
sun~
microsystems

Sun'" 2.1 Common Lisp
Release Notes

Sun Workstation® and the Sun logo are a registered trademarks of Sun
Microsystems, Inc.

SunStation™, Sun Microsystems™, SunWindows, SunView™, DVMA, and the
combination of Sun with a numeric suffix are trademarks of Sun Microsystems,
Inc.

UNIX, UNIXl32V, UNIX System III, and UNIX System V are trademarks of
AT&T Bell Laboratories.

DEC®, PDP®, VT®, and V AX®, are registered trademarks of Digital Equipment
Corporation.

Copyright © 1987 by Sun Microsystems, Inc.

This publicati9n is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Release Notes
Sun Common Lisp 2.1

Introd uction

Release 2.1 of Sun Common Lisp is a maintenance release that supercedes Release
2.0. This document provides the following information about Release 2.1:

• functional improvements to the software

• performance enhancements

• extensions to the user interface

• other extensions

• restrictions

• additional examples of the Foreign Function Interface

• corrections to existing documentation

Functional Improvements

August 1987

You can now load foreign code without multiple invocations of the ld command
or use of temporary file space; thus, loading is much faster. Foreign code can
be dynamically reloaded; Lisp maintains the relocation information required for
updating references to the reloaded code.

The arglist function provides more useful information about macros and functions
that have special variables in their argument lists.

The Compiler generates safe memory accessors when the safety optimization class
is set to 2 or higher. Code compiled with safe memory accessors signals an error
when an illegal reference, such as (cdr 1), is attempted.

Sun Common Lisp 2.1 Release Notes 1

Performance Enhancements

The Lisp image is much smaller. We have "shaken" the image to remove
inaccessible data structures and code. The disksave function has been modified
to create images with a bss of zero size. Both of these changes improve Lisp's
performance in environments with limited physical memory and small swapping
volumes.

The Compiler conses less; there are fewer garbage collections, and there is less
paging activity. This improvement is important for machines with limited physical
memory and/or slow swapping devices.

The Compiler can now generate in-line code for the 68881. With proper
declarations, it maintains floating-point numbers on the stack rather than
allocating them in the dynamic heap. These two changes have improved the speed
of some floating-point benchmarks by a factor of 50.

The Compiler can allocate the &rest arguments of some functions on the stack
rather than on the dynamic heap. Thus, certain calls cons less.

Internal changes to the Lisp memory model reduce the amount of memory scanned
during garbage collections. Thus, garbage collection is faster.

Improvements in the generic arithmetic interfaces reduce the overhead for bignum
operations and provide a substantial speed-up of bignum-intensive computations.
For example, 1000! is computed about five times faster than in the previous release.

The send function in the Flavor System does not cons when it has four or fewer
arguments.

Extensions to the User Interface

The defadvice macro, similar to that found in Symbolics ™ ZetaLisp@, is
available to users. The Advice Facility allows you to modify the behavior of an
existing function by attaching named pieces of advice. You can attach multiple
pieces of advice to the same function in a specified order.

A Source File Recording Facility is available to record definitions of functions,
macros, and structures. It can be extended to record definitions of objects of other
types.

New functions provide interaction with the UNIX environment: cd, pwd,
working-directory, environment-variable, command-line-argument,
run-program, and shell. Note that the function run-un ix-program has been
renamed run-program; however, run-unix-program is included in this release
for backward compatibility.

2 Sun Common Lisp 2.1 Release Notes August 1987

The Editor provides two new functions. The meta-. command displays the source
code associated with a symbol. The Ctrl-C Ctrl-A command displays the
argument list and documentation associated with a symbol.

Some useful functions, including def-compiler-macro, destructuring-bind,
defsubst, and gc-size have been exported to the user package.

The macro with-static-area causes objects to be allocated in the static heap
rather than in the dynamic heap during a cons.

The variable .gc-silence* may be bound to a function that is called at certain
times during each garbage collection.

The load function is more flexible. It uses new variables to control what file
extensions to consider when looking for a source file and when looking for a binary
file. In addition, new keywords control the behavior of load when it finds both a
source and a binary file or when it finds only a source file.

The initial value of the variable .load-verbose. is now tj thus, by default load
prints information about its progress on the standard output.

Other Extensions

August 1987

A file named RELEASE-NOTES is included on the release tape. This file contains
documentation for several functions, macros, variables, and constants that are
internal to the Lucid system and that may be useful to developers and advanced
users of Sun Common Lisp. Users of these constructs should take note of the
following points:

• The constructs documented in the file are not supported. They may change or
may not be included in future releases.

• The only documentation for these constructs appears in the RELEASE-NOTES file.

• Many functions listed in the file do not check their arguments. It is an error to
pass inconsistent arguments to these internal functions.

The following Lucid extensions to Common Lisp are documented in the RELEASE

NOTES file:

Sun Common Lisp 2.1 Release Notes 3

lucid::add-debugger-binding
lucid:: debugger-bindings
lucid::remove-debugger-binding
ed::catching-editor-errors
ed:: .debug-switch-to-lisp-bu:ffer.
ed::.real-editor-input.
ed::.scrollbars-p.
lucid::code-ref
lucid::code-Iength
lucid::map-objects

lucid::with-error-trapping
lucid: :top-Ievel
lucid::procedurep
lucid::procedure-arglist
lucid::procedure-co de
lucid::procedure-ftags
lucid::procedure-Iength
lucid::procedure-literals
lucid::procedure-ref
lucid::procedure-symbol
lucid: :structurep
lucid::structure-Iength
lucid::structure-ref
lucid::structure-type
lucid: :structure-type-p
lucid:: %pointer

lucid::.bx-alloc-segments.
windows::root-reshaped-actions
windows::leave-windows-actions
windows::bitblt-bitmap-to-bitmap
windows::bitblt-bitmap-to-screen
windows::bitblt-screen-to-bitmap
windows::bitblt-screen-to-screen
windows::bitblt-bitmap-to-bitmap-with-replication
windows::bitblt-bitmap-to-screen-with-replication

Restrictions

Compiled files that contain calls to define-c-function and load-foreign-files
must be recompiled in 2.1 because these macros have been changed.

The previously undocumented internal function lucid::getenv no longer exists; it
has been replaced by the function environment-variable, which is described in
the function pages of this document.

Using the New Foreign Loader

The following rules apply to loading and reloading foreign code:

1. Writers of foreign code cannot assume that text, data, and bss address spaces
have a particular layout in memory; with the dynamic loader, pieces of text
and data are intermixed. If a given module requires contiguous text and data
segments, use the following command to make a single object file that follows
the UNIX model:

Id -r file-names -0 temp. 0

4 Sun Common Lisp 2.1 Release Notes August 1987

August 1987

The text segment is never contiguous to the data segment, and it is unsafe to
assume that text will lie below data. The information returned by sbrk(O) is
not useful.

Note: Files compiled using the -g option to the cc command cannot be used
in the new foreign loader.

2. Use malloc to manage memory, if possible; avoid using sbrk.

3. Define global variables in files separate from those containing the definitions of
functions referring to these variables. H this is not possible and it is necessary
to redefine a function in one of these files, reload new definitions for all of the
variables and functions in the file that changed.

4. Avoid functions with multiple entry points. For example, do not write assembly
code or C code with references such as the following:

j sr -=funct +3

temp = tfunction +10;
(*temp)(19);

; Assembly code to avoid.

; C code to avoid.

Sun Common Lisp 2.1 Release Notes 5

Foreign Function Interface Examples

p. 7-9

p. 7-12

define-fortran-function

This example defines a function that calls the FORTRAN library function
"getpid" to return the pid number of this process.

> (define-fortran-function getpid() :result-type :integer)
GETPID
> (load-foreign-libraries nil '("-lF77" "-lU77"»
T
> (getpid)
2386

This example assumes that you have created a FORTRAN file called
"bar.f" with the following contents (leading blanks are significant):

function baz (x_y)
real baz
real x_y
baz = x+y
return
end

You then compile this file with the command -f77 -c bar.f- to produce
the binary object file "bar.o".

> (define-fortran-function baz (x y) :result-type :single)
BAZ
> (load-foreign-files -(IIbar.o"»
T
> (baz 1.2 3.3)
4.6

define-foreign-symbol

This example shows how to get the address of a foreign symbol.
The symbol atol contains the address of the C library function "_atol".

> (define-foreign-symbol atoll
ATOl
> (load-foreign-libraries nil -("-lc"»
T
> atol
2810524

6 Sun Common Lisp 2.1 Release Notes August 1987

p. 7-13

p. 7-14

August 1987

Note: The symbol that is defined contains the address of the foreign symbol and
not the value. You cannot use the macro setf to change the value of the symbol
inside the foreign code.

extract-stream-handles

This example shows how stream handles can be used. The first value
of the UNIX file descriptor that is returned represents the input
direction, and the second value is the output direction.

> (extract-stream-handles (open "any-file" :direction :output
:if-exists :supersede»

NIL
3
> (extract-stream-handles (open "old-file" :direction :input»
4
NIL
> (multiple-value-setq (in out) (extract-stream-handles *terminal-io*»
o
> (define-c-function (write-c "_write") (d s n»
WRITE-C
> (load-foreign-libraries nil '("-lc"»
T
> (progn (write-c out "hello" 6) (terpri) t)
hello
T

foreign-address-of

This example assumes that the file cegl.c has been compiled from the
following source code with cc -c cegl.c.

call_c-func(fun,a,b)
int (*fun) 0 ;
char *a,*b;
{

return«*fun) (a.b»;
}

> (define-c-function strcmp«a :string) (b :string»
:result-type :integer)

STRCMP
> (load-foreign-libraries nil '("-Ie"»
T
> (strcmp "aba" "abc")
-2

Sun Common Lisp 2.1 Release Notes 7

p. 7-20

> (foreign-address-of 'stremp)
2752648
> (define-e-funetion eall-e-fune«f :pointer)(a :string)(b :string»

:result-type :integer)
CALL-C-FUNC
> (load-foreign-files • (IIeeg1. 0") • ("-Ie"»
T
> (eall-e-fune (foreign-address-of 'stremp) "aba" "abe")
-2

Note: The function foreign-address-of applies to foreign functions that have
been defined with define-c-function or define-fortran-function; the function
register-lisp-function applies to Lisp functions that have been defined with the
macro define-c-callable.

register-lisp-function

Refer to the example for define-c-callable on page 7-8 of the Sun Oommon Lisp
User's Guide.

8 Sun Common Lisp 2.1 Release Notes August 1987

Corrections to the Documentation

This section lists corrections to the text of the Sun Common Lisp User's Guide and
the Sun Common Lisp Reference Manual. Corrections are listed by page number.

Sun Common Lisp User's Guide

p. 2-4, 5

p. 7-6

p. 7-8

p. 7-9

p. 7-10

p. 7-11

p. 7-15

In the sections "Customizing the Lisp Environment" and "Using the Display
Facilities," the references to the extension .2bin should be ignored. This extension
is not used by default when a source file is compiled with a :target option of 68020.

In the "Table of Data Types for FORTRAN Programs," logical.1 array should
be character.1 array.

The expression Cload-foreign-file& 'C"callmeback.o"» should return T, not NIL.

The following expression should be added to the "Purpose" statement for
define-c-function, define-fortran-function:

The functions created by define-c-function and define-fortran-function
are interpreted Lisp functions that can be compiled to reduce consing.

In the description of "type-checking syntax" for define-c-function, define
fortran-function, the sentence "Possible argument types include all of the types
that the keyword :result-type accepts, as well as the keyword :string" should be·
replaced with the following:

Possible argument types are :fixnum, : integer , :pointer, :single, and :string.

The expression Cload-foreign-librarie& 'C"-printf"» should return T.

The expression Cprintf "It' & %d %& II 3 "in the morning.") should return 22, not
21.

The following paragraph should be added to the "Remarks" section for .foreign
temporary-directory.:

This variable is provided for backward compatibility; you should not use it in
ordinary circumstances.

p. 7-17 In the "Remarks" section for load-foreign-libraries, the first sentence should
read as follows:

August 1987 Sun Common Lisp 2.1 Release Notes 9

The symbols argument is a list of Lisp strings that name the foreign functions
as they appear in a foreign object file: ".-in" for C functions named fn, and
"...fn_" for FORTRAN functions named fn.

In the "Examples" section, the line that reads

(define-c-function hypot (x y) :result-type :single)

should be replaced with the following lines:

(define-c-function hypot (x y) :result-type
:coerce-double-to-single)

The line that reads

(load-foreign-libraries • ("..mktemp" "-hypot") • ("-lm"»

should be replaced with the following line:

(load-foreign-libraries nil '("-lm" "-lc"»

pp. 10-5, 6 The output for the expression (room t) should be as follows:

> (room t)
••• 49156 words [196624 bytes] of dynamic storage in use .
••• 32512 words [130048 bytes] of free storage available before a GC .
••• 114180 words [456120 bytes] of free storage available if GC is disabled .
••• Semi-space Size: 320K bytes [5 segments]
• ,. Current Dynamic Area: Dynamic-O-Area
••• GC Status: Enabled
••• Reserved Free Space: 192K bytes [3 segments]
••• Memory Growth Limit: 15360K bytes [240 segments], total
'" Memory Growth Rate: 768K bytes [12 segments]
"~, Reclamation Ratio: 33% desired free after garbage collection
, . ,
" ,
" ,
•••
••• ...
•••
., .
•••
NIL

Area Information:
Name

Foreign-Area
Readonly-Pointer-Area
Readonly-Non-Pointer-Area
Dynamic-O-Area
Dynamic-1-Area
Static-Area

10 Sun Common Lisp 2.1 Release Notes

Size [used/allocated]

41K/64K bytes.
359K/384K bytes,
2584K/2624K bytes.
193K/320K bytes,
OK/320K bytes.
1119K/1192K bytes.

1/1 segment
6/6 segments
41/41 segments
4/5 segments
0/5 segments
28/28 segments

August 1987

p. 10-8 The description of the keyword :expand for change-memory-management
should read as follows:

This keyword argument forces an immediate expansion of each semi-space of
dynamic memory by the specified number of segments. The expansion cannot
exceed the maximum size specified by the :growth-limit keyword argument.

p. 10-10, 11 The last sentence of paragraph three in the "Remarks" section for change
memory-management should read as follows:

August 1987

The expansion cannot exceed the maximum size specified by the :growth-limit
keyword argument.

The "Examples" section should change as follows:

> (room t)

•• •

...
•••
•••

•••

•••
•••
•••
••• ...
•••
••• ...
NIL

45318 words [181272 bytes] of dynamic storage in use .
626174 words [2504696 bytes] of free storage available before a GC.
1297666 words [5190664 bytes] of free storage available if GC is disabled.
Semi-space Size: 2624K bytes [41 segments]
Current Dynamic Area: Dynamic -0-Area
GC Status: Enabled
Reserved Free Space: 512K bytes [8 segments]
Memory Growth Limit: 15360K bytes [240 segments]. total
Memory Growth Rate: 768K bytes [12 segments]
Reclamation Ratio: 33% desired free after garbage collection
Area Information:
Name

Foreign-Area
Readonly-Non-Pointer-Area
Readonly-Pointer-Area
Read-Write-Area
Static-Area
Dynamic-O-Area
Dynamic-l-Area

Size [used/allocated]

25K/64K bytes.
2265K/2304K bytes.
257K/320K bytes.
456K/512K bytes.
609K/640K bytes.
178K/2624K bytes.
OK/2624K bytes.

1/1 segment
36/36 segments
5/5 segments
8/8 segments
10/10 segments
3/41 segments
0/41 segments

> (change-memory-management :growth-limit 202 :growth-rate 16
:reclamation-ratio 0.25)

T
> (room t)

45572 words [182288 bytes] of dynamic storage in use .
••• 625920 words [2503680 bytes] of free storage available before a GC .
••• 1297412 words [5189648 bytes] of free storage available if GC is disabled .
••• Semi-space Size: 2624K bytes [41 segments]
••• Current Dynamic Area: Dynamic-O-Area

GC Status: Enabled
••• Reserved Free Space: 512K bytes [8 segments]

Sun Common Lisp 2.1 Release Notes 11

...
•••
•••
••• ...
•••

Memory Growth Limit: 12928K bytes [202 segments]. total
Memory Growth Rate: 1024K bytes [16 segments]
Reclamation Ratio: 25% desired free after garbage collection
Area Information:
Name

Foreign-Area
Readonly-Non-Pointer-Area
Readonly-Pointer-Area
Read-Write-Area

Size [used/allocated]

• •• Static-Area
••• Dynamic-O-Area
••• Dynamic-l-Area
NIL

25K/64K bytes.
2265K/2304K bytes.
257K/320K bytes.
456K/512K bytes.
609K/640K bytes.
179K/2624K bytes.
OK/2624K bytes.

