
Asun®
• microsystems

Doing More with UNIX:
Beginner's Guide

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNIXI32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and V AX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

Chapter 2 More About Files ... 7

2.1. Filename Substitution ... 7

Single-Character Matching with [and] .. 7

Listing Hidden Files with ls -a ... 7

String Matching with {and } ... 7

2.2. Pro{>erties of Files .. 8

2.3. Permissions ... 9

File Ty{>e .. 9

Owner's Permissions .. 9

Group Permissions ... 10

Public Permissions ... 10

Permissions of Directories ... 10

2.4. Changing Permissions with chmod ... 11

2.5. Setting Default Permissions with urna s k ... 13

2.6. Ownership .. 14

2.7. Modification Time .. 14

2.8. Making Links ... 14

2.9. Seeing File TY{>es with ls -F ... 15

2.10. Encrypting Files ... 15

2.11. Searching Through a File with rno r e... 16

2.12. Using pushd, popd and dirs to Change Directories 16

- iii-

Contents Continued

Chapter 3 More About Commands ... 21

3.1. Redirecting Output, Redirecting Input, and Pipes .. 21

Redirecting Output ... 21

Redirecting Input .. 22

Pipes and PiJ>elines .. 23

Filters ... 23

Usingthe tee Command .. 25

Redirecting the Standard Error ... 26

3.2. EscaJ>e Character, Quotes, Separation and Continuation
Symbols ... 27

3.3. grep and grep Search Patterns ... 27

Chapter 4 The C-Shell .. 33

4.1. Overview .. 33

4.2. History Substitution and Command-Line Editing .. 34

Revie~ing Commands ... 34

Repeating Commands .. 35

Command Line Editing ... 36

Selecting Words Within Events ... 36

Modifying Selected Words and Events .. 37

4.3. Amazing Aliases .. 37

Escaping an Alias ... 38

4.4. Variable Substitution ... 38

Storing Lists in C-Shell Variables .. 39

Processing Lists with foreach .. 40

Predefined Variables ... 41

Environment Variables .. 42

4.5. Command Substitution ... 42

4 r Job Control .. 43

Chapter 5 Processes and Other Users .. 47

5.1. Processes ... 47

Tenninating a Process with kill.. 48

-iv-

Contents Continued

Timing Processes .. 49

Running a Command at a Later Time with at.. 50

5.2. Oilier Users .. 50

Users Currently Logged In .. 51

Changing Identity with su .. 53

Becoming root, the superuser .. 53

Chapter 6 Managing Your Files .. 57

6.1. Locating Files .. 57

Looking Up a Command wiili whereis and whieh 57

Looking Up a Command's Description with whatis 57

Looking Up Files with f ind ... 58

Running Commands with find .. 59

Looking at File Types with file ... 59

6.2. Looking at Differences Between Files with diff 59

6.3. Monitor Changes wiili sees .. 61

Putting a File Under sees Control (sees create) 61

Which Files are Checked Out? (sees info) ... 62

Recovering the Current Version (s e e s ge t) ... 62

Checking a File Out (sees edit) .. 62

Looking at Current Changes (sees diffs) .. 63

Checking a File In (sees delget) ... 63

Backing Out With No Changes (sees unedi t) 63

Looking at the File's History (sees prt) .. 63

Comparing Versions (sees seesdiff) ... 64

Restoring a Previous Version (s e e s ge t - r) 64

Solving Problems with sees .. 65

6.4. Automating Complicated Tasks with make .. 66

Makefiles ... 67

Running make .. 68

Testing Makefiles .. 69

Defining Macros in the Makefile ... 69

Selecting A Target .. 70

-v-

Contents Continued

6.5. Managing Disk Storage .. 71

Looking at Disk Usage with df ... 71

Directory Usage and du .. 71

6.6. Making a Tape Archive with tar ... 72

Looking at the Contents of a Tape Archive ... 73

Extracting Files From a Tape Archive ... 73

Chapter 7 More About Printing ... 77

7.1. Looking at the Queue with 1 pq .. 77

7.2. Removing Printer Jobs with Iprm .. 77

7.3. Selecting a Printer Ipr -p .. 78

7.4. Printing troff Output Files with Ipr -t ... 78

7.5. Printing Screen Dumps ... 78

7.6. Printing Other Graphics Displays .. 78

Appendix A Glossary ... 81

Appendix B C-Shell Scripts .. 89

Pathname Processing Primitives .. 91

Return Codes ... 91

Exit .. 95

Appendix C C-Shell Builtin Commands ... 99

Appendix DC-Shell Special Characters .. 107

Appendix E C-Shell Predefined Variables ... 117

Appendix F Bourne Shell Scripts .. 123

Appendix G Command Summary .. 153

-vi-

Tables

Table 2-1 chmod Command Syntax Diagram .. 11

Table 2-2 Chart of chmod Numeric Arguments .. 12

Table 2-3 umask Values and Resulting Permissions for New Files 13

Table 2-4 is -F File Type Indicators .. 15

Table 3-1 grep Search Pattern Elements .. 28

Table 5-1 Information Displayed By ps ... 48

Table 5-2 Information Displayed By t ime .. 49

Table 5-3 Information Contained in /etc/passwd ... 51

Table F-l Variables Initialized by the Bourne Shell .. 125

Table F-2 Quoting Mechanisms ... 140

Table F-3 UNIX Signals ... 142

- vii-

Figures

Figure 2-1 Infonnation Displayed By 1 s -1 .. 9

Figure 2-2 The File Type Field ... 9

Figure 2-3 Owner's Pennissions Field .. 9

Figure 2-4 Group Pennissions Field .. 10

Figure 2-5 Public Pennissions Field .. 10

Figure 4-1 The C-Shell and Commands ... 33

Figure 6-1 Two Sample Files and di f f Output ... 60

Figure 6-2 Flow of Events with see s Controlled Files 65

Figure 6-3 Sample Makefile to Put Files Under sees .. 67

Figure 6-4 Sample Makefile for Printing a Document ... 69

Figure B-1 eopye - Sample C-Shell Script .. 92

-ix-

Prerequisite Documents

Companion Documents

Preface

This manual describes some of the more sophisticated features UNIXt provides,
and how to use them to simplify complicated tasks.

Chapter 1 is a brief introduction.

Chapter 2 provides details about files, their attributes, filename substitution, and
searching through text files.

Chapter 3 describes how to use commands as building blocks for complicated
tasks.

Chapter 4 provides an overview of the C-Shell and its timesaving features.

Chapter 5 describes processes and their behind-the-scenes role in providing bal­
anced service to concurrent tasks.

Chapter 6 introduces tools for sophisticated file management.

Chapter 7 describes the printer queue, how to select a printer, printing preformat­
ted files, and printing graphics from the workstation screen.

In addition to a glossary, command summary, and quick reference, there are
appendices that describe details about the C-Shell, such as C-Shell special com­
mands (called "builtin" commands), predefined variables, special characters and
scripts.

Getting Started With UNIX: Beginner's Guide
Setting Up Your UNIX Environment: Beginner's Guide
Self Help With Problems: Beginner's Guide

Using the Network: Beginner's Guide

Commands Reference Manualfor the Sun Workstation

t UNIX is a trademark of AT&T Bell Laboratories.

-xi -

1
Introduction

Introduction ... 3

You are here. =::)

Why and How

1
Introduction

UNIXt provides you with features that are powerful, flexible, and adaptable.
This means that there is quite a lot that the system can do for you, and there is
quite a lot to learn. The power and richness of the commands make for limitless
possibilities. In fact, one of the main advantages of the UNIX system design is its
open-ended nature.

Everyone goes through several stages when learning to use UNIX effectively,
including:

a) learning the basics

b) learning enough to get curious

c) experimenting with the various features and commands

d) educated experimentation and writing simple shell scripts

e) digging deeper into the system and its internal workings.

This manual is intended to help satisfy your curiosity with an overview of
features that give you major productivity gains.

Previous manuals in this series, such as Getting Started with UNIX, Setting Up the
UNIX Environment, and Games, Demos and Other Pursuits, gave you a basic
familiarity with UNIX, but may not have answered questions about why the sys­
tem works the way it does, or how to get more out of it. Hopefully, this one
does.

Companion manuals, such as Using the Network will tell you about more spe­
cialized topics.

From its origins as a simple research project, UNIX has evolved into a powerful,
flexible and popular computer operating system, and a major influence in the
industry. It was designed to accommodate this evolution by providing a simple
model for storing and transferring information, called a file , a collection of sim­
ple commands to operate on files, and a straightforward method for combining
commands to perform more complicated tasks. Because UNIX grew out of a
computer science research environment, the terminology and command names
are oriented toward professionals in that field, as are many of the tools.

t UNIX is a trademark of AT&T Bell Laboratories .

• \sun ,~ microsystems
3 A of 3 January 86

4 Doing More with UNIX: Beginner's Guide

Try it Yourself!

Play it Safe!

Hang in There!

Commands are terse to save keystrokes. They are usually suggestive of the sim­
ple function they perform. Unless you are already familiar with those sorts of
functions, the names may seem cryptic. The more you learn, the more sensible
things will begin to seem. So, rather than being put off by it, get familiar with
the jargon! You'll learn a lot more about computers than just how to use one.

When learning more about UNIX, there is no substitute for experimenting on your
own. To really grasp what a command does, you simply have to try it. So, as
you go through this, and the remaining beginner's guides in this series, try out
the examples. Then try out variations of your own design.

Whenever you experiment with UNIX it is important to set up a safe place in
which to do so. Never experiment with an unfamiliar command on valuable
data. Instead, make a copy and place it in a directory where the data is known to
be dispensable. Always run your tests in this directory to avoid the risk of cor­
rupting previous work. Once you have tested the command and have seen what
it does, only then should you apply it to files that you care about.

Make a directory, test, in your home directory, as follows:

[rnars% cd
mars% mkdir test

Consider everything in this directory to be expendable, and never place anythiIl:g
there that you intend to keep.

Because UNIX was developed to support programming research, its standard
features are oriented toward the programming professional. This is one reason
why the system is so powerful, and also why some features seem a bit abstract at
first In most cases, their power and flexibility make this an easy thing to get
used to.

]

UNIX is designed to be general in scope. It can support a wide variety of applica­
tions, and work well within a broad range of situations. The information in this
manual should help you to take this general and flexible, but somewhat abstract
system, and use it to meet your specific needs and working style.

A of 3 January 86

2
More About Files

More About Files .. 7

2.1. Filename Substitution ... 7

Single-Character Matching with [and] .. 7

Listing Hidden Files with 1 s -a ... 7

String Matching with {and } ... 7

2.2. Properties of Files .. 8

2.3. Permissions ... 9

File Type .. 9

Owner's Permissions .. 9

Group Permissions ... 10

Public Permissions ... 10

Permissions of Directories ... 10

2.4. Changing Permissions with c hmod ... 11

2.5. Setting Default Permissions with umask ... 13

2.6. Ownership .. 14

2.7. Modification Time .. 14

2.8. Making Links ... 14

2.9. Seeing File Types with ls -F ... 15

2.10. Encrypting Files ... 15

2.11. Searching Through a File with rno re ... 16

2.12. Using pushd, popd and dirs to Change Directories 16

2.1. Filename Substitution

Single-Character Matching
with [and]

Listing Hidden Files with 1 s
-a

String Matching with {and
}

2
More About Files

As you learned in Getting Started With UNIX, filename wild cards can save you
time and keystrokes. The system replaces, or substitutes characters from
filenames for the wild card symbols.

I.n addition to the wild cards, *, and ?, UNIX provides more sophisticated ways
of specifying a set of files on the command line.

You can use brackets instead of a ?, to match a single character. Within the
brackets you can specify a list of characters to match against. For instance,

[ab] *
matches all filenames that begin with a lower-case a or b. You can also specify
a range of characters to match against. Thus,

[A-Z]*

matches all filenames that begin with an upper-case alphabetical character.

Filenames that begin with a dot (.) are a special case. They aren't matched
unless you specify a dot in the first character. However, the name. stands for
the current directory, and .. stands for the parent directory. So, although the
command

is . *
does list hidden files, it also lists all the other files in the directory (matching
. / *), and the parent directory (matching .. / *).

To list hidden files along with the others, use the command:

is -a

You can use braces instead of *, to match specific character strings of any
length. Within the braces, strings are separated by commas. For instance,

{uranus,sygnus,x}*

matches any filenames beginning with uranus, sygnus or x.

Within braces, *, and ?, are legal. You can nest braces within strings for
interesting results. For instance, { {ura, syg} nus, x} * is another way to

match filenames beginning with uranus, sygnus or x.

7 A of 3 January 86

8 Doing More with UNIX: Beginner's Guide

2.2. Properties of Files

permissions

-rw-rw-r--

As your skill with the system grows, you will encounter situations in which a
prior understanding of files and their properties, especially file ownership and
permissions, will be of immense help.

You can think of a file as a named location from which infomation can be
obtained or to which data can be sent. UNIX uses the notion of a file as a general
model for all sources (input) or destinations (output) of data operated on by com­
mands. The system treats terminals, printers, tape drives, and other such devices
for putting information into, or getting information out of the system, as if they
too were files.

Commands and programs don't need to know whether the data they use comes
from (or goes to) a terminal, disk file, printer (or even another program). Just
like any other file, each device has a pathname. The tty command tells you the
patbname of your tenninal or window.

[

mars% tty 1
/dev/ttyp1
mars%

'---------

In addition to having a name, and contents, a file under UNIX has other impor­
tant properties that you can examine with options to 1 s. (Refer to 1 s in the
Commands Reference Manual for a complete list of these options.) The-1
options shows a more detailed (long) list of the files:

mars% 1s -1
total 112
-rw-rw-r-- 1 sam 77293 Jun 27 15:36 csh.l
-rw-rw-r-- 1 wild 27492 Jul 9 21:14 csh.blt
-rw-rw-r-- 1 ames 6550 Jul 9 21:02 csh.new
-rw-rw-r-- 1 root 14492 Jul 12 17:07 csh.spc
-rw-r--r-- 1 sam 2884 Jul 17 18:24 files
-r-xr-xr-x 1 sam 1381 Jul 12 15:50 script
mars%

The top line tells you how many blocks (units of space on the disk), are occupied
by files in the directory. The remaining lines are composed of columns that
describe specific properties of each file:

links
owner

size

1 sam 77293

modification time
filename

Jun 27 15:36 csh.l

4}\sun
,~ microsystems

A of3 January 86

Figure 2-1

2.3. Permissions

Like devices, programs are treated
as files. When you enter a com­
mand, UNIX looks up a file by that
name among the directories listed
in the PATH environment variable,
and performs the instructions con­
truoedJn that file.
t(He Type

Figure 2-2

Owner's Permissions

Figure 2-3

Chapter 2 - More About Files 9

Information Displayed By 1 s -1

The leftmost column shows the permissions for each file. Permissions are
explained in detail below. The second column shows the number of links, to it.
Links are also described later on.

The third column shows each file's owner. Normally, the owner of a file is the
person who created it, although the operator of your system can change this. Not
shown here is the file's group ownership.

The fourth column shows the file's size in bytes. The size of the file often
changes when you edit it. The next three columns show the date and time when
the file was last modified (modification time). This also changes whenever you
edit the file.

The rightmost column shows the filename.

Every file has a set of access modes or permissions that determine which users
have access to read, write, or execute its contents.

The permissions colu:rnn consists of ten characters as shown in Figure 2-1,
above. The leftmost character shows the type of file (regular, directory or dev­
ice). The next triplet of characters displays access modes for the owner. The
second triplet shows those for the group, and the last, those for the public.

[
Type : Owner's 0,001

r
Public

IDI I I I

The File Type Field

1

A d in the leftmost character indicates that the file is a directory. A - indicates a
standard file. A b, or c indicates that the file is a device. An s, indicates that the
file is a socket for communication between two running programs. An 1 indi­
cates that the filename is a symbolic link that refers to the name of another file.

[1~lbobl: 10,001 PUblic 1
_______ f __

Owner's Permissions Field

In the listing of Figure 2-1, sam is the owner of the file csh .1. An r as the first
character in this triplet indicates that the owner has permission to read the file. A
- indicates that the permission does not apply. A w as the second character indi­
cates that the owner can write on (modify, add to, or remove) the file. An x as the
third character indicates that the owner can execute the file (use it as if it were a
command!) .

• ~,l! A of3 January 86

10 Doing More with UNIX: Beginner's Guide

Of course, unless the file is either a
program or list of shell commands,
executing it doesn't make any
sense.

Group Permissions

Figure 2-4

Public Permissions

Figure 2-5

Permissions of Directories

As Figure 2-1 shows, sam can read and write on, but not execute the file csh. 1.

[
Type:

. .
Owner's 101010: Public

I I I I I

Group Permissions Field

To see which group the file belongs to, use the -lg option of Is.

mars% Is -lg
total 112
-rw-rw-r-- 1 sam wheel 77293 Jun 27 15:36 csh.1
-rw-rw-r-- 1 wild wheel 27492 Jul 9 21:14 csh.blt
-rw-rw-r-- 1 ames wheel 6550 Jul 9 21:02 csh.new
-rw-rw-r-- 1 root wheel 14492 Jul 12 17:07 csh.spc
-rw-r--r-- 1 sam wheel 2884 Jul 17 18:24 files
-r-xr-xr-x 1 sam wheel 1381 Jul 12 15:50 script
mars%

In this case, all files belong to the group wheel. The files csh. 1 through
csh. spc can be read and written on by any member of the group. The file
s c r i pt can be executed and read, but not written on.

[
T~~: Owner's

IG<ooJ
Public

I I 1010101

Public Permissions Field

1

1

All files in the above list can be read by anyone. The x in the rightmost character
for s c r i pt indicates that anyone can use it as a command.

With directories, the access modes have a slightly different meaning. To check
the pennissions of the current directory, use the -1 d option of 1 s.

mars% 1s -ld
drwxrwxr-x 3 sam
mars%

512 Jul 16 23:10

~\sun
~~ microsystems

A of 3 January 86

You can remove any file in a direc­
tory for which you have write per­
mission, regardless of who owns
that file. If you do not have write
permission for the file itself, the sys­
tem asks you for confirmation
before removing it.

2.4. Changing Permissions
with chmod

Table 2-1

Chapter 2 - More About Files 11

An r indicates that the directory can be read. You must have read access to a
directory before you can list its contents or cd into it.

An x indicates that the directory can be searched (that you can list its contents).
A w indicates that files can be added or removed from the directory.

In the directory shown above, the owner (sam) can read, search, and add or
delete files, as can the group. The public can read and search, but cannot add or
delete files.

From time to time you may want to change the access modes of files that you
own, either to restrict or to allow access to it. In most cases, restricting access to
a file is sufficient to protect it from tampering or unwarranted reading. Even so,
you should be aware that the operator of your system has unlimited access to any
file. Because UNIX evolved in a relatively friendly research-and-development
setting, the file system provides adequate, but not unbreakable, security between
users.2

You can use an argument to chmod to specify the access mode for each class of
user (owner, group, or public), or to indicate how the mode is to be changed. An
argument is composed of one or more classes, an operation, and one or more per­
missions from the chart below:

chmod Command Syntax Diagram

chmod [class(es)] operationpermission(s) [, ...] filename ...

where class(es) ,operation and permission(s) can be selected from:

class operation permission

u user (owner) = set permission r read
g group - remove access w write
0 others (public) + give access x execute
a all

For example, the command

[

mars%

.mars%] chmod o-r,a+x,g=rw csh.l

2 No computer system provides unbreakable security between authorized users. Also note that the system
administrator can read any file on the system. If you want to protect your files from unauthorized reading, you
can encrypt them. See Encrypting Files below, for details.

41\ sun ~ microsystems
A of3 January 86

12 Doing More with UNIX: Beginner's Guide

Table 2-2

a) removes read permission for the public (others),

b) adds execute permission for all three classes, and

c) sets access to read and write for the group

for the file csh .1.

If you omit class, the new setting is applied to all three.

chmod can also use a digit from zero to seven to represent each triplet in the per­
missions column, as follows:

chmod [o[g]]p

where 0 is a digit representing the owner's permissions, g is a digit representing
the group permissions, and p is a digit representing permissions for the public.
The value of each digit is the sum of the permission values as in the following
chart.

Chart of chmod Numeric Arguments

value permission explanation

4 r read
2 w write
1 x execute

To figure each digit, add up the values corresponding to each permission setting
in the triplet. For read, write and execute permission, the value is 7. All values,
and the permissions they correspond to, are shown below:

value permissions explanation
7 rwx read, write, and execute
6 rw- read and write
5 r-x read and execute
4 r-- read only
3 -wx write and execute
2 -w- write only
1 --x execute only
0 --- no access whatsoever

The command

[

mars% chmod 777 csh.l]
mars%

'-------------"

gives read, write and execute access to csh.1 to the owner, the group, and the
public.

On the other hand, the command

A of 3 January 86

2.S. Setting Default
Permissions with uma s k

You can change the permissions for
all sessions by placing a umask
command in your. cshrc file.

Table 2-3

Chapter 2 - More About Files 13

[mars%
mars%

clunod 7 csh.l

gives the public read and write access, and denies all access to the owner and the
group. So, although they aren't required, it's a good idea always to use all three
digits.3

When you create a new file or directory, the system automatically assigns per­
missions. The default setting for new files is

-rw-r--r--

or 644. For new directories, the default is

drwxr-xr-x

or 755.

You can change the default permission setting for the current session with the
umask command:

umask [o[g]]p

]

0, g and p are digits corresponding to the owner's, group, and public permission
masks, respectively.

Like chmod, umask uses three digits to determine the permissions. Unlike,
chmod, it computes the permissions according to the following table:

umask Values and Resulting Permissions/or New Files

Files Directories

value permissions value permissions

0 rw- 0 rwx
1 rw- 1 rw-
2 r-- 2 r-x
3 r-- 3 r--
4 -w- 4 -wx
5 -w- 5 -w-
6 --- 6 --x
7 --- 7 ---

umask does not activate execute permission for files.

So, the command

umask 2

or

3 There is also a fourth digit, one that is used to allow certain programs to assume another user ID or group
ID while running. or to to remain in memory even when stopped. Unless you are writing programs like that.
you will have little occasion to use the fourth digit.

~\sun ,~ microsystems
A of 3 January 86

14 Doing More with UNIX: Beginner's Guide

2.6. Ownership

2.7. Modification Time

2.8. Making Links

umask 002

yields pennissions of -rw-rw-r-- for files, and drwxrwxr-x for directories.

The command

umask 22

yields pennissions of -rw-r--r-- for files and drwxr-xr-x for directories.

Only the owner4 of a file can change its permissions. To find out how to change
the ownership or group ownership of files, refer to Using the Network.

The modification time indicates the most recent time that the file has been edited,
or appended to. You can change a file's modification time, without affecting its
contents, with the touch command.

touch filename

Touch does not alter the contents of filename, but rather, resets the modification
time to the current date and time. If the file does not exist already, touch
creates it.

A link is a name associated with a file. UNIX allows several links to a file at any
one time. So, the same file can have more than one name. This is useful when
you want to get at a file quickly from within different directories. When you
create a file, the system makes the first link, or filename, for you. To make an
additional link, use the In command.

In oldname newname

If you attempt to make a link to a file in a directory that is on a different disk or
disk partition than that of newname , you will get an error message of the form:

newname: Cross-device link

In this case, you can use the -8 option of In to make a symbolic link to the file.

In -s oldname newname

A symbolic link is an entry in the directory that points to the name of another
file, rather than the file itself. A symbolic link can be made across devices, and
can be made even when oldname does not exist. Because a symbolic link refers
to another file's name, rather than the file itself, it may be to your advantage to
use a symbolic link instead of a regular link when you want to specify an alter­
nate patbname to the same file.

Both regular (hard) and symbolic links allow you to use newname instead of old­
name to gain permitted access to a file. But, neither a regular (hard) link nor a
symbolic link changes the ownership, group, or permissions of a file. So,
although you can make a link to a file that you can't read, you still won't be able

4 or the superuser , described in Chapler 5

A of3 January 86

2.9. Seeing File Types with
Is -F

Chapter 2 - More About Files 15

to read its contents, whichever name you use.

The -F option of Is appends a character to the end of each filename to indicate
what type of file it is, as follows:

Table 2-4 Is -F File Type Indicators

2.10. Encrypting Files

Remember to remove the unen­
crypted version, or your secrets
may not keep!

tag type of File

(none) normal file
/ directory

* execute access allowed
@ symbolic link

You may find it useful to place an alias in your. cshrc so that Is is replaced
with Is -F:

alias Is 'ls -F'

You can use cryptS to encode the contents of confidential files. To encode a
file named secret. plans, use the following command:

(
mars% crypt < secret.plans > crypt.plans]

,---. -----------"

The angle brackets are required. The > should be familiar to you. The < is
explained in Chapter 3.

crypt then asks you for an encryption key. This key is necessary for crypt to
do its work, and like your password, you must remember it if you want to read
your file once again.

Key:

You can also use crypt to decode a file:

mars% crypt < crypt.plans > decoy.plans
Key:

decoy. plans will contain the text you started out with.

If you want to look at the decoded contents, a command of the form:

crypt < crypljUe I more

will, after asking for the key, display them on the screen.

You can edit the contents of an encrypted file using the -x option of vi.

5 UNIX encryption facilities are only available to customers within the United States of America.

~\sun ,~ microsystems
A of 3 January 86

16 Doing More with UNIX: Beginner's Guide

2.11. Searching Through a
File with more

2.12. Using pushd, popd
and dir s to Change
Directories

[

mars% vi -x crypt.p1ans]
Enter key:

'--------~

Whenever you issue the w, or write, command, vi runs the file through crypt.

There are times when you need to look up something in a long file, but grep
won't do because you need to see a whole paragraph or screenful of information,
rather than just one line. If the file is very long, stepping through it a screenful at
a time with more may take too much time. So, more allows you to search for a
string within a file. Instead of typing a I SPACE I to see the next page, or
a [RETURN I to see the next line, you can type in a slash (I), followed by a
string, and more will skip ahead to a screenful containing string.

mars% more decoy.p1ans
...
... more5% ... \

/picnic
Skippin2 ... 1

...
up to the cabin, where we will
have a picnic lunch.
Afterward we could take a swim, and then sip
some sangria.
...
... more 85% ... \

To skip to the next occurrence of that same string, use n.

When using more to look at several files, the command: n will skip to the next
file.

Sometimes, when you are traveling through a variety of directories, you may find
that you want to backtrack. Of course, cd, doesn't remember where you've
been. So, unless you do, backtracking can be painful. pushd, popd and dirs
allow you to stack up a list of directories to revisit.6 When you are in a directory
you'll want to return to, rather than using cd, you can use the

pushd directory

command to change directories. Unlike cd, you must specify a directory, even
when changing to your home directory. pushd changes to the new directory,
while keeping track of the directory you changed from and to.

