?1
scc
f-bus fu~adr a — 85C30
b-va,
s4 s4 SR I
FPU TU p 8 | 5] 27c020 (€
o g
H -stat
fu-data O %: ——— | psc
| 6 83 o <t || 79c30 [
< i n
il 0 s TOD/NVRAM J¢_
> 48702
m lo-data
=1
M
EIJ sb-va
RS P)
cacha data/tag sram E\ m sb-data
q|‘ sb-pa
S 4 n latoh
C:jIJ]BC E; 41 E; 41 55‘4
sS4 RAM | | RAM YIDEO
[| VRAM
l’T t‘l DRAM DRAM 128K x 8
Mx36 |]]|1Mx36 | v
scsI ENET))
53¢90 7990
CONFIDENTIAL = COPYRIGET (C) 1987 SUN MICROSYSTENS, ALL RIGETS RESERVED, TITLE: OFFCAMPUS Block Diagram SUNPARTNR: REV:
¥ SUN EEss TSR e .

miu:osyat ens

INC, USE
AND DOES HOT IMPLY PUBLICATION OR Ml

s l

7

6

L

s

4

SPARCstation-1 Programmer’s Model
Stephen A. Chessin

DRAFT 7
Version 8.3, 89/06/10

1. Introduction

This paper describes the programmer’s view of SPARCstation-1: address spaces, caching and
memory management, and interrupt levels. It is a synthesis of information contained in the hardware
specifications, but organized to be useful to a programmer.

Where appropriate, comparisons with the ‘‘standard’* Sund architecture are made.

WARNING: This document is a DRAFT and may contain errors. Please report all mistakes to
the author for correction.

Major Changes Since Draft 1 (Version 1.7)
(1) The page size has changed from 8K to 4K.)
(2) The size of a physical address has changed from 29 bits to 28 bits.

(3) The Sbus has moved from Type 0 space to Type 1 space, and there has been a major reorganization
of the Type 1 addresses to accommodate this.

Changes Since Draft 2 (Version 2.4)
‘4) Minor typographical and editorial changes.
) Better explanations.

Changes Since Draft 3 (Version 3.7)

(6) The Interrupt Register is used to clear level 15 interrupts.

(7) All Sbus devices are now described using relative offsets.

(8) More bits are used in the Auxiliary Input/Output Register. (Which used to be the Auxiliary Output
Register.)

Changes Since Draft 4 (Version 4.7)

(9) The interrupt levels have been changed slightly. All Sbus devices, including the builtin ones, inter-
rupt on Sbus IRQ levels only.

(10) The Auxiliary Input/Output Register has changed slightly.
(11) The definition of the DMA Write bit was backwards.
(12) The video subsystem is off the board, again.

Changes gince Draft 5 (Version 5.6)
Better explanations and addition of more examplies.

Changes Since Draft 6 (Version 6.1)
(1) Added wamings that this is still a DRAFT document and may not be completely accurate.
(2) Described the bugs in various levels of hardware:

Synchronous parity ermors cause asynchronous wraps (fixed in P1.7)

SER records asynchronous errors (won't be fixed)

ASER and ASEVAR latch on synchronous memory errors (won’t be fixed)
On cache fill errors, SEVAR may not have exact address of problem (won’t be fixed)

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

ASER sometimes isn't set on asynchronous errors (won't be fixed)
ASEVAR isn’t properly sign-extended on DVMA errors (won’t be fixed)
(3) Audio/ISDN replaces Audio DAC.
(4) Level 8 interrupts can be masked.
(5) Video goes into slot 3.
(6) Sbus IRQ6 and IRQ7 now map to SPARC level 8 and 9, instead of 9 and 13, respectively.
(7) Miscellaneous corrections.

2. Address Spaces

The SPARC Architecture defines the existence of at least 4 address spaces. A given implementation
may define more than 4 address spaces. Selection of a particular address space is done via the Address
Space Indicator (ASI) field of the load and store alternate address space instructions. Ordinary load and
store instructions automatically go to User or Supervisor Data space, depending upoa the mode of the CPU.
Instruction fetches by the CPU automatically go to User or Supervisor Instruction space, again depending
upon the mode of the CPU.

The following table describes the address spaces defined by the Sun4 Architecture and the
SPARCstation-1 implementation.

ASI Sund Use SPARCstation-1 Use Comments
0x0 Reserved Reserved

Ox1 Reserved Reserved

0x2 System Space Same Note 1
0x3 Segment Map Same

Ox4 Page Map Same

x5 Block Copy Reserved Note 2
0x6 Region Map Reserved Note 2
0x7 Flush Cache (Region) Reserved Note 2
0x8 User Instruction Same

0x9 Supervisor Instruction Same

0xA UserData Same

0xB Supervisor Data Same

0xC Flush Cache (Segment) Same

0xD Flush Cache (Page) Same

OxE Flush Cache (Context) Same

OxF Flush Cache (User) Reserved Note 3
0x10 Flush I-Cache (Segment) Reserved Note 2
0x11 Flush I-Cache (Page) Reserved Note 2
0x12 Flush I-Cache (Context) Reserved Note 2
0x13 Flush I-Cache (User) Reserved Note 2
0x14 Flush D-Cache (Segment) Reserved Note 2
0x15 Flush D-Cache (Page) Reserved Note 2
0x16 Flush D-Cache (Coantext) Reserved Note 2
0x17 Flush D-Cache (User) Reserved Note 2
0x1B /Flush I-Cache (Region) Reserved Note 2
0x1F __ Flush D-Cache (Region) Reserved Note 2

Note 1. See System Space table (next section)
Note 2. SPARCstation-1 has no corresponding function.
Note 3. This is a change in the specification between Sunrise and Sunray.

User and Supervisor Instruction and Data spaces are collectively known as *‘‘Device Space’. All
accesses to Device Space go through the Memory Mangement Unit (MMU). All the other address spaces
~re collectively known as “‘Control Space’. The non-System Space portions of Control Space all deal

ith Cache and MMU management, and are discussed in the section on ‘‘Contexts, Caching, and the -
MMU"". System Space is discussed in the next section.

DRAFT Version 8.3, 89/06/10 Page 2

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

System Space (ASI = 2)

System Space is a portion of control space that is used to access various devices, as the following
table indicates:

A31:28 Sund Use SPARCstation-1 Use Commeants
0x0 ID Prom Reserved Note 1

Ox1 Reserved Reserved

0x2 Reserved Reserved

0x3 Context Register Same

Ox4 System Enable Register Same

0x5 Reserved Reserved

0x6 Bus Error Register Bus Error Registers Note 5

0x7 Diagnostic Register Unused Note 2

0x8 (D-)Cache Tags Cache Tags

0x9 {D-)Cache Data Same Note 3

OxA I-Cache Tags Reserved Note 4

OxB I-Cache Data Reserved Note 4

0xC Reserved Reserved

0xD Reserved Reserved

OxE VME Interrupt Vector Reserved Note 4 r
OxF Serial Port Same MMU bypass

Note 1. SPARCstation-1 does not have an ID Prom and a timeout will occur.
Note 2. SPARCstation-1 has no diagnostic register but a write to this address will just be ignored and not
cause a imeout. :
Note 3. This is a change in the specification between Sunrise and Sunray.
Note 4. SPARCstation-1 has no corresponding function.
“ote S. SPARCstation-1 has four Bus Error Registers, compared to Sund’s one.

The Context Register, Cache Tags, and Cache Data are described in the section on ‘‘Contexts, Cach-
ing, and the MMU"’. The rest of the registers in System Space are described below.

3.1. System Enable Register

The System Enable Register is referenced via byte loads and stores at location (ASI=0x2,
A31:28=0x4). It has the following format

76543210

N ENA_NOTBOOT (0 = all supervisor references go to EPROM
1 = normal MMU operation

- Reserved (Enables 1/O Cache in Sund)

ENA_SDVMA 1 = all DVMA is enabled

S
C ENA_CACHE 1 = Cache enabled
- Reserved (Enables video display in Sun4)
R EN.;_RESET 1 = Reset the System (asserts SBRESET)
- Reserved (Resets VMEbus in Sund)
D ENA_DIAG Always 0 (Diagnostic/Monitor in Sund)

All bits are initialized to zero by a reset. Setting ENA_RESET to one will cause a reset, and control
will not be returned to the program that does so; rather, a reboot will occur. Software (or the boot PROM)
should set ENA_NOTBOOT to one after initializing the MMU.

3.2. Bus Error Registers

There are four registers, divided into two sets of two, used to indicate the type and location of bus
errors. One set is for synchronous errors, and the other for asynchronous errors. Synchronous errors are

DRAFT Version 8.3, 89/06/10 Page 3

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

ose that occur due to the execution of the current instruction and are reported to the CPU by a trap at the
end of that instruction’s execution. All errors that cannot be associated with the execution of the current
instruction, but are related to such things as DVMA activity, buffered writes, or cache write-back’, are con-
sidered asynchronous and are reported via an interrupt on level 15. After servicing the level 15 interrup, it
is cleared by toggling bit O of the Interrupt Register.

There is an exception to the above rule. On machines prior to the P1.7 level, parity errors that occur

(or any condition that causes SE_MEMERR, described below, to be set) during CPU memory accesses
cause the reporting of both a synchronous and asynchronous error. For parity errors that occur during data
fetches, the data-access trap occurs first and the level 15 interrupt remains pending. Software may clear the
level 15 interrupt while processing the data-access trap. For parity errors that occur during instruction
fetches, the level 15 interrupt occurs first and the text-access trap never occurs. Software can distinguish
true asynchronous errors from instruction fetch errors by maintaining an invalid value in the SEVAR and
comparing the SEVAR to the ASEVAR on asynchronous errors. If they compare equal, then this is an
instruction-fetch error, otherwise it is a true asynchronous error. Software must remember to reload the
SEVAR with the invalid value after processing all synchronous (including instruction-fetch) errors.

On P1.7 and later boards, memory errors during CPU memory accesses only cause the reporting of a
synchronous error; a level 15 interrupt does not occur. (The asynchronous registers still latch on synchro-
nousmanorycrrors,however,mdmustbecmd,seemedwcnpuonsofmeASERandASEVAR
below.)

The Bus Error Registers are all fullword in size, although they can be accessed via byte, halfword, or
fullword loads and stores, just as memary is. They reside at the following addresses in ASI=2 space:
Address Description
0x60000000 Synchronous Error Register
0x60000004 Synchronous Error Virtual Address Register
0x60000008 Asynchronous Error Register
x6000000C___ Asynchronous Error Virtual Address Register

Although in normal use the registers can be treated as read-only, they can be written for diagnostic
purposes.

3.2.1. Synchronous Error Register

The Synchronous Error Register (SER) occupies four bytes at locations (ASI=0x2, A31:28=0x6,
A3:0=0x0 w0 0x3). Reading any portion of the register also clears that portion. It has the following format

31 23 15 76543210

R SE_WRITE 1 = Error during write cycle, 0 = read cycle
I SE_INVALID 1 = Valid bit was 2er0 in a page map entry
P SE_PROTERR 1 = Protection error (see below)

T SE_TIMEOUT 1 = Non-existent device was addressed

B SE_SBERR 1 = bus error during Sbus master access

M SE, MEMERR 1 = Memory (parity or ECC) error

S SE_SIZERR 1 = Incorrect size transfer attempted

W SE_WATCHDOG 1= Restart due to IU error

The SER records all errors since it was last cleared. This includes asynchronous errors as well;
the SER must be read to clear it as part of asynchronous error processing. The SE_WRITE bit
records the type of access (read or write) of the last error.

! SPARCstation-1 does not have a write-back cache, but if it did it could cause asynchronous errors.

DRAFT Version 8.3, 89/06/10 Page 4

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

A protection ermor can be caused by an attempted write 6 a read-only page, or by a user-mode access
to a supervisor-only page.

A timeout is reported on access to a non-existent device, except for accesses to non-existent physical
memory. See the section ““Type § Space,” below.

The Memory Error Register must be inspected when a memory error occurs, to further isolate the
cause of the error. Note that synchronous memory errors also cause the Asynchronous Error Register and
Asynchronous Error Virtual Address Register to be latched; see the description of these registers below for
more information.

Not all bus errors cause immediate traps. Due to pipelining, the CPU fetches instructions four cycles
before they will be executed, so it is possible that the CPU will attempt to fetch an instruction that will not,
in fact, be executed. To prevent spurious traps, the CPU does not trap on memory exceptions until it actu-
ally needs to execute the instruction that it was unable to fetch.

For example, suppose we have the following instruction sequence in virtual memory, where a, b, ¢,
etc. represent miscellaneous instructions:

a

b .

bz,a label

d -
—_— page boundary

e <--this page is marked invalid

f

g

— page boundary
label: <--this page is valid
X

y

z
These instructions will advance through the pipeline as follows:

Execute b bz d
Write - a b bz

At time (2), the CPU wants to fetch e but the page is marked invalid, so the invalid bit is set in the SER and
the instruction address is set in the SEVAR. However, the branch (if taken) means that e is never needed,
so that it would be incorrect for the CPU to trap on a page fault due to the attempt to fetch e.

Now let’s examine the following sequence:
a

Time 1 2 3 5
Fetch d - b 4 z
Decode bz d - y

X

A xwla

b

st something to a read-only page

d

-— page boundary

e + <-this page is marked invalid

f

g
The pipeline now looks as follows:
Time 1 2 3 4 5
Fetch d - - x vy
Decode st d - - x
“xecute b st d - -
Jrite a b st - -

DRAFT Version 8.3, 89/06/10 Page 5

Sun Coafidential SPARCstation-1 Programmer’s Model DRAFT

Je attempt to fetch ¢ from an invalid page at time (2) will tum on the SE_INVALID bit in the SER, but
the CPU will not take an instruction access exception until it actually needs 1o execute ¢, at time (5). The
store to a read-only page at time (3), however, does result in an immediate data access exception, and the
CPU will find both the SE_INVALID bit and the SE_PROTERR bit on in the SER. (The exception results
in a flush of the pipe, and instruction d never does get to the Write stage in step (4)).

A similar scenario, where the store is replaced by a branch (in user mode) to a supervisor-only page,
can result in multiple bits being on for instruction access exceptions.

It is up to the software to determine the true cause of the exception when multiple bits are on in the
SER. Here is one algorithm:

SEVAR = getsevar();

SER = SERsave = getser();

SER &= “(SE_WRITE | SE_WATCHDOG);

if (data access exception)
error_addr = SEVAR;

else if (instruction access exception)
error_addr = old PC;

else
/* CAN'T HAPPEN */,

if (SER & (SER - 1)) {
/* multiple bits on; must manually probe the PME */
pme = getpme(error_addr);
if (pme valid) {
if (SER & SE_PROTERR) && (pme denies access)) {
SER = SE_PROTERR;
) else
SER &= “(SE_PROTERRISE_INVALID);
} else
SER = SE_INVALID;
}

fad
* Note: we could still have other multiple bits on (TIMEOUT,
* MEMERR, SIZERR, SBERR), but we probably won't recover from
* this condition anyway, so it really doesn't matter.
]
* But if you really wanted to, know you’d do something like
* this:
*

/* more than one of TIMEOUT, SBERR, MEMERR, or SIZERR */
(void) getser(); /* make sure it’s clear */
if (on_fauit())
newSER = getser();
else |

4 register int x;

newSER =0;
x = *error_addr; /* probe the address to see what happens */

}
no_faultQ;
/* use newSER to figure out what the problem was, if any */

DRAFT Version 8.3, 89/06/10 Page 6

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

2.2. Synchronous Error Virtual Address Register

The Synchronous Error Virmal Address Register (SEVAR) occupies four bytes at locations
(ASI=0x2, A31:28=0x6, A3:0=0x4 to 0x7). It contains the virtual address associated with the last synchro-
nous bus error. It is not latched.

Note that on errors resulting from cache-fill operations, the SEVAR will contain the address
that the CPU presented to the cache chip that triggered the cache-fill operation. This may or may
not be the address of the word that actually caused the error.

The SEVAR has the following format:
31 0

..

3.23. Asynchronous Error Register

The Asynchronous Error Register (ASER) occupies four bytes at locations (ASI=0x2, A31:28=0x6,
A3:0=0x8 10 0xB). Reading any portion of the register also clears that portion. It has the following format

31 23 15 . 7 54 0

..

ASE_WBACKERR 1 = Valid bit was zero in a page map entry
ASE_TIMEOUT 1 = Non-existent device was addressed
ASE_DVMAERR 1 = bus error during DVMA access

The ASER latches (freezes) with the cause of an asynchronous error, ignoring subsequent asynchro-
nous ermors, until read and cleared Itnsakolatchedwhenasynchronousmemoryerror
(SE_MEMERR) occurs, and should be read to unlatch it as part of SE_MEMERR processing. Note
that bits in the SER are set when bits in the ASER are set; thus the SER should be read to clear it as
part of asynchronous error processing.

A write-back error can occur on systems with write-back caches, and/or on systems that do buffered
writes, when either the hardware malfunctions or the MMU mapping is changed without properly flushing
the cache. In addition, certain devices (for example, frame buffers) will generate write-back errors under
device-specific conditions when a store is atiempted to them.

A timeout is reported on access to a non-existent device, except that accesses to non-existent physi-
cal memory may produce detectable behavior other than timeouts. (See the section ‘‘Type O Space,”
below.) For SPARCstation-1, this can only happen if the MMU is set up to map a non-existent device or if
the hardware malfunctions.

The specific cause of a DMVA bus error must be determined by polling the possible sources to see
which indicated the error. All possible sources of DVMA errors of this type must be recognizable in some
way. For SPARCstation-1, the only possible source of DVMA bus errors is memory parity errors. These
can be determined by examining the Memory Error Register, described below.

Dug to a bug in the cache chip, the ASER is not always set when an asynchronous error occurs.
In this event, the ASER can be reconstructed from the bits in the SER. SE_MEMERR shouid be on
in the SER. In addition, SE_TIMEOUT indicates that ASE_TIMEOUT should have been reported,
and SE_SBERR indicates that ASE WBACKERR should have been reporte¢ The address in the
ASEVER is correct even when the ASER is not set. This bug is in all versions of the hardware,
including P1.7’s, and is not expected to be fixed.

uH<

3.2.4. Asynchronous Error Virtual Address Register

The Asynchronous Error Virtual Address Register (ASEVAR) occupies four bytes at locatons
ASI=0x2, A31:28=0x6, A3:0=0xC to OxF). It contains the (pseudo) virtual address associated with the
asynchronous bus error described in the ASER. It is latched under the same conditions that the ASER is

DRAFT Version 8.3, 89/06/10 Page 7

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

wched. It is unlatched when it is read, not when the ASER is read. Thus, the ASEVAR should be read w
unlatch it as part of SE_MEMERR processing.

The ASEVAR has the following format-

S Bits 31:30 are copies of bit 29.

The address is called a ‘‘pseudo-virtual™ address because the hardware oaly carries the low-order 30 bits
of the virtual address onto the bus, and assumes that bits 31:29 are all the same. The ASEVAR reverses
this process by copying bit 29 into bits 31 and 30 on asynchronous errors reported by the [U. Due to a bug
in the cache chip, bits 31 and 30 are zero on DBMA asynchronous errors (ASE_DVMAERR is on).
Software must do the sign extension itself.

Determining the context register value associated with an asynchronous error is usually straightfor-
ward; there is only one tricky case.

Since DVMA is always done using context 0, the address associated withaDVMAu'rorwillalways
be context 0.

Non-DVMA asynchronous errors are due to buffer chip activity. 'I'hebuﬁ‘crchxpauowsuﬂyme
outstanding store; a subsequent store will stall the CPU in the middle of execution of the second store until
the outsanding store completes. If it completes with an asynchronous error, the error will be reported to the
CPU immediately after execution of the second store instruction finishes. (This is not necessarily comple-
tion of the second store itself, as it may itself be buffered. This is just completion of the store instruction
from the CPU’s point of view.) Unless the second store is a write to the context register, the address of the
asynchronous error will be associated with the value in the context register (the current context).

If the second store does modify the context register, then the address of the asynchronous error is
associated with the previous context, which must be determined by software. (If, for example, the first
store was t0 a supervisor-only page, then the actual context is irrelevant as supervisor-only pages are
mapped into all contexts.)

One can construct pathological cases where it would be impossible to determine that an asynchro-
nous error is associated with the previous context (for example, a store to a user page, followed by a
branch, with the store to the context register in the delay slot of the branch). It is up to software to avoid
these pathologies.

3.2.5. Simultaneous errors

It is possible for both a synchronous and an asynchronous error to be reported simultaneously. Con-
sider the following case:

st %20, [%10]! this address causes an asynchronous timeout
st %g0, [%11]! this address causes a page fauit

Depending upon the alignment of the instructions in the cache, it is possible for the IU to take the page
fault trap (a synchronous error) first, and while it is disabled for traps but before the SER has been read, the
asynchronous fault can be reported. This will um on the MEMERR bit in the SER, which can lead
software to believe that this is a synchronous memory error. Since the MEMERR s really asynchronous,
there will be a level 15 interrupt pending. If software treats this error as synchronous, and diligently reads
the SER, SEVAR, ASER, and ASEVAR to clear and/or unlatch them, then when traps are eventally
enabied and the level 15 interrupt occurs software will discover that there is no information in either the
ASER or the SER pertaining to the asynchronous interrupt.

Software can avoid this difficulty by comparing the ASEVAR to the SEVAR whenever MEMERR is
set on a synchronous trap. If they are identical, then this is a true synchronous MEMERR. If they are dif-
ferent, then the MEMERR s associated with the asynchronous trap. Software should clear the pending

vel 15 interrupt and process the asynchronous error, using the ASER and ASEVAR values, and being
cognizant of the bugs in asynchronous error reporting described previously. The synchronous error can be

DRAFT Version 8.3, 89/06/10 Page 8

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

nored, for it will recur if and when execution of the program is resumed.

3.2.6. Serial Port

The serial port is referenced by byte loads and stores at locations beginning ar (ASI=0x2,
A=0xF0000000). This access is provided so that the serial port may be used before the MMU has been ini-
tialized, for example by the PROM monitor. Software normally accesses the serial port via I/O space
through the MMU.

See the section *‘Serial Ports’ under ““Type 1 Space’, below, for more information on the serial
port registers.

4. Physical Space

The MMU maps virtual addresses in Device Space to physical addresses in Physical Space. Physical
space is further subdivided into four types, as indicated in the following table.

Type Sund Use SPARCstation-1 Use Comments
0 Main Memory Same
1 I/O Space Same
2 VMEbus, 16-bitdata Unused Note 1
3 VMEbus, 32-bitdata Unused Note 1 -
Note 1. In SPARCstation-1, references to type 2 or 3 space cause a timeout.
The size of a physical address is 28 bits.

4.1. Type 0 Space

Type 0 space contains the main memory (RAM) in SPARCstation-1. Since PA27:0 are used for
RAM device decoding, the Sbus can support a theoretical maximum of 256 Mbytes of RAM. However,
e SPARCstation-1 implementation only supports a maximum of 64 Mbytes. In addition, individual
SPARCstation-1 machines can be configured with as little as 4 Mbytes of memory. To explain what hap-
pens when non-existent RAM is addressed, the implementation must be explained and some terms defined.

The SPARCstation-1 memory subsystem contains two RAM controllers. Each RAM controller con-
trols a **bank’” of 32 Mbytes of address space. Each bank is made up of two ‘‘sets’ spanning 16 Mbytes
each. Each set contains four SIMMs (Single Inline Memory Modules) each. Each SIMM consists of 9
chips. Each chip is either a 1 Mbit or a 4 Mbit DRAM. All the chips in a SIMM are of the same type, and
all the SIMMs in a set must be of the same type. A set of 1 Mbit DRAMs contains 4 Mbytes of memory,
and a set of 4 Mbit DRAMs contains 16 Mbytes of memory. The SIMMs in one set can be of a different
type than the SIMMs in another set, even in the same bank.

The RAM controllers require PA27 to be zero. If PA27=1, then no controller responds and a bus
timeout occurs.

PA26:2S selects the appropriate RAM controller. One controller responds to 0x0, the other responds
to Ox1. If PA26:25=2 or 3, then no controller responds and a bus timeout occurs.

PA24 selects one of the two sets of SIMMs controlled by a controller. If the selected set is not
installed (a hole), then on writes the data is thrown away and on reads the bus lines remain high (subject o
noise) and a characteristic bit pattemn (normally all ones) is returned. Software can detect a hole by doing a
store to followed by a load from a byte on 16 Mbyte boundary. If the data read does not agree with the
data written, then a hole exists, If they agree, the same test with a different bit paitern should be used
before concluding that real memory exists. (Note that parity checking should be disabled when doing these
checks, as parity errors will be reported if the noise pattern contains bad parity and parity checking is
enabled.)

If the selected set consists of 4 Mbit DRAMs, then all 16 Mbytes of address space spanned by that
set are valid and correspond to unique memory locations. If the selected set consists of 1 Mbit DRAMs,
then only 4 Mbytes of unique memory exist, but it appears four times in the 15 Mbytes of address space

anned by the set, repeating at every 4 Mbyte boundary. This ‘‘mimror’’ behavior can be detected by
wftware by doing a store of one bit pattern to offset 0 of a set, followed by a store of another bit pattern to
offset 4 Meg (0x00400000) of the set, followed by a load from offset 0. If the data at offset O was changed

DRAFT Version 8.3, 89/06/10 Page 9

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

/ the store to offset 4 Meg, then only 4 Mbytes of memory is present and the rest is filled with mirrors.
The following decision table summarizes this behavior.

PA27 | PA26 | SIMM Set | PA23:22 Action

1 - - - Timeout

0 1 - - Timeout

0 0 none - Hole

0 0 4 Mbit - Memory (16 Mbytes worth)

0 0 1 Mbit 00 Memory (4 Mbytes worth)
01

0 0 1 Mbit 10 Mirror
11

4.2, Type 1Space

Type 1 space contains all of the IO devices, including those that are associated with the Sbus. Bit
PA27 is used to indicate an onboard device (PA27=0) or an Sbus device (PA27=1). For onboard devices,
PA26:24 (and in some cases PA26:20) determine the particular device. For Sbus devices, PA26:25 sclect
one of four Sbus slots. The (physical or logical) board plugged into the Sbus slqt then has an address space
of 25 bits, or 32 Mbytes, to divide up as it sees fit. Sbus addressing is further described in the Section
‘‘Sbus Devices’*, below. For compatibility with the Sun4 architecture conventions, the non-existent bits
(PA31:28) are assumed to be all ones. The following table describes the layout of Type 1 space:

Note 1. Same as Sun4 use.
Note 2. Sun4 has a different kind of TOD at this address. It also has an EEPROM at a different address.
Note 3. Sund has same function, but at a different address.
Note 4. Sun4 has no corresponding function.

Reference to a Type 1 address to which no device responds results in a timeout.