1/1 segment
36/36 segments
5/5 segments
8/8 segments
10/10 segments
3/41 segments
0/41 segments

p. 10-13, 14 The "Examples" section should change as follows:

> (room t)

•• •
•• •
;; ;

•••
•••
•••
I ••

•••
••• ...
•••
I I •

•• •
•••
•••
•••

5068 words [20272 bytes] of dynamic storage in use .
666424 words [2665696 bytes] of free storage available before a GC .
1337916 words [6361664 bytes] of free storage available if GC is disabled.
Semi-space Size: 2624K bytes [41 segments]
Current Dynamic Area: Dynamic-l-Area
GC Status: Enabled
Reserved Free Space: 512K bytes [8 segments]
Memory Growth Limit: 12928K bytes [202 segments]. total
Memory Growth Rate: 1024K bytes [16 segments]
Reclamation Ratio: 26% desired free after garbage collection
Area Information:
Name

Foreign-Area
Readonly-Non-Pointer-Area
Readonly-Pointer-Area
Read-Write-Area

Size [used/allocated]

••• Static-Area
••• Dynamic-O-Area
••• Dynamic-I-Area
NIL

25K/64K bytes.
2265K/2304K bytes.
257K/320K bytes.
456K/512K bytes.
609K/640K bytes.
OK/2624K bytes.
20K/2624K bytes.

1/1 segment
36/36 segments
5/5 segments
8/8 segments
10/10 segments
0/41 segments
1/41 segments

> (gc-off)
••• GC: 5018 words [20072 bytes] of dynamic storage in use .
••• 666474 words [2665896 bytes] of free storage available before a GC .
••• 1337966 words [5361864 bytes] of free storage available if GC is disabled.
T
> (room t)

•• • .. .
•• •

5030 words [20120 bytes] of dynamic storage in use .
1338206 words [5352824 bytes] of free storage available before a GC .
1338206 words [5352824 bytes] of free storage available if GC is disabled .

12 Sun Common Lisp 2.1 Release Notes August 1987

" ,
" .
•••
•••
•••
•••
••• ...
,
••• ...
•••
•••

Semi-space Size: 2624K bytes [41 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Disabled
Reserved Free Space: 612K bytes [8 segments]
Memory Growth Limit: 12928K bytes [202 segments], total
Memory Growth Rate: 1024K bytes [16 segments]
Reclamation Ratio: 26% desired free after garbage collection
Area Information:
Name

Foreign-Area
Readonly-Non-Pointer-Area
Readonly-Pointer-Area
Read-Write-Area
Static-Area

Size [used/allocated]

'" Dynamic-O-Area
'" Dynamic-l-Area
NIL

26K/64K bytes,
2265K/2304K bytes,
257K/320K bytes,
466K/612K bytes,
609K/640K bytes,
20K/3968K bytes,
OK/2624K bytes,

1/1 segment
36/36 segments
6/6 segments
8/8 segments
10/10 segments
1/62 segments
0/41 segments

p. 10-15, 16 The "Examples" section should change as follows:

August 1987

> (gc-off)
T
> (room t)

" , 6020 words [24080 bytes] of dynamic storage in use.
,. I

I I I

I I I

•• I

I I I

'"
I I I

I I I

I I.

• I I

• I.

• I I

I , I

I , ,

'"

1337216 words [5348864 bytes] of free storage available before a GC.
1337216 words [5348864 bytes] of free storage available if GC is disabled.
Semi-space Size: 2624K bytes [41 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Disabled
Reserved Free Space: 612K bytes [8 segments]
Memory Growth Limit: 12928K bytes [202 segments], total
Memory Growth Rate: 1024K bytes [16 segments]
Reclamation Ratio: 25% desired free after garbage collection
Area Information:
Name

Foreign-Area
Readonly-Non-Pointer-Area
Readonly-Pointer-Area
Read-Write-Area

Size [used/allocated]

I " Static-Area

25K/64K bytes,
2266K/2304K bytes ,
257K/320K bytes,
456K/512K bytes,
609K/640K bytes ,
24K/3968K bytes,
OK/2624K bytes ,

1/1 segment
36/36 segments
6/6 segments
8/8 segments
10/10 segments
1/62 segments
0/41 segments

, " Dynamic-O-Area
'" Dynamic-l-Area
NIL
> (gc-on)
T
> (room t)

Sun Common Lisp 2.1 Release Notes 13

p. 11-45

p. 12-60

p. 12-64

.. .

...
•••
•••
•••
•••
•••

•••
••• ...
•••
•••

...
NIL

6212 words [24848 bytes] of dynamic storage in use.
665280 words [2661120 bytes] of free storage available before a GC.
1336772 words [5347088 bytes] of free storage available if GC is disabled .
Semi-space Size: 2624K bytes [41 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled
Reserved Free Space: 612K bytes [8 segments]
Memory Growth Limit: 12928K bytes [202 segments]. total
Memory Growth Rate: 1024K bytes [16 segments]
Reclamation Ratio: 25% desired free after garbage collection
Area Information:
Name

Foreign-Area
Readonly-Non-Pointer-Area
Readonly-Pointer-Area
Read-Write-Area
Static-Area
Dynamic-O-Area
Dynamic-1-Area

Size [used/allocated]

25K/64K bytes.
2265K/2304K bytes.
257K/320K bytes.
456K/512K bytes.
609K/640K bytes.
25K/2624K bytes.
OK/2624K bytes.

t/l segment
36/36 segments
6/6 segments
8/8 segments
10/10 segments
1/41 segments
0/41 segments

The following sentence

IT a default form is specified, it is evaluated as the initial value of the form var.

shouid appear in the second paragraph of the "Remarks» section for demavor,
rather than in the third.

The keyword :required-methods should be listed as a valid option to deftlavor,
as follows:

:required-methods specifies one or more message names. Any flavor that
inherits flavor-name must provide a method for each specified message in order
to be instantiated; otherwise, an error is signaled.

The ninth paragraph of the "Remarks" section for initialize-windows should
read as follows:

If you try to initialize the Window Tool Kit but it has already been initialized,
the following message appears:

Window system already initialized

In the "Remarks" section for listen-any, paragraph two should be omitted. No
end-of-file can occur in a mouse-input-stream.

14 Sun Common Lisp 2.1 Release Notes August 1987

p. 12-67

p. 12-75

p. 12-84

p. 12-101

p. 12-107

p. 13-17

p. 13-21

August 1987

The following sentence should be added to the second paragraph of the "Remarks"
section for make-active-region:

The :mouse-still keyword argument to make-active-region is not supported
in this release.

In paragraph three of the "Remarks" section for make-mouse-cursor, for
boole-or read boole-Ior.

In the discussion of the keywords :width and :height for make-window, the last
sentence should read as follows:

IT :width is omitted or nil, its default value is the width of the root viewport;
if :height is omitted or nil, its default value is the height of the root viewport.

The second paragraph of the "Remarks" section for peek-any should read as
follows:

The arguments eo/-error-, and eO/-1Jalue are provided for compatibility with
the Common Lisp functions read-char and read-char-no-hang and are
ignored.

The third paragraph of the "Remarks" section for read-any, read-any-no-hang
should read as follows:

The arguments eo/-error-, and eO/-1Jalue are provided for compatibility with
the Common Lisp functions read-char and read-char-no-hang and are
ignored.

The key binding Ctrl-H should be listed for the editor commands Delete
Previous Character and Echo Area Delete Previous Character.

The following additions should be made to the options list for Query Replace:

Backspace Do not perform the replacement but keep searching.

Ctrl-R Go into a recursive edit at the current position.

Sun Common Lisp 2.1 Release Notes 15

Sun Common Lisp Reference Manual

p. 3-13

p. 5-34

p. 8-3

p. 8-4

p. 8-6

In the "Examples" section for subtypep, the expression (subtypep 'integer
'string) should return the following results:

> (subtypep 'integer 'string)
NIL
T

The following sentence should be added to paragraph three of the "Purpose"
section for let, let *:

If no value is specified for a var argument that is a list element, a warning is
signaled.

An example of this warning is as follows:

> (defun let-test ()
(let «x» 6»

::: Warning: The form (LET «X» ...) is not legal Common Lisp syntax
LET-TEST
> (let-test)
:;: Warning: The form (LET «X» ...) is not legal Common Lisp syntax
5
> (compile 'let-test)
,:; Compiling function LET~TEST ...
::: Warning: The form (LET «X» ...) is not legal Common Lisp syntax
'" Warning: Variable X is bound but its value is ignored.
'" assembling ... emitting ... done.
LET-TEST
> (let-test)
6

In the section "Syntax for Declaration Specifiers," the syntax for the optimize
declaration should read as follows:

I(optimize {(quality value) I quality}*)

The following sentence should precede the last sentence of paragraph five:

If a class is specified and no value is assigned, 3 is used.

The form define-setf-method should be included in the list of forms that may
use the special form declare.

16 Sun Common Lisp 2.1 Release Notes August 1987

p. 12-26

p. 12-29

p. 12-66

p. 12-77

p. 12-80

p. 18-9

In the "Examples" section, the expression (complex 1 .99) should return
#C(1.0 0.99).

In the "Examples" section, the expression (decode-float .5) should return the
following results:

> (decode-float .5)
0.5
o
1.0

The expression (decode-float 1.0) should return the following results:

> (decode-float 1.0)
0.5
1
1.0

In the "Examples" section, the value returned by pi should be 3.1415927.

In the "Examples" section, the expression (tan #C (0 1» should return
#C(O.O 0.7615941).

In the "Examples" section, the expression (truncate .5) should return the
following results:

> (truncate .5)
o
0.5

The expression (round .5) should return the following results:

> (round .5)
o
0.5

In the "Remarks" section for make-hash-table, the second sentence of paragraph
six should read as follows:

This value may be a positive integer less than :size or a floating-point value
greater than 0.0 and less than or equal to 1.0.

p. 24-11, 12 In the "Remarks" section for compile-file, references to the extension .2bin
should be ignored. This extension is not used by default for files that are compiled
with a :target option of 68020.

August 1987 Sun Common Lisp 2.1 Release Notes 17

p. 24-33

The discussion of the :target option should be replaced with the following
paragraphs:

The possible values for the :target option are as follows:

• 68020/68881

H this value for the :target option is specified, the compiler generates
binary files specifically for the MC68881 coprocessor. Such files use the
machine-specific floating-point hardware and produce faster floating-point
operations. A binary file produced for the MC68881 coprocessor must be
loaded on a machine with the correct hardware; otherwise a continuable
error is signaled.

• 68020

H this value for the :target option is specified, the compiler generates
binary files specifically for the MC68020 processor. Such files may run
slightly faster in some cases, but they will not run on MC68010 processors.

• 68K

This is the default value of the :target option.

The "Remarks" section for sleep should read as follows:

The seconds argument can be any nonnegative noncomplex number.

18 Sun Common Lisp 2.1 Release Notes August 1987

Additions to the Documentation

This section lists additions to the documentation.

Sun Common Lisp Reference Manual

The additional function pages for the Sun Common Lisp Reference Manual pertain
to the following chapters:

• Chapter 6. "Macros"

destructuring-bind

• Chapter 22. "File System Interface"

close-aIl-files

.ignore-binary-dependencies.

load

.load-binary-pathname-types •

• load-if-source-newer., .load-if-source-only •

• load-source-pathname-types •

• load-verbose-

Sun Common Lisp User's Guide

August 1987

The additional function pages for the Sun Common Lisp User's Guide pertain to
the following chapters:

• Chapter 7. "The Foreign Function Interface"

foreign-undefined-symbol-names

unintern-foreign-symbol

• Chapter 8. "Running UNIX Programs from Lisp"

cd, pwd

command-line-argument

.enter-top-Ievel-hook.

Sun Common Lisp 2.1 Release Notes 19

environment-variable

lisp-image-name

run-program

shell

~orkUng-directory

• Chapter 10. "Storage Management in Common Lisp"

gc-silence

gc-size

~ith-static-area

• Chapter 12. "The Window Tool Kit"

delete-viewport

• Chapter 13. "The Editor"

New Chapters

Edit Definition (meta-.)

Arglist (Ctrl-C Ctrl-A)

• Chapter 9. "Compiling Lisp Programs"

A new version of this chapter provides expanded information about compilation
strategy, using declarations, and compiling fast floating-point operations. It
also includes the following new constructs:

def-compiler-macro

defsubst

disable-stack-lists

enable-stack-lists

uncompile

unproclaim

undef-compiler-macro

20 Sun Common Lisp 2.1 Release Notes August 1987

August 1987

• Chapter 14. "Miscellaneous Programming Features"

This new chapter discusses the Source File Recording Facility and the Advice
Facility. It contains the following new constructs:

advice-continue, apply-advice-continue

defadvice

describe-advice

discard-source-file-info

get-source-file

load-instance

record-source-file

record-source-files

remove-advice

source-pathname

-terse-redefinitions

Sun Common Lisp 2.1 Release Notes 21

destructuring-bind

Purpose:

Syntax:

Remarks:

The macro destructuring-bind extracts components from, or destructures, a list.

destructuring-bind pattern form-to-destructure {form}* [Macro]

The pattern argument is equivalent to a lambda list of a defmacro form.

The symbols specified in the pattern argument name variables that are bound in
the body of the macro to corresponding pieces of form-to-destructure. The body
of the macro expansion function is specified by the form arguments. They are
executed in order.

The value of the last form executed is returned as the result of executing the
macro.

The destructuring mechanism provided by destructuring-bind is similar to the
destructuring mechanism provided by defmacro; however, destructuring-bind
can be used in contexts other than macro expansion. The keyword &whole is not
permitted with destructuring-bind.

The macro destructuring-bind is an extension to Common Lisp.

Examples: > (destructuring-bind (lkey a b c) '(:b 2 :c 3 :a 1)
(list a be»

See Also:

(1 2 3)
> (destructuring-bind «a . b) c) (list (cons 'eh 'bee) 'sea)

(list a be»
(ER BEE SEA)

defmacro

22 Sun Common Lisp 2.1 Release Notes August 1987

close-all-files

Purpose:

Syntax:

Remarks:

See Also:

August 1987

The function close-alI-files closes all open files. This function can be used to close
files for which the associated stream object is no longer accessible.

close-alI-files [Function]

The function close-alI-files is an extension to Common Lisp.

close

open

Sun Common Lisp 2.1 Release Notes 23

ignore-binary-dependencies

Purpose:

Syntax:

Remarks:

See Also:

The variable dgnore-binary-dependencies* provides a default value for the
:ignore-binary-dependencies keyword argument to the function load. The
initial value is nU.

ignore-binary-dependencies [Variable]

The variable .ignore-binary-dependencies* is an extension to Common Lisp.

load

24 Sun Common Lisp 2.1 Release Notes August 1987

load

Purpose:

Syntax:

Remarks:

The function load reads the file specified by the filename argument and evaluates
each form in that file. A non-nil value is returned if the operation is successful.

load filename tkey :verbose :print : if-does-not-exist
:if-source-only :if-source-newer
:ignore-binary-dependencies

The filename argument is a pathname, stream, string, or symbol.

[Function]

IT the filename argument specifies a stream, load determines the type of the stream
and loads either source code or binary data directly from the stream.

IT the filename argument is a pathname that is not fully specified, default values
are taken from the value of the variable $default-pathname-defaults$ by using
the function merge-pathnames.

IT the filename argument specifies a pathname that has an explicit type component,
load searches for a file that matches the given pathname. IT the specified file
exists and the pathname type is a member of the list given by the variable
$load-binary-pathname-types$, the file is loaded as a binary file. If the
specified file exists and the pathname type is not a member of the list given by
the variable $Ioad-binary-pathname-types$, the file is loaded as a source file.
IT the specified file does not exist, by default load signals a continuable error and
prompts for a new filename.

If the filename argument specifies a pathname that does not have an explicit
type component, load searches for both source files and binary files. The
function searches for source files by merging successive elements of $load-source
pathname-types$ with the given pathname until it finds a match. The function
then searches for binary files by merging successive elements of $load-binary
pathname-types$ with the given pathname until it finds a match. The file that
is loaded is determined as follows:

• If neither a source nor a binary file exist, load signals a continuable error and
prompts for a new filename by default.

