command I moves the cursor to a specific column, and may
be useful for getting near the middle of a long line to split it in half. Try 80 I on
a line over 80 columns long. You can make long lines very easily by placing the
cursor on the first line of two you want to join and typing shift-l (capital 1).

v i only puts full lines on the display; if there is not enough room on the display
to fit a logical line, the vi editor leaves the physical line empty, placing only an
'@' on the line as a place holder. (When you delete lines on a dumb tenninal,
vi will often just clear the lines to '@' to save time rather than rewriting the rest
of the screen.) You can always maximize the infonnation on the screen with
CfRL-R.

If you wish, you can have the editor place line numbers before each line on the
display. To enable this, type the option:

:se nU<CR>

To tum it off, use the no numbers option:

:se nonu<s-2CR>

You can have tabs represented as CfRL-I (appears as ... I) and the ends of lines
indicated with '$' by giving the list option:

: se list<cR>

To tum this off, use:

: se nolist<cR>

Finally, lines consisting of only the character ,-, are displayed when the last line
in the file is in the middle of the screen. These represent physical lines that are
past the logical end of file.

Most vi commands use a preceding count to affect their behavior in some way.
The following table lists the common ways the counts are used:

New window size
Scroll amount
Line/column number
Repeat effect

: / ? [[]] .. ,
CTRL-D CTRL-U

zGI
Most of the rest

v i maintains a notion of the current default window size. (On tenninals that run
at speeds greater than 1200 baud, vi uses the full tenninal screen. On tenninals
slower than 1200 baud, and most dialup lines are in this group, v i uses eight
lines as the default window size. At 1200 baud, the default is 16 lines.)

vi uses the default window size when it clears and refills the screen after a
search or other motion moves far from the edge of the current window. All com­
mands that take a new window size as count often redraw the screen. If you anti­
cipate this, but do not need as large a window as you are currently using, you
may wish to change the screen size by specifying the new size before these

Revision A of 17 February 1986

File Manipulation Commands

Chapter 2 - Using vi. the Visual Display Editor 33

commands. In any case, the number of lines used on the screen will expand if
you move off the top with a '-' or similar command or off the bottom with a
command such as RETURN or CTRL-D. The window will revert to the last
specified size the next time it is cleared and refilled, but not by a CTRL-L which
just redraws the screen as it is.

The scroll commands CTRL-D and CTRL-U likewise remember the amount of
scroll last specified, using half the basic window size initially. The simple insert
commands use a count to specify a repetition of the inserted text. Thus lOa +­
---ESC inserts ten repetitions of a plus sign followed by four minus signs:

+----+----+----+----+----+----+----+----+----+----

A few commands also use a preceding count as a line or column number.

Except for the few commands that ignore any counts, such as CTRL-R, the rest of
the vi commands use a count to indicate a simple repetition of their effect.
Thus 5w advances five words on the current line, while 5RETURN advances five
lines. A very useful instance of a count as a repetition is a count given to the .
command, which repeats the last changing command. If you do dw and then
3 . , you delete first one and then three words. You can then delete two more
words with 2 ..

The following table lists the file manipulation commands you can use when you
are in vi.

Table 2-2 File Manipulation Commands

Command
:w
:wq
:x
:e name
:e!
:e + name
:e +n
:e#
:w name
:w! name
:x,ywname
:r name
:r !cmd
:n
:n!
:n args
:ta tag

Meaning
Write back changes
Write and quit
Write (if necessary) and quit (same as ZZ).
Edit file name
Re-edit, discarding changes
Edit, starting at end
Edit, starting at line n
Edit alternate file
Write file name
Overwrite file name
Write lines x through y to name
Read file name into buffer
Read output of cmd into buffer
Edit next file in argument list
Edit next file, discarding changes to current
Specify new argument list
Edit file containing tag tag, at tag

A CR or ESC follows all of these commands. The most basic commands are : w

and : e. End a nonnal editing session on a single file with a zz command. If
you are editing for a long period of time, use the : w command occasionally
after major amounts of editing, and then finish with a z z. When you edit more

Revision A of 17 February 1986

34 Editing Text Files

More about Searching for
Strings

than one file, you can finish with one with a : wand start editing a new file by
giving a : e command, or set autowrite and use : nfile.

If you make changes to the editor's copy of a file, but do not wish to write them
back, give an ! after the command you would otherwise use to exit without
changing the file. Use this carefully.

Use the : e command with a + argument to start at the end of the file, or a +n
argument to start at line n. In actuality, n may be any editor command not con­
taining a space, usually a scan like + / pat or +? pat. In forming new names to
the e command, use the character % which is replaced by the current filename,
or the character 41= which is replaced by the alternate filename. The alternate
filename is generally the last name you typed other than the current file. Thus if
you try to do a : e and get a diagnostic that you haven't written the file, you can
give a : w command and then a : e 41= command to redo the previous : e.

You can write part of the buffer to a file by finding out the lines that bound the
range to be written using CTRL-G, and giving these numbers after the : and
before the w, separated by , s. You can also mark these lines with m and then
use an address of the form ' x, ' y on the w command here.

You can read another file into the buffer after the current line by using the : r
command. You can similarly read in the output from a command, just use ! cmd
instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the
command line, and then edit each one in tum using the command : n. To
respecify the list of files to be edited, give the : n command a list of filenames,
or a pattern to be expanded as you would have given it on the initial vi com­
mand.

For editing large programs, use the : t a command. It utilizes a data base of
function names and their locations, which can be created by programs such as
ctags, (see the Commands Reference Manual/or the Sun Workstation) to quickly
find a function whose name you give. If the : ta command will require the edi­
tor to switch files, then you must : w or abandon any changes before switching.
You can repeat the : ta command without any arguments to look for the same
tag again.

When you are searching for strings in the file with / and ?, vi normally
places you at the next or previous occurrence of the string. If you are using an
operator such as d, c or y, then you may well wish to affect lines up to the line
before the line containing the pattern. You can give a search of the form
/ pat / -n to refer to the nth line before the next line containing pat, or you can
use + instead of - to refer to the lines after the one containing pat. If you don't
give a line offset, vi will affect characters up to the match place, rather than
whole lines; thus use +0 to affect the line that matches.

To have vi ignore the case of words in searches, give the ignorecase option:

:se iC<CR>

To tum this off so that vi recognizes case again, use:

~\sun ,~ microsystems
Revision A of 17 February 1986

Chapter 2 - Using vi, the Visual Display Editor 35

: se noic<cR>

Strings given to searches may actually be regular expressions. If you do not want
or need this facility, you should put:

set nomagic

in your EXINIT. When nomagic is set, only the characters caret (A) and dollar
sign ($) are special in patterns. The character backslash (\) is also special with
nomagic set. You can precede some of the normally special characters (not spe­
cial in nomagic mode) with a backslash to enable their special properties.

It is necessary to use a backslash (\) before a slash (j) to search for a slash char­
acter in a forward scan and before a question mark (?) to search for a question
mark in a backward scan. The command to search for a slash character is shown
on the last line of the example below, as it would appear on your screen.

text text text text text text text text text text text
text text text/text text text text text text text
text text text text text text text text text text text
text text? text text text text 'text text text text text? text
text text text/text text text text text/text text
text text text text text text text text text text text
/ /<CR>

The following table gives the extended forms when magic is set.

Table 2-3 Extended Pattern Matching Characters

More about Input Mode

Character

$

\<
\>
[string]
["string]
[x-y]

*

Meaning
At beginning of pattern, matches beginning of line
At end of pattern, matches end of line
Matches any character
Matches the beginning of a word
Matches the end of a word
Matches any single character in string
Matches any single character not in string
Matches any character between x and y
Matches any number of the preceding pattern

If you use nomagic mode, use the '. [' and '*' primitives with a preceding \.

There are a number of characters to make corrections during input mode. These
are summarized in the following table.

Revision A of 17 February 1986

36 Editing Text Files

Table 2-4 Input Mode Corrections

Character
CTRL-H

CTRL-W
erase
kill
\
ESC
DEL

CR
CTRL-D
OCTRL-D
"CTRL-D
CTRL-V

Meaning
Deletes the last input character
'Deletes the last input word
Your erase character, same as CfRL-H
Your kill character, deletes the input on this line
Escapes a following CfRL-H and your erase and kill
Ends an insertion
Interrupts an insertion, terminating it abnormally
Starts a new line
Backtabs over autoindent
Kills all the autoindent
Same as CfRL-D, but restores indent next line
Quotes the next non-printing character into the file

The most usual way of making corrections to input is to type DEL (CfRL-H on a
terminal) to correct a single character, or by typing one or more CfRL-W to back
over incorrect words.

Your system kill character CfRL-U (or sometimes CTRL-X) erases all the input you
have given on the current line. In general, you can neither erase input back
around a line boundary nor can you erase characters you did not insert with this
insertion command. To make corrections on the previous line after a new line
has been started, press ESC to end the insertion, move over and make the correc­
tion, and then return to where you were to continue. Use A to append at the end
of the current line; this is often useful for continuing text input.

If you wish to type in your erase or kill character, say CfRL-U, you must precede
it with a \, just as you would do at the normal system command level. A more
general way of typing non-printing characters into the file is to precede them
with a CfRL-V. The CfRL-V echoes as a i character on which the cursor rests.
This indicates that the editor expects you to type a control character. In fact you
may type any character and it will be inserted into the file at that point. 8

If you are using autoindent, you can backtab over the indent that it supplies by
typing a CfRL-D. This backs up to a shi/twidth boundary. This only works
immediately after the supplied autoindent.

When you are using autoindent you may wish to place a label at the left margin
of a line. The way to do this easily is to type a caret (CfRL-) and then CfRL-D.
The editor will move the cursor to the left margin for one line, and restore the
previous indent on the next. You can also type a zero (0) followed immediately

8 This is not quite true. vi does not allow the NUlL (CTRL-@) character to appear in files. Also the editor
uses the LF (linefeed or CTRL-J) character to separate lines in the file, so it cannot appear in the middle of a line.
You can insert any other character, however, if you wait for the editor to echo the ~ before you type the
character. In fact, the editor treats a following letter as a request for the corresponding control character. This is
the only way to type'CTRL-S orCI'RL-Q, since the system normally uses them to suspend and resume output and
never gives them to the editor to process .

• \sun ,~ microsystems
Revision A of 17 February 1986

2.9. Command and Function
Reference

Notation

Table 2-5

Chapter 2 - Using vi, the Visual Display Editor 37

by a CTRL-D if you wish to kill all the indent and not have it come back on the
next line.

The following section provides abridged explanations of the vi and ex com­
mands.

Notation used in this section is as follows.

[option] Denotes optional parts of a command. Many vi commands have
an optional count.

[count] . Means that an optional number may precede the command to multi-
ply or iterate the command.

{variable item}
Denotes parts of the command that must appear, but can take a
number of different values.

<character [-character]>
Means that the character or one of the characters in the range
described between the two angle brackets is to be typed. For exam­
ple ESC means type the ESCAPE key. <a-z> means type a lower­
case letter. CfRL-<character> means type the character as a control
character, that is, with the CTRL key held down while simultane­
ously typing the specified character. Here we indicate control charac­
ters with upper-case letters, but CfRL-<uppercase letter> and CfRL­
<lowercase letter> are equivalent. That is, CfRL-D is equal to CfRL­
d. The most common character abbreviations used in this list are as
follows:

Common Character Abbreviations

Character Meaning Hexadecimal
Abbreviation Representation

ESC escape Oxlb
CR carriage return, CfRL-M Oxd
<If> linefeed CfRL-J Oxa
<nl> newline, CfRL-J Oxa (same as linefeed)
<bs> backspace,CTRL-H Ox8
<tab> tab, CfRL-I Ox9
<bell> bell, CfRL-G Ox7
<ff> formfeed, CfRL-L Oxc
<sp> space Ox20
DEL delete Ox7f

.\sun ~~ microsystems
Revision A of 17 February 1986

38 Editing Text Files

Commands

Entry and Exit

Cursor and Page Motion

Following are brief explanations of the vi commands categorized by function
for easy reference.

To use vi to edit a particular file, type:

hostname% vi filename

vi will read the file intro the buffer, and place the cursor at the beginning of the
first line. The first screenful of the file is displayed on the screen.

To exit from vi, type:

zz (or:x o~ :q or :q!)

If you are in some special mode, such as input mode or the middle of a multi­
keystroke command, it may be necessary to type ESC first.

Note: You can move the cursor on your screen with the arrow keys on your
workstation keyboard, the control character versions, or the h, j, k, and 1
keys. If you ar~ using a terminal that does not have arrow keys, use the control
character versions or the h, j, k, and 1 keys.

[count]<bs> or [count]h or [count]~
Move the cursor to the left one character. Cursor stops at the
left margin of the page. [count] specifies the number of
spaces to move.

[count]CTRL-N or [count!j or [count]J, or [count]<lf> .
Move down one line. Moving off the screen scrolls the win­
dow to force a new line onto the screen. Mnemonic: Next

[count]CTRL-P or [count]k or [count]t
Move up one line. Moving off the top of the screen forces
new text onto the screen. Mnemonic: Previous

[count]<sp> or [count]l or [count]~

[count]-

Move to the right one character. Cursor will not go beyond
the end of the line.

Move the cursor up the screen to the beginning of the next
line. Scroll if necessary.

[count]+ or [count]CR

[count] $

o
[count] I

~~sun ~~ microsystems

Move the cursor down the screen to the beginning of the next
line. Scroll up if necessary.

Move the cursor to the end of the line. If there is a count,
move to the end of the line count lines forward in the file.

Move the cursor to the beginning of the first word on the line.

Move the cursor to the left margin of the current line.

Move the cursor to the column specified by the count. The
default is column zero.

Revision A of 17 February 1986

[count]w

[count]W

[count]b

[count]B

[count]e

[count]E

[line number]G

Chapter 2 - Using vi, the Visual Display Editor 39

Move the cursor to the beginning of the next word. If there is
a count, then move forward that many words and position the
cursor at the beginning of the word. Mnemonic: next-word

Move the cursor to the beginning of the next word that fol­
lows a blank space «sp>,<tab>, or <nl». Ignore other
punctuation.

Move the cursor to the preceding word. Mnemonic:
backup-word

Move the cursor to the preceding word that is separated from
the current word by a blank space «sp>,<tab>, or <nl».

Move the cursor to the end of the current word or the end of
the countth word hence. Mnemonic: end-of-word

Move the cursor to the end of the current word which is del­
imited by blank space «sp>,<tab>, or <nl».

Move the cursor to the line specified. Of particular use are
the sequences IG and G, which move the cursor to the begin­
ning and the end of the file respectively. Mnemonic: Go-to

Note: The next four commands (CfRL-D, CfRL-U, CTRL-F, CTRL-B) are not true
motion commands, in that they cannot be used as the object of commands such
as delete or change.

[count]CfRL-D

[count]CfRL-U

[count]CfRL-F

[count]CTRL-B

[count])

[count] (

[count]}

.\sun ,~ mlcrosystems

Move the cursor down in the file by count lines (or the last
count if a new count isn't given). The initial default is half a
page. The screen is simultaneously scrolled up. Mnemonic:
Down

Move the cursor up in the file by count lines. The screen is
simultaneously scrolled down. Mnemonic: Up

Move the cursor to the next page. A count moves that many
pages. Two lines of the previous page are kept on the screen
for continuity if possible. Mnemonic: Forward

Move the cursor to the previous page. Two lines of the
current page are kept if possible. Mnemonic: Backward

Move the cursor to the beginning of the next sentence. A
sentence is defined as ending with a '.', '!', or '?' followed
by two spaces or a <nl>.

Move the cursor backward to the beginning of a sentence.

Move the cursor to the beginning of the next paragraph. This
command works best inside nroff documents. It under­
stands the nroff macros in-ms, for which the commands
. IP, . LP, . PP, . QP, as well as the nroff command
. bp are considered to be paragraph delimiters. A blank line
also delimits a paragraph. The nroff macros that it

Revision A of 17 February 1986

40 Editing Text Files

[count] {

]]

[[

%

[count]H

[count]L

M

m<a-z>

, <a-z>

'<a-z>

~\sun ,~ microsystems

accepts as paragraph delimiters are adjustable. See the entry
for "Paragraphs" in the "Set Commands'f section.

Move the cursor backward to the beginning of a paragraph.

Move the cursor to the next 'section,' where a section is
defined by the set of nroff macros in -ms, in which . NH,
. SHand . H delimit a section. A line beginning with a
<ff><n1> sequence, or a line beginning with a '{' are also
considered to be section delimiters. The last option makes it
useful for finding the beginnings of C functions. The
nroff macros that are used for section delimiters can be
adjusted. See the "sections" entry under the heading "Set
Commands".

Move the cursor backward to the beginning of a section.

Move the cursor to the matching parenthesis or brace. This
is very useful in C or lisp code. If the cursor is sitting on a
(,), { ,or }, it is moved to the matching character at the

other end of the section. If the cursor is not sitting on a brace
or a parenthesis, vi searches forward on that line until it
finds one and then jumps to the match mate.

If there is no count, move the cursor to the top left position
on the screen. If there is a count, then move the cursor to the
beginning of the line count lines from the top of the screen.
Mnemonic: Home

If there is no count, move the cursor to the beginning of the
last line on the screen. If there is a count, move the cursor to
the beginning of the line count lines from the bottom of the
screen. Mnemonic: Last

Move the cursor to the beginning of the middle line on the
screen. Mnemonic: Middle

Mark the place in the file without moving the cursor; use a
character from a to z, '<a-z>', as the label for referring to this
location in the file. See the next two commands. Mnemonic:
mark Note: the mark command is not a motion and cannot be
used as the target of commands such as delete.

Move the cursor to the beginning of the line that is marked
with the label '<a-z>'.

Move the cursor to the exact position on the line that was
marked with the label '<a-z>'.

Move the cursor back to the beginning of the line where it
was before the last non-relative move. A non-relative move
is something such as searching or jumpin& to a specific line
in the file, rather than moving the cursor or scrolling the
screen.

Revision A of 17 February 1986

Searches

Chapter 2 - Using vi, the Visual Display Editor 41

Move the cursor back to the exact spot on the line where it
was located before the last non-relative move.

The following commands search for items in a file.

[count]f{chr}

[count]F { chr}

[count]t {chr}

[count]T {chr}

[count];

[count],

Search forward on the line for the next or countth occurrence
of the character chr. The cursor is placed at the character of
interest. Mnemonic: find character

Search backward on the line for the next or countth
occurrence of the character chr. The cursor is placed at the
character of interest.

Search forward on the line for the next or countth occurrence
of the character chr. The cursor is placed just preceding the
character of interest. Mnemonic: move cursor up to charac­
ter

Search backward on the line for the next or countth
occurrence of the character chr. The cursor is placed just
preceding the character of interest.

Repeat the last f, F, t or T command in the same search
direction.

Repeat the last f, F, t or T command, but in the opposite
search direction. This is useful if you overshoot what you are
looking for.

[count]! [string]! <nl>
Search forward for the next occurrence of 'string'. Wra­
paround at the end of the file does occur. The final/is not
required.

[count]?[string]?<nl>

n

N

Search backward for the next occurrence of 'string'. If a
count is specified, the count becomes the new window size.
Wraparound at the beginning of the file does occur. The final
? is not required.

Repeat the last ![string]! or ?[string]? search. Mnemonic:
next occurrence.

Repeat the last ![string]! or ?[string]? search, but in the
reverse direction.

:gI[string]![editor command]<nl>

• \sun ,~ microsystems

Using the : syntax, it is possible to do global searches like
you can in the ed editor .

Revision A of 17 February 1986

42 Editing Text Files

Text Insertion

Text Deletion

Text Replacement

The following commands insert text. Tenninate all multi-character text inser­
tions with an ESC character. You can always undo the last change by typing a u.
The text insert in insertion mode can contain newlines.

a{text} <esc>

A {text }<esc>

i {text }<esc>

I {text }<esc>

o{ text }<esc>

O{ text }<esc>

Insert text immediately following the cursor position.
Mnemonic: append

Insert text at the end of the current line. Mnemonic: Append

Insert text immediately preceding the cursor position.
Mnemonic: insert

Insert text at the beginning of the current line.

Insert a new line after the line on which the cursor appears
and insert text there. Mnemonic: open new line

Insert a new line preceding the line on which the cursor
appears and insert text there.

The following commands delete text in various ways. You can always undo
changes by typing the u command.

[count] x

[count] X

D

[count]d {motion}

Delete the character or characters starting at the cursor posi­
tion.

Delete the character or characters starting at the character
preceding the cursor position.

Delete the remainder of the line starting at the cursor.
Mnemonic: Delete the rest of line

Delete one or more occurrences of the specified motion. You
can use any motion here described in the secions "Low Level
Character Motions" and "Higher Level Text Objects" . You
can repeat the d (such as [count]dd) to delete count lines.

Use the following commands to simultaneously delete and insert new text. You
can undo all such actions by typing u following the command.

r<chr>

R {text }<esc>

Replace the character at the current cursor position with
<chr>. This is a one-character replacement. No ESC is
required for termination. Mnemonic: replace character

Start overlaying the characters on the screen with whatever
you type. It does not stop until you type an ESC.

[count]s{ text }<esc>
Substitute for count characters beginning at the current cur­
sor position. A '$' appears at the position in the text where
the countth character appears so you will know how much
you are erasing. Mnemonic: substitute

[count]S{ text }<esc>
Substitute for the entire current line or lines. If you do not

.\sun ~ microsystems
Revision A of 17 February 1986

Moving Text

Chapter 2 - Using vi, the Visual Display Editor 43

give a count, a '$' appears at the end of the current line. If
you give a count of more than 1, all the lines to be replaced
are deleted before the insertion begins.

[count]c{ motion} {text }<esc>
Change the specified motion by replacing it with the insertion
text A '$' appears at the end of the last item that is being
deleted unless the deletion involves whole lines. Motions
can be any motion from the sections "Low Level Character
Motions" and "Higher Level Text Objects". Repeat the c
(such as [count]cc) to change count lines.

You can move chunks of text around in a number of ways with vi. There are
nine buffers into which each piece of text deleted or yanked is put in addition to
the undo buffer. The most recent deletion or yank is in the undo buffer and also
usually in buffer 1, the next most recent in buffer 2, and so forth. Each new dele­
tion pushes down all the older deletions. Deletions older than 9 disappear. There
is also a set of named registers, a-z, into which text can optionally be placed. If
you precede any delete or replacement type command by "<a-z>, that named
buffer will contain the text deleted after the command is executed. For example,
"a3dd deletes three lines starting at the current line and puts them in buffer "a.
Referring to an upper-case letter as a buffer name (A-Z) is the same as referring
to the lower-case letter, except that text placed in such a buffer is appended to it
instead of replacing it. There are two more basic commands and some variations
useful in getting and putting text into a file.

[" <a-z>][count]y{motion}
Yank the specified item or count items and put in the undo
buffer or the specified buffer. The variety of items that you
can yank is the same as those that you can delete with the d
command or changed with the c command. In the same
way that dd means delete the current line and cc means
replace the current line, yy means yank the current line.

[" <a-z>] [count]Y Yank the current line or the count lines starting from the
current line. If no buffer is specified, they will go into the
undo buffer, like any delete would. It is equivalent to yy.
Mnemonic: Yank

["<a-z>]p Put undo buffer or the specified buffer down after the cursor.
If you yanked or deleted whole lines into the buffer, they are
put down on the line following the line the cursor is on. If
you deleted something else, like a word or sentence, it is
inserted immediately following the cursor. Mnemonic: put
buffer

Note that text in the named buffers remains there when you
start editing a new file with the : e filecR command. Since
this is so, it is possible to copy or delete text from one file
and carty it over to another file in the buffers. However, the
undo buffer and the ability to undo are lost when changing

Revision A of 17 February 1986

44 Editing Text Files

Miscellaneous Commands

files.

[" <a-z>]P Put undo buffer or the specified buffer down before the cur­
sor. If you yanked or deleted whole lines into the buffer,
they are put down on the line preceding the line the cursor is
on If you deleted something else, like a word or sentence, it
is inserted immediately preceding the cursor.

[count]>{motion} The shift operator right shifts all the text from the line on
which the cursor is located to the line where the motion is
located. The text is shifted by one shiftwidth. (See the "Ter­
minal Infonnation" section.) »means right shift the
current line or lines.

