
6sun®
• microsystems

PrograInIning Utilities
for the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Acknowledgements
The chapters of this manual were originally derived from the work of many people at Bell Laboratories, the Univer­
sity of California at Berkeley', and other noble institutions. Their names and the titles of the original works appear
here.

UNIX Programming
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lint, a C Program Checker
by S. C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Make -A Program for Maintaining Computer Programs
by S. I. Feldman, Bell Laboratories, Murray Hill, New Jersey.

The M4 Macro Processor
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lex - A Lexical Analyzer Generator
by M. E. Lesk and E. Schmidt, Bell Laboratories, Murray Hill, New Jersey.

Yacc - Yet Another Compiler-Compiler
by Stephen C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Source Code Control System User's Guide
by L. E. Bonanni and C. A. Salemi, Bell Laboratories, Piscataway, New Jersey.

Source Code Control System
by Eric Allman, Formerly of Project Ingres, University of California at Berkeley.

Trademarks
Multibus is a trademark of Intel Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright © 1983, 1984, 1985, by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 UNIX Programming .. 3

1.1. Basics .. 3

1.2. The 'Standard Input' and 'Standard Output' ... 4

1.3. The Standard 110 Library .. 6

1.4. Low-Level Input Output .. 9

1.5. Processes ... 14

1.6. Signals - Interrupts and All That ... 19

1.7. The Standard 110 Library .. 23

Chapter 2 Tools for the C Programming Language 33

2.1. ctags - Build Index File for C Functions ... 33

2.2. Lint - A C Program Checker ... 35

Chapter 3 Make - Maintaining Computer Programs 49

3.1. Basic Features .. 50

3.2. Description Files .. 52

3.3. Using the make Command .. 56

3.4. Implicit Rules .. 59

3.5. Example .. 61

3.6. Suggestions and Warnings ... 63

3.7. Making Archive Libraries .. 64

3.8. Suffixes and Transformation Rules ... 65

Chapter 4 Source Code Control System .. 71

-iii-

Contents Continued

4.1. Learning me Lingo ... 74

4.2. Creating sees Database Files with sees create 75

4.3. Retrieving Files for Compilation with sees get 75

4.4. Changing Files (Creating Deltas) ... 76

4.5. Restoring Old Versions .. 79

4.6. Auditing Changes .. 80

4.7. Shorthand Notations .. 81

4.8. Using sees on a Project ... 82

4.9. Saving Yourself .. 82

4.10. Managing SCCS Files wim sees admin .. 83

4.11. Maintaining Different Versions (Branches) .. 83

4.12. Using sees with make ... 85

4.13. SCCS Quick Reference ... 89

Chapter 5 Performance Analysis .. 93

5.1. time - Display Time Used by Program .. 93

5.2. prof - Generate Profile of Program .. 96

5.3. gprof - Generate Call Graph Profile of Program 98

5.4. teov - Statement-level Analysis of Program ... 100

Chapter 6 m4 - A Macro Processor ... 107

6.1. Using the m4 Command .. 108

6.2. Defining Macros ... 108

6.3. Quoting and Comments ... 109

6.4. Macros with Arguments .. 110

6.5. Arithmetic Built-ins ... 111

6.6. File Manipulation .. 112

6.7. Running System Commands ... 113

6.8. Conditionals .. 113

6.9. String Manipulation ... 114

6.10. Printing ... 115

6.11. Summary of Built-in m4 Macros ... 115

-iv-

Contents Continued

Chapter 7 Lex - A Lexical Analyzer Generator .. 119

7.1. Lex Source ... 122

7.2. Lex Regular Expressions ... 123

7.3. Lex Actions ... 126

7.4. Ambiguous Source Rules .. 129

7.5. Lex Source Definitions ... 131

7.6. Using lex .. 132

7.7. Lex and Yacc ... 133

7.8. Examples .. 133

7.9. Left Context-Sensitivity .. 136

7.10. Character Set ... 138

7.11. Summary of Source Format .. 138

7.12. Caveats and Bugs .. 140

Chapter 8 Yacc - Yet Another Compiler-Compiler 143

8.1. Basic Specifications ... 145

8.2. Actions ... 147

8.3. Lexical Analysis ... 149

8.4. How me Parser Works .. 151

8.5. Ambiguity and Conflicts ... 155

8.6. Precedence ... 159

8.7. Error Handling .. 162

8.8. The Yacc Environment ... 163

8.9. Hints for Preparing Specifications ... 164

8.10. Advanced Topics ... 166

8.11. A Simple Example ... 170

8.12. Yacc Input Syntax .. 173

8.13. An Advanced Example .. 176

8.14. Old Features Supported but not Encouraged .. 182

Appendix A SCCS Low-Level Commands ... 185

A.l. Low Level SCCS For Beginners ... 185

A.2. SCCS File Numbering Conventions .. 186

-v-

Contents Continued

A.3. Summary of SCCS Commands .. 188

A.4. SCCS Command Conventions .. 189

A.S. admin - Create and Administer SCCS Files ... 190

A.6. cdc - Change Delta Commentary .. 197

A.7. comb - Combine SCCS Deltas ... 198

A.8. delta - Make a Delta .. 200

A.9. get -GetVersionofSCCS File ... 204

A.10. help - Ask for SCCS Help ... 216

A.11. prs -Print SCCS File .. 217

A.12. rmdel-Remove Delta from SCCS File ... 221

A.13. sact - Display SCCS Editing Activity ... 223

A.14. sccsdiff - Display Differences in SCCS Versions 223

A.1S. unget - Undo a Previous SCCS get .. 224

A.16. val - Validate SCCS File .. 224

A.17. SCCS Files .. 226

Appendix B Bibliography and Credits .. 231

-vi-

Tables

Table 3-1 Summary of Assigning Macros and Variables .. 57

Table 3-2 Default Suffix List for Make ... 59

Table 3-3 Built In Compiler Names and Options .. 61

Table 5-1 Control Key Letters for the time Command ... 95

Table 5-2 Default Timing Summary Chart .. 95

Table 6-1 Operators to the eval built in in m4 ... 112

Table 6-2 Summary of Built-in m4 Macros .. 115

Table 7-1 Changing Internal Array Sizes in lex .. 139

Table 7-2 Regular Expression Operators in lex .. 140

Table A-I Determination of secs Identification String ... 207

Table A-2 Identification Keywords .. 209

Table A-3 SCCS Files Data Keywords .. 219

Table A-4 Codes Returned from val Command ... 225

- vii-

Figures

Figure 3-1 Single Suffix Rules .. 65

Figure 3-2 Double Suffix Rules .. 66

Figure 4-1 Basic sces Operations ... 73

Figure 7-1 An overview of Lex ... 120

Figure 7-2 Lex with Yacc ... 121

Figure 7-3 Sample character table. .. 138

Figure A-I Evolution of an SCCS File ... 186

Figure A-2 Tree Structure with Branch Deltas ... 187

Figure A-3 Extending the Branching Concept ... 188

- ix-

Summary of Contents

Preface

Welcome to Programming Toolsfor the Sun Workstation. This manual is a
comprehensive description of the software utilities available to assist program­
mers generating software.

Chapter 1 - UNIX Programming describes the basics of using the UNIXt library
routines and system calls.

Chapter 2 - Tools for the C Programming Language describes some of the tools
available to assist C language programming.

Chapter 3 - Make - Maintaining Computer Programs describes a tool to assist
in building, regenerating, and keeping up to date programs constructed from
many source modules with dependencies between the pieces.

Chapter 4 - Source Code Control System describes the facilities available to
manage and keep history of source code and documentation. This chapter
describes the 'high-level' sees interface. There is also a 'low-level' sees inter­
face described in appendix A - SCCS Low-Level Commands.

Chapter 5 - Performance Analysis covers tools available for determining how
much resources a program consumes and how to focus in on where a program is
spending its time.

Chapter 6 - m4 - A Macro Processor describes a simple macro processor that
can be used as a front end to any other language processor.

Chapters 7 and 8 cover Lex - A Lexical Analyzer Generator and Yacc - Yet
Another Compiler-Compiler. These two tools are valuable for constructing lexi­
cal and syntactic analyzers.

Appendix A - SCCS Low-Level Commands describes the sees low-level com­
mand interface and contain a summary of sees commands.

Appendix B - Bibliography and Credits - contains the bibliography, credits,
and acknowledgements for the rest of this manual.

t UNIX is a trademark of AT&T Bell Laboratories.

-xi-

1
UNIX Programming

UNIX Programming ... 3

1.1. Basics .. 3

Program Arguments .. 3

1.2. The 'Standard Input' and 'Standard Output' ... 4

1.3. The Standard I/O Library .. 6

Accessing Files .. 6

Error Handling - Stderr and Exit .. 9

Miscellaneous I/O Functions .. 9

1.4. Low-Level Input Output .. 9

File Descriptors .. 9

read and wri te ... 10

Open, Creat, Close, Unlink ... 12

Random Access - Seek and Lseek ... 13

Error Processing .. 14

1.5. Processes ... 14

The 'System' Function .. 14

Low-Level Process Creation - Exec1 and Execv 15

Control of Processes - Fork and Wait .. 16

Pipes ... 17

1.6. Signals - Interrupts and All That ... 19

1.7. The Standard I/O Library .. 23

General Usage ... 23

Standard I/O Library Calls .. 24

Character Type Checking ... 30

Character Type Conversion .. 30

1.1. Basics
Program Arguments

1
UNIX Programming

This chapter is an introduction to programming on the UNIXt system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard I/O library. The topics discussed include

o handling command arguments

o rudimentary I/O; the standard input and output

o the standard I/O library; file system access

o low-level I/O: open, read, write, close, seek

o processes: exec, fork, pipes

o signals - interrupts, etc.

Section 1.7 - The Standard 110 Library - describes the standard I/O library in
detail.

This chapter describes how to write programs that interface with the UNIX
operating system in a nontrivial way. This includes programs that use files by
name, that use pipes, that invoke other commands as they run, or that attempt to
catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of
the Sun Reference Manuals (Commands Reference Manual and UNIX Interface
Reference Manual[1]. There is no attempt to be complete; only generally useful
material is dealt with. It is assumed that you will be programming in C, so you
must be able to read the language roughly up to the level of The C Programming
Language[2]. You should also be familiar with UNIX itself.

When a C program is run as a command, the arguments on the command line are
made available to the function main as an argument count argc and an array
argv of pointers to character strings that contain the arguments. By convention,
argv [0] is the command name itself, so argc is always greater than O.

The following program illustrates the mechanism: it simply echoes its arguments
back to the terminal- This is essentially the echo command.

t UNIX is a trademark of AT&T Bell Laboratories.

~\sun ~~ microsystems
3 F of 15 February 1986

4 Programming Tools

1.2. The 'Standard Input' and
'Standard Output'

main (argc, argv)
int argc;
char *argv[];
{

int i;

/* echo arguments */

for (i = 1; i < argc; i++)
printf("%s%c", argv[i], (i<argc-1) ? ' , : '\n');

argv is a pointer to an array whose elements are pointers to arrays of characters;
each is terminated by \ 0, so they can be treated as strings. The program starts by
printing argv [1] and loops until it has printed argv [argc-1] .

The argument count and the arguments are parameters to main. If you want to
keep them around so other routines can get at them, you must copy them to exter­
nal variables.

The simplest input mechanism is to read from the 'standard input,' which is gen­
erally the user's terminal. The function getchar returns the next input charac­
ter each time it is called. A file may be substituted for the terminal by using the
< convention (input redirection): if prog uses getchar, the command line

[~t_u_t_o_r_l_'a __ l_%_p __ r_o_g __ <_fi_l_e_n~ ______________________________________ -J]
makes prog read from the file specified by filename instead of the terminal.
prog itself need know nothing about where its input is coming from. This is
also true if the input comes from another program via the pipe mechanism:

(tutorial% otherprog I prog

provides the standard input for prog from the standard output (see below) of
otherprog.

]

getchar returns the value EOF when it encounters the end of file (or an error)
on whatever you are reading. The value of EOF is normally defined to be -1, but
it is unwise to take any advantage of that knowledge. As will become clear
shortly, this value is automatically defined for you when you compile a program,
and need not be of any concern.

Similarly, putchar (c) puts the character c on the 'standard output', which is
also by default the terminal. The output can be captured on a file by using >: if
prog uses putchar,

(tutorial% prog > outpu!file

writes the standard output on output/de instead of the terminal. output/de is
created if it doesn't exist; if it already exists, its previous contents are overwrit­
ten. A pipe can be used:

]

~~sun ~~ microsystems
F of 15 February 1986

Chapter 1 - UNIX Programming 5

(tutorial% prog I otherprog J

puts the standard output ofprog into the standard input of otherprog.

The function printf, which fonnats output in various ways, uses the same
mechanism as putchar does, so calls to printf and putchar may be inter­
mixed in any order; the output will appear in the order of the calls.

Similarly, the function s canf provides for fonnatted input conversion; it will
read the standard input and break it up into strings, numbers, etc., as desired.
scanf uses the same mechanism as get char ,so calls to them may also be
intermixed.

Many programs read only one input and write one output; for such programs 110
with getchar, putchar, scanf, and printf may be entirely adequate, and
it is almost always enough to get started. This is particularly true if the UNIX
pipe facility is used to connect the output of one program to the input of the next.
For example, the following program stri ps out all ASCII control characters from
its input (except for newline and tab).

#include <stdio.h>

main() /* ccstrip: strip non-graphic characters */
{

int c;
while ((c = getchar(» != EOF)

if ((c >= , , & & c < 0177) I I c
putchar(c) ;

exit(O);

The line

#include <stdio.h>

'\t' I I c '\n')

should appear at the beginning of each source file which does I/O using the stan­
dard I/O functions described in section 3(S) of the UNIX Interface Reference
Manual - the C compiler reads a file (lusrlincludelstdio.h) of standard routines
and symbols that includes the definition of EOF .

If it is necessary to treat multiple files, you can use cat to collect the files for you:

tutorial% cat filel file2 ... I ccstrip > output

and thus avoid learning how to access files from a program. By the way, the call
to exit at the end is not necessary to make the program work properly, but it
assures that any caller of the program will see a nonnal tennination status (con­
ventionally 0) from the program when it completes. Section 1.5.3 discusses
returning status in more detail.

~\sun ,~ microsystems
F of 15 February 1986

6 Programming Tools

1.3. The Standard 110
Library

Accessing Files

The 'Standard 1/0 Library' is a collection of routines intended to provide
efficient and portable I/O services for most C programs. The standard 110 library
is available on each system that supports C, so programs that confine their system
interactions to its facilities can be transported from one system to another essen­
tially without change.

This section discusses the basics of the standard I/O library. Section 1.7 - The
Standard lID Library - contains a more complete description of its capabilities
and calling conventions.

The above programs have all read the standard input and written the standard
output, which we have assumed are magically predefined. The next step is to
write a program that accesses a file that is not already connected to the program.
One simple example is wc, which counts the lines, words and characters in a set
of files. For instance, the command

(tutorial% wc z.c y.c

displays the number of lines, words and characters in x.c and y . c and the totals.

The question is how to arrange for the named files to be read - that is, how to
connect the filenames to the 1/0 statements which actually read the data.

]

The rules are simple - you have to open a file by the standard library function
fopen before it can be read from or written to. fopen takes an external name
(like x.c or y.c), does some housekeeping and negotiation with the operating sys­
tem, and returns an internal name which must be used in subsequent reads or
writes of the file.

This internal name is actually a pointer, called afile pointer, to a structure which
contains information about the file, such as the location of a buffer, the current
character position in the buffer, whether the file is being read or written, and the
like. Users don't need to know the details, because part of the standard I/O
definitions obtained by including stdio.h is a structure definition called FILE.
The only declaration needed for a file pointer is exemplified by

FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE.
FILE is a type name, like int, not a structure tag.

The actual call to fopen in a program has the form:

fp = fopen(name, mode);

The first argument of f open is the name of the file, as a character string. The
second argument is the mode, also as a character string, which indicates how you
intend to use the file. The allowable modes are read (nrn), write ("W n), or
append ("a "). In addition, each mode may be followed by a + sign to open the
file for reading and writing. II r+ II positions the stream at the beginning of the
file, "w+" creates or truncates the file, and " a +" positions the stream to the
end of the file. Both reads and writes may be used on read/write streams, with
the limitation that an fseek, rewind, or reading end-of-file must be used

.\sun ,~ microsystems
F of 15 February 1986

Chapter 1 - UNIX Programming 7

between a read and a write or vice versa.

If a file that you open for writing or appending does not exist, it is created (if pos­
sible). Opening an existing file for writing discards the old contents. Trying to
read a file that does not exist is an error, and there may be other causes of error as
well (like trying to read a file when you don't have permission). If there is any
error, f open returns the null pointer value NULL - defined as zero in stdio.h.

The next thing needed is a way to read or write the file once it is open. There are
several possibilities, of which gete and pute are the simplest. gete returns
the next character from a file; it needs the file pointer to tell it what file. Thus

c = getc(fp)

places in e the next character from the file referred to by fp; it returns EOF when
it reaches end of file. pute is the inverse of gete:

putc(c, fp)

puts the character e on the file fp and returns e as its value. get e and put e
return EOF on error.

When a program is started, three streams are opened automatically, and file
pointers are provided for them. These streams are the standard input, the stan­
dard output, and the standard error output; the corresponding file pointers are
called stdin, stdout, and stderr. Normally these are all connected to the
terminal, but may be redirected to files or pipes as described in Section 1.2.
stdin, stdout and stderr are predefined in the 110 library as the standard
input, output and error files; they may be used anywhere an object of type
FILE * can be. They are constants, however, not variables, so don't try to
assign to them.

With some of the preliminaries out of the way, we can now write we. The basic
design is one that has been found convenient for many programs: if there are
command-line arguments, they are processed in order. If there are no arguments,
the standard input is processed. This way the program can be used standalone or
as part of a larger process.

F of 15 February 1986

8 Programming Tools

#include <stdio.h>

main (argc, argyl
int argc;

/* wc: count lines, words, chars */

char *argv[];
{

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct 0;

i = 1;
fp = stdin;
do {

if (argc> 1 && (fp=fopen(argv[i], "r"» == NULL) {
fprintf(stderr, "wc: can't open %s\n", argv[i]);
continue;

linect = wordct = charct = inword 0;
while «c = getc (fp» ! = EOF) {

charct++;
if (c == , \ n')

linect++;
if (c == , , I I c == , \ t ' I I c

inword = 0;
else if (inword == 0) {

inword = 1;
wordct++;

, \n')

printf("%7ld %7ld %7ld", linect, wordct, charct);
printf(argc> 1 ? " %s\n" : "\n", argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;

while (++i < argc);
if (argc > 2)

printf("%7ld %7ld %7ld total\n", tlinect, twordct, tcharct);
exit(O);

The function fprintf is identical to printf, save that the first argument is a
file pointer that specifies the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between
the file pointer and the external name that was established by fopen, freeing the
file pointer for another file. Since there is a limit on the number of files that a
program may have open simultaneously, it's a good idea to free things when they
are no longer needed. There is another reason to call fclose on an output file
- it flushes the buffer in which putc is collecting output. fclose is called
automatically for each open file when a program tenninates nonnally.

F of 15 February 1986

Error Handling - Stderr and
Exit

Miscellaneous 110 Functions

1.4. Low-Level Input Output

File Descriptors

Chapter 1 - UNIX Programming 9

stderr is assigned to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user's terminal even if the standard
output is redirected, unless the standard error is also redirected. we writes its
diagnostics on stderr instead of stdout so that if one of the files can't be
accessed for some reason, the message finds its way to the user's terminal instead
of disappearing down a pipeline or into an output file.

The argument of exi t is made available to whatever process called the process
that is exiting (see Section 1.5.3, so the success or failure of the program can be
tested by another program that uses this one as a subprocess. By convention, a
return value of 0 signals that all is well; nonzero values signal abnormal situa­
tions.

exi t itself calls f close for each open output file, to flush out any buffered
output, then calls a routine named _ exi t. The function _ exi t terminates the
program immediately without any buffer flushing; it may be called directly if
desired.

The standard I/O library provides several other I/O functions besides those illus­
trated above.

Normally output with pu t c, and such is buffered - use f flus h (fp) to force
it out immediately.

fscanf is identical to scanf, except that its first argument is a file pointer (as
with fpr intf) that specifies the file from which the input comes; it returns EOF
at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf,
except that the first argument names a character string instead of a file pointer.
The conversion is done from the string for sscanf and into it for sprintf,
and no input or output is done.

fgets (buf, size, fp) copies the next line from fp, up to and including a
newline, into buf; at most size-l characters are copied; it returns NULL at
end of file. fputs (buf, fp) writes the string in buf onto file fp.

The function ungetc (c, fp) 'pushes back' the character c onto the input
stream fp; a subsequent call to getc, f scanf, etc., will encounter c. Only
one character of pushback per file is permitted.

This section describes the bottom level of I/O on the UNIX system. The lowest
level of I/O in UNIX provides no buffering or any other services; it is in fact a
direct entry into the operating system. You are entirely on your own, but on the
other hand, you have the most control over what happens. And since the calls
and usage are quite simple, this isn't as bad as it sounds.

In the UNIX operating system, all input and output is done by reading or writing
files, because all peripheral devices, even the user's terminal, are files in the file
system. This means that a single, homogeneous interface handles all communi­
cation between a program and peripheral devices.

F of 15 February 1986

10 Programming Tools

read and write

In the most general case, before reading or writing a file, it is necessary to inform
the system of your intent to do so, a process called 'opening' the file. If you are
going to write on a file, it may also be necessary to create it. The system checks
your right to do so - does the file exist? Do you have permission to access it?
- if all is well, returns a small positive integer called afile descriptor. When­
ever I/O is to be done on the file, the file descriptor is used instead of the name to
identify the file. This is roughly analogous to the use of READ (5, •••) and
WRITE (6, ...) in FORTRAN. All information about an open file is maintained
by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in Section 1.3 are similar in spirit to file descriptors,
but file descriptors are more fundamental. A file pointer is a pointer to a struc­
ture that contains, among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special
arrangements exist to make this convenient. When the command interpreter (the
'shell') runs a program, it opens three files, with file descriptors 0, 1, and 2,
called standard input, standard output, and standard error output. All of these are
normally connected to the terminal, so if a program reads file descriptor 0 and
writes file descriptors 1 and 2, it can do terminal I/O without opening the files.

If I/O is redirected to and from files with < and>, as in

(tutorial% prog < infile > outfile)
the shell changes the default assignments for file descriptors 0 and 1 from the ter­
minal to the named files. Similar observations hold if the input or output is asso­
ciated with a pipe. Normally file descriptor 2 remains attached to the terminal,
so error messages can go there. In all cases, the file assignments are changed by
the shell, not by the program. The program does not need to know where its
input comes from nor where its output goes, so long as it uses file 0 for input and
1 and 2 for output.

All input and output is done by two functions called read and write. For
both, the first argument is a file descriptor. The second argument is a buffer in
your program where the data is to come from or go to. The third argument is the
number of bytes to be transferred. The calls are

n_read = read (fd, buf, n)i

n_written = write (fd, buf, n)i

Each call returns a byte count which is the number of bytes actually transferred.
On reading, the number of bytes returned may be less than the number asked for,
because fewer than n bytes remained to be read. When the file is a terminal,
read normally reads only up to the next newline, which is generally less than
what was requested. A return value of zero bytes implies end of file, and -1
indicates an error of some sort. For writing, the returned value is the number of
bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

~\sun ~~ microsystems
F of 15 February 1986

Chapter 1 - UNIX Programming 11

The number of bytes to be read or written is quite arbitrary. The two most com­
mon values are 1, which means one character at a time (,unbuffered'), and 1024,
corresponding to a physical blocksize on many peripheral devices. This latter
size will be most efficient, but even character-at-a-time 110 is not inordinately
expensive.

Putting these facts together, we can write a simple program to copy its input to
its output. This program will copy anything to anything, since the input and out­
put can be redirected to any file or device.

*define BUFSIZE 1024

main() /* copy input to output */
{

char buf[BUFSIZE];
int n;

while «n = read(O, buf, BUFSIZE» > 0)
write(l, buf, n);

exit(O);

If the file size is not a multiple ofBUFSIZE, some read will return a smaller
number of bytes, and the next call to read after that will return zero.

It is instructive to see how read and wri te can be used to construct higher­
level routines like get char ,putchar, etc. For example, here is a version of
getchar which does unbuffered input.

define CMASK 0377 / for making char's> 0 */

getchar ()
{

/* unbuffered single character input */

char c;

return«read(O, &c, 1) > 0) ? c & CMASK : EOF);

c must be declared char, because read accepts a character pointer. The char­
acter being returned must be masked with 0377 to ensure that it is positive; oth­
erwise sign extension may make it negative. The constant 0377 is appropriate
for the Sun but not necessarily for other machines.

The second version of get char does input in big chunks, and hands out the
characters one at a time:

F of 15 February 1986

12 Programming Tools

Open, Creat, Close, Unlink

=If:define CMASK 0377 /* for making char's> 0 */
=If:define BUFSIZE 1024

getchar ()
{

/* buffered version */

static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n == 0) /* buffer is empty */
n = read(O, buf, BUFSIZE);
bufp = bUf;

return«--n >= 0) ? *bufp++ & CMASK EOF) ;

Other than the default standard input, output and error files, you must explicitly
open files in order to read or write them. There are two system entry points for
this, open and creat.

open is rather like the fopen discussed in the previous section, except that
instead of returning a file pointer, it returns a file descriptor, which is just an
into

int fd;

fd~~ open(name, rwmode);

As with f open, the name argument is a character string corresponding to the
external file name. The access mode argument is different, however: rwmode is
o for read, 1 for write, and 2 for read and write access. open returns -1 if any
error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is
provided to create new files, or to rewrite old ones.

fd = creat(name, pmode);

returns a file descriptor if it could create the file called name, and -1 if not. If
the file already exists, cr ea t will truncate it to zero length; it is not an error to
creat a file that already exists.

If the file is brand new, creat creates it with the protection mode specified by
the pmode argument. In the UNIX file system, there are nine bits of protection
information associated with a file, controlling read, write and execute permission
for the owner of the file, for the owner's group, and for all others. Thus a three­
digit octal number is most convenient for specifying the permissions. For exam­
ple, 0755 specifies read, write and execute permission for the owner, and read
and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which
copies one file to another. The main simplification is that our version copies only
one file, and does not permit the second argument to be a directory:

~\sun ,~ microsystems
F of 15 February 1986

Random Access- Seek and
Lseek

Chapter 1 - UNIX Programming 13

idefine NULL 0
idefine BUFSIZE 1024
idefine PMODE 0644 /* RW for owner, R for group, others */

main (argc, argv)
int argc;
char *argv [];
{

int fl, f2, n;

/* cp: copy f1 to f2 */

char buf[BUFSIZE];

if (argc != 3)
error ("Usage: cp from to", NULL);

if «fl = open(argv[1], 0» == -1)
error ("Cp: can't open %S", argv[1]);

if «f2 = creat(argv[2], PMODE» == -1)
error ("Cp: can't create %S", argv[2]);

while «n = read(fl, buf, BUFSIZE» > 0)
if (write(f2, buf, n) != n)

error(ncp: write error", NULL);
exit(O);

error(sl, s2)
char *sl, *s2;

/* print error message and die */

{

printf(sl, s2);
printf(n\n");
exit(I);

As we said earlier, there is a limit (typically 20-32) on the number of files which
a program may have open simultaneously. Accordingly, any program which
intends to process many files must be prepared to reuse file descriptors. The rou­
tine close breaks the connection between a file descriptor and an open file, and
frees the file descriptor for use with some other file. Termination of a program
via exit or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file
system.

File I/O is normally sequential: each read or write takes place at a position
in the file right after the previous one. When necessary, however, a file can be
read or written in any arbitrary order. The system call 1 seek provides a way to
move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position
offset, which is taken relative to the location specified by origin. Subse­
quent reading or writing will begin at that position. offset is a long; fd and
origin are int's. origin can be 0,1, or2 to specify that offset is to be

F of 15 February 1986

14 Programming Tools

Error Processing

1.5. Processes

The 'System' Function

measured from the beginning, from the current position, or from the end of the
file, respectively. For example, to append to a file, seek to the end before writ­
ing:

lseek(fd, OL, 2);

To get back to the beginning ('rewind'),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek, it is possible to treat files more or less like large arrays, at the price
of slower access. For example, the following simple function reads any number
of bytes from any arbitrary place in a file.

get(fd, pas, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{

lseek(fd, pas, 0); /* get to pos */
return (read(fd, buf, n»;

The routines discussed in this section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they indicate an error by return­
ing a value of -1. Sometimes it is nice to know what sort of error occurred; for
this purpose all these routines, when appropriate, leave an error number in the
external variable errno. The meanings of the various error numbers are listed
in intro(2) in the Sun UNIX Interface Reference Manual so your program can,
for example, determine if an attempt to open a file failed because it did not exist
or because the user lacked permission to read it. Perhaps more commonly, you
may want to display the reason for failure. The routine perror displays a mes­
sage associated with the value of errno; more generally, sys_ errno is an
array of character strings which can be indexed by errno and displayed by your
program.

It is often easier to use a program written by someone else than to invent one's
own. This section describes how to execute a program from within another.

The easiest way to execute a program from another is to use the standard library
routine system. system takes one argument, a command string exactly as
typed at the terminal (except for the newline at the end) and executes it. For
instance, to timestamp the output of a program,

main () {
system(ndate"); /* rest of processing */

If the command string has to be built from pieces, the in-memory formatting
capabilities of sprintf may be useful.

~~sun ~~ microsystems
F of 15 February 1986

Low-Level Process Creation
- Execl and Execv

Chapter 1 - UNIX Programming 15

Remember that getc and putc normally buffer their input; terminal 110 will
not be properly synchronized unless this buffering is defeated. For output, use
fflush; for input, see setbuf in section 1.7.

If you're not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using the more primi­
tive routines that the standard library's system routine is based onl .

The most basic operation is to execute another program without returning, by
using the routine execl. To display the date as the last action of a running pro­
gram, use

execl("/bin/date", "date", NULL);

The first argument to execl is the filename of the command; you have to know
where it is found in the file system. The second argument is conventionally the
program name (that is, the last component of the file name), but this is seldom
used except as a placeholder. If the command takes arguments, they are strung
out after this; the end of the list is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then
exits. There is no return to the original program.

More realistically, a program might fall into two or more phases that communi­
cate only through temporary files. Here it is natural to start the second pass sim­
ply by an execl call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can't be found or is not exe­
cutable. If you don't know where date is located, you might try

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance
how many arguments there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execv can tell where the list ends. As with execl,
filename is the file in which the program is found, and argp [0] is the name
of the program. (This arrangement is identical to the argv array for program
arguments.)

Neither of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know pre­
cisely where the command is located. Nor do you get the expansion of metachar­
acters like <, >, *, ?, and [] in the argument list. If you want these, use execl
to invoke the shell sh, which then does all the work. Construct a string

1 system uses Ibinlsh (the Bourne Shell) to execute the command string. so syntax specific to the C-Shell
will not work .

• \sun ,~ microsystems
F of 15 February 1986

16 Programming Tools

Control of Processes - Fork
and Wait

commandline that contains the complete command as it would have been
typed at the terminal, then say

execl("/bin/sh", "sh" , "-c", commandline, NULL);

The shell is assumed to be at a fixed place, Ibin/sh. Its argument -c says to treat
the next argument as a whole command line, so it does just what you want. The
only problem is in constructing the right information in commandline.

So far what we've talked about isn't really all that useful by itself. Now we will
show how to regain control after running a program with execl or execv.
Since these routines simply overlay the new program on the old one, to save the
old one requires that it first be split into two copies; one of these can be overlaid,
while the other waits for the new, overlaying program to finish. The splitting is
done by a routine called for k:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only
difference between the two is the value ofproc_id, the 'process id.' In one of
these processes (the 'child'), proc _ id is zero. In the other (the 'parent'),
proc _ id is nonzero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (fork () == 0)
execl(lI/bin/sh", "sh" , "_C", cmd, NULL);/* in child */

And in fact, except for handling errors, this is sufficient. The for k makes two
copies of the program. In the child, the value returned by fork is zero, so it
calls execl which does the command and then dies. In the parent, fork
returns nonzero so it skips the execl. If there is any error, fork returns-I.

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait:

int status;

if (fork() == 0)
execl (...) ;

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the execl
or fork, or the possibility that there might be more than one child running
simultaneously. The wa it returns the process id of the terminated child, if you
want to check it against the value returned by fork. Finally, this fragment
doesn't deal with any funny behavior on the part of the child (which is reported
in status). Still, these three lines are the heart of the standard library's sys­
tem routine, which we'll show in a moment.

The stat us returned by wai t encodes in its low-order eight bits the system's
idea of the child's termination status; it is 0 for normal termination and nonzero
to indicate various kinds of problems. The next higher eight bits are taken from
the argument of the call to e xi t which caused a normal termination of the child
process. It is good coding practice for all programs to return meaningful status.

~~sun ~~ microsystems
F of 15 February 1986

Pipes

Chapter 1 - UNIX Programming 17

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set
up to point at the right files (see Section 1.4.1), and all other possible file descrip­
tors are available for use. When this program calls another one, correct etiquette
suggests making sure the same conditions hold. Neither fork nor the exec
calls affects open files in any way. If the parent is buffering output that must
come out before output from the child, the parent must flush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will
lose any information that has been read by the caller.

A pipe is an 110 channel intended for use between two cooperating processes:
one process writes into the pipe, while the other process reads from the pipe. The
system looks after buffering the data and synchronizing the two processes. Most
pipes are created by the shell, as in

(tutorial% Is I pr)
which connects the standard output of 1 s to the standard input of pr. Some­
times, however, it is most convenient for a process to set up its own plumbing; in
this section, we illustrate how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and
writing, two file descriptors are returned; the actual usage is like this:

int fd [2] ;

stat pipe(fd);
if (stat == -1)

/* there was an error ... */

fd is an array of two file descriptors, where fd [0] is the read side of the pipe
and fd [1] is for writing. These may be used in read, wri te and close
calls just like any other file descriptors.

If a process reads a pipe which is empty, it waits until data arrives; if a process
writes into a pipe which is too full, it waits until the pipe empties somewhat. If
the write side of the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd (just as system does),
and returns a file descriptor that will either read or write that process, according
to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent write calls using
the file descriptor fout will send their data to that process through the pipe.

popen first creates the pipe with a pipe system call; it then fork's to create
two copies of itself. The child decides whether it is supposed to read or write,
closes the other side of the pipe, then calls the shell (via execl) to run the
desired process. The parent likewise closes the end of the pipe it does not use.
These closes are necessary to make end-of-file tests work properly. For example,
if a child that intends to read fails to close the write end of the pipe, it will never

F of 15 February 1986

18 Programming Tools

see the end of the pipe file, just because there is one writer potentially active.

iinclude <stdio.h>

idefine READ 0
idefine WRITE 1
idefine tst(a, b) (mode
static int popen-pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2];

if (pipe(p) < 0)
return(NULL);

READ ? (b)

if «popen-pid = fork(» == 0) {
close(tst(p[WRITE], p[READ]»;
close(tst(O, 1»;
dup(tst(p[READ], p[WRITE]»;

(a))

close (tst (p[READ] , p[WRITE]»;
execl("/bin/sh", "sh" , "-c", cmd, 0);
_exit(l); /* disaster has occurred if we get here 1

if (popen-pid == -1)
return(NULL);

close(tst(p[READ], p[WRITE]»;
return(tst(p[WRITE], p[READ]»;

The sequence of close's in the child is a bit tricky. Suppose that the task is to
create a child process that will read data from the parent. Then the first close
closes the write side of the pipe, leaving the read side open. The lines

close(tst(O, 1»;
dup(tst(p[READ], p[WRITE]»;

are the conventional way to associate the pipe descriptor with the standard input
of the child. The close closes file descriptor 0, that is, the standard input dup
is a system call that returns a duplicate of an already open file descriptor. File
descriptors are assigned in increasing order and the first available one is returned,
so the effect of the dup is to copy the file descriptor for the pipe (read side) to
file descriptor 0; thus the read side of the pipe becomes the standard input2.

Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write to the parent instead of reading. You may find it a useful exercise to step
through that case.

2 Yes, this is a bit tricky, but it's a standard idiom.

F of 15 February 1986

1.6. Signals - Interrupts and
All That

Chapter 1 - UNIX Programming 19

The job is not quite done, for we still need a function pelose to close the pipe
created by popen. The main reason for using a separate function rather than
elose is that it is desirable to wait for the termination of the child process.
First, the return value from pelose indicates whether the process succeeded.
Equally important when a process creates several children is that only a bounded
number of unwaited-for children can exist, even if some of them have ter­
minated; performing the wait lays the child to rest. Thus:

#include <signal.h>

pclose(fd) /* close pipe fd */
int fd;

register r, (*hstat) (), (*istat) (), (*qstat) ();
int status;
extern int popen-pid;

close(fd);
istat
qstat
hstat
while
if (r

signal (SIGINT, SIG_IGN);
= signal(SIGQUIT, SIG_IGN);
= signa1(SIGHUP, SIG_IGN);
«r = wait(&status» != popen-pid
== -1)

status = -1;
signal (SIGINT, istat);
signa1(SIGQUIT, qstat);
signal(SIGHUP, hstat);
return(status);

&& r != -1);

The calls to signal make sure that no interrupts, etc. interfere with the waiting
process; this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once,
because of the single shared variable popen _pid; it really should be an array
indexed by file descriptor. A popen function, with slightly different arguments
and return value is available as part of the standard I/O library discussed below.
As currently written, it shares the same limitation.

This section is concerned with how to deal gracefully with signals from the out­
side world (like interrupts), and with program faults. Since there's nothing very
useful that can be done from within C about program faults, which arise mainly
from illegal memory references or from execution of peculiar instructions, we'll
discuss only the outside world signals: interrupt and quit, which are generated
from the keyboard3, hangup, caused by hanging up the phone on dialup lines,
and terminate, generated by the kill command. When one of these events occurs,
the signal is sent to all processes which were started from the corresponding ter­
minal - the signal terminates the process unless other arrangements have been

3 The current binding of characters and signals can be discovered by the s tty a 11 command. On Sun
systems, typing control-C usually generates the kill signal and control-\ generates the quit signal.

~\sun ,~ microsystems
F of 15 February 1986

20 Programming Tools

made. In the quit case, a core image file is written for debugging purposes.

signal is the routine which alters the default action. signal has two argu­
ments: the first specifies the signal to be processed, and the second argument
specifies what to do with that signal. The first argument is just a numeric code,
but the second is either a function, or a somewhat strange code that requests that
the signal either be ignored or that it be given the default action. The include file
signaI.h gives names for the various arguments, and should always be included
when signals are used. Thus

*include <signal.h>

signal (SIGINT, SIG_IGN);

means that interrupts are ignored, while

signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns
the previous value of the signal. The second argument to signal may instead
be the name of a function (which has to be declared explicitly if the compiler
hasn't seen it already). In this case, the named routine will be called when the
signal occurs. Most commonly this facility is used so that the program can clean
up unfinished business before terminating, for example to delete a temporary file:

*include <signal.h>

main ()
{

int onintr ();

if (signal (SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process ... */

exit(O);

onintr(
{

unlink(tempfile);
exit(l);

Why the test and the double call to signal? Recall that signals like interrupt
are sent to all processes started from a particular terminal. Accordingly, when a
program is to be run non-interactively (started by &), the shell turns off interrupts
for it so it won't be stopped by interrupts intended for foreground processes. If
this program began by announcing that all interrupts were to be sent to the
onintr routine regardless, that would undo the shell's effort to protect it when
run in the background.

The solution, shown above, is to test the state of interrupt handling, and to con­
tinue to ignore interrupts if they are already being ignored. The code as written

F of 15 February 1986

Chapter 1 - UNIX Programming 21

depends on the fact that signal returns the previous state of a particular signal.
If signals were already being ignored, the process should continue to ignore
them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it
as a request to stop what it is doing and return to its own command processing
loop. Think of a text editor: interrupting a long display should not terminate the
edit session and lose the work already done. The outline of the code for this case
is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main ()
{

int (*istat) (), onintr ();

istat = signal(SIGINT, SIG_IGN); /* original status */
setjmp(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT, onintr);

/* main processing loop */

onintr(
{

printf("\nInterrupt\n") ;
longjmp(sjbuf); /* return to saved state */

The include file setjmp.h declares the type jrnp _ bu f - an object in which the
state can be saved. s jbuf is such an object. The set jrnp routine then saves the
state of things. When an interrupt occurs the onintr routine is called, which
can display a message, set flags, or whatever. longjrnp takes as argument an
object set by set jrnp, and restores control to the location following the call to
set jrnp, so control (and the stack level) will pop back to the place in the main
routine where the signal is set up and the main loop entered. Notice, by the way,
that the signal gets set again after an interrupt occurs. This is necessary; most
signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked list. If the routine called
when a signal occurs sets a flag and then returns instead of calling exit or
longjrnp, execution continues at the exact point it was interrupted. The inter­
rupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is
reading the terminal when the interrupt is sent. The specified routine is duly
called; it sets its flag and returns. If it were really true, as we said above, that
'execution resumes at the exact point it was interrupted,' the program would con­
tinue reading the terminal until the user typed another line. This behavior might

F of 15 February 1986

22 Programming Tools

well be confusing, since the user might not know that the program is reading; he
presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the tenninal read when execution
resumes after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be
prepared for 'errors' which are·caused by interrupted system calls. The ones to
watch out for are reads from a tenninal, wait, and pause. A program whose
onintr routine just sets intflag, resets the interrupt signal, and returns,
should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important when catching signals is
combined with executing other programs. Suppose a program catches interrupts,
and also includes a method (like '!' in the editor) whereby other programs can be
executed. Then the code should look something like this:

if (for k () == 0)
execl (...) ;

signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, it's not obvious, but not really difficult. Suppose the pro­
gram you call catches its own interrupts. If you interrupt the subprogram, it will
get the signal and return to its main loop, and probably read your tenninal. But
the calling program will also pop out of its wait for the subprogram and read your
terminal. Having two processes reading your terminal is very unfortunate, since
the system figuratively flips a coin to decide who should get each line of input.
A simple way out is to have the parent program ignore interrupts until the child is
done. This reasoning is reflected in the standard 110 library function system:

F of 15 February 1986

1.7. The Standard I/O
Library

General Usage

Chapter 1 - UNIX Programming 23

finclude <signal.h>

system(s)
char *s;

/* run command string s */

int status, pid, w;
register int (*istat) (), (*qstat) ();

if «pid = fork (» == 0)
execl("/bin/sh", "sh", "-c", s, 0);
_exit(127);

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while «w = wait(&status» != pid && w != -1)

if (w == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, qstat);
return(status);

As an aside on declarations, the function signal obviously has a rather strange
second argument. It is in fact a pointer to a function delivering an integer, and
this is also the type of the signal routine itself. The two values SIG_IGN and
SIG_DFL have the right type, but are chosen so they coincide with no possible
actual functions. For the enthusiast, here is how they are defined for the Sun sys­
tem - the definitions should be sufficiently ugly and nonportable to encourage
use of the include file.