• If only a binary file exists, it is loaded.

• If only a source file exists, the value of the :if-source-only keyword argument
determines whether the source file is loaded or compiled.

• If both a source file and a binary file exist and the binary file is newer than the
source file, the binary file is loaded.

August 1987 Sun Common Lisp 2.1 Release Notes 25

load

• H both a source file and a binary file exist and the source file is newer than the
binary file, the value of the keyword :if-source-newer determines which file is
loaded.

The following keyword arguments control details of loading a file:

• H the :verbose argument is non-nil, load prints information about its progress
on the standard output. The default value of :verbose is the value of the
variable *load-verbose*. Its initial value is t.

• H the :print argument is non-nil, load prints the value of each expression that
is loaded on the standard output. The default value of this argument is nil.

• The :if-does-not-exist argument controls what happens if the specified
file does not exist. The function load calls the function open with the
:if-does-not-exist argument bound to this value. This value can be either
:error (signal an error) or nil (return nil from the function load). It defaults
to :error.

• The :if-source-only argument controls what happens when only a source file
exists. Its value is one of the following keywords:

H the value is :load-source, the source file is loaded.

H the value is :query and the function compile-file is defined, load asks
whether to load the source file or compile the source file and load the
resulting binary file. H compile-file is not defined, the source file is loaded.

H the value is :compile, the source file is compiled and the resulting binary
file is loaded.

The default value of :if-source-only is the value of the variable *load-if
source-only*. Its initial value is :load-source.

• The :if-source-newer argument controls what happens when both a source
file and a binary file exist for the specified filename argument and the source is
newer than the binary. Its value can be one of the following:

H the value is :query and the function compile-file is defined, load asks
whether to load the source file, load the binary file, or compile the source
file and load the resulting binary file. H the function compile-file is not
defined, load asks whether to load the source file or the binary file.

H the value is :load-source, the source file is loaded.

H the value is :load-binary, the binary file is loaded.

H the value is :compile and the function compile-file is defined, the source
file is compiled and the resulting binary file is loaded. H compile-file is
not defined, load asks whether to load the source file or the binary file.

26 Sun Common Lisp 2.1 Release Notes August 1987

Examples:

August 1987

load

The default value of :if-source-newer is the value of the variable *load-if
source-newer*. Its initial value is : query .

• The :ignore-binary-dependencies argument controls what happens when a
specified binary file that has been compiled for a particular run-time feature is
loaded on a machine that does not have the correct 'architecture. Its value is
one of the following:

IT the value is t, the file is loaded.

IT the value is nil, a continuable error is signaled.

IT the value is :warn, a warning is issued and the file is loaded.

The default value of :ignore-binary-dependencies is the value of the variable
ignore-binary-dependencies. Its initial value is nil.

The standard output is defined by the value of the variable *standard-output*.

The keyword arguments :if-source-only, : if-source-newer , and : ignore-binary
dependencies are extensions to Common Lisp.

... assuming the file /test/load-test-file.lisp contains

•• •
••• 1

(setq a 888)

then ...

> (load "/test/load-test-file")
#P"/test/load-test-file.lisp"
> a
888
> (load (setq p (merge-pathnames "/test/load-test-file"» :verbose t)
;;; Loading source file "/test/load-test-file.lisp"
#P"/test/load-test-file.lisp"
> (load p :print t)
1
888
#P"/test/load-test-file.lisp"

••• .. .
Assume the current directory contains "tourist.lisp" and
"tourist.lbin" and that "tourist.lisp" is newer than
"tourist.lbin" .

> *load-if-source-newer* the default value is :QUERY
: QUERY
> (load "tourist")
Source file tourist. lisp is newer than binary file tourist.lbin.
Load Source. Binary. or Compiled source (S. B or C): s

Sun Common Lisp 2.1 Release Notes 27

load

See Also:

;;; Loading source file "tourist.lisp"
#P"/u/r/chkout/test/tourist.lisp"
> (load "tourist")
Source file tourist. lisp is newer than binary file tourist.lbin.
Load Source, Binary, or Compiled source (S, B or C)~ b
;;; Loading binary file "tourist.lbin"
#P"/u/r/chkout/test/tourist.lbin"
> (load "tourist")
Source file tourist.lisp is newer than binary file tourist.lbin.
Load Source, Binary, or Compiled source (S, B or C): c
'" Reading input file #P"/u/r/chkout/test/tourist.lisp"
'" Compiling toplevel form ... assembling ... emitting ... done.
'" Compiling function MAKE-TOURIST ... assembling ... emitting ... done.
'" Compiling toplevel form ... assembling ... emitting ... done.
'" Wrote output file #P"/u/r/chkout/test/tourist.lbin"
". Loading binary file "tourist.lbin"
#P"/u/r/chkout/test/tourist.lbin"

error

.ignore-binary-dependencies •

• load-if-source-newer •

• load-if-source-only •

• Ioad-hinary-pathname-types •

• ioad-source-pathname-types •

• load-verbose.

Dlerge-pathnaDles

.redefinition-action.

28 Sun Common Lisp 2.1 Release Notes August 1987

load-binary-pathname-types

Purpose:

Syntax:

Remarks:

The variable *load-binary-pathname-types* determines which pathnames are
considered by load to denote binary files. Its value is a list of pathname types.

load-binary-pathname-types [Variable]

The value of *load-binary-pathname-types* must be a list in which each
element is either a string or nil. The initial value is ("IbiD").

The variable *load-binary-pathname-types* is an extension to Common Lisp.

See Also: load

August 1987

load-source-pathname-types

pathname-type

Sun Common Lisp 2.1 Release Notes 29

load-if-source-newer, *load-if-source-only*

Purpose:

Syntax:

Remarks:

See Also:

These variables provide default values for keyword arguments to the function load.

The variable doad-if-source-newer. provides a default value for the :if-source
newer keyword argument. The initial value is : query .

The variable .load-if-source-only. provides a default value for the :if-source
only keyword argument. The initial value is :load-source.

.load-if-source-newer.

.load-if-source-only*

[Variable]

[Variable]

The variables .load-if-source-newer. and .load-if-source-only. are extensions
to Common Lisp.

load

30 Sun Common Lisp 2.1 Release Notes August 1987

load-source-pathname-types

Purpose:

Syntax:

Remarks:

Examples:

The variable *load-source-pathname-types* determines which pathnames are
considered by load to denote source files. Its value is a list of pathname types.

load-source-pathname-types [Variable]

The value of *load-source-pathname-types* must be a list in which each
element is either a string or nil. The initial value is (nil "lisp").

The function load can only consider a pathname without an explicit extension as
a source file if the variable *load-source-pathname-types* contains the element
nil.

The variable *load-source-pathname-types* is an extension to Common Lisp.

... .. . Assume the current directory contains the source files "dragon"
and "dragon.lisp" .

> *load-source-pathname-types*
(NIL "lisp")
> (load "dragon")
; ;; Loading source file "dragon"
#P"/u/r/chkout/test/dragon"
> (setq *load-source-pathname-types* • ("lisp" NIL»
("lisp" NIL)
> (load "dragon")
; ;; Loading source file "dragon . lisp"
#P"/u/r/chkout/test/dragon.lisp"

See Also: load

August 1987

load-binary-pathname-types

pathname-type

Sun Common Lisp 2.1 Release Notes 31

load-verbose

Purpose: The variable -load-verbose- provides a default value for the :verbose keyword
argument to the function load. The initial value is t.

Syntax: _load-verbose_ [Variable]

See Also: load

32 Sun Common Lisp 2.1 Release Notes August 1987

foreign-undefined-symbol-names

Purpose: The function foreign-undefined-symbol-names returns a list of the names of
foreign symbols that are not currently associated with any foreign code or data.

Syntax: foreign-undefined-symbol-names

Remarks: The names are returned as Lisp strings.

This function is an extension to Common Lisp.

Examples: > (define-fortran-function i-am-undefinedO)
I-AM-UNDEFINED
> (foreign-undefined-symbol-names)
(" -i-llJD-'1Ildefined-")

See Also: unintern-foreign-symbol

[Function]

August 1987 Sun Common Lisp 2.1 Release Notes 33

unintern-foreign-symbol

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function unintern-foreign-symbol makes a foreign symbol inaccessible for
general use. You can use the name of the uninterned symbol in newly loaded
foreign object code without changing previously loaded -code.

unintern-foreign-symbol symbol-name [Function]

The symbol-name argument is a Lisp string that names the foreign symbol as it
appears in a foreign object file as follows:

• II -flym II for C symbols named sym

• "-flym_" for FORTRAN symbols named 8ym

H you have loaded a file into a Lisp image, you can edit, recompile, and reload
a new version of the file into the same image. You ca.n then successfully invoke
define-c-function, define-fortran-function, or define-foreign-symbol with
names of symbols that you have uninterned with this function.

This function is an extension to Common Lisp.

This example makes a foreign function unbound and uninterns the
respective foreign symbol.

> (define-c-function atoi «x :string» :result-type :integer)
ATDI
> (load-foreign-libraries nil '("-lc"»
T
> (atoi "231")
231
> (fmakunbound 'atoi)
ATDI
> (unintern-foreign-symbol If-&.toi fl)

T

foreign-undefined-symbol-names

34 Sun Common Lisp 2.1 Release Notes August 1987

cd, pwd

Purpose:

Syntax:

Remarks:

These functions allow you to move around in the file system without exiting the
Lisp environment.

The function cd sets the current working directory. IT a pathname argument is
provided, the current working directory is set to it. IT no argument is provided, the
current working directory is set to your home directory.

The function pwd returns a pathname for the current working directory.

cd ioptional directorll-pathname

pwd

[Function]

[Function]

The directorll-pathname argument is either a simple string or a pathname.

IT cd is used to set the current working directory, the variable .default-pathname
defaults. is set to the new working directory.

Note: Invoking the function cd to set the current working directory from the top
level of Lisp is preferable to setting the value of the variable .default-pathname
defaults. explicitly; cd keeps the operating system informed about which working
directory is current. The function working-directory is the preferable method
for changing working directories within programs.

These functions are extensions to Common Lisp.

Examples: > (pwd)
#P"/lucid6/win/"
> (cd)
#P"/u/win/"
> (cd "/lucid/bin/")
#P"/lucid/bin/"
> (pwd)
#P"/lucid/bin/"

See Also: working-directory

August 1987 Sun Common Lisp 2.1 Release Notes 35

command-line-argument

Purpose: The function command-line-argument returns a string representing a command
line argument that was provided when Lisp was invoked. This function returns nil
if the command line argument does not exist.

Syntax:

Re:marks:

command-line-argument argument-number

The argument-number argument must be a fixnum.

This function is an extension to Common Lisp.

Exa:mples: > (command-line-argument 0)
"lisp"
> (command-line-argument 1)
NIL

36 Sun Common Lisp 2.1 Release Notes

[Function]

August 1987

enter-top-Ievel-hook

Purpose:

Syntax:

Remarks:

Examples:

August 1987

The variable .enter-top-Ievel-hook. controls the behavior of Lisp when an image
is started.

If the variable is bound to a compiled function or to a symbol that names a
compiled function, that function is called once before Lisp enters the top level.

If the variable is not bound to a function, Lisp searches your home directory for a
"lisp-init" file to load. The file that is loaded is determined as if by the following
function call:

> (load "lisp-init" :if-does-not-exist nil)

• ent er-t op-level-ho ok. [Variable]

The variable .enter-top-Ievel-hook. must be bound to a compiled function.
Binding the variable to a compiled function requires you to check the function for
errors before it is bound.

By default, the variable .enter-top-Ievel-hook. is unbound.

This function is an extension to Common Lisp.

" ,
" ,
" ,
" ,

This example assumes you are working in a Lisp image named
/scratch/mylisp. After *enter-top-level-hook* is bound, the image
is saved on disk. The next time /scratch/mylisp is started up, the
the appropriate message appears.

> (defun ignore-lisp-init-file ()
(format t "Ignoring lisp init-file name-%"»

IGNORE-LISP-INIT-FILE

> (compile 'IGNORE-LISP-INIT-FILE)
;;; Compiling function IGNORE-LISP-INIT-FlLE ... tail merging ... assembling
... emitting ... done.
IGNORE-LISP-INIT-FILE

> (setq *enter-top-level-hook* #'IGNORE-LISP-INIT-FILE)
#<Compiled-Function IGNORE-LISP-INIT-FILE 522507>

> (disksave "/scratch/mylisp")
#P"/scratch/mylisp"

> (quit)

% /scratch/mylisp

Sun Common Lisp 2.1 Release Notes 37

.enter-top-Ievel-hook.

After executing its initialization routines, Lisp responds with this
message.

Ignoring lisp init-file name
>

38 Sun Common Lisp 2.1 Release Notes August 1987

environment-variable

Purpose:

Syntax:

Remarks:

The function environment-variable returns the string value of a specified
environment variable. The function returns nil if the variable does not exist.

environment-variable variable-name [Function]

The variable-name argument must be a string.

You can use the setf macro with environment-variable to assign a value to a
specified environment variable. IT the variable already exists, its value is reassigned.
IT the variable does not exist, a new environment variable is created. If the value
of the variable is set to nil, the variable is deleted.

Environment variable modifications are visible only to Lisp and to programs
invoked from Lisp by the functions shell or run-program; the programs that are
invoked inherit the modifications. Environment variables that have been changed
or added revert to their original values when Lisp exits.

This function is an extension to Common Lisp.

Examples: > (environment-variable "SHELL")
"/bin/csh"

See Also:

August 1987

> (setf (environment-variable "SHELL") nil)
NIL
> (environment-variable "SHELL")
NIL
> (setf (environment-variable "SHELL") "/bin/sh")
"/bin/sh"
> (environment-variable "SHELL")
"/bin/sh"

shell

run-program

Sun Common Lisp 2.1 Release Notes 39

lisp-image-name

Purpose: The function lisp-image-name returns the pathname of the object file that
started the current invocation of Lisp. If the object file cannot be determined, the
function returns nil.

Syntax: lisp-image-name

Remarks: This function is an extension to Common Lisp.

Examples: > (lisp-image-name)
#P"/usr/local/bin/lisp"

40 Sun Common Lisp 2.1 Release Notes

[Function]

August 1987

run-program

Purpose:

Syntax:

Remarks:

August 1987

The function run-program provides the ability to run other UNIX programs from
the Lisp environment.

run-program name &key : input : output : error-output
:wait :arguments
:if-input-does-not-exist
:if-output-exists
:if-error-output-exists

[Function]

The name argument is a pathname or an object that can be coerced to a pathname.
It represents the name of the program to be run. If the pathname is a relative
pathname, each directory in the environment variable PATH is searched for the
filename that corresponds to name. If the pathname is an absolute pathname, that
is, if the name begins with a slash (I), then that file is used. The namestring of
name is the argv [0] parameter for the program.

Four values are returned by run-program.

1. The first value is a stream. If either the :input or the :output keyword
argument is :stream, that stream communicates with the running process and
is the first value returned. If neither keyword is :stream, the first value is nil.

2. If the :error-output keyword argument is :stream, the second value returned
is the resulting input stream from which Lisp can read the program's error
output. If :error-output is not :stream, the second value returned is nil.

3. If the :wait keyword argument is t, the third value is the exit status of the
program that was run. Otherwise the exit status is nil.

4. If the program is running, the fourth value is its UNIX process id. If the
program has run to completion, the fourth value is nil.

The function run-program replaces the function run-unix-program. Though
run-unix-program is available for backward compatibility, you should use
run-program in most instances.

This function is an extension to Common Lisp.

Sun Common Lisp 2.1 Release Notes 41

run-program

Examples: tt This example shows how to run a program and have Lisp wait for it to
ii complete. The example assumes you have a program called "banner"
tt on /usr/games.

> (run-program "csh")
% /usr/games/banner test

% exit
~ NIL
NIL
0-
NIL

42 Sun Common Lisp 2.1 Release Notes

August 1987

shell

Purpose:

Syntax:

Remarks:

Examples:

August 1987

The function shell invokes a Shell. If shell is invoked from a Lisp that is running
inside a Sunview window, it opens a Shelltool window.

shell I:optional command-line [Function]

The optional command-line argument is a string to be interpreted by the Shell as
a command line. IT the argument is supplied, the function shell invokes an inferior
Shell that executes the command line and returns. If the argument is not specified
or is nil, the function shell invokes an inferior Shell.

