
Asun~
• microsystems

Sun™ Common Lisp
Reference Guide

Credits and Trademarks

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

SunStation, Sun Microsystems, SunCore, SunWindows, SunView, DVMA, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX System V &.re trademarks of AT&T Information Systems, Inc.

Intel and Multibus are registered trademarks of Intel Corporation.

DEC, PDP, VT, and VAX are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems, Inc.

Copyright © 1986 by Lucid, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. Published with modifications by Sun
Microsystems, Inc., under license from Lucid, Inc. No part of this publication may be reproduced, stored in a retrieval
system, translated, transcribed, or transmitted, in any form, or by any means-manual, electric, electronic, electromagnetic,
mechanical, chemical, optical, or otherwise-without prior explicit written permission from Sun Microsystems, Inc. and
Lucid, Inc.

About This Book

This book presents a complete technical description of Sun Common Lisp. It is designed as
a reference tool. Programmers who use this book should have some knowledge of general
Lisp programming concepts. This book is not intended to be a tutorial on Common Lisp.
Rather, it is a comprehensive description and specification of the Common Lisp language
and extensions to Common Lisp by Lucid, Inc.

About This Book iii

Organization of This Book

The Sun Common Lisp Reference Manual has twenty-four chapters and two appendixes.

• Chapter 1. "Introduction" contains a brief overview of Common Lisp. It also describes
the notational conventions used throughout this book. '

• Chapter 2. "Data Types" introduces the data types provided by Common Lisp.

• Chapter 3. "Type Specifiers" describes the use of type specifiers in designating types.

• Chapter 4. "Program Structure" describes the organization of Common Lisp programs
in terms of forms and functions.

• Chapter 5. "Control Structure" describes the constructs available for controlling the
flow pf program execution and evaluation.

• Chapter 6. "Macros" describes the use of macros and the macro text replacement
facility.

• Chapter 7. "The Evaluator" discusses the evaluation of Common Lisp programs.

• Chapter 8. "Declarations" describes the use of declarations in tailoring a program to
the needs of the user and the system.

• Chapter 9. "Predicates" describes the use of predicate functions and logical operations.

• Chapter 10. "Symbols" describes the use of symbol data objects.

• Chapter 11. "Packages" describes the use of packages in organizing the program name
space.

• Chapter 12. "Numbers" describes the numerical data types and operations on numbers.

• Chapter 13. "Characters" describes the character data type and operations on
characters.

• Chapter 14.

• Chapter 15.

• Chapter 16.
vectors.

• Chapter 17.

• Chapter 18.
tables.

"Sequences" describes the sequence data type and operations on sequences.

"Lists" describes the list data type and operations on lists.

"Arrays" describes the array data types and operations on arrays and

"Strings" describes the string data type and operations on strings.

"Hash Tables" describes the hash table data type and operations on hash

• Chapter 19. "Structures" describes the creation of user-defined data types and the
operations upon them.

• Chapter 20. "Streams" describes the use of streams in program input and output
operations.

iv Sun Common Lisp Reference Manual

• Chapter 21. "Input/Output" describes the reading and printing operations of Common
Lisp, including formatting options.

• Chapter 22. "File System Interface" describes the facilities for accessing files and
communicating with the file system.

• Chapter 23. "Errors" describes error-signaling operations.

• Chapter 24. "Environmental Features" briefly describes facilities for compilation,
debugging, documentation, and other functions that interface with the environment.
For a complete technical description of Sun Common Lisp, the user is referred to the
Sun Common Lisp Use,.'s Guide.

• Appendix A. "Alphabetical Listing of Common Lisp Functions" is a list of all Common
Lisp functions, macros, constants, variables, and special forms, including all extensions
to Common Lisp described in this manual.

• Appendix B. "Extensions to Common Lisp" lists the extensions to Common Lisp
described in this manual.

About This Book v

Related Publications

The following books contain related information that the user may find helpful.

Sun Common Lisp User's Guide is a guide to using the special features and functions of
Sun Common Lisp.

Common Lisp: The Language by Guy L. Steele Jr. (Digital Press) is the basic
implementation specification for the language.

Programming in Common Lisp by Rodney A. Brooks (John Wiley & Sons) is an
introductory text for those who are new to Lisp.

vi Sun Common Lisp Reference Manual

Contents

Chapter 1. Introduction 1-1

About Common Lisp .. 1-3
Notational Conventions and Syntax .. 1-4

Chapter 2. Data Types 2-1

About Data Types ... 2-3
Relationships Among Common Lisp Data Types 2-9
Hierarchy of Data Types .. 2-10
Printed Representations of Data Types 2-11

Chapter 3. Type Specifiers 3-1

About Type Specifiers ... 3-3
Categories of Operations ... 3-8
coerce .. 3-9
commonp .. 3-11
deftype .. 3-12
subtypep .. 3-13
type-of .. 3-14
typep ... 3-15

Chapter 4. Program Structure 4-1

About Program Structure .. 4-5
Forms .. 4-6
Functions ... 4-9
Categories of Operations .. 4-13
apply ... 4-15
boundp ... 4-16
call-arguments-limit .. 4-17
compiled-function-p .. 4-18
constantp .. 4-19
defconstant .. 4-20

Contents vii

de:6.ne-function .. 4-21
defparameter ... 4-22
defun ... 4-23
defvar ... 4-25
eval-when .. 4-26
fboundp ... 4-27
fmakunbound ... 4-28
funcall .. 4-29
function ... 4-30
functionp .. 4-31
identity ... 4-32
lambda-list-keywords ... 4-33
lambda-parameters-limit .. 4-34
makunbound ... 4-35
quote ... 4-36
rede:6.nition-action ... 4-37
special-form-p .. 4-39
symbol-function ... 4-40
symbol-value ... 4-41

Chapter 5. Control Structure 5-1

About Control Structure ... 5-5
Categories of Operations ... 5-9
block ... 5-11
case .. 5-12
catch ... 5-13
compiler-let .. 5-14
cond .. 5-16
de:6.ne-modify-macro ... 5-18
de:6.ne-setf-method ... 5-19
defsetf .. 5-21
do, do* .. 5-23
dolist . 5-25
dotimes ... 5-26
ecase, ccase .. 5-27
etypecase, ctypecase ... 5-28
flet ... 5-29
get-setf-method, get-setf-method-multiple-value 5-30
go .. 5-31
if .. 5-32
labels . 5-33
let, let* ... 5-34
loop .. 5-35

viii Sun Common Lisp Reference Manual

macrolet. 5-36
multiple-value-bind .. 5-37
multiple-value-call ... 5-38
multiple-value-list ... 5-39
multiple-value-progl ... 5-40
multiple-value-setq .. 5-41
multiple-values-limit ... 5-42
prog, prog* .. 5-43
progl ... 5-45
prog2 ... 5-46
progn ... 5-47
progv ... 5-48
return, return-from .. 5-49
rotatef .. 5-50
set ... 5-51
setf, psetf .. 5-52
setq, psetq ... 5-53
shiftf .. 5-54
tagbody ... 5-55
throw ... 5-56
typecase ... 5-57
unless . 5-58
unwind-protect ... 5-59
values ... 5-60
values-list .. 5-61
when ... 5-62

Chapter 6. Macros 6-1

About Macros ... 6-3
Categories of Operations ... 6-8
define-macro .. 6-9
defmacro .. 6-10
macro-function ... 6-12
macroexpand, macroexpand-l .. 6-13
macroexpand-hook ... 6-15

Chapter 7. The Evaluator 7-1

About the Evaluator .. 7-3
Categories of Operations ... 7-4
*, **, *** ... 7-5
+, ++, +++ .. 7-6
- ... 7-7

Contents be

/, / /, / / / ... 7-8
decache-eval .. " ... 7-9
eval .. 7-10
evalhook, applyhook ... 7-11
evalhook, *applyhook* .. 7-13
grindef .. 7-15
prompt .. 7-16
source-code .. 7-17

Chapter 8. Declarations 8-1

About Declarations ... 8-3
Categories of Operations ... 8-5
declare ... 8-6
locally ... 8-7
proclaim .. 8-8
the .. 8-9

Chapter Q. Predicates 9-1

About Predicates ... 9-3
Categories of Operations ... 9-4
and '" '" " " " 9-5
eq , .. 9-6
eql , .. 9-7
equal , .. 9-8
equalp ... 9-9
nil ... 9-10
not ... 9-11
or .. 9-12
t ... 9-13

Chapter 10. Symbols 10-1

About Symbols ... 10-3
Categories of Operations. 10-4
copy-symbol. 10-5
gensym .. 10-6
gentemp ... 10-7
get ... 10-8
getf, get-properties .. 10-9
keywordp ... 10-10
make-symbol .. 10-11

x Sun Common Lisp Reference Manual

remf ... 10-12
remprop .. 10-13
symbol-name .. 10-14
symbol-package . 10-15
symbol-plist . 10-16
symbolp .. 10-17

Chapter 11. Packages 11-1

About Packages ... 11-3
Categories of Operations. 11-7
delete-package . 11-8
do-symbols, do-external-symbols, do-all-symbols 11-9
export ... 11-11
find-all-symbols .. 11-12
find-package ... 11-13
find-symbol ... 11-14
import ... 11-15
in-package .. 11-16
intern .. 11-17
list-all-packages .. 11-18
make-package. 11-19
modules .. 11-20
* package * .. 11-21
package-name ... 11-22
package-nicknames ... 11-23
package-shadowing-symbols .. 11-24
package-use-list . 11-25
package-used-by-list ... 11-26
packagep ... 11-27
provide ... 11-28
rename-package . 11-29
require ... 11-30
shadow ... 11-32
shadowing-import .. 11-33
unexport 11-34
un intern .. 11-35
unuse-package ... 11-36
use-package ... 11-37

Contents xi

Chapter 12. Numbers 12-1

About Numbers ... 12-5
Categories of Operations .. 12-7
* .. 12-11
+ ... 12-12
- ... 12-13
/ .. 12-14
1+, 1- ... 12-15
<, <=, >, >= ... 12-16
=, /= .. 12-17
abs .. 12-18
ash .. 12-19
asin, acos, atan .. 12-20
boole, boole-elr, boole-set, boole-l, boole-2, boole-cl, boole-c2, boole-and,

boole-ior, boole-xor, boole-eqv, boole-nand, boole-nor, boole-andcl,
boole-andc2, boole-orcl, boole-orc2 12-21

byte, byte-size, byte-position .. 12-24
cis .. 12-25
complex .. 12-26
complexp ... 12-27
conjugate ... 12-28
decode-float, integer-decode-float .. 12-29
deposit-field ... 12-31
dpb ... 12-32
evenp, oddp ... 12-33
exp, expt ... 12-34
fixnump .. 12-35
float ... 12-36
float-digits, float-precision, float-radix 12-37
float-sign . 12-38
floatp .. 12-39
floor, ceiling, moor, fceiling ... 12-40
gcd .. 12-41
incf, decf ... 12-42
integer-length ... 12-43
integerp .. 12-44
lcm .. 12-45
ldb .. 12-46
ldb-'test .. 12-47
log .. 12-48
logand, logandcl, logandc2, logeqv, logior, lognand, lognor, logorcl, logorc2,

logxor. 12-49
logbitp ... 12-51

xii Sun Common Lisp Reference Manual

logcount . 12-52
lognot .. 12-53
logtest . 12-54
make-random-state . 12-55
mask-field .. 12-56
max, min ... 12-57
minusp, plusp ... 12-58
mod, rem ... 12-59
most-positive-fixnum, most-negative-fixnum 12-60
most-positive-short-Boat, most-posi ti ve-single-Boat, most-positi ve-

double-Boat, most-positive-Iong-Boat, least-positive-short-Boat,
least-positive-single-Boat, least-posi tive-double-Boat,
least-positive-Iong-Boat, least-negative-short-float, least-negative
single-Boat, least-negative-double-Boat, least-negative-Iong-Boat,
most-negati ve-short-Boat, most-negati ve-single-Boat,
most-negative-double-Boat, most-negative-Iong-Boat 12-61

numberp ... 12-63
numerator, denominator . 12-64
phase .. 12-65
pi ... 12-66
random .. 12-67
random-state . 12-68
random-state-p .. 12-69
rational, rationalize . 12-70
ration alp ... 12-71
realpart, imagpart .. 12-72
scale-Boat ... 12-73
short-Boat-epsilon, single-float-epsilon, double-Boat-epsilon,

long-Boat-epsilon, short-flo at-negative-epsilon, single-float-negati ve-epsilon,
double-float-negative-epsilon, long-float-negative-epsilon . 12-74

signum ... 12-76
sin, cos, tan ... 12-77
sinh, cosh, tanh, asinh, acosh, atanh 12-78
sqrt, isqrt ... 12-79
truncate, round, ftruncate, fround 12-80
zerop .. 12-81

Chapter 13. Characters 13-1

About Characters . 13-3
Categories of Operations .. 13-5
alpha-char-p .. 13-7
alphanumericp .. 13-8
char-bit ... 13-9

Contents xiii

char-bits .. 13-10
char-bits-limit ... 13-11
char-code ... 13-12
char-code-limit ... 13-13
char-control-bit, char-meta-bit, char-super-bit, char-hyper-bit 13-14
char-font ... 13-15
char-font-limit ... 13-16
char-int .. 13-17
char-name, name-char . 13-18
char-upcase, char-downcase. 13-20
char=, char/=, char<, char<=, char>, char>=, char-equal, char-not-equal,

char-lessp, char-not-greaterp, char-greaterp, char-not-lessp 13-21
character ... 13-23
characterp . 13-24
code-char ... 13-25
digit-char ... 13-26
digit-char-p ... 13-27
graphic-char-p ... 13-28
int-char .. 13-29
make-char .. 13-30
set-char-bit ... 13-31
standard-char-p .. 13-32
string-char-p .. 13-33
upper-case-p, lower-case-p, both-case-p 13-34

Chapter 14. Sequences 14-1

About Sequences .. 14-3
Categories of Operations. 14-4
concatenate . 14-6
copy-seq ... 14-7
count, count-if, count-if-not ... 14-8
elt ... 14-9
every, some, notevery, not any ... 14-10
fill .. 14-11
find, find-if, find-if-not. 14-12
length .. 14-13
make-sequence . 14-14
map ... 14-15
merge .. 14-16
mismatch . 14-17
position, position-if, position-if-not . 14-18
reduce ... 14-20
remove, remove-if, remove-if-not, delete, delete-if, delete-if-not 14-21

xiv Sun Common Lisp Reference Manual

remove-duplicates, delete-duplicates . 14-23
replace . 14-24
reverse, nreverse ... 14-25
search. 14-26
sort, stable-sort .. 14-27
subseq ... 14-28
substitute, substitute-if, substitute-it-not, nsubstitute, nsubstitute-if,

nsubstitute-if-not ... 14-29

Chapter 15. Lists 15-1

About Lists . 15-5
Categories of Operations. 15-6
acons ... 15-9
adjoin. 15-10
append ... 15-11
assoc, assoc-if, assoc-if-not ... 15-12
assq ... 15-13
atom .. 15-14
butlast, nbutlast ... 15'-15
car, cdr .. 15-16
cons ... 15-18
consp .. 15-19
copy-alist . 15-20
copy-list. 15-21
copy-tree . 15-22
endp ... 15-23
first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth 15-24
intersection, nintersection . 15-25
last .. 15-26
ldiff . 15-27
list, list*. 15-28
list-length .. 15-29
list-reverse, list-nreverse ... 15-30
listp ... 15-31
make-list ... 15-32
mapcar, maplist, mapc, mapl, mapcan, map con 15-33
member, member-if, member-if-not 15-35
memq .. 15-36
nconc .. 15-37
nreconc .. 15-38
nth .. 15-39
nthcdr 15-40
null .. 15-41

Contents xv

pair lis. 15-42
pop .. 15-43
push ... 15-44
pushnew .. 15-45
rassoc, rassoc-if, rassoc-if-not ... 15-46
rest .. 15-47
revappend .. 15-48
rplaca, rplacd .. 15-49
set-difference, nset-difference .. 15-50
set-exclusive-or, nset-exclusive-or . 15-51
sublis, nsublis ... 15-52
subsetp .. 15-53
subst, subst-if, subst-if-not, nsubst, nsubst-if, nsubst-if-not 15-54
tailp . 15-56
tree-equal ... 15-57
union, nunion ... 15-58

Chapter 16. Arrays 16-1

About Arrays .. 16-3
Categories of Operations. 16-5
adjust-array .. 16-7
adjustable-al'l'ay-p .. 16-10
aref ... 16-11
array-dimension .. 16-12
array-dimension-limit ... 16-13
array-dimensions . 16-14
array-element-type ... 16-15
array-has-fill-pointer-p ... 16-16
array-in-bounds-p .. 16-17
array-rank .. 16-18
array-rank-limit .. 16-19
array-row-major-index ... 16-20
array-total-size ... 16-21
array-total-size-limit .. 16-22
arrayp ... 16-23
bit, sbit .. 16-24
bit-and, bit-andc1, bit-andc2, bit-eqv, bit-ior, bit-orc1, bit-orc2, bit-nand,

bit-nor, bit-xor .. 16-25
bit-not " 16-27
bit-vector-p 0 •••••••• '.' •••••••••••••••••••••••••••• 16-28
fill-pointer .. 16-29
make-array .. 16-30
simple-bit-vector-p ... 16-33

xvi Sun Common Lisp Reference Manual

simple-vector-p .. 16-34
svref ... 16-35
vector .. 16-36
vector-pop .. 16-37
vector-push, vector-push-extend ... 16-38
vectorp ... 16-40

Chapter 1'1. Strings 17-1

About Strings .. 17-3
Categories of Operations. 17-4
char, sch.ar . 17-6
make-string . 17-7
simple-string-p .. 17-8
string . 17-9
string<, string<=, string>, string>=, string/=) string-Iessp,

string-not-greaterp, string-greaterp, string-not-Iessp, string-not-equal 17-10
string=, string-equal .. 17-12
string-trim, string-left-trim, string-right-trim 17-13
string-upcase, string-downcase, string-capitalize, nstring-upcase,

nstring-downcase, nstring-capitalize 17-14
stringp ... 17-16

Chapter 18. Hash Tables 18-1

About Hash Tables . 18-3
Categories of Operations. 18-4
clrhash . 18-5
get hash ... 18-6
hash-table-count .. 18-7
hash-table-p .. 18-8
make-hash-table. 18-9
maphash ... 18-11
remhash .. 18-12
sxhash ... 18-13

Chapter 19. Structures 19-1

About Structures .. 19-3
Categories of Operations ... 19-10
defstruct ... 19-11

Contents xvii

Chapter 20. Streams 20-1

About Streams ... 20-3
Categories of Operations .. 20-4
close .. 20-6
debug-io ... 20-7
error-output .. 20-8
get-output-stream-string .. 20-9
input-stream-p ... 20-10
make-broadcast-stream . 20-11
make-concatenated-stream . 20-12
make-echo-stream . 20-13
make-string-input-stream . 20-14
make-string-output-stream .. 20-15
make-synonym-stream ... 20-16
make-two-way-stream . 20-17
output-stream-p .. 20-18
query-io .. 20-19
standard-input . 20-20
standard-output .. 20-21
stream-element-type .. 20-22
streamp .. 20-23
_._L ___ ! __ l ! __ ._ nn n~
"'''~Cll1111c:lol-1U''' ••.•••..•••••..• "'v-"'~

* trace-output * ... 20-25
with-input-from-string ... 20-26
with-open-stream. 20-27
with-output-to-string. 20-28

Chapter 21. Input/Output 21-1

About Input/Output ... 21-5
The Printed Representation of Common Lisp Objects 21-6
Reading the Representations of Common Lisp Objects 21-11
Formatted Output .. 21-22
Summary of Format Directives .. 21-38
Categories of Operations ... 21-42
clear-input . 21-45
clear-output . 21-46
copy-readtable ... 21-47
finish-output, force-output ... 21-48
format . 21-49
get-dispatch-macro-character ... 21-50
get-macro-character ... 21-51

xviii Sun Common Lisp Reference Manual

ignore-extra-right-parens . 21-52
listen . 21-53
make-dispatch-macro-character. 21-54
parse-integer .. 21-55
peek-char ... 21-56
print-array .. 21-57
print-base, *print-radix* ... " .. 21-58
print-case ... 21-60
print-circle .. 21-61
print-escape ... 21-62
print-gensym .. 21-63
print-Ievel, *print-Iength* .. 21-64
print-pretty, *pp-line-Iength* ... 21-65
print-structure ... 21-66
read, read-preserving-whitespace .. 21-67
read-base . 21-69
read-byte ... 21-70
read-char ... 21-71
read-char-no-hang .. 21-72
read-default-float-format ... 21-73
read-delimited-list ... " ... 21-74
read-from-string .. 21-75
read-line .. 21-76
read-suppress .. 21-77
readtable ... 21-79
readtablep .. 21-80
set-dispatch-macro-character. 21-81
set-macro-character ... 21-82
set-syntax-from-char .. 21-83
terpri, fresh-line .. 21-84
unread-char ... 21-85
write, prinl, prine, print, pprint ... 21-86
write-byte .. 21-90
write-char .. 21-91
write-line, write-string ... 21-92
write-to-string, prinl-to-string, princ-to-string 21-93
y-or-n-p, yes-or-no-p .. 21-96

Chapter 22. File System Interface 22-1

About the File System Interface .. 22-3
Categories of Operations .. 22-4
default-pathname-defaults ... 22-6
delete-file .. 22-7

Contents xix

directory .. 22-8
enough-namestring .. 22-9
file-author 22-10
file-length. 22-11
file-position ... 22-12
file-write-date ... 22-13
load, *load-verbose* .. 22-14
make-pathname .. 22-16
merge-pathnames .. 22-17
namestring, file-namestring, directory-namestring, host-namestring 22-19
open .. " 22-20
parse-namestring ... 22-22
pathname ... 22-24
pathname-host, pathname-device, pathname-directory, pathname-name,

pathname-type, pathname-version 22-25
pathnamep .. 22-26
probe-file ... 22-27
rename-file .. 22-28
truename ... 22-29
user-homedir-pathname .. 22-30
with-open-file .. 22-31

Chapter 23. Errors 23-1

About Errors ... 23-3
Categories of Operations .. 23-4
assert . 23-5
break ... 23-6
cerror ... 23-7
check-type ... 23-8
error .. 23-9

, warn, *break-on-warnings* ... 23-10

Chapter 24. Environmental Features 24-1

About Environmental Features. 24-3
Categories of Operations. 24-5
abort ... 24-7
apropos, apropos-list ... 24-8
arglist. 24-9
compile .. 24-10
compile-file ... 24-11
decode-universal-time ... 24-13
describe . 24-14

xx Sun Common Lisp Reference Manual

disassemble ... 24-15
documentation. 24-16
dribble . 24-17
ed ... 24-18
encode-universal-time ... 24-20
features .. 24-21
get-decoded-time ... 24-22
get-intern ai-real-time .. 24-23
get-internal-run-time .. 24-24
get-universal-time .. 24-25
inspect . 24-26
internal-time-units-per-second ... 24-27
lisp-implementation-type, lisp-implementation-version 24-28
machine-type, machine-version, machine-instance 24-29
quit ... 24-30
room .. 24-31
short-site-name, long-site-name. 24-32
sleep ... 24-33
software-type, software-version .. 24-34
step ... 24-35
time ... 24-36
trace, untrace ... 24-37

Appendix A. Alphabetical Listing of Common Lisp
Functions A-1

Appendix B. Extensions to Common Lisp B-1

Program Structure .. B-1
Macros " , B-1
The Evaluator .. B-1
Packages .. B-1
Numbers .. B-2
Lists .. B-2
Input/Output .. B-2
Environmental Features .. B-2

Index X-1

Contents xxi

xxii Sun Common Lisp Reference Manual

Figures

2-1. Relationships among the Common Lisp data types 2-10
3-1. Table of Atomic Type Specifiers 3-3
4-1. Common Lisp Special Forms ... 4-7
5-1. Table of Place Constructors .. 5-6
13-1. 7-bit ASCII Table .. 13-3
13-2. Printing Characters ... 13-4
19-1. Syntax for Defstruct . 19-3
21-1. Standard Character Syntax Types 21-13
21-2. Standard Constituent Character Attributes 21-14
21-3. Standard # Dispatching Macro Character Syntax 21-21

Figures xxiii

xxiv Sun Common Lisp Reference Manual

Chapter 1. Introduction

Introduction 1-1

Chapter 1. Introduction

About Common Lisp .. 1-3
The Language ... 1-3
The Environment .. 1-3

Notational Conventions and Syntax .. 1-4
Syntactic Descriptions ... 1-4
Examples and Code ... 1-6

'1-2 Sun Common Lisp Reference Manual

About Common Lisp

Sun Common Lisp is a complete implementation of the Common Lisp language. It includes
all of the Common Lisp functions, constants, variables, macros, and special forms. In
addition, Sun Common Lisp provides many functions as extensions to Common Lisp and
as enhancements to the user environment.

The Language

Common Lisp is a functional, or applicative, language. It has two salient features-a
list-based representation of data and an evaluator, or interpreter, that treats some lists as
programs.

Lisp functions are equivalent to subroutines or procedures in other languages. In contrast
to most other languages, Lisp functions can create and return arbitrary data objects as
their values. These data objects can then be passed as arguments to other functions.

Programs and data have the same form in Lisp, and thus Lisp programs can easily process
other Lisp programs. Programs are sequences of expressions composed of function calls.

While iteration, or looping, as a control structure is common in most programming
languages, Lisp makes extensive use of recursion.

The Environment

The Lisp system is an interactive one. When the user types an expression at the terminal,
Lisp evaluates it and displays the result automatically. Most other programming languages
compute by compiling and running programs. Lisp computes by evaluating the expressions
that are typed to it.

Sun Common Lisp has a compiler that compiles Lisp code into machine code. User
programs may run more efficiently as a result.

Debugging in Lisp can be done as a program is written. Every expression typed to Lisp
is evaluated, and therefore at each stage of testing, the Lisp environment is available for
examining the state of a program and its data structures. Large, complex programs can
be incrementally built and tested.

Lisp manages storage for the user by providing a dynamic heap of storage that is
automatically allocated as needed and then reclaimed, or garbage collected, when no
longer needed.

The process of compiling and debugging programs is discussed at length in the Sun
Common Lisp User's Guide.

Introduction 1-3

Notational Conventions and Syntax

This manual adheres to a number of notational conventions.

Syntactic Descriptions

The names of all Common Lisp functions, macros, special forms, constants, and variables
are in boldface (max, for example). Names of the parameters are in italics (number, for
example).

The syntactic descriptions of Common Lisp functions are presented using the Common
Lisp lambda list syntax. Lambda lists consist of a series of arguments and lambda list
keywords. The lambda list keywords indicate how arguments are processed; they do not
appear in the actual function call form. In the syntactic descriptions of functions, they
appear in a typewriter font.

• Required parameters appear first, immediately following the function name.

• Any optional parameters are specified next. They are preceded by the ioptional
lambda list keyword. Use of the ioptional lambda list keyword indicates that
arguments that follow it are optional.

• An treat parameter may be specified next. It is preceded by the ireat lambda list
keyword. Use of the ireat parameter indicates that an indefinite number of arguments
may appear in the function call form and are bound to that parameter.

• The lambda list keyword ikey indicates that the function accepts keyword arguments.
The lambda list keyword ikey is followed by the keywords that are permitted.
Keywords are symbols preceded by a colon (: atart, : end, : count, and so forth). When
the function is called, a keyword argument is specified by giving the keyword itself,
followed by the value that the keyword argument is to have. The keyword-value pairs
may occur in any order in the argument list; they are not constrained by the order of
the keyword parameters in the lambda list.

The first box illustrates the syntactic description of a Common Lisp function. When a
function is called, its name and arguments, except for keyword arguments, must be typed
in the order shown. Arguments may appear across several lines, since carriage-returns and
linefeeds can occur wherever a space can occur and do not have any special meaning to
the Lisp reader (the input-handling part of the Lisp system).

max number ire at more-numbers [Function]

1-4 Sun Common Lisp Reference Manual

The expressions

(max 1)

(max 2)

(max 1 2 3)

represent syntactically correct calls to the function max.

The syntactic descriptions of Common Lisp macros and special forms are given in an
extended Backus-Naur form (BNF) notation.

• A word in italics indicates a syntactic category (for example, symbol, argument,
variable) .

• Braces, brackets, stars, plus signs, and vertical bars are metasyntactic marks.

• Braces, { and}, group what they enclose. Braces may be followed by a star (*), which
indicates that what they enclose may appear any number of times or not at all, or they
may be followed by a plus sign (+), which indicates that what is enclosed may appear
any nonzero number of times (that is, must appear at least once).

{x} * zero or more occurrences of x
{x} + one or more occurrences of x

• Brackets, [and], indicate that what they enclose is optional and can appear only once.

[x] zero or one occurrences of x

• A vertical bar (I) separates mutually exclusive alternatives.

• The symbol ::= means "is defined by." It indicates that the term on the left side is
defined by the expression on the right.

The boxed examples that follow illustrate the syntactic descriptions for macros and special
forms. While functions are called according to a uniform syntax, the syntax of macros and
special forms tends to vary widely.

This box shows the syntax of a macro:

prog ({ var I (var [init])}*) {declaration}*
{tag I statement} *

[Macro]

Introduction 1-5

The following is a syntactically correct use of the prog macro:

(prog (x)
(setq x 2)
(return x»

This box shows the syntax of a special form:

I if test then [else] [Special Form]

The expressions shown below are syntactically correct calls to the if special form.

(if t 1 2)

(if t 1)

The next box illustrates the documentation of a global variable. Note that global variables
in Cornmon Lisp by convention have names that begin and end with an asterisk.

[Variable]

The following box illustrates the documentation of a constant:

pi [Constant]

Examples and Code

The examples represent what is displayed on the screen during interaction with Lisp. The
Cornmon Lisp prompt is given by>. The expression that follows it displays what the user
has entered at the keyboard. This in turn is followed by the response of the Lisp system.
Examples are printed in a typewriter font.

Lisp code in this manual is in lowercase. In general, the Lisp reader converts symbols
into uppercase, and the Lisp system displays its responses in uppercase. Users can write
programs in either uppercase or lowercase, or a combination of the two, whichever is
preferred.

In the text of this manual, everything that would be typed at the keyboard or that would
appear on the terminal screen is typeset in a typewriter font with this exception: an

1-6 Sun Cornmon Lisp Reference Manual

argument or parameter is printed in italics, indicating that it serves as a placeholder for a
real argument value that the user is to supply.

Normal text is set in a roman font.

Numbers, including those appearing in examples, are in decimal format unless explicitly
noted otherwise.

Parentheses stand for themselves. Parentheses enclose lists. Lists may contain zero or
more items, including other lists. Calls to functions, special forms, and macros are lists
and are therefore enclosed in parentheses.

The single quote character (.) is an abbreviation for the Lisp function quote. Thus,
evaluating the Lisp expression • form is the same as evaluating the expression (quote
form>. It means that the form following quote is not evaluated.

The semicolon character (;) indicates the beginning of a comment. A comment extends
from the semicolon to the end of the line.

The #1 and 1# characters are nested comment characters that may appear in examples of
code. They comment out sections of code.

The #' character is an abbreviation for the Lisp function function. Thus, evaluating
the Lisp expression #' function is the same as evaluating the Lisp expression (function
function>. It indicates that the form that follows it is to be interpreted as a function
object.

The # syntax is used in the printed representation of many data types. This syntax and
the Common Lisp data types are introduced in the following chapter.

Introduction 1-7

1-8 Sun Common Lisp Reference Manual

Chapter 2. Data Types

Data Types 2-1

Chapter 2. Data Types

About Data Types ... 2-3
Numbers ... 2-3
Characters .. 2-4
Symbols .. 2-5
Packages ... 2-5
Sequences ... 2-6
Lists ... 2-6
Arrays ... 2-6
Strings ... 2-7
Hash Tables ... 2-7
Structures .. 2-7
Readtables .. 2-7
Streams .. 2-8
Pathnames .. 2-8
Random States .. 2-8
Functions ... 2-8

Relationships Among Common Lisp Data Types 2-9
Hierarchy of Data Types .. 2-10
Printed Representations of Data Types .. 2-11

Integers . 2-11
Ra.tios .. 2-11
Floating-Point Numbers .. 2-11
Complex Numbers ... 2-11
Characters ... 2-11
Symbols ... 2-12
Lists .. 2-12
Arrays .. 2-12
Vectors .. 2-12
Bit Vectors .. 2-13
Strings . 2-13
Structures ... 2-13
Pathnames ... 2-13
Random States ... 2-13
Other Data Types ... 2-13

2-2 Sun Common Lisp Reference Manual

About Data Types

A data type is a set of objects that satisfy certain criteria or possess certain properties.
Unlike the data types of many programming languages, the data types of Common Lisp
are properties of objects rather than of variables. Types are associated with the objects to
which variables are bound, not with the variables themselves.

Common Lisp data types form a type hierarchy. An object may belong to more than one
such set, and hence to more than one data type. For example, a string of characters is
also a vector and therefore an array; since the vector data type is a subtype of sequence,
a character string is also a sequence. The type t is a supertype of all other types and a
proper subtype of none; it contains all objects. The type nil is a subtype of all other types
and a proper supertype of none. It represents the empty type. There are no objects of
type nil. The type t should not be confused with t, the Lisp object; similarly, the type nil
should not be confused with the object nil. The common data type is a supertype that
contains all of the objects required by the Common Lisp language.

The functions typep and type-of may be used to determine the type of a particular
object. The predicate typep indicates whether an object belongs to a particular type.
The function type-of returns one of the types to which the object belongs. Common Lisp
provides numerous data type predicates to test objects for membership in particular types.

The most common and useful Common Lisp data types are introduced below. Figure 2-1
shows the hierarchical relationship of these types. Associated with each data type is a set
of operations for creating and manipulating objects of that type. The user is referred to
individual chapters of this manual for a more detailed discussion.

Numbers

Integers, ratios, floating-point numbers, and complex numbers are provided as separate
data types. Integers and ratios together constitute a subtype of numbers called rational
numbers. Numbers and numerical operations are discussed in Chapter 12.

Integers

The integer data type consists of fixnums and bignums. The fixnum data type is designed
to allow integers in the range from most-negative-fixnum to most-positive-fixnum to
be represented efficiently, using a fixed number of bits. The fixnum data type is the default
for the representation of integers. The bignum data type is provided to allow for the
representation of integers of arbitrary magnitude. The distinction between fixnums and
bignums is generally not visible to the user. In Sun Common Lisp, the more appropriate
representation is used automatically.

Data Types 2-3

Ratios

Ratios give an exact representation of the mathematical quotient of two integers. Ratios
can be used to avoid the loss of precision that can result from using floating-point numbers.

Rational numbers are represented in canonical form. If the ratio is not an integer,
the canonical representation is a pair of integers, the numerator and denominator, that
represent the rational as a fraction in reduced form. The denominator is always positive.
If the denominator evenly divides the numerator, the rational number is converted to the
resulting integer.

Floating-Point Numbers

Floating-point numbers constitute the type Boat. Four floating-point number formats
are provided: short-Boat, single-Boat, double-Boat, and long-Boat. These formats
differ in the precision they provide and in the range of exponents they allow. Sun Common
Lisp represents all four types of floating-point numbers in the single-float format.

When an operation involves both a rational and a floating-point argument, the rational
number is first converted to floating-point format, and then the operation is performed.
This conversion process is called Boating-point contagion.

n ___ l_ 1\.T __
'-'U.l.IJ.,lI.lt::.A .&. ... u ut:: ... D

Complex numbers are represented as composite objects consisting of a real part and an
imaginary part. The two parts of a complex number must be of the same noncomplex
type; if they are not, they are automatically converted to the same type, in accordance
with the principle of floating-point contagion. Complex numbers are represented in
canonical form. If a complex number whose components are of type integer or ratio has
an imaginary part whose value is zero, the canonical representation is an integer or ratio
whose value is the same as that of the real part.

Characters

Characters in Common Lisp are data objects that represent printed symbols, such as
letters, or operations for formatting text. Each character has three attributes: code, bits,
and font.

Common Lisp defines a standard character set as a subtype of characters called standard
characters. The standard character set consists of 95 printing characters and the newline
character. The font and bits attributes of all standard characters are zero.

2-4 Sun Common Lisp Reference Manual

StrIng characters are a subtype of characters that can be contained in strings. Strings
are vectors of characters. A string character is any character whose bits and font attributes
are zero. The standard character data type is thus a subtype of the string character data
type, and all of the standard characters can be stored in strings.

The character data type is discussed in Chapter 13.

Symbols

Symbols are data objects with five components: a print name, a value cell, a function
cell, a property list, and a package cell.

Symbols are named data objects. The print Dame of a symbol is a string that is used to
identify and locate the symbol. Symbols are organized into name spaces called packages.
Symbol names are unique within a package.

The value ceD is the cell that holds the current value of the dynamic variable named
by the symbol. A value may be associated with this cell by assignment functions or by
constructs that establish new variable bindings.

The llmctioD ceD contains the global function definition associated with the symbol.
A function object may be associated with the function cell through the various function
definition constructs.

A property list allows an extensible set of named components to be associated with
a symbol. A component may be any Lisp object. Each successive two elements of the
property list constitute an entry. The first element of an entry is the indicator, or
property name, and the second element is the property value. When a symbol is created,
its property list is empty.

The package ceH refers to a package object. A package is a catalogue containing an
index of print names. It is used to locate a symbol.

An important use of symbols is to name other objects, that is, to serve as variables.
Symbols are discussed in Chapter 10.

Packages

A package is a Common Lisp object that specifies a correspondence between print name
strings and symbols. The package facility may be used to create a hierarchical program
name space and to increase program modularity. Packages enable the user to avoid name
conflicts that may arise when separate modules become part of the same system. Packages
are discussed in Chapter 11.

Data Types 2-5

Sequences

Lists

Sequences are ordered sets of elements and include both lists and vectors (one-dimensional
arrays). Operations on sequences are provided as general operations that are relevant for
both of these types. The sequence data type is discussed in Chapter 14.

Lists are sequences of linked elements, called conses (dotted pairs). The list data type
consists of the data types cons and null. The empty list, nil, is the only list object of the
type null. The type null should not be confused with the predicate null. The list data
type includes both true lists and dotted lists.

A cons is an object containing two components, a car and a cdr, which can be any Lisp
objects. Conses in a list are linked by their cdr components. The car components become
the elements of the list. An ordinary, or true, list is terminated by nil, the empty list. A
dotted list is terminated by some non-nil data object.

An association list is a list whose elements are conses. Each cons is regarded as a pair
of associated objects. The car is called the key and the cdr the datum. An association
list can be treated as a mapping from keys to data.

The list data type is discussed in Chapter 15.

Arrays

Arrays are structured objects whose components can be directly accessed by means of
index values. An array can have many dimensions. It is indexed by a sequence of integers
called subscripts. Arrays can share their contents with other arrays and have their size
altered dynamically. Arrays may be general or specialized. A general array can have
elements that are members of any Common Lisp data type. A specialized array is an
array whose elements must all be members of a particular data type.

A vector is a one-dimensional array. Since the vector data type is a subtype of the
sequence data type, a vector is also a sequence. A general vector can have elements
that are members of any Common Lisp data type. A specialized vector is a vector
whose elements must all be members of a particular data type. Strings and bit vectors
are important types of specialized vectors. Strings are vectors whose elements are of the
string character data type. Bit vectors are one-dimensional arrays whose elements are of
the bit data type. A vector can have a fill pointer. A fill pointer is an index that is used
to incrementally fill in the elements of the vector and thus vary the length of the active
portion.

2-6 Sun Common Lisp Reference Manual

A simple array is an array that does not share cells with another array, has no fill
pointer, and whose size cannot be dynamically adjusted. A simple vector is a vector that
is not displaced to another array, has no fill pointer, and whose size cannot be dynamically
adjusted.

Arrays are discussed in Chapter 16.

Strings

Strings are specialized vectors of characters. The string type is identical to the type
(vector string-char). Like all vectors, strings may have fill pointers. Strings are discussed
in Chapter 17.

Hash Tables

Hash tables are Common Lisp objects that provide mappings between other objects.
Each hash table entry is a pair of associated objects, a key and a value. Hash table
functions use keys to look up their associated values. Common Lisp provides hash table
functions to add entries, delete entries, and look up the values associated with given keys.
Chapter 18 discusses the use of hash tables and hashing functions.

Structures

Common Lisp allows the user to create record structures with a fixed number of named
components. These structures are, in effect, user-defined data types. When these data
types are defined, constructs to manipulate them are normally automatically defined by
the system as well. These constructs include type predicates and access, constructor, and
copier functions. Structures are created with the defstruct macro.

The definition of structures and the creation and manipulation of structure instances are
discussed in Chapter 19.

Readtables

A readtable is a data object that is used to guide the action of the Lisp reader. It contains
information about the syntax of Lisp characters that is used in parsing. Readtables are
discussed in Chapter 21.

Data Types 2-7

Streams

Streams are Common Lisp objects from which data can be read and to which data can be
sent. Normally, the system reads characters from a character input stream, parses these
characters as Lisp forms, evaluates each form as it is read, and prints representations of
the results of the evaluation to a character output stream. The operations that can be
performed on a stream depend on what type of stream it is. A stream may be input-only,
output-only, or bidirectional. It may be a character stream or a binary stream.

There are several stream-value variables that are used by default by many Common Lisp
system functions. These are known as standard streams.

The use of streams is closely connected to the file system. Streams may also be created
through the file system constructs for opening files.

Streams are discussed in Chapter 20. Chapter 21 discusses the use of streams in the
context of the input/output system. The interaction between streams and the file system
is discussed in Chapter 22.

Pathnames

Patlmames are objects that are used to represent file names in a way that is general
enough to accommodate a diverse range of file system implementations. Pathnames have
six coulponents: host, device, directory, file name, type, and version. Pathnames and the
file system interface are discussed in Chapter 22.

Random States

Random state objects are used to represent the internal state of the random number
generator. They are manipulated by the random number generation facility. Random
states are discussed in Chapter 12.

Functions

Functions are executable objects that may be applied to arguments to produce values.
Functions in Common Lisp may be named or unnamed. Functions are discussed in
Chapter 4.

2-8 Sun Common Lisp Reference Manual

Relationships Among Common Lisp Data Types

Figure 2-1 shows the relationships among the Common Lisp data types. An arrow from
one data type to another indicates that the data type on the left of the arrow is a subtype
of the data type on the right. Operations for testing the relationship between two types
are discussed in Chapter 3.

Data Types 2-9

Hierarchy of Data Types

I------+f string-char I------+f character 1-----...... 1
'---------1

~----------------------~~sequence I--~~

simple-hit-vector I--ood---+l hit-vector

'------+f simple-array t-----....>o..--+I array 1----1

Figure 2-1. Relationships among the Common Lisp data types

2-10 Sun Common Lisp Reference Manual

Printed Representations of Data Types

In Common Lisp, each data type has its own printed (displayed) representation. This
section provides a brief and partial overview of the most common formats that occur in the
examples in the following chapters. For a detailed discussion of the printed representation
of data types, the user is referred to Chapter 21.

Integers

An integer is printed as a sequence of digits in a particular base, or radix. For the
decimal base, the radix indicator is a decimal point following the number. For other bases,
the radix indicator is one of the following forms preceding the number: #0 (octal), #x
(hexadecimal), #b (binary), or #nr (other base n; the base n is printed in decimal).

Ratios

Ratios are always printed in lowest reduced form, with the numerator printed, then a slash
(I), and then the denominator. In a negative ratio, the numerator is preceded by a minus
sIgn.

Floating-Point Numbers

Floating-point numbers are printed as one or more digits on each side of a decimal point,
sometimes followed by an exponent marker. If the number is negative, it is preceded by a
mInus sIgn.

Complex Numbers

A complex number is printed as #e (r i), where r is the printed representation of the
number's real part and i is the printed representation of the number's imaginary part.

Characters

A character is printed as #\ followed by the character, if it is a printing character, or by
the name of the character, if it is not.

Data Types 2-11

Symbols

Lists

A symbol is printed as its print name along with any character quoting or name
qualification necessary to identify the symbol uniquely. This may include backslashes (\),
vertical bars (I), a colon (:), a package name and one or two colons (:), or a leading #:
(for uninterned symbols). If the print name could be interpreted as a potential number,
then backslashes or vertical bars are included to prevent such interpretation.

If the symbol is in the keyword package, it is printed with a leading colon. If the symbol
is not accessible in the current package, it is printed with a leading package name and one
or two colons. A leading #: is printed if the symbol is uninterned (has no home package).

A true list is printed as follows: first a left parenthesis, then the elements of the list in
order, and finally a right parenthesis. The list elements are separated by white space
(space, tab, carriage-return, or newline characters).

A dotted list is printed as follows: first a left parenthesis, then the car of the list, a dot,
the cdr of the list, and finally a right parenthesis. The dot is separated from the car and
the cdr of the list by white space.

Conses are printed with list notation rather than dot notation whenever possible.

Arrays

An array is printed with the InA (...) syntax. In this case, the output starts with InA,
where n is the number of dimensions of the array, and then the contents of the array are
printed in row-major order with parentheses indicating the structure of the array. The
length of the top-level list printed is the size of the first dimension, and the lengths of the
subsequent deeper levels are the sizes of the second dimension, the third dimension, and
so on.

If the array has elements that are either bits or string characters, then the deepest level
printed may take the form of a bit vector or string.

Vectors

A vector is printed as # (and) enclosing the elements of the vector, which are separated
by white space. For a vector with a fill pointer, only those elements before the fill pointer
are printed.

2-12 Sun Common Lisp Reference Manual

Bit Vectors

A printed bit vector consists of #* followed by the bits in the bit vector. For a bit vector
with a fill pointer, only those bits before the fill pointer are printed.

Strings

A string is preceded and followed by a double quote ("), and any double-quote or single
escape character in the string is preceded by a backslash (\). A string with a fill pointer is
printed only up to the fill pointer.

Structures

A structure is printed as #S immediately followed by a list in the form (name slotl valuel
slotH valueH ...), where name is the name of the structure, slotl is the name of one of
the structure's slots, and valuel is the corresponding value.

Pathnames

A printed pathname consists of #P followed immediately by the pathname enclosed in
double quotes.

Random States

An object of type random state is printed like a structure, with the #s syntax.

Other Data Types

An object that is a hash table, a readtable, a package, a stream, or a function object is
printed with the #< ... > syntax. This form describes the data type and may give some
indication of the particular instance (such as a memory address where it appears).

Data Types 2-13

2-14 Sun Common Lisp Reference Manual

Chapter 3. Type Specifiers

Type Specifiers 3-1

Chapter 3. Type Specifiers

About Type Specifiers ... 3-3
Atomic System-Defined Type Specifiers ... 3-3
Syntax for Type Specifiers ... 3-4
Type Specifier Lists ... 3-5

Categories of Operations ... 3-8
Defining and Manipulating Types .. 3-8
Discriminating Among Types ... 3-8

coerce .. 3-9
commonp .. 3-11
deftype .. 3-12
suhtypep .. 3-13
type-of .. 3-14
typep ... 3-15

3-2 Sun Common Lisp Reference Manual

About Type Specifiers

Common Lisp objects called type specifiers are used to designate types. Type specifiers
can be atomic type specifiers or lists. Type specifier lists designate specialized types in
terms of simpler types. The user may define new atomic type specifiers in terms of existing
types and type specifier lists.

New type specifier identifiers are defined by means of the deftype special form and the
defstruct macro. The deftype special form can be used to define a new type specifier
name in terms of existing type specifiers. Creating a new structure with the defstruct
macro automatically creates a new type specifier identifier that designates instances of the
structure type.

Type specifiers are used in declarations and as arguments to many functions that construct
new objects.

The predicate typep uses type specifiers for type discrimination. Only objects that are
actually members of the given type satisfy the predicate.

Atomic System-Defined Type Specifiers

array integer
atom keyword
bignum list
bit long-float
bit-vector mod
character nil
common null
compiled-function number
complex package
cons pathname
double-float random-state
fixnum ratio
float rational
function readtable
hash-table sequence

Figure 3-1. Table of Atomic Type Specifiers

short-float
signed-byte
simple-array
simple-bit-vector
simple-string
simple-vector
single-float
standard-char
stream
string
string-char
symbol
t
unsigned-byte
vector

Type Specifiers 3-3

Syntax for Type Specifiers

type spec ::= atomic-type-specifier

(sat isf ies predicate-name)

(member {object}*)

(not type spec)

(and {typespec}*)

(or {typespec} *)
(array [{ typespec I * } [dimensions]])

(simple-array [{ typespec I * } [dimensions]])

(vector [{ typespec I * } [{ size I *}]l)
(simple-vector [size])

(string [size I *])

(simple-string [size I *])

(bit-vector [size I *])

(simple-bit-vector [size I *])

(integer [integer-limit [integer-limit]])

(fixnum [fixnum-limit [fixnum-limit]1)
(mod [integer I *1)
(sisz:ned-bvte [size I *1)
,.... " - I -,

(unsigned-byte [size I *1)
(rational [rational-limit [rational-limit]])

(f loa t [float-limit [float-limit] 1)
(short-float [short-float-limit [short-float-limit] 1)
(single-float [single-float-limit [single-float-limit] 1)
(double-float [double-float-limit [double-float-limit]])

(long-float [long-float-limit [long-float-limit]])

(complex [typespec I *])

(function [arg-typespec-list [value-typespec]l)

arg-typespec-list::= ({ typespec}* [&optional typespec] [&rest typespecl
[&key {typespec}*l)

value-typespec::= typespec I (values. arg-typespec-list)

dimensions::= integer I * I ({integer I * }*)

size::= integer

integer-limit::= integer I * I (integer)

fixnum-limit::= fixnum I * I (fixnum)

3-4 Sun Common Lisp Reference Manual

rational-limit::= rational I * I (rational)

float-limit::= float I * I (float)

short-float-limit::= short-float I * I (short-float)

single-float-limit::= single-float I * I (single-float)

double-float-limit::= double-float I * I (double-float)

long-float-limit::= long-float I * I (long-float)

Type Specifier Lists

A type specifier may be defined to denote the set of all objects that satisfy a particular
predicate by use of the construct (satisfies predicate-name), where the symbol
predicate-name has a global function definition as a predicate of one argument.

A type specifier may be defined to denote the set of all objects that are members of a
certain set by use of the (member {object}*) construct. The objects in this set are precisely
those given in the list.

Other type specifier lists define combinations or specializations of existing type specifiers.

Specializations of atomic type specifiers indicate that only a specific subset of the objects
that satisfy the atomic type specifier is designated. Use of such type specifiers may enable
the system to represent or access objects more efficiently.

Many of these lists allow arguments to be unspecified. An unspecified argument is denoted
by *. Unspecified arguments occurring at the end of a type specifier list may be omitted
entirely. IT all arguments are omitted, the type specifier name itself may be used (instead
of a list).

Logical Combinations of Type Specifiers

The logical operators and, or, and not may be used to define type specifiers as logical
combinations of other type specifiers.

The type specifier (not typespec) denotes the set of all objects that are not of the specified
type.

The type specifier (and {typespec} *) denotes the set of all objects that are members of all
of the specified types.

The type specifier (or {typespec}*) denotes the set of all objects that are members of at
least one of the specified types.

Type Specifiers 3-5

Type Specifiers for Array Subtypes

There are several ways of specifying subtypes of arrays.

The type specifier (array typespec dimensions) denotes the set of arrays that have the
given dimensions and whose elements are of the specified type. The dimensions argument
may be either an integer or a list. H the dimensions argument is a nonnegative integer,
it indicates the number of dimensions of the array. H it is a list, the number of elements
implicitly indicates the number of dimensions of the array; the elements of the list indicate
the length of each dimension. Any of the arguments may be unspecified.

The type specifier (simple-array typespec dimensions) is identical to (array typespec
dimensions) except that it designates a set of simple arrays. A simple array is an array
that is not displaced to another array, that has no fill pointer, and whose size cannot be
dynamically adjusted.

The type specifier (vector element-type size) designates the set of one-dimensional arrays
whose elements are of the specified type and whose lengths are of the given size. The size
argument is a nonnegative integer or is unspecified.

The type specifier (simple-vector size) is identical to (vector t size) except that it
designates a set of simple vectors. A simple vector is a vector that is not displaced to
another array, that has no fill pointer, and whose size cannot be dynamically adjusted.

Vectors whose elements are restricted to string characters or bits are termed strings and
bit vectors respectively.

The type specifier (string size) is an abbreviation for (array string-char (size».
Likewise, (simple-string size) is an abbreviation for (simple-array string-char (size».

The type specifier (bit-vector size) is an abbreviation for (array bit (size», and
(simple-bit-vector size) is an abbreviation for (simple-array bit (size».

Type Specifiers for Numerical Subranges

Numerical subrange types may also be denoted by the type specifiers.

The type specifier (integer integer-limit integer-limit) denotes the set of integers in the
given range. Either argument may be specified as an integer, a list of an integer, or *. An
integer argument specifies an inclusive limit; a list argument specifies an exclusive limit;
and * means that there is no limit on the value. The type (integer 0 1) is equivalent to
the type hit.

The type specifier (mod integer) denotes the set of nonnegative integers whose values are
less than integer. It is equivalent to (integer 0 (integer».

3-6 Sun Common Lisp Reference Manual

The type specifier (signed-byte 8ize) denotes the set of integers that can be represented
in two's complement format in a byte of 8ize bits or less. The type (signed-byte *) is
equivalent to integer.

The type specifier (unsigned-byte 8ize) denotes the set of nonnegative integers that can
be represented in a byte of 8ize bits or less. The type specifier (unsigned-byte *) is
equivalent to (integer 0 *).

The type specifier (fixnum fixnum-limit fixnum-limit) is like (integer integer-limit
integer-limit) except it denotes fixnums in the given range. The arguments must be
fixnums, lists of fixnums, or unspecified.

The type specifier (rational rational-limit rational-limit) denotes the set of rational
numbers in the given range. Either argument may be specified as a rational, a list of a
rational, or *. A rational argument denotes an inclusive limit; a list argument denotes an
exclusive limit; and * means that there is no limit on the value.

The type specifiers (float float-limit float-limit), (short-float short-float-limit short
float-limit), (single-float single-float-limit single-float-limit) , (double-float double
float-limit double-float-limit), and (long-float long-float-limit long-float-limit) denote
subranges of floating-point numbers of the given types. Either argument may be specified
as a floating-point number, a list of a floating-point number, or *. A floating-point number
argument denotes an inclusive limit; a list argument denotes an exclusive limit; and *
means that there is no limit on the value. The arguments must be of the appropriate
floating-point format. In Sun Common Lisp, all floating-point numbers are represented in
single-float format.

The type specifier (complex type8pec) denotes the set of complex numbers whose real and
imaginary parts are of the given type.

Type Specifiers for Functions

The type specifier (function arg-typespec-list value-typespec) is used in declaring functions.
It denotes the set of functions that accept arguments of the given types and produce results
that belong to the specified value type. The function type specifier is not acceptable to
typep.

Type Specifiers 3-7

Categories of Operations

This section groups operations on type specifiers according to functionality.

Defining and Manipulating Types

coerce deftype

These functions define type specifiers and manipulate the types of objects.

Discriminating Among Types

8ubtypep
typep

These functions discriminate among types.

3-8 Sun Common Lisp Reference Manual

type-of
commonp

coerce

Purpose:

Syntax:

Remarks:

The function coerce is used to convert an object from one data type to another;
the resulting object is returned. If such a coercion is not possible, an error is
signaled. If it is already of the required result-type, the original object is returned.

The coercions listed below are the only ones that are possible.

coerce object result-type [Function]

The following conversions are performed by coerce.

A sequence type may be converted to any other sequence type, provided that the
resulting sequence is of a type that is compatible with the types of the elements of
the original sequence. Elements of the new sequence will be eql to corresponding
elements of the original sequence.

Certain objects may be converted to characters: strings of length 1, symbols whose
print names are of length 1, and nonnegative integers n for which (int-char n)
is defined. Coercing a string of length 1 results in the character contained in that
string. Coercing a symbol whose print name is of length 1 results in the character
contained in that print name string. Coercing a nonnegative integer for which
(int-char n) is defined results in the character defined by (int-char n).

Any number may be converted to a complex number.

Any noncomplex number may be converted to a floating-point number.

Any object may be converted to type t.

Examples: > (setq *print-array* t)
T
> (coerce '(a b c) 'vector)
#(A B C)
> (coerce 'a 'character)
#\A
> (coerce 4.56 'complex)
#C(4.S6 0.0)
> (coerce (cons 1 2) t)
(1 . 2)

Type Specifiers 3-9

coerce

See Also: rational

rationalize

char-code

char-int

3-10 Sun Common Lisp Reference Manual

commonp

Purpose:

Syntax:

The predicate commonp is true if its argument is a member of any standard
Common Lisp data type; otherwise it is false.

commonp object [Function]

Examples: > (commonp *query-io*)
T
> (commonp nil)
T
> (commonp (expt 2 130»
T

Type Specifiers 3-11

deftype

Purpose:

Syntax:

Remarks:

The deftype macro is used to define a name for a new type specifier.

The deftype macro is like the defmacro macro in that the form arguments of its
body constitute an expansion function for the type specifier definition.

The name of the new type specifier is returned as the value of the deftype form.

deftype name lambda-list {declaration I documentation} * {form} * [Macro]

The lambda list may contain &optional and &rest keywords.

IT no initform is specified for an &optional lambda-list argument, the default
value * is used.

IT the type name is used as an atomic type specifier, it is treated as a list with no
arguments.

A documentation string may be attached to the name of the type by use of the
optional documentation argument; the documentation type for this string is type.

Examples: > (deftype modd2 (Il:optional (limit 2» • (integer 0 ,limit»
MODD2

See Also:

> (typep 0 '(modd2»
T
> (typep 3 '(modd2»
NIL
> (typep 3 '(modd2 5»
T

defmacro

3-12 Sun Common Lisp Reference Manual

suhtypep

Purpose:

Syntax:

Remarks:

The function subtypep compares two type specifiers. It returns two values. If
typel is definitely a subtype of type£, then true and true are returned. If typel
is definitely not a subtype of type£, then false and true are returned. In all other
cases, false and false are the values returned.

subtypep typel type£ [Function]

Type arguments of subtypep must be type specifiers that are acceptable to
typep.

The type typel may be a proper subtype of type£.

Examples: > (subtypep 'compiled-function 'function)
T

T
> (subtypep 'integer 'string)
NIL
INTEGER
> (subtypep '(satisfies fool nil)
NIL
NIL

Type Specifiers 3-13

type-of

Purpose: The function type-of returns a type of which its object argument is a member.

Syntax: type-of object [Function]

Remarks: If the object is an instance of a structure created by the use of the defstruct
construct, type-of returns the type name for the structure. In all other instances,
type-of is probably useful only for debugging purposes. The action of type-of can
be implementation dependent.

Examples: > (type-of 'a)
SYMBOL

See Also:

> (type-of "abc")
SIMPLE-STRING
> (type-of '(1 . 2»
CONS
> (type-of 'c(O 1»
COMPLEX
> (defstruct foo x y z)
FOO
> (type-of (make-foo»
FOO

typep

typecase

defstruct

3-14 Sun Common Lisp Reference Manual

typep

Purpose: The predicate typep tests an object for membership in a particular data type.

Syntax: typep object type-specifier [Function]

Remarks: The type-specifier argument may be any type specifier except function, values,
or a list whose first element is either of these.

Examples: > (typep 12 ' integer)
T
> (typep nil t)
T
> (typep nil nil)
NIL
> (typep 1 '(mod 2»
T

Type Specifiers 3-15

3-16 Sun Common Lisp Reference Manual

Chapter 4. Program Structure

Program Structure 4-1

Chapter 4. Program Structure

About Program Structure .. 4-5
Forms .. 4-6

Self-evaluating Forms ... 4-6
Variables ",' 4-6
Special Forms ... 4-7
Macros ... 4-8
Function Calls ... 4-8

Functions ... 4-9
Named Functions ... 4-9
Lambda Expressions .. 4-9
Lambda Lists .. 4-9
Lexical Closures. 4-11

Categories of Operations .. 4-13
Data Type Predicates .. 4-13
Declaring Global Variables and Named Constants 4-13
Function Definition .. 4-13
Function Calls .. 4-13
Accessing Variable and Function Bindings 4-14
Controlling Evaluation ... 4-14
Identity Operator ... 4-14

apply ... 4-15
boundp ... 4-16
call-arguments-limit .. 4-17
compiled-function-p .. 4-18
constantp .. 4-19
defconstant .. 4-20
define-function . 4-21
defparameter ... 4-22
defun ... 4-23
defvar ... 4-25
eval-when .. 4-26
fboundp ... 4-27
fmakunbound ... 4-28
funcall .. 4-29
function ... 4-30
functionp .. 4-31
identity ... 4-32
lambda-list-keywords ... 4-33
lambda-parameters-limit .. 4-34
makunbound ... 4-35
quote ... 4-36
redefinition-action ... 4-37

4-2 Sun Common Lisp Reference Manual

special-form-p .. 4-39
symbol-function ... 4-40
symbol-value ... 4-41

Program Structure 4-3

4-4 Sun Common Lisp Reference Manual

About Program Structure

Common Lisp programs are built from forms. A form is any data object that can be
evaluated to produce values and, possibly, side effects. In particular, certain forms call
functions to perform computations upon other forms. Some of these forms also define
functions. Not all data objects can be evaluated; hence not all data objects are valid forms.

A function is a data object that performs computations upon forms. When a function
is called, the function's arguments are bound to values, and the forms contained within
the function body are evaluated in the context of these bindings. Normally functions also
return one or more values.

Program Structure 4-5

Forms

There are five basic categories of forms: self-evaluating forms, variables, special forms,
macro calls, and function calls.

Self-evaluating Forms

Self-evaluating forms are forms that evaluate to themselves. The value of a self
evaluating form is that object itself. The following are self-evaluating forms: numbers,
characters, strings, bit vectors, keywords, t, and nil. The predicate constantp is true of
any self-evaluating form.

Variables

Variables provide symbolic references to the objects of a Lisp form. Variables can be
either lexical or special, depending on the program context.

A variable is an association of an identifier with a location. The location is the cell or
cells where the value associated with the variable is stored. The association between the
variable name and the location is termed a binding. Depending on the type of binding
that is current for the given identifier, this location may be a register, a stack location, or
some other memory location. In particular, for certain types of variables, it may be the
value cell of a symbol.

Bindings may be either lexical or dynamic. Correspondingly, a given variable is either a
lexical or a dynamic variable, depending on the program context. Dynamic variables are
also called special variables.

The scope of a binding is that portion of a program in which the binding is in effect. The
scope of a variable thus determines when and where the variable may be referenced.

A lexical variable is a variable whose scope is lexical or textual. That is, the variable
may be accessed only by expressions that lie textually within the same construct in which
the variable was established. Lexical variables are created by lambda expressions, let
forms, function definitions, and a number of other basic forms. The control structures that
create lexical variables are discussed in the chapter "Control Structure."

A special variable consists of the binding of an identifier to the value cell of a symbol.
This binding may temporarily alter the value of the symbol. Variables created by let and
similar constructs may be declared special. The scope of a special variable is dynamic.
This means that until the construct that establishes the variable binding terminates,
references to the variable name access the special variable, even though such references
may not be textually within the scope of the establishing construct. The declaration of
special variables is discussed in the chapter "Declarations."

4-6 Sun Common Lisp Reference Manual

When new variable bindings are created, existing variable bindings may be shadowed.
Shadowing occurs when a name or identifier that is meaningful at a given point is
re-used there for a different item. In this case, the newly created item shadows the older
item, causing references to the common name to refer to the new item.

The context of bindings that are visible at a given point in a program is termed the
environment. The lexical environment consists of those lexical bindings that are
visible at a particular point in the program, as determined by the structure of the program
text. The lexical environment of a top-level form is termed the null lexical environment.
This environment has no lexical bindings. The dynamic environment consists of those
dynamic bindings that are visible at a particular point during program execution, as
determined by the dynamic execution of the program. The dynamic environment is also
referred to as the global environment.

Special Forms

A special form is a list form whose first element is one of a limited set of symbols. No
new special forms may be defined by the user.

Special forms are processed in a special manner by the evaluator and the compiler. Special
evaluation rules are invoked for these forms.

Like functions and macros, special forms may return one or more values or cause nonlocal
exits.

The following table lists all of the Common Lisp symbols that have definitions as special
forms.

block
catch
compiler-let
declare
eval-when
:Bet
function
go

if
labels
let
let.
macrolet
multiple-value-call
multiple-value-progl
progn

Figure 4-1. Common Lisp Special Forms

progv
quote
return-from
setq
tagbody
the
throw
unwind-protect

Program Structure 4-7

Macros

A macro can is a list form whose first element is the name of a macro. A macro call
returns a Lisp expression to be evaluated in place of the macro call. Macros thus provide a
text replacement facility. They enable the user to write forms that do not obey the usual
rules for evaluation. Macros are discussed in the chapter "Macros."