If you want to jump back to a previous directory, you can use the

6 These commands only work with the C-Shell. Refer to Chapter 4. The C-Shell, for more infonnation.

A of 3 January 86

Chapter 2 - More About Files 17

popd

command to work your way back.

If you want to see the list of directories you've stacked up, the

dirs

command will show it to you:

mars% pushd -
- -/env
mars% pushd wwu
-/wwu - -/env
mars% {LBdirs
-/wwu - -/env
mars% popd
- -/wwu

dirs, with the -1 option, displays the full pathnames stacked directories:

[

mars% dirs -1
/usr/sam /usr/sam/wwu

~~sun ~~ microsystems

]

A of3 January 86

3
More About Commands

More About Commands .. 21

3.1. Redirecting Output, Redirecting Input, and Pipes .. 21

Redirecting Output ... 21

Redirecting Input .. 22

Pipes and Pipelines .. 23

Filters ... 23

Using the tee Command .. 25

Redirecting the Standard Error ... 26

3.2. Escape Character, Quotes, Separation and Continuation
Symbols ... 27

3.3. grep and grep Search Patterns ... 27

3.1. Redirecting Output,
Redirecting Input, and
Pipes

Redirecting Output

3
More About Commands

Commands perfonn actions, typically on data contained in a file. Unless you
indicate otherwise, they nonnally display their results on the tenninal screen.
The tenninal is known as the command's standard output.

Because UNIX commands treat files and devices in a uniform way, you can direct
the output of a command to any file or device that you choose.

Unless you indicate otherwise, commands nonnally operate on data as you type
it in from the keyboard. So, the tenninal is known as the command's standard
input. Finally, you can use the output of one command as direct input to
another, using a special connection symbol called a pipe.

As you learned in Getting Started With Unix, a right angle-bracket (» 7 on the
command line indicates that the next word is the name of a file or device in
which to place, or redirect the output of a command. For instance, the command
line: 8

(mars% 1s -1a > 1ist

places the output of the Is -la command (a detailed list of all files, including
hidden files) in a file named Ii st.

J

CAUTION Ifa file by that name already exists, any previous contents are deleted before
the command is performed.

So, the command

cat will.be.empty > will.be.empty

removes all existing contents from the file will.be. empty.

To avoid writing over existing files, add a line with the command

set noclobber

to your. cshrc file if one isn't there already.9 Then type in the command: 10

7 may be pronounced as "into"

9 Refer to Setting Up the UNIX Environment for more information about this file.

~\sun ,~ microsystems
21 A of 3 January 86

22 Doing More with UNIX: Beginner's Guide

Redirecting Input

added using Is -la >

added using Is »

[

mars% source .cshrc]

~ma_r_s% ____________________________ ~

When you are certain that you want to overwrite the previous contents of a file,
using a >! overrides this file protection.

You can append, or 'add to the end of' a file using a double-right-angle-bracket
(»).11 Thus, the command12

(mars% ls » list]
adds a second version of output from 1 s (containing just the names of nonhidden
files) onto the end of list.

Just as you can redirect the output of a command, you can also specify a file (or
device) from which that command obtains its input.

You can use a left angle-bracket «)13 to redirect the standard input of a com­
mand. For instance, the following command prints the contents of the file 1 i st.

mars% cat < 1ist
drwxr-xr-x 3 sam 512 Jul 29 23:11 ./
drwxrwxrwx 4 sam 512 Jul 19 12:17 .. /
drwxrwxrwx 2 sam 512 Jul 26 18:52 sees/
-rw-r--r-- 1 sam 77293 Jun 27 15:36 esh.1
-r--r--r-- 1 sam 21773 Jul 24 16:43 files
-rw-r--r-- 1 sam 0 Jul 29 23:11 list
lrwxrwxrwx 1 sam 8 Jul 8 16:40 outline -> .. /wwu.b
-rw-r--r-- 1 sam 3557 Jul 12 18:59 philos
-rw-r--r-- 1 sam 82 Jul 24 16:43 pie.sre
-r--r--r-- 1 sam 1381 Jul 12 15:50 preface
sees/
esh.1
files
list
Qutline@
philos
pic.sre
preface

10 If using windows, type this source command in each shelltool or cmdtool window, so that the
change will take effect in the C-SheU running within each.

11 may be pronounced as "onto"

12 With noclobber set. a file must already exist before the standard output can be appended to it Using a
> >! overrides this.

13 may be pronounced as "from"

A of 3 January 86

Pipes and Pipelines

A less efficient way to accomplish
would be:

1 s -1 > filename
grep lrwx <filena.me
rm filena.me

Filters

Is is not a filter, because it doesn't
accept data from the standard input.
Neither is date. As you might
expect, the command Is I date

Chapter 3 - More About Commands 23

Most commands allow the input file to be specified as an argument. You could,
for example, produce the same display with the command:

(mars% eat list

However, other commands, such as crypt, require use of <, the input redirec­
tion symbol.

)

The output of one command can be fed in directly as input to another. A set of
commands strung together in this way is called a pipeline, and the symbol for
this input/output (I/O) connection is a vertical bar (I),14 called a pipe. Pipes and
pipelines have a wide variety of uses.

For example, suppose you wanted only to list symbolic links in the directory.
You can combine Is and grep to get the result you want. The pipeline

Is -1 I grep lrwx

will do the trick, as will the pipeline

Is -F I grep @

There is no filename following grep because the pipe symbol indicates that
grep is to search through its standard input, which in this case is the output of
Is.

You can connect several commands to make longer pipelines. For instance, the
command line:

[

mars% ls -1 I grep lrwx I we
, 1 10 65]
uses wc (word count) to display the number of lines, words, and characters,
respectively, in the list of symbolic links culled from the output of Is by grep.
Since wc received only one line from grep, there was only one symbolic link in
the directory.

The ability to 'cook up' intricate commands on the s~t is a very special feature
')

of the UNIX system, and one that becomes increasingly useful as you continue to
experiment and learn.

Commands like grep are called filters . They accept text as input, transform it
in a straightforward way, and produce text as output. Although often used as
commands in their own right, filters are especially useful in pipelines.

14 may be pronounced as "through"

A of3 January 86

24 Doing More with UNIX: Beginner's Guide

produces only the date, since
date ignores its standard input.
What does date I Is produce?

The command

look string

looks up words (in the system dic­
tionary) whose leftmost characters
match string. The command

look a

will display all words starting with a.
To further restrict the seach, add
more characters.

more is another type of filter. It transforms the data by breaking it up into
screen-sized chunks. Some other interesting filters are:

head -n

tail -n

tail +n

displays the first n lines of a file. With no -n argument, it
displays the first ten lines.

displays the last n lines. With no -n argument, it displays the
last ten.

skips to line n and displays that line through the end of the file.

more n+/pattern"

cat -v

sort

sort -n

fmt

rev

pr -t -n

spell

sed

like t ail, this command begins printing two lines before the
first match for pattern, which can be either a string or a grep
search pattern (described below under grep and grep Search
Patterns).

translates nonprinting characters into strings of regular charac­
ters of the form ... c (for control characters), or M-c (for 8-bit
characters).

display the line in alphanumeric order, or according to an order
you specify. Refer to sort in the Commands Reference Manual
for more information.

sort in numerical order.

does rudimentary formatting of text.

reverses the order of characters within each line.

breaks up the output into n columns. The -t option suppresses
a heading that would otherwise appear.

produces a list of possibly-misspelled words.

performs simple edits on a line-by-line basis. For instance, the
alias:

alias grep 'grep \!* I sed "s/:/: I"'

Improves the appearance of grep output by substituting a
"colon-plus-three-spaces" for the first "colon" on a line (if
any). Compare:

mars% grep liB e" *
c.shell:.H C "The C-Shell"
commands:.H C "More About Commands"
files: .H C "More About Files"
intro:.H C "Introduction"
manag: .H C "Managing Your Files"
preface:.UH C "Preface"
printr:.H C "More About Printing"
proc:.H C "Processes and Other Users"

with:

A of 3 January 86

Example of Filters in Action

Using the tee Command

Chapter 3 - More About Commands 25

mars% al.ias qrep 'grep \!* I sed "s/:I: I'"
mars% grep "H e" *
c.shell: .H C "The C-Shell"
commands: .H C "More About Commands"
files: .H C "More About Files"
intro:
manag:
preface:
printr:
proc:

.H C "Introduction"

.H C "Managing Your Files"
.UH C "Preface"

.H C "More About Printing"
.H C "Processes and Other Users"

Or, you could get fancy and use a crA1D rather than three spaces for better
alignment. Refer to Using UNIX Text Utilities for more infonnation about sed.

One clever trick is to create a rhyming dictionary of words using filters and the
system dictionary:

mars% rev lusr/dict/words sort I rev I pr -t -3 I more
St. UK Elba
NCAA BTL alba
FAA TTL samba
NOAA SIAM marimba
ABA IBM Zomba
MBA ACM Manitoba
YMCA CACM Cuba
RCA JACM Hecuba
YWCA SCM scuba
FDA FM Aruba
ERDA GM tuba
USDA NM catawba
CIA PM Ithaca
USIA RPM portulaca
UCLA ASTM Dacca
AMA CERN Decca
BEMA USN Mecca
... more ... 1

As noted above, rev reverses the character order of each word. Since each word
appears on a line by itself in the system dictionary, rev reverses the order of
characters in each word. sort then sorts the words in order of (what was) their
last character. A second pass through rev reverses the characters in each word a
second time so that they read correctly, and you have the makings of a rhyming
dictionary! Piping this through pr and more, yields a more readable display.

Suppose that you want to send duplicate output both to the tenninal screen, and
to a file for future reference. When placed in a pipeline, the tee command lets
you direct output to more than one destination. For example, the pipeline

A of3 January 86

26 Doing More with UNIX: Beginner's Guide

Redirecting the Standard
Error

(mars% 18 -1 I grep 1rwx I tee new1i8t

displays the list of symbolic links on the screen and creates a file newlist that
contains a copy of this information as well.

With the -a option, tee appends the data onto named files that already exist.
So the command:

(mars% 18 -1 I grep 1rwx I tee -a new1i8t

adds this information to newlist once again (displaying it on your screed as
well).

When a command perfonns without problems, it produces results on its standard
output. When that command encounters a problem, however, it uses a different
channel to send error messages, or diagnostic output, to the terminal. This
second channel, called the standard error, can also be redirected.

]

)

You can redirect the standard error to the same destination as the standard output
by appending an ampersand (&) to the output redirection symbol.

> & sends both standard and diagnostic output to a destination file. 15 > > &

appends the output to the file. I & includes both types of output as input to the
next command in the pipeline. .

If you want a command to perform silently, that is, to display no output of either
kind, you can redirect its output to / dev/null, the system "wastebasket."

co~nd >& /dev/null

To separate the standard error from the standard output, use a command line of
the form: 16

(co~nd > outfile) >& errorfile

When you want to force output to appear on the terminal, you can redirect it to
/ dev / tty, (a synonym for) the name of the terminal.

co~nd >& /dev/tty

So, the command

mars% (nroff /usr/dict/words > /dev/nu11) >& /dev/tty

throws away any formatted output and displays only the error messages produced
by nroff (if any). This construction can save you time when testing long-

IS The Bourne shell uses the symbols: 2> & 1 to accomplish this.

16 In the Bourne shell:
command > outfile 2> e"orfile

A of 3 January 86

3.2. Escape Character,
Quotes, Separation and
Continuation Symbols

The echo command simply repeats
its arguments on its standard out­
put.

3.3. grep and grep Search
Patterns

Chapter 3 - More About Commands 27

running commands.

To indicate that a special character or symbol is to be taken as literal text, pre­
cede it with a backslash (\). By prepending the backslash, you escape the spe­
cial meaning of the symbol.

You can use double quotes (") to surround text that you want to be interpreted as
one word. You can also use single quote marks (') to surround text that you want
to be interpreted literally (no filename substitution, for instance).17 In either case,
you may still need to use a backslash to treat symbols (such as &, !, $, ?, and \)
within the string as ordinary characters.

To place more than one command on a single command line, separate them with
a semicolon (;). For instance:

mars% echo The Scar1et Letter > tempfi1e ; r.m tempfi1e

puts the words The Scarlet Letter into tempfile, and then removes
that file. To continue a command onto the next line, use a backslash to escape
the [RETURN] key.

mars% rev /usr/dict/words I \
sort I rev > rhymes

produces the rhyming dictionary described above. The terminal displays the car­
riage return, but the system ignores it

You can use grep to search for patterns much like those you are familiar with
from Filename Substitution.

Although the action is similar to that of filename substitution, the way you
specify search patterns is different. Because they search through lines of text,
grep search patterns, or regular expressions 18 cover a broader range of text pat­
terns than those for filename substitution, and they have a different syntax .19

Some characters with special meaning to grep also have special meaning to the
system and need to be quoted or escaped. So, whenever you use a grep regular
expression on the command line, surround it with quotes, or escape such charac­
ters as &, !, ., *, $, ?, and especially \, with a backslash.

Within a regular expression, dot (.) matches any single character (like? in
filename substitution). So the command,

17 Within single quotes. neither filename substitution. nor other forms of substitution to be described in
Chapter 4. are applied.

18 The name grep is derived from the ed search and print command:
g /regWar-eexpresswn/p

19 Although not a formal definition. you can think of the syntax of a command or argument as a rule for
typing it in correctly.

A of3 January 86

28 Doing More with UNIX: Beginner's Guide

Table 3-1

(~m_a_r_s_~_o_g_r_e_p ___ '_.b __ ' __ l_i_st ______________________________________ --J)
matches all lines in which b is preceded by a character. In effect, this matches
all lines containing b, except when b is the first character on the line.

A caret (A) anchors the pattern to the beginning of the line. So the command

[mars% grep '-b' list

matches any line starting with b. A dollar-sign ($)
anchors the pattern to the end of the line. The command

[mars grep '-b$' list

matches any line in which b is the only character.

Bracketed lists and ranges work just as they do for filename substitution, but the
asterisk (*) doesn't. When the asterisk follows a character, grep interprets it as
'zero or more instances of that character'. When the asterisk follows a regular
expression, gr ep interprets it as 'zero or more instances of characters matching
the pattern'. To match zero or more occurrences of any character, use

*

Suppose you want to find lines in the text that have a period in them. Preceding
the dot in the regular expression with a backslash (\) tells grep to ignore
(escape) its special meaning. The expression

A\.

matches lines starting with a period, and is especially useful when searching for
nroff fonnatting requests.

grep Search Pattern Elements

character matches:
A The beginning of a text line.
$ The end of a text line.

Any single character (like? in filename substitution).
[...] Any single character in the bracketed list or range.

[~ ...] Any character not in the list or range.
* Zero or more occurrences of the preceding

character or regular expression. (Not like filename
substitution.)

* Zero or more occurrences of any single character.
Equivalent to '*' in filename substitution.

\ Escapes special meaning of next character.

Going back to the rhyming dictionary, we can now use grep to produce an alli­
terative list of rhyming words starting with a:

)

)

A of3 January 86

Chapter 3 - More About Commands 29

mars% rev /usr/dict/words I sort I rev I grep " a" \
I pr -t -3 I more
a anthropomorphic apocalyptic
amoeba anorthic antagonistic
alba acyclic anachronistic
armada angelic autistic
addenda alcoholic atavistic
agenda
anaconda
althea
azalea
area
alfalfa
alga
... more ... l

apostolic
acrylic
aerodynamic
academic
algorithmic
astronomic
autonomic

agnostic
acoustic
attic
aeronautic
astronautic
analytic
arc

Refer to grep in the Commands Reference Manual for more information about
regular expressions and the grep family of commands.

~\sun ,~ microsystems
A of 3 January 86

4

The C-Shel1

The C-Shell ... 33

4.1. Overview .. 33

4.2. History Substitution and Command-Line Editing .. 34

Reviewing Commands ... 34

Repeating Commands .. 35

Command Line Editing ... 36

Selecting Words Within Events ... 36

Modifying Selected Words and Events .. 37

4.3. Amazing Aliases .. 37

Escaping an Alias ... 38

4.4. Variable Substitution ... 38

Storing Lists in C-Shell Variables .. 39

Processing Lists with foreach .. 40

Predefined Variables ... 41

Environment V ariables .. 42

4.5. Command Substitution ... 42

4.6. Job Control .. 43

4.1. Overview

Although the shell waits before issu­
ing a prompt, the terminal allows
you to type ahead. That is, the ter­
minal displays what you type and
passes each line along when the
shell (or interactive program like vi)
is ready for it.

Figure 4-1

4

The C-Shel1

When you type in a command, you can expect certain things to happen. By now
you know that if you misspell a command the system replies with an error mes­
sage. You then get a new prompt so that you can try again. When you type in the
command correctly, the system waits for it to finish before giving you another
prompt (unless you put it in the background with an &).

Of course, these things don't just happen by magic. A program, called a shell
accepts and interprets what you type, passes your interpreted commands on to be
performed, and waits for each to finish before proceding to the next.

There are two shells available on the Sun Workstation, the C-Shell, and the
Bourne shell. The C-Shell has convenient features for interactive use, and we
assume that you are using it for this purpose. The Bourne shell has fewer con­
veniences, but runs faster, and has a simpler syntax for writing command rou­
tines, called scripts.

The system starts a shell whenever you log in or create a terminal with
shell tool. Technically speaking, the C-Shell is known as a command inter­
preter . You can think of the C-Shell as a layer of software between you and the
system's internal workings.

D C-SheU (lbin/ csh) (

The C-Shell and Commands

. . . . _._ e.-
.. . .

System Internals (kernel)

33 A of3 January 86

34 Doing More with UNIX: Beginner's Guide

4.2. History Substitution and
Command-Line Editing

Add this command to your. cshrc
file if it isn't already there.

Reviewing Commands

Filename substitution is one example of how the C-Shell interprets what you
type. When you use the * wild card, the C-Shell compares it against entries in
the directory and builds a list of filenames that match. It then replaces the wild
card with the list, sending this expanded version of the command you typed on to
the control of the system's internal scheduling mechanisms.

The way the C-Shell performs alias substitution is another example. When you
type in an alias, the C-Shell recognized it as such, and replaces it with the more
complex command or, expansion that you have assigned to it.

A shell is an interactive program just as are Mail and vi. You can switch to a
new C-Shell, just as you can switch to vi by typing in the csh command. To
escape such a subshell use (CTRL-D I or exit.

You can run a command within a noninteractive C-Shell by placing it within
parentheses on the command line. You have already seen an example of this in
More About Commands, where a subshell is used to separate the standard output
from the standard error:

(command > outfile) >& errorfile

The C-Shell provides features that you can use to further simplify entering of
commands. In addition to repeating previous commands, you can use the his­
tory mechanism to modify them. You can put "placeholders" within alias
definitions to simplify complicated commands and pipelines. And, you can
define variables to stand for long strings or lists of words.

These and other features make the C-Shell easy to work with and easy to custom­
ize.

The C-Shell keeps a list of previous commands that you have typed in. The
history variable determines the length of this list.

To set or change this variable, use a command of the form:

set history=n

where n is the number of commands to remember.

To see the list of previous events, or command lines, type history after the
prompt.

mars% history
1 Is
2 cd
3 grep -v done tasklist
4 history

~) sun Aof3January86
~ microsystems

Repeating Commands

Chapter 4 - The C-Shell 35

As you learned in Getting Started With UNIX, you can repeat the most recent
event by typing in two exclamation points (! !), The history mechanism lets you
repeat any command in the events list by typing an exclamation point, followed
by its command line number,

!n

for example:

[

rnars% !3 1
:,r_,e_p __ -_v __ d __ on __ e __ t_a_s_k_l_i_s_t __________________________________ --~

You can specify the n 'th command back,

!-n

as in:

]
You can repeat an event by typing an exclamation point, followed by the first few
characters that match it,

!str

The history mechanism performs the first match it encounters, You may have to
add a few characters to get the desired event, In this example,

rnars% history

11 cd
12 Is -1 old
13 In -s old/stuff new
14 history
rnars% !1
In -s old/stuff new
... c

Because the user typed in too few characters to specify the event precisely, ! 1
matched the most recent event beginning with 1, namely In, (even though this
wasn't the event desired), The observant user interrupts it, and then types in ! Is
to match the desired event:

[

rnars% !ls 1
Is -1 old

'--------

A of 3 January 86

36 Doing More with UNIX: Beginner's Guide

Command Line Editing

Selecting Words Within
Events

Sometimes it's easier to match against a string of characters embedded within
the the event. To repeat a command in this way, use:

! ?str?

where str is the embedded string to search for. For example:

[

mars% ! ?stuff?
,In -s old/stuff new

A word on the command line that begins with an exclamation is referred to as an
event designator. An event designator can stand for a previous command, or
selected words from a previous command line.

]

You have already seen how to edit the previous command using quick substitu­
tion ('" old'" new"). And, you have seen how to repeat the last word of the previ­
ous command (! $). The history mechanism provides you with the means to
select any word from any event in the history list, and to modify it. In some
cases, it can be easier just to type the new command directly. But in many cases,
command line editing can save you time and keystrokes.

You can place a : p on the end of an event designator or quick substitution to
prevent the expanded command from being performed. The shell interprets the
command, echos it, and places it in the history list. This gives you a chance to
look at the expanded version before actually running it. If it checks out, you can
use!! to run it. Otherwise you can do successive edits using

"old"new'" :p

until you get it just right

Suppose that you want to apply several commands to a long list of files, and you
don't want to have to retype the list every time. ! * repeats all arguments to the
previous command (all but the first word of the command line). ! '" expands to
the first argument. If the last command was

echo first

! '" would expand to first. !: n expands to the n'th argument (n+l'th word).

You can select a specific word from a specific event by appending a word desig­
nator to its event designator. A word designator has the form of a colon, fol­
lowed by a character. : * expands to all arguments in the event. Using the his­
tory list above,

grep !?stuff?:*

expands to,

grep -s old/stuff new

a command that doesn't say very much when it works.

~\sun
~ microsystems

A of 3 January 86

Modifying Selected Words
and Events

4.3. Amazing Aliases

Chapter 4 - The C-Shell 37

: $ expands to the last argument of the selected event. : ~ expands to the first
argument. : n expands to the n 'th argument.

You can edit the text of an event or word by appending an event modifier to it. A
modifier starts with a colon, followed by one or more characters that indicate the
actions to perfonn. : s laId I new I substitutes new for old in the first word
where there is a match for old. When inserted between the colon and the
modifier, a g indicates that the modifier applies to all designated words. So,

grep !?stuff?:*:qs/s/N/

expands to

grep -N old/Ntuff new

which results in a scan for the string - N, a 'file not found' message, and a list of
occurrences of -N in the file 'new'.

As mentioned above, : p indicates that the event or word is to be expanded and
echoed, but not perfonned. You can place several modifiers in an event or word
designator. For instance:

grep !?Ntuff?:*:qS/N/S/:p

is echoed as

grep -S old/Stuff new

but not performed.

For more infonnation about event designators, word designators, and event
modifiers, refer to Appendix D, C-Shell Special Characters.

You can use escaped event and word designators within alias definitions to
create aliases for complicated commands and pipelines. When you use the alias
as a command, the escaped event designator (such as \ ! *) is replaced by com­
mand line arguments that you then type in. For instance, you might want to
create an alias for a pipeline to format and then print a file.

An alias for nraff with the proper options is easy, because no characters fol­
low the arguments you supply when using it:

mars% alias for.mat 'nroff -ms'
mars% for.mat filel file2

formatted text appears

But, if you want to get the the formatted output to the printer with the same com­
mand, you must supply a pipe symbol, followed by Ipr. Rather than having to
type these characters in every time, you can use the event designator \ ! * within
the definition to stand for all arguments to nraff. When you actually run the
command, the C-Shell replaces the placeholder with any words that follow
pr in t on the command line.

~\sun ~ microsystems
A of3 January 86

38 Doing More with UNIX: Beginner's Guide

An event designator can be used
more than once within an alias
definition.

Escaping an Alias

4.4. Variable Substitution

mars% alias print 'nroff -ms \!* I lpr &'
mars% print filel file2
[1] 2832

vrinted outDut comes out of the Drinter later on 1

This alias has the added benefit of running both nroff and Ipr in the back­
ground.

You can also use the command-separation symbol ; to create aliases that per­
fonn several commands in succession.

mars% alias rw 'chmod +rw \!* ; ls -1 \!*,
mars% rw filel file2
-rw-rw-rw- 1 user 1699 Jul 23 13:32 file1
-rw-rw-rw- 1 user 1023 Jul 20 10:18 file2

Another alias that is quite useful tells you which directory you've changed to
whenever you use cd:20

alias cd 'cd \!* ; pwd'

To run the unaliased version of a command, precede the name of that command
with a backslash:

mars% rm test
rm: remove test? AC
mars% alias rm
rm -i
mars% \rm test
mars%

A variable is a named location in which to store text that you'd like the C-Shell
to remember for you. You can use the set command to associate a variable
name with a word to remember. A placeholder, composed of a dollar-sign ($),
followed by the name of a variable, is replaced with the contents of that variable
by the C-SheU. Thus, you can use a variable name, preceded by a $, as an abbre­
viation for its contents.

To assign a value to a variable, type in a command like:

[mars% set testdir = -/programs/test)
20 Although you could use \ ! : 1 instead of \ ! : * (since cd gives an error message when used with more

than one argument), it is simpler to figure out what is going on if your aliases preserve, as closely as possible,
the original behavior of commands they replace.

~~sun ~if' microsystems
A of3 January 86

Storing Lists in C-Shell
Variables

These directories contain source
files, and formatted versions,
respectively, of Section 1 of the
online Manual Pages.