The Shell to be invoked is determined by the value of the SHELL environment
variable.

The function shell returns a fixnum status code.

This function is an extension to Common Lisp.

> (shell "ls /usr/games ll
)

adventure boggle chess gammontool random
arithmetic boggledict chesstool hack teachgammon
backgammon boggletool cribbage hangman wump
banner btlgammon factor lib
bcd canfield fish life
bj canfieldtool fortune number
bogdict cfscores gammonscore primes
0
> (shell)
% Is /usr/games
adventure boggle chess gammontool random
arithmetic boggledict chesstool hack teachgammon
backgammon boggletool cribbage hangman wwnp
banner btlgammon factor lib
bcd canfield fish life
bj canfieldtool fortune number
bogdict cfscores gammonscore primes

Sun Common Lisp 2.1 Release Notes 43

working-directory

Purpose:

Syntax:

Remarks:

The function working-directory returns the current working directory.

working-directory [Function]

The variable .defauIt-pathname-defauIts. is set to the new working directory.

You can use the setf macro with working-directory to set the current working
directory; this method of setting the working directory is preferable to explicitly
setting the variable .default-pathname-defaults. because it keeps the operating
system and the variable synchronized.

This function is an extension to Common Lisp.

Examples: > (working-directory)
#pll/lucid/bin/ II
> (setf (working-directory) "/u/win/")
#P"/u/win/"
> (working-directory)
#P"/u/win/"
> (setf (working-directory) "/scratch/II)
#P"/scratch/"
> (working-directory)
#ptt /scratch/"
> (setf (working-directory) (user-homedir-pathname»
#P"/u/win/"
> (working-directory)
#P"/u/win/"
> (pwd)
#P"/u/win/"

See Also: cd

pwd

44 Sun Common Lisp 2.1 Release Notes August 1987

gc-silence

Purpose:

Syntax:

Remarks:

August 1987

The variable *gc-silence* controls garbage collection messages.

* gc-silence* [Variable]

The variable *gc-silence* can have one of the following values:

• nil
If the value of *gc-silence* is nil, garbage collection messages are displayed
on the standard output. This value is the default.

• t
If the value of *gc-silence* is t, all garbage collection messages are suppressed.

• a compiled function

If the value of *gc-silence* is a compiled function, that function is called
with a single argument whenever a garbage collection message might normally
appear. The argument can be bound to any of the following values:

:before

When the function is invoked immediately before a garbage collection is
performed, the argument has the value :before.

: aft er

When the function is invoked immediately after a garbage collection is
performed, the argument has the value :after.

: dynamic-expansion

When the function is invoked immediately after the dynamic areas are
expanded, the argument has the value :dynamic-expansion.

:reserved-expansion

When the function is invoked immediately before the reserved free space is
expanded, the argument has the value :reserved-expansion.

Because *gc-silence* procedures are called when normal memory allocation is
impossible, an executing function that is bound to *gc-silence* should not use
more than 1000 bytes of dynamic storage. Any objects created by a function that
is bound to *gc-silence* exist only while the function executes; it is an error to
refer to these objects after the function exits.

This variable is an extension to Common Lisp.

Sun Common Lisp 2.1 Release Notes 45

Examples: > (room)
ttt 46872 words [187488 bytes] of dynamic storage in use.
;;; 624620 words [2498480 bytes] of free storage available before a GC.
;;; 1296112 words [5184448 bytes] of free storage available if GC is disabled.
NIL
> (gc)
;;; GC: 4908 words [19632 bytes] of dynamic storage in use.
;;; 666584 words [2666336 bytes] of free storage available before a GC.
;;; 1338076 words [5352304 bytes] of free storage available if GC is disabled.
19632
2666336
6362304
> (let «*gc-silence* t» (gc»
20000
2665968
5351936
> (room)
ttt 6014 words [20056 bytes] of dynamic storage in use.
;;; 666478 words [2665912 bytes] of free storage available before a GC.
;;; 1337970 words [5351880 bytes] of free storage available if GC is disabled.
NIL
> (defun gc-silence-function (when)

(case when
(:before (format t tlBefore GC ... tI»
(:after (format t tlAfter GC ... tI»
(: dynamic'-expansion (format t "Expanding Dynamic ... "»
(:reeerved-expansion (ferm.a.t t "Expanding Reserved ... "»»

GC-SILENCE-FUNCTION
> (compile tOC-SILENCE-FUNCTION)
;;; Compiling function GC-SILENCE-FUNCTION ... tail merging ... assembling ...
emitting ... done.
GC-SILENCE-FUNCTION
> (setf *gc-silence* #'gc-silence-function)
#<Compiled-Function GC-SILENCE-FUNCTION 6188E7>
> (gc)
Before GC ... After GC ...
35120
1143520
2322160

46 Sun Common Lisp 2.1 Release Notes August 1987

• gc-slze

Purpose:

Syntax:

Remarks:

The function gc-size returns the following multiple values:

• the number of bytes of storage already used in the current dynamic semi-space

• the number of bytes still available in the current dynamic semi-space

• the number of bytes available in the combined dynamic semi-spaces

gc-size [Function]

The values returned by this function are the same as those returned by the function
gc.

This function is an extension to Common Lisp.

Examples: > (gc-size)
309816
999896
2309608

August 1987

> (defmacro how-much-consing-macro (&body body)
'(let «initial-gc-size (gc-size»)

(unwind-protect (progn .Gbody) multiple-value-progt
(format t II-&-S words consed" that doesn't cons.

(floor (- (gc-size) initial-gc-size)
4»») This machine has 4 bytes

HOW-MUCH-CONSING-NACRO ; per ~ord.
> (defun how-much-consing (fn &rest args)

(how-much-consing-macro
(apply fn args»)

HOW-MUCH-CONSING
> (compile 'how-much-consing)
;;; Compiling function HOW-MUCH-CONSING ... assembling ... emitting ... done.
HOW-MUCH-CONSING
> (defun test (x y)

(cons x y»
TEST
> (how-much-consing 'test 'a 'b)
92 words consed
(A • B)
> (compile 'test)
:;: Compiling function TEST ... assembling ... emitting ... done.
TEST
> (how-much-consing 'test 'a 'b)
2 words consed
(A • B)

Sun Common Lisp 2.1 Release Notes 41

gc-size

See Also: gc

room

48 Sun Common Lisp 2.1 Release Notes August 1987

with-static-area

Purpose:

Syntax:

Remarks:

Examples:

August 1987

The macro with-static-area executes a sequence of forms while forcing all consing
to be done in the static area. Objects that are created are permanent and are
never garbage collected.

with-static-area {form} * [Macro]

The macro with-static-area should be used with short sequences of forms to
prevent the unintentional creation of objects in static space.

Note: This macro should be used sparingly; for example, it should never be
executed in interpreted code because objects created as the result of interpretation
would be created in the static area.

This macro is an extension to Common Lisp.

" ,
" ,

This example assumes you have a large defstruct called large-object
that creates large-object structures that are retained
indefinitely. Creating large-object structures in the static area will
therefore speed garbage collection. The following code provides a
wrapper to the defstruct constructor for large-object so that
large-object structures are created in the static area:

> (defstruct (large-object (:constructor new-large-object»
field-1
field-2
field-3
field-4
field-n)

LARGE-OBJECT
> (compile (defun make-large-object (trest arguments)

(with-static-area
(apply #'new-large-object arguments»1)

"I Compiling function MAKE-LARGE-OBJECT ... assembling ... emitting ... done.
MAKE-LARGE-OBJECT
> (make-large-object :field-4 35)
#S(LARGE-OBJECT FIELD-1 NIL FIELD-2 NIL FIELD-3 NIL FIELD-4 35 FIELD-N NIL)

Sun Common Lisp 2.1 Release Notes 49

delete-viewport

Purpose:

Syntax:

Remarks:

The function delete-viewport deletes a viewport or window and removes it from
the viewport hierarchy. The viewport's resources can then be garbage collected if
no user-defined data structures refer to the viewport.

delete-viewport [Function]

This function is an extension to Common Lisp.

50 Sun Common Lisp 2.1 Release Notes August 1987

Editor Commands

August 1987

Edit Definition meta-. [Oommand]

This command prompts for a Lisp symbol that names a function or a macro and
attempts to find the source code that defines the symbol. IT it locates the source
file in which the symbol is defined, it reads the file into a buffer and searches for
the start of the definition. If the start of the definition is located, the point is
positioned there. IT the function was not defined with defun or defmacro, or if
the text of the definition is unusual, the command may have difficulty locating the
appropriate starting point in the file; in this case, a warning appears in the echo
area.

Arglist Ctrl-CCtrl-A [Oommand]
This command displays in the echo area the argument list of the current
function, where the current function is the function to which you are currently
typing arguments. IT the Editor cannot determine which function is current or if
the current function is not defined, an error is signaled.

Sun Common Lisp 2.1 Release Notes 51

52 Sun Common Lisp 2.1 Release Notes August 1987

Chapter 9. Compiling Lisp Programs

August 1987 Compiling Lisp Programs 1

Chapter 9. Compiling Lisp Programs

Introduction to the Compiler ... 9-3
Compiling Functions and Files .. 9-3
Compilation Strategy ... 9-4

Using Declarations ... 9-6
Special Declarations .. 9-6
Type Declarations .. 9-7
Ftype Declarations ... 9-8
Restrictive-Ftype Declarations .. 9-9
Type-Reduce Declarations ... 9-9
Using Type Declarations .. 9-10
Inline and Notinline Declarations ... 9-15
Ignore Declarations .. 9-17
Optimization Declarations .. 9-17
Arglist Declarations .. 9-21
Requesting Stack Allocation of &rest Arguments 9-21

Compiling Fast Floating-Point Operations .. 9-24
Code Optimizations .. 9-26

Function Call Optimizations ... 9-26
Macro Expansion .. 9-27
Constant Folding .. 9-27
Case Macro Optimization ... 9-29

clear-undef ... 9-30
compile ... 9-31
compile-file .. 9-32
compiled-function-p .. 9-34
compiler-options .. 9-35
declare .. 9-37
def-compiler-macro .. 9-39
defsubst ... 9-40
disable-stack-lists .. 9-42
enable-stack-lists .. 9-43
eval-when .. 9-44
locally .. 9-45
proclaim ... 9-46
the ... 9-47
uncompile ... 9-48
under-compiler-macro .. 9-49
unproclaim ... 9-50

2 Compiling Lisp Programs August 1987

Introduction to the Compiler

The CompHer reads Lisp expressions and generates native machine code that runs
faster than the interpretation of the original source code. Compiled code generally
produces the same values and has the same side effects as the interpretation of the
original source code. Compiled code, however, may behave obscurely when errors
occur and may require recompilation if macros or constants are redefined.

The more information you give the Compiler, the more efficient your compiled
code will be. You can give the Compiler information by adding declarations and
definitions to your source code and by using code that the Compiler can optimize
more efficiently. This chapter explains how to compile functions and files, describes
how to increase the efficiency of source code by adding declarations, and discusses
various optimizations performed by the Compiler.

The constructs listed below are used when compiling code. See the function pages
at the end of this chapter for complete syntactic descriptions of these functions
and forms.

clear-undef
compile
compile-file
compiled-function-p
compiler-options
declare
def-compiler-macro
defsubst
disable-stack-lists

enable-stack-lists
eval-when
locally
proclaim
the
uncompile
undef-compiler-macro
unproclaim

Compiling Functions and Files

August 1987

Compiling can be done in two ways: by compiling an individual function in the
current environment or by compiling a file of source code.

• Compiling a function

To compile an interpreted function in the current Lisp environment, use the
function compile, which replaces the interpreted function's definition with
the compiled version. Evaluating the expression (compile 'fool compiles the
function foo .. Compiled code and interpreted code can be used interchangeably;
that is, a compiled function can call an interpreted function, and an interpreted
function can call a compiled function.

Compiling Lisp Programs 3

• Compiling a file

To compile a file, use the function compile-file, which takes a Lisp source file
and produces a binary file containing the compiled code. By convention, Lisp
source files usually have the extension .lisp and binary files have the extension
.lbin. Evaluating the expression (compile-file "foo .lisp") produces the file
"foo . Ibin" . To use the compiled functions, you must load the binary file into
Lisp by using the load function.

Compilation Strategy

Compiled code is generally faster than its interpreted counterpart, but it may also
be harder to modify and debug than interpreted code. Compiled code generally
does less error checking and retains less environment information than interpreted
code. .AB a result, where interpreted code would signal an error, compiled code may
simply behave unexpectedly. Compiled code is also less sensitive to redefinitions;
in particular, changes to macro definitions that occur after compilation are not
reHected in the behavior of the compiled code.

In general, as you increase the amount of optimization performed by the Compiler,
you increase the differences between the compiled code and its original source code
and consequently decrease the amount of available debugging information. Sun
Common Lisp allows you to incrementally compile and optimize your code by
adding declarations and other sources of compilation information to your source
code.

Generally, you should begin with interpreted code because it is easier to debug.
You can then selectively compile portions of your code and gradually increase
the amount of optimization that the Compiler performs. Finally, when your code
has been tested, you can fully optimize your code to produce high-performance
production code.

You can increase the running speed of your code in a number of ways:

• Specify the data types of the arguments and returned values of Lisp expressions
(see the section "Using Type Declarations").

• Compile code to use hardware-supported Hoating-point operations (see the
section "Compiling Fast Floating-Point Operations").

• Use fixnum arithmetic when possible by declaring both the arguments and the
values of a Lisp expression to be of type fixnum (see the section "Increasing
the Efficiency of Arithmetic Operations").

• Use simple arrays and simple vectors (see the section "Increasing the Efficiency
of Array Access").

4 Compiling Lisp Programs August 1987

• Code simple functions in-line (see the section "Inline and Notinline Declara
tions").

• Use optimization declarations to emphasize speed (see the section "Optimization
Declarations").

• Use code that the Compiler can easily optimize, such as macros and
tail-recursive functions (see the section "Code Optimizations").

August 1987 Compiling Lisp Programs 5

Using Declarations

A declaration is a statement that supplies information about a Lisp program to
the Lisp environment. With the exception of the special declaration, declarations
are optional and are ignored by the Interpreter. They can be used as advice to
the Compiler, however, to produce faster and more efficient code. This applies in
particular to type declarations.

You can make declarations with either the declare special form or the proclaim
function. You can use the declare special form to make local declarations within
other Common Lisp forms. Local declarations observe the rules of lexical scope.
The syntax for a local declaration is the following:

(declare declaration-form ...)

You can use the proclaim function to make global declarations, which are
also called proclamations. A global declaration may be overridden by a local
declaration. Note that the proclaim function evaluates its argument, while the
declare special form does not. The syntax for a global declaration is the following:

(proclaim declaration-form)

Sun Common Lisp provides the following categories of declarations:

special
type
ftype
restrictive-ftype
type-reduce
inline

Special Declarations

notinline
ignore
optimization
arglist
dynamic-extent

A special declaration specifies that a given variable will be dynamically scoped
rather than lexically scoped. References to the variable will thus refer to its
dynamic binding. To make a local declaration, which observes the rules of lexical
scope, use the declare special form. To make a global declaration, which affects
all dynamic bindings of the variable, use the proclaim function. Proclaiming a
variable as a certain type has no effect on the lexical bindings of that variable.

6 Compiling Lisp Programs August 1987

The effect of a special declaration is exactly the same in both the Compiler and
the Interpreter. However, compiled access to special variables occurs through
in-line coding of the function symbol-value. If the special variable is unbound,
obscure errors may result. To check special variables, you can either declare the
symbol-value function as notinline or compile code with the safety optimization
level set to 3 (see the section "Optimization Declarations").

Type Declarations

August 1987

Type declarations specify the data types of the values of Lisp expressions. A
type declaration allows the Compiler to eliminate type checking. The Compiler
extensively uses type declarations to produce faster and more efficient code; the
Interpreter ignores type declarations.

The syntax for a type declaration is the following:

(declare (type type-specifier l1ariable-l tJariable-2 ... »

If the type specifier is one of the Common Lisp atomic types, you can use a shorter
form of the type declaration (see the chapter "Data Types" in the Sun Common
Lisp Reference Manual for a list of atomic types):

(declare (type-specifier l1ariable-l tJariable-2 .. .»