[count]<{motion} The shift operator left shifts all the text from the line on
which the cursor is located to the line where the item is
located. The text is shifted by one shiftwidth. (See the sec­
tion on "Terminal Infonnation".) « means left shift the
current line or lines. Once the line has reached the left mar­
gin, it is not affected further.

[count]={motion} Prettyprints the indicated area according to LISP conventions.
The area should be a LISP s-expression.

A number of useful miscellaneous vi commands follow:

ZZ"

CTRL-L

CTRL-R

u

U

[count]J

Exit from vi. If any changes have been made, the file is
written out. Then you are returned to the shell.

Redraw the current screen. This is useful if messages from a
background process are displayed on the screen, if someone
'writes' to you while you are using vi or if for any reason
garbage gets onto the screen.

On dumb tenninals, those not having the 'delete line' func­
tion (the vt100 for example), vi saves redrawing the screen
when you delete a line by just marking the line with an '@'
at the beginning and blanking the line. If you want to actu­
ally get rid of the lines marked with '@' and see what the
page looks like, type a CfRL-R.

'Dot' repeats the last text modifying command. You can
type a command once and then move to another place and
repeat it by just typing' . ' .

Undo the last command that changed the buffer. Perhaps the
most important command in the editor. Mnemonic: undo

Undo all the text modifying commands perfonned on the
current line since the last time you moved onto it.

Join the current line and the following line. The <nl> is
deleted and the two lines joined, usually with a space
between the end of the first line and the beginning of what

Revision A of 17 February 1986

Special Insert Characters

Q

Chapter 2 - Using vi, the Visual Display Editor 45

was the second line. If the first line ended with a 'period',
two spaces are inserted. A count joins the next count lines.
Mnemonic: Join lines

Switch to e x editing mode. In this mode vi behaves very
much like ed. The editor in this mode operates on single
lines normally and does not attempt to keep the 'window' up
to date. Once in this mode you can also switch to the open
mode of editing by entering the command [line
number]open<nl>. It is similar to the normal visual mode
except the window is only one line long. Mnemonic: Quit
visual mode

CfRL-] An abbreviation for a tag command. The cursor should be
positioned at the beginning of a word. That word is taken as
a tag name, and the tag with that name is found as if it had
been typed in a : tag command.

[count] ! {motion} {Sun cmd}<nl>

z{count}<nl>

Any Sun system filter (that is, a command that reads the stan­
dard input and outputs something to the standard output) can
be sent a section of the current file and have the output of the
command replace the original text. Useful examples are pro­
grams like cb, sort, and nroff. For instance, using
sort you can sort a section of the current file into a new list.
Using !! means take a line or lines starting at the line the
cursor is currently on and pass them to the Sun system com­
mand. Note: To escape to the shell for just one command,
use :! { cmd} <nl> (see the "High Level Commands" sec­
tion).

Reset the current window size to count lines and redraw the
screen.

Following are some characters that have special meanings during insert mode.

CTRL-V

["]CTRL-D

~~sun ~~ microsystems

During inserts, typing a CTRL-V quotes control characters into
the file. Any character typed after the CTRL-V is inserted into
the file.

CTRL-D without any argument backs up one shiftwidth. Use
this to remove indentation that was inserted by the autoin­
dent feature. Typing "CTRL-D temporarily removes all the
autoindentation, thus placing the cursor at the left margin.
On the next line, the previous indent level is restored. This is
useful for putting 'labels' at the left margin. OCTRL-D
removes all auto indents and keeps it that way. Thus the cur­
sor moves to the left margin and stays there on successive
lines until you type TABs. As with the TAB, the CTRL-D is
effective only before you type any other 'non-autoindent'
controlling characters. Mnemonic: Delete a shiftwidth

Revision A of 17 February 1986

46 Editing Text Files

: Commands

CfRL-W

<bs>

If the cursor is sitting on a word, CTRL-W moves the cursor
back to the beginning of the word, erasing the word from the
insert. Mnemonic: erase Word

The backspace always serves as an erase during insert modes
in addition to your normal 'erase' character. To insert a <bs>
into your file, quote it with the CfRL-V.

Typing a colon (:) during command mode puts the cursor at the bottom on the
screen in preparation for a command. In the : mode, you can give vi most ex
commands. You can also exit from vi or switch to different files from this
mode. Terminate all commands of this variety by a <n1>, <CD, or ESC.

:w[!] [file]

:q[!]

:e[!] [+[cmd]] [file]

CfRL-"

:n[!]

Write out the current text to the disk. It is written to the file
you are editing unless you supply file. Iffile is supplied, the
write is directed to that file instead. If that file already exists,
vi does not write unless you use the '!' indicating you really
want to write over the older copy of the file.

Exit from vi. If you have modified the file you are currently
looking at and haven't written it out, vi refuses to exit
unless you type the !.

Start editing a new file called filename or start editing the
current file over again. The command : e! says 'ignore the
changes I've made to t.his :file and start over from the begin­
ning'. Use it if you really mess up the file. The optional '+'
says instead of starting at the beginning, start at the 'end', or,
if you supply cmd, execute cmd first. Use this where cmd is n
(any integer) that starts at line number n, and / text, searches
for 'text' and starts at the line where it is found.

Switch back to the place in the previous file that you were
editing with vi, before you switched to the current file.
(Same as :e # on the command line.)

Start editing the next file in the argument list. Since you can
call vi with multiple filenames, the : n command tells it to
stop work on the current file and switch to the next file. If
you have modified the current file, it has to be written out
before the : n will work or else you must use '!', which dis­
cards the changes you made to the current file.

:n[!] file [file file ...]

:r file

:r!cmd

Replace the current argument list with a new list of files and
start editing the first file in this new list.

Read in a copy of file on the line after the cursor.

Execute the cmd and take its output and put it into the file
after the current line.

Revision A of 17 February 1986

Set Commands

:!cmd

:ta[!] tag

Chapter 2 - Using vi, the Visual Display Editor 47

Execute any system shell command.

v i looks in the file named tags in the current directory. tags
is a file of lines in the format:

tag filename vi -search-command

If vi finds the tag you specified in the : ta command, it
stops editing the current file if necessary. If the current file is
up to date on the disk, it switches to the file specified and
uses the search pattern specified to find the 'tagged' item of
interest. Use this when editing multi-file C programs such as
the operating system. There is a program called ctags which
generates an appropriate tags file for C and f77 programs so
that by saying : ta function<nl> you can switch to that
function. It can also be useful when editing multi-file docu­
ments, though the tags file has to be generated manually in
this case.

v i has a number of internal variables and switches you can set to achieve special
affects. These options come in three forms: switches that toggle off or on,
options that require a numeric value, and options that require an alphanumeric
string value. Set the toggle options by a command of the form:

: set option<nl>

and tum off the toggle options with the command:

: set nooption<nl>

To set commands requiring a value, use a command of the form:

: set option=value<nl>

To display the value of a specific option, type:

: set option?<nl>

To display only those that you have changed, type:

: set<nl>

and to display the long table of all the settable parameters and their current
values, type:

: set all<nl>

Most of the options have a long form and an abbreviation. Both are described in
the following list as well as the normal default value.

To use values other than the default every time you enter vi, place the appropri­
ate set command in EXINIT in your environment, such as:

setenv EXINIT 'set ai aw terse sh=/bin/csh'

or

4)\ sun
,~ microsystems

Revision A of 17 February 1986

48 Editing Text Files

EXINIT='set ai aw terse sh=/bin/csh'
export EXINIT

for csh and sh, respectively. Place these in your . login or . profile file
in your home directory.

auto indent ai

autoprint ap

autowrite aw

beautify bf

directory dir

errorbells eb

hardtabs ht

ignorecase ic

lisp

list

magic

numbernu

• \sun
~~ microsystems

Default: noai Type: toggle
When in autoindent mode, vi helps you indent code by
starting each line in the same column as the preceding line.
Tabbing to the right with <tab> or CTRL-T moves this boun­
dary to the right; to move it to the left, use CfRL-D.

Default: ap Type: toggle
Displays the current line after each ex text modifying com­
mand. Not of much interest in the nonnal vi visual mode.

Default: noaw type: toggle
Does an automatic write if there are unsaved changes before
certain comniands that change files or otherwise interact with
the outside world are executed. These commands are :!,
: tag, : next, : rewind, CTRL-A, and CTRL-].

Default: nobf Type: toggle
Discards all control characters except <tab>, <nl>, and <ff>.

Default: dir=ltmp Type: string
This is the directory in which vi puts its temporary file.

Default: noeb Type: toggle
Error messages are preceded by a <bell>. Sun Workstations
not equipped with speakers flash instead of beeping.

Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs in your ter­
minal, or of software tabs expanded by the Sun system.

Default: noic Type: toggle
Map all upper-case characters to lower case in regular
expression matching.

Default: nolisp Type: toggle
Autoindent for LISP code. The commands (,), [[, and
]] are modified appropriately to affect s-expressions and
functions.

Default: nolist Type: toggle
Show the <tab> and <nl> characters visually on all displayed
lines.

Default: magic Type: toggle
Enable the metacharacters for matching. These include .,
*,<, >, [string], ["'string],and [<chr>-<chr>].

Default: nonu Type: toggle
Display each line with its line number .

Revision A of 17 February 1986

Chapter 2 - Using vi, the Visual Display Editor 49

open Default: open Type: toggle
When set, prevents entering open or visual modes from ex
or edit. Not of interest from vi.

optimize opt Default: opt Type: toggle
Useful only when using the ex capabilities. This option
prevents automatic <CDS from taking place, and speeds up
output of indented lines, at the expense of losing typeahead
on some versions of the operating system.

paragraphs para Default: para=IPLPPPQPP bp Type: string

prompt

redraw

report

scroll

sections

shell sh

~\sun ,~ microsystelTlS

Each pair of characters in the string indicates nroff mac­
ros to be treated as the beginning of a paragraph for the {
and } commands. The default string is for the -ms macros.
To indicate one-letter nroff macros, such as . P or . H,
insert a space for the second character position. For exam­
ple:

:set paragraphs=PPH\ bp<nl>

causes vi to consider . PP, . Hand . bp as paragraph
delimiters.

Default: prompt Type: toggle
In ex command mode the prompt character : is displayed
when ex is waiting for a command. This is not of interest
from vi.

Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up to date
by sending great amounts of output. Useful only at high
speeds.

Default: report=5 Type: numeric
Set the threshold for the number of lines modified. When
more than this number of lines is modified, removed, or
yanked, vi reports the number of lines changed at the bot­
tom of the screen.

Default: scroll={ 112 window} Type: numeric
This is the number of lines that the screen scrolls up or down
when using the CTRL-U and CTRL-D commands.

Default: sections=SHNHH HU Type: string
Each two-character pair of this string specifies nroff
macro names that are to be treated as the beginning of a sec­
tion by the]] and [[commands. The default string is for
the -ms macros. To enter one-letter nroff macros, use a
quoted space as the second character. See the "Paragraphs"
entry for a fuller explanation.

Default: sh=from environment SHELL or Ibinlsh Type: string
Specify the name of the sh to be used for 'escaped'

Revision A of 17 February 1986

50 Editing Text Files

shiftwidth sw

showmatch sm

slowopen slow

tabstop ts

taglength tl

tenn

terse

warn

window

commands.

Default: sw=8 Type: numeric
Specify the number of spaces that a CfRL-T or CfRL-D will
move over for indenting, and the amount that < and> will
shift by.

Default: nosm Type: toggle
When a) or } is typed, show the matching (or {by
moving the cursor to it for one second if it is on the current
screen.

Default: tenninal dependent Type: toggle
Prevent updating the screen some of the time to improve
speed on tenninals that are slow and dumb.

Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multiples of this
value.

Default: t1=0 Type: numeric
If nonzero, tag names are only significant to this many char­
acters.

Default: (from environment TERM, else dumb) Type: string
This is the tenninal and controls the visual displays. It can­
not be changed when in visual mode; you have to type a Q
to change to command mode, type a set term command,
and enter vi to get back into visual. Or exit from vi, fix
$TERM, and re-enter. The definitions that drive a particular
terminal type are in the file / etc/termcap.

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle
Warns if you try to escape to the shell without writing out the
current changes.

Default: window={8 at 600 baud or less, 16 at 1200 baud,
and screen size - 1 at 2400 baud or more} Type: numeric
Specify the number of lines in the window whenever vi
must redraw an entire screen. It is useful to make this size
smaller if you are on a slow line.

w300, w1200, w9600
Set the window, but only within the corresponding speed
ranges. They are useful in an EXINIT to fine tune window
sizes. For example,

set w300=4 w1200=12

produces a four-line window at speeds up to 600 baud, a 12-
line window at 1200 baud, and a full-screen window (the
default) at over 1200 baud.

Revision A of 17 February 1986

Character Functions

Chapter 2 - Using vi, the Visual Display Editor 51

wrapscan ws Default: ws Type: toggle
Searches will wrap around the end of the file when is option
is set. When it is off, the search will tenninate when it
reaches the end or the beginning of the file.

wrapmargin wm Default: wm=O Type: numeric
vi automatically inserts a <nl> when it finds a natural break
point (usually a <sp> between words) that occurs within wm
spaces of the right margin. Therefore with 'wm=O', the
option is off. Setting it to 10 means that any time you are
within 10 spaces of the right margin, vi looks for a <sp> or
<tab> that it can replace with a <nl>. This is convenient if
you forget to look at the screen while you type. If you go
past the margin (even in the middle of a word), the entire
word is erased and rewritten on the next line.

write any wa Default: nowa Type: toggle
vi nonnally makes a number of checks before it writes out a
file. This prevents you from inadvertently destroying a file.
When the writeany option is enabled, vi no longer makes
these checks.

This section describes how the editor uses each character. The characters are
presented in their order in the ASCII character set: control characters come first,
then most special characters, the digits, upper-, and finally lower-case characters.

For each character we list its meaning as a command and its meaning (if any)
during insert mode.

CTRL-@

CTRL-A

CTRL-B

CTRL-C

CTRL-D

CTRL-E

~~sun ~~ microsystems

Not a command character. If typed as the first character of an
insertion, it is replaced with the last text inserted, and the
insert terminates. Only 128 characters are saved from the last
insert; if more characters were inserted the mechanism is not
available. A CTRL-@ cannot be part of the file due to the editor
implementation.

Unused.

Scroll backward one window. A count specifies repetition.
The top two lines in the window before typing CTRL-B appear
as the bottom two lines of the next window.

Unused.

As a command, scrolls down a half window of text. A count
gives the number of (logical) lines to scroll, and is remem­
bered for future CTRL-D and CTRL-U commands. During an
insert, CTRL-D backtabs over autoindent blank space at the
beginning of a line. This blank space cannot be backspaced
over.

Exposes one more line below the current screen in the file,
leaving the cursor where it is if possible.

Revision A of 17 February 1986

52 Editing Text Files

CfRL-F

CfRL-G

CfRL-H (BS)

CfRL-I (TAB)

CfRL-J (LF)

CfRL-K

CfRL-L

cTRL-M (CR)

CfRL-N

CfRL-O

CfRL-P

CfRL-Q

CTRL-R

CfRL-S

CfRL-T

Move forward one window. A count specifies repetition. The
bottom two lines in the window before typing CTRL-F appear
as the top two lines of the next window.

Equivalent to : fCR. These commands display the current
file, a message if the file has been modified, the line number of
the line the cursor is on, the total number of lines in the file,
and the percentage of the way through the file that the current
line is.

Same as ~ (see h). During an insert, CfRL-H eliminates the
last input character, backing over it but not erasing it; the char­
acter remains so you can see what you typed if you wish to
type something only slightly different.

Not a command character. When inserted it prints as some
number of spaces. When the cursor is at a tab character, it
rests at the last of the spaces that represent the tab. The
tabstop option controls the spacing of tabstops.

Same as J.. (see j).

Unused.

The ASCII formfeed character, that clears and redraws the
screen. This is useful after a transmission error, if characters
typed by a program other than the editor scramble the screen,
or after output is stopped by an intemlpt

A carriage return advances to the next line, at the first non­
blank position in the line. Given a count, it advances that
many lines. During an insert, a CR causes the insert to con­
tinue onto another line.

Same as J.. (see j).

Unused.

Same as t (see k).

Not a command character. In input mode, CfRL-Q quotes the
next character, the same as CfRL-V , except that some teletype
drivers will eat the CfRL-Q so that vi never sees it. Resumes
operation suspended by CfRL-S.

Redraws the current screen, eliminating logical lines not
corresponding to physical lines (lines with only a single @
character on them). On hardcopy terminals in open mode,
retypes the current line.

Some teletype drivers use CfRL-S to suspend output until
CTRL-Q is pressed. Unused.

Not a command character. During an insert with autoindent
set and at the beginning of the line, inserts shiftwidth blank
space.

Revision A of 17 February 1986

CTRL-U

CTRL-V

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

CTRL-[(ESC)

CTRL-\

CTRL-]

CTRL-A
•

CTRL-

SPACE

Chapter 2 - Using vi, the Visual Display Editor 53

Scrolls the screen up half a window, the reverse of CTRL-D,
which scrolls down. Counts work as they do for CTRL-D, and
the previous scroll amount is common to both CTRL-D and
CTRL-U. On a dumb terminal, CTRL-U will often necessitate
clearing and redrawing the screen further back in the file.

Not a command character. In input mode, quotes the next
character so that it is possible to insert non-printing and spe­
cial characters into the file.

Not a command character. During an insert, backs up as b
does in command mode; the deleted characters remain on the
display (see CTRL-H).

Unused.

Exposes one more line above the current screen, leaving the
cursor where it is if possible. (No mnemonic value for this
key; CTRL-Y is the reverse of CTRL-E).

Stops the editor, exiting to the top level shell. Same as
: stopCR.

Cancels a partially-formed command, such as a z when no
following character has yet been given; terminates inputs on
the last line (read by commands such as : / and ?); ends
insertions of new text into the buffer. If an ESC is given when
quiescent in command state, the editor flashes the screen or
rings the bell. You can thus type ESC if you don't know what
is happening till the editor flashes the screen. If you don't
know if you are in insert mode, you can type ESCa, and then
material to be input; the material is inserted correctly whether
or not you were in insert mode when you started.

Unused.

Searches for the word which is after the cursor as a tag.
Equivalent to typing : ta, this word, and then a CR.
Mnemonically, this command is 'go right to' .

Equivalent to : e #CR, returning to the previous position in
the last-edited file, or editing a file that you specified if you
gota No write since last change diagnostic

and do not want to have to type the filename again. You have
to do a : w before CTRL-A will work in this case. If you do not
wish to write the file you should do : e ! #CR instead.

Unused. Reserved as the command character for the Tek­
tronix 4025 and 4027 terminal.

Same as ~ (see 1).

An operator that processes lines from the buffer with reformat­
ting commands. Follow ! with the object to be processed,
and then the command name terminated by CR. Doubling !

Revision A of 17 February 1986

54 Editing Text Files

"

$

%

&

(

• sun
~ microsystems

and preceding it by a count filters the count lines; otherwise
the count is passed on to the object after the !. Thus
2 ! } fmtCR reformats the next two paragraphs by running
them through the program fmt. If you are working on LISP,
the command ! %grindCR, given at the beginning of a func­
tion, will run the text of the function through the LISP grinder.
(The grind command may not be present at all installa­
tions.) To read the output of a command into the buffer, use
: rcommand. To simply execute a command, [from vi], use
: !command.

Precedes a named buffer specification. There are named
buffers 1-9 used for saving deleted text and named buffers
a-z into which you can place text.

The macro character which, when followed by a number, will
substitute for a function key on terminals without function
keys. In input mode, if this is your erase character, it will
delete the last character you typed in input mode, and must be
preceded with a \ to insert it, since it normally backs over the
last input character you gave.

Moves to the end of the current line. If you : se listCR,
the end of each line is indicated by showing a $ after the end
of the displayed text in the line. Given a count, advances to
the count'th following end of line; thus 2 $ advances to the
end of the next line.

Moves to the parenthesis or brace { } that balances the
parenthesis or brace at the current cursor position.

A synonym for : &CR, by analogy with the ex & command.

When followed by a ' ", returns to the previous context at the
beginning of a line. The previous context is set whenever the
current line is moved in a non-relative way. When followed
by a letter a-z, returns to the line that was marked with this
letter with a m command, at the first non-blank character in
the line. When used with an operator such as d, the operation
takes place over complete lines; if you use ", the operation
takes place from the exact marked place to the current cursor
position within the line.

Retreats to the beginning of a sentence, or to the beginning of
a LISP s-expression if the lisp option is set. A sentence ends at
a . , !, or ? and is followed by either the end of a line or by
two spaces. Any number of closing },], ", and ' charac­
ters may appear after the ., !, or ?, and before the spaces or
end of line. Sentences also begin at paragraph and section
boundaries (see the " {" and" [[" entries below). A count
advances that many sentences .

Revision A of 17 February 1986

)

*

+

I

o

~\sun ,~ microsystems

Chapter 2 - Using vi, the Visual Display Editor 55

Advances to the beginning of a sentence. A count repeats the
effect. See (above for the definition of a sentence.

Unused.

Same as CR when used as a command.

Reverse of the last f, F, t, or T command, looking the
other way in the current line. Especially useful after typing
too many ; characters. A count repeats the search.

Retreats to the previous line at the first non-blank character.
This is the inverse of + and RETURN. If the line moved to is
not on the screen, the screen is scrolled, or cleared and
redrawn if scrolling is not possible. If a large amount of scrol­
ling is required, the screen is also cleared and redrawn, with
the current line at the center.

Repeats the last command that changed the buffer. Especially
useful when deleting words or lines; you can delete some
words or lines and then type . to delete more words or lines.
Given a count, it passes it on to the command being repeated.
Thus after a 2 dw, 3. deletes three words.

Reads a string from the last line on the screen, and scans for­
ward for the next occurrence of this string. The normal input
editing sequences may be used during the input on the bottom
line; an ESC returns to command state without ever searching.
The search begins when you type CR to terminate the pattern;
the cursor moves to the beginning of the last line to indicate
that the search is in progress; you can then terminate the
search with a CTRL-C (orDEL or RUB), or by backspacing when
at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a
string anywhere in the buffer.

When used with an operator, the enclosed region is normally
affected. By mentioning an offset from the line matched by
the pattern, you can affect whole lines. To do this, give a pat­
tern with a closing / and then an offset +n or -no

To include the character / in the search string, you must
escape it with a preceding \. A at the beginning of the
pattern forces the match to occur at the beginning of a line
only; this may speed the search. A $ at the end of the pattern
forces the match to occur at the end of a line only. More
extended pattern matching is available. Unless you set
nomagic in your .login file (*?*), you will have to precede
the characters ., [, *, and - in the search pattern with a \
to get them to work as you would naively expect.

Moves to the first character on the current line. Also used, in
forming numbers, after an initial 1-9.

Revision A of 17 February 1986

56 Editing Text Files

1-9

<

>

?

@

A

B

C

D

E

F

G

H

~\sun ,~ microsystems

Used to fonn numeric arguments to commands.

A prefix to a set of commands for file and option manipulation
and escapes to the system. Input is given on the bottom line
and terminated with a CR, and the command is then executed.
You can return to where you were by typing ESC or DEL if
you type : accidentally.

Repeats the last single character find that used f, F, t, or
T. A count iterates the basic scan.

An operator that shifts lines left one shiftwidth, nonnally 8
spaces. Like all operators, affects lines when repeated, as in

, «. Counts are passed through to the basic object, thus 3«
shifts three lines.

Reindents line for LISP, as though they were typed in with lisp
and auto indent set.

An operator that shifts lines right one shiftwidth, nonnally 8
spaces. Affects lines when repeated as in > > . Counts repeat
the basic object.

Scans backward, the opposite of /. See the / description
above for details on scanning.

A macro character. If this is your kill character, you must
escape it with a \ to type it in during input mode, as it nor­
mally backs over the input you have given on the current line.

Appends at the end of line; a synonym for $ a.

Backs up a word, where words are composed of non-blank
sequences, placing the cursor at the beginning of the word. A
count repeats the effect.

Changes the rest of the text on the current line; a synonym for
c$.

Deletes the rest of the text on the current line; a synonym for
d$.

Moves fOlWard to the end of a word, defined as blanks and
non-blanks, like Band W. A count repeats the effect.

Finds a single following character backward in the current
line. A count repeats this search that many times.

Goes to the line number given as preceding argument, or to
the end of the file if you do not give a preceding count. The
screen is redrawn with the new current line in the center if
necessary.