Chapter 4 - The C-Shell 39

To display that variable's contents:

[

mars% echo $testdir
. - /programs/test

Suppose that you are working with files in two directories, each with very long,
and very different pathnames:

/usr2/sam/sources/gfx/lines/module3
/usr/bin/c/gfx/lines/module3

You can abbreviate these pathnames as follows:

set src /usr2/sam/sources/gfx/Iines/module3
set bin = /usr/bin/c/gfx/lines/module3

]

Then, when you want to perform commands on files in these directories, you can
use $src instead of /usr2/sam/sources/gfx/lines/module3, and
$bin instead of / usr /bin/ c/ gfx/ line s /modu le3 on the command line:

mars% cd $bin;pwd
/usr/bin/c/gfx/lines/module3
mars% cd $src;pwd
/usr2/sam/sources/gfx/lines/module3

The set command with no arguments prints a list of all C-Shell variables and
their current values. To see the value of a single variable, use a command of the
form:

echo $variable

In addition to single words, you can store a list of words in a C-Shell variable by
enclosing the list in parentheses when you use the set command. One example
of this is the path variable that you set in your. cshrc file. Another might be:

mars% set mdirs = (/usr/man/manl /usr/nan/catl)
mars% echo $mdirs
/usr/man/manl /usr/cat/manl

You can select a specific word from the list by appending an index to the caU21

to the variable as follows:

$var[n]

where var is the name of the variable, and n is a number indicating the position
of the word within the list. Using the above example, the word

21 A call to a variable is the string you use to indicate that what you really want is the value it contains, in
this case the name of the variable preceded by a dollar-sign.

~\sun ,~ microsystems
A of 3 January 86

40 Doing More with UNIX: Beginner's Guide

Processing Lists with
foreach

/usr /man/ catl is the second word in the list. So, the command:

echo $mdirs[2]

displays the value

/usr/man/catl

You can also specify a range:

mars% echo $mdirs[1-2]
/usr/man/manl /usr/man/man2
mars%

But, if you enclose a number in the braces that is higher than the count of words
in the variable, you will get an error message. You can use filename substitution
to simplify entering a list. The command:

set man = (/usr/man/{man,cat}?)

yields the following value:

which is a complete list of all the directories containing Manual Page sources and
formatted files.

The foreach command provides a means to apply a set of commands succes­
sively for every word in a list. It prompts you for a set of commands, uses an
index variable to store the current word while executing each pass through the
commands, and repeats the list of commands once for each word in the list.

The syntax of the foreach command is:

foreach index (list)

where index is the name of the variable, and list is a list of words. After you
type in the I RETURN I, foreach prompts for a command with a question mark.
It continues to prompt for commands until you type the command end by itself
after the question mark. This signifies the end of the loop.22 For instance:

mars% foreach fi1e (*)
? echo -n $file
? echo -n ", "
? end

22 A loop is a set of commands to repeated successively.

A of 3 January 86

Predefined Variables

Chapter 4 - The C-Shell 41

yields a new variation on a very familiar theme, the list of files:

... c.shell, commands, csh.blt, csh.var, ...

You can use variable substitution, as well as filename substitution symbols
within the list.23 Using the variable man defined above, the following foreach
loop gives you a count of the source files and then the formatted files within each
section of the Manual Pages. As the loop proceeds, the value of the index vari­
able (written as $dir) changes with each pass.

mars% foreach dir ($man)
? echo -n $dir
? 18 $dir I wc -1
? end
/usr/man/manl 264
/usr/man/man2 118
/usr/man/man3 155
/usr/man/man4 47
/usr/man/man5 49
/usr/man/man6 36
/usr/man/man7 8
/usr/man/man8 108
/usr/man/cat1 264
/usr/man/cat2 94
/usr/man/cat3 154
/usr/man/cat4 47
/usr/man/cat5 49
/usr/man/cat6 36
/usr/man/cat7 8
/usr/man/cat8 108

The C-Shell maintains a set of predefined variables. Some of these, like
noclobber, are used by the C-Shell to affect the way it behaves. Others keep
track of information that the C-Shell needs to know about. home, for instance,
keeps a record of your home directory. If you change the value of home, and
then use cd with no argument, the C-Shell attempts to change directories to that
new value.

mars% set home=/
mars% cd;pwd
mars% set home=nonesuch
mars% cd;pwd
cd: Can't change to home directory.
mars% echo $home
nonesuch
mars% cd -
nonesuch: No such file or directory

23 This also works with the set command .

• \sun ,'fIi microsystems
A of 3 January 86

42 Doing More with UNIX: Beginner's Guide

Environment Variables

Others include:
user and USER,
term and TERM,
shell and SHELL, and
path and PATH

4.5. Command Substitution

echo is a useful command for test­
ing the results of filename, variable,

For a complete list of C-Shell predefined variables and their uses, refer to Appen­
dix E, C -Shell Predefined Variables.

The C-Shell also maintains a set of variables, called environment variables. You
should be familiar with them from reading Setting Up the UNIX Environment:
Beginner's Guide. Environment variables are passed along to any commands or
sub shells. They are created and modified using the setenv command, which
has a different syntax than that of set.

setenv name value

There is no equal sign between the name of the variable and its value, as there is
with set. And, only one word (or string within quotes) can be assigned to an
environment variable.

Environment variables are passed to all commands and programs run from within
the current shell. C-Shell variables are only effective within the current shell.

Typically, the names of environment variables are given in all capitals. In some
cases, there is a lower-case equivalent used by the C-Shell.

The environment variable HOME is such a case. When you use the set com­
mand to change the value of the (home) shell variable, the equivalent environ­
ment variable is also changed. When you use setenv to change the environ­
ment variable, however, the value of the home shell variable is not affected:

mars% set home=bogus
mars% echo $home
bogus
mars% echo $HOME
bogus
mars% setenv HOME /usr2/sam
mars% echo $home
bogus
mars% echo $HOME
/usr2/sam
mars% set home=/usr2/s~

To get a list of all environment variable and their current values, use the com­
mand printenv.

The term command substitution is a bit misleading. A better term would be out­
put substitution, because it allows you to use the output of other commands as
arguments on the command line.

When you surround a command with backquotes (') anywhere on the command
line the C-Shell starts a subshell, executes the command within the sub shell , and
substitutes the resulting output for the backquoted text.

A of 3 January 86

and command substitution.

4.6. Job Control

Because each window runs with a
different shell, you can't use job
control to inquire about jobs started
from different windows.

mars% echo '18 -1 I head -1'
total 20
mars% "'_1'·

echo 'ls I head -1'
News
mars% "'echo"'chmod 775'"
chmod 775 'is I head -1'

Chapter 4 - The C-Shell 43

UNIX is a multitasking operating system. This means that it can keep track of
several users and their commands simultaneously. The system also allows you to
run several commands at once by placing them in the background. The C-Shell
provides you with the means to inquire about, stop, or bring to the foreground
any job started through it.

To see how job control works, start a background job that won't finish until you
tell it to:

[
mars% vi test & J

. [1] 4001 .

The [1] is the job number. The 4001 is a process number that you can ignore
for now.24 In this case, number 1, running vi, is the only job that is either
stopped or running in the background. When v i attempts to write its startup
message to the terminal, it does not succeed because control of the terminal
belongs to the C-Shell. So, v i stops, and waits for you to give it access to the
terminal. The C-Shell reports any change in the status of jobs under its control,
so you see a message that looks like:

[1] + Stopped (tty output) vi test

when the C-Shell issues the next prompt. Notice the plus sign. This indicates
that the job is current, meaning that it is the most recent job to have stopped. A
minus sign indicates that a job is next. When the current job is finished, a job so
marked will become current.

To give a job access to the terminal, or 'bring it into the foreground', type in

%n

where n is the job number. If you omit the job number, the C-Shell brings the
current job forward. When you stop an interactive program like vi, it waits,
under job control, for you to start it running again. So, if you want to stop in the
middle of vi without losing your place, you can type a I CTRL-Z I. vi stops, and
the C-Shell resumes control of the terminal until you type in a %.

r mars% %1]

(~th_e_s_a_~ __ V_i_s_cr_e_e_n_c_O~ __ S __ UP __ 1 ______________________________________ _

24 Processes are described in Chapter 5, Processes and Other Users.

A of3 January 86

44 Doing More with UNIX: Beginner's Guide

Exiting With Stopped Jobs

To stop the job once again, type in a I CTRL-Z J.

Vl screen J

Stopped

mars%

Stopping a job and resuming it can be useful when you have large programs
(such as nrof f) running, and you need to do something quickly. Rather than
opening a new shelltool or cmdtool, or waiting for the big program to
finish, you can stop (or suspend) it temporarily, perform your urgent task, and
then resume the big program from where it left off.

To see what jobs are either stopped or running in the background, type in jobs.

To indicate that a stopped job should continue to run in the background, type in

%n &

mars% nroff -ms hugefi1e vastfi1e I 1pr
.... z
Stopped
mars% jobs
[1] - Stopped (tty output) vi test
[2] + Stopped nroff -ms hugefile vastfile

mars% %2 &
[2] nroff -ms hugefile vastfile I lpr &

mars%

To abort a background job, use a command of the form:

kill %job

where job is the number of the job to kill.

[
m[a

1
r] s% ki11 %1

, Terminated vi test

If you try to exit a shell while a job is stopped, you get the warning message:

There are stopped jobs.

A second logout will then log you out (but its a good idea to see what's back
there with jobs before you exit).

]

~\sun
~ microsystems

A of 3 January 86

5
Processes and Other Users

Processes and Other Users ... 47

5.1. Processes ... 47

Tenninating a Process with kill .. 48

Timing Processes .. 49

Running a Command at a Later Time with at.. 50

5.2. Other Users .. 50

Users Currently Logged In .. 51

Changing Identity with su .. 53

Becoming root, the superuser .. 53

5.1. Processes

5
Processes and Other Users

After each command is interpreted by the C-Shell, UNIX creates an independent
process, with a unique process ID number (PID), to perform it. 25

The system juggles its time and resources amongst the various processes
currently running, and uses the PID to track the progress, current status, the
amount of time and the percentage of available memory each process uses.

The C-Shell passes its environment variables26 (created by the setenv com­
mand) and their values along to the processes it starts. These are known as child
processes. A child process may also create new children of its own.27 In general,
when a process creates a child, it waits for the child to finish before proceeding
with its own tasks. As each child process completes its work, it sends an exit
status number, or return code to its parent process. Most programs that finish
normally exit with a return code of o. Programs that encounter errors typically
exit with a status of 1 (or some other number).

To see what processes you have running, use the ps command. In addition to
showing the PID for each process you own (created as a result of a command you
typed in), ps also shows you the terminal from it was started, its current status
(or state), the cpu time it has used so far, and the command it is performing.

mars% ps
PID TT STAT TIME COMMAND

2649 co IW 0:23 suntools
2650 pO IW 1:12 shelltool -C

2651 pO IW 0:06 -bin/csh (csh)
6006 pI R 0:02 ps
2655 p2 S 34:32 shelltool
2659 p2 IW 0:50 -bin/csh (csh)
6000 p2 R 0:05 vi proc

The table below should help decipher the display.

2S Technically speaking, a process is an area in memory that contains a copy of the program indicated by
the command you typed in, along with any data from the files you supplied as arguments (or from your
tenninal).

26 It does not pass along shell variables (created by set).

27 The parent is said to fork a child process.

~\sun ~ microsvstems
47 A of 3 January 86

48 Doing More with UNIX: Beginner's Guide

Table 5-1 Information Displayed By p s

Terminating a Process with
kill

You can pipe ps output through
grep:
ps I grep commarul-name

Column Symbol Meaning
PID process ill number

TT tenninal:
co /dev/console
mn /dev/ttymn

STAT state of the process:
R runnable (running)
T stopped
P paging
D waiting on disk
S sleeping (less than 20 seconds)
I idle (more than 20 seconds)
Z terminated, control passing to parent

W swapped out29

> exceeded soft memory limit
N priority was reduced
< priority was raised

TIME processing time (so far)

COMMAND command being performed

kill provides you with a direct way to stop commands that you no longer want,
even from a shell running on another tenninal or from another window. This is
particularly useful when you make a mistake typing in a command that takes a
long time to run, such as troff.30

To tenninate a process, type ps to find out the process ID.

When you see which process or processes to terminate,
type in kill followed by the PIDs for those processes.

mars%troff -T1p -ms much.too.big.doc
... z
Stopped
mars% ps grep troff
6788 p2 S 34:32 troff -TIp -ms much.too.big.doc
mars% ki11 6788
[1]

mars%
Terminated troff -TIp -ms much.too.big.doc

Use kill -9 to forcefully tenninate a process.

29 Of the various states in the STAT column, IW can be an indication that a process is in trouble. If you find
a process in this state, and if in 5 minutes or so it is still in that state, it is probably a good idea to terminate it
and run the command again (checking to be sure that the command line makes sense and is typed in correctly).

30 t ro f f is a powerful text formatter that can prepare typeset-quality documents like this one .

• \sun
~~ microsystems

A of 3 January 86

Chapter 5 - Processes and Other Users 49

kill will accept either a PID number, or a job number preceded with a % (%1,
for instance) as an argument. You can, however, set up an alias that will search
for a command by name and terminate the first process it finds running that com­
mand:31

alias slay 'set p='pslgrep \!*Ihead -1'; echo $p; kill -9 $p[l]'

Timing Processes

Table 5-2

The first part of this alias (up to the semicolon) searches for the command that
you supply as an argument, strips off all but the first occurrence and stores the
output line in the variable s la y. The second part displays which process it is
about to kill. The third part selects the first word in the variable slay (the PID),
and kills the process with that number.

rnars% view &
[1] + Stopped (tty output) view

rnars% s1ay view
1154 p3 T 0:00 view
rnars%

To keep track of the system resources used by a particular command, type in
time, followed by the command:

rnars% time we fi1e
58 57 536 file
O.Ou 0.2s 0:01 24% l+lk 6+0io Opf+Ow
rnars%

time displays statistics about the command as follows:

Information Displayed By time

Column Explanation

. u user time - -. s system time - -
: elapsed time - --

% cpu time as a percentage of elapsed time --
+ k average shared memory, plus average unshared memory (kilobytes) - -
+ io number of block input operations, plus block output operations - -

yf+ page faults
w swaps -

31 When you desire functions that are more complex than this. such as performing steps repeatedly or
making use of more than one variable. you should consider writing a shell script to perform iL See Appendix F
for information about writing Bourne Shell scripts. or Appendix B for information about C-Shell scripts.

A of 3 January 86

50 Doing More with UNIX: Beginner's Guide

When a command runs for longer than a certain number of cpu seconds (deter­
mined by the time C-Shell variable), these statistics are displayed automati­
cally.

Running a Command at a
Later Time with at

You can take advantage of hours when the system is not heavily used to run large
jobs that require a large amount of system time or memory (like formatting large
documents with troff).

5.2. Other Users

First, create a file containing the command line you wish to run later on:

mars% cat > atfile
troff -ms much.too.large.document
AD
mars%

Then type in at, followed by the time you wish to run the job, and the name of
the file containing the command line(s).

(mars% at 2a atfile
mars%

This command tells the system to start formatting and printing the large docu­
ment at 2:00am. You can use up to four digits to specify the time in hours and
minutes, followed by an a for am, or p for pm.

By now you've realized that to the system you're not just another pretty face.
From the system's standpoint, every user has a login name, an identification
number or userid, a password, a group membership, a user's name or other per­
tinent data, a home directory, and a default shell. This information is kept in the
file / etc/passwd. To find out who can log in to your system, look in this
file.32

mars% more /etc/passwd
root:OXtYHFnkYou3Y:O:10:0perator:/:/bin/csh
daemon:*:l:l::/:
uucp:eXsOqzRjUOS8Y:4:4::/usr/spool/uucppublic:
cindy:Lu8UBYYbPNEpw:26:20:Cindy Smith:/usr2/cyndi:/bin/csh
carter:SQxRMoQbqQOHk:612:20:Jamie carter:/usr2/carter:/bin/csh
jimg:lUvG9UKYOuE/A:1131:60:Julie Gomez:/usr2/jimg:/bin/csh
ben:bAwVM.A6LiXFo:1132:30:Ben Benson:/usr2/ben:/bin/csh
karla:mceurlTqKdcDQ:1172:30:Karla Caracas:/usr2/karla:/bin/csh

---More---I

Fields corresponding to the above categories are separated by colons, and
described in the following table (using the last line above as a sample entry).

]

A of 3 January 86

Chapter 5 - Processes and Other Users 51

Table 5-3 Information Contained in / etc/passwd

Users Currently Logged In

Field Sample

login name karla
encrypted password mceurl TqKdcDQ
user ID number 1172
group ID number 30
commentary Karla Caracas
home directory lusr2/karla
login shell Ibinlcsh

The first line of this file contains an entry for root, the operator of the system.
When logged in as root, the operator can access any file or device on the sys­
tem, perfonn system maintenance, and edit system files such as this. The next
two entries allow for certain networking functions to be performed, and the sub­
sequent lines correspond to individual users.

The system tries to provide equivalent perfonnance to everyone using it. To find
out who is logged in, type who.

mars% who
patti tty07 Aug 29 07:57
alder tty08 Aug 30 09:08
domke tty09 Aug 30 08:44
bartlett ttyOe Aug 30 11:35
jd tty10 Aug 26 11:08
gabe tty13 Aug 30 05:38
jew tty16 Aug 29 15:06
shaw tty17 Aug 30 09:02
dell tty19 Aug 28 16:04
jt tty1d Aug 30 09:19
karla tty1e Aug 30 10:39
sam ttypO Aug 30 12:50 (triton)
jd ttyp1 Aug 29 10:12 (venus)
mars%

who shows you the login-name of each user on the system, the terminal that per­
son is using, when they logged in, and, if logged in from a remote machine, the
name of that machine.33

From time to time, you may want to see what others are doing. The w command
tells you what command is running on each user's terminal. In addition, it shows
you the amount of time since the user last typed something in (idle), the total
CPU time spent by each user so far (JCPU), the CPU time spent by the command
now running (PCPU).

32 If your system uses the yellow pages network services, not all users with access to your system may be
listed in this file. To find out more about the yellow pages and users with access over the network, refer to
Using the Network: Beginner's Guide, or System Administration for the Sun Workstation.

33 See, Using the Network: Beginn.er's Guide for more information about using remote machines.

~\sun ,~ microsystems
A of 3 January 86

52 Doing More with UNIX: Beginner's Guide

mars% w
1:18pm up 4

0.20, 0.00
User tty
qv tty05
patti tty07
alder tty08
domke tty09
bartlett ttyOc
shanda ttyOd
jd tty10
gabe tty13
jcw tty16
shaw tty17
dell tty19
jt tty1d
sam ttypO
jd ttyp1
mars%

mars% ps -au
USER PID
sam 19755
patti 19751
root 19754
jd 18732
alder 19752
shaw 18085
jd 1364
domke 18516
root 19616
jd 356
sam 19626
alder 19753
jd 14061
jew 16334
jd 1360
mars%

days, 2:51, 14 users, load average: 0.32,

login@
8:48am
7:57am
9:08am
8:44am

11:35am
1:02pm

11:08am
5:38am
3:06pm
9:02am
4:04pm
9:19am

12:50pm
10:12am

%CPU %MEM
49.8 10.0
42.4 15.8
4.8 8.3
0.0 0.0
0.0 2.2
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.4
0.0 0.0
0.0 2.7
0.0 1.6
0.0 0.0
0.0 0.0
0.0 0.0

idle JCPU PCPU what
12 54 14 -csh

6:20 26 mail lisa@sunmark
1:57 8 -csh

3:10 22 4 mail
1:40 18 4 -csh

13 7 4 -csh
95:31 2:38 1:18 /usr/ueb/more

6 2:48 11 -csh
2:04 2:38 15 mail
2:55 24 14 vi eco

28:59 18 4 -csh
1 48 8 -csh
1 27 6 w

1:51 5:36 1:07 mail

To get a detailed list of everyone's processes, use the command

ps -au

SZ RSS TT STAT TIME COMMAND
212 140 pO R 0:03 ps -au
366 226 07 S 0:12 vi mail. record
232 114 08 S 0:02 /usr/lib/sendrnail -bm c2
186 0 p1 IW 0:44 mail

70 24 08 S 0:00 pmsg
300 86 17 IW 0:10 vi eco

86 0 10 IW 0:00 /usr/ucb/more
180 0 09 IW 0:00 mail

0 0 p1 Z 0:00 <exiting>
184 0 10 IW 1:13 mail
178 30 pO S 0:03 -csh (csh)

66 16 08 I 0:00 sh -c /usr/lib/sendrnail -bm e2
178 12 p1 IW 0:03 -csh (csh)
180 0 16 TW 0:00 mail
166 12 10 IW 0:00 sh -e /usr/ucb/more

The -a option tells ps to show you infonnation about all processes, not just your
own. The -u option gives a more detailed display that includes the name of the
user who owns the process. The -au option is simply the combination of these
two.34 For infonnation about the remaining columns, refer to ps in the

34 Single-letter options that can be combined like this are sometimes referred to as flags .

• \sun
~ microsystems

A of 3 January 86

Changing Identity with s u

It is usually better to copy such a
file yourself, since you often don't
know the password of another user.

Becoming root, the
superuser

Chapter 5 - Processes and Other Users 53

Commands Reference Manual.

If you know someone else's password, you can temporarily assume that person's
system identity by using the su (superuser) command. A common reason for
doing so is to get access to files that you don't own. Suppose that a colleague has
moved a file into one of your directories that you want to edit:

mars% 1s -1
total 34
-r--r--r--
-r--r--r--
-r--r--r--

1 sam
1 sam
1 jd

1697 Aug
1244 Aug
3623 Aug

2 13:35 env.b
2 13:50 chapter.1
2 13:50 program. source

First, use cp to make a copy of the file. You will own the copy, and can edit it.
To get rid of the version you don't own, switch your userid and delete it:

mars% cp program. source my. source
mars% su jd
Password: ...
mars% r.m program. source
mars%

To revert to your previous ID, enter a I CiRL-D I (or the command logout).

If, after switching use rids, you want to find you who you are logged in as, type in
whoami.

mars% who ami
jd
mars% "'D

mars% who ami
sam

Or, try the command lines:

who am i

or

who mom likes

If you omit the name argument, su attempts to switch you to root, also
referred to as the superuser. When you become the superuser, the last character
of the prompt changes from a percent sign (%) to a pound sign (#) .

• \sun
~ microsystems

A of 3 January 86

54 Doing More with UNIX: Beginner's Guide

mars% su
Password:
marsf

.... D
mars%

As root, you can kill any process running on your machine. You have read and
write privileges on every file on your machine's disk (or disk partition) and you
can change the ownership of these files.35

You must become root to perform system maintenance tasks such as adding
new users, adding new terminals or printers, etc. Refer to the System Administra­
tion for the Sun Workstation for more information on performing these tasks.

3S Files mounted from a remote host belong to that machine. You must be logged in as root on the remote
host to get superuser privileges for files that reside on it. Refer to Using the Network: Beginner's Guide to find
out more about remote hosts and mounted file systems.

A of3 January 86

6

Managing Your Files

Managing Your Files ... 57

6.1. Locating Files .. 57

Looking Up a Command with whereis and which 57

Looking Up a Command's Description with whatis 57

Looking Up Files with find ... 58

Running Commands with f ind .. 59

Looking at File Types with f ile ... 59

6.2. Looking at Differences Between Files with diff 59

6.3. Monitor Changes with sees .. 61

Putting a File Under sees Control (sees create) 61

Which Files are Checked Out? (sees info) ... 62

Recovering the Current Version (sees get) ... 62

Checking a File Out (sees edit) .. 62

Looking at Current Changes (s e e s di f f s) .. 63

Checking a File In (sees delget) ... 63

Backing Out With No Changes (sees unedit) 63

Looking at the File's History (sees prt) .. 63

Comparing Versions (sees seesdiff) ... 64

Restoring a Previous Version (sees get -r) 64

Solving Problems with sees .. 65

6.4. Automating Complicated Tasks with make .. 66

Makefiles ... 67

Running make .. 68

Testing Makefiles .. 69

Defining Macros in the Makefile ... 69

Selecting A Target .. 70

6.5. Managing Disk Storage .. 71

Looking at Disk Usage with df ... 71

Directory Usage and du .. 71

6.6. Making a Tape Archive with tar ... 72

Looking at the Contents of a Tape Archive ... 73

Extracting Files From a Tape Archive ... 73

6.1. Locating Files

Looking Up a Command with
whereis and which

Looking Up a Command's
Description with whatis

6
Managing Your Files

UNIX has good facilities to help you locate files, monitor changes to important
files, and manage your space on the disk.

To locate a file in the file system hierarchy, you may need to know its absolute
pathname. When trying to locate a file, chances are that you are either looking for
the pathname of a particular command, or you are looking for a certain text file.
UNIX provides several ways to locate commands. These are presented first, fol­
lowed by methods for locating text files.

To find the patbname of a standard UNIX command, type in whereis followed
by the command name. (whereis also displays the pathname of the man entry.)

mars% whereis csh
csh: /bin/csh /usr/man/manl/csh.1

You can also use which to look up a command. This is useful when you have
commands that are aliased, or if your system contains commands in addition to
the standard set. If the command is an alias, which shows you its definition. If
the command is in a directory listed in your path variable, which displays its
pathname. If there is more than one version of a command in those directories,
which displays the version that the system finds first. This is the same version
that the system performs when you type the command in.

mars% which 1.s
Is: aliased to Is -F

mars% which chesstoo1.
/usr/games/chesstool

wha tis, followed by the name of a command, will give you a brief description
what that command does.

mars% whatis whatis
whatis (1) - describe what a command is

57 A of3 January 86

58 Doing More with UNIX: Beginner's Guide

Looking Up Files with find Starting with a named directory ,36 find searches for files that meet conditions
you specify. A condition could be that the filename match a certain pattern, that
the file is owned by a certain user (or belong to a certain group), or that the file
has been modified within a certain timeframe.

Unlike most UNIX commands, find options are several characters long, and the
name of the starting directory must precede them on the command line.

find directory options

Each option describes a criterion for selecting a file. A file must meet all criteria
to be selected. So, the more options you apply, the narrower the field becomes.
The -print indicates that you want the results to be displayed. (As later on,
you can use find to run commands. You may want find to omit the display of
selected files in that case.)

The -name filename option tells find to select files that match filename . To see
which files within the current directory and its subdirectories end in s, type in:

mars% find. -name '*8' -print
./programs
./programs/graphics
./programs/graphics/gks
./src/gks

mars%

Other options include:

-name filename select files whose rightmost component matches
filename. Surround filename with quotes if it includes
filename substitution patterns.

-user userid select files owned by userid. userid can be either a login
name or user ID number.

-group group select files belonging to group.

-mtime n select files that have been modified within n days.

-newer checkfile select files modified more recently than checkfile.

You can combine options within (escaped) parentheses (\ (... \)) to specify an
order of precedence for criteria. Within escaped parentheses, you can use the -0

flag between options to indicate that find should select files that qualify under
either category, rather than just those files that qualify under both.

mars% find. \(-name AAA -0 -name BBB \) -print
./AAA
./BBB

36 You must supply a name.

A of3 January 86

Running Commands with
find

Looking at File Types with
file

6.2. Looking at Differences
Between Files with diff

Chapter 6 - Managing Your Files 59

You can invert the sense of an option by prepending an escaped exclamation
point. find then selects files for which the option does not apply.