Adding type declarations to arithmetic operations can make the operations faster
by significantly reducing the type-checking and type-dispatching overhead of
function calls. To obtain the most efficient form of arithmetic operators, you
must specify the value types of an expression as well as the argument types of the
expression. This is especially true for arithmetic that uses values of type fixnum.

The type tixnum denotes the range of Common Lisp integers that can be directly
represented as machine integers on the underlying hardware. These are the integers
in the range most-negative-fixnum to most-positive-fixnum (see the Sun
Common Lisp Reference Manual). The Compiler can directly code applications
of arithmetic operators for which the arguments and the values are known to
be fixnums in the corresponding machine operations; fixnum arithmetic is thus
extremely fast. See the section "Using Type Declarations" for a discussion of the
most effective ways to use type declarations.

Compiling Lisp Programs 7

Ftype Declarations

An ftype declaration specifies the manner in which the value type of a declared
function depends on the argument types of the function._ Whenever the arguments
to a declared function are of the indicated types, the result of the function will also
be of the indicated type. A function may have more than one ftype declaration
associated with it.

The syntax for an ftype declaration is the following:

(declare (ftype type function-name-l function-name-2 ... »

A function declaration is an abbreviated form of an ftype declaration. Its syntax
is the following:

(declare (function name arglist result-type-l result-type-2 ... »

An ftype declaration does not require the arguments to an expression to be of
a particular type; it merely specifies that the result of the function will be of
a certain type if the arguments of the function have been declared as a certain
type. For example, the following proclamation declares that if the argument to the
function square is a fixnum, the value of the function will also be a fixnum:

(proclaim '(ftype (function (fixnum) fixnum) square»

I..J_ _ __ •• ___ 1_\, I ... __ \\
\Y~~YU D~ua~~ \AI \~ A All

The proclamation has no effect on the following code because the argument x is
not declared to be of type fixnum:

(defun do-some-arithmetic (x)
(the fixnum (+ x (square x»»

H, however, you add a type declaration for x, the Compiler can assume that the
expression (square x) is a fixnum, and it will use the fixnum-specific version of the
+ operator.

(defun do-some-arithmetic (x)
(declare (type fixnum x»
(the fixnum (+ x (square x»»

8 Compiling Lisp Programs August 1987

Restrictive-Ftype Declarations

A restrictive-ftype declaration specifies both the argument types and the result
types of a series of functions. While an ftype declaration conditionally restricts the
value type of a function, a restrictive-ftype declaration unconditionally restricts
both the argument types and the value type of a function.

The restrictive-ftype declaration is an extension to Common Lisp. Its syntax is
the following:

(declare (restrictive-ftype type function-name-l function-name-£ ... »

The following proclamation declares that the function baz will only accept two
fixnum arguments and will always return a fixnum value:

(proclaim '(restrictive-ftype (function (fixnum fixnum) fixnum) baz»

Thus, in the following code, all of the arithmetic operators can be compiled as
fixnum operators without requiring any additional declarations:

(defun do-some-arithmetic (i j)
(declare (fixnum i j»
(baz (+ (baz (* i j) (+ i j» j) i»

Type-Reduce Declarations

August 1987

A type-reduce declaration specifies that within the scope of the declaration all
objects that belong to a specified supertype can be treated as belonging to a
specified subtype. A program might declare, for example, that all numbers should
be treated as fixnums. A type-reduce declaration may be simpler to use than
adding many type declarations to your code.

The type-reduce declaration is an extension to Common Lisp. Its syntax is the
following:

(declare (type-reduce typel type~»

The arguments typel and type~ must be type specifiers; the type type~ must be a
subtype of type typel.

For example, if an application uses only fixnum arithmetic, the following
proclamation allows the Compiler to compile all arithmetic operators as fixnum
operators without requiring any additional declarations:

(proclaim '(type-reduce number fixnum»

Compiling Lisp Programs 9

H an application uses both fixnum and nonfixnum arithmetic, but uses only fixnum
integer values, the following declaration could be used:

(declare (type-reduce integer fixnum»

See the section "Using Type Declarations" for more information about using
type-reduce declarations to restrict arithmetic operators.

Using Type Declarations

Type declarations, ftype declarations, restrictive-ftype declarations, and
type-reduce declarations are most effective when used to do the following:

• Increase the efficiency of arithmetic operations

• Increase the efficiency of array and sequence operations

• Propagate type information

Increasing the Efficiency of Arithmetic Operations

To obtain the most efficient form of a Common Lisp operator, you may need to
specify both the types of the arguments and the type of the value of an expression.
There are four ways of specifying types:

• To declare the type of all occurrences of a variable, use the special form
declare.

For example, the following code defines a function that sums a list of numbers:

(defun list-add (1)
(let «sum 0»

(do1ist (i 1 sum)
(setq sum (+ i sum»»)

To increase the efficiency of list-add, you should declare both the argument
types and the result types of the expression. In the following code, the declare
special form is used to declare the variables i and sum to be of type fixnum:

(defun list-add (1)
(let «sum 0»

(declare (fixnum sum»
(do list (i 1 sum)

(declare (fixnum i»
(setq sum (+ i sum»»)

10 Compiling Lisp Programs August 1987

August 1987

Note that the value of the expression (+ i sum) is also implicitly declared to
be of type fixnum because the value of the expression is assigned to sum, which
has been declared to be of type fixnum. The Compiler is thus free to depend
on these types and will use the fixnum-specific version of +.

• To specify the type of an individual expression, use the special form the.

The following example shows an alternate form of list-add that uses the
special form the to declare both the value type of the expression and the types
of the list elements as they are retrieved:

(defun labels-list-add (1)
(labels «help-add (sum restl) ; Define a recursive. helper function.

(declare (fixnum sum»

(help-add 0 1»)

(if (null restl) sum
(help-add
(the f ixnum

(+ sum (the fixnum (first restl»»
(rest restl»»)

Because both the argument types and the value type have been declared, the
Compiler can use a fixnum-specific version of +.

• To propagate or restrict types for all expressions that use specified operators,
use ftype or restrictive-ftype declarations.

You can use ftype declarations to restrict arithmetic operators in certain
contexts. In most cases the result of applying arithmetic operators to fixnum
values might not be a fixnum unless the fixnum values are small. The expression
(1+ most-positive-fixnum) does not produce a fixnum value, for example. If
the fixnum values are small enough, however, you can use ftype declarations
to restrict arithmetic operators. For example, the following declarations inform
the Compiler that whenever the arguments to the declared operators are
fixnums the value types will also be fixnums. The Compiler can thus use the
fixnum forms of the operators:

(declare (ftype (function (&rest fixnum) fixnum) + -)
(ftype (function (fixnum) fixnum) 1+ 1-»

Compiling Lisp Programs 11

• To restrict the types of numerical quantities, use type-reduce declarations.

Often only fixnum arithmetic is needed in a program. The following example
shows another form of list-add that uses a single type-reduce declaration to
restrict all numerical quantities within the function:

(defun fixnum-list-add (1)
(declare (type-reduce number fixnum»
(let «sum 0»

(dolist (i 1 sum)
(setq sum (+ i sum»»)

You can use type declarations to write fixnum-specific versions for generic routines.
You must use caution when defining fixnum-specific operators. Expressions that
apply arithmetic operators to more than two arguments may not produce optimal
compiled code. For example, the following expression cannot be fully optimized:

(the fixnum (+ (the fixnum x) (the fixnum y) (the fixnum z»»

Although each of the arguments and the result of the entire expression are declared
as fixnums, the Compiler cannot assume that the intermediate results will also be
fixnums.

The following macro defines a fixnum-specific addition operator. Note that it
automatically expresses the sum in terms of binary operators and adds the
necessary declarations:

(def-macro fixnum-plus (irest args)
(case (length args)

(0 '0)
(1 (first args»
(2 '(the fixnum (+ (the fixnum • (first args»

(the fixnum • (second args»»)
(t '(the fixnum

(+ (the fixnum • (first args»
(fixnum-plus .G(rest args»»»)

When this code is compiled, calls to fixnum-plus will be coded directly into
hardware add instructions.

To increase the efficiency of floating-point arithmetic, you should declare the types
of all floating-point variables and compile code to use the floating-point hardware
for your system. See the section "Compiling Fast Floating-Point Operations" for
more information.

12 Compiling Lisp Programs August 1987

Increasing the Efficiency of Array Access

August 1987

You can make array and sequence operations faster by adding type declarations.
To use the most efficient form of array access, you must do the following three
things:

• Declare the array to be a simple array or simple vector.

• Declare the element types of the array.

• Declare the number of dimensions of the array.

IT you do not specify all three pieces of information, the Compiler cannot generate
the most efficient array access code. Each of the following declarations contains
insufficient information:

;; The type vector does not imply the type simple-array.
(declare (type (vector (unsigned-byte 8» v»

;; The element-type is not known.
(declare (type (simple-array * (* *» a»

;; The number of dimensions is not specified.
(declare (type (simple-array t) al»

Each of the following declarations, however, allows the Compiler to generate the
most efficient array access code:

;; The type simple-vector is equivalent to the type (simple-array t (*».
(declare (type simple-vector v»

(declare (type (simple-array t (* *» a»

(declare (type (simple-array (unsigned-byte 8) (*» v8»)

IT all arrays in a piece of code are of a certain type, it may be simpler to use a
type-reduce declaration to restrict the types of all arrays. IT an application uses
only simple one-, two-, or three-dimensional arrays of type t, for example, the
following declaration could be used:

(declare (type-reduce (array * (*» simple-vector)
(type-reduce (array * (* *» (simple-array t (* *»)
(type-reduce (array * (* * *» (simple-array t (* * *»»

Compiling Lisp Programs 13

Propagating Type Information

Type propagation is the process of passing type information to all values
assigned to· a declared variable, returned by a special form, or returned by a
function that contains type declarations. Type propagation is another means of
passing type information to the Compiler, which may allow it to generate more
efficient code.

Type information is propagated in the following three ways:

• . The Compiler automatically propagates the type of special forms and standard
Common Lisp functions to all components of the special form or function that
return values.

The following example defines a function that adds the absolute values of a list
of fixnums and produces a fixnum total:

(defun add-list (1)
(let ((sum 0»

(declare (fixnum sum»
(do1ist (i 1 sum)

(declare (fixnum i»
(setq sum

(+ sum
(the fixnum

(if (> i 0) i (- i»»»»

In this definition, the type of the variable sum is propagated to the expression
whose value is assigned to sum. The explicitly declared type of the second term
of sum is propagated to the i and (- i) components of the if expression. The
Compiler can thus compile all of the operators as fixnum-specific operators.

• The Compiler automatically propagates type information that is declared in
the fields of structures that are defined by using defstruct.

For example, suppose you define a structure bird as follows:

(defstruct bird
(weight 0.0 :type single-float)
(height 0.0 :type single-float)
(age 0 :type fixnum»

14 Compiling Lisp Programs August 1987

Because the age field has been declared to be of type fixnum, in the following
code the Compiler expects both the argument to 1+ and the returned value of
the expression to be fixnums:

(setf (bird-age birdl)
(1+ (bird-age birdl»)

The Compiler can thus generate the fixnum-specific form of 1+.

• You can explicitly propagate type information for user-defined functions
by using ftype or restrictive-ftype declarations (see the section "Ftype
Declarations").

Inline and Notinline Declarations

August 1987

An inline declaration asks the Compiler to replace the procedure call to a function
with the machine-language code for that function. The Compiler may choose to
ignore this declaration.

Using in-line code eliminates some of the overhead in calling functions. In-line
coding is especially useful for simple functions; it is not as useful for large functions
where the cost of calling the function is small compared to the execution time of
the function. In-line coding should be used selectively because it may increase the
size of compiled code.

To declare local functions that have been defined by using the flet or the labels
special form, use an inline declaration, as shown in the following example:

::: Compute the distance between two 2-dimensional points.
(defun distance-2d (pi p2)

(flet «square (x) (* x x»)
(declare (inline square»
(flet «square-d (xl x2) (square (- x2 xl»»

(declare (inline square-d»
(sqrt

(+ (square-d (point-x pi) (point-x p2»
(square-d (point-y pi) (point-y p2»»»)

To declare top-level functions, use an inline proclamation, as shown in the
following example:

(proclaim • (inline square»

(defun square (x) (* x x»

Compiling Lisp Programs 15

You can also use the function defsubst to define a function and declare it inline.
The following expression produces the same result as the proclamation and
definition in the preceding example:

(defsubst square (x) (* x x»

In addition to avoiding function overhead, declaring a function inline allows the
Compiler to propagate type information within the body of that function. For
example, the following code defines a function, use-square, that calls square:

(defun use-square (z)
(declare (fixnum z»
(the fixnum (square z»)

Because the variable z and the result of square are both declared to be of type
fixnum, the type information propagates to the call to * in the body of square.
The Compiler can thus use a fixnum-specific form of the * operator.

Unless notinline declarations are used, the Compiler automatically generates
in-line code for many system-provided function calls, such as car and cdr. The
Compiler normally codes the following functions in-line:

Simple-array accessors where the element type and number of dimensions are
known at compile-time

Structure accessors

Standard type predicates, such as symbolp and consp

Symbol accessors, such as symbol-value and symbol-function

Fb~num arithmetic

Character operations, such as char and string-char

eq

Although in-line code is usually fast, it may have the following disadvantages:

• It may prevent you from tracing calls to the in-line function during execution.

• It may prevent you from dynamically redefining the in-line function.

• It may increase the code size of the program.

16 Compiling Lisp Programs August 1987

A notinline declaration tells the Compiler not to use in-line code for a function,
even for a function it would normally code in-line. H a function is declared
notinline, a call to the function replaces the in-line code. The Compiler must
obey a notinline declaration.

Ignore Declarations

An ignore declaration prevents the Compiler from issuing a warning when the
variable specified in the declaration is not referred to in the body of the code. For
example, the Compiler will not produce a warning about the variables lies and
half truths when the following code is compiled:

(defun just-the-facts (case)
(multiple-value-bind

(lies half truths facts)
(case-report case)
(declare (ignore lies half truths»
facts»

Optimization Declarations

August 1987

An optimize declaration controls the type and amount of optimization you want
the Compiler to perform. You can adjust the following classes of optimizations:

• The speed at which compiled code runs

• The amount of safety (error checking) retained durin~ compilation

• The amount of space the compiled code needs

• The speed at which the code is compiled

You can adjust the amount of optimization by assigning each class an integer value
between 0 and 3 inclusive that represents the level of optimization. To assign
a value to an optimization class, use an optimize declaration, as shown in the
following example:

(optimize (speed 2) (safety 1»

Specifying an optimization class without an integer assigns the highest possible
value to the optimization class. The following code assigns safety the value 3:

(optimize safety)

Compiling Lisp Programs 17

The levels of an optimization class are cumulative; each level includes the effects of
the previous levels. The optimization classes and their values are as follows:

• speed

Increasing the-level of speed increases the spe~d at which your code will run
and decreases the ease with which you can debug the code. This class can have
the following values:

o This value turns off in-line coding. Function calls can be traced, and
redefinitions affect compiled code.

1 This value turns off variable elimination and other optimizations that affect
the evaluation order of expressions. All user-defined variables will appear
in stack frames, and function calls are evaluated in their original order.

2 This value turns off tail merging. Frames for tail calls appear normally on
the stack (see the section "Function Call Optimizations" for an explanation
of tail calls and tail merging).

3 This value turns off all restrictions that affect speed. This is the default
value.

• safety

Increasing the level of safety increases the amount of error checking in compiled
code. This class can have the following values:

o This value indicates that no safety constraints are imposed on compiled
code.

1 This value indicates that functions with a fixed number of arguments are
checked on entry for the correct number of arguments. It is the same as
setting :fast-entry to nil. This is the default value.

2 This value indicates that write access operations are checked as follows:

. Accessor functions for data objects that are used as arguments to
setf, rplaca, rplacd, or set are type checked. The accessor functions
are car, cdr, symbol-value, symbol-function, symbol-package,
symbol-name, symbol-plist, and macro-function.

Structure accessor functions that are used as arguments to setf are
checked to verify that their arguments are structures and that the offset
is within range.

!

Array reference functions that are used as arguments to setf are checked
to verify that their arguments are of the correct type, within bounds,
and within the offset range. The array reference functions are svref,
aref, char, schar, bit, and sbit.

18 Compiling Lisp Programs August 1987

August 1987

3 This value indicates that read access operations for the access operations
described above are type checked. In addition, type declarations are
ignored, which means that generic operators are not replaced by specific
operators.