#define SIG DFL
#define SIG IGN

(int (*) ()) 0
(int (*) (»1

The standard 110 library was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and in space, so that there
will be no hesitation in using it, no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious
calls whose use mars the understandability and portability of many programs
using older packages.

3. The interface provided should be applicable on all machines, whether or not
the programs which implement it are directly portable to other systems, or to
machines non-Sun running a version of UNIX.

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C
library, so no special library argument is needed for loading. All names in the

~\sun ~~ microsystems
F of 15 February 1986

24 Programming Tools

Standard I/O Library Calls

freopen

include file intended only for internal use begin with an underscore to reduce
the possibility of collision with a user name. The names intended to-be visible
outside the package are

stdin the name of the standard input stream

stdout the name of the standard output stream

s t derr the name of the standard error stream

EOF is actually -1, and is the value returned by the read routines on end­
of-file or error

NULL is a notation for the null pointer, returned by pointer-valued func­
tions to indicate an error

FILE expands to struct _iob and is a useful shorthand whendeclar­
ing pointers to streams

BUF S I Z is a number (viz. 1024) of the size suitable for an I/O buffer supplied
by the user. See setbuf, below

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are
mentioned here to point out that it is not possible to redeclare them
and that they are not actually functions; thus, for example, they may
not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation
and output flushing where appropriate. The names stdin, stdout, and
stderr are constants and may not be assigned to.

FILE *fopen(filename, type)
char *filename;
char *type;

opens the file and, if needed, allocates a buffer for it. filename is a character
string specifying the name. type is a character string (not a single character). It
may be "r", "w", or "a" to indicate intent to read, write, or append. In addi­
tion' each mode may be followed by a + sign to open the file for reading and
writing. " r+" positions the stream at the beginning of the file, "w+" creates
or truncates the file, and " a +" positions the stream to the end of the file. Both
reads and writes may be used on read/write streams, with the limitation that an
f seek, rewind, or reading end-of-file must be used between a read and a write
or vice versa. The value returned is a file pointer. If it is NULL the attempt to
open failed.

FILE *freopen(filename, type, ioptr)
char *filename;
char *type;
FILE *ioptr;

The stream named by ioptr is closed, if necessary, and then reopened as if by
fopen. If the attempt to open fails, NULL is returned, otherwise ioptr is
returned, which now refers to the new file. Often the reopened stream is stdin

F of 15 February 1986

getc

fgetc

putc

fputc

fclose

fflush

exit

feof

Chapter 1 - UNIX Programming 25

or stdout. The filename and type parameters are as for fopen.

int getc(ioptr)
FILE *ioptri

returns the next character from the stream named by ioptr, which is a pointer
to a file such as returned by fopen, or the name stdin. The integer EOF is
returned on end-of-file or when an error occurs. The null character \ 0 is a legal
character.

int fgetc(ioptr)
FILE *ioptri

acts like get c but is a genuine function, not a macro, so it can be pointed to,
passed as an argument, etc.

int putc(c, ioptr)
int Ci

FILE *ioptri

putc writes the character c on the output stream named by ioptr, which is a
value returned from fopen or perhaps stdout or stderr. The character is
returned as value, and EOF is returned on error.

int fputc(c, ioptr)
int Ci

FILE *ioptr;

acts like put c but is a genuine function, not a macro.

int fclose(ioptr)
FILE *ioptri

The file corresponding to ioptr is closed after any buffers are emptied. A
buffer allocated by the I/O system is freed. fclose is automatic on normal ter­
mination of the program.

int fflush(ioptr)
FILE *ioptri

Any buffered information on the (output) stream named by ioptr is written out.
Output files are normally buffered if they are not directed to the terminal.

(void) exit(errcode)i
int errcodei

terminates the process and returns its argument as status to the parent. This is a
special version of the routine which calls f flu s h for each output file. To ter­
minate without flushing, use _ exi t.

int feof(ioptr)
FILE *ioptr;

returns nonzero when end-of-file has occurred on the specified input stream.

F of 15 February 1986

26 Programming Tools

ferror

getehar

putehar

fgets

puts

fputs

ungetc

printf

int ferror(ioptr)
FILE *ioptr;

returns nonzero when an error has occurred while reading or writing the named
stream. The error indication lasts until the file has been closed.

int getchar();

is identical to gete (stdin) .

int putchar(c);

is identical to pute (e, stdout).

char *fgets(s, n, ioptr)
char *s;
int n;
FILE *ioptr;

reads to n-l characters, or up to a newline character, whichever comes first,
from the stream ioptr into the string pointed to by the character pointer s. A
null character is placed after the last character read in the strings s. fget s
returns the first argument, or NULL if error or end-of-file occurred.

int puts(s)
char *s;

puts copies the null-tenninated strings specified by s onto the standard output
stream and appends a newline character.

int fputs(s, ioptr)
char *s;
FILE *ioptr;

writes the null-tenninated string (character array) s on the stream ioptr. No
newline is appended. The last character transmitted is returned as value, or EOF

is returned on error.

int ungetc(c, ioptr)
int c;
FILE *ioptr;

The argument character e is pushed back on the input stream named by ioptr.
Only one character may be pushed back.

.~sun ,~ microsystems
F of 15 February 1986

scanf

fread

Chapter 1 - UNIX Programming 27

int printf(for.mat, al, ...)
char *format;

int fprintf(ioptr, format, al, ...)
FILE *ioptr;
char *format;

int sprintf(s, format, al, ...)
char *s;
char *format;

printf writes on the standard output. fprintf writes on the output stream
named by ioptr. sprintf puts characters in the character array (string)
named by s. The specifications are as described in printf(3) in the Sun UNIX
Interface Reference Manual.

printf and fprintf return the number of characters actually transmitted, or
return EOF if any error condition exists on the output file. spr intf returns a
pointer to the buffer where the formatted string is placed.

int scanf(format, al, ...)
char *format;

int fscanf(ioptr, format, al, ...)
FILE *ioptr;
char *format;

int sscanf(s, format, al, ...)
char *s;
char *format;

scanf reads from the standard input. fscanf reads from the named input
stream. sscanf reads from the character string supplied as s. scanf reads
characters, interprets them according to the format, and stores the results in its
arguments. Each routine expects as arguments a control string format, and a
set of arguments, each of which must be a pointer, indicating where the con­
verted input should be stored.

scanf returns as its value the number of successfully matched and assigned
input items. This can be used to decide how many input items were found. On
end of file, EOF is returned; note that this is different from 0, which means that
the next input character does not match what was called for in the control string.

int fread(ptr, sizeof(*ptr), nitems, ioptr)
unsigned nitems;
FILE *ioptr;

reads ni terns of data of the type of *ptr from file ioptr into the memory
area starting at ptr. No advance notification that binary I/O is being done is
required. fread returns the number of items actually read from the specified
stream.

F of 15 February 1986

28 Programming Tools

fwrite

rewind

system

getw

putw

setbuf

setbuffer

fileno

int fwrite(ptr, sizeof(*ptr), nitems, ioptr)
unsigned nitems;
FILE *ioptr;

Like fread, but in the other direction. fwr i te returns the number of items
actually transmitted to the specified stream. This may possibly be less than the
number of items requested if an error occurs while the transfer is in process.

(void) rewind (ioptr)
FILE *ioptr;

rewinds the stream named by ioptr. It is not very useful except on input, since
a rewound output file is still open only for output.

int system (string)
char *string;

The string is executed by the shell as if typed at the terminal. The return
value is the exit code of the invoked shell, which is usually the exit code of the
last command executed by it

int getw (ioptr)
FILE *ioptr;

returns the next word from the input stream named by ioptr. EOF is returned
onend-of-file or error, but since this a perfectly good integer, feof and fer­
ror should be used. A 'word' is 32 bits on the Sun Workstation.

int putw(w, ioptr)
FILE *ioptr;

writes the integer w on the named output stream. put w returns the current error
status of the specified stream, as if an ferror call had been made.

(void) setbuf(ioptr, buf)
FILE *ioptr; char *buf;

setbuf may be used after a stream has been opened but before I/O has started.
If buf is NULL, the stream is unbuffered. Otherwise the buffer supplied is used.
It must be a character array of sufficient size:

char buf[BUFSIZ];

(void) setbuffer(ioptr, buf, size)
FILE *ioptr;
char *buf;
int size;

setbuf fer is like setbuf (described above), but can be used when a
specified, nonstandard buffer size should be used.

int fileno(ioptr)
FILE *ioptr;

.\sun
~ microsystems

F of 15 February 1986

fseek

ftell

getpw

malloc

free

calloc

Chapter 1 - UNIX Programming 29

returns the integer file descriptor associated with the file.

int fseek(ioptr, offset, ptrname)
FILE *ioptri
long offset;
int ptrname;

The location of the next byte in the stream named by ioptr is adjusted.
offset is a long integer. Ifptrname is 0, the offset is measured from the
beginning of the file; if pt r name is 1, the offset is measured from the current
read or write pointer; if ptrname is 2, the offset is measured from the end of the
file. The routine accounts properly for any buffering. When this routine is used
on non UNIX systems, the offset must be a value returned from ftell and the
pt rname must be O.

long ftell(ioptr)
FILE *ioptr;

The byte offset, measured from the beginning of the file, associated with the
named stream is returned. Any buffering is properly accounted for. On non
UNIX systems the value of this call is useful only for handing to fseek, so as to
position the file to the same place it was when ftell was called.

int getpw(uid, buf)
int uid;
char *buf;

The password file is searched for the given integer user ID. If an appropriate line
is found, it is copied into the character array buf, and 0 is returned. If no line is
found corresponding to the user ID then 1 is returned.

char *malloc(num)
int numi

allocates n urn bytes. The pointer returned is aligned so as to be usable for any
purpose. NULL is returned if no space is available.

int free(ptr)
char *ptr;

free frees up memory previously allocated by malloc. free returns a 0 if
any errors were detected (such as ptr being misaligned), and returns lother­
wise. Disorder can be expected if the pointer was not obtained from malloc.

char *calloc(num, size);
unsigned num;
unsigned size;

allocates space for num items, each of size size. The space is guaranteed to be
set to 0 and the pointer is aligned so as to be usable for any purpose. NULL is
returned if no space is available.

~\sun ,~ microsystems
F of 15 February 1986

30 Programming Tools

cfree

Character Type Checking

I

Character Type Conversion

(void) cfree(ptr, num, size)
char *ptr;
unsigned num;
unsigned size;

Space is returned to the pool used by calloc. Disorder can be expected if the
pointer was not obtained from calloc.

The following are macros whose definitions may be obtained by including
<ctype .h>.

isalpha (c) returns nonzero if e is alphabetic.

isupper (c) returns nonzero if e is upper-case alphabetic.

islower (c) returns nonzero if e is lower-case alphabetic.

is di g i t (c) returns nonzero if e is a digit.

isxdigit (c) returns nonzero if e is a hexadecimal digit - that is, one of '0'
through '9', 'a' through 'f, or 'A' through 'F'.

isspace (c) returns nonzero if e is a spacing character: tab, newline, carriage
return, vertical tab, form feed, space.

ispunct (c) returns nonzero if e is any punctuation character, that is, not a
space, letter, digit or control character.

isalnum (c) returns nonzero if e is a letter or a digit.

ispr int (c) returns nonzero if e is printable - a letter, digit, space, or punc­
tuation character.

iscntrl (c) returns nonzero if e is a control character.

isas cii (c) returns nonzero if e is an ASCII character, that is, less than octal
0200.

isgraph (c) returns nonzero ife is a printing character-like isprint (c)
but doesn't include the space character.

toupper (c) returns the upper-case character corresponding to the lower-case
letter e.

tolower (c) returns the lower-case character corresponding to the upper-case
letter e.

~\sun
~ microsystems

F of 15 February 1986

2
Tools for the C Programming Language

Tools for the C Programming Language .. 33

2.1. ctags - Build Index File for C Functions ... 33

2.2. Lint - A C Program Checker ... 35

U sing Lint ... 35

A Word About Philosophy .. 35

Unused Variables and Functions .. 36

Set/Used Information .. 36

Flow of Control .. 37

Function Values ... 37

Type Checking ... 38

Type Casts ... 39

Nonportable Character Use ... 39

Assignments of longs to ints .. 39

Strange Constructions .. 40

Ancient History .. 40

Pointer Alignment .. 41

Multiple Uses and Side Effects ... 41

Implementation .. 42

Portability .. 42

Shutting Lint Up .. 44

Library Declaration Files ... 45

Bugs, etc. ... 45

Current Lint Options ... 46

2.1. ctags - Build Index
File for C Functions

2
Tools for the C Programming Language

Utilities described in this chapter cover facilities for the C programming
language.

ctags

lint

Builds an index file of function references in a C program. The ex
and vi text editors can use this index file to locate the correct file for
the function you name.

Checks syntactical validity of C programs more stringently than
does the C compiler.

ctags builds an index file offunction references in a C program. The ex and
vi text editors can use this index file to locate the correct file for the function
you name.

Let us look at a directory containing a program that assist in generating an index
for manuals:

tutorial% 18 index. assist
Makefile build.index.c index.assist.h print.index.c
sees index.assist.c index.token.c
tutorial%

Now if we look inside the Makef ile for the rule that builds the tags, we see
these relevant fragments:

33 F of 15 February 1986

34 Programming Tools

lines of Makefile

SOURCES index.assist.c build.index.c print.index.c \
index.token.c

more lines of Makefile

tags: $ (SOURCES)
ctags $(SOURCES)

more lines of Makefile

Now we run a make tags in that directory and we see the results:

tutorial% make tags
ctags index.assist.c build.index.c print.index.c \

index.token.c
tutorial%

Now there is a tags file that acts as the index for the program. How do you use
this? Suppose you want to edit the print_index function. You can simply
say:

(tutorial% vi -t print_index

The -t option instructs vi to use the tags file and look for the print_index
function - then vi finds that the required function is in the file called
print. index. c.

]

The other use of this is when you are already editing some file and want to look
at a function that's in another file. You then use the : ta command of ex. For
example, suppose you are editing the main function and you want to look for the
insert_index _entry function which is in another file. You use the : ta
command like:

command and then ex/vi does an effective: e command to read in the file con­
taining the specified function. The insert _ index_entry function happens
to be in the file called build. index. c and ex/vi announces this fact at the
bottom of the screen when it reads in the appropriate file.

F of 15 February 198~

2.2. Lint - A C Program
Checker

Using Lint

A Word About Philosophy

Chapter 2 - Tools for the C Programming Language 35

lint examines C source programs, detecting a number of bugs and obscurities.
lint enforces the type rules ofC more strictly than the C compiler. lint may
also be used to enforce a number of portability restrictions involved in moving
programs between different machines and/or operating systems. Another option
detects a number of wasteful, or error-prone, constructions which nevertheless
are, strictly speaking, legal.

lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function between lint and the C compilers has both historical
and practical rationale. The compilers tum C programs into executable files
rapidly and efficiently. This is possible in part because the compilers do not do
sophisticated type checking, especially between separately compiled programs.
lint takes a more global, leisurely view of the program, looking much more
carefully at the compatibilities.

This document discusses the use of lint, gives an overview of its implementa­
tion, and gives some hints on writing machine-independent C code.

Suppose there are two C[l] source files,filel.c andfile2.c, which are ordinarily
compiled and loaded together. The command:

[tutorial% lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs.
lint enforces the typing rules of C more strictly than the C compiler (for both
historical and practical reasons) enforces them. The command:

[tutorial% lint -p filel.c file2.c

J

J
produces, in addition to the types of messages described above, additional mes­
sages relating to portability of the programs to other operating systems and
machines. Replacing the -p by -h produces messages about various error-prone
or wasteful constructions which, strictly speaking, are not bugs. Saying -hp gets
the whole works.

The next several sections describe the major messages; the document closes with
sections discussing the implementation and giving suggestions for writing port­
able C. There is a summary of lint options in section Current Lint Options.

Many of the facts which lint needs may be impossible to discover. For exam­
ple, whether a given function in a program ever gets called may depend on the
input data. Deciding whether exit is ever called is equivalent to solving the
famous 'halting problem,' which is known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never
mentioned, it can never be called. If a function is mentioned, lint assumes it
can be called; this is not necessarily so, but in practice is quite reasonable.

F of 15 February 1986

36 Programming Tools

Unused Variables and
Functions

Set/Used Information

lint tries to give information with a high degree of relevance. Messages of the
form 'xxx might be a bug' are easy to generate, but are acceptable only in propor­
tion to the fraction of real bugs they uncover. If this fraction of real bugs is too
small, the messages lose their credibility and serve merely to clutter up the out­
put, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of mes­
sages which lint produces.

As programs evolve and develop, previously used variables and arguments to
functions may become unused; it is not uncommon for external variables~ or even
entire functions, to become unnecessary, and yet not be removed from the source.
These 'errors of commission' rarely make working programs fail, but they are a
source of inefficiency, and make programs harder to understand and change.
Moreover, information about such unused variables and functions can occasion­
ally serve to discover bugs; if a function does a necessary job, and is never
called, something is wrong!

lint complains about variables and functions which are defined but not other­
wise mentioned. An exception is variables which are declared through explicit
extern statements but are never referenced; thus the statement:

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external declarations
might be of some interest; they can be discovered by adding the -x option to the
lint invocation.

Certain styles of programming require many functions to be written with similar
interfaces; frequently, some of the arguments may be unused in many of the
calls. The -v option is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are produced about unused
arguments except for those arguments which are unused and also declared as
register arguments; this can be considered an active (and preventable) waste of
the register resources of the machine.

There is one case where information about unused, or undefined, variables is
more distracting than helpful. This is when lint is applied to some, but not all,
files out of a collection which are to be loaded together. In this case, many of the
functions and variables defined may not be used, and, conversely, many func­
tions and variables defined elsewhere may be used. The -u option may be used
to suppress the spurious messages which might otherwise appear.

lint attempts to detect cases where a variable is used before it is set. This is
very difficult to do well; many algorithms take a good deal of time and space,
and still produce messages about perfectly valid programs. lint detects local
variables (automatic and register storage classes) whose first use appears physi­
cally earlier in the input file than the first assignment to the variable. It assumes
that taking the address of a variable constitutes a 'use,' since the actual use may
occur at any later time, in a data-dependent fashion.

F of 15 February 1986

Flow of Control

Function Values

Chapter 2 - Tools for the C Programming Language 37

The restriction to the physical appearance of variables in the file makes the algo­
rithm very simple and quick to implement, since the true flow of control need not
be discovered. It does mean that lint can complain about some programs
which are legal, but these programs would probably be considered bad on stylis­
tic grounds (for example, might contain at least two goto's). Because static and
external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initial­
ized automatic variables, and variables which are used in the expression which
first sets them.

The set/used information also permits recognition of those local variables which
are set and never used; these form a frequent source of inefficiencies, and may
also be symptomatic of bugs.

lint attempts to detect unreachable portions of the programs which it
processes. It complains about unlabeled statements immediately following
goto, break, continue, or return statements. An attempt is made to

detect loops which can never be left at the bottom, detecting the special cases
while (1) and for (; ;) as infinite loops. lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops,
but at best they are bad style, at worst bugs.

lint has an important area of blindness in the flow of control algorithm: it has
no way of detecting functions which are called and never return. Thus, a call to
exi t may cause unreachable code which lint does not detect; the most serious
effects of this are in the determination of returned function values (see the next
section).

One form of unreachable statement that lint does not complain about is a
break statement that cannot be reached - programs generated by yacc[2],
and especially lex[3], may have literally hundreds of unreachable break
statements. The -0 option in the C compiler often eliminates the resulting
object code inefficiency. Thus, these unreached statements are of little impor­
tance - there is typically nothing the user can do about them, and the resulting
messages would clutter up the 1 i n t output. If these messages are desired,
lint can be invoked with the -b option.

Sometimes functions return values which are never used; sometimes programs
incorrectly use function 'values' which are never returned. lint addresses this
problem in a number of ways.

Locally, within a function definition, the appearance of both:

return (expr);

and:

return;

statements results in the message

function na~ contains return (e) and return

The most serious difficulty with this is detecting when a function return is

~~sun ~~ microsystems
F of 15 February 1986

38 Programming Tools

Type Checking

implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a) {
if (a)

return (3);
g ();

Notice that, if a tests false,jwill call g and then return with no defined return
value; this will trigger a complaint from lint. If g, like exit, never returns,
the message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it
also accounts for a substantial fraction of the 'noise' messages produced by
lint.

On a global scale, lint detects cases where a function returns a value, but this
value is sometimes, or always, unused. When the value is always unused, it may
constitute an inefficiency in the function definition. When the value is some­
times unused, it may represent bad style (for example, not testing for error condi­
tions).

The dual problem, using a function value when the function does not return one,
is also detected. This is a serious problem. Amazingly, this bug has been
observed on a couple of occasions in 'working' programs; the desired function
value just happened to have been computed in the function return register!

lint enforces the type checking rules of C more strictly than the compiler does.
The additional checking is in four major areas: across certain binary operators
and implied assignments, at the structure selection operators, between the
definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an implied balancing between types
of the operands. The assignment, conditional (? :), and relational operators have
this property; the argument of a return statement, and expressions used in ini­
tialization also suffer similar conversions. In these operations, char, short,
int, long, unsigned, float, and double types may be freely intermixed.
The types of pointers must agree exactly, except that arrays of x's can, of course,
be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand
of the -> be a pointer to structure, the left operand of the . be a structure, and
the right operand of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short,
int, and unsigned. Also, pointers can be matched with the associated arrays.
Aside from this, all actual arguments must agree in type with their declared coun­
terparts.

With enumerations, checks are made that enumeration variables or members are
not mixed with other types, or other enumerations, and that the only operations

.\sun
~~ microsystems

F of 15 February 1986

Type Casts

Nonportable Character Use

Assignments of longs to ints

Chapter 2 - Tools for the C Programming Language 39

applied are =, initialization, ==, !=, and function arguments and return values.

The type casting feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment:

p = 1 ;

where p is a character pointer. lint will quite rightly complain. Now, consider
the assignment

p = (char *) 1 ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. It seems harsh for 1 i n t to continue to complain about
this. On the other hand, if this code is moved to another machine, such code
should be looked at carefully. The -c option controls the printing of comments
about casts. When --c is in effect, casts are treated as though they were assign­
ments subject to complaint; otherwise, all legal casts are passed without com­
ment, no matter how strange the type mixing seems to be.

On the PDP-II, characters are signed quantities, with a range from -128 to 127.
In most other C implementations, characters take on only positive values. Thus,
lint will mark certain comparisons and assignments as being illegal or non­
portable. For example, the fragment:

char c;

if((c=getchar(» <0) ...

works on the PDP-II, but will fail on machines where characters always take on
positive values. The real solution is to declare c an integer, since getchar is actu­
ally returning integer values. In any case, lint will say 'nonportable character
comparison' .

A similar issue arises with bitfields; when assignments of constant values are
made to bitfields, the field may be too small to hold the value. This is especially
true because on some machines bitfields are considered as signed quantities.
While it may seem unintuitive to consider that a two-bit field declared of type
int cannot hold the value 3, the problem disappears if the bitfield is declared to
have type unsigned.

Bugs may arise from the assignment of a long to an int, which may lose accu­
racy. This may happen in programs which have been incompletely converted to
use typedefs. When a typedef variable is changed from int to long, the
program can stop working because some intermediate results may be assigned to
int 's, losing accuracy. Since there are a number of legitimate reasons for
assigning longs to ints, the detection of these assignments is enabled by the
-a option.

F of 15 February 1986

40 Programming Tools

Strange Constructions

Ancient History

lint flags several perfectly legal, but somewhat strange, constructions - it is
hoped that the messages encourage better code quality, clearer style, and may
even point out bugs. The -h option is used to enable these checks. For example,
in the statement:

*p++ ;

the * does nothing; this provokes the message 'null effect' from lint. The pro­
gram fragment:

unsigned x ; if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test:

if(x > 0)

is equivalent to:

if (x ! = 0)

which may not be the intended action. lint will say 'degenerate unsigned com­
parison' in these cases. If one says:

if (1 ! = 0) ...

lint reports 'constant in conditional context', since the comparison of 1 with 0
gives a constant result.

Another construction detected by 1 i n t involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and fonnatting, making such bugs extremely hard to find.
For example, the statements:

if (x& 077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions, and lint encourages this by an appropriate message.

Finally, when the -h option is in force lint complains about variables which
are redeclared in inner blocks in a way that conflicts with their use in outer
blocks. This is legal, but is considered by many (including the author) to be bad
style, usually unnecessary, and frequently a bug.

There are several fonns of older syntax which are being officially discouraged.
These fall into two classes, assignment operators and initialization.

The older fonns of assignment operators (for example, =+, =-, ...) could result
in ambiguous expressions, such as:

a =-1;

which could be taken as either:

a =- 1;

or:

~~sun ,~ microsystems
F of 15 February 1986

Pointer Alignment

Chapter 2 - Tools for the C Programming Language 41

a -1 ;

The situation is especially perplexing if this kind of ambiguity arises as the result
of a macro substitution. The newer, and preferred operators (+=, -=, etc.) have
no such ambiguities. To spur the abandonment of the older forms, lint com­
plains about these old-fashioned operators., and the Sun C compiler issues warn­
ing messages about them.

A similar issue arises with initialization. The older language allowed:

int xl;

to initialize x to 1, also creating syntactic difficulties. For example:

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) {

and the compiler must read a fair ways past x in order to sure what the declara­
tion really is. Again, the problem is even more perplexing when the initializer
involves a macro. The current syntax places an equals sign between the variable
and the initializer:

int x -1 ;

This is free of any possible syntactic ambiguity.

Certain pointer assignments may be reasonable on some machines, and illegal on
others, due entirely to alignment restrictions. For example, on the PDP-II, it is
reasonable to assign integer pointers to double pointers, since double-precision
values may begin on any integer boundary. On the Honeywell 6000, double­
precision values must begin on even word boundaries; thus, not all such assign­
ments make sense. lint tries to detect cases where pointers are assigned to
other pointers, and such alignment problems might arise. The message 'possible
pointer alignment problem' results from this situation whenever either the -p or
-b options are in effect.

Multiple Uses and Side Effects In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines (like the PDP-II)
in which the stack runs backwards, function arguments will probably be best
evaluated from right-to-Ieft; on machines with a stack running forward, left-to­
right seems most attractive. Function calls embedded as arguments of other
functions mayor may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly comprom­
ised, the C language leaves the order of evaluation of complicated expressions up
to the local compiler, and, in fact, the various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

~\sun ~ microsystems
F of 15 February 1986

42 Programming Tools

Implementation

Portability

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement:

a [i] = b [i++] ;

will draw the complaint:

warning: i evaluation order undefined

lint consists of two programs and a driver. The first program is a version of
the Portable C Compiler[4], [5] which is the basis of many C compilers, includ­
ing Sun's. This compiler does lexical and syntax analysis on the input text, con­
structs and maintains symbol tables, and builds trees for expressions. Instead of
writing an intermediate file which is passed to a code generator, as the compilers
do, lint produces an intermediate file which consists of lines of ASCII text
Each line contains an external variable name, an encoding of the context in
which it was seen (use, definition, declaration, etc.), a type specifier, and a source
file name and line number. The information about variables local to a function or
file is collected by accessing the symbol table, and examining the expression
trees.

Comments about local problems are produced as detected. The information
about external names is collected onto an intermediate file. After all the source
files and library descriptions have been collected, the intermediate file is sorted to
bring all information collected about a given external name together. The
second, rather small, program then reads the lines from the intermediate file and
compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options
available to both passes of lint.

C on the Honeywell and IBM systems is used, in part, to write system code for the
host operating system. This means that the implementation of C tends to follow
local conventions rather than adhere strictly to UNIX system conventions.
Despite these differences, many C programs have been successfully moved to
GeOS and the various IBM installations with little effort. This section describes
some of the differences between the implementations, and discusses the lint
features which encourage portability.

Uninitialized external variables are treated differently in different implementa­
tions of C. Suppose two files both contain a declaration without initialization,
such as:

int a

outside of any function. The UNIX loader resolves these declarations, and sets
aside only a single word of storage for a. Under the GeOS and IBM implementa­
tions, this is not feasible (for various stupid reasons!) so each such declaration
sets aside a word of storage called a. When loading or library editing takes
place, this creates fatal conflicts which prevent the proper operation of the pro­
gram. lint detects such multiple definitions if it is invoked with the -p option.

F of 15 February 1986

Chapter 2 - Tools for the C Programming Language 43

A related difficulty comes from the amount of information retained about exter­
nal names during the loading process. On the ~IX system, externally known
names have seven significant characters, with the upper/lower case distinction
kept. On the IBM systems, there are eight significant characters, but the case dis­
tinction is lost. On GCOS, there are only six characters, of a single case. This
leads to situations where programs run on the UNIX system, but encounter loader
problems on the IBM or GCOS systems. 1 in t -p maps all external symbols to
one case and truncates them to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the
UNIX system are eight bit ASCII, while they are eight bit EBCDIC on the IBM, and
nine bit ASCII on GCOS. Moreover, character strings go from high to low bit posi­
tions ('left to right') on GCOS and IBM, and low to high ('right to left') on the
PDP-II. This means that code attempting to construct strings out of character
constants, or attempting to use characters as indices into arrays, must be looked
at with great suspicion. lint is of little help here, except to option multi­
character character constants.

Of course, the word sizes are different! This is less troublesome than might be
expected, at least when moving from the UNIX system (16 bit words) to the IBM
(32 bits) or GCOS (36 bits). The main problems are likely to arise in shifting or
masking. C now supports a bit-field facility, which can be used to write much of
this code in a reasonably portable way. Frequently, portability of such code can
be enhanced by slight rearrangements in coding style. Many of the incompatibil­
ities seem to have the flavor of writing:

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-II, but fails badly on
GCOS and IBM. If the bit field feature cannot be used, the same effect can be
obtained by writing:

x &= - 077 ;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-II, and logical shift on
most other machines. To obtain a logical shift on all machines, the left operand
can be typed unsigned. Characters are considered signed integers on the PDP-
11, and unsigned on the other machines. This persistence of the sign bit may be
reasonably considered a bug in the POP-II hardware which has infiltrated itself
into the C language. If there were a good way to discover the programs which
would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger
than it in fact is. The issues involved here are rarely subtle or mysterious, at least
to the implementor of the program, although they can involve some work to
straighten out. The most serious bar to the portability of UNIX system utilities
has been the inability to mimic essential UNIX system functions on the other sys­
tems. The inability to seek to a random character position in a text file, or to
establish a pipe between processes, has involved far more rewriting and debug­
ging than any of the differences in C compilers. On the other hand, lint has
been very helpful in moving the UNIX operating system and associated utility

F of 15 February 1986

44 Programming Tools

Shutting Lint Up

programs to other machines.

There are occasions when the programmer is smarter than lint. There may be
valid reasons for 'illegal' type casts, functions with a variable number of argu­
ments, etc. Moreover, as specified above, the flow of control information pro­
duced by lint often has blind spots, causing occasional spurious messages
about perfectly reasonable programs. Thus, some way of communicating with
lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords
would require current and old compilers to recognize these keywords, if only to
ignore them. This has both philosophical and practical problems. New prepro­
cessor syntax suffers from similar problems.

What was finally done was to make lint recognize a number of words when
they were embedded in comments. This required minimal preprocessor changes;
the preprocessor just had to agree to pass comments through to its output, instead
of deleting them as had been previously done. Thus, lint directives are invisi­
ble to the compilers, and the effect on systems with the older preprocessors is
merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular
place in the program cannot be reached, but this is not apparent to lint, this can
be asserted by placing the directive

/* NOTREACHED */

just before that spot in the program. Similarly, if it is desired to tum off strict
type checking for the next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression.
The -v option can be turned on for one function by the directive:

/* ARGSUSED */

Complaints about variable numbers of arguments in calls to a function can be
turned off by the directive:

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first
several arguments, and leave the later arguments unchecked. This can be done
by following the VARARGS keyword immediately with a digit giving the number
of arguments which should be checked; thus,

/* VARARGS2 */

checks the first two arguments and leaves the others unchecked. Finally, the
directive:

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is
worth a section by itself.

F of 15 February 1986

Library Declaration Files

Bugs, etc.

Chapter 2 - Tools for the C Programming Language 45

lint accepts certain library directives, such as:

-ly

and tests the source files for compatibility with these libraries. This is done by
accessing library description files whose names are constructed from the library
directives. These files all begin with the directive:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to the
function. The VARARGS and ARGSUSED directives can be used to specify
features of the library functions.

lint library files are processed almost exactly like ordinary source files. The
only difference is that functions which are defined in a library file, but not used in
a source file, draw no complaints. lint does not simulate a full library search
algorithm, and complains if the source files contain a redefinition of a library rou­
tine (this is a feature!).

By default, lint checks the routines it is given against a standard library file,
which contains descriptions of the programs which are normally loaded when a C
program is run. When the -p option is in effect, another file is checked contain­
ing descriptions of the standard I/O library routines which are expected to be
portable across various machines. The -n option can be used to suppress all
library checking.

lint was a difficult program to write, partially because it is closely connected
with matters of programming style, and partially because users usually don't
notice bugs which cause lint to miss errors which it should have caught. By
contrast, if lint incorrectly complains about something that is correct, the pro­
grammer reports that immediately!

A number of areas remain to be further developed. The checking of structures
and arrays is rather inadequate; size incompatibilities go unchecked, and no
attempt is made to match up structure and union declarations across files. Some
stricter checking of the use oftypedef is clearly desirable, but what checking
is appropriate, and how to carry it out, is still to be determined.

lint shares the preprocessor with the C compiler. At some point it may be
appropriate for a special version of the preprocessor to be constructed which
checks for things such as unused macro definitions, macro arguments which have
side effects which are not expanded at all, or are expanded more than once, etc.

The central problem with 1 int is the packaging of the information which it col­
lects. There are many options which serve only to turn off, or slightly modify,
certain features. There are pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good
one. The compiler concentrates on quickly and accurately turning the program
text into bits which can be run; lint concentrates on issues of portability, style,
and efficiency. lint can afford to be wrong, since incorrectness and over-

F of 15 February 1986

46 Programming Tools

Current Lint Options

conservatism are merely annoying, not fatal. The compiler can be fast since it
knows that lint will cover its flanks. Finally, the programmer can concentrate
at one stage of the programming process solely on the algorithms, data structures,
and correctness of the program, and then later retrofit, with the aid of lint, the
desirable properties of universality and portability.

The lint command currently has the fonn

tutorial % l.int [-abchnpsuvx] filename. • . library-descriptors . ..

The options are

a Report assignments of long to int or shorter

b Report unreachable break statements

c Complain about questionable casts

h Perform heuristic checks

n Do not do library checking

p Perform portability checks

s Same as h (for historical reasons)

u Don't report unused or undefined externals

v Don't report unused arguments

x Report unused external declarations

~~sun ~~ microsystems
F of 15 February 1986

Make - Maintaining Computer Pro­
grams

3

Make - Maintaining Computer Programs .. 49

3.1. Basic Features .. 50

Default Target ... 51

3.2. Description Files .. 52

Comments in makefile .. 52

Continuation Lines ... 52

Include Lines ... 53

Macro Definitions ... 53

Using Macros .. 53

Translations in Macro References ... 53

Recursive Makefiles .. 54

Entries - Dependency Lines and Rules ... 54

Dynamic Dependency Parameters .. 55

Implicit Macros .. 56

3.3. Using the make Command .. 56

Assigning Macros and Variables ... 57

Options for the make Command" 58 3 3

3.4. Implicit Rules .. 59

SCCS File N ames ... 60

Built In Names and Options ... 61

3.5. Example .. 61

3.6. Suggestions and Warnings ... 63

3.7. Making Archive Libraries .. 64

3.8. Suffixes and Transfonnation Rules ... 65

Null Suffix ... 65

Standard Suffix List ... 65

Basic Ideas

3
Make - Maintaining Computer

Programs

It is common practice to divide large programs into smaller, more manageable
pieces. The pieces may require quite different treatments: some may need to be
run through a macro processor, and some may need to be processed by a sophisti­
cated program generator (for example, Yacc[1] or Lex[2]). The outputs of these
generators may have to be compiled with special options and with certain
definitions and declarations. The code resulting from these transformations may
then need to be loaded together with certain libraries under the control of special
options. Related maintenance activities involve running complicated test scripts
and installing validated modules. Unfortunately, it is very easy for a programmer
to forget which files depend on which others, which files have been modified
recently, and the exact sequence of operations needed to make or exercise a new
version of the program. After a long editing session, one may easily lose track of
which files have been changed and which object modules are still valid, since a
change to a declaration can obsolete a dozen other files. Forgetting to compile a
routine that has been changed or that uses changed declarations usually results in
a program that will not work, and a bug that can be very hard to track down. On
the other hand, recompiling everything in sight just to be safe is very wasteful.

make mechanizes many of the activities of program development and mainte­
nance. make provides a simple mechanism for maintaining up-to-date ver­
sions of programs that result from many operations on a number of files. It is
possible to tell make the sequence of commands that create certain files, and the
list of files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, make will create the
proper files simply, correctly, and with a minimum amount of effort.

The basic operation of make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up-to­
date, and then create the target if it has not been modified since its generators
were. The description file really defines the graph of dependencies; make does
a depth-first search of this graph to determine what work is really necessary.

make also provides a simple macro substitution facility and the ability to encap­
sulate commands in a single file for convenient administration.

If the information on inter-file dependences and command sequences is stored in
a file, the simple command:

~\sun ,~ microsystems
49 F of 15 February 1986

50 Programming Tools

3.1. Basic Features

(tutorial% make]
is frequently sufficient to update the interesting files, regardless of the number
that have been edited since the last 'make'. In most cases, the description file is
easy to write and changes infrequently. It is usually easier to type the make
command than to issue even one of the needed operations, so the typical cycle of
program development operations becomes

think - edit - make - test ...

make is most useful for medium-sized programming projects; it does not solve
the problems of maintaining multiple source versions4 or of describing huge pro­
grams.

The basic operation of make is to update a target file by ensuring that all of the
files on which it depends exist and are up to date, then creating the target if it has
not been modified since its dependents were. make does a depth-first search of
the graph of dependences. The operation of the command depends on the ability
to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is
made by compiling and loading three C-Ianguage files x. c, y. c, and z. c
with the 1m library. By convention, output of the C compilations is found in
files named x. 0, y. 0, and z. o. Assume that the files x. c and y. c share
some declarations in a file named de f s, but that z. c does not. That is, x. c
and y. c have the line

=If:include "defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -1m -0 prog

x.o y.o: defs

If this information were stored in a file named makefile, the command:

(~t_u_t_o_r_l_'a_1_~_~_ma __ k_e __)

would perform the operations needed to recreate prog after any changes had
been made to any of the four source files x. c, y. c, z. c, or defs.

make operates using three sources of information: a user-supplied description
file (as above), filenames and 'last-modified' times from the file system, and
built-in rules to bridge some of the gaps. In our example, the first line says that
prog depends on three' .0' files. Once these object files are current, the second
line describes how to load them to create prog. The third line says that x. 0

4 See the description of the Source Code Control System (SCCS) later in this book, for a tool for
maintaining multiple source versions.

F of 15 February 1986

Default Target

Chapter 3 - Make - Maintaining Computer Programs 51

and y. 0 depend on the file defs. From the file system, make discovers that
there are three ' . c' files corresponding to the needed' . 0' files, and uses built-in
information on how to generate an object from a source file (that is, issue a
cc -c command).

The following long-winded description file is equivalent to the one above, but
takes no advantage of make's innate knowledge:

prog : x.o y.o z.o
cc x.o y.o z.o -1m -0 prog

x.o x.c defs
cc -c x.c

y.o y.c defs
cc -c y.c

z.o Z.c
ce -c z.e

If none of the source or object files had changed since the last time prog was
made, all of the files would be current, and the command:

(tutorial% make]
would just announce this fact and stop. If, however, the def s file had been
edited, x. c and y. c (but not z. c) would be recompiled, and then prog
would be created from the new' . 0' files. If only the file y. c had changed,
only it would be recompiled, but it would still be necessary to reload prog.

If no target name is given on the make command line, the first target mentioned
in the description is created; otherwise the specified targets are made. The com­
mand:

(tutorial% make x.o]
would recompile x. 0 if x. c or def s had changed.

If the file exists after the commands are executed, its time of last modification is
used in further decisions; otherwise the current time is used. It is often quite use­
ful to include rules with mnemonic names and commands that do not actually
produce a file with that name. These entries can take advantage of make's abil­
ity to generate files and substitute macros. Thus, an entry 'save' might be
included to copy a certain set of files, or an entry 'cleanup' might be used to
throwaway unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were per­
formed. This technique is useful for maintaining remote archives and listings.

make has a simple macro mechanism for substituting in dependency lines and
command strings. Macros are defined by command arguments or description file
lines with embedded equal signs. A macro is invoked by preceding the name by
a dollar sign; macro names longer than one character must be parenthesized. The
name of the macro is either the single character after the dollar sign or a name
inside parentheses. The following are valid macro invocations:

F of 15 February 1986

52 Programming Tools

3.2. Description Files

Comments in makefile

Continuation Lines

$ (CFLAGS) $2 $(xy) $Z $(Z)

The last two invocations are identical. $$ produces a dollar sign. All of these
macros are assigned values during input, as shown below. Four special macros
change values during the execution of the command: $*, $@, $?, and $<. They
are discussed below. The following fragment shows how macros are used:

OBJECTS = x.o y.o z.o
LIBES = -1m
prog: $ (OBJECTS)

cc $ (OBJECTS) $ (LIBES) -0 prog

The command:

(tutoria1% make

loads the three object files with the 1m library. The command:

[tutoria1% make "LlBES= -11 -1m"

J

J
loads them with both the lex (-11) and mathematical (-1m) libraries, since
macro definitions on the command line override definitions in the description. It
is necessary to quote arguments with embedded blanks in UNIX commands.

The following sections detail the form of description files and the command line,
and discuss options and built-in rules in more detail.