4.2.1. Onboard Devices

DRAFT

Version 8.3, 89/06/10

Address SPARCstation-1 Use Comments
0xFO000000 Keyboard/Mouse Note 1
OxF1000000 Serial Ports Note 1
0xF2000000 TOD Clock and NVRAM Note 2
JxF3000000 Counter-Timer Registers Note 3
0xF4000000 Memory Error Registers Note 1
OxF5000000 Interrupt Register Note 1 not? i
0xF6000000 EPROM Note 3 {Te & 2 £fe 95000
O0xF7000000 EPD "Private": Note 4
0xF7100000 ECC registers (HPD only)
0xF7200000 Floppy Controller
0xF7201000 Audio/ISDN
0xF7400003 Auxiliary Input/Output Register
OxFTF00000 VME Control Register (SunFed only)
OxF8000000 Sbus Slot 0 (25 bits) Note 4
0xF9000000 "
0xFAQ00000 Sbus Slot 1 (25 bits) Note 4
O0xFB000000 "
0xFCO00000 Sbus Slot 2 (25 bits) Note 4
OxFDO0O0000 - "

OxFEOO0000 Sbus Slot 3 (25 bits) Note 4
O0xFFO00000 " "

Page 10

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

2.1.1. Keyboard/Mouse
The keyboard/mouse UART is a Z8530 chip Zilog or AMD equivalent) accessed via byte loads and
stores at the following addresses:
Address Description

0xF0000000 Mouse Control Port
0xFO000002 Mouse Transmit (W)/Receive (R) Data Port
0xF0000004 Keyboard Control Port
0xFO000006 Keyboard Transmit (W)/Receive (R) Data Port

The Z8530 contains an array of read registers and write registers, accessed through the control port.
Access to a register is done by writing the register index to the control port, and then reading or writing the
register data to the control port. In addition, the UART transmit and receive data registers may be directly
accessed by writing and reading, respectively, from the Transmit/Receive Data Port.

See theZSS}O data sheet for more information.

4.2.1.2. Serial Ports

'I‘hcsenalponsUARTlsalsoa28530clnp,ldmncaltoﬂieoneusedforthekeyboard/mouse Itis
addressed as follows:

Address
0xF1000000 Serial Port B Control Port
0xF1000002 Serial Port B Transmit (W)/Receive (R) Data Port
0xF1000004 Serial Port A Control Part
0xF1000006 Serial Port A Transmit (W)/Receive (R) Data Port

2.1.3. TOD Clock and NVRAM (EEPROM)

The Time of Day Clock is a Mostek MK48T12-15 Zeropower/Timekeeper RAM which includes 2K
of RAM, the topmost 8 bytes of which are the clock. The Timekeeper contains its own battery backup,
which has a worst-case storage life (oscillator off or power on) of 11 years at 70°C and a worst case con-
sumption life (oscillator on and power off) of 2.8 years at 0°C. Unlike EEPROMs, there is no limitation on
the number of times the CMOS RAM can be written, nor are special write timings required.

The Clock/NVRAM is accessed via byte, halfword, or fullword loads and stores at the following
addresses:

Address Description
0xF2000000t0 NVRAM
0xF20007d7
0xF20007d8t0 *‘IDPROM™’
0xF20007€7

OxF200078 TOD Control
0xF2000769 Seconds (00-59)
0xF20007fa Minutes (00-59)
0xF20007fb . Hour (00-23)
0xF20007fc Day (01-07)

0 fd Date (01-31)
0xF20007fe Month (01-12)
0xF20007ff Year (00-99)

Thirty-two bytes of NVRAM acts as the ID prom’” of SPARCstation-1. The id_machine byte con-
tains 0x51; 0x50 is the architecture code for Sun4C, and 0x51 indicates the SPARCstation- 1 machine.

The TOD Control register should only be written with byte stores to prevent modifying the data to be
read.

The time and date information is stored in 24 hour BCD format. For more information, mcludmg the
protocol o be used to read, write, start, and stop the clock, see the MK48T12-15 data sheet.

DRAFT Version 8.3, 85/06/10 Page 11

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

2.1.4. Counter-Timer Registers
The Counter-Timer Registers are accessed via fullword loads and stores at the following addresses:
2dd Descro
0xF3000000 Counter 0
0xF3000004 Limit0
0xF3000008 Counter 1
0xF300000C Limit 1

All registers have the following format:
31 9 0

L Limit Reached

Each counter is incremented by one in bit position 10 at one microsecond intervals. When a counter
reaches the value in its corresponding limit register, it is reset to ‘‘one microsecond,’’ the limit-reached bit
in both the counter and limit registers is set, and an interrupt is generated (if enabled) at level 10 for
Counter 0 and level 14 for Counter 1.

The interrupt is cleared and the limit bits reset by reading the appropriate limit register. Reading the
counter register does not change the state of the limit bits. Writing the limit register resets the counter
register to a value equivalent to one microsecond. Except for testing purposes, the counter registers should
not be writien.

Setting a limit register to zero causes the corresponding counter to freerun. Interrupts will occur
~hen the counter overflows back to zero, approximately every 2 seconds.

4.2.1.5. Memory Error Registers

SPARCstation-1 uses a single Parity Control Register. This is a fullword read/write register at loca-
tion 0xF4000000 in Type 1 physical space. The format of this register is as follows:

31 23 15 7 0

--

Parity Error. Set on any parity error.

Multiple Errors. Set when a parity error occurs and E=1.
Parity Test. When set, inverse parity is generated.
Parity Check. Enables parity checking.

Parity Error 24. Records parity error on data bits 31:24.
Parity Error 16. Records parity error on data bits 23:16.
Parity Error 08. Records parity error on data bits 15:8.
Parity Error 00. Records parity error on data bits 7:0.

‘l‘hcbits%lmindiweum(E.M.andA-D)mcuredwhmu\emgistetisrad. All bits are cleared on
reset.

Note that when a parity error occurs, the cactie will have loaded itself with the data from memory
anyway. This means that software must flush the cache after parity errors if it is to continue operation. On
a single parity error (M=0), only the affected cache line (as determined from the old PC, the SEVAR, or
the ASEVAR, as appropriate) need be flushed. On multiple parity errors (M=1), the entire cache must be
flushed.

Also note that the address in the SEVAR or ASEVAR, as appropriate, may not be the address of the
ywd with the parity error, if the error occurred during a cache-fill operation.

gaw»Z-HZm

DRAFT Version 8.3, 89/06/10 Page 12

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

2.1.6. Interrupt Register

The Interrupt Register is a one-byte read/write register at location 0xF5000000 in Type 1 physical
space. The format of this register is as foilowed:

1AI0ICIDIEIFIGIHI I 8= gmabls (2

"""""""") .
Enable Level 14 Interrupts % cotrac | hv (A
Enable Level 10 Interrupts . ot O (wlrad duchew ;\AJ,\
Enable Level 8 Interrupts vidoo , -
Software Interrupt Level 6 (M LN T/ PN uru} ?)
Software Interrupt Level 4 :

Software Interrupt Level 1
Enable all Interrupts

Writing a zero to an Enablel..evelNInimupt bit only masks out that interrupt, it does not clear the source.
Writing a one to a software interrupt bit requests an interrupt on that level; the bit must be cleared to clear
the request.

Writing a zero to the Enable All Interrupts bit will clear the Asynchronous Memory (level 15) Inter-
rupt, as weil as masking all interrupts. Of course, interrupts should be immediately re-enabled by writing a
one.

On reset, all bits are cleared and all interrupts are reset.

mnammo o »

42.1.7. EPROM

SPARCstation-1 has 128K bytes of EPROM containing the boot monitor beginning at location

F6000000 in Type 1 physical space. The EPROM is also referenced by all Supervisor Virtual addresses

~hen the ENA_NOTBOOT bit in the System Enable Register is zero, for example at boot time. The boot
code must initialize the MMU to at least map itself before setting the ENA_NOTBOOT bit to one.

Note that the EPROM does not obey the normal memory mapping rules. PA[16:0] into the EPROM
always come from VA[16:0]. Although VA[29:12] are processed by the MMU to select a physical
address, when bits PA[27:24] of that physical address select the EPROM then bits PA[23:12] from the
MMU are ignored. This means that, for proper operation of the EPROM, it must be mapped one-for-one to
contiguous virtual pages beginning on a 128K boundary.

4.2.1.8. Floppy Controller
The Floppy Disk Controller is an Intel 82072. It is accessed using byte loads and stores at the fol-
lowing addresses:
Address Description
0xF7200000 Main Status (R)/Data Rate Select Register (W)
0xF7200001 FIFO Data Port (R/W)

For more information see the Intel 82072 data sheet. Note that the floppy must be selected as drive 1
(or 3, but 1 is preferred) in the command sequence sent to the controller. See also the Terminal Count and
Floppy Eject bits in the "Auxiliary Input/Output Register” described below.

42.1.9. Audio/ISDN
The audio interface of the SPARCstation-1 is provided through the Main Audio Processor (MAP) of
the AMD 79C30A Digital Subscriber Controller. The 79C30A is a highly integrated circuit which pro-
vides an ISDN 4-wire subscriber level interface, an audio processing circuit, a parallel microprocessor
interface, and a serial interface. For SPARCstation-1 Audio use the microprocessor interface and the audic
-ocessing circuits are the only portions of the circuit which are used.

DRAFT Version 8.3, 89/06/10 Page 13

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

The interrupt from the 79C30 is attached to IRQ<13> of the MMU (which is interrupt level 13). The
data bus is connected 0 the IO data bus. The circuit includes an oscillator circuit which uses an externally
provided 12.288 MHz crystal with a tolerance of + or - 80 ppm. The oscillator is a parallel resonant circuit.

The 79C30 registers are located at a base address of 0xF7201000. The 79C30 is accessed using byte
loads and stores at the following addresses:

Address WR* RD* Register description
O0xF7201000 O 1 Command Register (CR), write only
1 0 Interrupt Register (IR), read only
0xF7201001 O 1 Data Register (DR), write
1 0 Data Register (DR), read
0xF7201002 1 - 0 D-channel Status Register 1 (DSR1), read only
0xF7201003 1 0 D-channel Error Register (DER), read only
OxF7201004 O 1 D-channel Transmit Buffer (DCTB), write only (8-byte FIFO)
OxF7201004 1 0 D-channel Receive Buffer (DCRB), read only (8-byte FIFO)
0xF7201005 O 1 Bb channel Transmit Buffer (BBTB), write only
OxF7201005 1 0 Bb channel Receive Buffer (BBRB), read only
0xF7201006 0 1 'Bc channel Transmit Buffer (BBTB), write only
0xF7201006 1 0 Bc channel Receive Buffer (BBRB), read only
0xF7201007 1 0 D-channel Status Register 2 (DSR2), read odly

Note that the other registers in the 79C30, of which there are many, are indirectly accessed through
the command register. Pages 2-71 through 2-77 of the 79C30A Data Sheet describe this indirect address-
ing.

Please refer to the 79C30A Data Sheet for full details on operation of this circuit.

12.1.10. Auxiliary Input/Qutput Register

The Auxiliary Input/Output Register is a one-byte, read-write register at location 0xF7400003 in
Type 1 physical space. It has the following format:

76543210

...............

In Density

In FloppyDnskctteChange(mustbewnuenasme)
Out Floppy Drive Select

Out TC (Floppy controller Terminal Count input)
Out Floppy Eject

Out LED (1=o0n, O=0ff)

All bits are set to one on reset.)

Bit 5.(Density) is a signal from the drive indicating the density of the diskette inserted. A 1 indicates
high density, a 0 indicates low density. This signal is meaningful only if the floppy drive is capable of
seasing the ‘‘density”* hole in the diskette. The Sony drives do not generate this signal; for them, software
must through trial and error determine the density of the inserted diskette. This can be done by initializing
the controller with parameters for a given density and attempting to read the disketie; if the wrong parame-
ters were chosen read errors will occur. Note that the density of an unformatted floppy cannot be deter-
mined through this method; the floppy format software must have a user option to set the density to be
used. (If the user selects the wrong density, the floppy will be unusabie, but the user will quickly discover
this mistake.)

Bit 4 (Floppy Diskette Change) is an input bit that signifies when a diskette has been removed from

the drive. This bit must always be written as one in order for it to work. It reads as one when the drive is
iected and there is no diskette in the drive. It reads as zero if the drive is not selected or if a diskeue is
~vesent in the drive. The Sony drives reset the bit when they receive a step pulse from the controller; i.c.,
when the software issues a ‘‘Seek’’ command. Other vendor drives require a separate Diskette Change

rmawuAay

DRAFT Version 8.3, 89/06/10 Page 14

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

2set signal; a2 bit will need o be provided for this function in the Auxiliary Input/Output Register if a
non-Sony drive is chosen for SPARCstation. When will this decision be made?

Bit 3 (Floppy Drive Select) is connected to the floppy drive select pin. It is used in conjunction with
all floppy operations, whether through the Floppy Disk Controlier regisiers or ihe biis in the Auxiliary /O
Register. A one selects the floppy drive; a zero de-selects it.

Bit 2 (TC) is connected to the Terminal Count input pin of the floppy controller. It is used to signal
the floppy controller (which is designed to be connected to a DMA controller, even though in
SPARCstation-1 it is not) that all the data for a given operation has been transferred. This is done by writ-
ing a 1 to this bit, delaying for a specific amount of time, and then writing a 0 to it. (The specific amount of
time depends upon the data rate and can be found in the Intei 82072 data sheet.)

Bit 1 (Floppy Eject) is connected to the floppy drive eject mechanism. To eject a floppy, set bit 3
(Floppy Drive Select), wait 2.0 microseconds, set bit 1, hold it set for at least 2.0 microseconds, then reset
both it and bit 3 to zero.

Bit 0 (LED) controls the LED on the front panel.

Unused bit positions should be written with ones when writing to the register. This will allow them
to be used for input signals if this becomes necessary.

4.2.2. Sbus Devices

Unlike previous busses, the Sbus is geographically addressed. PA26:25 select which of four Sbus
“slots’* is being referenced. A board plugged into an Sbus slot has PA24:0, or 25 bits or 32 Mbytes of
address space addressability to divide up among the devices contained on that board. A Forth program
beginning at offset 0 of the slot describes the devices on that board to the system. The details of the Forth
specification are described in Sun Forth User’s Guide.

Slot 0 is not a physical slot. Rather, it refers to the onboard DMA, SCSI, and Ethemnet controllers

iich, for convenience, are viewed as being plugged into Slot 0.

Slots 1, 2, and 3 are physical slots into which the user may plug boards containing devices. Slots 1
and 2 have DVMA-master capability; siot 3 is a slave-only slot and does not support boards that operate as
DVMA masters. The board containing the video subsystem (video control registers, RAMDAGC, and frame
buffer) is usually, but need not be, plugged into Slot 3.

If no device responds to a particular Sbus address, a bus timeout will occur.
The following table summarizes the devices:

PA2625 Device

00 Onboard DMA, SCSI, and Ethemet controllers
01 Sbus Slot 1

10 Sbus Slot 2

11 Sbus Slot 3 (usually video subsystem)

422.1. DMA, SCSL and Ethernet Devices

The following table describes the offsets to the onboard DMA, SCS], and Ethemet devices, relative
to the beginning of Sbus *‘Slot 0’ (base physical address 0xF8000000 in Type 1 space).

Offset’ Description
0x000000 ID (4 bytes, 0xFE810101)
0x400000 DMA Registers
0x800000 SCSI Registers
0xC00000 Ethernet Registers

422.1.1. DMA Registers

The DMA registers are accessed via fullword loads and stores to the following offsets (the addresses -
w1 this table do not include the slot base address, which must be added to the device offset):

DRAFT Version 8.3, 89/06/10 Page 15

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

Address Description
0x400000 DMA Control/Status Register
0x400004 DMA Address Register
0x400008 DMA Byte Count
0x40000C__ Diagnostic Register

The DMA registers are used when programming SCSI operations. Other than the ILACC bit in the
DMA Control/Status Register, they are not used when programming Ethernet operations.

4.22.1.1.1. DMA Control/Status Register
The DMA Control/Status Register has the following format:
31 27 15 12 10 8 6 4 3 10

..

DEV_ID
DEV_ID. Device ID. Read-only. (0b1000 in this implementation.)

L L. ILACC. When 0, the Ethemet/DMA interface is configured to use the Lance Ethernet controller.
When 1, the interface is configured to use ILACC, “‘the new Ethernet chip from AMDpq (Cliff
Buckley).

T TC. Terminal Count. Read-only. Byte counter has expired. This bit is cleared by setting the Flush
bit (bit 5).
C EN_CNT. Enable Count. Read/write. Enables the DMA Byte Count Register. (Not used in normal
SPARCstation-1 operation.)
DR BYTE_ADDR. Read-only. Next byte number to be accessed.

P REQ_PEND. Request pending. Read-only. Set when the DMA interface is active. RESET and
- FLUSH must not be asserted if REQ_PEND is one.

N EN_DMA. Enable DMA. Read/write. Set to enable DMA activity, reset to disable.

W WRITE. Read/write. Set for DMA from device to memory (read), reset for DMA from memory to
device (write).

R RESET. Read/write. When set, acts as a hardware reset. ERR_PEND, PACK_CNT, INT_EN,

FLUSH, DRAIN, WRITE, EN_DMA, REQ_PEND, EN_CNT, and TC are all set to zero. RESET
remains at 1, and must be set back to 0 by software to resume operatica.

D DRAIN. Read/write. Set to force remaining pack register bytes to be drained to memory. Clears
itself.

F FLUSH. Write-only. Set to force PACK_CNT and ERR_PEND to zero. Also clears TC and the
interrupt TC=1 causes. Always mdslas zero.

I INT_EN. Interrupt enable. Read/write. Set to enable interrupts.

PCK PACK_CNT. Pack Count. Read-only. Number of bytes in Pack Register.

E _PEND. Emor Pending. Read-only. Set when a memory exception occurs. Reset by setting
FLUSH. DMA activity stops until reset.

J INT_PEND. Interrupt Pending. Read-only. Set when TC=1 or when external device raises an inter-
rupt. Cleared when read (if TC=1 is the cause) or by servicing the external device (if that is the
cause).

N

4.2.2.1.1.2. DMA Address Register
The DMA Address Register has the following format:

DRAFT Version 8.3, 89/06/10 Page 16

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

31 23 0
i R N Veeoeeecoaeaonaa Veoomsoocaoeaaana v
{VA31:24-1atched]| VA23:0 - address |

. e e e e e e s e e e ee e%eaceecmeacamat T ECCEEEewmee®es eeeceeeseeewe=--

The high byte is laiched by the hardware and indicates which 16 Mbyte region of Virtual Memory is
accessed. (The MMU recognizes a DMA virtual address and forces Context 0 to be selected.) The low-
order 3 bytes contain the address of the byte to be transferred. Rollover is only through the low-order 24
bits.

4.2.2.1.13. DMA Byte Count
The DMA Byte Count Register has the following format:

31 23 0
Yeoceooocacannas Vocoooooocnaaaan Yeoecomcnoooonan Veoocooaaaaaaan- v
10000 0‘0 0 0l BCNT23:0 - counter |

..

This register is only used when EN_CNT is on in the DMA Control/Status Register, and so is not
used in normal SPARCstation-1 operation. The high byte is unused and will always read back as zero.
The low order bytes contain the number of bytes to be transferred, and counts down to zero. When zero is
reached, TC, and thus INT_PEND, are set to one. Further DMA transfers cannot take place until a new
value is loaded into the Byte Count Regiser.

4.2.2.1.1.4. Diagnostic Register
The format of the Diagnostic Register is not available.

3.2.12. SCSI Registers

The SCSI registers are accessed via byte loads and stores to the following offsets (the addresses in
this table do not include the slot base address, which must be added to the device offset):
Address Description
0x800000 Transfer Count Low
0x800004 Transfer Count High
0x800008 FIFO Data
0x80000C Command
0x800010 Status/Bus ID
0x800014 Interrupt/Status Timeout
0x800018 Sequential step/Synchronization transfer period
0x80001C FIFO flags/Synchronization offset
0x800020 Configuration
0x800024 Clock Conversion Factor (write only)
0x800028 ESP TEST (chip test use only)
0x80002C _ ESP II Configuration-2

Ngte that byte accesses must be performed even though the addresses are all fullword-aligned.

Since the SCSI controiier uses the DMA controlier to perform the actual transfer of data to and from
memory, the two devices must be programmed together. One possible algorithm is as follows:

scsi_start()

{
/* start an operation on the SCSI */
lock data pages into contiguous virtual memory;
DMA_address_regisier = starting viriuai address;
setup SCSI registers (except for "go™);
DMA_control_status_register = (EN_DMA | INT_EN | (other bits));
start SCSI;

DRAFT Version §.3, 89/06/10 - Page 17

Sun Confidential SPARCstation-1 Programmer’s Model . DRAFT

/* The SCSI will interrupt us when it is done. */
}

scsi_interrupt()

{
/* must drain DMA on a read from disk/write to memory */
if (last operation == READ) {

)

DMA _control_status_register = (DRAIN);

)
For a deuiled description of the SCSI registers, see the NCR 53C90 Data Sheet.

4.2.2.13. Ethernet Registers

The Ethernet registers are accessed via halfword loads and stores to the following offsets (the
addresses in this table do not include the slot base address, which must be added to the device offset):
Address Description
0xC00000 Register Data Port (RDP)
0xC00002 _Register Address Port (RAP) i

For a detailed description of the Ethernet registers, see the AMD Am7990 Data Sheet.

42.2.2. Video Subsystem

The following table describes the offsets to the devices located on the Video Subsystem Board. This
board is usually plugged into Sbus “‘Slot 3°* (base physical address OxFE000000 in Type 1 space).
" Offset Description
-Jx000000 ID (4 bytes, OxFE010101)

0x400000 Video and DAC Registers
0x800000 Frame Buffer

4222.1. Video and DAC Registers

The Video and DAC registers are accessed via byte loads and stores to the following offsets (the

addresses in this table do not include the slot base address, which must be added to the device offset):
Address Description

0x400000 Video Control Register
0x400001 Video Status Register
0x400002 HBS (Horizontal Blank Set)
0x400003 HBC (Horizontal Blank Clear)
0x400004 HSS (Horizontal Sync Set)
0x400005 HSCO (Horizontal Sync Clesr, 1VS)
0x400006 HSC! (Horizontal Sync Clear, VS)
0x400007 VBSH (Vertical Blank Set High Byte)
0x400008 VBSL (Vertical Blank Set Low Byte)
0x400009 VBC (Vertical Blank Clear)
0x40000A VSS (Vertical Sync Start)
0x40000B VSC (Vertical Sync Clear)
0x400010 DAC Address Register
0x400014 DAC Color Paleue Register Port
0x400018 DAC Control Register Port
0x40001C DAC Overlay Paleite Register Port

See the S-4 Video data sheet for a detailed description of the Video Registers, and the Brooktree
_458/451 data sheet for a detailed description of the DAC Registers. Note that setting incorrect values
into the registers can damage the attached monitor.

DRAFT Version 8.3, 89/06/10 Page 18

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

Note that the DAC registers are 8-bits wide even though they are aligned on fuliword boundaries.
Fullword accesses can be used to quickly read or write one or more palette entries, by storing the index of
the first palette to be accessed in the address register and then doing fullword accesses to the appropriate
palette port. The data must be packed into bytes in the order “RGBRGBRGBRGB”’; in other words, 3
fullwords will hold 4 palette entries. Palette entries are only stored when the Blue value is written; partial
update of a palette is not possible.

4.2.2.22. Frame Buffer

The frame buffer is a megabyte of RAM occupying offsets from 0x800000 to Ox8FFFFF. Each byte
corresponds to one pixel. Accesses may be by bytes, by halfwords, or by fullwords.

If the frame buffer is only half-populated, then only the lower four bits of each byte will be
significant. As the upper four bits will be (weakly) pulled up with resistors, only the upper 16 color map
entries (entries 240 through 255) in the DAC will be usable. Software can detect this case by writing, then
reading, the frame buffer. If the upper four bits aiways read back as ones, independent of the data written,
then the frame buffer is half-populated. (This is grody — Ed.)

5. Interrupt Levels

The following table describes the interrupt levels defined by the Sun4 Architecture and the
SPARCstation-1 implementation.

Level Sun4 Use SPARCstation-1 Use
15 Memory Error Asynchronous Memory Error
14 Clock Counter 1
13 VMEDbus level 7 Audio
12 Keyboard, Mouse, Serial Ports Same
11 VMEDbus level 6 Floppy
10 Clock Counter 0

9 VMEDbus level 5 Sbus IRQ7

8 Video Sbus IRQ6

7 VMEbus level 4 Video, Sbus IRQS

6 Ethernet, Software request 6 Software request 6

b VMEDbus level 3 Ethernet, Sbus IRQ4

4 SCSI, Software request 4 Software request 4

3 VMEDbus level 2 SCSI, DMA, Sbus IRQ3

2 VMEbus level 1 Sbus [RQ2

1 Software request 1 Same, plus Sbus IRQ1
6. Resets

Although there is only one type of reset in SPARCstation-1 (a reset of the entire machine that causes
system registers to be restored to a known state), there are three ways to effect a reset:

(1) Power-on. A power-on reset (POR) occurs when power is initially applied to SPARCstation-1.

(2) Watchdog. A watchdog reset occurs when the IU signals an error condition. This can occur, for
example, if the IU attempts to take a trap when traps are disabled.

(3) Software. Software can initiate a reset by writing a one to the ENA_RESET bit of the System
Enable Register.

The SE_WATCHDOG bit in the Synchronous Error Register is set to one on watchdog-initated
resets, and set to zero for all other resets.
7. Contexts, Caching, and the MMU

This section describes the interaction of the context register, the cache, and the MMU from the
“ogrammers perspective.

DRAFT Version 8.3, 89/06/10 Page 19

\

TP AX0E<
3

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

1. Context Register (ASI=2, A=0x30000000, byte access only)
The Context Register has the following format:
7 3 0

Veecoenaoonooaean v
|

...............

Note that although the CID is four bits wide, only the low-order 3 bits (CID2:0) are actually used. CID3 is
ignored. .

The context register selects one of 8 contexts for translating User Mode addresses. It exists in both
the Cache and the MMU.

Programming note: A byte store (STBA) into (ASI=2, A31:28=0x3) writes both the MMU and
Cache Context Registers. A byte load (LDUBA, LDSBA) from (ASI=2, A31:28=0x3, A0=0) reads the
MMU'’s Context Register, and a byte load from (ASI=2, A31:28=0x3, A0O=1) reads the Cache’s Context
Register. The ability to read each register separately is provided for diagnostic purposes; they should
always contain the same value and standard software will usually just read the MMU’s Context Register.

72. MMU decoding of Virtual Addresses
From the MMU’s standpoint, a virtual address has the following format:

31 29 17 11 0
A AR R R R R Veeoereroeocoonnana A AR R R ERE R R IR L AR A R
| | | page in |

|] segment (12 bits) | segment Ibyte in page (12 bits)
| | ' I (6 bits) |

Jte: VA31:29 must all be the same (all 0 or all 1). An SE_INVALID error results otherwise.

CID2:0 is concatenated with VA29:18 to select one of 32K segment map entries. (One can view the
segment map as consisting of 8 contexts, each context containing 4K segments.) The segment map entry is
8 bits wide, although only the lower 7 bits are used, and points to a Page Map Entry Group (PMEG):

76 0

PMEG®6:0 is concatenated with VA17:12 to select one of 8K Page Map Entries (PME). (One can
view the page map as consisting of 128 PMEGs, each PMEG containing 64 pages.) The PME is 32 bits
wide, organized as follows:

31 29 27 25 23 15 0

1=Supervisor mode access only

1=don’t cache this page

0=Main Memory; 1=Sbus and I/O space; 2,3=reserved for VMEbus
1=page has been accessed

1=page had been modified

PME15:0 is concatenated with VA11:0 to form a 28-bit physical address whose interpretation
Aepends upon the type field.

Programming Notes:

DRAFT Version 8.3, 89/06/10 Page 20

."k)

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

f—e

A page is 4K bytes. A scgment is 64 pages or 256K bytes. A context contains 4K segments or 1G
byte. This last is divided into twe address ranges of S12M bytes each, from 0x00000000-0x 1fffffff
and from OxeQ000000-Ox{fFEfTT.

{2} Unlike archiicctures used by other vendors, in this architecture there is no way to explicitly mark a
segment as invalid. However, the operating system can reserve one PMEG and mark all of its PMEs
invalid, and then point invalid segments at this PMEG. SunOS has traditionally used the last PMEG
for this purpose, but this may be subject to change.