• space

Increasing the level of space decreases the size of the compiled code. This class
can have the following values:

o This value imposes no size constraints on the compiled code. This is the
default value.

3 This value turns off in-line coding of safe access functions, which may
decrease the size of compiled code.

• compilation-speed

Increasing the level of compilation-speed may decrease the amount of time
required to compile a file. This class can have the following values:

o This value allows the Compiler to use optimizations that may decrease
compilation speed. This value is the default.

3 This value prevents some optimizations that affect compilation speed.

The table in Figure 9-1 summarizes the optimization classes and their default
values.

Compiling Lisp Programs 19

Class Value Compiler Action

speed 0 Does no in-line coding.

1 Does no optimizations that affect evaluation
order.

2 Does no tail merging.

3 All restrictions are removed; this is the de-
fault.

safety 0 Imposes no safety constraints.

1 Checks arguments on entry to a function
with a fixed number of arguments; this is
the default.

2 Checks write access.

3 Checks read access.

space 0 Imposes no space constraints; this is the
default.

3 Turns off in-line coding of safe accessors.

compilation-speed 0 Imposes no constraint on compilation speed;
this is the default.

3 Prevents onti!!lizations that affect com-nila.-r
tion speed.

Figure 9-1. Table of Optimization Classes

To adjust the level of optimization, you can also specify the keyword options
:fast-entry, :tail-merge, and :notinline to compile-file and compiler-options.
These keyword options, which are extensions to Common Lisp, may be activated or
suppressed when the four optimization classes are used. Thus, using an optimize
declaration to set the value of safety to 0 implies that the value of the keyword
:fast-entry is t.

The conditions under which the keywords are activated are the following:

:fast-entry
: tail-merge
:notinline

20 Compiling Lisp Programs

safety = 0
speed = 3
speed = 0

August 1987

Arglist Declarations

An arglist declaration explicitly specifies the lambda list that is returned by a call
to the function arglist. An arglist declaration allows you to specify a descriptive
lambda list that would be helpful to a user. Its syntax is the following:

(declare (arglist (declared-arguments»)

The declared lambda list should be an unquoted list. H a function or macro
definition does not contain an arglist declaration, the function arglist returns the
lambda list used in the original source code, as shown in the following example:

> (defun multiply (x y)
(* x y»

MULTIPLY
> (arglist 'multiply)
(X Y)
> (defun new-multiply (x y)

(declare (arglist (factor1 factor2»)
(* x y»

NEW-MULTIPLY
> (arglist 'new-multiply)
(FACTOR1 FACTOR2)

Requesting Stack Allocation of &rest Arguments

August 1987

You can request stack allocation of &rest arguments by using dynamic-extent
declarations. Allocating &rest list structures on a stack rather than in dynamic
storage reduces the amount of dynamic memory used by a program and thus
reduces the number of garbage collections.

The list of argument values bound to an &rest argument is normally constructed
in dynamic storage. When the function that created the list exits, this dynamic
storage is not deallocated until the next garbage collection because the list may be
stored in a data structure or bound to a variable that survives the function call.

Often, however, the &rest argument has dynamic-extent, which means that
the list is not accessible after the function call that created it exits. The storage
allocated to it is therefore not needed after the function call exits. In the following
code, for example, the &rest argument is only needed to access the components of
the list during the execution of the function:

Compiling Lisp Programs 21

(defun fixnum-+ (trest numbers)
(let «sum 0»
(dolist (number numbers)

(incf sum number»
sum»

A dynamic-extent declaration informs the Compiler that an &rest argument
has dynamic extent and that the storage allocated to it can be released when
the function call returns. The Compiler can then generate code that allocates
and deallocates the storage for the list on a stack. Lists that are allocated and
deallocated on a stack are called stack lists.

To allocate lists on a stack, you must do the following:

• Add dynamic-extent declarations for the &rest arguments to be allocated
on a stack.

You can declare a stack list &rest argument by using the following declaration:

(declare (dynamic-extent variable»

• Make sure stack list allocation is enabled at run-time. Stack list allocation
is enabled by default. You can explicitly disable it by calling the function
disable-stack-lists; you can explicitly enable it by calling the function
enable-stack-lists.

When stack iist aiiocation is enabied, the foHowing code produces a function that
sums its fixnum arguments without using dynamic allocation:

(defun fixnum-+ (trest numbers)
(declare (dynamic-extent numbers»
(let «sum 0»

(dolist (number numbers)
(incf sum number»

sum»

Using dynamic-extent declarations should only affect the amount of dynamic
memory used by your program. H code that contains dynamic-extent declarations
is behaving incorrectly, the declarations may be incorrect. You can check the use
of dynamic.:.extent declarations by disabling stack list allocation with a call to
the disable-stack-lists function.

For example, the following two functions incorrectly declare their &rest arguments
to be stack lists; when these functions exit, the &rest argument list structure is
still accessible through the global variables *f* and *g*.

22 Compiling Lisp Programs August 1987

August 1987

(compile (defun f (trest arguments)
(declare (dynamic-extent arguments)

(special *f*»
(setq *f* arguments»)

(compile (defun g (trest arguments)
(declare (dynamic-extent arguments)

(special *g*»
(setq *&* arguments»)

When stack list allocation is enabled, the program behaves incorrectly; a call to
the function g has side effects on the global variable *f*, even though *f* is not
explicitly manipulated by function g:

> (enable-stack-lists)
T
> (f 1 2 3)
(1 2 3)
> *f*
(1 2 3)
> (g 4 6 6 7)
(4 6 6 7)
> *f*
(6 6 7)

> *g*
(4 6 6 7)

When stack list allocation is disabled, the program behaves correctly, which
indicates that the program probably contains incorrect dynamic-extent
declarations:

> (disable~stack-lists)
T
> (f 1 2 3)
(1 2 3)

> *f*
(1 2 3)
> (g 4 5 6 7)
(4 6 6 7)

> *f*
(1 2 3)
> *g*
(4 5 6 7)

Compiling Lisp Programs 23

Compiling Fast Floating-Point Operations

You can increase the speed of floating-point operations by compiling code so that it
explicitly uses the floating-point hardware on the Sun. Calls to hardware-supported
floating-point operations are compiled in-line and are thus faster because the
function-calling overhead is eliminated. In addition, local variables that are
declared as floating-point types are allocated either in registers or in a special block
on the stack. These variables are not allocated in dynamic memory and thus never
need to be garbage collected.

To get the fastest results from your floating-point hardware, you must do the
following:

• Compile code so that it uses the floating-point hardware for the Sun.

To use the floating-point hardware, call the compile-file function with the
:target keyword set to 68020/68881. The following expression compiles a file
and generates code that uses the the MC68881 coprocessor for floating-point
operations:

(compile-file "lots-of-floating-point" :target '68020/68881)

To use the normal hardware, call the compile-file function with the :target
keyword set to the value 68K.

You can set a. default value foI' ;target by calling the function compiler
options. The following expression sets the MC68881 coprocessor as the default
target:

(compiler-options :target '68020/68881)

• Declare the explicit types of all floating-point variables.

To declare floating-point variables, use type declarations or the special form
the to declare the explicit types of all floating-point quantities. This allows the
Compiler to allocate variables in registers or on the stack.

When compiled with the :target option to compile-file set to the appropriate
target, the following example produces extremely efficient code that requires
no dynamic storage allocation:

(defun 2d-matrix-add (a b c)
(declare (type (simple-array single-float (* *» a be»
(let «m (array-dimension a 1»

(n (array-dimension a 2»)
(declare (fixnum m n»
(dotimes (i m)

(declare (fixnum i»

24 Compiling Lisp Programs August 1987

August 1987

(dotimes (j n)
(declare (fiXDum j»
(setf (aref c i j) (+ (aref a i j) (aref b i j»»»)

• Use functions coded in-line for the computationally intensive portions of your
code whenever possible. This avoids the allocation of arguments and return
values in dynamic storage and allows Boating-point local variables to remain in
registers.

• Represent aggregates of Boating-point data as simple Boating-point arrays
whenever possible. Compiled code that moves data between simple Boating
point arrays and Boating-point local variables does not require dynamic
allocation.

For example, the following code defines a data structure ship:

(defstruct ship
name
(x-position 0.0 :type single-float)
(y-position 0.0 :type single-float»

The following definitions provide the same functionality as the above definition
and increase the efficiency of ship by using floating-point arrays, which allow
the Compiler to generate more efficient access code:

(defstruct ship
name (position

(make-array 2
:element-type 'single-float
:initial-contents '(0.0 0.0»

:type (simple-array single-float 2»)
(defsubst ship-x (s) (aref (ship-position s) 0»
(defsubst ship-y (s) (aref (ship-position s) 1»

Code that includes in-line Boating-point operations will only run on machines
equipped with the appropriate Boating-point hardware. The binary files produced
by compile-file are tagged to indicate the type of Boating-point hardware required.
Any binary file produced for a specific target is tagged regardless of whether any
Boating-:-point code actually appears in the file.

When a binary file is loaded, Lisp determines whether the appropriate Boating-point
hardware is available on the host machine. H the hardware is not present, the
value of the :ignore-binary-dependencies keyword option to the load function
determines whether Lisp will load the file with no warnings, signal a continuable
error, or load the file with a warning (see the chapter "File System Interface" in
the Sun Common Lisp Reference Manual).

Compiling Lisp Programs 25

Code Optimizations

The Compiler performs a large number of transformations on the source code
to improve its performance. While these transformations preserve Common Lisp
semantics, they may also cause the execution of the compiled program to differ from
that of the interpreted program. This section describes some of the optimizations
the Compiler performs so that you can take advantage of them and can understand
the resulting differences between the compiled code and the interpreted code.

Function Call Optimizations

Unless directed otherwise, the Compiler optimizes self-recursive function calls, tail
calls, and self-tail calls. In particular, self-tail calls are automatically compiled
as loops. While these function calls are efficient, they may be difficult to trace
because they do not appear on the stack.

• A function call is a seH'-recursive can if the function calls itself. For example,
the following code contains a recursive function call to fact:

(defun fact (n)
(if « n 1) 1 (* n (fact (1- n»»)

Unless compiled as notinline, self-recursive function calls jump directly to
the start of the code rather than going through the symbol-function slot. A
trace of a self-recursive function shows only the initial call, not the resulting
recursive calls. For example, if you trace fact, a call to (fact 2) will only show
the initial call to fact, not the recursive calls to (fact 1) and (fact 0).

• A function call is a tail can if it is the last operation performed by the calling
function. In the following code, all of the function calls in the case statement
are tail calls:

(defun analyze-cereal (cereal)
(case (cereal-kind cereal)

(oat (analyze-oat-cereal cereal»
(wheat (analyze-wheat-cereal cereal»
(sugar (analyze-sugar-cereal cereal»
(t (analyze-other-cereal cereal»»

• A function call is a self-tail caU if it calls itself as the last operation. In the
following example, the call to my-last is a self-tail call:

(defun my-last (x)
(if (cdr x) (my-last (cdr x» x»

26 Compiling Lisp Programs August 1987

When the Compiler compiles either a tail call or a self-tail call, it reuses the
calling function's stack frame rather than creating a new stack frame. This
optimization is called tail merging; it is indicated by the message " ... tail
merging ... " or " ... se If tail merging ... " .

A function defined using self-tail calls is a tail-recursive function. Because of tail
merging, tail-recursive functions are usually as efficient as functions defined using
loop constructs.

As a consequence of tail merging, the caller of a tail-called function will not appear
in a back trace because the stack frame for the caller has been used by the called
procedure. For example, suppose you define a function analyze-food that calls the
function analyze-cereal. A back trace from analyze-oat-cereal will show only
the calls to analyze-oat-cereal and analyze-food; the frame for analyze-cereal
will have been replaced by the frame for analyze-oat-cereal.

IT the call to analyze-cereal is also a tail-recursive call, the trace will not show
analyze-food either, as that frame has been replaced by the call to analyze-cereal.

To trace tail calls, you can turn off tail merging by setting the :tail-merge
keyword argument to compile-file or compiler-options to nil when you compile
tail-recursive functions.

Macro Expansion

When an application of a macro, a compiler macro, or a function defined by using
defsubst is evaluated at compile time, the form is evaluated and the resulting
expression is substituted for the original form. This process eliminates the overhead
of a function call.

While these forms may make the code faster, they have the following disadvantages:

• Because a macro is not invoked during execution, the macro call does not
appear on the stack and cannot be traced.

• When a file is compiled, the macro definition must precede the first use of the
macro in text; otherwise the Compiler will treat the macro call as an ordinary
function call, which causes a run-time error.

• IT a macro is redefined, any code using the macro definition must be recompiled.

Constant Folding

August 1987

The Compiler may perform an optimizat,ion called constant folding on a form
that has no side effects and that can be evaluated repeatedly to produce values that
are eql. During compilation the form is evaluated and replaced by its value. Forms

Compiling Lisp Programs 27

that may be constant folded include symbols defined by using defconstant, atoms
other than symbols, lists whose car is quote, and constant numerical expressions.

The Compiler may use constant folding on the following expressions:

pi
(+ 1 2)
(* 2.0 pi)
'(this is a constant list)
'(a constant vector)
(aref #(a b c) 1)
(car '(a b»
"Hi. I'm a string"
• (a b)

The Compiler does not use constant folding on the following expressions:

random-symbol
(list 'values 'of 'this 'expression 'are ·not 'eql)
(cons 'a 'b)
(make-array 10)
(* 0 (random-function-that-may-have-side-effects)

N onnumerical expressions that allocate new storage are usually not folded because
the values are not eqI.

Note: You should never update structures created from constant forms because
constant objects that appear in compiled code may be allocated by the loader in a
read-only area in memory.

For example, the following function is incorrect:

(defun this-will-lose ()
(let «x .(0 0 0»)

(setf (aref x 0) 1) Cannot update constants.
x»

The following function is correct:

(defun this-will-win ()
(let «x (copy-seq #(0 0 0»»

(setf (aref x 0) 1)
x»

28 Compiling Lisp Programs August 1987

Case Macro Optimization

August 1987

When a call to the case macro contains only fixnum key values within a certain
range, the Compiler improves run-time performance by expanding the case macro
into code that jumps through a dispatch table.

To use a dispatch table, the application of the case macro must satisfy the
following qualifications:

• All keys must be of type fixnum except the last key, which can also be either
the symbol t or the symbol otherwise.

• The range of the keys must satisfy the following algorithm:

(highest-key - lowest-key) < (10 * number-oj-keys)

• The lowest key must be less than 68, and the highest key must be greater than
-60.

For example, the following code can be compiled into code that uses a dispatch
table:

(case x (1 'one)
(2 'two)
(4 'four)
(t 'other-num»

Compiling Lisp Programs 29

clear-undef

Purpose:

Syntax:

Remarks:

At the end of compilation, the Compiler prints out a list of all the currently
undefined functions. The function clear-under resets this list to nil.

clear-undef [Function]

This function is an extension to Common Lisp.

30 Compiling Lisp Programs August 1987

compile

Purpose:

Syntax:

The function complle compiles an interpreted function in the current Lisp
environment. It replaces the interpreted function's definition with the compiled
version. It produces a compiled function object from a lambda expression. The
lambda expression is the argument definition if it is present; otherwise the function
definition of the symbol name is the relevant lambda expression.

If the name argument is nll, complle returns the compiled function object;
otherwise the function definition of the symbol name is set to the compiled function
object, and complle returns that symbol.

complle name toptional definition [Function]

Examples: > (defun foo (x) (+ x x»
FOO

August 1987

> (compile 'fool
::: Compiling function FOO ... assembling .•. emitting ... done.
FDa
> (foo 2)
4
> (funcall (compile nil '(lambda (x) (+ x x») 3)
.,. Compiling function ... assembling ... emitting ... done.
6

Compiling Lisp Programs 31

compile-file

Purpose:

Syntax:

Remarks:

The function compile-file produces binary files from Lisp source files. The
compiled functions contained in the binary files become available for use when the
binary files are loaded into Lisp.

compile-file input-pathname I:key : output-file
:messages
: warnings
: fast-entry
: tail-merge
:notinline
: target

[Function]

The function converts a file specified by the input-pathname argument into
compiled code.

IT given, the :output-file option specifies where the compiled code is sent; its
argument should be a pathname or a string describing a valid filename. The binary
file that is produced from the source file is given that name, and any existing file
with that name is overwritten.