A make description file, also known as a makef ile, contains five types of
information:

0 Comments,

0 include lines,

0 Macro definitions,

0 Dependency information,

0 Executable commands.

The last two items are actually combined into a make entry.

make's comment convention is simple: all characters after a sharp (41=) to the
end of the line are ignored, as is the sharp itself. Blank lines and lines beginning
with a sharp are totally ignored.

If a non-comment line is too long, it can be continued using a backslash. If the
last character of a line is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

F of 15 February 1986

Include Lines

Macro Definitions

Using Macros

Translations in Macro
References

Chapter 3 - Make - Maintaining Computer Programs 53

make supports a facility for including other files into the body of a makefile.
If the string include appears as the first seven letters of a line in a makefile
and is followed by a space or a tab, the string following the word include is
taken as a filename which the current invocation of make will read. include
files can be nested to a depth of no more than about 16.

make supplies a simple macro capability. A macro definition is a line contain­
ing an equal sign not preceded by a colon or a tab. The name (string of letters
and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is
assigned the string of characters following the equal sign (leading blanks and
tabs are stripped, but trailing ones are not). The following are valid macro
definitions:

A = xyz
LIBS = -lcore -lpixrect
OFFSET =

The last definition assigns OFFSET the null string. A macro that is never expli­
citly defined has the null string as value.

Macro definitions may also appear on the make command line when you actu­
ally use the make command (see below).

If macro_name is the name of a make macro, you access the definition of that
macro in the body of a makefile with the construct

$macro _name

if macro _ name is only a single character. If macro _ name is longer than one
character you use either of the two alternative notations:

$ (macro _name)
or

$ { macro _ name }

Taking our macro definition examples from above, you reference the A macro as:

$A

to generate the string xyz, and you reference the LIBS macros with one of the
two alternative forms:

$(LIBS)
or

${LIBS}

to obtain the string -lcore -lpixrect

There is also a facility to perform translations when a macro is referenced and
evaluated. The general syntax of such a macro reference is:

$ (macro _name : string_l = string-2)

This is interpreted as:

o The macro specified by macro _name is evaluated, and then:

~~sun ~f(? microsystems
F of 15 February 1986

54 Programming Tools

Recursive Makefiles

Entries - Dependency Lines
and Rules

Note that a command must be pre­
ceded by a tab character at the
beginning of the line. This is one of
make'S less obvious and more irri­
tating 'features'.

o For each occurrence of string_l in the evaluated macro, substitute string_ 2 .

What constitutes an occurrence of string_l in the evaluated macro? The
evaluated macro is considered to be a set of strings each separated by whites pace
(spaces or tabs). An occurrence of string_l in the evaluated macro means that a
regular expression of this fonn has been found in the evaluated macro:

. * < string_l > [tab I space]

There is an example of how this is used later on.

makefile's can be set up so that they perfonn recursive invocations of make.
If the sequence $ (MAKE) appears anywhere in a Shell command line, the line if
executed even if the -n option was specified on the original make command
line. The -n option is exported across invocations of make (via the
MAKEFLAGS variable), so the only thing that gets executed is the make com­
mand itself. You can use this feature when a hierarchy of make file's
describes a collection of subsystems. You can type make -n and everything
that would happen is displayed without actually executing the commands.
Because of the $ (MAKE) sequence, the lower level make's get executed.

The major piece of infonnation in a makef ile is an entry. An entry consists
of a target and rules. A target contains any number of target names and optional
dependency information. A dependency specifies a set of things that the given
target depends on - that is, do something to construct the target if the things it
depends on have been updated since the last time the target was constructed. The
general fonn of an entry is:

target-name. .. : [:] [dependent .•.] [; commands] [=11= • • .]

[(tab) commands] [=11= • • .]

Items inside brackets may be omitted. Targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters '*' and '?' are
expanded.

A command is any string of characters not including a sharp (except in quotes) or
newline. Commands may appear either after a semicolon on a dependency line
or on lines beginning with a tab immediately following a dependency line.

make remembers embedded newlines and tabs in sequences of Shell commands.
So if you write a for loop in the makefile with indentation, make retains the
indentation and backslashes when the commands are displayed. The output can
still be piped to the Shell and is readable.

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all of those lines must be of
the same (single or double colon) type.

1. For the usual single-colon case, at most one of these dependency lines may
have a command sequence associated with it. If the target is out of date with
any of the dependents on any of the lines, and a command sequence is
specified (even a null one following a semicolon or tab), it is executed;

~\sun ~ microsystems
F of 15 February 1986

Dynamic Dependency
Parameters

Chapter 3 - Make - Maintaining Computer Programs 55

otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each
dependency line; if the target is out of date with any of the files on a particu­
lar line, the associated commands are executed. A built-in rule may also be
executed. This detailed form is of particular value in updating archive-type
files.

If a target must be created, the sequence of commands is executed. Normally,
each command line is displayed and then passed to a separate invocation of the
Shell after substituting for macros. The displaying is suppressed in silent mode
or if the command line begins with an @ sign. make normally stops if any
command signals an error by returning a non zero error code.

make ignores errors if the -i option has been specified on the make command
line, if the fake target name . IGNORE appears in the description file, or if the
command string in the description file begins with a hyphen - these criteria are
necessary because some UNIX commands return meaningless status.

Because each command line is passed to a separate invocation of the Shell, care
must be taken with certain commands (for example, cd and Shell control com­
mands) that have meaning only within a single Shell process; the results are for­
gotten before the next line is executed.

The dynamic dependency parameter is referenced by the $ $ @ notation. This
dynamic dependency parameter only has meaning on the dependency line in a
makefile. The $ $@ refers to the current 'thing' to the left of the colon - the
'thing' to the left of the colon is the $ @ implicit macro defined below. You can
also use the form $ $ (@F) which refers to the file part of $ @.

How do you use this form? Well suppose you have a program called buz z.
You can refer to buzz in yourmakefile like this:

buzz: $$@.c

This means that buz z depends on buz z . c. This dynamic dependency parame­
ter finds most use in maintaining a bunch of programs that only depend on a sin­
gle source file. Suppose you have a directory with many small toy programs.
You could have a makefile that looks something like this:

PROGRAMS = buzz biorythm checkbook tictactoe

$ (PROGRAMS) : $$@.c
$(CC) -0 $? -0 $@

The second form of the dynamic dependency parameter using the $ $ (@F) nota­
tion finds most use when maintaining some directory from the contents of
another directory. Suppose the source files of /usr / include reside in
/usr / src/usr. include. What you want is that every time you update one
of the . h file in /usr / src/usr. include, then type make, the appropriate
file gets moved into the /usr / incl ude directory. Here is a fragment of a
makefile (residing in the /usr / src/usr. include directory) that would
do this job:

F of 15 February 1986

56 Programming Tools

Implicit Macros

3.3. Using the make
Command

DESTDIR = /usr/include define the destination (target) directory

SOURCE_FILES = $ (DESTDIR) / a . out. h \ define all the dependents
$(DESTDIR)/ar.h \
$(DESTDIR)/assert.h \
$(DESTDIR)/cgicbind.h \
$(DESTDIR)/cgiconstants.h \

$(DESTDIR)/time.h \
$(DESTDIR)/usercore.h \
$(DESTDIR)/utmp.h \
$(DESTDIR)/varargs.h \
$(DESTDIR)/vfont.h

$ (SOURCE_FILES) : $$(@F)
cp $? $@

now here is the target and the rule

chmod 0444 $@

make reads the user environment (see section 3.3 below), and sets certain mac­
ros before issuing any command:

$ @ is set to the name of the file to be 'made'.

$? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below),

$< is the name of the related file that caused the action, and

$ * is the prefix shared by the current and the dependent filenames.

These implicit macros are useful generic terms for current targets and out-of-date
relati yes. There are some extra forms of the macros, namely, $ (@D) , $ (@F) ,

$ (*D) , $ (*F) , $ «D) , and $ «F). For each of the macros, the D part refers
to the Directory part of the name, and the F part refers to the File part of the
name. These macros are used when building hierarchical makefile's. They
provide access to directory names for using the cd command of the Shell. For
example, a Shell command could be:

cd $«D); $ (MAKE) $«F)

If a file must be made but there are no explicit commands or relevant built-in
rules, the commands associated with the name. DEFAULT are used. If there is
no such name, make displays a message and stops.

The make command takes three kinds of arguments: macro definitions, options,
and target filenames. In addition, make obtains information from the environ­
ment.

tutorial% make [options [macro definitions] [targets]

.\sun ,~ microsystems
F of 15 February 1986

Assigning Macros and
Variables

Chapter 3 - Make - Maintaining Computer Programs 57

The following summary of the operation of the command explains how these
arguments are interpreted.

make reads environment variables and adds then to the macro definitions every
time the command executes. make maintains a macro called MAKEFLAGS,

which is a string defined as the collection of all command line options (sans their
minus signs). The MAKEFLAGS macro is exported and is thus accessible to
further invocations of make. Here is how make assigns macro definitions:

1. Read the MAKEFLAGS environment variable. If MAKEFLAGS does not exist
or is null, set MAKEFLAGS to the null string. Otherwise, each letter in
MAKEFLAGS is taken to be a command line option and is processed as such.
The -f, -p, and -r options do not get processed.

2. Read options from the command line. Options from the command line add
to the previous settings from the MAKEF LAGS environment variable.

3. Read macro definitions from the command line. Such macro definitions are
made non-resettable and any further assignments to these names are
ignored.

4. Read make's internal list of macro definitions. Table 3-3 shows the built-in
macro names and their defaults.

5. Read the environment. Environment variables are treated as macro
definitions and are exported. Now because MAKEFLAGS is not a make
internal variable, this has the effect of doing the same assignment twice.
The exception to this is when MAKEF LAGS is assigned on the command
line. The reason for reading MAKEFLAGS first is to tum on the debug option
(if the debug option was indeed specified) before doing anything else.

6. Read the makefile's. Assignments in the makefile's override the
environment, unless you used the -e command line option to tell make to
have the environment override assignments made in the makefile's.

Here is a summary of how the various parts of the environment, internal
definitions, command line options, and the contents of make file's are
assigned. The order of assignment is from the least binding to the most binding
- that is, higher numbered items override lower numbered items.

Table 3-1 Summary of Assigning Macros and Variables

-e option not specified -e option specified

1 internal definitions 1 internal definitions
2 environment 2 makefile(s)
3 makefile(s) 3 environment
4 command line 4 command line

~~sun ~iW microsystems
F of 15 February 1986

58 Programming Tools

Options for the make
Command"

Next, the options are examined. The pennissible options are:

-ffilename
Use filename as the name of the description file. A file name of - denotes the
standard input. In the absence of the -f option, make looks for a set of
standard filenames as follows:

o makefile in the current directory,

o Makefile in the current directory.

os. mak e f i 1 e in the current directory.

os. Makefile in the current directory.

o seeS/s.makefile,

o sees / s . Makef ile.

The contents of description files specified by the - f option override the
built-in rules if they are present.

-p Print out the complete set of macro definitions and target descriptions.

- i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name . I GNORE appears in the description file.

- k Abandon work on the current entry, but continue on other branches that
do not depend on that entry.

- s Silent mode. Do not print command lines before executing. This mode
is also entered if the fake target name . S I LENT appears in the descrip­
tion file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ are printed.

- b Compatibility mode for old make files. - b is on by default.

-e Environment variables override assignments within makefiles.

-t Touch the target files (bringing them up-to-date) rather than issue the
usual commands.

-d Debug mode. Print out detailed infonnation on files and times exam­
ined.

-q Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date.

-S Undoes the effect of the - k option.

Remaining arguments are assumed to be the names of targets to be made;
they are done in left-to-right order. If there are no such arguments, the first
name in the description files that does not begin with a period is 'made'.

F of 15 February 1986

3.4. Implicit Rules

Table 3-2

Chapter 3 - Make - Maintaining Computer Programs 59

The make program uses a table of interesting suffixes and a set of transforma­
tion rules to supply default dependency information and implied commands.
Section 3.8 describes these tables and means of overriding them. The default
suffix list is:

Default Suffix List for Make

Suffix Type of File

.0 Object file

.c C source file

.c C source file from sees s-file

.r Ratfor source file

.r Ratfor source file from sees s-file

.f Fortran source file

.f- Fortran source file from sees s-file

.F Fortran source file

.F- Fortran source file from sees s-file

. s Assembler source file

. s Assembler source file from sees s-file

.y Yacc-C source grammar

.y Yacc-C source file from sees s-file

.p Pascal source

.p Pascal source file from sees s-file

.1 Lex source grammar

.1- Lex source grammar from sees s-file

.h Include file

.h- Include file from sees s-file

.sh Shell script

.sh- Shell script from sees s-file

The following diagram summarizes the default transformation paths. If there are
two paths connecting a pair of suffixes, the longer one is used only if the inter­
mediate file exists or is named in the description.

~~\sun ~ microsystems
F of 15 February 1986

60 Programming Tools

sees File Names

To get from a given type of source file to the . 0 file the appropriate compiler is
called up to generate the . 0 file. If there is an sees version of the source file
available, the sees get command is called first, followed by the appropriate
compiler. Notice that there are also transformation rules to create a library (. a
files) from source as well.

If the file x. 0 were needed and there were an x. e in the description or direc­
tory, it would be compiled. If there were also an x .1, that grammar would be
run through lex before compiling the result. However, if there were no x. e
but there were an x .1, make would discard the intermediate C-Ianguage file
and use the direct link in the graph above.

The syntax of make doesn't permit referencing filenames that have prefixes
directly. This is all right for most UNIX system filenames since most reasonable
people use suffixes to distinguish different kinds of files - . e for C source files,
. f for FORTRAN source files, and so on. sees database files are a glaring excep­
tion to the conventions - sees database filenames are refixed with. s. To
avoid redefining the syntax for naming rules, make employs a trick - the tilde
character (-) is used to identify sees database files. Thus, . c - . 0 refers to the
rule for making a . 0 file out of a C language source file that's stored in an sees
. s file. Specifically, the rule in this case is:

.c .0:
$(GET) -G$*.c $(GFLAGS) $<
$(CC) $ (CFLAGS) -c $*.c

So, a tilde appended to any suffix transforms the file search into an sees file
name search with the actual suffix named by the dot and all characters up to (but
not inel uding) the tilde.

~~sun ~ microsystems
F of 15 February 1986

Built In Names and Options

Table 3-3

3.5. Example

Chapter 3 - Make - Maintaining Computer Programs 61

It is possible to change the names of some of the compilers used in the default, or
the option arguments with which they are invoked by knowing the macro names
used. The compiler names and the options passed to them are determined by the
macros as in the table below:

Built In Compiler Names and Options

Macro Name Default Value Description

MAKE make Name of the make command

YACC yaee N arne of the y ae e command
YFLAGS null options for the yaee command

LEX lex Name of the lex command
LFLAGS null options for the lex command

LD ld N arne of the link editor
LDFLAGS null options for the link editor

CC ee Name of the C compiler
CFLAGS null options for the C compiler

FC £77 N arne of the FORTRAN 77 compiler
FFLAGS null options for the FORTRAN 77 compiler

AS as Name of the Assembler
ASFLAGS null options for the Assembler

GET /usr/sees/get Name of the sees get command
GFLAGS null options for the sees get command

The command:

(tutorial% make CC=newcc

uses the newee command instead of the usual C compiler. The macros
CFLAGS, FFLAGS, PFLAGS, RFLAGS, YFLAGS, and LFLAGS may be set to
issue these commands with optional options.

(tutorial % make "CFLAGS=-o"

uses the optimizing C compiler.

The make variable MFLAGS is also useful - it contains a list of the command­
line arguments given to this invocation of make.

)

)

As an example of the use of make, consider the following description file which
could be used to maintain the make command itself. The code for make is
spread over a number ofC source files and a yaee grammar. The description
file contains:

F of 15 February 1986

62 Programming Tools

i @(i)Makefile 1.5 85/07/08 SMI; from S5R2 1.7
i

i The rules.c file can be modified locally for
i people who still like things like fortran.

LDFLAGS =
INSDIR $(DESTDIR)/bin
LIBS =
CFLAGS -0 -DBSD -DSCCSDIR

OBJECTS = \
main.o \
doname.o \
misc.o \
files.o \
rules.o \
dosys.o \
gram.o \
dyndep.o \
prtmem.o

all: make

make: $ (OBJECTS)
$(CC) -0 make $(LDFLAGS) $ (OBJECTS) $ (LIBS)

gram.c: gram.y

gram.o: gram.c

$ (OBJECTS) : defs

install: all
install -c -s make $(INSDIR)

clean:
-rm -f *.0 a.out core errs make gram.c

tags: NOW
ctags *. [ch]

NOW:

$ (GET) $ (GFLAGS) -p s.$< > $<

Although none of the source files or grammars were mentioned by name in the
description file, make finds them using its suffix rules and issued the needed
commands.

~\sun ,~ microsystems
F of 15 February 1986

3.6. Suggestions and
Warnings

-n (no execute) Option

-t (touch) Option

-d (debug) Option

Chapter 3 - Make - Maintaining Computer Programs 63

The most common difficulties arise from make's specific meaning of depen­
dency. Iffile x. c has a #include fldef s II line, the object file x. 0

depends on de f s; the source file x. c does not. If def s is changed, it is not
necessary to do anything to the file x. c, while it is necessary to recreate x. o.

To discover what make would do, the -n option is very useful. The command:

(tutorial% make -n
J

orders make to display the commands it would issue without actually executing
them. See section 3.2.7 earlier for other ramifications of using the -n options.

If a change to a file is absolutely certain to be benign (for example, adding a new
definition to an include file), the -t (touch) option can save a lot of time: instead
of issuing a large number of superfluous recompilations, make updates the
modification times on the affected file. Thus, the command:

(tutorial% make -ts

('touch silently') makes the relevant files appear up-to-date. Obvious care is
necessary, since this mode of operation subverts the intention of make and des­
troys all memory of the previous relationships.

The debugging option (-d) generates a very detailed description of what make
is doing, including the file times. The output is verbose, and recommended only
as a last resort.

]

Compiler and Loader Options Another common blunder is specifying some option for the compiler but forget­
ting it on the linker. You might have this fragment in a makefile:

lines of makefile

CFLAGS = -g to get the debug option for dbx

lines of makefile

prog: s.o t.o
cc -0 prog s.o t.o

lines of makefile

and think that this will work. It won't because CFLAGS only applies to the cc

~\sun
~~ microsystems

F of 15 February 1986

64 Programming Tools

Existing Files

3.7. Making Archive
Libraries

-c s. c part of the compilation and not the c c -0 prog s. 0 t. 0 of the
compile. And dbx won't work unless you specified the -g option forhoth the
compiler and the linker!

Here's another common problem. You set up a makef ile that looks like:

lines of makefile

print:
Ipr $ (SRCS)

lines of makefile

You type

[tutorial% make print

and you get the response:

'print' is up to date

instead of printing anything. The solution: there is a file called print in your
current directory .

make provides a mechanism for referring to members of archive ar-style
libraries. You can name.a member of an object library as:

library-name (object-name. 0)

or

library-name (_entry-point-name)

The first form refers to an object name within a library. The second form refers
to an entry point of an object file within a library. make searches the library to

locate the entry point and then translates it to the correct object file name.

J

make has a rule for building libraries. The handle for the rule is a . a suffix.
Then the . c . a is the rule for compiling a C language source file, adding it to the
library, and removing the . 0 file afterwards. The internal rules that make
employs for the . c . a case are:

.c.a:
$(CC) -c $(CFLAGS) $< compile the .c file

add it to the library ar rv $@ $*.0
rm -f $*.0

~\sun ,~ microsystems

get rid of the .0 file

F of 15 February 1986

3.8. Suffixes and
Transformation Rules

Null Suffix

Standard Suffix List

NOTE

Figure 3-1

Chapter 3 - Make - Maintaining Computer Programs 65

make itself does not know what filename suffixes are interesting or how to

transform a file with one suffix into a file with another suffix. This information is
stored in an internal table that has the form of a description file. If the -r option
is used, this table is not used.

The list of suffixes is actually the dependency list for the name. SUFFIXES;
make looks for a file with any of the suffixes on the list. If such a file exists, and
if there is a transformation rule for that combination, make acts as described
earlier. The transformation rule names are the concatenation of the two suffixes.
The name of the rule to transform a . c file to a .0 file is thus. c. o. If the rule
is present and no explicit command sequence has been given in the user's
description files, the command sequence for the rule . c . 0 is used. If a com­
mand is generated by using one of these suffixing rules, the macro $* is given the
value of the stem (everything but the suffix) of the name of the file to be made,
and the macro $< is the name of the dependent that caused the action.

If you have many programs that are made from a single source file it is tedious to
maintain an object of such files. make supports single suffix rules (null suffix).
Suppose you have a single program called buz z that you maintain from a single
source file buzz. c. You can maintain buzz by a makefile entry that looks
like this:

.c:
$(CC) $ (CFLAGS) $ (LDFLAGS) $< -0 $@

In fact, make defines the . c rule internally so that no makef ile is even neces­
sary. All you have to do is type

(tutorial% make buzz
J

and make will do the correct thing.

The figures below show the rules used by make's standard built-in suffix list.

The order of the suffix list is significant, since it is scanned from left to right, and
the first name that is formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can just add an entry for
. SUFFIXES in his own descriptionfile; the dependents are added to the usual
list. A . SUFFIXES line without any dependents deletes the current list. It is
necessary to clear the current list if the order of names is to be changed.

Single Suffix Rules

.c:
tab $ (CC) $ (CFLAGS) $ (LDFLAGS) $< -0 $@

.c
tab $ (GET) -G$*.c $ (GFLAGS) $<
tab $ (CC) $ (CFLAGS) $ (LDFLAGS) $*.c -0 $*

. p:
tab $ (PC) $ (PFLAGS) $ (LDFLAGS) $< -0 $@

.p- :

.~!!,1! F of 15 February 1986

66 Programming Tools

lab $ (GET) -G$*.p $ (GFLAGS) $<
lab $ (PC) $ (PFLAGS) $ (LDFLAGS) $*.p -0 $*

.f:
lab $ (FC) $ (FFLAGS) $ (LDFLAGS) $< -0 $@

· f-:
lab $ (GET) -G$*.f $(GFLAGS) $<
lab $ (FC) $ (FFLAGS) $ (LDFLAGS) $*.f -0 $*

.F:
lab $ (FC) $ (FFLAGS) $ (LDFLAGS) $< -0 $@

.F- :

lab $ (GET) -G$*.F $(GFLAGS) $<
lab $ (FC) $ (FFLAGS) $ (LDFLAGS) $*.F -0 $*

· r:
lab $ (FC) $ (FFLAGS) $ (LDFLAGS) $< -0 $@

· r-:
lab $ (GET) -G$*.r $(GFLAGS) $<
lab $ (FC) $ (FFLAGS) $ (LDFLAGS) $*.r -0 $*

.sh:
labCp $< $@; chmod +x $@

.sh-:
lab $ (GET) -G$*.sh $(GFLAGS) $<
labCp $*. sh $*; chmod +x $@

Figure 3-2 Double Suffix Rules

.c.o:
lab $ (CC) $ (CFLAGS) -c $<

.c- .0:

lab $ (GET) -G$*.c $ (GFLAGS) $<
lab $ (CC) $ (CFLAGS) -c $*.c

.C-.C:
lab $ (GET) -G$*.c $ (GFLAGS) $<

.p.o:
lab $ (PC) $ (PFLAGS) -c $<

.p-.o:
lab $ (GET) -G$ * . p $ (GFLAGS) $<
lab $ (PC) $ (PFLAGS) -c $*.p

.p-.p:
lab $ (GET) -G$*.p $ (GFLAGS) $<

· f.o:
lab $ (FC) $ (FFLAGS) -c $<

· f-. 0:

lab $ (GET) -G$*.f $(GFLAGS) $<
lab $ (FC) $ (FFLAGS) -c $*. f

· f-. f:
lab $ (GET) -G$*.f $ (GFLAGS) $<

.F.o:
lab $ (FC) $ (FFLAGS) -c $<

.F- .0:
lab $ (GET) -G$*.F $ (GFLAGS) $<
lab $ (FC) $ (FFLAGS) -c $ * . F

.F-. F:
lab $ (GET) -G$*.F $(GFLAGS) $<

F of 15 February 1986

Chapter 3 - Make - Maintaining Computer Programs 67

.r.o:
tab $ (FC) $ (FFLAGS) -c $<

.r- .0:
tab $ (GET) -G$*.r $(GFLAGS) $<
tab $ (FC) $ (FFLAGS) -c $*. r

.r- .r:
tab $ (GET) -G$*.r $(GFLAGS) $<

. s. 0:

tab $ (AS) $ (ASFLAGS) -0 $@ $<
.S .0:

tab $ (GET) -G$*.s $ (GFLAGS) $<
tab $ (AS) $ (ASFLAGS) -0 $*.0 $*. s

.s-.s:
tab $ (GET) -G$ * . s $ (GFLAGS) $<

.y.o :
tab $ (YACC) $ (YFLAGS) $<
tab $ (CC) $ (CFLAGS) -c y. tab. c
tab rm y. tab. c
tab mv y. tab. 0 $@

.y .0:
tab $ (GET) -G$*.y $ (GFLAGS) $<
tab $ (YACC) $ (YFLAGS) $ * . Y
tab $ (CC) $ (CFLAGS) -c y. tab. c
tabrm -f y.tab.c
tabmv y. tab. 0 $ * .0

.1.0 :
tab $ (LEX) $ (LFLAGS) $<
tab $ (CC) $ (CFLAGS) -c lex. yy. c
tab rm lex. yy . c
tabmv lex.yy.o $@

.1-.0:
tab $ (GET) -G$*.l $ (GFLAGS) $<
tab $ (LEX) $ (LFLAGS) $*.1
tab $ (CC) $ (CFLAGS) -c lex. yy. c
tab rm -f lex. yy . c
tabmv lex. yy. 0 $*.0

.y.c :
tab $ (YACC) $ (YFLAGS) $<
tabmv y. tab. c $@

.y .C :

tab $ (GET) -G$*.y $ (GFLAGS) $<
~b$(YACC) $ (YFLAGS) $*.y
tabmv y.tab.c $*.c

.l.c :
tab $ (LEX) $ (LFLAGS) $<
tabmv lex.yy.c $@

.1 -.c :
tab $ (GET) -G$*.l $ (GFLAGS) $<
tab $ (LEX) $ (LFLAGS) $*.1
tabmv lex.yy.c $*.c

.c.a:
tab $ (CC) -c $ (CFLAGS) $<
tabar rv $@ $*.0

~~ sun F of 15 February 1986
~ microsystems

68 Programming Tools

tabrm -f $*.0
.c-.a:

tab $ (GET) -G$*.c $ (GFLAGS) $<
tab $ (CC) -c $(CFLAGS) $*.c
tabar rv $@ $*.0
tabrm -f $*.0

. s .a:
tab $ (GET) -G$*. s $ (GFLAGS) $<
tab $ (AS) $ (ASFLAGS) -0 $ * . 0 $ * . s
tabar rv $@ $*.0
tab-rm -f $*.0

.h-.h:
tab $ (GET) -G$*. h $ (GFLAGS) $<

markfile.o: markfile
tabA=@;echo \"static char sccsid[] = \
tab\042'grep $$A' (#)' markfile'\042;\" > markfile.c
tabCC -c markfile.c
tab rm -f markfile. c

~\sun ,~ microsystems
F of 15 February 1986

4
Source Code Control System

Source Code Control System .. 71

4.1. Learning llie Lingo ... 74

S-file ... 74

Deltas ... 74

SIDs (version numbers) ... 74

Id keywords .. 74

4.2. Creating sees Database Files willi sees create 75

4.3. Retrieving Files for Compilation with sees get 75

4.4. Changing Files (Creating Deltas) ... 76

Retrieving a File for Editing with sees edit 76

Merging Changes Back Into the s-file with sees delta 76

When to Make Deltas ... 77

Finding Out What's Going On with sees info 77

ID keywords ... 77

Finding Out What Versions Are Being Used with sees
what .. 78

Where to Put Id Keywords ... 78

Keeping SIDs Consistent Across Files ... 78

Creating New Releases .. 79

4.5. Restoring Old Versions .. 79

Reverting to Old Versions ... 79

Selectively Deleting Old Deltas ... 79

4.6. Auditing Changes .. 80

Displaying Delta Comments with sees prt ... 80

Finding Why Lines Were Inserted .. 80

Discovering What Changes You Have Made with sees
diffs ... 81

4.7. Shorthand Notations .. 81

Making a Delta and Getting a File with sees delget 81

Replacing a Delta with the sees fix ... 81

Backing Out of an Edit with sees unedit ... 82

Working From Other Directories with the d Flag 82

4.8. Using sees on a Project ... 82

4.9. Saving Yourself .. 82

Recovering a Munged Edit File .. 82

Restoring the s-file ... 83

4.10. Managing secs Files with sees admin .. 83

4.11. Maintaining Different Versions (Branches) .. 83

Creating a Branch ... 84

Getting From a Branch .. 84

Merging a Branch Back into the Main Trunk ... 84

A More Detailed Example ... 84

A Warning ... 85

4.12. Using sees with make .. 85

Maintaining Single Programs .. 86

Maintaining A Library ... 86

Maintaining A Large Program .. 87

4.13. secs Quick Reference ... 89

Commands .. 89

Id Keywords ... 90

High-Level and Low-Level
sees

4
Source Code Control System

The Source Code Control System (sees) is a tool for controlling changes to text
files (typically, the source code and documentation of software systems).

You can think of sees as a custodian of files. With sees you can:

D Store, update, and retrieve any version of a text file.

D Control updating privileges to that file.

D Identify the version of a retrieved file.

D Record who made each change, when and where it was made, and why.

These custodial and recording functions are important in environments where
programs and documentation undergo frequent changes (due to maintenance
and/or enhancement work), because regenerating an unrevised version of a pro­
gram or document is often desirable. Obviously, this could be done by keeping
copies (on paper or other media), but this quickly becomes unmanageable and
wasteful as the number of programs and documents increases. sees provides an
attractive alternative to stockpiling multiple versions of the same text, because it
stores only the original file and subsequent sets of changes on disk.

There are two major divisions of sees:

D The sees command itself is a high-level 'user-friendly' front end that pro­
vides an interface to a collection of tools for manipulating sees files. Basi­
cally you can type

(
tutorial% sees do something J

,----. ------
where do something is the operation you want to perform. In general, users can
get by using the facilities provided by the sees command, as described in this
chapter. The individual sees tools are incredibly hard to use, but they do pro­
vide extremely close control over the sees database files.

D The individual sees commands are a collection of programs for manipulat­
ing the sees database files. Although the sees front end command nor­
mally abstracts the most common operations you might want to do, there
may be times when it is necessary to use the raw facilities of the sees com­
mands themselves - these commands are described in appendix A, which
gives a deeper description of how to use sees. Of particular interest are the

.§~!! 71 F of 15 February 1986

72 Programming Tools

Conventions

numbering of branches, the I-file, which gives a description of what deltas
were used on a sees get, and certain other sees commands.

Throughout this chapter, we assume that you are using the C-Shell on a system
called 'tutorial', and so the hostname is shown followed by the % sign prompt in
the examples. What you type is shown in bol.d typewriter text l.ike
this, and the system's responses are shown in ordinary typewriter
text, like this:

tutorial% sees get prog.e
1.1
87 lines
tutorial%

All versions of your source file, plus the log and other information, are kept in a
file called the s-ftle. The illustration below shows the four basic operations that
you do with sees.

F of 15 February 1986

Figure 4-1

sees
directory

s.whatsit.e

the . sfile

Basic sees Operations

~hatsit.c

Chapter 4 - Source Code Control System 73

source
directory

use sees create to
create the database file
for the first time

sees get
gets a read-only
copy of whatsit. e

compile or
whatever

sees edit edit
gets a writeable '~and test

copyof whatsit. e .' .

. '
~.,

put what sit . e back
using sees delget

As the picture illustrates, there are four major operations that can be performed
on the s-file :

D create the s-file in the very first place.

D get a read-only copy of the s-file. This operation retrieves a version of the
file from the s-file. By default, the latest version is retrieved. This read-only
copy is intended for compilation, printing, or whatever - it is specifically
NOT intended to be edited or changed in any way - any changes made to a
file retrieved in this way will probably be lost.

D Get a file for editing. This operation also retrieves a version of the file from
the s-file , but this file is intended to be edited and then incorporated back
into the s-file. Only one person may be editing a file at one time.

~\sun ~~ microsystems
F of 15 February 1986

74 Programming Tools

4.1. Learning the Lingo

S-file

Deltas

SIDs (version numbers)

Id keywords

o Merge any changes made back into the s-flle. This is the companion opera­
tion to the previous operation. A new version number is assigned, and com­
ments are saved explaining why this change was made.

Understand that the s-file is the 'real' instance of whatever file it is you are work­
ing with. The copy you get from the sees database by using a sec s get or a
sec s e di t command is a copy, and should be considered ephemeral.

There are a number of terms that are worth learning before we go any farther.

The s-ftle is a single file that holds all the different versions of your file. The s­
file contains only the the original version and differences between versions,
rather than the entire text of the new version. This saves disk space and allows
selective changes to be removed later. Also included in the s-fLle is some header
information for each version, including the comments given by the person who
created the version explaining why the changes were made.

Each set of changes to the s-file - which is approximately, but not exactly,
equivalent to a version of the file - is called a delta. Although technically a
delta only includes the changes made, in practice it is usual for each delta to be
made with respect to all the deltas that have occurred before1. However, it is
possible to get a version of the file that has selected deltas removed out of the
middle of the list of changes - equivalent to removing your later changes.

An SID - sees-Id - is a number that represents a delta. This is normally a
two-part number consisting of a 'release' number and a 'level' number. Nor­
mally the release number stays the same. However, it is possible to move into a
new release if some major change is being made.

Since all past deltas are normally applied, the SID of the final delta applied can be
used to represent a version number of the file as a whole.

When you get a version of a file with intent to compile and install it - that is,
something other than edit it - some special keywords that are part of the text of
the file are expanded in-line by sees. These Id Keywords can be used to include
the current version number or other information into the file. All id keywords are
of the form %x%, where x is an upper case letter. For example, %I% produces the
SID of the latest delta applied, % W% includes the module name, SID, and a mark
that makes it findable by a program, and %G% results in the date the latest delta
was applied. There are many others, most of which are of dubious value.

When you get a file for editing, the id keywords are not expanded; this is so that
after you put them back in to the s-file , they will be expanded automatically on
each new version. But notice: if you were to get them expanded accidently, your
file would appear to be the same version forever more, which would of course
defeat the purpose. Also, if you should install a version of the program without
expanding the id keywords, it will be impossible to tell what version it is (since

1 This matches nonnal usage, where the previous changes are not saved at all, so all changes are
automatically based on all other changes that have happened through history.

~\sun ~ microsystems
F of 15 February 1986

4.2. Creating sees Database
Files with sees
create

4.3. Retrieving Files for
Compilation with sees
get

Chapter 4 - Source Code Control System 75

all it will have is %W% or whatever).

To put a bunch of source files into sees format, you do the following things:

o Make the sees subdirectory if it isn't there already:

tutorial% mkdir sees
tutorial%

Note that sees is upper-case

o Then use the secs create command to actually create the sees database
files for all the source files you have. Suppose that you want to have all your
.c and.h files under sees control:

tutorial% sees create *.[ch]
lots of messages from sees here

tutorial%

For eachfile you have, the sees create command does the following things
for you:

creates

renames

gets

a file called s .file in the sees subdirectory,

each file by placing a comma in front of the name, so that you end
up with files of the form ,file.

a read-only copy of eachfile by using the sees get command,
described later on.

When you are convinced that sees has correctly created the s-file s, you should
remove the files whose names start with commas.

If you want to have id keywords in the files, it is best to put them in before you
create the s-files. If you do not, create will print

No Id Keywords (ern7)

which is a warning message only.

To get a copy of the latest version of a file, run

[tutorial% sees get prog.e

sees will respond:

1.1
87 lines

meaning that version 1.1 has been retrieved2 and that it has 87 lines. The file
prog. c is created in the current directory - it is created read-only to remind

2 Actually, the SID of the final delta applied was 1.1.

]

~\sun ~ microsystems
F of 15 February 1986

76 Programming Tools

4.4. Changing Files (Creating
Deltas)

Retrieving a File for Editing
with sees edit

Merging Changes Back Into
the s-file with sees delta

you that you are not supposed to change it.

This copy of the file should not be changed, since sees is unable to merge the
changes back into the s-ftZe. If you do make changes, they will be lost the next
time someone does a sees get.

To change a version of a file, you must obtain a copy of the file that can be
edited. You obtain such a copy using sees get as shown below. Having
made the changes and satisfied yourself that the changes are correct, you can then
merge the changes back into the sees database file using sees delta also
shown below.

To edit a source file, you must first get it, requesting permission to edit it3. The
response will be the same as with sees get except that it also says that a new
delta is being created:

tutorial% sees edit prog.e
New delta 1.2

You then edit it, using a text editor:

(tutorial% vi prog.c

database file using

When the desired changes have been made, you can put your changes into the
sees file using the delta command:

(tutorial% sccs delta prog.c

Delta prompts you for 'comments?' before merging the changes in. At this
prompt you should type a one-line description of what the changes mean (more
lines can be entered by ending each line except the last with a backslash). Delta
then types:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines,
and left 84 lines unchanged4. The prog. e file is then removed; it can be
retrieved using sees get.

3 The sees edit command is equivalent to using the -e option to sees get, as:
tutorial% sees get -e prog.e

Keep this in mind when reading other documentation.

4 Changes to a line are counted as a line deleted and a line inserted.

]

]

F of 15 February 1986

When to Make Deltas

Finding Out What's Going On
with sees info

ID keywords

Chapter 4 - Source Code Control System 77

It is probably unwise to make a delta before every recompilation or test; other­
wise, you tend to get a lot of deltas with comments like
'fixed compilation problem in previous delta' or 'fixed botch in 1.3'. However, it
is very important to delta everything before installing a module for general use.
A good technique is to edit the files you need, make all necessary changes and
tests, compiling and editing as often as necessary without making deltas. When
you are satisfied that you have a working version, delta everything being edited,
re-get them, and recompile everything.

To find out what files are being edited, type:

(tutorial% sees info]
to display a list of all the files being edited and other information - such as the
name of the user who did the edit. Also, the command:

(tutorial% sees check]
is nearly equivalent to the info command, except that it is silent if nothing is
being edited, and returns non zero exit status if anything is being edited. It can
thus be used in an 'install' entry in a makefile to abort the install if anything has
not been properly delta'ed.

If you know that everything being edited should be delta'ed, you can use:

(tutorial% sees delta 'sees te11']
The tell command is similar to info except that only the names of files being
edited are output, one per line.

All of these commands take a -b option to ignore 'branches' (alternate versions,
described later) and the -u option to give only files being edited by you. The-u
option takes an optional user argument, giving only files being edited by that
user. For example:

(tutorial% sees info -ujohn

gives a listing of files being edited by john.

]

Id keywords can be inserted into your file that will be expanded automatically by
sees get. For example, a line such as:

static char Sccsld[] = "%W%\t%G%";

will be replaced with something like:

static char Sccsld[] = "@(')prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was
created. The string '@(#)' is a special string which signals the beginning of an

F of 15 February 1986

78 Programming Tools

Finding Out What Versions Are
Being Used with sees what

Where to Put Id Keywords

Keeping SIDs Consistent Across
Files

sees Id keyword.

To find out what version of a program is being run, use:

tutorial% sccs what prog.c /usr/bin/prog

which will print all strings it finds that begin with '@ (-#) '. This works on all
types of files, including binaries and libraries. For example, the above command
will output something like:

prog.c:
prog.c 1.2 08/29/80

/usr/bin/prog:
prog.c 1.1 02/05/79

From this one can see that the source in prog.c will not compile into the same
version as the binary in /usr/bin/prog.

ID keywords can be inserted anywhere, including in comments, but Id keywords
that are compiled into the object module are especially useful, since they let you
find out what version of the object is being run. However, there is a cost: data
space is used up to store the keywords.

When you put id keywords into header files, it is important that you assign them
to different variables. For example, you might use:

static char AccessSid[] = "%W% %G%";

in the file access.h and:

static char OpsysSid[] = "%W% %G%";

in the file opsys.h. Otherwise, you will get compilation errors because 'Sccsld' is
redefined. The problem with this is that if the header file is included by many
modules that are loaded together, the version number of that header file is
included in the object module many times; you may find it more to your taste to
put id keywords in header files in comments.

With some care, it is possible to keep the SID's consistent in multi-file systems.
The trick here is to always see s edit all files at once. The changes can then
be made to whatever files are necessary and then all files (even those not
changed) are redelta'ed. This can be done fairly easily by just specifying the
name of the directory that the sees files are in:

[tutorial% sees edit sees

which will sees edit all files in that directory. To make the delta, use:

(tutorial% sees delta sees

You will be prompted for comments only once.

)

)

~\sun ~ microsystems
F of 15 February 1986

Creating New Releases

4.5. Restoring Old Versions
Reverting to Old Versions

Selectively Deleting Old
Deltas

Chapter 4 - Source Code Control System 79

When you want to create a new release of a program, you can specify the release
number you want to create on the sees edit command. For example:

[
tutorial% sees edit -r2 prog.e)

will put the next delta in release two (that is, it will be numbered 2.1). Future
deltas will automatically be in release two. To change the release number of an
entire system, use:

(tutorial% sees edit -r2 sees

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But
this introduced a bug, so you made a delta 1.4 to correct it. But 1.4 was still
buggy, and you decided you wanted to go back to the old version. You could
revert to delta 1.2 by choosing the SID in a get:

(tutorial% sees get -r1.2 prog.e

This will produce a version of prog. e that is delta 1.2 that can be reinstalled
so that work can proceed.

In some cases you don't know what the SID of the delta you want is. However,
you can revert to the version of the program that was running as of a certain date
by using the --c (cutoff) option. For example,

tutorial% sees get -e800722120000 prog.c

retrieves whatever version was current as of July 22, 1980 at 12:00 noon. Trail­
ing components can be stripped off (defaulting to their highest legal value), and
punctuation can be inserted in the obvious places; for example, the above line
could be equivalently stated as:

tutorial% sees get -e"80/07/22 12:00:00" prog.e

Suppose that you later decided that you liked the changes in delta 1.4, but that
delta 1.3 should be removed. You could do this by excluding delta 1.3:

]

]

[
tutorial% sees edit -x1.3 prog.e)

'------------------"
When delta 1.5 is made, it will include the changes made in delta 1.4, but will
exclude the changes made in delta 1.3. You can exclude a range of deltas using a
dash. For example, if you want to get rid of 1.3 and 1.4 you can use:

~\sun ,~ microsystems
F of 15 February 1986

80 Programming Tools

4.6. Auditing Changes
Displaying Delta Comments
with sees prt

Finding Why Lines Were
Inserted

(tutorial% sees edit -x1.3-1.4 prog.e
J

which will exclude all deltas from 1.3 through 1.4. Alternatively,

(~t_u_t_o_r_l_'a_I_=_~_S_c_c_s __ e_d __ i_t_-_X __ l_._3-__ 1_P __ r_o_g_._c ________________________ -JJ

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using -x (or -i - see below) there will be conflicts
between versions; for example, it may be necessary to both include and delete a
particular line. If this happens, sees always displays a message telling the range
of lines affected; these lines should then be examined very carefully to see if the
version sees got is ok.