Home arrow. Homes the cursor to the top line on the screen.
If a count is given, the cursor is moved to the count'th line on
the screen. In any case the cursor is moved to the first non-

Revision A of 17 February 1986

I

J

K

L

M

N

o

p

Q

R

S

T

U

• \sun ,~ microsystems

Chapter 2 - Using vi, the Visual Display Editor 57

blank character on the line. If used as the target of an opera­
tor, full lines are affected.

Inserts at the beginning of a line; a synonym for CfRL-i.

Joins together lines, supplying appropriate blank space: one
space between words, two spaces after a ' . ' , and no spaces at
all if the first character of the joined on line is). A count
causes that many lines to be joined rather than the default two.

Unused.

Moves the cursor to the first non-blank character of the last
line on the screen. With a count, to the first non-blank of the
count'th line from the bottom. Operators affect whole lines
when used with L.

Moves the cursor to the middle line on the screen, at the first
non-blank position on the line.

Scans for the next match of the last pattern given to / or ?,
but in the reverse direction; this is the reverse of n.

Opens a new line above the current line and inputs text there
up to an ESC. A count can be used on dumb terminals to
specify a number of lines to be opened; this is generally
obsolete, as the slowopen option works better.

Puts the last deleted text back before/above the cursor. The
text goes back as whole lines above the cursor if it was deleted
as whole lines. OthelWise the text is inserted between the
characters before and at the cursor. May be preceded by a
named buffer specification "x to retrieve the contents of the
buffer; buffers 1-9 contain deleted material, buffers a-z are
available for general use.

Quits from vi to ex command mode. In this mode, whole
lines form commands, ending with a RETURN. You can give
all the : commands; the editor supplies the : as a prompt.

Replaces characters on the screen with characters you type
(overlay fashion). Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes
for that many lines. The lines are saved in the numeric
buffers, and erased on the screen before the substitution
begins.

Takes a single following character, locates the character
before the cursor in the current line, and places the cursor just
after that character. A count repeats the effect. Most useful
with operators such as d.

Restores the current line to its state before you started chang­
ing it .

Revision A of 17 February 1986

58 Editing Text Files

v
w

x

Y

zz

[[

\

]]

a

b

c

Unused.

Moves forward to the beginning of a word in the current line,
where words are defined as sequences of blank/non-blank
characters. A count repeats the effect.

Deletes the character before the cursor. A count repeats the
effect, but only characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be
put back by a later p or P; a very useful synonym for yy. A
count yanks that many lines. May be preceded by a buffer
name to put lines in that buffer.

Exits the editor. (Same as : xCR.) If any changes have been
made, the buffer is written out to the current file. Then the
editor quits.

Backs up to the previous section boundary. A section begins
at each macro in the sections option, normally a . NH or . SH
and also at lines that start with a formfeed CfRL-L. Lines
beginning with {also stop [[; this makes it useful for look­
ing backward, a function at a time, in C programs. If the lisp
option is set, stops at each (at the beginning of a line, and is
thus useful for moving backward at the top level LISP objects.

Unused.

FOr"l¥ard to a section boundary; see [[for a definition.

Moves to the first non-blank position on the current line.

Unused.

When followed by a ' returns to the previous context. The
previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter a-z, returns to
the position that was marked with this letter with an m com­
mand. When used with an operator such as d, the operation
takes place from the exact marked place to the current position
within the line; if you use " the operation takes place over
complete lines.

Appends arbitrary text after the current cursor position; the
insert can continue onto multiple lines by using RETURN
within the insert. A count causes the inserted text to be repli­
cated, but only if the inserted text is all on one line. Terminate
the insertion with an ESC.

Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics, or a sequence of special
characters. A count repeats the effect.

An operator that changes the following object, replacing it
with the following input text up to an ESC. If more than part

Revision A of 17 February 1986

d

e

f

g

h

j

k

I

m

n

o

p

q

r

Chapter 2 - Using vi, the Visual Display Editor 59

of a single line is affected, the text that is changed is saved in
the numeric named buffers. If only part of the current line is
affected, the last character to be changed away is marked with
a $. A count causes that many objects to be affected, thus
both 3 c) and c 3) change the following three sentences.

An operator that deletes the following object. If more than
part of a line is affected, the text is saved in the numeric
buffers. A count causes that many objects to be affected; thus
3dw is the same as d3w.

Advances to the end of the next word, defined as for band
w. A count repeats the effect.

Finds the first instance of the next character following the cur­
sor on the current line. A count repeats the find.

Unused.

Left arrow. Moves the cursor one character to the left. Like
the other arrow keys, either h, the left arrow key, or one of
the synonyms, CTRL-H has the same effect. A count repeats
the effect.

Inserts text before the cursor.

Down arrow. Moves the cursor one line down in the same
column. If the position does not exist, v i comes as close as
possible to the same column. Synonyms include CTRL-J
(linefeed) and CTRL-N.

Up arrow. Moves the cursor up one line. CTRL-P is a
synonym.

Right arrow. Moves the cursor one character to the right.
SPACE is a synonym.

Marks the current position of the cursor in the mark register
that is specified by the next character a-z. Return to this
position or use with an operator using' .. , or ' ".

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise like O.

Puts text after or below the cursor; otherwise like P.

Unused.

Replaces the single character at the cursor with a single char­
acter you type. The new character may be a RETURN; this is
the easiest way to split lines. A count replaces each of the fol­
lowing count characters with the single character given; see R
above which is the more usually useful iteration of r.

Revision A of 17 February 1986

60 Editing Text Files

s

t

u

v

w

x

y

z

{

}

CTRL-C (DEL)

~\sun ~~ microsystems

Changes the single character under the cursor to the text that
follows up to an ESC; given a count, that many characters from
the current line are changed. The last character to be changed
is marked with $ as in c.

Advances the cursor up to the character before the next char­
acter typed. Most useful with operators such as d and c to
delete the characters up to a following character. You can use
. to delete more if this doesn't delete enough the first time.

Undoes the last change made to the current buffer. If
repeated, will alternate between these two states, thus is its
own inverse. When used after an insert that inserted text on
more than one line, the lines are saved in the numeric named
buffers.

Unused.

Advances to the beginning of the next word, as defined by b.

Deletes the single character under the cursor. With a count
deletes that many characters forward from the cursor position,
but only on the current line.

An operator, yanks the following object into the unnamed
temporary buffer. If preceded by a named buffer specification,
"x, the text is placed in that buffer also. Text can be
recovered by a later p or P.

Redraws the screen with the current line placed as specified by
the following character: RETURN specifies the top of the
screen, . the center of the screen, and '-' at the bottom of the
screen. A count before the z gives the number of the line to
place in the center of the screen instead of the default current
line. To change the window size, use a count after the z and
before the RETURN, as in z 5 <CR>.

Retreats to the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraphs option, nor­
mally . IP, . LP, . PP, . QP, and . bp. A paragraph also
begins after a completely empty line, and at each section
boundary (see [[above).

Places the cursor on the character in the column specified by
the count.

Advances to the beginning of the next paragraph. See {for
the definition of paragraph.

Unused.

Interrupts the editor, returning it to command accepting state.

Revision A of 17 February 1986

2.10. Terminal Information

Chapter 2 - Using vi, the Visual Display Editor 61

v i works on a large number of display terminals. You can edit a terminal
description file to drive new tenninals. While it is advantageous to have an intel­
ligent terminal that can locally insert and delete lines and characters from the
display, vi functions quite well on dumb terminals over slow phone lines. vi
allows for the low bandwidth in these situations and uses smaller window sizes
and different display updating algorithms to make best use of the limited speed
available.

You can also use the vi command set on hardcopy terminals, storage tubes and
'glass ttys' using a one-line editing window.

Specifying Terminal Type Before you can start vi you must tell the system what kind of terminal you are
using. Here is a (necessarily incomplete) list of terminal type codes. If your ter­
minal does not appear here, you should consult with one of the staff members on
your system to find out the code for your terminal. If your terminal does not
have a code, one can be assigned and a description for the terminal can be
created.

Table 2-6 Terminal Types

Code Full Name Type

sun Sun Workstation Intelligent
tvi925 Televideo 925 Dumb
wy-50 Wyse50 Dumb
2621 Hewlett-Packard 2621AIP Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACf -IV Dumb
actS Microterm ACf -V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 , Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
HOO Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent
tl061 Teleray 1061 Intelligent
vtS2 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The
code used by the system for this terminal is '2621'. In this case you can use one
of the following commands to tell the system your terminal type:

hostname% setenv TERM 2621

If you are using the Bourne shell, use:

~\sun ~ microsystems
Revision A of 17 February 1986

62 Editing Text Files

Special Arrangements for
Startup

Open Mode on Hardcopy
Terminals and 'Glass tty's'

$ TERM=2621
$ export TERM

If you want to arrange to have your tenninal type set up automatically when you
log in, use the tset program. If you dial in on a mime, but often use hardwired
ports, a typical line for your .login file (if you use csh) is

setenv TERM 'tset - -d mime'

or for your .profile file (if you use sh):

TERM='tset - -d mime'

t s et knows which tenninals are hardwired to each port and needs only to be
told that when you dial in you are probably on a mime. You can use tset to
change the erase and kill characters, too.

vi takes the value of$TERM and looks up the characteristics of that tenninal in
the file / etc/termcap. If you don't know vi's name for the tenninal you
are working on, look in / etc/termcap. The editor adopts the convention
that a null string in the environment is the same as not being set. This applies to
TERM, TERMCAP, and EXINIT.

When vi starts, it attempts to read the variable EXINIT from your environment
If that exists, it takes the values in it as the default values for certain of its inter­
nal constants. IfEXINIT doesn't exist, you will get all the nonnal defaults.

Should you inadvertently hang up the phone while inside vi, or should some­
thing else go wrong, all may not be lost. Upon returning to the system, type:

hostname% vi -r filename

This will nonnally recover the file. If there is more than one temporary file for a
specific filename, vi recovers the newest one. You can get an older version by
recovering the file more than once. The command vi -r without a filename
lists the files from an on-line list that were saved in the last system crash (but not
the file just saved when the phone was hung up).

If you are on a hardcopy tenninal or a terminal that does not have a cursor that
can move off the bottom line, you can still use the command set of vi, but in a
different mode. When you give a vi command, the editor will tell you that it is
using open mode. This name comes from the open command in ex, which is
used to get into the same mode.

The only difference between visual mode and open mode is the way the text
is displayed. In open mode the editor uses a single-line window into the file, and
moving backward and forward in the file displays new lines, always below the
current line. Two vi commands that work differently in open mode are:

o z and

o CTRL-R.

The z command does not take parameters, but rather draws a window of context
around the current line and then returns you to the current line .

• sun
~ microsystems

Revision A of 17 February 1986

Editing on Slow Terminals

Chapter 2 - Using vi, the Visual Display Editor 63

If you are on a hardcopy terminal, the CfRL-R command retypes the current line.
On such terminals, vi normally uses two lines to represent the current line. The
first line is a copy of the line as you started to edit it, and you work on the line
below this line. When you delete characters, the editor types a number of \' s to
show you the characters that are deleted. It also reprints the current line soon
after such changes so that you can see what the line looks like again.

It is sometimes useful to use this mode on very slow terminals that can support
vi in the full screen mode. You can do this by entering ex and using an open
command.

When you are on a slow terminal, it is important to limit the amount of output
that is generated to your screen so that you will not suffer long delays, waiting
for the screen to be refreshed. We have already pointed out how the editor
optimizes the updating of the screen during insertions on dumb terminals to limit
the delays, and how the editor erases lines to @ when they are deleted on dumb
terminals.

The use of the slow terminal insertion mode is controlled by the slowopen
option. You can force the editor to use this mode even on faster terminals by
giving the command:

: se slow<cR>

If your system is sluggish this helps lessen the amount of output coming to your
terminal. You can disable this option by:

:se noslow<cR>

The editor can simulate an intelligent terminal on a dumb one. Try giving the
command:

: se redraW<CR>

This simulation generates a great deal of output and is generally tolerable only on
lightly loaded systems and fast terminals. You can disable this by giving the
command:

: se noredraW<CR>

The editor also makes editing more pleasant at low speed by starting editing in a
small window, and letting the window expand as you edit. This works particu­
larly well on intelligent terminals. The editor can expand the window easily
when you insert in the middle of the screen on these terminals. If possible, try
the editor on an intelligent terminal to see how this works.

You can control the size of the window that is redrawn each time the screen is
cleared by giving window size as an argument to the commands that cause large
screen motions:

: I ? [[]] , ,

Thus if you are s~arching for a particular instance of a common string in a file,
you can precede the first search command by a small number, say 3, and the edi­
tor will draw three line windows around each instance of the string it locates.

~\sun ,~ microsystems
Revision A of 17 February 1986

64 Editing Text Files

Upper-case Only Terminals

2.11. Command Summary

You can expand or contract the window size, placing the current line as you
choose, with the z command, as in z 5 <CR>, which changes the window to five
lines. You can also use . or -. Thus the command z 5. redraws the screen
with the current line in the center of a five-line window. Note that the command
5 z . has an entirely different effect, placing line 5 in the center of a new window.
Use -, as in 5 z- to position the cursor at line 5 in the file.

The default window sizes are 8 lines at 300 baud, 16 lines at 1200 baud, and
full-screen size at 9600 baud. Any paud rate less than 1200 behaves like 300,
and any over 1200 like 9600.

If the editor is redrawing or otherwise updating large portions of the display, you
can interrupt this updating by typing a DEL or RUB as usual. If you do this, you
may partially confuse the editor about what is displayed on the screen. You can
still edit the text on the screen if you wish; clear up the confusion by typing a
CTRL-L, or you can move or search through the file again, ignoring the current
state of the display.

See the section on open mode for another way to use the vi command set on
slow terminals.

If your terminal has only upper-case characters, you can still use v i by using
the normal system convention for typing on such a terminal. Characters that you
normally type are converted to lower case, and you can type upper-case letters by
preceding them with a '\'. The characters { - } I ' are not available on such tenni­
nals, but you can escape them as \(\" \) \! \'. These characters are represented on

• •• • • • • • 1\

the QISplay In the same way they are typed.;'

The following is a quick summary of frequently used commands. Refer to the
quick reference pages for a reference summary of all commands.

9 The '\' character you give will not echo until you type another key .

• \sun ~~ microsystems
Revision A of 17 February 1986

Table 2-7

Chapter 2 - Using vi, the Visual Display Editor 65

Frequently-Used v i Commands

Command Description

SPACE

CTRL-B
CTRL-D
CTRL-E
CTRL-F
CTRL-G
CTRL-H
CTRL-N
CTRL-P
CTRL-U
CTRL-Y

+

/
?
B
b
E
e
G
H
L
M
n
W
w

CTRL-W
DEL
CTRL-U

A
a
C
c
D
d
I
i
o
o
U
u

advance the cursor one column
scroll backward one window
scroll down in the file half a window
exposes another line at the bottom of the window
scroll forward one window
tell what is going on
backspace the cursor
move down to next line, same column
move up to previous line, same column
scroll up in the file half a window
expose another line at the top of the window
move down to the next line, at the beginning of the line
move up to the previous line, at the beginning of the line
scan forward in the file for the following string
scan backward in the file for the following string
move the cursor back one word, ignoring punctuation
move the cursor back a word or punctuation character
move the cursor to the end of the current word ignoring punctuation
move the cursor to the end of the current word
go to specified line; default is last line in file
move the cursor to the top (or head) of the window
move the cursor to the last screen line
move the cursor to the middle screen line
scan through file for next instance of / or ? pattern
move the cursor forward one word, ignoring punctuation
move the cursor forward a word or punctuation character

erase a word during an insert
your erase character (or CTRL-H), erases a character during an insert
your kill character (or CTRL-X), kills the insert on this line
repeats the changing command
appends text at the end of the current line
appends text after the cursor
changes entire line
changes the object you specify to the following text
deletes to the end of a line
deletes the object you specify
inserts text at the beginning of a line
inserts text before the cursor
opens and inputs new lines, above the current line
opens and inputs new lines, below the current line
undoes the changes you made to the current line
undoes the last change

Revision A of 17 February 1986

66 Editing Text Files

$
)
(
}
{
]]
[[
Fx
fx
p

P
y

Y
tx
Tx

.\sun ,~ microsystems

move cursor to first non-blank on line
move cursor to end of line
move cursor forward one sentence
move cursor backward one sentence
move cursor forward one paragraph
move cursor backward one paragraph
move cursor forward one section
move cursor backward one section
find x backward in line
find x forward in line
put text back, before cursor or above current line
put text back, after cursor or below current line
yank one line into buffer
yank the object you specify into buffer; for copies and moves
perfonn some operation forward on the line to x
perfonn some operation backward on the line to x

Revision A of 17 February 1986

Chapter 2 - Using vi, the Visual Display Editor 67

Vi Quick Reference

Entering and Leaving
% vi name

vi
edit name at top
... at line n % vi +nname

% vi + name
% vi-r
% vi-rname
% vi name •••
% vi-ttag
% vi +fpat name
% view name
ZZ
CTRL-Z

The Display
Last line

@ lines
-lines
CfRL-x
tabs

Vi Modes

... at end
list saved files
recover file name
edit first; rest via :n
start at tag
search for pat
read only mode
exit from vi, saving changes
stop vi for later resumption

Error messages, echoing input to : I ? and !,
feedback about i/o and large changes.
On screen only, not in file.
Lines past end of file.
Control characters, DEL is delete.
Expand to spaces, cursor at last

Command Normal and initial state. Others return
here. ESC (escape) cancels partial com­
mand.

Insert Entered by a i A I 0 0 c C s S R. Arbitrary
text then terminates with ESC character, or
abnormally with interrupt.

Last line Reading input for: I ? or !; terminate with
ESC or CR to execute, interrupt to cancel.

Counts Before vi Commands
line/column number z G I
scroll amount CTRL-D CTRL-U
replicate insert a i A I
repeat effect most rest

Simple Commands
dw
de
dd
3dd
itextESC
cwnewESC
easESC
xp

Interrupting, Cancelling

delete a word
... leaving punctuation
delete a line
... 3 lines
insert text abc
change word to new
pluralize word
transpose characters

ESC end insert or incomplete cmd
CTRL-C interrupt (or DEL)
CTRL-L refresh screen if scrambled

File Manipulation
:w write back changes
:wq write and quit
:q quit
:q! quit, discard changes
:e name edit file name
:e! reedit, discard changes
:e + name edit, starting at end
:e +n edit starting at line n
:e # edit alternate file
CTRL-A synonym for :e #
:w name write file name
:w! name overwrite file name
:sh run shell, then return
:!cmd run cmd, then return
:n edit next file in arglist
:n args specify new arglist
:f show current file and line
CTRL-G synonym for : f
:ta tag to tag file entry tag
CTRL-] :ta, following word is tag

Positioning within File
CTRL-F forward screenfu11
CTRL-B backward screenfull
CTRL-D scroll down half screen
CTRL-U scroll up half screen
G goto line (end default)
Ipat next line matching pat
?pat prev line matching pat
n repeat last lor?
N reverse last I or ?
Ipatl+n n'th line after pat
?pat?-n n'th line before pat
]] next sectiOn/function
[[previous sectiOn/function
% find matching () { or }

Adjusting the Screen
CTRL-L clear and redraw
CTRL-R retype, eliminate @ lines
zCR redraw, current at window top
z- ... at bottom
z. . .. at center
Ipatlz- pat line at bottom
zn. use n line window
CTRL-E scroll window down I line
CTRL-Y scroll window up I line

Revision A of 17 February 1986

68 Editing Text Files

Marking and Returning Corrections During Insert
previous context CTRL-H erase last character
... at first non-white in line CTRL-W erases last word

mx mark position with letter x erase your erase, same as CTRL-H ,
x to mark x kill your kill, erase input this line
'x ... at first non-white in line \ escapes CTRL-H, your erase and kill

Line Positioning ESC ends insertion, back to command
CTRL-C interrupt, terminates insert

H home window line CTRL-D backtab over autoindent
L last window line CTRL-"D kill autoindent, save for next
M middle window line OCTRL-D ... but at margin next also
+ next line, at first non-white CTRL-V quote non-printing character

previous line, at first non-white
Insert and Replace CR return, same as +

J. or j next line, same column a append after cursor
fork previous line, same column i insert before

Character Positioning A append at end of line
I insert before first non-blank

first non-blank 0 open line below
0 beginning of line 0 open above
$ end of line rx replace single char with x
hor~ forward R replace characters
lor+- backwards

Operators (double to affect lines) CTRL-H same as +-
space sameas~ d delete
rx find x forward c change
Fx rbackward < left shift
tx upto x forward > right shift
Tx back upto x filter through command

repeat last r F t or T = indent for liSP
, inverse of; y yank lines to buffer
I to specified column

l\liscellafieolls Operations % find matching ({) or }

Words, Sentences, Paragraphs
c change rest of line
D delete rest of line

w- word forward s substitute chars
b back word S substitute lines
e end of word J join lines
) to next sentence x delete characters
} to next paragraph X ... before cursor
(back sentence Y yank lines
{ back paragraph

Yank and Put W blank delimited word
B backW p . put back lines

I E to endofW P put before

Commands for LISP
"xp put from buffer x
"xy yank to buffer x

) Forward s-expression "xd delete into buffer x
} ... but don't stop at atoms

Undo, Redo, Retrieve (Back s-expression
{ ... but don't stop at atoms u undo last change

U restore current line
repeat last change

"dp retrieve d'th last delete

sun Revision A of 17 February 1986
mlcrosystems

Command Reference for the ex Line
Editor

3

Command Reference for the ex Line Editor .. 71

3.1. Using ex ... 71

3.2. File Manipu1ation .. 72

Current File .. 72

Alternate File ... ;............................. 72

Filename Expansion .. 72

3.3. Special Characters ... 73

Multiple Files and Named Buffers .. 73

Read-Only Mode ... 73

3.4. Exceptional Conditions .. 73

Errors and Interrupts ... 73

Recovering If Something Goes Wrong .. 73

3.5. Editing Modes ... 74

3.6. Command Structure ... 74

Specifying Command Parameters ... 74

Invoking Command Variants ... 75

Flags After Commands .. 75

Writing Comments ... 75

Putting Multiple Commands on a Line .. 75

Reporting Large Changes ... 75

3.7. Command Addressing ... 75

Addressing Primitives .. 75

Combining Addressing Primitives .. 76

3.8. Regular Expressions and Substitute Replacement Patterns 76

Regular Expressions .. 76

Magic and Nomagic .. 76

Basic Regular Expression Summary ... 77

Combining Regular Expression Primitives .. 77

Substitute Replacement Patterns .. 78

3.9. Command Reference ... 78

3.10. Option Descriptions ... 88

3.11. Limitations ,.. 94

3.1. Using ex

3
Command Reference for the ex Line

Editor

This chapter10 provides reference material for ex, the line-oriented text editor,
which also supports display oriented editing in the form of the v i editor
described in the chapter "Using vi, the Visual Display Editor". The contents of
this chapter describe the line-oriented part of e x. You can also use these com­
mands with vi. For a summary of ex commands, see the ex Quick Refer­
ence.

ex has a set of options, which you can use to tailor ex.to your liking. The com­
mand edit invokes a version of ex designed for more casual or beginning
users by changing the default settings of some of these options. To simplify the
description which follows, we assume the default settings of the options, and we
assume that you are running ex on a Sun Workstation.

If there is a variable EXINIT in the environment, ex executes the commands in
that variable, otherwise if there is a file . exrc in your HOME directory ex
reads commands from that file, simulating a source command. Option setting
commands placed inEXINIT or . exrc are executed before each editor session.

If you are running ex on a terminal, ex determines the terminal type from the
TERM variable in the environment when invoked. It there is a TERMCAP variable
in the environment, and the type of the terminal described there matches the
TERM variable, that description is used. Also if the TERMCAP variable contains a
pathname (beginning with a I), ex seeks the description of the terminal in that
file, rather than in the default / etc/termcap.)

The standard ex command format follows. Brackets '[' ']' surround optional
parameters here.

hostname% ex [-] [-v] [-t tag] [-r] [-1] [-wn] [-x] [-R]
[+command] filename ...

The most common case edits a single file with no options, that is,:

hostname% ex filename

The '-' command line option option suppresses all interactive-user feedback and
is useful in processing ex scripts in command files. The -v option is

10 The material in this chapter is derived from Ex Reference Manual, W.N. Joy. M. Horton. University of
California. Berkeley.