IT this option is not specified or if its argument is bound to nil, the file extension
.(" ... "].,.0 hi "" , f;l.o i .. ;I.of'O ... Tn;o;l .co .. .(,..11,....., .. •
.I.V.L v '" 1.I& u&.J .L&.&" &IIWJ '-&""U""'&&&& ,,'-A ~ &." ",;,.

• Source file has the extension . lisp.

In this case, the extension .lisp is replaced by .lbin.

• Source file does not have the extension .lisp.

IT the extension is different from .lisp or if there is no extension, the extension
.lbin is attached to the end of the source filename.

The default value of this option is nil.

The :messages option controls the fate of the progress messages issued by the
Compiler. A value of nil means issue no progress messages; otherwise the value
should specify a stream to which messages can be sent. The default value is t,
which sends the messages to the standard terminal device.

The :warnings option controls the warnings issued by the Compiler. A value
of nil means issue no warnings; otherwise the value must specify a stream to
which warnings can be sent. The default value is t, which sends the warnings to
error-output.

32 Compiling Lisp Programs August 1987

compile-file

If the :fast-entry option has a non-nil value, the Compiler does not insert code
to check the number of arguments on entry to a function with a fixed number of
arguments. Thus, calls to functions compiled in this manner are slightly faster.
The default value is nil.

IT the :tail-merge option has a non-nil value, the Compiler converts tail-recursive
calls to iterative constructions and performs other types of tail call optimizations,
such as tail merging, that eliminate the overhead of some function calls. The
default value is t.

IT the :notinline option has a non-nil value, the Compiler behaves as if all
functions have been declared notinline; see the section on in line and notinline
declarations for more details. The default value is nil.

The possible values for the :target option are as follows:

• 68020/68881

IT you specify this value for the :target option, the Compiler generates binary
files specifically for the MC68881 coprocessor. Such files use the machine
specific floating-point hardware and produce faster floating-point operations. A
binary file produced for the MC68881 coprocessor must be loaded on a machine
with the correct hardware; otherwise a continuable error is signaled.

• 68020

H you specify this value for the :target option, the Compiler generates binary
files specifically for the MC68020 processor. Such files may run slightly faster
in some cases, but they will not run on MC68010 processors.

• 68K

This is the default value of the :target option.

The keywords :messages, :warnings, :fast-entry, :tail-merge, :notinline, and
:target are extensions to Common Lisp.

See Also: compiler-options

August 1987 Compiling Lisp Programs 33

compiled-function-p

Purpose: The predicate compiled-function-p is true if its argument is a compiled code
object; otherwise it is false.

Syntax: compiled-function-p object

Examples: > (compiled-function-p (symbol-function 'append»
T
> (compiled-function-p "(lambda (x) x»
NIL

34 Compiling Lisp Programs

[Function]

August 1987

compiler-options

Purpose:

Syntax:

Remarks:

August 1987

The function compiler-options resets the default values of the keyword options
:messages, :warnings, :fast-entry, :tail-merge, :notinline, and :target of the
function compile-file.

compiler-options I:key : messages
: warnings
: fast-entry
: tail-merge
:notinline
: target

[Function]

The keyword :messages controls the fate of the progress messages issued by the
Compiler. A value of nil means issue no progress messages; otherwise the keyword
should specify a stream to which messages can be sent. The default value is t,
which sends the messages to the standard terminal device.

The keyword :warnings controls the warnings issued by the Compiler. A value of
nil means issue no warnings; otherwise the keyword value must specify a stream to
which warnings can be sent. The default value is t, which sends the warnings to
.error-output •.

If the :fast-entry keyword has a non-nil value, the Compiler does not check the
number of arguments on entry to a function with a fixed number of arguments.
Thus, calls to functions compiled in this manner are slightly faster. The default
value of :fast-entry is nil.

If the :tail-merge option has a non-nil value, the Compiler converts tail-recursive
calls to iterative constructions and performs other types of tail call optimizations,
such as tail merging, that eliminate the overhead of some function calls. The
default value of :tail-merge is t.

If the :notinline option has a non-nil value, the Compiler behaves as if all
functions have been declared notinline; see the section on inline and notinline
declarations for more details. The default value of :notinline is nil.

The possible values for the :target option are as follows:

• 68020/68881

If you specify this value for the :target option, the Compiler generates binary
files specifically for the MC68881 coprocessor. Such files use the machine
specific floating-point hardware and produce faster floating-point operations. A
binary file produced for the MC68881 coprocessor must be loaded on a machine
with the correct hardware; otherwise a continuable error is signaled.

Compiling Lisp Programs 35

compiler-options

See Also:

• 68020

If you specify this value for the :target option, the Compiler generates binary
files specifically for the MC68020 coprocessor. Such files may run slightly faster
in some cases, but they will not run on MC68010 processors.

• 68K

This is the default value of the :target option.

This function is an extension to Common Lisp.

compile-file

36 Compiling Lisp Programs August 1987

declare

Purpose:

Syntax:

Remarks:

August 1987

The declare special form may be used to make declarations within certain forms.
Declarations may occur in lambda expressions and in the following forms:

define-setf-metho d
defmacro
defsetf
deftype
defun
do
do*
do-all-symbols
do-external-symbols
do-symbols
dolist
dotimes
:O.et

declare {decl-spec} *

decl-spec::= (special {var}*) I

labels
let
let.
locally
macrolet
multiple-value-bind
prog
prog.
with-open-stream
with-op en-file
with-output-to-string
with-input-from-string

(type type-specifier {var} *) I
(type-specifier { var} *) I
(ftype type-specifier {function-name}*) I

[Special Form]

(function function-name ({ type-specifier}*) {type-specifier}*) I
(restrictive-ftype type-specifier {function-name}*) I
(type-reduce typel type£) I
(inline {function-name} *) I
(notinline {function-name }*) I
(ignore {var}*) I
(optimize {(quality value) I quality}*) I
(declaration {declaration-name} *) I
(arglist (declared-arguments» I
(dynamic-extent variable)

quality::= speed I space I safety I compilation-speed

value::= 0 I 1 I 2 I 3

Declarations may only occur where specified by the syntax of these forms.

Macros may expand into declarations as long as this syntax is observed.

The declaration specifier argument is not evaluated.

Compiling Lisp Programs 37

declare

The declarations restrictive-ftype, type-reduce, argIist, and dynamic-extent
are extensions to Common Lisp.

For more information, see the Sun Common Lisp Reference Manual.

Examples: > (defun foo (y) This Y is regarded
as special. (declare (special y»

(let «y t»
(list y

FOO
> (foo nil)
(T NIL)

38 Compiling Lisp Programs

(locally (declare (special y» y»»

This y is regarded
as lexical.
This y refers to the
special binding of y.

August 1987

def-compiler-macro

Purpose:

Syntax:

Remarks:

The macro def-compiler-macro defines a Compiler macro. A Compiler macro is
a macro that affects only compiled code, not interpreted code.

def-compiler-macro name lambda-list {form} * [Macro]

The name argument is a symbol; it is not evaluated. A global Compiler macro
expansion function is associated with the symbol name. It is possible to have
a Compiler macro defined with def-compller-macro associated with the same
name as a function defined with defun or a macro defined with defmacro.

The name is returned as the result of deC-compiler-macro.

The lambda-list argument specifies the arguments to the macro being defined; this
argument is equivalent to a lambda list of a defmacro form.

The body of the macro expansion function is specified by the form arguments.
They are executed in order.

This macro is an extension to Common Lisp.

Examples: > (defmacro xx1 (x) '(format nil "-A interpreted" • x»
XX1
> (def-compiler-macro xx1 (x) '(format nil "-A compiled" .x»
XX1
> (defun xx2 0 (xx1 "test is"»
XX2
> (xx2)
"test is interpreted"
> (compile 'xx2)
;;; Compiling function XX2 ... tail merging ... assembling ... emitting ... done.
XX2
> (xx2)
"test is compiled"

See Also: defmacro

August 1987 Compiling Lisp Programs 39

defsubst

Purpose:

Syntax:

Remarks:

The function defsubst defines a function and makes its definition available for
in-line expansion by the Compiler.

defsubst name lambda-list {form} * [Function]

The name argument must be a symbol; it is not evaluated. A global function
definition is attached to the symbol name as the contents of the symbol's function
cell. The name of the new function is returned as the value of the defsubst form.

The lambda-list argument specifies the arguments to the function being defined.

The body of the function consists of the forms specified by the form arguments;
they are executed in order when the function is called.

The expression (defsubst new-function ...) is equivalent to the expression
(prop (proclaim • (inline new-function» (defun new-function ... ». When a
call to a function defined with defsubst has been compiled, it cannot be traced or
redefined.

This function is an extension to Common Lisp.

Examples: > (defsubst test1 0 "This is a test")
TEST1
> (defun test2 ()
TEST2
> (trace test1)
(TEST1)
> (test2)
1 Enter TEST1
1 Exit TEST1 "This is a test"
"This is a test"
> (compile 'test2)
;;; Compiling function TEST2 ... assembling ... emitting ... done.
TEST2
> (test2)
"This is a test"
> (untrace test1)
(TEST1)
> (defun test1 0 "This is a new test")
TEST1
> (test2)
"This is a test"

40 Compiling Lisp Programs August 1987

See Also:

August 1987

defun

proclaim

defsubst

Compiling Lisp Programs 41

disable-stack-lists

Purpose:

Syntax:

Remarks:

See Also:

The function disable-stack-Iists disables stack list allocation. The Compiler
generates code that allocates &rest arguments in dynamic storage.

disable-stack-Iists [Function]

This function is an extension to Common Lisp.

enable-stack-Iists

42 Compiling Lisp Programs August 1987

enable-stack-lists

Purpose:

Syntax:

Remarks:

The function enable-stack-lists turns on stack list allocation. Stack list allocation
allows the Compiler to generate code that allocates ckrest arguments that are
declared to have dynamic extent on a stack instead of in dynamic memory. This
reduces the number of garbage collections.

enable-stack-lists tkey : max-depth : max-length [Function]

The keyword argument :max-depth specifies the maximum number of stack lists
that may be allocated at any time. H specified, the value of :max-depth must be
an integer between 10 and 10000 inclusive. The value defaults to 100.

The keyword argument :max-Iength specifies the maximum number of cons
cells that may be allocated in stack lists at any time. H specified, the value of
:max-Iength must be an integer between 100 and 100000. The value defaults to
1000.

If stack list allocation is repeatedly enabled in a Lisp process, the maximum depth
and maximum length are never reduced, even if the :max-depth and :max-length
arguments are given smaller values than were previously used.

H the creation of a stack list would exceed either the maximum depth or the
maximum length, the list is created in dynamic memory instead.

Stack list allocation is enabled by default. You need only call the function
enable-stack-lists to increase the available stack list space or to reenable stack
list allocation after a call to disable-stack.;.lists.

See Also: disable-stack-lists

August 1987 Compiling Lisp Programs 43

eval-when

Purpose:

Syntax:

The special form eval-when specifies when a particular body of code is to be
executed.

This time is defined by the situation arguments. The value of each argument must
be compile, load, or eval.

H eval is specified, the evaluator evaluates the form arguments at execution time.
H compile is specified, the Compiler evaluates the form arguments at compilation
time. H load is specified and the file containing the eval-when is compiled, then
the forms are compiled; they are executed when the output file produced by the
Compiler is loaded.

The value of the last form evaluated is returned as the result of eval-when. H no
forms are executed, eval-when returns nil.

eval-when ({situation}*) {form}* [Special Form]

Remarks: The form arguments are executed in order.

Examples: > (setq foo 3)
3
> (eval-when (compile) (setq foo 2»
NIL
> foo
3
> (eval-when (eval) (setq foo 2»
2
> foo
2

44 Compiling Lisp Programs August 1987

locally

Purpose:

Syntax:

Examples:

August 1987

The locally macro makes local declarations that affect only its form arguments.

locally {declaration} * {form} *

> (defun foo (y)
(declare (special y»
(let «y t»

(list y

[Macro]

This Y is regarded
as special.
This y is regarded
as lexical.

(locally (declare (special y» y»» -; This y refers to the
special binding of y.

Faa
> (foo nil)
(T NIL)

Compiling Lisp Programs 45

proclaim

Purpose:

Syntax:

Remarks:

The proclaim function makes a global declaration, or proclamation.

A proclamation whose declaration specifier declares a variable to be special makes
all occurrences of that variable name special references.

proclaim decl-spec [Function]

Although the effect of a proclamation is global, it may be overridden by a local
declaration.

The argument of proclaim is evaluated. It may therefore be a computed
declaration specifier.

Examples: > (proclaim • (special prosp»

See Also:

T
> (setq prosp 1 reg 1)
1
> (let «prosp 2) (reg 2»

(set 'prosp 3) (set 'reg 3)
(list prosp reg»

(3 2)
> (list prosp reg)
,. "II' \.L o.J}

defvar

defparameter

(In the Sun Common Lisp Reference Manual)

46 Compiling Lisp Programs August 1987

the

Purpose:

Syntax:

The special form the specifies that the value produced by a form will be of a
certain type.

The value-type argument is a type specifier; it is not evaluated. The form argument
is evaluated.

The the special form returns the value or values that result from form.

the value-type form [Special Form]

Remarks: You can use the macro setfwith the type declarations. In this case the declaration
is transferred to the form that specified the new value. The resulting setf form is
then analyzed.

Examples: > (the list • (a b»
(A B)

August 1987

> (the (values integer list) (values 6 '(a b»)
6
(A B)
> (let «i 100»

(declare (fixnum i»
(the fixnum (1+ i»)

101

Compiling Lisp Programs 47

uncompile

Purpose:

Syntax:

Remarks:

See Also:

The function uncompile replaces the compiled version of a function or macro with
its original interpreted definition. The function or macro must have been compiled
with a call to the function compile; otherwise an error is signaled.

uncompile name [Function]

This function is an extension to Common Lisp.

compile

48 Compiling Lisp Programs August 1987

undef-compiler-macro

Purpose:

Syntax:

Remarks:

The macro undef-compller-macro removes a Compiler macro definition.

undef-compiler-macro name

The name argument is a symbol.

This macro is an extension to Common Lisp.

See Also: def-compiler-mac~o

[Macro]

August 1987 Compiling Lisp Programs 49

unproclaim

Purpose:

Syntax:

Remarks:

See Also:

The function unproclaim reverses a proclamation.

unproclaim decl-spec [Function]

The decl-spec argument must be a valid declaration specifier for declare; otherwise
an error is signaled. With the exception of the optimize declaration, the
declaration specifier must exactly match the most recently proclaimed declaration
specifier. If it does not, the call to unproclaim has no affect.

If unproclaim is called with a declaration specifier of the form (optimize quality),
quality is set to its default value. If unproclaim is called with a declaration
specifier of the form (optimize (quality value», quality is reset to its default value
only if the current value of quality is value; otherwise, the call has no affect.

This function is an extension to Common Lisp.

proclaim

50 Compiling Lisp Programs August 1987

Chapter 14. Miscellaneous Programming Features

August 1987 Miscellaneous Programming Features 1

Chapter 14. Miscellaneous Programming Features

Introduction .. 14-3
The Source File Recording Facility .. 14-4

About Source File Definitions .. 14-4
Source File Recording Examples .. 14-5

The Advice Facility .. 14-6
About Advice .. 14-6
Advice Examples .. 14-7

advice-continue, apply-ad vice-continue . 14-9
defadvice ... 14-10
describe-advice .. 14-11
discard-source-file-info ... 14-12
get-source-file .. 14-13
load-instance .. 14-14
record-source-file ... 14-15
record-source-files .. 14-16
redefinition-action .. 14-17
remove-advice ... 14-19
source-pathname ... 14-20
terse-redefinitions ... 14-21

2 Miscellaneous Programming Features August 1987

Introduction

August 1987

This chapter describes two miscellaneous programming features. The Source File
Recording Facility records the name of the source file in which a Lisp object is
defined. The Advice Facility allows you to wrap a function with additional advice.
All of the constructs used by these facilities are extensions to Common Lisp.

The function pages for both facilities are at the end of the chapter in alphabetical
order.

Miscellaneous Programming Features 3

The Source File Recording Facility

The Source File Recording Facility records the name of the source file in
which a Lisp object is defined. When this facility is enabled, Lisp warns you when
an object that has been previously defined in a file is redefined in another file;
the facility is enabled by default. Lisp distinguishes between redefinitions of an
object, multiple definitions of the same object in one file, and redefinitions caused
by reloading a file.