Function Calls

A function can is a list form whose first element is either the name of a function or an
anonymous function definition (lambda expression). The remaining elements of the list
form are considered to be the arguments to the function. The arguments are evaluated
as forms in the order in which they occur, and the function is invoked upon them. This
process is called applying the function to the arguments.

The actual function arguments are all evaluated before the function is invoked, and the
formal function parameters are bound to the resulting values. (If any function argument
results in more than one value, only the first of these values is used.) If the resulting values
are pointers to objects and the function modifies its arguments, the original data objects
may be modified as a side effect of the function call.

The function invocation may result in one or more values, or it may cause a nonlocal exit.
The result of the function call form is the result returned by the function.

4-8 Sun Common Lisp Reference Manual

Functions

A function may be specified in a function call form in one of two ways: by the function
name or by a lambda expression.

Named Functions

A named function is a function object to which a name has been given either by use of the
defun macro or by the flet or labels special form. The use of a name to name a function
is completely independent of any association it may have as a variable identifier.

Lambda Expressions

A lambda expression defines an anonymous function.

A lambda expression acts just like a function, but it is not associated with a function
name.

The syntax for lambda expressions is the following:

(lambda lambda-list {declaration I documentation}* {form}*)

lambda-list::= ({ var} *

Lambda Lists

["optional {var I (var [initform [supplied-p-parameter]])} *]
["rest var]
["key {var I ({ var I (keyword var)} [initform [supplied-p-parameter]])} *

["allow-other-keys]]
["awe {var I (var [initform])}*])

Lambda lists are used in the specification of named functions and lambda expressions.
The lambda list specifies the parameters of the function. When the function is applied
to arguments, the parameters specified in the lambda list are bound to actual argument
values, and the forms in the body of the lambda expression or function are executed in the
context of these bindings.

• All required parameters must be specified first. All parameters preceding the first
lambda list keyword are required parameters. They are bound to actual argument
values in the order in which they occur. There must be at least as many actual
argument forms as there are required parameters. If no lambda list keywords are
specified, there must be exactly as many actual arguments as parameters.

Program Structure 4-9

• Any optional parameters must be specified next. They are preceded by the lambda
list keyword ckoptional. H optional parameters are specified, they are bound in
order to the corresponding remaining values in the argument list. H there are no
remaining arguments at any point in the processing of optional parameters, then any
remaining optional parameter is bound to the value that results from the evaluation of
its associated initform, if the latter is given, or to nil, if not. A supplied-p-parameter
variable may be used in conjunction with an initform. Its purpose is to indicate
whether an actual argument value was supplied. It is bound to true if an actual
argument was supplied; otherwise (if the initform was evaluated) it is bound to nil.

• One rest parameter may be specified next. It is preceded by the ckrest lambda list
keyword. H a rest parameter has been specified, it is bound to a list consisting of all
the actual arguments that have not yet been processed. H no arguments remain, the
rest parameter is bound to nil.

• The use of the lambda list keyword ckkey and keyword parameter specifiers allows
keyword arguments to be used in function calls. H any keyword parameters are to
appear in the function call, they must be preceded by ckkey in the lambda list. These
keyword parameters may be followed by the lambda list keyword ckallow-other-keys.

A keyword parameter may be specified in one of three ways. These forms differ in
whether the name for the keyword to be used in the actual argument list is specified
explicitly or implicitly and whether an initial value is to be used if such a keyword
argument is not given.

If a variable, var, specifies the keyword parameter, the keyword argument to be used in
the argument list consists of a keyword (in the keyword package) with the same name
as var. H such a keyword does not appear in the argument list, var is bound to nU.

H the form (var [initform [supplied-p-parameter]]) specifies the keyword parameter,
the keyword argument to be used is specified in the same way as in the simpler case
discussed above. This construct, however, allows the variable to be bound to an initial
value if the keyword is not specified in the argument list. The supplied-p-parameter
may be used to test whether such an argument value was given.

The form «keyword var) [initform [supplied-p-parameter]]) allows the explicit
specification of the argument list keyword that is associated with var. It also allows the
variable to be bound to an initial value if the keyword is not specified in the argument
list.

There must be an even number of actual keyword arguments. Keyword arguments
are considered to occur in pairs. The first argument in the pair is a keyword; the
second is the value to which the corresponding keyword parameter is to be bound.
The keyword-value pairs may occur in any order in the argument list; they are not
constrained by the order of the keyword parameters in the lambda list. H a given
keyword argument is specified more than once, however, only the first keyword-value
pair is used in the binding of the keyword parameter. If a rest parameter has been

4-10 Sun Common Lisp Reference Manual

specified, the arguments used in processing keyword parameters are the same as those
used in processing the rest parameter.

• The &allow-other-keys lambda list keyword is used to specify that the argument list
may contain a keyword that does not correspond to a lambda list keyword parameter.
Otherwise it is an error if such an argument pair occurs unless the argument list
contains a keyword-value pair whose key is :alIow-other-keys and whose value is
non-nil. The &rest keyword parameter may be used to access values specified by
means of the &alIow-other-keys and :alIow-other-keys constructs.

It is an error if there are remaining arguments and neither a rest parameter nor a
keyword parameter has been specified.

• Finally, the &aux lambda list keyword may be used to specify auxiliary variables.
These serve as local variables within the lambda expression or function. Auxiliary
variables are not bound to argument list values. An auxiliary variable may be bound
within the lambda expression itself or by specifying a corresponding initform in the
lambda list.

Since the lambda list elements are processed in the order in which they occur, any initform
may reference a parameter variable (including a 8upplied-p-parameter variable) that is
bound earlier in the processing of the lambda list.

Mter the lambda list parameters are bound to actual argument values, the forms contained
in the body of the lambda expression or function are evaluated in sequence in the context
of these bindings. The result returned by the lambda expression or function is the result
of the last form evaluated. H no forms are evaluated, nil is returned.

The variable bindings in effect before the function invocation are restored when the
function exits.

Lexical Closures

A closure is a function along with a binding context. When a function or lambda
expression is created, it is created within a context of lexical bindings. Creating a lexical
closure means retaining this lexical environment of bindings through the lifetime of the
function (closure) object. The function is thus able to reference these same bindings in
different invocation contexts. With closures it is thus possible to create objects that retain
separate contexts that can be manipulated.

Program Structure 4-11

The following example shows a function that returns a lexical closure in which the variable
z is bound to 20. When the closure function is itself invoked, this binding is referenced.

> (defun foo 0

Faa

(let «x nil) (fn nil»
(setq fn #'(lambda (y) (setq x (cons x y»»
(setq x 20)
fn»

> (funcall (foo) 1)
(20 . 1)

Functions that are intended to generate a series of new values for consumption by other
functions are called generators. The following example shows a generator that is written
as a lexical closure. It generates the positive integers. Each time it is called, it produces a
new integer in the series. The internal state of the generator is maintained in the lexical
closure.

> (setq closure (let «x 0» #'(lambda () (incf x) x»)
#<Interpreted-Function (LAMBDA NIL (INCF X) X) 40FC97>
> (funcall closure)
1
> (funcall closure)
2
> (funcall closure)
3

4-12 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations related to program structure according to functionality.

Data Type Predicates

functionp compiled-function-p

These predicates determine whether an object is a function object.

Declaring Global Variables and Named Constants

defconstant
defparameter

defvar

These constructs proclaim special variables and constants.

Function Definition

defun
define-function
redefinition-action

lambda-list-keywords
lambda-parameters-limit

These constructs are used in defining functions.

Function Calls

apply
funcall

call-arguments-limit

These constructs are used in applying functions to arguments.

Program Structure 4-13

Accessing Variable and Function Bindings

symbol-value
symbol-function
boundp
fboundp

makunbound
fmakunbound
function
special-form-p
constantp

These operations access variable and function bindings.

Controlling Evaluation

quote eval-when

These functions affect the evaluation process.

Identity Operator

identity

This function returns its argument unchanged.

4-14 Sun Common Lisp Reference Manual

apply

Purpose:

Syntax:

Remarks:

The function apply applies its function argument to a list of arguments.

The function argument must be a function object. It may be a compiled code
object, a lambda expression, or a symbol that has a global definition as a function
(not a macro or special form).

apply function arg .treat more-args [Function]

The last argument specified must be a list. It is appended to a list of all the other
arguments except function.

If the function uses keyword arguments, the keywords must also be given in the
argument list.

The macro setf may be used with apply if the function argument is a function
that is acceptable to setf.

Examples: > (apply "+ 1 2 3 '(466»
21

See Also:

> (apply "(lambda (x y z) (+ x (- y z») '(1 2 3»
o

funcall

function

Program Structure 4-15

boundp

Purpose: The predicate boundp is true if the dynamic variable associated with its symbol
argument has a value; otherwise it is false.

Syntax: boundp symbol

Examples: > (setq sym 1)
1
> (boundp • sym)
T
> (makunbound 'sym)
SYM
> (boundp 'sym)
NIL
> (let «sym 2» (boundp 'sym»
NIL

See Also: set

setq

symbol-value

makunbound

4-16 Sun Common Lisp Reference Manual

[Function]

call-arguments-limit

Purpose: The constant call-arguments-limit defines the upper exclusive bound on the
number of arguments that may be passed to any Common Lisp function.

The value of call-arguments-limit in Sun Common Lisp is 29 •

Syntax: caIl-arguments-limit

Examples: > call-arguments-limit
612

See Also: lambda-parameters-limit

multiple-values-limit

[Constant]

Program Structure 4-17

compiled-function-p

Purpose: The predicate compiled-function-p is true if its argument is a compiled code
object; otherwise it is false.

Syntax: compiled-function-p object

Examples: > (compiled-function-p (symbol-function 'append»
T
> (compiled-function-p "(lambda (x) x»
NIL

4-18 Sun Common Lisp Reference Manual

[Function]

constantp

Purpose:

Syntax:

The predicate constantp is true if its argument is a constant; otherwise it is false.
A constant is an object that always evaluates to the same value.

The following objects are constants: numbers, characters, strings, keywords, t,
nil, bit vectors, symbols declared by means of defconstant, and lists whose first
element is quote.

constantp object [Function]

Examples: > (constantp 1)

See Also:

T
> (constantp "~fool
T
> (defconstant this-is-a-constant 'never-changing)
THIS-IS-A-CONSTANT
> (constantp 'this-is-a-constant)
T
> (constantp "foo")
T

defconstant

Program Structure 4-19

defconstant

Purpose:

Syntax:

Remarks:

The defconstant macro is used to proclaim a special variable. The variable is
initialized to the result of evaluating the initial-value argument. Once such a
variable has been defined using defconstant, its value is constant and may not be
changed by assignment or binding.

The defconstant macro returns name as its result.

defconstant name initial-value [documentation] [Macro]

The name argument is a symbol; it is not evaluated.

No special binding of the variable may already exist when defconstant is called.

Note that a constant defined by defconstant may be changed with defconstant,
but functions compiled using the old value may be incorrect.

A documentation string may be attached to the name of the global variable by
the optional documentation argument; the documentation type for this string is
variable.

Examples: > (defconstant this-is-a-constant 'never-changing "for a test")
THIS-IS-A-CONSTANT

See Also:

> this-is-a-constant
NEVER-CHANGING
> (documentation 'this-is-a-constant 'variable)
"for a test"
> (constantp 'this-is-a-constant)
T

defvar

defparameter

proclaim

documentation

4-20 Sun Common Lisp Reference Manual

define-function

Purpose:

Syntax:

Remarks:

The function define-function is used by the macro defun to do the actual
defining of a new function. It replaces the function cell of the named symbol with
the specified function object.

If the function is currently traced, it remains traced, but with the new definition.

define-function name function [Function]

The name argument is a symbol.

The function define-function is an extension to Common Lisp.

Examples: > (defun foo 0 101)
FDD

See Also:

> (foo)
101
> (define-function 'foo #'+)
FDD
> (foo)
o
> (foo 1 2 3)
6
> (define-function 'foo #'(lambda () 202»
FDD
> (foo)
202

defun

symbol-function

redefinition-action

Program Structure 4-21

defparameter

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The defparameter macro is used to proclaim a special variable. The variable is
initialized to the result of evaluating the initial-value argument.

The defparameter macro returns name as its result.

defparameter name initial-value [documentation] [Macro]

The name argument is a symbol; it is not evaluated.

A documentation string may be attached to the name of the global variable by
the optional documentation argument; the documentation type for· this string is
variable.

> (defparameter *p* 1)

P
> *p*
1
> (constantp '*p*)
NIL
> (setq *p* 2)
2
> (defparameter *p* 3)

P
> *p*
3

defvar

defc onst ant

proclaim

documentation

4-22 Sun Common Lisp Reference Manual

defun

Purpose:

Syntax:

Remarks:

The defun macro is used to define a new function.

The name argument of defun must be a symbol; it is not evaluated. The function
defun causes a global function definition to be attached to the symbol name as
the contents of the symbol's function cell. This function definition is given by the
expression that follows:
(lambda lambda-list {declaration I documentation}* {form}*)

The name of the new function is returned as the value of the defun form.

The body of the function consists of the forms specified by the form arguments;
they are executed in order when the function is called.

The function body is enclosed in a block construct. This block bears the same
name as the function itself. Thus the return-from construct may be used to cause
an exit from the function as well as the block.

defun name lambda-list {declaration I documentation} * {form} * [Macro]

The definition of functions and the syntax of lambda lists are discussed in the
section "Functions."

The function is defined in the lexical environment in which the defun form is
executed. Normally, the defun macro occurs as a top-level form. If it is a top-level
form, the null lexical environment is used.

A documentation string may be attached to the name of the function by use of
the optional documentation argument; the documentation type for this string is
function.

The defun macro may be used to redefine a function or to replace a macro
definition with a function definition. The Common Lisp special forms may not be
redefined.

~xamples: > (defun ex (a b toptional c (d 66) trest keys tkey test (start 0»
(list abc d keys test start»

EX
> (ex 1 2)
(1 2 NIL 66 NIL NIL 0)
> (ex 1 2 3 4 :test 'equal :start 50)
(1 2 3 4 (:TEST EQUAL :START 50) EQUAL 50)
> (ex :test 1 :start 2)
(:TEST 1 :START 2 NIL NIL 0)

Program Structure 4-23

defun

See Also: flet

labels

block

return-from

documentation

4-24 Sun Common Lisp Reference Manual

defvar

Purpose:

Syntax:

Remarks:

The defvar macro is used to proclaim a special variable.

If an initial-value argument is specified, the variable is initialized to the result
of evaluating initial-value. If the variable already has a value, this value is not
changed and initial-value is not evaluated.

The defvar macro returns name as its result.

defvar name [initial-value [documentation]] [Macro]

The name argument is a symbol; it is not evaluated.

A documentation string may be attached to the name of the global variable by use
of the optional documentation argument; the documentation type for this string is
variable.

Examples: > (defvar *v* ' global)
V

See Also:

> *v*
GLOBAL
> (let ((*v* 'local»

(symbol-value '*v*»
LOCAL
> (setq should-stay-nil nil)
NIL
> (defvar *v* (setq should-stay-nil t»
V
> *v*
GLOBAL
> should-stay-nil
NIL

defparameter

proclaim

documentation

Program Structure 4-25

eval-when

Purpose:

Syntax:

The special form eval-when is used to specify when a particular body of code is
to be executed.

This time is defined by the situation arguments. Each situation argument must be
either compile, load, or eval.

H eval is specified, the evaluator evaluates the form arguments at execution time.
H compile is specified, the compiler evaluates the form arguments at compilation
time. H load is specified and the file containing the eval-when is compiled, then
the forms are compiled; they are executed when the output file produced by the
compiler is loaded.

The form arguments are executed in order. The value of the last form evaluated is
returned as the result of eval-when. H no forms are executed, eval-when returns
nil.

eval-when ({situation}*) {form}* [Special Form]

Examples: > (setq foo 3)
3
> (eval-when (compile) (setq foo 2»
NIL
> foo
3
> (eval-when (eval) (setq foo 2»
2
> foo
2

4-26 Sun Common Lisp Reference Manual

fboundp

Purpose: The predicate fboundp is true if its symbol argument has an associated global
function definition; otherwise it is false.

Syntax: fboundp symbol [Function]

Remarks: The function definition may be that of a function, a macro, or a special form.

Examples: > (defun foo (x) x)
FOO

See Also:

> (fboundp 'fool
T
> (fmakunbound 'fool
FOO
> (fboundp 'fool
NIL
> (flet «foo #'(lambda (x) x»)

(fboundp 'foo»
NIL

symbol-function

fmakunbound

Program Structure 4-27

fmakunbound

Purpose:

Syntax:

Exalllples:

See Also:

The function fmakunbound causes its symbol argument to have no associated
global function definition. It returns symbol as its result.

fmakunbound symbol [Function]

> (defun foo (x) x)
FDD
> (fboundp 'fool
T
> (fmakunbound 'fool
FOD
> (fboundp 'fool
NIL
> (flet «foo (x) (1+ x»)

(fmakunbound 'fool
(foo 1»

2

fboundp

4-28 Sun Common Lisp Reference Manual

funcall

Purpose:

Syntax:

The function funcall applies its function argument to the specified arguments.

The function argument must be a function object. It may be a compiled code
object, a lambda expression, or a symbol that has a global definition as a function
(not a macro or special form).

funcall function I:rest arg8 [Function]

Examples: > (funcall #'+ 1 2 3)

See Also:

6
> (funcall 'car -(1 2 3»
1
> (funcall 'position 1 '(1 232 1) :start 1)
4
> (funcall #'(lambda () 101»
101

apply

function

Program Structure 4-29

function

Purpose:

Syntax:

Remarks:

The special form function returns the function object associated with its argument.

If the function a.rgument is a symbol, this object is the function definition that
is associated with the symbol's function cell. If function is a lambda expression,
function returns a lexical closure for that lambda expression.

function function [Special Form]

The notation #' function may be used as an abbreviation for (function function).

The function argument is not evaluated.

Examples: > (defun foo () 'top-level)
FOO
> (funcall (function fool)
TOP-LEVEL
> (flet «foo () 'shadow»

(funcall (function fool»~
SHADOW
> (eq (function fool #'foo)
T
> (eq (function fool (symbol-function 'fool)
T
> (flet «foo () 'shadow»

Ceq (function fool (symbol-function 'fool»~
NIL

4-30 Sun Common Lisp Reference Manual

functionp

Purpose: The predicate functionp is true if its argument is of a form that is appropriate for
applying to arguments, as with the funcall or apply function; otherwise it is false.

Syntax: functionp object [Function]

Remarks: The predicate functionp is true of symbols, any list whose first element is
lambda, values returned by function, and values returned by compile when its
first argument is nil.

Examples: > (functionp 'sss)
T
> (functionp (symbol-function 'append»
T
> (functionp :test)
T
> (functionp nil)
T
> (functionp 12)
NIL

Program Structure 4-31

identity

Purpose: The function identity returns its argument unchanged. It is intended for use with
functions that require a function as an argument.

Syntax: identity object

Examples: > (identity 101)
101
> (let «f #Iidentity»

(funcall f 101»
101
> (mapcan #Iidentity 1«1 2 3) (4 S 6»)
(1 2 3 4 S 6)

4-32 Sun Common Lisp Reference Manual

[Function]

lambda-list-keywords

Purpose:

Syntax:

Remarks:

The constant lamb da-list-keywords defines the lambda list keywords that are
available for use in lambda expressions, function definitions, and macro definitions.
Its value is a list. This list contains the symbols &optional, &rest, &key, &aux,
&allow-other-keys, &body, &whole, and &environment.

lambda-list-keywords [Constant]

The lambda list keywords &body, &whole, and &environment may be used
only in macro definitions.

The use of lambda list keywords in function definitions is discussed in the section
"Functions." The use of lambda list keywords in macro definitions is discussed in
the chapter "Macros."

Examples: > lambda-list-keywords
(lOPTIONAL lREST lKEY lAUX lALLOW-OTHER-KEYS lBODY lWHOLE lENVIRONMENT)

Program Structure 4-33

lambda-parameters-limit

Purpose: The constant lambda-parameters-limit defines the upper exclusive bound on
the number of distinct parameter names in a lambda list.

The value of lambda-parameters-limit in Sun Common Lisp is 29 •

Syntax: lambda-parameters-limit

Examples: > lambda-parameters-limit
512

See Also: call-arguments-limit

4-34 Sun Common Lisp Reference Manual

[Constant]

makunbound

Purpose:

Syntax:

Examples:

See Also:

The function makunbound causes the dynamic variable associated with its symbol
argument to be unbound (have no value). It returns symbol as its result.

makunbound symbol [Function]

> (setq foo 1)
1
> (boundp 'fool
T
> (makunbound 'fool
Faa
> (boundp 'fool
NIL

boundp

Program Structure 4-35

quote

Purpose:

Syntax:

Remarks:

Examples:

The special form quote returns its object argument. The object is not evaluated.
The special form quote is used when it is desirable not to evaluate an object or
form, but rather to manipulate it as a constant.

quote object [Special Form]

The single-quote character may be used as an abbreviation for quote. The
construct' object is equivalent to (quote object).

> (setq a 1)
1
> (quote (setq a 1»
(SETQ A 1)
> a
1
> 'a
A
> "a
(QUOTE A)

4-36 Sun Common Lisp Reference Manual

redefinition-action

Purpose:

Syntax:

The global variable .redefinition-action. is only used in the functions define
function and define-macro. It is used to specify what action will be taken when
a redefinition occurs.

If .redefinition-action. is set to :warn, the user is warned when a function or
macro is redefined. If the variable is set to : query , the user is asked whether he
wishes to proceed with the redefinition. If .redefinition-action. is set to any
other value, no warning is given.

The default value of .redefinition-action. is :warn.

.redefinition-action. [Variable]

Remarks: The variable .redefinition-action. is an extension to Common Lisp.

Examples: > *redefini tion-action*
: WARN
> (defun foo 0)
FOO
> (defmacro bar (»
BAR
> (defun foo 0)
;;; Warning: Redefining FOO
FOO
> (defmacro bar (»
;;; Warning: Redefining BAR
BAR
> (define-function 'foo "car)
;;; Warning: Redefining FOO
FOO
> (define-macro 'bar "do)
; ;; Warning: Redef ining BAR
BAR
> (let «*redefinition-action* :quiet»

(defun foo 0»
FOO
> (let «*redefinition-action* :quiet»

(define-macro 'bar "do»
BAR
> (setq *redefinition-action* :quiet)
: QUIET
> (defun foo 0)
FOO
> (defmacro bar (»
BAR

Program Structure 4-37

redefinition-action

See Also:

> (define-function 'foo #'car)
Faa
> (define-macro 'bar #'do)
BAR

define-function

define-macro

4-38 Sun Common Lisp Reference Manual

special-form-p

Purpose: The predicate special-form-p is true if its symbol argument has an asso~iated
global function definition that is a special form; otherwise it is false.

Syntax: special-form-p symbol

Examples: > (special-form-p • if)
T
> (special-form-p 'car)
NIL
> (special-form-p 1)
NIL

[Function]

Program Structure 4-39

symbol-function

Purpose:

Syntax:

Remarks:

The function symbol-function returns the contents of the function cell named by
its symbol argument. This function definition may be a function, a special form, or
a macro. An error is signaled by symbol-function if the function definition does
not exist.

symbol-function symbol [Function]

The existence of a function definition associated with a symbol may be tested with
fboundp.

The macro setf may be used with symbol-function to replace the contents of the
function cell.

Examples: > (defun foo 0 "this function returns this string")
FOO

See Also:

> (funcall (symbol-function 'fool)
"this function returns this string"
> (,etf (symbol-function 'fool

#' (lambda 0 "this function is a replacement"»
#<Interpreted-Function (LAMBDA NIL "this function is a replacement") 3B85AF>
> (funcall (symbol-function =foo»
"this function is a replacement"

fboundp

4-40 Sun Common Lisp Reference Manual

symbol-value

Purpose:

Syntax:

Remarks:

The function symbol-value returns the contents of the value cell of the variable
associated with its symbol argument. An error is signaled if this variable is
unbound.

The function symbol-value may also be applied to named constants and keywords.
Applying symbol-value to a keyword returns that keyword.

symbol-value symbol [Function]

The predicate boundp may be used to test the existence of a value associated
with a symbol.

The macro setf may be used with symbol-value to replace the contents of the
value cell.

Examples: > (setq a 1)

See Also:

1
> (symbol-value 'a)
1
> (let «a 2» (symbol-value 'a»
1 ;only the global value is given by symbol-value
> (let «a 2»

(setf (symbol-value 'a) 3)
a)

2
> a
3
> (symbol-value 'a)
3

boundp

set

setq

Program Structure 4-41

4-42 Sun Common Lisp Reference Manual

Chapter 5. Control Structure

Control Structure 5-1

Chapter 5. Control Structure

About Control Structure ... 5-5
Assignment Constructs .. 5-5
Blocks and Sequencing .. 5-6
Iteration .. 5-7
Condi tionals .. 5-7
Control Transfer ... 5-7
Multiple Values .. 5-8

Categories of Operations ... 5-9
Assignment ... 5-9
Sequencing .. 5-9
Iteration ... 5-10
Conditionals ... 5-10
Control Transfer .. 5-10
Multiple Values ... 5-10

block ... 5-1i
case .. 5-12
catch ... 5-13
compiler-let . 5-14
cond .. 5-16
define-modify-macro ... 5-18
define-setf-method ... 5-19
defsetf .. 5-21
do, do* .. 5-23
dolist ... 5-25
dotimes ... 5-26
ecase, ccase .. 5-27
etypecase, ctypecase ... 5-28
£let ... 5-29
get-setf-method, get-setf-method-multiple-value 5-30
go .. 5-31
if .. 5-32
labels . 5-33
let, let* ' .. 5-34
loop .. 5-35
macrolet. .. 5-36
multiple-value-bind .. 5-37
multiple-value-call ... 5-38
multiple-value-list ... 5-39
multiple-value-progl ... 5-40
multiple-value-setq .. 5-41
multiple-values-limit ... 5-42
prog, prog* .. 5-43

5-2 Sun Common Lisp Reference Manual

progl ... 5-45
prog2 ... 5-46
progn ... 5-47
progv ... 5-48
return, return-from .. 5-49
rotatef .. 5-50
set ... 5-51
setf, psetf .. 5-52
setq, psetq 5-53
shiftf . 5-54
tagbody ... 5-55
throw ... 5-56
typecase ... 5-57
unless . 5-58
unwind-protect ... 5-59
values ... 5-60
values-list .. 5-61
when ... 5-62

Control Structure 5-3

5-4 Sun Common Lisp Reference Manual

About Control Structure

Common Lisp provides many different constructs for controlling the flow of program
execution and evaluation. This collection of functions, macros, and special forms
encourages the design of clear, understandable programs.

The available programming constructs include assignment to lexical, dynamic, and
generalized variables; various forms of iteration; conditionals; blocks; function calls;
nonlocal transfers and exits; and function returns with multiple values.

Assignment Constructs

Common Lisp provides both simple and generalized assignment constructs.

Simple Assignment

The set, setq, and psetq constructs are used to alter the values of variables. The set
function is used to alter the value of a dynamic variable. The setq and psetq forms may
be used to assign values to both lexical and dynamic variables.

Generalized Variables

A simple variable is a binding of an identifier with a location. It is accessed by name.
Common Lisp also provides a more general notion of variable. A generalized variable is
a binding of an accessing formula with a location.

Like simple variables, generalized variables can be updated. The syntax for updating
generalized variables requires, in place of the variable name, a specification of the accessing
formula for the variable.

In the syntactic descriptions of operations on generalized variables, this accessing formula
is referred to as a place form. It may be anyone of the following:

• The name of a lexical or dynamic variable.

• A call to a selector function created by means of defstruct.

• A call to any of the functions listed in Figure 5-1.

• A the type declaration.

• Calls to access forms defined by defsetf or define-setf-method.

• Calls to apply that also have special meaning to setf.

• A macro call that expands into one of these forms.

Control Structure 5-5

symbol-value aref car caaadr
symbol-function svref cdr caadar
symbol-plist get caar caaddr
macro-function elt cadr cadaar
documentation getf cdar cadadr
first get hash cddr caddar
second fill-pointer caaar cadddr
third char caadr cdaaar
fourth schar cadar cdaadr
fifth bit caddr cdadar
sixth sbit cdaar cdaddr
seventh subseq cdadr cddaar
eighth char-bit cddar cddadr
ninth ldb cdddr cdddar
tenth mask-field caaaar cddddr
nth rest

Figure 5-1. Table of Place Constructors

The macro setf takes a generalized place specifier and a value and stores the value in
the specified location. It is intended to be used for all operations that need to update a
piece of data. Using setf uniformly to update such data eliminates the need for numerous
different functions to do updating on different types of data locations.

Blocks and Sequencing

The forms progn, progl, and prog2 provide the primitive sequencing constructs of
Common Lisp. They cause a series of forms to be executed in the order in which they are
listed as arguments.

The block special form acts in a similar way but allows a name to be associated with the
series of forms. The execution of a block may be terminated by the use of the return and
return-from constructs. The defun macro provides an implicit block around the body
of the defined function. This block bears the same name as the funtion. The iteration
forms loop, do, do*, dolist, and dotimes also provide implicit blocks.

The prog, prog*, progv, let, let*, and compiler-let constructs establish new variable
bindings and execute a series of forms using these bindings. These constructs differ in
the types of bindings they provide and in how the bindings are made. In addition, the
prog and prog* constructs provide implicit tagbodies and thus allow for control transfer
operations.

5-6 Sun Common Lisp Reference Manual

The :Bet, labels, and macrolet constructs establish new function definition bindings and
execute a series of forms using these bindings.

Iteration

Common Lisp provides several forms of iteration.

The loop construct provides a primitive indefinite iteration facility.

The do, do., doIist, and dotimes constructs provide structured means of definite
iteration. These forms all create bindings for iteration variables and provide for the
execution of a series of forms within the context of these bindings. Explicit termination
conditions may be specified for the iteration. The dolist construct is tailored for iterating
over the elements of a list. The dotimes construct allows for iteration over a sequence of
integers.

Conditionals

Conditional control structures allow the execution of forms to be contingent on the results
of evaluating other forms.

The if, when, and unless constructs allow for the execution of a form to be dependent
on the results of another form. The cond construct is a generalization of if. It provides a
multibranch if facility.

The various case and typecase forms provide for the selective execution of one group of
forms out of a set of many such groups. The selection is made on the basis of the value or
type of a key associated with the set.

Control Transfer

The most common form of control transfer is the function call. Functions and the function
call mechanism are discussed in the chapter "Program Structure."

A simple "goto" facility is provided by the go and tagbody constructs. The tagbody
special form allows for control transfer within a body of code by means of tags, or
statement labels. The go form is used to cause control to transfer to the statement labeled
by the tag. The forms do, do., doIist, dotimes, prog, and prog. all have implicit
tagbodies. Tagbody tags have lexical scope. A go form may thus transfer control only to
a tag in a lexically surrounding tagbody.

The return and return-from constructs provide for structured exits from blocks. They
are used in conjunction with the block construct. Block names have lexical scope.
A return or return-from form may transfer control only to the end of a lexically
surrounding block.

Control Structure 5-7

The catch and throw facility provides a means of control transfer in which the destination
is determined by the dynamic environment.

The unwind-protect construct guarantees that a series of cleanup forms will be executed
before a nonlocal exit occurs.

Multiple Values

Normally, a Lisp function returns a single value, although the single value might be a
list or a vector of many objects. In certain cases, however, it is natural for a function to
compute and return more than one value. Common Lisp provides a straightforward way
of doing this.

Unless explicit requests are made both to return multiple values and to receive them, a
function call supplies only a single value. If the function returns multiple values, but the
caller expects only a single value, the result is the first value, and the remaining multiple
values are discarded. IT the function returns no values, but the caller expects a single
value, the result is nil.

Many constructs that select a form to be returned will return multiple values if the
selected form returns multiple values. These include progn and constructs where forms
are executed in order. Constructs such as defun, defmacro, eval-when, progv, let,
when, block and forms containing implicit blocks, catch, case, and typecase behave as
ii a progn had been wrapped around the series of forum tha.t they eXecute.

Other forms that return any supplied multiple values are eval, apply, funcall, multiple
value-call, if, return, return-from, multiple-value-progl, unwind-protect, and
the. The macros and and or return multiple values only from the last subform. The
macro cond returns multiple values unless the clause selected contains only a single form
(the test itself). In that case, the single non-nil value of the test is returned.

Forms that always return only a single value include setq, progl, and prog2.

5-8 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations related to control structure according to functionality.

Assignment

set
setq
psetq
setf
psetf
rotatef

shiftf
define-modify-macro
defsetf
define-setf-metho d
get-setf-metho d
get-setf-metho d-multiple
value

These constructs are used for assignment to simple variables and generalized
variables.

Sequencing

block
compiler-let
Bet
labels
let
lett
macrolet

prog
prog*
progl
prog2
progn
progv

These constructs enable a group of statements to be executed sequentially. Some
of them provide for the introduction of new variable bindings.

Control Structure 5-9

Iteration

loop
do
do.

dolist
dotimes

These constructs provide facilities for definite and indefinite iteration.

Conditionals

cond
if
when
unless
case

ecase
ccase
typecase
etypecase
ctypecase

These conditional constructs allow selective execution of a form or groups of forms.

control T'ransier

go
tagbody
return
return-from

catch
throw
unwind-protect

These constructs provide for local and nonlocal exits.

Multiple Values

multiple-value-bind
multiple-value-call
multiple-value-list
multiple-value-prog1

multiple-value-setq
multiple-values-limit
values
values-list

These constructs manipulate multiple values.

5-10 Sun Common Lisp Reference Manual

block

Purpose:

Syntax:

The block special form names and evaluates a series of forms. The forms are
evaluated in the order in which they are given in the argument list. The result
returned by block is the result returned by evaluating the last of the form
arguments.

The execution of a block may be terminated by the use of return or return-from.
In this case, the value returned is that specified by the return or return-from
form.

If the last form of the block, a return form, or a return-from form returns
multiple values, those multiple values are returned by block. If there are no form
arguments, block returns nil.

block name {form}* [Special Form]

Remarks: The name argument is a symbol; it is not evaluated. It has lexical scope.

Examples: > (block empty)
NIL
> (block foo 1 2 (return-from fool 3 4)
NIL
> (block foo 1 2 (block bar 3 4 (return-from foo (values 6 6» 7 8) 9 10)
6
6

See Also: return

return-from

Control Structure 5-11

case

Purpose:

Syntax:

Remarks:

The case macro allows the execution of a group of forms to be dependent on
selection by a key match.

The key/orm argument is evaluated and matched against the key arguments; the
key arguments are not evaluated. If the key/orm value matches a key, then the
forms associated with that key are executed in order.

The case macro returns the value of the last form executed. If no key matches or
the matching key has no associated forms, case returns nil.

case key/orm {({({key}*) I key} {/orm}*)}* [Macro]

A given key may appear only once. Keys are compared using eql.

If only one key is associated with a group of forms, it is not necessary to include
that key in a list unless the key is nil, t, otherwise, or a cons. If t or otherwise
is not enclosed in a list, it has special meaning to case; if nil is not enclosed in a
list, it is treated as the empty list, not as a key.

Either the symbol t or the symbol otherwise may be used as the last key. If no
other key match succeeds, the forms associated with the t or otherwise key are
executed.

Examples: > (dolist (k '(1 2 3 :four #\v () t 'other»
(format t "-8 "

See Also:

(case k «1 2) 'clausell
(3 'clause2)
«nil) 'nilslot)
«:four #\v) 'clause4)
«t) 'tslot)
(otherwise 'others»»

CLAUSEl CLAUSEl CLAUSE2 CLAUSE4 CLAUSE4 NILSLOT TSLOT OTHERS
NIL

cond

ecase

ccase

typecase

etypecase

ctypecase

5-12 Sun Common Lisp Reference Manual

catch

Purpose:

Syntax:

The catch special form is used as the destination of a nonlocal control transfer by
throw.

The tag argument is evaluated first. It serves as the name of the catch. The form
arguments are then evaluated in order. If a throw occurs during the execution
of one of the forms, control is transferred to the catch construct whose tag is eq
to the tag argument of the throw. The results of the throw are returned as the
results of the catch.

Catch tags have dynamic scope. If several catch tags match the tag argument of a
throw, control is transferred to the most recently occurring such catch.

If the catch exits normally, the value or values returned by the last form are
returned as the results of the catch. If no form arguments are specified, catch
returns nU.

catch tag {form}* [Special Form]

Remarks: Catch tags are compared using eq. Characters and numbers should therefore not
be used as tags.

Examples: > (catch '£00 1 2 (throw '£00 3) 4)

See Also:

3
> (catch '£00 1 2 3 4)
4
> (de£un throw-back (tag) (throw tag t»
THROW-BACK
> (catch '£00 (throw-back '£00) 2)
T
> (catch 'foo (catch '£00 (throw-back 'fool 2) 3)
3

throw

Control Structure 5-13

compiler-let

Purpose:

Syntax:

The compiler-let special form is used to create new variable bindings and to
execute a series of forms that use these bindings. These variable bindings have
lexical scope.

The value arguments are evaluated first, in the order in which they are given. The
var arguments are then bound to the corresponding values in parallel. If no value
is specified for a given var argument, that variable is bound to nil.

Unlike the variable bindings created by let, the bindings in compiler-let take
effect during compilation instead of at run-time; no code is generated for them.
The compiler-let construct is used for communication between macros.

If a compiler-let is evaluated by the Lisp interpreter, the effect is identical to that
of a let whose variables are all declared special.

The form arguments are executed in order. The result returned by compiler-let
is the value or values returned by the last form executed. If no form arguments are
specified, compiler-let returns nil.

compiler-let ({var I (var value)}*) {form}* [Special Form]

Remarks: No declarations may be specified in a conlpile:r-Iet.

Examples: > (defvar *collect-var* nil)
COLLECT-VAR
> (defmacro with-collecting (tbody body)

(let «var (gensym»)
'(compiler-let «*collect-var* ',var»

(let «,var 'C»~)
,Clbody
(nreverse ,var»»)

WITH-COLLECTING
> (defmacro collect (value)

(if *collect-var*
• (push ,value ,*collect-var*)
(error "COLLECT can only be used inside WITH-COLLECTING"»)

COLLECT
> (collect 1)
»Error: COLLECT can only be used inside WITH-COLLECTING

IF:
Original code: (IF *COLLECT-VAR* # #)

5-14 Sun Common Lisp Reference Manual

:A Abort to Lisp Top Level
-> :a
Back to Lisp Top Level

> (with-collecting (collect 1) (collect 2) (collect 3»
(1 2 3)

See Also: let

compiler-let

Control Structure 5-15

cond

Purpose:

Syntax:

The cond macro allows the execution of a group of forms to be dependent on a
test form.

The test arguments are evaluated one at a time in the order in which they are
given in the argument list until a test is found that evaluates to a non-nil value.

The form arguments associated with this test are then evaluated in order. The
cond returns immediately after the evaluation of the last of these forms. No
additional test or associated form arguments are evaluated. The cond returns the
results of the last form evaluated. If no forms were associated with the given test,
cond returns the value of the test argument.

If none of the test arguments is non-nil, cond returns nil.

cond {(test {form} *)} * [Macro]

Remarks: If a test succeeds and its associated form argument returns multiple values, the
multiple values are returned from the condo Only a single value is returned in the
case where a test succeeds and has no associated forms.

Examples: > (defun foo ()
(cond «- a 1) (setq a 2»

«= a 2) (setq a 3»

FOO
> (setq a
1
> (foo)
2
> a
2
> (foo)
3
> a
3
> (foo)
1

«and (- a 3) (floor a 2»)
(t (floor a 3»»

1)

5-16 Sun Common Lisp Reference Manual

> (aetq a 6)
6
> (foo)
1
2

See Also: if

case

cond

Control Structure 5-17

define-IDodifY-IDacro

Purpose:

Syntax:

Remarks:

The macro define-modify-macro is used to define a macro to access and update
a generalized variable.

The arguments to the new macro will be a reference to the generalized variable,
followed by the arguments that are specified in the lambda-list argument of
define-modify-macro.

When the macro is invoked, the function specified by the function argument of
define-modify-macro is applied to these arguments to obtain the new value, and
the generalized variable is updated to contain the result.

The macro define-modify-macro returns name as its result.

define-modify-macro name lambda-list function [documentation] [Macro]

The name argument is a symbol; it is not evaluated.

The function argument is not evaluated; it should be the name of a function.

The lambda list may contain the &optional and &rest keywords only.

A documentation string may be attached to the name of the new macro by the
optional documentation argument; the documentation type for this string is seti.

Examples: > (define-modify-macro appendf (.trest args) append "Append onto list")
APPENDF

See Also:

> (setq x '(a b c) y x)
(A B C)

> (appendf x '(d e f) '(1 2 3»
(A BCD E F 1 2 3)
> x
(A BCD E F 1 2 3)
> Y
(A B C)

defsetf

define-setf-metho d

5-18 Sun Common Lisp Reference Manual

define-setf-method

Purpose:

Syntax:

Remarks:

The macro define-setf-metho d is used to specify the means by which setf is to
update a generalized variable that is referenced by a given access function.

When setf is given a generalized variable that is specified in terms of this access
function and a new value for the variable, it is expanded into a call on the update
function. The arguments of the access function and the new value are passed to
the update function, and the update function is invoked to modify the value of the
variable.

The lambda-list argument specifies the arguments of the access function. When
setf is called with the access function, the lambda list parameters are bound to
the corresponding access function arguments in the call form.

The lorm arguments must compute the expansion for a call on setf that references
the generalized variable by means of the given access function.

The evaluation of the lorm arguments must result in the following five values:
a list of the temporary variables used; a list of the value forms to whose values
the temporary variables are bound; a list consisting of the store variable (the
temporary variable that is bound to the new value); the store form (the form that
is used to update the generalized variable and return the resulting value); and the
access form (the form that is used to access and return the value of the generalized
variable).

The define-setf-metho d macro returns the name of the access function as its
result.

define-setf-method access-In lambda-list [Macro]
{declaration I documentation} * {Iorm} *

The access-In argument is the name of a function or macro; it is not evaluated.

A documentation string may be attached to the name of the new macro by the
optional documentation argument; the documentation type for this string is setf.

Control Structure 5-19

define-setf-method

Examples: > (defun lastguy (x) (car (last x»)
LASTGUY
> (define-setf-method lastguy (x)

"Set the last element in a list to the given value."
(multiple-value-bind (dummies vals newval setter getter)

(get-setf-method x)
(let «store (gensym»)

(values dummies
vals
• (,store)
• (progn (rplaca (last ,getter) ,store) ,store)
'(lastguy ,getter»»)

LASTGUY
> (setq a (list 'a 'b 'c 'd)

b (list 'x)
c (list 123 (list 4

(1 2 3 (4 5 6»
> (setf (lastguy a) 3)
3
> (setf (lastguy b) 7)
7
> (setf (lastguy (lastguy c»
FOO
> a
(A B C 3)
> b
(7)
> c
(1 2 3 (4 6 FOO»

See Also: setf

defsetf

get-setf-metho d

5-20 Sun Common Lisp Reference Manual

6 6»)

'fool

defsetf

Purpose:

Syntax:

The macro defsetf is used to specify the means by which setf is to update a
generalized variable that is referenced by a given access function. It specifies an
update function that is to be used in conjunction with the given access function.

When setf is given a generalized variable that is specified in terms of this access
function and a new value for the variable, it is expanded into a call on the update
function. The arguments of the access function and the new value are passed to
the update function, and the update function is invoked to modify the value of the
variable.

The defsetf macro returns the name of the access function as its result.

The arguments to defsetf include the access function and either the name of an
update function or a body of code that will expand the setf call, update the given
location, and return the new value that was stored.

In the first of these methods, an update function is specified by use of the update-In
argument. The update-In argument is the name of a function or macro; it is not
evaluated. The update function must take one more argument than the access
function. This last argument corresponds to the new value that is to be assigned
to the generalized variable. The update function must return the new value as its
result.

In the second method, the lorm arguments must compute the expansion for a
call on setf that references the generalized variable by means of the given access
function. This expansion must also return the new value assigned to the variable
as its result.

The lambda-list argument specifies the arguments of the access function. The
store-variable corresponds to the value that is to be used to update the generalized
variable.

The forms in the body may assume that the lambda list parameters and the store
variable are bound to the corresponding arguments in the call to setf. When
the forms in the body are evaluated, the lambda list parameters and the store
variable are actually bound to the names of temporary variables, which, when setf
is expanded, are bound to the actual argument values.

defsetf access-In { update-In [documentation] I
lambda-list (store-variable)

[Macro]

{declaration I documentation} * {Iorm} *}

Control Structure 5-21

defsetf

Remarks: The access-In argument is the name of a function or macro; it is not evaluated. The
access function must be a function or a macro that evaluates all of its arguments.

The lambda-list argument may use the &optional, &rest, &key keywords,
default values, and 8upplied-p parameters.

A documentation string may be attached to the name of the new macro by the
optional documentation argument; the documentation type for this string is setf.

Examples: > (defun middleguy (x) (nth (truncate (1- (list-length x» 2) x»
MIDDLEGUY
> (defun set-middleguy (x v)

(unless (null x)
(rplaca (nthcdr (truncate (1- (list-length x» 2) x) v)
v»

SET-MIDDLEGUY
> (defsetf middleguy set-middleguy)
MIDDLEGUY
> (setq a (list 'a 'b 'c 'd)

b (list 'x)
c (list 1 2 3 (list 4 6 6) 7 8 9»

(1 2 3 (4 6 6) 7 8 9)
> (setf (middleguy a) 3)
3
> (setf (middleguy b) 7)

> (setf (middleguy (middleguy c» 'fool
Faa
> a
(A 3 C D)
> b
(7)
> c
(1 2 3 (4 Faa 6) 7 8 9)

See Also: setf

define-setf-method

get-setf-metho d

5-22 Sun Common Lisp Reference Manual

Purpose:

Syntax:

The do macro is used to iterate over a group of forms while a test condition holds.

It provides for a series of local iteration variables that may be stepped each time
through the iteration loop.

An initial value may be specified for each iteration variable by use of the init form.
The init forms are all evaluated first. The iteration variables are then bound in
parallel to the corresponding values. IT an init form is not specified for a given
variable, that variable is bound to nil.

The step form arguments may be used to specify how the variables should be
updated on succeeding iterations through the loop. The step forms are all evaluated,
and then the iteration variables are bound in parallel to the corresponding values.
IT a step form is not specified for a given variable, that variable is not stepped.

The end-test form is evaluated at the beginning of each iteration. The do
terminates when the result of end-test is non-nil. It is only when end-test results
in a non-nil value that the forms associated with the end test are evaluated. They
are evaluated in order. The do then returns the value of the last of these forms. IT
no such forms are specified, do returns nil.

The body of the do is like a tagbody. It consists of a series of tags and statements.
The tag and statement arguments are processed in the order in which they occur.
The tag arguments are not evaluated; they must be symbols or integers. The tags
serve the purpose of labeling statements and have lexical scope. The statement
forms are evaluated. The go special form may be used within the body of the do
to transfer control to a statement labeled by a tag.

The do- macro is identical to do except that the iteration variables are bound
to the initial values and the values of the step forms sequentially. A variable may
thus refer to the value to which a variable occurring earlier in the variables list has
just been bound.

do ({var I (var [init [step]])}*) (end-test {form}*)
{declaration}* {tag I statement}*

do- ({var I (var [init [step]])}*) (end-test {form}*)
{ declaration} * {tag I statement} *

[Macro]

[Macro]

Control Structure 5-23

Remarks:

Examples:

See Also:

Declarations may be specified for the iteration variables, the init and 8tep forms,
the end-te8t, the re8ult form, and statements in the body of the do construct.

IT a declaration is specified for a variable, the initial value of that variable must be
consistent with the declaration.

A block with the name of nil encloses the do construct. The return macro may
thus be used to exit from the do.

> (do «fool 1 (1+ fool»
(fo02 0 (1- fo02»)

«> (- fool fo02) 6)
4
> (do «fool 1 (1+ fool»

(fo02 0 (1+ fool»)
«= 3 fo02) fool»

3
> (do* «fool 1 (1+ fool»

(fo02 0 (1+ fool»)
«= 3 fo02) fool»

2

dolist

dotimes

loop

tagbody

return

fool»

5-24 Sun Common Lisp Reference Manual

dolist

Purpose:

Syntax:

Remarks:

The macro dolist is used to iterate over the elements of a list.

The list/orm argument is evaluated first; it should result in a list. The variable var
is bound to each element of the list in turn, and the body of dolist is executed for
that element.

When all the list elements have been processed, the result form is evaluated, and
its value is returned as the result of the dolist. IT a result form is not specified,
dolist returns nil.

The body of the dolist is like a tagbody. It consists of a series of tags and
statements. The tag and statement arguments are processed in the order in
which they occur. The tag arguments are not evaluated; they must be symbols or
integers. The tags serve the purpose of labeling statements and have lexical scope.
The statement forms are evaluated. The go special form may be used within the
body of the dolist to transfer control to a statement labeled by a tag.

dolist (var list/orm [result]) {declaration} * {tag I statement} * [Macro]

At the time the result form is processed, var is bound to nil.

A block with the name of nil encloses the dolist construct. The return macro
may thus be used to exit from the dolist.

Examples: > (setq fo02 '(»
NIL
> (dolist (fool '(1 2 3 4) fo02) (push fool fo02»
(4 3 2 1)
> (setq fo02 0)
o
> (dolist (fool '(1 2 3 4» (incf fo02»
NIL
> fo02
4

See Also: do

Control Structure 5-25

dotirnes

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The dotimes macro is used to iterate over a fixed number of integer values.

The count/orm argument is evaluated first; it should result in an integer. The
variable var is bound in turn to each integer from 0 up to but not including the
value of count/orm, and the body of the dotimes is executed for that value. When
all such integer values have been processed, the result form is evaluated, and its
value is returned as the result of the dotimes. If a result form is not specified,
dotimes returns nil.

The body of the dotimes is like a tagbody. It consists of a series of tags and
statements. The tag and statement arguments are processed in the order in
which they occur. The tag arguments are not evaluated; they must be symbols or
integers. The tags serve the purpose of labeling statements and have lexical scope.
The statement forms are evaluated. The go special form may be used within the
body of the dotimes to transfer control to a statement labeled by a tag.

dotimes (var count/orm [resultD {declaration}* {tag I statement}* [Macro]

At the time the result form is processed, var is bound to the number of times the
body was executed.

A block with the name of nil encloses the dotimes construct. The return macro
may thus be used to exit from the dotimes.

If the count/orm argument is zero or negative, the body is not executed.

> (dotimes (fool 10 fool»
10
> (setq fo02 0)
0
> (dotimes (fool 10 t) (incf fo02»
T

> fo02
10

do

5-26 Sun Common Lisp Reference Manual

ecase, cease

Purpose:

Syntax:

Remarks:

The ecase and cease macros allow the execution of a group of forms to be
dependent on selection by a key match.

The ecase macro evaluates its keyform argument and matches it against the key
arguments; the key arguments are not evaluated. If the keyform value matches a
key, the forms associated with that key are executed in order.

The ecase macro returns the value of the last form executed. If the matching key
has no associated forms, ecase returns nil. If there is no matching key, ecase
signals a fatal error.

The cease macro matches the value contained in its keyplace argument against
the key arguments; the key arguments are not evaluated. If the value in keyplace
matches a key, the forms associated with that key are executed in order.

If the object in keyplace does not match any of the keys, cease signals a continuable
error and enters the debugger. If the user continues from this error, cease prompts
for a new value to store in keyplace and tries the key matching again.

The macro cease returns the value of the last form executed. If the matching key
has no associated forms, cease returns nil.

ecase keyform {({({key}*) I key} {form}*)}*

cease keyplace {({({key}*) I key} {form}*)}*

A given key may appear only once. Keys are compared using eqi.

[Macro]

[Macro]

If only one key is associated with a group of forms, it is not necessary to include
that key in a list unless the key is nil, t, otherwise, or a cons.

Examples: > (setq k 'fool
FOO
> (ecase k «foo bar) (setq k 3000»

(2000 (setq k 'bar»)
3000

See Also: case

Control Structure 5-27

etypecase, ctypecase

Purpose:

Syntax:

Remarks:

The etypecase and ctypecase macros allow the execution of a group of forms to
be dependent on selection by a type matCh.

The etypecase macro evaluates its keyform argument and matches it against the
type arguments in turn. The type arguments must be type specifiers; they are not
evaluated. H the object specified by the keyform argument is an instance of a given
type, then the forms associated with that type are executed in order. H the object
is an instance of more than one such type, only the forms associated with the first
of these types are executed.

The etypecase macro returns the value of the last form executed. H the matching
type has no associated forms, it returns nil. H no type matches, etypecase signals
a fatal error.

The ctypecase macro matches the value contained in its keyplace argument
against the type arguments in turn. The type arguments must be type specifiers;,
they are not evaluated. H the object contained in the keyplace argument is an
instance of a given type, then the forms associated with that type are executed
in order. H the object is an instance of more than one such type, only the forms
associated with the first of these types are executed.

IT the object in keyplace does not match any of the types, ctypecase signals a
continuable error and enters the debugger. IT the user continues from this error,
ctypecase prompts for a new value to store in keyplace and tries the type matching
agaIn.

The ctypecase macro returns the value of the last form executed. IT the matched
type has no associated forms, ctypecase returns nU.

etypecase keyform {(type {form} *)} *

ctypecase keyplace {(type {form} *)} *

The type arguments are not evaluated.

It is not permitted to use t or otherwise as a type argument.

[Macro]

[Macro]

Examples: > (etypecase nil (cons "it's a cons")
(list "it's nil")
(symbol "it's a symbol"»

"it's nil"

See Also: typecase

5-28 Sun Common Lisp Reference Manual

flet

Purpose:

Syntax:

Remarks:

The special form :Bet is used to define functions whose names are meaningful only
locally and to execute a series of forms with these function definition bindings.
Any number of such local functions may be defined.

The names of functions defined by :Bet have lexical scope; they retain their local
definitions only within the body of the :Bet. Any references within the body of the
:Bet to functions whose names are the same as those defined within the :Bet are
thus references to the local functions instead of to any global functions of the same
names. The scope of these function definition bindings, however, includes only the
body of :Bet, not the definitions themselves. Within the function definitions, local
function names that match those being defined refer to global functions defined
outside the :Bet. It is thus not possible to define recursive functions with :Bet.

The form arguments are executed in order. The result returned by £let is the value
or values returned by the last form executed. If no form arguments are specified,
£let returns nil.

£let ({ (name lambda-list {declaration I documentation} *
{form}*)}*) {form}*

[Special Form]

An :Bet local function definition is identical in form to the function definition
part of a defun. It contains a name, argument list, optional declarations and
documentation string, and a body.

Examples: > (flet «flet1 (D) (+ D D»)

See Also:

6

(flet «flet1 (D) (+ 2 (flet1 D»»
(flet1 2»)

> (flet «+ (trest args) 'crossed-out»
(+ 1 2 3»

CROSSED-OUT

labels

let

defun

Control Structure 5-29

get-setf-method, get-setf-method-multiple-value

Purpose:

Syntax:

The function get-setC-method returns a multiple value result that characterizes
the setC method for a given form.

The result consists of the following five values: a list of the temporary variables; a
list of the value forms to whose values the temporary variables are bound; a list
consisting of the store variable; the store form; and the access form.

The function get-setf-method-multiple-value is like get-setf-method except
that a list containing more than one store variable may be returned.

get-setC-metho d form

get-setC-metho d-multiple-value form

[Function]

[Function]

Remarks: The form argument must be a reference to a generalized variable.

Examples: > (get-setf-method 'x)
NIL

See Also:

NIL
(#:G50)
(SETQ X #:G50)
X
> (define-setf-method multivalue (x)

(values .() '() ·(.(gensym) .(gensym» '(setq .x 3) '4»
MULTIVALUE
> (get-setf-method-multiple-value • (multivalue fool)
NIL
NIL
(#:G59 #:G60)
(SETQ FOO 3)
4

defsetf

define-setC-method

setf

5-30 Sun Common Lisp Reference Manual

go

Purpose:

Syntax:

Remarks:

The go special form is used to transfer control to a location within a tagbody.

Control is transferred to the statement labeled by a tag that is eql to the tag
argument. Tags have lexical scope. If several tags match the tag argument of the
go, control is transferred to whichever matching tag is contained in the tagbody
form that most immediately contains the go.

No value is returned.

go tag [Special Form]

The tag argument is not evaluated. It must be a symbol or an integer.

It is an error if there is no matching tag.

Examples: > (tagbody
(setq val 2)
(go lp)
(incf val 3)

See Also:

lp (incf val 4»
NIL
> val
6

tagbody

Control Structure 5-31

if

Purpose:

Syntax:

Examples:

See Also:

The if special form allows the execution of a form to be dependent on a single test
form.

First, the test argument is evaluated before either the then or the else argument.
Next, either the then or the else argument is evaluated, depending on the result of
test.

If the test argument is non-nil, the then form is evaluated. The results of the then
form are returned as the results of if.

If the test argument is nil, the else form is evaluated. The results of the else
form are returned as the results of if. If an else argument is not specified, nil is
returned.

if test then [else] [Special Form]

> (if t 1)
1
> (if nil 1 2)
2

and

when

unless

or

5-32 Sun Common Lisp Reference Manual

labels

Purpose:

Syntax:

Re:marks:

The special form labels is used to define functions whose names are meaningful
only locally and to execute a series of forms with these function definition bindings.
Any number of such local functions may be defined.

The names of functions defined by labels have lexical scope; they retain their local
definitions only within the body of the labels construct. Any references within
the body of the labels construct to functions. whose names are the same as those
defined within the labels form are thus references to the local functions instead of
to any global functions of the same names. The scope of these function definition
bindings includes the definitions themselves as well as the body of the labels
construct.

The form arguments are executed in order. The result returned by labels is the
value or values returned by the last form executed. If no form arguments are
specified, labels returns nU.

labels ({ (name lambda-list {declaration I documentation} *
{form}*)}*) {form}*

[Special Form]

A labels local function definition is identical in form to the function definition
part of a defun. It contains a name, argument list, optional declarations and
documentation string, and a body.

Examples: > (defun recursive-times (k n)
(labels «foo (n) (if (zerop n) 0 (+ k (foo (1- n»»»

(foo n»)
RECURSIVE-TIMES
> (recursive-times 2 3)
6

See Also: :8et

let

defun

Control Structure 5-33

let, let*

Purpose:

Syntax:

The let special form is used to create new variable bindings and to execute a series
of forms that use these bindings.

The variable bindings created are lexical bindings unless the appropriate special
declarations are specified. The bindings have lexical scope.

The value arguments are evaluated first, in the order in which they are given. The
var arguments are then bound to the corresponding values in parallel. If no value
is specified for a given var argument, that variable is bound to nil.

The form arguments are executed in order. The result returned by let is the value
or values returned by the last form executed. If no form arguments are specified,
let returns nil.

The special form let. is identical to let except that the variables are bound to
the values sequentially. A variable may thus refer to the value to which a variable
occurring earlier in the variables list has just been bound.

let ({var I (var value)} *) {declaration} * {form} *
let. ({var I (var value)} *) {declaration} * {form} *

[Special Form]

[Special Form]

Remarks: If a declaration is specified for a variable, the initial value of that variable must be
consistent with the declaration.

Examples: > (setq a 'top)
TOP
> (defun foo () a)
FOO
> (let «a 'inside) (b a»

(format t "-S ·S ·S" a b (foo»)
INSIDE TOP TOP
NIL
> (let* «a 'inside) (b a»

(format t II·S ·S ·S" a b (foo»)
INSIDE INSIDE TOP
NIL
> (let «a 'inside) (b a»

(declare (special a»
(format t II·S ·S ·S" a b (foo»)

INSIDE TOP INSIDE
NIL

5-34 Sun Common Lisp Reference Manual

loop

Purpose:

Syntax:

The loop macro is used to perform indefinite iteration.

Each form argument is evaluated in turn. After the last form is evaluated, the
evaluation starts over again with the first. The only way to exit from a loop is by
explicit termination, as by a return, go, or throw.

An implicit block named nil is created by the loop construct. It is thus possible
to return a value from loop by the use of return.

loop {form}* [Macro]

Examples: > (let «i 0»
(loop (incf i) (if (= i 3) (return i»»

3
> (let «i O)(j 0»

(tagbody
(loop (incf j 3) (incf i) (if (= i 3) (go exit»)
exit)

j)
9

See Also: do

dolist

dotimes

return

go

throw

Control Structure 5-35

macrolet

Purpose:

Syntax:

Remarks:

The macrolet special form is used to define macros whose names are meaningful
only locally and to execute a series of forms with these macro definition bindings.
Any number of such local macros may be defined.

The names of macros defined by macrolet have lexical scope; they retain their
local definitions only within the body of the macrolet. Any references within the
body of the macrolet to macros whose names are the same as those defined within
the macrolet are thus references to the local macros instead of to any global
macros of the same names. The scope of these macro definition bindings, however,
includes only the body of macrolet, not the definitions themselves. Within the
macro definitions, local function names that match those being defined refer to
global macros or functions defined outside the macrolet.

The form arguments are executed in order. The result returned by macrolet is
the value or values returned by the last form executed. H no form arguments are
specified, macrolet returns nil.

macrolet ({ (name lambda-list {declaration I documentation} *
{form}*)}*) {form}*

[Special Form]

The macro expansion functions defined by macrolet are defined in the globa.l
environment, not in the lexical environment of the macrolet; they thus do not
have access to items within the lexical scope of the macrolet.

A macrolet local macro definition is identical in form to the macro definition
part of a defmacro. It contains a name, argument list, optional declarations and
documentation string, and a body.

Examples: > (defmacro mlets (x ienvironment env)
(let «form '(baz ,x»)

(macro expand form env»)
MLETS
> (macrolet «baz (z) .(+ ,z ,z») (mlets 5»
10

See Also: :8et

let

defmacro

5-36 Sun Common Lisp Reference Manual

multiple-value-bind

Purpose:

Syntax:

The multiple-value-bind macro is used to create new variable bindings and to
execute a series of forms that use these bindings.

The variable bindings created are lexical bindings unless the appropriate special
declarations are specified. The bindings have lexical scope.

The tJalues-form argument is evaluated first. The tJar arguments are then bound to
the values that it returns. If there are more variables than results, the remaining
variables are bound to nil. If there are more results than variables, the remaining
values are discarded.

The form arguments are executed in order. The value returned by multiple
value-bind is the value or values returned by the last form executed. If no form
arguments are specified, multiple-value-bind returns nil.

multiple-value-bind ({tJar}*) tJalues-form {declaration}* {form}* [Macro]

Remarks: If a declaration is specified for a variable, the value to which that variable is bound
must be consistent with the declaration.

~xamples: > (multiple-value-bind (f r) (floor 130 11) (list f r»
(11 9)

See Also: > let

Control Structure 5-37

multiple-value-call

Purpose:

Syntax:

The multiple-value-call special form applies a function to the values collected
from groups of multiple values. '

The function argument is evaluated first. All of the form arguments are then
evaluated. The values they produce are passed to the function as arguments. The
result of applying the function to these arguments is returned as the result of the
multiple-value-call form.

multiple-value-call function {form} * [Special Form]

~xamples: > (multiple-value-call #'list 1 '/ (values 2 3) '/ (values) '/ (floor 2.5»
(1 / 2 3 / / 2 .6)

5-38 Sun Common Lisp Reference Manual

multiple-value-list

Purpose: The multiple-value-list macro returns as a list the multiple values that are
produced as a result of evaluating a given form.

Syntax: multiple-value-list form

~xamples: > (multiple-value-list (values 1 2 3»
(1 2 3)

See Also: values-list

[Macro]

Control Structure 5-39

mult iple-value-prog 1

Purpose:

Syntax:

The multiple-value-progl special form evaluates a series of forms. The forms are
evaluated in the order in which they are given in the argument list. The multiple
values returned by muItiple-value-progl are the results returned by evaluating
the first of the form arguments.

multiple-value-progl form {form} * [Special Form]

Examples: > (setq foo • (1 2 3»
(1 2 3)

See Also:

> (multiple-value-prog1
(values-list fool
(setq foo nil)
(values-list fool)

1
2
3

progl

5-40 Sun Common Lisp Reference Manual

multiple-value-setq

Purpose:

Syntax:

The macro multiple-vaIue-setq is used to assign values to a list of variables.

The form argument is evaluated first. The values it returns are then assigned to
the corresponding variables of the list.

H there are more variables than results, nil is assigned to the remaining variables.
H there are more results than variables, the remaining values are discarded.

The result of multiple-value-setq is the first value returned by form. H form
returns no values, the result is nil.

multiple-value-setq vars form [Macro]

Remarks: The vars argument is a list of variables.

Examples: > (multiple-value-setq (a b c) (values 1 2»
1
> a
1
> b
2
> c
NIL

See Also: setq

Control Structure 5-41

multiple-values-limit

Purpose: The constant multiple-values-limit defines the upper exclusive bound on the
number of values that any function may return.