[~;~ find. \!-name BBB -print]

You can also use find to apply commands to the files it selects with the

-exec co~nd '{}' \;

option. This option is tenninated with an escaped semicolon (\;). The quoted
braces are replaced with the filenames that find selects.

You can use find to automatically remove temporary work files. If you name
your temporary files consistently, you can use find to seek them out and des­
troy them wherever they lurk:37

find. \ (-name test -0 -name dummy \) -exec r.m ' {}' \;

Sometimes you want to see what sort of data a file contains without having to
look at its contents. In particular, if the file is a compiled program (object-file),
trying to display its contents can produce spectacular and disconcerting results on
your screen. file quickly tells you whether a file contains plain text, troff
sources, C program sources, executable files, or tape-fonnat archives.

mars% fi1e *
AAA: empty
document: nroff, troff, or eqn input test
troff.output: troff (CAT) output
program: demand paged pure executable
scratch: ascii text

It often happens that different people with access to a file make copies of it and
then edit their copies. diff will show you the specific differences between ver­
sions of a file and provide you with an indication of how the contents of one can
be edited to produce the other. The command

diff leftfile right/tie

scans each line in leftfile and right/tie looking for differences. When it finds a
line (or lines) that differ, it detennines whether the difference is the result of an
addition, a deletion, or a change to the line, and how many lines are affected. It
tells you the respective line number(s) in each file, followed by the relevant text
from each.

37 For good housekeeping, you may want to get rid of such files on a regular basis without having to think
about iL If you put a command like this in your . logout file, then whenever you log out, the system will
clean up unwanted files for you.

A of 3 January 86

60 Doing More with UNIX: Beginner's Guide

Sample 1:

If the difference is the result of an addition dif f displays a line of the fOnTI'

1[, l] a r[, r]

where I is a line number in leftfile and r is a line number in rightfile. If the
difference is the result of a deletion, diff uses a d in place of a; if it is the
result of a change on the line, diff uses a c.

The relevant lines from both files immediately follow. Text from leftfile is pre­
ceded by a left angle-bracket «). Text from rightfile is preceeded by a right
angle-bracket (». This example shows two sample files, followed by their dif f
output.

mars% cat sched.7.1S
Week of 7/15

Day: Time: Action Item: Details:

T 10:00
1:30
3:00
1:00

Hardware mtg. every other week
W Software mtg.
T Docs. mtg.
F Interview

Sample 2:

mars% cat sched.7.22
Week of 7/22

Day: Time: Action Item: Details:

M 8:30 Staff mtg. all day
T 10:00 Hardware mtg. every other
W 1:30 Software mtg.
T 3:00 Docs. mtg.

dif f output:

mars% diff sched.7.1S sched.7.22
1c1
< Week of 7/15

> Week of 7/22
4a5
> M
8d8
< F

8:30

1:00

Staff mtg.

Interview

week

Figure 6-1 Two Sample Files and di f f Output

~\Slln ,~ microsystems

all day

A of 3 January 86

6.3. Monitor Changes with
sees

Putting a File Under sees
Control (sees ereate)

When working with files that are
part of a large project, sees 10 key­
words can be important. Refer to
Programming Utilities for the Sun
Workstation for more information
about sees as a tool for managing
large programming projects.

Chapter 6 - Managing Your Files 61

When you want to protect a file from accidental deletion, keep track of changes
to it, or allow more than one person to modify it, you can monitor the file using
sees. sees, or "source code control system" is a utility program that protects
important files by allowing only one person at a time to make changes, by main­
taining a record of those changes, and by rebuilding the current (or any previous)
version upon request.

To put a file under sees control, perform the following steps:

l. ed to the directory containing the file(s) to be protected. If a subdirectory
name sees is not already present, create it. If you want to allow other users
access to the files, change the permissions of the current directory and those
of the sees subdirectory to 775.38

mars% cd project
mars% mkdir sees
mars% chmod 775 . sees

2. Type in a command of the form:

sees create filename ...

filename is the name of a file or files to monitor.

[mars% sees create *

For each file that you indicate on the command line, see s produces a spe­
cial file called a history file, and puts it in the sees subdirectory. The his­
tory file has a name of the form:

s .filename39

J

and contains a complete record of all lines changed throughout the life of the
file. sees maintains a checksum on all history files, so do not edit them!
sees may respond with the warning:

No id keywords (em7)

This message can safely be ignored when you are auditing your own files.

3. Remove the backup file(s) that sees leaves behind. These files are created
by sees as a safety precaution, and are no longer necessary once the
ereate operation is complete. Names of these backup files begin with a
comma (,).

[mars% rm .* J

38 Unless you are sure that you do not want them to have access, it is nonnally a good idea to change
pennissions of both directories to allow it, at least for other members of your user group.

39 History files are also referred to as "s.files."

~\sun ,~ microsystems
A of3 January 86

62 Doing More with UNIX: Beginner's Guide

Which Files are Checked
Out? (sees info)

Recovering the Current
Version (sees get)

Checking a File Out (sees
edit)

Once under see s control, you have to check a file out before you can make
changes to it. Files that aren't checked out through sees have permissions set
to read-only for everyone (444).

To see which files in the working directory are checked out, use the sees info
command. If no files are checked out, sees responds with the message:

Nothing being edited

If there are files checked out, it lists those that are, the current version number of
each, the version number each will have when checked in again, the name of the
user who checked out each and the date and time of check-out:

esh.1: being edited: 1.4 1.5 sam 85/09/04 16:32:15

Because several people may have write access to the directory, it is possible that
a file in the working directory may be deleted accidentally. Files that aren't
under sees control are gone for good once they are removed, by you can easily
restore files under sees from their history-files using the sees get command:

sees get filename

If you want to recover the current version of all files in the directory, use the
command:

sees get sees

Only one person at a time can check a file out. This assures you that changes
won't be lost, garbled, or intermixed between the edits of different users. To
check out a file, type in sees edit followed by the file or files you wish to
check out. sees will respond with the current version number, the new version
(delta) number, and the number of lines in the file.

mars% sees edit program
1.1
new delta 1.2
220 lines
mars%

Once checked out, you can edit the file using vi, or an editor of your choice.

When you check out a file, sees changes the ownership of the file to you, gives
you write permission (owner only), and places a lock file containing your userid,
the version number, and other information in the sees directory.40 When you
check the file back in, the lock file is removed and the permissions are set to read
only, but you retain ownership of the file.

40 The lock file has a name of the fonn: p .filename, and referred to as a "p-file."

A of 3 January 86

Looking at Current Changes
(sees diffs)

Checking a File In (sees
delget)

Backing Out With No
Changes (sees unedi t)

Looking at the File's History
(sees prt)

Chapter 6 - Managing Your Files 63

While still checked out, you may want to review the changes you have made so
far. To do so, type in:

sees diffs filename

sees responds with standard diff output.

When you are done making changes you can check in the new version of the file
by typing in the nonintuitive command:

sees delget filename

delget is a contraction for delta, the command to incorporate a new version
into the history file, and get, the command to recover the newest version (that
you are just now checking in).41

When you use delget (or del ta) to check in the file, sees asks you for a line
of comments. These comments are included in the history file, and should briefly
summarize the changes you have made. After adding your comments and press­
ing (RETURN I, sees responds with the new version number, the number of
lines inserted, deleted and unchanged, and the total number of lines.

mars% sees delget program
comments? added remarks for more readable code
1.2
43 inserted
18 deleted
287 unchanged
1.2
348 lines

To check a file back in without any changes, type in:

sees unedi t filename

To review a file's history, use the command:

sees prt filename

This command shows you the version number, comment lines, date checked in,
and user responsible for each version of the file.

41 If sees responds with an error message, it does not perfonn the get action, and you may have to recover
files using sees get sees .

• sun
~ microsystems

A of3 January 86

64 Doing More with UNIX: Beginner's Guide

Comparing Versions (s e e s
seesdiff)

Restoring a Previous Version
(sees get -r)

mars% sees prt program
SCCS/s.program:

D 1.2 85/09/04 12:51:07 sam 2 1 00042/00008/00357
MRs:

COMMENTS:
added remarks for more readable code

D 1.1 85/08/30 16:54:57 sam 1 0 00365/00000/00000
MRs:
COMMENTS:
date and time created 85/08/30 16:54:57 by sam

To compare previous versions of a file, use the command

sees seesdiff -rx.y -rm.n filename

Where x . y and m . n are version numbers to be compared. This command pro­
duces standard dif f output

If you want to back out a version of the file that is already checked in, you must
perform the following steps:

1. Recover the previous version. You can look up its number using sees
prt filename. To rebuild the previous version, type in a command of the
fonn:

sees get -rx.y filename

where x.y is the desired version number.

2. Rename the recovered version of the file

mv filename temp

3. Check the file out with sees edit.

4. Replace the checked-out version with the old version:

mv temp filename

5. Check the file back in with sees delget.

To assure that it all worked properly, compare the latest version with the desired
previous version using see sse e s di f f .

A of 3 January 86

Chapter 6 - Managing Your Files 65

The typical flow of events when making changes to a file under sees control is:

original restored checked out checked in
r-------------,
I I

src src (1.1) : src (1.1) : src (1.2)
I I L ___________ ...J

sees/s.src (version 1.1) (v. 1.2 lines)

--->

Figure 6-2

Solving Problems with sees

Are Files Under sees ConJrol?

Is the File Checked Out?

Was the File Checked In?

What If I Can't Check the File Out?

... time . ..

Flow of Events with sees Controlled Files

sees is a complicated and verbose utility. There may be times when it responds
with an error message even though things worked properly. Its error messages
are sometimes difficult to interpret If you are not sure that sees succeeded in
doing what you asked, you can take certain steps to verify whether it has:

Is -1 sees
will show an s.file for each file under sees control.

sees info
will show which files are checked out, and to whom.

sees prt filename
will show your comments in the first three lines when you have checked in a
file successfully.

If you attempt to check a file out and you get the message:

ERROR [SCCS/s .filename]: writable 'filename' exists (ge4)

this usually means that someone has the file checked out already. You can verify
this using sees info. If sees info does not list the file as being edited,

fJ\sun ,~ microsystems
A of3 January 86

66 Doing More with UNIX: Beginner's Guide

6.4. Automating Complicated
Tasks with make

then the lock file in the sees directory has been deleted. When this happens
sec s will not allow anyone to check the file either in or out.

To correct this problem, first run sec s dif f s on the file to see if it differs
from the version last checked in. If so, it is a good idea to contact the file's
owner to find out if the changes made should be kept. If so, then copy the file to
a new filename, remove the writable original, and check the file out using sec s
edit. Then move the new filename back to the original name (overwriting the
checked out version), and check the new version back in using sees delget.

If the changes need not be saved, you can correct the problem by simply remov­
ing the writable file, restoring the current version using sees get and then
checking it out using sees edit.

Performing complicated tasks, such as producing object code for programs or
formatting large documents involves processing different files through various
programs at the proper times and in the proper order. This can be a lot to
remember. make simplifies these complications by following a a record of the
steps involved, called a make/tie, that you create.

The makefile contains a list of the steps called targets. Each target contains a list
of UNIX commands; this list of commands is called a rule. A target can be
qualified by a list of other targets upon which it depends. One target is said to
depend on another if the latter must be be completed before the former can be
performed successfully. The latter target is called a dependency.

For example, an see s subdirectory must be created before you can put files
under sees. And, you must put a file under sees with sees create before
you can check that file out. So the command sees edit depends in practice
on the commands mkdir sees and sees create for its own success.

make uses the list of targets as a recipe to produce a desired program, document,
or other object file called a target file, or simply target.

make performs only those steps that are required to bring the target files up to
date. It lists the various steps involved, and how they depend on one another,
and then examines the list to see which target files are outdated.

A target is considered to be outdated when a source file used to produce it has
changed since the target file itself was last produced. make then performs only
those steps required to replace any outdated target files.

make has a facility to perform macro substitution .42 This allows you to abbrevi­
ate long lists, and to predefine parameters that often change, so that with a few
simple edits the same procedure can be used to produce other, similar objects.

42 Like an alias, a macro is a string of text that is replaced by its definition, or expansion when encountered
in an input file (or command line).

A of 3 January 86

Makefiles

Figure 6-3

Chapter 6 - Managing Your Files 67

Like a recipe card, a makefile is composed of two sections. The first section is a
list of macro definitions. These are described in detail later on. The second sec­
tion outlines steps in the procedure and their relationships to one another. In
make parlance, each step is called a target.

Each target has a name. If that target's function is to produce an object file of
some sort, then the name of the target should be the same as the name of the file
it produces. If the target performs some sort of housekeeping step, then it can
have any name you like.

A target may also have a list of dependencies, or targets it depends on, associ­
ated with it. make uses this list to determine whether files produced by the tar­
get are up to date.

Finally, each target has a list of UNIX commands to perform. When performing a
step, make performs each command in turn, starting a Bourne Shell43 for each
command line.44

The following is an example of a make file to put the contents of a directory
under see s control. The file consists of just three targets, and no macro
definitions:

* makefile: for putting files under sees

* no macro definitions

* target definitions

put.under: sees * these lines begin with a required tab character
-sees create *
-rm ,*
-sees get sees

sees:
-mkdir sees
-chmod 775 sees

Sample Make/tie to Put Files Under sees

The targets are put. under and sees. The target put. under depends on the
target sees. If the sees directory is not already present and up to date (direc­
tories always are), make performs the commands listed under sees first.

The format of each target is significant. The name of the target must be followed
by a colon and the list of dependencies, if any. (If this list is longer than one line,

43 Because it runs a Bourne shell, certain C-Shell constructs, such as foreach, don't work. Refer to sh in
the Commands Reference Manual for more infonnation about the Bourne Shell. .

44 Since each command line is executed in its own Shell, you must use the command separation character ; ,
and the command-line continuation character \ (RETURN) to build command routines.

~\sun ~~ microsystems
A of 3 January 86

68 Doing More with UNIX: Beginner's Guide

Running make

mars% make
mkdir sees
chmod 775 sees
sccs create *

sees:

then escape the carriage return with a backslash.) The list of commands immedi­
ately follows the target name, and each command line begins with a (TAB I.

Comments begin with a #=, and can be placed to the right of commands on any
line (not ending in a backslash). At least one blank line separates target
definitions from one another.

When you prepend a - to a command, make ignores a nonzero (error) return
code from that command. Normally, make halts whenever a command it runs
exits with a nonzero status. Adding the dashes in this case tells make to con­
tinue putting new files under see s control, even though it may encounter older
files already there.

Because make checks for dependencies, you can write makefiles in a top-down
fashion. The step that produces the final output should appear first. Steps that it
depends upon can appear next, followed by steps that they depend on.

When the makefile is ready, simply type in make.

make looks for a file in the working directory named makefile, or
Makefile,45 checks for dependencies, beginning with the first target it
encounters, and then performs commands in their proper order.

ERROR: directory 'sees' specified as 'i' keyletter value (ad29)

makefile:
No id keywords (cm7)

(messages from sccs I

rm ,*
sccs get sees

messages from sccs)

mars%

The error message

ERROR: directory 'sees' specified as 'i' ...

indicates that sees attempted to create a history file for the directory sees.
Because we used a dash as the first character of the command line, make contin­
ued processing.

45 You can specify the name of some other makefile. using the -ffilename option: make -f buildit

~~sun ~if{tI microsystelTlS
A of 3 January 86

Chapter 6 - Managing Your Files 69

Testing Makefiles Most makefiles take a bit of debugging. To find out what commands make will
perform without actually running them, use the -n option.

mars% make -n
sees create *
rm ,*
sees get *

In the above makefile, put. under depends upon sees. When you ran make
the first time, the sees directory was created. When you ran make -n subse­
quently, make did not indicate that it would perform that step (since it was up­
to-date anyway). If you were to remove the sees directory, and then run make,
it would perform commands in the sees target once again.

Defining Macros in the
Makefile

The next example is a makefile used to fonnat and print a document made up of
several source files. With macro substitution, copies of a makefile such as this
can be used for different documents:

* Makefile: for printing a document

macro definitions

SOURCES title intro tutorial reference appendix
PRINTER Plw
MACROS ms

target definitions

print: troff.output
lpr -$(PRINTER) -t troff.output &

troff.output: $ (SOURCES)
tbl $(SOURCES) I eqn I troff -t -$(MACROS) > troff.output

Figure 6-4 Sample M akeftle for Printing a Document

A change to the list of sources, the printer, or the macro package can be made in
one place and take effect throughout the makefile. For large and complex pro­
cedures, this is a big advantage.

By placing the troff output in an intermediate file,46 you can avoid having to
reformat the document every time you want to print a copy. By making pr in t
depend upon the file troff. output, you can be sure that you always get the
latest formatted version.

46 traff intennediate output files are not text files. They will produce strange results if you try to look at
them on the screen, and they should not be placed under sees. It would be a good idea to put the source files
under sees instead .

• ~sun
~ microsystems

A of 3 January 86

70 Doing More with UNIX: Beginner's Guide

By making troff. output depend on the list of sources (the expansion of the
$ (SOURCES) macro), you can be sure that when you change anyone of the
sources, the change will be reflected when you print the document.

Selecting A Target You can select any target in the makefile by specifying it as an argument to
make on the command line. If a target does not appear in the list of dependen­
cies for the target you select (or the first target by default) make will not perform
it. So, you can record several independent procedures within the same makefile.
For example, this makefile can be used either to put new source files under
sec S, or to print a finished document.

Makefile: for printing a document
and putting sources under sces

macro definitions

SOURCES title intro tutorial reference appendix
PRINTER Plw
MACROS ms

target definitions

print: troff.output
Ipr -$(PRINTER) -t troff.output &

troff.output: $ (SOURCES)
tbl $ (SOURCES) I eqn I troff -t -$ (MACROS) > troff.output

put.under: SCCS
the next three lines begin with a tab

SCCS:

-sees create 'Is I grep -v troff.output'
-rm ,*
-sees get *

mkdir SCCS
chmod 775 sces

Using this makefile, if you type in make, you will get the document. If you type
in

make put.under

your sources will be put under sec s .

• sun
~ microsystems

A of3 January 86

6.S. Managing Disk Storage

Looking at Disk Usage with
df

mars% df
Filesystem
/dev/ndO
/dev/ndpO
titan:/usr.MC68010
topaz:/usr/topaz
panic:/usr/games
panic:/usr/man
opium:/usr/opium
athena:/usr/doc
athena:/usr/athena
titan:/usr/doctools

Directory Usage and d u

Chapter 6 - Managing Your Files 71

Space on the disk is a limited resource. So, it is a good idea to keep track of how
much space you use, especially if your system is running with disk quotas.47

UNIX provides facilities to monitor your disk usage and locate big directories
that are candidates for housekeeping. Even so, it can be unwise to delete old files
willy-nilly. You never know what gems you may have socked away there. So,
the system also provides a facility to make tape archives of important files. Tape
archives are especially good for large files that you need to keep but don't often
use. If you make a tape archive before cleaning house, you can be sure that you
won't lose anything important You can use df, du and Is -1 to locate such
files, and you can use tar to move them onto a tape for storage offline, as
described in the following sections.

df shows you the amount of space used up on each disk that is mounted
(directly accessible) to your system. It is very simple to use, just type

df

to see the capacity of each disk mounted on your system, the amount available,
and the percentage of space already used up.

kbytes used avail capacity Mounted on
4771 2197 2096 51% /
5691 4010 1111 78% /pub

53007 42871 4835 90% /usr
318943 236688 50360 82% /usr/topaz
117259 67484 38049 64% /usr/games
117259 67484 38049 64% /usr/rnan
327599 214546 80293 73% /usr/opium
105843 59006 36252 62% /usr/doc
266107 219747 19749 92% /usr/athena

15887 11604 2694 81% /usr/doctools

Filesystems at or above 90% of capacity should be cleansed of unnecessary files.
You can do this either by moving them to a disk that is less full using cp and rm.
You can make a tape archive and then remove them. Or, you can simply remove
them outright. Of course, you should only perform housekeeping chores on files
that you own.

You can use du to display the usage of a directory and all its subdirectories (in
kilobytes).

du shows you the disk usage in each subdirectory. To get a list of subdirectories
in a file system (disk), cd to the pathname associated with that filesystem, and
run the following pipeline:

47 A disk quota is a limit on the amount of space (infonnation) a user is allowed to use on the disk at any
onetime.

~\sun ,~ microsystems
A of 3 January 86

72 Doing More with UNIX: Beginner's Guide

6.6. Making a Tape Archive
with tar

du I sort -r -n

For instance:

mars% du I sort -r -n
5314
1155 ./Documents.new
818 ./SCCS
234 ./Programs.new
230 ./Reference.new
204 ./Reference.old
123 ./Library.new
89 ./Library.old
87 ./Users.Guide.old
49 ./Reports.old
27 ./Documents.old
5 ./Programs.old

This pipeline, which uses the reverse and numeric options of sort, pinpoints
large directories. Use Is -1 to look at the size (in bytes), and modification
times of files within each directory. Old files, or text files over lOOK bytes, often
warrant storage off-line.

The simplest and most complete method to make a tape archive is to:

1. Mount a fresh tape on the tape drive. If you don't know how to do this, see
your System Administrator or consult System Administration for the Sun
Workstation for details.

2. cd to a directory you wish to archive. If you wish to archive an entire
hierarchy of files, cd to the topmost directory in that hierarchy. tar will
archive the directory and all its subdirectories.

3. Type in the tar command as follows:

tar -cvf drive

The -c option tells tar to create a new tape archive and overwrite the pre­
vious contents of the tape. The v stands for verbose. tar tells you every­
thing that it is doing. The f tells tar to put the archive on the file (tape
drive) drive. Your System Administrator can tell you the name of a tape
drive to use.

Tapes can be reused. If you do not wish to overwrite the previous contents, you
can use -r rather than -c. With -r, tar skips to the end of the previous
archive, and then adds files onto the end. If you want to conserve space on the
tape, you can use _u.48 With -u, tar replaces files whose contents have
changed with their newest version, adds new files onto the end, and leaves
untouched files alone.

48 The -r and -u options do not work with quarter-inch cassettes. They only work with half-inch tape
drives.

A of3 January 86

Looking at the Contents of a
Tape Archive

Extracting Files From a Tape
Archive

Chapter 6 - Managing Your Files 73

drive can be a diskfile. Since tar output takes up less space than do text files, a
tape archive on disk can provide some space savings and a bit more convenience
than using an actual tape. For even more space reduction, run the tape archive
file, or tarfile through compact.49

To examine the contents of a tar tape archive, use the -t option:

tar -tvf drive

To search for a specific file on the tape, pipe the output of tar -t through
grep.

To extract files from a tape archive, cd to the directory in which to place the file,
mount the tape, and then use the tar -x option:

tar -xvf drive filename ...

If you omit filename, tar extracts the contents of the entire tape. If you specify
a filename , or a list of filenames, tar extracts the named file(s).

49 The command uncornpact restores the tarfile to its original state, and you can then use tar to retrieve
files from within the tarfile just like you would from a tape drive .

• \sun
,~ microsystems

A of 3 January 86

7
More About Printing

More About Printing .. 77

7.1. Looking at the Queue with Ipq .. 77

7.2. Removing Printer Jobs with Iprm .. 77

7.3. Selecting a Printer Ipr -p .. 78

7.4. Printing troff Output Files with Ipr -t ... 78

7.5. Printing Screen Dumps ... 78

7.6. Printing Other Graphics Displays .. 78

7.1. Looking at the Queue
with Ipq

7.2. Removing Printer Jobs
with" Iprm

7
More About Printing

In Getting Started With UNIX you learned how to print a file. Printers are often in
high demand, and are normally shared by a number of people. To keep things
running smoothly, the system feeds each request to the printer on a first-come
first-served basis. Requests that are waiting are kept in the print queue.

To look at the queue on the printer you normally use, type in

lpq

(short for "line printer queue"). If the queue is empty, Ipq will respond with:

no entries

If there are some entries, Ipq will list them for you and indicate which one is
currently being printed.

mars% 1pq
Rank Owner Job Files Total Size
active sam 18 standard input 39668 bytes
1st sam 19 document 443820 bytes
2nd joe 20 program. listing 32833 bytes

If you decide not to print a job after all, you can remove it from the queue by typ­
ing in Iprm followed by the job number:

mars% 1pon 19
dfA019mars dequeued
cfA019mars dequeued

Job Files
mars% 1pq
Rank Owner
active sam
1st joe

18 standard input
20 program. listing

To remove all your jobs from the queue, use the - option:

1prm -

77

Total Size
39668 bytes
32833 bytes

A of3 January 86

78 Doing More with UNIX: Beginner's Guide

7.3. Selecting a Printer lpr
-p

7.4. Printing t r 0 f f Output
Files with lpr -t

7.5. Printing Screen Dumps

7.6. Printing Other Graphics
Displays

If the line for the printer is too long and there is another printer available to your
system, you can direct jobs to that other printer with the -Pprinter option of
lpr. Your System Administrator can tell you the names of other printers that
you can use. lpq and lprm also accept this argument.

mars% Ipr -Plaserwriter memo
mars% Ipq -Plaserwriter
Rank Owner Job Files
active jd 98 standard
active jenny 99 memo
active louisf 100 letter
active sam 115 document
mars% Ipr.m -Plaserwriter 115
lrhost: dfA115mars dequeued
lrhost: cfAl15mars dequeued

input

To print troff output files, use the -t option of lpr.

lpr -t troff.output

Total Size
559668 bytes

2077 bytes
57320 bytes

621633 bytes

If you want to capture an image of the workstation screen on paper, use the fol­
lowing pipeline:

screendump I rastrepl I lpr -v &

screendump captures the image dot-for-dot, rastrepl increases its size, and
the -v option of 1 pr prints the resulting image. There is significant computa­
tion involved in each of these steps, so be sure to run this pipeline in the back­
ground.

lpr will print out a variety of graphics displays, depending upon the capabilities
of the printer you use. For more information, consult the Commands Reference
Manual, and your System Administrator.

4}\sun
~ microsystems

A of 3 January 86

A
Glossary

Glossary ... 81

A
Glossary

angle-brackets
Term for the characters < and>.

append
To add text or data onto the end of a file.

archive
A copy of a file or set of files, usually on tape, made for historical purposes
or for long-term storage.

background
A process that is running, but does not have control of the terminal from
which it was started, is said to be running in the background.

braces
Term for the characters { and }.

brackets
Term for the characters [and] .

builtin
Adjective for a command that is part of a particular shell; it is literally "built
in" to the shell software. Such commands are only available when using the
particular shell that supports them. Contrast this with such commands as
1 s, which is available for use with either shell.