(3) Because the cache i the context register when resolving accesses to_supervisor-mode-only

es, the kemel segments should be identical in each context This can be accomplished by
repeating the same PMEG in the appropriate segment map entries.

(4) Acontextis selectzd by performing a byte store into the Context Register (ASI=2, A31:28=0x3).

A segment map is initialized by selecting a context, and then performing byte stores into (ASI=3,

A29:18=0x0 o Oxfff). (Half and fullword stores will work but are not recommended.)

A PMEG is inidalized by selecting a context, and then performing fullword stores into (ASI=4,

A29:18=desired segment, A17:12=0x0 to 0x3f).

(5) The hardware does not insure consistency between the cache and the MMU. The operating system
software must flush the cache appropriately before updating the MMU. Before changing the
mapping of a context, a Flush Cache (Context) operation must be performed. Before changing the
mapping of segment, a Flush Cache (Segment) operation must be performed. Before changing the
mapping of a page, a Flush Cache (Page) operation must be performed. These operations are
described in the Cache section, below. Also note that these are not the only circumstances when
flushing the cache is necessary.

73. Cache decoding of Virtual Addresses

To improve performance, SPARCstation-1 contains a 64K byte virnial address cache, consisting of
-K lines of 16 bytes each. The cache is one-way set associative, with each virtal address mapping to one
and only one possible cache line. There is a 4 byte cache tag associated with each data line.

From the Cache’s standpoint, a virtual address has the following format

31 29 15 3 0
Veeoeeoseosososanaaaa Veeeoecooenassoaaaax Veeoeooeoeooweoonna A IR R v
| i | Ibyte ofl
] | cache tag id (14 bits) | cache line (12 bits) | line |
| | | I (4 b.)!

..

Note: VA31:29 must all be the same (all 0 or all 1). An SE_INVALID error occurs otherwise.

VA1S:4 selects one of 4K cache lines. If the cache tag id matches (and, for non-supervisor-mode-
only pages, the context ID), then a cache hit occurs. VA3:2 selects the desired word from the cache line.

A cache tag has the following format:

31 24 21 18 15 10
Veoooocoeaenaena Vo-ecoeeotoecana- LA Veocsooooonoanons v
IO’O 0000 0! CID IWISIVIO 0 0! cache tag id (14 bits) 10 0!

...

CID Cache Tag Context (copied from Cache Context Register when cache line is filled.) Note that only
CID2:0 are present.
1=write access allowed (copied from MMU when cache line is filled.)

1=Supervisor mode access only (copied from MMU when cache line is filled.)

< g

1o wnlid
I=entry is valid

Hogmﬁming Notes:

DRAFT Version 8.3, 89/06/10 Page 21

Sun Confidential SPARCstation-1 Programmer’s Model DRAFT

) The cache tags must be initialized by software before the cache is enabled, by clearing the valid bit
in the cache tag of each cache line. It is sufficient to do fullword stores of zero into (ASI=2,
A31:28=0x8, A15:4=0x0 to Ox(ff).

(2) To flush all references to a context from the cache, a Flush Cache (Context) operation must be
performed by selecting the appropriate context (by performing a byte store into the Context Register,
(ASI=2, A31:28=0x3)) and doing fullword stores of zero into (ASI=0xe, A15:4=0x0 to Oxfff).

(3) To flush all references to a segment from the cache, a Flush Cache (Segment) operation must be
performed by selecting the appropriate context and doing fullword stores of zero into (ASI=Oxc,
A29:18=desired segment, A15:A4=0x0 to Oxfff). A17:16 are ignored for this operation.

(4) To flush all references to a page from the cache, a Flush Cache (Page) operation must be performed
by selecting the appropriate context and doing fullword stores of zero into (ASI=0xd,
A29:12=desired page, A11:4=0x0 to Oxff).

7.4. Aliasing

Because the cache is bigger than a page, a physical page that is mapped by two (or more) distinct
virtual addresses could result in data from the same physical address appearing in two (or more) cache
lines: '

31 29 17 11 - 0
Veoeonocoeoannenna L R Veo-eeocaaaaanea Veoeoaoaoaaaaann v
1 ! segment (12 bits) i page | byte in page (12 bits)!
i | cache tag (14 bits) | cache line (12 bits) | byte |
31 29 15 3 0

This situation cannot be detected by the hardware and must be avoided by the software. There are
0 methods that may be used:

1) All the virial addresses for an aliased page must be identical in bits A15:12. That is, the virtual
addresses must be congruent modulo 64K (the cache size). This will result in the same cache line
being used for the different virtual addresses that map to the same physical address. This is the
preferred method. (Note that the hardware doesn’t know that the different virtual addresses map to
the same physical address, and alternate use of the different virtual addresses will result in
invalidating and then refilling the cache line from the same physical address. Also, the hardware
automatically invalidates a cache line when a cache miss occurs on a write operation. This insures
the consistency of the cache with memory when aliasing via this method occurs.)

(2) Each PME that points to the aliased physical page must have the "Don’t Cache” bit (PME28) set.
This method must be used if the previous method cannot.

DRAFT Version 8.3, 89/06/10 Page 22

164801

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Description

The L64801 Integer Unit (IU} is a high performance
CMOS implementation of the SPARC (Scalable
Processor ARChitecture} 32-bit RISC microproces-
sor. SPARC is an open architecture which is being
implemented in a variety of forms by various semi-

conductor manufacturers. This muitiple sourcing al-

lows designers to choose fram a wide variety of
price/performance aptions and provides a rich se-
lection of peripherals, memory devices and propri-
etary ASIC extensions.

The L64801 features a large register file to opti-
mize procedure calls, variable assignments and
context switches. Execution speed improves signif-
icantly because this register-to-register architec-
ture minimizes the number of external memory
accesses. Most of the L64801 instructions exe-
cute in a single cycle due to its 4-stage pipeline
that minimizes interlocks, a bus structure that al-
lows single-cycle instruction/data accesses and an
optimized branch handler.

The L64801 can sustain 15 VAX MIPS perform-
ance with peak performance of 25 MIPS, offer-
ing designers the speed and power of a super
minicomputer.

. M N N
. [HH
: i

Features

= High performance operation

Commercial

164801C-20 12 VAX MIPS

164801C-25 15 VAX MIPS

Military

L64801M-15 9 VAX MIPS

L64801M-20 12 VAX MIPS

= Open architecture:

- Muitiple vendar sourced

- Each vendor provides unique features and
extensions

~ Variety of binary compatible price/performance
options

a Optimized for operation under high-level languages
such as C, FORTRAN, Pascal and Ada and the
UNIX™ operating system

a External MMU, memory system and floating-point
unit assure flexibie interface for the largest range
of applications and price/performance levels

<1989 LS! Logic Corporation Ail nghis reserved

m 32-bit virtual address bus
~ Supports up to 4 Gbytes of direct address spa
- Allows a variety of memory management and

caching schemes

u Simple instruction format with fast instruction
cycle with a 4-stage pipeline

a Singie cycle execution for the majority of
instructions

m Large central register file divided into seven
overlapping windows of 24 registers each

a All pipeline interlocks impiemented directly in
hardware

w High performance copracessor interface for
concurrent execution of floating-point or ather
coprocessor instructions

= Multitasking support with user/supervisor mode
and privileged instructions

= Artificial intelligence support through use of tagg
instructions

m Option to use as ASIC core

a 179-pin ceramic or plastic pin gnid array package:

January 1989 R, R

L64801 IR LOGIC
High Performance
Open Architecture
RISC Microprocessor
Preliminary
Pinout Diagram 2
G 78 :2;:2’ }Mdtess Bus
F319) 32’
FXC ——= g (A7) oo Joaugus
HOLD —“z"—’ Integer }
FCO —F—> Uat g
ocessor FoLY —— —
| o — ——m e
— DFETCH
FLUSH <—— 5 SIZEID
FEND <—
FADR ~— LOCK
L FINS ~—— ~——— MOS
~——— AOE
e KSI0E | BusCycle
4——3—-‘—- DOE Controls
System Test XSM ——» re——— MHOLD
Controls et BHOLD
SDO ~-— — SHOLD
PTREED ~——— o
S e—r—— IRL3D
A_ni —— —— %m | »
Misc. Controls { NULL_CYC <—— o erust
| 10ST ~——1 o WmT | Sretem Contois
———— EAROR
Figure 1. L64801 Pinout Diagram
Block Diagram
ot D— (e |
Data Bes
Raegister File
120x32
o .
Instruction Decode
Controls <}——]
AReg | [BRe |
\] L : \i v ' y,
.] A 8
A&-uuﬁ:um \ Acithmetic and /
) Logic Usit
Address By <}—————9p
A y
Covaters Result | ASgs
(PCHNPC)
Floating-Point Bus PSR

Figure 2. L64801 Functional Block Diagram

wiM

TBR

L64801 LSl

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Introduction

The LB4801 is the first processor in the LSi

Logic family of SPARC (Scalable Processor
ARChitecture) microprocessors. SPARC is an ar-
chitecture defined by Sun Microsystems which is
based on the principles of RISC (Reduced Instruc-
tion Set Computer) techniques. The key feature of
SPARC is its use of a large central register file
which is divided into several “register windows”
for high performance during subroutine calls and
context switching.

The SPARC family is supported by a full line of
highly optimizing compilers, operating systems,

development boards, development systems and
development tools.

SPARC is an open architecture, built by a number
of semiconducter suppliers, which will provide
rapid enhancement of features for different mar-
kets and a wide range of price/performance
options. LS! Logic has chosen to implement the
L64801 using its own industry standard ASIC tect
niques. This allows rapid implementation of the
164801 design into new process technoiagies as
well as the availability of the L64801 as a micro-
processor core within a more complex ASIC.

Architecture
Overview

The L6480 1 SPARC chip set consists of a central
integer unit (IU) which provides all the core func-
tions of the SPARC instruction set as defined by
the SPARC architecture manual. To increase per-
formance of floating-point operations, there is an
optional floating-point unit (FPU) and a separate
interface chip called the floating-point controller
(FPC).

The IU is the primary computing element. It
performs all operations except floating-point op-
erations (FPops) which are either performed in
hardware through the FPC/FPU combination, or in
software. The FPC/FPU provides execution of
FPops cancurrent with integer operations.

The Il features a large central register file parti-
tioned as sets of working registers (r registers)
which provide storage for processes. In addition,

there are independent control registers which keep
track of and control the state of the IU.

There are a total of 120 32-bit registers which are
divided into seven separate register windows. Each
window contains 24 working registers plus eight
global registers.

Address Bus
Data Bus

164802 [—™] 74ACTE847
L64801 ¢ ~anj

Point Point
Unit l Controlier | —~ Processor

|

Integer Floating: —={ Floating- ‘
] |

|

' Optional Floating
L _Pomlnt |

Note: All lines shown are 32 bits wide.

Figure 3. L64801 Core Chip Set

System Data Bus
& — >
D i Contr

— ——— —

l — | ik

| 8847 (}: 164802 |

|| PP = PPe <1.-123 L6480 | 164803

| T '” Virtual Address” | MU

Physical
Address

System Address Bus

Figure 4. SPARC System-Level Diagram

164801 LSI

High Performance
Open Architecture
RISC Microprocessor
Preliminary

LOGIC

Register Windows

Perhaps the most distinguishing characteristic of
the SPARC architecture is the overlapping register
windows. In order to optimize operations such as
subroutine calls and context switching, the register
file is divided into sets of register windows. There
are a total of eight global registers which are avail-
able at all times and seven register windows of 24
registers each that are available at any point in
time. These register windows overlap each other
by eight registers on either side for parameter
passing between processes. The register configura-
tion at any point in time is as follows:

RO thru R7 Global Registers

R8 thru R15 Output Parameters to Next
Process

R16 thru R23 Local Registers to Current
Process

R24 thru R31 Input Parameters from Previous
Pracess

In the L64801 U, there are a total of 120 registers
divided into seven register windows. The current
window pointer (CWP) field within the processor
state register (PSR) keeps track of which window
is currently active. The pointer is decremented
when the processor executes a call to the next
window and is incremented when a retum is exe-
cuted. The windows are joined in a circular stack
where the output parameters of window 6 are
coincident with the input parameters of window 0.

- L3}] L)
- Outs

The register file is triple ported. This aillows the
fetching of two register operands and the writing
of a destination register to occur simultaneously in
a single clock cycle.

Lecals
16 Current Window
19 <1l
Owts Ins

L 24

Locals
L) Next Window

18
LIt

r———

-~/

3

e — _—

Figure 5. Example of Register Windows
{3 Windows Shown)

In this figure, NWINDOWS = 8. it does not show

the 8 giobals. If the procedure corresponding

to the window labeled w0.does a procedure call
(executes a SAVE instruction), a window __overflow
trap will occur. The averflow trap handler uses

the locals of w7:

CWP=0 — active window =0
CWP+1=1 — previous window = |
CWP-1=7 — next window=7
WIM=10000000, — trap window =7

Note: In LR64801 implementation NWINOOWS
actually equai 7, not 8.

Figure 6. Register Windows Implemented as a Circular Stack

4

L64801

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Lol

Four-Stage Pipeline

The 184801 integer Unit uses a 4-stage instruction
pipeline comprised of; Fetch, Decode, Execute and
Write stages. A basic single-cycie instruction
enters the pipeiine and completes four cycles later.
Once the pipeline is filled, four separate instruc-
tions may be executing each of the following
phases in an overlapping fashion.

Fetch (F)
An instruction is fetched from the bus interface
and placed in the instruction register.

Decode (D)

The instruction is decoded and operands are read
from the register file. Memory addresses are
evaluated for loads, stores and control transfers.

Execute (E}

The operatior: specified by the instruction is
executed and the resuits are saved in the
processor’s temparary registers.

Write (W)

The resuit of the executed operation is stare
the destination register {provided that no trap
exceptions have occurred during execution).

The 164801 Integer Unit detects data depend
cies and pravides hardware interlocks in pipeli
operatian to properly resolve such dependenci
without complex software intervention. Pipelit
interiock occurs if an instruction fetch takes m
than one clock cycle. Multi-cycle instructions ¢
the pipeline fong enough to complete their
execution.

Bus Interface

The L64801 accesses instructions and data and
performs system control functions through its high
bandwidth bus interface. The bus interface has
separate address and data lines and sets of control
lines with protocols which support:

-~ Single and multiple-clock period reads and writes
- Full and partial-word (byte and halfword) writes

- Muitimaster bus protocols
~ Fifteen levels of external interrupt requests
- Memory exception traps

The IU acts as a bus slave: it has no bus grant o

bus request circuits. It uses signals such as LOC
to lock the bus and BHOLD, MHOLD, or SROLD

be locked off the bus.

Memory/Cache
Interface

The L64801 Integer Unit can be interfaced to a
variety of memory subsystems: cached, non-
cached, virtual, physical, static, dynamic, etc. The
processor normally expects to receive a new in-
struction every cycle. If the memory is not fast
enough to provide instructions at this rate, then
wait states are inserted using the memory hold
{MHOLD) inputs. In systems with non-cached mem-
ory, every memory reference appears to the iU as a
cache miss. In a fast memory (cached) system, the
bus interface protocol maximizes the advantage of
such memory by receiving or sending data during
the same clock period in which the address is
transmitted. Thus single-cycle reads and writes
can be performed with sufficiently fast memory or
perigheral devices.

Cached memory systems should use lower order
address bits to address cache RAMSs and higher
order address bits to compare cache tags. There_
no strict definition of cache sizes or tag sizes. HA
is used to synchronize an off-chip register known
as the cache address register (CAR} with on-chip
address registers. CAR operates as part of the {U
pipeline and HAL inhibits the latch. For every cach
access, the cache miss logic must send a hit or
miss indication to the processor in the next cycle.
If the cache hits, no wait state is inserted and the
memary access completes in one cycle.

Coprocessaor Interface

The integer unit is the basic pracessing engine
which executes all of the instruction set except for
floating-point operations. Software for non-
floating-point intensive applications is supported.
Where high performance floating-peint is desirable,
a floating-point controller {FPC) and IU operate
concurrently. The FPC recognizes floating-paint
instructions and places them in a queue while the
iU continues to execute non-floating-paint instruc-
tions. If the FPC encounters an instruction which
will not fit in its queue, the FPC holds the 1U until

the instruction can be stored. The FPC contains its
own set of registers on which it operates. The
contents of these registers are transferred to and
from external memory under control of the 1U via
floating-point loadistore instructions. Processor
interlock hardware hides floating-paint cancurrenc,
from the compiler ar assembly language program-
mer. A program containing floating-point computa-
tion generates the same results as if instructions
were executed sequentially.

164801 LSI

High Performance
Open Architecture
RISC Microprocessor
Preliminary

LLOGIC

Special Purpase
Registers '

The integer unit contains six 32-bit special purpose
control/status registers which are used for general
program control, setting modes of operation and
showing processor status.

Processor status register (PSR) contains fields
describing the state of the IU.

impi(31:28) Implementation Number of the
Processor

ver(27:24) Version Number of the
Processor

icc(23:20) Integer Condition Codes
n,zvc

reserved(19:14) Reserved for Future Options

EC(13) Enable Coprocessor

ER12) Enable Floating-Point Unit

PIL(11:8) Processar Interrupt Level

S(7) Supervisor Mode

PS(6) Prior S-Bit (heid at time of trap)

ET{5) Enable Traps

CWP(4:0) Current Window Pointer (marks
current reg window)

Program Counter and Next Program Counter
(PC and NPC)
PC contains the address of the instruction
currently being executed by the IU. NPC holds
the address of the next instruction to be
executed (except when a trap occurs).

Window Invalid Mask Register (WIM)
WIM is used to determine whether a window
overflow or underflow trap should be generated.
Each bit of the WIM corresponds to a single
register window. For the L64801 with seven
register windows, only WIM(6:0) are used.

Trap Base Register (TBR)
TBR contains three fields that generate the
address of the trap handler when a trap occurs.
TBA(31:12) Trap Base Address (most
significant 20 bits of trap table
address)
tt(11:4) Trap Type, provides offset into the
trap table
zero(3:0) Zero

Y Register
The Y register is used by the multiply step
instruction to hold 32-bit results and create
64-bit products.

Control/status registers contain two types of
fields, mode and status. Mode fields are set by the
programmer and are designated through the use of
an upper-case naming convention. Status fields are
set by the processor and use a lower-case naming
convention.

Exception Handling

The LB4801 generates traps in response to both
internal (synchronous) and external (asynchronous)
events. These traps switch control from the
instruction stream to an address in a trap table
{except a reset trap which transfers control to
virtual address 0). Synchronous traps occur
immediately, not waiting for the current instruction
to be completed. Asynchronous traps wait for the
currently executing jnstruction to complete before
they occur.

Each type of trap is assigned a priority; when
multiple traps occur, the highest priority trap is
taken and lower priority traps are ignored. To be
taken, the request for the lower priority trap must
either persist or be repeated.

Traps are vectored. The trap base address (TBA)
register points to the trap table. Interrupts are
given to the processor using four interrupt input
signals. Any signal other than zero on these inputs
is interpreted by the processor as an external
interrupt request. This value is compared with the
current processor interrupt level in the processor
status register (PSR). The interrupt is taken if the
external interrupt request level is greater than the
processor interrupt level. The highest level inter-
rupt (level 15) is nonmaskable. When a trap is

A

detected, the processor takes the following
actions:

1. The program counters corresponding to the
trapped instruction and the instruction following
the trapped instruction are saved in the register
file.

2. The execution of the trapped instruction is
aborted and all fetched but unfinished instructions
are flushed out of the pipeline.

3. All traps are disabled. The processor mode is set
to superuser and the CWP is set to point to the
next window.

4. The trap address, based on the contents of the
TBR and tt registers, is computed and loaded into
the program counter.

5. Execution is restarted from the new trap
address.

Al external interrupts are ignored when-traps are
disabled. If a synchronous trap is detected whiie
traps are disabled, the 1U enters into an error mode
and remains in that mode until the processor is
reset externally. At reset, the processor enters into
an initial state and starts execution from address 0.

Lb648u1 .01
High Performance

Open Architecture

RISC Microprocessor

Preliminary

Instruction Categories

The L64801 instructions fail into five basic
categaries:

Load and Stare Instructions. (The only way to
access memory). These instructions use two regis-
ters, or a register and a signed immediate value to
generate the memory address. Integer load and
store instructions supgort 8-, 16-, 32- and 64-bit
accesses while floating-point instructions support
32- and B4-bit accesses.

Load/Store Signed Byte

Load/Store Signed Halfword

Load/Store Unsigned Byte

Load/Store Unsigned Halfword

Load/Store Word

Load/Store Double Word

Load/Store Floating-Paint Registers

Load/Store Double Floating-Point Registers

Load/Store Floating-Point State Register

Store Double Floating-Point Queue -

Arithmetic/Logical/Shift Instructions. These
instructions compute a result that is a function of
two source operands and then write the result
back int a destination register. They perform
arithmetic, tagged arithmetic, logical or shift
operations. Tagged instructions are useful for
implementing artificial intelligence languages such
as LISP because tags provide interpreters with the
type of arithmetic operands.

Add (w/wo modifying candition codes)

Add with Carry (w/wo modifying condition codes)

Tagged Add (w/wo trap on overflow)

Subtract (w/wo modifying condition codes)

Subtract with Carry (w/wo modifying condition

codes)

Tagged Subtract (w/wo trap on overfiow)

Multiply Step {modify condition codes)

AND (w/wo modifying condition codes)

NAND (w/wo modifying condition codes)

OR (wiwo modifying condition codes)

NOR {w/wo modifying condition codes)

Exclusive-OR (w/wa modifying condition codes)

Exclusive-NOR (w/wo modifying condition codes)

Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

Set High 22 Bits of Register

Coprocessor Operations. These include floating-
point calculations, operations on floating-point
registers and instructions involving the optional
coprocessor. Floating-point operations execute
cancurrently with {U instructions and with other

floating-point operations when necessary. This
architectural concurrency hides floating-point
operations from the applications programmer.
Convert Integer to Single/Double/Extended
Precision
Convert Single/Double/Extended Precision tg
Integer (w/wao rounding)
Convert Single Precision to Double/Extended
Precision
Convert Double Precision to Single/Extended
Precision
Move/Negate/Absolute Value
Square Root Single/Double/Extended
Add Single/Double/Extended
Subtract Single/Double/Extended
Multiply Single/Double/Extended
Divide Single/Double/Extended
Compare Single/Double/Extended
(w/wao exception if unordered)

Controlransfer Instructions. These include
jumps, cails, traps and branches. Control transfers
are usually delayed until after execution of the next
instruction, so that the pipeline is not emptied
every time a control transfer occurs. Thus,
compilers can be optimized for delayed branching.
Branch and call instructions use program counter
relative displacements. A jump and link instruction
uses a register indirect displacement computing its
target address as either the sum of two registers,
or the sum of a register and a 13-bit signed
immediate value. The branch instruction provides a
displacement of eight megabytes and the call
instructions 30-bit displacement allows transfer ta
any address.

Increment Current Window Pointer

Decrement Current Window Pointer

Branch on Integer Condition Codes

Trap on Integer Condition Codes

Branch on Floating-Point Candition Codes

Call

Jump and Link

Return from Trap

Read/Write Control Register Instructians.
These include instructions to read and write the
contents of various control registers. Generally the
source or destination is impiied by the instruction.

Read/Write Multiply Step Register

Read/Write Pracessor State Register

Read/Write Window Invalid Mask Register

Read/Write Trap Base Register

Flush Instruction Cache

~
L64801 I LOGIC
High Performance
Open Architecture
RISC Microprocessor
Preliminary
astruction Categories Instruction Execution Times. All instructions Instruction Type Cycles
“ontinued) execute in a single cycle except the following Store {double) 4
instructions: Atomic Load and Store 4
Instruction Type Cycles Floating-Point Ops 2+Cf
Load (word/halfword/byte) Jump and Rett 2
Load (double) 3 Branch (taken) 1
Store (word/halfword/byte) 3 Branch {untaken) 2
All Other Instructions 1
struction Set
ummary Opcode Name Opcode Name
LDSB (LDSBAt) Load Signed Byte (from Alternate MULScc Multiply Step and Modify icc
Space), AND (ANDcc) And (and Modify icc)
LDSH {LDSHAT) ,'i?:::n S:tgelled Hal:word (from 3:03 R(:tunmcl And Not (and Modify ;,f;;,
 Space (ORce) inclusive-Or (and Madify icc)
LDUB (LDUBAT) k‘;:gn‘i“:@"'*’ B,Y" {from ogn (oggg» Inchusive-Or Not (and Modify icc)
 Space XOR (XORce) Exchusive-Or (and Modify icc)
LDUH {LDUHA) h';::m‘:m 33“""" {from XNOR (XNORcc) Exchusive-Nor (and Modify icc)
L0 (LDAt) Load Word (from Altemate Space) S Shift Left Logical
LDO (LDDAIT Load Ooubleword (from Alternate SRL Shift Right Logical
Space) SRA Shift Right Anithmetic
LDF Load Floating-Point SETHI Set High 22 bits of r register
LDOF Load Double Floating-Point SAVE Save Caller's Window
LDFSR Load Floating-Point State RESTORE Restore Caller's Window
; Regester Bice Branch on Integer Condition
Loc* Load Coprocessor Codes
Looc* Load Double Coprocessor FBfcc Branch on Floating-Point
LOCSR* Load Coprocessor Stats Register Condition Codes B
STB (STBAT) Store Byte (into Alternate Space) CBece Branch on Coprocessor Condition
STH (STHAt) Store Halfword (into Atternate Codes
Space) CALL Call
ST (STAt) Store Word (into Alternate Space) JMPL Jump and Link
STD (STDAY) Store :Joublmord (into Alternate RETTT Retum from Trap
STF Store Fioating ot Tiec Trap on lmeger Condition Codes
STOF Store Double Fioating-Point ROY Read Y Register :
STFSR Store Flaating-Point State ROPSRt Read Processor State Register
Register ROWIMt Read Window Invalid Mask
Double Floating-Poi Register
STOFat s Oouble Floating: Pt ROTBRY Read Trap Bas Register
: ov—— WRY Write Y Register
%c. gm m Copracessor WRPSRt Write Processor State Register
STCSR* Store Coprocessor State Register WRWIMt Write Window Invalid Mask
sTocat® * Store Double Coprocessor Queve WRTBRT m:t;' Base Redist
(OSTUB (LOSTUBAT) Atomic Load-Store Unsigned Byte 7o Top Tase RO
(in Alternate Spacel UNIMP Unimplemented Instruction
SWAP (SWAPAt) Swap r Register with Memory (in IFLUSH Instruction Cache Flush
* Atternate Space) FPop Floating-Point Operate: FiT0(s, d,
ADD (ADDce) Add (and Modsfy icc) x), Fis, d, x)T0i
ADDX (ADDXcc) Add with Carry {and Modify icc) FsTOd, FsTOx, FdTOs, FdTOx.
T FxT0s, FxT0d, FMOVs, FNEGs.
TADOce (TADDceTV) %m mﬂ'f“’v icc (and FABSs, FSQRTIs. d. x), FADDs.
SUB (SUBce) Subtract (and Modity cc o o 8. v, Pl 4. |
SUBX (SUBXcc) ilg"aﬁt with Carry (and Modify FéMPE(S,'d.'XI ’
TSUBcc (TSUBCCTV) Tagged Subtract and Modify icc CPop Coprocessor Operate
{and Trap on Overflow)

*Unimpiemented Instruction
tPrivileged Instruction

LUMOU

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Instruction Formats

Format 1: CALL

(Summary)
Lo | disp30
n o 0
Format 2: SETH! and Branches {Bicc, FBfcc, CBec)
op d op2 imm22
op 2 I cond op2 disp22
n o’ n 2 0
Format 3: Remaining Instructions
op rd op3 sl i asi | ts2
op «d opl rel i simm13
op d op3 rst opf | rs2
n) 18 1312 1 0
Instruction Format op o a
Field Definitions This field places the instruction into one of the The “a” bit means “annul” in format 2 instruc-

three major formats:

Use of op Field
Format op Vaiue Instruction
1 1 Call
2 0 Bice, FBfee, CBecc,
SETHI
3 203 Other

op2
This field comprises bits 24 through 22 of format 2
instructions. It selects the instruction as follows:

Use of op2 Field
op2 Value Instruction
0 UNIMP
2 Bice
4 SETHI
6 FBfec
7 CBecc
rd

For store instructions, this register selects an

r register {or an f register pair), or an f register (or
an f register pair) to be the source. For all other
instructions, this field selects an r register {or an f
register pair), or an f register (or an f register pair)
to be the destination.