The value of multiple-values-limit in Sun Common Lisp is 29 •

Syntax: multiple-values-limit

Examples: > multiple-values-limit
512

5-42 Sun Common Lisp Reference Manual

[Constant]

prog, prog*

Purpose:

Syntax:

The prog macro is used to create a block, new variable bindings, and an implicit
tagbody, and to execute a series of forms that use these items.

The variable bindings created are lexical bindings unless the appropriate special
declarations are specified.

The init arguments are evaluated first, in the order in which they are given. The
var arguments are then bound to the corresponding values in parallel. If no init
value is specified for a given var argument, that variable is bound to nil.

The body of the prog is like a tagbody. It consists of a series of tags and
statements. The tag and statement arguments are processed in the order in
which they occur. The tag arguments are not evaluated; they must be symbols or
integers. The tags serve the purpose of labeling statements. The statement forms
are evaluated. The go special form may be used within a prog body to transfer
control to a statement labeled by a tag. The tags have lexical scope.

A block with the name of nil encloses the prog construct. The return macro may
thus be used to exit from the prog.

The prog. macro is identical to prog except that variables are bound to the initial
values sequentially. A variable may thus refer to the value to which a variable
occurring earlier in the variables list has just been bound.

The prog and prog. macros return nil.

prog ({ var I (var [init])} *) {declaration} * {tag I statement} *

prog. ({var I (var [init])}*) {declaration}* {tag I statement}*

[Macro]

[Macro]

Remarks: If a declaration is specified for a variable, the initial value of that variable must be
consistent with the declaration.

Examples: > (setq a 1)
1
> (prog «a 2) (b a» (return (if (= a b) '= "1=»)
1=
> (prog* «a 2) (b a» (return (if (= a b) '= '1=»)

> (prog () "no-return-value)
NIL

Control Structure 5-43

prog, prog*

See Also: block

let

tagbody

go

return

5-44 Sun Common Lisp Reference Manual

progl

Purpose:

Syntax:

The progl macro evaluates a series of forms. The forms are evaluated in the order
in which they are given in the argument list. The result returned by progl is the
result returned by evaluating the first form argument.

progl first {form} * [Macro]

Remarks: If the first form returns multiple values, only the first of these values is returned
by progl. If the first form returns no values, progl returns nil.

Examples: > (setq fool 1)

See Also:

1
> (progl fool (setq fool nil»
1
> fool
NIL
> (progl (values t t»
T

progn

prog2

multiple-value-prog1

Control Structure 5-45

prog2

Purpose:

Syntax:

The prog2 macro evaluates a series of forms. The forms are evaluated in the order
in which they are given in the argument list. The result returned by prog2 is the
result returned by evaluating the second form argument.

prog2 first second {form} * [Macro]

Remarks: If the second form returns multiple values, only the first of these values is returned
by prog2. If the second form returns no values, prog2 returns nil.

Examples: > (setq foo t)

See Also:

T
> (prog2 nil foo (setq foo nil»
T
> foo
NIL
> (prog2 (cons 'x 'y) (values t t»
T

progn

progl

5-46 Sun Common Lisp Reference Manual

progn

Purpose:

Syntax:

The progn special form evaluates a series of forms. The forms are evaluated in
the order in which they are given in the argument list. The result returned by
progn is the result returned by evaluating the last of the form arguments. If the
last form returns multiple values, those multiple values are returned as the result
of progn. If no form arguments are specified, progn returns nil.

progn {form}* [Special Form]

Examples: > (progn)
NIL
> (progn 1 2 3)
3
> (progn (values
1
2
3
> (setq a 1)

1
> (if a

1 2 3»

(progn (setq a nil) 'true)
(progn (setq a t) 'false»

TRUE

Control Structure 5-47

progv

Purpose:

Syntax:

The progv special form is used to create new dynamic variable bindings and to
execute a series of forms that use those bindings.

The symbols argument specifies a list of dynamic variables. The values argument
specifies a list of values. The symbols and values arguments are evaluated, and
the variables are bound to the corresponding values. If there are more variables
than values, the remaining variables are unbound. If there are more values than
variables, the remaining values are discarded.

The form arguments are executed in order. The value returned by progv is the
value or values returned by the last form executed. If no form arguments are
specified, progv returns nil.

progv symbols values {form} * [Special Form]

Remarks: The previous bindings of the dynamic variables are restored when progv exits.

Examples: > (setq *x* 1)

See Also:

1
> (progv '(*x*) '(2) *x*)
2
> *x*
1
> (let «*x* 3» (progv '(*x*) '(4) (list *x* (symbol-value '*x*»»
(3 4)

progn

5-48 Sun Common Lisp Reference Manual

return, return-from

Purpose:

Syntax:

The return and return-from constructs are used to return from a lexically
enclosing block. Both return and return-from specify the value or values to be
returned from the block.

The name argument of return-from is a symbol; it is not evaluated. It specifies
the lexically enclosing block of the same name from which to return.

The return macro is like return-from except that it causes a return from the
lexically enclosing block whose name is nil. Such implicit blocks are created by
prog and the iteration constructs do, do*, dolist, dotimes, and loop.

return [result]

return-Crom name [result]

[Macro]

[Special Form]

Remarks: If the result argument is not specified, nil is returned.

Examples: > (block foo 1 (return-from foo 2) 3)

See Also:

2
> (let «a 0»

(dotimes (i 10) (incf a) (when (oddp i) (return»)
a)

2
> (defun foo (x)

FOO

(if x (return-from foo -bar»
44)

> (foo nil)
44
> (foo t)
BAR

block

Control Structure 5-49

rotatef

Purpose:

Syntax:

Remarks:

The rotatef macro is used to modify the values of a series of generalized variables
by rotating values from one generalized variable into another.

First the values of all the place arguments are obtained. The location specified by
each place argument is then assigned the value corresponding to the argument that
follows it in the argument list. The location specified by the last place argument is
assigned the original value of the first argument.

The rotatef macro returns nil as its result.

rotatef {place} * [Macro]

The place arguments must be generalized variables acceptable to the macro setf.

The rotatef macro may be used to assign values to lexical as well as to dynamic
variables.

Examples: > (let «n 0)
(x (list 'a 'b 'e 'd 'e 'f 'g»)

(rotatef (nth (inef n) x)
(nth (inef n) x)
(nth (inef n) x»

x)
(A C D B E F G)

See Also: setf

shiftf

5-50 Sun Common Lisp Reference Manual

set

Purpose:

Syntax:

The function set is used to modify the value of a special variable.

It causes the dynamic variable associated with the symbol argument to have the
specified value.

set symbol value [Function]

Examples: > (set • foo 1)
1
> foo
1

See Also: setq

symbol-value

Control Structure 5-51

setf, psetf

Purpose:

Syntax:

Remarks:

The setf macro is used to update a generalized variable. It modifies the location
specified by the place argument to contain new1Jalue.

More than one generalized variable may be updated in a single setf. In this case
the pairs of place and new1Jalue arguments are processed sequentially.

The result returned by setf is the value of the last new1Jalue argument. If no
arguments are given, setf returns nil.

The macro psetf is like setf except that if multiple argument pairs are specified,
the updates are done in parallel. The result returned by psetf is nil.

setf {place new1Jalue} *
psetf {place new1Jalue}*

[Macro]

[Macro]

The macros setf and psetf may be used to assign values to lexical as well as to
dynamic variables.

The place arguments must be generalized variables.

If more than one of the place forms given to psetf evaluates to the same location,
the results are unpredictable.

Examples: > (setq x (CODS 'a 'b) y (list 1 2 3»
(1 2 3)
> (setf (car x) 'x (cadr y) 'foo (cdr x) y (cadr y) 'bar)
BAR
> (setf (third y) 7)
7
> x
(X 1 BAR 7)
> y
(1 BAR 7)

5-52 Sun Common Lisp Reference Manual

setq, psetq

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The setq and psetq constructs are used to assign values to variables.

The special form setq evaluates its form arguments sequentially. The first form
argument is evaluated, and its value is stored in the variable specified by the
first var argument before the next form argument is evaluated. Hence, if a form
references a variable in the argument list whose value has already been modified,
the new value of the variable is used.

The macro psetq is like setq except that the form arguments are all evaluated in
parallel, and the resulting values are stored in parallel in the var arguments.

The result returned by setq is the result returned by evaluating the last of the
form arguments. If this form produces multiple values, only the first value is
returned; if the form produces no values, setq returns nil.

The psetq macro returns nil.

setq {var form} *

psetq {var form}*

[Special Form]

[Macro]

The setq and psetq constructs may be used to assign values to both special and
lexical variables.

> (setq foo 1)
1
> foo
1

setf

set

Control Structure 5-53

shiftf

Purpose:

Syntax:

Remarks:

The shiftf macro is used to modify the values of a series of generalized variables
by shifting values from one generalized variable into another.

First the values of all the place arguments and the value specified by new1Jalue are
obtained. The location specified by each place argument is then assigned the value
corresponding to the argument that follows it in the argument list.

The original value of the first place argument is returned as the result of shiftf.

shiftf {place} + new1Jalue [Macro]

The place arguments must be generalized variables acceptable to the macro setf.

The shiftf macro may be used to assign values to lexical as well as dynamic
variables.

Examples: > (setq x '(1 2 3) Y 'trash)
TRASH
> (shiftf y x (cdr x) '(hi there»
TRASH
> x
(2 3)
> y
(1 HI THERE)

See Also: setf

rotatef

5-54 Sun Common Lisp Reference Manual

tagbody

Purpose:

Syntax:

The tagbody special form provides for control transfers within a body of code by
means of statement labels called tags.

The tagbody consists of a series of tags and statements. The tag and statement
arguments are processed in the order in which they occur. The tag arguments are
not evaluated; they must be symbols or integers. The tags serve the purpose of
labeling statements. The statement forms are evaluated. The go special form may
be used within a tagbody to transfer control to a statement labeled by a tag.

Tags have lexical scope.

The tagbody special form returns nil.

tagbody {tag I statement} * [Special Form]

Remarks: The forms do, do*, dolist, dotimes, prog, and prog* all have implicit tagbodies.

Examples: > (let (val)

15

See Also: go

(tagbody
(setq vall)
(go point-a)
(incf val 16)

point-c
(incf val 04)
(go point-b)
(incf val 32)

point-a
(incf val 02)
(go point-c)
(incf val 64)

point-b
(incf val 08»

val)

Control Structure 5-55

throw

Purpose:

Syntax:

Remarks:

The throw special form is used to cause a nonlocal control transfer.

Both the tag and the result arguments are evaluated. Control is transferred to the
catch construct whose tag is eq to the tag argument. The results of throw are
returned as the results of the catch form.

Catch tags have dynamic scope. If several catch tags match the tag argument of
throw, control is transferred to the most recently occurring catch form.

throw tag result [Special Form]

The throw special form may return multiple values.

The successful execution of the throw form causes the stack to be unwound and
any dynamic variable bindings to be restored to their state as of the point of the
catch. Any intervening unwind-protect code is executed during this process.

There must be a matching tag; otherwise the stack is not unwound and an error is
signaled.

Since catch tags are compared using eq, characters and numbers should not be
used as tags.

Examples: > (catch 'foo
(setq i 0)

See Also:

BAR

(loop (incf i) (when (> i 10) (throw 'foo 'bar»)
i)

catch

unwind-protect

5-56 Sun Common Lisp Reference Manual

typecase

Purpose:

Syntax:

The typecase macro allows the execution of a group of forms to be dependent on
selection by a type match.

The keyform argument is evaluated and matched against the type arguments in
turn. The type arguments must be type specifiers; they are not evaluated. If the
object specified by the keyform argument is an instance of a given type, then the
forms associated with that type are executed in order. If the object is an instance
of more than one such type, only the forms associated with the first of these types
are executed.

The typecase macro returns the value of the last form executed. If no type
matches or the matching type has no associated forms, typecase returns nil.

typecase keyform {(type {form}*)}* [Macro]

Remarks: Either the symbol t or the symbol otherwise may be used as the last type
specifier. If no other type match succeeds, the forms associated with the t or
otherwise are executed.

Examples: > (typecase '(a b)
(integer "integer")

See Also:

(list "list")
(t "otherwise"»

"list"
> (typecase 'a

(integer
(list
(otherwise

"otherwise"

etypecase

ctypecase

case

ecase

cease

cond

"integer")
"list")
"otherwise"»

Control Structure 5-57

unless

Purpose:

Syntax:

Examples:

See Also:

The unless macro allows the execution of a series of forms to be dependent on a
single test form.

If the test argument is non-nil, none of the form arguments are evaluated, and
unless returns nil.

If test is nil, then the form arguments are evaluated in order. The value or
values of the last form argument are returned as the result of unless. If no form
arguments are specified, unless returns nil.

unless test {form}* [Macro]

> (unless nil 1)
1
> (unless t 2)
NIL
> (unless nil)
NIL

when

5-58 Sun Common Lisp Reference Manual

unwind-protect

Purpose:

Syntax:

Remarks:

The unwind-protect special form is used to execute a protected form and to
guarantee that a series of cleanup forms are executed before the unwind-protect
exits.

The unwind-protect special form returns the value or values that result from the
execution of the protected form.

unwind-protect protected-form {cleanup-form}* [Special Form]

The cleanup forms are generally used to ensure that if an exit of any kind causes
the execution of the protected form to be aborted, the unwind-protect construct
is able to perform any necessary actions before it exits.

The cleanup forms are not protected.

Examples: > (defun foo (x)

See Also:

Foa

(setq state 'running)
(unless (numberp x) (throw 'abort 'not-a-number»
(setq state (1+ x»)

> (catch 'abort (foo 1»
2
> state
2
> (catch 'abort (foo 'trash»
NOT-i-NUMBER
> state
RUNNING
> (catch 'abort (unwind-protect (foo 'trash) (setq state 'aborted»)
NOT-i-NUMBER
> state
ABORTED

throw

catch

go

return

return-from

Control Structure 5-59

values

Purpose:

Syntax:

Remarks:

The function values is used to return multiple values. It returns one value for each
of its arguments, in order.

values &:rest args [Function]

If any argument produces more than one value, only the first of these is returned.

If no arguments are specified, values returns no values.

Examples: > (values)
> (values 1 2 3)
1
2
3
> (values (values 1 2 3) 4 5)
1
4
5

5-60 Sun Common Lisp Reference Manual

values-list

Purpose:

Syntax:

The function values-list returns the elements of its list argument as multiple
values.

values-list list [Function]

Examples: > (values-list nil)
> (values-list '(1 2 3»
1
2
3

Control Structure 5-61

when

Purpose:

Syntax:

Examples:

See Also:

The when macro allows the execution of a series of forms to be dependent on a
single test form.

If the test argument is nil, none of the form arguments are evaluated, and when
returns nil.

If test is non-nil, then the form arguments are evaluated in order. The value or
values of the last form argument are returned as the result of when. If no form
arguments are specified, when returns nil.

when test {form}* [Macro]

> (when t 1)
1
> (when nil 2)
NIL
> (when t)
NIL
> (setq foo t)
T
> (when foo (setq foo nil) 3)
3
> (when foo 4)
NIL

unless

5-62 Sun Common Lisp Reference Manual

Chapter 6. Macros

Macros 6-1

Chapter 6. Macros

About Macros ... 6-3
Macro Evaluation .. 6-3
Macro Definition ... 6-3
Lambda Lists .. 6-4
Destructuring Facility ... 6-6
Backquote Facility. 6-6

Categories of Operations ... 6-8
Macro Definition ... 6-8
Macro Expansion ... 6-8

define-macro .. 6-9
defmacro .. 6-10
macro-function ... 6-12
macroexpand, macroexpand-l .. 6-13
macroexpand-hook ... 6-15

6-2 Sun Common Lisp Reference Manual

About Macros

Macros are important tools in constructing programs. Macros enable the user to write
forms that do not obey the usual rules for evaluation. They provide facilities for data
abstraction that are potentially more efficient to use than functions.

A macro is not a function, but rather a functionlike object that returns a Lisp expression
to be evaluated in place of the macro call.

Macros are processed in a special way by the evaluator. When the evaluator encounters a
macro call form, it calls the macro whose name is the first element in this form and passes
to it the rest of the elements of the macro call form as arguments. These arguments are
passed unevaluated to the macro.

Macro Evaluation

The evaluation of the macro is a process known as macro expansion. Its result is an
expression that is to be evaluated in place of the macro call form. The result of the macro
expansion is substituted for the original macro call form. The evaluator evaluates the
results of this macro substitution and returns the results as if they were the results of the
macro call. H the result of the macro expansion is again a macro call form, the entire
macro evaluation process is repeated. The functions macroexpand and macroexpand-l
are used to perform the macro expansion operation.

When a program is compiled, the compiler manages the process of macro expansion.
Macros may thus be used to provide an efficient data abstraction facility like that provided
by functions, but without the run-time overhead involved in macro expansion. When a
program using macros is compiled, the macro definition must precede the first macro use
in the program text. Similarly, when a program is interpreted, all the macros in the body
of the program must be known; otherwise they will be interpreted as unknown functions.

Macro Definition

Macro definition is performed by use of the defmacro facility. The syntax for defining
macros is much like that for function definition.

Defining a macro causes an expansion function for the given macro to be associated with
the macro name in the global environment. The body of the macro expansion function
consists of the series of form arguments specified in the macro definition. When the
macro expansion function is applied to the macro call form, the parameters specified in
the lambda list given in the macro definition are bound to actual argument values, and
the forms in the body of the macro expansion function are executed in the context of
these bindings. The result returned by the macro expansion is the result of the last form
evaluated. H no forms are evaluated, nil is returned.

Macros 6-3

The syntax for macro definitions is the following:

(defmacro name lambda-list {declaration I documentation}* {/orm}*)

lambda-list::= ([&:whole var]

Lambda Lists

{ var}*
[&:environment var]
[&:optional {var I (var [init/orm [supplied-p-parameter]])}*]
[{&:rest I &:body} var]
[&:key {var I ({ var I (keyword var)} [init/orm [supplied-p-parameter]])} *

[&:allow-other-keys]]
[&:aux {var I (var [init/orm])}*])

The lambda list specifies the parameters of the macro expansion function. When the
macro call is processed, the parameters specified in the lambda list are bound to the
actual argument values occurring in the macro call, and the forms in the body of the
lambda expression are executed in the context of these bindings. Unlike the arguments
to functions, however, these arguments are passed unevaluated to the macro expansion
function.

lambda list. It causes the following variable to be bound to the macro call form.

• The specifiers for all required parameters must appear next in the list. If &whole
is not specified, all parameters preceding the first lambda list keyword are required
parameters. Otherwise all parameters following the &whole variable and preceding
the next lambda list keyword are considered to be required parameters. The required
parameters are bound to actual argument values in the order in which they occur.
There must be at least as many actual argument forms as there are required parameters.
If no further lambda list keywords are specified, there must be exactly as many actual
arguments as parameters.

• The &environment lambda list keyword may be used to specify a lexical environment
in which the macro call is to be evaluated. If it is used, it must follow the required
lambda list parameters.

• Any optional parameters must be specified next. They are preceded by the lambda
list keyword &optional. If optional parameters are specified, they are bound in
order to the corresponding remaining values in the argument list. If there are no
remaining arguments at any point in the processing of optional parameters, then any
remaining optional parameter is bound to the value that results from the evaluation of
its associated init/orm, if the latter is given, or to nil, if not. A supplied-p-parameter
variable may be used in conjunction with an init/orm. Its purpose is to indicate

6-4 Sun Common Lisp Reference Manual

whether an actual argument value was supplied. It is bound to true if an actual
argument was supplied; otherwise (if the initform was evaluated), it is bound to nil.

• One rest parameter may be specified next. It is preceded by the &rest lambda list
keyword. If a rest parameter has been specified, it is bound to a list consisting of all
the actual arguments that have not yet been processed. If no arguments remain, the
rest parameter is bound to nil.

• The &body keyword may be used instead of &rest. It performs the same function,
but it also provides information to formatting functions.

• The use of the lambda list keyword &key and keyword parameter specifiers enables
keyword arguments to be used in macro calls. If any keyword parameters are to appear
in the macro call, they must be preceded by &key in the lambda list. These keyword
parameters may be followed by the lambda list keyword &allow-other-keys.

A keyword parameter may be specified in one of three ways. These forms differ in
whether the name for the keyword to be used in the actual argument list is specified
explicitly or implicitly and whether an initial value is to be used if such a keyword
argument is not specified.

If a variable, var, specifies the keyword parameter, the keyword argument to be used
in the argument list consists of a keyword (in the keyword package) with the same
name as var. Thus, for example, &key name in the lambda list corresponds to :name
in the macro call form. If such a keyword does not appear in the argument list, var is
bound to nil.

If the form (var [initform [supplied-p-parameter]]) specifies the keyword parameter,
the keyword argument to be used is specified in the same way as in the simpler case
discussed above. This construct, however, allows the variable to be bound to an initial
value if the keyword is not specified in the argument list. The supplied-p-parameter
may be used to test whether such an argument value was specified.

The form «keyword var) [initform [supplied-p-parameter]]) allows the explicit
specification of the argument list keyword that is associated with var. It also allows the
variable to be bound to an initial value if the keyword is not specified in the argument
list.

There must be an even number of actual keyword arguments. Keyword arguments
are considered to occur in pairs. The first argument in the pair is a keyword; the
second is the value to which the corresponding keyword parameter is to be bound.
The keyword-value pairs may occur in any order in the argument list; they are not
constrained by the order of the keyword parameters in the lambda list. If a given
keyword argument is specified more than once, however, the first keyword-value pair is
used in the binding of the keyword parameter. If a rest parameter has been specified,
the arguments used in processing keyword parameters are the same as those used in
processing the rest parameter.

Macros 6-5

• The &allow-other-keys lambda list keyword is used to specify that the argument list
may contain a keyword that does not correspond to a lambda list keyword parameter.
Otherwise it is an error if such an argument pair occurs unless the argument list
contains a keyword-value pair whose key is :allow-other-keys and whose value is
non-nil. The &rest keyword parameter may be used to access values specified by
means of the &allow-other-keys and :allow-other-keys constructs.

It is an error if there are remaining arguments and neither a rest parameter nor a
keyword parameter has been specified.

• Finally, the &aux lambda list keyword may be used to specify auxiliary variables.
These serve as local variables within the macro expansion function. Auxiliary variables
are not bound to argument list values. An auxiliary variable may be bound within the
lambda expression itself or by specifying a corresponding initform in the lambda list.

Since the lambda list elements are processed in the order in which they occur, any initform
may reference a parameter variable (including a supplied-p-parameter variable) that is
bound earlier in the processing of the lambda list.

When the function exits, the variable bindings in effect before the function invocation are
restored.

Destructuring Facility

The macro destructuring facility provides for a generalization of the lambda list syntax.
The destructuring facility allows a lambda list to appear wherever a parameter name (but
not a list) can appear in a lambda list. When the actual arguments are processed, the
embedded lambda list itself is bound to the form to which such a parameter would have
been bound. This binding is also performed according to the method described above.

The destructuring facility allows for a dotted lambda list that ends with a parameter
name. In this case, the last parameter is treated as if it had been preceded by the &rest
lambda list keyword instead.

Backquote Facility

The backquote (.) mechanism is designed to simplify the writing of macro definitions.
It can be used in the macro body to create a template for the macro expansion. A
list preceded by a back quote provides a list template into which elements are spliced.
The backquote acts just like the quote (.) construct, except that it allows the following
constructs to be used.

6-6 Sun Common Lisp Reference Manual

The comma (t) construct is used in conjunction with the back quote mechanism. If a
comma immediately precedes a form in such a template, that form is evaluated and the
result is spliced into the resulting list at the position where the comma and its associated
form occurred. The comma thus has the effect of "unquoting" the following form.

A comma may also be followed by the at-sign symbol (G). The t G construct specifies that
the evaluation of the following form produces a list of objects. These objects themselves
(not the list) are inserted into the resulting list at the position where the t G and its
associated form occurred.

The t. construct is like the t G construct, except that it may have the side effect of
modifying the list produced by evaluating the associated form.

Any other forms occurring in such a template are not evaluated. They remain at the same
position in the resulting list as they occupy in the template.

The back quote facility is discussed further in the chapter "Input/Output."

Macros 6-7

Categories of Operations

This section groups operations on macros according to functionality.

Macro Definition

defmacro
define-macro

These functions are used to define macros.

Macro Expansion

macro expand
macroexpand-l

macro-function

.macroexpand-hook.

These constructs are used to expand macros.

6-8 Sun Common Lisp Reference Manual

define-macro

Purpose:

Syntax:

Remarks:

The function define-macro is used by defmacro to do the actual defining of a
new macro. It replaces the function cell of the named symbol with the specified
function object.

If the function is currently traced, it remains traced, but with the new definition.

define-macro name function [Function]

The name argument is a symbol.

The function define-macro is an extension to Common Lisp.

Examples: > (define-macro 'foo #'do)
FDD

See Also:

> (foo «i 0 (1+ i») «> i 2) i»
3

defmacro

symbol-function

-redefinition-action-

Macros 6-9

defmacro

Purpose:

Syntax:

Remarks:

The defmacro macro is used for macro definition. It causes an expansion function
for the given macro name to be defined in the global environment.

The name argument of defmacro is a symbol; it is not evaluated. The defmacro
macro causes a global macro expansion function to be associated with the function
cell of the symbol name.

The body of the macro expansion function is specified by the form arguments.
They are executed in order. The value of the last form executed is returned as the
result of executing the macro.

The name of the new macro is returned as the result of defmacro.

defmacro name lambda-list {declaration I documentation} * {form} * [Macro]

The definition of macros and the syntax of lambda lists are discussed in the section
"About Macros."

A documentation string may be attached to the name of the function by use of
the optional documentation argument; the documentation type for this string is
function.

The defmacro macro can be used to redefine a macro or to replace a function
definition with a macro definition. The Common Lisp special forms may not be
redefined.

When defmacro occurs at the top level in a file, it is implicitly wrapped in the
construct (eval-when (eval compile load) ...).

Examples: > (defmacro fo01 (a b) • (+ ,a (* , b 3»)
F001
> (fo01 4 6)
19
> (defmacro fo02 (toptional (a 2 b) (c 3 d) trest x) "(,a ,b ,c ,d ,x»
F002
> (fo02 6)
(6 T 3 NIL NIL)
> (fo02 6 3 8)
(6 T 3 T (8»
> (defmacro fo03 (twhole r a toptional (b 3) trest x tkey c (d a»

• , (, r , a • b ,c ,d ,x»
F003
> (fo03 1 6 :d 8 :c 9 :d 10)
«F003 1 6 :D 8 :C 9 :D 10) 1 6 9 8 (:D 8 :C 9 :D 10»

6-10 Sun Common Lisp Reference Manual

See Also:

defmacro

> (defmaero fo04
(twhole (au treat (p treat q» a toptional (b 3) treat x tkey e (d a»
•• Cau .p .a .b .e .d .x»

FDD4
> (fo04 1 6 :d 8 :e 9 :d 10)
(FDD4 1 1 6 9 8 (:D 8 :C 9 :D 10»

macrolet

Macros 6-11

macro-function

Purpose:

Syntax:

Remarks:

The function macro-function is used to determine whether a given symbol has a
global function definition that is a macro definition. If it does, the macro expansion
function is returned. If the symbol has no global function definition or is not a
macro, macro-function returns nil.

macro-function symbol [Function]

The function macro-function examines global definitions only.

The macro setf can be used with macro-function to replace the global macro
definition associated with a symbol. The function definition argument to setf must
be a function of two arguments, a macro call form and an environment. It should
compute the macro expansion for the call.

Examples: > (defmacro foo (x) • (macro-function 'foo»
FOO

See Also:

> (not (macro-function 'foo»
NIL
> (and (setf (macro-function Ifoo) "equal)

(equal (macro-function Ifoo) "equal»

> (macro let «foo (x) "local"»
(equal (macro-function 'foo) "equal»

T

defmacro

6-12 Sun Common Lisp Reference Manual

macroexpand, macro expand-l

Purpose:

Syntax:

Remarks:

The functions macroexpand and macroexpand-l are used to expand macros.

If the form argument is a macro call, the function macroexpand-l expands the
macro call once. It returns the macro expansion and t as its results. If the form
argument is not a macro call, macroexpand-l returns form and nil as its results.

The function macroexpand is like macroexpand-l except that it causes the
form argument to be expanded until it is no longer a macro call. It returns the
macro expansion and t as its results. If the form argument is not a macro call,
macroexpand returns form and nil as its results.

macroexpand form &optional env

macroexpand-1 form &:optional env

[Function]

[Function]

The env argument specifies a lexical environment. It may be used to specify an
environment in which local macro definitions exist. If it is not specified, the null
lexical environment is used.

ExaIDples: > (defmacro outer ex y) '(inner ,x ,y»
OUTER
> (defmacro inner ex y) '(aa ,x ,y»
INNER
> (defun not-a-macro (x y) x)
NOT-A-MACRO
> (defmacro env-sens (x y &:environment e)

'(macroexpand '(inner ,x ,y) ',e»
ENV-SENS
>. (macroexpand-l • (outer a b»
(INNER A B)
T
> (macroexpand '(outer a b»
(AA A B)
T
> (macroexpand '(not-a-macro a b»
(NOT-A-MACRO A B)
NIL
> (macroexpand-l 'not-a-macro)
NOT-A-MACRO
NIL
> (env-sens a b)
(AA A B)
T

Macros 6-13

macroexpand, macroexpand-l

See Also:

> (macrolet «inner (x y) .(+ .x .y») (env-sens a b»
(+ A B)
T

.macroexpand-hook.

6-14 Sun Common Lisp Reference Manual

macroexpand-hook

Purpose:

Syntax:

The variable .macroexpand-hook. is used to control the macro expansion
process.

When a macro is expanded, the function to which .macroexpand-hook. is
bound is called with three arguments: the macro expansion function, the macro
call form, and the environment in which the expansion is to take place.

.macroexpand-hook. [Variable]

Remarks: The initial value of .macroexpand-hook. is funcall.

Examples: > (defun hook (expander form env)

See Also:

HOOK

(format t "Now expanding: -S-%" form)
(funcall expander form env»

> (defmacro foo (x y) '(I (+ ,x ,y) 2»
FOO
> (macroexpand '(foo 1 2»
(I (+ 1 2) 2)
T
> (let ((*macroexpand-hook* #'hook» (macroexpand '(foo 1 2»)
Now expanding: (FOO 1 2)
(I (+ 1 2) 2)
T

macroexpand

macroexpand-l

funcall

Macros 6-15

6-16 Sun Common Lisp Reference Manual

Chapter 7. The Evaluator

The Evaluator 7-1

Chapter 7. The Evaluator

About the Evaluator .. 7-3
Categories of Operations ... 7-4
*, **, *** ... 7-5
+, ++, +++ .. 7-6
- ... 7-7
/, / /, / / / . 7-8
decache-eval ... 7-9
eval .. 7-10
evalhook, apply hook ... 7-11
evalhook, *applyhook* .. 7-13
grindef .. 7-15
prompt .. 7-16
source-code .. 7-17

7-2 Sun Common Lisp Reference Manual

About the Evaluator

The evaluator executes programs by evaluating forms.

The evaluator is invoked automatically in the top-level read-eval-print loop. This is the
normal interpretive mode of interaction with the system in which the user types in a form,
the form is read by the Lisp reader, it is evaluated by the evaluator, and the resulting
value or values are printed out for the user's inspection. The read-eval-print loop then
automatically re-enters a state in which it is again waiting for the user to enter a form.
The top-level loop also maintains a number of global variables that enable the user to
examine recent forms that have been entered and the results of their evaluation.

The evaluator may also be invoked explicitly by means of the function eval. The expression
(eval form) applies the function eval to the form argument. Because eval is itself a
normal function (and not a special form), the form argument is evaluated before it
is passed to eva!. When eval itself is explicitly invoked, the result of this argument
evaluation is itself evaluated.

Before any form is executed, all the macros in it are expanded. The first time that an
interpreted function is called, it is replaced by a function object; all the macros in the
function body of this function object have been expanded.

The normal action of the evaluator may be modified by means of the variables .evalhook.
and .applyhook. and the functions evalhook and applyhook. These allow the user to
specify evaluation functions that may be useful for special purposes, such as debugging.

The Evaluator 7-3

Categories of Operations

These functions and variables are used in evaluation.

* applyhook

** *applyhook*

*** decache-eval

+ eval

++ evalhook

+++ * evalhook *
grindef

I *prompt*
II source-co de

III

7-4 Sun Common Lisp Reference Manual

*, **, ***

Purpose:

Syntax:

Remarks:

The global variables *, **, and *** are maintained by the top-level read-eval-print
loop to save the values of results that were printed at the end of the loop.

The variable * is bound to the last result printed, the variable * * is bound to the
previous value of *, and the variable *** is bound to the previous value of **.

*
**

[Variable]

[Variable]

[Variable]

If more than one value is produced, * is bound to the first value only. If no value
is produced, * is bound to nil.

The values of these variables are not updated when the evaluation of a form is
aborted.

Examples: > 3
3
> "two"
"two"
> (values 'star "second value not retained by *")
STAR
"second value not retained by *"
> (format t "* => -S-%** => -S-%*** => -S-%" * ** ***)
* => STAR
** => "two"
*** => 3
NIL

See Also: I
II
III

The Evaluator 7-5

+,++,+++

Purpose:

Syntax:

The global variables +, ++, and +++ are maintained by the top-level
read-eval-print loop to save forms that were recently evaluated.

The variable + is bound to the last form that was evaluated, the variable ++ is
bound to the previous value of +, and the variable +++ is bound to the previous
value of ++.

+
++
+++

[Variable]

[Variable]

[Variable]

Examples: > (third' (1 2 3»

See Also:

3
> (second '(1 2 3»
2
> (first '(1 2 3»
1
> (format t "+ =>-S-%++ => -S-%+++ => -S-%" + ++ +++)
+ =>(FIRST (QUOTE (1 2 3»)
++ => (SECOND (QUOTE (1 2 3»)
+++ => (THIRD (QUOTE (1 2 3»)
NIL

7-6 Sun Common Lisp Reference Manual

Purpose: The variable - is bound to the form that is currently being evaluated by the
read-eval-print loop.

Syntax: [Variable]

Examples: > (format t 11- => -8-%" -)
- => (FORMAT T 11- => -8-%" -)
NIL

See Also: +
++
+++

The Evaluator 7-7

I, II, III

Purpose:

Syntax:

The global variables I) I I) and I I I are maintained by the top-level read-eval-print
loop to save the values of results that were printed at the end of the loop.

The variable I is bound to a list of the values that were last printed, the variable
I I is bound to the previous value of I) and the variable I I I is bound to the
previous value of I I.

I
II
III

[Variable]

[Variable]

[Variable]

Rem.arks: The values of these variables are not updated when the evaluation of a form is
aborted.

Examples: > (values 1 2 3)
1
2
3
> (floor 300/14 23)
o
160/7
> "singleton"
"singleton"
> (format t "I => -S-'/.II => -S-'/.III => -S-'/." I II III)
I => ("singleton")
II => (0 160/7)
III => (1 2 3)
NIL

See Also: *

**

7-8 Sun Common Lisp Reference Manual

decache-eval

Purpose:

Syntax:

Remarks:

The function decache-eval forces the re-expansion of all function bodies when
they are next executed.

decache-eval [Function]

The function decache-evaI should normally be used only in exceptional situations
or in the debugging of macros.

The first time that an interpreted function is called, it is replaced by a function
object; all the macros in the function body of this function object have been
expanded. After a macro has been redefined or a function has been redefined as a
macro, the re-expansion of the function body will occur automatically when the
body of the function is next entered. The function decache-eval need not be
invoked in this situation.

Redefinition of a function while that function is running may cause unpredictable
results.

The function decache-eval is an extension to Common Lisp.

Examples: > (defvar *expand-counter* 0)
EXPAND-COUNTER
> (defmacro return-counter () (incf *expand-counter*»
RETURN-COUNTER
> (defun use-return-counter () (return-counter»
USE-RETURN-COUNTER
> *expand-counter*
1
> (use-return-counter)
2
> *expand-counter*
2
> (use-return-counter)
2
> (decache-eval)
T
> *expand-counter*
2
> (use-return-counter)
3
> (use-return-counter)
3

See Also: eval

The Evaluator 7-9

eval

Purpose:

Syntax:

The function eval evaluates its form argument and returns the result.

The evaluation takes place in the current dynamic environment and a null lexical
environment.

eval form [Function]

Remarks: The function eval handles its arguments in the normal way. That is, the argument
is evaluated before it is passed to the function eval. Two levels of evaluation thus
take place.

Examples: > (setq form '(1+ a) a 999)
999
> (eval form)
1000
> (eval 'form)
(1+ A)
> {let «a '(this would break if eval used local value») (eval form»
1000

7-10 Sun Common Lisp Reference Manual

evalhook, applyhook

Purpose:

Syntax:

The functions evalhook and applyhook rebind the variables .evalhook.
and .applyhook. for the course of the execution of one form or one function
respecti vely.

The function evalhook temporarily rebinds the .evalhook. variable to the
etJalhookfn function and the .applyhook. variable to the applyhookfn function
and then evaluates the specified form.

The function applyhook operates similarly. It temporarily rebinds the
.evalhook. variable to the etJalhookfn function and the .applyhook. variable to
the applyhookfn function and then applies the function argument to the argument
list specified by arg8.

Both the evalhook and applyhook functions rebind the .evalhook. and
.applyhook. variables for the evaluation of the top-level form or function only
and not for the evaluation of subforms.

The optional entJ argument may be used to specify the lexical environment in
which the evaluation is to occur. H it is nil or not specified, the null lexical
environment is used.

evalhook form etJalhookfn applyhookfn "optional entJ

applyhook function arg8 etJalhookfn applyhookfn ioptional entJ

[Function]

[Function]

Examples: > (defvar *foo*)
FOO
> (defun hookl (x)

(let «*evalhook* "eval-hook-function»
(eval x»)

HOOKl
> (defun eval-hook-function (form ioptional env)

(setq *foo* form)
(evalhook form ,'eval-hook-function nil env»

EVAL-HOOK-FUNCTION
> (defun hook2 (x)

(let «*applyhook* "apply-hook-function»
(eval x»)

HOOK2
> (defun apply-hook-function (fun args ioptional env)

(setq *foo* (car args»)
APPLY-HOOK-FUNCTION

The Evaluator 7-11

evalhook, applyhook

> (let «*foo* nil» (hook1 t) *foo*)
(QUOTE T)
> (let «*£00* nil» (hook2 '(car (cons t 2») *£00*)
(CAR (CONS T 2»

See Also: eval

.evalhook •

• applyhook.

7-12 Sun Common Lisp Reference Manual

Purpose:

Syntax:

Remarks:

The global variables .evalhook. and .applyhook. are used to modify the
behavior of eval.

If the values of .evalhook. and .applyhook. are nil, eval has its usual behavior.
By rebinding .evalhook. or .applyhook., users can replace the evaluator with
their own functions for evaluating forms and functions.

The .evalhook. variable may be rebound to a function of two arguments: a form
and an environment. When any form is to be evaluated, this hook function is
invoked instead of eval to evaluate the form. The form to be evaluated is passed
to the hook function without any prior evaluation. The results of executing the
hook function are returned as if they were the results of having executed evaI.

The .applyhook. variable may be rebound to a function of three arguments:
a function, a list of arguments, and an environment. The applyhook function is
invoked whenever a function is to be applied to arguments. The results of executing
the hook function are returned as if they were the results of having applied the
function to its arguments in the usual way.

Whenever either of the hook functions is itself invoked, the values of both
.evalhook. and .applyhook. are nil. The functions specified by the hooks are
thus invoked in the normal way.

[Variable]

[Variable]

An environment argument may be used to specify the lexical environment in which
the evaluation is to occur. If it is nil or not specified, the null lexical environment
is used.

The hook function is only relevant to interpreted calls to functions.

If there is a throw back to the top level, both .evalhook. and .applyhook. are
automatically reset to nil.

Examples: > (defvar *last-form*)
LAST-FORM
> (defun ehook (form toptional env)

(setq *last-form* form)
(eval form»

EHOOK
> (let «*evalhook* #'ehook» (+ 1 2 3»
6

The Evaluator 7-13

> *laat-form*
(+ 1 2 3)
> (defun ahook (f arga ioptional env) (cdr arga»
ABOOK
> (let «*applyhook* #'ahook» (+ 1 2 3»
(2 3)

See Also: eval

evalhook

applyhook

7-14 Sun Common Lisp Reference Manual

grindef

Purpose:

Syntax:

Remarks:

The grindef macro pretty-prints the source code associated with the name of an
interpreted function. The macro grindef returns no values.

grindef .trest function-name [Macro]

The function-name argument is not evaluated.

The macro grindef is an extension to Common Lisp.

Examples: > (defun grist (x y)
(let ((a 1)(b 2)(e 3»(+ x a be»)

GRIST
> (grindef grist)

(DEFUN GRIST
(X Y)

(LET ((A 1)
(B 2)
(e 3»

(+ X A Be»)

The Evaluator 7-15

Purpose: The global variable .prompt. is used to specify the string to be used as a prompt
in the top-level read-eval-print loop. Initially, .prompt. is unbound and the
default prompt string (>) is used.

Syntax: .prompt.

Remarks: The variable .prompt. is an extension to Common Lisp.

Examples: > (setq *prompt* "at your service! " dummy nil)
NIL
at your service! 999
999
at your service! (makunbound '*prompt*)
PROMPT
> 999
999

7-16 Sun Common Lisp Reference Manual

[Variable]

source-code

Purpose:

Syntax:

The function source-code returns the source code of an interpreted function.

The function argument may be a function object or a symbol. If the argument
is an interpreted function or a symbol that has a function definition that is an
interpreted function, the source code of the function is returned. Otherwise
source-code returns nil.

source-co de function [Function]

Remarks: The function source-code is an extension to Common Lisp.

Examples: > (source-code , ' car)
NIL
> (source-code "(lambda (x) (1+ x»)
(LAMBDA (X) (1+ X»
> (de£un ink (x) (1+ x»
INK
> (source-code "ink)
(NAMED-LAMBDA INK (X) (BLOCK INK (1+ X»)

The Evaluator 7-17

7-18 Sun Common Lisp Reference Manual

Chapter 8. Declarations

Declarations 8-1

Chapter 8. Declarations

About Declarations 8-3
Syntax for Declaration Specifiers .. 8-3
Types of Declarations ... 8-3

Categories of Operations ... 8-5
declare ... 8-6
locally ... 8-7
proclaim .. 8-8
the .. 8-9

8-2 Sun Common Lisp Reference Manual

About Declarations

DeclaratioDs are used to affect the status of variable bindings, to provide advice to the
compiler, and to add documentation to a program.

With the exception of special declarations, declarations are optional and are used as
advice to the compiler. The meaning of a correct program is not affected by declarations
other than special declarations.

The use of declarations, however, may have a significant impact on the efficiency of
compiled code. The user is referred to the Sun Common Lisp User's Guide for more
information about compiled code.

The proclaim function is used to make global declarations. Such global declarations are
also called proclamatioDs. The declare special form is used for local declarations within
other Common Lisp forms. Unless explicitly noted, the term "declaration" is used to refer
to both declarations and proclamations.

Syntax for Declaration Specifiers

decl-spec::= (special {var}*)

I (type type-specifier {var} *)
I (ftype type-specifier {function-name }*)
I (function function-name ({ type-specifier}*) {type-specifier}*)

I (inline {function-name}*)

I (notinline {function-name}*)

I (ignore {var}*)

I (optimize {quality value} *)
I (declaration {declaration-name}*)

quality::= speed I space I safety I compilation-speed

value::= 0 I 1 I 2 I 3

Types of Declarations

A special declaration specifies that the given variables are all special variables. References
to the variables thus refer to the dynamic binding of the variables. If the declare special
form is used to make a special declaration, the declaration observes the rules of lexical
scope. If, however, a special proclamation is made, all bindings of variables with the
given name are special.

Declarations 8-3

A type declaration asserts that the given variables will only have values of the specified
type. A short form of this declaration, (type-specifier {var}*) , may be used if the type
specifier is one of the atomic types listed in Figure 3-1. The type declaration applies only
to those variables whose bindings are established by the form in which the declaration
occurs. Type proclamations take effect only for special bindings of such variables. The
type declaration is used to enable the compiler to produce more efficient code.

An ftype declaration is used to specify that a series of functions are of a given function
type. This means that whenever the arguments of these functions are of the indicated
types, the results of the functions will also be of the types specified in the ftype declaration.
A function declaration is equivalent to an ftype declaration of the form (ftype (function
arglist (values result-typel result-type! ...) name)). This abbreviated form is provided
for convenience. An ftype or function declaration obeys the rules of lexical scoping. The
ftype and function declarations are used to enable the compiler to produce more efficient
code.

An inline declaration specifies that it is desirable that the code for a given function be
compiled in-line, rather than as a function call. An inline declaration obeys the rules
of lexical scoping. A notinline declaration specifies that the code for the given function
is not to be compiled in-line, but rather as a function call. The inline and notinline
declaration types apply to all occurrences of the specified function in the body of the form
in which the declaration occurs. Both inline and notinline declarations are ignored by
the interpreter.

An ignore declaration applies only to those variables whose bindings are established by
the form in which the declaration occurs. An ignore declaration prevents the compiler
from issuing a warning if any of the given variables are not referenced in the body of code.

An optiInize declaration provides advice to the compiler about what trade-offs should be
made in optimizing code. There are four optimization classes: speed, safety, space, and
compilation-speed. Each class may be assigned an integer value between 0 and 3. This
value indicates the priority assigned to that type of optimization; the highest priority is 3,
the lowest is o. In Sun Common Lisp, the default values are speed 3, safety 1, space
0, and compilation-speed o. An optimize declaration applies to all of the code in the
body of the form in which it occurs.

A declaration proclamation specifies that the given declaration names are not names of
standard declarations, although they may be used as such. A declaration proclamation
advises the compiler that warnings are not to be issued if the given names are used as
declaration specifiers. The declaration declaration specifier may be used in proclamations
only.

8-4 Sun Common Lisp Reference Manual

Categories of Operations

These constructs are used to specify declarations.

declare
proclaim

locally
the

Declarations 8-5

declare

Purpose:

Syntax:

Remarks:

The declare special form may be used to make declarations within certain forms.
Declarations may occur in lambda expressions and in the following forms:

defmacro
defsetf
deftype
defun
do
do.
do-alI-symbols
do-external-symbols

declare {decl-spec} *

do-symbols
doUst
dotimes
:Ret
labels
let
let.
locally

macrolet
multiple-value-bind
prog
prog.
with-open-stream
with-open-file
with-ou tput-to-s tring
with-input-from-string

[Special Form]

Declarations may only occur where specified by the syntax of these forms.

Macro calls may expand into declarations as long as this syntax is observed.

The declaration specifier argument is not evaluated.

Examples: > (defun foo (y) ;this y is regarded as special

See Also:

Faa

(declare (special y»
(let «y t» ;this y is regarded as lexical

(list y
(locally (declare (special y» y»» ;this y refers to the

;special binding of y

> (foo nil)
(T NIL)

proclaim

8-6 Sun Common Lisp Reference Manual

locally

Purpose:

Syntax:

The locally macro is used to make local declarations that affect only the form
arguments in its body.

locally {declaration} * {form} * [Macro]

Examples: > (defun foo (y) ;this y is regarded as special

FOO

(declare (special y»
(let «y t» ;this y is regarded as lexical

(list y
(locally (declare (special y» y»» ;this y refers to the

;special binding of y

> (foo nil)
(T NIL)

Declarations 8-7

proclaim

Purpose:

Syntax:

Remarks:

The proclaim function is used to make a global declaration or proclamation.

A proclamation whose declaration specifier declares a variable to be special causes
all occurrences of that variable name to be special references.

proclaim decl-spec [Function}

Although the effect of the proclamation is global, it may be overridden by a local
declaration.

Type proclamations take effect only for special bindings of variables.

The argument of proclaim is evaluated. It may therefore be a computed
declaration specifier.

ExaHlples: > (proclaim • (special prosp»

See Also:

T
> (setq prosp 1 reg 1)
1
> (let «prosp 2) (reg 2»

(set ·prosp 3) (set ·reg 3)
(list prosp reg»

(3 2)
> (list prosp reg)
(1 3)

declare

defvar

defparameter

8-8 Sun Common Lisp Reference Manual

;the binding of prosp is special
;due to the preceding proclamation.
;whereas the variable reg is lexical

the

Purpose:

Syntax:

Remarks:

The the special form is used to specify that the value produced by a form will be
of a certain type.

The the special form returns the value or values that result from the evaluation of
the form argument.

the value-type form [Special Form]

The value-type argument is a type specifier; it is not evaluated.

The macro setf may be used with the type declarations. In this case the
declaration is transferred to the form that specifies the new value. The resulting
setf form is then analyzed.

The form the is mainly used by the compiler to produce more efficient code.

Examples: > (the list • (a b»
(A B)
> (the (values integer list) (values 5 '(a b»)
5
(A B)
> (let «i 100»

(declare (fixnum i»
(the fixnum (1+ i»)

101

Declarations 8-9

8-10 Sun Common Lisp Reference Manual

Chapter 9. Predicates

Predicates 9-1

Chapter 9. Predicates

About Predicates ... 9-3
Categories of Operations ... 9-4

Equality Predicates ... 9-4
Logical Constants .. 9-4
Logical Operators .. 9-4

and .. 9-5
eq ... 9-6
eql .. 9-7
equal .. 9-8
equalp ... 9-9
nil ... 9-10
not ... 9-11
or .. 9-12
t ... 9-13

9-2 Sun Common Lisp Reference Manual

About Predicates

Predicates are functions that test for some condition involving their arguments. They
return nil if the condition is false and some non-nil value if the condition is true. The
symbol t is used as the standard true value if no more specific non-nil value is available.
The values of t and nil cannot be modified.

A predicate is said to be true of an object if it returns a non-nil value and false if it returns
nil.

Constructs that test for logical values consider any non-nil value to be true; only nil is
considered to be false.

This chapter discusses logical predicates and constants and the predicates that test for the
equality of two objects. Data type predicates are discussed in the chapters that follow.

Predicates 9-3

Categories of Operations

These constructs are used in logical operations.

Equality Predicates

eq
eql

equal
equalp

The predicates eq, eql, equal, equalp provide a range of equality tests, from the
most specific (eq) to the most general (equalp). Any objects that satisfy one of
the equality tests also satisfy any such equality test that is more general.

Logical Constants

t

These constants specify logical values.

Logical Operators

and
or

These macros perform logical operations.

9-4 Sun Common Lisp Reference Manual

nil

not

and

Purpose:

Syntax:

The macro and evaluates each of its arguments in turn. As soon as any form
evaluates to nil, and returns nil without evaluating the remaining forms. If all
forms but the last evaluate to non-nil values, and returns the results produced by
evaluating the last of the forms.

and {form}* [Macro]

Remarks: The result of evaluating the expression (and) is t.

Examples: > (setq fool 1 fo02 1 fo03 1)
1
> (and (incf fool) (incf fo02) (incf fo03»
2
> (and Ceql 2 fool) Ceql 2 fo02) Ceql 2 fo03»
T
> (decf fo03)
1
> (and Cdecf fool) Cdecf fo02) (eq 'foo 'nil) (decf fo03»
NIL
> (and (eql fool fo02) (eql fo02 fo03»
T
> (and)
T

See Also: or

Predicates 9-5

eq

Purpose: The predicate eq is true of two objects if they are both the same object, that is, if
they both occupy the same memory locations; otherwise it is false.

Syntax: eq z '!J [Function]

Remarks: Objects that are printed the same mayor may not be eq. Symbols having the same
print name are usually eq because of the use of the function intern. Numbers
having the same value, however, are often not eq.

Examples: > (eq 3 3.0)
NIL
> (eq (cons 'a 'b) (cons 'a 'b»
NIL
> (eq "Foo" (copy-seq "Foo"»
NIL

See Also: eql

equal

equalp

9-6 Sun Common Lisp Reference Manual

eqI

Purpose:

Syntax:

Remarks:

The predicate eql is true of two objects if they are eq, if they are both numbers
of the same type and the same value, or if they are both character objects that
represent the same character; otherwise it is false.

eql z 11 [Function]

The predicate eql may not be true of floating-point numbers even when they
represent the same value. The predicate = should be used instead when comparing
mathematical values.

Two complex numbers are eql if both their real and imaginary parts are eql.

Examples: > (eql 3 3.0)
NIL
> (eql (cons 'a 'b) (cons 'a 'b»
NIL

See Also: eq

equal

equalp

Predicates 9-7

equal

Purpose:

Syntax:

Remarks:

Examples:

The predicate equal is true of two objects if they are symbols that are eq, if they
are numbers that are eql, or if they are character objects that are eql.

Objects that have components are equal if they are both of the same type and if
the corresponding components of each are equal.

Arrays other than strings and bit-vectors are equal only if they are eq. Strings
and bit-vectors are compared up to the limits specified by fill pointers (if any).
They are equal if and only if the fill pointers are = and if the corresponding
elements of each are equal. Character case differences in strings are observed by
equal.

Pathnames that are printed the same are equal.

equal x 'Y [Function]

The predicate equal may fail to terminate if its arguments are circular structures.

> (equal 3.0 3.0)
T
> (equal (cons 'a 'b) (cons 'a 'b»
T
> (equal "Foo" "Foo")
3
> (equal "Foo" "foo")
NIL

See Also: eq

eql

equalp

string=

string-equal

char=

char-equal

tree-equal

9-8 Sun Common Lisp Reference Manual

equalp

Purpose:

Syntax:

Remarks:

The predicate equalp is true of two objects if they are equal, if they are characters
that are char-equal, or if they are numbers that are =. Objects that have
components are equalp if they are both of the same type and if the corresponding
elements of each are equalp.

Two arrays are equalp if and only if they have the same number of dimensions,
the dimensions are of the same length, and the corresponding elements of each are
equalp. If, however, either array has a fill pointer, then the arrays are compared
only up to the limits specified by the fill pointers. They are equalp if and only if
the fill pointers are = and the corresponding elements of each are equalp.

equalp z 'Y [Function]

The predicate equalp ignores case differences when comparing character or string
objects.

The predicate equalp may fail to terminate if its arguments are circular structures.

Examples: > (equalp 3.0 3.0)
T
> (equalp "Faa" "faa")
T

See Also: eq

eql

equal

string=

string-equal

char=

char-equal

Predicates 9-9

nil

Purpose: The value of the constant nil is nil. The constant nil represents both the logical
false value and the empty list. It is also written as o.

Syntax: nil

Remarks: It is not possible to modify the value of nil.

Examples: > nil
NIL

See Also: t

9-10 Sun Common Lisp Reference Manual

[Constant]

not

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function not returns t if its argument is nil; otherwise it returns nil.

not x [Function]

The result of applying not to an object is the same as that of using null. The
function not is intended to be used in inverting a logical value, whereas null is
intended to be used in testing for an empty list.

> (not nil)
T
> {not (integerp ·sss»
T
> {not (integerp 1»
NIL

null

Predicates 9-11

or

Purpose: The macro or evaluates each of its arguments in turn . .A13 soon as any form
evaluates to a non-nil value, or returns that value without evaluating the
remaining forms. If all forms but the last evaluate to nil, or returns the results
produced by evaluating that form.

Syntax: or {form}*

Remarks: The result of evaluating the expression (or) is nil.

Examples: > (or)
NIL
> (setq fool 1 fo02 1 fo03 1)
1
> (or nil nil fool (setq fo02 nil»
1
> (eq fo02 nil)
NIL
> (or (incf fool) (incf fo02) (incf fo03»
2
> fool
2
> fo02
1
> fo03
1

See Also: and

9-12 Sun Common Lisp Reference Manual

[Macro]

t

Purpose: The value of the constant t is t.

Syntax: t

Remarks: It is not possible to modify the value of t.

Examples: > t
T

See Also: nil

[Constant]

Predicates 9-13

9-14 Sun Common Lisp Reference Manual

Chapter 10. Symbols

Symbols 10-1

Chapter 10. Symbols

About Symbols ... 10-3
Categories of Operations. 10-4

Data Type Predicates . 10-4
Functions on Property Lists ... 10-4
Functions on Package Cells and Print Names 10-4
Creating Symbols ... 10-4

copy-symbol .. 10-5
gensym. 10-6
gentemp ... 10-7
get ... 10-8
getf, get-properties .. 10-9
keywordp . 10-10
make-symbol .. 10-11
remf ... 10-12
remprop . 10-13
symbol-name .. 10-14
symbol-package . 10-15
symbol-plist ... 10-16
symbolp .. 10-17

10-2 Sun Common Lisp Reference Manual

About Symbols

Symbols are data objects with five components: a print name, a value cell, a function
cell, a property list, and a package cell.

The print name is a string that is used to identify and locate the symbol. Symbol names
are unique within a package.

The value cell is the cell that holds the current value of the dynamic variable associated
with the symbol. When a new symbol is created, the contents of this cell are normally
undefined, and the variable is said to be unbound. An error occurs if such an unbound
variable is accessed. A value may be associated with this cell by assignment functions
or by constructs that establish new variable bindings. Constructs for accessing the value
cell and for binding and unbinding a symbol are discussed in the chapters "Program
Structure" and "Control Structure."

The function cell contains the global function definition associated with the symbol.
When a new symbol is created, the contents of this cell are also normally undefined.
Accessing it in this state causes an error. A value may be associated with the function cell
through the various function definition constructs. Constructs for accessing and modifying
the function cell of a symbol are discussed in the chapters "Program Structure" and
"Control Structure."

A property list allows an extensible set of named components to be associated with
a symbol. A component may be any Lisp object. Each successive two elements of the
property list constitute an entry. The first element of an entry is the indicator, or
property name, and the second element is the property value. Indicators within the same
property list are unique. When a symbol is created, its property list is empty.

The package cell refers to a package object. A package is a Common Lisp object that
specifies a correspondence between print name strings and symbols. It is used to locate a
symbol. A symbol is owned by only one package. The package that owns the symbol is
called the symbol's home package. The package cell of the symbol specifies the symbol's
home package. H a symbol is owned by a package, it is said to be an interned symbol.
Symbols not owned by any package are uninterned symbols. The package cell of an
uninterned symbol is nil. An uninterned symbol is normally printed as #: followed by its
print name. Packages are discussed in the chapter "Packages."

When a symbol identifier is read by the Lisp reader, an interned symbol is normally
created automatically. IT a symbol with this name is not already accessible in the current
package, a new one is created whose print name corresponds to the identifier. If such a
symbol identifier contains lowercase characters, the Lisp reader converts them to uppercase
unless they are preceded by the escape character \ or enclosed by the I multiple escape
characters.

Symbols 10-3

Categories of Operations

This section groups operations on symbols according to functionality.

Data Type Predicates

symbolp keywordp

These predicates determine whether an object is a symbol.

Functions on Property Lists

get
getf
get-properties

remf
remprop
symbol-plist

These functions may be used to access and a.lter a. symbol's property listo

Functions on Package Cells and Print Names

symbol-name symbol-package

These functions may be used to access package cells and print names.

Creating Symbols

copy-symbol
make-symbol

gensym
gentemp

These functions provide for the creation of uninterned· and interned symbols.

10-4 Sun Common Lisp Reference Manual

copy-symbol

Purpose:

Syntax:

The function copy-symbol creates and returns a new uninterned symbol whose
print name is the same as that of a given symbol.

If the copy-props argument is non-nil, the contents of the new symbol's value
and function cells and its property list are copied from symbol. IT the copy-props
argument is nil, the contents of the symbol's value and function cells are undefined,
and the symbol's property list is empty.

copy-symbol symbol ct:optional copy-props [Function]

Examples: > (setq *symbol* t)

See Also:

T
> (symbol-package (copy-symbol *symbol*»
NIL
> (boundp (copy-symbol *symbol*»
NIL
> (boundp (copy-symbol *symbol* t»
T

make-symbol

Symbols 10-5

gensym

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function gensym creates ~nd returns a new uninterned symbol. The print
name of the symbol consists of a prefix followed by a positive decimal integer.

gensym I:optional x [Function]

The optional argument may be a string or a positive integer. If the optional
argument is not specified, the prefix for the symbol's print name is G, and the
number is a count value maintained by gensym. If a string is specified, gensym
uses that string as a prefix for the current and future calls. If a positive integer
value is specified, the internal counter of gensym is reset to that value.

> (symbol-package (gensym»
NIL
> (symbol-name (gensym 99»
"G99"
> (symbol-name (gensym "FoO"»
"Fo0100"
> (symbol-name (gensym»
"Fo010l"
> (symbol-name (gensym 2»
iiFo02 ii

> (symbol-name (gensym "Gl"»
"G13"

gentemp

10-6 Sun Common Lisp Reference Manual

gentemp

Purpose:

Syntax:

Remarks:

The function gentemp creates and returns a new symbol.

The symbol created is interned in the package package. If the package argument is
not specified, the symbol is interned in the current package. It is guaranteed that
the symbol created will be unique within the package.

gentemp ioptional prefix package [Function]

The name of the symbol is prefixed by the string specified by the prefix argument.
If the prefix argument is not specified, the name is prefixed by T followed by a
nonnegative integer value. This number is a counter value maintained by gentemp.

Any prefix specified is not retained across separate calls to gentemp.

Examples: > (symbol-name (gentemp»
"TO"

See Also:

> (find-symbol "TO")
TO
: INTERNAL
> (symbol-name (gentemp "likely-unique" (find-package 'lisp»)
"likely-uniqueO"
> (find-symbol "likely-uniqueO")
NIL
NIL
> (find-symbol "likely-uniqueO" (find-package 'lisp»
LISP:: /likely-uniqueO/
: INTERNAL

gensym

Symbols 10-7

get

Purpose:

Syntax:

The function get searches a symbol's property list for an indicator identical (eq)
to its indicator argument. H one is found, the value associated with it is returned.
H no such indicator is found and the default argument is specified, the default
value is returned; otherwise get returns nil.

get symbol indicator i:optional default [Function]

Remarks: The macro setf may be used with get to replace the value associated with a
property name or to insert a new property-value pair.

Examples: > (setq *symbol* (gensym»
#:G2
> (setq *indicator* (gensym»
#:G3
> (setq *value* (gensym»
#:G4
> (get *symbol* *indicator*)
NIL
> (get *symbol* *indicator* 'foo)
FOO
> (setf (get *symbol* *indicator*) *value*)
#:G4
> (eq (get *symbol* *indicator* 'fool *value*)
T

See Also: getf

symbol-plist

10-8 Sun Common Lisp Reference Manual

getf, get-properties

Purpose:

Syntax:

The functions getf and get-properties are used to access property list entries.

The function getf searches the property list stored in place. It returns the property
value associated with the indicator that is identical (eq) to the indicator argument.
If the given indicator is not found and a default value is specified, then default is
returned; otherwise getf returns nil.

The function get-properties is like getf except that its second argument is a list
of indicators, and it returns three values. It searches the property list for the first
entry whose indicator is identical (eq) to one of the indicators in the indicator
list. If such an entry is found, the first two values returned are the indicator and
its associated property value, and the third value is the tail of the sublist of the
property list whose car is the indicator. If no such entry is found, all three values
are nil.

getf place indicator &:optional default

get-properties place indicator-list

[Function]

[Function]

Remarks: If the place argument is a generalized variable acceptable to the macro setf, then
setf may be used with the function getf to replace the value associated with an
indicator or to create a new entry (indicator and property value).

Examples: > (setq x (cons 0 0»
(NIL)
> (setq *indicator-list* • (prop I prop2»
(PROPI PROP2)
> (getf (car x) 'propl)
NIL
> (setf (getf (car x) 'propl) 'vall)
VALl
> (eq (getf (car x) 'propl) 'vall)
T
> (get-properties (car x) *indicator-list*)
PROPI
VALl
(PROPI VALl)

See Also: get

Symbols 10-9

keywordp

Purpose: The predicate keywordp is true if its argument is a symbol and if that symbol
belongs to the keyword package; otherwise it is false.

Syntax: keywordp object

Remarks: A keyword is written with a leading colon.

A keyword is a constant and evaluates to itself.

Examples: > (keywordp : optional)
T
> (keywordp ':optional)
T
> (keywordp '(:optional»
NIL
> (keywordp 'optional)
NIL

10-10 Sun Common Lisp Reference Manual

[Function]

make-symbol

Purpose:

Syntax:

The function make-symbol creates and returns a new uninterned symbol whose
print name is the string print-name. The contents of the symbol's value and
function cells are undefined, and the symbol's property list is empty.

make-symbol print-name [Function]

Examples: > (make-symbol "foo")
#: Ifool

See Also:

> (symbol-name (make-symbol "bar"»
"bar"
> (find-symbol (symbol-name (make-symbol "baz"»)
NIL
NIL

copy-symbol

Symbols 10-11

remf

Purpose:

Syntax:

The macro remf is used to remove an entry from a property list. It removes from
the property list found in place both the property whose indicator is identical (eq)
to the indicator argument and its associated property value. The function remf
returns a non-nil value if the property was found; otherwise it returns nil.

remf place indicator [Macro]

Remarks: The place argument must be a generalized variable acceptable to the macro setf.