C-Shell
A command interpreter for UNIX that provides filename substitution, alias
substitution, a history mechanism, variable substitution, command (output)
substitution, and job control. The C-Shell can interpret commands directly
from the terminal, or from command files with a syntax modeled after the C
programming language.

child process
A process started from within shell or other process.

contents
The text or data contained in a file.

default
An assumed value, or an action taken when you omit an argument, com­
mand, or value.

~\sun ,~ microsystems
81 A of 3 January 86

82 Doing More with UNIX: Beginner's Guide

dependency
A step within a procedure upon which a subsequent step depends. The step
must be completed before the latter can be performed properly. make uses
this notion to organize sets of UNIX commands, and do the minimum
amount of work required to perform a task or bring a set of object-files up to
date.

device
Typically a hardware peripheral supported by the system, and the software
that controls it. May also be a specialized software program. UNIX treats a
device as if it were a file. The programs that operate peripheral devices
reside in the directory / de v.

directory
A type of file that contains names and access information about other files,
including other directories. Directories are organized in a hierarchy, the root
of which is named / .

drive
(tape drive or disk drive). The hardware that performs the physical transfer
of data from the system onto a tape or disk, and vice-versa.

embedded
Contained within a file, within a line of text, or within a word. Usually
applied to commands or symbols that are surrounded by ordinary characters.

encrypt
To encode or scramble data to prevent unauthorized reading.

environment
General: to the extent that an interactive program can be customized, the
values of the various options, settings, and variables that are currently in
effect. Technical: the set of data inherited from the parent process and/or
passed along to child processes.

escape
A character, usually a backslash, indicating that the character following it is
to be interpreted as plain text, rather than as a symbole having special mean­
ing.

event
In history substitution: the text of a command-line contained in the history
list.

execute
To perform a set of instructions or program.

expansion
The value of a variable or macro. For instance, in the C-SheU the expansion
of the character - is the pathname of the user's home directory.

filename
The name of a file, directory, or device .

• ~sun ,~ microsystems
A of3 January 86

file

Appendix A - Glossary 83

A portion of a mass-storage memory device, typically a disk, containing a
specific, named set of data. Generalized to include any source from which
data can be received or transferred within the system.

file type
A field in the pennissions column of the 1 s -1 display that indicates
whether the file is a plain disk file, a directory, a device, or a symbolic link.

filter
A command or program that accepts text from the standard input, applies a
transfonnation rule (or rules) to that text, and produces text on the standard
output.

foreground
The process that has control of the tenninal is said to be running in the fore­
ground. Process that do not control the tenninal are said to be running in the
background.

fork
By a shell or command: to start a new process and wait for it to finish before
proceeding.

group

job

key

link

A subset of users with access to the system. Members of a group may be
granted more complete access to files than the public at large. The pennis­
sions that control group access to files.

A background process, running or stopped, under the control of the C-Shell.

A character string used to encode or decode a file by crypt.

A filename, or entry in a directory corresponding to a file. A hard link is a
direct entry. A symbolic link is a string that contains the name of the file it
is associated with.

macro
A string of text that is replaced by another, typically much longer, string
when interpreted by a shell or program.

makefile
A file containing instructions for make. Typically named makefi1e or
Makefi1e.

modification time
The date and time at which a file was last changed. A field in the directory
entry for a file that can be altered directly using the touch command.

monitor (v.)
To maintain a record of changes to a file, to assure that only one user at a
time can make changes, and to assure that the most recent version of a file
can quickly be restored.

~\sun ,~ microsystems
A of3 January 86

84 Doing More with UNIX: Beginner's Guide

multitasking
Perfonning multiple tasks at once. The ability of the system to handle the
work of several simultaneous users or windows.

non interactive
A program that accepts no input from, and displays no output on, the termi­
nal.

object-file
A file containing the output, typically not text, of a compiler, plotting pro­
gram, or other such program.

ofT-line
Disconnected from the system.

operation
The action of the system or program to accept input, transform data, and pro­
duce output.

owner
The user to whom a file belongs, who can alter its name, access pennissions,
and other attributes.

pattern
A string that includes special characters that, when interpreted, correspond to
a set of possible text strings.

parent directory
A directory containing the current directory, or directory of interest.

parent process
A process, from which the current process of interest was started.

permissions
Attributes of a file that determine whether a specific user has access to read,
write on (or delete), or execute (use as a command), a file.

pipe
The vertical bar character I. The mechanism by which the system passes
the output of one command as direct input to another command.

pipeline
A set of commands connected by pipes. The intermediate commands are
typically filters.

process
General: A command that is being perfonned by the system. Each process
has a unique number. The mechanism by which the system keeps track of a
single task among the many requested of it at any given time. Technical: a
set of instructions and data under the control of the system's memory
management facilities.

public
The entire set of users who have access to the system. The permissions that
control public access to files.

~\sun ,~ microsystems
A of 3 January 86

Appendix A - Glossary 85

range
A set of characters specified by the first and items in a list. For instance, the
entire upper-case alphabet can be specified as: A- Z.

redirect
The standard input, standard output, and standard error output of a command
is normally received by, or sent to, the terminal. To explicitly indicate a file
from which, or to which the command is to send or received data using sym­
bols such as > and <.

regular expression
The method for specifying search patterns for grep, and editors such as vi.

resources
Refers to the computation capacity and speed, available memory, (and some­
times the peripheral devices) available to the system.

return code
The value returned (to its parent) by a process upon completion.

robust
Programs: Able to perform reliably under a variety of conditions, or with a
variety of (possibly unexpected) data. Syntax: The degree to which a set of
rules allows for expression of a wide range of information.

routine
A set of commands or instructions that together perform a complete task.

s-file
An sees history files in the sees subdirectory.

shell
A programmable command interpreter.

size
The number of characters in a text file.

standard error
The channel through which a command sends diagnostic messages.

standard input
The channel through which a command receives data.

standard output
The channel through which a command sends results.

state
The current condition of a process.

string
A set of characters terminated on either end by a tab, space, newline, or
other delimiting character.

subdirectory
A directory that resides within another. For instance, / u s r is a subdirectory
of /.

~\sun ,~ microsystems
A of 3 January 86

86 Doing More with UNIX: Beginner's Guide

sub shell
A shell invoked from within another shell or program.

superuser

rule

Another name for the su command. The ability to temporarily adopt the ID
of another user on the system. A term for the Operator or System
Administrator's use rid, root.

A list of UNIX commands for make to perform in order to complete a step,
or produce a target file.

syntax
General: the format for a legal command and its arguments. Technical: the
rules by which input is interpreted.

target
An object file to be produced, or label for a list of UNIX commands to be
performed, by make.

user
A person with an account on the system who can log in, issue commands,
and create files.

userid
The login name, or ID number assigned to each user by the system adminis­
trator.

variable
A named location in which a data value (or list of values) is temporarily
stored in memory.

A of 3 January 86

B
C-Shel1 Scripts

C-Shell Scripts .. 89

Pathname Processing Primitives .. 91

Return Codes ... 91

Exit .. 95

NOTE

C-Shell Invocation

C-Shell scripts do not serve the
same function as make, which is
useful for consistently performing a
set of operations on related files.
While scripts can be written to do
this, the C-Shell is more general in
scope. Scripts do not check for
dependencies, for instance. And,
there are many things that you can
do with scripts, such as prompting
for input from the terminal, that are
not practical using make.

Command-Line Arguments in
Scripts

B
C-Shell Scripts

You can put a sequence of UNIX commands in a file called a script. By using the
source filename command, or by setting the execute permissions and typing in
the filename as if it were a command, you can tell the C-Shell to read and per­
form commands in the file.

We recommend that you use the Bourne shell for writing shell scripts. The
Bourne shell has a simpler command syntax,faster execution time, and provides
better security. Refer to Appendix F for information about writing Bourne shell
scripts.

This appendix outlines features that you can use when writing scripts for tht; C­
Shell.

When a script is invoked by name, the C-Shelllooks at the very first line of the
file to decide how to run it:

o If the first line starts with a :#= (hash sign), the system uses the C-Shell to run
the script.

o If the first line does not start with a :#= (hash sign), the system uses the
Bourne shell to run the script.

o If the first line of the script starts with a :#= ! , followed by the name of a pro­
gram, the system uses that program to perform commands in the script.

To run a script with no C-Shell startup processing, the first line should be of the
form:

[~f __ !_C_S_h __ -_f __ s_c_n_p_t __ ~J

To pass command-line arguments as parameters to a script, type its name, fol­
lowed by any arguments you wish. The C-Shell places words following the
name in the variable argv, the arguments list. Command-line arguments are
treated as words contained in this variable, or you can use the equivalent vari­
ables: $1 through $n where n is the number of arguments in the list.

t)sun 89 A of 3 January 86

90 Doing More with UNIX: Beginner's Guide

Variables in Scripts A number of notations are available for accessing words in variables, and other
variable attributes. The notation:

$?name

expands to 1 if a named variable exists (using the set command), or to 0 other­
wise.

mars% set var=(a b c)
mars% echo $?var
1
mars% unset var
mars% echo $?var
o

All other forms of reference to undefined variables cause errors.

The notation

$#name

expands to the count of words in the variable name:

mars% set var=(a b c)
mars% echo $#var
3
mars% unset var
mars% echo $#var
var: Undefined variable.

To expand to the process number of the C-Shell performing the script, use:

$$

Since this process number is unique in the system, it can be used to generate
unique temporary file names.

The redirection characters:

$<

indicate that a line is to be read from the terminal. To write out the prompt ye s
or no? without a newline and then read the answer into the variable a:

echo -n "yes or no?"
set a=($<)

In this case $#a would be 0 if either a blank line or (CTRL-D I were typed in
response.

A minor difference between $n and $argv [n] is that $argv [n] yields an
error if n is larger than the word count $#argv, while $n never yields a
subscript-out-of-range error. This is for compatibility with older shells.

~\sun
~ microsystelTlS

A of3 January 86

Expressions

File Enquiries

Pathname Processing
Primitives

Return Codes

Appendix B - C-Shell Scripts 91

It is never an error to give a subrange of the form var [n-] . If there are less than
n words in the given variable, then no words are selected.

A range of the form var [m-n] likewise returns a value without an error, even
when m exceeds the number of words, provided that n is in range.

All of the arithmetic operations of the C language are available in the C-Shell
with the same precedence that they have in C. These operations are useful for
evaluating expressions in branches and loops. The operations == and ! = com­
pare strings, and the operators & & and I I implement the logical and and or
operations, respectively. The operators =- and ! - are similar to == and ! =,
allowing for pattern matching as with filename substitution.

The expression:

-e filename

returns 1 if the file exists, and 0 otherwise. Similar primitives provide other
tests:

-r 1 if read-access is allowed for the user running the script.

-w 1 if write-access is allowed for the user.

-x 1 if execute-access is allowed.

-0 1 if the user owns the file.

- z 1 if the file has zero length.

- f 1 if a plain file.

-d 1 if a directory.

There are also primitives to apply to pathnames to strip off unneeded com­
ponents:

: t removes all but the rightmost component of the pathname.

: r removes suffixes beginning with a dot (.).

: e removes prefixes ending with a dot.

: h removes the last component, leaving the pathname of the directory in which
the file resides.

It is possible to test whether a command terminates normally by using a primitive
of the form { command }, which returns 1 if the command exits normally (with
exit status 0), or 0 if the command terminates abnormally (with a nonzero return
code).

If more detailed information about the status of a command is required, it can be
executed and the variable status examined in the next command. Since every
command returns a value to s tat us, you must save values of interest on the
very next line of the script:

~\sun ,~ microsystems
A of 3 January 86

92 Doing More with UNIX: Beginner's Guide

set checkpoint=$status

where checkpoint is a suitable variable name.

Sample C-Shell Script The following script, copyc, copies files named as arguments into a backup
directory:

"" "" copyc copies files named on the command line
"" to the directory -/backup if they differ from the files
"" already in -/backup

"" set noglob
foreach i ($argv)

end

if ($i !- *.c) continue "" not a .c file so do nothing

if (! -r -/backup/$i:t) then

endif

echo $i:t not in backup ... not cp\'ed
continue

cmp -s $i -/backup/$i:t "" to set $status

if ($status != 0) then

endif

echo new backup of $i
cp $i -/backup/$i:t

Figure B-1 copyc - Sample C-Shell Script

Basic Control Structures: if
and foreach

This script uses the foreach command, which causes the C-Shell to execute
the commands between it and the corresponding end with the named variable
taking on each of the values given between (and). The named variable - in
this case i-is set to successive words in the list. Within this loop you can use
the break command to stop executing the loop and continue to terminate
one iteration and begin the next. After the foreach loop, the iteration variable
(i in this case) has the value it had during the last iteration.

The variable noglob is set to prevent filename expansion from being performed
on members of argv. This is a good idea, in general, if the arguments to a C­
Shell script are filenames that have already been expanded or if the arguments
may contain filename expansion metacharacters. It is also possible to quote each
use of a $ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form:

41\ sun ,~ microsystems
A of3 January 86

Introducing Comments with =11=

Other C-Shell Control
Structures

if (expression) then
command

endif

Appendix B - C-Shell Scripts 93

The placement of the keywords here is not flexible. The word then must
appear on the same line as if, when used with a block of commands.

The C-Shell does not accept the formats:

if (expression)
then

or

if expression) then command endif

For individual conditional commands, the C-Shell has another form of the if
statement:

if (expression) command

which can also be written as

if (expression) \
command

The newline is escaped here for the sake of appearance. The command must not
involve I, & or ; and must not be another control command. The final \ must
immediately precede the end-of-line. This is the only form of the if command
that can be used within an alias definition.

The more general if statement also admits a sequence of else-if pairs fol­
lowed by a single else and an endif.

if (expression) then
commands

else if (expression
commands

else
commands

endif

then

The character =11= introduces a C-Shell comment in a script (but not from the termi­
nal), and the C-Shell ignores all subsequent characters the line.

The C-Shell also has the control structures while and switch that are simi­
lar to those in C.

while (expression
commands

end

and

A of 3 January 86

94 Doing More with UNIX: Beginner's Guide

Here Documents

swi tch (word

case str 1:
commands
breaksw

case str n:
commands
breaksw

default:
commands
breaksw

endsw

See the csh manual page for details. C programmers should note that breaksw
exits from a switch, while break exits a while or foreach loop.

Finally, csh allows a goto statement, with labels looking as they do in C, that
is:

loop:
commands
goto loop

A here document is a special notation used to pass instruction along to com­
mands that normally run interactively. The here document begins with a < <eot
and ends with a line containing eot by itself. eot can be any string.

Here is a script that runs ed to delete leading blanks from every line in each file
in the argument list:

* deblank -- remove leading blanks
foreach i ($argv)
ed - $i « 'EDT'
1,$s/"[]*//
w
q
'EDT'
end

The notation < < ' EOT' means that the standard input for the e d command is
the text in the C-Shell script file up to the next line consisting of exactly , EOT' .
The fact that the EOT is enclosed in quote characters prevents the C-Shell from
substituting variables on the intervening lines. In general, the C-Shell uses < < to
terminate the text to be given to the command. If any part of the phrase follow­
ing the < < is quoted, these substitutions are not performed. In this case, since the
form 1, $ was used in the editor script, you needed to ensure that the $ is not
variable-substituted. You can also ensure this by preceding the $ here with a \,
for instance:

41\ sun ~ microsystems
A of 3 January 86

Catching Interrupts with
onintr

Exit

Appendix B - C-Shell Scripts 95

1,\$s/"'[]*//

but quoting the EOF terminator is a more reliable way of achieving the same
effect.

If your script creates temporary files, you can use onintr to catch interrupts, so
that the script can delete them before halting.

onint r label

where label is a label in your program that is followed by your housekeeping
commands. If the C-SheU receives an interrupt, it performs a got 0 label, and
executes those commands.

You can also use the exit command (which is built in to the C-Shell) to ter­
minate the script. If you wish to exit with a nonzero status, do the following:

exi t (status)

where status is the status you want to exit with.

~~sun ~ microsystems
A of3 January 86

c
C-Shell Builtin Commands

C-Shell Builtin Commands ... 99

alias [name [expansion]]

bg [%job ...]

break

case label:

cd [name]
chdir [name]

continue

dirs

echo, [-n [words . ..]]

eval arg ...

c
C-Shell Builtin Commands

alias with no arguments prints the list of aliases and their expansions. With
the name argument, alias prints the expansion for the named alias if one
exists. alias with both arguments assigns an expansion to an alias name. For
reliability, enclose the expansion in single quotes, and precede exclamation
points within it with backslashes (\).

Puts the current or th"" specified jobs into the background, resuming execution if
they were stopped.

Resumes execution after the end of the nearest enclosing foreach or
while loop. The remaining commands on the current line are executed.
Multi-level breaks are produced by writing several break commands on one
line.

A label in a switch statement as discussed below.

Changes the working directory to name. If no name is given, either command
changes to your home directory. If name is not found as a current subdirectory,
and is not a pathname beginning with /, . / or .. / , each component of the vari­
able cdpath is checked to see if it has a subdirectory name. Finally, if name is
a shell variable with a value beginning with /, that value is used as a pathname
for the directory to change to.

Continue execution of the nearest enclosing foreach or while loop. The
rest of the commands on the current line are executed.

Prints the directory stack, with the top of the stack at the left. The leftmost entry
in the stack is the current directory.

The specified words are written to the shell's standard output, separated by
spaces, and terminated with a newline unless the -n option is specified.

The arguments are read as input to the shell, which executes the resulting
command(s). This is usually used to execute commands generated as a result of
command or variable substitution, since parsing occurs before these substitu­
tions. eval is often used with tset.

~\Slln ,~ microsystems
99 A of 3 January 86

100 Doing More with UNIX: Beginner's Guide

exec command

exit [code]

fg [%job ...]

foreach name (wordlist)
commands
end

glob wordlist

goto word

hashstat

history [-rh] [n]

if (expr) command [arg ...]

The specified command is executed in place of the current shell.

With no arguments the shell exits with the value of the status variable. With
one argument, shell exits with the specified code.

Brings the current job or specified job s into the foreground, resuming execution
if they were stopped.

foreach performs a set of commands for each item in a list of words. The
variable name is successively set to each member of word list. The foreach
and the end commands must appear alone on a line.

The builtin command continue halts the current iteration and resumes per­
forming the loop with the next word in the list. When encountered, break ter­
minates the entire loop.

When typed in from the terminal, foreach prompts for commands until you
type end on a line by itself; it then performs the loop.

Like echo but no '\' escapes are recognized. Words are delimited by null char­
acters in the output This is useful for programs that use the C-shell filename
expansion to process a list of words.

The specified word is filename and command expanded to yield a label. The
shell then searches (backward, then forward within the script) for a line of the
form' label: label' (possibly preceded by blanks or tabs). Execution continues
after the line located by the search.

Display statistics to indicate how effective the internal hash table has been at
locating commands (and avoiding exec's). An exec is attempted for each
component of the path where the hash function indicates a possible hit, and in
each component that does not begin with a /.

Displays the history event list, oldest first; when specified, only the n most recent
events are shown.

-r reverses the order of printout to be most recent first

-h displays the history list without leading numbers, (useful for producing
scripts on the fly).

If the expr evaluates to true, the C-shell perfonns the command with its argu­
ments (arg ...). A command must be a simple command, not a pipeline, com­
mand list, or parenthesized command list. Note that output and input redirection
occurs even if the expr is false and the command is not performed.

A of 3 January 86

if (expr) then
commands
[else] I
[else if (expr) then]
commands
endif

jobs [-1]

kill [-signal] %job .. .
kill [-signal] pid .. .
kill -1

label: label

limi t [resource [max_use]]

login

logout

Appendix C - C-Shell Builtin Commands 101

If the specified expr is true, the C-shell performs the command lines between the
first then statement and the else or else if statement. Otherwise, com­
mands between the else or else if statement and the endif statement are
performed. When an else if statement is encountered, its expr argument is
evaluated. Any number of el se if branches can be nested. The entire
sequence within the if block is terminated with one endif statement.

The words else and endif must appear at the beginning of input lines; if
must appear alone on its input line (or after an e 1 s e.)

Lists the active jobs; with the -1 option, lists process id's in addition to the nor­
mal information.

Sends either the TERM (terminate) signal or the specified signal to the specified
job(s) or process ides) (Pid). A signal can be specified either by number or by
name (as shown in /usr / include/ signal. h, and stripped of the prefix
SIG). signal names are listed by kill -1. There is no default, typing 'kill'
does not send a signal to the current job. If the signal being sent is TERM (ter­
minate) or HUP (hangup), the job or process is sent a CONT (continue) signal as
well.

Create a label named label,/or use with the goto command.

Limits consumption by the current process and its child processes, each to within
max_use on the specified resource. If no max_use is given, the current limit is
printed; if no resource is given, all limitations are given.

resources include:

cputime the maximum number of cpu-seconds to be used by each process

filesize the largest single file which can be created

datasize the maximum growth of the data+stack region beyond the
end of the program text

stacksize the maximum size of the automatically-extended stack region,
and coredumpsize the size of the largest core dump that will
be created.

max_use may be given as a number followed by a scale factor. For all limits
other than cputime the default scale is k or 'kilobytes' (1024 bytes); you can
specify m or 'megabytes' as a scaling factor. For cputime the default scaling
is seconds, but you can specify m for minutes, h for hours, or a limit of the
form mm: ss for minutes and seconds.

Terminate a login shell and run /bin/ login instead.

Exit from a login shell.

nice [+n] [command [arg ...]]

.\sun ,~ microsystelTlS
A of 3 January 86

102 Doing More with UNIX: Beginner's Guide

nohup [command [arg ...]]

notify %job ...

onintr [- I label]

popd [+n]

pushd [name I +n]

rehash

nice with no arguments sets the C-shell's priority to 4. With a +n argument,
nice sets the priority to n. The superuser (root) can set a negative priority by
replacing the plus sign with a minus (-). When followed by a simple command
and its arguments, nice sets the priority for that command, which is performed
by a subshell.

When supplied with a simple command and its arguments, nohup runs the com­
mand and ignores hangup signals. That is, the command continues to be per­
formed even after you have logged out. Processes that run in the background
ignore hangup signals automatically.

Notify the user when the status changes for the current job or specifiedjob(s),
normally before a prompt. This is automatic when you set the notify C-shell
variable.

With a minus-sign (-), the C-shell or script ignores interrupts. With a label, the
C-shell or script executes a got 0 label statement when an interrupt occurs.
With no arguments, onintr restores the default behavior; the C-shell ter­
minates scripts on an interrupt.

If a C-shell is running detached, with interrupts ignored, onintr is also ignored;
interrupts continue to be ignored by that C-shell and its commands.

Pops the directory stack, returning to the new top directory. With an argument
'+ n', it discards the nth stack entry. The elements of the directory stack are
numbered from 0 starting at the top.

With no arguments, pushd exchanges the top two elements of the directory
stack. Given a name argument, pushd changes to the new directory (as in cd)
and pushes the old current working directory onto the directory stack. With a
numeric argument '+n', it rotates the n'th entry in the directory stack to the top
and changes to it Entries in the directory stack are numbered from the top start­
ing at O.

Recompute the internal hash table of directories in the path variable. This is
needed when new commands are added to directories in the path while you are
logged in. It should only be necessary if you add commands to one of your own
directories, or if the contents of one of the system directories changes.

r epea t count command [arg...]

set [name]
set name=value
set name [index] =value
set name= (word_list)

Performs the specified simple command count times. 110 redirections occur
exactly once, even if count is O.

With no arguments, set displays the value of all shell variables. Variables
which have other than a single word as value are displayed as a parenthesized
word _list. With a name=value construct, the variable is set to the specified
value. The third form changes the index'th component of variable to value if that
component exists. The fourth form sets name to the list of values in word_list.
In all cases, the value is command and filename expanded. Variable expansion
happens for all arguments before any new values are set.

~\Slln ~~ microsystems
A of 3 January 86

setenv name value

shift [variable]

source [-h] filename

stop %job ...

suspend

switch (string)
case label:
commands
breaksw
commands
default:
commands
breaksw
endsw

time [command [arg ...]]

umask [nnn]

Appendix C - C-Shell Builtin Commands 103

Sets the value of environment variable name to be value, a single string. The
most commonly used environment variables, USER, TERM, and PATH, are
automatically imported to and exported from the csh variables user, term,
and path, respectively.

The components of the named variable are shifted to the left; the leftmost com­
ponent is discarded. When no variable is specified, the arguments list argv is
shifted left. An error results if argv, or the named variable, is not set, or has
less than one word as a value.

The shell reads commands from filename. source commands can be nested,
but if nested too deeply, the C-shell may run out of file descriptors. An error in a
source file terminates all nested source commands. Normally, input during
source commands is not placed on the history list; the -h option places the
commands in the history list without being executed.

Stops the current or specified backgroundjob(s).

Stops the C-shell, as if it received a stop signal (CONTROL-Z); most often used
to stop C-shells started by suo

The switch command begins a multiple branch. string is command and
filename expanded, and then compared with each label until a match is found.
ca se and de fa ul t: statements must begin a line. The file metacharacters *,
? and [...] can be used in labels, which are variable expanded. The C-shell
executes the block of commands between the matching cas e and the subse­
quent breaksw. If no match is found before a default: statement is
reached, the C-shell executes the commands between it and the subsequent
breaksw. When breaksw is reached, execution continues after the endsw.
Without a breaksw, commands within subsequent case and default
blocks are performed.

With no argument, a summary of the time used by the C-shell and its children is
printed. If given, the specified simple command is executed and timed. If neces­
sary, a subshell is created to print the time summary for command.

With no arguments, umask displays the permission-modes user mask in octal
digits. The user mask is deducted (by a logical not and) from the default pennis­
sion mode setting (666 for files, and 777 for directories) to yield the permissions
for newly created files or directories.

The default uma s k value is 022, resulting in permission modes of 64 4 for new
files, and 7 55 for new directories.

With an argument, umask sets a new value for the user mask (and resulting per­
missions). For instance, the command

umask 002

yields permission modes of 6 6 4, for new files (allowing read and write access to
the owner and the group, and read-only access to others), and 775 for new

~\sun ~ microsvstelTlS
A of 3 January 86

104 Doing More with UNIX: Beginner's Guide

unalias pattern

unhash

unlimit [resource]

unset pattern

unsetenv pattern

wait

while (expr)
commands
end

%Uob]

%Uob] &

@ [variable=expr]
@ [variable [index] =expr]

directories (allowing read, modify and search access to the owner and the group,
and read and search access to others).

All aliases with names that match the specified pattern are discarded. Thus all
aliases are removed by unalias *.