Nate: Reading r(0] produces the result 0, and writing it
causes the result to be discarded.

tions. This bit changes the behavior of the instruc-
tion encountered immediately after a contral
transfer.

cond
This field selects the condition code for format 2
instructions.

imm22
This field is a 22-bit constant value used by the
SETHI instruction.

disp22 and disp30

These fields are 30-bit and 22-bit sign-extended
word displacements, for PC-relative calls and
branches, respectively.

op3
The op3 field selects one of the format 3 opcodes.

i

The i bit selects the type of the second ALU
operand for non-FPop instructions. If i=0, the
second operand is r[rs2). If i=1, the secand
operand is sign-extended simm13.

asi
Thes 8-hit field is the address space identifier
generated by load/stare alternate nstructions.

L64801 N LSI

High Performance

Open Architecture
RISC Microprocessor
Preliminary
Instruction Format rst simmi3
Field Definitions This 5-bit field selects the first source operand This field is a sign-extended 13-bit immediate value
(Continued) - from either the r registers or the f registers. used as the second ALU operand wheni=1.
rs2 opf
This 5-bit field selects the second source operand This 9-bit field identifies a floating-point operate
from either the r registers or the f registers. (FPop) instruction or a coprocessor aperate (CPop)
instruction.
Pin Descriptions The signals on the L64801 are divided inta three of atomic load/store instructions. It is driven by the

main categories: memory subsystem interface
signals, floating-point unit interface signals and
miscellaneous 1/0 signals. Signals which are
asserted LOW are indicated by an overscore.

Memory Subsystem Interface Signals

ARl

Address Bus

The address bus is output directly from an on-chip
memory address register and is valid every cycle.
During an instruction fetch cycle, the bus carries
an instruction address, and during a load or store
data cycle, it carries a data address. The address
bus remains valid during all data cycles of loads,
stores, load doubles and atomic load)stores. In
systems with cache, the low bits of the address
are used to read the cache RAMs and cache TAGs,
and the high bits of the address are used to
compare the TAGS.

ASI70]

Address Space Identifier

These bits identify the address space during
instruction or data accesses. The value of these
signals at any given cycle represents the address
space containing the memory address specified by
A[31:0] during that cycle. ASI[7:0] remains valid on
the bus during all data cycles of loads, stores, load
doubles, and atomic load/stores. ASI{7:0} pins are
3-stated if AOE is disasserted. The following ASI
values are currently assigned:

ASl Address Space
00001000 User Instruction
00001010 User Data

00001001 Supervisor Instruction
00001011 Supervisor Data

During the data cycles of alternate load and store
instructions, ASI{7:0] carries the space identifier
specified by the instruction opcode.

DI310]

Data Bus

The bidirectional data bus to and from the IU. It is
driven by the IU only during the execution of
integer store instructions or during the store cycle

n

FPC only during the execution of floating-paint
store instructions. The alignment for load and store
instruction is done inside the IU, which always
expects instructions to be fetched from 32-bit wide
memory.

MEXC (Asserted LOW)

Memory Exception Input

The memory or cache controller asserts this signal

to signal an instruction-access-exception, or a

data-access-exception. It is latched in the IU and

used during the following cycle. If MEXC is

asserted during an instruction fetch cycle, the IU
enerated an instruction access exception. If

?]EXC is asserted during a data fetch cycle, the IU

generates a data access exception trap.

MHOLDA, MHOLDB, MHOLDC, SHOLD
(Asserted LOW)

Hold From Memory

These signals freeze the processor pipeline as long
as any of them are asserted. They are used to
freeze the clock to the iU and FPU during a cache
miss (for system with cache), or when accessing a
siow memory. The IU hardware uses the fogical OR
of MHOLDA, MHOLD8, MHOLDC, and to
generate a final MHOLD for freezing the processor

pipeline.

BHOLD (Asserted LOW)

Hold From 1/Q System

The I/0 controller asserts this signal when an
external bus master needs the data bus. This signal
freezes the processar pipefine. External logic should
guarantee that the data on the inputs to the IU 1s
the same after BHOLD is disasserted as it was
before BHOLD was asserted.

DOE (Asserted LOW)

Data Bus Output Enable

This signal turns on the output drivers to the
D(31:0] bus. It is connected directly to the drivers.
and therefore must normally be asserted. It mav be
disasserted only when the bus is to be used by
another bus master. This should only occur wnen
BHOLD, MHOLDA, MHOLDB, MHOLOC. or

SHOLD is asserted.

164801 | D] |

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Pin Descriptions
{Continued)

AOE {Asserted LOW)

Address Bus Output Enable

This signal enabies the A[31:0] outputs. It is
normally asserted except when the bus is to be
used by another bus masier.

ASIOE (Asserted LOW)

Address Space Indentifier Qutput Enable
ASIOE enables the ASI outputs. It is normally
asserted except when the bus is to be used by
another bus master.

MDS (Asserted LOW)

Memory Data Input Strobe During Hold

This signal enables the clock input ta the an-chip
instruction register (during an instruction fetch), or
to the load result register {during a data fetch). It is
used in systems with cache or with slow memory,
to signal the processor when data is ready on the
bus. It should only be asserted when the processor
pipeline is frozen (MHOUDA, MHOLDE, MHOLDC,
or SHOLD is asserted).

TC (Asserted LOW)

Trap Condition

The state of this signal contrals the behavior of the
IFLUSH instruction. If TC is HIGH, IFLUSH exe-
cutes like NOP with no side effects. If TC is LOW,
IFLUSH causes an unimglemented instruction trap.

SIZE(110]

Data Bus Transfer Size

SIZE represents the data size of the memary
address currently on A[31:0]. They remain valid on
the bus during all data cycles of loads, stores, load
doubles, store doubles, and atomic load/stores.

They are encoded as follows:
Size 14 Data Size
00 Byte
01 Halfword
10 Ward
n Word for LDOF,
‘ STOF, and STDFQ
LDST
Load/Store Cycle

This signal is asserted during al! data cycles of
atomic load/store instructions. LDST is 3-stated if
AQE is disasserted

RD

Read Cycle

This signal is set LOW during data cycles of store
instructions {including the store cycles of atomic
load/store instructions). In conjunction with

SIZE[1:0}, ASi{7:0}, and LDST, it can be used to
determine the type of a bus transaction, and to
check read/write access rights. RD may also be
used 1o turn off the output drivers of data RAMs
during a stare operatian. For atomic loadjstore
instructions, RO is HIGH during the first data
(read) cycie, and LOW during the second and third
data (write) cycles. RD is 3-stated if ADE is
disasserted.

WE (Asserted LOW)

Write Cycle

This signal is asserted only during 1) the second
data cycle of store instructions, 2) the second and
third data cycles of store double instructions, or
3) the third data cycle of atomic load/store
instructions. This signal is 3-stated when not
asserted.

NULL__CYC

Null Cycle

This signal indicates that the current memory
address {whase address is held in the external
memory address register) is nullified by the {U. It is
used to disable cache miss in systems with cache,
and for memary exception handfing during the
current memeory access.

IH__NULL (Asserted LOW)

Nuil Cycle Reset

When active, this signal resets NULL__CYC to
LOW.

LOCK

Bus Lock Request

LOCK is set HIGH when the IU needs the bus far
multiple-cycle transactions. The bus may not be
granted to another bus master as long as LOCK s
active.

HAL (Asserted LOW)
Hold Address Latch
HAL freezes the clock to the external memary
address register. It is asserted during the execution
of some muitiple-cycle instructions, internal
interlocks and whenever at least one of the hoid
gﬁ%arls (MHOLDA, MHOLDB, SHOLD, BHOLD. or

j is asserted.

DFETCH

Data Fetch Cycle

DFETCH marks the beginning of a data cycie #hen
OFETCH is HIGH, it indicates a data cycle and
when DFETCH is LOW. it indicates an mstruction
cycle. The 1U can nullify an instruction or dara
cycle by asserting NULL__CYC.

164801 I .OGIC

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Pin Descriptions
(Continued)

Floating-Point Unit Interface Signals

The floating-point unit interface is a dedicated
group of connections between the IU and the FPC
and no external circuits are required. The interface
consists of the following signals:

FP (Asserted LOW)

Floating-Pgint Unit Is Present

When FP is LOW, it indicates that an FPU exists in

the system. FP is tied to VDD by an internal resis-

tor and is pulled to ground only when the FPU is
resent. The IU generates an fp___disabled trap if

EP is HIGH during the execution of a floating-point

instruction, a floating-point load or store, or an

FBfcc.

FCCl1:0]

Condition Code Inputs

The floating-point condition codes are valid only if
FCCV is HIGH. An FBfcc instruction uses these bits
to compute the next instruction address, and then
waits if FCCV is LOW.

FCCV

Condition Codes Valid

The FPU asserts FCCV to indicate that FCC[1:0]
are valid. The FPU must guarantee that FCCV is

LOW (disasserted) if floating-point compare instruc-

tions are pending in the floating-peint queue.

FHOLD (Asserted LOW)

Hoid Input

The FPU asserts FHOLD when it cannot continue
executing instructions. When it receives an instruc-
tion, the FPU checks for dencies, and if any

are discovered, it asserts dmmgﬁ%etsm
cycle or during the cycle that follows. is
latched into the U, where it freezes the instruction
pipeline in the following cycle. The FPU must dis-
assert FHOLD to unfreeze the IU's instruction
pipeline.

FEXC (Asserted LOW)

Exception Input____

The FPC asserts FEXC to indicate that a floating-
point exception has occurred. It must remain asser-
ted until the IU takes the trap and acknowledges
by asserting FXACK. Floating-point exceptions are
only taken during execution of floating-point
instructions.

F{31:00)

Floating-Point Bus

This dedicated 32-bit bus sends floating-point in-
structions and addresses to the FPU chip. Each
floating-point instruction uses this bus for two cy-
cles; the first cycle carries the instruction and the
second cycle carries the address.

FINS

Floating-Point Instruction

The IU asserts FINS during the cycle in which
F{31:00] carries a valid floating-point instruction.
The FPU uses this signal to latch the instruction
into its instruction register.

FADR

Floating-Point Address

The IU asserts FADR during the cycle in which
F{31:00] carries a valid floating-paint instruction
address. The FPU uses this signal to latch the ad-
dress into its address register.

FEND

End Floating-Point Instruction

The IU generates FEND, which the FPU uses to
synchronize the instruction/address in its execution
pipeline with the IU’s pipeline. The IU asserts FEND
during the last cycie of a floating-point instruction
in the IU’s pipefine.

FLUSH

Flush Floating-Point Instruction

The 1U asserts FLUSH to cause the FPU to flush
the instruction in its instruction register. This may
happen when the IU takes a trap. FLUSH has no ef-
fect on instructions in the floating-point queue.

FXACK

Exception Acknowledge

The IU asserts FXACK to indicate to the FPU that
the current FEXC trap has been taken. The FPU
must disassert FEXC after it receives FXACK so
that the next floating-point instruction does not
cause a repeated floating-point exception trap.

L64801 LO1

iigh Performance
Open Architecture
RISC Microprocessor
Preliminary

Pin Descriptions
{Continued)

Miscellaneous 1/0 Signal Descriptions

These signals are used by the IU to contral external
gvents or to receive input from external events.

RESET (Asserted LOW)

Reset input

Assertion of this pin will reset the Integer Unit. The
RESET signai must be asserted for a minimum of
eight processor clock cycles. After a RESET, the
Integer Unit will start fetching from address 0.

IRL(3D]

Interrupt Request Level

The value on IRL defines the external interrupt re-
quest level. When IRL[3:0]= 0000, no interrupts are
pending. External interrupts must be latched and
prioritized by external logic before they are passed
to the [U and held untif they are acknowledged by
the IU. External interrupts must be acknowledged
by software.

ERROR (Asserted LOW)

Processor In Error State

When the U detects a trap while the ET bit in the
PSR is 0, the processor saves the PC and NPC,
sets the tt value in the TBR, enters into an error
state, asserts ERROR and halts. To restart the
processor from this state, external logic shouid
send a RESET to the chip.

CLK

Clack Input

The rising edge of CLK defines the beginning of
each pipeline stage in the U chip. CLK can have

any duty cycle ranging from 30% to 70%.

XSM

Scan Maode Input

Ouring test and debug, this signal disabies the nor-
mal clocks and activates the scan clocks for scan

operations. XSM must be set HIGH during normal

operation.

SDO

Scan Data Output

S0Q is the serial data output for the IU's scan
path.

PTREEQ

Parametric Tree Output

This signal is the output of an internal test string,
which test parametric input levels during test.
PTREEQ is 3-stated when XSM is set HIGH. It
need not be connected for normal operation.

L64801

IR L.OGIC
High Performance
Open Architecture
RISC Microprocessor
Preliminary
Pin Description
Summary Table Pin Name Description Input/Output Active
A31:0) Address 3-State Output
ASI{7:0) Address Space Identifier 3-State Output
0(31:0 Data 3-State Bidirectional
HAL Hold Address Latch Qutput LOW
WE Write Enable Qutput Low
RD Read Output HIGH
DFETCH Data Fetch Cycle Qutput HIGH
SIZE (1:0 Bus Transaction Size 3-State Qutput
LOCK Muiti-Cycle Bus Lock 3-State Output
MDS Memory Data Strobe Input LowW
ACE Address Qutput Enable Input Low
ASIOE ASI Output Enable Input Low
DOE Data Qutput Enable Input HIGH
MHOLDA Memory Hold A - Input LowW
MHOLDB Memory Hold B Input LOW
MHOLDC Memory Hold C Input LOW
BHOLD Bus Hold Input LOW
SHOLD System Hold Input Low
IRL (3:0) Interrupt Request Level Input
RESET Reset Input Low
TC Trap Condition Input Low
MEXC Memory Exception Input LOW
ERROR 1U Error Mode Output Low
LDST Load/Store Operation 3-State Output HIGH
NULL__CYC Null Cycle 3-State Qutput HIGH
H__NULL Null Cycle Reset Input Low
PTREED Parametric Tree Qutput OQutput
TSTO Test Output Output
XSM Scan Mode input Input - HIGH
FINS Floating-Point Instruction 3-State Output HIGH
FADR Floating-Point Address J-State Qutput HIGH
FEND End Floating-Point Instruction 3-State Qutput HIGH
FLUSH Flush Floating-Point Instruction 3-State Output HIGH
FXACK Floating-Point Exception Acknowledge 3-State Qutput HIGH
FP Floating-Point Unit Present Input wiPullup LOW
FCCV FPU Condition Codes Valid input HIGH
FCC (1:0} FPU Condition Codes Input
FHOLD FPU Hold Input LOW
i FEXC FPU Exception Input Low
F{31:0) Floating-Point Bus J3-State Qutput
CLK System Clock Input
VoD Input Circuit Power Power
GND Input Circuit Ground Ground

LUTUY

High Performance
Open Architecture
RISC Microprocessor

adna

Preliminary
Operating Absolute Maximum Ratings (Referenced to VSS) Recommended Operating Canditions
Characteristics — - ,
] Parameter Symbol Limits Unit Parameter Symboi Limits Uni
DC Supply Voltage VoD -03t0+7 |V OC Supply Voitage VOO +3t0 +6 v
Input Voitage Vi {-03t1evDD 4031 Y Operating Ambent
DC 1 1 N 1 A Temperature Range
put Curren g m Miitary TA | -55tw0+125 |ec
Storage Temperature | TSTG | -65t0 +150 | °C -
Range (Ceramic) Industrial Range TA -40 to +85 °c
Storage Temperatwe | TSTG | -40t0 +125 | °C Commercial Range TA Oto+70 °C
Range (Plastic)
DC Characteristics: Specified at VDD =5 V +5% ambient temperature over the specified temperature range!?’.
Symbol Parameter Condition Min Typ Max Unit
VIL Voltage Input LOW
TTL Inputs 038 v
CMOS Lavels 1.5 v
VIH Voltage Input HIGH
TTL Inputs, Cammercial 20 v
Temperature Range
TTL Inputs, Military and - 225 v
Industrial Temperature Range
CMOS Levels 3.5 v
VT+ Schmitt-Trigger, Positive-going Threshold 30 40 v
VT- Schmitt-Trigger, Negative-going Threshold 10 1.5 v
T Hysteresis, Schmitt Trigger ViL to VIH 1.0 1.5 v
VIiH to VIL
IN Input Current, CMOS, TTL Inputs VIN = VDD or VSS -10 ¢1 10 ul
Inputs with Pulldown Resistors VIN = VDO 10 35 120 uA
TTL Inputs & inputs with Putup Resistors VIN = VSS -8 -30 -100 uh
VOH Voltage Qutput HIGH Comm Mi i
Type 81 IOH = -1mA -0.8mA |
Type 82 I0H = -2mA ~-1.6mA 24 45 v
Type B4 I0H = -4 mA -32mA
Type B6 IOH = -6mA -48mA
Type 88 IOH = -8 mA -6.4mA
Type 81212 I0H = -12mA -96mA
VoL Voitage Output LOW Comm Mil
Type B1 0L - 1mA 0.8 mA
Type B2 0L - 2mA 1.6mA 0.2 0.4 v
Type B4 0L = 4 mA 3.2mA
Type B6 0L = 6 mA 4.8 mA
Type B8 0L - 8mA 6.4 mA
Type 8122 0L = 12 mA 9.6 mA
10Z 3-State Qutput Leakage Current VOH = VSS or VDD -10 +1 10 (Y-S
108 Output Short Circuit Current™ V0D = Max, V0 = VDD 15 50 130 | mA
V00 = Max, V0 =0V -5 -25 100 ! ma B
100 (usiescent Supply Current ViN = VDD or VSS User-Design Dependent i !
CIN Input Capacitance Any Input'® 2 i of
couT Quiput Capacitance Any tJutnutTST 4 i pF
Notes:

1. Military temperature range is -95°C to +125°C, = 10% power supply (ceramic packages only); industrial temperature range is - 40°C to +85°C. =5% power
supply; commercial temperature range is 0°C to 70°C, +5% power supply.

[W AN N}

. Reguires two output pads.
. Type B4 output. Qutput short circuit current for other outputs will scale. Not more than one output may be shorted at a time for a maximum duration of one secand
. Not applicable to assigned bidirectional buffer (excluding package).
. Output using single buffer structure (excluding package).

L64801 IR L. OGIC

High Performance

Open Architecture
RISC Microprocessor
Preliminary

System Interface Timing

| F_n F_12 F_13 F_i4 F_IS F_I6 F_17

cLx | L l L L I ! {
A XX X B a YA s A X a Y a X a X
|

L

[X

asian X O as Y aas B aasi s YD _as Yo s XTas QY)
B

o XD DS DS DA DO DO TDOC

SIZE(10] :)(" " 1" 1" " [0 10

Fstl X[X X X X X X XX

R0 _X

we X
st _X]

D
D
D
D
D
D
D
D

oreren X1 /\

D

toex X

D
D
S
D
D
D

wu_eve XA/N\ A\ 1IN

Aot X

wexe X

&wors X

wos X

AaL _X]

oD X

FExe X
Figure 7. Instruction Fetch Timing

LUV I

High Performance
Open Architecture
RISC Microprocessor
Prefiminary
Load Transactions Figure 8 shows the timing for a load integer in- dress af the second load is equal to the address ¢
struction. This instruction causes a one-cycie the first load +4 and that the size bits = 1,1 duri
delay; during T4, the bus contains the datum to be T4 and T5. The processor fetches 14 during T6.
loaded and the processor cannot use it to fetch 4.
Because of this delay, 14 is fetched during T5. Figure 10 shows the timing for a ioad floating-poi
instruction. It works like the load integer except
The delay also gives the IU time to deal with any that is also generates floating-point contral signal
trap caused by I1. in T3, T4 and T5.
Figure 9 shows the timing for a load double integer. Figure 11 shows the timing for a load doubie float
This works similarly to the load integer, except that ing-point instruction. It works like the double inte-
it uses the bus during T4 to load the first half and ger instruction except that it generates additional
during T5 to load the second. Note that the ad- floating-point signals T3, T4 and T5.
F_LD D_10 | E_tD | wW_LD | WH_LD |
at XT L { [l 1 L | L l -
AN XYo@ a O_A W0_A A XX a O e a i (T X XX
L i | il
asiz X D@ s B e s n_ssOS w_as)BCu_asn Qs @ as @ X DX
il
oot X DT E DN E D@ w DO E DD EC
!
SIZEN S} [" " X w_suze X 10 1 N
Fae XX X X X X X X X X
RD
we X
LosT ;
I
5N (AN VAN V2 A RN VAN VAN VAN VAN VAN VA
tock] |
{
nwweve /N /AN AN VAN N N N N TN N
MHOD X ;
i
e X |
gHow i
WS X i
i]]
;A X ‘
raxe X |

Figure 8. Load Integer Timing

L64801

High Performance
Open Architecture
RISC Microprocessor
Preliminary

INIL.OCIC

Load Transactions

{Continued)

0_LDD | E_LDD | W_LDD |WH1_LDD

WH2__LDO

cLK1 |]
A1l ?@!‘___IW 2_
sz XD
ot XS

L | L

Il

!

!

A X a O Cu_an @_a2 X

__A

O CER IR

L]

|

_as)Y r_as YD s Y m_m[;@(u:_asT| st
| |

WY 1 | Odo_oamiPo_omadR «

%%l

SIZEND}

" 10 "

X n

Al X OC

X

R0 X

we X
st X

oFeTcH X

B

D

ex X

nuL_cve X

QA
/T I\
JAN

D

MHOLD

Axe X

LT

wos X

L X

mow X

e X
s (]

fFaoR]

FEND X

H
russ X

Fxack X

Figure 9. Load Double Integer Timing

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Load Transactions

{Continued)

k1 Y
A X
asizn X
o3t _ X

SZens _ X

g X

o _X]

we X

Lost

DFETCH

LocK

D

D

nuL_cre X

D

D

MHOLD _ X

wee X

gwos (]

wos X

ARl]

Fom X

xe X
ans _X]

AR (]

'

FLusH X

FXACK

Figure 10. Load Floating-Point Timing

L64801

High Performance
Open Architecture
RISC Microprocessor

Prelimi

nary

LSI

LOGIC

Load Transactions

{Continued)

F__LDD

0_LDD

E_LDD

WH1__LDD

WH2__LDD

CLK1 :)(q

Al XA e o @ Co_a (WA 5_A

Asianl X

o X

1

L

| |

1_ASI

12__AS!

13_AS1

X e | X

X _oan XD _oa

SIZEI1O!

"

1 X n

n

a3l XX

e

Xion_soom X

8 éé%l_

R0 X

we X
LDST :)(‘

oFETCH (|

D
D

toex X}

nu_cve X

X\
—
I\

D

VAN
N
VAN

MHOLD X

wexe X

m:}g

L

maL X

oD X

e X
Fins X

FabR X

FEND (]

fLush X

 FXACK X

Figure 11. Load Double Fioating-Point Timing

20

=TV ¢

High Performance
Open Architecture
RISC Microprocessor
Preliminary

Store Transactions Figure 12 shows a store integer instruction; these word. Note that the address of the second store
take two extra cycles. During T4, the address of equal fo the first address +4, and that the size t
the store goes on the bus; during T5, the address are set to 1,1 to indicate a double operand.
remains on the bus and store data goes on the bus
as well. This requires two extra cycles because the Figure 14 shows the timing for a floating-point
processor cannot send bath the address and the store. This works similarly to the integer stare,
data out simultaneously, and because the proc- except that it generates the additional floating-
essor has to wait to see if the store is going to point signals, FINS, FADR, and FEND during T3,
generate an exception or a cache miss. It fetches and T6.

14 during T6.
Figure 15 shows the timing for a store double flo:
Figure 13 shows the timing for a store double inte- ing-paint instruction. It works just like the store
ger instruction. It works like the store integer tim- floating-point instruction except that it requires ai
ing except that the processor must defay an extra extra cycle to store the second half of the floatin
cycle to repeat the store operation for the second point operand.
F_ST | O_ST | E_ST | W_ST | WHI_ST| WH2_ST
akt XTI 1 L] 1 1 l l] L 1
st DRSO T X O O O O
i L L [|
asaal XD _as)@ a_as Qo asO@C__ sias s @ s as O 14X
ot X DX EDZ DS D~ TR DO = 4K
SIZE[1] 1" 18 X ST__SIZE X ")
GEE DCD(X X X XC X X f
o X \ /
% X / a g
| i
tost _X]]
oreTen X1/ N\ /N /7 ANANI A N VAN V2 NS A N V8 N AN
tock X / AN ‘
we e XA A A A /T A I~ i~ N
MAGLD 1
wexe X
ROl X
w3 X |
¢ AL X N |
FROtD X
e X

Figure 12. Integer Store Timing

21

L64801
High Performance
Open Architecture

RISC Microprocessor
Preliminary

INIL L .OGIC

Store Transactions

(Continued)

ekt X
A1 X
Asian X
o319]

E__STD

W__STD

B

WH1__STD

WH2__STD

WH3__STD

—

1

R 2o A O A YGTa (o XX

ST_A2

W_A

BT

Il | |

|

1_as QX St_wr XX st_ns:n)@(st_As:_c)@(W

_As

XY | —

+—(_ST__0ATA1 X ST_OATA2)@([0

B

sizendl X

" "

X n

A3 X

X X

X

<

\—

X

ro _X]

X
A
\

/-

= X
st X

Ve

oreTeH X

tocx _X

N

N

nuw_cve X

D

H/D

JAN
A\

MHOLD

wexe X

awors X

wos X

i X

o X

Fxe X
Fins

FADR

FEN® X

fush X

Fxack X

Figure 13. Store Double Integer Timing

22

1B OGIC

L64801
High Performance
Open Architecture
RISC Microprocessor
Preliminary

Store Transactions

Continued)

)

L

F__STF p__STF E_STF W_STF |WHI__STF | WHZ__STF
T L |] ! !
319 XA WA XA R o A Y e X

.