Examples: > (setq x (cons 0 0»
(NIL)

See Also:

> (setf (getf (car x) 'propl) 'vall)
VALl
> (remf (car x) 'propl)
T
> (remf (car x) 'propl)
NIL

remprop

getf

10-12 Sun Common Lisp Reference Manual

remprop

Purpose:

Syntax:

Examples:

See Also:

The function remprop is used to remove an entry from the property list of a
symbol. It removes from the property list of symbol both the property whose
indicator is identical (eq) to the indicator argument and its associated property
value. The function remprop returns a non-nil value if the specified property was
found; otherwise it returns nil.

remprop symbol in dicator [Function]

> (setq *symbol* (gensym»
#:G51
> (remprop *symbol* 'propl)
NIL
> (setf (get *symbol* 'propl) 'vall)
VALl
> (remprop *symbol* 'propl)
(PROPI VALl)
> (remprop *symbol* 'propl)
NIL

remf

Symbols 10-13

symbol-name

Purpose: The function symbol-name returns the print name of a given symbol.

Syntax: symbol-name symbol

Examples: > (symbol-name 'fool
"FDD"
> (symbol-name (gensym»
"G52"

10-14 Sun Common Lisp Reference Manual

[Function]

symbol-package

Purpose: The function symbol-package returns the contents of the package cell of a given
symbol. If no package object is associated with this cell, symbol-package returns
nil.

Syntax: symbol-package symbol

Examples: > (symbol-package :optional)
#<Package "KEYWORD" 30DC43>
> (symbol-package (gensym»
NIL

[Function]

Symbols 10-15

symbol-plist

Purpose: The function symbol-plist returns the property list of a given symbol.

Syntax: symbol-plist symbol [Function]

Remarks: The macro setf may be used with symbol-p1ist to replace the property list of a
symbol.

Examples: > (defvar *sym* (gensym»
SYM
> (symbol-plist *sym*)
NIL
> (setf (get *sym* 'propl) 'vall)
VALl
> (symbol-plist *sym*)
(PROPl VALl)
> (setf (get *sym* 'prop2) 'va12)
VAL2
> (symbol-plist *sym*)
(PROP2 VAL2 PROPl VALl)
> (setf (symbol-plist *sym*) • (prop3 va13»
(PROP3 VAL3)
> (symbol-plist *sym*)
(PROP 3 VAL3)

10-16 Sun Common Lisp Reference Manual

symbolp

Purpose: The predicate symbolp is true if its argument is a symbol; otherwise it is false.

Syntax: symbolp object [Function]

Examples: > (symbolp • sss)
T
> (symbolp 12)
NIL
> (symbolp nil)
T
> (symbolp :test)
T

Symbols 10-17

10-18 Sun Common Lisp Reference Manual

Chapter 11. Packages

Packages 11-1

Chapter 11. Packages

About Packages ... 11-3
Built-in Packages .. 11-5
Loading Files into Packages ... 11-5
Modules ... 11-6

Categories of Operations .. 11-7
Data Type Predicates .. 11-7
Operations on Packages .. 11-7
Operations on Modules ... 11-7

delete-package . 11-8
do-symbols, do-external-symbols, do-alI-symbols 11-9
export ... 11-11
find-all-symbols .. 11-12
find-package ... 11-13
find-symbol . 11-14
import ... 11-15
in-package .. 11-16
intern .. 11-17
list-all-packages .. 11-18
make-package. 11-19
* modules * .. 11-20
package .. 11-21
package-name ... 11-22
package-nicknames ... 11-23
package-shadowing-symbols .. 11-24
package-use-list .. 11-25
package-used-by-list ... 11-26
packagep ... 11-27
provide ... 11-28
rename-package .. 11-29
require ... 11-30
shadow. 11-32
shadowing-import .. 11-33
unexport ... 11-34
unintern .. 11-35
unuse-package ... 11-36
use-package ... 11-37

11-2 Sun Common Lisp Reference Manual

About Packages

A package is a Common Lisp object that specifies a correspondence between print name
strings and symbols. The package facility may be used to create a hierarchical program
name space and to increase program modularity. Packages enable the user to avoid name
conflicts that may arise when separate modules become part of the same system. By
the use of packages, two different modules using the same name for different internal
purposes can do so safely and without name conflicts. There are also constructs that are
designed to enable a package to reference the symbols of other packages in a convenient
and transparent manner.

Package names are unique. In addition to its name, a package may also have nicknames.
A package renaming operation is available, should conflicts among package names arise.
Like symbol names, when package names are read by the Lisp reader, lowercase characters
are converted to uppercase unless they are preceded by the escape character \ or enclosed
by the I multiple escape characters. Operations that compare package names are sensitive
to these conventions.

The symbols whose string-to-symbol mappings are defined within the package are said to
be present in the package. Each such symbol is, either an external or an internal symbol
of that package, but not both. An external symbol of a package is part of that package's
public interface and is accessible to other packages. An internal symbol is intended for the
private use of the package.

Names within a package are unique. Two different symbols with the same name may
only exist in separate packages. Note, however, that the same symbol may be an external
symbol in some packages and an internal symbol in others.

A symbol is owned by only one package. The package that owns the symbol is called
the symbol's home package. The package cell of the symbol specifies the symbol's
home package. IT a symbol is owned by a package, it is said to be an interned symbol.
Symbols not owned by any package are uninterned symbols. The package cell of an
uninterned symbol is nU.. The name of an uninterned symbol is printed with a leading #: .

The symbol-package function may be used to determine a symbol's home package.

A symbol is accessible in a package if it is present in the package or if it has been
inherited from some other package by means of the use-package construct. Only the
external symbols of a package may be inherited by some other package.

Only one package is current at any given time. The Lisp reader interprets names as
symbols according to the mappings specified by the current package. The current package
is the package that is specified by the global variable *package*.

Any symbol in any package can be referenced, no matter what the current package is. An
external, internal, or inherited symbol of the current package may simply be referenced
by its name. To reference an external symbol of some other package, the symbol name is
qualified by preceding it with the package name and one colon. To reference a symbol

Packages 11-3

of some other package without regard to whether it is an external or an internal symbol,
the symbol name is qualified by preceding it with the package name and two colons. Since
internal symbols are normally intended for the private use of a package, accessing the
internal symbols of a package that is not current may cause the integrity of the package
system to be violated.

There are several functions that influence which symbols are accessible in a package. These
functions are briefly described here. For a complete description, the user is referred to the
individual function pages.

A package controls which of its symbols may be inherited by another package by means
of the export construct. The external symbols of a package are those symbols that have
been exported from the package. Only exported symbols may be inherited. It is customary
to list all external symbols of a package with an export at the beginning of the definition
of the package.

The use-package construct causes the external symbols of the used package to become
inherited symbols of the using package. As such they are accessible in the using package.
It is not necessary to qualify their names when the using package is current. IT any
external symbols are added to the used package, they are automatically inherited by the
using package.

The function intern may be used to create a new symbol and enter it into a package as
an internal symbol, as long as a symbol with that name is not already accessible in the
package. IT such a symbol already exists, the existing symbol is simply returned.

The function import may be used to enter any existing symbol into a package as an
internal symbol, as long as a symbol with that name is not already accessible in the
package. The shadowing-import function is used to import a symbol without regard to
whether another symbol with the same name is already accessible. The function shadow
checks whether a symbol with a given name is already present in a package and, if it is
not, causes one with that name to be created as an internal symbol of the package.

The functions unintern, unexport, and unuse-package are used to undo the effects of
intern, export, and use-package respectively.

A symbol name conflict exists whenever a name can be interpreted as any of two or more
different symbols. Sun Common Lisp is designed so that name conflicts will never arise
without being noticed. Whenever a function changes the package environment, the changes
are carefully checked and an error is signaled if a name conflict occurs. The matching of
the names of symbols and of packages is case sensitive.

11-4 Sun Common Lisp Reference Manual

Built-in Packages

Sun Common Lisp has four basic packages: lisp, user, keyword, and system.

• The lisp package contains the basis of the Common Lisp system. All the predefined
Common Lisp functions, macros, constants, variables, and special forms, are external
symbols in the lisp package. AB a result, virtually all other packages use the lisp
package.

• The user package is the package that normally becomes current when Common Lisp
is started. The user package uses the lisp package.

• The keyword package consists of all the keyword symbols. Symbols in the keyword
package are always external, and all are constants that evaluate to themselves. This
eliminates the need to quote keywords in function calls. The names of keywords always
start with a colon. Keywords should never be imported. Other packages may not use
the keyword package.

• The system package is an implementation-dependent package reserved for internal
system functions. It has the nickname aya. The system package uses the lisp package.
Any symbol that is the name of a construct that is an extension to Common Lisp
described in this manual is an external symbol in the system package.

Loading Files into Packages

The normal way of specifying the package into which a file is to be loaded is to begin the
file with a call to in-package. This function accepts a package name, a nickname list, and
a use-package list. If the in-package construct is not used, the file will be loaded into
the current package. If a file does not specify what package it should be in, by means of
the in-package construct, the name of the package that was current when the file was
compiled is not retained. Unpredictable results may occur if the package that is current
at load time is different from the package that is current at compilation.

Whenever the function load is used, it remembers the initial value of *package* (the
current package) and restores that value to *package* after the file loading has finished.
Thus, using load to process a file will always preserve the current package, even if the file
calls in-package.

Packages 11-5

Modules

A module is a collection of one or more files that are always loaded together to provide
some particular capability. A program can indicate that it wants a particular module to
be loaded if and only if that module has not already been loaded. To make this work,
Common Lisp keeps a list, in the variable *modules*, of the names of modules that have
been loaded. The function provide is used to update the *modules* list to indicate that
a given module has been loaded. Thus, one call to provide should occur in each module.
The function require names a module that is needed; if the module has not already been
loaded, it is loaded from the pathname(s) specified in the call to require.

11-6 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations on packages according to functionality.

Data Type Predicates

packagep

This predicate determines whether an object is a package.

Operations on Packages

delete-package
do-all-symbols
do-ext ernal-symb ols
do-symbols
export
find-alI-symbols
find-package
find-symbol
import
in-package
intern
list-alI-packages
make-package

These constructs manipulate packages.

Operations on Modules

provide
require

These constructs manipulate modules.

.package.
package-name
package-nicknames
package-shadowing-symbols
package-use-list
package-used-by-list
rename-package
shadow
shadowing-import
unexport
unintern
unuse-package
use-package

.modules.

Packages 11-7

delete-package

Purpose:

Syntax:

Remarks:

The function delete-package is used to remove a package from the system.

After the deletion, the function find-package will no longer find a package of that
name or of any of its nicknames.

Any symbol whose home package was the deleted package becomes an uninterned
symbol.

delete-package package [Function]

Once the package has been deleted, its symbols are no longer inherited by any
other package. The deleted package is removed from the package-used-by-list of
any other package.

An error is signaled if the package is on the package-use-list of any other package.

The package argument may be either a package, a string, or a symbol. If a symb~l
is given, its print name is used.

The function delete-package is an extension to Common Lisp.

Examples: > (make-package 'temporary :nicknames • (temp»
#<Package "TEMPORARY" 3C7BOB>
> (find-package 'temp)
#<Package "TEMPORARY" 3C7BOB>
> (delete-package 'temp)
T
> (find-package 'temp)
NIL

11-8 Sun Common Lisp Reference Manual

do-symbols, do-external-symbols, do-all-symbols

Purpose:

Syntax:

Remarks:

The macros do-symbols, do-external-symbols, and do-all-symbols iterate
over the symbols of a package.

The macro do-symbols iterates over all the symbols accessible in a specified
package.

The macro do-external-symbols iterates over all the external symbols of a
specified package.

The macro do-all-symbols iterates over all the symbols that are present in any
package.

For each symbol in the set, the variable var is bound to the symbol, and the
statements in the body are executed. When all such symbols have been processed,
the result-form is evaluated and returned as the value of the macro. If the
result-form is not specified, the macro returns nil.

do-symbols (var [package [result-form]])
{declaration}* {tag I statement}*

do-external-symbols (var [package [result-form]])
{ declaration} * {tag I statement} *

do-all-symbols (var [result-form])
{ declaration} * {tag I statement} *

[Macro]

[Macro]

[Macro]

If execution of any statement in the body affects which symbols are present in the
package, the results are unpredictable.

The macro do-all-symbols may cause a symbol that is present in several packages
to be processed more than once.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument of do-symbols or
do-external-symbols is not specified, the current package is used.

Packages 11-9

do-symbols, do-external-symbols, do-all-symbols

Examples: > (make-package 'temp :use nil)
#<Package "TEMP" 42D7EB>
> (intern "SHY" 'temp)
TEMP: : SHY
NIL

;shy will be an internal symbol
;in the package temp

> (export (intern "BOLD" 'temp) 'temp) ;bold will be external
T
> (let «1st (»)

(do-symbols (s 'temp) (push s 1st»
1st)

(TEMP: : SHY TEMP : BOLD)
> (let «1st (»)

(do-external-symbols (s 'temp 1st) (push s 1st»)
(TEMP : BOLD)
> (let «1st (»)

(do-alI-symbols (s 1st)
(when (eq (find-package 'temp) (symbol-package s» (push s 1st»»

(TEMP: : SHY TEMP: BOLD)

11-10 Sun Common Lisp Reference Manual

export

Purpose:

Syntax:

Remarks:

The function export is used to make a symbol that is accessible in a package
an external symbol of that package. The exported symbol may be present in the
package or inherited from some other package.

If the symbol is present as an internal symbol in the package, it is made external.
If it is an internal symbol that is inherited, it is imported into the package and
then made an external symbol in that package. If the symbol is already an external
symbol in the package, export has no effect.

The symbols argument is a single symbol or a list of symbols to be exported.

The function export returns t as its result.

export symbolsll;optional package [Function]

A continuable error is signaled if the symbol is not accessible in the package or if a
name conflict occurs.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

When export occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (make-package Itemp :use nil)
#<Package "TEMP" 49024B>

See Also:

> (use-package Itemp)
T
> (intern "TEMP-SYM" Itemp)
TEMP: : TEMP-SYM
NIL
> (find-symbol "TEMP-SYM")
NIL
NIL
> (export (find-symbol "TEMP-SYM" Itemp) I temp)
T
> (find-symbol "TEMP-SYM")
TEMP-SYM
: INHERITED

import

unexport

Packages 11-11

find-all-symbols

Purpose:

Syntax:

Remarks:

The function find-aIl-symbols is used to find any symbol whose print name is
specified by the string-or-symbol argument. All packages are searched.

The function find-alI-symbols returns a list of all such symbols as its result.

find-all-symbols string-or-symbol

If a symbol argument is given, the symbol's print name is used.

The matching of the names of symbols is case sensitive.

[Function]

Examples: > (find-alI-symbols 'car)
(CAR)
> (intern "CAR" (package-name (make-package 'temp :use nil»)
TEMP: : CAR
NIL
> (find-alI-symbols 'car)
(TEMP::CAR CAR) ;order in the result list is not significant
> (delete-package 'temp)
T
> (find-alI-symbols 'car)
(CAR)

11-12 Sun Common Lisp Reference Manual

find-package

Purpose: The function find-package returns the pa.ckage whose name or nickname is name.
H there is no such package, find-package returns nil.

Syntax: find-package name [Function]

Remarks: The name argument may be either a string or symbol. H a symbol is given, its
print name is used.

The matching of the names of packages is case sensitive.

Examples: > (find-package 'lisp)
.<Package "LISP" 2D0003>
> (find-package "USER")
.<Package "USER" 2DI023>
> (find-package 'not-there)
NIL

Packages 11-13

find-symbol

Purpose:

Syntax:

The function find-symbol is used to locate a symbol in a package.

The symbols accessible in the package are searched for one whose name is the same
as the string argument.

The function find-symbol returns two values. The first value is the symbol that
was found. The second value indicates the status of that symbol. If the symbol was
present in the given package as an internal symbol, it is :internal. If the symbol
was present in the package as an external symbol, it is :external. If the symbol
was inherited by the package through the use-package construct, it is :inherited.
If the symbol was not found, both values are nil.

find-symbol string &:optional package [Function]

Remarks: The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

Examples: > (find-symbol (intern "NEW-GUY"»
NEW-GUY

See Also:

: INTERNAL
> (find-symbol 'car 'user)
CAR
: INHERITED
> (find-symbol 'car 'lisp)
CAR
: EXTERNAL
> (find-symbol "Not-Likely")
NIL
NIL

intern

11-14 Sun Common Lisp Reference Manual

import

Purpose:

Syntax:

Remarks:

The function import is used to add a symbol to a package. The imported symbol
becomes present as an internal symbol in the package. Once the symbol has been
imported, it may be referenced in the importing package without the use of a
qualifier.

The symbols argument is a single symbol or a list of symbols to be imported.

The function import returns t.

import symbols toptional package [Function]

H the symbol is already present in the package, import has no effect.

Importing a symbol does not affect its status in the package from which it is
imported, if any.

A continuable error is signaled if a different symbol with the same name is
accessible in the package.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

When import occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (import 'lisp: :car (make-package 'temp :use nil»

See Also:

T
> (find-symbol "CAR" 'temp)
CAR
: INTERNAL
> (find-symbol "CDR" 'temp)
NIL
NIL

shadow

Packages 11-15

in-package

Purpose:

Syntax:

Remarks:

The function in-package changes the current package. Its main use is to specify
the package into which a file should be loaded.

The :nicknames argument may be used to specify a list of alternative names for
the package.

The :use argument may be used to specify a list of packages whose external
symbols are to be inherited by the new package. If the :use argument is not
specified, the lisp package is inherited.

If a package with the given name already exists, it is updated to reflect any new
nicknames or used packages that are specified by the arguments. If a package with
the given name does not already exist, a new package is created.

in-package package-name &:key : nicknames : use [Function]

The function in-package causes the *package* variable to be reset to the package
with the given name. The *package* variable retains this value until it is changed
by the user or until the loading operation has completed, at which time the load
function resets *package* to the value it had before the loading was begun.

If the in-package construct is not used, the file is loaded into the current package.

The package-name argument and the nicknames may be either strings or symbols.
If a symbol is given, its print name is used.

When in-package occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (in-package 'temporary :nicknames ' ("TEMP"»
#<Package "TEMPORARY" 494753>

See Also:

> *package*
#<Package "TEMPORARY" 494753>
> (find-symbol "CAR")
CAR
: INHERITED

make-package

11-16 Sun Common Lisp Reference Manual

intern

Purpose:

Syntax:

Remarks:

The function intern is used to enter a symbol into a package.

H a symbol whose name is the same as the string argument is already accessible in
the package as an external, internal, or inherited symbol, it is returned. If no such
symbol is accessible in the package, a new symbol with the given name is created
and entered into the package as an internal symbol.

The function intern returns two values. The first value is the symbol that was
found or created. The second value indicates the status of that symbol. If a new
symbol was created, the second value is nil. If the symbol was present in the given
package as an internal symbol, it is :internal. If the symbol was present in the
package as an external symbol, it is :external. If the symbol was inherited by the
package through the use-package construct, it is :inherited.

intern string ioptional package [Function]

H a new symbol is entered into the keyword package, it becomes an external symbol
in that package.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

When intern occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (in-package 'user)
#<Package "USER" 2D1023>
> (intern "Never-Before")
I Never-Before I
NIL
> (intern "Never-Before")
I Never-Before I
: INTERNAL

Packages 11-17

list-all-packages

Purpose: The function list-alI-packages returns a list of all existing packages.

Syntax: list-alI-packages

~xanaples: > (let «before (list-alI-packages»)
(make-package 'temp)
(set-difference (list-alI-packages) before)}

(#<Package "TEMP" 4973A3»

11-18 Sun Common Lisp Reference Manual

[Function]

make-package

Purpose:

Syntax:

Remarks:

The function make-package creates and returns a new package with the name
package-name.

The :nicknames argument may be used to specify a list of alternative names for
the package.

The :use argument may be used to specify a list of packages whose external
symbols will be inherited by the new package. If the :use argument is not specified,
the lisp package will be inherited.

make-package package-name ~key : nicknames : use [Function]

Any packages specified by the :use argument must already exist.

The package-name argument and the nicknames may be either strings or symbols.
If a symbol is given, its print name is used. These names must not conflict with
any existing package names. A continuable error is signaled if they do.

When make-package occurs at the top level in a file, it is implicitly wrapped
in an (eval-when (eval compile load) ...) construct, so that package systems
changes are reflected both in the compiling and in the loading environment.

Examples: > (make-package 'temporary :nicknames '("TEMP" "temp"»
#<Package "TEMPORARY" 499413>

See Also:

> (make-package "OWNER" :use '("temp"»
#<Package "OWNER" 4998BB>
> (package-used-by-list 'temp)
(#<Package "OWNER" 4998BB»
> (package-use-list 'owner)
(#<Package "TEMPORARY" 499413»

use-package

Packages 11-19

modules

Purpose: The variable tmodules* is used to keep track of all the modules that have been
loaded into the system. Its value is a list of the names of these modules.

Syntax: *modules*

Examples: > (member "MANGANESE" *modules* :test #'equal)
NIL

See Also:

> (provide 'manganese)
T
> (member "MANGANESE" *modules* :test #'equal)
("MANGANESE")

provide

require

11-20 Sun Common Lisp Reference Manual

[Variable]

Purpose:

Syntax:

Remarks:

The value of the variable *package* is the current package.

[Variable]

The value of *package* when Common Lisp is started is normally the user
package.

The value of *package* may be affected during the course of the load operation.
The value of *package. at the end of the load operation is guaranteed to be the
same as its value before the operation was begun.

Examples: > (let «curpack *package*)
out)

(in-package 'lisp)
(setq out *package*)
(in-package (package-name curpack»
out)

#<Package "LISP" 2D0003>

Packages 11-21

package-name

Purpose: The function package-name returns the name of the given package. Its result is
a string.

Syntax: package-name package

Examples: > (in-package 'user)
#<Package "USER" 2D1023>
> (package-name *package*)
"USER"
> (package-name (symbol-package :test»
"KEYWORD"
> (package-name (find-package 'lisp»
"LISP"

11-22 Sun Common Lisp Reference Manual

[Function]

package-nicknames

Purpose:

Syntax:

The function package-nicknames returns a list of all the nicknames for the given
package. The nicknames are returned as strings. This list does not include the
package name itself.

package-nicknames package [Function]

~xamples: > (package-nicknames (make-package 'temporary
:nicknames '("TEMP" "temp"»)

("temp" "TEMP")

Packages 11-23

package-shadowing-symbols

Purpose:

Syntax:

The function package-shadowing-symbols returns the shadowing-symbols list
of the specified package.

Shadowing symbols are symbols that have been entered into a package by the use
of shadow or shadowing-import.

package-shadowing-symbols package [Function]

Remarks: The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used.

~xamples: > (package-shadowing-symbols (make-package 'temp»
NIL

See Also:

> (shadow 'cdr 'temp)
T
> (package-shadowing-symbols 'temp)
(TEMP: : CDR)
> (intern "PILL" 'temp)
TEMP: :PILL
NIL
> (snadowing=import 'pill 'temp)
T
> (package-shadowing-symbols 'temp)
(PILL TEMP:: CDR)

shadow

shadowing-import

11-24 Sun Common Lisp Reference Manual

package-use-list

Purpose: The function package-use-list returns a list of the packages that are used by the
specified package.

Syntax: package-use-list package [Function]

Remarks: The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used.

Examples: > (package-use-list (make-package 'temp»
(#<Package "LISP" 2D0003»

See Also:

> (use-package 'user 'temp)
T
> (package-use-list 'temp)
(#<Package "LISP" 2D0003> #<Package "USER" 2D1023»

use-package

unuse-package

Packages 11-25

package-used-by-list

Purpose: The function package-used-by-list returns a list of the packages that use the
specified package.

Syntax: package-used-by-list package [Function]

Remarks: The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used.

Examples: > (package-used-by-list (make-package 'temp»
NIL

See Also:

> (make-package 'trash :use '(temp»
.<Package "TRASH" 4A1E63>
> (package-used-by-list 'temp)
(.<Package "TRASH" 4A1E63»

use-package

unuse-package

11-26 Sun Common Lisp Reference Manual

packagep

Purpose: The predicate packagep is true if its argument is a package; otherwise it is false.

Syntax: packagep object

Examples: > (packagep *package*)
T
> (packagep 'lisp)
NIL

[Function]

Packages 11-27

provide

Purpose:

Syntax:

Remarks:

The function provide is used to indicate that a module has been loaded. It adds
the module's name to the *modules* list.

provide module-name [Function]

One call to provide should occur at the head of each module. It should specify
the name by which that module is to be known to the system.

The module-name argument may be either a string or a symbol. If a symbol is
given, its print name is used.

Examples: > (let «omods *modules*)}
(provide 'new-module)
(set-difference *modules* omods)}

("NEW-MODULE")

See Also: *modules*

11-28 Sun Common Lisp Reference Manual

rename-package

Purpose:

Syntax:

Remarks:

The function rename-package is used to replace the name and nicknames of a
package.

The package is renamed new-name. If a list of nicknames is specified, the package
will have these new nicknames. If the list of nicknames is not specified, the package
will have no nicknames.

rename-package package new-name ioptional new-nicknames [Function]

The new-name argument may be either a string or a symbol. The new-nicknames
argument is a list of strings or symbols. If a symbol is given, its print name is used.
These names must not conHict with any existing package names.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used.

Examples: > (make-package 'temporary :nicknames '("TEMP"»
#<Package "TEMPORARY" 4A28A3>
> (rename-package 'temp 'ephemeral)
#<Package "EPHEMERAL" 4A28A3>
> (package-nicknames (find-package 'ephemeral»
NIL
> (find-package 'temporary)
NIL
> (rename-package 'ephemeral 'temporary '(temp fleeting»
#<Package "TEMPORARY" 4A28A3>
> (package-nicknames (find-package 'temp»
("FLEETING" "TEMP")

Packages 11-29

• requIre

Purpose:

Syntax:

Remarks:

Examples:

The function require tests whether a given module has been loaded. If not, it
causes the module to be loaded.

The pathname argument may be used to specify a list of files that are to be loaded
in order to achieve the loading of the module.

require module-name toptional pathname [Function]

The function require uses the .modules. variable to check whether a module has
been loaded. Whenever a new module is loaded, require updates the .modules.
variable.

The module-name argument may be either a string or a symbol. If a symbol is
given, its print name is used.

The pathname argument may be a single file pathname or a list of pathnames. If
it is a list, the files are loaded in the order given.

When require occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

the file /test/require-test.lisp must exist and contain

" ,
(provide 'test-module)

" ,
" , (setq loaded-flag t)

" ,
" , for this example to work

> (setq loaded-flag nil)
NIL
> (require 'test-module "/test/require-test")
T
> loaded-flag
T
> (find "TEST-MODULE" *modules* :test #'equal)
"TEST-MODULE"
> (setq loaded-flag nil)
NIL

11-30 Sun Common Lisp Reference Manual

See Also:

> (require 'test-module "/test/require-test")
T
> loaded-flag
NIL

provide

modules

require

Packages 11-31

shadow

Purpose:

Syntax:

Remarks:

The function shadow is used to add a new symbol to a package.

H a symbol with the given name is already present in the package, then shadow
has no effect. Otherwise a new symbol whose name is the same as the print name
of the given symbol is created and entered into the package as an internal symbol.
The new symbol is also added to the package's shadowing-symbols list.

The symbols argument is a single symbol or a list of symbols to be added.

The function shadow returns t as its result.

shadow symbols .toptional package [Function]

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

When shadow occurs at the top level in a file, it is. implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (package-shadowing-symhols (make-package 'temp»
NIL
> (find-symbol 'car 'temp)
CAR
: INHERITED
> (shadow 'car 'temp)
T
> (find-symbol 'car 'temp)
TEMP: : CAR
: INTERNAL
> (package-shadowing-symbols 'temp)
(TEMP: : CAR)

11-32 Sun Common Lisp Reference Manual

shadowing-import

Purpose:

Syntax:

Remarks:

The function shadowing-bnport is used to import a symbol whose name is the
same as a symbol that is already accessible in a package.

The 8ymbol8 argument is a single symbol or a list of symbols to be imported.

The new symbol is added to the shadowing-symbols list of the package.

IT a symbol that is shadowed is present in the package, it will be uninterned from
the package.

The function shadowing-import returns t as its result.

shadowing-import symbols toptional package [Function]

The package argument may be either a package, a string, or a symbol. IT a symbol
is given, its print name is used. IT the package argument is not specified, the
current package is used.

When shadowing-import occurs at the top level in a file, it is implicitly wrapped
in an (eval-when (eval compile load) ...) construct, so that package systems
changes are reflected both in the compiling and in the loading environment.

Examples: > (in-package 'user)
#<Package "USER" 2D1023>

See Also:

> (setq sym (intern "CONFLICT"»
CONFLICT
> (intern "CONFLICT" (make-package 'temp»
TEMP: : CONFLICT
NIL
> (package-shadowing-symbols 'temp)
NIL
> (shadowing-import sym 'temp)
T
> (package-shadowing-symbols 'temp)
(CONFLICT)

import

unintern

Packages 11-33

unexport

Purpose:

Syntax:

Remarks:

The function unexport returns external symbols in a package to internal status.
It is used to undo the effect of export.

The symbols argument is a single symbol or a list of symbols to be unexported.

The function unexport returns t as its result.

If the symbol is already an internal symbol in the package, unexport has no effect.

unexport symbols i:optional package [Function]

The symbol must be present in the package.

The symbols argument cannot specify a symbol from the keyword package.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

When unexport occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (in-package 'user)
#<Package "USER" 2D1023>

See Also:

> (export (intern "CONTRABAND" (make-package 'temp» 'temp)
T
> (find-symbol "CONTRABAND")
NIL
NIL
> (use-package 'temp)
T
> (find-symbol "CONTRABAND")
CONTRABAND
: INHERITED
> (unexport 'contraband 'temp)
T
> (find-symbol "CONTRABAND")
NIL
NIL

export

11-34 Sun Common Lisp Reference Manual

unintern

Purpose:

Syntax:

Remarks:

The function unintern is used to remove a symbol from a package.

If the symbol is present in the package, it is removed from the package. If it is
a shadowing symbol, it is also removed from the shadowing-symbols list of the
package.

If the package is the symbol's home package, the symbol will have no home package.

The function unintern returns t if the symbol was removed from the package;
otherwise it returns nil.

unintern symbol I:opt ional package [Function]

Even if a symbol has been uninterned, it may still be accessible if it is inherited
from another package.

The package argument may be either a package, a string, or a symbol. If a symbol
is given, its print name is used. If the package argument is not specified, the
current package is used.

When unintern occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (in-package 'user)
#<Package "USER" 201023>
> (setq temps-foo (intern "FOO" (make-package 'temp»)
TEMP: :FOO
> (unintern temps-foo 'temp)
T
> (find-symbol "FDD" 'temp)
NIL
NIL
> temps-foo
#:FOO

Packages 11-35

unuse-package

Purpose:

Syntax:

Remarks:

The function unuse-package is used to cause a package to cease inheriting all the
external symbols of some other package; it undoes the effects of use-package. The
packages that are unused are removed from the use-list of the unusing package.

The function unuse-package returns t as its result.

unuse-package packages-to-unuse toptional package [Function]

The packages-to-unuse argument may be either a package, a package name, or a
list of these. Either a symbol or a string may be given as a package name. If a
symbol is given, its print name is used.

If the package argument is not specified, the current package is used.

When unuse-package occurs at the top level in a file, it is implicitly wrapped
in an (eval-when (eval compile load) ...) construct, so that package systems
changes are reflected both in the compiling and in the loading environment.

Examples: > (in-package 'user)
#<Package "USER" 2D1023>

See Also:

> (export (intern "SHOES" (make-package 'temp» 'temp)
T
> (find-symbol "SHOES")
NIL
NIL
> (use-package 'temp)
T
> (find-symbol "SHOES")
SHOES
: INHERITED
> (find (find-package 'temp) (package-use-list 'user»
#<Package "TEMP" 3CC483>
> (unuse-package 'temp)
T
> (find-symbol "SHOES")
NIL
NIL

use-package

11-36 Sun Common Lisp Reference Manual

use-package

Purpose:

Syntax:

Remarks:

The function use-package is used to cause a package to inherit all the external
symbols of another package. The inherited symbols become accessible as internal
symbols of the using package. The packages that are used are added to the use-list
of the using package.

The function use-package returns t as its result.

use-package packages-to-use "optional package [Function]

The keyword package may not be used.

The packages-to-use argument may be either a package, a package name, or a list
of these. Either a symbol or a string may be given as a package name. If a symbol
is given, its print name is used.

If the package argument is not specified, the current package is used.

When use-package occurs at the top level in a file, it is implicitly wrapped in an
(eval-when (eval compile load) ...) construct, so that package systems changes
are reflected both in the compiling and in the loading environment.

Examples: > (export (intern "LAND-FILL" (make-package 'trash» 'trash)

See Also:

T
> (find-symbol "LAND-FILL" (make-package 'temp»
NIL
NIL
> (package-use-list 'temp)
(#<Package "LISP" 2D0003»
> (use-package 'trash 'temp)
T
> (package-use-list 'temp)
(#<Package "LISP" 2D0003> #<Package "TRASH" 3CDC83»
> (find-symbol "LAND-FILL" 'temp)
TRASH: LAND-FILL
: INHERITED

unuse-package

Packages 11-37

11-38 Sun Common Lisp Reference Manual

Chapter 12. Numbers

Numbers 12-1

Chapter 12. Numbers

About Numbers ... 12-5
Numerical Data Types ... 12-5
Bytes ... 12-6

Categories of Operations .. 12-7
Data Type Predicates .. 12-7
Predicates on Numbers ... 12-7
Numerical Comparisons .. 12-7
Arithmetic Operations ... 12-8
Irrational Functions .. 12-8
Type Conversion Operations. 12-9
Logical Operations on Numbers .. 12-9
Byte Manipulation Functions ... 12-10
Random Numbers .. 12-10
Implementation-Dependent Constants .. 12-10

* .. 12-11
+ ... 12-12
- ... 12-13
/ .. 12-14
1+, 1- , 12-15
<, <=, >, >= ... 12-16
=, /= .. 12-17
abs .. 12-18
ash .. 12-19
asin, acos, atan . 12-20
boole, boole-elr, boole-set, boole-l, boole-2, boole-cl, boole-c2, boole-and, boole-ior,

boole-xor, boole-eqv, boole-nand, boole-nor, boole-andcl, boole-andc2, boole-orcl,
boole-orc2 . 12-21

byte, byte-size, byte-position. 12-24
cis .. 12-25
complex . 12-26
complexp . 12-27
conjugate ... 12-28
decode-float, integer-decode-float .. 12-29
deposit-field ... 12-31
dpb ... 12-32
evenp, oddp . 12-33
exp, expt . 12-34
fixnump . 12-35
float ... 12-36
float-digits, float-precision, float-radix .. 12-37
float-sign ... 12-38
floatp .. 12-39

12-2 Sun Common Lisp Reference Manual

floor, ceiling, moor, fceiling . 12-40
gcd .. 12-41
incf, decf ... 12-42
integer-length ... 12-43
integerp . 12-44
lcm .. 12-45
ldb .. 12-46
ldb-test .. 12-47
log .. 12-48
logand, logandcl, logandc2, logeqv, logi~r, lognand, lognor, logorcl, logorc2,

logxor. 12-49
logbitp ... 12-51
logcount .. 12-52
lognot .. 12-53
logtest . 12-54
make-random-state ... 12-55
mask-field .. 12-56
max, min ... 12-57
minusp, plusp ... 12-58
mod, rem ... 12-59
most-positive-fixnum, most-negative-fixnum. 12-60
most-positive-short-float, most-positive-single-float, most-positive-double-float,

most-positive-Iong-float, least-positive-short-float, least-positive-single-float,
least-positive-double-float, least-positive-Iong-float, least-negative-short-float,
least-negative-single-float, least-negative-double-float, least-negative-Iong-float,
most-negati ve-short-float, most-negati ve-single-float, most-negative-dou ble-float,
most-negative-Iong-float ... 12-61

numberp ... 12-63
numerator, denominator . 12-64
phase . 12-65
pi ... 12-66
random .. 12-67
random-state . 12-68
random-state-p .. 12-69
rational, rationalize ... 12-70
rationalp ... 12-71
realpart, imagpart .. 12-72
scale-float ... 12-73
short-float-epsilon, single-float-epsilon, double-float-epsilon,

long-float-epsilon, short-float-negative-epsilon, single-float-negative-epsilon,
double-float-negative-epsilon, long-float-negative-epsilon . 12-74

sIgnum ... 12-76
sin, cos, tan . 12-77
sinh, cosh, tanh, asinh, acosh, atanh ... 12-78
sqrt, isqrt '.' 12-79

Numbers 12-3

truncate, round, ftruncate, fround ... 12-80
zerop .. 12-81

12-4 Sun Common Lisp Reference Manual

About Numbers

Common Lisp provides integers, ratios, floating-point numbers, and complex numbers as
separate data types. Integers and ratios together constitute a subtype of numbers called
rational numbers.

Some operations on numbers are generic, that is, they accept arguments of any numerical
data type and automatically provide any type conversions that are needed. Other
operations are type specific and require arguments of a particular numerical data type.

Numbers in Common Lisp are ordinarily not true objects in the sense that eq cannot be
counted on to operate reliably on them. In Sun Common Lisp, however, fixnums are true
objects and eq can be counted on to operate reliably on fixnums. Otherwise if numbers
are to be tested for equality, = or eqI should be used.

Numerical Data Types

Integers

The integer data type consists of fixnums and bignums.

The fixnum data type is designed to allow integers in the range from most-negative
fixnum to most-positive-fixnum to be represented efficiently, using a fixed number of
bits. The fixnum data type is the default for the representation of integers.

The bignum data type is provided to allow for the representation of integers of arbitrary
magnitude. The distinction between fixnums and bignums is generally not visible to the
user. In Sun Common Lisp, the more appropriate representation is used automatically.

Ratios

Ratios give an exact representation of the mathematical quotient of two integers. Ratios
can be used to avoid the loss of precision that can result from using floating-point numbers.

Rational numbers are represented in canonical form. H the ratio is not an integer,
the canonical representation is a pair of integers, the numerator and denominator, that
represent the rational as a fraction in reduced form. The denominator is always positive.
If the denominator evenly divides the numerator, the rational number is converted to the
resulting integer.

Numbers 12-5

Floating-Point Numbers

Floating-point numbers constitute the type tloat. Common Lisp designates four
floating-point number formats: short-tloat, single-tloat, double-tloat, and long-Boat.
These formats differ in the precision they provide and in the range of exponents they allow.
Sun Common Lisp represents all four types of floating-point numbers in the single-float
format.

In Sun Common Lisp, single-float numbers are treated in accordance with the IEEE
standard for the representation of 32-bit single-precision floating-point numbers. They are
represented by a sign bit, a 23-bit unsigned mantissa, and an 8-bit unsigned exponent.
The exponent is excess-127j that is, the representation of the exponent is an 8-bit integer
whose value is 127 greater than the true exponent value. Floating-point numbers are
represented in radix 2.

When an operation involves both a rational and a floating-point argument, the rational
number is first converted to floating-point format, and then the operation is performed.
This conversion process is called tloating-point contagion.

Complex Numbers

Complex numbers are represented as composite objects consisting of a real part and an
imaginary part.

The two parts of a complex number must be of the same noncomplex type; if they are
not, they are automatically converted to the same type, in accordance with the principle
of floating-point contagion. Complex numbers are represented in canonical form. H a
complex number whose components are of type integer or ratio has an imaginary part
whose value is zero, the canonical representation is an integer or ratio whose value is the
same as that of the real part.

Bytes

Common Lisp provides functions that manipulate fields of bits that are contained within
integers. Such a field of bits is called a byte. Functions that manipulate bytes use byte
specifiers to indicate a field within an integer according to its size and position. A byte
specifier whose size and position attributes are size and position designates bits whose
weights are 2J1Olition through 2J1Ofttion+Iize-1.

Note that this usage of the term byte is distinct from its conventional meaning. Bytes in
this chapter refer to the above· meaning of the term.

12-6 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations on numbers according to functionality.

Data Type Predicates

numberp
complexp
fixnump

floatp
integerp
rationalp

These predicates determine whether an object is a number.

Predicates on Numbers

plusp
minusp
zerop

evenp
oddp

These predicates test properties of numbers.

Numerical Comparisons

/=
<
<=

>
>=
max
min

These functions provide comparison operations on numbers.

Numbers 12-7

Arithmetic Operations

+

*
/
1+
l-
ash

incf
decf
gcd
lcm
mod
rem
conjugate

These functions perform arithmetic operations on numbers.

Irrational Functions

exp
expt
log
sqrt
isqrt
abs
phase
signum
sin
cos
tan

asin
acos
atan
sinh
cosh
tanh
asinh
acosh
atanh
cis
pi

These constructs provide exponential, trigonometric, and other transcendental
operations.

12-8 Sun Common Lisp Reference Manual

Type Conversion Operations

rational
rationalize
numerator
denominator
floor
ceiling
truncate
round
moor
fceiling
ftruncate
fround

float
decode-float
scale-float
float-radix
float-sign
float-digits
float-precision
integer-deco de-float
complex
realpart
imagpart

These functions perform conversion operations among the numerical data types.

Logical Operations on Numbers

boole
boole-clr
boole-set
boole-l
boole-2
boole-cl
boole-c2
boole-and
boole-ior
boole-xor
boole-eqv
boole-nand
boole-nor
boole-andc 1
boole-andc2
boole-orcl
boole-orc2

logand
logior
logxor
logeqv
lognand
lognor
logandcl
logandc2
logorcl
logorc2
lognot
logtest
logbitp
logcount
integer-length

These constructs provide logical operations on integers.

Numbers 12-9

Byte Manipulation Functions

byte
byte-size
byte-position
deposit-field

dpb
ldb
ldb-test
mask-field

These functions manipulate fields of bits within integers.

Random Numbers

make-random-state
random

.random-state.
random-state-p

These constructs provide a random number generation facility.

Implementation-Dependent Constants

most-positive-fixnum
most-negative-fixnum
most-positive-short-Boat
most-positive-single-Boat
most-positive-double-Boat
most-positive-long-Boat
least-positive-short-Boat
least-positive-single-Boat
least-positive-double-Boat
least-positive-long-Boat
least-negative-short-Boat
least-negative-single-Boat
least-negative-double-Boat

least-negative-long-Boat
most-negative-short-Boat
most-negative-single-Boat
most-negative-double-Boat
most-negative-long-Boat
short-Boat-epsilon
single-Boat-epsilon
double-Boat-epsilon
long-Boat-epsilon
short-Boat-negative-epsilon
single-Boat-negative-epsilon
double-Boat-negative-epsilon
long-Boat-negative-epsilon

These constants may be useful in parameterizing code. Their values are
implementation dependent.

12-10 Sun Common Lisp Reference Manual

*

Purpose:

Syntax:

The function * returns the product of its arguments. If no arguments are given, it
returns 1.

* Ikrest numbers [Function]

Remarks: Any necessary type conversions are performed automatically.

Examples: > (*)
1
> (* 3 5)
15
> (* 1.0 #c(22 33) 55/98)
#C(12.346938 18.520407)

Numbers 12-11

+

Purpose: The function + returns the sum of its arguments. If no arguments are given, it
returns O.

Syntax: + treat numbers

Remarks: Any necessary type conversions are performed automatically.

Examples: > (+)
o
> (+ 1)
1
> (+ 31/100 69/100)
1
> (+ 1/5 0.8)
1.0

12-12 Sun Common Lisp Reference Manual

[Function]

Purpose: The function - performs arithmetic subtraction and negation.

If - is given more than one argument, it subtracts from the first argument all of
the following arguments and returns the result.

If it is given one argument, it returns the negative of that argument.

Syntax: - number lrest more-numbers

Remarks: Any necessary type conversions are performed automatically.

Examples: > (- 66.66)
-66.66
> (- 0)
o
> (- #c(100 46) #c(O 46»
100
> (- 10 1 2 3 4)
o

[Function]

Numbers 12-13

/

Purpose:

Syntax:

Remarks:

The function / performs division.

If / is given more than one argument, it divides the first argument by all of the
following arguments and returns the result.

If it is given one argument, it returns the reciprocal of that argument.

/ number .trest more-numbers [Function]

The function / results in a ratio if the arguments are all integers or ratios and the
result is not an exact integer.

Any necessary type conversions are performed automatically.

Examples: > (I 0.5)
2.0

See Also:

> (I 20 5)
4
> (I 5 20)
1/4
> (I 60 -2 3 6.0)
-2.0
> (I 2 #e (2 2»
#C(1/2 -1/2)

floor

ceiling

truncate

round

12-14 Sun Common Lisp Reference Manual

1+,1-

Purpose: The functions 1+ and 1- increment and decrement a number by 1 respectively.

Syntax: 1+ number

1- number

Examples: > (1+ 99)
100

See Also: inef

deef

[Function]

[Function]

Numbers 12-15

<,<=,>,>=

Purpose:

Syntax:

Remarks:

The functions <, <=, >, and >= perform arithmetic comparisons on their
arguments.

The function < is true if its numerical arguments are in monotonically increasing
order; otherwise it is false.

The function <= is true if its numerica.l a.rguments are in monotonically
nondecreasing order; otherwise it is false.

The function > is true if its numerical arguments are in monotonically decreasing
order; otherwise it is false.

The function >= is true if its numerical arguments are in monotonically
nonincreasing order; otherwise it is false.

< number treat more-numbers

< = number trest more-numbers

> number trest more-numbers

> = number treat more-numbers

Any necessary type conversions are performed automatically.

The arguments of these functions must be noncomplex numbers.

[Function]

[Function]

[Function]

[Function]

Examples: > « 1)
T
> «= 1 1.0 11/10 1.9 1.99)
T
> (> 1000000000000000000000000 9.9 1.0 1)
NIL
> (>- 1000000000000000000000000 9.9 1.0 1)
T

12-16 Sun Common Lisp Reference Manual

-, /=

Purpose:

Syntax:

Remarks:

The predicates = and /= test for arithmetic equality.

The predicate = is true if all of its numerical arguments are the same in value;
otherwise it is false.

The predicate / = is true if no two of its numerical arguments are the same in
value; otherwise it is false.

= number lrest more-numbers

/ = number lrest more-numbers

The arguments of = and / = may be complex numbers.

Any necessary type conversions are performed automatically.

[Function]

[Function]

Examples: > C = 1)
T
> C- 1 6/6 1.0 #eC1 0) #eC1.0 0.0»
T
> C= 1 2)
NIL
> C= 0.0 C- 0.0»
T
> C/- 1)
T
> C/= 1 1.0 2)
NIL
> C/= 1 2 3 4)
T

Numbers 12-17

abs

Purpose:

Syntax:

Remarks:

The function abs returns the absolute value of its numerical argument.

abs number [Function]

If number is noncomplex, the result is of the same type as the argument.

If number is complex, the resuit is equivalent to the following:

(sqrt (+ (expt (realpart number) 2) (expt (imagpart number) 2»)

Examples: > (abs 0)
o
> (abs 12/13)
12/13
> (abs -1. 09)
1.09
> (abs #c(3 -4»
5.0

12-18 Sun Common Lisp Reference Manual

ash

Purpose:

Syntax:

The function ash performs the arithmetic shift operation on the binary
representation of its integer argument and returns the result.

The count argument is an integer. If count is positive, the integer argument is
shifted left count positions. If count is negative, the integer argument is shifted
right - count positions.

ash integer count [Function]

Remarks: The sign of the result is the same as the sign of the integer argument.

Examples: > (ash 16 1)
32
> (ash 16 0)
16
> (ash 16 -1)
8
> (ash -100000000000000000000000000000000 -100)
-79

Numbers 12-19

asin, acos, atan

Purpose:

Syntax:

Remarks:

The functions asin, acos, and atan compute the arc sine, arc cosine, and arc
tangent respectively. The results are given in radians.

asin number

acos number

atan numberl toptional number2

[Function]

[Function]

[Function]

The functions asin and acos may have complex arguments. The function atan
may have a complex argument if only one argument is specified.

H the optional argument number2 of atan is specified, both it and the numberl
argument must be noncomplex numbers. In this case, the result is the arc tangent
of numberl/number2.

Examples: > (asin 0)
0.0
> (/ (realpart (acos #c(O 1») (/ pi 2»
1.0
> (/ (atan 1 (sqrt 3» (/ pi 6»
1.0000001

12-20 Sun Common Lisp Reference Manual

boole, boole-elr, boole-set, boole-l, boole-2, boole-el,
boole-e2, boole-and, boole-jor, boole-xor, boole-eqv,
boole-nand, boole-nor, boole-andel, boole-ande2,
boole-orel, boole-ore2

Purpose: The function boole is used to perform bit-wise logical operations on integers. The
operation to be performed is specified by op, which must be one of the constants
listed below. The result of the operation is returned as an integer.

The boole-clr operation always returns the value o.
The boole-set operation always returns the value 1.

The boole-1 operation returns the value of its first operand.

The boole-2 operation returns the value of its second operand.

The boole-c1 operation returns the logical complement of the value of its first
operand.

The boole-c2 operation returns the logical complement of the value of its second
operand.

The boole-and operation returns the logical and of its operands.

The boole-ior operation returns the logical inclusive or of its operands.

The boole-xor operation returns the logical exclusive or of its operands.

The boole-eqv operation returns the logical equivalence of its operands.

The boole-nand operation returns the logical complement of the logical and of its
operands.

The boole-nor operation returns the logical complement of the logical inclusive or
of its operands.

The boole-andc1 operation returns the result of performing the logical and
operation on the second operand and the logical complement of the first operand.

The boole-andc2 operation returns the result of performing the logical and
operation on the first operand and the logical complement of the second operand.

The boole-ore1 operation returns the result of performing the logical inclusive or
operation on the second operand and the logical complement of the first operand.

The boole-orc2 operation returns the result of performing the logical inclusive or
operation on the first operand and the logical complement of the second operand.

Numbers 12-21

boole, boole-clr, boole-set, boole-I, boole-2, boole-cl, boole-c2, ...

Syntax: boole op integerl integer2 [Function]

boole-clr [Constant]

boole-set [Constant]

boole-l [Constant]

boole-2 [Constant]

boole-cl [Constant]

boole-c2 [Constant]

boole-and [Constant]

boole-jor [Constant]

boole-xor [Constant]

boole-eqv [Constant]

boole-nand [Constant]

boole-nor [Constant]

boole-andcl [Constant]

boole-andc2 [Constant]

hoole-orel [Constant]

boole-orc2 [Constant]

RelIlarks: Negative integers are treated as if they were in two's complement representation.

Examples: > (boole boole-ior 1 16)
17
> (boole boo Ie-and -2 5)
4
> (boo Ie boole-eqv 17 15)
-31

12-22 Sun Common Lisp Reference Manual

boole, boole-clr, boole-set, boole-l, boole-2, boole-cl, boole-c2,

See Also: logand

logandel

logan de 2

logeqv

logior

lognand

lognor

log ore 1

logore2

logxor

Numbers 12-23

byte, byte-size, byte-position

Purpose:

Syntax:

The function byte constructs byte specifiers; the functions byte-size and
byte-position return the attributes of byte specifiers.

The function byte constructs and returns a byte specifier for use by byte
manipulation functions. The resulting byte specifier indicates a byte consisting of
size bits whose weights are 2poBition+..ue-l through 2poBition.

The function byte-size returns the number of bits in the specified byte as an
integer value.

The function byte-position returns the position of the specified byte as a positive
integer.

byte size position

byte-size bytespec

byte-position bytespec

[Function]

[Function]

[Function]

Remarks: The size and position arguments must be integers. Their values must be in the
range from 1 to 4095 inclusive.

Examples: > (setq b (byte 100 200»
#.(BYTE 100. 200.)
> (byte-size b)
100
> (byte-position b)
200

12-24 Sun Common Lisp Reference Manual

• CIS

Purpose:

Syntax:

The function cis returns the value of e'·radiaru. The result is a complex number
in which the real part is equal to the cosine of the radians argument, and the
imaginary part is equal to the sine of the radians argument.

cis radians [Function]

Remarks: The radians argument must be a noncomplex number.

Examples: > (cis 0)
#C(1.0 0.0)

Numbers 12-25

complex

Purpose:

Syntax:

Remarks:

The function complex returns a complex number whose real and imaginary parts
have the specified values.

If the imagpart argument is not specified, the imaginary part is a zero of the same
type as the real part.

complex realpart i;optional imagpart [Function]

The realpart and imagpart arguments must be noncomplex numbers. If one of
these arguments is a floating-point number, the rules of floating-point contagion
apply.

If realpart is a rational number and imagpart is zero, the result of complex is a
rational number.

Examples: > (complex 0)
o
> (complex 0.0)
#C(o.o 0.0)
> (complex 1 1/2)
#C(l 1/2)
> (complex 1 ,99)
#C(1.0 .99)
> (complex 3/2 0.0)
#e(1.S 0.0)

12-26 Sun Common Lisp Reference Manual

complexp

Purpose: The predicate complexp is true if its argument is a complex number; otherwise it
is false.

Syntax: complexp object

Examples: > (complexp 1.2d2)
NIL
> (complexp #c(5/3 7.2»
T

[Function]

Numbers 12-27

conjugate

Purpose: The function conjugate returns the complex conjugate of its numerical argument.

Syntax: conjugate number

Examples: > (conjugate #e (0 -1»
#<:(0 1)
> (conjugate #e(l 1»
#C(l -1)
> (conjugate 1.6)
1.6

12-28 Sun Common Lisp Reference Manual

[Function]

decode-float, integer-decode-float

Purpose:

Syntax:

Remarks:

The function decode-float returns three values that characterize its floating-point
argument.

The first result is the value of the mantissa of float, scaled so that it is greater than
or equal to 1/ radix and less than 1, where radix is the radix of the floating-point
representation of float.

The second result is the integer exponent to which the radix must be raised to
obtain the value that, when multiplied with the first result, produces the absolute
value of the original float value.

The third result is a floating-point number of the same type as float. Its value is
1.0 if float is greater than or equal to zero; otherwise its value is -1.0.

The function integer-dec 0 de-float is similar to decode-float. It returns three
values. The first value is the result of scaling the mantissa of float so that it is
an integer. The second result is the integer exponent to which the radix must be
raised to obtain the value that, when multiplied with the first result, produces the
absolute value of the original float value. The third result is 1 if float is greater
than or equal to zero; otherwise it is -1.

decode-float float

integer-deco de-float float

[Function]

[Function]

The product of the first result of decode-float or integer-decode-float, of the
radix raised to the power of the second result, and of the third result is exactly
equal to the value of the argument.

In Sun Common Lisp, all floating-point numbers are represented in single-float
format.

Examples: > (decode-float 0)
0.0
o
1.0
> (decode-float .6)
.6
o
1.0
> (decode-float 1.0)
.6
1
1.0

Numbers 12-29

decode-float, integer-decode-float

> (integer-decode-float 1)
8388608
-23
1
> (* 8388608 (expt 2 -23) 1)
1

12-30 Sun Common Lisp Reference Manual

deposit-field

Purpose: The function deposit-field is used to replace a field of bits within an integer. It
returns a copy of its integer argument in which the bits of the specified byte have
been replaced by the bits from the corresponding positions of the integer newbyte.

Syntax: deposit~field newbyte bytespec integer

Remarks: The bytespec argument is a byte specifier.

Examples: > (deposit-field 7 (byte 2 1) 0)
6
> (deposit-field -1 (byte 4 0) 0)
15
> (deposit-field 0 (byte 2 1) -3)
-7

See Also: byte

dpb

[Function]

Numbers 12-31

dpb

Purpose:

Syntax:

The deposit byte function dpb is used to replace a field of bits within an integer.
It returns a copy of its integer argument in which the bits of the specified byte
have been replaced by the corresponding number of low-order bits from the integer
newbyte.

dpb newbyte bytespec integer

Remarks: The bytespec argument is a byte specifier.

Examples: > (dpb 1 (byte 1 10) 0)
1024
> (dpb -2 (byte 2 10) 0)
2048
> (dpb 1 (byte 2 10) 2048)
1024

See Also: byte

deposit-field

12-32 Sun Common Lisp Reference Manual

evenp,oddp

Purpose:

Syntax:

The predicate evenp is true if its integer argument is even; otherwise it is false.

The predicate oddp is true if its integer argument is odd; otherwise it is false.

evenp integer

oddp integer

[Function]

[Function]

Examples: > (evenp 0)
T
> (oddp 10000000000000000000000)
NIL
> (oddp -1)
T

Numbers 12-33

exp, expt

Purpose: The functions exp and expt are used for exponentiation.

The function exp returns e, the base of the natural logarithm function, raised to
the power number.

The function expt returns the argument base-number raised to the power
power-number.

Syntax: exp number

expt base-number power-number

Examples: > (exp 0)
1.0
> (exp 1)
2.7182817
> (exp (log 10»
10.0
> (expt 2 8)
256
> (expt 4 .6)
" n .Ii.v

> (expt #c(O 1) 2)
-1

See Also: log

12-34 Sun Common Lisp Reference Manual

[Function]

[Function]

fixnump

Purpose: The predicate fixnump is true if its argument is a fixnum; otherwise it is false.

Syntax: fixnump object

Remarks: The predicate fixnump is an extension to Common Lisp.

Examples: > (fixnump 1)

See Also:

T
> (fixnump 12)
T
> (fixnump (expt 2 130»
NIL
> (fixnump 6/5)
NIL

most-positive-fixnum

most-negative-fixnum

[Function]

Numbers 12-35

float

Purpose:

Syntax:

Relllarks:

Examples:

See Also:

The function float converts a noncomplex number to a floating-point number.

IT the optional argument is not specified and the number is already in a floating
point format, then it is simply returned; otherwise the number is converted to
single-float format.

An optional floating-point argument may be given. In this case, number is
converted to the same floating-point format as float.

float number .t:optional float [Function]

In Sun Common Lisp, all floating-point numbers are represented in single-float
format.

> (float 0)
0.0
> (float 1 .6)
1.0
> (float 1.0)
1.0

coerce

12-36 Sun Common Lisp Reference Manual

float-digits, float-precision, float-radix

Purpose:

Syntax:

Remarks:

The functions Boat-digits, Boat-precision, and Boat-radix are used to examine
the attributes of floating-point numbers.

The function float-digits returns the number of digits available in the radix of
the floating-point representation for representing the mantissa of a floating-point
number of the same type as the float argument. This result includes the hidden
bit that is used in the normalization of floating-point numbers.

The function float-precision returns the number of significant digits in the radix
of the floating-point representation of its float argument. If float is 0, the result of
float-precision is o.
The function float-radix returns the radix of the floating-point representation of
its float argument.

float-digits float

float-precision float

float-radix float

[Function]

[Function]

[Function]

For normalized floating-point numbers, the results of float-digits and float
precision are the same.

In Sun Common Lisp, all floating-point numbers are represented in single-float
format.

Examples: > (float-radix 1.0)
2
> (float-precision 1.0)
24
> (float-digits 1.0)
24
> (float-precision least-positive-single-float)
1

Numbers 12-37

float-sign

Purpose: The function :8oat-sign returns a floating-point number whose sign is the same as
that of float1 and whose absolute value is the same as that of float!. If the float!
argument is not specified, a floating-point 1.0 of the appropriate sign is returned.

Syntax: :8oat-sign floatl &:optional float!

Examples: > (float-sign 5.0)
1.0
> (float-sign -5.0)
-1.0
> (float-sign 0.0)
1.0
> (float-sign 1.0 0.0)
0.0
> (float-sign 1.0 -10.0)
10.0
> (float-sign -1.0 10.0)
-10.0

12-38 Sun Common Lisp Reference Manual

[Function]

floatp

Purpose:

Syntax:

The predicate fioatp is true if its argument is a floating-point number; otherwise
it is false.

fioatp object [Function]

Examples: > (floatp 1.2d2)
T
> (floatp 1.212)
T
> (floatp 1.282)
T
> (floatp (expt 2 130»
NIL

Numbers 12-39

floor, ceiling, moor, fceiling

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The functions floor, ceiling, moor, and fceiling perform type conversion
operations on noncomplex numbers.

The functions floor and ceiling convert their arguments to integers. The function
floor returns the largest integer that is equal to or less than its argument. The
function ceiling returns the smallest integer that is equal to or greater than its
argument.

The functions moor and fceiling produce results identical to those of floor and
ceiling except that the results are returned in floating-point format.

H the optional argument divisor is given, then the first value of the result is
mathematically equivalent to dividing number by divisor and then applying the
floor or ceiling operation. The divisor must also be a noncomplex number.

floor number &:optional divisor

ceiling number &:optional divisor

moor number ioptional divisor

fceiling number &:optional divisor

[Function]

[Function]

[Function]

[Function]

Each of these functions returns the remainder of the result as a second value. If
the arguments of floor and ceiling are of the same type, the remainder is of that
type also; otherwise it is a floating-point number.

> (floor 3/2)
1
1/2
> (ceiling 3 2)
2
-1
> (ffloor 3 2)
1.0
1.0
> (fceiling 3/2)
2.0
-.6

truncate

round

12-40 Sun Common Lisp Reference Manual

gcd

Purpose:

Syntax:

The function gcd returns the greatest common divisor of its arguments. If no
arguments are specified, gcd returns o.

gcd trest integers [Function]

Remarks: The result of gcd is always nonnegative.

Examples: > (ged)
o
> (ged 60 42)
6
> (ged 3333 -33 101)
1
> (ged 3333 -33 1002001)
11

Numbers 12-41

iner, deer

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The macros inef and deef are used for incrementing and decrementing the value
of a variable.

The macro inef adds the number specified by delta to the number stored in place
and returns the result.

The macro deef subtracts the number specified by delta from the number stored
in place and returns the result.

inef place [delta]

deef place [delta]

[Macro]

[Macro]

The place argument must be a generalized variable acceptable to the macro setf.

If delta is not specified, the number in place is incremented or decremented by 1.

Any necessary type conversions are performed automatically.

> (setq a • (1»
(1)
> (incf (car a»
2
> a
(2)
> (decf (car a) 2)
0
> a
(0)

1+

1-

12-42 Sun Common Lisp Reference Manual

integer-length

Purpose:

Syntax:

The function integer-length determines how many bits are needed to represent a
given integer.

H the integer is nonnegative, it can be represented as an unsigned binary number
in (integer-length integer) bits. Any integer can be represented in signed two's
complement representation in (1+ (integer-length integer» bits.

integer-length integer [Function]

Remarks: The value returned by integer-length is equal to the following:

(ceiling (log (if (minusp integer) (- integer) (1+ integer» 2»

Examples: > (integer-length 0)
o
> (integer-length 1)
1
> (integer-length -1)
o
> (integer-length (expt 2 g»
10
> (integer-length (1- (expt 2 g»)
9
> (integer-length (- (expt 2 g»)
9
> (integer-length (- (1+ (expt 2 g»»
10

Numbers 12-43

integerp

Purpose: The predicate integerp is true if its argument is an integer; otherwise it is false.

Syntax: integerp object

Examples: > (integerp 1)
T
> (integerp (expt 2 130»
T
> (integerp 6/6)
NIL
> (integerp nil)
NIL

12-44 Sun Common Lisp Reference Manual

[Function]

lcm

Purpose:

Syntax:

The function lcm returns the least common multiple of its integer arguments. The
result is a nonnegative integer.

lcm integer trest more-integers [Function]

Examples: > (lem 10)
10
> (lem 25 30)
150
> (lem -24 18 10)
360

Numbers 12-45

ldb

Purpose:

Syntax:

Remarks:

The load byte function ldb extracts from its integer argument the bits of the
specified byte and returns the result as a nonnegative integer.

ldb bytespec integer [Function]

The bytespec argument is a byte specifier.

If the integer argument is a generalized variable that is acceptable to the macro
setf, then setf may be used with ldb to modify the specified byte.

ExaInples: > (ldb (byte 2 1) 10)
1
> (setq a '(8»
(8)
> (setf (ldb (byte 2 1) (car a» 1)
1
> a
(10)

See Also: byte

dpb

12-46 Sun Common Lisp Reference Manual

ldb-test

Purpose:

Syntax:

Remarks:

Examples:

The predicate ldb-test is true if any of the bits of the specified byte from integer
are nonzero; otherwise it is false.

ldb-test bytespec integer [Function]

The bytespec argument is a byte specifier.

> (ldb-test (byte 4 1) 16)
T
> (ldb-test (byte 3 1) 16)
NIL
> (ldb-test (byte 3 2) 16)
T

Numbers 12-47

log

Purpose: The function log returns the logarithm of its number argument in the base base.
If no base is specified, e, the base of the natural logarithms, is used.

Syntax: log number &:optional base [Function]

Remarks: If the number argument is negative, log always produces a complex result.