Use of the internal hash table to speed location of executed programs is disabled.

Removes limitations on resource. If no resource is specified, all resource limita­
tions are removed.

All variables with names matching the specified pattern are removed. All vari­
ables are removed by unset *; this includes home, path and user, and so
should be avoided.

Removes all environment variables with names matching the specified pattern.

The C-shell awaits all background jobs. If the C-shell is interactive, an interrupt
can disrupt the wait. When interrupted, the shell prints names and job
numbers of all outstanding jobs.

Performs the commands between the while statement and the end statement as
long as expr evaluates non-zero. break and continue can be used to ter­
minate or continue the loop prematurely. The while and end statements
must appear alone on the input line.

If the input source is a terminal, the C-shell prompts for commands during the
first pass through the loop. Subsequent passes are performed without prompting.

Brings the current or specified job into the foreground.

Continues the current or specified job in the background.

With no arguments, @ prints the values of all the shell variables. With argu­
ments, @ sets the specified variable to the value of expr, or the index'th com­
ponent of that variable to expr.

If expr contains <, >, & or I then it must be placed within parentheses. Both
variable and its index'th component must already exist.

The operators *=, +=, etc., are available as in C. When given arguments, there
must be a space after the '@' sign. The space separating the variable from the
assignment operator is optional. Spaces must separate components of expr.

Special postfix ++ and -- operators increment and decrement variable respec­
tively, that is, @ i ++ increments i by one.

~~sun ~"if' microsystems
A of3 January 86

D
C-Shell Special Characters

C-Shell Special Characters .. 107

D
C-Shell Special Characters

Characters with special meaning to the C-Shell:

? Single character wild card.

* String wild card, zero or more characters.

Abbreviation for current working directory.

Abbreviation for the parent of the current directory.

Abbreviation for your home directory.

- user Abbreviation for the home directory of user.

[...] Matches any single character listed within the brackets.

[x-y] Matches any character within the range of x and y .

{str, ... } Grouping. Matches each str successively. Filename substitution is
applied to each str before matching occurs. Thus, {x, *y* , ? z *}
matches a filename x, all filenames containing the letter y, and all
filenames having z as the second character. Groups enclosed with
braces can be nested.

& Places the command in the background.

(CTRL-Z I Stops the foreground job, placing it in the background.

%[n]

%[n] &

> filename

>! filename

~\sun ,~ microsystems

Brings the current (stopped) job, or the specified background job to
the foreground.

Continues, in the background, the current or specified stopped job.

Redirects the standard output to filename. If filename already exists,
its previous contents are lost. When set, the shell variable
noclobber prevents redirection to existing files or character spe­
cial devices.

Forces the standard output to filename ,even when noclobber is
set.

107 A of 3 January 86

108 Doing More with UNIX: Beginner's Guide

>&filename
Routes diagnostic (standard error) output to filename, along with the
standard output.

>&! filename
Forces diagnostic and standard output to filename.

» filename
Appends the standard output to filename. When noclobber is set,
the file must already exist.

»! filename
Forces the standard output to filename , even when noclobber is
set. Creates a new file if necessary.

»& filename
Appends the diagnostic as well as standard output to filename.

»&! filename
Forces appending of diagnostic and standard output to filename,
even when noclobber is set.

cmd 1 cmd
Pipe. Uses the standard output of the left-hand cmd as standard
input for the right-hand cmd.

cmd 1& cmd
Uses both standard and diagnostic output of the left-hand cmd as
standard input for the right-hand cmd.

(...) Command grouping. Commands and pipelines surrounded by
parentheses are executed in a subshell and treated as a unit by the
current C-Shell.

(...) >& filename

<filename

Redirects the standard output (if any) and the diagnostic output of
the enclosed command(s) to filename. This is espcially useful if the
enclosed commands redirect the stadard output to a file (thus sending
the standard output and the standard error to separate destinations).

Opens filename as the standard input.

cmd «word
Here document. Indicates that a command (typically interactive) is
to accept its commands from the same device or file (usually a
script) as the shell. word is interpreted literally as the end-oj-input
mark for the command. The C-Shell parses, but does not execute,
each text line between the here document and a line containing word
by itself. After applying command, filename, and variable substitu­
tion, the C-shell passes each line on to cmd. To suppress all substi­
tution, include a \, ", or ' in word.

A of 3 January 86

Appendix D - C-Shell Special Characters 109

; Separates commands on one input line.

\ At the end of a line, escapes the newline character and continues the
command to the next input line.

\ Escape the special meaning of the character it precedes.

" "

The C-Shell treats the enclosed text as one word, preventing history
and variable substitution.

The C-Shell treats the enclosed text as one word, breaking words
only at enclosed new lines. History and variable substitution is per­
formed before escape characters are interpreted.

'" command'"
Replaces the backquoted command or pipeline (including the
backquote marks) with its output. Output is broken into words at
blanks, tabs and new lines, except for the final newline. Unless the
right-hand backqoute is followed by a space, the last word of the
substitution is is prepended to the following word on the command
line.

Escaped history substitution event designators and word designators (described
below) can be used to indicate command line arguments within an alias
definition.

""Z""r [""] Substitutes the string r for the string Z in the previous command line.
The final "" is required only if history substitution modifiers are
appended.

Begins a history substitution. To escape its special meaning, precede
the ! with a backslash (\). A! is also escaped when followed by a
blank, tab, newline, (or =.

The following designators select an event (command line) from the history list.
Word designators and modifiers can be appended for command-line editing.

! !

!n

! -n

! str

! ?str[?]

!*

~\sun ~~ microsystems

The previous command.

Command line number n .

Selects the event whose number is n less than the current one.

The most recent command beginning with str.

The most recent command containing str. The closing question
mark is only required when word designators or modifiers are
appended.

All arguments from the previous command, but not argument zero
(the command name).

The first argument from the previous command. If, for instance, the
command was echo first, then! ... would expand to first.

A of3 January 86

110 Doing More with UNIX: Beginner's Guide

! $ The last argument from the previous command.

! : n The n 'th argument from the previous command.

! # The contents of the current command line typed in so far.

! {str} ... Restrict the event designation to str; text following the brackets is
appended to the last word of the expansion after substitution takes
place.

Word designators can be appended to the history substitution character (! for the
previous event, to a quick substitution, or to an event designator.

: * All arguments, except argument zero.

.... The first argument.

: $ The last argument.

: n The n 'th argument.

: % The word matched by most recent !? search.

: x - y Argument x through argument y .

: - y abbreviates : 0 - y.

: x* Argument x through the last argument.

: x- Argument x through the next-to-Iast argument.

: # The contents of the current command line typed in so far.

The following modifiers can be used in any sequence to modify a selected event
or word. A colon is required to separate modifier(s) from event or word designa­
tors.

[:]p

[:]h

[:]t

[:]r

[:]e

[:]s/I/r/

[:]&

[:]q

[:]x

:qm ...

~\sun ,~ microsystems

Prints the new command but does not execute it.

Removes a trailing patbname component, leaving the head.

Removes all leading patbname components, leaving the tail.

Removes a filename extension (.xxx).

Removes all but the extension.

Substitutes r for I. I is a literal string, not a regular expression.
Any character may be used as the delimiter in place of /. The char­
acter & in the right hand side is replaced by the left hand string. A
null I uses the previous string either from a I or from a? event
search.

Repeats the previous substitution.

Quotes the substituted words, preventing further substitutions.

Like : q, but breaks words at blanks, tabs and newlines.

Global prefix. When prefixed any of the above modifiers, m, the
modifier(s) apply to all words in the specified event. Normally, each

A of3 January 86

Appendix D - C-Shell Special Characters 111

word must be modified separately.

After the input line is aliased and parsed, and before each command is executed,
the C-Shell performs variable substitution on words that start with an unescaped
$, according to the list below. A $ is escaped by preceding it with a backslash
(\), or when followed by a blank, tab, or end-of-line.

Shell variables have names consisting of up to 20 letters, digits and underscore
characters, starting with a letter.

Environment variables can be expanded but not modified.

$var Is replaced with the value of var .

$ {var} . .. The brackets indicate that the enclosed string is the variable name.
The value of the named variable is prepended to the text that follows
on the command line.

$ {var [selector] }
Select words from within var. selector can be one of:

n a number.

x-y two numbers separated by a - to specify a range.

x - Word x through the last word.

- y The first word through word y .

* all words in the value.

$var the value of another variable, in which case variable sub­
stitution is applied to the selector first, and then to the
entire word.

$#var The number of words in the variable.

$ { #var} Same as $ #var

$0 The name of the file from which command input is being read. An
error occurs if the name is not known.

$n The n'th word in the argument list; equivalent to $argv [n] •

Same as $n.

${n}

$* All words in the argument list; equivalent to $argv [*] .

$?var

${ ?var}

$?O

$$

$<

~\sun ,~ microsystelT1S

replaced with 1 if var is set, or 0 if not.

replaced with 1 if the current input filename is known, 0, otherwise.

Is replaced with the process ID (PID) of the (parent) shell.

replaced with text taken from the standard input, with no further
interpretation. Used to read from the keyboard in a C-Shell script.

A of 3 January 86

112 Doing More with UNIX: Beginner's Guide

The modifiers [:]h, [:]t, [:]r, [:]q, and [:]x can be applied to the substitutions
above. See Modifiers under History Substution , above, for a description.

If braces { ... } appear in the variable substitution, modifiers must be enclosed
within them.

The current implementation allows only one modifier within each variable sub­
stitution.

The following variable substitutions can not be modified: $? , $ $, and $<.

Expressions appear within the @, exit, if, and while builtin commands.

Null or missing terms are interpreted as O.

Results of all expressions are strings that represent decimal numbers. Results of
logical expressions are 1 (for true) or 0 (for false).

(...)

!=

=-

<

<=

>

>=

I I

"
{ ... }

Parentheses indicate grouping of operaters and terms within an
expression, overriding the standard precedence of operators.

True if the string on the left is equal to the string on the right (after
all substitutions are performed).

True if the string on the left is not equal to the string on the right.

True if the string on the left is matched by the pattern on the right

True if the string on the left is not matched by the pattern on the
right.

True if the number on the left is less than the number on the right.

True if the number on the left is less than or equal to the number on
the right.

True if the number on the left is greater than the number on the right.

True if the number on the left is greater than or equal to the number
on the right.

Logical or connective.

Logical and connective.

Command successful. True if the command surrounded by brackets
exits with status code O.

An operator of the form

flag filename
is true if the attribute flag applies to filename, with respect to the
current user. flag can be one of:

-r read access

-w write access

-x execute access

A of 3 January 86

Appendix D - C-Shell Special Characters 113

-e existence

-0 ownership

-z zero size

-f plain file

-d directory

! flag true if flag does not apply.

If the file does not exist, or is inaccessible, then all inquiries yield
false as a result.

+ Addition.

Subtraction.

* Multiplication.

/ Division.

% Remainder after division.

Ostr A string with a leading zero is interpreted as an octal numeral.

« Bitwise shift left operator.

» Bitwise shift right operator.

Bitwise or operator.

Bitwise exclusive or operator.

& Bitwise and operator.

~\sun ,~ microsystams
A of3 January 86

E
C-Shell Predefined Variables

C-Shell Predefined Variables .. 117

argv

cdpath

cwd

echo

histchars

history

home

ignoreeof

mail

E
C-Shell Predefined Variables

argv, the arguments list, contains any arguments to the shell. The C-Shell uses
values from this variable to replace positional parameters. For instance, the C­
shell replaces $1 with $ argv [1] .

A list of alternate directories to search within when performing a chdir com­
mand.

The full pathname of the current directory.

Set when the -x command line option is given. Echoes each command and its
arguments prior to execution. For nonbuiltin commands all expansions occur
before echoing.

The C-Shell echos commands before any command or filename substitutions take
place.

A string value of two characters that replace those that indicate history substitu­
tion. The first character replaces! as the history substitution character. The
second character replaces - for quick substitutions.

A numeric value to control the size of the history list. Commands invoked
within the specified number remain in the list. The most recent command is
always saved, even when this variable is not set.

If you use too large a value for history, the shell may run out of memory.

Your home directory (initialized from the environment). The filename expansion
of - refers to the value of this variable.

If set, the shell ignores end-of-file signals from the terminal. This prevents the
shell from being killed by an accidental I CTRL-D I.

A list of files where the shell checks for mail.

If numeric, the first word of the value specifies a mail checking interval in
seconds. The default interval is 5 minutes.

If multiple mail files are specified, the shell displays

~\sun ,~ microsystems
117 A of3 January 86

118 Doing More with UNIX: Beginner's Guide

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

status

time

New mail in filename

for any file with new mail.

When set, noclobber places restrictions on output redirection to insure that
files are not accidentally overwritten, and that> > redirections append to existing
files.

If set, filename expansion is inhibited. Useful in shell scripts that do not deal
with file lists, or after a list of files has been obtained and further expansion is not
desired.

If set, a file list that, when expanded, does not match any existing files, returns
the pattern, rather than an error message.

If set, the shell notifies you immediately when jobs are completed, rather than
just before printing the next prompt

Each word of the value specifies a directory within which to search for named
commands (that aren't pathnames). A null value specifies the current directory.
If path is undefined, only complete pathnames are recognized as commands.

Nonnally, the search path includes the directories ., / us r /bin, / usr / ucb,
default search path is / etc, /usr / etc, /bin and /usr /bin.

A shell that is given neither the -c nor the -t options will nonnally hash the
contents of the directories in the path variable after reading . cshrc, and
each time the path variable is reset. When new commands are added to these
directories, it may be necessary to give the rehash command for them to be
found.

A string to be printed when the shell is ready to accept a command from the ter­
minal. A! is replaced by the current event number unless preceded with a
backslash (\).

A numeric value to control the size of the history list saved in - / . history
whenever you log out Commands invoked within the specified number are
saved.

During startup, the shell adds the contents of this file onto the history list so that
history can be saved between sessions. Very large values of savehist slow
down startup of the C-shell.

The file in which the shell resides, used to fork shells to interpret scripts.

The status returned by the last command. If the command terminated abnor­
mally, then 0200 is added to the status. Builtin commands that fail return exit
status of 1; successful builtin commands return o.

Controls automatic timing of commands. The time variable can be supplied
with one or two values, such as set time=3 or set time= (3 n%E

A of 3 January 86

verbose

Appendix E - C-Shell Predefined Variables 119

%P %"). The first value is a numeric threshold in seconds of CPU time. The C­
shell displays a resource-usage summary for any command running longer than
the specified threshold. The second value is optional and is a character string
which determines which resources the user wishes displayed. The character
string can be any string of text with embedded control key-letters in it. A control
key-letter is a percent sign (%) followed by a single upper-case letter. To print a
percent sign, use two percent signs in a row. Unrecognized key-letters are sim­
ply printed. The control key-letters are:

D Average amount of unshared data space used in Kilobytes.

E Elapsed (wall clock) time for the command.

F Page faults.

I Number of block input operations.

K Average amount of unshared stack space used in Kilobytes.

M Maximum real memory used during execution of the process.

° Number of block output operations.

P Total CPU time - U (user) plus S (system) - as a percentage of E
(elapsed) time.

S Number of seconds of CPU time consumed by the kernel on behalf of the
user's process.

U Number of seconds of CPU time devoted to the user's process.

W Number of swaps.

X Average amount of shared memory used in Kilobytes.

The default resource-usage summary is a line of the form:

uuu.uu sss.s s ee:ee pp % xxx+dddk iii +000 io mmmpf+www

where uuu.u is the user time U, sss.s is the system time S, ee :ee is the elapsed
time E, pp is the percentage of CPU time versus elapsed time P, xxx is the aver­
age shared memory in Kilobytes x, ddd is the average unshared data space in
Kilobytes D, iii and 000 are the number of block input and output operations
respectively I and 0, mmm is the number of page faults F, and ww is the number
of swaps w.

When set by the -v command line option, the C-shell displays the words of
each command after history substitution and before execution .

• ~sun
~~ microsystems

A of 3 January 86

F
Bourne Shell Scripts

Bourne Shell Scripts ... 123

Bourne Shell scripts do not serve
the same function as make, which
is useful for consistently perform ing
a set of operations on related files.
While scripts can be written to do
this, the Bourne Shell is more gen­
eral in scope. Scripts do not check
for dependencies, for instance.
And, there are many things that you
can do with scripts, such as prompt­
ing for input from the terminal, that
are not practical using make.

NOTE

Bourne Shell Variables

F
Bourne Shell Scripts

You can use the Boure Shell to petform a set of UNIX commands contained in a
file called a script.

To run a Bourne Shell script (for which you have execute permission), type in its
filename as if it were a command. When you do, the system looks at the very first
line of the file to decide which Shell should run the script:

o If the first line does not start with a :#: (hash sign), the system uses the
Bourne Shell to run the script.

o If the first line starts with a :#: (hash sign) and is not followed by a! (excla­
mation mark), the system uses the C-Shell to run the script.

o Finally, if the first line of the Shell script starts with a :#=! combination and
is followed immediately by a name, the system looks for a program of that
name to run the Shell script. If you supply arguments on the command line,
these are passed along to variables in the Bourne Shell called positional
parameters. The first argument after the name of the script is placed in vari­
able 1. The second is placed in variable 2, and so forth.

You can often simplify testing of Bourne Shell scripts (or commands to run within
them) by using the Bourne Shell interactively. To do so, type in the command
/bin/ sh, and enter commands as described in this Appendix. Use (CTRL-D)
to exit and return to the C-Shell. Most of the examples below make use of the
Bourne Shell interactively, as well as within scripts.

The Bourne Shell provides string-valued variables. Variable names begin with a
letter and consist of letters, digits and underscores. You may assign values to
variables by writing the variables name, an equal sign, and a value (with no
spaces between). For example:

($ user=fred box=mOOO acct=mhOOOO

assigns values to the variables user, box and acct. To set a variable to the null
string, you can say:

($ cheese=

]

]

123 A of 3 January 86

124

Bourne Shell Initial Variables

[,---$ Ch_eese= ______ J

The value of a variable is substituted by preceding its name with $ - for exam­
ple:

mars% cat > test
echo $user
""D

mars% chmod 755 test
mars% test
fred
mars%

You can use variables to provide abbreviations for strings that are used fre­
quently throughout a script. A script containing the following lines

[~~~usr/fred/bin .mv pgm $b

moves the file pgm from the current directory to the directory lusrlfredlbin. A
more general notation is available for parameter (or variable) substitution, as in:

(echo $ {user)

which is equivalent to

(echo $user

and is used when the parameter name is followed immediately by a letter or
digit:

[

tmp=/tmP/PS
_PS >${tmp}a

directs the output of ps to the file /tmp/psa, whereas

(ps a >$tmpa

redirects it to a file named tmpa.

Except for $?, the variables defined in table are set initially by the Bourne
Shell. $? is set after executing each command.

1

J

J

]

J

A of 3 January 86

Table F-l

Variables with Special Meaning
to the Bourne Shell

The file. profile in your home
directory is the setup file for the
Bourne Shell - equivalent to the
combination of the. cshrc and
. login files for the C-Shell.

Appendix F - Bourne Shell Scripts 125

Variables Initialized by the Bourne Shell

Variable Explanation

$? The exit status (return code) of the last command executed, as a
decimal string. Most commands return a zero exit status if they
complete successfully, otherwise a non-zero exit status is returned.

$ 41= The number of positional parameters (in decimal).
$ $ The process number of this Shell (in decimal). Since process

numbers are unique among all existing processes, this string is fre­
quently used to generate unique temporary filenames.

$! The process number of the last process run in the background (in
decimal).

$ - The current Bourne Shell flags, such as -x and -v.

Some variables have a special meaning to the Bourne Shell; avoid them in gen­
eral use.

$MAIL When the Bourne Shell is used interactively, it looks at the file
specified by this variable before it issues a prompt. If the specified file
has been modified since it was last looked at, the Bourne Shell prints
the message you have mail before prompting for the next command.
This variable is typically set in the file . prof ile in your home

directory. For example:

MAIL=/usr/spool/mail/fred

$HOME Your home directory; this variable is also typically set in . profile .

$PATH A list of directories that contain commands (the search path). Each
time the Bourne Shell executes a command, a list of directories is
searched for an executable file by that name. If PATH is not set, then
the current directory, /bin, and /usr /bin are searched by default.
$PATH consists of directory names separated by :. For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin, and /usr/bin are to be searched in that
order. This allows you to have your own private commands accessible
independently of the current directory. If the command name contains
a /, then this directory search is not used.

$p S 1 The primary Bourne Shell prompt string, by default, '$ '.

$PS2 The Bourne Shell prompt when further input is needed, by default,
'> '.

$ IFS The set of characters to be interpreted as blanks when parsing com­
mand lines .

• ~r!!t!! A of 3 January 86

126 Doing More with UNIX: Beginner's Guide

The te st Command

[...] alternative form of
the te st command

Although the test command is not part of the Bourne Shell, scripts frequently
use it. t ext can be used to check on the status of files, to compare strings and
algebraic expressions, and to perfonn integer calculations. For instance:

test -f file

returns zero exit status if file exists and non-zero exit status otherwise. In general
test evaluates a predicate and returns the result as its exit status. Here is the list
of things you can test for.

- b file true if file exists and is a block special device.

-c file true iffile exists and is a character special device.

-dfile true iffile exists exists and is a directory.

- f file true if file exists and is not a directory.

-g file true if file exists and is setgid.

- h file true if file exists and is a symbolic link.

- k file true if file exists and is sticky.

-1 string the length of string.

-n string true if the length of string is nonzero.

-r file true iffile exists and is readable.

- s file true if file exists and has a size greater than zero.

-t [fildes] true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

-w file true if file exists and is writable.

-x file true if file exists and is executable.

- z string true if the length of string is zero.

string-l = string-2
true if the strings string-l and string-2 are equal.

string-l ! = string-2
true if the strings string-l and string-2 are not equal.

string

nl -eq n2

true if string is not the null string.

true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, or -Ie may be used in place
of-eq.

You can also call te st by surrounding the expression to be tested with brackets
([]). (The left bracket is a command name, the right bracket is a arsument sig­
nifying the end of the expression.) This form is most often used with the if
command described later on.

A of 3 January 86

Getting Started - A Simple
Procedure

Control Flow in the Bourne
Shell- for

General/arm a/the for loop

Appendix F - Bourne Shell Scripts 127

Here is a vary simple Bourne Shell procedure to look up names in a list of names
and telephone numbers contained in a file called names .list. Let's call the
lookup procedure name:

$ cat name
*! /bin/sh
grep -i $1 names.list
$

This is about as simple as you can get. Let's run the name procedure looking for
people called Tom something-or-other:

$ name tom
Tom Athanasiou
Tom McReynolds
$

toma@thales
bohica@centauri

7534
7256

Later on we will show a more sophisticated version of name, and expand on this
procedure to demonstrate other features of the Bourne Shell.

A frequent use of Bourne Shell procedures is to loop through the arguments ($1,
$ 2 , •••) executing commands once for each argument. Here's an expanded
version of the name procedure from above. The original version of name can
only look for one person's name. Now we want to expand it to look for more
than one name at a time. Let's look at the new version:

$ cat name
*! /bin/sh
for person

done
$

do grep -i $person names.list

Here we set a variable called person to the value of each positional parameter,
one at a time, then we callout the value of person in the grep command.
Now we can look for more than one name at a time:

$ name bill mary
Bill Tuthill
Mary Hamilton
$

tut@cairo
hamilton@artemis

7258
7214

The for loop notation is recognized by the Bourne Shell and has the general
form

~~ Slln ~'f' microsystems
A of 3 January 86

128 Doing More with UNIX: Beginner's Guide

Control Flow in the Bourne
Shell- case

for name in wl w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or ter­
minated by a newline or semicolon. Furthermore, reserved words like do and
done are only recognized following a newline or semicolon. Name is a Bourne
Shell variable that is set to the words w] w2 ... in tum each time the command-
list following do is executed. If in w] w2 ... is omitted, then the loop is exe-
cuted once for each positional parameter; that is, in $ * is assumed.

An example of the use of the for loop is the create command whose text is

for i do >$i; done

The command:

($ create alpha beta

ensures that two empty files alpha and beta exist and are empty. Use the nota­
tion > file on its own to create or clear the contents of a file. Notice also that a
semicolon (or newline) is required before done.

The case notation provides a multi-way branch. For example:

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
*) echo 'usage: append [from] to' ;;

esac

is an append command. When called with one argument as

($ append file

$ * is the string "1" and the standard input is copied onto the end of file using
the cat command. To append the contents of file] onto file2, say:

[~ append filel file2

If the number of arguments supplied to append is other than 1 or 2, a message is
displayed indicating proper usage.

The general form of the cas e command is:

case word in
pattern-l) command-list-l;;
pattern-2) command-list-2;;

esac

]

]

]

A of 3 January 86

A word of caution: no check is
made to ensure that only one pat­
tern matches the case argument.
The first match found defines the
set of commands to be executed.
In the example the commands fol­
lowing the second * are never exe­
cuted.

Matching Multiple Patterns in
One Case

Here Documents in the Bourne
Shell

Appendix F - Bourne Shell Scripts 129

The Bourne Shell attempts to match word with each pattern, in the order in
which the patterns appear. If a match is found the associated command-list is
executed, and execution of the case is complete. Since * is the pattern that
matches any string, you can use it for the default case.

case $* in
*)
*)

esac

Another example of the use of the ca s e construction is to distinguish between
different forms of an argument. The following example is a fragment of a cc (C
compiler) command:

for i
do case $i in

-[ocs]) ... ;;

done

-*) echo 'unknown flag $i' ;;
*.c) /lib/cO $i ... ;;
*) echo 'unexpected argument $i' ;;
esac

To allow the same commands to be associated with more than one pattern the
case command provides for alternative patterns separated by a ' I '. For exam­
ple:

case $i in
-x I-y)

esac

is equivalent to

case $i in
- [xy])

esac

The usual quoting conventions apply, so that

case $i in
\?)

will match the character ?

Sometimes a Shell procedure requires data. Instead of having the data in some
file somewhere in the system, the data can be included as part of the Shell pro­
cedure. Such a collection of data is called a here document - the data (docu­
ment) is right here in the Shell procedure. One advantage of a here document is
that Shell parameters can be substituted in the document as the Shell is reading
the data.