R R |

% 8

-

D
D
D
D

D
D
D

Figure 14. Store Floating-Point Timing

23

L64801

High Performance
Open Architecture
RISC Microprocessor
Preliminary

INIL.OCGIC

Store Transactions

(Continued)

F_STD | D_STD | E__STD | W_STD |WH1_STD|WH2__STD

WH3__STD

k1 X

A1 3@;}@(
astast X D@ aoas Y a_as PGTas

L

L } L i)

L

2 A XA QT an@Cox T yCua X

|-
s_a 0

| l | l

i

) sr_nslﬁ@(sr_asll)@(M_ASI
| |

o1 X D@ X X D——+—C1_omai x(s1_oamz

sizengl X

"

" " n

18

g XX

X X stor | Xisto_acomx

g & s

R0 X

\

we X

LOST

X
/
/

DFETCH _X(]

D

D

tock (]

nuLL_cre X

VAN
AN

D

D

MHOLD

wexe X

'

s X

X

prn X

e X
Fns X

FADR :)C

FEND Y]

FLUSH

FXACK

Figure 15. Store Double Floating-Point Timing

24

L64801 IS OCGIC
High Performance
Open Architecture
RISC Microprocessor
Preliminary
Atomic Transactions Atomic transactions consist of two or more steps The atomic load and store unsigned byte is the onl
’ which are indivisible; once the sequence is started, ~ atomic transaction currently supported. It takes
it cannot be interrupted. To ensure that it has the seven cycles and is described in the The SPARC
bus for the second transaction, the lU asserts Architecture Manual.
LOCK far as long as necessary.
Figure 16 shows an atomic load and store unsignec
byte.
‘ | F_LOST | D_LDST | E_LDST | W_LDST |WH1_LDSTWH2_LDSTIWH3_LDST)
cLKt ; l L | I 1 l l l L1
At X 2_A (A A YR X X a (s 2 XX XX T
1 1 !
szl X D@2 e as Qs u_a%)@(u_m)@(u_? s DR TR
ot X D@ 1 = D@8 D _oamy————C1oan Y X D@
szens X w % 0 X LS_suE [0 19 .
Ana XX X X X XC X '
8o _X] \ /
we X L/
st X \
|
oreren _X/\ /N VA72E B N VAN VAN VAN VAN VAN VAN
ocx X /- N\
nu_cve X JANVANE VAR VANV Y2 A WNE VAR VFANEVAY
MHODD
wexe X | '
s X
wos X
AL _X N / !
mom X |
fxe X |
Figure 16. Atomic Load-Store Unsigned Byte Timing
'
Floating-Point The IU fetches and decodes FPops, then broad- it to delay executing the current floating-paint in-
Operations casts them to the FPU controller over the floating- struction. This can happen under the following

point bus (F{31:0]). It also provides control signals
to inform the FPU controller when an FPop is de-
coded. During an FPop, the IU puts the instruction
on the floating-point bus during the execute cycle
and puts the instruction address on the floating-
point bus during the write cycle.

The FPU controller stops the IU by asserting
FHOLD if it detects a condition that requires

5

conditions:

When a store FSR instruction starts execution and
FPops are pending in the floating-point queue. In
this case, the FPU controller detects the condition
and asserts FHOLD. The store FSR instruction
must wait until ail pending FPops complete
execution.

L64801 I L.OCGIC
High Performance
Open Architecture
RISC Microprocessor
Preliminary
Floating-Point = When FPop is issued and there is either a resource are not ready. This occurs when one of the previ-
Operations or an operand dependency between the present ously fetched instructions is a floating-point com-
{Continued) FPop and one or more of the previously fetched pare (FCMP) that the FPU has not yet completed.
instructions.
Figure 17 shows the timing for a floating-point
= When a branch on floating-point condition (FBfcc) operation.
starts executing while the floating-point conditions
F_FP _FP | E_FP | W_FP | WH_FP
cLK1 1 1 | | | | L L
Al X e a XX a (o a 5_A) A WY ¢ YT X
| | I
ssiaan X DO AR E O EEDOERON DX
o XD DS E D DN = D& S DO DO DO
szensl X[w n " w X" 0 " 1)
el _ XX #PoP [XFpor_aooni X X X X A
ro X
we X
st _X]
53 G 4 ANEE VAN VAN VA N VAN VAN VA N VAN VAN VAN
oexk X
nww_eve X0/ /N I\ /7 (AN VAN VAN VAN VAR VAN
mRoD X
wexe X
gHotd _ X
wos X
m X |/
RO)]
e X
FNS X / \
FADR X / \
FEND X \
FLUSH X
Fxack X

26

Figure 17. Floating-Point Operations Timing

L64801 I .OGIC

High Performance
Open Architecture
RISC Microprocessor
Preliminary
Bus Arbitration Because the L6480 1 chip set is a bus siave, bus When BHOLD is asserted, it staps the processar's
: arbitration must be performed externally using the Eﬁ""e until it is disasserted. The signals DOE and
BHOLD and LOCK pins. The L64801 IU asserts can be used to turn off the output drivers of
LOCK when it needs to retain the bus. External the data hus, the addrass bus and the other cantro
hardware should assert BHOLD when it needs to signals. This allows these to be driven by external
keep the L64801 from using the bus. hardware. Figure 18 shows the bus arbitration
timing.
£t F_i2 {Bus Requested by ¥0) F_i2 F_13 F_ F_1§
e X7 L L L1 1 1 T l [L
nata YD 5% OGO
l] |
sz XDOHGEEH s - (T am DO
o XD DO = - —{ 2 D @l x| s X
szens Y o N { 18
rrsn XXX G -
Ao X De —
we X D e
LosT D {
|
oreren] N AN VAN VANV
Lock - —
nww_cve X1/ [N\ > C VAN V2R AN VAN
WHOLD
wexe X
gAowd _ X \ / |
X |
L X \ _/ |
o X ‘ !
|
' / \ |
80e X / \ |

Figure 18. Bus Arbitration Timing

27

164801 LSI L()GI_C

High Performance

Open Architecture
RISC Microprocessor
Preliminary
Lua_m AC Parameter
Timing B ®
® o>—
cix __]f \T 7(X,{_
Tdo |
Outputs
Prasmetes ®DOBDBBD2QB@®®BOE fe—Tsi Thi Thi-—s- —
e _
% AEIBBHIROVOBDOBHOR Tsi+ Thi Tsi -
X X~
Prametsrs IS DBBODIRD re—Tde
HAURUTL_CVC -
Tdo = Qutput delay - =Falfing edge of clock
Tsi=lnput setup time + = Rising edge of clock
Thi=Input hold time
AC Characteristics: VOD=4.75V 10 5.25 V, TA=0°C to 70°C, all output capacitances are 50 pF.
20 MHz 25 MHz
Nember Characteristic Min Max Min Max Units Notes
1 System Clock Cycle Time 50 40 ns
2 System Clock Rise/Fall Times 3 3 ns
3 System Clock High Duration 20 17 ns
4 System Clock Low Duration 15 13 ns
5 RESET Active Time 10 10 T
6 Address Valid Delay from CLK Rising 5 44 4 37 ns
7 AS1 Vaiid Delay from CLK Rising 5 32 4 27 ns
8 Read Data Setup before CLK Rising 5 4 ns
9 Write Data Vaiid from CLK Rising 5 2 4 27 ns
10 Write Data Turn Off from CLX 5 4 0s
n AOE, Enable/Disable 4 19 3 16 ns
12 DOE, Enable/Disable 4 yi3 3 2 ns
13 Size Vaid Delay from CLK Rising 5 0 4 7 ns
12 RO Vaid Delay from CLK Rising 5 2 4 17 ns i
15 WE Vaiid Delay from CLK Rising 5 2 4 18 ns |
16 LOST Vakd Delay from CLK Rising 5 20 4 17 ns |
7 NULL__CYC Vafid Detay from CLK Rising 5 41 4 34 as
18 MHOLD (A/BIC) Valid to NULL___CYC 5 2 4 19 ns
19 TH__NULL Valid to NULL__CYC 5 14 4 1 ns
20 HAL Vakid Delay from CLK Rising 5 36 4 30 ns
2 MHOLD (ABIC) Vaid to HAL a 20 3 17 L
22 LOCK Valid Delay from CLK Rising 5 pa| 3 18 ns
23 DFETCH Valid Delay from CLK Rising S 32 3 27 ns

28

164801

High Performance
Open Architecture
RISC Microprocessor

Preliminary

AC Characteristics (Continued): VOD=4.75V t6 5.25 ¥, TA=0°C to 70°C, all cutput capacitances are 50 pf.

20 MHz 25 MHz
Number Characteristic Min Max Min Max Units Notes
24 MDS Setup before CLK Falling 7 3 ns
%5 MOS Hold after CLK Rising 0 0 ns
2 MHOLD (A/BIC) Setup before CLK Rising 27 23 ns
7 MHOLD (A/BIC) Hold after CLK Rising 0 0 ns
2 MHOLD {A/BIC) Setup before CLK Falling 8 7 ns
2 MHOLD (A/B/C) Hold after CLK Falling 0 0 as
30 SHOLD, BHOLD Setup before CLK Rising 27 3 ns
3 SHOLD, BHOLD Hold after CLK Rising 0 0 ns
k7] SHOLD, BHOLD Setup before CLK Falling 8 8 ns
33 SHOLD, BHOLD Hold after CLK Fafling 0 0 ns
k] FCC Setup before CLK Rising 5 - 4 ns
3 FCC Hold after CLK Rising i 9 as
36 FCCV Setup before CLK Rising 3 3 ns
37 FCCV Hold after CLK Rising 0 0 ns
38 FHOLD Setup before CLK Rising 2 2 ns
39 FHOLD Hold after CLK Rising 1 1 ns
40 FEXC Setup before CLK Rising 2 2 ns
4 FEXC Hold after CLK Rising 2 2 ns
42 F Vald Delay after CLK Rising 5 43 4 36 ns
43 FINS Vaiid Delay after CLX Rising 5 30 4 23 ns
44 FADR Valid Delay after CLK Rising 5 29 4 3 ns
45 FEND Valid Delay after CLK Rising 5 2 4 23 ns
48 FLUSH Valid Delay after CLK Rising 5 2% 4 2 ns
47 FXACK Valid Delay after CLK Rising 5 2 4 Px] ns
48 TC Setup before CLK Rising 12 g ns
49 TC Hold after CLK Rising 0 0 ns
50 IRL Setup before CLX Rising 18 14 as
51 IRL Hold after CLK Rising 2 2 ns
52 RESET Setup befors CLK Rising 2 2 as
53 RESET Hold after CLK Rising 2 2 ns
54 ERROR Vakd Delay after CLK Rising 5 b 4 18 ns
55 Address Drivers Off/On after AOE] 19 3 15 ns
56 AS! Drivers Off/On after ASIOE 4 16 3 13 ns
57 WE Driver Off/On after ASIOE 4 16 3 13 s |
58 RO Oriver Oft/0n after ASICE 4 18 3 13 s
59 LDST Oriver Off/On after ASIGE 4 16 I R ns
60 Data Bus Drivers Off/On after DOE 4 25 3 19 s
61 Data Bus Drivers 0ff/On after XSM 4 N 3 24 ns

29

Pin No.

W 00 ~ O v & W RN -

HOW W W W W W W W WD NN DN RN D [l ot ol el
B8 &R8YRFKRUBVELEBREYBLELRYUNEEHEEZEsIaGEToO =S

Signal

Ad
F.14
AlS
Al0
A2
A9

A.l3
VSS

A26
XSM
A27

A29
A.25
FCCV

A28
VSS
Al8
A2l
Al9
A3l

AZ3
Al7
A6
VvSS
A7
FXACK
All
A3
A.l4
A.l6
VSS
A8
Al2

Pin No.

41
42
43

45
46
47
48
49
50
51
52
S3

55
56
57
58
59

61
62
63

65

67

69
70
71
72
73
74
75
76
77
78
79
80

Signal

A0
IRL.1
FADR
IRL2
ASL1
ASLO

FLUSH
VSS
MHOLDA_
SIZEO

IRL3

ASI2
LOCK
D2

VSS
SIZE.1
LDST
PTREEO
MEXC_
ASI3
vDD
ASI4
ASLS
ASL6
MDS_
VSS
RESET_
FHOLD_
FINS
AOE

D.0
DFETCH
IRL.O
NULL_CYC
FEND

Pin No.

81
82
&3
&
85
86
87
8
89
90
91
92
93
04
95
96
97
98
9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

L64801 160 QFP Signal Definition

Signal

ASL7
FEXC_
ASIOE_
D27
D.15
VSS
D.7
D3
SDO
D.11
D30
D26
ERROR_
D23
D.1
vDD
D.6
D.22
D.29
D25
VSS
D21
D.17
D.19
D.13
VDD
D9
D5
D.18
D.28
D24
D.20
D.16
D31
D28
D4
VSS
D.12
F.30

Pin No.

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155

156
157
158
159
160

Signal

F.22
F.18
F.26
D.14
D.10
F.10
F.2
F.6
F.11
F.27
F.23
F.19
F.15
FCC.1
vDD
F.7
F3
F.16
F.28
CLK
VSS
EF.20
F.0
F.24
FCC.0
F.12
VDD
F8
F.4
F.29
F.21
F.31
F.17
F.25
F.13
VSS
F.9
F:3

F.i

1

dan - 1O, OF PINS == 40 - - - —pd
o 1
e

oy

[i | g f,:_f:'j”

[

v oo q s

o~ IMDEX MARK

Be

il
—

A —— . —

N .18
e
O

I

F
I

EETE

Tt e e e
’
’

ST e o

PINS = 40«--\-43”‘”o v

[} immnonsniory T

X
/ N -

HONEs: i

RISNRHIIEE ERCS I R e
MANAL ROLEASE
| BTN B T oo
H NI T TR T
T [N B

L R
e R, PSCR N

! i_“_—_ R

41

(FIRY

TOLERANCE WIHDOW FOR ‘/

LEAn
WERT TICAL TRUE
POSIION

SKEW FilOM

N va T

peTaL W

oetan X

b

-

oetal Y

[T GIRESS GNAVASE SFECHRD
__ DIMENSIONAL TOLERAIICES

LSl LOGIC CORPORATION

AR

RIRYIR Y
EELRY Y

ABSA0 BATO ROAD FAREMONT CA 94539

W R AN

(1. ‘ALLEOAS
Ttiane

07-01- 41
— PR

e T
"160 LD QUAD FLAT PACKAGE

covt PF

vait
e ir 0 2O T T
101t (]

BT,

B O

VI 1000182~ 00

[

[o

e N
TV ITRERIA] bt

L
7~

.".’__k)O\\. 2%, 17N

e e e e e

c

V-

\ s
\\ ‘M ——"-"/

RECEIVED
NOV 2 & 1989

ABACUS @8 3i72
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

The Abacus 317is a singie-chip
floating-point coprocessor for the
Fujitsu S-206@88 implementation
of the SPARC architecture. [t incor-
porates a floating-point datapath
and a floating-point controller. The
Abacus 317 provides direct inter-
face to the integer unit and memory.
It is available in speed grades of 20

e MHz.

Related product: The Abacus 3171
single-chip floating-point coproces-
sor for Cypress 7C601 implementa-
tion of SPARC architecture.

Contents

Features

Description

System Considerations <

Specitications

Pin Configuruiion IS

Physical Dimensians

Ordering InTornitn

Documentataar 2

Saies Offices LIS

ABACUS 3= 3172
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

Features

SINGLE-CHIP 64-BIT FLOATING-POINT DATA
PATH AND CONTROLLER

64-bit multiplier and divide/square root unit
64-bit ALU

16 X 64 or 3232 three-port register file with an
independent load/store port

DIRECT INTERFACE TO FUIJITSU S-206888 AND
LSI LOGIC L64801 SPARC PROCESSORS

DIRECT INTERFACE TO MEMORY
20 AsgEpyeersi; OPERATION

FULL COMPLIANCE WITH ANSI/IEEE-754
STANDARD FOR BINARY FLOATING-POINT
ARITHMETIC

143-PIN PGA PACKAGE
LOW-POWER CMOS

Description

The Abacus 31w.is a high-performance, single-chip
floating-point coprocessor for the Fujitsu S-20 and
3%5/1.S1 Logic L64801 implementation of the SPARC
architecture. It incorporates a floating-point datapath
and a floating-point controller. The Abacus 3174 pro-
vides direct interface to the integer unit and memory. It
is available in speed grades of 20 and ZZEEFHz.

The floating-point datapath circuitry contains a 64-bit
multiplier, a 64-bit ALU, a 64-bit divide/square root
unit, and a 16-word by 64-bit (or 32-word by 32-bit)
three-port register file.

The floating-point controller circuitry handles IEEE ex-
ceptions and the interface between the floating-point da-
tapath and the integer unit, as well as between the data-
path and memory. '

CONFORMANCE TO SPARC ARCHITECTURE

The Abacus 31Z0 processes instructions within the spec-
ifications of the SPARC architecture as described in the
SPARC Architecture Manuai, by Sun Microsystems.

DATA TYPES

The SPARC architecture specifies four data types that
can be used in conjunction with the floating-point unit
(FPU):

O 32-bit two’s complement integer
O single-precision - floating-point
O double-precision floating-point
0, extended-precision floating-point

The Abacus 3170 gupports all of these data types except
extended-precision. Any operation specifying extended-
precision data types will be trapped to system software,
with uriimplemented instruction trap type.

INSTRUCTION PROCESSING

When the integer unit (IU) decodes a floating-point op-
erate (FPop) or a floating-point load/store (FPLdJ/St)
instruction, it sends the instruction to the FPU over the
F bus during the Execute stage of the IU pipeline.

During the Write stage of the IU pipeline, the IU senc

the FPop address over the F bus to the FPU so that it w1
be available for floating-point exception handling. Also
during this cycle, the FPU will assert FHOLD- if a depen-
dency exists. FHOLD- will rernain asserted until the de-
pendency has been resolved.

CONFORMANCE TO ANSI/IEEE-754
SPECIFICATION FOR BINARY FLOATING-POINT
ARITHMETIC

The Abacus 317 conforms to the requirements of the
ANSI/IEEE-754 specification.

FLOATING-POINT STATE REGISTER (FSR)

The SPARC Architecture Manual contains detailed in-
formation about the Floating-Point State Register
(FSR). Bits 19:17 of the FSR comprise the version field.
The version field specifies the particular floating-point
unit/controller implementation. In the case of the 27§,
FSR (19:17) = 0115, RS

Description, continued

IMPLEMENTED INSTRUCTIONS

Operations involving NaNs and denormalized numbers
require system software assistance or intervention.

They terminate with trap type unfinished.
Mnemonic(s) Operation
Iaf Load floating-point register
iddf Load doubie fioating-point register
idfsr Load floating-point status register
stf Store floating-point register
stdf Store double floating-point register
stfsr Store floating-point status register
stdfq Store double floating-point queue
fitos fitod convert integer to floating-point (rounded as per fsr.rd) (single/double)
fstoi tdtoi convert floating-point to integer (rounded toward zero) (single/double)
fstod fdtos convert single to double/double to single floating-point
fmovs register to register move |
fnegs register to register move with sign bit inverted
fabss register to register move with sign bit set to 0
fsqrts fsqrtd " floating-point square root (single/double)
fadds taddd floating-point add (single/double)
fsubs fsubd floating-point subtract {single/double)
fmuis fmuid floating-point muitiply (single/double)
fdivs fdivd floating-point divide (single/double)
fcmps fcmpd floating-point compare (single/double)
fcmpes fcmped floating-point compare and exception if unordered (single/double)

Figure 1. Implemented instructions

UNIMPLEMENTED INSTRUCTIONS

Mnemonic(s)
fitox '
fxtoi

#tos

fstox

fsqrtx

faddx

fsubx

frmuix

fdivx

fcmpx ,
fcmpex
fsmuld
fdmulx

fxtod
fdtox

'Operation

convert integer to extended floating-point (rounded as per fsr.rd)
convert extended floating-point to integer (rounded toward zero)
convert extended floating-point to single/double floating-point
convert single/double floating-point to extended floating-point
floating-point square root (extended-precision)

floating-point add (extended-precision)

floating-point subtract (extended-precision)

floating-point muitiply (extended-precision)

floating-point divide (extended-precision)

floating-point compare (extended-precision)

floating-point compare and exception if unordered (extended-prec's.cr
single product to double

double product to extended

Figure 2. Unimplemented instructions

ABACUS 2o 3!/
FLOATING-POINT
COPROCESSOR FOR

SPARC
PRELIMINARY DATA
) August 1989
Description, continued
DEVICE DESCRIPTION
v
3R
7
32
1 132 /32
7 7
64
b D = I
Address jinstruction | mux Mux |
CONTROL
LAT2
}/64
C
1
> o | STATUS WLE
' A B
. . Ouunb: MuX A4 4»'sa
. 1 . lm"'
D> on | FSR ! '
I mux] wmux]
64 STORE
P 7)< e
ww] | &
32 /'32 /
MUX
?

D (same as input D) RESULT /,54

Figure 3. Conceptual block diagram

(V%)

Description, continued

Queue
Depth = 2

Addrtss:

Soea]

|>QAN]‘

o] Pow
LOAD 32 32
7 p 32 7
Fows]
//32/ 32
| mux |
[54
CONTROL 7% 1
| mux |] mux |
lat2 | [ar2|
A /a2
y
‘ ‘ - TMS CLS ez
D voj D 20 l STATUS R;:?Léshﬁs R}-:eﬂz(EsES
" Instruction L AMS BMS | ALS BLS
. . Queue MUX /V32 % pc
. + Depth = 2
>on | Sesr] Lt ¥ '
| mux fmux | mux | mux |
“5e STORE
A/:!Z A 32 4 /i'64 /(64
DMS] l> ".S l 1/54 Jee 64 yee
AA D a8 D ma D MB] i
! ! ! N
Square Root
MUX
D (same as input D) RESULT =

Figure 4. Simplified block diagram

Description, continued

ABACUS B 3172
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

—————]

INTEGER UNIT INTERFACE

MEMORY/SYSTEM INTERFACE

vCC GND CLK

FP- - :tt 325 ;
FCC - 2
FCOV o
FHOLD- 372 |
FEXC- & Abacus-3220r |
SPARC

FXACK ——— | Floating-Point. [
FINS ———— 3 Unit <
FADR — 3 e«
FEND — — 5
FLUSH —— 3
F BUS 2

26 30

D BUS

DOE-

MHOLDA-

MHOLDB-

MHOLDC-

SHOLD-

BHOLD-

MDS-

RESET-

Figure 5. Abacus 30 signals ,
3i72

wn

AR R
Description, continued

SIGNAL DESCRIPTION

Signals marked with a minus sign {-) after their names
are active low; all other signals are active high.

INTEGER UNIT INTERFACE SIGNALS
FP- OUTPUT

Floating-point unit present. The FP- signal indicates
whether a floating-point unit FPU is present in the sys-
tem. In the absence of an FPU the FP- signal is pulled
up to VCC by a resistor. When an FPU is present the
FP- signal is grounded.

FCC OUTPUT

Floating-point condition code. The FCCy g bits repre-
sent the current condition code of the FPU. They are
valid only if FCCV is asserted.

FBfcc instructions use these bits during the execute
cycle if they are valid, and delay the execute cycle if they
are not valid. The condition codes are shown below.

FCC (1) FCC (0) CONDITION
0 0 Equal
0 1 Op1 < Op2
1 0 Op1 > Op2
1 1 Unordered
Figure 6.

FCCV OUTPUT

Floating-point condition code valid. The FPU asserts
the FCCYV signal when FCC bits represent a valid condi-
tion. The FPU deasserts FCCV if pending floating-point
compare instructions exist in the floating-point queue.
FCCV is reasserted when the compare instruction is
completed and FCC bits are valid.

FHOLD- OUTPUT

Floating-point hold. The FHOLD- signal is asserted by
the FPU if it cannot continue execution due to a re-
source or operand dependency. The FPU checks for all
dependencies in the write stage and, if necessary, asserts
FHOLD- in the same cycle. The FHOLD- signal is used
by the IU to freeze its pipeline in the next cycle. The
FPU must eventuaily deassert FHOLD- to reiease the
[U’s pipeline.

FEXC- CUTPUT

Floating-point exception. The FEXC- signal is asserted
if a floating-point exception has occured. It remains
asserted until the IU acknowledges that it has taken a
trap by asserting FXACK. Floating-point exceptions are
taken only during the execution of a floating-point
instruction, FBfce instruction, or floating-point load or
store instructions. When the FPU receives an asserted
level of the FXACK signal it deasserts FEXC-.

FXACK INPUT

Floating-point exception acknowledge. The FXACK sig-
nal is asserted by the IU to acknowledge to the FPU that
the current FEXC- trap is taken.

FINS INPUT

Floating-point instruction. The 1U asserts FINS during
the cycle in which F3¢ ¢ carries a valid floating-point
instruction. The FPU uses this signal to latch the instruc-
tion into its instruction register.

FADR INPUT

Floating-point address. The 1U asserts FADR during the
cycle in which F31 g carries a valid floating-point in-
struction address. The FPU uses this signal to latch the
instruction into its address register.

FEND INPUT

End floating-point instruction. The IU asserts FEND
during the last cycle of a floating-point instruction in the
IU pipeline. The FPU uses FEND to synchronize the in-
struction/address in it execution pipeline with the U
pipeline.

FLUSH INPUT

Floating-point instruction flush. The FLUSH signal is as-
serted by the IU to signal to the FPU to flush the instruc-
tions in its instruction registers. This may happen when a
trap is taken by the IU. The IU will restart the flushed
instructions after returning from the trap. FLUSH has nc
effect on instructions in the floating-point queue.

F BUS INPUT

Floating-point bus. F3q_ g is a dedicated 32-bit bus that
receives floating-point instructions and addresses from
the IU. Each floating-point instruction must use this bus
for two cycies. The first cycie carries the instruction and
the second its address.

ABACUS =y 3I7Z
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

Description, continued

SYSTEM/MEMORY INTERFACE SIGNALS
D BUS INPUT/OUTPUT

Data bus. The D3y g bus is driven by the FPU only dur-
ing the execution of floating-point store instructions.
The alignment for load and store instructions is done in
the FPU. A double word is aligned on an 8-byte bound-
ary, a word is aligned on a 4-byte boundary.

DOE- INPUT

Data output enable. The DOE- signal is connected di-
rectly to the data output drivers and must be asserted
during normal operation. Deassertion of this signal tri-
states all output drivers on the data bus. This signal
should be deasserted only when the bus is granted to
another bus master, i.e., when either BHOLD-,
MHOLDA-, or MHOLDB-, MHOLDC- or SHOLD- is as-
serted.

MHOLDA-, MHOLDB-, MHOLDC-, SHOLD-
INPUTS

Memory hold. Asserting either MHOLDA-, MHOLDB-,
MHOLDC-, or SHOLD- freezes the FPU pipeline.

BHOLD- INPUT

Bus hold. The BHOLD- signal is asserted by the system’s
1/0 controller when an external bus master requests the
data bus. Assertion of this signal will freeze the FPU
pipeline.

~a

MDS- INPUT

Memory data strobe. The MDS- signal is used to load
data into the FPU when the internal FPU clock is
stopped while on hold.

RESET- INPUT

Reset. Asserting the RESET- signal resets the pipeline
and sets the writable fields of the floating-point status
register (FSR) to zero. The RESET- signal must remain
asserted for a minimum of eight cycles. After a reset, the
IU will start fetching from address 0.

CLK INPUT

Clock. CLK is used for clocking the FPU. It is high dur-
ing the first half of the processor cycle and low during
the second half. The rising edge of CLK defines the be-
ginning of each pipeline stage in the FPU.

VCC

Power supply. All VCC pins must be connected to 5.0
volt power supply.

GND

System ground. All GND pins must be connected to sys-
tem ground.

NC

No connection. All no-connect pins must remain uncon-
nected.

R — I
Description, continued .
SYSTEM CONSIDERATIONS

INSTRUCTION CYCLE COUNTS

The 3178 has the following datapath instruction cycle
counts. in order to arrive at register-to-register cycle
counts, one cycle must be added to each number below.