Examples: > (log (exp 3»
3.0
> (log 100 10)
2.0
> (log #c(O 1) #c(O -1»
#C(-1.0 0.0)

See Also: exp

expt

12-48 Sun Common Lisp Reference Manual

logand, logandcl, logandc2, logeqv, logi~r, lognand,
lognor, logorcl, logorc2, logxor

Purpose:

Syntax:

The functions logand, logandc1, logandc2, logeqv, logi~r, lognand, lognor,
logorc1, logorc2, and logxor perform bit-wise logical operations on their integer
arguments.

The function logand returns the logical and of its integer arguments. If no
arguments are given, it returns -1.

The function logandc1 returns the logical and of its first argument with the logical
complement of its second argument.

The function logandc2 returns the logical and of its second argument with the
logical complement of its first argument.

The function logeqv returns the logical equivalence of its integer arguments. If no
arguments are given, it returns -1.

The function lognand performs the logical and operation on its integer arguments
and returns the logical complement of the result.

The function lognor performs the logical inclusive or operation on its integer
arguments and returns the logical complement of the result.

The function logior returns the logical inclusive or of its integer arguments. If no
arguments are given, it returns O.

The function logorc1 returns the logical inclusive or of its first argument with the
logical complement of its second argument.

The function logorc2 returns the logical inclusive or of its second argument with
the logical complement of its first argument.

The function logxor returns the logical exclusive or of its integer arguments. If no
arguments are given, it returns O.

logand .trest integers [Function]

logandc1 integerl integer! [Function]

logandc2 integer 1 integer! [Function]

logeqv .trest integers [Function]

logi~r .trest integers [Function]

lognand integer 1 integer! [Function]

lognor integerl integer! [Function]

Numbers 12-49

logand, logandcl, logandc2, logeqv, logior, lognand, lognor, ...

logorcl integerl integer!

logorc2 integer 1 integer!

logxor trest integers

[Function]

[Function]

[Function]

Remarks: Negative integers are treated as if they were in two's complement representation.

Examples: > (logior 1 2 4 8)
15

See Also:

> (logxor 1 3 7 15)
10
> (logeqv)
-1
> (logand 16 31)
16

lognot

boole

12-50 Sun Common Lisp Reference Manual

logbitp

Purpose:

Syntax:

Remarks:

Examples:

The predicate logbitp is used to test the value of a particular bit in an integer.
The predicate logbitp is true if the value of the bit in integer whose weight is
2indes is 1; otherwise it is false.

logbitp index integer [Function]

Negative integers are treated as if they were in two's complement representation.

> (logbitp 1 1)
NIL
> (logbitp 0 1)
T
> (logbitp 3 10)
T
> (logbitp 1000000000000000000000000000 -1)
T

Numbers 12-51

logcount

Purpose:

Syntax:

ExalDples:

The function logcount counts the values of individual bits of integers.

H the integer argument is positive, it returns the number of bits that have the
value 1.

H integer is negative, it returns the number of bits that have the value 0 in the
two's complement representation of the negative value.

logcount integer [Function]

> (logcount 0)
0
> (logcount -1)
0
> (logcount 7)
3
> (logcount -15)
3
> (logcount (expt 2 100»
1

12-52 Sun Common Lisp Reference Manual

lognot

Purpose:

Syntax:

The function lognot complements all the bits in its integer argument and returns
the result.

lognot integer [Function]

Remarks: Negative integers are treated as if they were in two's complement representation.

Examples: > (lognot 0)
-1
> (lognot 1)
-2
> (lognot -1)
o
> (lognot (1+ (lognot 1000»)
999

Numbers 12-53

logtest

Purpose:

Syntax:

Remarks:

Examples:

The predicate logtest is true if any bit that has the value 1 in integer1 also has
the value 1 in integer2 and if integer1 is not 0; otherwise it is false.

logtest integer1 integer2 [Function]

Negative integers are treated as if they were in two's complement representation.

> (logtest 1 7)
T
> (logtest 1 2)
NIL
> (logtest -2 -1)
T
> (logtest 0 -1)
NIL

12-54 Sun Common Lisp Reference Manual

make-random-state

Purpose:

Syntax:

The function make-random-state creates and returns an object of type random
state.

H the optional state argument is not specified or is nil, make-random-state
returns a copy of the current value of the variable -random-state-. H state is
t, make-random-state creates a new state object and initializes it in a random
way. H the state specifies a state object, make-random-state returns a copy of
that object.

make-random-state "optional state [Function]

Examples: > (random-state-p (setq randy (make-random-state»)

See Also:

T
> (- (setq rl (random 1000» (random 1000»
NIL
> (progn (setq randy-clone (make-random-state randy» nil)
NIL
> (- rl (random 1000 randy»
T
> (- rl (random 1000 randy»
NIL
> (- r1 (random 1000 randy-clone»
T

random

Numbers 12-55

mask-field

Purpose:

Syntax:

Remarks:

The function mask-field performs a mask operation on its integer argument. It
returns an integer that agrees with the integer argument on the bits of the specified
byte and that contains zero-bits elsewhere.

mask-field bytespec integer [Function]

The bytespec argument is a byte specifier.

H integer is a generalized variable that is acceptable to the macro setf, then setf
may be used with mask-field to modify the specified byte.

Examples: > (mask-field (byte 1 5) -1)
32
> (setq a 16)
16
> (mask-field (byte 2 0) a)
3
> a
16
> (setf (mask-field (byte 2 0) a) 1)
1
> a
13

See Also: byte

12-56 Sun Common Lisp Reference Manual

• max, mIn

Purpose:

Syntax:

Remarks:

Examples:

The function max returns the largest of its numerical arguments.

The function min returns the smallest of its numerical arguments.

max number trest more-numbers

min number trest more-numbers

The arguments must be noncomplex numbers.

> (max 1)
1
> (min 1 -1.0)
-1.0
> (max 1 2.0 5/2 4)
4

[Function]

[Function]

Numbers 12-57

minusp, plusp

Purpose:

Syntax:

The predicate minusp is true if its numerical argument is strictly less than zero;
otherwise it is false.

The predicate plusp is true if its numerical argument is strictly greater than zero;
otherwise it is false.

minusp number

plusp number

[Function]

[Function]

Remarks: The number argument must be a noncomplex number.

Examples: > (minusp -1)
T
> (plusp 0)
NIL
> (plusp least-positive-single-float)
T

12-58 Sun Common Lisp Reference Manual

mod, rem

Purpose:

Syntax:

The functions mod and rem are generalizations of the modulus and remainder
functions respectively.

The function mod performs the floor operation on its arguments and returns the
remainder as its result.

The function rem performs the truncate operation on its arguments and returns
the remainder as its result.

mod number divisor

rem number divisor

[Function]

[Function]

Remarks: Both arguments must be noncomplex numbers.

Examples: > (mod 17 4)

See Also:

1
> (rem -1 6)
-1
> (mod -1 6)
4

floor

truncate

Numbers 12-59

most-positive-fixnum, most-negative-fixnum

Purpose:

Syntax:

The constants most-positive-fixnulD and most-negative-fixnulD define the
implementation-dependent limits on the values of fixnums.

The value of most-positive-fixnulD is the positive fixnum of the largest magnitude
provided by the implementation. The value of lDost-positive-fixnUID in Sun
Common Lisp is 229 - 1.

The value of most-negative-fixnum is the negative fixnum of the largest
magnitude provided by the implementation. The value of lDost-negative-fixnUID
in Sun Common Lisp is - 229•

lDost-positive-fixnulD

lDost-negative-fixnUID

[Constant]

[Constant]

Examples: > most-positive-fixnum
536870911
> most-negative-fixnum
-536870912
> (expt 2 29)
536870912

12-60 Sun Common Lisp Reference Manual

most-positive-short-float, most-positive-single-float,
most-positive-double-float, most-positive-Iong-float,
least-positive-short-float, least-positive-single-float,
least-positive-double-float, least-positive-Iong-float,
least-negative-short-float, least-negative-single-float,
least-negative-double-float, least-negative-Iong-float,
most-negative-short-float, most-negative-single-float,
most-negative-double-float, most-negative-Iong-float

Purpose:

Syntax:

These constants define the implementation-dependent limits on the values of
floating-point numbers.

The constants most-positive-short-Hoat, most-positive-single-Hoat, most
positive-double-float, and most-positive-Iong-Hoat designate the positive
floating-point number of the largest magnitude of the given format.

The constants least-positive-short-Hoat, least-positive-single-Hoat, least
positive-double-float, and least-positive-Iong-Hoat designate the smallest
positive (nonzero) floating-point number of the given format.

The constants least-negative-short-Hoat, least-negative-single-Hoat, least
negative-double-Hoat, and least-negative-Iong-Hoat designate the negative
(nonzero) floating-point number of the smallest magnitude of the given format.

The constants most-negative-short-Hoat, most-negative-single-Hoat, most
negative-double-Hoat, and most-negative-Iong-Hoat designate the negative
floating-point number of the largest magnitude of the given format.

most-positive-short-Hoat [Constant]

most-positive-single-Hoat [Constant]

most-positive-double-Hoat [Constant]

most-positive-Iong-Hoat [Constant]

least-positive-short-Hoat [Constant]

least-positive-single-Hoat [Constant]

least-positive-double-Hoat [Constant]

least-positive-Iong-Hoat [Constant]

least-negative-short-Hoat [Constant]

least-negative-single-Hoat [Constant]

Numbers 12-61

most-positive-short-ftoat, most-positive-single-ftoat,

least-negative-double-float

least-negative-Iong-float

most-negative-short-float

most-negative-single-float

most-negative-double-float

most-negative-Iong-float

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

Remarks: In Sun Common Lisp, all floating-point numbers are represented in single-float
format.

Examples: > (zerop least-negative-double-float)
NIL
> (zerop (/ least-negative-double-float 2»
T

12-62 Sun Common Lisp Reference Manual

numberp

Purpose: The predicate numberp is true if its argument is a number; otherwise it is false.

Syntax: numberp obiect

Examples: > (numberp 12)
T
> (numberp (expt 2 130»
T
> (numberp #c(5/3 7.2»
T
> (numberp nil)
NIL
> (numberp (cons 1 2»
NIL

[Function]

Numbers 12-63

numerator, denominator

Purpose: The functions nUIIlerator and deno:rninator operate on rational numbers. They
reduce the rational number to its canonical form and then return the numerator or
denominator respectively.

Syntax: numerator rational

denominator rational

Remarks: The denominator of a reduced rational number is a positive integer.

Examples: > (numerator 1/2)
1
> (denominator 12/36)
3
> (numerator -1)
-1
> (denominator (I -33»
33

12-64 Sun Common Lisp Reference Manual

[Function]

[Function]

phase

Purpose:

Syntax:

Remarks:

The function phase computes the phase of a number. The phase is the angle
between the vector representing the complex number and the positive real axis.

The result is in radians and is greater than -1(" and less than or equal to 1(".

phase number

The phase of a complex number is equivalent to the following:

(atan (imagpart number) (realpart number»

[Function)

Examples: > (phase 1)
0.0
> (phase -1)
3.1416926
> (phase 0)
0.0
> (phase 'c(O 1»
1.6707963

Numbers 12-65

• pi

Purpose: The constant pi is a long floating-point number that approximates the value of the
constant 11".

Syntax: pi [Constant]

Remarks: In Sun Common Lisp, all floating-point numbers are represented in single-float
format.

Examples: > pi
3.1416926
> (cos pi)
-1.0

12-66 Sun Common Lisp Reference Manual

random

Purpose:

Syntax:

The function random is used to generate a random number. It returns a number
that is of the same type as its number argument and whose value is greater than
or equal to 0 and less than number.

An object of type random state may be specified as the state argument. This
argument encodes the internal state maintained by the random number generator.
If the state argument is not specified, the value of the .random-state. variable is
used. The state argument is modified as a side-effect of the call to random.

random number ioptional state [Function]

Remarks: The number argument must be a positive integer or a positive floating-point
number.

Examples: > «== 0 (random 1000) 1000)

See Also:

T
> (progn

(setq rstate1 (make-random-state)
rstate2 (make-random-state»

nil)
NIL
> (== (random 1000 rstate1) (random 1000 rstate2»
T

make-random-state

.random-state.

Numbers 12-67

random-state

Purpose:

Syntax:

The value of the *random-state* variable is an object of type random state. It is
used to encode the internal state maintained by the random number generator.

random-state [Variable]

Examples: > (random-state-p *random-state*)
T
> (random-state-p (setq snap-shot (make-random-state»)
T
> (equalp snap-shot *random-state*)
T
> (random 100) ;while this number is random. the next one will be the same
60 ;because a snapshot of the random state object is used
> (equalp snap-shot *random-state*)
NIL
> (random 100 snap-shot)
60
> (equalp snap-shot *random-state*)
T

rando!Il

make-random-state

12-68 Sun Common Lisp Reference Manual

random-state-p

Purpose:

Syntax:

The predicate random-state-p is true if its argument is a random state object;
otherwise it is false.

random-state-p object [Function]

Examples: > (random-state-p *random-state*)

See Also:

T
> (random-state-p (make-random-state»
T
> (random-state-p 'fool
NIL

make-random-state

Numbers 12-69

rational, rationalize

Purpose:

Syntax:

The functions rational and rationalize convert noncomplex numbers to rational
numbers.

If the number argument is a rational number, both rational and rationalize
simply return that number.

If the argument is a floating-point number, rational returns a rational number that
is exactly equal in value to the floating-point number. The function rationalize
returns a rational number that approximates the floating-point number to the
accuracy of the underlying floating-point representation.

rational number

rationalize number

[Function]

[Function]

Examples: > (rational 0)
o
> (rationalize -11/100)
-11/100
> (rationalize .1)
1/10

12-70 Sun Common Lisp Reference Manual

rationalp

Purpose: The predicate rationalp is true if its argument is a rational number; otherwise it
is false.

Syntax: rationalp object

Remarks: Both ratios and integers are rational numbers.

Examples: > (rationalp 12)
T
> (rationalp 6/S)
T
> (rationalp 1.212)
NIL

[Function]

Numbers 12-71

realpart, imagpart

Purpose: The functions realpart and imagpart return the real and imaginary parts of a
complex number respectively.

Syntax: realpart number

imagpart number

[Function]

[Function]

Remarks: If the number argument is noncomplex, the imaginary part is returned as a zero of
the same type as the real part.

Examples: > (realpart #c(23 41»
23
> (imagpart #c(23 41.0»
41.0
> (realpart #c(23 41.0»
23.0
> (imagpart 23.0)
0.0

12-72 Sun Common Lisp Reference Manual

scale-float

Purpose: The function scale-float scales its float argument.

It returns the value of (* float (expt (float radix float) integer}}, where radix
is the radix of the floating-point representation of float.

Syntax: scale-float float integer

Examples: > (scale-float 1.0 1)
2.0
> (scale-float 10.01 -2)
2.5025
> (scale-float 23 0)
23.0

[Function]

Numbers 12-73

short-float-epsilon, single-float-epsilon,
double-float-epsilon, long-float-epsilon,
short-float-negative-epsilon,
single-float-negative-epsilon,
double-float-negative-epsilon,
long-float-negative-epsilon

Purpose:

Syntax:

Remarks:

The values of these constants are implementation dependent.

The value of each of the constants short-:8oat-epsilon, single-:8oat-epsilon,
double-:8oat-epsilon, and long-:8oat-epsilon is the smallest positive floating
point number E of the given format, such that the following expression is true when
evaluated:

(not (= (float 1 E) (+ (float 1 E) E»)

The value of each of the constants short-:8oat-negative-epsilon, single-:8oat
negative-epsilon, double-:8oat-negative-epsilon, and long-:8oat-negative
epsilon is the smallest positive floating-point number E of the given format, such
that the following expression is true when evaluated:

(not (= (float 1 €) (- (float 1 €) f»~)

short-:8oat-epsilon

single-:8oat-epsilon

double-:8oat-epsilon

long-float-epsilon

short-:8oat-negative-epsilon

single-float-negative-epsilon

double-float-negative-epsilon

long-float-negative-epsilon

[Constant)

[Constant]

[Constant)

[Constant]

[Constant)

[Constant]

[Constant]

[Constant)

In Sun Common Lisp, all floating-point numbers are represented in single-float
format.

12-74 Sun Common Lisp Reference Manual

short-float-epsilon, single-float-epsilon, dOll ble-float-epsilon,

~xanaple8: > {- 1.0 (+ 1.0 single-float-epsilon»
NIL
> {- 1.0 {+ 1.0 (/ single-float-epsilon 2»)
T
> (minusp long-float-negative-epsilon)
NIL

Numbers 12-75

• sIgnum

Purpose:

Syntax:

The function signUlD returns a numerical value that indicates whether its argument
is negative, zero, or positive.

If the number argument is a rational number, signum returns -1 if number is
negative, 0 if it is zero, and 1 if it is positive.

If number is a floating-point number, results equivalent to these are returned in
the same floating-point format as number.

If number is a complex zero, the result is the same as the argument. Otherwise if
number is any other complex number, the phase of the result is the same as that
of the argument, and its magnitude is 1.

signUlD number [Function]

Examples: > (signum 99)
1
> (signum -99/100)
-1
> (signum 0.0)
0.0
> (signum #c(O 33»
#C(O.O 1.0)

12-76 Sun Common Lisp Reference Manual

sin, cos, tan

Purpose: The functions sin, cos, and tan compute trigonometric functions. They compute
the sine, cosine, and tangent functions respectively.

Syntax: sin radians

cos radians

tan radians

Remarks: The radians argument may be a complex number.

Examples: > (sin 0)
0.0
> (cos pi)
-1.0
> (tan #c(O 1»
#C(O.O .7615941)

[Function]

[Function]

[Function]

Numbers 12-77

sinh, cosh, tanh, asinh, acosh, atanh

Purpose:

Syntax:

Remarks:

Examples:

The functions sinh, cosh, tanh, asinh, acosh, and atanh compute hyperbolic
trigonometric functions.

The function sinh computes the hyperbolic sine, cosh the hyberbolic cosine, and
tanh the hyperbolic tangent; asinh computes the hyperbolic arc sine, acosh the
hyperbolic arc cosine, and atanh the hyperbolic arc tangent.

sinh number [Function]

cosh number [Function]

tanh number [Function]

asinh number [Function]

acosh number [Function]

atanh number [Function]

The number argument may be complex.

> (sinh 0)
0.0
> (cosh (complex 0 pi»
#C (-1. 0 0.0)

12-18 Sun Common Lisp Reference Manual

sqrt, isqrt

Purpose:

Syntax:

The functions sqrt and isqrt compute square roots.

The function sqrt returns the principal square root of its numerical argument.

The function isqrt is the integer square root function. It returns the greatest
integer less than or equal to the principal square root of its integer argument. The
integer argument must be a nonnegative integer.

sqrt number

isqrt integer

[Function]

[Function]

Examples: > (sqrt 25)
5.0
> (isqrt 25)
6
> (sqrt -1)
#C(O.O 1.0)
> (sqrt #ceO 2»
#C(1.0 1.0)

Numbers 12-79

truncate, round, ftruncate, fround

Purpose:

Syntax:

The functions truncate, round, ftruncate, and fround perform type conversion
operations on noncomplex numbers.

The functions truncate and round convert their arguments to integers. The
function truncate truncates towards zero. It returns the largest integer in
magnitude that is less than or equal to its argument in magnitude and that is of the
same sign as its argument. The function round rounds to the nearest integer. If
its argument lies exactly between two integers, it returns the nearest even integer.

The functions ftruncate and fround produce results identical to those of
truncate and round, except that the results are returned in floating-point format.

If the optional argument divisor is given, then the result is mathematically
equivalent to dividing number by divisor and then applying the truncate or round
operation. The divisor must also be a noncomplex number.

truncate number toptional divisor

round number toptional divisor

ftruncate number toptional divisor

fround number toptional divisor

[Function]

[Function]

[Function]

[Function]

Re:marks: Each of these functions returns the remainder of the result as a second value. If
both arguments are of the same type, the remainder is of that type also; otherwise
it is a floating-point number.

Examples: > (truncate 1)
1
o
> (truncate .5)
o
.S
> (round .S)
o
.S
> (ftruncate -7 2)
-3.0
-1.0
> (fround -7 2)
-4.0
1.0

12-80 Sun Common Lisp Reference Manual

zerop

Purpose:

Syntax:

The predicate zerop is true if its numerical argument is equal to zero; otherwise it
is false.

zerop number [Function]

Examples: > (zerop 0)
T
> (zerop 1)
NIL
> (zerop -0.0)
T
> (zerop 0/100)
T
> (zerop #ceo O.O)}
T

Numbers 12-81

12-82 Sun Common Lisp Reference Manual

Chapter 13. Characters

Characters 13-1

Chapter 13. Characters

About Characters ... 13-3
Character Set .. 13-3
Character Attributes ... 13-4

Categories of Operations. 13-5
Data Type Predicates .. 13-5
Character Attributes. 13-5
Predicates on Characters ... 13-5
Character Comparison Operations . 13-6
Character Construction and Conversion Operations . 13-6

alpha-char-p .. 13-7
alphanumericp .. 13-8
char-bit ... 13-9
char-bits .. 13-10
char-bits-limit ... 13-11
char-code ... 13-12
char-code-limit. 13-13
char-control-bit, char-meta-bit, char-super-bit, char-hyper-bit 13-14
char-font ... 13-15
char-font-limit ... 13-16
char-int .. 13-17
char-name, name-char . 13-18
char-upcase, char-downcase ... 13-20
char=, char/=, char<, char<=, char>, char>=, char-equal, char-not-equal,

char-lessp, char-not-greaterp, char-greaterp, char-not-Iessp . 13-21
character . 13-23
characterp . 13-24
code-char . 13-25
digit-char . 13-26
digit-char-p .. 13-27
graphic-char-p ... 13-28
int-char .., . 13-29
make-char 13-30
set-char-bit ... 13-31
standard-char-p .. 13-32
string-char-p .. 13-33
upper-case-p, lower-case-p, both-case-p ... 13-34

13-2 Sun Common Lisp Reference Manual

About Characters

Characters in Common Lisp are data objects that represent printed symbols or operations
for formatting text.

Character Set

Sun Common Lisp supports an 8-bit ASCII character set in the following manner. The
set of characters that corresponds to the values between 0 and 127 inclusive represents
the standard 7-bit ASCII character set. The collating sequence for this set of characters
is defined in Figure 13-1. This table uses the standard ASCII character names; the
corresponding values are given in octal format. The octal value for a particular character
is given by the sum of its column and row numbers. Characters whose values lie between
127 and 255 inclusive are printed in hexadecimal form. For example, #\cCl represents the
character whose value is 193.

0 1 ~ 9 -I 5 6 7
000 NUL SOH STX ETX EOT ENQ ACK BEL
010 BS HT NL VT NP CR SO SI
O~O DLE DCl DC2 DC3 DC4 NAK SYN ETB
090 CAN EM SUB ESC FS GS RS US
0-10 SP ! " # $ % t •
050 () * + • - /
060 0 1 2 3 4 5 6 7

070 8 9 : ; < = > ?

100 a A B C D E F G
110 H I J K L M N 0

1~0 p Q R S T U V w
190 X Y Z [\] .. -
1-10 • a b c d e f g

150 h i j k 1 m D 0

160 p q r s t u v w

170 x y z { I } - DEL

Figure 13-1. 7-blt ASCII Table

Characters 13-3

Character Attributes

Each character has three attributes: code, bits, and font. A character is uniquely
defined by its code attribute, bits attribute, and font attribute. All attributes are
nonnegative fixnums. In Sun Common Lisp, the font attribute of all characters is o.
Sun Common Lisp explicitly names four bits of the bits attributes. These are the
:control, :meta, :super, and :hyper bits. Their weights are defined by the constants
char-control-bit, char-meta-bit, char-super-bit, and char-hyper-bit. The weight of
the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8.

Standard Characters and Printing Characters

Common Lisp defines a standard character set as a subtype of characters called standard
characters. The standard characters consist of the newline character and the 95 printing
characters. The font a.nd bits attributes of all standard characters are o.
The following table lists the printing characters according to the collating sequence. The
printing characters include the space character. The printing characters are also known as
graphic characters.

u ! " # $ % .t • () * + / o 1 2 3 4 5 6 7 8 9 < > ?
G A B C D E F G H I J K L M N 0 p Q R S T U V W X Y Z [\] ...

"

a b c d e f g h i j k 1 m n 0 p q r 8 t u v w x y z { I } -

Figure 13-2. Printing Characters

The alphabetic characters are a subset of the graphic characters. The bits attribute of
any alphabetic character is o.

String Characters

String characters are a subtype of characters that can be contained in strings. A
string character is any character whose bits a.nd font attributes are o. All of the standard
characters are thus string characters.

13-4 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations on characters according to functionality.

Data Type Predicates

characterp

This predicate determines whether an object is a character.

Character Attributes

char-bit
char-bits
char-bits-limit
char-code
char-co de-limit
char-control-bit

char-hyper-bit
char-met a-bit
char-super-bit
char-font
char-font-limit

These functions and constants provide information on the properties of character
objects.

Predicates on Characters

alpha-char-p
alphanumericp
both-case-p
digit-char-p
graphic-char-p

lower-case-p
upper-case-p
standard-char-p
string-char-p

These predicates test properties of characters.

Characters 13-5

Character Comparison Operations

char =
char/=
char <
char>
char < =
char> =

These functions compare character objects.

char-equal
char-not-equal
char-Iessp
char-greaterp
char-not-greaterp
char-not-Iessp

Character Construction and Conversion Operations

character
char-up case
char-downcase
code-char
digit-char
make-char

set-char-bit
char-int
int-char
char-name
name-char

These functions are used to create and modify character objects and to convert
between different representations for characters.

13-6 Sun Common Lisp Reference Manual

alpha-char-p

Purpose:

Syntax:

Remarks:

The predicate alpha-char-p is true if its character argument is an alphabetic
character; otherwise it is false.

alpha-char-p char [Function]

The alphabetic characters are a subset of the graphic characters. The bits attribute
of any alphabetic character is o.
The standard characters A through Z and a through z are alphabetic characters.

Examples: > (alpha-char-p #\a)
T
> (alpha-char-p #\5)
NIL
> (alpha-char-p #\Bell)
NIL

Characters 13-7

alphanumericp

Purpose:

Syntax:

Remarks:

The predicate alphanumericp is true if. its character argument is an alphabetic
character or a numeric character; otherwise it is false.

alphanumericp char [Function]

The alphanumeric characters are a subset of the graphic characters. The bits
attribute of any alphanumeric character is o.
The standard characters A through Z, a through z, and 0 through 9 are
alphanumeric characters.

Examples: > (alphanwnericp #\Z)
T
> (alphanwnericp #\9)
T
> (alphanwnericp #\0)
NIL
> (alphanumericp #\Bell)
NIL

digit-char-p

13-8 Sun Common Lisp Reference Manual

char-bit

Purpose:

Syntax:

RelDarks:

The function char-bit tests the bit whose name is name in the given character
object. It returns a non-nil value if the bit is set and nil if the bit is not set.

char-bit char name [Function]

The function char-bit recognizes the names :control, :meta, :super, and :hyper
as names of character bits.

If the character argument is specified in a form that is acceptable to the macro
setf, then setf may be used with char-bit to modify the given bit.

Examples: > (char-bit (make-char #\a 1) : control)

See Also:

T
> (char-bit #\a :meta)
NIL
> (let ((tmp #\a»

T

(setf (char-bit tmp :hyper) t)
(char-bit tmp :hyper»

set-char-bit

Characters 13-9

char-bits

Purpose: The function char-bits returns the bits attribute of its character argument. The
result is a nonnegative integer less than the value of the constant char-bits-limit.

Syntax: char-bits char

Examples: > (char-bits #\b)

See Also:

o
> (char-bits (make-char #\0 5»
5
> (char-bits #\Control-A)
1

char-bits-limit

13-10 Sun Common Lisp Reference Manual

[Function]

char-hits-limit

Purpose: The constant char-hits-limit is a nonnegative integer that defines the upper
exclusive bound on the value of the result of the function char-bits.

The value of char-bits-limit in Sun Common Lisp is 24.

Syntax: char-bits-limit [Constant]

Remarks: The function char-bits returns the bits attribute of a given character.

Examples: > char-bits-limit
16

See Also: char-bits

Characters 13-11

char-code

Purpose: The function char-code returns the code attribute of its character argument. The
result is a nonnegative integer less than the value of the constant char-code-limit.

Syntax: char-code char

Examples: > (char-code #\Bell)

See Also:

7
> (char-code #\a)
97
> (char-code #\Control-a)
65
> (char-code #\Control-\a)
97

char-co de-limit

13-12 Sun Common Lisp Reference Manual

[Function]

char-co de-limit

Purpose: The constant char-co de-limit is a nonnegative integer that defines the upper
exclusive bound on the value of the result of the function char-code.

The value of char-co de-limit in Sun Common Lisp is 28.

Syntax: char-co de-limit [Constant]

Remarks: The function char-code returns the code attribute of a given character.

Examples: > char-code-limit
256

See Also: char-code

Characters 13-13

char-control-hit, char-met a-hit, char-super-hit,
char-hyper-hit

Purpose: The constants char-control-bit, char-meta-bit, char-super-bit, and char
hyper-bit define the weights of the four named bits attributes.

The value of char-control-bit is 1; char-meta-bit, 2; char-super-bit, 4; and
char-hyper-bit, 8.

Syntax: char-control-bit

char-met a-bit

char-super-bit

char-hyper-bit

Examples: > char-control-bi t
1
> char-met a-bit
2
> char-super-bit
4

8

13-14 Sun Common Lisp Reference Manual

[Constant]

[Constant]

[Constant]

[Constant]

char-font

Purpose: The function char-font returns the font attribute of its character argument. The
result is a nonnegative integer less than the value of the constant char-font-limit.

Syntax: char-font char

Remarks: In Sun Common Lisp, the font attribute of all characters is o.

Examples: > (char-font '\Control-A)
o

See Also: char-font-limit

[Function]

Characters 13-15

char-font-limit

Purpose: The constant char-font-limit is a nonnegative integer that defines the upper
exclusive bound on the value of the result of the function char-font.

The value of char-font-limit in Sun Common Lisp is 1.

chaur-font-limit

Remarks: The function char-font returns the font attribute of a given character.

Examples: > char-font-limit
1

See Also: char-font

13-16 Sun Common Lisp Reference Manual

[Constant]

char-int

Purpose:

Syntax:

The function char-int returns the nonnegative integer that encodes its character
argument.

char-int char [Function]

Remarks: If the font and bits attributes of the character are 0, the results of char-int and
char-code are the same.

Examples: > (char-int #\Null)

See Also:

o
> (char-int #\Control-Null)
256
> (char-int #\Meta-Null)
512
> (char-int #\Super-Null)
1024
> (char-int #\Hyper-Null)
2048

char-code

int-char

Characters 13-17

char-name, name-char

Purpose:

Syntax:

Remarks:

The functions char-name and name-char provide mappings between characters
and character names.

The function char-name returns the name of its character argument as a string.
If the character has no name, char-name returns nil.

The function name-char returns the character object whose name is name. If
such a character does not exist, then name-char returns nil.

Characters having names may be written as #\ followed by the character name.
Character names are not case sensitive. All nongraphic characters whose font and
bits attributes are 0 have names.

char-name char

name-char name

[Function]

[Function]

The function name-char recognizes, and the function char-name returns, the
character names in the following table. The ASCII values of the characters are
given in octal format.

""T __ 11 n D~_ 1-4 ETB 27 l'lUl1 v .I. 006'0 ... ~
SOH 1 Return 15 CAN 30
STX 2 SO 16 EM 31
ETX 3 SI 17 SUB 32
EOT 4 DLE 20 ESC 33
ENQ 5 DC1 21 FS 34
ACK 6 DC2 22 GS 35
Bell 7 DC3 23 RS 36
Backspace 10 DC4 24 US 37
Tab 11 NAK 25 Space 40
Newline 12 SYN 26 Rub out 177
VT 13

The function name-char also recognizes the following standard ASCII names,
although the longer names above are returned by char-name:

NUL
BEL
BS

o
7

10

HT
NL
NP

11
12
14

CR
SP
DEL

15
40

177

13-18 Sun Common Lisp Reference Manual

char-name, name-char

The function name-char also recognizes the following character name as a name
for the newline character:

Linefeed 12

The function name-char also recognizes names of the form cxx, where xx are
hexadecimal digits, and returns the character with the given code. The function
char-name returns names of this form for characters with codes greater than 127.

The name argument of name-char must be a symbol or a string. The name
argument is not case sensitive.

The function name-char is used by the reader to parse characters entered with
the #\ syntax. The function char-name is used by the printer to print characters
when .print-escape. is non-nil.

Examples: > (char-name #\Cr)
"Return"
> (char-name #\a)
NIL
> (char-name #\Control-Null)
NIL
> (name-char 'linefeed)
#\Newline
> (name-char "A")
NIL
> (name-char "space")
#\Space

Characters 13-19

char-upcase, char-downcase

Purpose:

Syntax:

The functions char-up case and char-downcase perform case conversions upon
characters.

The function char-up case attempts to convert its character argument to its
uppercase equivalent. It returns a character with the same bits and font attributes
as its argument. H the code attribute of the result differs from that of the
argument, the case conversion has succeeded.

The function char-downcase attempts to convert its character argument to its
lowercase equivalent. It returns a character with the same bits and font attributes
as its argument. H the code attribute of the result differs from that of the
argument, the case conversion has succeeded.

char-up case char

char-downcase char

[Function]

[Function]

Remarks: These functions perform case conversions only on alphabetic characters. If the bits
attribute of char is nonzero, char-up case and char-downcase have no effect.

Examples: > (char-upcase #\a)
#\A

See Also:

> (char-upcase #\A)
#\A
> (char-downcase #\A)
#\a
> (char-downcase #\9)
#\9

upper-case-p

lower-case-p

13-20 Sun Common Lisp Reference Manual

char=, char/=, char<, char<=, char>, char>=,
char-equal, char-not-equal, char-Iessp,
char-not-greaterp, char-greaterp, char-not-Iessp

Purpose:

Syntax:

These predicates compare character objects. If the characters are standard
characters, they are compared according to the ordering given by Figure 13-1.

If characters differ in either their code, bits, or font attributes, they are considered
to be different.

If characters agree in their bits and font attributes, they are compared according
to the ordering of their code attributes.

The predicate char= is true if the specified characters are all the same; otherwise
it is false.

The predicate char/= is true if the specified characters are all differe~t; otherwise
it is false.

The predicate char< is true if the specified characters are all in increasing order;
otherwise it is false.

The predicate char < = is true if the specified characters are all in nondecreasing
order; otherwise it is false.

The predicate char> is true if the specified characters are all in decreasing order;
otherwise it is false.

The predicate char>= is true if the specified characters are all in nonincreasing
order; otherwise it is false.

The predicates char-equal, char-not-equal, char-Iessp, char-not-greaterp,
char-greaterp, and char-not-Iessp are like char=, char /=, char<, char<=,
char>, and char>= respectively but ignore differences in case and in bits
attributes.

char= character "rest more-characters

char / = character lrest more-characters

char< character "rest more-characters

char> character "rest more-characters

char< = character lrest more-characters

char> = character lrest more-characters

char-equal character lrest more-characters

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Characters 13-21

char=, char/=, char<, char<=, char>, char>=, char-equal, ...

char-not-equal character .trest more-characters

char-Iessp character .trest more-characters

char-greaterp character .trest more- characters

char-not-greaterp character .trest more-characters

char-not-Iessp character .trest more-characters

Examples: > (char= #\A #\A)
T
> (char= #\A #\a)
NIL
> (char>= #\z #\x #\n #\a #\a)
T
> (char-equal #\a #\A #\a)
T
> (char-greaterp #\b #\a #\A)
NIL

13-22 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

character

Purpose:

Syntax:

The function character coerces its object to be a character. H the coercion is not
possible, an error is signaled.

The following objects may be coerced into characters: strings of length 1,
symbols whose print names are of length 1, and nonnegative integers n for which
(int-char n) is defined.

character object [Function]

Remarks: Coercing a string of length 1 results in the character contained in that string.
Coercing a symbol whose print name is of length 1 results in the character
contained in that print name string. Coercing a nonnegative integer for which
(int-char n) is defined results in the character defined by (int-char n).

Examples: > (character "a")
#\a

See Also:

> (character 'a)
#\A
> (character 120)
#\x

coerce

int-char

Characters 13-23

characterp

Purpose: The predicate characterp is true if its argument is a character; otherwise it is
false.

Syntax: characterp object

Examples: > (characterp #\rubout)
T
> (characterp #\newline)
T
> (characterp #\a)
T
> (characterp 12)
NIL

13-24 Sun Common Lisp Reference Manual

[Function]

code-char

Purpose: The function code-char creates and returns a character object with the specified
code, bits, and font attributes. H it is not possible to create such a character,
code-char returns nil.

Syntax: code-char code ioptional (bits 0) (font 0) [Function]

Remarks: The code, bits, and font arguments must all be nonnegative integers.

Examples: > (code-char 65)
#\A
> (code-char 65 15)
#\Control-Meta-Super-Hyper-A
> (code-char 65 0 1)
NIL

See Also: make-char

Characters 13-25

digit-char

Purpose:

Syntax:

The function digit-char creates and returns a character object that represents the
value weight in the specified radix and that has the spec~fied font attribute.

If it succeeds, digit-char returns the new character. If it is not possible to create
such a character object, digit-char returns nil.

If the font argument is 0, if radix is an integer greater than or equal to 2 and less
than or equal to 36, and if weight is a nonnegative integer less than radix, then
digit-char always succeeds.

digit-char weight etoptional (radix 10) (font 0) [Function]

Remarks: If more than one such character is possible, one of these is returned consistently;
uppercase characters are favored over lowercase characters.

Examples: > (digit-char 0)
#\0
> (digit-char 10 11)
#\A
> (digit-char 10 10)
NIL

13-26 Sun Common Lisp Reference Manual

digit-char-p

Purpose:

Syntax:

Remarks:

The predicate digit-char-p tests whether its character argument is a digit of the
specified radix. If it is, digit-char-p returns a nonnegative integer (in radix 10)
that represents the weight of the character in the specified radix; otherwise it
returns nil.

digit-char-p char I:optional (radix 10) [Function]

The radix argument must be a nonnegative integer.

The standard characters 0 through 9 and A through Z (or, equivalently, a through
z) can be digit characters. The weights in radix 10 of the standard characters A
through Z (or a through z) are 10 through 35 respectively.

Examples: > (digit-char-p #\0)
o
> (digit-char-p #\a 11)
10
> (digit-char-p #\Z 36)
35
> (digit-char-p #\D 13)
NIL

Characters 13-27

graphic-char-p

Purpose:

Syntax:

Remarks:

The predicate graphic-char-p tests whether its character argument is a graphic,
or printing, character. It is true if char is a printing character; otherwise it is false.

graphic-char-p char [Function]

The graphic characters consist of all of the standard characters except the newline
character.

The bits attribute of any graphic character is O.

Examples: > (graphic-char-p #\-)
T
> (graphic-char-p #\Space)
T
> (graphic-char-p #\Bell)
NIL

13-28 Sun Common Lisp Reference Manual

int-char

Purpose: The function int-char returns the character object that is encoded by the integer
argument. If no such character exists, int-char returns nil.

Syntax: int-char integer [Function]

Remarks: For any character object c that is returned by int-char, the value of (char-int c)
is equal to the value of the integer argument.

Examples: > (int-char 65)
#\A
> (int-char 97)
#\a

See Also: char-int

Characters 13-29

make-char

Purpose: The function make-char creates and returns a character object whose code
attribute is the same as that of its character argument and whose bits and font
attributes are specified by the bits and font arguments.

H it is not possible to create such a character, make-char returns nil.

Syntax: make-char char &optional (bits 0) (font 0)

Remarks: The bits and font arguments must be nonnegative integers.

H both the bits and font arguments are 0, make-char always succeeds.

Examples: > (make-char #\a)
#\a
> (make-char #\A 15)
#\Control-Meta-Super-Hyper-A
> (make-char #\a 0 char-font-limit)
NIL

See Also: code-char

13-30 Sun Common Lisp Reference Manual

[Function]

set-char-bit

Purpose:

Syntax:

The function set-char-bit is used to set a bit in a character object. It returns a
new character object in which the bit with the given name has the specified logical
value.

set-char-bit char name logical-value [Function]

Remarks: The function set-char-bit recognizes the names :control, :meta, :super, and
:hyper as names of character bits.

Examples: > (set-char-bi t #\a : control nil)
#\a
> (set-char-bit #\0 :control t)
#\Control-O

Characters 13-31

standard-char-p

Purpose: The predicate standard-char-p tests whether its character argument is a standard
character. It is true if char is a standard character; otherwise it is false.

Syntax: standard-char-p char

Remarks: The font and bits attributes of any standard character are O.

Examples: > (standard-char-p #\Space)
T
> (standard-char-p #\-)
T
> (standard-char-p #\Bell)
NIL

13-32 Sun Common Lisp Reference Manual

[Function]

string-char-p

Purpose:

Syntax:

The predicate string-char-p tests whether its character argument is a character
that can be an element of a string. It is true if the character is a string character;
otherwise it is false.

string-char-p char [Function]

Remarks: The standard characters are a subset of the string characters. The bits and font
attributes of any string character are o.

Examples: > (string-char-p #\-)
T
> (string-char-p #\Space)
T
> (string-char-p #\Bell)
T
> (string-char-p (code-char 32 15»
NIL

Characters 13-33

upper-case-p, lower-case-p, both-case-p

Purpose:

Syntax:

Remarks:

The predicates upper-case-p, lower-case-p, and both-case-p test the case of a
character.

The predicate upper-case-p is true if its argument is an uppercase character;
otherwise it is false.

The predicate lower-case-p is true if its argument is a lowercase character;
otherwise it is false.

The predicate both-case-p is true if its argument is an uppercase character and a
corresponding lowercase character exists or if its argument is a lowercase character
and a corresponding uppercase character exists.

upper-case-p char

lower-case-p char

both-case-p char

[Function]

[Function]

[Function]

Any character that is either an uppercase character or a lowercase character is an
alphabetic character and therefore a printing character. Its bits attribute is o.
The standard characters A through Z are uppercase, and a through z are lowercase.

Examples: > (upper-case-p #\A)

See Also:

T
> (upper-case-p #\a)
NIL
> (lower-case-p #\Bell)
NIL
> (both-case-p #\a)
T
> (both-case-p #\5)
NIL

char-up case

char-downcase

13-34 Sun Common Lisp Reference Manual

Chapter 14. Sequences

Sequences 14-1

Chapter 14. Sequences

About Sequences .. 14-3
Categories of Operations .. 14-4

Basic Sequence Operations . 14-4
Searching Sequences .. 14-4
Sorting and Merging Sequences .. 14-4
Modifying Sequences . 14-5
Concatenating, Mapping, and Reducing Sequences 14-5

concatenate .. 14-6
copy-seq ... 14-7
count, count-if, count-if-not ... 14-8
elt ... 14-9
every, some, notevery, not any ... 14-10
fill .. 14-11
find, find-if, find-if-not ... 14-12
length .. 14-13
make-sequence . 14-14
map ... 14-15
merge .. 14-16
mismatch . 14-17
position, position-if, position-if-not ... 14-18
reduce ,""', .. , 14-20
remove, remove-if, remove-if-not, delete, delete-if, delete-if-not 14-21
remove-duplicates, delete-duplicates .. 14-23
replace ... 14-24
reverse, nreverse ... 14-25
search .. 14-26
sort, stable-sort .. 14-27
subseq ... 14-28
substitute, substitute-if, substitute-it-not, nsubstitute, nsubstitute-if,

nsubstitute-if-not ... 14-29

14-2 Sun Common Lisp Reference Manual

About Sequences

Sequences are ordered sets of elements and include both lists and vectors (one-dimensional
arrays). Common Lisp provides operations for searching, modifying, sorting, merging,
mapping, concatenating, and reducing sequences.

The operations presented here apply to all types of sequences. Operations that are specific
to lists and to vectors are discussed in the chapters "Lists" and "Arrays" respectively.

Sequences 14-3

Categories of Operations

This section groups operations on sequences according to functionality.

Basic Sequence Operations

copy-seq
elt
length

make-sequence
subseq

These functions create new sequences and perform basic sequence operations.

Searching Sequences

count
count-if
count-if-not
find
find-if
find-if-not

mismatch
position
position-if
position-if-not
search

These functions search sequences to locate elements that meet some criterion.

Sorting and Merging Sequences

merge
sort

These functions sort and merge sequences.

14-4 Sun Common Lisp Reference Manual

stable-sort

Modifying Sequences

delete
delete-if
delete-if-not
delete-duplicates
fill
nsubstitute
nsubstitute-if
nsubstitute-if-not
remove
remove-if

remove-if-not
remove-duplicates
replace
reverse
nreverse
substitute
substitute-if
substitute-if-not

These functions modify sequences or produce modified copies of their sequence
arguments.

Concatenating, Mapping, and Reducing Sequences

every
some
not every
not any

concatenate
map
reduce

These functions perform concatenation, mapping, and reduction operations on
sequences.

Sequences 14-5

concatenate

Purpose:

Syntax:

The function concatenate creates and returns a new sequence that contains copies
of the individual elements of all of the sequence arguments in the order in which
they occur in the argument list. The new sequence is of type result-type, which
must be a subtype of the sequence data type and compatible with the type of the
sequence elements.

concatenate result-type trest sequences [Function]

Examples: > (concatenate 'string "all" " " "together" " " "now")
"all together now"

See Also:

> (concatenate 'list)
NIL
> (concatenate 'list "all" "boy")
(#\a #\1 #\1 #\b #\0 #\y)

append

14-6 Sun Common Lisp Reference Manual

copy-seq

Purpose: The function copy-seq creates and returns a copy of its sequence argument.

Syntax: copy-seq sequence

Remarks: The resulting sequence is equalp to the original.

Examples: > (setq str "a string")
"a string"
> (equalp str (copy-seq str»
8
> (eql str (copy-seq str»
NIL

[Function]

Sequences 14-7

count, count-if, count-if-not

Purpose:

Syntax:

Remarks:

The functions count, count-if, and count-if-not count either the number of
sequence elements that match a particular item or the number of elements that
satisfy some test predicate. The count value is returned as a nonnegative integer.

If the :start and :end keyword arguments are specified, only the subsequence they
delimit is searched.

count item sequence "key : from-end : test : test-not
:start :end :key

count-if test sequence "key : from-end : start : end : key

count-if-not test sequence "key : from-end : start : end : key

[Function]

[Function]

[Function]

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

The function eql is the default that is used by count for matching the item
................. " ; "' l. "' ,.. •• .n 1........................ li';+l. l. ... 1, ,..,.."' .. ,1 Y1n 4-".~4- "' l..n
~6u ".'C u uo6a. ~u u 'C ~'C'iu'C "''C 'C ... 'C 'C u~. ~ .. u oe .. u oe AoeJ "V.I. Uo.l.6u oe u 'C~ ... V.I. u 'C

keyword argument :test-not may be used with count to specify a test function
other than eql.

The keyword :key may be used to specify that a part of a sequence element should
be tested. The arguments passed to the test function of count or to the test
predicate of count-if or count-if-not are extracted from the sequence elements
according to the :key function. If :key is not specified, the elements themselves
are used.

The :from-end argument has no effect on the result.

Examples: > (count #\a "how many A's are there in here?")
2
> (count-if-not #'oddp '((i) (2) (3) (4» :key #'car)
2

14-8 Sun Common Lisp Reference Manual

elt

Purpose:

Syntax:

Remarks:

The function elt accesses and returns the sequence element specified by index.

elt sequence index [Function]

The index is an offset value from the beginning of the sequence; indexing is
zero-origin. The index value must be a nonnegative integer less than the length
of the sequence. If the sequence is a vector having a fill pointer, eIt observes the
length specified by the fill pointer.

The macro setf may be used with elt to destructively replace a sequence element.

Examples: > (setq str "0123456789")
"0123456789"
> (elt str 6)
#\6
> (setf (elt str 0) #\#)
#\#
> str
"#123456789"

See Also: aref

nth

Sequences 14-9

every, some, notevery, notany

Purpose:

Syntax:

The functions every, some, notevery, and notany test sequence elements for
satisfaction of a given predicate. These functions operate on as many sequence
arguments as the given predicate takes arguments. The predicate is invoked on
each successive set of elements, one from each sequence.

The function every returns nil as soon as any invocation of the predicate returns
nil. H the end of any sequence is reached, every returns a non-nil value.

The function some returns the first non-nil value that is returned by the invocation
of the predicate. H the end of any sequence is reached, some returns nil.

The function notevery returns a non-nil value as soon as any invocation of the
predicate returns nil. H the end of any sequence is reached, notevery returns nil.

The function notany returns nil as soon as any invocation of the predicate returns
a non-nil value. H the end of any sequence is reached, notany returns a non-nil
value.

every predicate sequence trest more-sequences

some predicate sequence trest more-sequences

notevery predicaie sequence «rest more-sequences

not any predicate sequence A:rest more-sequences

[Function]

[Function]

[Funct-ion]

[Function]

Examples: > (every #. string-char-p "abc")
T
> (some #'= '(1 2 3 4 5) '(5 4 3 2 1»
T
> (notevery #'< '(1 2 3 4) '(5 618) '(9 10 11 12»
NIL

14-10 Sun Common Lisp Reference Manual

fill

Purpose:

Syntax:

Remarks:

The function fill destructively modifies its sequence argument by replacing each
element with the specified item. It returns the modified sequence.

IT the :start and :end keyword arguments are specified, only the subsequence they
delimit is modified.

fill sequence item I;key : start : end [Function]

The item argument must be an object that is compatible with the sequence type.

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

Examples: > (fill • (0 1 2 3 4 6) • (444»

See Also:

«444) (444) (444) (444) (444) (444»
> (fill "01234" #\e :start 3)
"012ee"

replace

Sequences 14-11

find, find-if, find-if-not

Purpose:

Syntax:

Remarks:

The functions find, find-if, and find-if-not each search a sequence for an element
that matches a particular item or an element that satisfies some test predicate.
If they succeed, the leftmost such element found is returned; otherwise nil is
returned.

If the :start and :end keyword arguments are specified, only the subsequence they
delimit is searched.

If the :from-end keyword argument is non-nil, these functions search for the
rightmost element that meets the test criterion.

find item sequence .tkey :from-end :test :test-not
:start :end :key

find-if test sequence .tkey : from-end : start : end : key

find-if-not test sequence .tkey : from-end : start : end : key

[Function]

[Function]

[Function)

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
oi the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

The function eql is the default that is used by find for matching the item argument
against the sequence elements. Either the keyword argument :test or the keyword
argument :test-not may be used with find to specify a test function other than
eql.

The keyword :key may be used to specify that a part of a sequence element
should be tested. The arguments passed to the test function of find or to the
test predicate of find-if or find-if-not are extracted from the sequence elements
according to the :key function. If :key is not specified, the elements themselves
are used.

Examples: > (find #\d "here are some letters that can be looked at" :test #'char»
#\Space
> (find-if #'oddp '(1 2 3 4 6) :end 3 :from-end t)
3

14-12 Sun Common Lisp Reference Manual

length

Purpose:

Syntax:

The function length returns the length of its sequence argument as an integer
value.

If the sequence is a vector having a fill pointer, length returns the value specified
by the fill pointer.

length sequence [Function]

Remarks: The function length may loop infinitely on circular lists, unlike list-length.

Examples: > (length "abc")

See Also:

3
> (setq str (make-array '(3) :element-type 'string-char

:initial-contents "abc"
:fill-pointer t»

"abc"
> (length str)
3
> (setf (fill-pointer str) 2)
2
> (length str)
2

list-length

Sequences 14-13

make-sequence

Purpose:

Syntax:

Remarks:

The function make-sequence creates and returns a sequence of the specified type
and length.

If the :initial-element argument is specified, all the sequence elements are
initialized to its value.

make-sequence type size &key : initial-element [Function]

The type argument must specify a subtype of the sequence data type.

The :initial-element argument must be of a type compatible with the type of the
sequence.

Examples: > (make-sequence 'list 0)
NIL

See Also:

> (make-sequence 'string 26 :initial-element #\.)

"

make-array

make-list

"

14-14 Sun Common Lisp Reference Manual

map

Purpose:

Syntax:

•
The function map creates and returns a new sequence. The mapping operation
involves applying a function to successive sets of arguments in which one argument
is obtained from each sequence. The resulting sequence contains the results
returned by the function.

The junction argument must take as many arguments as there are sequence
arguments.

The resulting sequence is the same length as the shortest of the sequence arguments.
It is of type result-type, which must be a subtype of the sequence data type and
compatible with the types of the sequence elements.

map result-type junction sequence "rest more-sequences [Function]

Remarks: The result-type argument may be specified as nil. In this case, the junction
argument is invoked only for its side effects, and map returns nil.

Examples: > (map 'string #' (lambda (x y)
(char "01234567890ABCDEF" (mod (+ x y) 16»)

See Also:

"AAAA"

'(1 2 3 4)
'(1098 7»

> (setq seq '("lower" "UPPER" ,It, "123"»
("lower" "UPPER" "" "123")
> (map nil #'nstring-upcase seq)
NIL
> seq
("LOWER" "UPPER" "" "123")

map car

Sequences 14-15

merge

Purpose:

Syntax:

Remarks:

•
The function merge destructively merges two sequences and returns the resulting
sequence. The sequence arguments are merged according to the order determined
by the predicate and :key arguments. The resulting sequence is of type result-type,
which must be a subtype of the sequence data type and compatible with the types
of the sequence elements.

The order of the elements in the result sequence is determined by the predicate
argument. The predicate must be a function of two elements. It should return a
non-nil value if the element corresponding to its first argument is to precede the
element corresponding to the second in the result sequence; otherwise it should
return nil.

If the sequences were originally sorted according to the given predicate, the result
sequence is sorted in like manner. If not, the result is an interleaving of the
two sequences in which the order of the elements of each individual sequence is
preserved in the result sequence.

merge result-type sequencel sequence£ predicate tkey : key [Function]

The merge operation is stable. That is, if two elements are considered equivalent
by the predicate function, the elenlent frorn 8equencel precedes the element from
sequence£ in the resulting sequence.

The keyword :key may be used to specify that a part of a sequence element should
be tested. Its argument should be a function of one argument that extracts the
part to be tested from the sequence element. If :key is not specified, the element
itself is treated as the key.

Examples: > (merge 'list '(1 3 5) '(2 4 6) #' <)
(1 2 3 4 5 6)

14-16 Sun Common Lisp Reference Manual

mismatch

Purpose:

Syntax:

Remarks:

The function mismatch compares two sequences element by element. If they are
of the same length and if each corresponding pair of elements satisfies the test, then
mismatch returns nil. Otherwise mismatch returns the offset of the leftmost
nonmatching element from the beginning of sequence1.

If one sequence is shorter than the other, but the two otherwise match, the result
is the offset from the beginning of sequence1 of the element following the last one
tested.

If the :start and :end keyword arguments are specified, only the subsequences
they delimit are compared.

If the :from-end keyword argument is non-nil, the effect is as if the two sequences
were compared from right to left. If they fail to match, mismatch returns one
plus the offset from the beginning of sequence1 of the rightmost position in which
the sequences differ.

mismatch sequence1 sequence! lkey : from-end : test : test-not
:key :start1 :start2
:end1 :end2

[Function]

The :start and :end keyword arguments take integer values that specify offsets
into the original sequences. The :start arguments mark the beginning positions
of the subsequences; the :end arguments mark the positions following the last
elements of the subsequences. The start values default to 0; the end values default
to the length of the sequences.

Whether or not a sequence element matches another sequence element is determined
by the functions specified by the :test and :key arguments. If a test argument is
not specified, eql is used. Either the keyword :test or the keyword :test-not may
be used to specify a test function other than eql.

The keyword :key may be used to specify that a part of a sequence element should
be tested. Its argument should be a function of one argument that extracts the
part to be tested from the element. If :key is not specified, the elements themselves
are used.

Examples: > (mismatch "abcd" "ABCDE" :test #'char-equal)
4
> (mismatch '(3 2 1 123) '(1 2 3) :from-end t)
3
> (mismatch '(1 2 3) '(2 3 4) :test-not #'eq :key #'oddp)
NIL

Sequences 14-17

position, position-if, position-if-not

Purpose:

Syntax:

Remarks:

The functions position, position-if, and position-if-not each search a sequence
for an element that matches a particular item or for an element that satisfies some
test predicate. If they succeed, the offset of the leftmost such element from the
beginning of the sequence is returned as an integer value; otherwise nil is returned.

If :start and :end keyword arguments are specified, only the subsequence they
delimit is searched.

If the :from-end keyword argument is non-nil, these functions search for the
rightmost element that meets the test criterion.

In all cases the offset value returned is relative to the entire sequence, not to the
subsequence, regardless of the direction of search.

position item sequence tkey : from-end : test : test-not
:start :end :key

position-if test sequence tkey : from-end : start : end : key

position-if-not test sequence tkey : from-end
:start :end :key

[Function]

[Function]

[Function]

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

The function eqI is the default that is used by position for matching the item
argument against the sequence elements. Either the keyword argument :test or
the keyword argument :test-not may be used with position to specify a test
function other than eqI.

The keyword :key may be used to specify that· a part of a sequence element
should be tested. The arguments passed to the test function of position or to the
test predicate of position-if or position-if-not are extracted from the sequence
elements according to the :key function. If :key is not specified, the elements
themselves are used.

14-18 Sun Common Lisp Reference Manual

position, position-if, position-if-not

Examples: > (position #\a "baobab" :from-end t)
4
> (position-if #Ioddp 1((1) (2) (3) (4» :start 1 :key #Icar)
2
> (position 696 Ie»~

NIL

Sequences 14-19

reduce

Purpose:

Syntax:

Remarks:

The function reduce performs a reduction operation on the elements of a sequence.
The reduction uses the binary operator specified by function. The resulting value
is returned.

If the :start and :end arguments are specified, only the subsequence they delimit
is reduced.

The reduction operation is left-associative if the :from-end argument is defaulted
or nil; otherwise it is right-associative.

If the :initial-value argument is specified, its value is used as the first operand in
the reduction operation.

reduce function sequence lkey : from-end : start
:end :initial-value

[Function]

If there is exactly one element in the subsequence and the :initial-value argument
is not specified, that element is returned. If the subsequence is empty and the
:initial-value argument is specified, that initial value is returned. In neither of
these cases is the reduction function invoked. If the subsequence is empty and
:initial-value is not specified, then reduce returns the result of calling function
with no arguments.

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

Examples: > (reduce #' * '(1 2 3 4 5»
120
> (reduce #·append '«1) (2» :initial-value '(i nit»
(I NIT 1 2)

14-20 Sun Common Lisp Reference Manual

remove, remove-if, remove-if-not,
delete, delete-if, delete-if-not

Purpose:

Syntax:

Remarks:

The functions remove, remove-if, and remove-if-not return a copy of their
sequence argument from which the elements that match a particular item or the
elements that satisfy some test predicate have been removed. The elements of the
resulting sequence remain in the same order as in the original sequence.

If the :start and :end keyword arguments are specified, only the subsequence they
delimit is affected.

If the :count argument is specified, only the leftmost number of elements specifed
by :count that satisfy the test condition are removed.

The :from-end argument has an effect only if :count is specified and :from-end
is non-nil. In this case only the rightmost number of elements specified by :count
that satisfy the test condition are removed.

The functions delete, delete-if, and delete-if-not are like remove, remove-if,
and remove-if-not respectively, but they may modify their sequence argument.

remove item sequence &:key : from-end : test : test-not
:start :end :count :key

remove-if test sequence "key : from-end : start
:end :count :key

remove-if-not test sequence "key : from-end : start
:end :count :key

delete item sequence &:key :from-end :test :test-not
:start :end :count :key

delete-if test sequence &:key : from-end : start
:end :count :key

delete-if-not test sequence &:key : from-end : start
:end :count :key

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The result of remove, remove-if, or remove-if-not may share cells with the
original sequence if the sequence is a list.

The result of delete, delete-if, or delete-if-not mayor may not be eq to the
original sequence.

Sequences 14-21

remove, remove-if, remove-if-not, delete, delete-if, delete-if-not

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

The function eql is the default that is used by remove and delete for matching
the item argument against the sequence elements. Either the keyword argument
:test or the keyword argument :test-not may be used with remove or delete to
specify a test function other than eql.

The keyword :key may be used to specify that a part of a sequence element should
be tested. The arguments passed to the test function of remove and delete or to
the test predicate of remove-if, remove-if-not, delete-if, or delete-if-not are
extracted from the sequence elements according to the :key function. If· :key is
not specified, the elements themselves are used.

Examples: > (remove 4 '(1 3 4 5 9»
(1 3 5 9)
> (setq list '(list of four elements»
(LIST OF FOUR ELEMENTS)
> (setq list2 (copy-seq list»
(LIST OF FOUR ELEMENTS)
> (setq list3 (delete 'four list»
(LIST OF ELEMENTS)
> (equal list list2)
NIL
> (remove-if-not #'evenp '(1 2 3 4 667 8 9) :count 2 :from-end t)
(1 2 3 4 6 6 8)

14-22 Sun Common Lisp Reference Manual

remove-duplicates, delete-duplicates

Purpose:

Syntax:

Remarks:

The function remove-duplicates returns a modified copy of its sequence argument
from which any element that duplicates an element occurring later in the sequence
has been removed.

IT the :from-end argument is non-nil, then any element that duplicates an element
occurring earlier in the sequence is removed.

IT the :start and :end keyword arguments are specified, only the subsequence they
delimit is involved in the operation.

The elements of the resulting sequence remain in the same order as in the original
sequence.

The function delete-duplicates is like remove-duplicates, but delete
duplicates may modify its sequence argument.

remove-duplicates sequence I:key : from-end : test : test-not
:start :end :key

delete-duplicates sequence I:key :from-end :test :test-not
:start :end :key

[Function]

[Function]

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

The function eql is the default that is used by remove-duplicates and delete
duplicates for determining whether two sequence elements match. Either the
keyword argument :test or the keyword argument :test-not may be used with
remove-duplicates or delete-duplicates to specify a test function other than
eql.

The keyword :key may be used to specify that a part of a sequence element should
be tested. The arguments passed to the test function of remove-duplicates or
delete-duplicates are extracted from the sequence elements according to the :key
function. IT :key is not specified, the elements themselves are used.

Examples: > (remove-duplicates "aBcDAbCd" :test #'char-equal :from-end t)
"aBeD"
> (delete-duplicates '(0 1 234 5 6) :key #'oddp :start 1 :end 6)
(0 4 5 6)

Sequences 14-23

replace

Purpose:

Syntax:

Remarks:

The function replace destructively modifies a sequence by replacing one
subsequence with another. The sequence1 argument is modified by replacing the
subsequence delimited by the keyword arguments :start1 and :end1 with the
subsequence of sequence~ that is delimited by the keyword arguments :start2 and
:end2. The resulting sequence is returned.

If the subsequences are not of equal length, the length of the shorter subsequence
determines the number of elements that are replaced. The remaining elements at
the end of the longer subsequence do not take part in the operation.

The elements of sequence~ must be of a type compatible with sequence1.

replace sequence1 sequence~ tkey : start1 : end1
:start2 :end2

[Function]

If the two sequences are the same object, the effect of the operation is that of
the simultaneous replacement of one subsequence by the other. If, however, the
two sequences are not the same but share some substructure, the contents of the
resulting sequence are unpredictable.

The :start and :end keyword arguments take integer values that specify offsets
into the original sequences. The :start arguments mark the beginning positions
of the subsequences; the :end arguments mark the positions following the last
elements of the subsequences. The start values default to 0; the end values default
to the length of the sequences.

Examples: > (replace "abcdefghij" "0123456789" : start1 4 : end1 7 : start2 4)
"abcd456hij"
> (setq 1st "012345678")
"012345678"
> (replace 1st 1st :start1 2 :start2 0)
"010123456"
> 1st
"010123456"

See Also: fill

14-24 Sun Common Lisp Reference Manual

reverse, nreverse

Purpose:

Syntax:

The functions reverse and nreverse return a sequence in which the order of the
elements of the sequence argument is reversed.

The functions reverse and nreverse differ in that reverse creates and returns a
new sequence, whereas nreverse may modify its argument.

reverse sequence

nreverse sequence

[Function]

[Function]

Remarks: The sequence produced by nreverse mayor may not be eq to its argument.

Examples: > (setq str "abc")
"abc"
> (reverse str)
"cba"
> str
"abc"
> (nreverse str)
"cba"

Sequences 14-25

search

Purpose:

Syntax:

Remarks:

The function search searches sequence! for a subsequence that matches sequence1.
If the search succeeds, search returns the offset into sequence! of the first element
of the leftmost matching subsequence; otherwise search returns nil.

If the :start and :end keyword arguments are specified, only the subsequences
they delimit are involved in the search.

If the :from-end keyword argument is non-nil, the index of the first element of
the rightmost such subsequence is returned.

search sequencel sequence! ikey :from-end :test :test-not
:key :start1 :start2
:end1 :end2

[Function]

The :start and :end keyword arguments take integer values that specify offsets
into the original sequences. The :start arguments mark the beginning positions
of the subsequences; the :end arguments mark the positions following the last
elements of the subsequences. The start values default to 0; the end values default
to the length of the sequences.