The Source File Recording Facility consists of the following functions and variables:

discard-source-file-info
get-source-file
load-instance
record-source-file

About Source File Definitions

record-source-files
redefinition-action
source-pathname
terse-redefinitions

Defining an object is a way to name and describe an object; for example, you can
define a named function and specify its behavior by using defun. The Source File
Recording Facility records definitions of functions, macros, and structures. It can
be extended to record definitions of objects of other types.

Redefining an object assigns a new definition to a previously defined object. Giving
a named object the same definition that you originally specified is also considered
a redefinition.

When source file recording is enabled, defining and redefining objects has the
following effects:

• When you redefine an object, the redefinition warning gives you the name of
the source file containing the original definition.

• When you load a file, redefinition warnings distinguish between multiple
definitions, redefinitions, and reloading a file as follows:

H an object has been defined in a previous instance of loading the same file,
warnings are suppressed.

H an object has been defined earlier in the same file, you are warned that
the object has multiple definitions.

H an object has been previously defined in another file, you are warned
that the object is being redefined and are given the name of the source file
containing the previous definition.

4 Miscellaneous Programming Features August 1987

• You can get the pathname of the source file that contains the definition of an
object by using the function get-source-file.

• In the Editor, you can locate the source code for a function or a macro and
place it in an Editor buffer by using the Edit Definition command.

The Source File Recording Facility is enabled by default. To stop source file
recording, set the variable .record-source-files. to nil. Stopping source file
recording does not delete old information; to remove source file information,
use the function discard-source-file-info. You may want to remove source file
information before you save an image to reduce the image size.

To restart source file recording, set the variable .record-source-files* to t.

Source File Recording Examples

August 1987

The following examples illustrate the effects of source file recording on redefinition
warnings.

" Suppose the files "foo.lisp" and "bar.lisp" both contain definitions
" of the function DOlT.
, ,
" Loading "foo" defines DOlT for the first time.
> (load "foo")
;;; Loading source file "foo.lisp"
#P"/u/kdo/foo.lisp"

;; Now, loading "bar", which also defines DOlT, produces a warning.
> (load "bar")
; ;; Loading source file "bar . lisp"
;;; Warning: Redefining function DOlT which used to be defined in
file /u/kdo/foo.lisp
#P"/u/kdo/bar.lisp"

;; Reloading the same file produces no warning.
> (load "bar")
; ;; Load source file "bar . lisp" .
#P"/u/kdo/bar.lisp"

;; Get the pathname of the source file.
> (get-source-file 'doit)
#P"/u/kdo/bar.lisp"

Miscellaneous Programming Features 5

The Advice Facility

The Advice Facility allows you to modify the behavior of an existing function by
attaching named pieces of advice. You can attach multiple pieces of advice to the
same function in a specified order.

The Advice Facility consists of the following functions and macros:

advice-continue
apply-advice-continue
defadvice

About Advice

describe-advice
remove-advice

A symbol normally has a function definition. When some advice is applied, the
symbol is changed to have a new definition, called a piece of advice. From within
the advice, the original definition is called the continuation.

When a symbol is called as a function, the advice is called instead of the original
definition. The advice accepts the arguments to the call and returns the value
for the call. The advice mayor may not call its continuation, and it may call its
continuation several times or with different arguments. The advice may pass on
its return values or it may modify or ignore them. It may do exactiy what the
continuation does, or it may do something totally unrelated. The advice takes the
place of the original definition for all interfaces to the external world.

You can supply multiple, nested pieces of advice. The outermost piece of advice
is the one that is invoked first when the function is called. The continuation for
the outermost advice is the next inner piece of advice, and so on; the continuation
for the innermost piece of advice is the original definition of the function.

To create a piece of advice, use the defadvice macro. You can specify the order of
the pieces of advice by using the place argument to defadvice. To call the advised
function from within the body of defadvice, use the macros advice-continue
and apply-advice-continue.

To remove a piece of advice, use the remove-advice function. If the advice is
removed, the continuation is restored to its position as the definition of the symbol.

6 Miscellaneous Programming Features August 1987

Advice Examples

August 1987

The following examples illustrate the use of defadvice and related advising
constructs.

:: Define a function that adds 1 to its argument.
> (defun foo (x) (+ x 1»
FOO
> (foo 3)
4

3+1 4

:: Put some advice on it that gives a default value for the argument.
> (defadvice (foo default-to-zero) (toptional (x 0»

(advice-continue x»
#<Interpreted-Function (:ADVICE FOO DEFAULT-TO-ZERO) BOOD37>
> (foo) ; No argument supplied. so 0+1 = 1
1
:: Put some more advice on to double the result.
> (defadvice (foo double-result) (trest args)

(* 2 (apply-advice-continue args»)
#<Interpreted-Function (:ADVICE FOO DOUBLE-RESULT) B261BF>
> (foo) (default 0+1)*2 = 2
2
> (foo 6)
12
:: See what is there now.
> (describe-advice 'fool
Advice DOUBLE-RESULT:

(5+1)*2 12

#<Interpreted-Function (:ADVICE FOO DOUBLE-RESULT) B362D7>
Advice DEFAULT-TO-ZERO:
#<Interpreted-Function (:ADVICE FOO DEFAULT-TO-ZERO) B3619F>
Original definition: #<Interpreted-Function (NAMED-LAMBDA FOO (X)

(BLOCK FOO (+ X 1») AF1A57>
NIL
:: Get rid of one of the pieces of advice.
> (remove-advice 'foo 'default-to-zero)
Removing #<Interpreted-Function (:ADVICE FOO DEFAULT-TO-ZERO) B3619F>
#<Interpreted-Function (:ADVICE FaD DOUBLE-RESULT) B60747>
:; Now install more advice to add 1 to the result. Put it outside
;: the advice that does the doubling.
> (defadvice (foo add-one-to-result (:outside double-result» (x)

(+ 1 (advice-continue x»)
#<Interpreted-Function (:ADVICE FOO ADD-ONE-TO-RESULT) B7732F>
> (foo 2) : «2+1)*2)+1 - 7
7

Miscellaneous Programming Features 7

;; Replace that advice with the same piece of advice but put it inside
;; the doubling advice instead.
> (defadvice (foo add-one-to-result (:inside double-result» (x)

(+ 1 (advice-continue x»)
'<Interpreted-Function (:ADVICE FOO DOUBLE-RESULT) B7ED9F>
> (foo 2) ; «2+1)+1)*2 = 8
8
;; Redefine the basic function inside the advice to return its argument
;; unchanged.
> (defun foo (x) x)
;;; Warning: Redefining FOO, keeping advice DOUBLE-RESULT, ADD-ONE-TO
RESULT
FOO
> (foo 2) ; (2+1)*2 = 6
6
;; Remove all the advice from the function.
> (remove-advice 'fool
Removing 2 pieces of advice from FOO
NIL
> (foo 1)
1

8 Miscellaneous Programming Features August 1987

advice-continue, apply-advice-continue

Purpose:

Syntax:

Remarks:

See Also:

August 1987

The macros advice-continue and apply-advice-contmue call an advised
function from within the body of defadvice.

The macro advice-continue applies the continuation to the specified arguments.

The macro apply-advice-continue applies the continuation to a specified list of
arguments.

advice-continue .treat args

apply-advice-continue args .treat more-args

[Macro]

[Macro]

The last argument specified for apply-advice-continue must be a list. It is
appended to a list of all the other arguments.

These macros are extensions to Common Lisp.

apply

funcall

(in the Sun Oommon Lisp Reference Manual)

Miscellaneous Programming Features 9

defadvice

Purpose:

Syntax:

Remarks:

The macro defadvice defines a piece of advice for a specified function.

defadvice (Junction-to-advise name-oj-advice toptional place)
(lambda-list) {Jorm}*

[Macro]

The Junction-to-advise argument is the name of the function being advised. Only
functions that are stored as definitions of symbols can be advised.

The name-oj-advice argument specifies a name for the advice. Any existing
advice with this name is replaced; the names are compared using the function
string-equal.

The optional place keyword argument specifies how the advice that is being defined
relates to other pieces of advice on the same function. This argument should be a
list of keywords and values. The following options are valid:

• (:outside name), (:before name)

The :outside keyword puts the piece of advice that is being defined outside
the advice with the specified name; the keyword :before is synonymous.

• (:inside name), (:after name)

The :inside keyword puts the piece of advice that is being defined inside the
advice with the specified name; the keyword :after is synonymous.

H the place argument is omitted, the new piece of advice goes outside any advice
defined earlier and inside any ad vice defined later. If the order of the pieces of
advice is important, you should explicitly specify the position of the new advice in
relation to the existing pieces.

The lambda-list argument specifies the arguments to the advised function.

The forms specified by the Jorm arguments make up the body of defadvice, which
is any normal function body.

H defadvice appears in a compiled file, the advice function is compiled.

This macro is an extension to Common Lisp.

10 Miscellaneous Programming Features August 1987

describe-advice

Purpose:

Syntax:

Remarks:

The function describe-advice describes all levels of advice for a specified function.

describe-advice function [Function]

The function argument names the function whose advice is being described.

This function is an extension to Common Lisp.

See Also: defadvice

August 1987 Miscellaneous Programming Features 11

discard-source-file-info

Purpose:

Syntax:

Remarks:

See Also:

The function discard-source-file-info discards all recorded source file information.
This function allows you to reduce the size of an image; it is particularly useful
before an image is saved.

discard-source-file-info [Function]

Using discard-source-file-info does not affect the setting of .record-source
files •.

This function is an extension to Common Lisp.

record-source-file

.record-source-files.

12 Miscellaneous Programming Features August 1987

get-source-file

Purpose:

Syntax:

Remarks:

The function get-source-file returns information about the file or files in which
an object is defined.

get-source-file object &:optional type want-list [Function]

The optional type argument is a symbol that identifies the type of definition sought.
The value of type can be either function, macro, structure, or a definition type
that you have created by using the function record-source-file.

H the type argument is specified, the function searches for only a specific type of
definition. H the definition exists, the pathname of the source file that contains the
definition is returned. If the definition does not exist, an error is signaled.

H the type argument is nil and the want-list argument is specified, the function
searches for all definitions of the specified object and returns a list of the form
(type. pathname) for each definition of the object.

H neither the type nor the want-list argument is specified, the function searches
for all definitions of the specified object. H there is a single definition of the object,
the function returns two values: the pathname and the type. H there are multiple
definitions of the same object, a continuable error is signaled.

This function is an extension to Common Lisp.

See Also: record-source-file

August 1987 Miscellaneous Programming Features 13

load-instance

Purpose:

Syntax:

Remarks:

See Also:

The variable -load-instance- identifies an instance of loading a file. When a
file is loaded, the variable -load-instance- is bound to a unique object that
distinguishes this instance of loading the file from previous loads of the same file.
This variable is used to detect multiple definitions of an object in the same file.

-load-instance. [Variahle]

This variable is an extension to Common Lisp.

record-source-file

load (in the Sun Common Lisp Reference Manual)

14 Miscellaneous Programming Features August 1987

record-source-file

Purpose:

Syntax:

Remarks:

See Also:

August 1987

The function record-source-file records information about the source file that
defines a particular object.

record-source-file obiect type toptional pathname load-instance [Function]

The type argument is a symbol that identifies the type of definition. The value of
type can be either function, macro, structure, or a definition type you create by
supplying a symbol.

The optional argument pathname gives the pathname of the file that is defining
the object. The default is the value of the variable .source-pathname •.

The value of the optional argument load-instance is an object that distinguishes
the current instance of loading a file from other instances of loading the same file.
The value of load-instance is used to detect multiple definitions of the same object
in the same file. The default is the value of the variable .load-instance •.

This function is an extension to Common Lisp .

• redefinition-action.

.source-pathname.

Miscellaneous Programming Features 15

record-source-files

Purpose:

Syntax:

Remarks:

See Also:

The variable *record-source-files* determines whether to record the name of the
file in which an object is defined.

record-source-files [Variable]

H the variable is non-nil, source file names are recorded. Redefinition warnings
are not produced when functions are redefined by loading the same file again;
redefinition warnings are produced when an object is redefined in the same file.
Redefinition messages include the name of the original source file that defines the
object. The default value of *record-source-files* is t.

H the variable is nil, source file names are not recorded. Redefinition warnings are
produced when a file is reloaded and when an object is redefined in the same file.
Redefinition warnings do not include source file information.

H the variable is nil, no new information is recorded; however, old information is
not lost.

This variable is an extension to Common Lisp.

record-source-file

redefinition-action

16 Miscellaneous Programming Features August 1987

redefinition-action

Purpose:

Syntax:

Remarks:

Examples:

August 1987

The global variable .redefinition-action. specifies what action is taken when a
redefinition occurs.

.redefinition-action. [Variable]

The variable .redefinition-action. can have one of the following values:

• :warn
H the value is :warn, you are warned when a function or macro is redefined as
a result of loading a different file from the source file that contains the original
definition. H the source file that contains the original definition is unknown,
the warning is always given. The default value is :warn.

• :query

H the value is : query , you are asked whether you wish to proceed with the
redefini tion.

• nil
H the value is nil, no action is taken.

This variable is an extension to Common Lisp.

Suppose that *record-source-files* is set. which is the default. If the
file temp1.lisp contains

(defun test (»
and the file temp2.lisp also contains

(defun test (»

the following session could occur:

> *redefinition-action*
: WARN

The default action is :warn.

> (load "-/temp1.lisp") Define "test" the first time.
::: Loading source file "/u/kdo/temp1.lisp"
#P"/u/kdo/temp1.lisp"
> (load "-/temp1.lisp") : Redefine from same file--no message.
:;; Loading source file "/u/kdo/temp1.lisp"
#P"/u/kdo/temp1.lisp"
> (load "-/temp2.lisp") : Redefine it by loading new file.
;;; Loading source file "/u/kdo/temp2.lisp"
;;: Warning: Redefining function TEST which used to be defined in file
/u/kdo/temp1.lisp
#P"/u/kdo/temp2.lisp"

Miscellaneous Programming Features 17

redefinition-action

See Also:

> (defun test (» ; Redefine it from top level.
;;; Warning: Redefining function TEST which used to be defined in file
/u/kdo/temp2.lisp
TEST
> (setq *redefinition-action* :query)
: QUERY
> (load ,,-/temp1.lisp")

Reset to ask for confirmation.

;;; Loading source file "/u/kdo/templ.lisp"
Redefining function TEST which used to be defined at top level OK?
(Y or N) y
#P"/u/kdo/templ.lisp"
> (setq *redefinition-action* nil) Don't print warnings.
NIL
> (load "-/temp2.lisp")
;;; Loading source file "/u/kdo/temp2.lisp"
#P"/u/kdo/temp2.lisp"

define-function

define-macro

load

(in the Sun Common Lisp Reference Manual)

18 Miscellaneous Programming Features August 1987

remove-advice

Purpose:

Syntax:

Remarks:

The function remove-advice removes some or all of the advice from a specified
function.

remove-advice function .t:optional advice-name [Function]

The function argument specifies the name of the function from which the advice
should be removed.

The advice-name argument specifies the name of the advice to be removed. If
the advice-name argument is specified, only advice that matches the given name
is removed. The names are compared using the function string-equal. If the
advice-name argument is not specified, all advice is removed from the function.

This function is an extension to Common Lisp.

See Also: defadvice

August 1987 Miscellaneous Programming Features 19

source-pathname

Purpose:

Syntax:

Remarks:

See Also:

The variable tsource-pathnamet contains the truename of the source file of the
file being loaded. If a file with the extension .lisp is being loaded, the value of
this variable is the truename of the file being loaded. If a compiled file is being
loaded, the value of this variable is the truename of the source file from which the
compiled file was created. You can bind this variable to another value to pretend
that a different file is being loaded.

tsource-pathnamet [Variable]

This variable is an extension to Common Lisp.

record-source-file

20 Miscellaneous Programming Features August 1987

terse-redefinitions

Purpose:

Syntax:

The variable tterse-redefinitionst controls the level of detail printed in
redefinition warnings. IT the variable is non-nil, the warnings are terse and may be
harder to understand. The default value is nil.

tterse-redefinitionst [Variable]

Remarks: This variable is an extension to Common Lisp.

See Also: tredefinition-actiont

August 1987 Miscellaneous Programming Features 21

22 Miscellaneous Programming Features August 1987