Mnemaoni¢(s) QOperation Clock
Cycles
fmovs move 4 ~
fnegs negate 84
fabss absolute value B 4
fadds, fsubs add/subtract single $ €
faddd, fsubd add/subtract double 4 3
fmuls multiply single &9
fmuld multiply doubie 8 t4
femps compare single 3 4
fcmpd compare double 4 4
fcmpes compare single 3 4
and exception if
unordered
fcmped compare double g 4
and exception if
unordered
fitos convert integer w 1L
to single
fitod convert integer 8 S
to double
fstod convert single € 3
to double
fdtos convert double g 3
to single
fdivs divide single 3 40
#divd divide double & LS
fsqrts square root single &8 &2
fsqrtd square root double &8 |25

Figure 7. Implemented instructions

LNVPACK BENCHMARK ESTIMATE

Thecode shown below represents the janer loop of the
SAXPY subroutine of the LINPACK penchmark. This
loop raquires 60 cycles on the Abacus 3170, At
25 MHz\ this translates into a pepk performance of
3.33 MFNOPS.

[dx+0]{ dx0

Figure 8. LINPACK benchmark cbde

/

RECEIVED

NOV 2 2 1089

NE/THW

ABACUS & 3172
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DA1A

August 1989
L .

System Considerations

INTERFACE TO IU AND MEMORY

FP-
FCCio 2
FCCV
FHOLD-
FEXC-

Y YYVYY

Fa1-o 32
- FINS

FADR

FEND

FLUSH

FXACK

32
o Da-o Asio

32 i 32

cTum
CcCTO0O

I W)

w
N

'\ 4+ m 0 Mm D
P OMrQogITwm
m

I » 0O 0TI X

't mOrO0OIg

LI o I v L i © T o 4
7]

F OroIw

MEMORY SUBSYSTEM

Figure 9. Interface to integer unit and memory

System Considerations, coniinued

INSTRUCTION OPERATION

CLK

Dt REG

REGISTER READ

REGISTERS AA, AB, MA, MB

RESULT LATCH (LAT2)

REGISTER WRITE

FEXC-

FINS —f—_

. ADDR
F BUS WF"OP (FPOP)

< OPERANDS e

N+1

N+2

OPERANDS

Figure 10. Instruction operation

?

ABACUS 3 317X
FLOATING-POINT
COPROCESSOR FOR

SPARC
PRELIMINARY DATA
August 1989
O A
Specifications
ABSOLUTE MAXIMUM RATINGS
SUPPlY VORAGE .. i e e e e -05t0 7.0V
LT U] GV 1 - T L= P -0.5V to VCC
L@ T (o TU | o - Ve 1= T -0.5V to VvCC
Operating temperature range (TCASE)ciiiir ettt 0° to 85° C
Storage tempPerature FANGE u v v e teetneenenenneeneneanenesenenean s -65° C to 150° C
Lead temperature (10 SECONAS) c vttt ittt et ittt et ettt e e 300° C
JUNCHION 1M P OratUN ittt ittt ittt ittt e te ettt e e e e 155° C
Figure 11.
OPERATING CONDITIONS
PARAMETER i MIN MAX UNIT
Vee Supply voltage : 4.75 5.25 v
low High-level output current . -1.0 mA
loo Low-level output current 4.0 mA
Tease Operating case temperature : 0 85 °C
Figure 12.
DC SPECIFICATIONS
PARAMETER TEST CONDITIONS MIN MAX UNIT
Vy, High-level input voltage Vee = MIN 2.1 v
V. Low-level input voitage Vee = MIN 0.8 v
Vue High-level input voitage Voo = MIN 2.4 %
Ve Low-level input voitage Vee = MIN 0.8 v
Vou High~level output voltage Vee = MIN, 154 = MAX 2.4 v
Vo, Low-level output voitage Vee = MIN, 15 = MAX 0.4 v
I, Input leakage current Vee = MAX, V,, =0to V. £10 LA
l.o Output leakage current Vee = MAX, V. =00r V. £10 HA
_ (output disabied) ‘
Cw !nput capacitance” Vee =MAX, V,, =0to Vce 15 pF
Coyr Output capacitance” Vee = MAX, Vo r =0to Vece 20 pF
trCc‘_I< Clock Input capacitance” Vee = MAX, V,y =010 Vce 25 pF
Cooe. DOE- Input capacitance® Vec = MAX, V,, =0to Vce 30 pF
' lec Supply current Vee= MAX, T, = MIN; TTL inputs mA
* Guaranteed, but not tested

Figure 13. DC specifications

R A R R

Specifications, continued

AC SPECIFICATIONS AND TIMING DIAGRAMS

SYMBOL DESCRIPTION Min/Max Reference 20 MH2 25 z
TCY Clock Cycle Time MIN 50 io/
TCH Clock High time MIN 15 (12
TCL Clock Low Time MIN 15)}
TR CLK Rise time MIN 3 N2
TF CLK Fall time MIN 3 2)
T1 FINS Setup Time MIN CLK+ 16 @
T2 FINS Hold Time MIN CLK+ 4 3
T3 F bus (Abus) Instruction Setup Time MIN CLK+ [/3/
T4 F bus (Abus) Instruction Hold Time MIN CLK+ 5 Qs
TS FADR Setup Time MIN CLK+ 18 12
T6 FADR Hold Time MIN CLK+ 4 y
T7 D bus Data Load Setup Time MIN CLK+ 5 (4
T8 D bus Data Load Hold Time MIN CLK+ 5 N
T9 FEND Setup Time MIN CLK+ 16 12)
T10 FEND Hold Time MIN CLK+ 4 P
T D bus Data Steore Output Delay Time MAX CLK+ 33 f 27
T12 D bus Data Store Output Vaiid Time MIN CLK+ 5 s
T13 MHOLDA- Setup Time* MIN CLK-/+ 6/25 5/2/
T14 MHOLDA- Hold Time* MIN CLK- 6 S
Ti5 FHOLD- Qutput Delay Time MAX CLK+ 44 {35 !
T16 FHOLD- Output Vaiid Time MIN CLK+ 8 A~ |
T17 MDS- Setup Time MIN CLK-/+ 6/25 620) |
T18 MDS- Hold Time MIN CLK- 3 N
T19 FCCV Output Delay Time MAX CLK+ 44 (3 |
T20 FCCV Output Valid Time MIN CLK+ 8 S
T21 FCC, .o Output Delay Time MAX CLK+ 44 34 ?
T22 FCC,. o Output Valid Time MIN CLK+ 8 y ;
T23 FLUSH Setup Time MIN CLK+ 22 fs i
T24 FLUSH Hold Time MIN CLK+ 4 e
T25 FXACK Setup Time MIN CLK+ 16 12) |
T26 FXACK Hold Time MIN CLK+ 4 A
T r27 FEXC- Output Delay Time MAX CLK+ 30 (2 |

T28 FEXC- Output Valid Time MIN CLK+ 7 N
T29 RESET- Setup Time MIN CLK+ 12 s
T30 RESET- Hold Time MIN CLK+ 5 4
T31 ** | D Bus Turn-off Time MIN/MAX DOE- 6/33 5:28)
T32 ** | D Bus Turn-on Time MIN/MAX DOE- 6/33 £ias

* Specifications for MHOLDB-, MHOLDC-, SHOLD-, and BHOLD- are the same.
** Guaranteed, but not tested

Figure 14. AC specifications

ABACUS 34#5 372
FLOATING-POINT

COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

Specifications, continued

CLK

INPUT SETUP AND
HOLD TIMES WITH -
RESPECT TO CLOCK
RISING EDGE

INPUT SETUP AND
HOLD TIMES WITH
RESPECT TO CLOCK
FALLING EDGE

OQUTPUT VALID AND
OUTPUT DELAY TIMES

s

B

L"." »> e
Too |

DOE-

D BUS

Ts: T, T3, Ts. T7. To. T1z. T23. T2s. T2s. Tia
TH: Tz. T‘, Ts, Ta. T]O. T24, T

Too: Ti1. Tis. Tig. T21. T2z,
- Tvo: Ti2. Tis, Tzo- T22. Tos

ASYNCHRONOUS DATA OUTPUT ENABLE TIMING

26 T30

!
|
|
|
|
Tn ! Taz
{
|
|

DATA STORE

—

T11
ouTRUT DOE- louTPU
DELAY TURN-~-ON DELAY

- —— -
4 MSH~ {ﬂSH
[AP ———
! —»T
DATA AT THE
PADS. BUT NOT
DRIVEN OUT
SINCE BUS D 8uUS
NOT ENABLED STORE
VALID

* MSH = Most significant haif of a 64-bit word
*+(SH = Least significant haif of a 64-bit word

S

Figure 15. Timing diagrams

(oV]

o]

R I—
Specifications, continued
Tcy
Tcw o Tel
3.5V
2.4V
CLK 2.0v - - - -
0.8v
0.4v
To
o Ter Ter
Signal 1.5v VALID

Delay measurements

are made with

reference to 1.5V

threshoid
Figure 16. Reference levels in delay measurements

3.5v
DOE- 2.0v - - - 2.0v
0.4v—
T,y Bus turn-off time T., Bus turn-on time

BUS

OUTPUT VALID

0.2v

0.2V HIGH 2.4V
TT IMPEDANCE
+ VALID
AT 0.8v

A

Figure 17. Tri-state timing

L -

Specifications, continued

/0 CHARACTERISTICS

Output
pin

Figure 18. AC test load

ABACUS s 317 %
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

L . -

Pin Configuration

P er 2 3 4 5 8 7 8 9 10 11 12 13 14 15
A D22 F22 D24 F24 F25 o2¢ £26 F27 F28 F29 F30 Fa1 D31 NC
B D21 | vec | vec | Fa3 023 | vec | D2s | vec | D27 028 | D29 D30 | vee | vec | vee
C 020 F21 | GND | GNO | vCC | GND | GND | veCc | GND | GNO | GND | GNO | GND | veC | Feov

Yo
D Dis | vec | GND GNO | @ | FcCt
E F18 F19 F20 VCC | FCCO |FXACK
E F16 D17 D18 RESETH GND | FEXC-
G D18 F17 | GND CLK | GND NC
15x 15 143-PIN PGA
H FO F1 Do TOP VIEW GND | vce [FrHoLD-
CAVITY DOWN
J O1 | DOE- | GND vee MHLDA-WBHOLDA
K o2 vce | GND 3 i 7 9\ GND | MDS- MHLDS8H
L F2 D3 GND FLUSH MHLDC4SHOLD
M F3 vce os GND | FADR| FINS
N D vce { GNO | GNO | GNO o8 GND D10 | GNDO | GND | D14 | GND | GND | VCC | FEND
Ve ‘

=} Fe vce | el F§ vece F8 vCce F11 D12 | vec | veCc | vec | D15 | vee NC
R Fs vee De F7 o7 F8 o9 F10 D11 F12 F13 D13 Fle F15 FP-

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Note: NC = not connected: pins so marked must be left unconnected.
There is no pin at A1. Al is a locator hole.
Figure 19.

RECEIVED

NOV 2 S 1989

NE/THW

ABACUS 3170
FLOATING-POINT
COPROCESSOR FOR
SPARC

PRELIMINARY DATA
August 1989

.' " .
Physical Dimensions
143-PIN GRID ARRAY
Symbol DIMENSIONS
BOTTOM VIEW SIDE VIEW TOP VIEW
r,\‘ INCHES ' MM
+
o A, A1 | 0.100%0.010 2.54 + .20
Elz.] ‘ A2 | 0.180 typ. 4.57 typ.
esstessossas: E =WHITEK 4= A3 | 0.050 typ. 1.27 typ.
S s L
5, |88 : . T D 1.575 sq.+ 0.016 40.0 +0.41
: + OVAR
2 5| “sranoorr El | 1.400sq.40.012 | 35.56 +0.30
836388838 KOVAR 5 = " R
| E2 | 0.050 dia. typ. 1.27 dia. typ.
[B J A L_
d 2 E3 1 0.018 +0.002 .46 + 0.05
d 0.065 dia. typ. 1.65 dia. typ.
A1 LOCATION
e 0.100 typ. 2.54 typ.
Ordering Information
|
Package Type Frequency Case Temperature Range Order Number]'
_ 3172-020-GC0 |
143-pin PGA 20 MHz 0-85°C +70-020-aCs- |
|

W/W\,/A_W\—M !

Eevision Summary

The following changes have been made in this data sheet
relative to the previous edition (May 1989).

Change Page

Instruction Cycle Counts section added 8
FEXC- Output valid time changed from 8 to 7 ns for 20 MHz 12

S4-Cache
Pr

eliminary

Features

* implements 64-256 KByte write-through lnstruction/Data cache with 16-byte line size
* Performs cache tag comparison

* Controls SBus reads and writes

* Automatically fills cache on cache misses

* Controls mastership of SBus for DMA

* Performs buffered writes with extemal write buifer
* Replaces cache tag read/write buffers

* Performs cache flush comparisons

* Controls system-wide byte packing

* Contains Sun—4 Virtual Address Error Latches

* Maintains copy of 4-bit Sun—4 context register

* Contains Sun—4 System Enable Register

* Contains Sun-4 Bus Error Registers

* Monitors bus for unacknowledged transfers

* Generates system reset

u_al(17:0
hu_asi(3:0)
iu_siz(1:0)
tu_rd
mmu_typ(1:0)
mmu(x,v,s.w)
sb_br(2:0)
sb_ack(32.8)_
lu_shold_
lu_soe_
hu_mds_
iu_mexc_
sb_as_
iod(7:0) xg.ce_
oe
cd_oe_
sb_bg(2:0)_
e_en_
cdwse_en
sb_eck(32.8)_
por_ sb_reset_
iu_error_

S4-Cache 7/18/88 Sun Confidentiai Page 1

-

Cache Interface

S4-Cache

Preliminary

25

ct_a(29:16) B8D4TU Cache Tag Address bits

ct_c(3:0) 8D4TU Cache Tag Context bits

cts BD4TU Cache Tag Supervisor

ct_v 8D4TU Cache Taq Valid

ct_wa 804TU Cache Tag Write Allowed

Ctwe_en_ BT4 Cache Tag Write Enable Enable. Goes to S4-Clock.
cdwe_en_ BT4 Cache Data Write Enable Enable. Goes to S4-Clock.
cd_oe_ BT4 Cache Data Output Enable.

car_en_ BT4 Cache Address Register Clock Enable.
Miscellaneous 4

wb_oe_ 874 Write Buffer Output Enable

wb_ce_ 8T4 Write Buffer Clock Enable.

sdc_oe_ TLCHTNU S4-Cache chip output enable.

sdc_test_ IBUFNU S4-Cache chip Test mode.

Signals: 144

Device Type: LMA9284 (10:158 VDD:4 VSS:6)

Package Type: PFP160 (PADS:160 VDD:7 VSS:8)

input/Qutput Buffer Definitions

DRVC8 Input clock driver

IBUFNU ' Input buffer, CMOS level, inverting. intemal puliup

TLCHT input buffer, TTL level, non=inverting

TLCHTU Input buffer, TTL level, non-inverting, internal pullup

TLCHTNU Input buffer, TTL level, inverting

BO#TU Bidirectional buffer, TTL input levels, internal pufiup, # indicates output drive

BO#TRU Bidirectional buffer, TTL input levels, internai pullup, slew-rate controlled
output, # indicates output drive

BT# Tri-statable Output buffer, CMOS, # indicates output drive current.

S4-Cache 7/18/88

Sun Confidential Page 3

Functional Description

Cache Overview

Tha cache implemented with the aid of the S4-Cache chip is a write-through mixed
instruction/data cache with a 16-byte line size. A typicai implementation is shown in the
following diagram:

The cache tag and cache data memories are built using externa! generic static RAM chips.
Although the programmer’'s model of the cache data RAM is 4036 lines of 16 bytes, it is
currently implemented with eight 16K x 4 static RAMs.

The size of the cache may vary from 4036 fines deep to 16,384 lines deep. Larger
implementations of the cache will connect the unused cache tag pins to the appropciate
address bits latched in the cache address register.

S4-Cache 7/18/88 Sun Confidential Page 5

SBus Overview

The SBus fundamental operation is shown in the disgram below. The SB_AS_ signal
indicates the validity of SB_PA(28:00), S8_RD, SB_SiZ(2:0) and the signais derived
combinatorially from these signais. On the rising clock edge at which AS_ is sampled true,
these signals will also be valid with the setup specified. The cycle will continue until an
acknowledge is received from the accessed device. Wait states will be inserted on the
SBus until the acknowledge is received.

w .

sb_as_

sb_a(29:0)

sb_pa(28:13)

sb_rd

sb_siz(2:0)
sb_ack(32.8}_ - =

sb_d(31:0) {read} CXADI

sb_d(31:0) {write}

The addresses. read, and size signals will be held valid until the clock edge after the one

on which the acknowiedge is sampled true. See the tables below for acknowledge and
size encoding.

Shared control signals SB_ACK32_. SB_ACKS_, SB_ERR_, and SB_MERR_ must follow a
special protocol, which requires that the signal is taken out of tri-state mode, driven low
for the desired number of ciocks. then driven high for one clock before being tri-stated
again. See the SBus specification for further details.

S4-Cache 7/18/88 Sun Confidential Page 7

Preliminary

Parity Errors

Parity errors are reported by the S4-Buffer chip to the S4-Cache chip via SB_MERR_. The
S4-Cache chip reports parity errors to the U on U cycles by asserting IU_MEXC_ as
shown in the following diagram.

clk

iu_shold_

sb_as

sb_a(29:0)

sb_ack_

sb_d(31:0)

u_d(31:0)

sb_merr_

iu_mexc

fu_mds

S4-Cache 7/18/88 Sun Confidential Page 9

-

SBus Buffered Writaes

The S4-Cache chip performs buffered writes to Type 0 and Type 1 Spaces using the write
butfer in the S4-Butfer chip. The IU is held starting when the miss is detected and ending
when the MMU has been checked. This occurs lnvisibly to the SBus, where the buffered
write is indistinguishable from a standard write. Write data is available on the SBus on the
rising edge at which AS_ is sampled true, and on the 100 bus one clock later.

sb_a(29;0)

sb_rd

| sb_siz(1:0)

cti(2:0)

sb_ack_

sb_d(31:0)

WB_CE_ Function

The WB_CE_ signal goes 1o the S4-Buffer chip, where it is used 10 generate the clock to
the write buffer as shown in the following diagram:

clik ! d | i i] 1 3 H] L J

wb_ce_

wb_ clk

S4-Cache 7/18/88 Sun Confidential Page 11

-

Dynamic Bus Sizing

Byta Packing

To executs code contained in 8-bit devices on either the S8us or the 10D bus, the
S4_Cache chip must pack the bytes up to fit the word length of the SPARC chip, as
instruction fetches assume this data width. The S4-Cache chip transforms the SPARC
data bus into a dynamically-sized bus somewhat like that of the Motorola 68020. The
number of bytes involved in the first cycle is encoded on the three SB_SIZ signals. The
current slave device responds with its port width encoded on the two SB_ACK signals. An
IU word-length access will be converted into the appropriate number of shorter accesses
if the accessed device indicates its port width is less than 32 bits.

Transfer Size Encoding

sb_siz2

8
R

sb_siz0

Transfer Size

)

4 Bytes

1 Byte

2 Bytes

Not Used

16-Byte Burst

Not Used

- et Jaa JO JO O

Not Used

walulololalalolo

- o= O]~ jO]J= O

Not Used

Although the SBus specification allows 3-byte operations, none will be generated by the
S4-Cache chip because all SPARC transters are afigned.

S4-Cache 7/18/88

-

Sun Confidentiai

Page 13

1 S4-Cache
Preliminary

DMA Cycles

Bus Arbitration

The S4-Cache chip receives three levels of DMA bus request {SB_BR(2:0)-} and
generates three corresponding levels of bus grants {SB_BG(2:0)-}. in case more than
one bus request is received simuitaneously, the bus request priorities are as follows:

IU Write Hits Highest Priority
SB_BRO_
SB8_BR1_
SB_BR2_
U Misses Lowest Priority

if a bus request is pending at the end of a DMA cycle. the bus arbiter will use a
round-robin bus grant scheme so that alt DMA masters can share equal bus bandwidth.

Rerun Cycles

The S4-Cache chip implements a rerun protocol that causes the current SBus cycie to be
aborted and restarted later. This allows resolution of deadiocks between the IU and DMA,
and allows SBus slaves to have long read latency without locking out DMA.

sb_br_ \
\
sb_bg \ lfw-éi/
50 N : !
N \ 4
sb_a(29:0) O ED 2= X ¢ O 0
1
sb_rd DD o G 4 S H—
sb_siz(2:0) DED o €K ¢ PED

Deadlocks can occur when a single functional module is capable of being both a SBus
slave and a DMA master. Such a moduie typically seiects either its master or slave mode.

S4-Cache 7/18/88 Sun Confidential Page 15

-

Cache

S4-Cache
Preliminary

Fills

The cache is filled under the following conditions:

Read cycle &

Device space &

Page is marked cacheable (IMMU_X) &
EN_CACHE bit in System Enable Register is set &
No protection error is detected.

A cache fill cycle consists of four 32-bit reads of main memory. As the cache controller is
capable of accepting an acknowledge on every clock, the four reads will typically be done
using a high-speed burst mode access of the main RAMs. After the first acknowledge the
bus controller will strobe the data into the iU, making the assumption that the memory
provides the requested word first rather than providing the first word in the fline.

Cache Fill with Non-Continuous ACKs

u_a D D o0 € G EXX SRR T N2 2R N I 17D (4
hoid_ L T
sb_as_ L1 =

sb_a L.l T
sbrd |

sb_siz(2:0) 16 BYTES | e |
devspc_ =3

sb_ack32 —-<-ld L L 0 U 1 1 L1 1) “———

sb_d(31:0) 2)< S 2)< 2 <2 r—
iu_mds_ : | I . .

cd_we_ | . ju=p S N A
ct_we B I

‘

S4-Cache 7/18/88 Sun Confidential Page 17

-

Cache Hits

A cache hit occurs under the following conditions:
“ Device space & :
CT_V high (cache tag is valid) &
CT_A(29:16) latched RJ_A(29:16) &
IU_A(31) == U_A(30) == IU_A(29) &
{CT_S & Supervisor cycle} OR {ICT_S & CT_C(3:0) = CID(3:0)} &
{lU_RD OR (CT_WA & IStore double & S8us Idie)}

Cache Read Hit

clk
u_a(31:0)
car_clk
car_a(17:0)

_d(31:0)

Cache Write Hit

clk
u_a(31:0)
iu_we_
car_clk
car_a(17:0)

cd_we_

| | . | X

—
1 N]

| I R

S4-Cache 7/18/88

-

Sun Confidential Page 19

Cache Flush Satisfying Match Criteria

ok L L J’ j | I? 1 l1 1 i
w_shold_ K=k e
u_ra

ctwe_en_

ct_we_

Cache Flush Not Satisfying Match Criteria

S4-Cache 7/18/88 Sun Configential

-

Page 21t

Address Map

Device Space and Control Space

The SPARC address space identifiers are divided into two "spaces” according to the
following table: The signal DEVSPC_ chooses between device space and control space
address maps. Device space devices are accessed with physical addresses provided by
the MMU, while control space devices are accessed with virtual addresses on the SBus.

| AS! Function Space !l
| 0-1 | Reserved Control |
| 2 | wexensions Control |
3 | segment Map Control
. 1 4 | Page Map Control
5-7 | Reserved Control
8 | user tstruction Device
5 | Supervisorinstr. | Device |
A User Data Device
B | Supervisor Data Device
C | Segment Fiush Control
D Page Flush Control
€ | Context Flush Control
F | Reserved Control |

S4-Cache 7/18/88

-

Sun Confidental

Page 23

Registers

Shedow Context Register

The Stadow Contexi Register maintains a copy of the Context Register that is found in the
S4-MMU chip. it is used internally to the S4-Cache chip in the cache hit comparator, the
cache flush comparator, and the cache tag write data. it is cleared on SB_RESET_ and
written simuiteneously with the Context Register in the S4_MMU chip. it can be read only
with 8-bit operations on an odd-byte location. The bits are assigned as follows:

Write:
D(31:28) Unused Read back as zeroces
D(27:24) CID(3:0) Write Only

Read D(23:20) Unused Read back as zeroes
D(19:‘16) CiD(3:0) Read Only

System Enable Register -

The System Enable Register enables various system functions and allows booting. This
register can be read and written under software control, but can only be accessad with
8-bit operations. All bits are initialized to zero by SB_RESET_. Bits are assigned as
follows:

D(31) EN_BOOT_ Enable Boot State
D(30) Unused
D(29) EN.DVMA Enable Direct Virtual Memory Access
D(28) EN_CACHE Enable Cache Fills & Hits
D(27) Reserved
- D(26) SWRESET Software Reset.
D(25) Reserved
D(24) Reserved Reads back as zero. Write has no effect.

EN_BOOT_. Boot state (active low) forces all supervisor program fetches to the EPROM
device independent of the setting of the memory management. All other types of
references eare unaffected and will be mapped as during normal operation of the
processor.

EN_DVMA. This bit enables alt DVMA, inciuding on—-board and off-board.

EN_CACHE. When this bit is'cleared, no cache fills will be performed and all IU reads will
‘miss. ' E
SWRESET. A low-to-high transition on this bit will generate a SB_RESET_.

¥

BUS ERROR REGISTERS

Four bus error registers sre contained in the S4-Cache chip. located at the following
addresses:

Ox6000 0000 Synchronous Error Register
0Ox800C 0004 Synhronous Error Vintual Address Register
Ox6000 0008 Asynchronous Error Register

0x8000 000C Asynchronous Error Virtual Address Register

S4-Cache 7/18/88 Sun Confidential Page 25

-

Cache Tags

The cache tags are directly readabie and writable in control space. Write cycles must be
performed with 32-bit accesses only. Other widths during writes will cause a Size Error
Memory Exception because the S4-Cache chip includes a byte packing register that
demuitiplexes the 8-bit 10D bus up to the 32-bit cache tag bus. and it can only operate
four bytes at at time. The cache tags are not initialized in hardware, and so zeroes must
be written to aill CT_V bits before the cache is enabled. Cache tag direct reads make use
of the standard byte-packing feature of the S4 chip set described earlier. The following
diagram shows the operation of the cache tag byte packing register in the S4-Cache chip
on a cache tag direct write:

a1 [40 3
r |
The format of the cache tags is as follows:
D(31:26) Unused
D(25:22) CT_C(3:0) Cache Tag Context bits
D(21) CT_WA Write Allowed
D(20) CT_S Supervisor-only access protection bit
D(19) CcT v Cache Tag Valid
D{18:16) Unused
D(15:2) CT_A(29:16) Virtual address bits A(29:16)

S4-Cache 7/18/88

Sun Confidentiat Page 27

S4-Cache

Preliminary

Timing Specifications

Qutput Delays

Conditions: VCC=4.75 to 5.25V, TA=0 to +70C, Output Load=15 pF

Symbol From To min max unit
t1 clk high cik high 50 — ns
2 ckk iu o 4.4 ns
t3 clk iu_aoe_ 17.8 ns
t4 clk iu_mds_ : 171 ns
t5 ook iu_mexc_ 17.4 ns
t6 ck . iu_mhold_ 16.3 ns
t7 clk sb_a (untransl.) 41.8 ns
18 clk sb_a (seg. map) 30.3 ns
.19 clk sb_ack32_ 24.4 ns
t10 clk sb_ack8_ 24.4 ns
t11 clk sb_as_ 27.7 ns
t12 cik sb_bg_ 19.8 ns
t13 clk sb_err_ : 26.1 ns
t14 clk sb_merr_ 24.7 ns
. t15 clk sb_rd 29.1 ns
t16 clk sb_reset_ 23.0 ns
17 clk sb_siz 36.9 ns
t18 clk car_en_ 16.7 as
t19 ck cd_oe_ 22.0 ns
t20 sb_rd_ cd_oe_ 16.1 ns
t21 iu_rd_ cd_oe_ 11.8 as
122 clk cdwe_en_ 15.6 ns
t23 cik ct a 33.7 ns
t24 clk ct_c 24.9 ns
125 ck ct_s 24.7 ns
t26 clk ct_v 24.8 ns
127 sb_rd ct_v 12.5 ns
128 cik ct_wa 24.7 as
129 clk ct 16.0 ns
t30 clk Ctwe_en_ 18.2 ns
t31 clk devspc_ 16.8 ns
132 clk io_d 74.5 ns
t33 sb_a io_d ' 41.0 ns
134 cik user_ 17.1 ns
135 clk wb_ce_ 16.0 ns
136 clk wb_oe_ 16.4 ns -

S4-Cache 7/18/88 Sun Confidential Page 29

Change History

2/1/88

Sunray support—

Hardware Cache Consistency—
SB8_ACK @ State 4—

Cache filling—

Cache Hit definition—
Context Flush criteria—
Table of Contents—
Timing Specifications-——

7/18/88

Cleaned up errors everywhere....