The function eql is the default that is used by search for matching the item
argument against the sequence elements. Either the keyword argument :test or the
keyword argument :test-not may be used with search to specify a test function
other than eqI.

The keyword :key may be used to specify that a part of a sequence element should
be tested. The arguments passed to the test function of search are extracted from
the sequence elements according to the :key function. If :key is not specified, the
elements themselves are used.

Examples: > (search "dog" "it's a dog's life")
7
> (search '(0 1) '(2 4 6 135) :key #'oddp)
2

14-26 Sun Common Lisp Reference Manual

sort, stable-sort

Purpose:

Syntax:

Remarks:

The functions sort and stable-sort destructively sort their sequence arguments
according to the order determined by their predicate and :key arguments and
return the new sequence.

The order of the elements in the result sequence is determined by the predicate
argument. The predicate argument must be a function of two elements. It should
return a non-nil value if the element corresponding to its first argument is to
precede the element corresponding to the second in the result sequence; otherwise
it should return nil.

The arguments passed to predicate are extracted from the elements according to
the :key function. IT :key is not specified, the elements themselves are used.

sort sequence predicate I1:key : key

stable-sort sequence predicate I1:key : key

[Function]

[Function]

The stable-sort operation is stable. That is, if two elements are considered
equivalent by the predicate function, they remain in their original order in the
resulting sequence. The sorting operation of sort is not stable; it may, however, be
faster than stable-sort.

Examples: > (sort "lkjashd" "char-lessp)
"adhjkls"
> (stable-sort '(1 2 3 4 567 890)

"(lambda (x y) (and (oddp x) (evenp y»»
(1 3 5 7 9 2 4 6 8 0)

Sequences 14-27

subseq

Purpose:

Syntax:

Remarks:

The function subseq creates and returns a sequence that is a copy of the
subsequence of sequence delimited by start and end.

subseq sequence start ckoptional end [Function]

The arguments start and end take integer values that specify offsets into the
original sequence. The start argument marks the beginning position of the
subsequence; the end argument marks the position following the last element of
the subsequence. The start value defaults to 0; the end value defaults to the length
of the sequence.

The macro setf may be used with subseq to destructively replace a subsequence
with a new sequence. If the subsequence and the new sequence are not of equal
length, the shorter length determines the number of elements that are replaced.
The remaining elements at the end of the longer sequence do not take part in the
operation.

Examples: > (setq str "012345")
"012345"

See Also:

> (subseq str 2)
"2345"
> (subseq str 3 5)
"34"
> (setf (subseq str 4) "abc")
"abc"
> str
"0123ab"
> (setf (subseq str 0 2) "A")
"A"
> str
"A123ab"

replace

14-28 Sun Common Lisp Reference Manual

substitute, substitute-if, substitute-it-not,
nsubstitute, nsubstitute-if, nsubstitute-if-not

Purpose:

Syntax:

Remarks:

The functions substitute, substitute-if, and substitute-if-not return a modified
copy of their sequence arguments in which each element that matches a particular
item or each element that satisfies some test predicate has been replaced with a
new item.

The functions substitute, substitute-if, and substitute-if-not are nondestruc
tive operations. They return a modified copy of their sequence argument.

The functions nsubstitute, nsubstitute-if, and nsubstitute-if-not are like
substitute, substitute-if, and substitute-if-not respectively, but they may
modify their sequence argument.

substitute newitem olditem sequence .tkey : from-end : test
:test-not :start
:end :count :key

substitute-if newitem test sequence .tkey : from-end
:start :end
:count :key

substitute-if-not newitem test sequence .tkey : from-end
:start :end
:count :key

nsubstitute newitem olditem sequence .tkey : from-end : test
:test-not :start
:end :count :key

nsubstitute-if newitem test sequence .tkey : from-end
:start :end
:count :key

nsubstitute-if-not newitem test sequence .tkey : from-end
:start :end
:count :key

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The result of substitute, substitute-if, or substitute-if-not may share cells
with the original sequence if the sequence is a list.

The result of nsubstitute, nsubstitute-if, or nsubstitute-if-not mayor may
not be eq to the original sequence.

If :count is specified, only the leftmost number of elements specified by :count
that satisfy the test condition are replaced.

Sequences 14-29

substitute, substitute-if, substitute-it-not, nsubstitute, ...

The :frorn-end argument has an effect only if :count is specified and :frorn-end
is non-nil. In this case only the rightmost number of elements specified by :count
that satisfy the test condition are replaced.

The keyword arguments :start and :end take integer values that specify offsets
into the original sequence. The :start argument marks the beginning position of
the subsequence; the :end argument marks the position following the last element
of the subsequence. The start value defaults to 0; the end value defaults to the
length of the sequence.

The function eqI is the default that is used by substitute and nsubstitute for
matching the item argument against the sequence elements. Either the keyword
argument :test or the keyword argument :test-not may be used with substitute
or nsubstitute to specify a test function other than eql.

The keyword :key may be used to specify that a part of a sequence element
should be tested. The arguments passed to the test function of substitute
and nsubstitute or to the test predicate of substitute-if, substitute-if-not,
nsubstitute-if, or nsubstitute-if-not are extracted from the sequence elements
according to the :key function. If :key is not specified, the elements themselves
are used.

Examples: > (substitute #\. #\SPACE "0 2 4 6")
"0.2.4.6"

See Also:

> (substitute-if 0 #'evenp '«1) (2) (3) (4» :start 2 :key #'car)
«1) (2) (3) 0)
> (nsubstitute-if "function was here" #'fboundp '(a car b cdr c)

:count 1 :from-end t)
(A CAR B "function was here" C)

subst

nsubst

14-30 Sun Common Lisp Reference Manual

Chapter 15. Lists

Lists 15-1

Chapter 15. Lists

About Lists .. 15-5
Categories of Operations .. 15-6

Data Type Predicates .. 15-6
Operations on Conses . 15-6
Basic List Operations .. 15-7
Mapping Operations " ... 15-7
Substitution Operations .. 15-8
Set Operations .. 15-8
Operations on Association Lists . 15-8

acons ... 15-9
adjoin .. 15-10
append ... 15-11
assoc, assoc-if, assoc-if-not ... 15-12
assq ... 15-13
atom .. 15-14
butlast, nbutlast ... 15-15
car, cdr .. 15-16
cons ... 15-18
consp .. 15-19
copy-alist ... 15-20
copy-list .. 15-21
copy-tree . 15-22
endp ... 15-23
first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth 15-24
intersection, nintersection .. 15-25
last .. 15-26
ldiff ... 15-27
list, list* .. 15-28
list-length .. 15-29
list-reverse, list-nreverse .. 15-30
listp ... 15-31
make-list ~ 15-32
mapcar, maplist, mapc, mapl, mapcan, mapcon 15-33
member, member-if, member-if-not .. 15-35
memq .. 15-36
nconc .. 15-37
nreconc .. 15-38
nth .. 15-39
nthcdr ... 15-40
null .. 15-41
pairlis. 15-42
pop .. 15-43

15-2 Sun Common Lisp Reference Manual

push ... 15-44
pushnew .. 15-45
rassoc, rassoc-if, rassoc-if-not . 15-46
rest .. 15-47
revappend .. 15-48
rplaca, rplacd. 15-49
set-difference, nset-difference .. 15-50
set-exclusive-or, nset-exclusive-or .. 15-51
sublis, nsublis ... 15-52
subsetp .. 15-53
subst, subst-if, subst-if-not, nsubst, nsubst-if, nsubst-if-not 15-54
tailp . 15-56
tree-equal ... 15-57
union, nunion ... 15-58

Lists 15-3

15-4 Sun Common Lisp Reference Manual

About Lists

The list data type is the union of the cons and null data types and therefore includes
both true lists and dotted lists.

Lists are sequences of linked elements, called conses (dotted pairs). A cons is an object
containing two components, a car and a cdr, which can be any Lisp objects. Conses in a
list are linked by their cdr components. The car components become the elements of the
list. A true list is terminated by nil, the empty list. A dotted list is not terminated
by nil, but by some non-nil data object. The tail of a list is that portion of the list that
remains when any number of elements are removed from the front of the list (as by the
car operation). The tail of a list is a cons; nil is not considered to be a tail of a list.

An association list is a list whose elements are conses. Each cons is regarded as a pair of
associated objects. The car is called the key and the cdr the datum. An association list
can be treated as a mapping from keys to data. New entries are always added to the front
of the list, and the list is always searched from the front. Thus it is possible to update the
mapping without removing items from the list.

In Common Lisp a list of items can be treated as a set. There are functions for set union,
intersection, and difference, and also for adding, removing, and searching for items in a
list.

Lists 15-5

Categories of Operations

This section groups operations on lists according to functionality.

Data Type Predicates

atom
consp

These predicates test for atoms and lists.

Operations on Conses

car
cdr
caar
cadr
cdar
cddr
caaar
caadr
cadar
caddr
cdaar
cdadr
cddar
cdddr
caaaar
caaadr
caadar

listp
null

caaddr
cadaar
cadadr
caddar
cadddr
cdaaar
cddadr
cdadar
cdaddr
cddaar
cddadr
cdddar
cddddr
cons
rplaca
rplacd

These basic operations on conses access and modify their components and construct
new conses.

15-6 Sun Common Lisp Reference Manual

Basic List Operations

append
butlast
nbutlast
copy-list
copy-tree
endp
first
second
third
fourth
fifth
sixth
seventh
eighth
ninth
tenth
last
ldiff

list
list.
list-length
list-reverse
list-nreverse
make-list
nconc
nreconc
nth
nthcdr
pop
push
pushnew
rest
revappend
tailp
tree-equal

These operations construct lists, modify lists, access components of lists, and
obtain information about various list attributes.

Mapping Operations

mapcar
maplist
mapc

map I
mapcan
mapcon

These functions are used to perform mapping operations on lists.

Lists 15-7

Substitution Operations

subst
subst-if
subst-if-not
nsubst

nsubst-if
nsubst-if-not
sublis
nsublis

These functions allow for the regular substitution of list elements.

Set Operations

adjoin
intersection
nintersection
member
member-if
member-if-not
memq

set-difference
nset-difference
set-exclusive-or
nset-exclusive-or
subsetp
union
nunion

These functions allow lists to be treated as sets. They perform set operations on
lists.

Operations on Association Lists

acons
assoc
assoc-if
assoc-if-not
assq

c:opy-alist
pairlis
rassoc
rassoc-if
rassoc-if-not

These functions manipulate association lists.

15-8 Sun Common Lisp Reference Manual

aeons

Purpose:

Syntax:

The function aeons is used to add to association lists. It adds the entry
(key . datum) to the front of the association list specified by the a-list argument
and returns the result.

aeons key datum a-list [Function]

Examples: > (setq alist 0)
NIL

See Also:

> (aeons 1 "one" alist)
«1 . "one"»
> alist
NIL
> (setq alist (aeons 1 "one" (aeons 2 "two" alist»)
«1 . "one") (2 . "two"»
> (assoe 1 alist)
(1 . "one")
> (setq alist (aeons 1 "uno" alist»
«1 . "uno") (1 . "one") (2 . "two"»
> (assoe 1 alist)
(1 . "uno")

pairlis

Lists 15-9

adjoin

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function adjoin tests whether its item argument is the same as an existing
element of a list. IT the item is not, adjoin adds it to the list and returns the
resulting list; otherwise nothing is added and the original list is returned.

adjoin item list It:key : test : test-not : key [Function]

Whether an item is the same as a list element is determined by the functions
specified by the keyword arguments. IT a test argument is not specified, eql is
used. Either the keyword :test or the keyword :test-not may be used to specify a
test function other than eql.

The keyword :key may be used to specify that a part of an element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from both the item argument and the list element.

> (setq slist (»
NIL
> (adjoin 'a slist)
(A)
> slist
NIL
> (setq slist (adj oin '(foo 1) slist»
«FDD 1»
> (adjoin '(foo 1) slist)
«FDD 1) (FDa 1»
> (adjoin '(foo 1) slist :test 'equal)
«FDD 1»
> (adjoin '(bar 1) slist :key #'cadr)
«FDD 1»
> (adjoin '(bar 1) slist)
«BAR 1) (FDa 1»

pushnew

15-10 Sun Common Lisp Reference Manual

append

Purpose:

Syntax:

Remarks:

The function append creates and returns a list that is the concatenation of its list
arguments. The original lists are left unchanged.

append ckrest lists [Function]

The last argument to append can be any object. If it is not a list, it becomes the
cdr of the final dotted pair of the new list.

The function append copies the top-level list structure of all its arguments except
the last.

Examples: > (append '(a b e) '(d e f) '0 '(g»
(A BCD E F G)

See Also:

> (append '(a b e) 'd)
(A Be. D)
> (setq 1st '(a be»
(A B C)

> (append 1st '(d»
(A BCD)
> 1st
(A B C)

> (append)
NIL

nconc

concatenate

Lists 15-11

assoc, assoc-if, assoc-if-not

Purpose:

Syntax:

Retnarks:

The functions assoc, assoc-if, and assoc-if-not search association lists. They
return the first pair in the association list whose car is the same as a given item or
satisfies the test condition or predicate. If no such entry is found, nil is returned.

assoc item a-list &:key : test : test-not : key

assoc-if predicate a-list

assoc-if-not predicate a-list

If nil appears in an association list in place of a pair, it is ignored.

[Function]

[Function]

[Function]

If a test argument for assoc is not specified, eql is used. Either the keyword :test
or the keyword :test-not may be used to specify a test function other than eql.

The keyword :key may be used to specify that a part of an element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the car of the association list entry.

Exatnples: > (setq alist ' «1 . "one") (2 . "two") (3 . "three"»)
«1 . "one") (2 . "two") (3 . "three"»

See Also:

> (as soc 2 alist)
(2 . "two")
> (assoc-if #'evenp alist)
(2 . "two")
> (assoc-if-not #" (lambda (x) « x 3» alist)
(3 . "three")
> (setq alist '«"one" . l)("two" . 2»)
«"one" . 1) ("two" . 2»
> (as soc "one" alist)
NIL
> (assoc "one" alist :test #'equalp)
("one" . 1)
> (assoc "two" alist :key #' (lambda (x) (char x 2»)
NIL
> (assoc #\0 alist :key #' (lambda (x) (char x 2»)
("two" . 2)

rassoc

rassoc-if

rassoc-if-not

assq

15-12 Sun Common Lisp Reference Manual

assq

Purpose:

Syntax:

Remarks:

The function assq searches an association list for the first pair whose car is eq to
its object argument. It returns the first such pair that it finds; if no such entry is
found, it returns nil.

assq object a-list [Function]

The function assq passes over any element in the list that is not a dotted pair
without producing an error.

The function assq is an extension to Common Lisp.

Examples: > (setq alist t «"one" . 1) (2 . "two") 3 «4) . "four"»)
«"one" . 1) (2 . "two") 3 «4) . "four"»

See Also:

> (assq "one" alist)
NIL
> (assq 2 alist)
(2 . "two")
> (assq 3 alist)
NIL
> (assq '(4) alist)
NIL
> (assq nil alist)
NIL

assoc

as soc-if

assoc-if-not

Lists 15-13

atom

Purpose: The predicate atom is true if its argument is not a cons; otherwise it is false.

Syntax: atom object

Examples: > (atom • sss)
T
> (atom (cons 1 2»
NIL
> (atom nil)
T

15-14 Sun Common Lisp Reference Manual

[Function]

butlast, nbutlast

Purpose:

Syntax:

The function but last creates and returns a copy of its list argument from which
the last n elements have been omitted. If there are fewer than n elements in the
original list, nil is returned. If n is not specified, the last element is omitted from
the list.

The function nbutlast is like butIast, but nbutlast may modify its list argument.

butlast list ctoptiona1 n

nbutIast list ctoptiona1 n

[Function]

[Function]

Remarks: If nbutIast is given a list argument of fewer than n elements, it returns nil
without modifying the argument.

Examples: > (setq 1st '(1 2 3 4 5 6 7 8 9»
(1 2 3 4 5 6 7 8 9)
> (but last 1st)
(1 2 3 4 5 6 7 8)
> (but last 1st 5)
(1 2 3 4)
> (butlast 1st (+ 5 5»
NIL
> 1st
(1 2 3 4 5 6 7 8 9)
> (nbut1ast 1st 3)
(1 2 3 4 5 6)
> 1st
(1 2 3 4 5 6)
> (nbut1ast 1st 99)
NIL
> 1st
(1 2 3 4 5 6)
> (butlast '(1 2 . 3»
(1)

Lists 15-15

car, cdr

Purpose:

Syntax:

The function car returns the car of a list. If the list is a cons, car returns the first
element of the list. If the list is nil, car returns nil.

The function cdr returns the cdr of a list. If the list is a cons, cdr returns the
portion that follows the first element. If the list is nil, cdr returns nil.

Compositions of up to four car and cdr operations are also defined as functions.
The names of these functions consist of c, followed by two, three, or four
occurrences of a or d, and then r. The sequence of a's and d's in the name specify
the sequence of car and cdr operations that is performed by the function. The
order in which the a's and d's appear is the inverse of the order in which the
corresponding operations are performed. For example, the expression (cadddr x)

is the same as (car (cdr (cdr (cdr x»».

car list [Function]

cdr list [Function]

caar list [Function}

cadr list [Function]

cdar list r Ji1 ,..,.,: ",.,. 1 L .1.: ,,,,,.,"v,,, J

cddr list [Function]

caaar list [Function]

caadr list [Function]

cadar list [Function]

caddr list [Function]

cdaar list [Function]

cdadr list [Function]

cddar list [Function]

cdddr list [Function]

caaaar list [Function]

caaadr list [Function]

caadar list [Function]

caaddr list [Function]

cadaar list [Function]

15-16 Sun Common Lisp Reference Manual

Remarks:

Examples:

See Also:

car, cdr

cadadr list [Function]

caddar list [Function]

cadddr list [Function]

cdaaar list [Function]

cdaadr list [Function]

cdadar list [Function]

cdaddr list [Function]

cddaar list [Function]

cddadr list [Function]

cdddar list [Function]

cddddr list [Function]

The macro setf may be used with any of these functions to change an element of a
list.

> (car nil)
NIL
> (cdr '(1 . 2»
2
> (cdr '(1 2»
(2)
> (cadr '(1 2»
2

rplaca

rplacd

Lists 15-17

cons

Purpose: The function cons creates and returns a new cons cell whose car is objectl and
whose cdr is object~.

The function cons is designed for use in constructing lists.

Syntax: cons objectl object~

Examples: > (cons 1 2)
(1 . 2)
> (cons 1 nil)
(1)
> (cons nil 2)
(NIL . 2)
> (cons nil nil)
(NIL)
> (cons 1 (cons 2 (cons 3 (cons 4 nil}}»
(1 2 3 4)
> (cons 'a '(b c de»
(A BCD E)

See Also: list

15-18 Sun Common Lisp Reference Manual

[Function]

consp

Purpose: The predicate consp is true if its argument is a cons; otherwise it is false.

Syntax: consp object

Examples: > (consp nil)
NIL
> (consp (cons 1 2»
T

See Also: listp

[Function]

Lists 15-19

copy-alist

Purpose: The function copy-alist is used to copy association lists. It returns a copy of its
list argument.

Syntax: copy-alist list [Function]

Remarks: The top level of the list structure is copied, and new copies are made of each list
element that is a cons. The rest of the list structure is shared.

Examples: > (setq alist • «1 . "one") (2 . "two"»)
«1 . "one") (2 . "two"»

See Also:

> (setq clist (copy-list alist»
«1 . "one") (2 . "two"»
> (setq calist (copy-alist alist»
«1 . "one") (2 . "two"»
> (setf (cdr (as soc 2 calist» "deux")
"deux"
> calist
«1 . "one") (2 . "deux"»
> alist
«1 . "one") (2 . "two"»
> (setf (cdr (as soc i clist» iiuno ii)

"uno"
> clist
«1 . "uno") (2 . "two"»
> alist
«1 . "uno") (2 . "two"»

copy-list

15-20 Sun Common Lisp Reference Manual

copy-list

Purpose: The function copy-list returns a copy of its list argument. The copy is equal to
the list argument, but not eq.

Syntax: copy-list list [Function]

Remarks: Only the top level of the list structure is copied; the rest of the list structure is
shared.

Examples: > (setq 1st • (1 (2 3»)
(1 (2 3»

See Also:

> (setq slst 1st)
(1 (2 3»
> (setq clst (copy-list 1st»
(1 (2 3»
> (eq slst 1st)
T
> (eq c1st 1st)
NIL
> (equal c1st 1st)
T
> (rplaca 1st "one")
("one" (2 3»
> slst
("one" (2 3»
> clst
(1 (2 3»
> (setf (caadr 1st) "two")
"two"
> 1st
("one" ("two" 3»
> slst
("one" ("two" 3»
> clst
(1 ("two" 3»

copy-alist

copy-seq

copy-tree

Lists 15-21

copy-tree

Purpose:

Syntax:

The function copy-tree is used to copy trees of conses.

If the argument of copy-tree is not a cons, it is returned. If it is a cons, copy-tree
returns a new cons whose car and cdr consist of the result of calling copy-tree on
the car and cdr of the argument cons respectively. The recursion stops only when
an object that is not a cons is reached.

copy-tree object [Function]

Examples: > (setq 1st • «1 . "one") (2 . (a b c»»
«1 . "one") (2 A Be»
> (setq slst 1st

clst (copy-list 1st)
calst (copy-alist 1st)
ctlst (copy-tree 1st»

«1 . "one") (2 A Be»
> (eq ctlst 1st)
NIL
> (eql ctlst 1st)
NIL
> (equal ctlst 1st)
T
> (setf (cadadr 1st) "a"

(caadr 1st) "two"
(car 1st) "1 . one")

"1 . one"
> 1st
("1 one" ("two" "a" B e»
> slst
("1 one" ("two" "a" B e»
> clst
«1 . "one") ("two" "a" B e»
> calst
«1 . "one") (2 "a" Be»
> ctlst
«1 . "one") (2 A B e»

15-22 Sun Common Lisp Reference Manual

endp

Purpose:

Syntax:

The predicate endp tests for the end of a list. The predicate endp is true if its
argument is nil; it is false if the argument is a cons.

endp list [Function]

Examples: > (endp nil)
T

> (endp '(1 2»
NIL
> (endp (cddr '(1 2»)
T

Lists 15-23

first, second, third, fourth, fifth, sixth, seventh,
eighth, ninth, tenth

Purpose: These functions may be used to access particular elements of a list. The function
first is identical to car, second to cadr, and so on.

Syntax: first list [Function]

second list [Function]

third list [Function]

fourth list [Function]

fifth list [Function]

sixth list [Function]

seventh list [Function]

eighth list [Function]

ninth list [Function]

tenth list [Function]

Remarks: These functions were designed for use in list operations for stylistic reasons.

Examples: > (setq 1st • (1 2 3 (4 5 6) «V» vi 7 8 9 10»
{1 2 3 (4 5 6) «V» VI 7 8 9 10)
> (first 1st)
1
> (tenth 1st)
10
> (fifth 1st)
«V»
> (second (fourth 1st»
5
> (sixth '(1 2 3»
NIL
> (setf (fourth 1st) "four")
"four"
> 1st
(1 2 3 "four" «V» VI 7 8 9 10)

See Also: car

nth

15-24 Sun Common Lisp Reference Manual

intersection, nintersection

Purpose:

Syntax:

Remarks:

The functions intersection and nintersection take two lists and return a list
that contains every element that occurs in both of the list arguments.

The result list of intersection may share cells with one of the list arguments. The
function nintersection may modify its list arguments.

intersection list1 list2 "key :test :test-not :key

nintersection list1 list2 "key : test : test-not : key

[Function]

[Function]

If one of the lists contains duplicate elements, there may be duplication in the
result.

Whether a list element is the same as another list element is determined by the
functions specified by the keyword arguments. If a test argument is not specified,
eql is used. Either the keyword :test or the keyword :test-not may be used to
specify a test function other than eql.

The keyword :key may be used to specify that a part of a list element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the list element.

Examples: > (setq lstl '(1 1 2 3 4 abc "A" "B" "C" "d")
lst2 '(1 4 5 bed "a" "B" "c" "0"»

(1 4 5 B C 0 "a" "B" "c" "0")
> (intersection 1st1 1st2)
(C B 4 1 1)
> (intersection lst1 1st2 :test 'equal)
("B" C B 4 1 1)
> (intersection 1st1 lst2 :test #'equa1p)
("d" "C" "B" "A" C B 4 1 1)
> (nintersection 1st1 1st2)
(1 1 4 B C)
> 1stl
(1 1 4 B C)
> 1st2
(1 4 5 B C 0 "a" "B" "c" "0")

Lists 15-25

last

Purpose: The function last returns the last cons of its list argument. If the list is empty, it
returns nil.

Syntax: last list

Examples: > (last nil)
NIL
> (last '(1 2 3»
(3)
> (last '(1 2 . 3»
(2 . 3)

15-26 Sun Common Lisp Reference Manual

[Function]

ldiff

Purpose:

Syntax:

The function ldiff tests whether its sublist a.rgument forms a tail of the given list.
H Idiff succeeds, it returns a new list that is a copy of the portion of the original
list that precedes the sublist. H the sublist is nil or is not a tail of the original list,
Idiff returns a copy of the original list.

ldiff list sublist [Function]

Examples: > (setq x '(a bed e»
(A BCD E)
> (setq y (cddr x»
(C D E)
> (setq z '(c de»
(0 D E)
> (ldiff x x)
NIL
> (ldiff x y)
(A B)
> (ldiff x z)
(A BOD E)
> (eq y z)
NIL
> (eq x (ldiff x z»
NIL

See Also: tailp

Lists 15-27

list, list*

Purpose: The function list creates and returns a list containing the specified objects.

The function list_ is like list except that its last argument becomes the cdr of
the last cons in the resulting list. If list- is called with exactly one argument, it
returns that argument, not a cons.

Syntax: list trest obiects

list- object &rest more-objects

Examples: > (list 1)
(1)
> (list* 1)
1
> (setq a 1)
1
> (list a 2)
(1 2)
> '(a 2)
(A 2)
> (list 'a 2)
(A 2)
> (list* a 2)
(1 . 2)
> (list)
NIL
> (setq a '(1 2»
(1 2)
> (eq a (list* a»
T

See Also: cons

15-28 Sun Common Lisp Reference Manual

[Function]

[Function]

list-length

Purpose:

Syntax:

The function list-length returns the length of its list argument as an integer value.

If the list is circular, list-length returns nil.

list-length list [Function]

Examples: > (list-length' (1 2 3»

See Also:

3
> (list-length nil)
o
> (setq 1st '(1 2»
(1 2)
> (list-length (rplacd 1st 1st»
NIL

length

Lists 15-29

list-reverse, list-nreverse

Purpose: The function list-reverse returns a true list consisting of the elements of the
original list in reverse order (but omitting the last cdr, which is nil for true lists).

The function list-nreverse is like list-reverse but modifies its argument.

Syntax: list-reverse list

list-nreverse list

[Function]

[Function]

Remarks: The functions list-reverse and list-nreverse are extensions to Common Lisp.

Examples: > (setq 1st • (1 2 3»
(1 2 3)

See Also:

> (list-reverse 1st)
(3 2 1)
> 1st
(1 2 3)
> (list-nreverse 1st)
(3 2 1)
> 1st
(1)
> (list-reverse j(l 2 . 3»
(2 1)

reverse

15-30 Sun Common Lisp Reference Manual

listp

Purpose:

Syntax:

Examples:

See Also:

The predicate listp is true if its argument is a cons or the empty list, 0; otherwise
it is false.

listp object [Function]

> (listp nil)
T
> (listp (cons 1 2»
T
> (listp (make-array 6»
NIL
> (listp t)
NIL

consp

Lists 15-31

make-list

Purpose: The function make-list creates and returns a list consisting of size elements. If
the :initial-element argument is specified, each of the elements of the new list is
initialized to its value; otherwise the elements are nil.

Syntax: make-list size ikey : initial-element

Examples: > (make-list 4)
(NIL NIL NIL NIL)
> (make-list 2 :initial-element '(1 2 3»
«1 2 3) (1 2 3»
> (make-list 0)
NIL
> (make-list 0 :initial-element 'fool
NIL

15-32 Sun Common Lisp Reference Manual

[Function]

mapcar, maplist, mapc, mapl, mapcan, mapcon

Purpose:

Syntax:

The functions mapear, maplist, mape, mapl, mapean, and mapeon are used
to map over lists.

The mapping operation involves applying a function to successive sets of arguments
in which one argument is obtained from each list.

The function argument must take as many arguments as there are list arguments.
The resulting list is the same length as the shortest of the list arguments. It
contains the results returned by the function.

The mapping functions differ in how they obtain their arguments and present their
results.

The function mapear applies its function argument to successive elements of the
list arguments. The function is applied to the first element of each list, then to
the second, and so on. A list consisting of the results of applying the function is
returned as the result of mapear.

The function mape is like mapear except that the results of applying the function
are not returned. The function is applied for its side effects only. The function
mape returns its first list argument as its result.

The function maplist is like mapear except that the function argument is applied
to successive sublists of the list arguments. First, the function is applied to the
lists themselves, then to the cdr of each list, then to the cddr of each list, and so
on. A list consisting of the results of applying the function is returned as the result
9fmaplist.

The function mapl is like maplist except that the results of applying the function
are not returned. The function is applied for its side effects only. The function
maplist returns its first list argument as its result.

The functions mapean and mapeon are like mapear and maplist respectively,
except that the results of applying the function are combined into a list by the use
of neone rather than list.

map ear function list trest more-lists

mape function list trest more-lists

maplist function list "rest more-lists

maplfunction list "rest more-lists

mapean function list "rest more-lists

mapeon function list "rest more-lists

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Lists 15-33

mapcar, maplist, mapc, mapl, mapcan, mapcon

Remarks: The junction argument must be a function acceptable to apply. It cannot be a
macro or a special form.

Examples: > (mapcar " car ' «1 a) (2 b) (3 c»)
(1 2 3)
> (maplist "append '(1 2 3 4) '(1 2) '(1 2 3»
«1 2 3 4 1 2 1 2 3) (2 3 4 2 2 3»
> (setq foo nil)
NIL
> (mapc "(lambda (trest x) (setq foo (append foo x»)

'(1 234)
'(a bed e)
, (x y.z»

(1 2 3 4)
> foo
(1 A X 2 B Y 3 C Z)
> (setq foo nil)
NIL
> (mapl "(lambda (x) (push x fool) '(1 234»
(1 2 3 4)
> foo
«4) (3 4) (2 3 4) (1 2 3 4»
> (mapcan "(lambda (x y) (if (null x) nil (list x y»)

'(nil nil nil d e)
'(1 234 5 6»

(D 4 E 5)
> (mapcon "list '(1 234»
«1 2 3 4) (2 3 4) (3 4) (4»

See Also: map

apply

nconc

15-34 Sun Common Lisp Reference Manual

member, member-if, member-if-not

Purpose:

Syntax:

Remarks:

The functions member, member-if, and member-if-not each search a list for
a particular item or for a top-level element that satisfies some test condition
or predicate. If they succeed, the tail of the list beginning with this element is
returned; otherwise nil is returned.

member item list &:key : test : test-not : key

member-if predicate list &:key : key

member-if-not predicate list &:key : key

[Function]

[Function]

[Function]

If a test argument for member is not specified, eql is used. Either the keyword
:test or the keyword :test-not may be used to specify a test function other than
eql.

The keyword :key may be used to specify that a part of a list element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the list element.

Examples: > (member 2 ' (1 2 3»
(2 3)
> (member 4 '(1 2 3»
NIL
> (member 2 '«1 . 2) (3 . 4» :test-not #'= :key "cdr)
«3 . 4»
> (member-if "listp '(a b nil cd»
(NIL C D)
> (member-if-not "zerop

'(369 11 . 12)
:key "(lambda (x) (mod x 3»)

(11 . 12)

See Also: find

position

memq

Lists 15-35

memq

Purpose: The function memq searches a list for the first top-level element that is eq to a
given object. If it succeeds, it returns the tail of the list starting with that element.
If no such element is found, it returns nil.

Syntax: memq object list

Remarks: The function memq is an extension to Common Lisp.

Examples: > (memq 1 '(a 1 "b"»
(1 "b")

See Also:

> (memq 'a '(a 1 "b"»
(A 1 "b")
> (memq lib" '(a 1 "b"»
NIL
> (memq 2 '(1 2 . 3»
(2 . 3)
> (memq 3 '(1 2 . 3»
NIL

member

member-if

member-if-not

15-36 Sun Common Lisp Reference Manual

[Function]

neone

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function nconc returns a list that is the concatenation of its list arguments.
The list arguments are modified rather than copied.

nconc &rest lists [Function]

The function nconc is designed to be more efficient than append since no new
cons cells need to be allocated.

> (setq lst1 '(1 2 3)
lst2 '(a be»

(A B C)
> (neonc lst1 lst2)
(1 2 3 A B C)
> lst1
(1 2 3 A B C)
> lst2
(A B C)
> (neone)
NIL

append

Lists 15-37

nreconc

Purpose:

Syntax:

Remarks:

The function nreconc reverses the order of the elements in its first list argument
and appends the second list argument to the modified list. The resulting list is
returned.

nreconc listl liste [Function]

The listl argument is modified.

The function nreconc is designed to be more efficient than revappend since no
new cons cells need to be allocated.

Examples: > (setq lstl • (1 2 3)
lst2 '(a be»

See Also:

(A B C)
> (nreeone lstl lst2)
(3 2 1 A B C)
> lstl
(1 A B C)
> lst2
(A B C)

> (nreccnc
(1)

revappend

• (1 '>, ... ;" , , ,

15-38 Sun Common Lisp Reference Manual

nth

Purpose:

Syntax:

Remarks:

The function nth returns the nth element of its list argument. The initial element
of the list is considered to be the zeroth element. If the list has no such element,
nth returns nil.

nth n list [Function]

The argument n must be a nonnegative integer.

The macro setf may be used with nth to change an element of a list. In this case,
n must be less than the length of the list.

Examples: > (nth 4 '(0 1 2 3 4»
4
> (nth 5 '(0 1 2 3 4»
NIL
> (nth 0 nil)
NIL
> (setq 1st '(0 1 2 3»
(0 1 2 3)
> (setf (nth 21st) "two")
"two"
> 1st
(0 1 "two" 3)

See Also: elt

Lists 15-39

nthcdr

Purpose: The function nthcdr performs the cdr operation n times on its list argument and
returns the result.

Syntax: nthcdr n list

Examples: > (nthcdr 0 - (0 1 2 3»
(0 1 2 3)
> (nthcdr 5 -(0 1 2 3»
NIL
> (nthcdr 0 nil)
NIL
> (nthcdr 3 -(0 1 2 3»
(3)
> (nthcdr 1 -(0 . 1»
1

15-40 Sun Common Lisp Reference Manual

[Function]

null

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The predicate null is true if its argument is the empty list, which is represented by
o or nil; otherwise it is false.

null object [Function]

The result of applying null to an object is the same as that of using not. The
function null is intended to be used in testing for an empty list, whereas not is
intended to be used in inverting a logical value.

> (nullO)
T
> (null t)
NIL
> (null 1)
NIL

not

Lists 15-41

pairlis

Purpose:

Syntax:

The function pairlis takes the two lists, keys and data, and creates an association
list by pairing the corresponding elements of each. If the a-list argument is
specified, the new pairs of elements are added tb the front of the given association
list.

pairlis keys data ll;optional a-list [Function]

Remarks: The keys and data lists must be the same length.

Examples: > (setq keys' (1 2 3)

See Also:

data '("one" "two" "three")
alist '«4 . "four"»)

«4 . "four"»
> (pairlis keys data)
«1 . "one") (2 . "two") (3 . "three"»
> (pairlis keys data alist)
«1 . "one") (2 . "two") (3 . "three") (4 . "four"»
> alist
«4 . "four"»

aeons

15-42 Sun Common Lisp Reference Manual

pop

Purpose:

Syntax:

The macro pop takes the list that is stored in place and returns the car of this list
as its result. The cdr of the list is stored in place.

pop place [Macro]

Remarks: The place argument must be a generalized variable acceptable to the macro setf.

Examples: > (setq lIst • «1 2 3 4»)
«1 2 3 4»

See Also:

> (pop (car lIst»
1
> lIst
«2 3 4»

push

Lists 15-43

push

Purpose: The macro push takes the list that is stored in place, conses the item argument
onto the front of it, stores the resulting list in place, and returns this new list as its
result.

Syntax: push item place [Macro]

Remarks: The place argument must be a generalized variable acceptable to the macro setf.
The item argument can be any object.

Examples: > (setq lIst '(nil»
(NIL)
> (push 1 (car lIst»
(1)
> lIst
«1))
> (push 1 (car lIst»
(1 1)
> lIst
«1 1»

See A18o~ pop

pushnew

15-44 Sun Common Lisp Reference Manual

pushnew

Purpose:

Syntax:

Remarks:

The macro pushnew tests whether its item argument is the same as any existing
element of the list stored in place. If the item is not, the new item is consed onto
the front of the list, and the new list is stored in place and returned. If such an
element is found in the list, pushnew returns the original list.

pushnew item place tkey : test : test-not : key [Macro]

The place argument must be a generalized variable acceptable to the macro setf.
The item argument can be any object.

Whether an item is the same as a list element is determined by the functions
specified by the keyword arguments. If a test argument is not specified, eqI is
used. Either the keyword :test or the keyword :test-not may be used to specify a
test function other. than eqI.

The keyword :key may be used to specify that a part of an element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from both the item argument and the list element.

Examples: > (setq 1st '((1) (1 2) (1 2 3»)
«1) (1 2) (1 2 3»
> (pushnew '(2) 1st)
«2) (1) (1 2) (1 2 3»
> (pushnew '(1) 1st)
«1) (2) (1) (1 2) (1 2 3»
> (pushnew '(1) 1st :test 'equal)
«1) (2) (1) (1 2) (1 2 3»
> (pushnew '(1) 1st :key"car)
«1) (2) (1) (1 2) (1 2 3»

See Also: push

adjoin

Lists 15-45

rassoc, rassoc-if, rassoc-if-not

Purpose:

Syntax:

Remarks:

The functions rassoc, rassoc-if, andrassoc-if-not search association lists. They
return the first pair whose cdr is the same as a given item or satisfies the test
condition or predicate. H no such pair is found, nn is returned.

rassoc item a-list &:key : test : test-not : key

rassoc-if predicate a-list

rassoc-if-not predicate a-list

H nn appears in an association list in place of a pair, it is ignored.

[Function]

[Function]

[Function]

H a test argument for rassoc is not specified, eql is used. Either the keyword :test
or the keyword :test-not may be used to specify a test function other than eql.

The keyword :key may be used to specify that a part of an element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the cdr of the association list entry.

Examples: > (setq alist ,((1 . "one") (2 . "two") (3 . 3»)
«1 . "one") (2 . "two") (3 . 3»

See Also:

> (rassoc 3 alist)
(3 . 3)
> (rassoc "two" alist)
NIL
> (rassoc "two" alist :test 'equal)
(2 . "two")
> (rassoc 1 alist :key #'(lambda (x) (if (numberp x) (/ x 3»»
(3 . 3)
> (rassoc-if #'stringp alist)
(1 • "one")
> (rassoc-if-not #'vectorp alist)
(3 . 3)

assoc

assoc-if

assoc-if-not

15-46 Sun Common Lisp Reference Manual

rest

Purpose:

Syntax:

Remarks:

The function rest is identical to cdr. It returns the cdr of a list. If the list is a
cons, rest returns the portion that follows the first element. If the list is nil, rest
returns nil.

rest list [Function]

The function rest was designed for use in list operations for stylistic reasons.

The macro setf may be used with rest to change the cdr of a list.

Examples: > (rest' (1 2»
(2)
> (rest '(1 . 2»
2
> (rest '(1»
NIL
> (setq CDS '(1 . 2»
(1 . 2)
> (setf (rest CDS) "two")
"two"
> CDS

(1 . "two")

See Also: cdr

Lists 15-47

revappend

Purpose:

Syntax:

Examples:

See Also:

The function revappend makes a copy of its first list argument; in this copy the
order of elements is reversed. It appends its second list argument to that copy and
returns the resulting list.

revappend listl list2 [Function]

> (setq lstl '(1 2 3)
lst2 '(a be»

(A B C)
> (revappend lstl lst2)
(3 2 1 A B C)
> lstl
(1 2 3)
> lst2
(A B C)
> (revappend '(1 . 2) t(a be»
(1 A B C)
> (revappend '(1 2 3) • (a . b»
(3 2 1 A . B)
> (rev append nil '(a be»
(A B C)

nreconc

15-48 Sun Common Lisp Reference Manual

rplaca, rplacd

Purpose:

Syntax:

The function rplaca replaces the car of its cons argument with the specified object
and returns the modified cons.

The function rplacd replaces the cdr of its cons argument with the specified object
and ret.urns the modified cons.

rplaca cons object

rplacd cons object

[Function]

[Function]

Examples: > (setq 1st '(a b c»
(A B C)

> (rp1aca 1st "A")
(IIA" B C)

> 1st
(flA" B C)
> (rp1acd '(1 2 3 . 4) 1st)
(1 "A" B C)
> (rp1aca '(1 . 2) 1st)
«"A" B C) . 2)

Lists 15-49

set-difference, nset-difference

Purpose:

Syntax:

Remarks:

The functions set-difference and nset-difference take two lists and return a list
that contains every element that occurs in the first list argument but not in the
second.

The resulting list of set-difference may share cells with one of the list arguments.
The function nset-difference may modify its list arguments.

set-difference list1 list! &:key :test :test-not :key

nset-difference list1 list! &:key : test : test-not : key

[Function]

[Function]

Whether a list element is the same as another list element is determined by the
functions specified by the keyword arguments. If a test argument is not specified,
eqI is used. Either the keyword :test or the keyword :test-not may be used to
specify a test function other than eqI.

The keyword :key may be used to specify that a part of a list element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the list element.

Examples: > (setq Istt '("A" "b" "C" "d")
Ist2 '("a" "B" "C" "d"»

("a" "B" "C" "d")
> (set-difference Istt lst2)
("d" "C" "b" "A")
> (set-difference Istt lst2 :test 'equal)
("b" "A")
> (set-difference lstt Ist2 :test "equalp)
NIL
> (nset-difference lstt lst2 :test "string=)
("A" "b")

15-50 Sun Common Lisp Reference Manual

set-exclusive-or, nset-exclusive-or

Purpose:

Syntax:

Remarks:

The functions set-exclusive-or and nset-exclusive-or take two lists and return
a list that contains every element that occurs in exactly one of the list arguments.

The result list of set-exclusive-or may share cells with one of the list arguments.
The function nset-exclusive-or may modify its list arguments.

set-exclusive-or listl li8t~ &:key : test : test-not : key

nset-exclusive-or listl list~ &:key : test : test-not : key

[Function]

[Function]

Whether a list element is the same as another list element is determined by the
functions specified by the keyword arguments. If a test argument is not specified,
eql is used. Either the keyword :test or the keyword :test-not may be used to
specify a test function other than eql.

The keyword :key may be used to specify that a part of a list element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the list element.

Examples: > (setq lstl '(1 Ita" "b")
lst2 '(1 itA" "b"»

(1 "A" "b")
> (set-exc1usive-or lstl lst2)
(lib" "A" "b" "a")
> (set-exclusive-or lstl lst2 :test "equal)
("A" "a")
> (set-exclusive-or lst1 lst2 :test 'equalp)
NIL
> (nset-exc1usive-or lst1 lst2)
("a" "b" "A" "b")

Lists 15-51

sublis, nsublis

Purpose:

Syntax:

The function sublis performs substitution operations on trees. It searches a tree
for subtrees or leaves that occur as keys in the association list argument a-list. If
the function succeeds, a new copy of the tree is returned in which each occurrence
of such a subtree or leaf is replaced by the object with which it is associated. If no
changes are made, the original tree is returned. The original tree argument is left
unchanged, but the result tree may share cells with it.

The function nsublis is like sublis, but nsublis modifies its tree argument.

sublis a-list tree lkey :test :test-not :key

nsublis a-list tree lkey : test : test -not : key

[Function]

[Function]

Remarks: If a test argument is not specified, eqI is used. Either the keyword :test or the
keyword :test-not may be used to specify a test function other than eql.

The keyword :key may be used to specify that a part of an element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the tree element.

~xamples: > (setq treel '(1 (1 2) «123» «(1 2 3 4»»)
(1 (1 2) «1 2 3» «(1 2 3 4»»
> (sublis '«3 . "three"» treel)
(1 (1 2) «1 2 "three"» «(1 2 "three" 4»»
> (sublis '«t . "string"»

(sublis '«1 . ",,) (4 . 44» treel)
:key "stringp)

("string" ("string" 2) «"string" 2 3» «("string" 2 3 44»»
> treel
(1 (1 2) «1 2 3» «(1 2 3 4»»
> (nsublis '«t . 'fool)

treel
:key "(lambda (x) (or (atom x) « (list-length x) 3»»

«QUOTE FOO) (QUOTE FOO) QUOTE FOO)

15-52 Sun Common Lisp Reference Manual

subsetp

Purpose:

Syntax:

Remarks:

The predicate subsetp is true if every element of the first list is the same as some
element of the second list; otherwise it is false.

subsetp list1 listE tkey : test : test-not : key [Function]

Whether a list element is the same as another list element is determined by the
functions specified by the keyword arguments. If a test argument is not specified,
eqi is used. Either the keyword :test or the keyword :test-not may be used to
specify a test function other than eqi.

The keyword :key may be used to specify that a part of a list element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the element.

Examples: > (setq cosmos '(1 "a" (1 2)}}
(1 "a" (1 2)}
> (subsetp '(1) cosmos)
T
> (subsetp '«12)) cosmos}
NIL
> (subsetp '«12)) cosmos
T
> (subsetp '(1 "A") cosmos
T
> (subsetp '«1) (2» ,((1)

NIL
> (subsetp '«1) (2» , «1)

T

:test 'equal}

:test "equalp}

(2»)

(2» :key "car)

Lists 15-53

subst, subst-if, subst-if-not, nsubst, nsubst-if,
nsubst-if-not

Purpose:

Syntax:

Remarks:

The functions 8ubst, subst-if, and subst-if-not perform substitution operations
upon trees. Each searches a tree for occurrences of a particular old item or of an
element or sub expression that satisfies some test condition or predicate. If the
functions succeed, a new copy of the tree is returned in which each occurrence of
such an element is replaced by the new element or subexpression. If no changes
are made, the original tree may be returned. The original tree argument is left
unchanged, but the result tree may share cells with it.

The functions nsubst, nsubst-if, and nsubst-if-not are like subst, subst-if, and
subst-if-not respectively, except that the original tree is modified and returned as
the function result.

subst new old tree &:key : test : test-not : key

subst-if new test tree &:key : key

subst-if-not new test tree &:key : key

nsubst new old tree "key : test : test-not : key

nsubst-if new test tree kkey : key

nsubst-if-not new test tree "key : key

[Fun ction]

[Function]

[Function]

[Function]

[Function]

If a test argument for subst or nsubst is not specified, eqi is used. Either the
keyword :test or the keyword :test-not may be used to specify a test function
other than eql.

The keyword :key may be used to specify that a part of an element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the tree element.

Examples: > (setq tree1 '(1 (1 2) (1 2 3) (1 2 3 4»)
(1 (1 2) (1 2 3) (1 2 3 4»
> (subst "two" 2 tree1)
(1 (1 "two") (1 "two" 3) (1 "two" 3 4»
> (subst "five" 5 tree1)
(1 (1 2) (1 2 3) (1 2 3 4»
> (eq tree1 (subst "five" 5 tree1»
T
> (subst-if 5 #'listp tree1)
5
> (subst-if-not '(x) #'consp tree1)
«X) «X) (X) X) «X) (X) (X) X) «X) (X) (X) (X) X) X)

15-54 Sun Common Lisp Reference Manual

subst, subst-if, subst-if-not, nsubst, nsubst-if, nsubst-if-not

See Also:

> tree1
(1 (1 2) (1 2 3) (1 2 3 4»
> (nsubst 'x 3 tree1 :key #'(lambda(y) (and (listp y) (third y»»
(1 (1 2) X X)
> tree1
(1 (1 2) X X)

substitute

nsubstitute

Lists 15-55

tailp

Purpose: The predicate tailp tests whether its 8ublist argument forms a tail of the given
list. If it does, tailp returns true; otherwise it returns false.

Syntax: tailp 8ublist list

Examples: > (tailp • (2 3) • (1 2 3»
NIL
> (tailp (cdr '(1 2 3» '(1 2 3»
NIL
> (setq 1st '(1 2 3»
(1 2 3)
>' (setq tlst (cdr 1st»
(2 3)
> (tailp tlst 1st)
T
> (tailp nil '(1 2 3»
NIL

See Also: ldiff

15-56 Sun Common Lisp Reference Manual

[Function]

tree-equal

Purpose:

Syntax:

The predicate tree-equal tests whether two trees are of the same shape and have
the same leaves. It returns t if objectl and object2 are both atoms and satisfy
the test condition, or if they are both conses and the car of objectl is tree-equal
to the car of object2 and the cdr of objectl is tree-equal to the cdr of object2.
Otherwise tree-equal returns false.

tree-equal object1 object2 "key : test : test-not [Function]

Rem.arks: If a test argument is not specified, eql is used. Either the keyword :test or the
keyword :test-not may be used to specify a test function other than eql.

Examples: > (setq treel '(1 (1 2»
tree2 '(1 (1 2»)

(1 (1 2»

See Also:

> (tree-equal tree1 tree2)
T
> (eql tree1 tree2)
NIL
> (tree-equal tree1 tree2 :test 'eq)
T

equal

Lists 15-57

• • unIon, nunlon

Purpose:

Syntax:

Remarks:

The functions union and nunion take two lists and return a list that contains
every element that occurs in either of the list arguments.

The result list of union may share cells with one of the argument lists. The
function nunion may modify its argument lists.

union listl liste &:key :test :test-not :key

nunion listl liste &:key :test :test-not :key

[Function]

[Function]

If there is an element that is duplicated by the two lists, only one instance of it will
appear in the result. If, however, one of the lists itself contains duplicate elements,
there may be duplication in the result.

Whether a list element is the same as another list element is determined by the
functions specified by the keyword arguments. If a test argument is not specified,
eql is used. Either the keyword :test or the keyword :test-not may be used to
specify a test function other than eql.

The keyword :key may be used to specify that a part of a list element should be
tested. Its argument should be a function of one argument that extracts the part
to be tested from the element.

Examples: > (setq lst1 '(1 2 (1 2) "a" "b")
lst2 '(2 3 (2 3) "B" "C"»

(2 3 (2 3) "B" "C")
> (union lst1 lst2)
("b" "a" (1 2) 1 2 3 (2 3) "B" "C")
> (union Ist1 lst2 :test 'equalp)
("a" (1 2) 1 2 3 (2 3) "B" "C")
> (nunion 1st1 lst2)
(1 (1 2) "a" "b" 2 3 (2 3) "B" "C")

15-58 Sun Common Lisp Reference Manual

Chapter 16. Arrays

Arrays 16-1

Chapter 16. Arrays

About Arrays .. 16-3
Vectors .. 16-3
Fill Pointers .. 16-4

Categories of Operations .. 16-5
Data Type Predicates .. 16-5
Array Creation and Modification ... 16-5
Array Access .. '.' 16-5
Array Predicates .. 16-5
Array Attributes .. 16-6
Manipulating Fill Pointers .. 16-6
Logical Operations on Bit Arrays ... 16-6

adjust-array .. 16-7
adjustable-array-p .. 16-10
aref ... 16-11
array-dimension .. 16-12
array-dimension-limit ... 16-13
array-dimensions ... 16-14
array-element-type ... 16-15
array-has-fill-pointer-p ... 16-16
array-in-bounds-p .. 16-17
array-rank . 16-18
array-rank-limit .. 16-19
array-row-major-index ... 16-20
array-total-size ... 16-21
array-total-size-limit .. 16-22
arrayp ... 16-23
bit, sbit .. 16-24
bit-and, bit-andc1, bit-andc2, bit-eqv, bit-ior, bit-orc1, bit-orc2, bit-nand, bit-nor,

bit-xor . 16-25
bit-not . 16-27
bit-vector-p ... 16-28
fill-pointer .. 16-29
make-array .. 16-30
simple-bit-vector-p ... 16-33
simple-vector-p .. 16-34
svref . 16-35
vector. 16-36
vector-pop . 16-37
vector-push, vector-push-extend ... 16-38
vectorp ... 16-40

16-2 Sun Common Lisp Reference Manual

About Arrays

Arrays are structured objects whose components can be directly accessed by means of
index values.

An array can have many dimensions. The number of dimensions of an array is termed
its rank. It is possible for an array to have zero dimensions. In this case it consists of
one element. The total number of elements that can be contained in an array is otherwise
given by the product of its dimensions. If the length of any dimension is 0, the array has
no elements. The elements of a multidimensional array are stored in row-major order.

An array is indexed by a sequence of integers called subscripts. Each index value
corresponds to a dimension of the array; the length of the sequence must equal the
number of dimensions of the array. Array indexing is zero-origin; all index values must be
nonnegative.

Arrays may be general or specialized. A general array can have elements that are
members of any Common Lisp data type. A specialized array is an array whose elements
must all be members of a particular data type.

Arrays can share their contents with other arrays. An array that is defined to share
elements with an existing array is called a displaced array. It is said to be displaced to
the existing array.

Arrays can also be created whose size and shape may be adjusted dynamically. Such
arrays are called adjustable arrays.

Sun Common Lisp implements arrays by using several different primitive data types.
In particular, simple vectors such as single-bit, 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, and
single-float vectors are directly implemented using primitive data types.

Vectors

A vector is a one-dimensional array. Since the vector data type is a subtype of the
sequence data type, a vector is also a sequence. A general vector can have elements that
are members of any Common Lisp data type. A specialized vector is a vector whose
elements must all be members of a particular data type. Strings and bit vectors are
important types of specialized vectors. Strings are vectors whose elements are of the string
character data type. Bit vectors are one-dimensional arrays whose elements are of the bit
data type.

Arrays 16-3

Fill Pointers

A one-dimensional array can have a fill pointer. A fill pointer is an index into a vector.
It is a nonnegative integer whose value is less than or equal to the number of elements that
the vector can contain. The elements below the fill pointer are considered to be active.
If the fill pointer value is 0, the vector contains no active elements. The fill pointer may
be used to fill in the elements of the vector incrementally and thus to vary the length of
the active portion of the vector. Generally, vector functions observe fill pointers and only
operate on the active portion of a vector.

A simple array is an array that is not displaced to another array, has no fill pointer, and
whose size cannot be dynamically adjusted.

A simple vector is a vector that is not displaced to another array, has no fill pointer,
and whose size cannot be dynamically adjusted.

16-4 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations on arrays according to functionality.

Data Type Predicates

arrayp
bit-vector-p
simple-bit-vector-p

simple-vector-p
vectorp

These predicates determine whether an object is a type of array.

Array Creation and Modification

adjust-array
make-array

vector

These functions create arrays and modify the shape and size of arrays.

Array Access

aref
bit

sbit
svref

These functions access the elements of arrays.

Array Predicates

adjustable-array-p
array-has-fill-p oint er-p

These predicates test properties of arrays.

array-in-bounds-p

Arrays 16-5

Array Attributes

array-dimension
array-dimension-limit
array-dimensions
array-element-type
array-rank

array-rank-limit
array-row-major-index
array-total-size
array-total-size-limit

These constructs provide information about existing arrays and about system
limitations on arrays that may be created.

Manipulating Fill Pointers

fill-pointer
vector-pop

vector-push
vector-push-extend

These functions use fill pointers to access arrays.

Logical Operations on Bit Arrays

bit-and
bit-andc1
bit-andc2
bit-eqv
bit-ior
bit-nand

These functions operate on bit arrays.

16-6 Sun Common Lisp Reference Manual

bit-nor
bit-not
bit-ore 1
bit-orc2
bit-xor

adjust-array

Purpose:

Syntax:

Remarks:

The function adjust-array may be used to change the dimensions or contents of
an array. The resulting array is of the same type and rank as the original array.

The original array may be modified and returned, or a new array may be created
and the original array displaced to it.

The array argument must be an adjustable array.

The new-dimensions argument is a list of nonnegative integers that specify the
size of each dimension of the array. The length of the dimensions list implicitly
specifies the rank of the array and must equal the rank of the original array. The
size of each dimension must be smaller than the constant array-dimension-limit,
and the total number of elements that the array can contain (as given by the
product of all dimensions) must be less than the constant array-total-size-limit.

The function adjust-array may be used with a number of keyword arguments.
The use of the optional keyword arguments is discussed below.

adjust-array array new-dimensions &key : element-type
: initial-element
: initial-contents
: fill-pointer
: displaced-to
:displaced-index-offset

[Function]

The :element-type keyword argument is used to specify the type of the elements
of the array. Its value is a type specifier. If the :element-type argument is
specified, it must be a type that is compatible with the :element-type specification
of the original array. If the new array is a displaced array, the :element-type
argument must be compatible with the :element-type specification of the array
that the new array shares elements with.

The :initial-element keyword argument may be used to initialize each new
element of the new array. Only those elements of the new array that are not
within the bounds of the old array are initialized; the other elements retain their
former values. If the :initial-element option is not specified, elements of the
new array that are not within the bounds of the old array are undefined. The
value of the :initial-element argument must agree with the type specified by the
:element-type argument if the latter is given or with the original array if not. The
:initial-element argument may not be specified if either the :initial-contents or
:displaced-to argument is given.

Arrays 16-7

adjust-array

The :initial-contents keyword argument is used to initialize each element of the
new array individually. Its value is a list of nested sequences. The depth of nesting
must equal the rank of the array. The top-level sequences correspond to the
first dimension of the array, the second-level to the second dimension, and so on.
The lowest-level sequence elements correspond to the array elements themselves.
They must be of a type compatible with the :element-type argument. The
:initial-contents argument may not be specified if either the :initial-element or
the :displaced-to argument is given.

The ::6.11-pointer keyword argument may be specified only if the original array has
a fill pointer. It is used to reset the fill pointer. If the argument value is t, the fill
pointer is set to the length of the array. Otherwise the argument value must be a
nonnegative integer that is no larger than the length of the array.

The :displaced-to keyword argument is used to create a displaced array. The
new array shares its contents with the array that is given as the argument to the
:displaced-to option. If the :displaced-to argument is defaulted or nil, the
new array is not a displaced array. The :initial-elements and :initial-contents
options must not be specified if the :displaced-to argument is given. The
new array may not contain more elements than the array it is displaced to.
The :displaced-index-offset option is generally used in conjunction with the
:displaced-to option.

The :displaced-index-offset keyword argument is used to specify the offset of
the new array from the beginning of the array that it is displaced to. The value
of the argument must be a nonnegative integer; if it is not specified, it defaults to
O. The :displaced-index-offset argument may be used only if the :displaced-to
argument is specified. The size of the new array plus the offset value may not
exceed the size of the array that it is displaced to.

Although the original array may be a displaced array, the resulting array is not a
displaced array unless the :displaced-to argument is specified.

Examples: > (adjustable-array-p
(setq ada

(adjust-array (make-array '(2 3)

'(4 6»»
T
> (array-dimensions ada)
(4 6)
> (aref ada 1 1)
2

16-8 Sun Common Lisp Reference Manual

: adjustable t
:initial-contents '«a b c) (123»)

See Also: adjustable-array-p

make-array

array-dimension-limit

array-total-size-limit

adjust-array

Arrays 16-9

adjustable-array-p

Purpose: The predicate adjustable-array-p is true if its array argument is adjustable;
otherwise it is false.

Syntax: adjustable-array-p array

Examples: > (adjustable-array-p

T

(make-array 5
:element-type ·string-char
:adjustable t
:fill-pointer 3»

> (adjustable-array-p (make-array 4»
NIL

16-10 Sun Common Lisp Reference Manual

[Function]

aref

Purpose:

Syntax:

Remarks:

The function aref accesses and returns the array element specified by the given
subscripts.

aref array &rest subscripts [Function]

The number of subscripts given must correspond to the rank of the array. Each
subscript must be in bounds for its dimension.

The function aref ignores fill pointers when accessing elements.

The macro setf may be used with aref to destructively replace an array element.

Examples: > (aref (setq ta (make-array 4» 3)
NIL
> (setf (aref ta 3) 'alozab)
ALOZAB
> (aref ta 3)
ALOZAB
> (aref (make-array '(2 4)

1

See Also: bit

char

elt

svref

1 2)

:element-type '(unsigned-byte 2)
:initial-contents '«0 1 2 3) (3 2 1 0»)

Arrays 16-11

array-dimension

Purpose:

Syntax:

Remarks:

The function array-dimension returns the size of the axis-number dimension of
the given array.

array-dimension array axis-number [Function]

The axis-number argument must be a nonnegative integer less than the rank of the
array. Axis numbering is zero-origin.

The function array-dimension ignores fill pointers and returns the actual size of
the given dimension.

Examples: > (array-dimension (make-array 4) 0)

See Also:

4
> (array-dimension (make-array '(2 3)) 1)
3

length

16-12 Sun Common Lisp Reference Manual

array-dimension-limit

Purpose: The constant array-dimension-limit is an integer that defines the upper exclusive
bound on each dimension of an array.

The value of array-dimension-limit in Sun Common Lisp is 224 - 1.

Syntax: array-dimension-limit

Examples: > array-dimension-limi t
16777215

[Constant]

Arrays 16-13

array-dimensions

Purpose: The function array-dimensions returns a list whose elements are the dimensions
of the given array.

Syntax: array-dimensions array

Examples: > (array-dimensions (make-array 4»
(4)
> (array-dimensions (make-array '(2 3»)
(2 3)

16-14 Sun Common Lisp Reference Manual

[Function]

array-element-type

Purpose:

Syntax:

Remarks:

The function array-element-type returns a type specifier for the set of elements
that the given array can contain.

array-element-type array [Function]

The value of the type specifier may be a supertype of the type requested by the
user when the array was created.

Sun Common Lisp implements arrays by using several different primitive data
types. In particular, simple vectors such as single-bit, 2-hit, 4-hit, 8-bit, 16-hit,
32-bit, and single-float vectors are directly implemented using primitive data types.

Examples: > (array-element-type (make-array 4»

See Also:

T
> (array-element-type (make-array 12 :element-type • (unsigned-byte 8»)
(UNSIGNED-BYTE 8)
> (array-element-type (make-array 12 :element-type • (unsigned-byte 6»)
(UNSIGNED-BYTE 8)

make-array

Arrays 16-15

array-has-fill-pointer-p

Purpose: The predicate array-has-fill-pointer-p is true if its array argument has a fill
pointer; otherwise it is false.

Syntax: array-has-fill-pointer-p array

Remarks: Only one-dimensional arrays can have fill pointers.

Examples: > (array-has-fill-pointer-p (make-array 4»
NIL
> (array-has-fill-pointer-p

(make-array 8

T

:fill-pointer 2
:initial-element 'bazola»

16-16 Sun Common Lisp Reference Manual

[Function]

array-in-bounds-p

Purpose:

Syntax:

Remarks:

The predicate array-in-bounds-p checks whether the subscripts are all legal for
the given array. It returns true if all are in bounds; otherwise it returns false.

array-in-bounds-p array .trest subscripts

The number of subscripts given must equal the rank of the array.

The predicate array-in-bounds-p ignores fill pointers.

[Function]

Examples: > (array-in-bounds-p
(setq foo (make-array 1(1 11)

:element-type ·string-char»
o 0)

T
> (array-in-bounds-p foo 6 10)
T
> (array-in-bounds-p foo 0 -1)
NIL
> (array-in-bounds-p foo 0 11)
NIL
> (array-in-bounds-p foo 1 0)
NIL

Arrays 16-17

array-rank

Purpose: The function array-rank returns the number of dimensions of the given array as
a nonnegative integer.

Syntax: array-rank array

ExaInples: > (array-rank (make-array nil»
o
> (array-rank (make-array 4»
1
> (array-rank (make-array '(2 3»)
2

16-18 Sun Common Lisp Reference Manual

[Fun ction]

array-rank-limit

Purpose: The constant array-rank-limit is an integer that defines the upper exclusive
bound on the rank of an array.

The value of array-rank-limit in Sun Common Lisp is 28 •

Syntax: array-rank-limit

Examples: > array-rank-limit
266

[Constant]

Arrays 16-19

array-row-major-index

Purpose:

Syntax:

Remarks:

The function array-row-major-index computes the position according to the
row-major ordering of the array for the element that is specified by the subscript
arguments. The result is a nonnegative integer value that indicates the offset of
the element from the beginning of the array.

array-row-major-index array trest subscripts [Function]

The function array-row-major-index ignores fill pointers.

The number of subscripts given must correspond to the rank of the array. Each
subscript must be in bounds for its dimension.