Since each delta (in the sense of 'a set of changes') can be excluded at will, it is
most useful to put each semantically distinct change into its own delta.

When you created a delta, you presumably gave a reason for the delta to the
'comments?' prompt. To display these comments later, use:

(tutorial% sees prt prog.c

which produces a report for each delta of the SID, time and date of creation, user
who created the delta, number of lines inserted, deleted, and unchanged, and the
comments associated with the delta. For example, the output of the above com­
mand might be:

tutorial% sccs prt prog.c
D 1.2 80/08/29 12:35:31
removed If_qlf option

bill 2 100005/00003/00084

D 1.1 79/02/05 00:19:31 eric 1 000087/00000/00000
date and time created 80/06/10 00:19:31 by eric

To find out why you inserted lines, you can get a copy of the file with each line
preceded by the SID that created it:

(tutorial% sees get -m prog.c

J

J
You can then find out what changes were made by this delta by printing the com­
ments using prt.

To find out what lines are associated with a particular delta, 1.3 for instance, use:

[tutorial% sees get ~ -p prog.e I grep '-1.3' J

~~ sun F of 15 February 1986
~ microsystems

Discovering What Changes
You Have Made with sees
diffs

4.7. Shorthand Notations

Making a Delta and Getting a
File with sees delget

Replacing a Delta with the
sees fix

Chapter 4 - Source Code Control System 81

The -p option makes sees output the generated source to the standard output
rather than to a file.

When you are editing a file, you can find out what changes you have made using:

(tutorial% sees diffs prog.e

Most of the "diff' options can be used. To pass the -c option, use -C.

To compare two versions that are in deltas, use:

tutorial% sees seesdiff -rl.3 -rl.6 prog.e

to see the differences between delta 1.3 and delta 1.6.

There are several sequences of commands that are used frequently. Sees tries to
make it easy to do these.

]

A frequent requirement is to make a delta of some file and then get that file. This
is done by using

(tutorial% sees delget prog.e

which is entirely equivalent to:

tutorial% sees delta prog.e
tutorial% sees get prog.e

except that if an error occurs while making a delta of any of the files, none of
them will be gotten. The sees deledit command is equivalent to
sees delget except that the sees edit command is used instead of the
sees get command.

Frequently, there are small bugs in deltas, for instance, compilation errors, for
which there is no reason to maintain an audit trail. To replace a delta, use:

(tutorial% sees fix -rl.4 prog.e

]

J
This gets a copy of delta 1.4 of prog.c for you to edit and then deletes delta 1.4
from the secs file. When you do a delta of prog.c, it will be delta 1.4 again. The
-r option must be specified, and the delta that is specified must be a leaf delta,
that is, no other deltas may have been made subsequent to the creation of that
delta .

• \sun ,~ microsystems
F of 15 February 1986

82 Programming Tools

Backing Out of an Edit with
sees unedit

Working From Other
Directories with the -d Flag

4.8. Using sees on a Project

4.9. Saving Yourself
Recovering a Munged Edit
File

If you found you edited a file that you did not want to edit, you can back out by
using:

[tutorial% sccs unedit prog.c

If you are working on a project where the sees code is in a directory somewhere
else, you may be able to simplify things by using a shell alias. For example, the
alias:

alias syssees sees -d/usr/sre

will allow you to issue commands such as:

syssees edit emd/who.e

which will look for the file '/usrlsrc/cmdlSCCS/who.c'. The file 'who.c' is
always created in your current directory regardless of the value of the -d option.

Working on a project with several people has its own set of special problems.
The main problem occurs when two people modify a file at the same time. sees
prevents this by locking an s-file while it is being edited.

)

As a result, files should not be reserved for editing unless they are actually being
edited at the time, since this will prevent other people on the project from making
necessary changes. For example, a good scenario for working might be:

tutorial% sccs edit a.c g.c t.c
tutorial% vi a.c g.c t.c * do testing of the (experimental) version
tutorial% sccs de1get a.c g.c t.c
tutorial% sccs info * should respond "Nothing being edited"
tutorial% make insta11

As a general rule, all source files should be delta' ed before installing the program
for general use. This will ensure that it is possible to restore any version in use at
any time.

Sometimes you may find that you have destroyed or trashed a file that you were
trying to edir5. Unfortunately, you can't just remove it and re-sees edit it;
sees keeps track of the fact that someone is trying to edit it, so it won't let you
do it again. Neither can you just get it using sees get, since that would
expand the Id keywords. Instead, you can say:

(tutorial% sccs get -k prog.c

S Or given up and decided to start over.

)

~\sun ~~ microsystems
F of 15 February 1986

Restoring the s-file

4.10. Managing sees Files
with sees admin

4.11. Maintaining Different
Versions (Branches)

Chapter 4 -,-·Source Code Control System 83

This will not expand the Id keywords, so it is safe to do a delta with it.

Alternatively, you can unedit and sees edit the file.

In particularly bad circumstances, the sces file itself may get munged. The most
common way this happens is that it gets edited. Since sccs keeps a checksum,
you will get errors every time you read the file. To fix this checksum, use:

[tutorial% sccs admin -z prog.c J

There are a number of parameters that can be set using the admin command. The
most interesting of these are flags. Flags can be added by using the -f option.
For example:

[tutorial% sccs admin -fdl prog.c J
sets the 'd' flag to the value '1'. This flag can be deleted by using:

(~t_u_t_o_r_~_'a_l_~_o_S_c_c_s __ a_dmi __ '_n __ -_d_d __ p_r_O_g_._c __________________________ ~]
The most useful flags are:

b Allow branches to be made using the -b option to sees edit.

dSID
DefaultSIOtobeusedona sees get or sees edit. If this is just a
release number it constrains the version to a particular release only.

Give a fatal error if there are no Id keywords in a file. This is useful to
guarantee that a version of the file does not get merged into the s-Jzle that
has the Id keywords inserted as constants instead of internal forms.

y The 'type' of the module. Actually, the value of this flag is unused by sces
except that it replaces the % Y % keyword.

-tfile
store descriptive text fromfile in the secs file. This descriptive text might
be the documentation or a design and implementation document. Using the
-t option ensures that if the sees file is passed on to someone else, the docu­
mentation will go along with it. If file is omitted, the descriptive text is
deleted. To see the descriptive text, use prt -to

The admin command can be used safely any number of times on files. A file
need not be gotten for admin to work.

Sometimes it is convenient to maintain an experimental version of a program for
an extended period while normal maintenance continues on the version in pro­
duction. This can be done using a 'branch'. Normally deltas continue in a
straight line, each depending on the delta before. Creating a branch 'forks off a
version of the program.

~\sun ~ microsystems
F of 15 February 1986

84 Programming Tools

Creating a Branch

Getting From a Branch

Merging a Branch Back into
the Main Trunk

A More Detailed Example

The ability to create branches must be enabled in advance using:

(tutorial% sees admin -fb prog.e

The -fb option can be specified when the sees file is first created.

To create a branch, use:

(tutorial% sees edit -b prog.e

This will create a branch with (for example) SID 1.5.1.1. The deltas for this ver­
sion will be numbered 1.5.1.n.

Deltas in a branch are normally not included when you do a get. To get these
versions, you will have to say:

(tutorial% sees get -rl.S.l prog.e

]

]

J

At some point you will have finished the experiment, and if it was successful you
will want to incorporate it into the released version. But in the meantime some­
one may have created a delta 1.6 that you don't want to lose. The commands:

tutorial% sees edit -i1.5.1.1-1.5.1 prog.c
tutorial% secs delta prog.c

will merge all of your changes into the release system. If some of the changes
conflict, get will print an error. The generated result should be carefully exam­
ined before the delta is made.

The following technique might be used to maintain a different version of a pro­
gram. First, create a directory to contain the new version:

tutorial% mkdir .. /newxyz
tutorial% cd .. /newxyz

Edit a copy of the program on a branch:

(tutorial% sees -d .. /xyz edit -b prog.e]
When using the old version, be sure to use the -b option to info, check, tell, and
clean to avoid confusion. For example, use:

(tutorial% sees info -b]
when in the 'xyz' directory.

~~sun ~ microsystems
F of 15 February 1986

A Warning

4.12. Using sees with make

Chapter 4 - Source Code Control System 85

If you want to save a copy of the program (still on the branch) back in the s-fLle ,
you can use:

[~utorial% sees -d .. /xyz deledit prog.c J
'---------------"
which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the s-fLle using delta:

(tutorial% sees -d .. /xyz delta prog.c]
At this point you must decide whether this version should be merged back into
the trunk, that is, the default version, which may have undergone changes. If so,
it can be merged using the -i option to see s edit as described above.

Branches should be kept to a minimum. After the first branch from the trunk,
SID's are assigned rather haphazardly, and the structure gets complex fast.

secs and make can be made to work together with a little care. A few sample
makefiles for common applications are shown below.

There are a few basic entries that every M ake/tle ought to have. These are:

a.out

install

sources

clean

print

(or whatever the Make/tie generates). This entry regenerates a pro­
gram. If the Make/tie regenerates many things, this should be called
'all' and should in tum have dependencies on everything the
M akefLle can generate.

Moves the objects to their final resting place, doing any special
chmod's or ranlib's as appropriate.

Creates all the source files from sees files.

Removes all unwanted files from the directory.

Prints the contents of the directory.

The examples shown below are only partial examples, and may omit some of
these entries when they are deemed to be obvious.

The clean entry should not remove files that can be regenerated from the sccs
files. It is sufficiently important to have the source files around at all times that
the only time they should be removed is when the directory is being mothballed.
To do this, the command:

(tutorial% sees clean

can be used. This removes all files for which an s-file exists, but which are not
being edited.

]

F of 15 February 1986

86 Programming Tools

Maintaining Single Programs

Maintaining A Library

Frequently there are directories with several largely unrelated programs (such as
simple commands). These can be put into a single Make/lie:

LDFLAGS= -i -s
prog: prog.o

$(CC) $ (LDFLAGS) -0 prog prog.o
prog.o: prog.e prog.h
example: example.o

$(CC) $ (LDFLAGS) -0 example example.o
example.o: example.e
.DEFAULT:

sees get $<

The trick here is that the • DEFAULT rule is called every time something is
needed that does not exist, and no other rule exists to make it. The explicit
dependency of the .0 file on the .c file is important. Another way of doing the
same thing is:

SRCS= prog.e prog.h example.e
LDFLAGS= -i -s
prog: prog.o

$ (CC) $ (LDFLAGS) -0 prog prog.o
prog.o: prog.h
example: example.o

$(CC) $ (LDFLAGS) -0 example example.o
sources: $ (SRCS)
$ (SRCS) :

sees get $@

There are a couple of advantages to this approach: (1) the explicit dependencies
of the .0 on the.c files are not needed, (2) there is an entry called "sources" so if
you want to get all the sources you can just say 'make sources' and (3) the
makefile is less likely to do confusing things since it won't try to sees get
things that do not exist.

Libraries that are largely static are best updated using explicit commands, since
make doesn't know about updating them properly. However, libraries that are in
the process of being developed can be handled quite adequately. The problem is
that the . 0 files have to be kept separate from the library, as well as in the library.

F of 15 February 1986

Maintaining A Large
Program

Chapter 4 - Source Code Control System 87

i configuration information
OBJS= a.o b.o c.o d.o
SRCS=
TARG=

a.c b.c c.c d.s x.h y.h z.h
/usr/lib

i programs
GET= sccs get
REL=
AR= -ar
RANLIB= ranlib
lib.a: $ (OBJS)

$(AR) rvu lib.a $(OBJS)
$ (RANLIB) lib.a

install: lib.a
sccs check
cp lib.a $(TARG)/lib.a
$ (RANLIB) $(TARG)/lib.a

sources: $ (SRCS)
$ (SRCS) :

$ (GET) $ (REL) $@
print: sources

pr *.h *.[csl
clean:

rm -f *.0
rm -f core a.out $(LIB)

The '$(REL)' in the get can be used to get old versions easily; for example:

[tutorial% make b.o REL=-rl.3 J

The install entry includes the line sees eheck before anything else. This
guarantees that all the s-file 's are up-to-date (that is, nothing is being edited), and
will abort the make if this condition is not met.

OBJS=
SRCS=
GET=
REL=

a.o b.o c.o d.o
a.c b.c y.c d.s x.h y.h z.h
sccs get

a.out: $ (OBJS)
$(CC) $ (LDFLAGS) $ (OBJS) $(LIBS)

sources: $ (SRCS)
$ (SRCS) :

$ (GET) $ (REL) $@

The print and clean entries are identical to the previous case. This Makefile
requires copies of the source and object files to be kept during development. It is
probably also wise to include lines of the form:

F of 15 February 1986

88 Programming Tools

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

so that modules will be recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in some
Makefile s lines like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

'include "x.hlt

The touch command brings the modification date of z.h in line with the
modification date of x.h. When you have a Makefile such as the above, the touch
command can be removed completely; the equivalent effect will be achieved by
doing an automatic sees get on z.h.

F of 15 February 1986

4.13. sees Quick Reference

Commands

sees get

sees edit

sees delta

sees unedit

sees prt

sees info

sees eheek

Chapter 4 - Source Code Control System 89

This list is not exhaustive; for more options see appendix A of this manual.

Gets files for compilation (not for editing). Id keywords are expanded.

-rSID Version to get.

-p

-k

Send to standard output rather than to the actual file.

Don't expand id keywords.

-ilist

-xlist

-ro

-edate

List of deltas to include.

List of deltas to exclude.

Precede each line with SID of creating delta.

Don't apply any deltas created after date.

Gets files for editing. Id keywords are not expanded. Should be matched with a
delta command.

-rSID Same as for sees get. If SID specifies a release that does not yet
exist, the highest numbered delta is retrieved and the new delta is
numbered with SID.

-b

-ilist

-x list

Create a branch.

Same as for sees get.

Same as for sees get.

Merge a file gotten using e di t back into the s-ftle. Collect comments about
why this delta was made.

Remove a file that has been edited previously without merging the changes into
the s-file.

Produce a report of changes.

-t Print the descriptive text.
I'

-e Print (nearly) everything.

Give a list of all files being edited.

-b Ignore branches.

-u[user] Ignore files not being edited by user.

Same as info, except that nothing is printed if nothing is being edited and exit
status is returned.

F of 15 February 1986

90 Programming Tools

sees tell

sees elean

sees what

sees admin

sees fix

sees delget

sees deledit

IdKeywords

Same as info, except that one line is produced per file being edited containing
only the file name.

Remove all files that can be regenerated from the s-flle .

Find and print id keywords.

Create or set parameters on s-flle 's.

-ifile

-z

-fflag

-dflag

-tfile

Create, usingfile as the initial contents.

Rebuild the checksum in case the file has been trashed.

Turn on flag .

Turn off (delete) flag.

Replace the descriptive text in the s-flle with the contents offile. If
file is omitted, the text is deleted. Useful for storing documentation
or design and implementation documents to ensure they get distri­
buted with the s-file .

Useful flags that can be introduced via the -F and -d options are:

b Allow branches to be made using the -b option to edit.

dSID Default SIn to be used on a get or edit.

i Make the 'No Id Keywords' error message a fatal error rather than a
warning.

t The module 'type'; the value of this flag replaces the %Y% keyword.

Remove a delta and reedit it.

Do a delta followed by a get.

Do a delta followed by an edit.

%Z% Expands to '@(#)' for the what command to find.

%M% The current module name, for example, prog. e.

% I % The highest SIn applied.

%W% A shorthand for %Z%%M% < tab> %1%.

%G% The date of the delta corresponding to the % I % keyword.

%R% The current release number, that is, the first component of the %1%
keyword.

%Y% Replaced by the value of the t flag (set by admin).

~) sun F of 15 February 1986
~ microsystems

5
Performance Analysis

Performance Analysis ... 93

5.1. time - Display Time Used by Program .. 93

5.2. prof - Generate Profile of Program .. 96

5.3. gpro f - Generate Call Graph Profile of Program 98

5.4. tcov - Statement-level Analysis of Program ... 100

5.1. time - Display Time
Used by Program

5
Performance Analysis

Tools discussed in this chapter cover facilities for timing programs and getting
performance analysis data. Some tools work only with the C programming
language, while others will work on modules written in any language. Perfor­
mance analysis tools provide a variety of levels of analysis from very simple tim­
ing of a command down to a statement-by-statement analysis of a program. You
can select which level of granularity you like depending on the amount of detail
and optimization you wish to perform. Here are the performance analysis tools
available from the simplest to the most detailed:

time

prof

gprof

tcov

A simple command (built in to the C Shell) to display the time that a
program takes. The C Shell's built in time command display
statistics about how a command uses the system resources as well as
just the raw time consumed.

Generates a profile for the modules in a program, showing which
modules are using the time.

Generates not only a profile as for prof, but also generates a call
graph showing what modules call which, and which modules are
called by other modules. The call graph can sometimes point out
areas where removing calls can speed up a program.

Generates a detailed statement-by-statement analysis of a C pro­
gram.

Two distinct versions of the time command exist in the Sun system. Here we
discuss the time command that is built in to the C-Shell. The other time com­
mand is a program (in /bin/time) that you get when you use the Bourne
Shell.

As a first example, we show the time command being used to display statistics
on the run-time of the index. assist program we've used in other examples
in this manual. In all the exam pIes shown here we direct the output from
index. assist into /dev/null. Here is the simplest example of using
time:

tutorial% time index.assist < index. entries > /dev/null
13.5u 0.8s 0:15 92% 3+19k 19+1io Opf+Ow
tutorial%

93 F of 15 February 1986

94 Programming Tools

Effects of Optimizer on
Timing

Controlling the display from
the time Command

Now to explain the items in the display from the time command above:

The 13.5u means that this program used 13.5 seconds of user time - time spent
in the application program itself. The 0.8s means that the program spent 0.8
seconds in the system - this is time spent in the operating system kernel on
behalf of the program. The third field is the elapsed or wallclock time for the
application. The percentage figure is the percent of the user and system time as a
fraction of the elapsed time. The rest of the display is of lesser interest just now
and is explained in more detail below.

Just for the sake of interest, let's see what effect the C optimizer has on the run
time of this program - we make the program with the -0 option and see what
happens:

tutorial% time index. assist < index. entries > /dev/nu11
13.1u 1.45 0:38 37% 3+19k 19+0io 1pf+Ow
tutorial%

What has happened here? The optimized version takes longer to run! This
demonstration tells us that simple timing is not so simple after all- in a multi­
tasking system there are many other factors that can effect the simple timing.
Note that the user time for the program is actually slightly less - 0.4 seconds
less. But, the system time and the elapsed time are very different. These timings
are affected by the load on the system. If we look at the last field in the time
display, note that in the unoptimized version there were zero page faults, while in
the optimized version there was one page fault. This is an indication that there
was other activity in the system at the time the program was run and this other
activity will adversely affect the elapsed time. There are two rules you can apply
to this situation:

o Run such timing tests on a quiet system late at night. Make sure that 'late at
night' is not midnight when a whole bunch of cron daemons start up.

o Run timing tests several times and take averages.

The time command built into the C Shell has the capability of altering the infor­
mation displayed under control of an environment variable. This is not true of
/bin / time - the command you'd have to use if you were using the Bourne
Shell. Here is how to set up the time variable to control the time display.

You can control how the C Shell times programs by setting the time variable in
your. login or . cshrc file.

The time variable can be supplied with one or two values, such as
set time=3 or set time= (3 n%E %P%").

Setting the time variable via a set command of the form:

set time=nnn

means that the Shell displays a resource-usage summary for any command run­
ning for more than nnn CPU seconds.

F of 15 February 1986

Control Key Letters for the
time Command

Table 5-1

Default Timing Summary

Chapter 5 - Performance Analysis 95

The second fonn controls exactly what resources are displayed. The character
string can be any string of text with embedded control key-letters in it. A control
key-letter is a percent sign (%) followed by a single upper-case letter. To print a
percent sign, use two percent signs in a row. Unrecognized key-letters are sim­
ply printed. The control key-letters are:

Control Key Letters/or the time Command

Letter Description

D A verage amount of unshared data space used in Kilobytes.
E Elapsed (wallclock) time for the command.
F Page faults.
I Number of block input operations.
K Average amount of unshared stack space used in Kilobytes.
M Maximum real memory used during execution of the process.
o Number of block output operations.
P Total CPU time - U (user) plus S (system) - as a percentage of E

(elapsed) time.
S Number of seconds of CPU time consumed by the kernel on behalf

of the user's process.
U Number of seconds of CPU time devoted to the user's process.
W Number of swaps.
X A verage amount of shared memory used in Kilobytes.

The default resource-usage summary is a line of the fonn:

uuu.uu sss.ss ee:ee pp% xxx+dddk iii+oooio mmmpf+www

Table 5-2 Default Timing Summary Chart

C-SbeJI time Command
versus /bin/time

Field Description

uuu.u user time (U),
sss.s system time (S),
ee:ee elapsed time (E),
pp percentage of CPU time versus elapsed time (P),
xxx average shared memory in Kilobytes (X),
ddd average unshared data space in Kilobytes (D),
iii and 000 the number of block input and output operations respectively (I

and 0),
mmm number of page faults (F)
ww number of swaps (W).

One final note on the time commands. As mentioned previously, there are two
versions of time: the one built in to the C-Shell as described above, and the ori­
ginal Bourne Shell time command which can be found in /bin/time.

F of 15 February 1986

96 Programming Tools

5.2. prof - Generate Profile
of Program

The C-Shell time command does not time a command which is a component of
a pipeline. This is what happens:

tutorial% echo timing a pipe~ine I time cat
timing a pipeline
tutorial%

whereas the Bourne Shell time command gives completely different results:

tutorial% echo timing a pipeline I Ibin/t~ cat
timing a pipeline

0.8 real 0.0 user 0.1 sys
tutorial%

After simple timing, a profile of a program displays a finer level of analysis to

assist in optimizing performance. Getting a profile is the next step after simple
timing - more detailed analysis is provided by the call-graph profile and the
code coverage tools described later in this chapter.

Taking the index. assist program from before as an example, let's make the
program compiled for profiling. To compile a program for profiling, you use the
-p option to the C compiler:

tutorial% make CFLAGS=-p

messages from the make command

tutorial%

Now we can run the index.assist program as before. When a program is profiled,
the results appear in a file called mon. out at the end of the run. Every time you
run the program a new mon . out file is created, overwriting the old version.
You then use the prof command to interpret the results of the profile:

F of 15 February 1986

Interpreting Profile Display

Chapter 5 - Performance Analysis 97

tutorial% index. assist < index.entries
tutorial% prof index.assist

> /dev/null

%time cumsecs tcall ms/call
19.4 3.28 11962 0.27
15.6 5.92 32731 0.08
12.6 8.06 4579 0.47
10.5

9.9
5.3
4.7
4.0
3.4
3.1
2.5
0.9
0.9
0.8
0.7
0.7
0.6

9.84
11.52
12.42
13.22
13.89
14.46
14.99
15.41
15.57
15.73
15.87
15.99
16.11
16.21

6849
762

19715
5329

11152
11152

1289
761

3805
6849

13
1289
1405

eve.ything else is insignificant

0.25
1.18
0.04
0.13
0.05
0.05
0.33
0.21
0.04
0.02
9.23
0.09
0.07

name
_compare_strings
_strlen
_doprnt
mcount
_get_field
_fgets
_strcmp
_malloc
_insert_index_entry
_compare_entry
lmodt
_get_index terms
_strcpy
_skip_space

read
ldivt
yrint_index

This display points out that most of the program's running time is spent in the
routine that compares character strings to establish the correct place for the index
entries, and that after that, the majority of the time is spent in the _ strlen
library routine - to find the length of a character string. If we wish to make any
appreciable improvements to the program we must concentrate our efforts on the
compare _ str ings function.

Let's interpet the results of the profiling run though. The results appear under
these column headings:

%time cumsecs tcall ms/call name

Here's what the columns mean:

%t ime Percentage of the total run time of the program, that was consumed
by this routine.

cumsecs A running sum of the number of seconds accounted for by this func­
tion and those listed above it. This information isn't really worth
much - the important data comes from the percentage of total time
and from the time consumed per call.

teall The number of times this routine was called.

ms / call How many milliseconds this routine consumed each time it was
called.

F of 15 February 1986

98 Programming Tools

5.3. gprof - Generate Call
Graph Profile of Program

Compiling with the -pg
Option

Output fromgprof

name The name of the routine.

Now what advice can we derive from the profile data? Notice that the
compare_strings function consumes nearly 20% of the total time. To
improve the run time of index. assist we must either improve the algorithm
that compare_strings uses, or we must cut down the number of calls. Not
obvious from the flat profile is the information that compare_strings is
heavily recursive - we get that fact from using the call graph profile described
below. In this particular case, improving the algorithm also implies reducing the
number of calls.

While the flat profile described in the last section can provide valuable data for
perfonnance improvements, sometimes the data obtained is not sufficient to point
out exactly where the improvements can be made. A more detailed analysis can
be obtained by using the call graph profile that displays a list of which modules
are are called by other modules, and which modules call other modules. Some­
times, removing calls altogether can result in perfonnance improvements.

Using the same index. assist program an example, let's make the program
compiled for call-graph profiling. To compile a program for call-graph profiling,
you use the -pg option to the C compiler:

tutorial% make CFLAGS=-pg

messages from the make command

tutorial%

Now we can run the index.assist program as before. When a program is call­
graph profiled, the results appear in a file called gmon. out at the end of the run.
You then use the gprof command to interpret the results of the profile:

tutorial% index. assist < index.entries > /dev/nu11
tutorial% gprof index.assist

voluminous outputfrom the gprof command

The output from gprof is really voluminous - it's usually intended that you
take the summaries away and read them later. The output from gprof consists
of two major items:

o The 'flat' profile. This is similar to the summary that the prof command
supplies. gprof gives you slightly more infonnation. The output from
gprof contains an explanation of what the various parts of the summary

F of 15 February 1986

Chapter 5 - Performance Analysis 99

mean, so you don't need to go look the things up in a manual.

D The full call-graph profile. There are some fragments of the output from the
profiling run just below with some examples of how to interpret them.

The output from gprof contains an explanation of what the various parts of the
summary mean, so you don't need to go look the things up in a manual.

Interpreting Call Graph Here is a fragment of the output from the gprof summary. Most of the output
has been deleted from before and after the fragment One thing that gprof does
tell you is the granularity of the sampling:

granularity: each sample hit covers 4 byte(s) for 0.14% of 14.74 seconds

index %time

[2] 98.2

[3] 42.6

Then comes part of the call-graph profile itself:

called/total
self descendents called+self

called/total

parents
name index

children

0.00
0.00
0.59
0.02
0.20
0.94
0.06
0.10
0.09
0.04
0.07

0.59
0.59
0.53
0.02
0.00

14.47 1/1 start [1]
14.47 1 main [2]

5.70 760/760 _insert_index_entry [3]
3.16 1/1 yrint_index [6]
1.91 761/761 _get_index_terms [11]
0.06 762/762 _fgets [13]
0.62 761/761 _getyage_number [18]
0.46 761/761 _getyage_type [22]
0.23 761/761 _skip_start [24]
0.23 761/761 _get_index_type [26]
0.00 761/820 _insertyage_entry [34]

10392 _insert_index_entry [3]
5.70 760/760 main [2]
5.70 760+10392 _insert_index_entry [3]
5.13 11152/11152 _compare_entry [4]
0.01 59/112 free [38] -
0.00 59/820 _insertyage_entry [34]

10392 _insert_index_entry [3]

Noting that there are 761 lines of data in the input file to the index. assist
program, here are some of the things we can determine from the call graph:

D f get s is called 762 times - one more than the number of lines in the input
file. The last call to f gets returns an end-of-file.

D The insert _ index_entry function is called 760 times from main -
one less times than the number of lines. Why is this? The first index entry
is inserted 'manually' in the main function when there are no previous

F of 15 February 1986

100 Programming Tools

5.4. tcov - Statement-level
Analysis of Program

Compiling with the -a
Option

index entries to insert.

[] Note that in addition to the 760 times that insert _index_entry is
called from main, insert_index_entry also calls itself the grand
total of 10392 times - insert_index_entry is heavily recursive.
Index entries appear in the input file in unsorted order and are sorted on the
fly by inserting them into a binary tree.

[] Note also that compare_entry (which is called from
insert_index_entry) is called 11152 times, which is equal to
760+10392 times, so there is one call of compare_entry for every time
that insert_index_entry is called. This is as it should be. If there
was a discrepancy in the number of calls, we might suspect some problem in
the program's logic.

[] Notice the number of calls to the insert yage _entry and free func­
tions - insertyage_entry is called 820 times in total: 761 times
from main while the program is building index nodes, and then
insertyage_entry is called 59 times from
insert_index _entry. This indicates that there are 59 index entries
that are duplicated, so their page number entries are linked into a chain with
the index nodes. The duplicate index entries are then freed, hence the 59
calls to free.

After a certain level of performance enhancements have been made, the profile
data obtained from a program starts to look 'flat' and the granularity of the data
collection makes further improvements difficult. At this point, you can use a tool
that performs statement-by-statement analysis on a program, showing which
statements are executed and how many times. This facility is called code cover­
age.

Code coverage can also be valuable in identifying areas of 'dead' code - areas
of code that never get executed. Code coverage can also point out areas of code
that are not being tested.

Using the same index. assist program an example, let's make the program
compiled for code coverage. To compile a program for code coverage, you use
the -a option to the C compiler:

tutorial% make CFLAGS=-a

messages from the make command

tutorial%

For every thing. c file you compile with the -a option, the C compiler generates
a thing. d file - these are used by the code coverage program later in the
analysis.

F of 15 February 1986

Using tcov

Chapter 5 - Performance Analysis 101

Now we can run the index. assist program as before. After a program has been
run, you can then run tcov to get the summaries of execution counts for each
statement in the program:

tutorial% index. assist < index. entries > /dev/null
tutorial% tcov *.c

Now, for every thing. c file you specify, tcov uses the thing. d file and gen­
erates a thing. tcov file containing and annotated listing of your code. The list­
ing shows the number of times each source statement was executed. At the end
of each thing. t cov file there is a short summary.

Here is a small fragment of the C code from one of the modules of
index. assist - the module in question is the insert_index_entry
function that's called so recursively:

F of 15 February 1986

102 Programming Tools

struct index_entry *
insert_index_entry(node, entry)

11152 -> struct index_entry *nodei
struct index_entry *entrYi

{

int resulti
int level;

result = compare_entry(node, entry);

if (result == 0) { /* exact match */
/* Place the page entry for the duplicate */
/* into the list of pages for this node */

59 -> insert-page_entry(node, entry->page_entry);
free (entry) ;

11093 ->

3956 ->
3626 ->

330 ->

7137 ->
6766 ->

371 ->

return(node);

if (result> 0) /* node greater than new entry -- */
/* move to lesser nodes */

if (node->lesser != NULL)
insert_index_entry(node->lesser, entry) ;

else {

node->lesser = entry;
return (node->lesser);

else /* node less than new entry -- */
/* move to greater nodes */

if (node->greater != NULL)
insert_index_entry(node->greater, entry);

else {
node->greater = entry;
return (node->greater);

Notice that the insert_index _entry function is indeed called 11152 times
as we determined in the output from gprof. The numbers to the side of the C
code show how many times each statement was executed.

tcov Summary Here is the summary that tcov placed at the end of build. index. tcov:

F of 15 February 1986

Chapter 5 - Performance Analysis 103

Top 10 Blocks

Line Count

77
55

71.43

240 21563
241 21563
245 21563
251 21563
250 21400
244 21299
255 20612
257 16805
123 12021
124 11962

Basic blocks in this file
Basic blocks executed
Percent of the file executed

439144
5703.17

Total basic block executions
Average executions per basic block

F of 15 February 1986

I

6
m4 - A Macro Processor

m4 - A Macro Processor ... 107

6.1. Using the m4 Command .. 108

6.2. Defining Macros ... 108

6.3. Quoting and Comments ... 109

6.4. Macros with Arguments .. 110

6.5. Aritllmetic Built-ins ... 111

6.6. File Manipulation .. 112

6.7. Running System Commands ... 113

6.8. Conditionals .. 113

6.9. String Manipulation ... 114

6.10. Printing ... 115

6.11. Summary of Built-in m4 Macros ... 115

6

m4 - A Macro Processor

m4 is a macro processor whose primary use has been as a front end for Ratfor for
those cases where parameterless macros are not adequately powerful. It has also
been used for languages as disparate as C and COBOL. m4 is particularly suited
for higher-level languages like FORTRAN, PL/I and C since macros are specified
in a functional notation.

m4 provides features seldom found even in much larger macro processors,
including

o arguments

o condition testing

o arithmetic capabilities

o string and substring functions

o file manipulation

A macro processor is a useful way to enhance a programming language, to make
it more palatable or more readable, or to tailor it to a particular application. The
#define statement in C and the analogous define in Ratfor are examples of
the basic facility provided by any macro processor - replacement of text by
other text

The basic operation of m4 is to copy its input to its output. As the input is read,
however, each alphanumeric "token" (that is, string of letters and digits) is
checked. If it is the name of a macro, then the name of the macro is replaced by
its defining text, and the resulting string is pushed back onto the input to be res­
canned. Macros may be called with arguments, in which case the arguments are
collected and substituted into the right places in the defining text before it is res­
canned.

m4 provides a collection of about twenty built-in macros which perform various
useful operations; in addition, the user can define new macros. Built-in macros
and user-defined macros work exactly the same way, except that some of the
built-in macros have side effects on the state of the process.

107 F of 15 February 1986

108 Programming Tools

6.1. Using the m4 Command

6.2. Defining Macros

The basic m4 command line looks like this:

(tutorial% m4 [filename • •• 1

Each argument file is processed in order; if there are no arguments, or if an argu­
ment is '-', the standard input is read at that point. The processed text is written
to the standard output, which may be captured for subsequent processing by
redirecting the standard output:

(tutorial% m4 [filename •.. 1 > oUlputfile

The primary built-in function ofm4 is define, which is used to define new
macros. The input

define (name, stuff)

defines the string name as stuff. All subsequent occurrences of name will be
replaced by stuff, unless name is redefined, or until name is undefined. name
must be alphanumeric and must begin with a letter (the underscore _ counts as a
letter). stuff is any text that contains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,

define (N, 100)

if (i > N)

J

)

defines N to be 100, and uses this "symbolic constant" in a later if statement

The left parenthesis must immediately follow the word define, to signal that
define has arguments. If a macro or built-in name is not followed immediately
by '(', it is assumed to have no arguments. This is the situation for N above; it is
actually a macro with no arguments, and thus when it is used there need be no
parenthesis following it.

m4 divides its input into tokens, so a macro name is only recognized as such if it
appears surrounded by non-alphanumerics. For example, in

define(N, lOa)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N , even though it
contains a lot of N 's.

Things may be defined in terms of other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

F of 15 February 1986

6.3. Quoting and Comments

Chapter 6 - m4 - A Macro Processor 109

What happens if N is redefined? Or, to say it another way, is M defined as N or
as 100? In m4, the latter is true - M is 100, so that changing N does not change
M.

This behavior arises because m4 expands macro names into their defining text as
soon as it possibly can. Here, that means that when the string N is seen while the
arguments of define are being collected, it is immediately replaced by 100; it's
just as if you had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The first, which is
specific to this situation, is to interchange the order of the definitions:

define(M, N)
define (N, 100)

Now M is defined to be the string N, so when you ask for M later, you'll always
get the value of N at that time (because the M will be replaced by N which will
be replaced in tum by its value).

The more general solution is to delay the expansion of the arguments of define
by quoting them. Any text surrounded by the single quotes" and ' is not
expanded immediately, but has the quotes stripped off. If you say

define (N, 100)
define (M, 'N')

the quotes around the N are stri pped off as the argument is being collected, but
they have served their purpose, and M is defined as the string N , not 100. The
general rule is that m4 always strips off one level of single quotes whenever it
evaluates something. This is true even outside of macros. If you want the word
define to appear in the output, you have to quote it in the input, as in

'define' = 1;

As another instance of the same thing, which is a bit more surprising, consider
redefining N :

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second definition is evaluated as soon as it's
seen; that is, it is replaced by 100, so it's as if you had written

define(100, 200)

This statement is ignored by m4, since you can only define things that look like
names, but it obviously doesn't have the effect you wanted. To really redefine
N , you must delay the evaluation by quoting:

F of 15 February 1986

110 Programming Tools

6.4. Macros with Arguments

define(N, 100)

define ('N', 200)

If" and ' are not convenient for some reason, the quote characters can be changed
with the built-in changequote:

changequote([,])

makes the new quote characters the left and right brackets. You can restore the
original characters with just

changequote

There are two additional built-ins related to def ine. undef ine removes the
definition of some macro or built-in:

undefine ('N')

removes the definition of N. (Why are the quotes absolutely necessary?) Built­
ins can be removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently defined.
In particular, m4 pre-defines the name unix.

if de f actually permits three arguments; if the name is undefined, the value of
ifdef is then the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

Don't forget the quotes around the argument.

Comments in m4 are introduced by the # (sharp) character. All text from the #
to the end of the line is taken as a comment and otherwise ignored.

So far we have discussed the simplest form of macro processing - replacing one
string by another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. Within the replacement text
for a macro (the second argument of its define) any occurrence of $n is
replaced by the nth argument when the macro is actually used. Thus, the macro
bump, defined as

define (bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump (x)

evaluates to

x = x + 1

A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. The macro name itself is $0 , although that is less
commonly used. Arguments that are not supplied are replaced by null strings, so

F of 15 February 1986

6.5. Arithmetic Built-ins

Chapter 6 - m4 - A Macro Processor 111

we can define a macro eat which simply concatenates its arguments, like this:

define (cat, $1$2$3$4$5$6$7$8$9)

Thus

cat (x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument collection
are discarded. All other white space is retained. Thus

define (a, b c)

defines a to be be.

Arguments are separated by commas, but commas can be nested inside
parentheses. That is, in

define (a, (b, c))

there are only two arguments; the second is literally (b,e). And of course a bare
comma or parenthesis can be inserted by quoting it.

m4 provides two built-in functions for doing arithmetic on integers (only). The
simplest is incr, which increments its numeric argument by 1. Thus to handle
the common programming situation where you want a variable to be defined as
"one more than Ntt

, write

define(N, 100)
def ine (N1, 'incr (N) ,)

which defines N 1 as one more than the current value of N .

The more general mechanism for arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers. eval provides the operators (in
decreasing order of precedence)

F of 15 February 1986

112 Programming Tools

Table 6-1

6.6. File Manipulation

Operators to the eval built in in m4

Operator

unary + and -

** or
* / %

+

add and subtract

exponentiation

Meaning

multiply, divide, and modulus

binary add and subtract

! = < <= > >= equal, not equal, less than, less than or equal,
greater than, greater than or equal

logical not

& or & & logical and)

or II (logical or)

Parentheses may be used to group operations where needed. All the operands of
an expression given to eval must ultimately be numeric. The numeric value of
a true relation (like 1>0) is 1, and false is O. The precision in eval is 32 bits.

As a simple example, suppose we wantM to be 2**N+l. Then

define(N, 3)
define(M, 'eval(2**N+l)')

As a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say just a number); it usually gives the result you
want, and is a good habit to get into.

You can include a new file in the input at any time by the built-in function
include:

include (filename)

inserts the contents of/llename in place of the include command. The con­
tents of the file is often a set of definitions. The value of inc 1 ude (that is, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is a fatal error if the file named in include cannot be accessed. To get some
control over this, the alternate form sinclude can be used; sinclude
("silent include") says nothing and continues if it can't access the file.

It is also possible to divert the output of m4 to temporary files during processing,
and output the collected material uPon command. m4 maintains nine of these
diversions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as n .
Diverting to this file is stopped by another di vert command; in particular,
di vert or di vert (0) resumes the normal output process.

F of 15 February 1986

6.7. Running System
Commands

6.8. Conditionals

Chapter 6 - m4 - A Macro Processor 113

Diverted text is nonnally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back diver­
sions at any time, that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undi vert with arguments
brings back the selected diversions in the order given. The act of undiverting dis­
cards the diverted stuff, as does diverting into a diversion whose number is not
between 0 and 9 inclusive.

The value of undi vert is not the diverted stuff. Furthermore, the diverted
material is not res canned for macros.

The built-in di vnurn returns the number of the currently active diversion. This
is zero during nonnal processing.

You can run any UNIXt program with the sy scrnd built-in. For example,

syscmd(date)

runs the date command. Normally syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names, the built-in rnaketemp is provided, with
specifications identical to the system function mktemp: a string of XXXXX in the
argument is replaced by the process id of the current process.

There is a built-in called ifelse which enables you to perform arbitrary condi­
tional testing. In its simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these are identical, ifelse returns the
string c ; otherwise it returns d. Thus we might define a macro called compare
which compares two strings and returns "yes" or "no" according to whether
they are the same or different.

define (compare, 'ifelse ($1, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a limited
fonn of multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g}

if the string a matches the string b, the result is c. Otherwise, if d is the same as
e, the result isf. Otherwise the result is g. If the final argument is omitted, the
result is null, so

ifelse(a, b, c)

t UNIX is a trademark of AT&T Bell Laboratories.

F of 15 February 1986

114 Programming Tools

6.9. String Manipulation

is c if a matches b , and null otherwise.

The built-in len returns the length of the string that makes up its argument.
Thus

len (abcdef)

is 6, and len ((a, b» is 5.

The built-in substr can be used to produce substrings of strings.
sub s t r (s , i , n) returns the substring of s that starts at the i th position
(origin zero), and is n characters long. If n is omitted, the rest of the string is
returned, so

substr('now is the time', 1)

evaluates to

ow is the time

If either i or n is out of range, various sensible things happen.

index (sl, s2) returns the index (position) in sl where the string s2 occurs,
or-l ifit doesn't occur. As with substr, the origin for strings is O.

The built-in transli t perfonns character transliteration.

translit(s, f, t)

modifies s by replacing any character found in! by the corresponding character
in t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than!, characters
which don't have an entry in t are deleted; as a limiting case, if t is not present at
all, characters in! are deleted from s. So

translit(s, aeiou)

deletes vowels from s .