The general form of a here document is like this:

A of 3 January 86

130 Doing More with UNIX: Beginner's Guide

The name command using here
document

lines of Shell commands

command-name «end-marker
lines of data
belonging to the
here document

end-marker

more lines of Shell commands

Let's revisit the name procedure discussed in earlier sections. Instead of having
the names and numbers in one file and the Shell procedure in another file, you
can keep both the procedure and the list in the same file - that is, in the pro­
cedure. Here's another version of the name command:

$ cat name
t! Ibin/sh
grep -i $1 «EOF
Tom Athanasiou
Bridget Burke

more names

Daniel Sears
Bill Tuthill
Dirk van Nouhuys
EOF
$

toma@thales
bridget@sid

sears@sasha
tut@cairo
dirk@words

7534
7441

7435
7258
7296

In this example the Bourne Shell takes the lines between < <EOF and EOF as
the standard input for grep. The string EOF is arbitrary, the document being ter­
minated by a line that consists of the string following < <.

Now you'll notice that in this version of name we're back to being able to only
look up one name at a time. We could combine the multiple-name version with
the here-document version:

.sun
~ microsy~ms

A of 3 January 86

Parameter substitution in here
documents

Appendix F - Bourne Shell Scripts 131

$ cat name
4f:! /bin/sh
for person

do grep -i $person «EOF
Tom Athanasiou toma@thales
Bridget Burke bridget@sid

more names

Daniel Sears
Bill Tuthill
Dirk van Nouhuys
EOF
done
$

sears@sasha
tut@cairo
dirk@words

7534
7441

7435
7258
7296

The problem with this approach is that the Shell reads up the list of names every
time around the for loop. This could become excruciatingly slow. In a later
section we show another version of name using temporary files for faster perfor­
mance.

Parameters are substituted in the here document before it is made available to
whatever command as illustrated by the following procedure called e dg (e d
globally).

ed $3 «%
g/$1/s//$2/g
w
%

Then the command line:

($ edg stringl string2 file

is equivalent to the command:

$ ed file «%
g/stringl/s//string2/g
w
%

and changes all occurrences of string1 in/tIe to string2. You can prevent substi­
tution by using '\' to quote the special character $ as in

ed $3 «+
1,\$s/$1/$2/g
w

+

This version of edg is equivalent to the first except that ed displays a ? if there
are no occurrences of the string $1. Quoting the terminating string prevents

]

~\sun
~~ microsystems

A of 3 January 86

132 Doing More with UNIX: Beginner's Guide

Control Flow in the Bourne
Shell- while

Control Flow in the Bourne
Shell- if

substitution entirely within a here document, for example:

grep $i «\:it

The document is presented without modification to grep. If parameter substi­
tution is not required in a here document, this latter form is more efficient.

The actions of the for loop and the case branch are determined by data avail­
able to the Bourne Shell. A while or until loop and an if then else
branch are also provided whose actions are determined by the exit status returned
by commands. A while loop has the general form

while command-list-l
do command-list-2
done

The value tested by the while command is the exit status of the last simple
command following while. Each time round the loop command-list-l is exe­
cuted; if a zero exit status is returned then command-list-2 is executed; otherwise,
the loop tenninates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do ...
done

shift is a Bourne Shell command that renames the positional parameters $2,
$ 3 , ... as $1, $ 2 , ... and discards $1.

Another kind of use for the while/until loop is to wait until some external
event occurs and then run some commands. In an unt il loop the termination
condition is reversed. For example,

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before
trying again. Presumably another process will eventually create the file.

A general conditional branch of the form

if command-list
then command-list
else command-list
fi

is also available to test the value returned by the last simple command following
if .

• \sun
~ microsystems

A of 3 January 86

Appendix F - Bourne Shell Scripts 133

We can illustrate a very simple use of the if command by expanding on our
name procedure from before. The relevant change is in the first few lines:

$ cat name
*! /bin/sh
if test $* -It 1
then

echo Usage: $cmd name __ _
exit 1

fi
grep -i $1 «EOF
Tom Athanasiou
Bridget Burke

more names

Daniel Sears
Bill Tuthill
Dirk van Nouhuys
EOF
$

toma@thales
bridget@sid

sears@sasha
tut@cairo
dirk@words

7534
7441

7435
7258
7296

The change here is the if command - the original version of the procedure
didn't check that the user supplied any parameters at all. This version checks the
number of parameters ($ *) using the t est command, and displays a usage
message if there are no parameters to remind the user of the correct way to use
the procedure.

We mentioned earlier that the test command can also be written as [. Here is
the first couple of lines of the abovenameprocedure

$ cat name
*! /bin/sh
if [$# -It 1]; then

fi

echo Usage: $cmd name
exit 1

grep -i $1 «EOF

EOF
$

The if command may also be used in conjunction with the test command to
test for the existence of a file as in

if test -f file
then process file
else do something else
fi

Here is an example of the test command in action. This is an extract from the

4i\sun ~~ microsystems
A of3 January 86

134 Doing More with UNIX: Beginner's Guide

elif multiple-test version of
if

di f f 3 Shell procedure:

$ cat -n lusr/bin/diff3
1 #! /bin/sh
2 e=
3 case $1 in
4 -*)

5 e=$l
6 shift;;
7 esac
8 if test $#
9 then

3 -a -f $1 -a -f $2 -a -f $3

10
11 else
12 echo usage: diff3 filel file2 file3 1>&2
13 exit
14 fi
15 trap "rm -f /tmp/d3[ab]$$" 0 1 2 13 15
16 diff $1 $3 >/tmp/d3a$$
17 diff $2 $3 >/tmp/d3b$$
18 /usr/lib/diff3 $e /tmp/d3[ab]$$ $1 $2 $3

The relevant line is on line 8 that reads

if test $# = 3 -a -f $1 -a -f $2 -a -f $3

This says that if the number of parameters ($ -#) is equal to 3, and all three param­
eters are files, the procedure can continue, otherwise the procedure displays an
error message and stops.

A multiple-test if command of the form

if ...
then
else if

then
else if

fi
fi

fi

may be written using an extension of the if notation:

if condition-l
then actions-l
elif condition-2
then actions-2
elif condition-3

fi

The sequence

~\sun ~ microsystems
A of 3 January 86

Command Grouping

Debugging Bourne Shell
Procedures

Appendix F - Bourne Shell Scripts 135

if command-l
then command-2
fi

may be written

command-l & & command-2

Conversely,

command-l I I command-2

executes command-2 only if command-l fails. In each case the value returned is
that of the last simple command executed.

Commands may be grouped in two ways,

{command-list ; }

and

(command-list

In the first, command-list is simply executed. The second form executes
command-list as a separate process. For example,

(! (cd z; rm junk)]

executes rm junk in the directory x without changing the current directory of
the invoking Shell.

The commands

(! cd z; rm junk

have the same effect but leave the invoking Shell in the directory x.

The Bourne Shell provides two tracing mechanisms to help in debugging Shell
procedures. The first is invoked within a procedure as

set -v

]

(v for verbose) and displays lines of the procedure as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure
by saying

[! sh -v proc ...

where proc is the name of the Bourne Shell procedure. This flag may be used in
conjunction with the -n flag which prevents execution of subsequent

]

A of 3 January 86

136 Doing More with UNIX: Beginner's Guide

Keyword Parameters in the
Bourne Shell

Parameter Transmission in the
Bourne Shell

commands. Note that saying set -n at a terminal will render the terminal
useless until an end-of-file is typed.

The command

set -x

produces an execution trace. Following parameter substitution, each command is
displayed as it is executed. Both flags may be turned off by saying

set -

and the current setting of the Bourne Shell flags is available as $ - .

Bourne Shell variables may be given values by assignment or when a Shell pro­
cedure is invoked. An argument to a Bourne Shell procedure of the form
name=vaIue that precedes the command name causes value to be assigned to
name before execution of the procedure begins. The value of name in the invok­
ing Shell is not affected. For example,

($ use=fred COIIIIDaDd]
executes command with user set to fred. The - k flag causes arguments of the
form name=value to be interpreted in this way anywhere in the argument list.
Such names are sometimes called keyword parameters. If any arguments remain,
they are available as positional parameters $1, $ 2 ,

You can also use the set command to set positional parameters from within a pro­
cedure. For example,

set - *
sets $1 to the first filename in the current directory, $ 2 to the next, and so on.
Note that the first argument, -, ensures correct treatment when the first filename
begins with a - .

When a Bourne Shell procedure is called, both positional and keyword parame­
ters may be supplied with the call. Keyword parameters are also made available
implicitly to a Bourne Shell procedure by specifying in advance that such param­
eters are to be exported. For example,

export user box

marks the variables user and box for export. When a Shell procedure is called,
copies are made of all exported variables for use within the invoked procedure.
Modification of such variables within the procedure does not affect the values in
the calling Shell. It is generally true of a Bourne Shell procedure that it may not
modify the state of its caller without explicit request on the part of the caller.
(Shared file descriptors are an exception to this rule.)

Names whose values are intended to remain constant may be declared readonly.
The form of this command is the same as that of the export command,

readonly name ...

A of3 January 86

Parameter Substitution in the
Bourne Shell

Appendix F - Bourne Shell Scripts 137

Subsequent attempts to set readonly variables are illegal.

If a Bourne Shell parameter is not set, the null string is substituted for it. For
example, if the variable d is not set

($ echo $d

or

($ echo ${d)

will echo nothing. A default string may be given as in

($ echo ${d-.)

which will echo the value of the variable d if it is set and '.' otherwise. The
default string is evaluated using the usual quoting conventions so that

]

]

]

[~$ __ e_C_h_O __ $_{_d_-_'* __ '_} ______________________________________ ~]
will echo * if the variable d is not set. Similarly

($ echo ${d-$l)

will echo the value of d if it is set and the value (if any) of $1 otherwise. A
variable may be assigned a default value using the notation

echo $ {d=.}

which substitutes the same string as

echo ${d-.}

and if d was not previously set then it is now set to the string '.' . The notation
${ ... = ... } is not available for positional parameters.

If there is no sensible default then the notation

echo ${d?message}

)

echos the value of the variable d if it has one; otherwise the Bourne Shell prints
message, if the Shell if not interactive, and stops executing the procedure. If
message is absent, then a standard message is printed. A Bourne Shell procedure
that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the Bourne Shell and does nothing
once its arguments have been evaluated. If any of the variables user, acct or bin
are not set, and the Shell is not interactive, the Shell stops executing the pro­
cedure.

A of 3 January 86

138 Doing More with UNIX: Beginner's Guide

Command Substitution in the
Bourne Shell

Evaluation and Quoting in the
Bourne Shell

In a similar way, you can substitute the standard output from a command as the
value of a parameter. The command pwd displays on its standard output the
name of the current directory. For example, if the current directory is
lusrlfredlbin then the command

d='pwd'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents50 c ... ") is taken as the command to be
executed and is replaced with the output from the command. The command is
written using the usual quoting conventions except that a 'must be escaped
using a \ . For example,

ls 'echo "$1'"

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs
(including here documents) and the treatment of the resulting text is the same in
both cases. This mechanism allows use of string processing commands within
Bourne Shell procedures. An example of such a command is basename, which
removes a specified suffix and the pathname' s prefix from a string. For example,

basename /usr/fred/main.c .c

displays the string main. The following fragment from a cc command illustrates
its use:

case $A in

*.c) B='basename $A .c

esac

that sets B to the part of $A with the pathname and suffix . c stripped.

Here are some composite examples.

o for i in 'Is -t'; do
The variable i is set to the names of files in time order, most recent
first.

o set 'date'; echo $6 $2 $3, $4
will print, for instance, 1977 Nov 1, 23: 59: 59

The Bourne Shell is a macro processor that provides parameter substitution, com­
mand substitution and filename generation for the arguments to commands. This
section discusses the order in which these evaluations occur and the effects of the
various quoting mechanisms.

so Often called backquotes.

A of 3 January 86

Appendix F - Bourne Shell Scripts 139

Commands are parsed initially according to the grammar given in the 'Grammar'
section. Before a command is executed, the following substitutions occur.

o Parameter substitution, such as $user

o Command substitution, such as 'pwd '

Only one evaluation occurs so that if, for example, the value of the variable
X is the string $y then

echo $X

will echo $y.

o Blank interpretation

Following the above substitutions, the resulting characters are broken into
non-blank words (blank interpretation). For this purpose 'blanks' are the
characters of the string $ IF S. By default, this string consists of blank, tab
and newline. The null string is not regarded as a word unless it is quoted.
For example,

echo "

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable n u 11 is not set or set to the
null string.

o Filename generation

Each word is then scanned for the file pattern characters *, ? and
[. . .], and an alphabetical list of filenames is generated to replace the
word. Each such filename is a separate argument.

The evaluations just described also occur in the list of words associated with a
for loop. Only parameter and command substitution occurs in the word used
for a ca s e branch.

As well as the quoting mechanisms described earlier using \ and '. . . " a
third quoting mechanism is provided using double quotes. Within double quotes,
parameter and command substitution occur, but filename generation and the
interpretation of blanks does not. The following characters have special mean­
ings within double quotes and may be quoted using \.

Character

$

"
\

For example,

Meaning

parameter substitution
command substitution
ends the quoted string
quotes the special characters $.. tI \

A of 3 January 86

140 Doing More with UNIX: Beginner's Guide

Table F-2

echo "$x"

passes the value of the variable x as a single argument to echo. Similarly,

echo "$*"

passes the positional parameters as a single argument and is equivalent to

echo "$1 $2 ... "

The notation $ @ is the same as $ * except when it is quoted.

echo "$@"

passes the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the Bourne Shell meta­
characters that are evaluated.

Quoting Mechanisms

Quoting
M etacharacter

Character

\ $ * "
n n n n n t
y n n t n n

" y y n y t n

Where t=terminator, y=interpreted, and n=not interpreted

In cases where more than one evaluation of a string is required, use the built-in
command eval. For example, if the variable X has the value $y and y has the
value pqr, then

eval echo $X

echos the string pqr.

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the Bourne Shell. The input is read and the resulting
command(s) are executed. For example,

wg='eval wholgrep'
$wg fred

is equivalent to

wholgrep fred

In this example, eval is required since there is no interpretation of metacharac­
ters, such as I, following substitution.

A of 3 January 86

Error Handling in the Bourne
Shell

Appendix F - Bourne Shell Scripts 141

The treatment of errors detected by the Bourne Shell depends on the type of error
and on whether the Bourne Shell is being used interactively. A Bourne Shell
invoked with the -i flag is deemed to be interactive.

Execution of a command (see also 'Command Execution') may fail for any of the
following reasons.

o Input/output redirection may fail, for example, if a file does not exist or can­
not be created.

o The command itself does not exist or cannot be executed.

o The command terminates abnormally, for example, with a 'bus error' or
'memory fault.' See table F-3 for a complete list of UNIX signals.

o The command terminates normally but returns a non-zero exit status.

In all of these cases the Bourne Shell goes on to execute the next command.
Except for the last case, the Bourne Shell displays an error message. All remain­
ing errors cause the Bourne Shell to exit from a command procedure. An interac­
tive Bourne Shell will return to read another command from the terminal. Such
errors include the following:

o Syntax errors such as, if ... then ... done

o A signal such as an interrupt. The Bourne Shell waits for the current com­
mand, if any, to finish execution and then either exits or returns to the termi­
nal.

o Failure of any of the built-in commands such as cd.

The Bourne Shell flag -e terminates the Bourne Shell if any error is detected.

~~sun ~~ microsystems
A of 3 January 86

142 Doing More with UNIX: Beginner's Guide

Table A-3

Notes on the Signals

Fault Handling in the Bourne
Shell

UNIX Signals

Signal Signal
Notes Description

Name Number

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3 * quit
SIGILL 4 * illegal instruction
SIGTRAP 5 * trace trap

SIGIOT 6 * lOT instruction
SIGEMT 7 * EMT instruction
SIGFPE 8 * floating point exception
SIGKILL 9 kill - cannot be caught, blocked, or ignored
SIGBUS 10 * bus error

SIGSEGV 11 * segmentation violation
SIGSYS 12 * bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal from kill

SIGURG 16 urgent condition on 10 channel
SIGSTOP 17 t stop - cannot be caught, blocked, or ignored
SIGTSTP 18 t stop signal from tty
SIGCONT 19 • continue after a stop - cannot be blocked
SIGCHLD 20 • to parent on child stop or exit

SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22 t background write attempted from control terminal
SIGIO 23 input/output possible signal *
SIGXCPU 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit

SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling time alarm
SIGWINCH 28 • window changed

* These signals normally create a memory image of the terminated process.

• These signals are discarded if the signal action is SIG_DFL.

t These signals normally stop the process.

The Bourne Shell itself ignores quit, which is the only external signal that can
cause a dump. The signals in this list of potential interest to Bourne Shell pro­
grams are 1, 2, 3, 14 and 15.

Bourne Shell procedures normally terminate when an interrupt is received from
the terminal. The trap command is used if some cleaning up is required, such as
removing temporary files. For example,

trap 'rm /tmp/ps$$; exit' 2

A of 3 January 86

Appendix F - Bourne Shell Scripts 143

sets a trap for signal 2 (terminal interrupt), and if this signal is received it exe­
cutes the commands

rm /tmp/ps$$; exit

Exit is another built-in command that tenninates execution of a Bourne Shell
procedure. The exit is required; otherwise, after the trap has been taken, the
Bourne Shell will resume executing the procedure at the place where it was inter­
rupted.

UNIX signals can be handled in one of three ways. They can be ignored, in
which case the signal is never sent to the process. They can be caught, in which
case the process must decide what action to take when the signal is received.
Lastly, they can be left to cause tennination of the process without its having to
take any further action. If a signal is being ignored, on entry to the Bourne Shell
procedure, for example, by invoking it in the background (see 'Command Execu­
tion'), then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the name command.
You'll recall that the version of the name command shown using a here docu­
ment would only look for one name at a time and that if we modified it to look
for multiple names, the here document would be read every time around the for
loop. Here is a version that copies the here document into a temporary file. The
name of the temporary file is derived from the process ID of this command.
When the procedure tenninates, the trap is called to remove the temporary file.
Let's take a look at this version of the name command:

*! /bin/sh -u
if [$* -It 1]; then

echo Usage: name person
exit 1

fi
junk=/tmp/$cmd.$$
trap fIrm -f $junk; exit" 0 1 2 15
cat > $junk «EOF
Tom Athanasiou
Bridget Burke

more names

Daniel Sears
Bill Tuthill
Dirk van Nouhuys
EOF
for person

toma@thales
bridget@sid

sears@sasha
tut@cairo
dirk@words

do grep -i $person $junk
done

7534
7441

7435
7258
7296

The trap command appears before the creation of the temporary file; otherwise
it would be possible for the process to die without removing the file.

Since there is no signal 0 in UNIX, the Bourne Shell uses it to indicate the com­
mands to be executed on exit from the Bourne Shell procedure.

~\sun
~ microsystems

A of 3 January 86

144 Doing More with UNIX: Beginner's Guide

The scan Command

A procedure may, itself, elect to ignore signals by specifying the null string as
the argument to trap. The following fragment is taken from the nohup command:

trap " 1 2 3 15

which causes both the procedure and the invoked commands to ignore the
hangup, interrupt,and kill signals.

Traps may be reset by saying:

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the
current values of traps may be obtained by writing:

trap

The scan procedure shown below is an example of the use of trap where
there is no exit in the trap command. scan takes each directory in the
current directory, prompts with its name, and then executes commands typed at
the terminal until an end of file or an interrupt is received. Interrupts are ignored
while executing the requested commands but cause termination when scan is
waiting for input

d='pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap : 2; eval $x; done

read is a built-in command that reads one line from the standard input and
places the result in the variable which is its argument. read returns a non-zero
exit status if either an end-of-file is read or an interrupt is received.

Here is an example of the scan command in action:

.\sun ,~ microsystems
A of3 January 86

Command Execution in the
Bourne Shell

$ scan
bin:
Is

Appendix F - Bourne Shell Scripts 145

diffmark
bin:

henry.pct lifescreen scan.sh

AD

experiments:
Is
Makefile
Old. Stuff
diffs
experiments:
rm junk
experiments:
AD

misc:
Is -CF
addresses/
henry. raving/
howto/
jokes/
letters/
misc:
AD

system.v.book:
Is
Makefile
book.mss
docprep.mexp
ed. and. sed. mexp
ex.mexp
filesystem.mexp
headex.mss
system.v.book:
AD

$

doctools
ellipse.ps
junk

memos/
quotes/
ski.cabins/
solari
sources/

intro.mexp
login.mexp
mail.mexp
manpage.mss
misc
preface.mexp
roman.mss

macro.packages test.bs
macros test.pages
new.macros tmac.ex

squash/
status. reports/
stoneman/
sugfest/
sun.board

shell.mexp
shexl.mss
shex2.mss
softtool.mexp
stdio.mexp
system.admin.mexp
tablex.mss

To run a command (other than a built-in), the Bourne Shell first creates a new
process using the fork system call. The execution environment for the command
includes input, output and the states of signals, and is established in the child
process before the command is executed. The built-in command exec is used in
the rare cases when no fork is required and simply replaces the Bourne Shell with
a new command. For example, a simple version of the nohup command looks
like:

trap
exec $*

1 2 3 15

The trap turns off the specified signals so that they are ignored by subsequently
created commands and exec replaces the Shell by the command specified.

~\sun ,~ microsystems
A of 3 January 86

146 Doing More with UNIX: Beginner's Guide

Most fonns of input/output redirection have already been described. In the fol­
lowing, word is only subject to parameter and command substitution. No
filename generation or blank interpretation takes place so that, for example,

echo ... >*.c

writes its output into a file whose name is *. c. Input/output specifications are
evaluated left to right as they appear in the command.

> word

» word

<word

« word

>& digit

<& digit

<&­

>&-

The standard output (file descriptor 1) is sent to the file word,
which is created if it does not already exist.

The standard output is sent to file word. If the file exists, then out­
put is appended (by seeking to the end); otherwise the file is
created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of Bourne Shell input
that follow, up to but not including a line consisting only of word.
If word is quoted then no interpretation of the document occurs.
If word is not quoted, then parameter and command substitution
occur, and \ is used to quote the characters \ $.. and the first
character of word. In the latter case newline quoted with
backslashes are ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2)
and t1--e result is used as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor
created is that specified by the digit instead of the default 0 or 1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed tofi/e .

. .. 2>&1

runs a command with its standard output and message output merged. (Strictly
speaking file descriptor 2 is created by duplicating file descriptor 1 but the effect
is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c I Ipr &

is modified in two ways. First, the default standard input for such a command is
the empty file /dev/null. This prevents two processes (the Shell and the com­
mand), which are running in parallel, from trying to read the same input. Chaos
would ensue if this were not the case. For example,

41\ sun ,~ microsystems
A of3 January 86

Calling the Bourne Shell

Bourne Shell Grammar

Appendix F - Bourne Shell Scripts 147

[$ ed file & J

would allow both the editor and the Shell to read from the same input at the same
time.

The other modification to the environment of a background command is to tum
off the QUIT and INTERRUPT signals so that the command ignores them. This
allows these signals to be used at the terminal without causing background com­
mands to terminate. For this reason the UNIX convention for a signal is that if it
is set to 1 (ignored), then it is never changed, even for a short time. Note that the
Bourne Shell command trap has no effect for an ignored signal.

The Bourne Shell interprets the following flags when it is called. If the first char­
acter of argument zero is a minus, then commands are read from the file .profile.

-c string
If the - c flag is present, commands are read from string.

- s If the - s flag is present or if no arguments remain, commands are read from
the standard input. Bourne Shell output is written to file descriptor 2.

- i If the - i flag is present or if the Bourne Shell input and output are attached
to a terminal (as determined by gtty), then this Bourne Shell is interactive. In
this case TERMINATE is ignored (so that kill 0 does not kill an interac­
tive Bourne Shell), and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases, the Shell ignores QUIT.

Commands are parsed initially according to the following grammar.

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list}
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline

~~sun ~ microsystems

andor && pipeline
andor I I pipeline

A of 3 January 86

148 Doing More with UNIX: Beginner's Guide

Bourne Shell Metacharacters
and Reserved Words

Syntactic

command-list: andor
command-list ;
command-list &

command-list ; andor
command-list & andor

input-output: > file
< file
» word
« word

file: word
& digit
& -

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

&&

I I

&

digit: 01234 5 678 9

pipe symbol

'andf symbol

'orr symbol

command separator

case delimiter

background commands

command grouping

< input redirection

< < input from a here document

> output creation

> > output append

.\sun
~ microsystems

A of 3 January 86

Patterns

Substitution

Quoting

Reserved Words

Appendix F - Bourne Shell Scripts 149

* match any character(s) including none

? match any single character

[. . .]

match any of the enclosed characters

$ { ... }
substitute Shell variable

substitute command output

\ quote the next character

quote the enclosed characters except for '

n n

quote the enclosed characters except for $, \ "

if then else elif fi
case
for
{ }

read

in esac
while until

~\sun ,~ microsystems

do done

A of3 January 86

G
Command Summary

Command Summary .. 153

Filename Substitution

File Properties

G
Command Sumtnary

[range]
Match characters in a list or range.

[ab]*
matches filenames starting with a or b.

[a-Zl-O]*
matches filenames starting with any alphanumeric character.

{ string, string}
Match enclosed strings.

{venus,mars}
matches the filenames venus and mars.

chmod arg filename
change permissions. arg is one of:

ddd
where d is a digit from 0 to 7 .

classopperm ...
where class, op and perm, are taken from:

class op

u user (owner) = set permission
g group - remove access
0 others (public) + give access
a all

crypt [key] filename

perm

r read
w write
x execute

encrypt a file using key as the encryption key. To edit an encrypted file, use
vi -x.

In [-s] oldname newname
make a link to oldname called newname. With -s, make a symbolic link.

Is option
List files and selected properties. option can be one or more of:

~\sun ,~ microsystems
153 A of 3 January 86

154 Doing More with UNIX: Beginner's Guide

I/O Redirection

-a list hidden files.

-1 long listing. Shows permissions, links, owner, modification time,
and name.

-lg groups. Shows group ownership in addition to above properties.

-ld directory. Shows -1 listing for a directory itself, rather than the files
it contains.

-F Append a tag indicating the file type:

* execute permission is set.

/ directory .

@ symbolic link.

pushd, popd and dirs
use the directory stack to remember and revisit directories.

touch filename
change a file's modification time to the current time. Create a file if
filename doesn't exist.

tty
display the filename of the terminal.

umask ddd
set initial permissions mask for new files according to the table below. The
default mask is 022.

Files Directories

value permissions value permissions

0 rw- 0 rwx
1 rw- 1 rw-
2 r-- 2 r-x
3 r-- 3 r--
4 -w- 4 -wx
5 -w- 5 -w-
6 --- 6 --x
7 --- 7 ---

> redirect the standard output.

> I force redirection, even if the file exists.

> > append the standard ouput to the file.