71 Revision A of 17 February 1986

72 Editing Text Files

3.2. File Manipulation

Current File

Alternate File

Filename Expansion

equivalent to using vi rather than ex. The -t option is equivalent to an ini­
tial tag command, editing the file containing the tag and positioning the editor at
its definition.

Use the -r option to recover a file after an editor or system problem, retrieving
the last saved version of the named file or, if no file is specified, displaying a list
of saved files. The -I option sets up for editing LISP, setting the showmatch and
lisp options. The -w option sets the default window size to n, and is useful on
dialups to start in small windows. The -x option causes ex to prompt for a key,
which is used to encrypt and decrypt the contents of the file, which should
already be encrypted using the same key (see crypt in the Commands Reference
Manualfor the Sun Workstation). The -R option sets the readonly option at the
start. If set, writes will fail unless you use an ! after the write. This option
affects ZZ, autowrite and anything that writes to guarantee you won't clobber a
file by accident Filename arguments indicate files to be edited. An argument of
the form +command indicates that the editor should begin by executing the
specified command. If command is omitted, it defaults to '$', initially position­
ing e x at the last line of the first file. Other useful commands here are scanning
patterns of the form '/pat' or line numbers, such as +100, which means 'start at
line 100.'

The following describes commands for handling files.

ex normally edits the contents of a single file, whose name is recorded in the
current filename. e x performs all editing actions in a buffer into which the text
of the file is initially read. Changes made to the buffer have no effect on the file
being edited unless and until you write the buffer contents out to the file with a
write command. After the buffer contents are written, the previous contents of
the written file are 1)0 longer accessible. When a file is edited, its name becomes
the current filename, and its contents are read into the buffer.

The current file is almost always considered to be edited. This means that the
contents of the buffer are logically connected with the current filename, so that
writing the current buffer contents onto that file, even if it exists, is a reasonable
action. If the current file is not edited, ex will not normally write on it if it
already exists. Thefile command will say [Not edited] if the current file is
not considered edited.

Each time a new value is given to the current filename, the previous current
filename is saved as the alternate filename. Similarly if a file is mentioned but
does not become the current file, it is saved as the alternate filename.

You may specify filenames within the editor using the normal Shell expansion
conventions. In addition, the character % in filenames is replaced by the current
filename and the character 41= by the alternate filename. This makes it easy to
deal alternately with two files and eliminates the need for retyping the name sup­
plied on an edit command after a No write since last change
diagnostic is received.

Revision A of 17 February 1986

3.3. Special Characters

Multiple Files and Named
Buffers

Read-Only Mode

3.4. Exceptional Conditions

Errors and Interrupts

Recovering If Something Goes
Wrong

73

Some characters take on special meanings when used in context searches and in
patterns given to the substitute command. For edit, these are the caret (A) and
dollar sign ($) characters, meaning the beginning and end of a line, respectively.
ex has the following additional special characters:

& *
To use one of the special characters as its simple graphic representation rather
than with its special meaning, precede it by a backslash (\). The backslash
always has a special meaning.

If more than one file is given on the ex command line, the first file is edited as
described above. The remaining arguments are placed with the first file in the
argument list. You can display the current argument list with the args command.
To edit the next file in the argument list, use the next command. You may also
respecify the argument list by specifying a list of names to the next command.
These names are expanded, the resulting list of names becomes the new argu­
ment list, and ex edits the first file on the list.

To save blocks of text while editing, and especially when editing more than one
file, ex has a group of named buffers. These are similar to the nonnal buffer,
except that only a limited number of operations are available on them. The
buffers have names a through z. It is also possible to refer to A through Z; the
upper-case buffers are the same as the lower but commands append to named
buffers rather than replacing if upper-case names are used.

It is possible to use ex in read only mode to look at files that you have no inten­
tion of modifying. This mode protects you from accidently overwriting the file.
Read only mode is on when the readonly option is set. It can be turned on with
the -R command line option, by the view command line invocation, or by set­
ting the readonly option. It can be cleared by setting noreadonly. It is possible
to write, even while in read only mode, by indicating that you really know what
you are doing. You can write to a different file with : w new filename, or can use
the : w! fonn of write, even while in read only mode.

The following clescribes additional editing situations.

When errors occur ex flashes the workstation screen and displays an error diag­
nostic. If the primary input is from a file, editor processing tenninates. If you
interrupt ex, it displays 'Interrupt' and returns to its command level. If the pri­
mary input is a file, ex exits when this occurs.

If something goes wrong and the buffer has been modified since it was last writ­
ten out, or if the system crashes, either the editor or the system (after it reboots)
attempts to preserve the buffer. The next time you log in, you should be able to
recover the work you were doing, losing at most a few lines of changes from the
last point before the problem. To recover a file, use the -r option. If you were
editing the file resume for example, change to the directory where you were when
the problem occurred, and use ex with the -r (recover) option:

.\sun ,~ mlcrosystems
Revision A of 17 February 1986

74 Editing Text Files

3.5. Editing Modes

3.6. Command Structure

Specifying Command
Parameters

hostname% ex -r file

After checking that the retrieved file is indeed ok, you can write it over the previ­
ous contents of that file.

You will normally get mail from the system telling you when a file has been
saved after the system has gone down. Vse the -r option without a following
filename:

hostname% ex -r

to display a list of the files that have been saved for you. In the case of a hangup,
the file will not appear in the list, although it can be recovered.

ex has five distinct modes. The primary mode is command mode. You type in
commands in command mode when a ' : ' prompt is present, and execute them
each time you send a complete line. In insert mode, ex gathers input lines and
places them in the file. The append, insert, and change commands use insert
mode. No prompt is displayed when you are in text input mode. To leave this
mode and return to command mode, type a ' . ' alone at the beginning of a line.

The last three modes are open and visual modes, entered by the commands of
the same names, and, within open and visual modes text insertion mode. In open
and visual modes, you do local editing operations on the text in the file. The
open command displays one line at a time on the screen, while visual works on
the workstation and CRT terminals with random positioning cursors, using the
screen as a single window for file editing changes. See the chapter on "V sing
v i, The Visual Display Editor" for descriptions of these modes.

Most command names are English words; you can use initial prefixes of the
words as acceptable abbreviations. The ambiguity of abbreviations is resolved in
favor of the more commonly used commands. As an example, the command
substitute can be abbreviated as s while the shortest available abbreviation
for the set command is see See the "Command Reference" section for
descriptions and acceptable abbreviations.

Most commands accept prefix addresses specifying the lines in the file upon
which they are to have effect. The forms of these addresses will be discussed
below. A number of commands also may take a trailing count specifying the
number of lines to be involved in the command. Counts are rounded down if
necessary. Thus the command lOp displays the tenth line in the buffer, while
d5 deletes five lines from the buffer, starting with the current line.

Some commands take other information or parameters, that you provide after the
command name. Examples would be option names in a set command such as,
set number, a filename in an edit command, a regular expression in a
substitute command, or a target address for a copy command, such as,
1,5 copy 25.

Revision A of 17 February 1986

Invoking Command Variants

Flags After Commands

Writing Comments

Putting Multiple Commands
on a Line

Reporting Large Changes

3.7. Command Addressing

Addressing Primitives

75

A number of commands have two distinct variants. The variant form of the com­
mand is invoked by placing an ! immediately after the command name. You
can control some of the default variants with options; in this case, the ! serves
to toggle the default.

You may place-the characters =1/:, p and 1 after many commands. You must
precede a p or 1 by a blank or tab except in the single special case of dp. The
command that these characters abbreviates is executed after the command com­
pletes. Since ex normally shows the new current line after each change, p is
rarely necessary. You can also give any number of + or - characters with these
:flags. If they appear, the specified offset is applied to the current line value
before the display command is executed.

It is possible to give editor commands which are ignored. This is useful when
making complex editor scripts for which comments are desired. Use the double
quote "as the comment character. Any command line beginning with "is
ignored. You can also put comments beginning with "at the ends of com­
mands, except in cases where they could be confused as part of text, for example
as shell escapes and the substitute and map commands.

You can place more than one ex command on a line by separating each pair of
commands by a pipe (I) character. However the global commands, comments,
and the shell escape ! must be the last command on a line, as they are not ter­
minated by a I.

Most commands which change the contents of the editor buffer give feedback if
the scope of the change exceeds a threshold given by the report option. This
feedback helps to detect undesirably large changes so that you may quickly and
easily reverse them with undo. After commands with more global effect, such as
global or visual, you will be informed if the net change in the number of lines in
the buffer during this command exceeds this threshold.

The following describes the editor commands called addressing primitives.

n

$

%

+n-n

The current line. The current line is traditionally called 'dot'
because you address it with a dot' • '. Most commands leave the
current line as the last line which they affect. The default address
for most commands is the current line, so you rarely use ' • ' alone as
an address.

The nth line in the editor's buffer, lines being numbered sequentially
from 1.

The last line in the buffer.

An abbreviation for 1, $, the entire buffer.

An offset relative to the current buffer line. The forms • + 3 +3
and +++ are all equivalent; if the current line is line 100, they all
address line 103.

Revision A of 17 February 1986

76 Editing Text Files

Combining Addressing
Primitives

3.8. Regular Expressions and
Substitute Replacement
Patterns

Regular Expressions

Magic and Nomagic

/pat/ ?pat?
Scan forward and backward respectively for a line containing pat, a
regular expression (as defined below in the section "Regular Expres­
sions and Substitute Replacement Patterns". The scans normally
wrap around the end of the buffer. If all that is desired is to show the
next line containing pat, you may omit trailing I or ? If you omit
pat or leave it explicitly empty, the last regular expression specified
is located. The forms V and \? scan using the last regular expression
used in a scan; after a substitute, / / and ?? would scan
using the substitute's regular expression.

" "'x Before each non-relative motion of the current line '.', the previous
current'line is marked with a tag, subsequently referred to as ' ~ ~ '.
This makes it easy to refer or return to this previous context. You
can also establish marks with the mar k command, using single
lower-case letters x and the marked lines referred to as , ... x ' .

Addresses to commands consist of a series of addressing primitives, separated by
',' or ';'. Such address lists are evaluated left-to-right. When addresses are
separated by ';' the current line '.' is set to the value of the previous addressing
expression before the next address is interpreted. If you give more addresses
than the command requires, all but the last one or two are ignored. If the com­
mand takes two addresses, the first addressed line must precede the second in the
buffer. Null address specifications are permitted in a list of addresses; the default
in this case is the current line '.'. So', 100' is equivalent to '.,100'. It is an error
to give a prefix address to a command which expects none.

A regular expression specifies a set of strings of characters. A member of this set
of strings is said to be matched by the regular expression. ex remembers two
previous regular expressions: the previous regular expression used in a sub­
sti tute command and the previous regular expression used elsewhere
(referred to as the previous scanning regular expression). The previous regular
expression can always be referred to by a null regular expression, that is / / or
??

The regular expressions allowed by e x are constructed in one of two ways
depending on the setting of the magic option. The ex and vi default setting of
magic gives quick access to a powerful set of regular expression metacharacters.
The disadvantage of magic is that the user must remember that these metacharac­
ters are magic and precede them with the character backslash (\) to use them as
"ordinary" characters. With nomagic, the default for edit, regular expres­
sions are much simpler because there are only two metacharacters: '''' (beginning
of line) and '$' (end of line). The power of the other metacharacters is still avail­
able by preceding the (now) ordinary character with a \. Note that \ is thus
always a metacharacter.

~\sun ,~ mlcrosystems
Revision A of 17 February 1986

Basic Regular Expression
Summary

Combining Regular
Expression Primitives

77

The remainder of the discussion of regular expressions assumes that the setting
of this option is magic11

The following basic constructs are used to construct magic mode regular expres­
sions.

char An ordinary character matches itself. The characters A at the begin­
ning of a line, $ at the end of line, * as any character other than the
first, ' . " \ , [, and ,-, are not ordinary characters and must be
escaped (preceded) by \ to be treated as such.

$

\<

\>

[string]

At the beginning of a pattern forces the match to succeed only at the
beginning of a line.

At the end of a regular expression forces the match to succeed only
at the end of the line.

Matches any single character except the new-line character.

Fo~ces the match to occur only at the beginning of a 'variable' or
'word'; that is, either at the beginning of a line, or just before a
letter, digit, or underline and after a character not one of these.

Similar to \ <, but matching the end of a 'variable' or 'word,' that is
either the end of the line or before character which is neither a letter,
nor a digit, nor the underline character.

Matches any single character in the class defined by string. Most
characters in string define themselves. A pair of characters
separated by - in string defines a set of characters between the
specified lower and upper bounds, thus [a-z] as a regular expres­
sion matches any single lower-case letter. If the first character of
string is a A, the construct matches all but those characters; thus

[A a-z] matches anything but a lower-case letter and of course a
newline. You must escape any of the characters A, [, or - in
string with a preceding \.

The concatenation of two regular expressions matches the leftmost and then
longest string, which can be divided with the first piece matching the first regular
expression and the second piece matching the second. Any of the single charac­
ter matching regular expressions mentioned above may be followed by the char­
acter * to form a regular expression which matches any number of adjacent
occurrences (including 0) of characters matched by the regular expression it fol­
lows.

The character ' -, may be used in a regular expression, and matches the text
which defined the replacement part of the last sub st it ut e command. A reg­
ular expression may be enclosed between the sequences \ (and \) with side

11 To discern what is true with nomagic it is sufficient to remember that the only special characters in this
case will be ~ at the beginning of a regular expression, $ at the end of a regular expression, and \. With
nomagic the characters ,-, and & also lose their special meanings related to the replacement pattern of a
substitute.

Revision A of 17 February 1986

78 Editing Text Files

Substitute Replacement
Patterns

3.9. Command Reference

effects in the substitute replacement patterns.

The basic metacharacters for the replacement pattern are & and -; these are
given as \ & and \ - when nomagic is set. Each instance of & is replaced by
the characters which the regular expression matched. The metacharacter ,-,
stands, in the replacement pattern, for the defining text of the previous replace­
ment pattern.

Other metasequences possible in the replacement pattern are always introduced
by the escape character \. The sequence '\n' is replaced by the text matched by
the n-th regular subexpression enclosed between \ (and \) .12 The sequences
\ u and \ 1 cause the immediately following character in the replacement to be
converted to upper- or lower-case respectively if this character is a letter. The
sequences \ U and \ L tum such conversion on, either until \E or \ e is
encountered, or until the end of the replacement pattern.

The following form is a prototype for all ex commands:

address command! parameters count flags

All parts are optional; the simplest case is the empty command, which displays
the next line in the file. To avoid confusion from within visual mode, ex ignores
a : preceding any command.

In the following command descriptions, the default addresses are shown in
parentheses, which are not, however, part of the command.

abbreviate word rhs abbr: ab
Add the named abbreviation to the current list. When in input mode in visual, if
word is typed as a complete word, it will be changed to rhs .

(.) append
text

abbr: a

a!
text

Reads the input text and places it after the specified line. After the com­
mand, ' .' addresses the last line input or the specified line if no lines were
input. If address 0 is given, text is placed at the beginning of the buffer.

The variant flag to append toggles the setting for the autoindent option
during the input of text.

12 When nested. parenthesized subexpressions are present. n is detennined by counting occurrences of \ (
starting from the left.

Revision A of 17 February 1986

79

args

The members of the argument list are printed, with the current argument del­
imited by [and].

(., .) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes
the last line input; if no lines were input, it is left as for a delete.

The variant toggles autoindent during the change.

(., .) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be '0' (zero).
The current line' .' addresses the last line of the copy. The command t is
a synonym for copy.

(., .) delete buffer countflagsabbr: d

Removes the specified lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line. If a named buffer is
specified by giving a letter, then the specified lines are saved in that buffer,
or appended to it if an upper case letter is used.

edit file
ex/tie
edit! file

abbr: e

Used to begin an editing session on a new file. Same as : vi file. The edi­
tor first checks to see if the buffer has been modified since the last w r i t e
command was issued. If it has been, a warning is issued and the command is
aborted. The command otherwise deletes the entire contents of the editor
buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensible the editor reads the file into its buffer.
A 'sensible' file is not a binary file such as a directory, a block or character
special file other than / dev / tty, a terminal, or a binary or executable file
as indicated by the first word.

If the read of the file completes without error, the number of lines and char­
acters read is typed. If there were any non-ASCII characters in the file they
are stripped of their non-ASCII high bits, and any null characters in the file
are discarded. If none of these errors occurred, the file is considered edited.
If the last line of the input file is missing the trailing newline character, it
will be supplied and a complaint will be issued. This command leaves the

~\sun ~~ microsystems
Revision A of 17 February 1986

80 Editing Text Files

current line '.' at the last line read. If executed from within open or visual,
the current line is initially the first line of the file.

e! file

The variant form suppresses the complaint about modifications having been
made and not written from the editor buffer, thus discarding all changes
which have been made before editing the new file.

e +nfile

Causes the editor to begin at line n rather than at the last line; n may also be
an editor command containing no spaces, for example: + / pat.

file abbr: f

Prints the current file name, whether it has been [Modified] since the
last write command, whether it is "read only", the current line, the
number of lines in the buffer, and the percentage of the way through the
buffer of the current line. In the rare case that the current file is [No t
edi ted] this is also noted. You have to use w! to write to the file, since
ex does not want to write a file unrelated to the current contents of the
buffer.

filefile

The current filename is changed tofile which is considered [Not

edited] .

(1, $) global Ipatl cmds abbr: g

First marks each line among those specified which matches the given regular
expression. Then the given command list is executed with '.' initially set to
each marked line.

The command list consists of the remaining commands on the current input
line and may continue to multiple lines by ending all but the last such line
with a \. If cmds (and possibly the trailing / delimiter) is omitted, each
line matching pat is printed. append, insert, and change com­
mands and associated input are permitted; the ' . ' terminating input may be
omitted if it would be on the last line of the command list. open and
visual commands are permitted in the command list and take input from
the terminal.

The global command itself may not appear in cmds. The undo com­
mand is also not permitted there, as undo instead can be used to reverse the
entire global command. The options autoprint and autoindent are inhi­
bited during a global, and the value of the report option is temporarily
infinite, in deference to a report for the entire global. Finally, the context .
mark "is set to the value of ' . ' before the global command begins and is
not changed during a global command, except perhaps by an open or
visual command within the global.

~\sun ,~ microsystems
Revision A of 17 February 1986

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.)insert
text

abbr: i

. ,
1..

text

Places the given text before the specified line. The current line is left at the
last line input; if there were none input it is left at the line before the
addressed line. This command differs from append only in the placement
of text.

The variant toggles autoindent during the insert.

(., . +1) join countflags abbr: j

. ,
J .

Places the text from a specified range of lines together on one line. White
space is adjusted at each junction to provide at least one blank character, two
if there was a ' . ' at the end of the line, or none if the first following charac­
ter is a). If there is already white space at the end of the line, then the
white space at the start of the next line will be discarded .

The variant causes a simpler join with no white space processing; the
characters in the lines are simply concatenated.

(.) kx

The k command is a synonym for mar k. It does not require a blank or tab
before the following letter.

(., .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as
CTRL-I ("I) and the end of each line is marked with a trailing $. The current
line is left at the last line printed.

map lhs rhs

The map command is used to define macros for use in visual mode. lhs
should be a single character, or the sequence =11= n, for n a digit, referring to
function key n. When this character or function key is typed in visual mode,
it will be as though the corresponding rhs had been typed. On terminals
without function keys, you can type =ll=n. See the "Macros" section in the
chapter "Using vi, the Visual Display Editor" for more details.

~\sun ,~ microsystems
Revision A of 17 February 1986

82 Editing Text Files

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be
preceded by a blank or a tab. The addressing form ' x then addresses this
line. The current line is not affected by this command.

(., .) move addr abbr: m

The move command repositions the specified lines to be after addr. The
first of the moved lines becomes the current line.

next abbr: n

n!

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not
having been written out, discarding (irretrievably) any changes that may
have been made.

nfilelist
n + command filelist

The specifiedfilelist is expanded and the resulting list replaces the current
argument list; the first file in the new list is then edited. If command is given
(it must contain no spaces), then it is executed after editing the first such file.

(., .) number count flags abbr: * or nu

Prints each specified line preceded by its buffer line number. The current
line is left at the last line printed. The count option specifies the number of
lines to print.

(.) open flags abbr: 0

(.) open /pat / flags

Enters intraline editing open mode at each addressed line. If pat is given,
then the cursor will be placed initially at the beginning of the string matched
by the pattern. To exit this mode, use Q. See the chapter on "Using vi the
Visual Display Editor".

preserve

The current editor buffer is saved as though the system had just crashed.
This command is for use only in emergencies when a write command has
resulted in an error and you don't know how to save your work. After a
preserve you should seek help .

• \sun
~~ microsystems

Revision A of 17 February 1986

83

(., .)print count abbr: p or P

Prints the specified lines with non-printing characters printed as control
characters 'AX'; delete (hexadecimal Ox? f) is represented as ? The
count option specifies the number of lines to print The current line is left at
the last line printed.

(.) put buffer abbr: pu

Puts back previously deleted or yanked lines. Normally used with delete
to effect movement of lines, or with yank to effect duplication of lines. If
no buffer is specified, then the last deleted or yanked text is restored. But no
modifying commands may intervene between the delete or yank and
the put, nor may lines be moved between files without using a named
buffer. By using a named buffer, text may be restored that was saved there
at any previous time.

quit abbr: q

q!

Causes ex to terminate. No automatic write of the editor buffer to a file is
performed. However, ex issues a warning message if the file has changed
since the last write command was issued, and does not quit. ex also
warns you if there are more files in the argument list. Normally, you do
want to save your changes, so you should use a write command; if you
wish to discard them, use the q! command variant

Quits from the editor, discarding changes to the buffer without complaint.

(.) read/lie abbr: r

Places a copy of the text of the given file in the editing buffer after the
specified line. If no file is given the current file name is used. The current
file name is not changed unless there is none in which case file becomes the
current name. The sensibility restrictions for the edit command apply
here also. If the file buffer is empty and there is no current name then ex
treats this as an edit command.

Address '0' (zero) is legal for this command and causes the file to be read at
the beginning of the buffer. Statistics are given as for the edit command
when the read successfully terminates. After a read the current line is the
last line read. Within open and visual modes the current line is set to the
first line read rather than the last.

(.) read ! command

Reads the output of the command command into the buffer after the
specified line. This is not a variant form of the command, rather a read
specifying a command rather than afilename; a blank or tab before the ! is
mandatory.

Revision A of 17 February 1986

84 Editing Text Files

recover file

Recoversfile from the system save area. Used after an accidental hangup of
the phone or a system crash or preserve command. The system saves a
copy of the file you were editing only if you have made changes to the file.
Except when you use preserve you will be notified by mail when a file is
saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current
buffer.

set parameter

With no arguments, prints those options whose values have been changed
from their defaults; with parameter all it prints all of the option values.

Giving an option name followed by a ? causes the current value of that
option to be printed. The ? is unnecessary unless the option is Boolean
valued. Boolean options are given values either by the form set option to
tum them on or set nooption to tum them off; string and numeric options
are assigned via the form set option=value.

More than one parameter may be given to set; they are interpreted from
left to right.

shell abbr: sh

A new shell is created. When it terminates, editing resumes.

sourcefile abbr: so

Reads and executes commands from the specified file. source commands
may be nested.

(., .) substitute Ipatlrepl/ options countflagsabbr: s

On each specified line, the first instance of pattern pat is replaced by
replacement pattern repl. If the global indicator option character g appears,
then all instances are substituted; if the confirm indication character c
appears, then before each substitution the line to be substituted is typed with
the string to be substituted marked with ,. characters. By typing a y one
can cause the substitution to be performed, any other input causes no change
to take place. After a substitute command is executed, the last line
substituted becomes the current line.

Lines may be split by substituting new-line characters into them. The new­
line in repl must be escaped by preceding it with a \. Other metacharacters
available in pat and repl are described below.

~~sun
• microsystem6

Revision A of 17 February 1986

stop

Suspends the editor, returning control to the top level shell. If autowrite is
set and there are unsaved changes, a write is done first unless the fonn
stop! is used. This commands is only available where supported by the
teletype driver and opera~ing system.

(., .) sUbstitute options countflagsabbr: s

If pat and repl are omitted, then the last substitution is repeated. This is a
synonym for the & command.

(., .) t addr flags

The t command is a synonym for copy.

ta tag

85

The focus of editing switches to the location of tag, switching to a different
line in the current file where it is defined, or if necessary to another file. If
you have modified the current file before giving a tag command, you must
write it out; giving another tag command, specifying no tag reuses the pre­
vious tag.