There is also a built-in called dnl which deletes all characters that follow it up
to and including the next newline; it is useful mainly for throwing away empty
lines that otherwise tend to clutter up m4 output. For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into
the output, where it may not be wanted. If you add dn 1 to each of these lines,
the newlines will disappear.

Another way to achieve this, due to 1. E. Weythman, is

F of 15 February 1986

6.10. Printing

6.11. Summary of Built-in
m4 Macros

Table 6-2

divert (-1)
define ('" ..)

divert

Chapter 6 - m4 - A Macro Processor 115

The built-in errpr int writes its arguments to the standard error file. Thus you
can say

errprint('fatal error')

dump de f is a debugging aid which dumps the current definitions of defined
terms. If there are no arguments, you get everything; otherwise you get the ones
you name as arguments. Don't forget to quote the names!

Summary of Built-in m4 Macros

Built In

changequote(L, R)

define (name, replacement)

divert (number)

divnum

dnl

dumpdef (. name " • name " ..•)

errprint (s, s, •••)

eval (numeric expression)

ifdef('name', true string, falsestring)

ifelse(a, b, c, d)

include <file)

incr (number)

index (sl, s2)

len (string)

Description

Change left quote to L, right
quote to R

define name as replacement

Divert output to stream number

Return number of currently
active diversions

Delete up to and including new­
line

Dump specified definitions

Write arguments s to standard
error

Evaluate numeric expression

Return true string if name is
defined,false string if nome is
not defined

If a and b are equal, return c,
else return d

Include contents of file

Increment number by 1

Return position in sl where s2
occurs, or -1 if no occurrence

Return length of string

F of 15 February 1986

116 Programming Tools

Table 6-2

I

Summary of Built-in m4 Macros- Continued

BuiltIn

maketemp (. . . xxxxx. . .)

sinclude <file)

substr (string, position, number)

syscmd (command)

translit (string, from, to)

undefine (' name')

undi vert (number, number, • • .)

Description

Make a temporary file

Include contents of file -
ignored and continue if file not
found.

Return substring of string start­
ing at position and number char­
acters long

Run command in the system

Transliterate characters in string
from the set specified by from to
the set specified by to

Remove name from the list of
definitions

Append diversion number to the
current diversion

F of 15 February 1986

7
Lex - A Lexical Analyzer Generator

Lex - A Lexical Analyzer Generator ... 119

7.1. Lex Source ... 122

7.2. Lex Regular Expressions ... 123

7.3. Lex Actions ... 126

7.4. Ambiguous Source Rules .. 129

7.5. Lex Source Definitions ... 131

7.6. Using lex .. 132

7.7. Lex and Yacc ... 133

7.8. Examples .. 133

7.9. Left Context-Sensitivity .. 136

7.10. Character Set ... 138

7.11. Summary of Source Format .. 138

7.12. Caveats and Bugs .. 140

7
Lex - A Lexical Analyzer Generator

lex is a program generator designed for lexical processing of character input
streams. lex accepts a high-level, problem-oriented specification for character
string matching, and produces a program in a general-purpose language which
recognizes regular expressions. The regular expressions are specified by the pro­
grammer in the source specifications given to lex. The lex written code recog­
nizes these expressions in an input stream and partitions the input stream into
strings matching the expressions. At the boundaries between strings, program
sections provided by the programmer are executed. The lex source file associ­
ates the regular expressions and the program fragments. As each expression
appears in the input to the program written by lex, the corresponding fragment
is executed.

The programmer supplies the additional code beyond expression matching
needed to complete his tasks, possibly including code written by other genera­
tors. The program that recognizes the expressions is generated in the general­
purpose programming language employed for the programmer's program frag­
ments. Thus, a high-level expression language is provided to write the string
expressions to be matched while the programmer's freedom to write actions is
unimpaired. This avoids forcing the programmer who wishes to use a string
manipulation language for input analysis to write processing programs in the
same and often inappropriate string handling language.

lex source is a table of regular expressions and corresponding program frag­
ments. The table is translated to a program which reads an input stream, copying
it to an output stream and partitioning the input into strings which match the
given expressions. As each such string is recognized the corresponding program
fragment is executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by lex. The program fragments writ­
ten by the programmer are executed in the order in which the corresponding reg­
ular expressions occur in the input stream.

The lexical analysis programs written with lex accept ambiguous specifications
and choose the longest match possible at each input point. If necessary, subs tan­
tiallookahead is performed on the input, but the input stream is then backed up
to the end of the current partition, so that the programmer has general freedom to
manipulate it.

lex can generate analyzers in either Cor Ratfor, a language which can be
translated automatically to portable FORTRAN. lex is designed to simplify

119 F of 15 February 1986

120 Programming Tools

Figure 7-1

interfacing with yacc, which is described in the next chapter.

lex is not a complete language, but rather a generator representing a new
language feature which can be added to different programming languages, called
'host languages.' Just as general-purpose languages can produce code to run on
different computer hardware, lex can write code in different host languages.
The host language is used for the output code generated by lex and also for the
program fragments added by the programmer. Compatible run-time libraries for
the different host languages are also provided. This makes lex adaptable to dif­
ferent environments and different programmer. Each application may be directed
to the combination of hardware and host language appropriate to the task, the
programmer's background, and the properties of local implementations.

lex turns the programmer's expressions and actions (called source in this docu­
ment) into the host general-purpose language; the generated program is named
yylex. The yylex program recognizes expressions in a stream (called input
in this document) and perfonns the specified actions for each expression as it is
detected -- see Figure 7-1 below.

An overview of Lex

Lex
Source

Input
Source

----------~~~~~--------~~~ yylex

For a trivial example, consider a program to delete from the input all blanks or
tabs at the ends of lines.

%%
[\t]+$;

is all that is required. The program contains a %% delimiter to mark the begin­
ning of the rules, and one rule. This rule contains a regular expression which
matches one or more instances of the characters blank or tab (written \t forvisi­
bility, in accordance with the C convention) just prior to the end of a line. The
brackets indicate the character class made of blank and tab; the + indicates 'one
or more ... '; and the $ indicates 'end-of-line'. No action is specified, so the pro­
gram generated by lex (yylex) ignores these characters. Everything else is

+§!l,.!! F of 15 February 1986

lex can also be used with a parser
generator to perform the lexical
analysis phase.

Figure 7-2

Chapter 7 - Lex - A Lexical Analyzer Generator 121

copied to the output stream. To change any remaining string of blanks or tabs to
a single blank, add another rule:

%%
[\t]+$;
[\t]+ printf(n ");

The finite automaton generated for this source scans for both rules at once,
observing at the termination of the string of blanks or tabs whether or not there is
a newline character, and executing the desired rule action. The first rule matches
all strings of blanks or tabs at the ends of lines, and the second rule all remaining
strings of blanks or tabs.

lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. 1 ex can also be used with a parser generator to per­
form the lexical analysis phase; it is particularly easy to interface lex and
yace[3]. lex programs recognize only regular expressions; yacc writes
parsers that accept a large class of context-free grammars, but require a lower­
level analyzer to recognize input tokens. Thus, a combination of lex and yacc
is often appropriate. When used as a preprocessor for a later parser generator,
lex is used to partition the input stream, and the parser generator assigns struc­
ture to the resulting pieces. The flow of control in such a case (which might be
the first half of a compiler, for example) is shown in Figure 7-2. Additional pro­
grams, written by other generators or by hand, can be added easily to programs
written by lex.

Lex with Yacc

Input

lexical
rules

grammar
rules

parsed
input

F of 15 February 1986

122 Programming Tools

.7.1. Lex Source

yacc programmers will realize that the name yylex is what yacc expects its
lexical analyzer to be named, so that the use of this name by lex simplifies
interfacing.

lex generates a deterministic finite automaton from the regular expressions in
the source [4]. The automaton is interpreted, rather than compiled, in order to
save space. The result is still a fast analyzer. In particular, the time taken by a
lex program to recognize and partition an input stream is proportional to the
length of the input. The number of lex rules or the complexity of the rules is
not important in determining speed, unless rules which include forward context
require a significant amount of rescanning. What does increase with the number
and complexity of rules is the size of the finite automaton, and therefore the size
of the program generated by lex.

In the program written by lex, the programmer's fragments (representing the
actions to be performed as each regular expression is found) are gathered as cases
of a switch. The automaton interpreter directs the control flow. Opportunity is
provided for the programmer to insert either declarations or additional statements
in the routine containing the actions, or to add subroutines outside this action
routine.

lex is not limited to source which can be interpreted on the basis of one charac­
ter lookahead. For example, if there are two rules, one looking for ab and
another for abcdefg, and the input stream is abcdeJh, lex recognizes ab and
leave the input pointer just before" cd . .. " Such backup is more costly than pro­
cessing simpler languages .

The general format of lex source is:

{definitions}
%%
{rules}
%%
{programmer subroutines}

where the definitions and the programmer subroutines are often omitted. The
second %% is optional, but the first is required to mark the beginning of the
rules. The absolute minimum lex program is thus

%%

(no definitions, no rules) which translates into a program which copies the input
to the output unchanged.

In the outline of lex programs shown above, the rules represent the
programmer's control decisions; they are a table, in which the left column con­
tains regular expressions (see section 7.2) and the right column contains actions,
program fragments to be executed when the expressions

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message 'found
keyword INT' whenever it appears. In this example the host procedural language
is C and the C library functionprinifis used to print the string. The end of the

F of 15 February 1986

7.2. Lex Regular Expressions

Operators

Chapter 7 - Lex - A Lexical Analyzer Generator 123

expression is indicated by the first blank or tab character. If the action is merely
a single C expression, it can just be given on the right side of the line; if it is
compound, or takes more than a line, it should be enclosed in braces. As a
slightly more useful example, suppose it is desired to change a number of words
from British to American spelling. lex rules such as

colour printf("color");
mechanise printf("mechanizen);
petrol printf(ngas");

would be a start. These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with this is described later.

The definitions of regular expressions are very similar to those in the UNIX edi­
tors ex(l) and vi (1)[5]. A regular expression specifies a set of strings to be
matched. It contains text characters (which match the corresponding characters
in the strings being compared) and operator characters (which specify repetitions,
choices, and other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57D.

The operator characters are

"\[]"-?*+I ()$/{}%<>

and if they are to be used as text characters, an escape must be used. The quota­
tion mark operator (") indicates that whatever is contained between a pair of
quotes is to be taken as text characters. Thus

xyz,,++n

matches the string xyz+ + when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"

is the same as the one above. Thus by quoting every non-alphanumeric character
being used as a text character, the programmer can avoid remembering the list
above of current operator characters, and is safe should further extensions to lex
lengthen the list.

An operator character may also be turned into a text character by preceding it
with \ as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use
of the quoting mechanism is to get a blank into an expression; normally, as
explained above, blanks or tabs end a rule. Any blank character not contained

.~~t!! F of 15 February 1986

124 Programming Tools

Character classes

Arbitrary character

Optional expressions

within [] (see below) must be quoted. Several normal C escapes with \ are
recognized: \n is newline, \t is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

Classes of characters can be specified using the operator pair []. The construc­
tion [abcl matches a single character, which may be a, b, or c. Within square
brackets, most operator meanings are ignored. Only three characters are special:
these are \, -, and.... The - character indicates ranges. For example,

[a-zO-9<> _]

indicates the character class containing all the lower case letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using­
between any pair of characters which are not both upper case letters, both lower
case letters, or both digits is implementation-dependent and generates a warning
message. For example, [O-z] in ASCII is many more characters than it is in
EBCDIC. If it is desired to include the character - in a character class, it should be
first or last, thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the ... operator must appear as the first character after the left
bracket; it indicates that the resulting string is to be complemented with respect
to the system's character set. Thus

[A abc]

matches all characters except a, b, or c, including all special or control charac­
ters; and

[Aa-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes
within character class brackets.

To match almost any character, the operator character

(period) is the class of all characters except newline. Escaping into octal is possi­
ble although non-portable:

[\ 40-\17 6]

matches all printable characters in the ASCII character set, from octal 40 (blank)
to octal 176 (tilde).

The operator ? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

F of 15 February 1986

Repeated expressions

Alternation and Grouping

Context sensitivity

Chapter 7 - Lex - A Lexical Analyzer Generator 125

Repetitions of classes are indicated by the operators * and +.

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z]+

is all strings of lower case letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a
typical expression for recognizing identifiers in computer languages.

The operator I indicates alternation:

(ab I cd)

matches either ab or ed. Note that parentheses are used for grouping, although
they are not necessary on the outside level;

ab I cd

would have sufficed. Parentheses can be used for more complex expressions:

(ab I cd+)? (ef) *
matches such strings as abefef, efefef, edef, or eddd; but not abe, abed, or abedef.

lex recognizes a small amount of surrounding context. The two simplest opera­
tors for this are - and $. If the first character of an expression is -, the expres­
sion is only be matched at the beginning of a line This can never conflict with the
other meaning of -, complementation of character classes, since that only
applies within the [] operators. If the very last character is $, the expression is
only be matched at the end of a line (when immediately followed by newline).
The latter operator is a special case of the / operator character, which indicates
trailing context. The expression

ab/cd

matches the string ab, but only if it is followed by ed. Thus

ab$

is the same as

ab/\n

Left context is handled in lex by start conditions as explained in section 7.9-
Left Context-Sensitivity. If a rule is only to be executed when the lex automa­
ton interpreter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered 'being at the

F of 15 February 1986

126 Programming Tools

Repetitions and Definitions

7.3. Lex Actions

Actual

beginning of a line' to be start condition ONE, then the A operator would be
equivalent to

<ONE>

Start conditions are explained more fully below.

The operators { } specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the expres­
sion. The definitions are given in the first part of the lex input, before the rules.
In contrast,

a{1,5}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for lex source segments.

When an expression written as above is matched, lex executes the correspond­
ing action. This section describes some features of lex which aid in writing
actions. Note that there is a default action, which consists of copying the input to
the output. This is performed on all strings not otherwise matched. Thus the
lex programmer who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. One may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combination which is omitted
from the rules and which appears as input is likely to be printed on the output,
thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a
C null statement, ; as an action does this. A frequent rule is

[\t\n] ;

which ignores the three spacing characters (blank, tab, and newline).

Another easy way to avoid writing actions is the action character I, which indi­
cates that the action to be used for this rule is the action given for the next rule.
The previous example could also have been written

" "
"\t"
"\n"

with the same result. The quotes around \n and \t are not required.

In more complex actions, the programmer often wants to know the actual text
that matched some expression like [a-z] +. lex leaves this text in an external
character array named yyt ext. Thus, to print the name found, a rule like

~~sun ,~ microsystems
F of 15 February 1986

Length

yymore

Chapter 7 - Lex - A Lexical Analyzer Generator 127

[a-z]+ printf("%s", yytext);

prints the string in yytext. The C function printf accepts a fonnat argu­
ment and data to be printed; in this case~ the format is 'print string~ (% indicating
data conversion, and s indicating string type), and the data are the characters in
yytext. So this just places the matched string on the output. This action is so
common that it may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the characters
found, one might ask why give a rule~ like this one~ which merely specifies the
default action? Such rules are often required to avoid matching some other rule
which is not desired. For example~ if there is a rule which matches read it nor­
mally matches the instances of read contained in bread or readjust; to avoid this,
a rule of the form [a-z I + is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence
lex also provides a count yyleng of the number of characters matched. To
count both the number of words and the number of characters in words in the
input~ the programmer might write

[a-zA-ZJ+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the words recognized.
The last character in the string matched can be accessed by

yytext [yyleng-l J

Occasionally, a lex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with this situation. First~

yyrnore () can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally ~ the next input string would
overwrite the current entry in yytext. Second, yyless (n) may be called
to indicate that not all the characters matched by the currently successful expres­
sion are wanted right now. The argument n indicates the number of characters to
be retained in yytext. Further characters previously matched are returned to the
input. This provides the same sort of lookahead offered by the / operator, but in
a different form.

Example: Consider a language which defines a string as a set of characters
between quotation C') marks~ and provides that to include a " in a string it must
be preceded by a \. The regular expression which matches that is somewhat
confusing, so that it might be preferable to write

\"["'''J* {
if (yytext [yyleng-l J == '\ \')

yymore () ;
else

... normal programmer processing

which, when faced with a string such as "abc\"dej" first matches the five charac­
ters "abc\; then the call to yymore () tacks the next part of the string, "dej~

~\sun ,~ microsystems
F of 15 February 1986

128 Programming Tools

onto the end. Note that the final quote terminating the string should be picked up
in the code labeled 'normal processing'.

The function yyless () might be used to reprocess text in various cir­
cumstances. Consider the problem of resolving (in old-style C) the ambiguity of
'=-a'. Suppose it is desired to treat this as '=- a' but print a message. A rule
might be

=- [a-zA-Z]
printf(lfOperator (=-) ambiguous\n");
yyless(yyleng-l);
... action for =- ...

which prints a message, returns the letter after the operator to the input stream,
and treats the operator as '=-'. Alternatively it might be desired to treat this as
'= -a'. To do this, just return the minus sign as well as the letter to the input:

=-[a-zA-Z]

printf(lfOperator (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...

performs the other interpretation. Note that the expressions for the two cases
might more easily be written

=-/ [A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not necessary
to recognize the whole identifier to observe the ambiguity. The possibility of
'=-3', however, makes

=_/[A \t\n]

a still better rule.

In addition to these routines, lex also permits access to the I/O routines it uses.
They are:

1) input () which returns the next input character;

2) output (c) which writes the character c on the output; and

3) unput (c) pushes the character c back onto the input stream to be read
later by input () .

By default these routines are provided as macro definitions, but the programmer
can override them and supply private versions. These routines define the rela­
tionshi p between external files and internal characters, and must all be retained or
modified consistently. They may be redefined, to transmit input or output to or
from strange places, including other programs or internal memory; but the char­
acter set used must be consistent in all routines; a value of zero returned by
input must mean end of file; and the relationship between unput and

F of 15 February 1986

7.4. Ambiguous Source Rules

Chapter 7 - Lex - A Lexical Analyzer Generator 129

input must be retained or the lex lookahead will not work. lex does not look
ahead at all if it does not have to, but every rule ending in + * ? or $ or con­
taining / implies lookahead. Lookahead is also necessary to match an expres­
sion that is a prefix of another expression. See section 7.10 for a discussion of
the character set used by lex. The standard lex library imposes a 100-
character limit on backup.

Another lex library routine that the programmer will sometimes want to
redefine is yywrap () which is called whenever lex reaches an end-of-file. If
yywrap returns a 1, lex continues with the nonnal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive from a
new source. In this case, the programmer should provide a yywrap which
arranges for new input and returns O. This instructs lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end
of a program. Note that it is not possible to write a nonnal rule which recognizes
end-of-file; the only access to this condition is through yywrap. In fact, unless
a private version of input () is supplied a file containing nulls cannot be han­
dled, since a value of 0 returned by input is taken to be end-of-file.

lex can handle ambiguous specifications. When more than one expression can
match the current input, lex chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of characters, the rule given
first is preferred.

Thus, suppose the rules

integer keyword action ... ,
[a-z]+ identifier action ... i

to be given in that order. If the input is integers, it is taken as an identifier,
because [a-z] + matches 8 characters while integer matches only 7. If the input
is integer, both rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (for example, int) will not match the
expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions
like .* dangerous. For example,

, . *'

might seem a good way of recognizing a string in single quotes. But it is an invi­
tation for the program to read far ahead, looking for a distant single quote.
Presented with the input

'first' quoted string here, 'second' here

the above expression matches

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

~\sun ~~ microsystems
F of 15 February 1986

130 Programming Tools

, [.... '\n] *'

which, on the above input, stops after 'firs!. The consequences of errors like this
are mitigated by the fact that the . operator does not match newline. Thus
expressions like .* stop on the current line. Don't try to defeat this with expres­
sions like [.\n] + or equivalents; the lex generated program will try to read the
entire input file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all pos­
sible matches of each expression. This means that each character is accounted
for once and only once. For example, suppose it is desired to count occurrences
of both she and he in an input text. Some lex rules to do this might be

she s++;
he h++;
\n I

where the last two rules ignore everything besides he and she. Remember that.
does not include newline. Since she includes he, lex will normally not recog­
nize the instances of he included in she, since once it has passed a she those char­
acters are gone.

Sometimes the programmer would like to override this choice. The action
REJECT means 'go do the next alternative.' It executes whatever rule was
second choice after the current rule. The position of the input pointer is adjusted
accordingly. Suppose the programmer really wants to count the included
instances of he:

she {s++; REJECT;}

he {h++; REJECT;}

\n I

these rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other expres­
sion is then counted. In this example, of course, the programmer could note that
she includes he but not vice versa, and omit the REJECT action on he; in other
cases, however, it would not be possible a priori to tell which input characters
were in both classes.

Consider the two rules

a[bc]+
a[cd]+

{ ... ; REJECT;}
{ •.. ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule for four characters and the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digrams overlap, that is the word the is

~~sun ~i:W microsystems
F of 15 February 1986

7.5. Lex Source Definitions

Chapter 7 - Lex - A Lexical Analyzer Generator 131

considered to contain both th and he. Assuming a two-dimensional array named
digram to be incremented, the appropriate source is

%%
[a-z] [a-z] {digram [yytext [0]] [yytext[l]]++; REJECT;}
\n

where the REJECT is necessary to pick up a letter pair beginning at every char­
acter, rather than at every other character.

Remember the format of the lex source:

{definitions}
%%
{rules}
%%
{programmer routines}

So far only the rules have been described. The programmer needs additional
options, though, to define variables for use in his program and for use by lex.
These can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not inter­
cepted by lex is copied into the generated program. There are three classes of
such things.

1) Any line which is not part of a lex rule or action which begins with a blank
or tab is copied into the lex-generated program. Such source input prior to
the first %% delimiter is external to any function in the code; if it appears
immediately after the first %%, it appears in an appropriate place for
declarations in the function written by lex which contains the actions. This
material must look like program fragments, and should precede the first lex
rule.

As a side effect of the above, lines which begin with a blank or tab, and
which contain a comment, are passed through to the generated program.
This can be used to include comments in either the lex source or the gen­
erated code. The comments should follow the host language convention.

2) Anything included between lines containing only the delimiters %{ and %}
is copied out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column 1, or
copying lines that do not look like programs.

3) Anything after the third %% delimiter, regardless of formats, etc., is copied
out after the lex output.

Definitions intended for lex are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define lex substitution strings. The format of such lines is

name translation

and it associates the string given as a translation with the name. The name and
translation must be separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be invoked by the {name} syntax in

~\sun ,~ microsystems
F of 15 February 1986

132 Programming Tools

7.6. Using lex

a rule. Using {D} for the digits and {E} for an exponent field, for example,
might abbreviate rules to recognize numbers:

D [0-9]
E [DEde] [-+] ? {D } +
%%
{D}+ printf("integer");
{D}+"."{D}*({E})? I
{D}*"."{D}+({E})? I
{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and con­
tain an optional exponent field, but the first requires at least one digit before the
decimal point and the second requires at least one digit after the decimal point
To correctly handle the problem posed by a FORTRAN expression such as
35. EQ. I, which does not contain a real number, a context-sensitive rule such as

[0-9]+/"."EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection
of a host language, a character set table, a list of start conditions, or adjustments
to the default size of arrays within lex itself for larger source programs. These
possibilities are discussed below under section 7.11 - Summary of Source F or­
mat.

There are two steps in compiling a lex source program. First, the lex source
must be turned into a generated program in the host general-purpose language.
Then this program must be compiled and loaded, usually with a library of lex
subroutines. The generated program is on a file named lex.yy.c. The 110 library
is defined in terms of the C standard library in section 3 of the UNIX Interface
Reference Manual for the Sun Workstation.

The lex library is accessed by the loader flag -11. So an appropriate set of
commands is

tutorial% 1ex source
tutorial% cc 1ex.yy.c -11
tutorial%

The resulting program is placed on the usual file a. out for later execution. To
use lex with yacc see below. Although the default lex 110 routines use the C
standard library, the lex automata themselves do not do so; if private versions
of input, output, and unput are given, the library can be avoided. lex has
several options which are described in the lex(l) manual page.

~\sun ,~ microsystems
F of 15 February 1986

7.7. Lex and Yacc

7.8. Examples

Chapter 7 - Lex - A Lexical Analyzer Generator 133

If you want to use lex with yacc, note that what lex writes is a program
named yylex (), the name required by yacc for its analyzer. Normally, the
default main program in the lex library calls this routine, but if yacc is loaded,
and its main program is used, yacc calls yylex () .

In this case each lex rule should end with

return (token) ;

to return the appropriate token value.

An easy way to get access to yacc's names for tokens is to compile the lex
output file as part of the yacc output file by placing the line

=II: include "lex.yy.c"

in the last section of yacc input. Supposing the grammar to be named 'good'
and the lexical rules to be named 'better' the UNIX command sequence can just
be:

tutorial% yacc good
tutorial% lex better
tutorial% cc y.tab.c -11
tutorial%

The lex and yacc programs can be generated in either order.

As a trivial problem, consider copying an input file while adding 3 to every non­
negative number divisible by 7. Here is a suitable lex source program

%%
int k;

[0-9] +
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);

to do just that. The rule [0-9] + recognizes strings of digits; atoi converts
the digits to binary and stores the result in k. The operator % (remainder) is used
to check whether k is divisible by 7; if it is, it is incremented by 3 as it is written
out. It may be objected that this program will alter such input items as 49.63 or
X7. Furthermore, it increments the absolute value of all negative numbers divisi­
ble by 7. To avoid this, just add a few more rules after the active one, as here:

F of 15 February 1986

134 Programming Tools

%%
int k;

-? [0-9] + {
k = atoi(yytext);
printf("%d", k%7
}

-?[0-9.]+ ECHO;
[A-Za-z] [A-Za-zO-9]+

o ? k+3 k) ;

ECHO;

Numerical strings containing a '.' or preceded by a letter are picked up by one of
the last two rules, and not changed. The if-else has been replaced by a C condi­
tional expression to save space; the form a?b:c means 'if a then b else c'.

For an example of statistics gathering, here is a program which constructs a his­
togram of the lengths of words, where a word is defined as a string of letters.

int lengs[lOO];
%%
[a-z]+ lengs[yyleng]++;

I
\n
%%
1 s.
yywrap ()
{

int i;
printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]) ;

return(l);
}

This program accumulates the histogram, while producing no output. At the end
of the input it prints the table. The final statement return(1); indicates that lex
is to perform wrapup. If yywrap returns zero (false) it implies that further
input is available and the program is to continue reading and processing. To pro­
vide a yywr ap that never returns true causes an infinite loop.

As a larger example, here are some parts of a program written by N. L. Schryer
to convert double-precision FORTRAN to single-precision FORTRAN. Because
FORTRAN does not distinguish upper and lower case letters, this routine begins by
defining a set of classes including both cases of each letter:

a [aA]
b [bB]
e [eC]

z [zZ]

An additional class recognizes white space:

w [\t]*

The first rule changes double precision to real, or DOUBLE

F of 15 February 1986

Chapter 7 - Lex - A Lexical Analyzer Generator 135

PRECISION to REAL.

{d} to} {u} {b} {I} {e} {W} {p} {r} {e} {c} {i} is} {i} to} in}

printf (yytext [0] =='d'? "real" : "REAL");
}

Care is taken throughout this program to preserve the case (upper or lower) of the
original program. The conditional operator is used to select the proper form of
the keyword. The next rule copies continuation card indications to avoid confus­
ing them with constants:

,." "[" 0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
'beginning of line, then five blanks, then anything but blank or zero.' Note the
two different meanings of ~. There follow some rules to change double­
precision constants to ordinary floating constants.

[0-9]+{W} {d} {W} [+-] ?{W} [0-9]+ I
[0-9] + { W} " • " {W} {d} {W} [+-] ? { W} [0-9] +
" • " {W} [0-9] + {W} {d} {W} [+-] ? {W} [0-9] +

/* convert constants */
for (p=yytext; *p != 0; p++)

{

if (*p == 'd' I I *p == 'D')
*p=+ 'e'- 'd';

ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to
find the letter d or D. The program then adds' e'-' tf, which converts it to the
next letter of the alphabet. The modified constant, now single-precision, is writ­
ten out again. There follow a series of names which must be respelled to remove
their initial d. By using the array yyt ext the same action suffices for all the
names (only a sample of a rather long list is given here).

{d} is} {i} In}
{d} {c} to} is}

{d} is} {q} {r} it}
{d} {a} it} {a} in}

{ d} { f} {I} {o} {a} {t } p r i n t f (II % s II , yyt ext + 1) ;

Another list of names must have initial d changed to initial a:

{d} {I} to} {g}

{d} {I} to} {g}10

{d} {ro} {i} {n}l
{d} {ro} {a} {x}l

yytext [0] =+ 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r:

F of 15 February 1986

136 Programming Tools

7.9. Left Context-Sensitivity

{d}l{m} {a} {c} {h}

ECHO;
}

{yytext [0] =+ 'r' - 'd';

To avoid such names as dsinx being detected as instances of dsin, some final
rules pick up longer words as identifiers and copy some surviving characters:

[A-Za-z] [A-Za-zO-9]*
[0-9] + I
\n I

ECHO;

Note that this program is not complete; it does not deal with the spacing prob­
lems in FORTRAN or with the use of keywords as identifiers.

Sometimes it is desirable to have several sets of lexical rules to be applied at dif­
ferent times in the input. For example, a compiler preprocessor might distin­
guish preprocessor statements and analyze them differently from ordinary state­
ments. This requires sensitivity to prior context, and there are several ways of
handling such problems. The - operator, for example, is a prior context opera­
tor, recognizing immediately preceding left context just as $ recognizes immedi­
ately following right context. Adjacent left context could be extended, to pro­
duce a facility similar to that for adjacent right context, but it is unlikely to be as
useful, since often the relevant left context appeared some time earlier, such as at
the beginning of a line.

This section describes three means of dealing with different environments: a sim­
ple use of flags, when only a few rules change from one environment to another,
the use of start conditions on rules, and the possibility of making mUltiple lexical
analyzers all run together. In each case, there are rules which recognize the need
to change the environment in which the following input text is analyzed, and set
some parameter to reflect the change. This may be a flag explicitly tested by the
programmer's action code; such a flag is the simplest way of dealing with the
problem, since lex is not involved at all. It may be more convenient, however,
to have lex remember the flags as initial conditions on the rules. Any rule may
be associated with a start condition. It is only be recognized when lex is in that
start condition. The current start condition may be changed at any time. Finally,
if the sets of rules for the different environments are very dissimilar, clarity may
be best achieved by writing several distinct lexical analyzers, and switching from
one to another as desired.

Consider the following problem: copy the input to the output, changing the word
magic to first on every line which begins with the letter a, changing magic to
second on every line which begins with the letter b, and changing magic to third
on every line which begins with the letter c. All other words and all other lines
are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

.\sun ~~ microsystems
F of 15 February 1986

Chapter 7 - Lex - A Lexical Analyzer Generator 137

int flag;
%%
"a {flag
"b {flag
"c {flag
\n {flag
magic {

'a'; ECHO;}
'b'; ECHO;}
'c'; ECHO;}

o ; ECHO;}

switch (flag)
{

case 'a': printf("first"); break;
case 'b': printf (" secondlf); break;
case 'c': printf ("third"); break;
default: ECHO; break;
}

}

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The word Start may be abbre­
viated to s or S. The conditions may be referenced at the head of a rule with the
<> brackets:

<namel>expression

is a rule which is only recognized when lex is in the start condition name}. To
enter a start condition, execute the action statement

BEGIN namel;

which changes the start condition to name}. To resume the normal state,

BEGIN 0;

which resets to the initial condition of the lex automaton interpreter. A rule
may be active in several start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active.

The same example as before can be written:

%START AA BB CC
%%
"a {ECHO; BEGIN AA;}
"b {ECHO; BEGIN BB;}
"c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN OJ}

<AA>magic
<BB>magic
<CC>magic

printf (lffirstlf) ;
printf(lfsecond");
printf(lfthirdlf);

F of 15 February 1986

138 Programming Tools

7.10. Character Set

where the logic is exactly the same as in the previous method of handling the
problem, but lex does the work rather than the programmer's code.

The programs generated by lex handle character I/O only through the routines
input, output, and unput. Thus the character representation provided in these rou­
tines is accepted by lex and employed to return values in yytext. For inter­
nal use a character is represented as a small integer which, if the standard library
is used, has a value equal to the integer value of the bit pattern representing the
character on the host computer. Normally, the letter a is represented in the same
form as the character constant 'tl. If this interpretation is changed, by providing
110 routines which translate the characters, lex must be told about it, by giving
a translation table. This table must be in the definitions section, and must be
bracketed by two lines containing only' % T'. The table contains lines of the
form

{integer} {character string}

which indicate the value associated with each character. Thus the next example

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Figure 7-3 Sample character table.

7.11. Summary of Source
Format

maps the lower and upper case letters together into the integers 1 through 26,
newline into 27, + and - into 28 and 29, and the digits into 30 through 39. Note
the escape for newline. If a table is supplied, every character that is to appear
either in the rules or in any valid input must be included in the table. No charac­
ter may be assigned the number 0, and no character may be assigned a bigger
number than the size of the hardware character set.

The general form of a lex source file is:

{definitions}
%%
{rules}
%%
{programmer subroutines}

The definitions section contains a combination of

~\sun
~~ microsystems

F of 15 February 1986

Table 7-1

Chapter 7 - Lex - A Lexical Analyzer Generator 139

1) Definitions, in the fonn 'name space translation' .

2) Included code, in the form 'space code'.

3) Included code, in the form

%{
code
%}

4) Start condition declarations, given in the form

%S namel name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array size and x selects the
parameter as follows:

Changing Internal Array Sizes in lex

Letter Parameter

p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the fonn 'expression action' where the action
may be continued on succeeding lines by using braces to delimit it.

Regular expressions in lex use the following operators:

~~sun ~~ microsystems
F of 15 February 1986

140 Programming Tools

Table 7-2 Regular Expression Operators in lex

7.12. Caveats and Bugs

Operator

x
"x"
\x
[xy]
[x-z]
[AX]

x
<y>x
x$
x?
x*
x+
xly
(x)

x
{xx}
x{m,n}

Meaning

the character" x"
an "x", even if x is an operator
an "x" , even if x is an operator
the character x or y
the characters x, y or z
any character but x
any character but newline
an x at the beginning of a line
an x when lex is in start condition y
an x at the end of a line
an optional x
0,1,2, ... instances of x
1,2,3, ... instances ofx
an x oray
anx
y
the translation of xx from the definitions section
m through n occurrences of x

There are pathological expressions which produce exponential growth of the
tables when converted to deterministic automata; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previ­
ous scan. This means that if a rule with trailing context is found, and REJECT is
executed, the programmer must not have used unput to change the characters
forthcoming from the input stream. This is the only restriction on the
programmer's ability to manipulate the not-yet-processed input.

F of 15 February 1986

Yacc - Yet Another Compiler­
Compiler

8

Yacc -Yet Another Compiler-Compiler .. 143

8.1. Basic S}Jecifications ... 145

8.2. Actions ... 147

8.3. Lexical Analysis ... 149

8.4. How the Parser Works .. 151

8.5. Ambiguity and Conflicts ... 155

8.6. Precedence ... 159

8.7. Error Handling .. 162

8.8. The Yacc Environment ... 163

8.9. Hints for Preparing Specifications ... 164

Input Style ... 164

Left Recursion .. 165

Lexical Tie-ins .. 165

Reserved Words ... 166

8.10. Advanced Topics ... 166

Simulating Error and Accept in Actions ... 167

Accessing Values in Enclosing Rules. .. 167

Support for Arbitrary Value Types ... 167

8.11. A Simple Example ... 170

8.12. Yacc Input Syntax .. 173

8.13. An Advanced Example .. 176

8.14. Old Features Supported but not Encouraged .. 182

8
Yacc - Yet Another Compiler­

Compiler

Computer program input generally has some structure; in fact, every computer
program that does input can be thought of as defining an 'input language' which
it accepts. An input language may be as complex as a programming language, or
as simple as a sequence of numbers. Unfortunately, usual input facilities are lim­
ited, difficult to use, and often are lax about checking their inputs for validity.

yacc provides a general tool for describing the input to a computer program.
The yacc programmer specifies the structure of the input, together with code to
be invoked as each item is recognized. yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of control in the programmer's application
handled by this subroutine.

The input subroutine produced by y ac c calls a programmer-supplied routine to
return the next basic input item. Thus, the programmer can specify his input in
terms of individual input characters, or in terms of higher-level constructs such as
names and numbers. The programmer-supplied routine may also handle
idiomatic features such as comment and continuation conventions, which typi­
cally defy easy grammatical specification.

The class of specifications that yacc accepts is a very general one: LALR(l)

grammars with disambiguating rules.

In addition to compilers for C, FORTRAN, APL, Pascal, Ratfor, etc., yacc has
also been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

yacc provides a general tool for imposing structure on the input to a computer
program. The yacc programmer prepares a specification of the input process;
this includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. yacc then
generates a function to control the input process. This function, called a parser,
calls the programmer-supplied low-level input routine (the lexical analyzer) to
pick up the basic items (called tokens) from the input stream. These tokens are
organized according to the input structure rules, called grammar rules; when one
of these rules has been recognized, then programmer code supplied for this rule,
an action, is invoked; actions have the ability to return values and make use of
the values of other actions .

• \sun
~~ microsystems

143 F of 15 February 1986

144 Programming Tools

yacc generates its actions and output subroutines in C. Moreover, many of the
syntactic conventions of yacc follow C.

The heart of the yacc input specification is a collection of grammar rules. Each
rule describes an allowable structure and gives it a name. For example, one
grammar rule might be

date month name day , , , year

Here, date, month _name, day, and year represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma',' is enclosed in single quotes - implying that the comma is to
appear literally in the input. The colon and semicolon merely serve as punctua­
tion in the rule, and have no significance in controlling the input. Thus, with
proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This
routine reads the input stream, recognizing the lower-level structures, and com­
municates these tokens to the parser. For historical reasons, a structure recog­
nized by the lexical analyzer is called a terminal symbol, while the structure
recognized by the parser is called a nonterminal symbol. To avoid confusion,
terminal symbols are referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month name
month name

month name

'J' 'a' 'n'
'F' 'e' 'h'

'D' , e' , c '

might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month _name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a month_name
was seen; in this case, month_name would be a token.

Literal characters such as ',' must also be passed through the lexical analyzer,
and are also considered tokens.

Specification files are very flexible. It is realively easy to add to the above exam­
ple the rule

date month 'I' day 'I' year

allowing

7 I 4 I 1776

F of 15 February 1986

8.1. Basic Specifications

Chapter 8 - Yacc - Yet Another Compiler-Compiler 145

as a synonym for

July 4, 1776

In most cases, this new rule could be 'slipped in' to a working system with
minimal effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan; thus, not
only is the chance of reading and computing with bad input data substantially
reduced, but the bad data can usually be quickly found. Error handling, provided
as part of the input specifications, permits the reentry of bad data, or the con­
tinuation of the input process after skipping over the bad data.

In some cases, y ac c f3:ils to produce a parser when given a set of specifications.
For example, the specifications may be self-contradictory, or they may require a
more powerful recognition mechanism than that available to yacc. The fonner
cases represent design errors; the latter cases can often be corrected by making
the lexical analyzer more powerful, or by rewriting some of the grammar rules.
While yacc cannot handle all possible specifications, its power compares favor­
ably with similar systems; moreover, the constructions which are difficult for
yacc to handle are also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in the program
development.

The theory underlying yacc has been described elsewhere[2], [3], [4].

The next several sections describe the basic process of preparing a yacc
specification; Section 8.1 describes the preparation of grammar rules, Section 8.2
the preparation of the programmer-supplied actions associated with these rules,
and Section 8.3 the preparation of lexical analyzers. Section 8.4 describes the
operation of the parser. Section 8.5 discusses various reasons why yacc may be
unable to produce a parser from a specification, and what to do about it. Section
8.6 describes a simple mechanism for handling operator precedences in arith­
metic expressions. Section 8.7 discusses error detection and recovery. Section
8.8 discusses the operating environment and special features of the parsers yacc
produces. Section 8.9 gives some suggestions which should improve the style
and efficiency of the specifications. Section 8.10 discusses some advanced
topics. Section 8.11 has a brief example, and section 8.12 gives a summary of
the yacc input syntax. Section 8.13 gives an example using some of the more
advanced features ofyacc, and, finally, section 8.14 describes mechanisms and
syntax no longer actively supported, but provided for historical continuity with
older versions of yacc.

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed in Section 8.3, it
is often desirable to include the lexical analyzer as part of the specification file; it
may be useful to include other programs as well. Thus, every specification file
consists of three sections: the declarations, (grammar) rules, and programs. The
sections are separated by double percent % % marks. The percent % is generally
used in yacc specifications as an escape character.

F of 15 February 1986

146 Programming Tools

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second % % mark may be omitted also; thus, the smallest legal yacc
specification is

%%
rules

Spaces (also called blanks), tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols. Comments may appear
wherever a name is legal - they are enclosed in / * . . . * / , as in C and
PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has
the form:

A BODY

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot '.', under­
score '_', and non-initial digits. Upper and lower case letters are distinct. The
names used in the body of a grammar rule may represent tokens or nonterminal
symbols.

A literal consists of a character enclosed in single quotes "'. As in C, the
backslash '\' is an escape character within literals, and all the C escapes are
recognized. Thus

, \n '
, \r'
, \ ' ,

, \ \ '

, \ t '

, \b'
, \f '
'\xxx'

newline
return
single quote '
backslash '\'
tab
backspace
form feed
'xxx, in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be
used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar 'I'
can be used to avoid rewriting the left hand side. In addition, the semicolon at
the end of a rule can be dropped before a vertical bar. Thus the grammar rules

ABC D
A E F
A G

.\sun ,~ microsystems
F of 15 February 1986

8.2. Actions

Chapter 8 - Yacc - Yet Another Compiler-Compiler 147

can be given to yacc as

ABC D

E F
G

It is not necessary that all grammar rules with the same left side appear together
in the grammar rules section, although it makes the input much more readable,
and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty :

Names representing tokens must be declared; this is most simply done by writing

%token namel name2 . . .

in the declarations section. See Sections 3 , 5, and 6 for much more discussion.
Every name not defined in the declarations section is assumed to represent a non­
terminal symbol. Every nonterminal symbol must appear on the left side of at
least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this sym­
bol represents the largest, most general structure described by the grammar rules.
By default, the start symbol is taken to be the left hand side of the first grammar
rule in the rules section. It is possible, and in fact desirable, to declare the start
symbol explicitly in the declarations section using the %start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the end­
marker. If the tokens up to, but not including, the endmarker form a structure
which matches the start symbol, the parser function returns to its caller after the
endmarker is seen; it accepts the input. If the endmarker is seen in any other
context, it is an error.