Examples: > (array-row-maj or-index
(setq foo (make-array '(4 7)

:element-type '(unsigned-byte 8»)
1 2)

9
> (array-row-major-index (make-array '(2 3 4)

o 2 1)
9

16-20 Sun Common Lisp Reference Manual

:element-type '(unsigned-byte 8)
:displaced-to foo
:displaced-index-offset 4)

array-total-size

Purpose:

Syntax:

Remarks:

The function array-total-size returns the number of elements that can be
contained in the given array. The result is the product of the dimensions of the
array.

array-total-size array

The function array-total-size ignores fill pointers.

The size of a zero-dimensional array is 1.

[Function]

Examples: > (array-total-size (make-array nil»
1
> (array-total-size (make-array 4»
4
> (array-total-size (make-array '(2 3»)
6

Arrays 16-21

array-total-size-limit

Purpose: The constant array-total-size-limit is an integer that defines the upper exclusive
bound on the number of elements that any array can contain.

The value of array-total-size-limit in Sun Common Lisp is 224 - 1.

Syntax: array-total-size-limit

Examples: > array-total-size-limit
16777215

16-22 Sun Common Lisp Reference Manual

[Constant]

arrayp

Purpose: The predicate arrayp is true if its argument is an array; otherwise it is false.

Syntax: arrayp object [Function]

Examples: > (arrayp (make-array • (2 3 4)
: adjustable t»

T
> (arrayp (make-array 6»
T
> (arrayp 12)
NIL

Arrays 16-23

hit, shit

Purpose:

Syntax:

Remarks:

The functions bit and sbit access elements of bit arrays.

The function bit accesses and returns the bit array element specified by the list of
subscripts.

The function sbit is identical to bit but requires an array argument that is a
simple bit array.

bit bit-arrayl:rest subscripts

sbit simple-bit-array I:rest subscripts

The function bit ignores fill pointers when accessing elements.

[Function]

[Function]

The number of subscripts given must correspond to the rank of the array. Each
subscript must be in bounds for its dimension.

The functions bit and sbit are like aref except that they require their array
arguments to be a bit array and a simple bit array respectively. The function sbit
is coded in-line by the compiler; it may be significantly faster than bit.

The macro setf may be used with bit or sbit to destructively replace a bit array
element.

Examples: > (bit (setq ba (make-array 8

3)
1
> (setf (bit ba 3) 0)
o
> (bit ba 3)
o
> (sbit ba 5)
1
> (setf (sbit ba 5) 1)
1
> (sbit ba 6)
1

See Also: aref

16-24 Sun Common Lisp Reference Manual

:element-type 'bit
:initial-element 1»

bit-and, bit-andel, bit-ande2, hit-eqv, bit-ior,
bit-ore!, bit-ore2, bit-nand, bit-nor, bit-xor

Purpose:

Syntax:

The functions bit-and, bit-ande1, bit-ande2, bit-eqv, bit-ior, bit-ore1,
bit-ore2, bit-nand, bit-nor, and bit-xor perform bit-wise logical operations on
bit arrays and return the resulting array.

If the result-bit-array argument is specified, the contents of that array are replaced
with the result; if it is t, the contents of bit-arrayl are replaced with the result; if
it is nil or unspecified, a new array is created.

The function bit-and returns the logical and of its bit array arguments.

The function bit-ande1 returns the logical and of its first argument with the
logical complement of its second argument.

The function bit-ande2 returns the logical and of its second argument with the
logical complement of its first argument.

The function bit-eqv returns the logical equivalence of its bit array arguments.

The function bit-ior returns the logical inclusive or of its bit array arguments.

The function bit-nand performs the logical and operation on its bit array
arguments and returns the logical complement of the result.

The function bit-nor performs the logical inclusive or operation on its bit array
arguments and returns the logical complement of the result.

The function bit-ore1 returns the logical inclusive or of its first argument with
the logical complement of its second argument.

The function bit-ore2 returns the logical inclusive or of its second argument with
the logical complement of its first argument.

The function bit-xor returns the logical exclusive or of its bit array arguments.

bit-and bit-arrayl bit-array£ "optional result-b~'t-array

bit-andel bit-arrayl bit-array£ "optional result-bit-array

bit-ande2 bit-arrayl bit-array£ "optional result-bit-array

bit-eqv bit-arrayl bit-array£ "optional result-bit-array

bit-ior bit-arrayl bit-array£ "optional result-bit-array

bit-nand bit-arrayl bit-array£ "optional result-bit-array

bit-nor bit-array1 bit-array£ "optional result-bit-array

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Arrays 16-25

bit-and, bit-andel, bit-ande2, bit-eqv, bit-ior, bit-orel,

bit-ore1 bit-arrayl bit-array2 &:optional result-bit-array

bit-ore2 bit-arrayl bit-array2 &:optional result-bit-array

bit-xor bit-arrayl bit-array2 &:optional result-bit-array

[Function]

[Function]

[Function]

Remarks: The array arguments must all be of the same rank and dimensions. The result is a
bit array of the same rank and dimensions as the arguments.

Examples: > (setq *print-array* t)

See Also:

T
> (bit-and (setq ba #*11101010) #*01101011)
#*01101010
> (setq rba (bit-andc2 ba #*00110011 t»
#*11001000
> (eq rba ba)
T

bit-not

16-26 Sun Common Lisp Reference Manual

hit-not

Purpose:

Syntax:

The function hit-not inverts the bits in its hit-array argument and returns the
resulting array.

H the result-hit-array argument is specified, the contents of that array are replaced
with the result; if it is t, the contents of hit-array are replaced with the result; if it
is nil or unspecified, a new array is created.

hit-not hit-arrayl:optional result-hit-array [Function]

Remarks: The resulting array is identical in rank and dimensions to the original array.

Examples: > (setq *print-array* t)
T
> (bit-not (setq ba #*11101010»
#*00010101
> (setq rba (bit-not ba

(setq tba (make-array 8

#*00010101
> (equal rba tba)
T

:element-type 'bit»»

Arrays 16-27

bit-vector-p

Purpose: The predicate bit-vector-p is true if its argument is a bit vector; otherwise it is
false.

Syntax: bit-vector-p object

Examples: > (bit-vector-p (make-array 6

T
> (bit-vector-p #*)
T

:element-type 'bit
:fill-pointer t»

> (bit-vector-p (make-array 6»
NIL

16-28 Sun Common Lisp Reference Manual

[Function]

fill-pointer

Purpose: The function fill-pointer returns the fill pointer of the specified vector. The vector
argument must be a vector with a fill pointer.

Syntax: fill-pointer vector [Function]

Remarks: The macro setf may be used with fill-pointer to modify the fill pointer of a
vector. The new fill pointer value must be a nonnegative integer less than or equal
to the length of the vector.

Examples: > (fill-pointer
(setq fa (make-array 8

2

:fill-pointer 2
:initial-element 'bazola»)

> (setf (fill-pointer fa) 0)
o
> (fill-pointer fa)
o

Arrays 16-29

make-array

Purpose:

Syntax:

Remarks:

The function make-array creates and returns a new array.

The dimensions argument is a list of nonnegative integers that specify the size of
each of the dimensions of the array. The length of the dimensions list implicitly
specifies the rank of the array. The total number of dimensions of the array must
be less than the constant array-rank-limit. The size of each dimension must
be smaller than the constant array-dimension-limit, and the total number of
elements that the array can contain (as given by the product of all dimensions)
must be less than the constant array-total-size-limit.

If the dimensions argument is nil, a zero-dimensional array is created.

If a one-dimensional array is to be created, the dimensions argument may be given
as a single integer rather than as a list.

The function make-array may be used with a number of keyword arguments.
The use of the optional keyword arguments is discussed below.

make-array dimensions I:key : element-type
: initial-element
: initial-contents
: adjustable
:fill-pointer
: displaced-to
:displaced-index-offset

[Function]

The :element-type keyword argument is used to specify the type of the elements
of the new array. Its value is a type specifier. The array that is created is of the
most appropriate implementation type that can contain elements of this type. Sun
Common Lisp implements arrays by using several different primitive data types.
In particular, simple vectors such as single-bit, 2-bit, 4-bit, 8-bit, I6-bit, 32-bit,
and single-float vectors are directly implemented using primitive data types. The
:element-type argument defaults to t, the most general type.

The :initiaI-element keyword argument may be used to specify the initial value
of all elements of the new array. This value must be of the type specified by the
:element-type argument if the latter is given. If the :initial-element argument
is not specified, the initial contents of the array elements are undefined. The
:initial-element argument may not be specified if either the :initial-contents or
the :displaced-to argument is given.

16-30 Sun Common Lisp Reference Manual

make-array

The :initial-contents keyword argument is used to initialize each element of the
new array individually. Its value is a list of nested sequences. The depth of nesting
must equal the rank of the array. The top-level sequences correspond to the
first dimension of the array, the second-level to the second dimension, and so on.
The lowest-level sequence elements correspond to the array elements themselves.
They must be of a type compatible with the :element-type argument. The
:initial-contents argument may not be specified if either the :initial-element or
the :displaced-to argument is given.

The :adjustable keyword argument is used to specify that the size of the array
may be adjusted dynamically. If this argument is specified and is non-nil, the
array that is created is adjustable.

The :fill-pointer keyword argument is used to specify that the array is to have a
fill pointer. Only one-dimensional arrays may have fill pointers. The fill pointer is
initialized to the value of the :fill-pointer argument. If the argument value is t,
the fill pointer is set to the length of the array. Otherwise it must be a nonnegative
integer that is no larger than the length of the array. If the fill pointer argument is
defaulted or nil, the array will not have a fill pointer.

The :displaced-to keyword argument is used to create a displaced array. The
new array shares its contents with the array that is given as the argument to the
:displaced-to option. If the :element-type option is also specified, it must be
the same as that of the array that the new array shares elements with. If the
:displaced-to argument is defaulted or nil, the new array is not a displaced array.
The :initial-elements or :initial-contents option must not be specified if the
:displaced-to argument is given. The new array may not contain more elements
than the array it is displaced to. The :displaced-index-o:ffset option is generally
used in conjunction with the :displaced-to option.

The :displaced-index-o:ffset keyword argument is used to specify the offset of
the new array from the beginning of the array that it is displaced to. The value
of the argument must be a nonnegative integer; if it is not specified, it defaults to
o. The :displaced-index-o:ffset argument may be used only if the :displaced-to
argument is specified. The size of the new array plus the offset value may not
exceed the size of the array that it is displaced to.

If the :adjustable, :fill-pointer, and :displaced-to arguments are all defaulted
or nil, a simple array is created.

Arrays 16-31

make-array

Examples: > (setq *print-array* t)

See Also:

T

> (make-array nil)
#OA NIL
> (make-array 4)
#(NIL NIL NIL NIL)
> (make-array '(2 4)

:element-type '(unsigned-byte 2)
:initial-contents '«0 1 2 3) (3 2 1 0»)

#2A«0 1 2 3) (3 2 1 0»
> (make-array 6

"aaa"

:element-type 'string-char
:initial-element #\a
:fill-pointer 3)

array-dimension-limit

array-rank-limit

array-total-size-limit

16-32 Sun Common Lisp Reference Manual

simple-bit-vector-p

Purpose: The predicate simple-bit-vector-p is true if its argument is a simple bit vector;
otherwise it is false.

Syntax: simple-bit-vector-p object

Examples: > (simple-bit-vector-p (make-array 6»
NIL
> (simple-bit-vector-p #*)
T

[Function]

Arrays 16-33

sirnple-vector-p

Purpose: The predicate simple-vector-p is true if its argument is a simple general vector;
otherwise it is false.

Syntax: simple-vector-p object

Examples: > (simple-vector-p (make-array 6»

> (simple-vector-p tlaaaaaa tl)
NIL
> (simple-vector-p (make-array 6 :fill-pointer t»
NIL

16-34 Sun Common Lisp Reference Manual

[Function]

Bvref

Purpose:

Syntax:

Remarks:

The function svref accesses a simple vector and returns the element specified by
its index argument.

svref simple-vector index [Function]

The index value must be in bounds for the vector.

The function svref is like aref except that it requires its array argument to be
a simple vector. The function svref is coded in-line by the compiler; it may be
significantly faster than aref.

The macro setf may be used with svref to destructively replace an element of a
simple vector.

Examples: > (setq *print-array* t)
T
> (simple-vector-p (setq v (vector 1 2 'bazola»)
T
> (svref v 0)
1
> (svref v 2)
BAZOLA
> (setf (svref v 1) 'newcomer)
NEWCOMER
> v
#(1 NEWCOMER BAZOLA)

See Also: aref

sbit

schar

vector

Arrays 16-35

vector

Purpose:

Syntax:

The function vector creates and returns a simple general vector whose size
corresponds to the number of object arguments. It is initialized to contain the
objects specified by the arguments.

vector Ir;rest objects [Function]

Examples: > (arrayp (setq v (vector 1 2 'bazola»)

See Also:

T
> (vectorp v)
T
> (simple-vector-p v)
T
> (length v)
3

make-array

16-36 Sun Common Lisp Reference Manual

vector-pop

Purpose:

Syntax:

Remarks:

The function vector-pop is used to retrieve elements from vectors having fill
pointers. The fill pointer is decremented by 1, and the vector element indicated by
the new fill pointer is returned as the result.

vector-pop vector [Function]

The initial value of the fill pointer must be positive.

The vector argument must specify a vector that has a fill pointer.

Examples: > (vector-push (setq frob (list 'frob»
(setq fa (make-array 8

See Also:

2
> (fill-pointer fa)
3
> (eq (vector-pop fa) frob)
T
> (vector-pop fa)
BAZOLA
> (fill-pointer fa)
1

vector-push

:fill-pointer 2
:initial-element 'bazola»)

Arrays 16-37

vector-push, vector-push-extend

Purpose:

Syntax:

Remarks:

The functions vector-push and vector-push-extend are used to store elements
in vectors having fill pointers.

The function vector-push attempts to store the new-element argument in the
vector location indicated by the fill pointer and then to increment the fill pointer.
If it succeeds, the original value of the fill pointer is returned as the result. If the
fill pointer is already too large, vector~pu8h returns nil and does not modify the
vector.

The function vector-push-extend is like vector-push except that the vector is
extended when the fill pointer becomes too large. Its vector argument must be an
adjustable vector.

vector-push new-element vector

vector-push-extend new-element vector ctoptional extension

[Function]

[Function]

The extension argument of vector-push-extend may be used to specify the
minimum number of elements by which the array should be extended. It must be
a positive integer.

The vecto; argument must specify a vector that has a fin pointer. The new eiement
may be any object that is compatible with the type of the vector.

Examples: > (vector-push (setq frob (list 'frob»
(setq fa (make-array 8

2
> (fill-pointer fa)
3
> (eq (aref fa 2) frob)
T
> (vector-push-extend #\X

(setq aa

:fill-pointer 2
:initial-element 'bazola»)

(make-array 5

3
> (fill-pointer aa)
4

16-38 Sun Common Lisp Reference Manual

:element-type 'string-char
:adjustable t
:fill-pointer 3»)

See Also:

> (vector-push-extend #\Y aa 4)
4
> (array-total-size aa)
6
> (vector-push-extend #\Z aa 4)
6
> (array-total-size aa)
9

adjustable-array-p

vector-pop

vector-push, vector-push-extend

Arrays 16-39

vectorp

Purpose: The predicate vectorp is true if its argument is a vector; otherwise it is false.

Syntax: vectorp object

Examples: > (vectorp "aaaaaa ll
)

T
> (vectorp (make-array 6 :fill-pointer t»
T
> (vectorp (make-array '(2 3 4»)
NIL

16-40 Sun Common Lisp Reference Manual

[Function]

Chapter 17. Strings

Strings 17-1

Chapter 17. Strings

About Strings .. 17-3
Categories of Operations. 17-4

Data Type Predicates .. 17-4
String Access ... 17-4
String Comparison .. 17-4
String Construction. 17-5
String Manipulation ... 17-5

char, schar . 17-6
make-string . 17-7
simple-string-p .. 17-8
string . 17-9
string<, string<=, string>, string>=, string/=, string-Iessp, string-not-greaterp,

string-greaterp, string-not-Iessp, string-not-equal. 17-10
string=, string-equal .. 17-12
string-trim, string-left-trim, string-right-trim 17-13
string-upcase, string-downcase, string-capitalize, nstring-upcase, nstring-downcase,

nstring-capitalize ... 17-14
stringp . 17-16

17-2 Sun Common Lisp Reference Manual

About Strings

A string is a vector whose elements must be of the string character data type. The string
type is identical to the type (vector string-char).

Like other vectors and arrays, strings may have fill pointers. A 1111 pointer is an index
into a string. It is a nonnegative integer whose value is less than or equal to the number
of elements that the string can contain. The elements below the fill pointer are considered
to be active. If the fill pointer value is 0, the string contains no active elements. The fill
pointer may be used to fill in the elements of the string incrementally and thus to vary the
length of the active portion of the string. Generally, string functions observe fill pointers
and only operate on the active portion of a string.

A simple string is a simple array. In particular, it has no fill pointer. Simple strings use
less storage than general strings. Operations on simple strings tend to be faster than those
on general strings.

Strings 17-3

Categories of Operations

This section groups operations on strings according to functionality.

Data Type Predicates

stringp simple-string-p

These predicates determine whether an object is a string.

String Access

char schar

These functions access a single string element.

String Comparison

string=
string<
string<=
string>
string>=
string/=

string-equal
string-Iessp
string-not-greaterp
string-greaterp
string-not-Iessp
string-not-equal

These functions perform lexicographic comparisons on strings. Both case-sensitive
and case-insensitive forms of each operation are provided.

17-4 Sun Common Lisp Reference Manual

String Construction

make-string

These functions create new strings.

String Manipulation

string-trim
string-left-trim
string-right-trim
string-upcase
string-downcase

These functions modify strings.

string

string-capitalize
nstring-upcase
nstring-downcase
nstring-capitalize

Strings 17-5

char, schar

Purpose:

Syntax:

Remarks:

The function char accesses and returns as a character object the string element
specified by index. The index value must be a nonnegative integer that is less than
the length of the string.

The function schar is identical to char but requires a string argument that is a
simple string.

char string index

schar simple-string index

The function char ignores fill pointers when accessing elements.

[Function]

[Function]

The index is an offset value from the beginning of the string; indexing is zero-origin.

The macro setf may be used with char or schar to destructively replace a string
element.

Examples: > (setq simp-str "abcdeflf)
"abcdef"
> (setq un-simp-str (make-array "(6)

""
> (schar simp-str 2)
#\c
> (char un-simp-str 2)
#\c
> (setf (schar simp-str 2) #\C)
#\C
> simp-str
"abCdef lf

See Also: aref

elt

17-6 Sun Common Lisp Reference Manual

:element-tvDe "string-char
:fill-pointer 0
:displaced-to simp-str»

make-stri~g

Purpose: The function make-string creates and returns a string of length size.

If the :initial-element argument is specified, all string elements are initialized to
its value.

Syntax: make-string size lkey : initial-element

Remarks: The resulting string is a simple string.

Examples: > (make-string 10 : initial-element #\5)
"5555555555"
> (length (make-string 10»
10

[Function]

Strings 17-7

simple-string-p

Purpose: The predicate simple-string-p is true if its argument is a simple string; otherwise
it is false.

Syntax: simple-string-p object

Examples: > (simple-string-p "aaaaaa")
T
> (simple-string-p (make-array 6

NIL

17-8 Sun Common Lisp Reference Manual

:element-type 'string-char
:fill-pointer t»

[Function]

string

Purpose: The function string converts symbol and single-character arguments to strings.

If the argument of string is a string, it is returned; if it is a symbol, the print
name of the symbol is returned as a string; if it is a string character, a one-element
string containing that character is returned. If the argument is of any other type,
string signals an error.

Syntax: string z [Function]

Examples: > (string "already a string")
"already a string"
> (string -fool
"FDD"
> (string #\c)
"c"

See Also: coerce

string-char-p

Strings 17-9

string<, string<=, string>, string>=, string/=,
string-Iessp, string-not-greaterp, string-greaterp,
string-not-Iessp, string-not-equal

Purpose:

Syntax:

Remarks:

These functions perform lexicographic comparisons upon their string arguments.
The comparison operations may be restricted to substrings of these strings by
specifying the :start and :end keyword arguments.

The functions string<, string<=, string>, string>=, and string/= check to
see if the first of these substrings is less than, less than or equal to, greater than,
greater than or equal to, or not equal to the second respectively. If so, they return
the first character position at which the two substrings differ as an integer offset
from the beginning of string1. If the two substrings are identical, nil is returned.

The functions string-Iessp, string-not-greaterp, string-greaterp, string
not-Iessp, and string-not-equal are identical to string<, string<=, string>,
string>=, and string/= respectively but ignore differences in case.

string< string1 string£ &:key : start1 : end1 : start2 : end2

string< = string1 string£ &:key : start1 : end1 : start2 : end2

[Function]

[Function]

string> string1 string£ &:key : start 1 : end1 : start2 : end2 [Function]

string> = string1 string£ &:key : start1 : end1 : start2 : end2 [Function]

string/= string1 string£ &:key :start1 :end1 :start2 :end2 [Function]

string-Iessp string1 string£ &:key : start 1 : end1 : start2 : end2 [Function]

string-not-greaterp string1 string£ [Function]
&:key :start1 :end1 :start2 :end2

string-greaterp string1 string£ &:key : start1 : end1 : start2 : end2 [Function]

string-not-Iessp string1 string£ &:key : start 1 : end1 : start2 : end2 [Function]

string-not-equal stringl string£ &:key : start1 : end1 : start2 : end2 [Function]

The :start and :end keyword arguments take integer values that specify offsets
into the original strings. The :start arguments mark the beginning positions of the
substrings; the :end arguments mark the positions following the last elements of
the substrings. The start values default to 0; the end values default to the lengths
of the strings.

The string1 and string£ arguments may be either symbols or strings. If a symbol
is specified, the symbol's print name is used.

17-10 Sun Common Lisp Reference Manual

string<, string<=, string>, string>=, string/=, string-Iessp,

Examples: > (string< "aaaa" "aaab")

See Also:

3
> (string>= "aaaaa" "aaaa")
4
> (string-lessp "012AAAA789" "01aaab6" :start1 3 :end1 7

:start2 2 :end2 6)
6
> (string-nat-equal "AAAA" "aaaA")
NIL

string=

string-equal

Strings 17-11

string=, string-equal

Purpose:

Syntax:

Remarks:

The functions string= and string-equal perform comparisons upon strings. The
comparison operations may be restricted to substrings of these strings by specifying
the :start and :end keyword arguments.

The function string= is true if the substrings are of the same length and contain
identical characters in corresponding positions; it is false if any of these conditions
does not hold.

The function string-equal is identical to string= except that differences in case
are ignored.

string= stringl string2 &:key : start1 : end1 : start2 : end2

string-equal stringl string2 &:key : start1 : end1 : start2 : end2

[Function]

[Function]

The :start and :end keyword arguments take integer values that specify offsets
into the original strings. The :start arguments mark the beginning positions of the
substrings; the :end arguments mark the positions following the last elements of
the substrings. The start values default to OJ the end values default to the lengths
of the strings.

The stringl and string2 a.rguments may be either symbols or strings. Ii a symboi
is specified, the symbol's print name is used.

Examples: > (string= "abed" "01234abed9012" : start2 6 : end2 9)
4
> (string= "Abed" "abed")
NIL
> (string-equal "Abede" "abcdE")
6

17-12 Sun Common Lisp Reference Manual

string-trim, string-left-trim, string-right-trim

Purpose:

Syntax:

The function string-trim returns a copy of its string argument from which the
largest prefix and suffix containing only characters from character-bag have been
removed. The argument character-bag can be any sequence containing characters.

If no characters can be trimmed, a copy of the original string or the original string
itself is returned.

The functions string-left-trim and string-right-trim are identical to string
trim except that characters are removed from only the left or right ends of the
string respectively.

string-trim character-bag string

string-left-trim character-bag string

string-right-trim character-bag string

[Function]

[Function]

[Function]

Remarks: The string argument may be either a symbol or a string. If a symbol is specified,
the symbol's print name is used.

Examples: > (string-trim "abc" "abcaakaaakabcaaa")
"kaaak"
> (string-right-trim " (*)" " (*three (silly) words*) tI)
" (*three (silly) words"
> (string-left-trim "abc" "labcabcabc tl)

"labcabcabc"

Strings 17-13

string-upcase, string-downcase, string-capitalize,
nstring-upcase, nstring-downcase, nstring-capitalize

Purpose:

Syntax:

Remarks:

The function string-up case returns a copy of its string argument in which
all lowercase characters have been converted to the corresponding uppercase
characters. The case conversion operation may be restricted to a substring of the
string by specifying the :start and :end keyword arguments.

The function string-downcase is like string-upcase except that all uppercase
characters are replaced by the corresponding lowercase characters.

The function string-capitalize returns a copy of its string argument in which the
first character of every word is uppercase, if possible, and all others are lowercase.
A word is considered to be any consecutive subsequence of alphanumeric characters
delimited by nonalphanumeric characters or the end of the string.

The functions nstring-upcase, nstring-downcase, and nstring-capitalize are
identical to string-upcase, string-downcase, and string-capitalize respectively
except that they modify the string argument.

string-upcase string lkey : start : end

string-downcase string lkey : start : end

string-capitalize string lkey : start : end

nstring-upcase string lkey : start : end

nstring-downcase string lkey : start : end

nstring-capitalize string lkey : start : end

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The :start and :end keyword arguments take integer values that specify offsets
into the original strings. The :start argument marks the beginning position of the
substring; the :end argument marks the position following the last element of the
substring. The start value defaults to 0; the end value defaults to the length of the
string.

The string argument of the functions string-upcase, string-downcase, and
string-capitalize may be either a symbol or a string. If a symbol is specified, the
symbol's print name is used.

17-14 Sun Common Lisp Reference Manual

string-upcase, string-downcase, string-capitalize,

Examples: > (string-upcase "abcde")
"ABCDE"

See Also:

> (setq str "0123ABCD890a")
"0123ABCD890a"
> (nstring-downcase str :start 5 :end 7)
"0123AbcD890a"
> str
"0123AbcD890a"
> (string-capitalize "fOo 13c arthur;bar don't")
"Foo 13c Arthur;Bar Don'T"

char-up case

char-downcase

Strings 17-15

stringp

Purpose: The predicate stringp is true if its argument is a string; otherwise it is false.

Syntax: stringp obiect

Examples: > (stringp "aaaaaa")
T
> (stringp (make-array 6

T
> (stringp #\a)
NIL

:element-type 'string-char
:fill-pointer t»

17-16 Sun Common Lisp Reference Manual

[Function]

Chapter 18. Hash Tables

Hash Tables 18-1

Chapter 18. Hash Tables

About Hash Tables .. lS-3
Categories of Operations. lS-4

Data Type Predicates . lS-4
Hash Table Functions . lS-4
Hash Functions ... lS-4

clrhash .. lS-5
gethash ... lS-6
hash-table-count .. lS-7
hash-table-p .. lS-S
make-hash-table ... lS-9
maphash ... IS-II
remhash .. lS-12
sxhash ... lS-13

18-2 Sun Common Lisp Reference Manual

About Hash Tables

Hash tables are Common Lisp objects that provide mappings between other objects.
Each hash table entry is a pair of associated objects, a key and a value. Hash table
functions use keys to look up their associated values. Both keys and values can be any
Lisp objects. Hash table keys are unique: at most one value can be associated with a key
at a given time.

The size of a hash table corresponds to the maximum number of entries that it can hold.
Although entries may be added and deleted, this size remains fixed until the capacity of
the hash table is exceeded, at which time the hash table is automatically extended and
reorganized.

Hash tables are designed so that a value associated with a key may be found quickly in
situations where there is a large number of entries. This is their advantage over property
lists and association lists.

Hash Tables 18-3

Categories of Operations

This section groups operations on hash tables according to functionality.

Data Type Predicates

hash-table-p

This predicate determines whether an object is a hash table.

Hash Table Functions

clrhash
gethash
hash-table-count

make-hash-table
maphash
remhash

These functions create and manipulate hash tables.

Hash Functions

8xhash

This function is designed 'to allow the user to implement conveniently more complex
hashed data structures than are provided by the hash table facility.

18-4 Sun Common Lisp Reference Manual

clrhash

Purpose:

Syntax:

The function clrhash removes all entries from its hash-table argument and returns
the empty hash table as its result.

clrhash hash-table [Function]

Examples: > (setq h (make-hash-table»
#<Hash-Table 3BB92B>
> (dotimes (i 100) (setf (gethash i h) i»
NIL
> (hash-table-count h)
100
> (hash-table-count (clrhash h»
o
> (hash-table-count h)
o

Hash Tables 18-5

gethash

Purpose:

Syntax:

The function gethash finds the hash table entry that is associated with a given
key and returns its value. If such an entry does not exist, gethash returns default
if this value has been specified, or nil if not. The function get hash also returns a
second value; this value is true if the entry was found and false otherwise.

gethash key hash-table &:optional default (Function]

Remarks: The macro setf may be used with gethash to add entries to the table. If an entry
with the same key already exists, that entry is replaced.

Examples: > (setq h (make-hash-table»
#<Hash-Table 3BB153>
> (setf (gethash 1 h) "one")
"one"
> (setf (gethash 'nil h "ignored default") nil)
NIL
> (gethash 1 h)
"one"
T
> (gethash 'nil h "default")
NIL
T
> (gethash 2 h)
NIL
NIL
> (gethash 2 h "default")
"default"
NIL

18-6 Sun Common Lisp Reference Manual

hash-table-count

Purpose: The function hash-table-count returns the number of entries in a given hash
table. If the hash table has just been created or newly cleared, the entry count is o.

Syntax: hash-table-count hash-table

Examples: > (setq h (make-hash-table»
#<Hash-Table 3BF7DB>
> (hash-table-count h)
o
> (setf (gethash 57 h) "57")
"57"
> (hash-table-count h)
1
> (dotimes (i 100) (setf (gethash i h) i»
NIL
> (hash-table-count h)
100

[Function]

Hash Tables 18-7

hash-table-p

Purpose: The predicate hash-table-p is true if its argument is a hash table; otherwise it is
false.

Syntax: hash-table-p object

Examples: > (setq h (make-hash-table»
#<Hash-Table 3BF7DB>
> (hash-table-p h)
T
> (hash-table-p 'h)
NIL

18-8 Sun Common Lisp Reference Manual

[Function]

make-hash-table

Purpose:

Syntax:

Remarks:

The function make-hash-table creates and returns a new hash table.

make-hash-table "key : test
:size
: rehash-size
: rehash-threshold

The meanings of the keyword arguments are as follows:

[Function]

The :test argument specifies the predicate to be used in comparing keys. The
argument value must be one of the following if given: #'eq, #'eql, #'equal, eq,
eql, or equal. If a value is not specified, eql is used.

Hash tables that use eq or eql may use actual addresses to compute the associated
hash values. These types of hash tables may need to be rehashed after a garbage
collection.

The :size argument specifies the initial size of the hash table in terms of the
number of possible entries. This value is a hint to the system: the hash table that
is created may actually be larger. The :size argument must be a positive fixnum.

The :rehash-size argument specifies how much the hash table should be extended
when it becomes full. This value can be a positive integer or a floating-point
number greater than 1. If :rehash-size is specified as an integer, the table will be
extended by that number of entries. If it is a floating-point value, the hash table
will grow by that factor each time it is extended.

The :rehash-threshold argument specifies how full the hash table may become
before it is extended. This value may be a positive integer less than :rehash-size
or a floating-point value greater than 0.0 and less than or equal to 1.0. If an
integer value is specified, this value will be scaled appropriately when the table is
extended.

The :size, :rehash-size, and :rehash-threshold arguments have implementation
dependent default values.

Hash Tables 18-9

make-hash-table

Examples: > (setq h (make-hash-table»
#<Hash-Table 3C420B>
> (setf (gethash "one" h) 1)
1
> (gethash "one" h)
NIL
NIL
> (setq h (make-hash-table :test 'equal»
#<Hash-Table 3C542B>
> (setf (gethash "one" h) 1)
1
> (gethash "one" h)
1
T
> (make-hash-table :size 100 :rehash-size 50 :rehash-threshold 75)
#<Hash-Table 3BDF4B>
> (make-hash-table :rehash-size 1.5 :rehash-threshold 0.7)
#<Hash-Table 3BE283>

18-10 Sun Common Lisp Reference Manual

maphash

Purpose:

Syntax:

The function maphash calls its function argument on each entry of a given hash
table.

The function argument must be a function of two arguments. These arguments
should correspond to the key and the value of the hash table entry respectively.

The function maphash returns nil as its result.

maphash function hash-table [Function]

Remarks: Adding or deleting hash table entries while a maphash operation is in progress
may cause unpredictable results.

Examples: > (setq h (make-hash-table»
#<Hash-Table 3BE59B>
> (dotimes (i 10) (setf (gethash i h) i»
NIL
> (let «sum-of-squares 0»

(maphash #"(lambda (key val)
(incf sum-of-squares (* val val»)

h)
sum-of-squares)

285
> (hash-table-count h)
10
> (maphash #"(lambda (key val)

(when (oddp val) (remhash key h»)
h)

NIL
> (hash-table-count h)
5

Hash Tables 18-11

remhash

Purpose: The function remhash removes the hash table entry with a given key if such an
entry exists. It returns true if such an entry was found, and false if not.

Syntax: remhash key hash-table

Examples: > (setq h (make-hash-table»
#<Hash-Table 3BE59B>
> (setf (gethash 100 h) "C")
"CIt
> (gethash 100 h)
"C"
T
> (remhash 100 h)
T
> (gethash 100 h)
NIL
NIL
> (remhash 100 h)
NIL

18-12 Sun Common Lisp Reference Manual

[Function]

sxhash

Purpose:

Syntax:

Remarks:

The function sxhash computes a nonnegative fixnum from its object argument.
This result is intended for use as a hash value.

sxhash object [Function]

The function sxhash is designed to allow the user to implement conveniently
more complex hashed data structures than are provided by the make-hash-table
construct.

If two objects are the same (equal), sxhash returns the same hash value for both.

Examples: > (= (sxhash (list 'list "ab")) (sxhash (list 'list "ab")))
T

Hash Tables 18-13

18-14 Sun Common Lisp Reference Manual

Chapter 19. Structures

Structures 19-1

Chapter 19. Structures

About Structures .. 19-3
Defining Structures . 19-4
Automatically Defined Functions ... 19-4
Constructing New Instances of the Structure 19-5
Defstruct Slot Options ... 19-5
Defstruct Options . 19-6

Categories of Operations ... 19-10
defstruct ... 19-11

19-2 Sun Common Lisp Reference Manual

About Structures

Common Lisp allows the user to create named record structures with a fixed number of
named components called slots. These structures are, in effect, user-defined data types.
All are created with the defstruct macro. When these data types are defined, constructs
to manipulate them are normally automatically defined as well. These constructs include
type predicates and access, constructor, and copier functions.

The representation of structures may be explicitly controlled. The user may specify how a
structure is to be implemented and how slots are to be allocated.

Structures can be either named or unnamed. From any instance of a named structure,
the user can obtain the structure name for the type.

The simple use of defstruct is discussed first; a description of all the defstruct features
and options follows.

defstruct name-and-options [documentation] {slot-description} *
name-and-options::= structure-name I (structure-name {option }*)

structure-name::= symbol

option ::= : cone-name I (: cone-name symbol) I (: cone-name nil) I
: constructor I (: constructor symbol) I (: constructor nil) I
(: constructor symbol boa-arglist) I
: copier I (: copier symbol) I (: copier nil) I
:predicate I (:predicate symbol) I (:predicate nil) I
(: include existing-defstruct-name {slot-description}*) I
(:print-function function) I
(:type {list I vector I (vector type)}) I
:named I
(: initial-offset non-negative-integer)

boa-argUst::= ({ symbol}*
[Il;optional {var I (var [in~·tform])}*]
[Il;rest var]
[Il;aux {var I (var [initform])} *])

slot-description::= slot-name I (slot-name [initform {slot-option} *])

slot-option::= :type type I : read-only flag

Figure 19-1. Syntax for Defstruct

Structures 19-3

Defining Structures

The macro defstruct is used to define a structure. Its complete syntax is shown in
Figure 19-1.

The structure-name argument of defstruct is a symbol. It becomes the name of the new
type.

The components of the structure, or slots, are specified by slot descriptions.

The slot-name is a symbol. All the other slot-description arguments are optional. Of
these, the initform argument is the most important. The initform argument is a form that
specifies a default value for the slot. It is evaluated when a new instance of the structure
is created and no slot value has been given. The other slot options are discussed later in
this chapter.

If an initform value and other options are not specified, the slot-name argument may be
given by itself (not in a list).

A documentation string may be attached to the structure name by specifying the optional
documentation argument; the documentation type for this string is structure.

Automatically Defined Functions

In the simple case where no derstruct options have been specified, the follo\ving functions
are automatically defined to operate on instances of the new structure.

A predicate with the name structure-name-p is defined to test membership in the
structure type. The predicate (structure-name-p object) is true if an object is of this
type; otherwise it is false. The function typep may also be used with the name of the
new type to test whether an object belongs to the type. Such a function call has the form
(typep object • structure-name).

Access functions are defined to access the components of the structure. For each slot
name, there is a corresponding access function with the name structure-name-slot-name.
This function accesses the contents of that slot. Each access function takes one argument,
which is an instance of the structure type. The macro setf may be used with any of these
access functions to alter the slot contents.

A constructor function with the name make-structure-name is defined. This function
creates and returns new instances of the structure type.

A copier function with the name copy-structure-name is defined. The copier function
takes an object of the structure type and creates a new object of the same type that is a
copy of the first. The copier function creates a new structure with the same component
entries as the original. Corresponding components of the two structure instances are eql.

The predicate, access function, constructor function, and copier function names are all
defined in whatever package is current at the time the defstruct macro is processed.

19-4 Sun Common Lisp Reference Manual

Constructing New Instances of the Structure

After a new structure type has been defined, instances of that type normally can be
created by using the constructor function for the type.

A call to a constructor function is of the following form:

(constructor-function-name
slot-keyword-l forml
slot-keyword-! form-!
...)

The arguments to the constructor function are all keyword arguments. Each slot keyword
argument must be a keyword whose name corresponds to the name of a structure slot.

For each slot keyword, the associated form is evaluated, and the slot is initialized to its
value. If a slot is not initialized in this way, it is initialized by evaluating the initform
argument in the slot description. The initform argument is evaluated at the time the new
structure instance is created, but in the lexical environment of the defstruct form in
which it was defined. If no such initialization form was specified, the contents of the slot
are undefined.

Defstruct Slot Options

The following keyword options are available for use in the slot descriptions. No part of
these options is evaluated. For a slot option to be specified, the default value for the slot
needs to have been defined by use of the initform argument in the slot description.

• The :read-only option controls whether the contents of the slot may be modified.
If :read-only is specified with a non-nil argument, setf will not accept the access
function for the slot, and the slot will always contain the default value. If :read-only
is specified with a nil argument, the option has no effect.

• The :type option specifies the type of the slot contents. The argument to :type must
be a type specifier. If the :type option is specified, the slot contents must be of the
given type.

Structures 19-5

Defstruct Options

The following keyword options are available for use with defstruct. No part of these
options is evaluated.

• The :conc-name option controls the naming of the access functions. When :conc
name is defaulted, components of the structure are accessed individually by functions
whose names consist of the structure name, a hyphen, and then the name of the
component. A symbol or string argument may be provided for use as an alternate
prefix for the access function name. This prefix is added to each of the component
names to form the names of the access functions. If a hyphen is to separate the
component name, it must be included as part of the prefix given to :conc-name. If
:conc-name is specified as nil, the names of the access functions are the same as those
of the components. The names of the access functions are entered into the package
that is current at the time the defstruct macro is processed.

• The :constructor option controls the naming of the constructor function. If this
option is defaulted, the constructor name is make- followed by the structure name.
The name of the constructor function is entered into the package that is current at the
time the defstruct macro is processed. A symbol argument may be provided that
specifies a different name for the constructor function. If the option is specified as nil,
no constructor function is defined.

It is a.lso possible to define a constructor function that uses positional rather
than keyword arguments. This is done by specifying the :constructor option as
(:constructor name arglist) , where arglist describes the arguments to the constructor
function. A constructor of this form is known as a BOA constructor, because it
operates by order of arguments.

In the simplest case, the elements of arglist are the slot names themselves (not
keywords) in the order in which they are to occur as arguments. The keywords
&optional, &rest, and &aux may also be used in arglist. Any &optional and
&aux arguments for which no initialization forms have been specified in arglist are
not set to nil as they would be in a lambda list. The initial value of any &optional
argument for which no initialization form is specified in arglist is taken from the
initform argument given for the slot description. The initial value of any &aux
argument for which no initialization form is specified in arglist is undefined.

The :constructor option may be used more than once. It is thus possible to define
several different constructor functions for a given structure.

19-6 Sun Common Lisp Reference Manual

• The :copier option controls the naming of the copier function. If this option is
defaulted, the name of the copier function is copy- followed by the structure name.
The name of the copier function is entered into the package that is current at the time
the defstruct form is processed. A symbol argument may be provided that specifies a
different name for the copier function. If nil is specified, no copier function is defined.

• The :include option allows for creating a new structure that is an extension of an
existing structure type by including the slots of the old structure. Both the access
functions of the included structure and the access functions of the new structure may
be applied to the included slots of the new structure.

The :include option requires an argument that is the name of an existing structure.
No more than one :include option may be specified in a defstruct form.

If the :type option is specified for the new structure, the included structure must have
been declared with the same type. If the :type option is not specified for the new
structure, then it must not have been specified for the included structure. If the :type
option is not specified, the structure name of the new structure becomes a data type
name that is recognized by typep. In addition, the new type will be a subtype of the
included structure.

If it is desirable to override the default values or the slot options for the slots
corresponding to those of the included structure, this can be done by specifying slot
descriptions with the :include option. Each such slot description must bear the slot
name or slot keyword of some slot of the included structure. If such a slot description
has an accompanying initform argument, it overrides the initialization form of the
included structure. If no initform argument is specified, the initial value of the slot is
undefined in the new structure. A slot that is writable in the included structure may
be made read-only in the new structure. A read-only slot of the included structure
may not, however, be made writable. A type may be specified for a slot if and only if
it is the same as, or a subtype of, the type specified in the included structure.

• The :initial-offset option is used in conjunction with the :type option. The argument
to :initial-offset must be a nonnegative integer. It specifies that a certain number
of slots in the representation of the structure are to be skipped before allocating the
component slots.

If the :named option is also specified, the slots skipped occur after the slot used by the
:named option. If the :include option is also specified, the number of slots required
by the included structure are skipped; then those specified by the :initial-offset
argument are skipped. The following slots are then allocated to the including structure.

Structures 19-7

• The :named option specifies that the structure is named. If the :type option is not
specified, the structure is always named; the structure name is part of the data type
system and is therefore recognized by typep. In this case, the function type-of, when
applied to an instance of this structure, returns the structure name.

If the :type option is specified, the structure is not named unless the :named option
is given. If the :named option is given, the first slot in the representation of the
structure contains the structure name, so it will be possible to obtain the structure
name from an instance of the structure. The structure name, however, will not be part
of the data type system. It will not be recognized by typep, and type-of will return
the type specifier for the structure.

If the :type option is specified and the structure is not named, the structure name is
not part of the data type system. It will not be recognized by typep, and type-of
will return the type specifier for the structure.

• The :predicate option controls the naming of the type predicate. If the argument
is defaulted, the predicate name is formed by adding the suffix -p to the name of
the structure. The predicate name is entered into the package that is current at the
time the defstruct macro is processed. Note that a predicate function can only be
defined if the structure is named. If the argument to :predicate is specified as nil, no
predicate function is defined. If the :type option is specified but the :named option
is not, :predicate must be either unspecified or nil, and no predicate is defined.

• The :print-function option controls the printing of the structure. The argument to
the print function is a function of three arguments that may be used with the function
special form. The arguments correspond to the structure to be printed, the stream
to which output is to be sent, and an integer indicating the current print level depth.
The print function is expected to observe the values of the printer control variables.
The :print-function option may only be specified if the :type option is not.

Pretty-printing is not possible with a user-defined print function that calls the
Common Lisp functions write, prinl, print, pprint, princ, write-to-string,
prinl-to-string, or princ-to-string. These functions write the printed representation
of Lisp objects to an output stream. Pretty-printing is possible with a user-defined
print function that calls such Common Lisp functions as write-char or write-string.

If neither the :print-function option nor the :type option is specified, the structure
will be printed using the #s syntax. The *print-structure* variable of Sun Common
Lisp provides the ability to print structures in a terse format rather than in the
standard #s notation. If *print-structure* is set to nil, all structures are printed in
this terse format. Structures printed in the terse format cannot be read back in by the
Lisp reader.

19-8 Sun Common Lisp Reference Manual

• The :type option controls the representation of the structure. If this option is specified,
the structure name will not be a type specifier recognized by typep. Components of
the structure are stored in successive elements of the representation in the order of
their specification in the defstruct form. The argument to :type must be one of the
following:

If the argument to :type is specified as vector, the structure is represented as a
simple general vector, and components are stored as successive vector elements. If
the :named option is specified, the first component of the structure occurs as the
second vector element (at offset 1 from the start of the vector); otherwise it is the
first.

If the argument to :type is specified as (vector element-type), the structure is
represented as a vector, and components are stored as successive vector elements.
If the :named option is specified, the first component of the structure occurs as
the second vector element (at offset 1 from the start of the vector); otherwise it
is the first. All components must be of a type compatible with element-type. The
:named option may be specified only if a symbol may be stored in a vector of this
type.

If the argument to :type is specified as list, the structure is represented as a list.
If the :named option is specified, the first component of the structure occurs as
the second element of the list; otherwise it is the first element.

Structures 19-9

Categories of Operations

The defstruct macro is used to define a structure.

defstruct

19-10 Sun Common Lisp Reference Manual

defstruct

Purpose:

Syntax:

Remarks:

Examples:

The defstruct macro allows the user to create and manipulate structured data
types with named components. The name of the new data type is returned as a
result.

defstruct name-and-options [documentation] {slot-description}* [Macro]

See the discussion on the use of the defstruct macro in the section "About
Structures." The complete syntax for defstruct is shown in Figure 19-1.

Example 1
define town structure type ... area. watertowers. firetrucks. population. elevation are its components . , .

> (defstruct town
area
watertowers
(firetrucks 1 :type fixnum)
population

;an initialized attribute

(elevation 5128 :read-only t» ;an attribute that can't
;be changed

TOWN
> (setq town1 (make-town :area 0 :watertowers 0»

;create a town instance
#S(TOWN AREA 0 WATERTOWERS 0 FIRETRUCKS 1 POPULATION NIL ELEVATION 5128)
> (town-p town1) ;town's predicate recognizes

;the new instance
T
> (town-area town1)

o
> (town-elevation town1)

5128
> (setf (town-population town1) 99)

99
> (town-population town1)
99

;new town's area is as
; specified by make-town

;new town's elevation has
;initial value

;setf recognizes access
; function

Structures 19-11

defstruct

> (setq town2 (copy-town town1» ;copier function makes
;a copy of town1

#S(TOWN AREA 0 WATERTOWERS 0 FIRETRUCKS 1 POPULATION 99 ELEVATION 5128)
> (= (town-population town1) (town-population town2»
T
> (setq town3 (make-town :area 0 :watertowers 3 :elevation 1200»
#S(TOWN AREA 0 WATERTOWERS 3 FIRETRUCKS 1 POPULATION NIL ELEVATION 1200)

;since elevation is a
;read-only slot. its
;value can be set only
;when the structure is
; created

Example 2
define clown structure type
this structure uses a nonstandard access prefix

> (defstruct (clown (:conc-name bozo-»
(nose-color 'red)
frizzy-hair-p polkadots)

CLOWN
> (setq funny-clown (make-clown»
#S(CLOWN NOSE-COLOR RED FRIZZY-HAIR-P NIL POLKADOTS NIL)
> (bozo-nose-color funny-clown)

RED
> (defstruct (clown (:constructor make-up-clown)

(:copier clone-clown)
(:predicate is-a-bozo-p»
nose-color frizzy-hair-p polkadots)

CLOWN
> (fboundp 'make-up-clown)

T

... Example 3
define a vehicle structure type

;use nonstandard accessor
; name

;redefine using other
;customizing keywords

;custom constructor now
;exists

... then define a truck structure type that includes
the vehicle structure

> (defstruct vehicle name year (diesel t :read-only t»
VEHICLE
> (defstruct (truck (:include vehicle (year 79»)

load-limit
(axles 6»

TRUCK

19-12 Sun Common Lisp Reference Manual

defstruct

> (setq x (make-truck :name 'mac :diesel t :load-limit 17»
#S(TRUCK NAME MAC YEAR 79 DIESEL T LOAD-LIMIT 17 AXLES 6)
> (vehicle-name x)

MAC
> (vehicle-year x)

79

;vehicle accessors work
;on trucks

;default taken from :include
; clause

> (defstruct (pickup (:include truck» ;pickup type includes truck
camper long-bed four-wheel-drive)

PICKUP
> (setq x (make-pickup :name 'king : long-bed t»
#S(PICKUP NAME KING YEAR 79 DIESEL T LOAD-LIMIT NIL AXLES 6 CAMPER NIL
LONG-BED T FOUR-WHEEL-DRIVE NIL)
> (pickup-year x)
79

... Example 4
use of BOA constructors

;:include default inherited

> (defstruct (dfs-boa ;BOA constructors
(:constructor make-dfs-boa (a b c»
(:constructor create-dfs-boa

(a loptional b (c 'ce) krest d laux e (f 'ff»»
abc d e f)

DFS-BOA
> (setq x (make-dfs-boa 1 2 3»

#S(DFS-BOA AlB 2 C 3 D NIL E NIL F NIL)
> (dfs-boa-a x)
1

;a. b. and c set by position.
;and the rest are nil

> (setq x (create-dfs-boa 1 2» ;a and b set. c and f defaulted
#S(DFS-BOA AlB 2 C CC D NIL E NIL F FF)
> (dfs-boa-b x)
2
> (eq (dfs-boa-c x) 'cc)
T
> (setq x (create-dfs-boa 1 2 3 4 5 6» ;a. b. and c set. and the rest

;are collected into d
#S(DFS-BOA AlB 2 C 3 D (4 5 6) E NIL F FF)
> (dfs-boa-d x)
(4 5 6)

Structures 19-13

19-14 Sun Common Lisp Reference Manual

Chapter 20. Streams

Streams 20-1

Chapter 20. Streams

About Streams ... 20-3
Categories of Operations. 20-4

Data Type Predicates .. 20-4
Standard Streams 20-4
Stream Predicates 20-4
Creating New Streams 20-5
General Operations on Streams .. 20-5
Operations on Stream Data ... 20-5

close .. 20-6
debug-io ... 20-7
error-output .. 20-8
get-output-stream-string .. 20-9
input-stream-p ... 20-10
make-broadcast-stream . 20-11
make-concatenated-stream ... 20-12
make-echo-stream .. 20-13
make-string-input-stream .. 20-14
make-string-output-stream ... 20-15
make-synonym-stream ... 20-16
make-two-way-stream . 20-17
"'l1tnllt_Qt"'A~Tn_n ?n_1 S2 "-"''''.1"''-'''''' ...,"'.a.~a. • .& .t' M'-' ~v

query-io .. 20-19
standard-input ... 20-20
standard-output .. 20-21
stream-element-type .. 20-22
streamp .. 20-23
terminal-io .. 20-24
trace-output ... 20-25
with-input-from-string ... 20-26
with-open-stream ... 20-27
with-output-to-string .. 20-28

20-2 Sun Common Lisp Reference Manual

About Streams

Streams are Common Lisp objects from which data can be read and to which data can be
sent. The operations that can be performed on a stream depend on what type of stream
it is. A stream may be input-only, output-only, or bidirectional. It may be a character
stream or a binary stream.

There are several stream-value variables that are used by default by many Common Lisp
system functions. These are known as standard streams. The variables *standard
input*, *standard-output*, *debug-io*, *error-io*, *query-io*, *terminal-io*, and
trace-output specify standard streams. A synonym stream associates a symbol with
a stream. Any operation performed on the synonym stream is performed on the stream
to which this symbol is bound. The streams *standard-input*, *standard-output*,
debug-io, *error-io*, *query-io*, and *trace-output* are all initially synonym
streams of *terminal-io*.

The use of streams is closely connected to the file system. Streams may also be created
through the file system constructs for opening files.

The interaction between streams and the file system is discussed in the chapter "File
System Interface." The chapter "Input/Output" discusses the use of streams in the
context of the input/output system.

Streams 20-3

Categories of Operations

This section groups operations on streams according to functionality.

Data Type Predicates

streamp

This predicate determines whether an object is a stream.

Standard Streams

debug-io
* error-output *
query-io
standard-input

These variables specify standard streams.

Stream Predicates

input-stream-p

These predicates test properties of streams.

20-4 Sun Common Lisp Reference Manual

standard-output
terminal-io
trace-output

output-stream-p

Creating New Streams

make-broadcast-stream
make-concatenated-stream
make-echo-stream
make-string-input-stream

make-string-output-stream
make-synonym-stream
make-two-way-stream

These functions create new streams. File system constructs for opening files may
also be used to create streams.

General Operations on Streams

close stream-element-type

These functions provide operations that are common to all streams. More specific
stream operations are also provided by the file system and the input/output
system.

Operations on Stream Data

get-output-stream-string
with-input-from-string

with-open-stream
with-output-to-string

These functions provide operations on stream data.

Streams 20-5

close

Purpose:

Syntax:

Remarks:

The function close closes its stream argument. Closing a stream means that it
may no longer be used in input or output operations.

close stream .tkey : abort [Function]

Even if a stream is closed, it is still possible to perform query operations upon it.

An abnormal termination of the use of the stream may be indicated by specifying
a non-nil value for the :abort argument. In this case the system tries to undo any
side effects that resulted from the creation of the stream.

Examples: > (setq s (make-broadcast-stream»
#<Stream COMPOSITE-STREAM 101DB3BB>
> (close s)

See Also:

NIL
> (output-stream-p s)
T

open

20-6 Sun Common Lisp Reference Manual

Purpose:

Syntax:

Remarks:

The value of the variable *debug-io* is a bidirectional stream that is to be used
for interactive debugging.

[Variable]

Frequently *debug-io* is bound to the same stream as *query-io*.

Care should be exercised when redirecting *debug-io*, since it is the stream used
for handling errors.

Streams 20-7

error-output

Purpose: The value of the variable *error-output* is an output stream that is to be used
for error messages.

Syntax: * error-output * [Variable]

Remarks: Frequently *error-output* is bound to the same stream as *standard-output*.

Examples: > (wi th-output-to-string (out)
(let «*error-output* out»

(warn "this string is sent to *error-output*"»)
";;; Warning: this string is sent to *error-output*

"

20-8 Sun Common Lisp Reference Manual

get-ou tput-stream-string

Purpose:

Syntax:

The function get-output-stream-string operates on a stream produced by
make-string-output-stream. It returns a string containing all the characters
sent to that stream since the last time get-output-stream-string was called on
it. The string output stream is reset after each call.

get-output-stream-string string-output-stream [Function]

Examples: > (setq a-stream (make-string-output-stream)

See Also:

a-string "abcdefghijklm")
"abcdefghijklm"
> (write-string a-string a-stream)
"abcdefghijklm"
> (get-output-stream-string a-stream)
"abcdefghijklm"
> (get-output-stream-string a-stream)

""

make-string-output-stream

Streams 20-9

input-strearn-p

Purpose: The predicate input-stream-p is true if its stream argument may be used for
input operations; otherwise it is false.

Syntax: input-stream-p stream

Examples: > (input-stream-p *standard-input*)
T
> (input-stream-p (make-broadcast-stream»
NIL

20-10 Sun Common Lisp Reference Manual

[Function]

make-broadcast-stream

Purpose:

Syntax:

Remarks:

The function make-broadcast-stream creates and returns an output stream.

Any output that is sent to this stream is sent to all of the argument streams. The
result that is returned by performing any operation on new broadcast stream is
the result returned by performing it on the last of the argument streams.

make-broadcast-stream Itrest streams [Function]

Only those operations that may be performed on all of the argument streams may
be performed on the broadcast stream.

If no argument streams are specified, all output is discarded.

Examples: > (setq a-stream (make-string-output-stream)
b-stream (make-string-output-stream»

#<Stream STRING-STREAM 101DC8B3>
> (format (make-broadcast-stream a-stream b-stream)

"this will go to both streams")
NIL
> (get-output-stream-string a-stream)
"this will go to both streams"
> (get-output-stream-string b-stream)
"this will go to both streams"

Streams 20-11

make-concatenated-stream

Purpose: The function make-concatenated-stream creates and returns an input stream.
Input is taken from each argument stream in turn until an end-of-file is reached on
that stream.

Syntax: make-concatenated-stream &rest streams [Function]

Remarks: If no argument streams are specified, the result is an empty stream. Any attempt
to read input from such a stream results in an end-of-file condition.

Examples: > (read (make-concatenated-stream
(make-string-input-stream "1")
(make-string-input-stream "2"»)

12

20-12 Sun Common Lisp Reference Manual

make-echo-stream

Purpose:

Syntax:

The function make-echo-stream creates and returns a bidirectional stream. This
stream takes its input from input-stream and sends its output to output-stream.
Any input that is taken from input-stream is echoed to output-stream.

make-echo-stream input-stream output-stream [Function]

Examples: > (let ((out (make-string-output-stream»)
(with-open-stream

(s (make-echo-stream
(make-string-input-stream "this-is-read-and-echoed")
out»

(read s)
(format s " * this-is-direct-output")
(get-output-stream-string out»)

"this-is-read-and-echoed * this-is-direct-output"

Streams 20-13

make-string-input-stream

Purpose:

Syntax:

The function make-string-input-stream creates and returns an input stream.
This stream supplies the characters in the string argument in the order in which
they occur in the string. The characters supplied may be restricted to those
contained in a substring of the string argument by specifying the start and end
arguments.

make-string-input-stream string "optional start end [Function]

Remarks: The start and end arguments take integer values that specify offsets into the
original strings. The start argument marks the beginning position of the substring;
the end argument marks the position following the last element of the substring.
The start value defaults to 0; the end value defaults to the length of the string.

Examples: > (read (make-string-input-stream "prefixtargetsuffix" 6 12»
TARGET

See Also: with-input-from-string

20-14 Sun Common Lisp Reference Manual

rnake-string-output-strearn

Purpose:

Syntax:

The function make-string-output-stream creates and returns an output
stream. This stream accumulates the output sent to it for use by the function
get-output-stream-string.

The optional string argument may be used to specify a string from which the
output stream is to be built. If the optional string is supplied, it must be a string
with a fill pointer. The output is directed to the point indicated by the fill pointer,
which is increased incrementally.

make-string-output-stream &:optional string [Function]

Remarks: The optional string argument is an extension to Common Lisp.

Examples: > (setq s (make-string-output-stream»
#<Stream STRING-STREAM 101DCA43>

See Also:

> (format s "output 1-%")
NIL
> (format s "output 2-%")
NIL
> (get-output-stream-string s)
"output 1
output 2

"

get-output-stream-string

with-output-to-string

Streams 20-15

make-synonym-stream

Purpose:

Syntax:

Remarks:

The function make-synonym-strea:rn creates and returns a synonym stream.
Any operations performed on this stream are performed on the stream that is
currently the value of the variable named by symbol.

make-synonym-stream symbol [Function]

If the variable symbol is rebound, any stream operations are performed on the
stream to which it is rebound.

Examples: > (setq a-stream (make-string-input-stream "a-stream") ; implemented
;internally as
;buffered streams

b-stream (make-string-input-stream "b-stream"»
#<Stream BUFFERED-STREAM 101DDOOB>
> (setq s-stream (make-synonym-stream Ie-stream»
#<Stream SYNONYM-%STREAM 101DDIFB>
> (setq e-stream a-stream)
#<Stream BUFFERED-STREAM 101DCE73>
> (read s-stream)
A-STREAM
> (setq e-stream b-stream)
#<Stream BUFFERED-STREAM 101DDOOB>
> (read s-stream)
B-STREAM

20-16 Sun Common Lisp Reference Manual

make-two-way-stream

Purpose: The function make-two-way-stream creates and returns a bidirectional stream
that takes its input from input-stream and sends its output to output-stream.

Syntax: make-two-way-stream input-stream output-stream

Examples: > (with-output-to-string (out)
(with-input-from-string (in "input ... ")

(let «two (make-two-way-stream in out»)
(f ormat two "output ... ")
(setq what-is-read (read two»))

"output ... "
> what-is-read
INPUT •.•

[Function]

Streams 20-17

output-stream-p

Purpose: The predicate output-stream-p is true if its stream argument may be used for
output operations; otherwise it is false.

Syntax: output-stream-p stream

~xamples: > (output-stream-p *terminal-io*)
T
> (output-stream-p (make-concatenated-stream»
NIL

20-18 Sun Common Lisp Reference Manual

[Function]

• *querY-IO*

Purpose:

Syntax:

See Also:

The value of the variable *query-io* is a bidirectional stream that is to be used
to ask the user questions and to receive his answers.

[Variable]

y-or-n-p

yes-or-no-p

Streams 20-19

standard-input

Purpose: The value of the variable *standard-input* is a stream that is to be used for
input. Many system functions use this stream as a default for input operations.

Syntax: *standard-input*

Examples: > (with-input-from-string (*standard-input* "1001")
(+ 990 (read»)

1991

20-20 Sun Common Lisp Reference Manual

[Variable]

standard-output

Purpose:

Syntax:

The value of the variable .standard-output. is a stream that is to be used for
output. Many system functions use this stream as a default for output operations.

.standard-output. [Variable]

Examples: > (progn (setq out (with-output-to-string (*standard-output*)
(print "print and format t send things to")
(format t "*standard-output* now going to a string"»)

(values»
> out

"
\"print and format t send things to\" *standard-output* now going to a
string"

Streams 20-21

stream-element-type

Purpose: The function stream-element-type returns a type specifier that indicates the
kinds of objects that may be read from or sent to the given stream.

Syntax: stream-element-type stream

Examples: > (stream-element-type *debug-io*)
STRING-CHAR
> (stream-element-type (make-concatenated-stream»
T
> (setq s (open "tempfile.temp"

:element-type 'bit
:if-does-not-exist :create»

#<Stream BUFFERED-STREAM 101DD62B>
> (stream-element-type s)
(INTEGER 0 1)

20-22 Sun Common Lisp Reference Manual

[Function]

streamp

Purpose: The predicate streamp is true if its argument is a stream; otherwise it is false.

Syntax: streamp object

Examples: > (streamp *terminal-io*)
(INTERACTION-STREAM)
> (streamp 1)
NIL

[Function]

Streams 20-23

terminal-io

Purpose:

Syntax:

Remarks:

Examples:

The value of the variable *terminal-io* is a bidirectional stream that is normally
connected to the keyboard and display of the user's terminal.

terminal-io [Variable]

The streams $standard-input*, *standard-output*, $debug-io*, *error
io*, *query-io*, and *trace-output* are aU initially synonym streams of
* terminal-io $.

> (progn (setq out (with-output-to-string (*terminal-io*)
(format t "you won't see")

(values»
> out
"you won't see
\"any of this\"

(print "any of this")
(warn "until you")
(format *standard-output* "evaluate the string")
(format *query-io* "named out"»)

;;; Warning: until you
evaluate the string named out;;

20-24 Sun Common Lisp Reference Manual

trace-output

Purpose: The value of the variable *trace-output* is the stream to which the trace
function sends its output.

Syntax: *trace-output*

Examples: > (progn (setq out (with-output-to-string (*trace-output*)
(trace cons)
(cons 1 2)
(untrace»)

(values»
> out
"1 Enter CONS 1 2
1 Exit CONS (1 . 2)

"

[Variable]

Streams 20-25

with-input-from-string

Purpose:

Syntax:

Remarks:

The with-input-from-string macro provides a construct that creates a character
input stream, performs a series of operations on it, returns a value, and then closes
the stream.

The string argument is evaluated first, and the variable var is bound to a
character input stream that supplies characters from the resulting string. The
form arguments are executed in order. The results of evaluating the last form
are returned as the value of executing the with-input-from-string macro. The
stream is automatically closed on exit from with-input-from-string.

with-input-from-string (var string {keyword value }*) [Macro]
{ declaration} * {form} *

The :index, :start, and :end keyword arguments may be used with with-input
from-string.

The :index argument must specify a generalized variable acceptable to the macro
setf. If the with-input-from-string macro terminates normally, this location is
updated to contain the index value that indicates the first character not read in
the string.

If the :start and :end keyword arguments are specified, only the substring they
delimit is involved in the operation. The :start and :end keyword arguments take
integer values that specify offsets into the original string. The :start argument
marks the beginning position of the string; the :end argument marks the position
following the last element of the string. The start value defaults to 0; the end value
defaults to the length of the string.