The tags file is nonnally created by a program such as ctags, and consists of
a number of lines with three fields separated by blanks or tabs. The first field
gives the n~me of the tag, the second the name of the file where the tag
resides, and the third gives an addressing fonn which can be used by the edi­
tor to find the tag; this field is usually a contextual scan using 'Ipatl' to be
immune to minor changes in the file. Such scans are always perfonned as if
nomagic were set.

The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command.
Note that global commands are considered a single command for the pur­
pose of undo (as are open and visual commands.) Also, the com­
mands write and edit which interact with the file system cannot be
undone. undo is its own inverse.

un do always marks the previous value of the current line ' .' as"". After an
undo the current line is the first line restored or the line before the first line
deleted if no lines were restored. For commands with more global effect such as
global and visual the current line regains its pre-command value after an
undo.

~\sun ,~ microsyslems
Revision A of 17 February 1986

86 Editing Text Files

unmap lhs

The macro expansion associated by map for lhs is removed.

(1, $) v Ipat I cmds

A synonym for the global command variant g!, running the specified
cmds on each line that does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor
was last changed.

vi file

Same as : edit file or : ex file.

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be '-' ,
'''' or '.' as in the z command to specify the placement of the specified line
on the screen. By default, if type is omitted, the specified line is placed as
the first on the screen. A count specifies an initial window size; the default
is the value of the option window. See the chapter "Using vi, the Visual
Display Editor for more details. To exit visual mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1, $) writefile abbr: w

Writes changes made back tofile, printing the number of lines and characters
written. Normally file is omitted and the text goes back where it came from.
If a file is specified, then text will be written to that file. 13 If the file does not
exist it is created. The current file name is changed only if there is no
current file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor consid­
ers that there has been "No write since last change" even if
the buffer had not previously been modified.

(1, $) write» file abbr: w»

Writes the buffer contents at the end of an existing file.

13 The editor writes to a file only if it is the current file and is edited. if the file does not exist. or if the file is
actually a teletype. /dev/tty, /dev/null. Otherwise. you must give the variant fonn w! to force the
write.

Revision A of 17 February 1986

w! name

Overrides the checking of the normal wr it e command, and will write to
any file which the system permits.

(1, $) w ! command

Writes the specified lines into command. Note the difference between w!
which overrides checks and w ! which writes to a command.

wqname

Like a write and then a quit command.

wq! name

87

The variant overrides checking on the sensibility of the write command,
as w! does.

xit name abbr: x

If any changes have been made and not written, writes the buffer out. Then,
in any case, quits. Same as wq, but does not bother to write if there have
not been any changes to the file.

(., .) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If
no buffer name is specified, the lines go to a more volatile place; see the
put command description.

(. + 1) z count

Print the next count lines, default window.

(.) z type count

Displays a window of text with the specified line at the top. If type is '-' the
line is placed at the bottom; a ' . ' places the line in the center. A count gives
the number of lines to be displayed rather than double the number specified
by the scroll option. On a terminal, the screen is cleared before display
begins unless you give a count less than the screen size. The current line is
left at the last line displayed. Forms z = and z ~ also exist; z = places the
current line in the center, surrounds it with lines of - characters and leaves
the current line at this line. The form z ~ prints the window before z­
would. The characters +, ~ and - may be repeated for cumulative effect.

! command

The remainder of the line after the ! character is sent to a shell to be exe­
cuted. Within the text of command the characters % and =If: are expanded as
in filenames and the character ! is replaced with the text of the previous
command. Thus, in particular, !! repeats the last such shell escape. If any

.sun
~ microsystems

Revision A of 17 February 1986

88 Editing Text Files

3.10. Option Descriptions

such expansion is perfoImed, the expanded line will be echoed. The current
line is unchanged by this command.

If there has been "[No wr i t e] , , of the buffer contents since the last
change to the editing buffer, then a diagnostic will be printed before the
command is executed as a warning. A single ! is printed when the com­
mand completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to com­
mand; the resulting output then replaces the input lines.

($) =

Prints the line number of the addressed line. The current line is unchanged.

(., .) > count flags
(., .) < count flags

PerfoIm intelligent shifting on the specified lines; < shifts left and > shifts
right. The quantity of shift is detetmined by the shiftwidth option and the
repetition of the specification character. Only white space (blanks and tabs)
is shifted; no non-white characters are discarded in a left-shift. The current
line becomes the last line which changed due to the shifting.

CTRL-D

An end-of-file from a teIminal input scrolls through the file. The scroll
option specifies the size of the scroll, nOImally a half screen of text.

(.+1, .+1)
(.+1, .+1)

An address alone causes the addressed lines to be printed. A blank line
prints the next line in the file.

(., .) & options count flags

Repeats the previous sub st it ut e command.

(., .) - options count flags

Replaces the previous regular expression with the previous replacement pat­
tern from a substitution.

auto indent, ai default: noai

The autoindent option can be used to ease the preparation of structured pro­
gram text. At the beginning of each append, change, or insert
command, or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual

.\sun ~ microsystems
Revision A of 17 February 1986

89

mode, ex looks at the line being appended after, the first line changed or
the line inserted before and calculates the amount of white space at the start
of the line. It then aligns the cursor at the level of indentation so deter­
mined.

If you then type in lines of text, they will continue to be justified at the
displayed indenting level. If more white space is typed at the beginning of a
line, the following line will be aligned with the first non-white character of
the previous line. To back the cursor up to the preceding tab stop, type
CTRL-D. The tab stops going backwards are defined at multiples of the
shiftwidth option. You cannot backspace over the indent, except by send­
ing an end-of-file with a CTRL-D.

Specially processed in this mode is a line with no characters added to it,
which turns into a completely blank line (the white space provided for the
autoindent is discarded.) Also specially processed in this mode are lines
beginning with a ... and immediately followed by a CTRL-D. This causes the
input to be repositioned at the beginning of the line, but retains the previous
indent for the next line. Similarly, a '0' (zero) followed by aCTRL-D reposi­
tions at the beginning but without retaining the previous indent.

autoindent doesn't happen in global commands or when the input is not a
terminal.

auto print, ap default: ap

Causes the current line to be printed after each delete, copy, join,
move, substitute, t, undo, or shift command. This has the
same effect as supplying a trailing p to each such command. autoprint is
suppressed in globals, and10nly applies to the last of many commands on a
line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have
modified it and give a next, rewind, stop, tag, or ! command, or
a CTRL-'" (switch files) orCTRL-] (tag goto) command in visual mode. Note,
that the edit and ex commands do not autowrite. In each case, there is
an equivalent way of switching when autowrite is set to avoid the autowrite
(edi t for next, rewind! for rewind, stop! for stop, tag! for
tag, shell for !, and : e 41: and a : ta! command from within visual
mode).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be dis­
carded from the input. A complaint is registered the first time a backspace
character is discarded. beautify does not apply to command input .

• \sun ~~ microsystems
Revision A of 17 February 1986

90 Editing Text Files

directory, dir default: dir=/tmp

Specifies the directory in which e x places its buffer file. If this directory is
not writeable, then the editor will exit abruptly when it fails to be able to
create its buffer there. This feature is useful on systems where / tmp fills
up. Being able to specify that the editor use your own file space can allow
you to edit even if / tmp is full.

edcompatible default: noedcompatible

Causes the presence or absence of g and c suffixes on substitute com­
mands to be remembered, and to be toggled by repeating the suffixes. The
suffix r makes the substitution be as in the - command, instead of like & •

errorbells, eb default: noeb

Error messages are preceded by a beep or bell. 14 If possible the editor
always places the error message in a standout mode of the terminal (such as
inverse video) instead of ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which
the system expands tabs).

ignorecase, ic default: noic

lisp

list

All upper case characters in the text are mapped to lower case in regular
expression matching. In addition, all upper case characters in regular
expressions are mapped to lower case except in character class
specifications.

default: nolisp

autoindent indents appropriately for LISP code, and the (,), { , } , [[,
and]] commands in open and visual modes are modified to have meaning
for LISP.

default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and
ends-of-lines as in the list command.

magic default: magic for ex and vi 15

If nomagic is set, the number of regular expression metacharacters is greatly
reduced, with only and $ having special effects. In addition the meta­
characters - and & of the replacement pattern are treated as normal charac­
ters. All the normal metacharacters may be made magic when nomagic is

14 Beeping and bell ringing in open and visual on errors is not suppressed by setting noeb.

15 nomagic for edit.

Revision A of 17 February 1986

set by preceding them with a backslash (\).

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in
visual mode, if nomesg is set.

number,nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition
each input line will be prompted for by supplying the line number it will
have.

open default: open

91

If noopen, the commands open and visual are not permitted. This is
set for edi t to prevent confusion resulting from accidental entry to open or
visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic
carriage returns when printing more than one (logical) line of output, greatly
speeding output on terminals without addressable cursors when text with
leading white space is printed.

paragraphs, para default: para=IPLPPPQPP Llbp

Specifies the paragraphs for the {and } operations in open and visual
modes. The pairs of characters in the option's value are the names of the
macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a ..

readonly, ro default: off

If set, writes will fail unless you use an ! after the write. Affects x, ZZ,
autowrite and anything that writes to guarantee you won't clobber a file by
accident. Abbreviate to roo

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal
on a dumb terminal (e.g. during insertions in visual mode the characters to
the right of the cursor position are refreshed as each input character is
typed.) Useful only at very high speed.

~)sun
~ mlcrosystems

Revision A of 17 February 1986

92 Editing Text Files

remap default: remap

If on, macros are repeatedly tried until they are unchanged. For example, if
o is mapped to 0, and 0 is mapped to I, then if remap is set, 0 will map to
I, but if noremap is set, it will map to O. Can map q to # and #1 to some­
thing else, and ql to something else. If off, can map CTRL-L to 1 and CfRL-R
to CTRL-L without having CTRL-R map to 1.

report default: report=S16

Specifies a threshold for feedback from commands. Any command which
modifies more than the specified number of lines will provide feedback as to
the scope of its changes. For commands such as global, open, undo,
and visual which have potentially more far reaching scope, the net
change in the number of lines in the buffer is presented at the end of the
command, subject to this same threshold. Thus notification is suppressed
during a global command on the individual commands performed.

scroll default: scroll=1f2 window

Determines the number of logical lines scrolled when an end-of-file is
received from a terminal input in command mode, and the number of lines
printed by a command mode z command (double the value of scroll).

sections default: sections=SHNHH HU

Spe.cifies the section macros fer the [[a.cYld]] operations in open and
visual modes. The pairs of characters in the options's value are the names of
the macros which start paragraphs.

shell, sh default: sh=/binl sh

Gives the path name of the shell forked for the shell escape command !,
and by the she 11 command. The default is taken from SHELL in the
environment, if present.

shiftwidth, SW default: sw=8

Gives the width a software tab stop, used in reverse tabbing with CTRL-D
when using autoindent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the
matching (or {for one second if this matching character is on the screen.
Extremely useful with LISP.

16 2 for edit.

~\sun ,~ microsystems
Revision A of 17 February 1986

93

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updat­
ing during input of new text to improve throughput when the terminal in use
is both slow and unintelligent. See the chapter "Using vi, the Visual
Display Editor" for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the
purposes of display.

taglength, tl default: tl=O

tags

Tags are not significant beyond this many characters. A value of zero (the
default) means that all characters are significant.

default: tags=tags /usr / lib/tags

A path of files to be used as tag files for the tag command, similar to the
path variable of csh. Separate the files by spaces, and precede each space
with a backslash. Files are searched left to right. Always put tags as your
first entry. A requested tag is searched for in the specified files, sequentially.
By default (even in version 2) files called tags are searched for in the current
directory and in / u s r / 1 ib (a master file for the entire system.)

term default: from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

timeout default: on

Causes macros to time out after one second. Tum it off and they wait for­
ever. Use this if you want multi-character macros. If your terminal sends an
escape sequence for arrow keys, type ESC twice.

warn default: warn

Warn if there has been '[No write since last change]' before
a ! command escape.

window default: window=speed dependent

The number of lines in a text window in the vi sua 1 command. The
default is 8 at slow speeds (600 baud or less), 16 at medium speed (1200
baud), and the full screen (minus one line) at higher speeds.

~\sun ~ mlcrosystems
Revision A of 17 February 1986

94 Editing Text Files

3.11. Limitations

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300),
medium (1200), or high (9600), respectively. They are suitable for an
EXINIT and make it easy to change the 8/16/full screen rule. Can specify a
12-line window at 300 baud and a 23-line window at 1200 in your EXINIT
with: :set w300=12 wI200=23. Synonymous with window but only at 300,
1200, and 9600 baud.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past
the end of the file.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and
visual modes. Any number other than 0 (zero) is a distance from the right
edge of the area where wraps can take place. If you type past the margin, the
entire word is rewritten on the next line. Behaves much like filllnojustify
mode in nroff. See the section "Using vi, the Visual Display Editor" for
details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write

Editor limits that the user is likely to encounter are as follows: 1024 characters
per line, 256 characters per global command list, 128 characters per file name,
128 characters in the previous inserted and deleted text in open or visual modes,
100 characters in a shell escape command, 63 characters in a string valued
option, and 30 characters in a tag name, and a limit of 250,000 lines in the file is
silently enforced.

The visual implementation limits the number of macros defined with map to 32,
and the total number of characters in macros to be less than 512.

Revision A of 17 February 1986

9S

Ex Quick Reference

Entering/Leaving ex
% ex name edit name, start at end

... at line n % ex+nname
% ex-ttag
%ex-r
% ex-rname
% exname •••
% ex-Rname
:x
: q!

ex States
Command

Insert

Open/visual

ex Commands
abbrev ab
append a
args ar
change c
copy co
delete d
edit e
file f
global g
insert I
join j
list I
map
mark ma
move m

start at tag
list saved files
recover file name
edit first; rest via :n
read only mode
exit, saving changes
exit, discarding changes

Normal and initial state. Input
prompted for by : . Your kill character
cancels partial command.
Entered by a I and c. Arbitrary text
then terminates with line having only.
character on it or abnormally with
interrupt
Entered by open or vi, terminates with
Q orA\.

next n unabbrev una
number nu undo u
open 0 unmap unm
preserve pre version ve
print P visual vi
put pu write w
quit q xit x
read re yank ya
recover rec window z
rewind rew escape
set se shift <
shell sh print next CR
source so resubst &
stop st rshift >
substitute s scroll AD

ex Command Addresses
n line n /pat next with pat

current ?pat previous with pat
$ last x-n n before x
+ next x,y xthroughy

previous 'x marked with x
+n nforward previous context
% 1,$

Specifying Terminal Type
% setenv TERM type (forcsh)
$ TERM=type; export TERM (for sh)
See also tset in the user's manual.

Some Terminal Types
2621 43 adm31 dw1 h19
2645 733 adm3a dw2 noo
300s 745 c100 gt40 mime
33 act4 dm1520 gt42 owl
37 actS dm2500 h1500 tl061
4014 adm3 dm3025 h1510 vt52

Initializing Options
EXINIT place set's here in environment var.
set x enable option
setnox disable option
setx=val give value val
set show changed options
set all show all options
set x? show value of option x

Useful Options
autolndent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () {} are s-exp's
list print AI for tab, $ at end
magic . [* special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shiftwidth sw for < >, and input AD
showmatch sm to) and } as typed
slowopen slow choke updates during insert
window visual mode lines
wrapscan ws around end of buffer
wrap margin wm automatic line splitting

Scanning Pattern Formation

$

[str]
[tstr]
[x-y]

*

beginning of line
end of line
any character
beginning of word
end of word
any char in str
... not in str
... between x and y
any number of preceding

Revision A of 17 February 1986

4
U sing the e d Line Editor

U sing the ed Line Editor ... 99

4.1. Getting Started .. 99

Creating Text - the Append Command a.. 100

Error Messages - ? ... 101

Writing Text Out as a File - the Write Command w 101

Leaving ed - the Quit Command q .. 102

Creating a New File - the Edit Command e.. 102

Exercise: Trying the e Command ... 103

Checking the Filename - the Filename Command f.......................... 104

Reading Text from a File - the Read Command r 104

Printing the Buffer Contents - the Print Command p 105

Exercise: Trying the p Command ... 106

Displaying Text - the List Command 1 ... 106

The Current Line - 'Dot' or'.' ... 107

Deleting Lines -the Delete Command d... 108

Exercise: Experimenting .. 109

Modifying Text - the Substitute Command s ... 109

The Ampersand & •••••.....•.•....•..••••..•••.•.•••....•••.•••...•••.••.•.••.•.•.•...•..••••.•.••..•.•..••••...•••••••• 111

Exercise: Trying the sand g Commands ... 112

Undoing a Command - the Undo Command u 112

4.2. Changing and Inserting Text - the c and i Commands 113

Exercise: Trying the c ~ommand ... 113

4.3. Specifying Lines in the Editor ... 114

Context Searching .. 114

Exercise: Trying Context Searching .. 115

Specifying Lines with Address Arithmetic - + and 115

Repeated Searches - / / and ?? .. 117

Default Line Numbers and the Value of Dot .. 117

Combining Commands - the Semicolon ; ... 119

Interrupting the Editor .. 120

4.4. Editing All Lines - the Global Commands g and v............................. 121

Multi-line Global Commands .. 122

4.5. Special Characters ... 123

Matching Anything - the Dot' .' ... 123

Specifying Any Character - the Backslash '\' ... 124

Specifying the End of Line - the Dollar Sign $ 126

Specifying the Beginning of the Line - the Circumflex ,. 127

Matching Anything - the Star * .. 127

Character Classes - Brackets [<] .. 129

4.6. Cutting and Pasting with the Editor .. 130

Moving Lines Around .. 130

Moving Text Around - the Move Command m 130

Substituting Newlines .. 132

Joining Lines - the Join Command j ... 132

Rearranging a Line with <\ (... \) ... 133

Marking a Line - the Mark Command k .. 133

Copying Lines - the Transfer Command t ... 134

4.7. Escaping to the Shell with ! ... 134

4.8. Supporting Tools ... 135

Editing Scripts .. 135

Matching Patterns with grep ... 135

4.9. Summary of Commands and Line Numbers .. 136

4.1. Getting Started

4

U sing the e d Line Editor

This chapter17 describes the editing tools of the ed line editor. It provides the
newcomer with elementary instructions and exercises for learning the most
necessary and common commands and the more advanced user with information
about additional editing facilities. The contents include descriptions of append­
ing, changing, deleting, moving, copying and inserting lines of text; reading and
writing files; displaying your files; context searching; the global commands; line
addressing; and using special characters. There are also brief discussions on
writing scripts and on the pattern-matching tool grep, which is related to ed.

We assume that you know how to log in to the system and that you have an
understanding of what a file is. You must also know what character to type as
the end-of-line on your workstation or terminal. This character is the RETURN

key in most cases.

Do the exercises in this chapter as you read along. What you enter at the key­
board is shown in bo1d typewriter font 1ike this.

If you need basic information on the Sun system, refer to the Beginner's Guide to
the Sun Workstation. See ed in the Commands Reference Manualfor the Sun
Workstation for a nutshell description of the ed commands.

The ed text editor is an interactive program for creating and modifying text,
using directions that you provide from your workstation. The text can be a docu­
ment, a program or perhaps data for a program.

We'll assume that you have logged in to your system, and it is displaying the
hostname and prompt character, which we show throughout this manual as:

hostname%

To use ed, type ed and a carriage return at the 'hostname%' prompt:

hostname% ed
hostname%

You are now ready to go. ed does not prompt you for information, but waits for
you to tell it what to do. First you'111eam how to get some text into a file and
later how to change it and make corrections.

17 The material in this chapter is derived from A Tutorial Introduction to tM UNIX Text Editor. B.W. Kemil
UNIX. B.W. Kernighan. Bell Laboratories. Murray Hill. New Jersey .

• sun
~ microsystems

99 Revision A of 17 February 1986

100 Editing Text Files

Creating Text - the Append
Command a

Let's assume you are typing the first draft of a memo and starting from scratch.
When you first start ed, in this case, you are working with a 'blank piece of
paper'; there is no text or information present. To supply this text, you either
type it in or read it in from a file. To type it in, use the append command a.

So, to type in lines of text into the buffer, you type an a followed by a RETURN,

followed by the lines of text you want, like this:

hostname% ed
a<CR>
Now is the time
for all good men
to come to the aid of their party.

If you make a mistake, use the DEL key to back up over and correct your mis­
takes. You cannot go back to a previous line after typing RETURN to correct your
errors. The only way to stop appending is to tell ed that you have finished by
typing a line that contains only a period. It takes practice to remember it, but it
has to be there. If ed seems to be ignoring you, type an extra line with just '.'
on it. You may then find you've added some garbage lines to your text; you will
have to take them out later.

After the append command, your file contains the lines:

Now is the time
for all good men
to come to the aid of their party.

The a and '.' aren't there, because they are not text.

To add more text to what you already have, type another a, and continue typing.

If you have not used a text editor before, read the following to learn a bit of ter­
minology. If you have used an editor, skip to the "Error Messages - ?" sec­
tion.

In ed jargon, the text being worked on is said to be in a work space or 'kept in a
buffer'. The buffer is like a piece of paper on which you write things, change
some of them, and finally file the whole thing away for another day.

You have learned how to tell ed what to do to the text by typing instructions
called commands. Most commands consist of a single letter that you type in
lower case letters. An example is the append command a. Type each command
on a separate line. You sometimes precede the command by information about
what line or lines of text are to be affected; we discuss this shortly.

As you have seen, ed does not respond to most commands; that is, there isn't
any prompting or message display like 'ready'. If this bothers you as a beginner,

'be patient. You'll get used to it.

~\Slln ,~ microsystems
Revision A of 17 February 1986

Error Messages - ?

Writing Text Out as a File -
the Write Command w

Chapter 4 - Using the ed Line Editor 101

When you make an error in the commands you type, ed asks you:

?

This is about as cryptic as it can be, but with practice, you can usually figure out
how you goofed.

When you want to save your text for later use, write out the contents of the buffer
into a file with the write command w, followed by the filename you want to
write in. The w command copies the buffer's contents into the specified file,
destroying any previous information on the file. To save the text in a file named
junk, for example, type:

w junk
68

Leave a space between the wand the filename. ed responds by displaying the
number of characters it wrote out, in this case 68. Remember that blanks and the
return character at the end of each line are included in the character count. The
buffer's contents are not disturbed, so you can go on adding lines to it. This is an
important point. ed works on a copy of a file at all times, not on the file itself.
There is no change in the contents of a file until you type a w. Writing out the
text into a file from time to time is a good idea to save most of your text should
you make some horrible mistake. If you do something disastrous, you only lose
the text in the buffer, not the text that was written into the file.

When you want to copy a portion of a file to another name so you can format it
separately, use the w command. Suppose that in the file being edited you have:

.TS
... lots of stuff

.TE

This is the way a table is set up for the tbl program. To isolate the table in a
separate file called, for example, table, first find the start of the table (the . TS
line), then write out the interesting part:

/A\.TS/
. TS (ed prints the line itfound)
.,/A\.TE/w table

and the job is done. If you are confident, you can do it all at once with:

/A\.TS/;/A\.TE/w table

The point is that w can write out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like; give one line number instead of
two (we explain line numbers later - see the section" Specifying Lines in the
Editor" for details). For example, if you have just typed a very long, complicated
line and you know that you are going to need it or something like it later, then
save it - don't re-type it In the editor, say:

41-\ sun ,~ microsystems
Revision A of 17 February 1986

102 Editing Text Files

Leaving ed - the Quit
Command q

Creating a New File - the
Edit Command e

a
.. . lots of stuff. ..
... very long, complicated line ...

. w temp
number of characters
a
.. . more stuff. ..

. r temp
number of characters
a
... more stuff. ..

This last example is worth studying to be sure you appreciate what's going on.
The . w temp writes the very long, complicated line (the current line) you
typed to the file called temp. The . r temp reads that line from temp into the
file you are editing after the current line 'dot' so you don't have to re-type it.

To terminate an ed session, save the text you're working on by writing it into a
file using the w command, and then type the quit command q.

w
number of characters
q
hostname%

The system responds with the hostname prompt. At this point your buffer van­
ishes, with all its text, which is why you want to write it out before quitting.
Actually, ed displays '1' if you try to quit without writing. At that point, write
the file if you want; if not, type another q to get you out of ed regardless of
whether you changed the file or not.