> > ! append the standard output, creating the file if necessary.

> & redirect both the standard output and the standard error.

»& append both the standard output and the standard error.

< redirect the standard input.

A of 3 January 86

Command-Line Special
Characters

Appendix G - Command Summary 155

pipe. Use the standard output of the command on the left as the standard
input for the command on the right.

I & Use both the standard output and standard error of the command on the
left as input for the command on the right.

/dev/null
the system wastebasket. Unwanted output can be redirected to this file.

/dev/tty
the terminal. Output from commands in scripts and subshells can
redirected to the screen using this filename.

set noclobber
This command prevents files from accidental overwrites. Include it in
your . c s hr c file.

tee filename
When placed on the end of a pipeline, the standard output is both
redirected tofilename and echoed on the screen.

& run the command in the background.

\c escape character. Interpret c as text with no special meaning.

double-quote. Interpret characters enclosed by double-quotes as a single
word.

quote. Interpret characters enclosed by quotes as a single word, and do not
perform substitutions. (Special characters must still be escaped to be
ignored.)

command separator. Commands separated by semicolons are performed
sequentially.

~~sun ~ microsystems
A of3 January 86

156 Doing More with UNIX: Beginner's Guide

Filters cat filename ...
concatenate and print one or several files.

fmt filename
simple file formatter.

grep "reg_exp" filename ...
search for a regular expression in a file or files. reg_ exp is a combination of
text, escaped characters, and grep special characters from the following
table:

character matches:
.... The beginning of a text line .
$ The end of a text line.

Any single character (like? in filename substitution).
[...] Any single character in the bracketed list or range.

[.......] Any character not in the list or range.
* Zero or more occurrences of the preceding

character or regular expression. (N ot like filename
substitution.)

* Zero or more occurrences of any single character.
Equivalent to '*' in filename substitution.

\ Escapes special meaning of next character.

head [-n] filename
Display the first n lines of a file.

look str
look up words beginning with str in the system dictionary.

more
page through a file. The subcommand:

I string skips to a screenful containing string.

nroff -mac filename
format a file using the mac macro package.

pr -t -n filename
print a file in n column format. the -t option suppresses a heading th~t
would otherwise appear.

rev filename
reverse the order of characters in each line of a file.

spel 1 filename
check for misspelled words.

sort filename
put lines of a file in order.

tail option filename
display the last several lines of a file, as determined by option:

A of 3 January 86

Job Control

Process Control

User Activity

Managing Files

find

Appendix G - Command Summary 157

-n display the last n lines.

+n skip to line number n, and display the remaining lines.

we filename
display the number of lines, words and characters in a file.

% [n]
bring job n , or the current job, to the foreground.

% [n] &

resume processing stopped job n , or the current job, in the background.

jobs
display the list of background jobs.

kill PID
terminate process number PID.

ps [-au]
display the list of processes. With the -au option, display the list of
processes owned by all users.

grep use rid / ete/passwd
search for userid in file containing the list of local users.

su [userid]
switch use rid to use rid , or root (the superuser), when userid is omitted.

w display a detailed list of users currently logged in.

who
display a brief list of users currently logged in.

who am i
display the userid, terminal name, date and time.

whoami
display the userid only.

diff leftfile right/zle
show differences between two files.

df show disk space utilization on each disk as a percentage of capacity.

du show disk space utilization in the current directory.

findpathname options
locate files that meet the conditions specified in options, within the directory
pathname, and its subdirectories. options can be:

\! option

\ (option... \)

~\sun ,~ microsvstems

invert the meaning of option. (Select files for
which the option doesn't apply.)

group a set of options into one condition.

A of 3 January 86

158 Doing More with UNIX: Beginner's Guide

make

-exec command '{}' \;

-group group

-mtime n

perfonn command on the located files.

locate files belonging to group.

select files modified within n days.

-name filename locate files that match filename after filename substi­
tution.

-newer checkfile locate files modified more recently than checkfile .

within an option group of the form: -0

\ (-option -0 option \)

select files for which either option applies. Nor­
mally, a file is selected only when all options apply.

-print print the list of selected files.

-user userid select files owned by userid.

file filename detennine the type of device, or type of data con­
tained in, filename.

make [-n] [-f makefile]
perfonn the procedure described in makefile. With the -n option, make
echoes the commands it will perfonn, without performing them.

makefile is composed of macro definitions and target definitions :

macro definition
a line of the form:

macro = expansion

macro
is a character string.

expansion
is the remainder of the text on the line.

Once defined, macros are called as:

$ (macro)

throughout the file.

target definitions
a set of lines of the form:

target: dependency . ..
command lineS 1

S1 starts with a (TAB I

4)\ sun
~~ microsystems

A of 3 January 86

sees

tar

Locating Commands

Appendix G - Command Summary 159

target
a filename produced by, or logical label for, the step.

dependency
the name of another target upon which this one depends.

command line
a UNIX command line, beginning with a tab character. (If the
tab is followed immediately by a dash (-) then return codes
from commands on that line are ignored. Comment lines are
introduced with a =11=).

sees subcommandfilename

use a feature of the source code control system. subcommand is one of:

c rea t e put a file under s c c s control by creating a history file in the
sees subdirectory.

info report any files checked out (omit filename in this case).

e di t check out a file.

dif f s contrast the edited version with the most recent checked in ver­
sion.

delget check in a new version to the history file and replace the existing
version of the text.

del ta check in a new version to the history file.

get rebuild the current checked in version.

prt examine the summary comments for all versions in the history
file.

sccsdiff -x.y -rm.n
contrast previous verions x.y and m.n .

tar option filename
tape archive program. option is one of:

-cvf drive create an archive on drive.

-xvf drive extract files from an archive on drive.

-t vf drive display the files in the archive on drive.

whatis command
give one-line description of a command.

whereis command
search the standard directories for the pathname of a command.

which command
search directories in the user's path variable for command .

• \sun
~ microsystems

A of 3 January 86

160 Doing More with UNIX: Beginner's Guide

Line Printer Commands

Misc. Commands

Ipr [-Pprinter] filename
select a printer to print a file.

Ipq [-Pprinter] filename
display the queue for printer.

Iprm [-Pprinter] job
remove job from the queue for printer.

troff -t options filename ... > output.ftIe
place typesetter-formatted output in an intermediate (binary) output./lie for
later printing.

Ipr -t outputflie
print a troff output file.

screendump I rastrepl I Ipr -v
print the workstation screen display.

chesstool
window-based chess-playing program.

csh
the C-Shell command.

date
display the date and time.

echo
display the arguments on the terminal.

printenv
display the list of environment variables and values.

set var [=value]
create, or assign a value to, a C-Shell variable.

s h the Bourne shell command.

source filename
read and perform commands infilename .

time command
report statistics for command .

• \sun ,'fIi microsystems
A of 3 January 86

Index

Special Characters
! :n

n<'th argument designator, 36
!?

event search designator, 36

first argument designator, 36
% command

bring job to foreground, 43
/etc/passwd, 50
:$

last argument word designator, 37

: *
word designator for all arguments, 36

: A

first argument word designator, 37
:n

n<'th argument word designator, 37
:p

event modifier, 36
: s/old/new/

event modifier for string substitution, 37

separation character, 27
<

input redirection symbol, 22
>

output redirection symbol, 21
>&

redirecting the standard output and standard error, 26
»

appending output with, 22
»&

appending standard output and standard error, 26
[and],7
\

continuation character, 27
escape character, 27

{and }, 7

1

pipe symbol, 23
1&

sending diagnostic output through a pipe, 26

-161-

alias
A

event designators within an, 37
substitution, 37

alias command
and pipelines, 37

a t command, 50

B
backquote

substitution, 42
Bourne Shell

command substitution, 138
evaluation, 138 thru 140
executing commands, 1451hru 147
fault handling, 142 thru 145
here documents, 129 thru 132
keyword parameters, 136
parameter substitution, 137
quoting, 138 Ihru 140
test command, using with, 126

Bourne Shell commands
case, 128 thru 129
do, 128, 132
done, 128, 132
elif,134
else, 132
esac, 128
fi,132
for, 127 thru 128
grouping, 135
if, 132lhru 135
in, 128
shift, 132
then, 132
trap, 142 thru 145
until,132
while, 132

Bourne Shell metacharacters, 148
Bourne Shell parameters

export, 136
readonly, 136

Bourne Shell procedures
debugging, 135

Bourne Shell reserved words, 149
Bourne Shell variables, 123 Ihru 125
brackets, pattern matching, 7

Index Continued

c
C-Shell

and alias substitution, 37
and command line editing, 34
and command substitution, 42
and filename substitution, 34
and history substitution, 34
and processes, 47
csh command, 34
dirs,17
features, 34
job control, 43
list of builtin commands, 99 thru 104
noclobber variable, 22
overview, 33
path variable, 57
popd,16
predefined variables, 41
pushd, 16
scripts, 33
stopped jobs warning, 44
time variable, 50
variable substitution, 38

C-Shell special characters, 107 thru 113
C-Shell variables, 117 thru 119

argv,117
cwd, 117
echo, 117
histchars, 117
history, 117
home, 117
ignoreeof, 117
mail,117
noclobber, 118
noglob,118
nonomatch, 118
notify, 118
path, 118
prompt, 118
savehist, 118
shell,118
status, 118
time, 118
verbose, 119

case command in Bourne Shell, 128 thru 129
cd command

and the home variable, 41
child processes, 47
chmod

changing permissions with, 11 thru 13
chmod command, 11

chmod command
numeric arguments, 12

command execution in Bourne Shell, 145 thru 147
command interpreter

C-Shell,33
command statistics, 49
command substitution, 42
command substitution in Bourne Shell, 138
commands

%,43
alias, 37

-162-

commands, continued
and command line editing, 34
and the C-Shell, 33
argument, as standard input, 23
at,50
C-Shell, 99 thru 104
cd, 41
chmod, 11
crypt, 15
csh, 34
df,71
diff,59
dirs (C-SheU only), 17
du,71
file, 59
filters, 23
find, 58
fmt, 24
grep, 27
head, 24
history, 34
jobs, 44
kill,48
look, 24
Ipq, 77
Iprm, 77
In, 14
Is -a, 7
Is -1,8
Is -lg, 10
make, 66
make -n,69
more, 16
pipes and pipelines, 23
popd (C-Shell only), 16
pr,24
printenv,42
ps,47
ps -au, 52
pushd (C-Shell only), 16
rastrepl,78
rev, 24
running with find, 59
sees, 61 thru 65
screendump,78
sed,25
set, 38
setenv,42
shell tool, 34
sort, 24
spell,24
standard input, 21
standard output, 21
su,53
tail, 24
tar, 72
tee, 25
time, 49
touch, 14
troff,48
tty, 8
umask,13
vi: stopping and resuming, 43
whatis,57

commands, continued
whereis,57
who,51
whoami,53

comments
and makefiles, 68

comparing files
diff,59

compound commands in Bourne Shell, 135
continuation character, 27
control flow in Bourne Shell

case, 128 thru 129
do, 128, 132
done, 128, 132
elif,134
else, 132
esac, 128
fi,132
for, 127 thru 128
if, 132 thru 135
in, 128
shift, 132
then, 132
trap, 142 thru 145
until,132
while, 132

crypt command, 15
csh command, 34
current job, 43

D
debugging Bourne Shell procedures, 135
decoding files, 15
default permissions, 13
dependencies

and make, 67
describe a command

whatis,57
devices, treated as files, 8
df

command, 71
diagnostic output, 26
diff command, 59
directories

disk usage, 71
permissions, 10

dirs command, 17
disk

managing space, 71
disk usage

percantage used, 71
specific directories, 71

do command in Bourne Shell, 128, 132
done command in Bourne Shell, 128, 132
dot files, 7
du command, 71

E
editing encrypted files, 15
elif command in Bourne Shell, 134
else command in Bourne Shell, 132

-163-

encrypting files, 15
encryption key, 15
environment variables, 42
esac command in Bourne Shell, 128
escape character, 27
escaped event designators

and aliases, 37
evaluation in Bourne Shell, 138 thru 140

event
in history substitution, 34

event designators
in history substitution, 36

event modifiers, 37
execute permission, 9

Index Continued

executing commands in Bourne Shell, 145 thru 147
expansion

of aliases, 37
of macro, 66

exporting parameters in the Bourne Shell, 136

F
fault handling in Bourne Shell, 142 thru 145
fi command in Bourne Shell, 132
f i 1 e command, 59
filename substitution, 7

and the C-Shell, 34
files, 7 thru 17

/ etc/passwd, 50
/usr/dict/words,25
and disk storage, 71
and ls -F,15
and root privileges, 54
appending to, 22
comparing with diff,59
encrypting, 15
extracting from tape, 73
file type field, 9
filename substitution and the C-Shell 34
getting a long listing, 8 '
group ownership, 10
hidden, 7
links, 14
makefile,67
making tape archives, 72
modification time, 14
monitor with sces,61
name of terminal, 26
notion of, 8
permissions, 9 thru 11
reading encrypted, 15
searching with more, 16
system wastebasket, 26
transforming with filters, 23

filters, 23
find, 58
fmt command, 24
for command in Bourne Shell, 127 thru 128

Index Continued

G
g

event modifier global flag, 37
grep

and regular expressions, 27
group

ownership, 10
permissions, 10

grouping commands in Bourne Shell, 135

H
head command, 24
here documents, 129 Ihru 132
hidden files, 7
history

word designator, 36
hi story command, 34
history substitution

and aliases, 37
and the C-Shell, 34

history variable, 34
home

C-Shell predefined variable, 41
HOME environment variable, 42

I
110, inpuUoutput, 23
if command in Bourne Shell, 132/hru 135
in command in Bourne Shell, 128
input

redirection, 22
interpretation

alias substitution, 37
command substitution, 42
filename substitution, 34
history substitution, 34
quick substitution, 36
variable substitution, 38

J
job control

stopped jobs warning, 44
jobs command, 44

K
key

crypt command, 15
keyword parameters in the Bourne Shell, 136
kill command, 48

and root privileges, 54

L
links, 14
In command, 14
locate a command

which,57
locating a file

find, 58
look command, 24
Ipq command, 77

-164-

Iprmcommand, 77
Is command

-a option, 7
-F option, 15
-1 option, 8
-lg option, 10

M
macro substitution

and make, 69
make

and command status, 68
and dependencies, 67
specifying a target on the command line, 68

make command, 66
-n option, 69

makefile, 67
makefiles

and comments, 68
modification time, 14
more command

searching through a file, 16

N
next job, 43
noclobber

C-Shell variable, 22

o
output

redirection, 21
substitution, 42

ownership
group, 10

p
parameter substitution in Bourne Shell, 137
parameters

exporting in the Bourne Shell, 136
read-only in the Bourne Shell, 136

password file, 50
path variable, 57
pattern matching

and history substitution, 35
braces, 7
ranges, 7

patterns
filename substitution, 7

permissions
changing, 11 thru 13
default, 13
description, 9 Ihru 11
directories, 10
execute, 9
group, 10
owner's, 9
public or other, 10
read,9
read (for a directory), 11
search (directory only), 11
write, 9
write (on a directory), 11

PID number, 47
pipes

and pipelines, 23
and the tee command, 25

popd command, 16
pr command, 24
predefined variables

and the C-Shell, 117 thru 119
printenv command, 42
printing

files, 77 thru 78
screen, 78
t ro f f output files, 78

privileges as root, 54
processes

child and parent, 47
PID,47

ps -au command, 52
ps command, 47
public permissions, 10
pushdcommand,16

Q
quick substitution, 36
quote marks, 27
quoting in Bourne Shell, 138 thru 140

R
ranges

pattern matching, 7
rastrepl,78
read permission, 9
read-only parameters in the Bourne Shell, 136
redirection, 21 thru 27

filters, 23
input, 22
output, 21
pipes and pipelines, 23
standard error, 26
standard error only, 26

regular expressions, 27 thru 29
removing printer jobs, 77
restricting access to files, 11
return code

and make, 68
and the parent process, 47

rev command, 24
root userid

and system manitenance, 54

S
sees, 61 thru 65
sereendump,78
scripts

and the shell, 33
C-Shell, 89 Ihru 95

search permission, 11
security

encrypting files, 15
restricting access, 11

-165-

sed command, 25
seeing differences between files

diff,59
selecting a printer, 78
selecting files by category

find, 58
separation character, 27
set command, 38

and environment variables, 42
setenvcommand, 42

and set, 42
and shell variables, 42

shell
and command substitution, 42
and filename substitution, 34
Bourne shell, 33
C-Shell overview, 33
scripts, 33
variable substitution, 38

shell tool command, 33
shift command in Bourne Shell, 132
slay

sample alias, 49
sort command, 24
spell command, 24
standard error, 26

separating from standard output, 26
standard input, 21

as an argument, 23
pipes, 23
redirecting, 22

standard output, 21
filters, 23
pipes, 23
redirecting, 21

stopped job, 43
strings, pattern matching, 7
su command, 53
substituting commands in Bourne Shell, 138
substituting parameters in Bourne Shell, 137
substitution

alias, 37
command, 42
filename, 34
history, 34 Ihru 37
macro: make, 69
quick (command line editing), 36
variable, 38

superuser, 53
and root privileges, 54
and the kill command, 54

symbolic links, 14
syntax

informal meaning of, 27
system dictionary, 25
system maintenance

and root, 54
system wastebasket, 26

Index Continued

Index Continued

T
tail command, 24
tape archives, 72
tar command, 72
targets

and make, 67
tee command, 25
terminal, name of, 26
test command

used with Bourne Shell, 126
then command in Bourne Shell, 132
time command, 49
time variable, 50
touch command, 14
trap command in Bourne Shell, 142 thru 145
troff command, 48
tty command, 8

U
umask command, 13
until command in Bourne Shell, 132
userid, changing, 53
users

list of, 50
root, 51
who command, 51

v
variable

home, 41
variables

and the C-Shell, 38
environment, 42
path, 57
predefined in the C-Shell, 41

variables in the Bourne Shell, 123 thru 125
vi command

-x option, 15 .
stopping and resuming, 43

w
w command, 51
whatis command, 57
whereis command, 57
which command, 57
while command in Bourne Shell, 132
who command, 51
whoami command, 53
word designator, 36
write permission, 9

on a directory, 11

-166-

Revision History

Version Date Comments

A 3 January 86 First edition of this Manual.

Notes

Notes

Notes

Notes

Notes

Doing ~1ore \Vith UNIX:
Quick Reference

This quick. reference lists commands presented in this
manual, including a syntu diagram and brief
description.

1. Files

1.1. Filmame Substitution

Wild Cards l

Character Oass

Range

c is any single character.

String Class

? *
(c .. . J
(c-c)

(str{ I SIT))

$IT is a combination of characters, wild cards,
embedded character c lasses and embedded
string classes.

Home Directay

Home Directay of Another User
uS:(H i-dden Files

1.2. Fik PropmiH

-user

1_ -[l)a

Seeing Permis..'Sions 1 s -1 jtkll.tJ1fV

Changing Permissions cbmod MIl fikllQlPV
cbmod c=p ... [,esp . .. J jlkfUlrM

II, a digit from 0 to 7, sets the access level for
the user (owner). group. and others (public),
respectively. c is one of: u - user. <1 - grou~

o - odIe~ or a - all. P is one of: r - read
access," - write access, oc lit - execute access.

Setting Defauh Pennissioos uma_k "'go

"'go is a (3-digit) number. Each digit restricts
the defauh permissions for the user, group and
others. respectively.

1 from Gelling Sl4rted With UNIX

Changing Modification Time

Making Links

touch filename

In oIdname newname
In -5 oldname newname

Seeing File Types Is -F

1.3. Encrypting Files

Sourc-e Files

Editing

Decrypting Files

crypt < source > encrypted

yi -x encrypted

crypt < encrypted I more
crypt < encrypted > text

crypt asks for the encryption key.

1.4. Searching with more

Run more

Next Line1

Next 11 Lines 1

Next Page)

Search for Pattern

Next Occurrence

Next File

1.5. The Directory Stack2

Change Direcaory, Push

Change to Top Directory, Pop

Show Stack

2. Commands

more filename

RETURN

d

SPACE

/pattern

n

:0

puahd directory

popd

dirs

2.1. Command-Line Special Characters

Quotes and Esaape

Join Words

Suppress Filename, Variable Substitutions

Escape Character

l a feature of the C-Shell.

" "

\

Separation, Continuation

Command Separation

Command-Line Continuation

2.2. 1/0 Redirection and Pipes

Standard Output

Appending to Standard Output

Standard Input

Standard Error and Output

Standard Error Separately

\ RETURN

>
>!
»

»!

<
>&

(command > output) >, errorfile

Pipes/Pipelines command I filter [I filter] •..

Duplicating Displayed Output

command I tee filename

Filters

WordlLine Count

First n Lines

Last n Lines

Skip to Line n

Show Nonprinting Characters

Sort lines

Format Paragraphs

Reverse Character Order

Multicolumn Output

List Spelling Errors

Substitutions in Output Stream

we [-1]

head [-n]

tail [-n]

tail [+n]

eat -y

sort [-n]

fmt
rey

pr -t

spell

sed -& " s / pattern / string / [g] "

Report-Generation awk3

2.3. Searching with grep

9 rep Command grep " pattern" filename
command I grep "pattern"

3 see Using UNIX Tut Utilitiu

grep Search Patterns

beginning of line

end of line

any single character

single character in list or range

character not in list or range

zero or more of preceding character

or pattern

zero or more of any character

escapes special meaning

3. C-Shell Features

3.1. History Substitution

$

[...]
[.....]

*
*
\

The History List

Set Up History List

See History List

set history=n

history [-h]

Event Designators

Repeat Previous Command

Display Previous Command

Command Line n

n Commands Back

Command Beginning with str

Command Containing str

All Arguments to Pre v . Command

Last Argument to Prev. Command

First Argument to Prev. Command

n'th Argument

Word Designators

All Arguments

Last Argument

First Argument

n'th Argument

! !

!! :p

!n

!-n

! str

! ?str[?]

!*

! $
! ..

! :n

:*
:$

:n

Arguments x Through y

Modifiers

Print Command Line

Substitute Command Line

3.2. Aliases

:x-y

:p
: [g]s/l/r/

alias Command alias naml!' definition'

definition can contain escaped history substitu­
tion event and word designators as placehold­
ers for command-line arguments.

3.3. Variable Substitution

Creating a Variable

Assigning a Value

Expressing a Value

Displaying a Value

set var

set var = value

$var

echo $var

value is a single word, an expression in quotes,
or an expression that results in a single word
after variable, filename and command substitu­
tion takes place.

Assigning a List set var = (list)

list is a space-separated list of words, or an
expression that results in a space-separated list

Selecting the n'th Item $var en]

Selecting all Items $var

Selecting a Range

Item Count

3.4. foreach Lists

$var[x-y]

$Ivar

Start foreach Loop foreach var (list)

foreach prompts for commands to repeat for
each item in list (with», until you type end
Within the loop, $var stands for the current
item in list.

3.5. Command Substitution

Replace Command with its Output on the

Command Line

3.6. Job Control

Run Command in the Background

Stop Foreground Job

,
CTAL-Z

List of Background Jobs

Bring Job Forward

Resume Job in Background

4. Processes

Listing

Terminating

Timing

Scheduling

jobs

%[n]

%[n]

ps -[aux]

kill [-9] PID

time command

at timl![alp] script

timl! is a number up to 4 digits. script is the
name of a file containing the command line(s)
to perform.

5. Users

Seeing Who Is Logged In

Changing Identities

Seeing Your User Name

6. Managing Files

6.1. Looking Up Files

Standard Commands

Aliases and Commands

Describe Command

Searching Out Files

who
w

su [username]

who ami
who am i

who is this

whereis file

which command

whatis filename

find wr -name name -print

dir is a directory name within which to search.
name is a filename to search for.

,.,.~. I rac~fnR Ch~ngt"'S

Cllrnrarm~ FI:ie~ d.i f f ~jlflie nghrfile

~: :: ~dixes a left angle-bracket (<) lO

'\dc-~ted hnes from leftflie and a righl angle
bfaLtet i > j to hnes from rsghJfd~.

AudiCinR Chang~

Pumng Flies Lfl1:kr sees mkdir sees
chmod 775 sees

sees create filuuune .,.

Chcxung F!l~ Out

Checung FI~ In

Ba:kmg File Out

rm .*
5 e e 5 edi t fllulIlmL .. .

sces delget jtlelWl1JL .. .

sees unedi t filLlI.ilmL .. ,

Rocovenng Current VersIons

sees qet sees
Ren~ 109 Pendmg Changes

63. AutomatinR T~ks

C rea (t a \1 aidi Ie

secs diffs fiitflil1Ple ...

vi Maltetile

A makefile ConSISts of ma=ro definitlOflS and
urgets_

Tesl Makefile

Run ~a~e

make -n jlaTgl"1 J

malte {larget I

6.4. \tan2giox Di\k lsage

Seemg Dtsk Lu~e elf
du -s

du sort -r -n
Is -1

\1aklOg A Tape Archl\e

tar -ev[f Jri~·e)fije _ ..

Exua:ung Arrhi"-ed File)

tar -xv! f drzve} flie ...

3 See Cha~er 6 f<Y details.

7. Printing

7.1. Tht Printer Queue

List the Queue

Removing a Printer Job

Removing Your Printer Jobs

Selecting a Printer

Ipq
Iprm job

Iprm -

Ipr -Pprinler
Ipq -Pprinler

Iprm -Pprinler job

7.1. Printing troff Output and Screen Dumps

t rof f Output Ipr -t

Screen Dump5

acreendump (I rastrepl] I Ipr -v

COllJorate Headquarters

Sun \licro~ystems, Inc.
2"i"i() G"Jfci:1 An'nue
;'iountain \'ie\\: C\ l)-t()'f,-)
,! l"i 96015(X)
11X 2~r"H I "i

For US, Sales Office
i<x:ations, call:
H(X) H2I-t6·15
In CA: H(X) H21f6-t2

European HeadquartlTs

Sun '\!icrosystems Europe. ItK
Berbhire II<)use
lligh Strect
:\>;('()t, Berkshire SIS -I n .
England O<)l)() 2Ht) I I
'llX ,\{1()"i-5

(Jt.'nnany: OHl)j 1()()()H2()
tlK: ()<)9() 2W!2
Francl': () I 6,-)() 25 2·f

(:;madian Headquarters
! IC) .j-- 6c f"i

Europe, .\fiddle East, and Africa,
call European Hl'adquarters:
()l)lX) 2Ht)11

Else"hcrc in till' world,
call O>llJoratl' Headquarters:
!I"i%() 1500
Interl'< lIltincntai Sales