Timing—

Reruns—
Cache Hits—
Cache Flushing—

Bus Error Registers——
Cache Data—

Errata

7/18/88

DMA Timeouts:

S4-Cache

Preliminary

Removed.

Removed.

Removed restriction of no ACKs before state 5.
Removed restriction to Type 0 Space. Added
requirement of IMMU_X.

Added term for write hits.

Fixed bug in CT_S polarity.

Added.

Added a few.

Added many new timing specs.

Used post-route timings.

SB_AS_ is negated one clock later than prev. spec.
Changed definition of cache hit on page 19.
Removed notes about fiushes before changing MMU.
Modified timing diagrams; U_SHOLD_ for 2 clocks.
Added SER, SEVAR, AER, AEVAR definitions.
Added restriction: no write after control space read.

Timeouts that terminate DMA cycles will cause the TO_ERR bit in the Synchronous Error

Register will be set incorrectly.

‘

S4-Cache 7/18/88

Sun Confidential Page 31

S4-Buffer

Prefiminary

Features

* Generates and checks parity on main memory accesses

* Performs buffered write cycles in conjunction with the S4-Cache chip

* Muttiplexes 32-bit iU data bus down to 8-bit 10 data bus on write cvcles

* Demuitiplexes and latches 8-bit 10 data bus up to 32-bit {U data bus on read cycles
* Contains byte-packing registers for dynamically sized reads from SchoolBus data bus
* Contains Sun—4 Parity Control Register

* Contains 7-bit open-drain general purpose VO register (PIO)

* Forces No Op on memory exceptions

u_d(31:0) sb_d(31:0)
wb_clk
wb_oe_
par_en_ par(3:0)
sb_err_
par_cs_
lod(7:0)
sb_rd
iod_en_ .
iu_mexc_
pio(6:0)
pio_sel_

S4-Butfer 7/21/88 Sun Confidential Page 1

S4-Buffer
Prefiminary

IBUFN input buffer, CMOS, inverting

IBUFNU Input buffer, CMOS, inverting. internal pullup

TLCHT input buffer. TTL, non-inverting

TLCHTN Input buffer, TTL, inverting

BO#TRU Bidirectional buffer, TTL input levels, # indicates output drive, internal pullup
8T# Tri-statable output butfer, CMOS, # indicates output drive current.

B8DATOD Open drain buffer, TTL. non-inverting.

S4-Buffer 7/21/88 Sun Conlidential Page 3

Port Location

follows:
sb_d(31:24) | sb_d(23:16) | sb_d(i5:8) sb_d(7:0)
8-bit port
16-bit port
32-bit port
SB_D Read Data Latching
w_o S8 D
a0
. lu_d(31:24) |- sb____d(31:24)
&-8it u_d(23:16) |=—— sb_d(23:16)
Port e) -2 otk
Ack. u_d(15:8) | sb_d(15:8)
=l - —
{ Ww_d(7:0) - sb_d(7:0)
tu_d(31:16) = sb_d(31:16)
16-Bit i
Port
Ack. -
i_d(15:0) sb_d(15:0)

S4-Buffer 7/21/88

-

Sun Confidential

Page 5

Parity Checking

Parity is checked on read cycles during which PAR_EN_ is active and the Parity Check bit
is set in the Parity Control Register (See below for a description of the Parity Control
Register). Perity errors are reported by asserting SB_ERR_ for one clock period. and
setting the bits in the parity control register corresponding to the bytes in which parity
errors were detected. SB_ERR_ will cause the S4-Cache chip to essert IU_MEXC_,
causing the iU to take a memory exception trap. Parity checking is even, meaning a byte-
of ones requires a zero parity bit, somatadamandparuybusﬂoaﬁnghnghmucausaa
parity error.

Parity errors are repocted on U cycles by a one—clock low puise on the SB_ERR_ sagnal.
two clocks after SB_ACK32_, asshownhu\efonowmg diagram:

clk 1] [| [| 1] 1] |]

iu_shold_,

sb_ack32_

sb_err_

Parity errors are reported on DVMA cycles by & one-clock low puise on the SB_ERR_
signal, one clock after SB_ACK32_, as shown in the following diagram. Note that on DVMA
cycles, this SB_ERR_ signal could occur after SB_BG_ has been asserted to another
device, so that device must take care not to react.

ok L] i] 1 | 1] | J |]
sb_bg_

sb_ack32_ | B

sb_err_ e— —

S4-Buffer 7/21/88 Sun Confidential Page 7

-

The system bus controller implements dynamic bus sizing for CPU cycies. This function is
performed through the joint efforts of the S4-Cache and the S4-Butfer.Taking the desired
transfer width and the port size into account, the bus controlier packs data from narrower
ports up to the desired width by performing several bus cycles. This byte packing is
performed only for CPU cycles, not for DMA cycies. The cycies appear as separate cycles
indistinguishable from cycles that don’t involve byte packing.

Transfer Size Port Size Controller Response
1-Byte Any Single BYTE cycle
2-Byte 8-bit Two BYTE cycles

- 16-bit One HALF cycle

® 32-bit One HALF cycle
4-Byte 8-bit Four BYTE cycles
, " © 16-bit Two HALF cycles
® 32-bit One WORD cycle

S4-Buffer 7/21/88

-

Sun Confidential

Page 9

S4-Buffer

Preliminary

Parity Control Register

The Parity Control Register provides facilities for onatircnq and reporting parity erors and
for testing the parity generation and checking logic. &t Is a 32-bit read/write register,
cleared on SB_RESET_, accessible 8 bits at a time over the 100 bus. it has the following
fields:

D(31:8) Reserved Read as zero

D@ Parity Error Set on any parity error

D(6) Second Error Set i D(7) is set and new error occurs
D(5) Parity Test Set to write parity with the inverse pofarity

to test the operation of the parity error
circuitry. With Parity Test off, correct
parity is generated on all memory write

_cycles.
D(4) Parity Check Enables parity checking
D(3) Parity Error 24 Records parity error on data bits 31:24
D(2) Parity Error 16 Records parity error on data bits 23:16
D(1) Parity Error 08 Records parity error on data bits 15:8
D(0) Parity Error 00 Records parity error on data bits 7:0

Note that the Error Bits D(7. 6. 3:0) are not writable. They are set by errors and reset
automatically when read back.

Parity Control Register Read

sb_rd |

pares. < EA

iod_en_

* sb_ack8_

iod(7:0)

* sb_ack8_ is generated by the MMU on Parity Control Register accesses.

S4-Buffer 7/21/88 Sun Confidential Page 11

S4-Buffer

Preliminary

Timing Specifications

Conditions: VCC=4.75 to 5.25V, TA=0 to +70C, Output Load=100 pF

Symbai From To , min max unit
t xclk high xclk high 40 — ns
t clk iu_d 10.5 23.5 ns
t cik sb_d 18 27 ns
t clk par 23 34.5 ns
t clk pio 12 21.8 ns
t ck lod 8 31.5 ns
t ck sb_merr_ 16 23.5 ns
t iumexc iu_d 6.5 12 ns
t wb_oe_ sb_d 8.5 21 ns

Setup time for all signals is 15 ns. Hold time for all signais is 3 ns.

S4-Bufier 7/21/88 Sun Confidential Page 13

-

Features

@ Provides decodes and timing strobes for al! Sun-4 Type 1 devices

@ Replaces all MMU read/write buffers

©® Automatically undates MMU statistics bits during bus cycies

@ Prioritizes 15 levels of Interrupts

@ Sun—4 interrupt register provides software interrupts, interrupt enable
@ 4-bit context register provides switchable MMU contexts

@ Two counters generate high—resolution periodic interrupts

sb_a(29:18)

e b §

slasl="a

Qenes

iu_irl(3:0)

i0d(7:0)

sb_a(17:12)

S4-MMU 7/19/88 Sun Configential

Dann 1

Functional Description

Device Space and Control Space

The SPARC address space identifiers are divided into

foliowing table:

ASI Function Space
0-1 | Reserved
iU Extensions Control
Segment Map Control
Page Map Control
5-7 | Reserved
8 User Instruction Device
Supervisor Instr. Device
A User Data Device
B Supervisor Data Device
C~F { Reserved

two “spaces” according to the

The signal DEVSPC_ chooses between device space and control space address maps.
Device space devices are accessad with physical addresses provided by the MMU, while
control space devices are accessed with virtual addresses provided by the SPARC

processor.
Control Space
CTL(2:0) Encoding (Control Space Address Map)
cti(2:0) Device
0 Device on S4-Cache Chip
1 Reserved for VME IACK
2 Context Register *
3 Diagnostic Register (unused)
4 Serial Controller Chip (MMU Bypass)
5 Segment Map ‘
6 Page Map
7 EPROM (Boot Cycle. Supv. Instr. Fetch)
* - Context reg access requires AQ low.

in Device Space (DEVSPC_ low) the ctl(0) input is used as an invalidation input for any
cycle from the cache chip. It is used when the cache chip determines an illegal wirtual
address (a(31:28) not all ones or all zeroes) which the MMU cannot detect, to inhit

S4-MMU 7/19/88 Sun Configential

Page 2

though the PMEG(7:0) bus. The foilbwing diagram shows a Segment‘ Map write cycle:

1 g 8
clk i i i l i I" |] 1 |
| |
as_ | | | I |
| |
devspc . f
| |
ct(2:0) -]
{ |
sb_rd 1 f
|
sb_acks_ S R -
| |
pm_wr(3:0)_ - |
| |
sm_wr_ Ll |

* Note that only one of these signals is asserted at a time.

Page Map

The page map is the second level of the two—level MMU. and contains 8k or 16k page map
entries each mapping an 4 Kbyte page. It is indexed by the 7/8-bit PMEG provided by the
segment map concatenated with virtual address bits SB_A(17:12). The page map bit
definition is as follows:

Bit Type Description
31 \' valid bit, implies read access
30 w write allowed protection bit
29 S * supervisor only protection bit
28 X don't cache bit
27:26 | MMU_TYP(1:0) 0 => main memory

" 1 => input/output space

2.3 => reserved for VMEbus

25 A accessed (statistic bit)
24 M madified (statistic bit)
é3 116 none reserved
15:0 page physical page number

S4-MMU 7/19/88

Sun Confidential

Page 5

Device Space Address Map

‘mmu_typ(1:0) pa device
28:26)
0 0XX RAMSEL (main RAM)
[31:20} *
~ FOX Keyboard/Mouse
F1X Serial Controller Chip
F2X TOD Cik, NVRAM
F3X Counter Registers
F4X ity Ctrl/Aux
F§X Interrupt Register
1 F73 Audio DAC
*‘FEJ 4. Aux Out Register Video Onboard
F9 X" Bus
E g))g Video Onboard
’ FCX SchoolBus Siot 1 mmlmm-cgu;;v“
FOX 1 acoesses and 0's on
FEX SchoolBus Slot 2 Troe'B accuesns.
 FEX
alf Unused
3 all Unused

Main RAM-- Statistics Update Cycles

The operating system requires certain information about the read/write history of each
page mapped into main memory. The S4-MMU chip maintains this information in the
MMU_A and MMU_M bits, automatically updating them on any reads or writes of main
memory. A statistics update cycle is shown below:

9 K} (X A
csz'—I [L 1 1 |
| |
as_ Ll
I |
devspC] |)
[|
mmu_m H i et high for write cycksx-
| |
pm_wr(2)_ Lt 3

Because the PM_WR_ signals will be asserted in Cycle 3 and negated in Cycle 5.
addresses must remain stable to the MMU RAMs throughout Cycle 5; the earliest they méy
change is Cycle 6. Statistics bits are tri-stated in Cycle 6 No data collision occurs because
the addresses do not change; we are reading the data we wrote.

-

S4-MMU 7/19/88

Sun Confidential

Interrupt Register

The interrupt Register provides for software generation of interrupts and allows the CPU to
disable all interrupts or only certain ones. it is cieared on SB_RESET_, and has the
following fields:

31 30 29 28 27 26 25 24
Enable Enabile Enable Software | Software | Software Enable
L::ol Reserved L:;" L‘:" interrupt lfltwt Interrupt | interrupts
interrupts lnterrupts | Interrupts [3 & L','d C;gars Le?l

All IRQ(13:1)_ signals may be asynchronous to the system clock.

Software interrupts may be generated on levels 6, 4 and 1 by writing a 1 into bits 27, 26,
or 25 when interrupts are enabled (bit 24 high).

Level 18 lntarrupt‘ requests are captured on a clock edge and held asserted to the CPU
until bit 0 of the Interrupt Register is cleared.

Note that writing a zero to the Enable bits in the Interrupt Register only masks out that
level's interrupt it does not clear the source (with the exception of Leve! 15 requests). This
is different from the Sun-4 Architecture, in that the periodic interrupts at Levels 10 and 14
must be cleared by accessing their respective Limit registers.

Level-Sensitive Interrupts:

ok l] 1] L] l i | I | 1 [
i l | |
irq(level)_ 1 ! I
| [
ir|(3:0)_ 1 encoded priority i 1

Interrupting Devices (assumed system configuration):

int Level Device

15 Butfered Write Timeout Error

14 Clock Interrupt 14 from Counter 1
13 Bus IRQ13

12 Keyboard/Mouse Serial Ports

11 8us IRQ11 Floppy

i Clock interrupt 10 from Counter 0
Bus IRQ9

Video

Bus IRQ7

SWIRQS6 Ethemet

Bus IRQS

SWIRQ SCSI DMA

Bus IRQ3

Unused

SWIRQ1 Bus IRQ1

“NWHUNO W

EPROM

S4-MMU*7/19/88 Sun Configential Page ¢

i

Both Counters are separately writaable for testing purposes. They should not be written in
normal operation. Because of the 8-bit interface unpredictable carrys could occur.

Auxiliary Output Registers

An additional read/write strobe has been added for a set of Auxiliary Output Registers
located in Type 1 Device space beginning at F7400000.

DAC Write and Transfer strobes

The DAC_WR_ and DAC_XFER_ signals are somewhat overloaded. In the power-up
mode, they are used to access an external double-buffered DAC. The DAC_WR_ signal is
asserted when the cpu attempts to write to the audio DAC address range. it is a slow
device, inserting 7 waitstates, ke the SCC’s. The DAC_XFER_ signal is asserted when
counter 1 hits its 4imit register value, transferring the holding register data into the DAC
internal register. it is asserted for 6 clocks or until the interrupt source (Limit 1) is
removed, whichever comes first. .

When the internal DAC is enabled (see below) the DAC_WR_ pin becomes the DAC2
output. The DAC_XFER_ pin becomes the PWM output. varying in duty-cycle between
0-511 ClKs out of §12.

In addition, the DAC_WR_ signal is asserted for both reads and writes at location
OxF7PO00X. This is used as an S4-VME chip select signal.

Internal PWM DAC

Two 8-bit Puise-Width Modulation DACs are implemented, operating off of the 40/50 nSec
CLK input. When enabled, this DAC outputs replace the DAC_WR_ and DAC_XFER_
output pins. It responds to the same address space as the external DAC, only faster: Type
1 Device Space. $F7300000.

The output of the PWM DAC is a square wave with a duty cycle between 0 and just under
100%. When the DAC data register is programmed with 0's, the output is never high.
When it is programmed with $0080 (least-significant bit of 9-bit DAC set), the output is
high for one clock every 512. When it is programmed with $FF80 the output is high 511 out
of every 512 clocks.)

DAC
XFER] PWM DAC
Block Diagram
Hold DAC
Data Reg Reg B
I Compare

Dac
Write A<gl Dac Output

Ctr A
40/50
nsec > ¢ Dac Sync
Clock

S4-MMUY 7/19/88 Sun Configennal Page 11

Functional Timing Diagrams

Keyboard/Mouse or SCC Read

1 |

P I 1

oy —
cor —
Kkbm_rd_ "—"'; }_"'
e, — T —
sb_acks_ l\._} N—
iod_en_ _"__: | Jl'_

pronl mmn guall a——

S4-mmMy 7]1 3/88

Sun Confidential

Page 13

-‘A b_ack

l
as_ | 1
|
sb_rd | ——
|
devspd ' ——
|
: | |
ramsel_
sb_sel_ 1
iosel_—l l T I
sb_ack(32.8) l —_— [
iod_en_ 1 f

losel_, ramsel_ and sb_sel_ are NOT referenced to any cik #dge.
Note: SB_ACKS_ is generated by these slave devices, not by the S4-MMU chip.

SBus, RAM, or IOSEL Write

« Ly A
I wait for sb_ackB_ I

as 1 J [

sb_rd] [

sb_sel . = |

ramsel_ |

iosel_ 1 J

sb_ack(32.8) _ ~—
Note that sb_ack([8.32]_ or sb_err_ sampled by the mmu terminates the select. i
Note: SB_ACKSE_ is generated by these slave devices. not by the S4-MMU chip

S4-MMU 7/19/88

Sun Confidential

Page 15

Timing Specifications and Diagrams

Tn Description m max

1 iu_clk cycle time 40

12 Sstup time, as_ signals before cik 3

t3 Hold time, as_ signals after clk 15

t4 Hold time, Class—1 signals after ctk 0

t5 Setup time, Class-1 signals before clk 15

t6 Delay Class-2 to x-sel_ negated 22

t7 Delay Class-2 to x-sel_ asserted 23

18 Synchronous output delay 22
O—>

iu_clk \ |

I

< <—()—>
Class-1 W

Sync-outputs D(

Class-2

x-sel_

D 09,099 9
@ € Ko
4 \

Class-1 signals are: io_a[3:0], cti[2:0]. devspc_, sb_rd, user_, pmeg(7:0] (in),
paf27:12] (in}. mmu_[vwsxam] (in), mmu_typ{1:0] (in). These signals are used
synchronously in this case. ’

Class-2 signals are: pa[27:12] (in)., mmu_[vwsxam] (in), mmu_typ{1:0] (in), cti[1:0].

devspc_, sb_rd, user_. These signals are used asynchronously in this case, affecting
outputs sb_sel[3:0]_ and ramsei_.

S4-MMU+7/19/88 Sun Confidential Page 17

t1 clk cycle 40 _ ns

t2 as_ setup to clk 15
3 - as_ hold from clk 2 1
Notes:

1. This timinig specification does not meet the ideal requirements for 25 MHz system
operation.

~ NOTE: I0_DEN_ is asserted only on READS. {t is assumed that all write cycles drive the
iod bus.

Change History

12/15 tw Config register is gone.
Counter/Timer is 30 bits. Added Interrupt_Occurred bit.
Diag register and bit added.

12/17 tw Added sb_ack32_, made sb_ack8 and sb_err BD4's.
Statistics updates tristate in Cycle 6.

12718 tw Modified Counter/Timer to freerun on reset.
Moved DACWR, Ctr, Limit, Fioppy to EQ1-4.

12/18 tw Two Counter/Limit register sets, dedicated at Int levels 10 and 14.
Deleted IRQ inputs 10 and 14.
Deleted PARA output, multiplexed with od_ input in test mode.
Diag is now a BT8.
Added one more SB_SEL_ signal, deleted vctl_cs and vramsel.
Deleted DMA Starvation timeout, deleted SB_BG pins.
Added A2 and 3. gathered Counters and Limit registers in one page.
12/21 tw DAC_WR Gone. It's now in the Video chip.
Counter starts at 1.
12/22 tw ramsel, vramsel (sbsell) are now combinatorial.
All inputs are ttl levels.
12/29 tw PAR_EN_ signal removed. S4-Buffer will use RAMSEL _ instead.
1/5/88 tw RAMSEL is now all of Typel Device Space.
1/14/88 tw DIAG changed to AUX_WR_. IOSEL changed slightty.
1/21 tw Added Limit bit to Counter, Moved Counter to EF. Moved SB Slots to
Type 0 Space.
1727 tw TOD is now just a CS_. Added DAC_XFER to allow for double-buffered DAC.
1729 tw SB_SELn_ are now all asynchronous.
2/8 tw Removed SB_ACK32_ and SB_ERR_.
2/23 tw Added DMA_ pin and description.
2/29 tw Fixed mmu ram write pulse in Pg 4 diagram.

3/8 tw Added internal pwm dac. IODEN_ documented.
3715 w 4k pages. Changed memory map.
4/7 w iosel_ asynchronous. VME select address removed due to lack of use.

4/18 tw Leve! 15 interrupts captured and held. Cleared by turning off all interrupts .-
1419 tw Changed Device Address Map to remove reference 10 onboard video.
4/26 tw Video is back. Ignore previous change.

-

S4-MMU 7/19/88 Sun Configential Page 19

Features

* Single chip interface between Ethernet (LANCE)}, SCSI (ESP) and Sbus
* Handles 32 bit packing and unpacking

* Generic support for 8 bit peripherals

* Supports externally programmable Sbus ID

* Low cost 120PFP package

&
o.

(31:0)

(7]
o
g.

88
RE

%‘6‘-
1

888
%38
al

&
a

28
AR

od_/par_tst_
fast/slow_

S4-DMA 7/26/88 Sun Confidenual

1.0 Pin Description

Name Type Description

Bus interface St

sb_d(31:0) B8D4TU Sbus Data Bus

sb_br_ BT4 | Sbus Bus Request

sb_bg_ TLCHTU Sbus Bus Grant

sb_sack32_ ' BD4TNU Sbus 32bit Acknowledge
sb_ack8_ BD4TNU Sbus 8bit Acknowledge
sb_reset_ TLCHTU Sbus Reset

sb_erm_ BD4TNU Sbus Error

sb_merr__ TLCHTU Sbus Memory Error (INT15)
sb_cik ‘DRVC16 Sbus Clock input

sb_rd 804TU Sbus Read/Write_

sb_sel_ TLCHTU Sbus Select

sb_irq_ BD4TOD Interrupt Request (open—drain)
sb_siz(2:0) BD4TU Sbus transfer Size

sb_as_ TLCHTU Address strobe (addr is valid)
pa(Xx:y) TLCHTU Physical Address lines (for slave decodes)
pa(3:1) TLCHTUY Physical Address bits

Ethermet intarface 32

e_as_ TLCHTD Ethemnet Address Strobe

e_hold_ TLCHTU Ethernet Hold

e_hida_ BT4 Ethernet Hold Acknowledge

e_read BD4TU Ethernet Read

e_das_ BD4TU Ethemet Data Strobe

e_rdy_ 8D4TU Ethernet Ready

e_CS_ 8T4 Ethemnet Chip Select

e_byte TLCHTU Ethernet Byte marker

o_a23:16 TLCHTD Ethernet High Order Address

e_ad15:0 eoaty Ethemet Address / Data Bus

OMA (nterface 16

d_d7:0 804TD OMA Data Bus

d_req TLCHT- DMA Request

d_ack_ 8T4 DMA Acknowledge

d_rd_ BT4 OMA Read Strobe. (reg read or dma to memory).
d_wr_ 874 OMA Write Strobe. (reg write or dma from memory).
d_cs_ 8T4 DMA Chip Select for stave register access.
d_irq_ TLCHTU DMA Interrupt Request -
d_reset BT4 DMA Reset

S4-DMA 7/26/88 Sun Confidential Page

1.1 BLOCK DIAGRAM

The S4-DMA gatearray provides three independent functions;

1. Sbus identification
2. Ethernet Interface to the Sbus
3. Sbus OMA Channel
NVA_OUT_E < soopess 'SB_PA(...)
MREQ_E
32 LANCE - DECODE 7
g—pi—p| WINTERFACE DATA_OUT_E :
’ DATA IN
BR_
-
SBUS
| p ARBITRATION
BG_
—> —
MISC
ey s
14
MREQ_D
16 %MTQRFAC‘E
P (8-BM) NVA_OUT_ D \ 4
" | oataout c L MUX _DBUS
> e
CSR
ADDR_CNT > h
! BYTE ONT > 2
g DATA IN
Q
<

S4-DMA 7/26788 Sun Confidenual

Page

<

During Slave Cycles the S4-DMA takes control of the sb_err, sb_ack8_ and sb_ack32_, signals. The
combination of responses are as follows;

sb_ackB_ | sb_ack3d2_ | sb em_ Definition
1 g 1 insert wait states .-
1 1 0 Eu'or.
1 o 1 32-bit port ack .
1 0 0 Error
0 1 (] Rerun ..
o 0 1 16-bit port ack
o 1 1 8-bit port ack
0 0 0 Reserved

This table represents afl possible SBus responses. The S4-DMA gate-array can, however, only
generate those responses marked with a *°.

3.0 Sbus ldentification

i

This is a mechanism which allows software to uniquely identify each Sbus device, since each device
can have a unique [D.

Unique ID's will be provided by Sun. The onboard id is hardwired to the 32-bit value fe810101. This
value will be returned when the D field is accessed by the IU (and the -id_cs_ pin is tied low). If the
id_cs_ pin is pulled high then access to the ID field will cause an external access using the id_cs_ pin
as a external chip select. Refer to S4 Software Architecture Specification for further details.

S4-DMA 7/26/88 Sun Confidential Page ~

Zb::d; pa(x:y) io_a(1) Register accessed - Size Type
0 11 Y Register Data Port (RDP) 16-bit W
0 11 1 Register Address Port (RAP) | 16-bit RIW

Once the S4-DMA has granted access of it's local bus to the LANCE, the CPU cannot access the
LANCE unti!l the pending cycles are completed. In order to remove the potential deadiock condition
which resuits, the S4-DMA will cause a rerun according to the table on page 7.