The edit command e says 'I want to edit a new file called new/tie, without
leaving the editor.' To do this, you type:

e newfile

The e command discards whatever you're currently working on and starts over
on new/tie. It's exactly the same as if you had quit with the q command, then
re-entered ed with a new filename, except that if you have a pattern remem­
bered, a command like / / will still work. (See the section "Repeated Searches
- / / and ??" later in this chapter.)

If you enter ed with the command:

hostname% ed file

ed remembers the name of the file, and any subsequent e, r or w commands
that don't contain a filename refer to this remembered file. Thus:

Revision A of 17 February 1986

Exercise: Trying the e
Command

Chapter 4 - Using the ed Line Editor 103

hostname% ed filel
... (editing) ...

w (writes back in filel)
e file2 (edit new file, without leaving editor)

... (editing in file2) ...
w (writes back in file2)

and so on does a series of edits on various files without ever leaving ed and
without typing the name of any file more than once.

A common way to get text into the buffer is to read it from a file in the file sys­
tem. This is what you do to edit text that you saved with w in a previous ses­
sion. The edit command e also fetches the entire contents of a file into the
buffer. So if you had saved the three lines 'Now is the time', etc., with w in an
earlier session, the ed command e fetches the entire contents of the file junk
into the buffer, and responds with the number of characters in junk:

hostname% e junk
68

If anything was already in the buffer, it is deleted first.

If you use e to read a file into the buffer, you do not need to use a filename after
a subsequent w command; ed remembers the last filename used in an e com­
mand, and w will write on this file. Thus a good way to operate is:

hostname% ed
e file
number of characters
[editing session]
w
number of characters
q
hostname%

This way, you can simply say w from time to time, and be secure that you are
writing into the proper file each time.

Experiment with the e command - try reading and displaying various files.
You may get an error

?name

where name is the name of a file; this means that the file doesn't exist, typically
because you spelled the filename wrong, or perhaps because you are not allowed
to read or write it. Try alternately reading and appending to see that they work
similarly. Verify that:

hostname% ed filename
number of characters infile

is equivalent to:

~\sun ~~ microsyst8ms
Revision A of 17 February 1986

104 Editing Text Files

Checking the Filename - the
Filename Command f

Reading Text from a File -
the Read Command r

hostname% ed
e filename
number of characters infile

You can find out the remembered filename at any time with the f command;
just type f without a filename. In this example, if you type f, ed replies:

hostname% ed junk
68
f
junk

You can also change the name of the remembered filename with f; this follow­
ing sequence guarantees that a careless w command will write on junk instead of
precious .. Try:

hostname% ed precious
f junk

... (editing) ...

Sometimes you want to read a file into the buffer without destroying anything
that is already there. To do this, use the read command r. The command:

r junk
68

the buffer. ed responds with the number of characters in the buffer. So if you
do a read after an edit:

hostname% ed junk
68
r junk
68
w
136
q
hostname%

the buffer contains two copies of the text or six lines (136 characters) in this case.
Like w and e, r displays the number of characters read in after the reading
operation is complete. Now check the file contents with cat:

hostname% cat junk
Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.
hostname%

Revision A of 17 February 1986

Printing the Buffer Contents
- the Print Command p

Chapter 4 - Using the ed Line Editor 105

Generally speaking, you won't use r as much as e.

Suppose you have a file called memo, and you want the file called table to be
inserted just after the reference to Table 1. That is, in memo somewhere is a line
that says

Table 1 shows that ...

The data contained in table has to go there so nroff or troff will format it
properly. Now what?

This one is easy. Edit memo, find 'Table 1', and add the file table right there:

hostname% ed memo
/Table 1/
Table 1 shows that ... (responsejrom ed)
.r table

The critical line is the last one. As we said earlier, the r command reads a file;
here you asked for it to be read in right after line dot. An r command without
any address adds lines at the end, which is the same as $ r.

To print or 'display' the contents of the buffer or parts of it on the screen, use the
print command p. To do this, specify the lines where you want the display to
begin and where you want it to end, separated by a comma, and followed by p.
Thus to show the first two lines of the buffer, for example, say:

1,2p (starting line=l, ending line=2 p)
Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use 1, 3p if
you knew there were exactly three lines in the buffer. But in general, you don't
know how many lines there are, so what do you use for the ending line number?
ed provides a shorthand symbol for 'line number of last line in buffer' - the
dollar sign $. Use it to display all the lines in the buffer, line 1 to last line:

1,$p
Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

If you want to stop the display of more than one screenful before it is finished,
type the INTERRUPT characterCfRL-C (or the DEL key).

CTRL-C
?

ed waits for the next command.

To display the last line of the buffer, you can use:

Revision A of 17 February 1986

106 Editing Text Files

Exercise: Trying the p
Command

Displaying Text - the List
Command 1

$,$p
to come to the aid of their party.

or abbreviate it to:

$p
to come to the aid of their party.

You can show any single line by typing the line number followed by a p. So, to
display the first line of the buffer, type:

lp
Now is the time

In fact, e d lets you abbreviate even further: you can display any single line by
typing just the line number - there is no need to type the letter p. So if you
say:

2
for all good men

ed displays the second line of the buffer.

You can also use $ in combinations to display the last two lines of the buffer,
for example:

$-l,$p
for all good men
to come to the aid of their party.

This helps when you want to see how far you got in typing.

As before, create some text using the a command and experiment with the p
command. You will find, for example, that you can't show line 0 or a line
beyond the end of the buffer, and that attempts to show a buffer in reverse order
don't work. For example, you get an error message if you type:

3,lp
?

ed provides two commands for displaying the contents of the lines you're edit­
ing. You are familiar with the p command that displays lines of text. Less fam­
iliar is the list command 1 (the letter 'ell'), which gives slightly more informa­
tion than p. In particular, 1 makes visible characters that are normally invisi­
ble, such as tabs and backspaces. If you list a line that contains some of these, 1
will show each tab as ~ and each backspace as ~. A sample display of a ran­
dom file with tab characters and backspaces is:

1
Now is the » time for « all good men

This makes it much easier to correct the sort of typing mistake that inserts extra
spaces adjacent to tabs, or inserts a backspace followed by a space.

~\sun ,~ microsystems
Revision A of 17 February 1986

The Current Line - 'Dot' or , ,

Chapter 4 - Using the ed Line Editor 107

The 1 command also 'folds' long lines for printing. Any line that exceeds 72
characters is displayed on multiple lines. Each printed line except the last is ter­
minated by a backslash ' \', so you can tell it was folded. This is useful for
displaying long lines on small terminal screens. A sample output of a folded line
is:

1
This is an example of using the 1 command to display a very long line that \
has more than 72 characters ••.

Occasionally the I command displays in a line a string of numbers preceded by
a backslash, such as '\07' or '\16'. These combinations make visible the charac­
ters that normally don't show, like form feed or vertical tab or bell. Each such
combination is a single character. When you see such characters, be wary -
they may have surprising meanings when displayed on some terminals. Often
their presence means that your finger slipped while you were typing; you almost
never want them.

Suppose your buffer still contains the six lines as above, and that you have just
typed:

1,3p
Now is the time
for all good men
to come to the aid of their party.

ed has displayed the three lines for you. Try typing just a p to display:

p (no line numbers)
to come to the aid of their party.

The line displayed is the third line of the buffer. In fact it is the last or most
recent line that you have done anything with. (You just displayed it!) You can
repeat p without line numbers, and it will continue to display line 3.

The reason is that ed maintains a record of the last line that you did anything to
(in this case, line 3, which you just displayed) so that you can use it instead of an
explicit line number. You refer to this most recent line by the shorthand symbol:

(pronounced 'dot')
to come to the aid of their party.

Dot is a line number in the same way that '$' is; it means exactly 'the current
line' , or loosely, 'the line you most recently did something to' . You can use it in
several ways - one possibility is to display all the lines from and including the
current line to the end of the buffer .

. , $p
Now is the time
for all good men
to come to the aid of their party.
to come to the aid of their party.

In our example these are lines 3 through 6.

Revision A of 17 February 1986

108 Editing Text Files

Deleting Lines - the Delete
Command d

Some commands change the value of dot, while others do not. The p command
sets dot to the num1:)er of the last line displayed; that is, after this' command sets
both' .' and '$' refer to the last line of the file, line 6.

Dot is most useful in combinations like:

. +1 (or equivalentlYt . +lp)

This means 'show the next line' and is a handy way to step slowly through a
buffer. You can also say:

.-1 (or .-lp)

This means 'show the line before the current line'. Use this to go backward if
you wish. Another useful one is something like:

.-3, .-lp

This command displays the previous three lines.

Don't forget that all of these change the value of dot. You can find out what dot
is at any time by typing:

3

Let's summarize some things about p and dot. Essentially you can precede p
by 0, 1, or 2 line numbers. If you do not give a line number, p shows the
'current line', the line that dot refers to. If there is one line number given with or
U1ithnnt thp lpttpr 'Y"I it ~hnUl~ th~t l;np ~ntl tlnt ;Q QPt thprP· ~ntl if' th~rP ~r~ tum
................. "' W' .. --.,. 1:', u,. ""11.7 -... &"" "'&.11.7 UV ... ~ ... v ... ,..", & ... """"'v.&.v 1104, "'''''f''''''

line numbers, it shows all the lines in that range, and sets dot to the last line
displayed. If you specify two line numbers, the first can't be bigger than the
second.

Typing a single RETURN displays the next line - it's equivalent to . +lp. Try
it. Try typing a -; you will find that it's equivalent to .-lp.

Suppose you want to get rid of the three extra lines in the buffer. To do this, use
the delete command d. The d command is similar to p, except that d deletes
lines instead of displaying them, You specify the lines to be deleted for d
exactly as you do for p:

starting line, ending line d

Thus the command:

4,$d

deletes lines 4 through the end. There are now three lines left, as you can check
by using:

1,$p
Now is the time
for all good men
to come to the aid of their party.

And notice that '$' now is line 3. Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in-the buffer. In that case, dot

~\sun ,~ microsystelTlS
Revision A of 17 February 1986

Exercise: Experimenting

Modifying Text - the
Substitute Command s

Chapter 4 - Using the ed Line Editor 109

is set to '$'.

Experiment with a, e, r, w, p and d until you are sure you know what they
do, and until you understand how to use dot, '$' and the line numbers.

If you are adventurous, try using line numbers with a, rand w as well. You
will find that a appends lines after the line number that you specify rather than
after dot; that r reads a file in after the line number you specify and not neces­
sarily at the end of the buffer; and that w writes out exactly the lines you specify,
not necessarily the whole buffer. These variations are useful, for instance, for
inserting a file at the beginning of a buffer:

Or filename
number of characters

ed indicates the number of characters read in. You can enter lines at the begin­
ning of the buffer by saying:

Oa
• . . text . . •

Or you can write out the lines you specify with w. Notice that . w is very dif­
ferent from:

w
number of characters

One of the most important commands is the substitute command s. Use s to
change individual words or letters within a line or group of lines. For example,
you can correct spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says:

Now is th time

- the 'e' has been left off 'the'. You can use s to fix this up as follows:

ls/th/the/

This says: 'in line 1, substitute for the characters 'th' the characters 'the'. ed
does not display the result automatically, so verify that it works with:

P
Now is the time

You get what you wanted. Notice that dot has been set to the line where the sub­
stitution took place, since p printed that line. The s command always sets dot
in this way.

The general way to use the substitute command is:

starting-line, ending-line s / change this/to this /

Whatever string of characters is between the first pair of slashes is replaced by
whatever is between the second pair, in all the lines between starting-line and

~\sun ~ microsystems
Revision A of 17 February 1986

110 Editing Text Files

ending-line. Only the first occurrence on each line is changed, however. If you
want to change every occurrence, read on below. The rules for line numbers are
the same as those for p, except that dot is set to the last line changed. But there
is a trap for the unwary: if no substitution took place, dot is not changed. This
causes an error' l' as a warning.

Thus you can say:

1,$s/speling/spelling/

and correct the first spelling mistake on each line in the text. (This is useful for
people who are consistent misspellers!)

You can precede any s command by one or two 'line numbers' to specify that
the substitution is to take place on a group of lines. Thus, to change the first
occurrence of 'mispell' to 'misspell' on every line of the file, type:

1,$s/mispell/misspell/

But to change every occurrence in every line, type:

1,$s/mispell/misspell/g

This is more likely what you wanted in this particular case.

Note: Be careful that this is exactly what you want to do. Unless you specify the
substitution specifically, globally changing the string 'the', will also change
every instance of those characters, including 'other', etc.

If you do not give any line numbers, s assumes you mean 'make the substitution
on line dot,' so it changes things only on the current line. You will see that a
very common sequence is to correct a mistake on the current line, and then
display the line to make sure eve~thing is all right:

s/something/something else/p
line with something else

If it didn't, you can try again.

Notice that there is a p on the same line as the s command. With few excep­
tions, p can follow any command. No other multi-command lines are legal.

You can also say:

sl ... /1

which means 'change the first string of characters to nothing;' that is, remove the
first string of characters. Use this sequence for deleting extra words in a line or
removing extra letters from words. For instance, if you had:

Nowxx is the time

To correct this, say:

s/xx//p
Now is the time

Notice that I I (two adjacent slashes) means 'no characters,' not a blank. There
is a difference! (See the section "Repeated Searches" for another meaning of
I I.)

+~ Revision A of 17 February 1986

The Ampersand &

Chapter 4 - Using the ad Line Editor 111

If you want to replace thefirst 'this' on a line with 'that', for example, use:

s/this/that/

If there is more than one 'this' on the line, a second fonn with the trailing global
command g changes all of them:

s/this/that/g

The general fonnat is:

s/ ... / ... /gp

Try other characters instead of slashes to delimit the two sets of characters in the
s command - anything should work except blanks or tabs. If you get funny
results using any of the characters:

$ * \ &

read the section on "Special Characters".

You can follow either fonn of the s command by p or 1 to display or list the
contents of the line.

s/this/that;./p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all acceptable and mean slightly different things. Make sure you know what
the differences are.

You should also notice that if you add a p or 1 to the end of any of these sub­
stitute commands, only the last line that was changed will be displayed, not all
the lines. We will talk later about how to show all the lines that were modified.

The & is a shorthand character- it is used only on the right-hand part of a sub­
stitute command where it means 'whatever was matched on the left-hand side'.
Use it to save typing. Suppose the current line contained:

Now is the time

and you wanted to put parentheses around it. You could just retype the line, but
this is tedious. Or you could say:

s/"'/(/
s/$/)/

using your knowledge of - and $. But the easiest way uses the &:

s/.*/(&)/

This says 'match the whole line, and replace it by itself surrounded by
parentheses' .

You can use the & several times in a line:

s/.*/&? &!!/
Now is the time? Now is the time!!

• sun Revision A of 17 February 1986
~ microsystems

112 Editing Text Files

Exercise: Trying the sand g
Commands

Undoing a Command - the
Undo Command u

or

s/the/& best and & worst/
Now is the best and the worst time

You don't have to match the whole line, of course, if the buffer contains:

the end of the world

you can type:

/world/s//& is at hand/
the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed
to save typing. The string '/world!' found the desired line; the shorthand / /
found the same word in the line; and the & saves you from typing it again.

Notice that & is not special on the left side of a substitute, only on the right side.

The & is a special character only within the replacement text of a substitute
command, and has no special meaning elsewhere. You can tum off the special
meaning of & by preceding it with a backslash (\):

s/ampersand/\&/

converts the word 'ampersand' into the literal symbol '&' in the current line. Of
course this isn't much of a saving if the thing matched is just 'the', but if it is
something truly long or awful, or if it is something like '. *' which matches a lot
of text, you can save some tedious typing. There is also much less chance of
making a typing error in the replacement text. For example, to put parentheses
around a line, regardless of its length, use:

s/.*/(&)/

Experiment with sand g. See what happens if you substitute for some word
on a line with several occurrences of that word. For example, do this:

a
the other side of the coin

s/the/on the/p
on the other side of the coin

Occasionally you will make a substitution in a line, only to realize too late that it
was a mistake. Use the undo command u to undo the last substitution. This
restores the last line that was substituted to its previous state. For example, study
the following example:

~\sun ,~ mlcrosystems
Revision A of 17 February 1986

4.2. Changing and Inserting
Text - the c and i
Commands

Exercise: Trying the c
Command

Chapter 4 - Using the ed Line Editor 113

a/party/country/
p
to come to the aid of their country.
u
p
to come to the aid of their party.

This section discusses the change command c and the insert command i. The
change command changes or replaces a group of one or more lines. The insert
command inserts a group of one or more lines.

The c command replaces a number of lines with different lines you type in at
the workstation. For example, to change lines' .+ l' through '$' to something
else, type:

.+l,$c
. . . type the lines of text you want here

The lines you type between the c command and the '.' take the place of the ori­
ginallines between start line and end line. This is most useful in replacing a line
or several lines that have errors in them.

If you only specify one line in the c command, just that line is replaced. You
can type in as many replacement lines as you like. Notice the use of ' .' to end
the input - this works just like the '.' in the append command and must appear
by itself on a new line. If no line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

'Insert' is similar to append, for instance:

/strinq/i
. . . type the lines to be inserted here .

inserts the given text before the next line that contains 'string', that is, the text
between i and '.' is inserted before the specified line. If no line number is
specified dot is used. Dot is set to the last line inserted.

Change is rather like a combination of delete followed by insert. Experiment to
verify that:

start, end d
i
... text ...

is almost the same as:

start, end c
... text ...

These are not precisely the same if line '$' gets deleted. Check this out. What is
dot?

Revision A of 17 February 1986

114 Editing Text Files

4.3. Specifying Lines in the
Editor

Context Searching

Experiment with a and i, to see that they are similar, but not the same. You
will observe that to append after the given line, you type:

line-number a
... text ...

while to insert before it, you type:

line-number i
... text • . .

Observe that if you do not give a line number, i inserts before line dot, while a
appends after line dot.

To specify which lines are to be affected by the editing commands, you use line
addressing. There are several methods, and they are described below.

One way is context searching. Context searching is simply a method of specify­
ing the desired line, regardless of what its number is, by specifying some context
on it.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

If you want to find the line that contains 'their' so you can change it to 'the'.
With only three lines in the buffer, it's pretty easy to keep track of what line the
word 'their' is on. But if the buffer contains several hundred lines, and you'd
been making changes, deleting and rearranging lines, and so on, you would no
longer really know what this line number would be.

For example, to locate the next occurrence of the characters between slashes
('their'), type:

/their/
to come to the aid of their party.

To search for a line that contains a particular string of characters, the general for­
mat is:

/ string of characters we want to find/

This is sufficient to find the desired line. It also sets dot to that line and displays
the line for verification. 'Next occurrence' means that ed starts looking for the
string at line '.+ l' , ~earches to the end of the buffer, then continues at line 1 and
searches to line dot. That is, the search 'wraps around' from '$' to 1. It scans all
the lines in the buffer until it either finds the desired line or gets back to dot
again. If the given string of characters can't be found in any line, ed displays
the error message:

?

Otherwise it shows the line it found.

~\sun ,~ microsystems
Revision A of 17 February 1986

I Exercise: Trying Context
Searching

Specifying Lines with Address
Arithmetic - + and -

Chapter 4 - Using the ed Line Editor 115

Less familiar is the use of:

?thing?

This command scans backward for the previous occurrence of 'thing'. This is
especially handy when you realize that the thing you want to operate on is back
up the page from where you are currently editing.

The slash and question mark are the only characters you can use to delimit a con­
text search, though you can use essentially any character in a substitute com­
mand. You can do both the search for the desired line and a substitution all at
once, like this:

/their/s/their/the/p
to come to the aid of the party.

There were three parts to that last command: a context search for the desired line,
the substitution, and displaying the line.

The expression / their / is a context search expression. In their simplest
form, all context search expressions are like this - a string of characters sur­
rounded by slashes. Context searches are interchangeable with line numbers, so
you can use them by themselves to find and show a desired line, or as line
numbers for some other command, like s. We use them both ways in the exam­
ples above.

Experiment with context searching. Try a body of text with several occurrences
of the same string of characters, and scan through it using the same context
search.

Try using context searches as line numbers for the substitute, print and delete
commands. You can also use context searching with with r, w, and a.

If you get funny results with any of the characters:

$ * \ &

read the section on "Special Characters".

Another area where you can save typing in specifying lines is to use minus (-)
and plus (+) as line numbers by themselves. To move back up one line in the
file, type:

In fact, you can string several minus signs together to move back up that many
lines:

moves up three lines, as does -3. Thus:

-3,3p

is also identical to the examples above.

Since - is shorter than • -1, use it to change 'bad' to 'good' on the previous
line and on the current line.

~\sun ,~ mlcrosystems
Revision A of 17 February 1986

116 Editing Text Files

-, . a/bad/good/

You can use + and - in combination with searches using / ... / and ?.?,
and with $. To find the line containing 'thing', and position you two lines
before it, type:

/thing/--

The next step is to combine the line numbers like '.' and '$', context searches
like '1 .. ,/' and '?.?' with '+' and '-'. Thus:

$-1

displays the next-to-Iast line of the current file, that is, one line before line '$'.
For example, to recall how far you got in a previous editing session, type:

$-S,$p

which shows the last six lines. (Be sure you understand why it shows six, not
five.) If there are less than six, of course, you'll get an error message. Suppose
the buffer contains the three familiar lines:

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers:

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line, line 2. To
make a change in line 2, you could say:

/Now/+1s/good/bad/

or:

/good/s/good/bad/

or:

/party/-1s/good/bad/

Convenience dictates the choice. You could display all three lines by, for
instance:

/Now/,/party/p

or:

/Now/,/NOW/+2p

or by any number of similar combinations. The first one of these might be better
if you don't know how many lines are involved. Of course, if there were only
three lines in the buffer, you'd use:

1,$p

I/J\sun ,~ microsystems
Revision A of 17 February 1986

Repeated Searches - / / and
??

Default Line Numbers and the
Value of Dot

Chapter 4 - Using the ed Line Editor 117

but not if there were several hundred.

The basic rule is: a context search expression is the same as a line number, so
you can use it wherever a line number is needed.

As another example:

.-3, .+3p

displays from three lines before where you are now at line dot to three lines after,
thus giving you a bit of context. By the way, you can omit the '+':

.-3, .3p

is identical in meaning.

Suppose you ask for the search:

Ihorrible thingl

and when the line is displayed, you discover that it isn't the horrible thing that
you wanted, so you have to repeat the search again. You don't have to re-type
the search; use the construction:

II

as a shorthand for 'the previous thing that was searched for' , whatever it was.
You can repeat this as many times as necessary . You can also search backward
through the file by typing:

??

?? searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can use' II' as the left side of a sub­
stitute command, to mean 'the most recent pattern.'

Ihorrible thingl
... ed prints line with I horrible thing' ...

sllgood/p

To go backward and change a line, say:

??sllgoodl

You can still use the & on the right hand side of a substitute to stand for what­
ever got matched:

Ilsll& &/p

This finds the next occurrence of whatever you searched for last, replaces it by
two copies of itself, then displays the line just to verify that it worked.

One of the most effective ways to speed up your editing is always to know what
lines will be affected by a command if you don't specify the lines it is to act on,
and on what line you will be positioned, that is, the value of dot, when a com­
mand finishes. If you can edit without specifying unnecessary line numbers, you
can save a lot of typing.

~\sun ,~ microsystems
Revision A of 17 February 1986

118 Editing Text Files

As the most obvious example, if you give a search command like:

/thing/

you are left pointing at the next line that contains 'thing'. No address is required
with commands like s to make a substitution on that line. Addresses are also
not required with p to show it, 1 to list it, d to delete it, a to append text after
it, c to change it, or i to insert text before it.

What would happen if there were no 'thing'? Then you are left right where you
were - dot is unchanged. This is also true if you are sitting on the only 'thing'
when you issue the command. The same rules hold for searches that use
? . . . ?; the only difference is the direction in which you search.

The delete command d leaves dot pointing at the line that followed the last
deleted line. When line '$' gets deleted, however, dot points at the new line '$'.

The line-changing commands a, c and i by default all affect the current line.
If you do not give a line number with them, the a appends text after the current
line, c changes the current line, and i inserts text before the current line.

The a, c, and i commands behave identically in one respect - when you stop
appending, changing or inserting, dot points at the last line entered. This is
exactly what you want for typing and editing on the fly. For example, you can
say:

a
... text ...
... botch ... (minor errorj

(to get out of append mode)
s/botch/correct/ (fix botched line)
a
... more text ...

without specifying any line number for the substitute command or for the second
append command. Or you can say:

a
... text ...
... ho"ible botch ... (major error)

(to get out of append mode)
c (replace entire line)
... fixed up line ...