It is the job of the programmer-supplied lexical analyzer to return the endmarker
when appropriate - see Section 8.3, below. Usually the endmarker represents
some reasonably obvious I/O status, such as 'end-of-file' or 'end-of-record'.

With each grammar rule, the programmer may associate actions to be performed
each time the rule is recognized in the input process. These actions may return
values, and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified by
one or more statements, enclosed in curly braces' {' and'}'. For example,

A ' (' B ')'

{ hello(1, "abc");

and

~\sun ,~ microsystems
F of 15 February 1986

148 Programming Tools

xxx yyy zzz
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The dollar sign symbol '$' is used as a signal to
yacc in this context

To return a value, the action normally sets the pseudo-variable '$$' to some
value. For example, an action that does nothing but return the value 1 is

$$ = 1;

To obtain the values returned by previous actions and the lexical analyzer, the
action may use the pseudo-variables $1, $2, ... , which refer to the values
returned by the components of the right side of a rule, reading from left to right.
Thus, if the rule is

A BCD

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr , (' expr ')'

The value returned by this rule is usually the value of the expr in parentheses.
This can be indicated by

expr , (, expr ')' $$ = $2 ;

By default, the value of a rule is the value of $1 (the first element in it). Thus,
grammar rules of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes,
it is desirable to get control before a rule is fully parsed. yacc permits an action
to be written in the middle of a rule as well as at the end. This rule is assumed to
return a value, accessible through the usual $ mechanism by the actions to the
right of it. In tum, it may access the values returned by the symbols to its left.
Thus, in the rule

A B
$$ 1;

C
x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by manufac­
turing a new nonterminal symbol name, and a new rule matching this name to the
empty string. The interior action is the action triggered off by recognizing this

F of 15 February 1986

8.3. Lexical Analysis

Chapter 8 - Yacc - Yet Another Compiler-Compiler 149

added rule. yacc actually treats the above example as if it had been written:

$ACT

A

/* empty */
{ $$ = 1;

B $ACT C
{ x = $2; y = $3;

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations are
applied to it before output is generated. Parse trees are particularly easy to con­
struct, given routines to build and maintain the tree structure desired. For exam­
ple, suppose there is a C function node, written so that the call

node (L, n1, n2)

creates a node with label L, and descendants n1 and n2, and returns the index of
the newly created node. The parse tree can be built by supplying actions such as:

expr expr '+' expr
$ $ = node (, + " $1, $ 3);

in the specification.

The programmer may define other variables to be used by the actions. Declara­
tions and definitions can appear in the declarations section, enclosed in the marks
'%{' and '%}'. These declarations and definitions have global scope, so they are
known to the action statements and the lexical analyzer. For example,

%{ int variable = 0; % }

could be placed in the declarations section, making variable accessible to all
of the actions. The yacc parser uses only names beginning in 'yy'; the pro­
grammer should avoid such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in Section 8.10.

The programmer must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there is a value associated
with that token, it should be assigned to the external variable yyl val.

The parser and the lexical analyzer must agree on these token numbers in order
for communication between them to take place. The numbers may be chosen by
yacc, or chosen by the programmer. In either case, the '# define' mechanism of
C is used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the declara­
tions section of the yacc specification file. The relevant portion of the lexical
analyzer might look like:

~\sun ~~ microsystems
F of 15 February 1986

150 Programming Tools

yylex () {
extern int yylval;
int c;

c = getchar () ;

switch (c) {

case '0':
case /1':

case '9':
yylval = c-'O';
return(DIGIT);

The intent is to return the token number of DIGIT, and a value equal to the
numerical value of the digit Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIG I T will be
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser; for example, the use of if or while as token
names will almost certainly cause severe difficulties when the lexical analyzer is
compiled. The token name error is reserved for error handling, and should not
be used naively (see Section 8.7.

As mentioned above, the token numbers may be chosen by yacc or by the pro­
grammer. In the default situation, the numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of
the token name or literal in the declarations section can be immediately fol­
lowed by a nonnegative integer. This integer is taken to be the token number of
the name or literal. Names and literals not defined by this mechanism retain their
default definition. It is important that all token numbers be distinct

For historical reasons, the endmarker must have token number 0 or negative.
This token number cannot be redefined by the programmer; thus, all lexical
analyzers should be prepared to return 0 or negative as a token number upon
reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex program
developed by Mike Lesk8 and described in the previous chapter of this manual.
These lexical analyzers are designed to work in close harmony with yacc
parsers. The specifications use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) which do not fit any theoretical
framework, and whose lexical analyzers must be crafted by hand.

4}\sun
~~ microsystems

F of 15 February 1986

8.4. How the Parser Works

shift Action

reduce Action

Chapter 8 - Yacc - Yet Another Compiler-Compiler 151

yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively simple,
and understanding how it works, while not strictly necessary, will nevertheless
make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a stack.
The parser can read and remember the next input token (called the lookahead
token). The current state is always the one on the top of the stack. The states of
the finite-state machine are given small integer labels; initially, the machine is in
state 0, the stack contains only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept,
and error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead
token to decide what action should be done; if it needs one, and does not
have one, it calls yylex to obtain the next token.

2. U sing the current state, and the lookahead token if needed, the parser decides
on its next action, and carries it out. This may result in states being pushed
onto the stack, or popped off the stack, and in the lookahead token being
processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56 there
may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bound. Reduce actions
are appropriate when the parser has seen the right hand side of a grammar rule,
and is prepared to announce that it has seen an instance of the rule, replacing the
right hand side by the left hand side. It may be necessary to consult the looka­
head token to decide whether to reduce, but usually it is not; in fact, the default
action (represented by a '.') is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, leading to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

F of 15 February 1986

152 Programming Tools

accept and error Actions

A : x y z

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing x, y, and z, and no
longer serve any useful purpose. After popping these states, a state is uncovered
which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is
in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing of the left
hand symbol and an ordinary shift of a token, however, so this action is called a
go to action. In particular, the lookahead token is cleared by a shift, and is not
affected by a goto. In any case, the uncovered state contains an entry such as:

A gata 20

which pushes state 20 onto the stack, and becomes the current state.

In effect, the reduce action 'turns back the clock' in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right hand side of the rule is empty, no states are popped off the stack: the
uncovered state is in fact the current state.

The reduce action is also important in the treatment of programmer-supplied
actions and values. When a rule is reduced, the code supplied with the rule is
executed before the stack is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values returned from the lexi­
cal analyzer and the actions. When a shift takes place, the external variable
yyl val is copied onto the value stack. After the return from the programmer's
code, the reduction is carried out. When the goto action is done, the external
variable yyval is copied onto the value stack. The pseudo-variables $1, $2,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the lookahead token is the endmarker, and indi­
cates that the parser has successfully done its job. The error action, on the other
hand, represents a place where the parser can no longer continue parsing accord­
ing to the specification. The input tokens it has seen, together with the lookahead
token, cannot be followed by anything that would result in a legal input. The
parser reports an error, and attempts to recover the situation and resume parsing:
the error recovery (as opposed to the detection of error) will be covered in Sec­
tion 8.7.

It is time for an example! Consider the specification

F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 153

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When yacc is invoked with the -v option, a file called y.output is produced,
with a human-readable description of the parser. The y.output file correspond­
ing to the above grammar (with some statistics stripped off the end) is:

~\sun ~ microsystems
F of 15 February 1986

154 Programming Tools

state 0
$accept _rhyme Send

DING shift 3
error

rhyme goto 1
sound goto 2

state 1
$accept rhyme_Send

Send accept
error

state 2
rhyme soundylace

DELL shift 5
error

place goto 4

state 3
sound

DONG shift
error

state 4
rhyme

reduce

state 5
place

reduce

state 6
sound

DING DONG

6

sound place

1

DELL (3)

3

DING DONG

reduce 2

- (1)

(2)

Notice that, in addition to the actions for each state, there is a description of the
parsing rules being processed in each state. The _ character is used to indicate
what has been seen, and what is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token, DING,

F of 15 February 1986

8.5. Ambiguity and Conflicts

Chapter 8 - Yacc- Yet Another Compiler-Compiler 155

is read, becoming the lookahead token. The action in state ° on DING is 'shift
3', so state 3 is pushed onto the stack, and the lookahead token is cleared. State 3
becomes the current state. The next token, DONG, is read, becoming the looka­
head token. The action in state 3 on the token DONG is 'shift 6', so state 6 is
pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3,
and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off the stack, uncovering state 0. Consulting the description of state 0,
looking for a go to on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is 'shift 5', so state 5
is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead
token is cleared. In state 5, the only action is to reduce by rule 3. This has one
symbol on the right hand side, so one state, 5, is popped off, and state 2 is
uncovered. The goto in state 2 onp/ace, the left side of rule 3, is state 4. Now,
the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1.
There are two symbols on the right, so the top two states are popped off, uncov­
ering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter
state 1. In state 1, the input is read; the endmarker is obtained, indicated by
'$end' in the y.output file. The action in state 1 when the endmarker is seen is
to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL
DELL, and so on. A few minutes spend with this and other simple examples will
probably be repaid when problems arise in more complicated contexts.

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr expr expr

is a natural way of expressing the fact that one way of fanning an arithmetic
expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not unambiguously specify the way
that all complex inputs should be structured. For example, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr expr

or as

expr expr expr

The first is called left association, the second right association.

~\sun ~~ microsystems
F of 15 February 1986

156 Programming Tools

yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is given an
input such as

expr expr expr

When the parser has read the second expr, the input that it has seen:

expr expr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to expr
(the left side of the rule). The parser would then read the final part of the input:

expr

and again reduce. The effect of this is to take the left-associative interpretation.

Alternatively, when the parser has seen

expr expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

expr expr expr

It could then apply the rule to the rightmost three symbols, reducing them to expr
and leaving

expr expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

expr expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift I reduce conflict. It may also hap­
pen that the parser has a choice of two legal reductions; this is called a reduce I
reduce conflict. Note that there are never any 'Shift/shift' conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a disambi­
guating rule.

yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar
rule (in the input sequence).

Rille 1 implies that reductions are deferred whenever there is a choice, in favor of
shifts. Rule 2 gives the programmer rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided whenever
possible.

F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 157

Conflicts may arise because of mistakes in input or logic, or because the gram­
mar rules, while consistent, require a more complex parser than y ace can con­
struct. The use of actions within rules can also cause conflicts, if the action must
be done before the parser can be sure which rule is being recognized. In these
cases, the application of disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, yacc always reports the number of shift/reduce
and reduce/reduce conflicts resolved by Rille 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has sug­
gested that this rewriting is somewhat unnatural, and produces slower parsers;
thus, yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an 'if-then-else' construction:

stat
I IF

IF '(' cond
, (' cond ')'

')' stat
stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing
conditional (logical) expressions, and stat is a nonterminal symbol describing
statements. The first rille will be called the simple-if rule, and the second the if­
else rule.

These two rules form an ambiguous construction, since input of the form

IF (condition-I) IF (condition-2) statement-1 ELSE statement-2

can be structured according to these rules in two ways:

IF condition-1 {
IF condition-2) statement-1

ELSE statement-2

or

I F condition -1 {
IF condition-2) statement-1
ELSE statement-2

The second interpretation is the one given in most programming languages hav­
ing this construct. Each ELSE is associated with the last preceding 'un-ELSE'd'
IF. In this example, consider the situation where the parser has seen

IF condition -1 IF condition - 2 statement -1

and is looking at the E LS E. It can immediately reduce by the simple-if rule to
get

IF condition -1 stat

and then read the remaining input,

.\sun ~~ microsystems
F of 15 February 1986

158 Programming Tools

IF condition -1 IF

ELSE statement-2

and reduce

IF condition -1 stat ELSE statement-2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, statement-2 read, and then the right
hand portion of

condition - 2 statement-l ELSE statement-2

can be reduced by the if-else rule to get

IF condition -1 stat

which can be reduced by the simple-if rule. This leads to the second of the above
groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shiftlreduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input sym­
bol, ELSE, and particular inputs already seen, such as

IF condition -1 IF condition - 2 statement -1

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs are
characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat (18)
stat ELSE stat

The first line describes the conflict, giving the state and the input symbol. The
ordinary state description follows, giving the grammar rules active in the state,
and the parser actions. Recall that the underline marks the portion of the gram­
mar rules which has been seen. Thus in the example, in state 23 the parser has
seen input corresponding to

IF cond stat

and the two grammar rules shown are active at this time. The parser can do two
possible things. If the input symbol is ELSE, it is possible to shift into state 45.

F of 15 February 1986

8.6. Precedence

Chapter 8 - Yacc - Yet Another Compiler-Compiler 159

State 45 will have, as part of its description, the line

stat IF cond stat ELSE stat

since the ELSE will have been shifted in this state. Back in state 23, the alterna­
tive action, described by '.', is to be done if the input symbol is not mentioned
explicitly in the above actions; thus, in this case, if the input symbol is not ELSE,
the parser reduces by grammar rule 18:

stat IF '(' cond ')' stat

Once again, notice that the numbers following 'shift' commands refer to other
states, while the numbers following 'reduce' commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most states, there will be at most one reduce action
possible in the state, and this will be the default command. Programmers who
encounter unexpected shift/reduce conflicts will probably want to look at the ver­
bose output to decide whether the default actions are appropriate. In really tough
cases, the programmer might need to know more about the behavior and con­
struction of the parser than can be covered here. In this case, one of the theoreti­
cal references [2], [3], [4] might be consulted; the services of a local guru might
also be appropriate.

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with infor­
mation about left or right associativity. It turns out that ambiguous grammars
with appropriate disambiguating rules can be used to create parsers that are faster
and easier to write than parsers constructed from unambiguous grammars. The
basic notion is to write grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a very ambiguous gram­
mar, with many parsing conflicts. As disambiguating rules, the programmer
specifies the precedence, or binding strength, of all the operators, and the associa­
tivity of the binary operators. This information is sufficient to allow yacc to
resolve the parsing conflicts in accordance with these rules, and construct a
parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations sec­
tion. This is done by a series of lines beginning with a yacc keyword: %left,
%right, or %nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
lines are listed in order of increasing precedence or binding strength. Thus,

%left
%left

, + '

'* ' , /'

describes the precedence and associativity of the four arithmetic operators. Plus

~\sun ,~ microsystems
F of 15 February 1986

160 Programming Tools

and minus are left-associative, and have lower precedence than star and slash,
which are also left-associative. The keyword %r ight is used to describe right­
associative operators, and the keyword %nonas so c is used to describe opera­
tors, like the . LT. operator in FORTRAN, that may not associate with them­
selves; thus,

A .LT. B .LT. C

is illegal in FORTRAN, and such an operator would be described with the keyword
%nonassoc in yacc. As an example of the behavior of these declarations, the
description

%right
%left
%left

%%

expr
I
I
I
I
I

, +'
'* '

expr
expr
expr
expr
NAME

, / '

expr
, +'

'* '
, / '

expr
expr
expr
expr

expr

might be used to structure the input

a b c*d - e f*g

as follows:

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a pre­
cedence. Sometimes a unary operator and a binary operator have the same sym­
bolic representation, but different precedences. An example is unary and binary
, -'; unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multiplication. The key­
word %prec changes the precedence level associated with a particular grammar
rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It
changes the precedence of the grammar rule to become that of the following
token name or literal. For example, to make unary minus have the same pre­
cedence as multiplication the rules might resemble:

~~sun ~ift'I microsystems
F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 161

%left ' +' , - ,

%left ' * ' , / '

%%

expr expr ' +' expr
I expr - expr
I expr '* ' expr
I expr ' / ' expr
I

,
-

,
expr %prec ' * '

I NAME

A token declared by %left, %r ight, and %nonas soc need not be, but may
be, declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as fol­
lows:

1. The precedences and associativities are recorded for those tokens and literals
that have them.

2. A precedence and associativity is associated with each grammar rule; it is
the precedence and associativity of the last token or literal in the body of the
rule. If the %prec construction is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and
either the input symbol or the grammar rule has no precedence and associa­
tivity, then the two disambiguating rules given at the beginning of the sec­
tion are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input
character have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the
higher precedence. If the precedences are the same, then the associativity is
used; left-associative implies reduce, right-associative implies shift, and
nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedences may disguise errors in the input grammar; it is a
good idea to be sparing with precedences, and use them in an essentially 'cook­
book' fashion, until some experience has been gained. The y.output file is very
useful in deciding whether the parser is actually doing what was intended .

• \sun ,~ microsystems
F of 15 February 1986

162 Programming Tools

8.7. Error Handling Error handling is an extremely difficult area, and many of the problems are
semantic ones. "When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more
useful to continue scanning the input to find further syntax errors. This leads to
the problem of getting the parser 'restarted' after an error. A general class of
algorithms to do this involves discarding a number of tokens from the input
string, and attempting to adjust the parser so that input can continue.

To allow the programmer some control over this process, yacc provides a sim­
ple, but reasonably general, feature. The token name 'error' is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack until it enters a state where the token 'error' is legal. It then behaves as if
the token 'error' were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is
detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no mes­
sage is given, and the input token is quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement, and
end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt
to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat
easier are rules such as

stat , . ' , error

Here, when there is an error, the parser attempts to skip over the statement, but
will do so by skipping to the next ';'. All tokens after the error and before the
next ';' cannot be shifted, and are discarded. When the ';' is seen, this rule will
be reduced, and any 'cleanup' action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

~~sun ~~ microsystems
F of 15 February 1986

input

input

error ' \n' {
$$ $4;

error '\n'
yyerrok;

Chapter 8 - Yacc- Yet Another Compiler-Compiler 163

printf ("Reenter last line: ");
}

input

There is one potential difficulty with this approach; the parser must correctly pro­
cess three input tokens before it admits that it has correctly resynchronized after
the error. If the reentered line contains an error in the first two tokens, the parser
deletes the offending tokens, and gives no message; this is clearly unacceptable.
For this reason, there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better writ­
ten

printf("Reenter last line: ");
input

{ $$ $4;

As mentioned above, the token seen immediately after the 'error' symbol is the
input token at which the error was discovered. Sometimes, this is inappropriate;
for example, an error recovery action might take upon itself the job of finding the
correct place to resume input. In this case, the previous lookahead token must be
cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the pro­
grammer, that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex would
presumably be the first token in a legal statement; the old, illegal token must be
discarded, and the error state reset. This could be done by a rule like

stat error
resynch() ;
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effec­
tive recovery of the parser from many errors; moreover, the programmer can get
control to deal with the error actions required by other portions of the program.

8.8. The Yacc Environment When the programmer inputs a specification to y ace, the output is a file of C
programs, called y .tab.c on most systems (due to local file system conventions,
the name may differ from installation to installation). yacc produces an
integer-valued function called yyparse. When yyparse is called, it in turn
repeatedly calls yylex - the lexical analyzer supplied by the programmer (see
Section 8.3) to obtain input tokens. Eventually, either an error is detected, in
which case (if no error recovery is possible) yypar se returns the value 1, or the

~\sun ,~ microsyslelTlS
F of 15 February 1986

164 Programming Tools

8.9. Hints for Preparing
Specifications

Input Style

lexical analyzer returns the endmarker token and the parser accepts. In this case,
yypar s e returns the value O.

The programmer must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C program, a
program called main must be defined, that eventually calls yypar see In addi­
tion, a routine called yyerror prints a message when a syntax error is detected.

The programmer must supply these two routines in one form or another. They
can be as simple as the following example, or they can be as complex as needed.

main(){

and

return (yyparse());
}

* include <stdio.h>

yyerror(s) char *s;
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the
string 'syntax error'. The average application will want to do better than this.
Ordinarily, the program should keep track of the input line number, and print it
along with the message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics.

The external integer variable yydebug is normally set to O. If it is set to a
nonzero value, the parser generates a verbose description of its actions, including
a discussion of which input symbols have been read, and what the parser actions
are. Depending on the operating environment, it may be possible to set this vari­
able by using a debugging system.

This section contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications. The individual subsections are more or less indepen­
dent.

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal
names. This rule comes under the heading of 'knowing who to blame when
things go wrong.'

b. Put grammar rules and actions on separate lines. This allows either to be
changed without an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in
only once, and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put
the semicolon on a separate line. This allows new rules to be added easily.

~~sun ~~ microsystems
F of 15 February 1986

Left Recursion

Lexical Tie-ins

Chapter 8 - Yacc - Yet Another Compiler-Compiler 165

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in section 8.11 is written following this style, as are the examples in
the text of this paper (where space permits). The programmer must make up his
own mind about these stylistic questions; the central problem, however, is to
make the rules visible through the morass of action code.

The algorithm used by the yacc parser encourages so called 'left-recursive'
grammar rules: rules of the fonn

name name rest of rule

These rules frequently arise when writing specifications of sequences and lists:

list item
I list ',' item

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

With right-recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from
right to left. More seriously, an internal stack in the parser would be in danger of
overflowing if a very long sequence were read. Thus, the programmer should use
left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning,
and if so, consider writing the sequence specification with an empty rule:

seq /* empty */
seq item

Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality. However,
conflicts might arise if yacc is asked to decide which empty sequence it has
seen, when it hasn't seen enough to know!

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks nonnally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program consists

F of 15 February 1986

166 Programming Tools

Reserved Words

8.10. Advanced Topics

of 0 or more declarations, followed by 0 or more statements. Consider:

%{
int dflag;

%}

%%

prog

decls

stats

other declarations

decls stats

/* empty */
{ dflag = 1;

decls declaration

/* empty */
{ dflag = 0;

stats statement

other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declara­
tions, except for the first token in the first statement. This token must be seen by
the parser before it can tell that the declaration section has ended and the state­
ments have begun. In many cases, this single-token exception does not affect the
lexical scan.

This kind of 'backdoor' approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if not
impossible, to do otherwise.

Some programming languages permit the programmer to use words like 'if,
which are normally reserved, as label or variable names, provided that such use
does not conflict with the legal use of these names in the programming language.
This is extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it 'this instance of if is a keyword,
and that instance is a variable'. The programmer can make a stab at it, using the
mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is
better that the keywords be reserved; that is, be forbidden for use as variable
names. There are powerful stylistic reasons for preferring this, anyway.

This section discusses a number of advanced features of yacc.

~\sun ,~ microsystems
F of 15 February 1986

Simulating Error and Accept
in Actions

Accessing Values in Enclosing
Rules.

Support for Arbitrary Value
Types

Chapter 8 - Yacc - Yet Another Compiler-Compiler 167

The parsing actions of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT makes yyparse return the value
0; YYERROR makes the parser behave as if the current input symbol results in a
syntax error; yyerror is called, and error recovery takes place. These mechan­
isms can be used to simulate parsers with multiple endmarkers or context­
sensitive syntax checking.

An action may refer to values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a dollar sign fol­
lowed by a digit, but in this case the digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . . .

THE
YOUNG

DOG

$$
$$

THE;
YOUNG;

{ $$ = DOG;
CRONE

{ if($0 == YOUNG) {
printf("what?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding
token shifted was not YOUNG. Obviously, this is only possible when a great deal
is known about what might precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at times this mechanism
will save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

By default, the values returned by actions and the lexical analyzer are integers.
yacc can also support values of other types, including structures. In addition,
ya c c keeps track of the types, and inserts appropriate union member names so
that the resulting parser will be strictly type checked. The yacc value stack (see
Section 8.4) is declared to be a union of the various types of values desired.
The programmer declares the union, and associates a union member name to
each token and nonterminaI symbol having a value. When the value is refer­
enced through a $$ or $n construction, yacc automatically inserts the appropri­
ate union name, so that no unwanted conversions will take place. In addition,
type-checking commands such as 1 i n t (1) will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way
of defining the union; this must be done by the programmer since other pro­
grams, notably the lexical analyzer, must know about the union member names.

~\sun ~ microsystems
F of 15 February 1986

168 Programming Tools

Second, there is a way of associating a union member name with tokens and non­
terminals. Finally, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the programmer includes in the declaration section:

%union
body of union ...
}

This declares the yacc value stack, and the external variables yyl val and
yyval, to have type equal to this union. If yacc was invoked with the-d
option, the union declaration is copied onto the y • tab .h file. Alternatively, the
union may be declared in a header file, and a typedef used to define the variable
YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%}.

Once YYSTYPE is defined, the union member names must be associated with the
various terminal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, and %nonassoc, the union member name is asso­
ciated with the tokens listed. Thus, saying

%left <optype> '+'

will tag any reference to values returned by these two tokens with the union
member name optype. Another keyword, %t ype, is used similarly to associate
union member names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there
is an action within a rule, the value returned by this action has no a priori type.
Similarly, reference to left-context values (such as $0 - see the previous subsec­
tion) leaves yacc with no easy way of knowing the type. In this case, a type can
be imposed on the reference by inserting a union member name, between < and
>, immediately after the first $. An example of this usage is

rule aaa $<intval>$ 3;} bbb
fun ($<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in 8.13. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will tum on these
mechanisms. When they are used, there is a fairly strict level of checking. For
example, use of $n or $$ to refer to something with no defined type is diagnosed.

F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 169

If these facilities are not triggered, the yacc value stack is used to hold int '8,
as was true historically. This paper is reprinted in this manual.

.\sun
~~ microsystems

F of 15 February 1986

170 Programming Tools

8.11. A Simple Example This example gives the complete yacc specification for a small desk calculator;
the desk calculator has 26 registers, labeled 'a' through 'z', and accepts arith­
metic expressions made up of the operators +, -, *, I, % (mod operator), & (bit­
wise and), I (bitwise or), and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a reasonable job
of showing how precedences and ambiguities are used, and demonstrating simple
error recovery. The major oversimplifications are that the lexical analysis phase
is much simpler than for most applications, and the output is produced immedi­
ately, line-by-line. Note the way that decimal and octal integers are read in by
the grammar rules; This job is probably better done by the lexical analyzer.

~\sun ~ microsystems
F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 171

%{
* include <stdio.h> * include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left ' I '
%left ' & '

%left ' +'
%left ' * ' , /' , 0 ,

-0

%left UMINUS /* supplies precedence for unary minus */

%%

list

stat

expr

I
I

+2,,!!

/* beginning of rules section */

/* empty */
list stat '\n'
list error '\n'

{ yyerrok;

expr
{ printf("%d\n", $1);

LETTER - expr
{ regs [$1] $3;

' (, expr ') ,

{ $$ $2;
expr ' +' expr

{ $$ $1 + $3;
expr - , expr

{ $$ $1 $3;
expr '* ' expr

{ $$ $1 * $3;
expr ' / ' expr

{ $$ $1 / $3;
expr ' 0 ,

-0 expr
{ $$ $1 % $3;

expr ' & ' expr
{ $$ $1 & $3;

expr ' I ' expr
{ $$ $1 $3;

- expr %prec UMINUS
{ $$ $2; }

LETTER

F of 15 February 1986

172 Programming Tools

number

$$ regs[$l];
number

DIGIT
{ $$ = $1; base

number
{

DIGIT
$$ base * $1

%% /* start of programs */

($1==0) ? 8

+ $2;

yylex ()
{

/* lexical analysis routine */

10;

/* returns LETTER for lower case letter, yylval=O thru 25 */
/* return DIGIT for digit, yylval=O thru 9 */
/* all other characters are returned immediately */

int c;

while ((c getchar(» == ' ') { /* skip blanks */ }

/* c is now nonblank */
if(islower(c» {

yylval = c - 'a';
return(LETTER);

if(isdigit(c»
yylval = c - '0';
return(DIGIT);

return(c);

~~sun ~~ microsystems
F of 15 February 1986

8.12. Yacc Input Syntax

ChapterS - Yacc- Yet Another Compiler-Compiler 173

This section describes the yacc input syntax, as a yacc specification. Context
dependencies, etc., are not considered. Ironically, the yacc input specification
language is most naturally specified as an LR(2) grammar; the sticky part comes
when an identifier is seen in a rule, immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule; otherwise it is a
continuation of the current rule, which just happens to have an action embedded
in it. As implemented, the lexical analyzer looks ahead after seeing an identifier,
and decide whether the next token (skipping blanks, newlines, comments, etc.) is
a colon. If so, it returns the token C _ IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as IDENTIFIERs,
but never as part of C _ IDENT IF IERs.

F of 15 February 1986

174 Programming Tools

/* grammar for the input to Yacc */

/* basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C IDENTIFIER /* identifier (not literal) followed
%token NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNIO

%token MARK
%token LCURL
%token RCURL

/* the %% mark */
/* the %{ mark */
/* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec defs MARK rules tail

tail MARK In this action, eat up the rest of the file
I /* empty: the second MARK is optional */

defs
I

/* empty */
defs def

def START IDENTIFIER
UNION { Copy union definition to output
LCURL { Copy C code to output file } RCURL

rword

ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag /* empty: union tag is optional */
'<' IDENTIFIER '>'

nlist
I
I

nmno
nlist nmno
nlist

, , , nmno

F of 15 February 1986

nmno

Chapter 8 - Yacc - Yet Another Compiler-Compiler 175

IDENTIFIER /* NOTE: literal illegal with %type */
IDENTIFIER NUMBER /* NOTE: illegal with %type */

/* rules section */

rules
I

rule

rbody
I
I

act

prec
I
I
I

~\sun ~ microsystems

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
, I ' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

, { , Copy action, translate $$, etc.

/* empty */
PREC IDENTIFIER
PREC
prec

IDENTIFIER
, . ' ,

act

, } ,

F of 15 February 1986

176 Programming Tools

8.13. An Advanced Example This section gives an example of a grammar using some of the advanced features
discussed in Section 8.10. The desk calculator example in section 8.11 is
modified to provide a desk calculator that does floating point interval arithmetic.
The calculator understands floating point constants, the arithmetic operations +,
-, *, /, unary -, and = (assignment), and has 26 floating point variables, 'a'
through 'z'. Moreover, it also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval-valued variables' A'
through 'z' that may also be used. The usage is similar to that in section 8.11 -
assignments return no value, and print nothing, while expressions print the (float­
ing or interval) value.

This example explores a number of interesting features of yacc and C. Intervals
are represented by a structure, consisting of the left and right endpoint values,
stored as double's. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating point scalars, and
integers (used to index into the arrays holding the variable values). Notice that
this entire strategy depends strongly on being able to assign structures and unions
in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division
by an interval containing 0, and an interval presented in the wrong order. In
effect, the error recovery mechanism of yacc is used to throwaway the rest of
the offending line.

In addition to the mixing of types on the value stack, this grammar also demon­
strates an interesting use of syntax to keep track of the type (for example, scalar
or interval) of intermediate expressions. Note that a scalar can be automatically
promoted to an interval if the context demands an interval-value. This causes a
large number of conflicts when the grammar is run through yacc: 18
Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the
two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval-valued expression in the second
example, but this fact is not known until the ',' is read; by this time, 2.5 is
finished, and the parser cannot go back and change its mind. More generally, it
might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is evaded by having two
rules for each binary interval-valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied automatically.
Despite this evasion, there are still many cases where the conversion may be
applied or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the conflicts will
be resolved in the direction of keeping scalar-valued expressions scalar-valued
until they are forced to become intervals.

~~sun ~~ microsystelT1S
F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 177

This way of handling multiple types is very instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of
rules needed would increase dramatically, and the conflicts even more dramati­
cally. Thus, while this example is instructive, it is better practice in a more nor­
mal programming language environment to keep the type information as part of
the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treat­
ment of floating point constants. The C library routine atoJ is used to do the
actual conversion from a character string to a double-precision value. If the lexi­
cal analyzer detects an error, it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and thence error recovery.

F of 15 February 1986

178 Programming Tools

%{

* include <stdio.h> * include <ctype.h>

typedef struct interval
double 10, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg [26];
INTERVAL vreg[26];

%}

%start lines

%union
int ivaI;
double dval;
INTERVAL vval;
}

%token <ivaI> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left
%left
%left

%%

lines

line

, +'
'* ' , / '

UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp '\n'
{ printf(

vexp '\n'
{

DREG
printf(

'=' dexp

"%15.8f\n",

"(%15.8f
'\n'

~\sun ~ microsystems

$1);

%15.8f)\n", $1.10, $1.hi) ;

F of 15 February 1986

dexp
I

vexp

Chapter 8 - Yacc - Yet Another Compiler-Compiler 179

dreg($I] $3;
VREG vexp '\n'

{ vreg ($1] $3;
error ' \n'

DREG

dexp

dexp

dexp

dexp

, , -

, (,

, (,

yyerrok;

CONST

{ $$ dreg[$l];
, +' dexp

{ $$ $1 + $3;
, - ,

dexp
{ $$ $1 $3;

'* ' dexp
{ $$ $1 * $3;

, / ' dexp
{ $$ $1 / $3;
dexp %prec UMlNUS

{ $$
dexp ') ,

{ $$

dexp
{ $$.hi
dexp

{

, , ,

- $2;

$2;

$$.10
dexp ')'

$$.10 $2;
$$.hi $4;
if($$.10 > $$.hi) {

$1;

printf("interval out of order\n");
YYERROR;
}

VREG
{ $$ vreg[$I];

vexp , +' vexp
{ $$.hi $1.hi + $3.hi;

$$.10 $1.10 + $3.10;
dexp , +' vexp

{ $$.hi $1 + $3.hi;
$$.10 $1 + $3.10;

vexp vexp
{ $$.hi $1.hi $3.10;

$$.10 $1.10 $3.hi;
dexp vexp

{ $$.hi $1 $3.10;
$$.10 $1 $3.hi;

vexp , * ' vexp
{ $$ vrnu1($1.10, $1.hi, $3) ;

dexp '* ' vexp
{ $$ vrnu1($1, $1, $3) ;

.\sun ~~ microsystems
F of 15 February 1986

180 Programming Tools

vexp , / ' vexp
{ if(dcheck($3 YYERROR;

$$ vdiv($1.10, $1.hi, $3) ;

dexp , / ' vexp
{ if(dcheck($3 YYERROR;

$$ vdiv($1, $1, $3) ; }
, - ,

vexp %prec UMINUS
$$.hi -$2.10; $$.10 -$2.hii

, (, vexp ') ,

{ $$ $2;

%%

* define BSZ 50 /* buffer size for floating point numbers */

/* lexical analysis */

yylex () {
register c;

while ((c=getchar())

if (isupper(c
yylval.ival c
return (VREG) ;

}

if (islower(c
yylval.ival c
return (DREG) ;

}

, ,) { /* skip over blanks */ }

) {
, A' ;

) {

a ;

if (isdigi t (c I I c--") {
/* gobble up digits, points, exponents */

char buf[BSZ+1], *cp buf;
int dot 0, exp 0;

for((cp-buf) <BSZ ++cp,c=getchar()) {

*cp Ci

if (isdigit (c) continue;
if(c) {

if(dot++ II exp return ()i /* will cause syntax error */
continue;

if (c ' e ') {
if(exp++ return ('e') i /* will cause syntax error */
continue;

/* end of number */

~~sun ,,~ microsystems
F of 15 February 1986

Chapter 8 - Yacc - Yet Another Compiler-Compiler 181

break;
}

*cp , \0 ' ;
if((cp-buf) >= BSZ printf("constant too long: truncated\n");
else ungetc(c, stdin); /* push back last char read */
yylvalodval atof(buf);
return (CONST);
}

return (c);
}

INTERVAL hilo(a, b, c, d double a, b, c, d;
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b vohi a; volo b;
else { Vohi b; volo a;

if(c>d
if(c>vohi vohi c;
if(d<volo volo d;
}

else
if(d>vohi Vohi d;
if(c<volo volo c;
}

return (v) ;

}

INTERVAL vmul(a, b, v
return (hilo(a*vohi,
}

double a, b;
a*volo, b*vohi,

dcheck(
if(

v INTERVAL v;
vohi >= 00 && volo <=

printf("divisor interval
return (1);
}

return (0);
}

00) {
contains

INTERVAL vdiv(a,
return (hilo(

b, v
a/v.hi,

double a, bi
a/volo, b/v.hi,

}

~\sun ~~ microsystems

INTERVAL v;
b*v 010)) ;

Oo\n") ;

INTERVAL Vi

b/v.lo)) i

F of 15 February 1986

182 Programming Tools

8.14. Old Features Supported
but not Encouraged

This section mentions synonyms and features which are supported for historical
continuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes '"'.

2. Literals may be more than one character long. If all the characters are alpha­
betic, numeric, or _, the type number of the literal is defined, just as if the
literal did not have the quotes around it. Otherwise, it is difficult to find the
value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing ajob which must be actually
done by the lexical analyzer.

3. Most places where % is legal, backslash '\' may be used. In particular, \\ is
the same as %%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

= { . . . }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules sec­
tion, as well as in the declaration section.

~\Slln ,~ microsystems
F of 15 February 1986

A
SCCS Low-Level Commands

SCCS Low-Level Commands ... 185

A.l. Low Level sces For Beginners ... 185

Terminology .. 185

A.2. SCCS File Numbering Conventions .. 186

A.3. Summary of sees Commands .. 188

A.4. SCCS Command Conventions .. 189

Flags ... 190

Real/Effective User .. 190

Back-up Files Created During Processing .. 190

Diagnostics ... 190

A.5. admin - Create and Administer sces Files ... 190

admin Options .. 191

Flags In SCCS Files .. 193

Examples of Using admin ... 195

A.6. cdc - Change Delta Commentary .. 197

cdc Options .. 197

A.7. comb - Combine SCCS Deltas ... 198

comb Options ... 199

A.8. delta - Make a Delta .. 200

de 1 t a Options .. 200

Examples of Using del ta ... 202

More Notes on delta .. 202

A.9. get - Get Version of sces File ... 204

get Options .. 205

Identification Keywords .. 208

A.IO. help - Ask for sees Help ... 216

A.II. prs -Print sees File .. 217

prs Options .. 218

Data Keywords ... 218

A.I2. rmdel - Remove Delta from sees File ... 221

A.I3. sact - Display sees Editing Activity ... 223

A.I4. sccsdiff - Display Differences in sees Versions 223

sccsdiff Options .. 223

A.I5. unget - Undo a Previous sees get .. 224

unget Options .. 224

A.I6. val- Validate sees File .. 224

val Options .. 224

what - Identify sees Files ... 225

A.I7. sees Files .. 226

Protection .. 226

Layout of an sees File .. 227

Auditing .. 228

A.1. Low Level sees For
Beginners

Terminology

A
SCCS Low-Level Commands

This appendix contains a summary of the individual sees commands. The user­
level interface to sees is described in chapter 4 of this manual. In the unlikely
event that you need to use the 'raw' commands of sees, here they are. Be aware
that the commands described here do not make any assumptions about where the
s.file are - you must spell it all out in excruciating detail. The individual sees
tools are not easy to use, but they do provide extremely close control over the
sees database files. Of particular interest are the numbering of branches, the 1-
file, which gives a description of what deltas were used on a get, and certain
other sees commands.

The following topics are covered here:

D The scheme used to identify versions of text kept in an sees file.

D Basic information needed for day-to-day use of sees commands, including a
discussion of the more useful arguments.

D Protection and auditing of sees files, including the differences between the
use of sees by individual users on one hand, and groups of users on the
other.

In this section, we present some basic concepts of sees. Examples are fragments
of terminal sessions, with what you type shown in bo1d typewriter font
1ike this, and what the terminal displays shown in typewriter font
like this.

Note that all the sees commands described here live in the lusrlsees directory, so
you must either state that directory explicitly when using sees commands, or
include that pathname in your .login file. All examples shown here assume that
you have lusrl sees in your path and so you just have to type the required sees
command name.

Each sees file is composed of one or more sets of changes applied to the null
(empty) version of the file; each set of changes usually depends on all previous
sets. Each set of changes is called a 'delta' and is assigned a name called the
Sees IDentification string (SID).

The SID is composed of at most four components; for now let's focus on only the
first two: the 'release' and 'level' numbers. Each set of changes to a file is
named'release.level'; hence, the first delta is called '1.1', the second '1.2', the

185 F of 15 February 1986

186 Programming Tools

A.2. sces File Numbering
Conventions

third '1.3', and so on. The release number can also be changed, allowing, for
example, deltas '2.1', '3.19', etc. A change in the release number usually indi­
cates a major change to the file.

Each delta of an sees file defines a particular version of the file. For example,
delta 1.5 defines the version of the sees file obtained by applying the changes
that constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that
order, to the null (empty) version of the file. A.16.2.

You can think of the deltas applied to an sees file as the nodes of a tree; the root
is the initial version of the file. The root delta (node) is normally named' 1.1'
and successor deltas (nodes) are named' 1.2', '1.3', etc. We have already dis­
cussed these two components of the names of the deltas, the 'release' and 'level'
numbers; and you have seen that normal naming of successor deltas proceeds by
incrementing the level number, which is performed automatically by sees when­
ever a delta is made. In addition, you have seen how to change the release
number when making a delta, to indicate that a major change to the file is being
made. The new release number applies to all successor deltas, unless it is
specifically changed again. Thus, the evolution of a particular file may be
represented as in Figure A-I.

Figure A-I Evolution of an sees File

Branches

Release 2

2.2

Release 1
2.1

1.4

1.3

1.2

1.1

We can call this structure the 'trunk' of the sees tree. It represents the nonnal
sequential development of an sees file, in which changes that are part of any
given delta are dependent upon all the preceding deltas.

However, there are situations when a branch is needed on the tree: when changes
applied as part of a given delta are not dependent upon all previous deltas. As an
example, consider a program which is in production use at version 1.3, and for
which development work on release 2 is already in progress. Thus, release 2 may

~\Slln ~fIfI: microsystems
F of 15 February 1986

Figure A-2

Appendix A - SCCS Low-Level Commands 187

already have some deltas, precisely as shown in Figure 1. Assume that a produc­
tion user reports a problem in version 1.3 which cannot wait until release 2 to be
repaired. The changes necessary to repair the trouble will be applied as a delta to
version 1.3 (the version in production use). This creates a new version that will
then be released to the user, but will not affect the changes being applied for
release 2 (that is, deltas 1.4,2.1,2.2, etc.).

The new delta is a node on a 'branch' of the tree, and its name consists of four
components: the release and level numbers, as with trunk deltas, plus the
'branch' and 'sequence' numbers. Its SID thus appears as:
release.level.branch.sequence. The branch number is assigned to each branch
that is a descendant of a particular trunk delta; the first such branch is 1, the next
one 2, and so on. The sequence number is assigned, in order, to each delta on a
particular branch. Thus, 1.3.1.2 identifies the second delta of the first branch that
derives from delta 1.3. This is shown in Figure A-2.