4.1 Ethernet Interface Block Diagram

4

¢

Control
D(31:0) T
A A l |
VA(31:00)
A (31:0) 31:16
15.00
VA(31:24) { g Ethemet Interface
(FF) State Machine
A
VA(23:00)
Y A 4
Ethemnet Ethemet Data
Address Latch Pack/Unpack
t e_hlda
e_Cs_
i Sync
e_as_ l
l e _read
e_hold_ eTrdy_
_az3:16 e_ad15:0 e byte W e_das_

S4-DMA 7/26v88

Sun Confidental

Page ¢

5.1 DMA Interface Block Diagram

Control
VA(31:00)
D(31:00)
A A A l
31:00)
‘ DMA
INTERFACE
STATE
DMA ADDRESS MACHINE
(31:00)
v v (31:00)
31:24
eve count || OMA sTATUS/ [31:24)
CONTROL REG SYNG
!7 7y
. 4
DATA i7
PACK/UNPACK
REG
d_irq_ A 4
T d_cs_
d_ack
v [y d_rd_
d_reset d_wr_
¥ d_req
d_d7:0

S4-DMA 7/26/88 Sun Confidental Page 1}

5.3 DMA Control/Status Register Assignments (DMA_CSR)

8it Mnemonic Description Type
0 INTPEND | Set when d_irq_ or TC asserted. Reset when not R
PEND Set when mem. exc occurred DMA stopped
1 ERR Reset on FLUSH command R
3:2 PAG(=G~IT Number of bytes in Pack Register R
4 INT_EN When set enables d_irq_ state onto sb_irq_ RW
5 FLUSH When set causes PACK_CNT, ERR_PEND and TC w
. to be reset. Reads as 0
6 DRAIN , When set causes remaining pack register bits
) to be drained to memory. PACK_CNT = 00 RIW
Clears itself
RESET ° When set acts as a hardware reset. RW
WRITE DMA direction; 1= to memory 0 = from memory RW
When set allows the device to respond to
9 EN_DMA DMA device requests W
- When set the DMA i/f is active.
10 REQ_PEND DO NOT assert RESET or FLUSH R
12:11 BYTE_ADDR Next byte number to be accessed. R
When set enables the internal byte counter.
13 | ENCNT (not used with the ESP SCS! chip) RIW
14 - T1c *° Terminal Count. Byte counter has expired R
tee When set this bit instructs the ethernet interface
15 LACC to_act slightly differently — see note below Rw
27:14 —— Reserved (all unused bits to read as Q) R
31:28 DEV_D Device ID (for this implementation = 1000) R
¥
* RESET

POWER_ON RESET or RESET from bit 7 will leave the device in the following state;
ERR_PEND = PACK_CNT = INT_EN = FLUSH = DRAIN = WRITE = EN_DMA = REQ_PEND = EN_CNT = TC =
0. RESET = 1, and BYTE_ADOR = 00. Aii interface state-machines will revert to their idle states

S4-DMA 7/26/88 Sun Confidenual! Page 1}

S4-DMA

5.6 Prbgramming Notes

The address counter always points at the next memory location to be accessed. When the direction of
transfer is to memory the counter is incremented by the size of the write (1 or 4) upon completion of
the transfer. When the direction of transfer Is from memory the address is always incremented by 4,
but the lower 2 bits are driven low such that all readsarewo:dsczedandwordaligned Byte alignment
is done inside the gate-array.

There is a 2-bit byte counter BYTE_ADDR that always points to the next byte location that the DMA
device will access. This counter is incremented by 1 each time a byte is transferred between the
external device and the gate-array. Note the byte counter is controlled by the DMA interface whereas
the address counter is,controlled by the memory interface, hence the two may disagree. This byte
eomterisloadedatmqsamet&nemeaddresslsloadedandreeeivesmetwcleastsngmﬁcambasof
the address.

- Another 2-bit counter PACK_CNT keeps track of how many bytes are stored in the internal PACK

register. Note this pack count is only valid for transfers to memory. Whenever the PACK_CNT= 3 and
another byte is accepted, a word write is scheduled with the memory interface. If a DMA transfer
completes leaving a non-word fragment in the PACK register, then this counter is used by the hard-
ware to determine how many bytes to write to memory when the DRAIN command is received. Both
PACK_CNT and BYTE_ADOR can be read in the Control and Status Register (DMA_CSR).

#f the driver desires to terminate a transfer, two control bits in the DMA_CSR can be used. The
EN_DMA bit can be used to ignore new transfer requests from the DMA device when it is cleared.
Memory accesses by the memory interface are unaffected by this bit. Th EN_DMA bit can be set or
cleared at any time without affecting the state of a transfer currently in progress. The FLUSH bit is
provided to clear the PACK_CNT if the driver wishes to clean up the state of a transfer, without draining
the packed data to memory. It is also used to clear the ERR_PEND indicator, allowing an error condi-
tion, which subsequently haits the DMA interface state machine, to be cleared cleanly.

Th DRAIN bit will cause afll packed data to be sent to memory. This is intended for use when a transfer
completes and the data for transfer to memory does not fill the 32 bit word. It can also be used to
leave a transfer in a clean state if a transfer is stopped via the EN_DMA bit, which may be restarted
later. A DRAIN sequence wilt leave the address counter pointing to the byte address beyond the last
byte or word written. Hence the address counter must be reloaded before the next transfer to property
set the BYTE_ADDR.

The DMA_CSR aiso contains a RESET bit which will generate an external reset signal and reset all DMA
interface logic (state machines). It is vital the RESET and/or FLUSH bits are not set if any memory
activity is still pending: a REQ_PEND bit is provided in the DMA_CSR to show the driver if the memory
interface is active. if REQ_PEND is asserted the driver should poll it until it is deasserted. Simuarly
writing to the Address Counter. changing the WRITE bit in the DMA_CSR. or writing the Byte Counter

S4-DMA 7/26/88 Sun Confidental Page !¢

~

| i ﬂ! 1
sb_br_ \ { { I { {
| | { {
e 'y
$D_ I T [
' SBus DMA READ Cycle .
{ { ((-
l i ' —
sb_d(31:0) —|_,‘C\;E qn_:)
(read) { i ’I {
sb_siz(2:0) —:—-—:—{l D
{ i
{ l i {
sb_rd 4 —/ | {
. I
sb_ack32_ + f 1 __/—:_\
{ { { {
sb_merr_ | | l { —/ . ‘
| { i i parity error indicator
L !
sb_d(31:0) —l-—:—(__‘IA_)(D_ D,
(write) |
Sb_fd : - L’ ‘ | /
! | l ! i
Lo ! SBus DMA Write Cycle

For further possible SBus cycles see the SBus specification

S4-DMA 7/26/88 Sun Confidential Page

-

sb_clk

ZE IR SR

(]
R R K X e S

(@

opconorxery
SRR KRR 3

e_read -;-,4-

e_adis.

3

o_az3:16 L2222

{
1
l

. | .
| 1
3 |

e_rdy_ |

(1] e_hida_is only

N
v TERETT v vy S A A S PR e 3 N e o Tt G . S AN ot Lo el g7
TR R T T R L R O R N R

A

-—h XN XX T IR

asserted when the interface is not busy

[2] e_hold_ will stay asserted for burst mode accesses e_hida_ must follow it

Ethernet: LANCE DMA read cycle

{ DATA avallable in PACK Reg)

S4-DMA 7/26/88

-

Sun Confidential Page 19

DMA Read Cycle ffast cycte]

(DATA avallable in UNPACK Register)
'READ’ Indicates transfer from memory to DMA device
When UNPACK reg is empty a memory read must occur which will subsequently lengthen
this operation (see SBus READ Cycle)

DMA Write Cycle (fast cycle]

"Write * indicates transfer is from DMA device to memory

S4-DMA 7/26/88 Sun Confidential ’ Page 21

S L R

sb_sel_ = . v/
&sb_es_ I I
ot X AT T RZ27777777773

{

D L P =L
e 1 : T —
d_rd_ : A o | | 6—’ .

' I 1 1
aar0 7777 7/7/77/’7)%\ L
{

sb_ack32_ ' \ l /

Offboard ID read cycle st cyce)

d_req >
d_ack_|=
drd_ |
d_wr_ =
d_cs_ |=

d_irq_ -

S4_DMA
ESP -
d_d7:0 '< >
‘lo_a(5:0)

ot

=

id_cs_

S4-DMA 7/26/88 Sun Confidential Page 23

-
]
j

1 H i i { ! i i l . !
sb_sel_ i\ LN R . s 1o A
& sb_as { -:\!\ . bt A Lo
et X —" v T X777
o B — “" ! =
d_rd 1 /‘qﬁ.\l oo \-;\
T Loy L L \ |
d_d7:0 (((((U : | SR
S ~
sb_ack32_) -/

Extended DMA device register read cycle (siow cycle]

sb_ckk
sb_sel '\~.L>—! ! ,
&sb_es_ D N
sb_a(31:0) X : : :
1
{
d_cs_ . I P
T
d_wr_ N~ | {
| { i
d_d7:0 f/[///fmi
sb_ack(32/8)_

Extended DMA device register write cycle (siow cycie]

S4-DMA 7/26/88 Sun Confidential . Page 2¢

Switching Characteristics

No. | SIGNAL DESCRIPTION conomons| min | max | units
1 oK clock period ' 30 ns
2 clock high ns
3 clock low . ns
4 | Note 1 hold wrt ck * o s
5| Note1 " setup to cik * 14.0 ns
61 Notet setup to ck * . 23.0 ns
71 Note1 hoid wrt ck * 5.0 ns
8] Note1 setup to clk * 135 | ns
9] Notet hold wrt ck * 0 ns
10| Note1 ¢k * to output valid ';gggf' 304 | ns
M1 Notet clk * to output invaid prooy 220 | ns
121 Note 1 ckk * to output velid %' 314 | ns
B1 Note cik * to output invelid o 19.7 | ns
41 noted cik = to output low ﬁ' 24 | o
15| Notet cik * t’o output high ','gagf 185 | "
; ns

ns

S4-DMA 7/26/88 Sun Confidential Page 2°

-

No. SIGNAL DESCRIPTION CONDITIONS min max | units
36 | e_ad[15:0] settup to clk * Noted 1.0 ns
37 | e_ad[15:0] hold wrt to cik = Noted ' 4.0 ns
3g | e_adl15:0] cik * to output valid 80pt 360 | ns
3g | e-edl15:0] ¢k * to output invalid 80pf _ 25 | ons
40 | e_hida_ ck * to output high 80pf 180 | ns
41| e _hida_ ck * t0 output low 80pf 215 | ns
42| eread | ok tooutput vaid 80pt 155 | ns
8| ¢ read cik * to output invalid 80pt 12 ns
441 o das_ ¢k * to output valid 80pf 23.0 | ns
45 e_das_ cik * to output invalid 80pf 18.5 ns
461 ey ok * to output vasid 80pf 230 | ™
7| e_rdy_ ¢k * to output invalid 80pf 17.5 | s
48 e_cs_ cik * to output high 80pf 155 | ™
49 e_cs_ clk “ to output low 80pf 20.0 ns
50 e_rdy_ settup to ¢k * : 0 ns
51 e_rdy_ hold wrt to ck * 2.8 | s
§2 | e_ad(15:0] ADOR settup to e_as_ low 15.0 ns
57| €2d(15:01 1 .poR noid wit e_as_ high 0 ns
54 | e_hold_ settup to clk 0 ns
85 e_hold_ hold wrt to clk ~ 4.0 ns

S4-DMA 7/26/88 Sun Coniidential Page 29

Timing Diagrams

sb_read

sb_dbus(31:0]

sb_siz2
sb_sizl
sb_siz0
sb_ack8_

sb_pa([X,Y,3,2,1]

sb_ack32_

sb_err

e,
sb_merr-

- 8 (e—

SBus Input Signals

S4-DMA 7/26/88

-

Sun Confidenual Page 3!

d_dbus(7:0}

d_dbus[7:0]

d_reset

|-

D_Bus Read/Write Cycle Timing (slow = high)

S4-DMA 7/26/88 Sun Confidential Page 3%

S ataWaalaialal
—»! 49 — 48 |wi—
e_cs_
' 43
e_read/write_
—»| 45 j.—
e_das_ } . ‘ { 51
—® 44 [-— —>| 50}e— >
e_rdy_ ‘ l\ i
—*1Notel |<+—
e_ad{15:0]
READ Ooss (Read DATA)——-———
— P
e_ad[15:0] Write DATA

Note1 Refer to LANCE timing specs

LANCE READ and WRITE Cycle Timing

S4-DMA 7/26/88 Sun Confidential Page *

Note1: These values represent the timing characteristics of groups of signals. By referring to the
Timing Diagrams it can be seen that one mnemonic value can represent many different signal paths.

Note2: These timing parameters are true for both the signals d_cs_ and id_cs_.

Note3: The documented values represent the timing of an external device (in this case the ESP
SCSI chip), to which this gate—array is matched by design.

Note4: The settup and hold times refer to the timing diagram on which they are shown, and in
particular to the clock edges shown. The e_ad bus is designed to be that of the LANCE Ethemet
controller. Internal to this chip the e_ad bus is not latched for at least 2 clock cycles to alleviate any

potential timing problems. Hence the Ons timing requirements shown are true only ¥ the cycle by
cycle handshaking specified by the LANCE is maintained.

8.0 Revision History

12122187 First Release.

2/11/88 Remove sb_address bus and muitiplex addr/data on sb_d bus.
Add SBus identification information.

3/28/88 Revised pinout. Corrected errors in register addressing. Added more info on
programming. Updated timing diagrams. Revised block diagrams. Added
register in MSbyte of ADDR_CNT. Revised operation of Terminal Count bit.

6/21/88 Added timing specs.

7/26/88 Included post_route timings

S4-DMA 7/26/88 Sun Confidential Page 37

-

‘Features .

* Singlé~chip video 'subsystem *' vt e el s
* Directly interfaces to_Sbus Interface ' ’

* Supports 256°4, 128K"8, and 64K*4 Video RAM -

* Supports 1-bit, 8~bit, amd 24-bit -per pixel frame buffers

* Fully programmable video timing and resolution

* Supports up to 4 video-clocks (software selectable)

Supports Sun Video Monitor sense lines (for auto configuration)

= Directly interfaces to VRAM and RAMDAC (no external components required)
* Built-in Video Shifter for-1-bit frame buffers (max:mum pixel ciock 100 MHz)
* Low—cost 120PFP package S

Celae e ey e et 5.

S4-Video 8-bit Frame Buffer Application

S4-Video 10/6/88

Sun Confidenual

Page 1

a0

vras(3:0)_.
voe_ |
vwe_

vsc

Mls‘c Pms

mode(3:0)
type | -
por

-!‘~.pa@:':'.&‘ PR AR RS

VRAM Interface .

TLCHTD
TLCHTD
TLCHNU
80D1TU

Video Muitiplexed Address .~
":Video Cas Enable. (Byte select) - .-
Video Ras Enable (Bank select) -
Video Write Enable ..

Video Shift Clock

memory mode and configuration
VRAM type: 0:256K," 1:1Mbit - S
Power On Reset. Clears control register -

~Parametric Test Output and.Qutput .Disable..

Device Number:
: Package Type:

" S4-Video 10/6/88

LMA9141

PFP120

(PAD:.1.18.. VDDG ‘)S"'S:'S,»lO:.ﬂ.)l'%.)v -

Sun Confidential

Page 3

Address Space Decodmg

I'hls section explams the %Videe regasters aﬂd décodmg On Reset. tne master control'
register is initialized to 0. All other registers are not mmc!.zed

Master Decoding (A23:22) .

When the S4-Video chip is selected. address. A(23:22) -define the master mode as follows:
Ox000000-0x3FFFFF ~ Sbus 1D

_-0x400000-0x7FFFFF. . Video Registers .

0xB800000-0xBFFFFF - - - Video RAM
. -0xCO0000-OxFFFFEE; . Reserved

LRI e e R e sl ey et ks c e Dl

-Sbus ID

The Sbus ID is either internal in the S4-Video chip or provided externally, as determined by the_
status of X_CS_ at the end of POR_. If X_CS_ is grounded externally, the ID will be provided
intermally and read as OxFEQ1010y, where (y) is MODE(3:0). If X_CS_ is not grounded externally

then the Sbus ID will be provided by an externai PROM that is selected by X_CS_. The PROM can
have a size up to 4 MBytes.

Video Registers

The video registers start at the four megabyte (0x460000) boundary and extend up to the 8
megabyte boundary. There are a total of 16 registers, inciuding the external DAC, which are
decoded with I0A(4:0).

Video RAM

The frame buffer is decoded at the eight megabyte boundary (0x800000) up to the twelve
megabyte boundary (0xCQ00Q0). It is up to software to map in only memory that is physically
present on the frame buffer.

Reserved

Accessing this area will return an ACK but cause no actions on the chip. This area can be used
to provide “dummy pages™ for software.

Interrupt

When enabled. Interrupt is asserted at the beginning of vertical blank. The interrupt is cleared by
writing to the (read-only) status register.

S4-Video 10/6/88 Sun Confidentiai Page 5

Video Register Description
DA_cselect .,., L. on B S .._"’,_‘.. ?j.“.“,;:‘,. P, ’ o i rvniim Az M

Accesses to these addresses are passed through to the external DAC for reading -_.and wri'ting'of 4
the DAC l’egistefs. . ‘ c. P JRCIEN L e e e memee o aes - . :

Master Control I_Régisier s

Bit . Function

7 - - Enables inferupts. When enabled, the-S4-Video chip. will generate.an interupt when

-5 the end of the end of theframe is reached (start of VBLANK)..The interupt is cleared
by reading the status register.

6 Video Enable. When set to 0, the blank output is constantly asserted independent of
_the internal counters. When set to 1, the VBLANK output follows what is
programmed into the timing registers.

5 Timing Enable/Slave Mode. When set to 0, the internal video timers are disabled and
the internal state-machine that controls the transfer cycles is triggered from the
external inputs XREQ and XCLR. When set to a 1, the video chip generates timing
based on the values programmed and drives the XREQ and XCLR pins as outputs.

4 Cursor Enable Register. When set to a 1, accesses to the frame buffer will cause a
buss error if the address is within the range of the two address values programmed
into the Cursor Start Address and the Cursor End Address Registers located at
0x400012 and 0x400013.

2:3 Oscillator Select. Selects one of the three Xl inputs as the source for the video
timing. Selecting input 4 (2:3 = Ox11) causes the video logic to stop.

0:1 Divider. Selects a divide by 1, 2, 3 or 4 of the selected Xl input.

Status Register

Bit Function
-7 Interupt Pending. An interupt was generated by the chip.

4:6 Monitor Sense. These three bits come directly from the three SNS inputs to the
S4-~Video chip. Usefull for determining the type of monitor connected then frame
buffer.

0:3 Memory Mode. These four pins come directly from the MODE inputs the S4-Videc

chip. Usefull for determining what type of memory the frame buffer uses.

S4-Video 10/6/88 Sun Contidential ‘ Page 7

,The VBSH regnstef contams the. hngh order bits of the hne number to start vemca! btankmg on.
"The vertiGal counter is a° 12 bit ‘counter which’ requires two'registers to program. ‘The fourteast
sngmf icant bits of VBSH are used with VBSL to form the 12 bit line count. The four high order bits
of VBSH are don't cares, and are read as zero.

VBSL

The VBSL register contains the low order bits of the line number to start vertical blanking o'n.. The
vertical counter is a 12 bit counter which requires two registers to program. The four least
significant bits of VBSH are used with VBSL to form the 12 bit line count. The. VBS regusters are
. -programmed in mu!tnples of lines.
VvBC

The VBC register contains the vertical blank end value. it is pn.'ogiramrr.ted in' hlultipies of lines.
When the vertical counter reaches this value, the composite blank (DAC_BLK_) goes active. The
value for VBC must be programmed to be less than VBSH + VBSL.)

VSS

The VSS register cdntains the vertical sync start value. It is programmed in multiples of lines.
When the vertical counter reaches VSS, the vertical sync output (VS_) goes active. VSS must
be programmed to be less than VBSH + VBSL, and should be less than VBC.

vsC

The VSC register contains the vertical sync end value. it is programmed in muitiples of iines.
When the vertical counter reaches VSC, the vertical sync output (VS_) goes inactive. VSC must
be programmed to be less VBSH + VBSL. it must also be programmed to be greater than VSS
and should be less than VBC. A basic vertical sweep with respect to the vertical counter should
look something like:

0....VSS....VSC....VBC...ccterrriutirrriniarennns VBSH + vBSL

XCSs

The XCS register contains the transfer hold off start value. It is programmed in multiples of 8
pixels. The S4-Video chip generates transfer cycles as necessary by counting shift clocks. The
shift clock is inactive during horizontal blanking however. If an access to the frame buffer or any
of the internal registers were attempted during a horizontal blank which occurred during a
transfer cycle, The S4-VIDEO chip would not be able to respond until after the blanking and
transfer were completed which in computer time couid be a very iong time degrading
performance. The XCS and XCC registers aliow for a window to be programmed around relative
to the horizontal blank window (defined by HBS and HBC) which will prevent a transfer cycle from
starting until late in the horizontal blank period. thus allowing other accesses to the video chip in
the mean time.

= £

values for XCS anc XCC wiil be iess than HBS and HBC respectively and will depend greatly
he relationship between the system clock and the video clock. The maost important timing

S4-Video 10/6/88 Sun Contfidential ’ Page 9

occurs before. XCS (and HBS) then the request is processed. if the request occurs after XCS
but before HBS, then the S4-video chip suspends the transfer cycle until XCC. This will allow the
- W to continue with other accesses during the blanking period.

= e ey

Memory Controller Interface

The video controller interfaces to the memory controller via two signals: XREQ and XCLR.

XREQ (T ransfer Cycle Flequest) forces a video RAM reload cycle usmg the address of the
transfer counter. Asserting XREQ causes the memory controller to begin a video reload cycle as
soon as current cycles are complete. The memory controller will wait unti XREQ drops,
asynchronously deassert. DT/OE and then oomp!ete the video reload cycle. Thns allows

. on-the-fly video reload cycles.

R TR -; R et LT - L et L b ,:»_._._,

XCLR (Transfer Clear) clears the reload counter and the transfer counter and forces a minimum
length, reload cycle. XCLR'is asserted in the state following (VBC & HBS).

When the S4-video chip is in the master mode (control register bit 5 = 1) the XREQ and XCLR -
signal pins are driven as outputs mirroring the internally generated transfer requset and transfer
clear signals. These two signal pins can then be connected to a parallel S4-~Video chip which is
configured in the slave mode (control register bit 5 = 0) to synchronize the two chips. When in
the slave mode, the XREQ and XCLR signal pins are treated as inputs to the internal
state-machines for synchronization purposes.

S4-Video 10/6/88 Sun Contidential Page 11

Video RAM Interface

VRAS(x) = RAS * (VIDEO + CPU * (BANK(1:0) == x))

+ (SIZ==2) * ((BYTE ==x)+(BYTE==x+1)
+ (S1Z==3) * ((BYTE==x)+(BYTE==x+1)+(BYTE==x+2)
+(SIZ==4)" ((BYTE==x)+(BYTE==x+1)+(BYTE=x+2)+(BYTE==x+3)))

VMA(8:0) = MUX * (VIDEO * X(8:0) + CPU * ROW(8:0)

~+IMUX * (VIDEQ * 0 + CPU * COL(8:0)

VCAS(x) = CAS * (VIDEO + CPU * (élZ=1) * (BYTE == x)

-The S4-Video controlier generates. its video memory.outputs .as follows:.

Cycle CPU Video/Refresh
row col row col
vma0 row(col0 x0 0
vmal rowl coll x1 0
vma2 row2 col2 x2 0
vma3 row3 col3 x3 0
vmad rowd col4 x4 0
vma$s rows col$ x5 0
vmab rowé colé x6 0
vma7 row7 col? x7 0
vma$ row§ col8 x8 0
Size Address Byte(0) Byte(1) Byte(2) Byte(3)
sb_siz(1:0)] sb_pa(1:0)} CAS(0) CAS(1) CAS(2) CAS(3)
0.0 0.0 X X X X
0.1 X X X
1.0 X X
1,1 X
0.1 0,0 X
0.1 X
1,0 X
1.1 X
1.0 0.0 X X
0.1 X X
1.0 X X
1,1 X
1.1 0,0 X X X
0,1 X X X
1.0 X X
1,1 X

S4-Video 10/6/88

Sun Confidential

Page 13

Timing Diagrams

-The S4-Video controller supports four basic types of cycies: Refresh cycle, Video Cycle, CPU
cycle, and Burst Cycle. For both the refresh cycle and the CPU cycle, the S4 RAM controller
supports two VRAM speeds via the speed input: fast and slow. The fast mode supports a
minimum cycle of 4 states for CPU cycles and 5 states for Refresh. In siow mode, RAS is
extended by one additional state. This allows to use slower RAMs at the cost of an increased
cycle time. There is no separate fast and slow mode for burst cycies.

Cycle Overview. The S4-RAM controlier stays in the idle state (S0) until either activated by a
refresh request, causing a refresh cycle, a video request, causing a video cycle, or by a CPU
select, causing a CPU cycle. In case of simultaneous video, refresh, and CPU request the video
request is the highest priority and the refresh request second.

CPU cycles are initiated when a select RAM signal is received in conjunction with a matching set
of addresses (see address decoding table). In response to the CPU request, the RAM controller
activates RAS for the bank of memory decoded by the addresses.

Refresh cycles are generated internally by a refresh request which occurs every 320 system
clocks. For a 20 MHz system clock, this is one refresh cycle every 16 usec.

Video cycles are initiated by a transition on input XREQ, which is generated by the video
controller whenever a video transfer is necessary.

S4-Video 10/6/88 Sun Confidental Page 15

CPU Cycle

In response to a select, the RAM controller enters state S1 and asserts RAS for the bank of
memory decoded by the addresses. The row/column addresses are muitipiexed on the
hatf-state following RAS. In state S2, the RAM controller asserts CAS and acknowledge signal
VACK. Following S2, in fast mode the RAM controller finishes up with S10 which deasserts RAS
and VACK while keeping CAS asserted. In siow mode, the RAM controller extends RAS in state
S9. and then deasserts all control signals in state S10. In both cases, write data (WDATA) must
be valid at beginning of CAS and read data (RDATA) is valid at the end of CAS.

ISEL_

VMA

VCAS_

VACK

RDATA

WDATA
VWE_ ' RC |
(write cycles only)

VOE_] 16 [

(read cycles only)

S4-Video 10/6/88 Sun Confidential Page 17

Refresh Cycle

Refresh is implemented with a "CAS-before-RAS" cycle. Once a refresh request is recognized,
alt CAS outputs are asserted during state RO followed by all RAS outputs asserted at state Ri.
REF, RAS, and CAS stay asserted during R2 and are deasserted in state S10. In "slow" mode, a
state -S9 is inserted that extends all control signals for one extra state. Refresh request takes
priority over CPU cycles that arrive at the same time. Pending CPU cycles have to wait until they
are recognized in SO.

j
L

* RREQ_ and REF_ are internally generated signals

S4-Video 10/6/88 Sun Confidential Page 19

Table of Monitor Timings

Type 5 4 3 2 1 0 Unit

| Sun Sun Sun Sun Apple Apple

1600.1280 1280.1024 1152.900 1024.768 1152.870 640.480

HRes 1600 1280 1152 1024 1152 640 Pixel
VRes 1280 1024 900 768 870 480 Pixel
PClock 200.00 135.00 92.9405 70.400 100.00 30.000 MHz
HClock 89.00 61.80 53.66 .700 35.000 kiHz
HTime 16.182 18.64 14.56 28.5714 usec
VClaock 67.00 65.96 66 75 66.666 Hz
VTime 15.163 15.15 13.32 16.000 msec
Register Value Value Value Value Value Unit Conversion
HBS 1504 1312 1456 (856) (X/8)-1
HBC 352 288 304 (216) (x/8)-1
HSS 16 1312 32 (32) (X/8)-1
HSC 144 160 - 160 (48) (Xx/8)-1
VBS 937 813 ‘918 825 x)~1
VBC 37 45 45 45 {X)-1
VvSS 2 (2) 3 (2) X)-1
VSC "6 6 6 (8) xX)-1

Notel: HSCO = HSC, HSC1 = HBS - HSC
Note2: VBSH = (X DIV 256), VBSL = (X MOD 256)-1
Note3: Values in parenthesis are estimates at this time.

S4-Video 10/6/88 Sun Confidential

Page 21

S4-Video

Preliminary
Rivision History
Date Change By
7/18/88 First Release. AVB

7/20/88 Defined XCS and XCC registers for use in delaying transfer cycles. MWI
7/122/88 Added cursor registers, corrected timing diagram labels,

corrected pin counts, removed diagnostic register, fixed address

mappings for 64K x 4 VRAMs. MWi
10/4/88 Added XREQ and XCLR, removed xi(3) and FAST, removed all

timing diagrams related to FAST mode, added words about

synchrnous operation of two chips, added words about cursor start

and end address registers. MWI(
10/6/88 Removed confusing wording about cursor address registers in
in description of control register MWI

' S4-Video 10/6/88 Sun Confidential Page 23