You should experiment to detennine what happens if you do not add any lines
with a, c or i.

The r command reads a file into the text being edited, either at the end if you do
not give an address, or after the specified line if you do. In either case, dot points
at the last line read in. Remember that you can even say 0 r to read a file in at
the beginning of the text. You can also say 0 a or 1 i to start adding text at the
beginning.

The w command writes out the entire file. If you precede the command by one
line number, that line is written, while if you precede it by two line numbers, that
range of lines is written. The w command does not change dot; the current line

.sun
~ mlcrosystems

Revision A of 17 February 1986

Combining Commands - the
Semicolon ;

Chapter 4 - Using the ed Line Editor 119

remains the same, regardless of what lines are written. This is true even if you
say something that involves a context search, such as:

/A\.AB/,/A\.AE/wabstract

Since w is so easy to use, you should save what you are editing regularly as you
go along just in case something goes wrong, or in case you do something foolish,
like clobbering what you're editing.

With the s command, the rule is simple; you are left positioned on the last line
that got changed. If there were no changes, dot doesn't move.

To illustrate, suppose that there are three lines in the buffer, and the cursor is sit­
ting on the middle one:

xl
x2
x3

The command line

-,+s/x/y/p

displays the third line, the last one changed. But if the three lines had been:

xl
y2
y3

and the same command had been issued while dot pointed at the second line,
then the result would be to change and show only the first line, and that is where
dot would be set.

Searches with /... / and ?.? start at the current line and move forward or
backward respectively until they either find the pattern or get back to the current
line. Sometimes this is not what is wanted. Suppose, for example, that the
buffer contains lines like this:

ab

be

Starting at line 1, one would expect that the command:

/a/,/b/p

would display all the lines from the 'ab' to the 'bc' inclusive. Actually this is not
what happens. Both searches (for 'a' and for 'b') start from the same point, and
thus they both find the line that contains 'ab'. The result is to display a single
line. Worse, if there had been a line with a 'b' in it before the 'ab' line, then the

~\sun ,~ microsystems
Revision A of 17 February 1986

120 Editing Text Files

Interrupting the Editor

print command would be in error, since the second line number would be less
than the first, and you cannot display lines in reverse order.

This happens because the comma separator for line numbers doesn't set dot as
each address is processed; each search starts from the same place. In ed, you
can use the semicolon ; just like comma, with the single difference that use of a
semicolon forces dot to be set at that point as the line numbers are being
evaluated. In effect, the semicolon 'moves' dot. Thus in the example above, the
command:

/a/;/b/p

displays the range of lines from 'ab' to 'bc', because after the 'a' is found, dot is
set to that line, and then 'b' is searched for, starting beyond that line.

Use the semicolon when you want to find the second occurrence of something.
For example, to find the second occurrence of 'thing' , you can say:

/thing/
line with 'thing'
//
second line with 'thing'

But this displays the first occurrence as well as the second, and is a nuisance
when you know very well that it is only the second one you're interested in. The
solution is to find the first occurrence of 'thing' , set dot to that line, then find the
second and display only that:

/thing/;//

Closely related is searching for the second previous occurrence of something, as
in:

?something?;??

We leave you to try showing the third or fourth or ... in either direction.

Finally, bear in mind that if you want to find the first occurrence of something in
a file, starting at an arbitrary place within the file, it is not sufficient to say:

l;/thing/

This search fails if 'thing' occurs on line 1. But it is possible to say:

Oi/thing/

This is one of the few places where 0 is a legal line number, for this starts the
search at line 1.

As a final note on what dot gets set to, be aware that if you type an INTERRUPf
(CTRL-C is the default, but your tenninal may be set up with the DELETE,
RUBOUT or BREAK keys) while ed is doing a command, things are put back
together again and your state is restored as much as possible to what it was
before the command began. Naturally, some changes are irrevocable - if you
are reading or writing a file or making substitutions or deleting lines, these will
be stopped in the middle of execution in some clean but unpredictable state;
hence it is not usually wise to stop them. Dot mayor may not be changed .

• sun
~ mlcrosystems

Revision A of 17 February 1986

4.4. Editing All Lines - the
Global Commands g and
v

Chapter 4 - Using the ed Line Editor 121

Displaying is more clear cut Dot is not changed until the display is done. Thus
if you display lines until you see an interesting one, then type CTRL-C, you are not
sitting on that line or even near it Dot is left where it was when the p command
was started.

Use the global command g to execute one or more ed commands on all those
lines in the buffer that match some specified string. For example, to display all
lines that contain 'peling', type:

g/peling/p

As another example:

g/"'\./p

displays all the formatting commands in a file. The pattern that goes between the
slashes can be anything that could be used in a line search or in a substitute com­
mand; the same rules and limitations apply.

For a more useful command, which makes the substitution everywhere on the
line, then displays each corrected line, type:

g/peling/s//pelling/gp

Compare this to the following command line, which only displays the last line
substituted:

1,$s/peling/pelling/gp

Another subtle 9ifference is that the g command does not give a '?' if 'peling' is
not found whereas the s command will.

The substitute command is probably the most useful command that can follow a
global because you can use this to make a change and display each affected line
for verification. For example, you can change the word' SUN' to 'Sun' every­
where in a file, and verify that it really worked, with:

g/SUN/s//Sun/gp

Notice that you use / / in the substitute command to mean 'the previous pat­
tern' , in this case, 'SUN'. The p command is done on every line that matches
the pattern, not just those on which a substitution took place.

The v command is identical to g, except that it operates on those lines that do
not contain an occurrence of the pattern; that is, v 'inverts' the process, so:

v/"'\./p

The command that follows g or v can be anything:

g/"'\./d

deletes all lines that begin with '.', and:

g/"'$/d

deletes all empty lines.

Revision A of 17 February 1986

122 Editing Text Files

Multi-line Global Commands

The global command operates by making two passes over the file. On the first
pass, all lines that match the pattern are marked. On the second pass, each
marked line in tum is examined, dot is set to that line, and the command exe­
cuted. This means that it is possible for the command that follows a g or v to
use addresses, set dot, and so on, quite freely.

g/"\.Pp/+

displays the line that follows each . PP command (the signal for a new para­
graph in some formatting packages). Remember that + means 'one line past
dot'. And:

g/topic/?"\.SH?l

searches for each line that contains 'topic', scans backward until it finds a line
that begins . SH (a section heading) and shows the line that follows that, thus
showing the section headings under which 'topic' is mentioned. Finally:

g/"\.EQ/+,/"\.EN/-p

displays all the lines that lie between lines beginning with . EQ and . EN for­
matting commands.

You can also precede the g and v commands by line numbers, in which case
the lines searched are only those in the range specified.

You can use more than one command under the control of a global command,
although the syntax for expressing the operation is not especially natural or
pleasant. As an exa.1!lple, suppose t.he task is to change 'x' to 'y' and 'a' to 'b' on
all lines that contain 'thing'. Then:

g/thing/s/x/y/\
s/a/b/

is sufficient. The ' \' signals g that the set of commands continues on the next
line; it terminates on the first line that does not end with ' \' . You can't use a
substitute command to insert a newline within a g command.

Watch out for the command:

g/x/s//y/\
s/a/b/

which does not work as you expect. The remembered pattern is the last pattern
that was actually executed, so sometimes it will be 'x' (as expected), and some­
times it will be 'a' (not expected). You must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i commands under a global command;
as with other multi-line constructions, all that is needed is to add an \ at the
end of each line except the last. Thus to add a . nf and . sp command before
each . EQ line, type:

.sun
~ mic:rosystems

Revision A of 17 February 1986

4.5. Special Characters

Matching Anything - the Dot , , .

g/"'\.EQ/i\
.nf\
.sp

Chapter 4 - Using the ed Line Editor 123

You do not need a final line containing a '.' to terminate the i command, unless
you are using further commands under the global command. On the other hand,
it does no harm to put it in either.

Certain characters have unexpected meanings when they occur in the left side of
a substitute command, or in a search for a particular line. You may have noticed
that things just don't work right when you use some characters like '~', *, $,
and others in context searches and with the substitute command. These special
characters are called metacharacters. Basically, ed treats these characters as
special, with special meanings. For instance, in a context search or the first
string of the substitute command only, '.' means 'any character,' not a period, so:

/x.y/

means 'a line with an 'x', any character, and a 'y' " not just 'a line with an 'x', a
period, and a 'y'.' A complete list of the special characters is:

$ * \

Use the 'dot' metacharacter ' .' to match any single character. For example, to
find any line where 'x' and 'y' occur separated by a single character, type:

/x.y/

You may get any of:

x+y
x-y
x y
x.

and so on.

Since '.' matches a single character, it gives you a way to deal with funny char­
acters that 1 displays. Suppose you have a line that, when displayed with the l.
command, appears as:

thQ7is

and you want to get rid of the 07 (which represents the bell character, by the
way).

The most obvious solution is to try:

s/07//

but this will fail. (Try it) The brute force solution, which most people would
now take, is to re-type the entire line. This is guaranteed, and is acmally quite a
reasonable tactic if the line in question isn't too big, but for a very long line, re­
typing is a bore. This is where the metacharacter ' .' comes in handy. Since '07'
really represents a single character, if we say:

Revision A of 17 February 1986

124 Editing Text Files

Specifying Any Character -
the Backslash ' \,

s/th.is/this/

the job is done. The'.' matches the mysterious character between the 'h' and the
'i' , whatever it is .

Bear in mind that since '.' matches any single character, the command:

s/./,/

converts the first character on a line into a comma (,), which very often is not
what you intended.

As is true of many characters in ed, the '.' has several meanings, depending on
its context. This line shows all three:

.s/././

The first '.' is a line number, the number of the line we are editing, which is
called 'line dot'. The second '.' is a metacharacter that matches any single char­
acter on that line. The third '.' is the only one that really is an honest literal
period. On the right side of a substitution, '.' is not special. If you apply this
command to the line:

Now is the time.

the result will be:

.s/././

.9W is the time.

which is probabiy not what you intended.

The backslash character' \' is special to ed as noted in the description of the
ampersand. For safety's sake, avoid the backslash where possible. If you have to
use one of the special characters in a substitute command, you can tum off its
magic meaning temporarily by preceding it with the backslash. Thus:

s/\\\.*/backslash dot star/

changes '\. *' into 'backslash dot star' .

Since a period means 'any character' , the question naturally arises of what to do
when you really want a period. For example, how do you convert the line:

Now is the time.

into:

Now is the time?

Use the backslash '\' here as well to tum off any special meaning that the next
character might have; in particular, ' \.' converts the '.' from a 'match anything'
into a period, so you can use it to replace the period in 'Now is the time.', type:

s/\./?/p
Now is the time?

ed treats the pair of characters '\.' as a single real period.

Revision A of 17 February 1986

Chapter 4 - Using the ed Line Editor 125

You can also use the backslash when searching for lines that contain a special
character. Suppose you are looking for a line that contains:

.PP

The search for . pp finds:

I.ppl
THE APPLICATION OF ...

because the '.' matches the letter' A'. But if you say:

I\.ppl

you will find only lines that contain . PP.

Consider finding a line that contains a backslash. The search:

1\1

won't work, because the '\' isn't a literal' \', but instead means that the second
'/' no longer delimits the search. But by preceding a backslash with another one,
you can search for a literal backslash. Thus:

1\\1

does work. Similarly, you can search for a forward slash '/' with:

1\11

The backslash turns off the meaning of the immediately following 'I' so that it
doesn't terminate the 1 .. .1 construction prematurely.

As an exercise, -before reading further, find two substitute commands that each
convert the line:

\x\.\y

into the line:

\x\y

Here are several solutions; verify that each works as advertised.

s/\\\.11
sIx .. /xl
sl . . y/yl

Here are a couple of miscellaneous notes about backslashes and special charac­
ters. First, you can use any character to delimit the pieces of an s command:
there is nothing sacred about slashes. But you must use slashes for context
searching. For instance, in a line that contains a lot of slashes already, like:

Ilexec Ilsys.fort.go II etc ...

you could use a colon as the delimiter - to delete all the slashes, type:

s: I: :q

.sun
~ microsystems

Revision A of 17 February 1986

126 Editing Text Files

Specifying the End of Line -
the Dollar Sign $

When you are adding text with a or i or c, the backslash is not special, and
you should only put in one backslash for each one you really want.

The dollar-sign, $, denotes the end of a line:

/strinq$/

only finds an occurrence of 'string' that is at the end of some line. This implies,
of course, that:

/"'strinq$/

finds a line that contains just 'string', and:

/ $/

finds a line containing exactly one character.

As an obvious use, suppose you have the line:

Now is the

and you wish to add the word 'time' to the end. Use the $ like this:

s/$/ time/p
Now is the time

Notice that a space is needed before 'time' in the substitute command, or you
will get:

Now is thetime

As another example, replace the second comma in a line with a period without
altering the first comma. Type:

s/,$/./p
Now is the time, for all good men,

The $ sign here specifies the comma at the end of the sentence. Without it, of
course, s operates on the first comma to produce:

s/,/./p
Now is the time. for all good men,

As another example, to convert:

Now is the time.

into:

Now is the time?

as you did earlier, you can use:

s/.$/?/p
Now is the time?

Like '.' ,the $ has multiple meanings depending on context. In the line:

$s/$/$/

~~sun ~~ microsystems
Revision A of 17 February 1986

Specifying the Beginning of
the Line - the Circumflex ...

Matching Anything - the
Star *

Chapter 4 - Using the ed Line Editor 127

the first $ refers to the last line of the file, the second refers to the end of that
line, and the third is a literal dollar sign, to be added to that line.

The circumflex ... signifies the beginning of a line. Thus:

/""string/
string

finds 'string' only if it is at the beginning of a line, but not:

the string ...

You can also use ... to insert something at the beginning of a line. For example,
to place a space at the beginning of the current line, type:

s/""/ /

You can combine metacharacters. To search for a line that contains only the char­
acters . pp by typing:

/""\.PP$/

Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some indeterminate number of
spaces between the 'x' and the 'y'. Suppose the job is to replace all the spaces
between 'x' and 'y' by a single space. The line is too long to retype, and there
are too many spaces to count. What now?

This is where the metacharacter * comes in handy. A character followed by a
star stands for as many consecutive occurrences of that character as possible. To
refer to all the spaces at once, say:

sIx *y/x y/

The construction * means 'as many spaces as possible'. Thus x *y means
'an x, as many spaces as possible, then a y'.

You can use the star with any character, not just the space. If the original exam­
ple was instead:

re~ x--------y rext

then you can replace all - signs by a single space with the command:

s/x-*y/x y/

Finally, suppose that the line was:

te~ x y text

Can you see what trap lies in wait for the unwary? What will happen if you
blindly ty~:

~\sun ,~ microsystems
Revision A of 17 February 1986

128 Editing Text Files

s/x.*y/x yl

The answer, naturally, is that it depends. If there are no other x's ory's on the
line, then 'everything works, but it's blind luck, not good management.
Remember that' .' matches any single character. Then '. *' matches as many sin­
gle characters as possible, and unless you're careful, it can eat up a lot more of
the line than you expected. If the line was, for example, like this:

text x text x............... y text y text

then saying:

s/x.*y/x yl

takes everything from thefirst 'x' to the last 'y'. In this example, this is more
than you wanted.

The solution, of course, is to tum off the special meaning of ' .' with
\ . :
s/x\.*y/x yl

Now everything works, for \. * means 'as many periods as possible'.

The dot is useful in conjunction with *, a repetition character; a * is a short­
hand for 'any number of 'a' s', so • * matches any number of any things. Use
this like:

s/.*/stuffl

which changeS an entire line, or:

s/.*,11

which deletes all characters in the line up to and including the last comma. Since
* finds the longest possible match, this goes up to the last comma.

There are times when the pattern . * is exactly what you want. For example,
use:

Now is the time for all good men
sl for.*I./p
Now is the time.

The • * replaces all of the characters from the space before the word 'for' with a
dot. The string 'Now is the time.' is the result in this example.

There are a couple of additional pitfalls associated with * that you should be
aware of. First note that 'as many as possible' means zero or more. The fact that
zero is a legitimate possibility is sometimes rather surprising. For example, if
your line contained:

text xy text x

and you said:

sIx *y/x yl

y text

thefirst 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a 'y'.
The result is that the substitute acts on the first 'xy', and does not touch the later

Revision A of 17 February 1986

Character Classes - Brackets
[]

Chapter 4 - Using the ed Line Editor 129

one that actually contains some intervening spaces.

The way around this, if it matters, is to specify a pattern like:

/X¥~*y/

where b represents a blank. This describes 'an x, a space, then as many more
spaces as possible, then a y' , in other words, one or more spaces.

The other startling behavior of * is again related to the fact that zero is a legiti­
mate number of occurrences of something followed by a star. The following
command does not produce what was intended:

abcdef
8/X*/y/g
p
yaybycydyeyfy

The reason for this behavior again, is that zero is a legal number of matches, and
there are no x's at the beginning of the line (so that gets converted into a 'y'), nor
between the 'a' and the 'b' (so that gets converted into a 'y'), nor ... and so on.
Make sure you really want zero matches; if not, in this case write:

8/XX*/y/g

xx* is 'one or more 'x's'.

The [and] brackets form 'character classes'. Any characters can appear
within a character class, and just to confuse the issue, there are essentially no
special characters inside the brackets; even the backslash doesn't have a special
meaning. For example, to match any single digit, use:

/[0123456789]/

Anyone of the characters inside the braces will cause a match. It is a nuisance to
have to spell out the digits, so you can abbreviate them as [0-9]. Similarly, [a-z]
stands for the lower-case letters, and [A-Z] for upper case.

Suppose that you want to delete any numbers that appear at the beginning of all
lines of a file. You might first think of trying a series of commands like:

1,$8/"'1*//
1,$8/"'"2*//
1,$8/"'3*//

and so on, but this is clearly going to take forever if the numbers are at all long.
Unless you want to repeat the commands over and over until all numbers are
gone, you must get all the digits on one pass. This is the purpose of the brackets
[and].

Another example: To match zero or more digits (an entire number), and to delete
all digits from the beginning of a1llines, type:

1,$8/"'[0123456789]*//

To search for special characters, for example, you can say:

Revision A of 17 February 1986

130 Editing Text Files

4.6. Cutting and Pasting with
the Editor

Moving Lines Around

Moving Text Around - the
Move Command m

/[.\$"'[]/

Within [...], the [is not special. To get a] into a character class, make it
the first character.

As a final frill on character classes, you can specify a class that means 'none of
the following characters'. To do this, begin the class with a caret (,.) to stand for
'any character except a digit' :

[AO-9]

Thus you might find the first line that does not begin with a tab or space by a
search like:

/ ... [... (space) (tab)]/

Within a character class, the circumflex has a special meaning only if it occurs at
the beginning. Just to convince yourself, verify that to find a line that doesn't
begin with a circumflex, you type:

/ ... [......]/

ed has commands for manipulating individual lines or groups of lines in files.

There are several ways to move text around in a file.

Use the move command m for cutting and pasting - you can move a group of
lines from one place to another in the buffer. Suppose you want to put the first
three lines of the buffer at the end instead. You could do it by saying:

1,3w temp
$r temp
1,3d

This is the brute force way; that is, you write the paragraph into a temporary file,
read in the temporary file at the end, and then delete it from its current position.
As another example, consider:

.,/"'\.Pp/-w temp

., / /-d
$r temp

That is, from where you are now (' .') until one line before the next . PP
(/,. \ • PP /-), write into temp. Then delete the same lines. Finally, read in temp
at the end.

But you can do it a lot easier with m, so you can do a whole operation at one
crack.

1,3m$

The general case is:

start line, end line m after this line

Notice that there is a third line to be specified - the place where the moved stuff

.sun
~ microsystema

Revision A of 17 February 1986

Chapter 4 - Using the ed Line Editor 131

gets put.

If you try:

1, 5m3
?

ed reminds you that you can't do this.

The m command is like many other ed commands in that it takes up to two line
numbers in front that tell what lines are to be moved. It is also followed by a line
number that tells where the lines are to go. Thus:

line} , line2 m line3

says to move all the lines between 'line 1 ' and 'line2' after 'line3'. Naturally, any
of 'line 1 ' etc., can be patterns between slashes, dollar signs, or other ways to
specify lines.

Of course you can specify the lines to be moved by context searches; if you had:

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

/Second/,/end of second/m/First/-1

Notice the -1: the moved text goes after the line mentioned. Dot gets set to the
last line moved. Suppose you want to move a paragraph from its present position
in a paper to the end. How would you do it? As a hint, suppose each paragraph
in the paper begins with the formatting command . PP. Think about it and write
down the details before reading on.

Suppose again that you're sitting at the first line of the paragraph. Then you can
say:

.,/'"\.PP/-m$

That's all.

As another example of a frequent operation, you can reverse the order of two
adjacent lines by moving the first one after the second. Suppose that you are
positioned at the first. Then, to move line dot to one line after line dot, type:

m+

If you are positioned on the second line, and want to do the reverse, type:

m--

As you can see, m is more succinct and direct than writing, deleting and re­
reading. When is brute force better? This is a matter of personal taste - do
what you have most confidence in. The main difficulty with m is that if you use
patterns to specify both the lines you are moving and the target, you have to take

Revision A of 17 February 1986

132 Editing Text Files

Substituting Newlines

Joining Lines - the Join
Command j

care that you specify them properly, or you may well not move the lines you
thought you did. The result of a botched m command can be a mess. Doing the
job a step at a time makes it easier for you to verify at each step that you accom­
plished what you wanted to. It's also a good idea to use a w command before
doing anything complicated; then if you goof, it's easy to back up to where you
were.

You can split a single line into two or more shorter lines by 'substituting in a
newline'. As the simplest example, suppose a line has gotten unmanageably long
because of editing or merely because it was unwisely typed. If it looks like:

text xy text

you can break it between the 'x' and the 'y' like this:

s/xy/x\
y/

This is actually a single command, although it is typed on two lines. Bearing in
mind that' \' turns off special meanings, it seems relatively intuitive that a ' \' at
the end of a line would make the newline there no longer special.

You can in fact make a single line into several lines with this same mechanism.
As a large example, consider underlining the word 'very' in a long line by split­
ting 'very' onto a separate line, and preceding it by the nroff formatting com­
mand .ul.

ren a very big tat

To convert the line into four shorter lines, preceding the word 'very' by the line
. ul, and eliminating the spaces around the 'very', all at the same time, type:

s/ very /\
.ul\
very\
/

When a newline is substituted in, dot is left pointing at the last line created.

You may also join lines together, but use the join command j for this instead of
s. Given the lines:

Now is
the time

and supposing that dot is set to the first of them, then the command:

j

joins them together. No blanks are added, which is why we carefully showed a
blank at the beginning of the second line.

All by itself, a j command joins line dot to line dot+l, but any contiguous set of
lines can be joined. Just specify the starting and ending line numbers. For exam- 0
~: ~

~\sun ,~ microsystems
Revision A of 17 February 1986

Rearranging a Line with \ (
. .. \)

Marking a Line - the Mark
Command k

Chapter 4 - Using the ed Line Editor 133

1,$jp

joins all the lines into one big one and displays it.

Skip this section if this is the first time you're reading this chapter. Recall that
& stands for whatever was matched by the left side of an s command. In much
the same way you can capture separate pieces of what was matched; the only
difference is that you have to specify on the left side just what pieces you're
interested in.

Suppose, for instance, that you have a file of lines that consist of names in the
fonn:

Smith, A. B.
Jones, c.

and so on, and you want the initials to precede the name, as in:

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and
error-prone. (It is instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pattern, in this case, the last name, and
the initials, and then rearrange the pieces. On the left side of a substitution, if
part of the pattern is enclosed between \(and \), whatever matched that part is
remembered, and available for use on the right side. On the right side, the sym­
bol \ 1 refers to whatever matched the first \(... \) pair, \ 2 to the second \(... \),
and so on.

The command:

1,$s/A\([A,]*\), *\(.*\)/\2 \1/

although hard to read, does the job. The first \(... \) matches the last name, which
is any string up to the comma; this is referred to on the right side with \ 1. The
second \(... \) is whatever follows the comma and any spaces, and is referred to as
, \2'.

Of course, with any editing sequence this complicated, it's foolhardy to simply
run it and hope. The global commands g and v provide a way for you to
display exactly those lines which were affected by the substitute command, and
thus verify that it did what you wanted in all cases.