Tree Structure with Branch Deltas

Release 2

Release 1
2.2

2.1

1.2

1.1 Branch 1

1.3.1.1

1.3.1.2

The concept of branching may be extended to any delta in the tree; the naming of
the resulting deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the
names of trunk deltas contain exactly two components, and the names of branch
deltas contain exactly four components. Second, the first two components of the
name of a branch delta are always those of the ancestral trunk delta, and the
branch component is assigned in the order of creation of the branch, indepen­
dently of its location relative to the trunk delta. Thus, a branch delta may always
be identified as such from its name. Although the ancestral trunk delta may be
identified from the branch delta's name, it is not possible to determine the entire
path leading from the trunk delta to the branch delta. For example, if delta 1.3
has one branch emanating from it, all deltas on that branch will be named 1.3.1.n.

~\Slln ,~ microsystems
F of 15 February 1986

188 Programming Tools

Figure A-3

A.3. Summary of secs
Commands

If a delta on this branch then has another branch emanating from it, all deltas on
the new branch will be named 1.3.2.n (see Figure A-3. The only information that
may be derived from the name of delta 1.3.2.2 is that it is the chronologically
second delta on the chronologically second branch whose trunk ancestor is delta
1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2
all of the deltas between it and its trunk ancestor (1.3).

Extending the Branching Concept

Release 2

It is obvious that the concept of branch deltas allows the generation of arbitrarily
complex tree structures. Although this capability has been provided for certain
specialized uses, it is strongly recommended that the sees tree be kept as simple
as possible, because comprehension of its structure becomes extremely difficult
as the tree becomes more complex.

Here is a summary of all the sees commands and their major functions:

adrnin Creates sees files and applies changes to parameters of sees files.
admin is described in section A.5.

cdc Changes the commentary associated with a delta. cdc is
described in section A.6.

comb

delta

get

help

Combines two or more consecutive deltas of an sees file into a sin­
gle delta. comb is described in section A.7.

Applies changes (deltas) to the text of sees files; that is, delta
creates new versions. delta is described in section A.8.

Retrieves versions of sees files. get is described in section A.9.

Explains sees commands and diagnostic messages. help is
described in section A.IO.

F of 15 February 1986

A.4. SCCS Command
Conventions

Options

File arguments

prs

rmdel

sccsdiff

val

what

Appendix A - sees Low-Level Commands 189

Prints portions of an sees file in user-specified fonnat. pr s is
described in section A.I1.

Removes a delta from an sees file; useful for removing deltas that
were created by mistake. rmdel is described in section A.12.

Shows the differences between any two versions of an sees file.
sccsdiff is described in section A.14.

Validates an sees file. val is described in section A.16.

Searches UNIXt file(s) for all occurrences of a special pattern and
prints what follows it. what is useful in finding identifying infor­
mation inserted by get. what is described in section

This section discusses the conventions and rules that apply to sees commands.
These rules and conventions are generally applicable to all sees commands,
except as indicated below.

sees commands, like most UNIX commands, accept options andfile arguments.

Options begin with a minus sign (-), followed by a lower-case alphabetic charac­
ter, and, in some cases, followed by a value. Options modify actions of com­
mands on which they are specified.

File arguments (which may be names of files and/or directories) specify the
file(s) that the given sees command is to process; naming a directory is
equivalent to naming all the sees files within the directory. Non-sees files and
unreadable files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the
name '-' (a lone minus sign) is specified as an argument to a command, the com­
mand reads the standard input for lines and takes each line as the name of an
sees file to be processed. The standard input is read until end-of-file. This
feature is often used in pipelines with, for example, the find(l) or ls(1) com­
mands. Again, names of non-SeeS files and of unreadable files are silently
ignored.

Options specified for a given command apply to all file arguments of that com­
mand. Options are processed before any file arguments; therefore the placement
of options is arbitrary, that is, options may be interspersed with file arguments.
File arguments, however, are processed left to right.

Somewhat different argument conventions apply to the help, what,
sccsdiff, and val commands.

t UNIX is a trademark of AT&T Bell Laboratories.

F of 15 February 1986

190 Programming Tools

Flags Certain actions of various sees commands are modified by flags embedded in the
text of sees files. Some of these flags are discussed below. For a complete
description of all such flags, see admin.

Real/Effective User

Back-up Files Created During
Processing

Diagnostics

A.S. admin - Create and
Administer SCCS Files

The distinction between the real user (see pas swd(l)) and the effective user of
a UNIX system is of concern in discussing various actions of sees commands.
For the present, it is assumed that both the real user and the effective user are one
and the same, that is, the user who is logged into the system.

All sees commands that modify an sees file do so by writing a temporary copy,
called the x-file, to ensure that the sees file will not be damaged if processing ter­
minates abnormally. The name of the x-file is formed by replacing the's.' of the
sees file name with 'x.'. When processing is complete, the old sees file is
removed and the x-file is renamed to be the sees file. The x-file is created in the
directory containing the sees file, is given the same mode (see chmod(I)) as
the sees file, and is owned by the effective user.

To prevent simultaneous updates to an sees file, commands that modify sees
files create a lock-file, called the z-file, whose name is formed by replacing the
's.' of the sees file name with 'z.'. The z-file contains the process number of the
command that creates it, and its existence is an indication to other commands
that that sees file is being updated. Thus, other commands that modify sees
files will not process an sees file if the corresponding z-file exists. The z-file is
created with mode 444 (read-only) in the directory containing the sees file, and
is owned by the effective user. The z-file exists only for the duration of the exe­
cution of the command that creates it. In general, users can ignore x-files and z­
files; they may be useful in the event of system crashes or similar situations.

sees commands direct their diagnostic responses to the standard error file. sees
diagnostics generally look like this:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to help to obtain a further
explanation of the diagnostic message.

If the sees command detects a fatal error during the processing of a file it ter­
minates processing of that file and proceeds with the next file in the series, if
more than one file has been named.

admin creates new sees files and changes parameters of existing ones. Options
and sees file names may appear in any order on the admin command line.
sees file names must begin with the characters's. '. A named file is created if it
doesn't exist already, and its parameters are initialized according to the specified
options. Any parameter not initialized by an option is assigned a default value.
If a named file does exist, parameters corresponding to specified options are
changed, and other parameters are left as is.

F of 15 February 1986

admin Options

Creating a new file

Initial text

Initial release

Descriptive text

Set ajlag

Appendix A - sees Low-Level Commands 191

admin [-n] [- i [name]] [- rrel] [-t [name]] [-fjlag [flag-val]] ...
[-dflag [flag-val]] ... [-alogin] ... [-elogin] ... [-m[mrlist]]
[-y [comment]] [-h] [-z] filename ...

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. A
name of - means the standard input - each line of the standard input is taken as
the name of an sees file to be processed. Again, non-sees files and unreadable
files are silently ignored.

Options are explained as though only one named file is to be processed, since
options apply independently to each named file.

-n A new sees file is being created.

-i [name]
Initial text: file name contains the text of a new sees file. The text is the
first delta of the file - see -r option for delta numbering scheme. If nam(;
is omitted, the text is obtained from the standard input. Omitting the - i
option altogether creates an empty sees file. You can only create one sees
file with an admin -i command. Creating more than one sees file with
a single admin command requires that they be created empty, in which
case the - i option should be omitted. Note that the - i option implies the
-n option.

-r reI
Initial release: the reI ease into which the initial delta is inserted. -r may
be used only if the - i option is also used. The initial delta is inserted into
release 1 if the -r option is not used. The level of the initial delta is always
1, and initial deltas are named 1.1 by default.

-t [name]
Descriptive text: The file name contains descriptive text for the sees file.
The descriptive text file name must be supplied when creating a new sees
file (either or both - nand - i options) and the - t option is used. In the
case of existing sees files: 1) a -t option without a file name removes
descriptive text (if any) currently in the sees file, and 2) a -t option with a
file name replaces the descriptive text currently in the sees file with any text
in the named file.

-fjlag
Setjlag: specifies aflag, and, possibly, a value for the flag, to be placed in
the sees file. Several -f options may be supplied on a single admin
command line. Flags and their values appear in the FLAGS section after
this list of options.

~\sun '\~ microsystems
F of 15 February 1986

192 Programming Tools

Delete a flag

Unlock releases

Add login name

Erase login name

Insert Comment text

Modification list

Check Structures of SCCS file

-dflag
Delete flag from an sees file. The -d option may be specified only when
processing existing sees files. Several -d options may be supplied on a
single admin command. See the FLAGS section below.

-I list
Unlock the specified list of releases. See the - f option for a description of
the I flag and the syntax of a list.

-a login
Add login name, or numerical UNIX group ID, to the list of users who may
make deltas (changes) to the sees file. A group ID is equivalent to specify­
ing all login names common to that group ID. Several -a options may
appear on a single admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultaneously. If the list of users is
empty, anyone may add deltas.

-e login
Erase login name, or numerical group ID, from the list of users allowed to
make deltas (changes) to the sees file. Specifying a group ID is equivalent
to specifying all login names common to that group ID. Several -e options
may be used on a single admin command line.

-y [comment]
The comment text is inserted into the sees file as a comment for the initial
delta in a manner identical to that of del tao If the -y option is omitted, a
default comment line is inserted in the fonn:

date and time created yy/rnm/dd hh:mm:ss by login

The -y option is valid only if the -i and/or -n options are specified (that
is, a new sees file is being created).

-m[mrlist]
The list of Modification Requests (MR) numbers is inserted into the sees file
as the reason for creating the initial delta in a manner identical to delta.
The v flag must be set and the MR numbers are validated if the v flag has a
value (the name of an MR number validation program). Diagnostics are
displayed if the v flag is not set or MR validation fails.

- h Check the structure of the sees file (see sccsfile (5», and compare a newly
computed check-sum (the sum of all the characters in the sees file except
those in the first line) with the check-sum that is stored in the first line of the
sees file.

The - h option inhibits writing on the file, so that it nullifies the effect of
any other options supplied, and is, therefore, only meaningful when process­
ing existing files.

F of 15 February 1986

Recompute checksum

Flags In sees Files

Branch deltas can be created

Highest retrievable release

Lowest retrievable release

Default delta number

No ID keywords fatal error

Allow concurrent edits

Locked releases

Create null deltas

Appendix A - sees Low-Level Commands 193

-z recompute the sees file check-sum and store it in the first line of the sees
file (see -h, above).

U sing the - z option on a truly corrupted file may prevent future detection
of the corruption.

The list below is a description of the flags which may appear as arguments to the
-f (set flags) and -d (delete flags) options.

b When set, the -b option can be used on a get command to create branch
deltas.

c ceil
The highest release (ceiling) which may be retrieved by a get command for
editing. The ceiling is a number less than or equal to 9999. The default
value for an unspecified c flag is 9999.

ffloor
The lowest release (floor) which may be retrieved by a get command for
editing. The floor is a number greater than 0 but less than 9999. The default
value for an unspecified f flag is 1.

dSID
The default delta number (ID) to be used by a get command.

i Treats the 'No id keywords (ge6)' message issued by get or delta as a
fatal error. In the absence of the i flag, the message is only a warning. The
message is displayed if no sees identification keywords (see get) are found
in the text retrieved or stored in the sees file.

j Concurrent get commands for editing may apply to the same SID of an
sees file. This allows multiple concurrent updates to the same version of
the sees file.

I list
A list of locked releases to which deltas can no longer be made. A
get -e fails when applied against one of these locked releases. The list
has the following syntax:

< list> ::= < range> I < list> , < range>
< range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying all releases for the
named sees file.

n The del ta command creates a 'null' delta in each release (if any) being
skipped when a delta is made in a new release. For example, releases 3 and
4 are skipped when making delta 5.1 after delta 2.7. These null deltas serve
as 'anchor points' so that branch deltas may be created from them later. If

~~sun
~ microsystems

F of 15 February 1986

194 Programming Tools

Module Name

Module Type

Validity checking program

Files Used

the n flag is absent from the sees file, skipped releases will be non-existent
in the sees file, preventing branch deltas from being created from them in
the future.

qtext
text is defined by the user. The text is substituted for all occurrences of the
%Q% keyword in sees file text retrieved by get.

mmodule
Module name of the sees file substituted for all occurrences of the %M% key­
word in sees file text retrieved by get. If the m flag is not specified, the
value assigned is the name of the sees file with the leading s. removed.

t type
Type of module in the sees file substituted for all occurrences of % Y % key­
word in sees file text retrieved by get.

v [program]
Validity checking program: delta prompts for Modification Request (MR)
numbers as the reason for creating a delta. The optional program specifies
the name of an MR number validity checking program (see de 1 t a). If this
flag is set when creating an sees file, the -m option must also be used even
if its value is null.

The last component of all sees file names must be of the form s .file-name.
New sees files are given mode 444 (see chmod). Write permission in the per­
tinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x .file-name, (see get), created with
mode 444 if the admin command is creating a new sees file, or with the same
mode as the sees file if it exists. After successful execution of admin, the sees
file is removed (if it exists), and the x-file is renamed with the name of the sees
file. This ensures that changes are made to the sees file only if no errors
occurred.

It is recommended that directories containing sees files be mode 755 and that
sees files themselves be mode 444. The mode of the directories allows only the
owner to modify sees files contained in the directories. The mode of the sees
files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner allowing use of a text editor. Care must be taken!
The edited file should always be processed by an admin -h to check forcorr­
uption followed by an admin - z to generate a proper check-sum. Another
admin -h is recommended to ensure the sees file is valid.

admin also uses a transient lock file (called z .file-name), to prevent simultane­
ous updates to the sees file by different users. See get for further information.

F of 15 February 1986

Examples of Using admin

Inserting Commentary for the
Initial Delta

Initializing and Modifying
sees File Parameters

Appendix A - SCCS Low-Level Commands 195

Suppose you have a file called lang that contains a list of programming
languages:

tutorial% cat lang
C
PL/I
FORTRAN
COBOL
Algol
tutorial%

We wish to give sees custody of 'lang' by using admin (which administers
sees files) to create an secs file and initialize delta 1.1. To do so, we use
admin as shown, and admin responds with a message:

tutorial% admin -ilang s.lang
No id keywords (cm7)
tutorial%

All sees files must have names that begin with's.', hence, 's.lang'. The - i
option, together with its value 'lang', indicates that admin is to create a new
sees file and initialize it with the contents of the file 'lang'. This initial version
is a set of changes applied to the null sees file; it is delta 1.1.

The message is a warning message (which may also be issued by other sees
commands) that you can ignore for the present.

Remove the file 'lang' now -- it can easily be reconstructed with the get com­
mand, described in section

You can use the -yand -m options with admin,just as with delta, to
insert initial descriptive commentary and/or MR numbers when an sees file is
created. If you don't use -y to comment, admin automatically inserts a com­
ment line of the form:

date and time created YY/MM/DD HH:MM:SS by logname

If you want to supply MR numbers (-m option), the v flag must also be set
(using the -f option described below). The v flag simply determines whether
or not MR numbers must be supplied when using any sees command that
modifies a delta commentary in the sees file (see sccsfile(5». Thus:

(~t_u_t_o_r_l_·a_l_~_o_a_dmi ___ 'n ___ -_~_'f_~_'r_s_t ___ -_mmr ___ n_um ___ l __ -_f_V ____ s_._a_b_c ____________ ~]
Note that the -yand -m options are only effective if a new sees file is being
created.

The portion of the sees file reserved for descriptive text may be initialized or
changed through the use of the -t option. The descriptive text is intended as a
summary of the contents and purpose of the sees file; actually its contents and

~\sun ,~ microsyslerTlS
F of 15 February 1986

196 Programming Tools

length are up to you.

When an sees file is being created and the -t option is supplied, it must be fol­
lowed by the name of a file from which the descriptive text is to be taken. For
example, the command

[
tutorial% admin -ifirst -tdesc s.abc]

specifies that the descriptive text is to be taken from file 'desc'.

When processing an existing sees file, the -t option specifies that the descrip­
tive text (if any) currently in the file is to be replaced with the text in the named
file. Thus:

(
tutorial% admin -tdesc s.abc J
"-------------
specifies that the descriptive text of the sees file is to be replaced by the contents
of 'desc'. Omitting the filename after the -t option removes the descriptive text
from the sees file:

(tutorial% admin -t s.abc

The flags - see the section entitled Descriptive Text - of an sees file may be
initialized and changed with the -f (flag) option, or may be deleted with the
-d (delete) option. The flags of an sees file direct certain actions of the various
commands. See admin for a description of all the flags. For example, the i
flag specifies that the warning message stating there are no ID keywords con­
tained in the sees file should be treated as an error, and the d (default SID) flag
specifies the default version of the sees file to be retrieved by the ge t com­
mand. The - f option sets a flag and, possibly, sets its value. For example:

(tutorial% admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value 'modname' specified
for the m flag is the value that the get command uses to replace the %M% ID

keyword. In the absence of the m flag, the name of the g-file is used as the
replacement for the %M% ID keyword. Note that several - f options may be sup­
plied on a single admin command, and that -f options may be supplied
whether the command is creating a new sees file or processing an existing one.

The -d option deletes a flag from an sees file, and may only be specified when
processing an existing file. As an example, the command:

(tutorial% admin -dm s.abc

removes the m flag from the sees file. Several -d options may be supplied on
a single admin command, and may be interspersed with - f options.

]

J

]

F of 15 February 1986

A.6. cdc - Change Delta
Commentary

cdc Options

ID String

MR List

Appendix A - sees Low-Level Commands 197

sees files contain a list (user list) of login names and/or group IDs of users who
are allowed to create deltas. This list is normally empty, implying that anyone
may create deltas. To add login names and/or group IDs to the list, use the
admin command with the -a option. For example:

tutorial% admin -awendy -aa1ison -a1234 s.abc

adds the login names 'wendy' and 'alison' and the group ID '1234' to the list.
The -a option may be used whether admin is creating a new sees file or pro­
cessing an existing one, and may appear several times. The -e option is used in
an analogous manner if one wishes to remove ('erase') login names or group IDs
from the list. A.9.

cdc changes the delta commentary, for the SID specified by the -r option, of
each named sees file.

cdc -rSID [-m [mrlist]] [-y [comment]] filename ...

Delta commentary is defined to be the Modification Request (MR) and comment
information normally specified via the del ta command (-m and -y options).

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see the NOTES below) each line of
the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of options and file
names.

All the described options apply independently to each named file:

-rSID
Specifies the sees ID entification string of a delta for which the delta com­
mentary is to be changed.

-m[mrlist]
If the sees file has the v flag set (see admin), a list ofMR numbers to be
added and/or deleted in the delta commentary of the SID specified by the -r
option may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of de 1 t a.
To delete an MR, precede the MR number with the character ! (see EXAM­
PLES. If the MR to be deleted is currently in the list of MRs, it is removed and
changed into a "comment" line. A list of all deleted MRs is placed in the
comment section of the delta commentary and preceded by a comment line
stating that they were deleted.

~\Slln
~ microsystelT1S

F of 15 February 1986

198 Programming Tools

Comment text

Examples of Using cdc

If -m is not used and the standard input is a tenninal, the prompt MRs? is
issued on the standard output before the standard input is read; if the stan­
dard input is not a terminal, no prompt is issued The MRs? prompt always
precedes the cormnents? prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin), it is taken to be the name of
a program (or shell procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from the MR number validation
program, cdc tenninates and the delta commentary remains unchanged.

-y[comment]
Arbitrary text used to replace the comment(s) already existing for the delta
specified by the - r option. The previous comments are kept and preceded
by a comment line stating that they were changed. A null comment has no
effect.

If -y is not specified and the standard input is a tenninal, the prompt com­
men t s? is issued on the standard output before the standard input is read; if
the standard input is not a terminal, no prompt is issued. An unescaped
new-line character terminates the comment text.

tutorial% cdc -rl.6 -m"b178-12345 !b177-54321 b179-00001" -ytrouble s.file

Files Used

adds b178-12345 and b179-00001 to the MR list, removes b177-54321 from the MR
list, and adds the comment trouble to delta 1 .6 of s. file.

tutorial% cdc -rl.6 s.file
MRs? !b177-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

NOTE If sees file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y options must also be used.

x-file
z-file

(see delta)
(see delta)

A.7. comb - Combine sees
Deltas

comb generates a Bourne Shell procedure which, when run, will reconstruct the
given sees files.

(
COmb [-0] [-s] [-pSID] [-clist] filename . . .]

'---------
If a directory is named, comb behaves as though each file in the directory were

.\SllD ,~ microsystems
F of 15 February 1986

comb Options

ID String

Preserve list

Access at release

Generate report

Files Used

Limitations of the comb
Command

Appendix A - sees Low-Level Commands 199

specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed; non-SeeS files and unread­
able files are silently ignored. The generated shell procedure is written on the
standard output.

Options are explained as though only one named file is to be processed, but the
effects of any option apply independently to each named file.

-pSID
The sees IDentification string (SID) of the oldest delta to be preserved.
All older deltas are discarded in the reconstructed file.

-c list
A list of deltas to be preserved. All other deltas are discarded. See get for
the syntax of a list.

-0 For each get -e generated, the reconstructed file is accessed at the release
of the delta to be created. In the absence of the -0 option, the reconstructed
file is accessed at the most recent ancestor. Use of the -0 option may
decrease the size of the reconstructed sees file. It may also alter the shape
of the delta tree of the original file.

-s Generate a shell procedure which, when run, will produce a report giving,
for each file: the file name, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:

100 * (original combined) / original

It is recommended that before any sees files are actually combined, you
should use this option to determine exactly how much space is saved by the
combining process.

If no options are specified, comb preserves only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

S.COMB
The name of the reconstructed sees file.

comb?????
Temporary.

comb may rearrange the shape of the tree of deltas. It may not save any space;
in fact, it is possible for the reconstructed file to actually be larger than the origi­
nal.

~\sun ,~ microsystems
F of 15 February 1986

200 Programming Tools

A.8. delta - Make a Delta de 1 t a permanently introduces into the named sees file changes that were made
to the file retrieved by get (called the g-file, or generated file).

delta [-rSID] [-s] [-n] [-glist] [-m [mrlist]] [-y [comment]] [-p] filename

delta Options

Delta number

No report

Retain g-file

Ignore list

MR number

del ta makes a delta to each named sees file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-SeeS files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see WARNINGS; each line of the standard input is taken to be the
name of an sees file to be processed.

de 1 t a may issue prompts on the standard output depending upon certain
options specified and flags (see admin) that may be present in the sees file (see
-m and -y options below).

Options apply independently to each named file.

-rSID
Uniquely identifies which delta is to be made to the sees file. The use of
this option is necessary only if two or more outstanding get's for editing
(get -e) on the same sees file were done by the same person (login name).
The SID value specified with the -r option can be either the SID specified
on the get command line or the SID to be made as reported by the get
command (see get). A diagnostic results if the specified SID is ambiguous,
or, if necessary and omitted on the command line.

- s Do not display the created delta's ID, number of lines inserted, deleted and
unchanged in the sees file.

-n Retain the edited g-file which is normally removed at completion of delta
processing.

-g list
Specifies a list of deltas to be ignored when the file is accessed at the change
level (10) created by this delta. See get for the definition of list.

-ro [mrlist]
If the sees file has the v flag set (see admin), a Modification Request (MR)
number must be supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is
issued on the standard output before the standard input is read; if the stan­
dard input is not a terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -yoption).

MR's in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

F of 15 February 1986

Comment text

Display differences

Files Used

Appendix A - sees Low-Level Commands 201

Note that if the v flag has a value (see adrnin), it is taken to be the name of
a program (or shell procedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from MR number validation
program, de 1 t a terminates (it is assumed that the MR numbers were not all
valid).

-y [comment]
Arbitrary text to describe the reason for making the delta. A null string is
considered a valid comment.

If -y is not specified and the standard input is a terminal, the prompt
comment s? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An unes­
caped new-line character terminates the comment text.

-p Display (on the standard outpun the sees file differences before and after
the delta is applied in a diff format.

g-file

p-file

q-file

x-file

z-file

Existed before the execution of del ta; removed after completion
of delta.
Existed before the execution of del ta; may exist after completion
of delta.
Created during the execution of de 1 t a; removed after completion
of delta.
Created during the execution of de 1 t a; renamed to sees file after
completion of delta.
Created during the execution of delta; removed during the execu­
tion of delta.

d-file Created during the execution of de 1 t a; removed after completion
of delta.

/bin/diff
Program to compute differences between the "gotten" file and the
g-file.

NOTE Lines beginning with an ASeII SOH character (binary 001) canrwt be placed in the
sees file unless the SOH is escaped. This character has special meaning to sees
(see sccsfile(5)) and will cause an error.

NOTE A get of many seeSfiles,followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/ delta sequences should be used.

NOTE If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y options must also be present. Omission of these options is an
error.

F of 15 February 1986

202 Programming Tools

Examples of Using de 1 t a

More Notes on delta

To record the changes that were applied to 'lang' within the sees file, use the
del ta command. delta asks for comments describing the change, and you
respond with a description of why the changes were made:

tutorial% delta s.lang
comments? added SNOBOL and Ratfor

More messages from delta - see below
tutorial%

delta then reads the p-file and determines what changes were made to the file
'lang'. delta does this by doing its own get to retrieve the original version,
and then applying diff(l) to the original version and the edited version. When
the changes to 'lang' have been stored in 's.1ang', the dialogue with delta
looks like:

tutorial% delta s.lang
comments? added SNOBOL and Ratfor
1.2
2 inserted
o deleted
5 unchanged
tutorial%

The number' 1.2' is the name of the delta just created, and the next three lines are
a summary of the changes made to 's.lang'.

de 1 t a does a series of checks before creating the delta:

1. Searches the p-file for an entry containing the user's login name, because the
user who retrieved the g-file must be the one who creates the delta. de 1 t a
displays an error message if the entry is not found. Note that if the login
name of the user appears in more than one entry (that is, the same user did a
get -e more than once on the same sees file), the -r option must be
used with delta to specify an SID that uniquely identifies the p-file entryl.

2. Performs the same permission checks as get -e.

If these checks succeed, delta compares the g-file (via diff(I» with its
own, temporary copy of the g-file as it was before editing, to determine what has
been changed. This temporary copy of the g-file is called the d-file (its name is
formed by replacing the's.' of the sees file name with 'd.'); delta retrieves it
by doing its own get at the SID specified in the p-file entry. If you would like
to see the results of de 1 t a's diff, use the -p option to display it on standard
output.

In practice, the most common use of de 1 t a is:

1 The SID specified may be either the SID retrieved by get. or the SID de 1 t a is to create.

~\sun ~ microsystems
F of 15 February 1986

Appendix A - SCCS Low-Level Commands 203

[~t_u_t __ o_r_i_a_l_% __ d_e_1_t_a ___ s_._a_b_C ______________________________________ ~]
If your standard output is a terminal, delta replies: 'comments?'. You may
now type a response - usually a description of why the delta is being made -
of up to 512 characters, terminating with a newline character. Newline charac­
ters not intended to terminate the response should be preceded by '\'.

If the sees file has a v flag, delta asks for 'MRs?' before prompting for
'comments?' (again, this prompt is printed only if the standard output is a termi­
nal). Enter MR2 numbers, separated by blanks and/or tabs, and terminate your
response with a newline character.

If you want to enter commentary (comments and/or MR numbers) directly on the
command line, use the -y and/or -m options, respectively. For example:

tutorial% delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc

inserts the 'descriptive comment' and the MR numbers 'mrnum1' and 'mrnum2'
without prompting or reading from standard input. -m can only be used if the
sees file has a v flag. These options are useful when de 1 t a is executed from
within a Shell procedure.

The commentary (comments and/or MR numbers), whether solicited by delta
or supplied via options, is recorded as part of the entry for the delta being
created, and applies to all sees files processed by the same invocation of
del tao Thus if delta is used with more than one file argument, and the first
file named has a v flag, all files named must have this flag. Similarly, if the first
file named does not have this flag, then none of the files named may have it.
Only files conforming to these rules are processed.

After the prompts for commentary, and before any other output, de 1 t a
displays:

No id keywords (cm7)

if it finds no ID keywords in the edited g-file while making a delta. If there were
any ID keywords in the sees file, this might mean one of two things. The key­
words may have been replaced by their values (if a get without the -e option
was used to retrieve the g-file). Or, the keywords may have been accidentally
deleted or changed while editing the g-file. Of course, the file may never have
had any ID keywords. In any case, it is left up to you to decide whether any
action is necessary, but the delta is made regardless (unless there is an i flag in
the sees file, which makes this a fatal error and kills the delta).

When processing is complete, delta displays a message containing the SID of
the created delta (obtained from the p-file entry), and the counts of lines inserted,
deleted, and left unchanged. Thus, a typical message might be:

2 In a tightly controlled environment, one would expect deltas to be created only as a result of some trouble
report, change request, trouble ticket, etc. (collectively called here Modification Requests, or MRs) and would
think it desirable or necessary to record such MR number(s) within each delta.

~\sun ,~ microsyslems
F of 15 February 1986

204 Programming Tools

A.9. get - Get Version of
sees File

1.4
14 inserted
7 deleted
345 unchanged

The reported counts may not agree with your sense of changes made; there are a
number of ways to describe a set of such changes, especially if lines are moved
around in the g-file, and delta may describe the set differently than you.
However, the total number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g-file.

After processing of an sees file is complete, the corresponding p-file entry is
removed from the p-file3. If there is only one entry in the p-file, the p-file itself is
removed.

In addition, delta removes the edited g-file, unless the -n option is specified.
Thus:

(
tutorial% delta -n s.abc J

'----------
keeps the g-file upon completion of processing.

The - s (silent) option suppresses all output that is normally directed to the stan­
dard output, except the initial prompts for commentary. If you use - s with - y
(and, possibly, -m), delta neither reads standard input nor writes to standard
output.

get generates an ASCII text file from each named sees file according to the
specified option. Arguments may be specified in any order, options apply to all
named sees files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-SeeS files (last com­
ponent of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the stan­
dard input is taken to be the name of an sees file to be processed. Again, non­
sees files and unreadable files are silently ignored.

get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e
[-1 [p]] [-p] [-rn] [-n] [-s] [-b] [-g] [-t] filename

The generated text is normally written into a file called the g-file whose name is
derived from the sees file name by simply removing the leading s.; (see also
FILES, below).

3 All updates to the p-file are made to a temporary copy. the q-ftle. whose use is similar to the use of the x­
file described above.

~~sun ~~ microsystems
F of 15 February 1986

get Options

ID string

Cutoff

Get for editing

Appendix A - sees Low-Level Commands 205

Options are explained below as though only one sees file is to be processed, but
the effects of any option argument applies independently to each named file.

-rSID
The string (I D) of the version (delta) of an sees file to be retrieved. Table 1
below shows, for the most useful cases, what version of an sees file is
retrieved (as well as the ID of the version to be eventually created by del ta
if the -e option is also used), as a function of the SID specified.

-c cutoff
Cutoff date-time, in the fonn: YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after the specified
cutoff date-time are included in the generated ASCII text file. Units omitted
from the date-time default to their maximum possible values; that is,
- c 7502 is equivalent to - c 750228235959. Any number of non-numeric
characters may separate the various 2 digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form: - c 77 / 2 / 2
9: 22: 25. Note that this implies that one may use the %E% and %u%

identification keywords.

-e This get is for editing or making a change (delta) to the sees file via a
subsequent use of del tao A get -e applied to a particular version (ID) of
the sees file prevents further get -e commands on the same SID until
del ta is run or the j (joint edit) flag is set in the sees file (see admin).
Concurrent use of get -e for different IDs is always allowed.

If the g-file generated by a get -e is accidentally ruined in the process
of editing it, it may be regenerated by re-running a get with the - k option
in place of the - e option.

sees file protection specified via the ceiling, floor, and authorized user list
stored in the sees file (see admin) are enforced when the -e option is
used.

New branch -b Used with the -e option to indicate that the new delta should have an SID in
a new branch as shown in Table 1. This option is ignored if the b flag is not
present in the file (see admin) or if the retrieved delta is not a leaf delta.
A leaf de 1 t a is one that has no successors on the sees file tree.

NOTE A branch delta may always be created from a non-leaf delta.

Include list -i list
A list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:

< list> ::= < range> I < list> , < range>
< range> ::= ID I ID-ID

ID, the sees Identification of a delta, may be in any form shown in the 'ID
Specified' column of Table 1. Partial IDs are interpreted as shown in the 'ID

F of 15 February 1986

206 Programming Tools

Exclude list

Don't expand ID keywords

Write delta summary

Write text to standard output

Suppress all output

Show delta IDs

Show Module names

Don't retrieve text

Access top delta

Delta sequence number

Retrieved' column of Table 1.

-x list
A list of deltas to be excluded (forced not to be applied) in the creation of
the generated file. See the - i option for the list fonnat.

- k Do not replace identification keywords (see below) in the retrieved text by
their value. The - k option is implied by the -e option.

-l[p]
Write a delta summary into an I-file. If -lp is used, the delta summary is
written on the standard output and the I-file is not created. See FILES for the
fonnat of the I-file.

-p Write the text retrieved from the sees file to the standard output. No g-file
is created. All output which normally goes to the standard output goes to the
standard error file instead, unless the - s option is used, in which case it
disappears.

- s Suppress all output normally written on the standard output. However, fatal
error messages (which always go to the standard error file) remain unaf­
fected.

-m Precede each text line retrieved from the sees file with the ID of the delta
that inserted the text line in the sees file. The format is: ID, followed by a
horizontal tab, followed by the text line.

-n Precede each generated text line with the %M% identification keyword value
(see below). The format is: %M% value, followed by a horizontal tab, fol­
lowed by the text line. When both the -m and -n options are used, the for­
mat is: %M% value, followed by a horizontal tab, followed by the -m option
generated format.

-g Do not actually retrieve text from the sees file. It is primarily used to gen­
erate an I-file, or to verify the existence of a particular ID.

-t Access the most recently created ('top') delta in a given release (for exam­
ple, -rl), or release and level (for example, -r1.2).

-a seq-no.
The delta sequence number of the sees file delta (version) to be retrieved
(see sccsfile (5». This option is used by the comb command; it is not a gen­
erally useful option, and users should not use it. If both the -r and -a
options are specified, the -a option is used. Care should be taken when
using the -a option in conjunction with the -e option, as the SID of the
delta to be created may not be what one expects. The -r option can be
used with the -a and -e options to control the naming of the SID of the
delta to be created.

~~sun ~~ microsystems
F of 15 February 1986

Table A-I

Appendix A - secs Low-Level Commands 207

For each file processed, get responds (on the standard output) with the SID

being accessed and with the number of lines retrieved from the sces file.

If the -e option is used, the SID of the delta to be made appears after the SID

accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the - i option is used
included deltas are listed following the notation 'Included'; if the -x option is
used, excluded deltas are listed following the notation 'Excluded'.

Determination of sees Identification String

SID* -b Option Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none:j: no R defaults to mR mR.mL mR.(mL+l)

none:j: yes R defaults to mR mR.mL mR.rnL.(mB+l).1

R no R>mR mR.mL R.l***

R no R=mR mR.mL mR.(mL+l)

R yes R>mR mR.mL mR.rnL.(mB+l).1

R yes R=mR mR.mL mR.rnL.(mB+ 1).1

R R<mRand hR.mL** hR.mL.(mB+l).l
R does not exist

R Trunk succ.# R.mL R.mL.(mB+ 1).1
in release > R
and R exists

R.L no No trunk succ. R.L R.(L+l)

R.L yes No trunk succ. R.L R.L.(mB+l).1

R.L Trunksucc. R.L R.L.(mB+l).l
in release ~ R

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+l)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+l).l

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+I)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+l).1

R.L.B.S Branch succ. R.L.B.S R.L.(mB+l).1

* 'R', 'L', 'B', and'S' are the 'release', 'level', 'branch', and 'sequence' com­
ponents of the SID, respectively; 'm' means 'maximum'. Thus, for example,
'R.mL' means 'the maximum level number within release R';
'R.L.(mB+I).I' means 'the first sequence number on the new branch (that is,
maximum branch number plus one) of level L within release R'. Note that if
the SID specified is of the form 'R.L', 'R.L.B', or 'R.L.B.S', each of the
specified components must exist.

~\sun ,~ microsystems
F of 15 February 1986

208 Programming Tools

Identification Keywords

** 'bR' is the highest existing release that is lower than the specified, nonex­
istent, release R.

Forces creation of the first delta in a new release.

Successor.
t The -b option is effective only if the b flag (see admin) is present in the

file. An entry of - means 'irrelevant'.
:I: This case applies if the d (default SID) flag is not present in the file. If the

d flag is present in the file, the SID obtained from the d flag is interpreted as
if it had been specified on the command line. Thus, one of the other cases in
this table applies.

When you generate a g-file to be used for compilation, it is useful and infonna­
tive to record the date and time of creation, the version retrieved, the module's
name, etc., within the g-file, so that this information appears in a load module
when one is eventually created. sees provides a convenient mechanism for
doing this automatically. Identification (ID) keywords appearing anywhere in the
generated file are replaced by appropriate values according to the definitions of
these ID keywords.

The format of an ID keyword is an upper-case letter enclosed by percent signs
(%). For example, % I % is an ID keyword that is replaced by the SID of the
retrieved version of a file. Similarly, % H % is an ID keyword for the current date
(in the form 'mmJddlyy'), and %M% is the name of the g-file.

Thus, using get on an sees file that contains the C declaration:

char identification [] = "%M% %1% %H%";

gives (for example) the following:

char identification [] = "modulename 2.3 03/17/83";

If there are no ID keywords in the text, get might display:

[

NO id keywords (em7)
_tutorial%]
This message is normally treated as a warning by get. However, if an i flag is
present in the sees file, it is treated as an error - see section A.8 for further
information.

~~sun ~~ microsystems
F of 15 February 1986

Appendix A - sees Low-Level Commands 209

Table A-2 Identification Keywords

Retrieving Different Versions

Keyword Value

%M% Module name: either the value of the m flag in the file (see adrnin),
or if absent, the name of the sees file with the leading s. removed.

%1% sees identification (ID) (%R%. %L%. %B%. %S%) of the retrieved text.
%R% Release.
%L% Level.
%B% Branch.
% S % Sequence.
%D% Current date (YY/MM/DD).
% H % Current date (MM/DD/YY).
% T % Current time (HH:MM:SS).
%E % Date newest applied delta was created (YY/MM/DD).
%G% Date newest applied delta was created (MMJDD/YY).
%U% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the sees file (see adrnin).
%F% sees file name.
%P % Fully qualified sees file name.
%Q% The value of the q flag in the file (see adrnin).
%C% Current line number. This keyword is intended for identifying mes­

sages output by the program such as 'this shouldn't have happened'
type errors. It is not intended to be used on every line to provide
sequence numbers.

% Z % The 4-character string @ (#) recognizable by what.
%W% A shorthand notation for constructing wha t strings for UNIX pro­

gram files. %W% = %Z%%M%<tab>%1%
%A% Another shorthand notation/or constructing what strings/or non­

UNIX program files. %A% = %Z%%Y% %M% %1%%Z%

You can retrieve versions other than the default version of an sees file by using
various options. Normally, the default version is the most recent delta of the
highest-numbered release on the trunk of the sees file tree. However, if the sees
file being processed has a d (default SID) flag, the SID specified as the value of
this flag is used as a default. The default SID is interpreted in exactly the same
way as the value supplied with the -r option of get.

The -r option specifies an SID to be retrieved, in which case the d (default SID)
flag (if any) is ignored. For example, to retrieve version 1.3 of file 's.abc', type:

tutorial% get -rl.3 s.abc
1.3
64 lines
tutorial%

A branch delta may be retrieved in the same way:

~\Slln ~~ microsystems
F of 15 February 1986

210 Programming Tools

tutorial% get -rl.S.2.3 s.abc
1.5.2.3
234 lines
tutorial%

When a two- or four-component SID is specified as a value for the -r option (as
above) and the particular version does not exist in the sees file, an error message
results.

If you omit the level number of the SID, get retrieves the trunk delta with the
highest level number within the given release, if the given release exists:

tutorial% get -r3 s.abc
3.7
213 lines
tutorial%

get retrieved delta 3.7, the highest level trunk delta in release 3. If the given
release does not exist, get goes to the next-highest existing release, and
retrieves the trunk delta with the highest level number. For example, if release 9
does not exist in file 's.abc', and release 7 is actually the highest-numbered
release below 9, then get would generate:

tutorial% get -r9 s.abc
7.6
420 lines
tutorial%

indicating that trunk delta 7.6 is the latest version of file 's.abc' below release 9.

Similarly, if you omit the sequence number of an SID, as in:

tutorial% get -r4.3.2 s.abc
4.3.2.8
89 lines
tutorial%

get retrieves the branch delta with the highest sequence number on the given
branch, if it exists. If the given branch does not exist, an error message results.

The -t option retrieves the latest ('top') version in a particular release (that is,
when no -r option is supplied, or when its value is simply a release number).
The latest version is defined as that delta which was produced most recently,
independent of its location on the sees file tree. Thus, if the most recent delta in
release 3 is trunk delta 3.5, doing a get -t on release 3 produces:

~~sun ~ microsystems
F of 15 February 1986

Retrieving to Make Changes

Appendix A - sees Low-Level Commands 211

tutorial% get -r3 -t s.abc
3.5
59 lines
tutorial%

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the
same command produces:

tutorial% get -r3 -t s.abc
3.2.1.5
46 lines
tutorial%

Specifying the -e option to the get command indicates the intent to make a
delta sometime later, and, as such, its use is restricted. If the -e option is
present, get checks the following things:

1. The user list, the list of login names and/or group IDs of users allowed
to make deltas, to determine if the login name or group ID of the user
executing get is on that list. Note that a null (empty) user list behaves
as if it contained all possible login names.

2. That the release (R) of the version being retrieved satisfies the relation:

floor ~ R ~ ceiling

to determine if the release being accessed is a protected release. The
floor and ceiling are specified as flags in the sees file.

3. That the release (R) is not locked against editing. The lock is specified
as a flag in the sees file.

4. Whether or not multiple concurrent edits are allowed for the sees file as
specified by the j flag in the sees file. Multiple concurrent edits are
described in the section entitled Concurrent Edits of the Same SID.

get terminates processing of the corresponding sees file if any of the first three
conditions fails.

If the above checks succeed, get with the -e option creates a g-file in the
current directory with mode 644 (readable by everyone, writable only by the
owner) owned by the real user.

get terminates with an error if a writable g-file already exists - this is to
prevent inadvertent destruction of a g-file that already exists and is being edited
for the purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get when the -e
option is specified, because the generated g-file is to be subsequently used to
create another delta, and replacement of ID keywords would permanently change
them within the sees file. In view of this, get does not check for the presence
ofID keywords within the g-file, so that the message: 'No id keywords (cm?)' is

~\sun ~~ microsystems
F of 15 February 1986

212 Programming Tools

NOTE

Concurrent Edits of Different
SIDs

never displayed when get is invoked with the -e option.

In addition, a get with the -e option creates (or updates) a p-file, for passing
information to the delta command. Let's look at an example of get -e:

tutorial% get -e s.abc
1.3
new delta 1.4
67 lines
tutorial%

The message indicates that get has retrieved version 1.3, which has 67 lines;
the version delta will create is version 1.4.

If the -r and/or -t options are used together with the -e option, the version
retrieved for editing is as specified by the -r and/or -t options.

The options -i and -x may be used to specify a list of deltas to be included
and excluded, respectively, by get. See get for the syntax of such a list.
'Including a delta' forces the changes that constitute the particular delta to be
included in the retrieved version - this is useful for applying the same changes
to more than one version of the sees file. 'Excluding a delta' forces it not to be
applied. This is useful for undoing the effects of a previous delta in the version
of the sees file to be created.

Whenever deltas are included or excluded, get checks for possible interference
between such deltas and those deltas that are normally used in retrieving the par­
ticular version of the sees file. Two deltas can interfere, for example, when each
one changes the same line of the retrieved g-file. Any interference is indicated by
a warning that displays the range of lines within the retrieved g-file in which the
problem may exist. The user is expected to examine the g-file to determine
whether a problem actually exists, and to take whatever corrective measures are
deemed necessary.

The -i and -x options should be used with extreme care.

The - k option to get can be used to regenerate a g-file that may have been
accidentally removed or ruined after executing get with the -e option, or to
simply generate a g-file in which the replacement of ID keywords has been
suppressed. Thus, a g-file generated by the - k option is identical to one pro­
duced by get executed with the - e option. However, no processing related to
the p-file takes place.

The ability to retrieve different versions of an sees file allows a number of deltas
to be 'in progress' at any given time. In general, several people may simultane­
ously edit the same sees file provided they are editing different versions of that
file. This is the situation we discuss in this section. However, there is a provi­
sion for multiple concurrent edits, so that more than one person can edit the same
version - see the section entitled Concurrent Edits of the Same SID.

The p-file - created via a get -e command - is named by replacing the's.'
in the sees file name with 'p.'. The p-file is created in the directory containing

F of 15 February 1986

Concurrent Edits of the Same
SID

Appendix A - SCCS Low-Level Commands 213

the sees file, is given mode 644 (readable by everyone, writable only by the
owner), and is owned by the effective user. The p-file contains the following
information for each delta that is still 'in progress':4

o The SID of the retrieved version.

o The SID that will be given to the new delta when it is created.

o The login name of the real user executing get.

The first execution of get -e creates the p-file for the corresponding sees file.
Subsequent executions only update the p-file by inserting a line containing the
above information. Before inserting this line, however, get performs two
checks. First, it searches the entries in the p-file for an SID which matches that of
the requested version, to make sure that the requested version has not already
been retrieved. Secondly, get determines whether or not multiple concurrent
edits are allowed. If the requested version has been retrieved and multiple con­
current edits are not allowed, an error message results. Otherwise, the user is
informed that other deltas are in progress, and processing continues.

It is important to note that the various executions of get should be carried out
from different directories. Otherwise, only the first use of get will succeed;
since subsequent gets would attempt to overwrite a writable g-file, they pro­
duce an sees error condition. In practice, this problem does not arise: nonnally
such multiple executions are performed by different users5 from different work­
ing directories.

Table A-I shows, for the most useful cases, what version of an sees file is
retrieved by get, as well as the SID of the version to be eventually created by
delta, as a function of the SID specified to get.

Nonnally, gets for editing (-e option specified) cannot operate concurrently
on the same SID. Usually de 1 t a must be used before another get -e on the
same SID. However, multiple concurrent edits (two or more successive get -e
commands based on the same retrieved SID) are allowed if the j flag is set in the
sees file. Thus:

tutorial% get -e s.abc
1.1
new delta 1.2
5 lines
tutorial%

may be immediately followed by:

4 Other infonnation may be present, but is not of concern here. See get for further discussion.

S See the section entitled Protection for a discussion of how different users can use sees commands on the

same files.

F of 15 February 1986

214 Programming Tools

Options That Affect Output

tutorial% get -e s.abc
1.1
new delta 1.1.1.1
5 lines
tutorial%

without an intervening use of delta. In this case, a delta command
corresponding to the first get produces delta 1.2 (assuming 1.1 is the latest
(most recent) trunk delta), and the delta command corresponding to the
second get produces delta 1.1.1.1.

When the -p option is specified, get writes the retrieved text to the standard
output, rather than to a g-flle. In addition, all output normally directed to the
standard output (such as the SID of the version retrieved and the number of lines
retrieved) is directed instead to the diagnostic output. This may be used, for
example, to create g-files with arbitrary names:

tutorial% get -p s.abc > arbitrary-fi1ename

The - s option suppresses all output that is normally directed to the standard
output. Thus, the SID of the retrieved version, the number of lines retrieved, and
so on, do not appear on the standard output. - s does not affect messages
directed to the diagnostic output. - s is often used in conjunction with the -p
option to 'pipe' the output of get, as in:

(tutorial% get -p -s s.abc nroff]
A get -g verifies the existence of a particular SID in an sees file but does not
actually retrieve the text. This may be useful in a number of ways. For example,

(tutorial% get -g -r4.3 s.abc

displays the specified SID if it exists in the sees file, and generates an error mes­
sage if it doesn't. -g can also be used to regenerate a p-file that has been des­
troyed:

[tutorial% get -e -g s.abc

get used with the -1 option creates an I-file, which is named by replacing the
's.' of the sees file name with '1.'. This file is created in the current directory,
with mode 444 (read-only), and is owned by the real user. It contains a table
(format described in get) showing which deltas were used in constructing a
particular version of the sees file. For example:

[tutorial% get -r2.3 -1 s.abc

]

J

]
F of 15 February 1986

Files Used

g-file

I-file

Appendix A - secs Low-Level Commands 215

generates an I-file showing which deltas were applied to retrieve version 2.3 of
the sees file. Specifying a value of 'p' with the -1 option, as in:

(tutorial% get -lp -r2.3 s.abc

sends the generated output to the standard output rather than to the I-file. Note
that the -g option may be used with the -1 option to suppress the actual text
retrieval.

The -m option identifies the origin of each change applied to an sees file. -m
tags each line of the generated g-file with the SID of the delta it came from. The
SID precedes the line, and is separated from the text by a tab character.

When the -n option is specified, each line of the generated g-file is preceded by
the value of the %M% ID keyword and a tab character. The -n option is most
often used in a pipeline with grep(l). For example, to find all lines that match
a given pattern in the latest version of each secs file in a directory:

tutorial% get -p -n -8 directory grep pattern

If both the -m and - n options are specified, each line of the generated g-file is
preceded by the value of the %M% ID keyword and a tab (the effect of the -n
option), followed by the line in the format produced by the -m option.

Since using the -m option, the -n option, or both, modifies the contents of the
g-file, such a g-file must not be used for creating a delta. Therefore, neither the
-m nor the -n option may be used with the -e option.

J

Several auxiliary files may be created by get, These files are known generically
as the g-file , I-file, p-file , and z-file. The letter before the hyphen is called the
tag. An auxiliary file name is formed from the sees file name: the last com­
ponent of all sees file names must be of the form s. module-name, the auxiliary
files are named by replacing the leading s with the tag. The g-file is an excep­
tion to this scheme: the g-file is named by removing the s. prefix. For example,
s. xyz. c, the auxiliary file names would be xyz . c, 1. xyz . c, p. xyz. c, and
z . xyz . c, respectively.

The g-file , which contains the generated text, is created in the current directory
(unless the -p option is used). A g-file is created in all cases, whether or not
any lines of text were generated by the ge t. It is owned by the real user. If the
- k option is used or implied its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -1 option is
used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.

~\sun ,~ microsystems
F of 15 February 1986

216 Programming Tools

Format of Lines in the I-file

p-file

z-file

Limitations of the get
Command

A.tO. help - Ask for SCCS
Help

Lines in the I-file have the following format:

a. A blank character if the delta was applied; * otherwise.
b. A blank character if the delta was applied or wasn't applied and ignored;

* if the delta wasn't applied and wasn't ignored.
c. A code indicating a 'special' reason why the delta was or was not applied:

'I': Included.
'X': Excluded.
'C': Cut off (by a -c option).

d. Blank.
e. sees identification (ID).
f. Tab character.
g. Date and time (in the fonn YYIMMIDD lllI:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal
tab character. A blank line terminates each entry.

The p-file passes infonnation resulting from a get -e along to dt!lta. Its
contents are also used to prevent a subsequent execution of a get -e for the
same SID until delta is executed or the joint edit flag, j, (see admin) is set in
the sees file. The p-file is created in the directory containing the sees file and
the effective user must have write pennission in that directory. Its mode is 644
and it is owned by the effective user. The format of the p-file is: the gotten ID,

followed by a blank, followed by the SID that the new delta will have when it is
made, followed by a blank, followed by the login name of the real user, followed
by a blank, followed by the date-time the ge t was executed, followed by a
blank and the - i option if it was present, followed by a blank and the -x
option if it was present, followed by a new-line. There can be an arbitrary
number of lines in the p-file at any time; no two lines can have the same new
delta ID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its con­
tents are the binary (2 bytes) process ID of the command (that is, get) that
created it. The z-file is created in the directory containing the sees file for the
duration of get. The same protection restrictions as those for the p-file apply for
the z-file. The z-file is created mode 444.

If the effective user has write pennission (either explicitly or implicitly) in the
directory containing the sees files, but the real user doesn't, only one file may be
named when the - e option is used.

help finds infonnation to explain a message from a command or explain the use
of a command. Zero or more arguments may be supplied. If no arguments are
given, help prompts for one.

(helP [arcs]]

F of 15 February 1986

Example of help

Files Used

Appendix A - sees Low-Level Commands 217

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The non-numeric prefix
is usually an abbreviation for the program or set of routines which pro­
duced the message (for example, ge6, for message 6 from the get
command).

Does not contain numerics (as a command, such as get)

Is all numeric (for example, 212)

The response of the program is the explanatory information related to the argu­
ment, if there is any.

When all else fails, try help stuck.

The following asks for help on the ge5 error message and information about the
rmde 1 command:

tutorial% he1p geS r.mde1
geS:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name

tutorial%

/usrllib/help
directory containing files of message text.

A.lt. pr s - Print sees File pr s prints, on the standard output, parts or all of an sees file (see sccsfile (5)) in
a user supplied format. If a directory is named, prs behaves as though each file
in the directory were specified as a named file, except that non-sees files (last
component of the path name does not begin with s.), and unreadable files are
silently ignored. If a name of - is given, the standard input is read, in which case
each line is taken to be the name of an sees file or directory to be processed;
non-SeeS files and unreadable files are silently ignored.

prs [-d [dataspec]] [-r [SID]] [-e] [-1] [-a] filename ...

~\sun ,~ microsystems
F of 15 February 1986

218 Programming Tools

prs Options

Output data specification

ID string

Information on earlier deltas

Information on later deltas

Information for all deltas

Data Keywords

Options apply independently to each named file.

-d [dataspec]
Specifies the output data specification. The dataspec is a string consisting of
sees file data keywords (see A.I1.2) interspersed with optional user sup­
plied text.

-r [SID]
Specifies the sees IDentification (ID) string of a delta for which informa­
tion is desired. If no SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earlier than and including the
delta designated via the -r option.

-1 Requests information for all deltas created later than and including the delta
designated via the -r option.

-a Requests printing of information for both removed, that is, delta type = R ,
(see rmde1) and existing, that is, delta type = D, deltas. If the -a option is
not specified, information for existing deltas only is provided.

In the absence of the -d options, pr s displays a default set of information con­
sisting of: delta-type, release number and level number, date and time last
changed, user-name of the person who changed the file, lines inserted, changed,
and unchanged, the MR numbers, and the comments.

Data keywords specify which parts of an sees file are to be retrieved and output.
All parts of an sees file (see sccsfile (5)) have an associated data keyword. There
is no limit on the number of times a data keyword may appear in a dataspec .

The information printed by prs consists of: 1) the user supplied text; and 2)
appropriate values (extracted from the sees file) substituted for the recognized
data keywords in the order of appearance in the dataspec. The format of a data
keyword value is either Simple (S), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \n.

~~sun ,~ microsystems
F of 15 February 1986

Appendix A - SCCS Low-Level Commands 219

Table A-3 sees Files Data Keywords

Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table Seebelow* S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type DorR S
:1 : SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S
:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S
:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., :Dn:/:Dx:/:Dg: S

exc!., ignored
:Dn: Deltas included (seq #) :DS::DS: ••• S
:Dx: Deltas excluded (seq #) :DS::DS: ..• S
:Dg: Deltas ignored (seq #) :DS::DS: •.. S
:MR: MR numbers for delta text M
:C: Comments for delta text M
:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag text S
:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S
:LK: Locked releases :R: •.. S
:Q: User defined keyword text S
:M: Module name text S

:FB: Floor boundary :R: S

:CB: Ceiling boundary :R: S

:Os: Default SID :1: S
:NO: Null delta flag yes or no S

:FO: File descriptive text Comments text M

:80: Body Body text M

:GB: Gotten body text M

:W: A form of what(l) string N/A :Z::M:\t:I: S

:A: A form of what(l) string N/A :Z::Y: :M: :I::Z: S

.\sun ~~ microsystems
F of 15 February 1986

220 Programming Tools

Table A-3 SCCS Files Data Keywords- Continued

Keyword Data Item

: Z : what(l) string delimiter
: F : sees file name
: PN : sees file path name

* :Ot: = :OT: :1: :0: :T: :P: :DS: :DP:

~\sun ,~ microsystems

File Section Value

N/A @(#)

N/A text
N/A text

Format

s
s
s

F of 15 February 1986

Appendix A - sees Low-Level Commands 221

Examples of Using prs

tutorial% prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

tutorial% prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -r s.file

Files Used

A.12. rmdel - Remove
Delta from sees File

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

[
tutorial% prs s.file]

,---. -----------"
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:

b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only option argument allowed to
be used with the special case is the -a option.

Itmp/pr?????

rmdel removes the delta specified by the SID from each named sees file. The
delta to be removed must be the newest (most recent) delta in its branch in the
delta chain of each named sees file. In addition, the SID specified must not be
that of a version being edited for the purpose of making a delta (that is, if a p-file
(see get) exists for the named sees file, the SID specified must not appear in
any entry of the p-file) .

[
nodel -rSID filename . . .]

. -----------"
If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SeeS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is

F of 15 February 1986

222 Programming Tools

Files Used

taken to be the name of an sees file to be processed; non-sees files and unread­
able files are silently ignored.

The exact permissions necessary to remove a delta are documented in the Source
Code Control System User's Guide. Simply stated, they are either 1) if you
make a delta you can remove it; or 2) if you own the file and directory you can
remove a delta.

The delta to be removed must be a 'leaf delta; that is, it must be the latest (most
recently created) delta on its branch or on the trunk of the sees file tree. In Fig­
ure A-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are
removed, deltas 1.3.2.1 and 2.1 can be removed, and so on.

To remove a delta, the effective user must have write permission in the directory
containing the sees file. In addition, the real user must either have created the
delta being removed, or be the owner of the sees file and its directory.

You must specify the complete SID of the delta to be removed, preceded by -r.
The SID must have two components for a trunk delta, and four components for a
branch delta. Thus:

(tutorial% %mdel -r2.3 s.abc

removes (trunk) delta '2.3' of the sees file.

Before removing the delta, rmdel checks the following things:

1. the release number (R) of the given SID satisfies the relation:

floor ~ R ~ ceiling

2. the SID specified is not that of a version for which a get for editing has
been executed and whose associated de 1 t a has not yet been made.

3. the login name or group ID of the user either appears in the file's user list or
the user list is empty.

]

4. the release specified cannot be locked against editing (that is, if the 1 flag is
set (see admin), the release specified must not be contained in the list).

If these conditions are satisfied, the delta is removed. Otherwise, processing is
terminated.

After the specified delta has been removed, its type indicator in the delta table of
the sees file is changed from 'D' (delta) to 'R' (removed).

x-file (see delta)

z-file (see del ta)

• sun F of 15 February 1986
~ microsystems

A.13. sact - Display sees
Editing Activity

A.14. sccsdiff - Display
Differences in sees
Versions

sccsdiff Options

Files Used

Diagnostics from sccsdiff

Appendix A - sees Low-Level Commands 223

sact infonns the user of any sees files which have had one or more get -e
commands applied to them, that is, there are files out for editing, and deltas are
pending. If a directory is named on the command line, sa ct behaves as though
each file in the directory were specified as a named file, except that non-sees
files and unreadable files are silently ignored. If a name of - is given, the stan­
dard input is read with each line being taken as the name of an sees file to be
processed.

(sact filename ..•

The output for each named file consists of five fields separated by spaces.

Field
Number

Meaning

1

2
3

4
5

specifies the SID of a delta that currently exists in the sees file to
which changes will be made to make the new delta.
specifies the SID for the new delta to be created.
contains the logname of the user who will make the delta (that is,
executed a get for editing).
contains the date that get -e was executed.
contains the time that get -e was executed.

sccsdiff compares two versions of an sees file and generates the differences
between the two versions. Any number of sees files may be specified, but
options apply to all files.

[sccsdiff -rSIDi -rSID2 [-p 1 [-sn 1 filename ...

-rSID?
SID 1 and SlD2 specify the deltas of an sees file that are to be compared.
Versions are passed to di f f in the order given.

-p pipe output for each file through pr.

-sn
n is the file segment size that diff will use. This is useful when the system
load is high.

Itmp/get?????
Temporary files

fik: No differences

If the two versions are the same.

]

J

~\sun
~~ microsystems

F of 15 February 1986

224 Programming Tools

A.IS. unget - Undo a
Previous sees get

unget Options

Delta to be removed

Suppress delta ID

Retain gotten file

A.16. val - Validate sees
File

val Options

Suppress error messages

Delta number

Unget undoes the effect of a get -e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the direc­
tory were specified as a named file, except that non-SeeS files and unreadable
files are silently ignored. If a name of - is given, the standard input is read with
each line being taken as the name of an sees file to be processed.

(unget [-rSID 1 [-8 1 [-n 1 filename •• •]

Options apply independently to each named file.

-rSID
Uniquely identifies which delta is no longer intended. (This would have
been specified by get as the "new delta"). The -r option is necessary
only if two or more outstanding get s for editing on the same sees file were
done by the same person (login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary but omitted from the command line.

- s Suppress displaying the intended delta's SID.

-n Retain the gotten file - it is normally removed from the current directory.

val detennines if the specifiedjile is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order.

val -

or
val [-5] [-rSID] [-mname] [-ytype] file1Ulme ...

val has a special argument, -, which means read the standard input until an
end-of-file condition is detected. Each line read is independently processed as if
it were a command line argument list.

val generates diagnostic messages on the standard output for each command
line and file processed and also returns a single 8-bit code upon exit as described
below.

Options apply independently to each named file on the command line.

- s Silence diagnostic messages nonnally generated for errors detected while
processing the specified files.

-rSID
The argument value ID (SeeS IDentification String) is an sees delta
number. A check is made to detennine if the SID is ambiguous (for instance,
-r 1 is ambiguous because it physically does not exist but implies 1.1, 1.2,

()~~'.! F of 15 February 1986

Compare module names

Compare module types

Table A-4

Limitations of the val
Command

what - Identify sces Files

Appendix A - sees Low-Level Commands 225

etc. which may exist) or invalid (for instance, -r 1.0 or - r 1.1.0 are invalid
because neither case can exist as a valid delta number). If the SID is valid
and not ambiguous, a check is made to determine if it actually exists.

-mname
name is compared with the sees %M% keyword in/de.

-y type
type is compared with the sees % Y % keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, that is, can
be interpreted as a bit string where (moving from left to right) set bits are inter­
preted as follows:

Codes Returned from val Command

Bit Meaning

o missing file argument
1 unknown or duplicate option
2 corrupted sees file
3 can't open file or file not sees
4 SID is invalid or ambiguous
5 SID does not exist
6 %Y%, -y mismatch
7 %M%, -m mismatch

Note that val can process two or more files on a given command line and in turn
can process multiple command lines (when reading the standard input). In these
cases an aggregate code is returned - logical OR of the codes generated for each
command line and file processed.

val can process up to 50 files on a single command line. Any number above 50
produces a memory dump.

what finds sees identifying information within any specified UNIX file. what
does not use any options, nor does it treat directory names and a name of '-' (a
lone minus sign) in any special way, as do other sees commands.

what searches the given file(s) for all occurrences of the string @ (it), which is
the replacement for the %Z% ID keyword (see get). what then displays what­
ever follows that string until the first double quote ("), greater than (>),
backslash (\), newline, or (non-printing) NUL character.

As an example, let's begin with the sees file s . prog . c (a C program), which
contains the following line:

char id[] "%Z%%M%:%I%";

We then do the following get:

~\sun
~ microsystems

F of 15 February 1986

226 Programming Tools

A.I? sees Files

Protection

(
tutorial% get -r3.4 s.prog.c J

"'----, ------
and finally compile the resulting g-file to produce prog. 0 and a. out. Using
what as follows then displays:

tutorial% what prog.c proq.o a.out
prog.c:

prog.c:3.4
prog.o:

prog.c:3.4
a.out:

prog.c:3.4
tutorial%

The string what searches for need not be inserted via an ID keyword of get­
it may be inserted in any convenient manner.

This section discusses several topics that must be considered before extensive use
is made of sees. These topics deal with the protection mechanisms relied upon
by sees, the format of sees files, and the recommended procedures for auditing
sees files.

sees relies on the capabilities of the UNIX operating system for most of the pro­
tection mechanisms required to prevent unauthorized changes to sees files (that
is, changes made by non-SeeS commands). The only protection features pro­
vided directly by sees are the release lock flag, the release floor and ceiling
flags, and the user list.

New sees files created by admin are given mode 444 (read-only). It is best not
to change this mode, as it prevents any direct modification of the files by non­
sees commands.

sees files should be kept in directories that contain only sees files and any tem­
porary files created by sees commands. This simplifies protection and auditing
of sees files. The contents of directories should correspond to convenient logical
groupings, for example, subsystems of a large project.

sees files must have only one link (name). Commands that modify sees files do
so by creating a temporary copy of the file (called the x-file), and, upon comple­
tion of processing, remove the old file and rename the x-file. If the old file has
more than one link, removing it and renaming the x-file would break the link.
Rather than process such files, sees commands produce an error message. All
sees files must have names that begin with's.' .

When only one user uses sees, the real and effective user IDs are the same, and
that user ID owns the directories containing sees files. Therefore, sees may be
used directly without any preliminary preparation.

However, in those situations in which several users with different user IDs are
assigned responsibility for one sees file (for example, in large software

~\sun ~ microsystems
F of 15 February 1986

Layout of an SCCS File

Appendix A - sees Low-Level eommands 227

development projects), one user (equivalently, one user ID) must be chosen as the
'owner' of the sees files and as the one who will 'administer' them (for example,
by using admin). This user is termed the sees administrator for that project.
Because other users of sees do not have the same privileges and pennissions as
the sees administrator, they are not able to execute directly those commands that
require write pennission in the directory containing the sees files. Therefore, a
project-dependent program is required to provide an interface to the get,
de 1 t a, and, if desired, rmde 1 and cdc commands.

The interface program must be owned by the sees administrator, and must have
the set-user- ID on execution bit on (see chmod(l», so that the effective user ID
is the administrator's user ID. This program's function is to invoke the desired
sees command and to cause it to inherit the privileges of the interface program
for the duration of that command's execution. In this manner, the owner of an
sees file can modify it at will. Other users whose login names or group IDs are
in the user list for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and
are thus able to modify the sees files only through the use of delta and, possi­
bly, rmdel and cdc. The project-dependent interface program, as its name
implies, must be custom-built for each project.

sees files are composed of lines of Asell text arranged in six parts, as follows:

Checksum A line containing the 'logical' sum of all the characters of
the file (not including this checksum itself).

Delta Table Information about each delta, such as its type, SID, date and
time of creation, and commentary included.

User Names List of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas.

Flags Indicators that control certain actions of various sees com­
mands.

Descriptive Text Text provided by the user; usually a summary of the con­
tents and purpose of the file.

Body Actual text that is being administered by sees, intermixed
with internal sees control lines.

Detailed information about the contents of the various sections of the file may be
found in sccsfile(5). In the following, the checksum is the only portion of
the file discussed.

Because sees files are Asell files, they may be processed by various UNIX com­
mands: editors such as vi(l), text processing programs such as grep(l),
aWk(l), and cat(l), and so on. This is quite useful when an sees file must be
modified manually (for example, when the time and date of a delta was recorded
incorrectly because the system clock was set incorrectly), or when one wants to
simply 'look' at the file.

CAUTION Extreme care should be exercised when modifying sees files with non-sees
commands .

• \sun ,~ mlcrosystems
F of 15 February 1986

228 Programming Tools

Auditing On rare occasions, perhaps due to an operating system or hardware malfunction,
all or part of an sees file is destroyed. sees commands (like most UNIX com­
mands) display an error message when a file does not exist. In addition, sees
commands use the checksum stored in the sees file to determine whether a file
has been corrupted since it was last accessed (has lost data, or has been changed).
The only sees command which will process a corrupted sees file is admin
with the - h or - z options. This is discussed below.

sees files should be audited (checked) for possible corruptions on a regular basis.
The simplest and fastest way to audit such files is to use admin with the -h
option on them:

tutorial% admin -h s.filel s.file2
or

tutorial% admin -h directoryl directory2

If the new checksum of any file is not equal to the checksum in the first line of
that file, the message

corrupted file (co6)

is produced for that file. This process continues until all files have been exam­
ined. When examining directories (as in the second example above), the process
just described does not detect missing files. A simple way to detect whether any
files are missing from a directory is to periodically list the contents of the direc­
tory (using ls(I)), and compare the current listing with the previous one. Any
file which appears on the previous list but not the current one has been removed
by some means.

When a file has been corrupted, the appropriate method of restoration depends
upon the extent of the corruption. If damage is extensive, the best solution is to
restore the file from a backup copy. When damage is minor, repairing the file
with your favorite text editor may be possible. If you do repair the file with the
system's text processing capabilities, you must use admin with the -z option
to recompute the checksum to bring it into agreement with the actual contents of
the file:

(tutorial% admin -z s.fi1e
J

After this command is executed on a file, any corruption which may have existed
in that file will no longer be detectable.

~\sun ~~ microsystems
F of 15 February 1986

B
Bibliography and Credits

Bibliography and Credits .. 231

UNIX Programming
References

B
Bibliography and Credits

This appendix contains acknowledgements from the original authors of the
papers in this manual, plus references to other possibly interesting literature for
the diligent scholar.

Reference numbers here are keyed to the reference numbers in the specific
chapters.

[1] Sun Microsystems Reference Manuals: Commands Reference Manual and
System Interface Manual.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, Inc., 1978.

[3] B. W. Kernighan, UNIXfor Beginners-SecondEdition, Bell Laboratories,
1978. Reprinted in the Sun Tutorialfor Beginners Manual.

231 F of 15 February 1986

232 Programming Tools

make Acknowledgments and
References

Performace Analysis
Acknowledgments and
References

m4 Acknowledgments and
References

lex Acknowledgments and
References

I would like to thank: S. C. Johnson for suggesting this approach to program
maintenance control. I would like to thank: S. C. Johnson and H. Gajewska for
being the prime guinea pigs during development of make.

1. S. C. Johnson, 'Yacc - Yet Another Compiler-Compiler', Bell Laboratories
Computing Science Technical Report #32, July 1978.

2. M. E. Lesk, 'Lex - A Lexical Analyzer Generator' , Computing Science
Technical Report #39, October 1975.

[1] gprof: a Call Graph Execution Profiler, by Susan L. Graham, Peter B.
Kessler, and Marshall Kirk McKusick, Computer Science Divison, Electrical
Engineering and Computer Science Depertment, University of California,
Berkeley, California 94720. This paper is for the scholar inertested in the
theory behind call-graph profiling.

We are indebted to Rick Becker, John Chambers, Doug McIlroy, and especially
Jim Weythman, whose pioneering use of m4 has led to several valuable improve­
ments. We are also deeply grateful to Weythman for several substantial contri­
butions to the code.

The m4 macro processor is an extension of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3 minicomputer; M3 was in tum based
on a macro processor implemented for [1]. Readers unfamiliar with the basic
ideas of macro processing may wish to read some of the discussion there.

[1] B. W. Kernighan and P. J. PI auger, ,softwareTools Addison-Wesley, Inc.,
1976.

As should be obvious from the above, the outside of lex is patterned on yacc and
the inside on Aho's string matching routines. Therefore, both S. C. Johnson and
A. V. Aho are really originators of much of lex, as well as debuggers of it. Many
thanks are due to both.

The code of the current version of lex was designed, written, and debugged by
Eric Schmidt.

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, N. J. (1978).

2. B. W. Kernighan, Rat/or: A Preprocessor for a Rational FORTRAN, Software
- Practice and Experience,S, pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler Compiler, Computing Science
Technical Report No. 32, 1975, Murray Hill.

4. A. V. Aho and M. 1. Corasick, Efficient String Matching: An Aid to Biblio­
graphic Search, Comm. ACM 18, 333-340 (1975).

5. See the papers on ex and vi in Editing and Text Processing on the Sun
Workstation .

• sun
~ microsys1ems

F of 15 February 1986

lint Acknowledgments and
References

Appendix B - Bibliography and Credits 233

6. M. E. Lesk, The Portable C Library, Computing Science Technical Report
No. 31, Murray Hill.

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, N. J. (1978).

2. S. C. Johnson, Yacc: Yet Another Compiler-Compiler, Compo Sci. Tech.
Rep. No. 32, Bell Laboratories, Murray Hill, New Jersey (July 1975).

3. M. E. Lesk, Lex-A Lexical Analyzer Generator, Compo Sci. Tech. Rep.
No. 39, Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, 'UNIX Time-Sharing System: Portability of
C Programs and the UNIX System,' Bell Sys. Tech. 1. 57(6) pp. 2021-2048
(1978).

5. S. C. Johnson, 'A Portable Compiler: Theory and Practice,' Proc. 5th ACM
Symp. on Principles of Programming Languages, (January 1978).

F of 15 February 1986

Index

A
acknowledgements, 231 thru 233
actions

in lex, 126 thru 129
actions for yacc, 147
admin - administer sees, 190 thru 197
ambiguity in yacc, 155
ambiguous source rules

in lex, 129 thru 131
ARGSUSED -lint control, 44
associativity in yacc

%left, 159
%nonassoc, 159
%right, 159

auditing sees files, 228

B
backup files with sees commands

x-file, 190
z-file, 190

basic specifications for yacc, 145
bibliography, 231 thru 233
branch number in sees file, 187
build programs - make, 49 thru 68
built-in m4 macros

changequote,110
define, 108
divert, 112
divnum, 113
dnl,114
dumpdef,115
errprint, 115
eval,111
ifdef,110
ifelse,113
include, 112
incr,111
index, 114
len, 114
mktemp,l13
sinclude, 112
substr, 114
syscmd, 113
translit,114
undefine, 110
undi vert, 113

built-in rules

-235-

built-in rules, continued
double, 66
single, 65

built-in suffix list, 65 thru 68
built-in transformation rules, 65 thru 68

C
e language tools, 33 thru 46

ctags - ctags used, 33 ihru 34
lint - check e programs, 35 thru46

call graph profile - gprof, 98 thru 100
cdc - change delta commentary, 197 thru 198
change

delta commentary. 197 thru 198
changequote built-in m4 macro, 110
character set

in lex, 138
checksum in sees files, 227
code coverage - tcov, 100 thru 103
comb - combine deltas, 198 thru 199
combine sees deltas, 198 thru 199
command conventions for sees, 189 thru 190
commands in sees

backup files with sees commands, 190
file arguments, 189
flags, 190
options, 189

comments in m4,110
comments in make, 52
compare versions of sees file - sccsdiff,223
compiler generators

lex lexical generator, 119 thru 140
compiler-compiler

yacc, 143 thru 182
conflicts in yaee, 156

disambiguating rules, 156
precedence, 159
reduce/reduce conflicts, 156
shifUreduce conflicts, 156

continuation lines in make, 52
create

delta, 200 thru 204
sees data bases, 190 thru 197
sees delta, 200 thru 204

create sees database file - secs create, 75
credits, 231 thru 233

Index Continued

etag s - ctags used, 33 thru 34

D
data keywords in sees files, 218 Ihru 220
define built-in m4 macro, 108
defining make macros, 53 thru 54
definitions

of lex source, 131 thru 132
delta, 185, 74

change commentary, 197 Ihru 198
combine, 198 Ihru 199
remove - rmdel, 221 thru 222

make sees delta - sees delta, 76, 200 thru 204
delta table in sees files, 227
dependency lines in make, 54 Ihru 56
descriptive text in sees file~, 227
disambiguating rules in yaee, 156
display

display sees file editing status - saet, 223
sees history - prs, 217 Ihru 221

di vert built-in m4 macro, 112
divnum built-in m4 macro, 113
dnl built-in m4 macro, 114
double suffix rules, 66
dumpdef built-in m4 macro, 115

E
get sees file for editing - see s edit, 76
entries in make, 54 Ihru 56
errprint built-in m4 macro, 115
eval built-in m4 macro, 111
examples

of lex, 133 Ihru 136
of make, 61 Ihru 62

F
file arguments to sees commands, 189
flags in sees files, 193 thru 194, 227
flags to sees commands, 190

G
get - get sees file, 204 Ihru 216
get sees file for compiling - sees get, 75
gprof - call graph, 98 Ihru 100

H
help - get sees help, 216 Ihru 217
high-level sees interface, 71 thru 90

I
ID keywords, 74
Id keywords

inserting, 77
placement of, 78

identification keywords in sees files, 208 thru 209
identify sees file - what, 225 Ihru 226
ifdef built-in m4 macro, 110
ifelse built-in m4 macro, 113
implicit make macros

-236-

implicit make macros, continued
$*,56
$<,56
$?,56
$@,56

implicit rules in make, 59 thru 61
inelude built-in m4 macro, 112
include files in make, 53
iner built-in m4 macro, 111
index built-in m4 macro, 114

L
language tools

lint - check e programs, 35 thru 46
yaee compiler-compiler, 1431hru 182

layout of sees files, 227 thru 228
body, 227
checksum, 227
delta table, 227
descriptive text, 227
flags, 227
user names, 227

left association in yaee, 155
left context-sensitivity

in lex, 136 thru 138
len built-in m4 macro, 114
level number in sees file, 185
lex

actions, 126 Ihru 129
ambiguous source rules, 129 Ihru 131
character set, 138
examples, 133 Ihru 136
left context-sensitivity, 136 Ihru 138
regular expressions, 123 Ihru 126
source definitions, 131 Ihru 132
source format, 122
source format summary, 138 Ihru 140
usage, 132
with yaee, 133

lex lexical generator, 119lhru 140
I ex regular expressions

arbitrary character, 124
character classes, 124
context sensitivity, 125
operators, 123
optional expressions, 124
repeated expressions, 125
repetitions and definition, 126

lexical analysis for yacc, 149
lint - e program checker, 35 Ihru 46
lint controls, 44

ARGSUSED,44
LINTLIBRARY,44
NOSTRICT,44
NOTREACHED, 44
VARARGS,44
VARARGS2, 44

lint library directive
LINTLIBRARY,45

lint library directives, 45
lint options, 46

LINTLIBRARY -lint control, 44
LINTLIBRARY - lint library directives, 45
low-level sees interface, 185 thru 228

M
m4 built-in macros

changequote,110
define, 108
divert, 112
divnum, 113
dnl,114
dumpdef, 115
errprint, 115
eval,l11
ifdef,110
ifelse,113
include, 112
incr,l11
index, 114
len, 114
mktemp, 113
sinclude, 112
substr,114
syscmd, 113
translit, 114
undefine, 110
undi vert, 113

m4 macro processor, 107 Ihru 116
macros in make, 53 Ihru 54
maintain programs - make, 49 Ihru 68

make
comment convention, 52
continuation lines, 52
delta, 200 thru 204
dependency lines, 54 thru 56
entries, 54 thru 56
implicit rules, 59 thru 61
include files, 53
macros, 53 Ihru 54
rules lines, 54 thru 56
sees delta, 200 Ihru 204
target lines, 54 Ihru 56
using command, 56 Ihru 58

make - build programs, 49 thru 68

make implicit macros
$*,56
$<,56
$?,56
$@,56

make options, 58
mktemp built-in m4 macro, 113

N
NOSTRICT -lint control, 44
NOTREACHED - lint control, 44

o
options

lint,46
make, 58

options to sees commands, 189

-237-

p
parser generators

yacc, 143 thru 182
performance analysis, 93 thru 103

gprof - call graph, 98 Ihru 100
prof - profile, 96 thru 98
tcov - code coverage, 100 thru 103
time - time used, 93 thru 96

precedence in yacc, 159
%prec,160

preparing yacc specifications, 164 thru 166
prof - profile, 96 Ihru 98
profile

call graph - gprof, 98 Ihru 100
programming tools

lint - check e programs, 35 thru 46
make - build programs, 49 Ihru 68
yacc compiler-compiler, 1431hru 182

protections on sees files, 226 thru 227
prs - display sees history, 217 thru 221

Q
quoting in m4, 1091hru 110

R
reduce/reduce conflicts in yacc, 156
references, 231 thru 233
regenerate programs - make, 49 thru 68
regular expressions

in lex, 123 thru 126
release number in sees file, 185

Index Continued

remove delta from sees file - rmdel, 221 Ihru 222
right association in yacc, 155
rmdel - remove delta from sees file, 221 thru 222
rules, 65

double, 66
single, 65

rules lines in make, 54 thru 56

s
s-file,74
sees backup files, 190

x-file, 190
z-file, 190

sees branch number, 187
sees command conventions, 189 Ihru 190

sees commands
adrnin - administer sees, 190 thru 197
cdc - change delta commentary, 197 thru 198
comb - combine deltas, 198 thru 199
file arguments, 189
flags, 190
get - get sees file, 204 thru 216
help - get sees help, 216 thru 217
options, 189
prs - display sees history, 217 Ihru 221
rmdel - remove delta, 221 thru 222
sact - display sees file editing status, 223
sccsdiff -compare versions of sees file, 223
unget - unget sees file, 224
val - validate sees file, 224 thru 225

Index Continued

sees commands, continued
what - identify sees file. 225 Ihru 226

sees create - create sees database file. 75
sees data keywords. 218 Ihru 220
sees delta - make sees delta, 76
sees delta

change commentary. 1971hru 198
combine. 198 thru 199
create, 200 Ihru 204
remove - rmdel. 221 Ihru 222

sees edit - get sees file for editing. 76
sees files, 226 Ihru 228

auditing, 228
body, 227
checksum, 227
delta table, 227
descriptive text, 227
flags, 227
flags in, 193 Ihru 194
layout, 227 Ihru 228
protection, 226 Ihru 227
user names, 227

sees front end - sees, 71 thru 90
sees get - get sees file for compiling, 75
sees history

display - prs, 217 thru 221
sees ID keywords, 74
sees identification keywords, 208 thru 209
sees identification string, 185
sees info - who's editing files, 77
sees level number, 185
sees release number, 185
sees sequence number, 187
seesdiff -compare versions of sees file, 223
sequence number in sees file, 187
shift/reduce conflicts in yaee, 156
SID, 18S, 74
sinelude built-in m4 macro 112
single suffix rules, 65 '
source code control

high-level sees interface, 71 thru 90
low-level sees interface, 185 thru 228

source definitions
in lex, 131 thru 132

standard suffix list, 65 thru 68
statement analysis - teov, 100lhru 103
substr built-in m4 macro, 114
suffix rules

double, 66
single, 65

suffixes, 65
summary of lex source format, 138 thru 140
summary of sees commands, 185 thru 228
sysemd built-in m4 macro, 113

T
target lines in make, 54 Ihru 56
teov - code coverage, 100lhru 103
time - time used, 93 thru 96
transformation rules, 65

-238-

translit built-in m4 macro, 114
trunk of sees tree, 186

U
undefine built-in m4 macro, 110
undi vert built-in m4 macro, 113
unget - unget sees file, 224
update programs - make, 49 thru 68
user names in sees files, 227
user-level sees interface, 71 thru 90
using lex, 132
using make, 56 thru 58

V
val - validate sees file, 224 thru 225
validate sees file - val, 224 thru 225
VARARGS -lint control, 44
VARARGS2 -lint control, 44

W
what - identify sees file, 225 thru 226
who's editing sees files - sees info, 77

X
x-file in sees commands, 190

y
yaee

actions, 147
ambiguity, 155
basic specifications, 145
conflicts, 156
disambiguating rules, 156
left association, 155
lexical analysis, 149
precedence, 159
reduce/reduce conflicts, 156
right association, 155
shift/reduce conflicts, 156

yaee associativity
%left, 159
%nonassoe, 159
%right, 159

yaee compiler-compiler, 143 thru 182
yaee precedence

%pree, 160
yaee specifications

preparing, 164 thru 166

Z
z-file in sees commands, 190

Rev Date

A 15th July 1983

B 15th August 1983

C 1st November 1983

D 7th January 1984

E 15 May 1985

F 15 February 1986

Revision History

Comments

First release of this Manual.

Second Release of this manual entailed a complete reor­
ganization and some rewriting of the individual articles.

Third Release of this manual entailed minor corrections
and updates.

Added chapter on Shell Programming. Added chapter on
ADB. Many minor corrections and updates.

Many minor corrections and updates. Extracted Assem­
bly Language Reference Manual to make a separate
manual.

Previous placeholder for ADB gone - a complete debug
tools manual was written for release 3.0.
Chapters on programming the Bourne Shell and program­
ming the C Shell now part of the manual entitled: Doing
More with UNIX -Beginner's Guide.
Chapters on be and de now part of the manual entitled:
Games, Derrws, and Other Pursuits-Beginner' s Guide.
Old chapter on lint folded into a chapter on tools for
programming with the C language.
Chapter on make upgraded to reflect use of System V
augmented make.
Added new chapters on UNIX programming tools by
extracting relevant narrative material from out of the
'man' pages.
Low-level sees documentation for the 'raw' sees
interface was moved to an appendix. sees narrative
material from the sces 'man' pages incorporated to form
a reference summary.
Acknowledgements and references placed in a.n appendix
to get them out of the way.
Created an index.
Many minor corrections and updates.

Notes

Notes

Notes

Notes

Notes