You can mark a line with a particular name so you can refer to it later by name,
regardless of its actual line number. This can be handy for moving lines, and for
keeping track of them as they move. The mark command is k. To mark the
current line with the name x, use:

kx

If a line number precedes the k, that line is marked. The mark name must be a
single lower-case letter. Now you can refer to the marked line with the address:

Revision A of 17 February 1986

134 Editing Text Files

Copying Lines - the Transfer
Command t

'x

Marks are most useful for moving things around. Find the first line of the block
to be moved, and mark it with 'a. Then find the last line and mark it with 'b.
Now position yourself at the place where the stuff is to go and say:

'a, 'bin.

Bear in mind that only one line can have a particular mark name associated with
it at any given time.

We mentioned earlier the idea of saving a line that was hard to type or used
often, to cut down on typing time. Of course this can be more than one line, in
which case the saving is presumably even greater.

ed provides another command, called t (transfer) for making a copy of a group
of one or more lines at any point. This is often easier than writing and reading.

The t command is identical to In, except that instead of moving lines, it simply
duplicates them at the place you named. Thus, to duplicate the entire contents
that you are editing, use:

1,t

A more common use for t is for creating a series of lines that differ only
slightly. For example, you can say:

a
x (long line)

t . (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)

and so on.

4.7. Escaping to the Shell with Sometimes it is convenient to be able to temporarily escape from the editor to
use some Shell command without leaving the editor. Use the ! (escape) com­
mand to do this.

To suspend your current editing state and execute the shell command you asked
for, type:

! any shell command
!

When the command finishes, ed will signal you by displaying another !; at
that point, you can resume editing.

You can really do any shell command, including another ed. This is quite com­
mon, in fact. In this case, you can even do another !.

Revision A of 17 February 1986

4.8. Supporting Tools

Editing Scripts

Matching Patterns with
grep

Chapter 4 - Using the ed Line Editor 135

There are several tools and techniques that go along with the editor, all of which
are relatively easy once you know how ed works, because they are all based on
the editor. This section gives some fairly cursory examples of these tools, more
to indicate their existence than to provide a complete tutorial. For more informa­
tion on each, refer to the Commands Reference Manual for the Sun Workstation.

If you have a fairly complicated set of editing operations to do on a whole set of
files, the easiest thing to do is to make up a 'script', that is, a file that contains the
operations you want to perform, and then apply this script to each file in tum.

For example, suppose you want to change every 'SUN' to 'Sun' and every 'SyS­
TEM'to 'System' in a large number of files. Then put into a file, which we'll
call changes, the lines:

g/SUN/s//Sun/g
g/SYSTEM/s//System/g
w
q

Now you can say:

hostname% ed fi~el <script
hostname% ed fi~e2 <script

This causes ed to take its commands from the prepared script called changes.
Notice that you have to plan the whole job in advance.

And of course by using the Sun UNIX command interpreter, the shell, you can
cycle through a set of files automatically, with varying degrees of ease.

Sometimes you want to find all occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verify their presence or absence. You can
edit each file separately and look for the pattern of interest, but if there are many
files, this can get very tedious, and if the files are really big, it may be impossible
because of limits in ed.

The program grep gets around these limitations. The search patterns that are
described in this chapter are often called 'regular expressions', and 'grep' stands
for 'general regular expression, print.' That describes exactly what grep does
- it displays every line in a set of files that contains a particular pattern. Thus,
to find 'thing' wherever it occurs in any of the filesjilel ,jile2, etc., type:

hostname% grep 'thing' fi~el fi~e2 fi~e3
hostname%

grep also indicates the file in which the line was found, so you can later edit it if
you like.

The pattern represented by 'thing' can be any pattern you can use in the editor,
since grep and ed use exactly the same mechanism for pattern searching. It is
wisest always to enclose the pattern in the single quotes' ... ' if it contains any
non-alphabetic characters, since many such characters also mean something spe­
cial to the Sun UNIX command interpreter, the shell. If you don't quote them,
the command interpreter will try to interpret them before grep gets a chance.

+~ Revision A of 17 February 1986

136 Editing Text Files

4.9. Summary of Commands
and Line Numbers

There is also a way to find lines that do not contain a pattern:

hostname% grep -v 'thing' filel file2
hostname%

finds all lines that don't contain 'thing'. The -v must occur in the position
shown. Given grep and grep -v, it is possible to do things like selecting all
lines that contain some combination of patterns. For example, to get all lines that
contain 'x' but not 'y', use:

hostname% grep x file ...
hostname%

grep -v y

The notation I is a 'pipe', which causes the output of the first command to be
used as input to the second command; see the Beginner's Guide to the Sun
Workstation for an introduction to 'piping.' See the Commands Reference
Manual/or the Sun Workstation for details on grep.

The general form of ed commands is the command name, perhaps preceded by
one or two line numbers, and, in the case of e, r, and w, followed by a
filename. Only one command is allowed per line, but a p command may follow
any other command, except for e, r, w and q.

a Append, that is, add lines to the buffer at line dot, unless a different
line is specified. Type a '.' on a new line to tenninate appending.
Dot is ~t to the last line appended.

c Change t.'1e specified lines to t..lte new text t1J.at follows. Type a ';' as
with a to tenninate the change. If no lines are specified, replace
line dot. Dot is set to last line changed.

d Delete the lines specified. If none is specified, delete line dot. Dot
is set to the first undeleted line, unless '$' is deleted, in which case
dot is set to '$'.

e Edit new file. Any previous contents of the buffer are thrown away,
so use a w beforehand.

f Print remembered filename. If a name follows f the remembered
name will be set to it.

g The command:

i

m

p

g / ---Icommands

executes the commands on those lines that contain ' --- " which can
be any context search expression.

Insert lines before specified line (or dot) until a '.' is typed on a new
line. Dot is set to last line inserted.

Move lines specified to after the line named after m. Dot is set to
the last line moved.

Display specified lines. If none is specified, display line dot. A sin­
gle line number is equivalent to line-number p. Type a single

~~sun ~~ microsystems
Revision A of 17 February 1986

Chapter 4 - Using the ed Line Editor 137

RETURN to show • + 1, the next line.

q Quit ed. This wipes out all text in buffer if you give it twice in a
row without first giving a w command.

r Read a file into the buffer at the end unless an address is specified.
Dot is set to the last line read.

s The command:

s/strinql/strinq2/

substitutes the characters 'string2' into 'string 1 ' in the specified
lines. If no lines are specified, make the substitution in line dot. Dot
is set to last line in which a substitution took place, which means
that if no substitution took place, dot is not changed. An s changes
only the first occurrence of 'stringl' on a line; to change all of them,
type a g after the final slash.

v The command:

v / --- / commands

executes commands on those lines that do not contain ' --- '.

w Write out buffer into a file. Dot is not changed.

Show value of dot (current line number). An '=' by itself shows the
value of '$.' (number of the last line in the buffer).

The line:

!command

executes command as a Sun UNIX shell command.

/ -----/ Co~text search. Search for next line that contains this string of char­
acters and display it. Dot is set to the line where string was found.
Search starts at '.+1', wraps around from '$' to 1, and continues to
dot, if necessary.

?-----? Context search in reverse direction. Start search at '.-1', scan to 1,
wrap around to '$.' .

• \sun ~~ microsystems
Revision A of 17 February 1986

Section II:

Viewing Files

5
Using view

VIEW (1) USER COMMANDS

NAME
view - view a file without changing it using the vi visual editor

SYNOPSIS
view [-t tag] [-r] [+command] [-I] [-wn] name ...

DESCRIPTION

VIEW (1)

View uses the vi (visual) or display oriented text editor to browse through a file interactively without actu­
ally making any changes to the file. It is possible to get to the command mode of ex from within view and
vice-versa, just as when using vi.

FILES
See ex(1).

SEE ALSO
ex (1), edit (1), vi(l), "Vi Quick Reference" card,
Using vi, the Visual Display Editor in
Editing and Text Processing on the Sun Workstation.

Sun Release 3.0 Last change: 1 February 1985 143

I

6

Using cat

~\sun ~~ microsystems

CAT (1) USER COMMANDS CAT (1)

NAME
cat - concatenate and display

SYNOPSIS
cat [-u] [-8] [-b] [-s] [-V] [-e] [-t] [-] [file •••]

DESCRIPTION
Cat reads eachftle in sequence and displays it on the standard output. Thus

% cat goodies

displays the contents of goodies on the standard output, and

% cat filel file2 >file3

concatenates the first two files and places the result on the third

If no filename argument is given, or if the argument '-' is given, cat reads from the standard input file. If
the standard input is a terminal, input is terminated by a "D.

OPTIONS
-u makes the output completely unbuffered. If -u is not used, output is buffered in 1024-byte blocks,

or line-buffered if standard output is a terminal.

-8 precedes each line output with its line number.

-b numbers the lines, as -8, but omits the line numbers from blank lines.

-s substitutes a single blank line for multiple adjacent blank lines.

-v displays non-printing characters so that they are visible. Control characters print like AX for
control-x; the delete character (octal 0177) prints as A1. Non-ASCII characters (with the high bit
set) are displayed as M - (for meta) followed by the character of the low 7 bits.

-e displays non-printing characters, as -v, and in addition displays a '$' character at the end of each
line.

-t displays non-printing characters, as -v, and in addition displays tab characters as 'AI'.

SEE ALSO
cP(1), ex(1), more(1), pr(1), tail(1)

BUGS
Beware of 'cat a b >a' and ~cat a b >b', which destroy the input files before reading them.

Sun Release 3.0 Last change: 2 June 1983 147

I

7
Using head

HEAD (1) USER COMMANDS HEAD (1)

NAME
head - display first few lines of specified files

SYNOPSIS
head [-count] [file •••]

DESCRIPTION
Head copies the first count lines of the specified file(s), or of the standard input if no filename is given, to
the standard output. The default value of count is 10 lines.

When more than one file is specified, head places a marker at ~e start of each file which looks like:

==> filename <==

Thus, a common way to display a set of short files, identifying each one, is:
gaia% head -9999 filel file2 •••

EXAMPLE

SEE ALSO

gaia% head -4 /usr/manlmanll{cat,head,tail}.1
==> lusr/man/manl/cat.l <==
.TH CAT 1 "2 June 1983"
.SHNAME
cat - concatenate and display
.SH SYNOPSIS

==> lusr/man/manl/head.l <==
.TH HEAD 1 "24 August 1983"
.SHNAME
head - display first few lines of specified files
.SH SYNOPSIS

==> lusr/manlmanl/tail.l <==
.TH TAIL 1 "27 April 1983"
.SHNAME
tail - display the last part of a file
.SH SYNOPSIS

more(I), tail(l), cat(l)

Sun Release 3.0 Last change: 24 October 1983 151

8
Using tail

.\sun ~~ microsystems

TAIL (1) USER COMMANDS TA.a(1)

NAME
tail - display the last part of a file

SYNOPSIS
tail [±number [Ibc] [fr]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is named, the
standard input is used

OPTIONS
Options are alljarnrned together, not specified separately with their own - signs.

+number
Begin copying at distance +number from the beginning of the file. Number is counted in units of
lines, blocks or characters, according to the appended option I, b, -or c. When no units are
specified, counting is by lines.

-number
Begin copying at distance -number from the end of the file. Number is counted in units of lines,
blocks or characters, according to the appended option I, b, or c. When no units are specified,
counting is by lines.

r Copy lines from the end of the file in reverse order. The default for r is to print the entire file this
way.

f Follow the file as it grows, that is, don't quit at end of file, but rather wait and try to read repeat­
edly in hopes that the file will grow.

SEE ALSO
dd(l)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

Various kinds of anomalous behavior may happen with character special files.

Sun Release 3.0 Last change: 27 April 1983 155

9

Using more

MORE(I) USER COMMANDS MORE(I)

NAME
more, page - browse through a text file

SYNOPSIS
more [-cdftsu] [-lines] [+linenumber] [+/pattern] [name •••]

page [-cdftsu] [-lines] [+linenumber] [+/pattern] [name •••]

DESCRIPTION
More is a filter which displays the contents of a text file one screenful at a time on a video terminal. It nor­
mally pauses after each screenful, and prints '--More--' at the bottom of the screen. More displays another
line if you type a carriage-return; more displays another screenful if you type a space.

If you use the page command instead of the more command, the screen is cleared before each screenful is
displayed (but only if a full screenful is being displayed), and k - 1 rather than k - 2 lines are displayed in
each screenful, where k is the number of lines the terminal can display.

More looks in the file letc/termcap to determine terminal characteristics, and to detennine the default win­
dow size. On a terminal capable of displaying 24 lines, the default window size is 22 lines.

More looks in the environment variable MORE to pre-set any flags desired. For example, if you prefer to
view files using the -c mode of operation, the esh command "setenv MORE -e" or the sh command
sequence "MORE=' -c' .. export MORE" would cause all invocations of more, including invocations by
programs such as man to use this mode. Normally, the user will place the command sequence which sets
up the MORE environment variable in the .login or .profile file.

If more is reading from a file, rather than a pipe, a percentage is displayed along with the --More-- prompt.
This gives the fraction of the file (in characters, not lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an optional
integer argument, defaulting to 1) :

i<space>
display i more lines, (or another screenful if no argument is given)

AD display 11 more lines (a "scroll' '). If i is given, the scroll size is set to i.

d same as AD (control-D)

i z same as typing a space except that i, if present, becomes the new window size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

q or Q Exit from more.

Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i lexpr search for the i -th occurrence of the regular expression expr. If there are less than i occurrences
of expr, and the input is a file (rather than a pipe), the position in the file remains unchanged.
Otherwise, a screenful is displayed, starting two lines before the place where the expression was
found, or the end of the pipe, whichever comes first. The user's erase and kill characters may be
used to edit the regular expression. Erasing back past the first column cancels the search com­
mand.

in search for the i -th occurrence of the last regular expression entered.

Sun Release 3.0

(single quote) Go to the point from which the last search started. If no search has been performed
in the current file, this command goes back to the beginning of the file.

Last change: 13 March 1984 159

MORE (1) USER COMMANDS MORE(l)

!command
invoke a shell with command. The characters '%' and 'I' in "command" are replaced with the
current file name and the previous shell command respectively. If there is no current file name,
'%' is not expanded. The sequences "\%" and "\!" are replaced by "%" and "!" respectively.

i:n skip to the i -th next file given in the command line (skips to last file if n doesn't make sense)

i :p skip to the i -th previous file given in the command line. If this command is given in the middle of
printing out a file, more goes back to the beginning of the file. If i doesn't make sense, more skips
back to the first file. If more is not reading from a file, the bell is rung and nothing else happens.

:f display the current file name and line number.

:q or:Q exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately; it is not necessary to type a carriage return. Up to the time when
the command character itself is given, the user may type the line kill character to cancel the numerical
argument being formed. In addition, the user may type the erase character to redisplay the --More--(xx%)
message.

At any time when output is being sent to the terminal, the user can type the quit key (normally control-\).
More stops sending output, and displays the usual--More-- prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is lost when this is done, due to the
fact that any characters waiting in the terminal's output queue are flushed when the quit signal occurs.

More sets the terminal to noecho mode so that the output can be continuous. Thus what you type does not
show on your terminal, except for the I and! commands.

If the standard output is not a terminal, more acts just like cat, except that a header is printed before each
file in a series.

OPTIONS
-lines Set the size of ihe window to lines lines long instead of the default.

-c Display each page by redrawing the screen instead of scrolling. This makes it easier to read text
while more is writing. This option is ignored if the terminal does not have the ability to clear to
the end of a line.

-d Display the message 'Hit space to continue, Rubout to abort' at the end of each screenful. This is
useful if more is being used as a filter in some setting, such as a class, where users are unsophisti­
cated.

-f Count logical rather than screen lines. That is, long lines are not folded. This option is recom­
mended if nroff output is being piped through ul,since"the latter may generate escape sequences.
These escape sequences contain characters which would ordinarily occupy screen postions, but
which do not print when they are sent to the terminal as part of an escape sequence. Thus more
may think that lines are longer than they actually are, and fold lines erroneously.

-I Do not treat AL (form feed) specially. If -I is not used, more pauses after any line that contains a
AL, as if the end of a screenful had been reached. Also,· if a file begins with a form feed, the screen
is cleared before the file is printed.

-s Squeeze multiple blank lines from the output, and replace them with single blank lines. Especially
helpful when viewing nroff output, this· option maximizes the useful information present on the
screen.

-u .Normally, more handles underlining such as produced by nroffin a manner appropriate to the par­
ticular terminal: if the terminal can perform underlining or has a stand-out mode, more outputs
appropriate escape sequences to enable underlining or stand-out mode for underlined information
in the source file. The -u option suppresses this processing.

+linenumber

Sun Release 3.0 Last change: 13 March 1984 160

MORE (1) USER COMMANDS

Start up at linen umber.

+/pattern
Start up two lines before the line containing the regular expression pattern.

EXAMPLES
A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more-s

FILES
letc/termcap Terminal data base
lusr/lib/more.helpHelp file

SEE ALSO
csh(I), man(l), script(I), sh(l), environ(5), termcap(5)

Sun Release 3.0 Last change: 13 March 1984

MORE(I)

161

Revision History

Revision Date Comments

A 17 February 1986 First release of Editing Text Files on the
Sun Workstation.

Notes

Chapter 2 - Using vi, the Visual Display Editor 67

Vi Quick Reference

Entering and Leaving
% vi name

vi
edit name at top
... at line n % vi +n name

% vi+ name
% vi-r
% vi-rname
% vi name ...
% vi-ttag
% vi +/pat name
% view name
ZZ
CTRL-Z

The Display
Last line

@ lines
- lines
CfRL-X

tabs

Vi Modes
Command

Insert

Last line

... at end
list saved files
recover file name
edit first; rest via :n
start at tag
search for pat
read only mode
exit from vi, saving changes
stop vi for later resumption

Error messages, echoing input to : / ? and !,
feedback about i/o and large changes.
On screen only, not in file.
Lines past end of file.
Control characters, DEL is delete.
Expand to spaces, cursor at last

Normal and initial state. Others return
here. ESC (escape) cancels partial com-
mand.
Entered by a i A I 0 0 c C s S R. Arbitrary
text then terminates with ESC character, or
abnormally with interrupt.
Reading input for: I ? or !; terminate with
ESC or CR to execute, interrupt to cancel.

Counts Before vi Commands
line/column number z G I
scroll amount CTRL-D CTRL-U
replicate insert a i A I
repeat effect most rest

Simple Commands
dw
de
dd
3dd
itextESC
cwnewESC
easESC
xp

Interrupting, Cancelling

delete a word
.. , leaving punctuation
delete a line
.. , 3 lines
insert text abc
change word to new
pluralize word
transpose characters

ESC end insert or incomplete cmd
CTRL-C interrupt (or DEL)
CTRL-L refresh screen if scrambled

File Manipulation
:w write back changes
:wq write and quit
:q quit
:q! quit, discard changes
:e name edit file name
:e! reedit, discard changes
:e + name edit, starting at end
:e +n edit starting at line n
:e# edit alternate file
CTRL-" synonym for :e #
:w name write file name
:w! name overwrite file name
:sh run shell, then return
:!cmd run cmd, then return
:n edit next file in arglist
:n args specify new arglist
:f show current file and line
CTRL-G synonym for : f
:ta tag to tag file entry tag
CTRL-] :ta, following word is tag

Positioning within File
CTRL-F forward screenfull
CTRL-B backward screenfull
CTRL-D scroll down half screen
CTRL-U scroll up half screen
G goto line (end default)
/pat next line matching pat
?pat prev line matching pat
n repeat last I or ?
N reverse last / or?
/pat/ +n n'th line after pat
?pat?-n n'th line before pat
]] next section/function
[[previous section/function
% find matching () { or }

Adjusting,the Screen
CTRL-L clear and redraw
CTRL-R retype, eliminate @ lines
zCR redraw, current at window top
z- ... at bottom
z.
Ipatlz-
zn.
CTRL-E
CTRL-Y

... at center
pat line at bottom
use n line window
scroll window down 1 line
scroll window up 1 line

Revision A of 17 February 1986

68 Editing Text Files

Marking and Returning
previous context
... at first non-white in line

mx mark position with letter x
'x to mark x
'x ... at first non-white in line

Line Positioning
H home window line
L last window line
M middle window line
+ next line, at first non-white

CR
J, or j
i ork

previous line, at first non-white
return, same as +
next line, same column
previous line, same column

Character Positioning

o
$
hor~

lor +-­
CTRL-H
space
fx
Fx
tx
Tx

first non-blank
beginning of line
end of line
forward
backwards
same as +--
same as ~
find x forward
fbackward
upto x forward
back uptox
repeat last f F t or T

, inverse of ;
I to specified column
% find matching ({) or }

Words, Sentences, Paragraphs
w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B backW
E to end ofW

Commands for LISP
) Forward s-expression
} ... but don't stop at atoms
(Back s-expression
{ ... but don't stop at atoms

Corrections During Insert
erase last character
erases last word

CTRL-H
CTRL-W
erase your erase, same as CTRL-H
kill
\
ESC
CTRL-C
CTRL-D
CTRL-AD
OCTRL-D
CTRL-V

your kill, erase input this line
escapes CTRL-H, your erase and kill
ends insertion, back to command
interrupt, terminates insert
backtab over autoindent
kill auto indent, save for next
... but at margin next also
quote non-printing character

Insert and Replace
a append after cursor
i insert before
A append at end of line
I insert before first non-blank
o open line below
o open above
rx replace single char with x
R replace characters

Operators (double to affect lines)
d delete
c change
< left shift
> right shift

filter through command
= indent for uSP
y yank lines to buffer

Miscellaneous Operations
C change rest of line
D delete rest of line
s substitute chars
S substitute lines
J join lines
x delete characters
X ... before cursor
Y yank lines

Yank and Put
p put back lines
P put before
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"d P retrieve d'th last delete

Revision A of 17 February 1986

95

Ex Quick Reference

Entering/Leaving ex
% ex name edit name, start at end

... at line n % ex +nname
% ex -t tag
% ex-r
% ex-r name
% ex name •.•

% ex-R name

: x
: q! '

ex States
Command

Insert

Open/visual

ex Commands
abbrev ab
append a
args ar
change c
copy co
delete d
edit e
file f
global g
insert
join j
list I
map
mark ma
move m

start at tag
list saved files
recover file name
edit first; rest via :n
read only mode
exit, saving changes
exit, discarding changes

Normal and initial state. Input
prompted for by : . Your kill character
cancels partial command.
Entered by a i and c. Arbitrary text
then terminates with line having only.
character on it or abnormally with
interrupt.
Entered by open or vi, terminates with
Q or"\.

next n unabbrev una
number nu undo u
open 0 unmap unm
preserve pre version ve
print p visual vi
put pu write w
quit q xit x
read re yank ya
recover rec window z
rewind rew escape
set se shift <
shell sh print next CR
source so resubst &
stop st rshift >
substitute s scroll AD

ex Command Addresses
n line n /pat next with pat

current ?pat previous with pat
$ last x-n n before x
+ next x,y x through y

previous 'x marked with x
+n n forward previous context
% 1,$

Specifying Terminal Type
% setenv TERM type (for csh)
$ TERM=type; export TERM (for sh)
See also tset in the user's manual.

Some Terminal Types
2621 43 adm31 dw1 h19
2645 733 adm3a dw2 ilOO
300s 745 cl00 gt40 mime
33 act4 dm1520 gt42 owl
37 actS dm2500 h1500 tl061
4014 adm3 dm3025 h1510 vt52

Initializing Options
EXINIT place set's here in environment var.
set x enable option
set nox disable option
set x=val give value val
set show changed options
set all show all options
set x? show value of option x

Useful Options
autolndent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
slowopen
window
wrapscan
wrapmargin

ai
aw
ic

nu
para

sect
sw
sm
slow

ws
wm

supply indent
write before changing files
in scanning
() { } are s-exp's
print AI for tab, $ at end
. [* special in patterns
number lines
macro names which start ...
simulate smart terminal
command mode lines
macro names ...
for < >, and input AD
to) and} as typed
choke updates during insert
visual mode lines
around end of buffer
automatic line splitting

Scanning Pattern Formation

$

[str]
[tstr]
[x-y]

*

beginning of line
end of line
any character
beginning of word
end of word
any char in str
... not in str
'" between x and y
any number of preceding

Revision A of 17 February 1986