Examples: > (with-input-from-atring (8 "XXX1 2 3 4xxx"
:index ind

See Also:

6

:atart 3 :end 10)
(+ (read s) (read a) (read a»)

> ind
9

make-string-input-stream

20-26 Sun Common Lisp Reference Manual

with-open-stream

Purpose:

Syntax:

The with-open-stream macro provides a construct that takes a stream, performs
a series of operations on it, returns a value, and then closes the stream.

The stream argument is evaluated, and the variable var is bound to the resulting
stream. The form arguments are executed in order. The results of evaluating the
last form are returned as the result of executing the with-open-stream macro.
The stream is automatically closed on exit from with-open-stream, even if the
exit is abnormal.

with-op en-stream (var stream) {declaration} * {form} * [Macro]

Examples: > (with-open-atream (a (make-atring-input-atream "1 2 3 4"»
(+ (read a) (read a) (read a»)

6

See Also: close

Streams 20-27

with-output-to-string

Purpose:

Syntax:

The with-output-to-string macro provides a construct that creates a character
output stream, performs a series of operations that may send results to this stream,
and then closes the stream.

The variable var is bound to a character output stream, and the output to this
stream is saved in a string. The optional str'':ng argument may be used to specify
a string from which the output stream is to be built. If the string argument is
specified, it must be a string with a fill pointer. The stream output is then directed
to the point indicated by the fill pointer, which is increased incrementally.

The form arguments are executed in order.

If no string argument is specified, with-output-to-string returns a string
containing all of the accumulated stream output.

If a string argument was provided, with-output-to-string returns as its value
the results of evaluating the last form argument.

The stream is automatically closed on exit from the with-output-to-string
macro.

UT.L:t.'l...u-u"'''u .. t.n''u .. t.-t.''''u-~t-.I.~'''''''.I..I.~ (.. ,,. .. rnf .. ;wt,.l) J ,1D,.1,. .. ,.I';" .. * JI" .. IYYI*
•• " ~..:- ~" ~~ Cl' \VU., L""'''''':lJJ l " ' " .. v, .. j l/V'''''j

Remarks: If the specified string is adjustable, the appending of characters occurs as if
vector-push-extend were used; if it is not adjustable, the effect is the same as if
vector-push were used.

Examples: > (setq fstr (make-array '(0)

See Also:

""

:element-type 'string-char
:fill-pointer 0
:adjustable t»

> (with-output-to-string (s fstr)
(format s "here's some output")
(input-stream-p s»

NIL
> fstr
"here's some output"

make-string-output-stream

vector-push

vector-push-extend

20-28 Sun Common Lisp Reference Manual

Chapter 21. Input/Output

Input/Output 21-1

Chapter 21. Input/Output

About Input/Output ... 21-5
The Printed Representation of Common Lisp Objects 21-6

Integers ... 21-6
Ratios .. 21-7
Floating-Point Numbers .. 21-7
Complex Numbers ... '.' .. 21-7
Characters ... 21-7
Symbols ... 21-8
Lists .. 21-8
Arrays .. 21-9
Vectors .. 21-9
Bit Vectors .. 21-9
Strings . 21-9
Structures .. 21-10
Pathnames .. 21-10
Random States .. 21-10
Other Data Types .. 21-10

Reading the Representations of Common Lisp Objects 21-11
Character Syntax Types and Readtables 21-11
Table of Standard Character Syntax Types 21-13
Table of Standard Constituent Character Attributes 21-14
Standard Macro Characters .. 21-15
Dispatching Macro Characters . 21-17
Table of Standard # Dispatching Macro Character Syntax 21-21

Formatted Output .. 21-22
Format Control Directives .. 21-22
The Syntax of Format Control Directives 21-23

Summary of Format Directives .. 21-38
Categories of Operations. 21-42

Data Type Predicates ... 21-42
Character Input Control ... 21-42
Character Output Control ... 21-42
Character Stream Input ... 21-43
Character Stream Output .. 21-43
Binary Stream Input .. 21-43
Binary Stream Output .. 21-44
Formatted Character Stream Output ... 21-44
Querying the User .. 21-44

clear-input .. 21-45
clear-output ... 21-46
copy-readtable ... 21-47
finish-output, force-output ... 21-48

21-2 Sun Common Lisp Reference Manual

format ... 21-49
get-dispatch-macro-character ... 21-50
get-macro-character ... 21-51
ignore-extra-right-parens ... 21-52
listen .. 21-53
make-dispatch-macro-character. 21-54
parse-integer .. 21-55
peek-char ... 21-56
print-array .. 21-57
print-base, *print-radix* ... 21-58
print-case . 21-60
* print-circle * .. 21-61
print-escape ... 21-62
print-gensym .. 21-63
print-Ievel, *print-Iength* .. 21-64
print-pretty, *pp-line-Iength* ... 21-65
print-structure . 21-66
read, read-preserving-whitespace .. 21-67
read-base . 21-69
read-byte . 21-70
read-char ... 21-71
read-char-no-hang .. 21-72
read-default-float-format ... 21-73
read-delimited-list .. 21-74
read-from-string .. 21-75
read-line .. 21-76
read-suppress .. 21-77
readtable ... 21-79
readtablep .. 21-80
set-dispatch-macro-character .. 21-81
set-macro-character ... 21-82
set-syntax-from-char .. 21-83
terpri, fresh-line . 21-84
unread-char . 21-85
write, prinl, prine, print, pprint ... 21-86
write-byte .. 21-90
write-char .. 21-91
write-line, write-string ... 21-92
write-to-string, prin1-to-string, princ-to-string 21-93
y-or-n-p, yes-or-no-p .. 21-96

Input/Output 21-3

21-4 Sun Common Lisp Reference Manual

About Input/Output

All input/output (I/O) in Common Lisp is performed with streams. Although binary
input and output streams are available, most I/O is done with character streams.

The principal I/O operations read and write the printed representations of arbitrary Lisp
objects. The format function performs complex formatting of output data.

This chapter presents the operations and constructs for I/O and tables of standard
character syntax types, standard constituent character attributes, and standard #

dispatching macro character syntax. It also includes a complete description and summary
of the use of the format facility.

Input/Output 21-5

The Printed Representation of Common Lisp Objects

Common Lisp provides a printed representation for all objects. Such a representation
is a text sequence that identifies the object. An object may have more than one printed
representation: an integer, for instance, may have a different representation for each
possible numeric base.

Output functions such as write transmit the characters of an object's printed representation
to an output stream, and input functions such as read receive characters from an input
stream and build the object that is specified by the printed representation.

Each Common Lisp data type has its own printed representation. Within most printed
representations, variations are specified by the values of certain global variables.
These variables are *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, *print-Ievel*, *print-Iength*, *print-case*, *print-gensym*,
print-array, and *print-structure*.

Some of these variations cause abbreviated representations to be printed. Hence, not all
printed representations can be read back in. The reading of printed representations is
discussed in the section "Reading the Representations of Lisp Objects."

The printed representations of certain objects may be very obvious (those of integers,
for instance), but even those objects that have no obvious printed forms have printed
representations in Common Lisp. For more complex data types, such as arrays or
structures, the number-sign character (#) begins a speciai printed representation in which
the character following the # indicates the data type and the following characters describe
the specific object.

The printed representations for the different data types are described below. If an object
has a specific data type that is a subtype of a more general data type, the object is printed
as the more specific type.

Integers

An integer is printed as a sequence of digits in the base specified by the variable *print
base*. If the integer is negative, the sequence of digits is preceded by a minus sign. If the
variable *print-radix* is non-nil, a radix indicator is also printed. For the decimal base,
the radix indicator is a decimal point following the number. For other bases, the radix
indicator is one of the following forms preceding the number: #0 (octal), #x (hexadecimal),
#b (binary), or #nr (other base n, which is printed in decimal).

21-6 Sun Common Lisp Reference Manual

Ratios

Ratios are always printed in lowest reduced form, as the numerator, a slash (/), and then
the denominator. No spaces are included. In a negative ratio, the numerator is preceded
by a minus sign. The numerator and denominator are printed in the base specified by
.print-base •. In addition, if .print-radix. is non-nil, the ratio begins with a radix
indicator. The radix indicator is one of the following: #tOr (decimal), #0 (octal), #x

(hexadecimal), #b (binary), or #nr (other base n, which is printed in decimal). Note that
ratios are never printed with the decimal radix indicator used for integers, which is a
trailing decimal point.

Floating-Point Numbers

Floating-point numbers are printed as one or more digits on each side of a decimal point,
sometimes followed by an exponent. If the number is negative, it is preceded by a minus
sIgn.

If the magnitude of a floating-point number is zero or is greater than or equal to 10-3 and
less than 107, it is printed as the integer part (one to seven digits), a decimal point, and
then the fractional part (one to three digits).

Nonzero magnitudes less than 10-3 and greater than or equal to 107 are printed as numbers
between 1 (inclusive) and 10 (exclusive) times a power of ten. One digit is printed, then a
decimal point, a fractional part of one or more digits, the exponent marker E, and finally
the power of ten as a decimal integer.

Complex Numbers

A complex number is printed as #e(r i), where r is the printed representation of the
number's real part and i is the printed representation of the number's imaginary part.

Characters

If .print-escape* is non-nil, a character is printed as #\ followed by the character, if it is
a printing character, or by the name of the character, if not. If *print-escape* is nil, a
character is printed as itself.

Input/Output 21-7

Symbols

Lists

If .print-escape. is non-nil, a symbol is printed as its print name along with any
character quoting or name qualification necessary to identify the symbol uniquely. This
may include backslashes (\), vertical bars (I), a colon (:) (for keywords), a package name
and one or two colons (:), or a leading #: (for uninterned symbols). The use of these
quoting and qualifying characters when .print-escap e. is non-nil is described in the
paragraphs that follow.

If the print name could be interpreted as a potential number, backslashes or vertical bars
are included to prevent such an interpretation. In this determination, it is assumed that
the text would be read back in with .read-base. set to the value that .print-base. has
at the time of printing.

If the symbol is in the keyword package, it is printed with a leading colon. If the symbol
is not accessible in the current package, it is printed with a leading package name and one
or two colons, however many are needed to identify the symbol.

A leading #: is printed if the symbol is uninterned.

A symbol is printed as just its print name if .print-escape. is nil.

In either of the cases described, lowercase letters in the print name are always printed in
lowercase, but the case in which uppercase letters are printed is controlled by the global
variable .print-case •. The possible values for .print-case. are :upcase, :downcase,
and :capitalize.

A true list is printed as follows: first a left parenthesis, then the elements of the list in
order, and finally a right parenthesis. The list elements are separated by white space
(space, tab, carriage-return, or newline characters).

A dotted list is printed as follows: first a left parenthesis, then the car of the list, a dot,
the cdr of the list, and finally a right parenthesis. The dot is separated from the car and
the cdr of the list by white space.

Conses are printed with list notation rather than dot notation whenever possible. The
global variables .print-Ievel. and .print-Iength. can be used to limit the depth of
printing and the number of consecutive items printed at a single level.

21-8 Sun Common Lisp Reference Manual

Arrays

H .print-array. is non-nil, an array is printed with the #nA(. ..) syntax. In this case,
the output starts with InA, where n is the number of dimensions of the array, and then
the contents of the array are printed in row-major order with parentheses indicating the
structure of the array. The length of the top-level list printed is the size of the first
dimension, and the lengths of the subsequent deeper levels are the sizes of the second
dimension, the third dimension, and so on.

H the array has elements that are either bits or string characters, the deepest level printed
may take the form of a bit vector or string.

The global variables .print-level. and .print-length. can be used to limit the depth of
printing and the number of consecutive items printed at a single level.

H .print-array. is nil, an array is printed with the #< ••. > syntax, which identifies the
array without listing the values of its elements.

Vectors

H .print-array. is non-nil, a vector is printed as # (and) enclosing the elements of
the vector, which are separated by white space. For a vector with a fill pointer, only
those elements before the fill pointer are printed. The global variables .print-level. and
.print-length. can be used to limit the depth of printing and the number of consecutive
items printed at a single level.

H .print-array. is nil, a vector is printed with the #< ••• > syntax, which identifies the
vector without listing the values of its elements.

Bit Vectors

H .print-array. is non-nil, a printed bit vector consists of #*, followed by the bits in the
bit vector. For a bit vector with a fill pointer, only those bits before the fill pointer are
printed.

H .print-array. is nil, a bit vector is printed with the #< ... > syntax, which identifies the
bit vector without listing the values of its bits.

Strings

H .print-escape. is non-nil, the string is preceded and followed by a double quote (II).
Any double-quote or single escape character in the string is preceded by a backslash (\).

Input/Output 21-9

If *print-escape* is nil, a string is printed as just the sequence of characters that it
contains.

A string with a fill pointer is printed only up to the fill pointer.

Structures

The user can completely control the format in which a structure is printed by using the
defstruct option :print-function to specify a function to be called when the structure is
to be printed. If this option is not used, a. defa.ult printing function is supplied that prints
the structure as #S (name slot1 1Jaluel slot£ 1Jalue£ ...), where name is the name of the
structure, slotj is the name of one of the structure's slots, and 1Jaluej is the corresponding
value. The global variables *print-Ievel* and *print-Iength* can be used to limit the
depth of printing and the number of consecutive items printed at a single level.

If the global variable *print-structure. is nil, the default printing function prints a
structure with the #< ••• > syntax, which identifies the structure without listing the values
of its elements. The variable .print-structure. is an extension to Common Lisp.

Pathnames

A printed pathname consists of #P followed immediately by the pathname enclosed in
double quotes.

Random States

An object of type random state is printed as a structure with the #S syntax. The global
variables *print-Ievel. and .print-Iength. can be used to limit the depth of printing
and the number of consecutive items printed at a single level.

Other Data Types

Data types that do not have a syntax in which they can be printed and subsequently read
back in are printed with the #< ••• > syntax. The #< ••• > syntax describes the data type
and may give some indication of the particular instance (such as a memory address where
it appears). The #< ••• > syntax does not allow the object to be read back in. An object
that is a hash table, a readtable, a package, a stream, or a function is printed with the
#< ••• > syntax.

21-10 Sun Common Lisp Reference Manual

Reading the Representations of Common Lisp
Objects

The reader is the part of the Common Lisp system that reads characters in, interprets
them as the printed representations of individual objects, and constructs and returns those
objects. An object may be made up of various parts, such as numbers, symbol names,
form indicators like parentheses, and other special characters. The object is constructed
from the input text by interpreting each character according to its syntax type.

Character Syntax Types and Readtables

The syntax type of a character determines how that character is interpreted by the
reader. For instance, it indicates whether the character can appear in a symbol name or
whether it can appear in a number. Every character has at any given time exactly one
syntax type.

It is possible to change a single character's syntax type or the entire collection of syntax
types for all characters. The association between characters and syntax types is maintained
in a data object known as a readtable. The user can create several readtables and switch
between them as needed to alter the input syntax. Common Lisp defines a standard
syntax for the interpretation of characters. This syntax is embodied in the readtable that
is current when Common Lisp is started up. This standard syntax is discussed below.

The possible character syntax types are constituent, whitespace, macro, single escape,
multiple escape, and illegal. Figure 21-1 lists the default syntax type of each character.

• Constituent characters are those characters used in tokens. A token is a number
or a symbol name. Examples of constituent characters are letters and digits.

A constituent character has one or more attributes that define how the character
can be interpreted by the reader. These are alphabetic, digit, package marker, plus
sign, minus sign, dot, decimal point, ratio marker, floating-point exponent marker,
and illegal. Figure 21-2 shows the standard attributes for constituent characters.
Any character with the alphadigit attribute in that figure is considered a digit if
.read-base. is greater than that character's digit value; otherwise the character is
alphabetic. Alphabetic constituents are those characters that can appear in a symbol
name. Note that any character quoted with a preceding single escape character is
treated as an alphabetic constituent, regardless of its normal syntax. In particular,
constituent characters with the illegal attribute must be quoted in order to appear in
a token.

Normally, lowercase letters in symbol names are converted to their uppercase
equivalents when the name is read. This conversion can be inhibited by the use of
single or multiple escape characters, as explained below.

Input/Output 21-11

• Whitespace characters are used to separate tokens. The space and newline
characters are examples of whitespace characters.

• A macro character triggers special parsing of subsequent input characters. When
a macro character is encountered by the reader, the special function assigned to that
macro character is called. This function generally parses one specially formatted
object from the input stream and returns the constructed object. The macro character
function may also return no values to indicate that the characters scanned by the
function are being ignored (as in the case of a comment). Examples of macro characters
in the standard Common Lisp syntax are the backquote and single quote characters •
and • and the parenthesis characters (and).

A macro character is either terminating or nonterminating. The difference between
terminating and nonterminating macro characters lies in what happens when such
characters occur in the middle of a token. In such a location, the function associated
with the nonterminating macro character is not called, and the nonterminating macro
character does not terminate the token~s name; it becomes part of the name as if the
macro character were really a constituent character. A terminating macro character,
however, terminates any token, and the macro character's function is called no matter
where the character appears. The only nonterminating macro character in the standard
syntax is the number-sign character #.

Macro characters are discussed in greater detail in the section "Standard Macro
Characters."

• A single escape character is used to quote the next character so that it is treated
as a constituent character of alphabetic attribute no matter what the character is
or which attributes it has. Furthermore, the normal conversion of lowercase letters
to uppercase letters in symbol names is prevented for the quoted character. Thus, a
single escape character can be used to include any character in a symbol name. In the
standard Common Lisp syntax, the backslash character \ is a single escape character.

• A pair of multiple escape characters is used to quote an enclosed sequence of
characters, including possible macro and whitespace characters, so that they are
treated as constituent characters of alphabetic attribute with letter case preserved.
Any single and multiple escape characters that are to appear in the sequence must be
quoted with a single escape character. Note that a symbol name is not delimited by
the multiple escape character; the symbol name can continue past a multiple escape
character. In the standard Common Lisp syntax, the vertical bar character I is a
multiple escape character. Thus, the symbol parsed from a I B I c is the same as that
parsed from ABC or abc or I ABC I, but it is not the same as that parsed from I abc I.

• If an illegal character is encountered while a Lisp object is being read, an error
is signaled. However, if an illegal character is quoted with a preceding single escape
character, it is treated as an alphabetic constituent instead.

21-12 Sun Common Lisp Reference Manual

Table of Standard Character Syntax Types

character syntax type character syntax type
Backspace constituent 0-9 constituent
Tab whitespace constituent
Newline whitespace terminating macro
Linefeed whitespace < constituent
Page whitespace - constituent
Return whitespace > constituent
Space whitespace ? constituent *
! constituent * @ constituent

" terminating macro A-Z constituent
nonterminating macro [constituent *
$ constituent \ single escape
% constituent] constituent*
& constituent constituent

terminating macro constituent
(terminating macro terminating macro
) terminating macro a-z constituent

* constituent { constituent*
+ constituent I multiple escape

terminating macro } constituent*
constituent constituent
constituent Rub out constituent

/ constituent

Figure 21-1. Standard Character Syntax Types

* The characters!, 1, [,], {, and} are constituents by default but are reserved for the
user. They will never be used in the names of functions and variables defined by Common
Lisp.

Input/Output 21-13

Table of Standard Constituent Character Attributes

constituent attributes constituent attributes
character character
Backspace illegal { alphabetic
Tab illegal* } alphabetic
Newline illegal* + alphabetic, plus sign
Linefeed illegal* - alphabetic, minus sign
Page illegal* alphabetic, dot, decimal point
Return illegal* / alphabetic, ratio marker
Space illegal* A, a alphadigit
! alphabetic B,b alphadigit

" alphabetic* C, c alphadigit
alphabetic* D, d alphadigit, double-float exponent marker
$ alphabetic E, e alphadigit, float exponent marker
% alphabetic F, f alphadigit, single-float exponent marker
& alphabetic G, g alphadigit , alphabetic* H, h alphadigit
(alphabetic* I, i alphadigit
) alphabetic* J,j alphadigit
• alphabetic K, k alphadigit
, alphabetic* L, I alphadigit, long-float exponent marker
0-9 alphadigit M,m alphadigit
: package markerN, n alphadigit
; alphabetic* 0,0 alphadigit
< alphabetic P,p alphadigit
- alphabetic Q,q alphadigit
> alphabetic R, r alphadigit
? alphabetic S,s alphadigit, short-float exponent marker
@ alphabetic T, t alphadigit
[alphabetic U,u alphadigit

\ alphabetic* V, v alphadigit
] alphabetic W,W alphadigit .. alphabetic X,x alphadigit

- alphabetic Y, y alphadigit , alphabetic· Z, z alphadigit
I alphabetic* Rub out illegal
- alphabetic

Figure 21-2. Standard Constituent Character Attributes

* Characters marked by asterisks are not constituent characters in the standard syntax;
these attributes apply to them only if their syntax types are changed to constituent.

21-14 Sun Common Lisp Reference Manual

Standard Macro Characters

The standard Common Lisp syntax defines several macro characters. When a macro
character is encountered, the macro character function associated with it is called. That
function normally reads some number of characters from the input and returns a value
representing the object read. The standard macro characters are discussed below.

• ((Left parenthesis)

A left parenthesis (C) marks the beginning of a list or a dotted pair. Objects are
read (recursively) until a right parenthesis is encountered at the same level as the left
parenthesis, and a list of the objects read is returned. Whitespace characters can be
used freely or omitted before and after the left and right parentheses.

A dot may appear by itself after some element in the list, in which case there must be
precisely one element and a right parenthesis following the dot. The final element is
the cdr of the last pair in the list.

•) (Right parenthesis)

A right parenthesis (» ends a list or a dotted pair. A right parenthesis can occur only
as part of some particular syntactic construct that uses a left parenthesis. In any other
context, a right parenthesis is handled according to the setting of the global variable
ignore-extra-right-parens .

• (Single quote)

A single quote (.) is used to quote a Lisp object so that it can be manipulated as a
constant. The construct • form has the same meaning as (quote form) .

• (Semicolon)

A semicolon (;) begins a comment, which continues through the next newline character.
A comment terminates any token currently being read but is otherwise ignored.

• " (Double quote)

A double quote (,,) begins a simple string. All input characters that lie between the
first double-quote character and a second double quote are included in the string.
If a single escape character is encountered, however, the single escape character is
discarded, the character following it is included in the string (no matter what that
character is), and the string continues.

• (Backquote)

A backquote (.) quotes all of a form except parts directly preceded by commas. A
backquote causes an object to be created from the form following the backquote. Any
subform that follows a comma is evaluated, and its value takes the place of the subform
in the object. The backquote construct is read as the object that results when all such
evaluations have been done. This result mayor may not share any list structure with
the template itself. If there are no commas in the form following a backquote, the

Input/Output 21-15

result is the same as if the backquote had been a single quote (.). In nested backquote
constructs, the innermost backquote construct is processed first.

Within a backquote construct, if a comma is immediately followed by an at-sign (.G),
the following subform is evaluated and must produce a list. The individual items in
the list are inserted in the object in place of the subform. Thus, one subform in the
original template can be replaced by any number of items, depending on the length of
the list resulting from the evaluation of the subform.

If a comma is followed by a dot (, .), the following subform is evaluated and inserted
in the object. The,. construct is the same as the, G construct except that the list
resulting from the evaluation of the subform may be modified.

In a backquote construct, a comma can occur inside any subform that produces a cons
or a simple vector. In particular, a comma can appear inside # (or #' forms but cannot
appear inside #A or #s forms. A comma can also appear immediately after a backquote,
provided that the comma is not followed by an at-sign or a dot. The combinations ,0
and •. cannot appear immediately after a backquote or immediately after the dot in a
dotted pair.

The following example shows the use of the comma by itself and the .0 and ,.
combinations:

> (setf a '(r s»
(R S)
> '(1 a 2 ,a 3 IGa 4 ,(cdr a) 6 .G(cdr a) 6 ,.(cdr a»
(1 A 2 (R S) 3 R S 4 (S) 6 S 6 S)

• (Comma)

A comma (.) causes a form within a template to be evaluated. A comma can occur
only within a template quoted by backquote, as described above.

• # (N umber-sign)

The number-sign character (#) is a dispatching macro character. The effect of a
dispatching macro character is determined by the dispatch-controlling character
following it. The next section describes the standard syntax for the # dispatching
macro character.

21-16 Sun Common Lisp Reference Manual

Dispatching Macro Characters

A dispa tc1Jing macro character is a special type of macro character. Such a character
dispatches to one of many possible functions, depending on the next character read. Thus,
certain two-character sequences can trigger the invocation of specific functions.

The only dispatching macro character in the standard Common Lisp syntax is the
number-sign character #. In the standard syntax, the dispatching macro character # is
nonterminating. That is, whenever the character # occurs in the middle of a token, it is
taken as a constituent character rather than as a macro character and does not terminate
the token.

Forms beginning with # are used for reading in objects of particular data types. The
character following the # generally specifies the data type; that character is followed
by text that specifies the value, using a data-type dependent syntax. For instance, the
form #C (2 3) represents a complex number with a real part of 2 and an imaginary part
of 3. In certain cases, an unsigned decimal integer may be used between the # and the
type-specifying character. The dispatch function called for a particular dispatching macro
character sequence is given three arguments: the input stream, the dispatch-controlling
character, and the intervening integer. If no integer is specified, the third argument is nil.

The standard # dispatching macro character syntax is explained below and is summarized
in Figure 21-3. In constructs where the second character is a letter, the case of the
letter is not significant. Although Common Lisp may be extended to include additional #

constructs, the constructs beginning with #!, #1, # [, #], #{, and #} will never be defined
in the standard syntax; they are reserved for the user.

• #\ (Character object)

A character object is represented either by #\z, where x is the character, or by #\name,
where name is the name of the character. The names recognized after #\ are the same
as the character names recognized by the function name-char. When #\ is followed
by a single character rather than a name, that single character must be followed by a
character that is not a constituent character.

Although any character can follow #\, the use of a name after #\ is generally preferred
for representing nonprinting characters in programs. If a single character follows #\,
uppercase and lowercase are distinguished and are used to represent the corresponding
uppercase and lowercase letters. In a character's name, however, case is not significant.

Bits attributes can be included in characters represented with the #\ syntax. The
character or its name is preceded by one or more bit names or initials, each followed by
a hyphen. For example, #\Control-Hyper-Space and #\c-h-space represent the same
character. When bits attributes are specified and the single-character form is used, the
character itself must be quoted if it is not an alphabetic constituent in the current

Input/Output 21-17

readtable or if it represents a lowercase letter, for instance, #\Meta-\a. The names
of bits attributes that can be used with the #\ syntax are Control, Meta, Hyper, and
Super.

• # ' (Function object)

The input sequence # 'function represents the form (function function), where
function is the printed representation of any Common Lisp object.

• #((Simple vector)

A simple vector is represented by enclosing its elements in order between # (and). An
explicit length for the vector can be specified as an unsigned decimal integer between
the # and the (. If an explicit length is specified, no more than that number of objects
may be enclosed. If fewer objects are enclosed than is specified by an explicit length,
at least one object must be enclosed; in this case, the last enclosed object is used as
the value of each of the remaining elements of the vector.

• #* (Bit vector)

A simple bit vector is represented by #* followed by the bit vector's binary digits (each
is either a 0 or a 1). An explicit length for the vector can be specified as an unsigned
decimal integer between the # and the *. If an explicit length is specified, no more
than that number of bits may be present. If there are fewer bits present than specified
by an explicit length, at least one bit value must be specified, and the last bit value
specified is used as the value of each of the remaining elements of the vector.

• #: (Uninterned symbol)

An uninterned symbol is represented by #: followed by a symbol name containing
no embedded colons. A new uninterned symbol is created each time this syntax is
encountered.

• #. (Read-time evaluation)

The construct #.form represents the object that is obtained by evaluating the form
form. The computation of the intended object is done at read-time. This construct is
useful for representing an object that has no other convenient printed representation.

• #, (Load-time evaluation)

The construct #,form represents the object that is obtained by evaluating the form
form. The computation of the intended object is done at read-time unless it is the
compiler that is doing the reading. When the compiler sees this construct, it arranges
for the form to be evaluated at load-time.

In interpreted code, #. and #, are treated the same, but in compiled code, #. causes
form to be evaluated at compile-time and #, causes form to be evaluated at load-time.

21-18 Sun Common Lisp Reference Manual

• #B (Binary rational)

The construct #Brational represents a rationa.l number expressed in binary (base 2).

• #0 (Octal rational)

The construct #orational represents a rationa.l number expressed in octal (base 8).

• #X (Hexadecimal rational)

The construct #xrational represents a rationa.l number expressed in hexadecimal (base
16).

• #nR (Radix rational)

The construct #nRrational represents a rational number expressed in base n, where n
must be between 2 and 36 inclusive.

• #c (Complex number)

The construct #cer i) represents a complex number whose real part is r and whose
imaginary part is i.

• #nA (Array)

The construct #nAobject creates an n-dimensional array whose initial contents are
specified by object.

• #8 (Structure)

The construct #8 e name slotl tJaluel slote tJaluee ...) represents a structure. Here,
name must be the name of a defined structure that has a constructor function. The
constructor function is called with the specified slot values, and the result returned by
the constructor function is the result returned when the #8 construct is read. It is not
necessary to start each slot name with a colon.

• #n= (Object label)

The construct #n=object is read as object, but it also labels that object with the
unsigned decimal integer n. The subsequent use of the construct #n# with the same
value of n represents this identical object. The label applies within the expression
being read by the outermost call to read and must be unique within that expression.

• #n# (Label reference)

The construct #n# represents the object with the label n in the current expression.
The label must have been defined by an earlier use of #n= in the same expression. The
#n# syntax is used in representing a construct that has a shared or circular element.

Input/Output 21-19

• #+ (Read-time conditional)

The construct #+feature form causes the form form to be read only if feature specifies
a true condition. H feature specifies a false condition, form is read with the global
variable *read-suppress* bound to a non-nil value. This results in the form being
skipped over.

The construct feature must be the printed representation of either a symbol or a list.
If it is a symbol, it specifies a true condition if and only if that symbol is an element
of the list that is the value of the global variable *features*. If feature is a list, it
must be composed of the logical operators and, or, and not applied to other feature
expressions; in this case, a true condition is specified if the logical combination is true.

The #+ construct can be used in conjunction with the *features* list to select the
portions of a program that are to be read or compiled.

• #- (Read-time negative conditional)

The construct #-feature form has the same effect as #+(not feature) form.

• # I (Balanced comment)

The construct #1 ... 1# represents a comment and is ignored when read. The comment
may contain anything, but occurrences of#1 and 1# must be balanced. Comments may
thus be nested. The # I ... I # construct can be used to disable a portion of a program
by turning it into a balanced comment.

• #< #) #whitespace #Backspace (Forced error)

If # is followed by one of the characters <,), Backspace, Tab, Newline, Page,
Return, or Space, an error is signaled. These constructs prevent attempts to
read back in objects with no valid printed representation or objects whose printed
representation has been abbreviated.

21-20 Sun Common Lisp Reference Manual

Table of Standard # Dispatching Macro Character Syntax

character purpose character purpose
combination combination
#Backspace signals error #{ undefined*
#Tab signals error #} undefined *
#Newline signals error #+ read-time conditional
#Linefeed signals error #- read-time conditional
#Page signals error #. read-time evaluation
#Return signals error #/ undefined
#Space signals error #A, #a array
#! undefined * #B, #b binary rational
#" undefined #C, #c complex number
reference to #= label #D, #d undefined
#$ undefined #E, #e undefined
#% undefined #F, #f undefined
#& undefined #G, #g undefined
#' function abbreviation #H, #h undefined
#(simple vector #1, #i undefined
#) signals error #J, #j undefined
#* bit vector #K, #k undefined
#, load-time evaluation #L, #1 undefined
#: uninterned symbol #M,#m undefined
#. , undefined #N, #n undefined
#< signals error #0, #0 octal rational
#= labels following object #P, #p undefined
#> undefined #Q, #q undefined
#? undefined * #R, #r radix-n rational
#@ undefined #8, #s structure
#[undefined * #T, #t undefined
#\ character object #U, #u undefined
#] undefined * #V, #v undefined
#"" undefined #W,#w undefined
#- undefined #X, #x hexadecimal rational
#e undefined #Y, #y undefined
#1 balanced comment #Z, #z undefined
#- undefined #Rubout undefined

FlgUl"e 21-3. Standard # Dispatching Macro Character Syntax

* The dispatching macro character pairs #!, #1, #[, I], #{, and #} are reserved for the user
and will never be defined in the standard Common Lisp syntax. The combinations #0, #1,
#2, #3, #4, #6, #6, #7, #8, and #9 occur only when integers are used as infix arguments.
They cannot be defined.

Input/Output 21-21

Formatted Output

The format function and certain other text output functions accept as an argument a
format control string that specifies formatted text to be generated. Such a string
is made up of simple text and embedded directives. The simple text is written to the
indicated stream (for example, the user's display); each embedded directive specifies
further text output that is to appear at the corresponding point within the simple text.
Directives are carried out in the order in which they appear within the format control
string.

Format Control Directives

The basic format control directive consists of a tilde (-) followed by a directive character
that specifies the type of output to be generated. In the general form, a directive may
accept parameters and modifiers between the tilde and the directive character and may use
arguments from the function call form in which it occurs. If any parameters are specified,
they must precede any modifiers. The meanings of the parameters and modifiers vary
from directive to directive and are defined in the descriptions of the syntax of individual
directives. A directive must not be given more parameter values than its syntax allows.

A format control string parameter is either an integer or a character object, depending
on how the parameter is used by the directive. An integer parameter is specified as an
optionally signed decimal integer. A character parameter is specified as a two-character
sequence consisting of a single-quote character (t) followed by the character that is to be
the parameter. If multiple parameters are supplied to one directive, they are separated
by commas. A default value is supplied for any parameter that is not specified. When
parameters at the end of the parameter list are defaulted, trailing commas may also be
omitted. For example, the directive -12 t t • ! R has an integer parameter followed by a
defaulted parameter and then a character parameter whose value is the exclamation-point
character. The fourth parameter in this example is omitted, as is the comma that would
have preceded it.

The characters V, v, or # can be used in place of an actual integer or character value for
a parameter. If V (or v) is used, the value of the next unused argument of the current
function call form is taken to be the value of the parameter. This value should be an
integer or character object, whichever is appropriate for the directive, or it can be nil
to default the given parameter. If # is used, the number of remaining arguments of the
current function call form is taken to be the value of the next parameter.

A format control string modifier is a single character, either a colon (:) or an at-sign (e).
A directive can contain neither, one, or both of these modifiers. The meanings of the four
combinations depend on the specific directive character. For instance, - (text-) causes text
to be written in lowercase, whereas -: e (text-) causes text to be written in uppercase. A

21-22 Sun Common Lisp Reference Manual

directive may only be given modifiers in a combination allowed by its syntax; the order of
the two modifiers, however, does not matter.

Certain directives use arguments from the current function call form (most commonly a
call to format). For instance, several directives cause particular printed representations
of the next argument to be written. Function arguments are supplied to directives in order
as needed; however, the -. directive can be used to select the starting argument position
from which subsequent directives get their arguments. At least as many arguments as the
directive requires must be supplied.

The Syntax of Format Control Directives

The individual directives that are available for use in format control strings are described
below. In these descriptions, the directive is accompanied by a brief descriptive title to
help the user remember what the directive does. The second line of each description
presents the syntax of the general form of the directive. It is followed by an explanation of
the use of the directive and its parameters and modifiers.

• -A (ASCII)

- mineol. coline. minpad. padehar : oA

The -A directive causes the printed representation of the next available argument of
the function call form to be written with no escape characters, as if tprint-escapet
were bound to nil.

The mineol parameter specifies the minimum number of columns (characters) that
the output is to occupy. Its default value is o.
The minpad parameter specifies the minimum number of padding characters to be
used. Its default value is o.
After the first minpad characters have been written, padding characters are written
in increments specified by the coline parameter until the total output occupies at
least mineol columns. The default value of the coline parameter is 1.

The padehar parameter specifies the padding character to be used. Its default
value is the space character.

The : modifier controls the format of any argument that is nil. If the argument is
nil, it is written as nil unless the : modifier is used, in which case it is written as
O. In either case, if the argument is a list or any other structured object, any null
element within it is written as nil whether or not the: modifier is present.

The 0 modifier controls the placement of padding characters. Any necessary
padding is normally inserted on the right of the output; it is thus left-justified. Use
of the 0 modifier, however, causes all padding to be inserted on the left; the output
is then right-justified.

Input/Output 21-23

The : and a modifiers may be used separately or in combination.

• -S (S-expression)

- mineol. coline. minpad. padehar : as
The -S directive causes the printed representation of the next available argument of
the function call form to be written with escape characters included in the output, as
if *print-escape* were bound to t.

The mineol parameter specifies the minimum number of columns (characters) that
the output is to occupy. Its default value is o.
The minpad parameter specifies the minimum number of padding characters to be
used. Its default value is o.
Mter the first minpad characters have been written, padding characters are written
in increments specified by the coline parameter until the total output occupies at
least mineol columns. The default value of the coline parameter is 1.

The padehar parameter specifies the padding character to be used. Its default
value is the space character.

The : modifier controls the format of any argument that is nil. If the argument is
nil, it is written as nil unless the : modifier is used, in which case it is written as
O. In either case, if the argument is a list or any other structured object, any null
element within it is written as nil whether or not the: modifier is present.

The a modifier controls the placement of padding characters. Any necessary
padding is normally inserted on the right of the output; it is thus left-justified. Use
of the a modifier, however, causes all padding to be inserted on the left; the output
is then right-justified.

The : and a modifiers may be used separately or in combination.

• -D (Decimal)

- mineol. padehar • eommaehar : aD

The -D directive causes the printed representation of the next available argument of
the function call form to be written in decimal (base 10), without a trailing decimal
point. IT the argument is not an integer, it is written in -A format using the decimal
base.

The mineol parameter specifies the minimum width of output in characters. Its
default value is o.
The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

21-24 Sun Common Lisp Reference Manual

The: modifier causes the eommaehar parameter to be written between every
group of three characters. The default value of eommaehar is the comma character
(.).

The a modifier causes the integer's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The : and a modifiers may be used separately or in combination.

• -B (Binary)

- min col. padehar • eommaehar : oB

The -B directive is identical to the -n directive except that the integer argument is
written in base 2 instead of in decimal.

The -B directive causes the printed representation of the next available argument of
the function call form to be written in binary. If the argument is not an integer, it is
written in binary using the -A format.

The mineol parameter specifies the minimum width of output in characters. Its
default value is o.
The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

The : modifier causes the eommaehar parameter to be written between every
group of three characters. The default value of eommaehar is the comma character
(.).

The a modifier causes the integer's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The : and a modifiers may be used separately or in combination.

• -0 (Octal)

- mineol. padehar • eommaehar : 00

The -0 directive is identical to the -n directive except that the integer argument is
written in base 8 instead of in decimal.

The -0 directive causes the printed representation of the next available argument of
the function call form to be written in octal. If the argument is not an integer, it is
written in octal using the -A format.

The mineol parameter specifies the minimum width of output in characters. Its
default value is o.
The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

Input/Output 21-25

The: modifier causes the eommaehar parameter to be written between every
group of three characters. The default value of eommaehar is the comma character
(,).

The G modifier causes the integer's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The : and G modifiers may be used separately or in combination.

• -X (Hexadecimal)

- mineol. padehar • commachar : aX

The -X directive is identical to the -n directive except that the integer argument is
written in base 16 instead of in decimal.

The -0 directive causes the printed representation of the next available argument of
the function call form to be written in hexadecimal. If the argument is not an integer,
it is written in hexadecimal using the -A format.

The mineol parameter specifies the minimum width of output in characters. Its
default value is O.

The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

The: modifier causes the eommaehar parameter to be written between every
group of three characters. The default value of eommaehar is the comma character
(,).

The G modifier causes the integer's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The : and G modifiers may be used separately or in combination.

• -R (Radix)

- radix. mineol. padehar • eommaehar : GR

The -R directive is identical to the -n directive except that the integer argument is
written in the base specified by the radix parameter instead of in decimal. The value
of radix must be between 2 and 36 inclusive. If the argument is not an integer, it is
written in the base radix using the -A format.

The mineol parameter specifies the minimum width of output in characters. Its
default value is O.

The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

21-26 Sun Common Lisp Reference Manual

The: modifier causes the eommaehar parameter to be written between every
group of three characters. The default value of eommaehar is the comma character
(.).

The G modifier causes the integer's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The : and G modifiers may be used separately or in combination.

However, if no radix parameter is specified, then -R has a different meaning, as shown
below.

• -R (Roman numerals)

-. mineol.padehar :GR

If the first parameter is omitted, the directive -R causes the next available argument
to be written either in English or in Roman numerals.

The mineol parameter specifies the minimum width of output in characters. Its
default value is o.
The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

The modifier combination selects one of the following four formats in which to
write the integer argument:

-R causes the next available argument to be written in English as a cardinal
number, such as nine.

- : R causes the next available argument to be written in English as an ordinal
number, such as ninth.

-GR causes the next available argument to be written in Roman numerals, such
as IX. Very large arguments are printed in decimal.

- : GR causes the next available argument to be written in old Roman numerals,
such as VIllI. Very large arguments are printed in decimal.

• -P (Pluralize)

:GP

The -P directive is used to pluralize a word that has just been written. If no modifiers
are specified, it writes nothing if the next available argument has the integer value 1;
otherwise it writes the one character s.

H the : modifier is used, this directive first backs up to the previous argument
of the function call form (thUS re-using that argument) and then performs the
pluralization.

Input/Output 21-27

If the II modifier is used, this directive writes either the character y if the argument
has the value 1 or the three characters ies if the argument has some other value.

The : and G modifiers may be used separately or in combination.

• - C (Character)

:GC

The -C directive causes the next available argument in the function call form to be
written as a character. Printing characters are written as themselves; non printing
characters are written by name (for example; a space is written as Space).

If no modifiers are used, the name of any bits attribute of the character is
abbreviated to one letter followed by a hyphen. For instance, the character
#\Meta-X is written as M-X.

If only the: modifier is used, the names of any bits attributes are written in full,
for example, Meta-X.

If only the G modifier is used, the character is written using the #\ syntax, for
example, #\Meta-X.

If both modifiers are used, the names of any bits attributes are written in full, but
the #\ syntax is not used.

• -F (Fixed floating-point)

-w. d. Ie. overflowchar.padcharGF

The -F directive causes the next available argument to be written as a floating-point
number without an exponent field.

If the argument is a ratio or integer, it is coerced to single-float format before being
written. If the argument is a complex number or not a number at all, it is written as if
by the -wD directive, so that the minimum width w is used and any rational subpart
of the argument is written in decimal.

The w parameter specifies the exact width of the output in characters. If w is
not specified, no padding is used, and as many characters as necessary are used to
write the number as specified by the remaining parameters.

The d parameter specifies the number of digits to be used after the decimal point.
If d is not specified, the number of digits after the decimal point is limited only
by wand the value of the number. No trailing zeroes are written if d is not
specified unless the value of the fractional part is zero, in which case exactly one
zero appears after the decimal point.

The Ie parameter specifies a scale factor. The argument is multiplied by 10k before
it is written. The default value of Ie is o.
If an overflowchar parameter is specified, and the number cannot fit in w
characters, the entire output field is filled with the given overflow character. If

21-28 Sun Common Lisp Reference Manual

the otlerflowehar parameter is not specified and if the argument cannot fit in w
characters, then as many characters as are necessary are used.

The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

The 0 modifier causes the argument's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The output consists of exactly w characters. Any necessary padding is written first,
followed by a minus sign if the argument is negative or a plus sign if the argument is
nonnegative and the modifier 0 is present. The magnitude of the argument times 10k ,

rounded to d fractional digits, is written next. Leading zeroes are not written, but if
the magnitude is less than one, a single zero digit is written before the decimal point
if it fits within the specified width.

• -E (Exponential floating-point)

- w. d. e. k. otlerflowehar. padehar. exponenteharcE

The -E directive causes the next available argument to be written as a floating-point
number with an exponent field.

If the argument is a ratio or integer, it is coerced to single-float format before being
written. If the argument is a complex number or is not a number at all, it is written
as if by the -wD directive, so that the minimum width w is used and any rational
subpart of the argument is written in decimal.

The w parameter specifies the exact width of the output in characters. If w is
not specified, no padding is used, and as many characters as necessary are used to
print the number as specified by the remaining parameters.

The d parameter specifies the number of digits to be written after the decimal
point. If d is not specified, the number of digits after the decimal point is limited
only by wand the value of the number. No trailing zeroes are written if d is not
specified unless the value of the fractional part is zero, in which case exactly one
zero appears after the decimal point.

The e parameter specifies the number of exponent digits written. If e is not
specified, the minimum number of digits necessary for the exponent is used.

The k parameter is the number of significant digits written before the decimal
point. If k is zero or negative, the first significant digit occurs after the decimal
point and after -k zeroes. The default value of k is l.

If an otlerflowehar parameter is specified, and the number cannot fit in w
characters, the entire output field is filled with the given overflow character. If
the otlerflowehar parameter is not specified and if the argument cannot fit in w
characters, then as many characters as necessary are used.

Input/Output 21-29

The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

The exponentehar parameter specifies the character written before the signed
decimal exponent. The default value of exponentehar is E.

The a modifier causes the argument's sign to be written. If this modifier is not
specified, the sign is written only if the integer is negative.

The output consists of exactly w characters. Any necessary padding is written first,
followed by a minus sign if the argument is negative or by a plus sign if the argument is
nonnegative and the modifier a is present. It is followed by a digit sequence containing
a decimal point in which Ie; specifies the position of the first significant digit. If Ie; is
zero or negative, this sequence contains d digits after the decimal point and a single
zero digit before the decimal point if the width allows. No other leading zeroes are
written. If Ie; is positive, it must be less than d + 2, and d - k + 1 digits are written
after the decimal point. The number is rounded.

The exponent field is written next. It consists of an exponent character followed by
a plus sign or a minus sign, and then e exponent digits. The signed exponent is the
power of ten by which the number represented by the digit sequence must be multiplied
to get the rounded value of the original argument. The exponent character written is
exponentehar if that parameter is specified; otherwise the exponent marker is E.

• =G (Generai floating-point)

- w. d. e. Ie;. overftowehar. padehar. exponenteharoG

The -G directive causes the next available argument to be written as a floating-point
number in either fixed or exponential format. Fixed format is used if the absolute
value of the argument is either 0 or greater than or equal to 1 and if the integer part
of that absolute value can be represented in d digits. Otherwise exponential format is
used.

If d is omitted, the value used for it here is (max q (min n 7», where n is the
number of digits in the integer part of the absolute value of the argument, and q is
the number of digits needed to represent the argument without loss of information and
without leading or trailing zeroes.

If fixed format is used, the argument is written as if the following pair of directives
(the first of which writes the number and the second writes some spaces) were
used:

- ww. dd • • overftowehar. padeharaF- eeaT

Here, the parameters ww, dd, and ee are related to the original parameters
according to these prescriptions: ee is e + 2 or 4 if e is omitted; ww is w - ee or nil
if w is omitted; and dd is d - n, with n (and d, if omitted) as defined above.

21-30 Sun Common Lisp Reference Manual

H exponential format is used, the argument is written as if the following directive
were used:

-w, d, e,k, overjlowehar,padehar, exponentchar~E

Here, all the original parameters of -G are used in the -E directive.

In each of these cases, the modifier 0 is supplied to the -F or -E directive if and
only if the modifier G was supplied to the -G directive.

• -$ (Dollars floating-point)

-d,n,w,padehar:O$

The -$ directive causes the next available argument to be written as a floating-point
number in fixed format. This directive can be used for writing a number in dollars and
cents.

H the argument is a complex number or not a number at all, it is written as if by the
-wD directive, so that the minimum width w is used.

The d parameter specifies the number of digits to be written after the decimal
point. The default value of d is 2.

The n parameter specifies the minimum number of digits written before the
decimal point. The default value of n is 1.

The w parameter specifies the minimum width of output in characters. Its default
value is o.
The padehar parameter specifies the padding character to be used to achieve the
minimum output width. Padding characters are inserted at the left of the output.
The default value of padehar is the space character.

The 0 modifier causes the argument's sign to be written. H this modifier is not
specified, the sign is written only if the integer is negative.

The: modifier controls whether the sign or padding is written first. Any necessary
padding is written first unless the: modifier is present, in which case the sign, if
any, is written before any padding.

The : and 0 modifiers may be used separately or in combination.

The sign and padding are written first, and then the absolute value of the argument
is written as n digits of integer part, including leading zeroes if necessary, followed
by a decimal point, and finally d digits of fraction. The magnitude that is written
represents the rounded value of the argument.

Input/Output 21-31

• -% (New line)

-n%

The -% directive causes a newline character to be written. Using this directive instead
of inserting newline characters in the format control string may make a program easier
for the user to read.

If the parameter n is specified, it must be a nonnegative integer, in which case n
newline characters are written. The default value of n is 1.

Ii - &; (Fresh line)

-net

The - et directive is used to ensure that any output that follows occurs at the beginning
of a line. If the output stream is not already at the beginning of a line, a newline
character is written.

If the parameter n is specified, it must be a nonnegative integer, in which case
n -1 (additional) newline characters are written. If n is 0, this directive has no
effect.

• -I (New page)

-nl

The -! directive causes a page character to be written.

If the parameter n is specified, it must be a nonnegative integer, in which case n
new page characters are written. The default value of n is 1.

• (Tilde)

The -- directive causes a tilde (-) character to be written.

If the parameter n is specified, it must be a nonnegative integer, in which case n
tilde characters are written. The default value of n is 1.

• -Newline (Suppress newline character)

-: GNewline

The -Newline directive causes the newline character and any following whitespace
characters other than the newline character to be ignored.

If only the: modifier is used, the newline character is ignored, but any whitespace
characters other than newline characters are written.

If only the G modifier is used, the newline character is written, but any following
whitespace characters other than the newline character are ignored. This directive

21-32 Sun Common Lisp Reference Manual

is generally useful for breaking a long format control string into multiple lines to
make it easier to read, without having to insert newlines in the output.

The: and G modifiers are mutually exclusive.

• -T (Tabulate)

- colnum. colincGT

The -T directive causes any output that follows to be positioned at or beyond a given
column.

The colnum parameter specifies the number of the column at which future output
is to be positioned. If output has not reached column colnum, then enough space
characters are written to reach that column. If output is already at or beyond
column colnum, this directive writes the minimum number of spaces to reach a
column that is a multiple of coline columns beyond column colnum; but if coline is
o when output is already at or beyond column colnum, no spaces are written. The
default value of both colnum and coline is 1.

If the G modifier is used, this directive does relative positioning by first writing
colnum spaces and then by writing zero or more spaces to reach the nearest column
that is a multiple of coline.

• -. (Skip arguments)

The -. directive causes the next argument of the current function call to be ignored.

If the parameter n is specified, it must be a nonnegative integer, in which case n
arguments are ignored. The default value for n is 1.

If the: modifier is used, the directive backs up n arguments instead, thus allowing
those arguments to be re-used. The default value of n here is 1.

If the G modifer is used, the directive selects the nth argument as the point in the
argument sequence at which directives continue using arguments. If n is 0, the first
argument available to the format string is selected. The default value for n is o. If
-nG. is used inside a -{ directive, it selects the nth argument within the argument
list being processed by the iteration.

The : and G modifiers are mutually exclusive.

• -? (Indirection)

-G?

The directive -? causes the next available argument to be interpreted as a format
control string. The argument must be a string, and the argument that follows it
must be a list of the arguments to that format control string. There must be enough
arguments in the list to satisfy the directives in the string; any extra arguments in
the list beyond that required number are ignored. After this additional format control

Input/Output 21-33

string has been processed, interpretation of the format control string that contains the
-1 directive resumes.

If the modifier G is used, the directive takes the next available argument as a
format control string, but the arguments used for that string are the next available
arguments in the function call form that contains the -«21 directive. The additional
format control string thus effectively takes the place of the -«21 directive.

• - (and -) (Case conversion)

- :G(str-)

The - (and -) directives are used to enclose an embedded format control string,
str. The output produced by this string undergoes case conversion depending on the
modifiers used with the - (directive.

If no modifiers are used, all uppercase letters contained in the embedded string are
converted to lowercase.

If the : modifier is used, all words contained in the embedded string are
capitalized. For this purpose, a word is considered to be any consecutive
subsequence of alphanumeric characters delimited by non alphanumeric characters
or by the end of the string.

If the G modifier is used, the first word contained in the embedded string is
capitalized, and the others are converted to lowercase.

ii the : and fa modifiers are used in combination, an iowercase ietters contained in
the embedded string are converted to uppercase.

• - [and -] with -: (Conditional)

-n: G [strO-: str1-: ... strn-]

The directive - [introduces a sequence of embedded format control strings, one of
which may be selected for processing. The strings are separated by -: and the sequence
is ended by -]. After any selected string has been processed, the interpretation of the
original format control string resumes.

There are three possible variations of this directive, depending on the modifier
combination used.

If no modifiers are used, -j [strO-: str1-: ... strn-] selects the jth embedded string,
where the first string is considered to be string o. If the parameter j is omitted,
the value of the next available argument is used as the value of j in selecting the
string. If no such string exists, the directive has no effect. However, a default
string can be designated to be selected if no other string is chosen by number. A
default string must be the last in the sequence. It is designated by preceding it
with -:: instead of with -:.

If the modifier : is used, the directive -: [false-: true-] selects one of the embedded
format control strings false or true, depending on the value of the next available

21-34 Sun Common Lisp Reference Manual

argument in the function call form. If the argument is nil, the false string is
selected; otherwise the true string is selected.

If the modifier 1 is used, the directive -I [str-] processes the format control string
str if and only if the next available argument in the function call form is non-nil.
In that case, the argument is made available for re-use (as if by -: *) . If the
argument is nil, then str is not processed and the argument is not re-used. Thus
the string str is normally expected to use precisely one argument, which is non-nil.

The: and 1 modifiers are mutually exclusive.

• -{ and -} (Iteration)

-max: I{str-}

The directives -{ and -} enclose an embedded format control string that is to be
processed repeatedly. The next available argument in the function call form must be
a list. Any arguments needed by the embedded format control string are taken from
this list.

The parameter max specifies the maximum number of times the string is to be
processed, but the repetition also terminates when there are no more unprocessed
arguments left at the beginning of any iteration. The directive - .. can be used to
stop the iteration at any time. If the enclosed string ends with -:} instead of just
-}, the string is processed at least once. However, if max is 0, the string is not
processed at all.

If an embedded string str is not specified, the next available argument of the
function call form is used as the string, and as many of the arguments that follow
it as are needed are used as the arguments to the string.

If the modifier: is used, the next available argument must be a list of sublists.
Each sublist in turn is used as the list of arguments for one iteration. The repetition
terminates when there is no remaining sublist for the next iteration or when max
iterations have been completed.

If the modifier 1 is used, the remaining available arguments are treated as a list.
Any arguments needed by the embedded format control string are taken from
this list. Repetition terminates when no arguments remain for the next iteration
or when max iterations have been completed. If arguments remain after max
iterations have been completed, they are made available to any directives that
follow.

If both the: and Q modifiers are used, the iteration is performed using as many
arguments as necessary from the function call form. Each such argument must be
a list of arguments to be used during that iteration. Repetition terminates when
no argument is available for the next iteration or when max iterations have been
completed.

Input/Output 21-35

• -< and -> with -; (Justification)

-mincol. coline. minpad.padchar :G<str->

The directives -< and -> enclose a format control string whose output is to be justified
by insertion of padding characters.

The text is padded only on the left or only on the right unless the string str is broken
up into segments with the -; directive; in that case padding is evenly applied to all
such breaks.

The mincol parameter specifies the minimum width of output in characters. Its
default value is O.

If the output cannot fit into mincol characters, the least amount of padding is used
such that the total output width is mincol characters plus a multiple of coline.
The default value of coline is 1.

The minpad parameter specifies the minimum number of padding characters to be
used at any point where padding is allowed. Its default value is O.

The padchar parameter specifies the padding character to be used. Its default
value is the space character.

If neither modifier is used, the first segment is left justified and the last segment is
right justified. If there is only one segment, it is right justified.

If the modifier G is used, padding is added after the last segment.

If the first segment of the string ends with the -:; directive instead of the -;
directive, that segment is not justified. It is written only if the remaining justified
segments do not fit on the current output line. This first segment should contain a
newline character. All the segments are processed to generate the formatted text
before any output is done, so that any arguments referenced by the first segment
are used whether or not that segment is written.

If the first segment ends with a parameter spare, as in -spare:;, the justified
segments must fit on the current output line with spare columns to spare, or else
the first segment is written. If the first segment ends with a second parameter
lwidth, as in - .lwidth: ;, that parameter is used as the line width for the output
stream. If the width is not given here and the line width of the output stream can
be determined, it is used; otherwise a width of 72 is used.

The - .. directive can be used to terminate the processing of the string prematurely. In
such a case, only those segments that have been completely processed are justified and
written.

21-36 Sun Common Lisp Reference Manual

• (Up and out)

- zero. equal. ordered: ..

The - .. directive prematurely terminates the innermost iteration (-{ ... -}), justification
(-< ... -», or indirection (-1) directive, or the entire format control string if no such
directive is in progress. Termination occurs if the - .. is encountered when there are no
arguments left.

If there are any parameters to the - .. directive, however, termination depends
on their values instead of the absence of more arguments. If one parameter is
supplied, termination occurs if that parameter is o. If two parameters are supplied,
termination occurs if they are equal. If three parameters are supplied, termination
occurs if the first is less than or equal to the second, and the second leas than or
equal to the third. For this arithmetic termination test to be useful, instead of all
parameters being constant in the arithmetic test, one or more of the parameters
should use the V or # form to compute a variable value.

Within an iteration construct (-{ ... -}), the directive - .. terminates only the
current iteration, but with the modifier :, the directive -: .. terminates the entire
iteration directive.

Within a justification construct (-< ... -», the directive - .. terminates the
processing of segments and discards the current segment; any completely processed
segments are properly justified and written.

Within a format control string specified by indirection (-1), the directive - ..
terminates that format control string. Processing continues immediately after the
-1 itself.

Input/Output 21-37

Summary of Format Directives

-A (ASCII)

parameters:
defaults:
modifiers:

mineol, coline, minpad, padehar
o , 1, 0 , 'u

- : A print () if argument is nil
-GA right justify
- : aA combine: and G

- S (S-expression)

parameters:
defaults:
modifiers:

mineol, coline, minpad, padehar
o , 1, 0 , 'u

- : Sprint 0 if argument is nil
-as right justify
- : as combine: and a

-n (Decimal)

parameters:
defaults:
modifiers:

mineol, padehar, eommaehar
o , 'u, ,

- : D insert eommaehar every 3rd digit
-em always print sign
- : CD combine: and G

-B (Binary)

parameters:
defaults:
modifiers:

mineol, padehar, eommaehar
o , 'u, "

-: B insert eommaehar every 3rd digit
-CB always print sign
- : aB combine: and G

-0 (Octal)

parameters:
defaults:
modifiers:

mineol, padehar, eommaehar
o , 'u, "

- : 0 insert eommaehar every 3rd digit
-co always print sign
- : aD combine: and G

-x (Hexadecimal)

parameters:
defaults:
modifiers:

mineol, padehar, eommaehar
o , 'u, "

- : X insert eommaehar every 3rd digit
-ex always print sign
- : ex combine: and a

21-38 Sun Common Lisp Reference Manual

-R (Radix)

parameters:
defaults:
modifiers:

radix, mineol, padehar, eommaehar
o , 'u, "

- : nR insert eommaehar every 3rd digit
-CJnR always print sign
- : CJ nR combine: and CJ

-R (Roman numerals)

, mineol, padehar, eommaehar
o , u ,

parameters:
defaults:
modifiers: -R print argument as a cardinal English number, e.g., nine

-:R print argument as an ordinal English number, e.g., ninth
-CIR print argument as a Roman numeral, e.g., IX
-: ClR print argument as an old Roman numeral, e.g., VIllI

-p (Pluralize)

modifiers:

-c (Character)

back up to previous argument first
print y if argument = 1, print ies otherwise
combine : and CJ

modifiers: -: C spell out control bits, e.g., Control-Z
-oc print character for the Lisp reader, e.g., #\Control-Z
- : ClC spell out control bits and explain special shift keys, if any

-F (Fixed floating-point)

parameters:
defaults:
modifiers:

w, d, Ie, otJerjlowehar, padehar
, ,0, ,

-OF always print sign

,
u

-E (Exponential floating-point)

parameters:
defaults:
modifiers:

w, d, e, Ie, o1Jerjlowehar, padehar, exponentehar
, , ,1, ,'u 'E

-CIE always print sign

-G (General floating-point)

parameters:
defaults:
modifiers:

w, d, e, Ie, o1Jerjlowehar, padehar, exponentehar ,
, , , , ,u

-OG always print sign

Input/Output 21-39

-$ (Dollars floating-point)

parameters:
defaults:
modifiers:

d, n, w, padehar
2, 1, 0, 'u

- : $ print sign before padding
-CJ$ always print sign
- : G$ combine: and CJ

-% (Newline)

parameters: n
defaults: 1

- & (Fresh line)

parameters: n
defaults: 1

-I (New page)

parameters: n
defaults: 1

(Tilde)

parameters: n
defaults: 1

-newline (Suppress newline)

modifiers: -newline
-:newline
-Gnewline

ignore newline and whitespace
ignore newline, preserve whitespace
preserve newline, ignore whitespace

-T (Tabulate)

parameters:
defaults:
modifiers:

eolnum, coline
1 , 1

-aT tab eolnum spaces, then to nearest k . coline column

-. (Skip arguments)

parameters: n
defaults: 1
modifiers: -n:* skip backwards n arguments

-nG* go to argument n (or argument 0 if n is omitted)

-! (Indirection)

modifiers: -1 use argument as a control string, use next argument as new arguments
-a1 use argument as a control string, use remaining arguments

21-40 Sun Common Lisp Reference Manual

- ((Case conversion)

modifiers: - (str-) convert str to lowercase
-: (str-) capitalize all words in str
-a (str-) capitalize the first word of str; convert the rest to lowercase
- : a (str-) convert str to uppercase

- [(Conditional)

modifiers: - [strO- ; ... -]
-nth [strO- ; ... -]
... -: ; default-]
-: [false-; true-]

use clause given by argument (or default if present)
use nth clause (or default, if present)
the last string is the default string
use false if argument is nil; otherwise use true

-a [str-] if argument is non-nil, use str and re-use argument;
otherwise do nothing

- { (Iteration)

modifiers: -{ ... } use argument as new argument list
-:{ ... }

-a{ ... }
-:a{ ... }

use sublists of argument as new argument list
use required numbers of remaining arguments as list
use sublists of remaining arguments

-< (J ustification)

parameters:
defaults:
modifiers:

mineol, coline, minpad, padehar
o 1 0, ~

-<str-> only one element, right justify
-<strO-; . .. -> leftmost text is left justified; rightmost text is right justified
- : <strO- ; ... -> put space before first text segment
-a<strO- ; ... -> put space after last text segment
- : a<strO- ; ... -> put space before and after text

(Up and out)

parameters:
defaults:
modifiers:

zero, equal, ordered
,

- . .. terminate entire iteration process

Input/Output 21-41

Categories of Operations

This section groups input/output operations according to functionality.

Data Type Predicates

readtablep

This predicate determines whether an object is a readtable.

Character Input Control

read-base
read-suppress
readtable
copy-readtable
set-macro-character
get-macro-character

make-dispatch-macro-character
set-dispatch-macro-character
get-dispatch-macro-character
set-syntax-from-char
ignore-extra-right-parens

These constructs control the operation of character input functions.

Character Output Control

print-array
print-base
print-case
print-circle
print-escape
print-gensym

print-Iength
* print-level *
*print-pretty *
print-radix
print-structure
pp-line-Iength

These variables control the operation of character output functions.

21-42 Sun Common Lisp Reference Manual

Character Stream Input

read
read-char
read-char-no-hang
.read-default-Hoat-format.
read-delimited-list
read-from-string

read-preserving-whi tespace
unread-char
peek-char
listen
clear-input
parse-integer

read-line

These constructs are used to read and parse input characters.

Character Stream Output

write
prinl
print
pprint
prine
write-to-string
prinl-to-string
prine-to-string

write-char
write-string
write-line
terpri
fresh-line
finish-output
force-output
clear-output

These constructs are used to write output characters.

Binary Stream Input

read-byte

This function is used to read a byte from a binary input stream.

Input/Output 21-43

Binary Stream Output

write-byte

This function is used to write a byte into a binary output stream.

Formatted Character Stream Output

format

This function can be used to generate complex formatted output.

Querying the User

y-or-n-p yes-or-no-p

These functions are used to ask yes-or-no questions of the user.

21-44 Sun Common Lisp Reference Manual

clear-input

Purpose:

Syntax:

The function clear-input clears any available input from an input stream.

This function has no effect on any stream that is not associated with a keyboard.
Its main use is to clear a keyboard stream of type-ahead characters when an error
is encountered.

The function clear-input returns nil.

clear-input i:optional input-stream [Function]

Remarks: H the input-stream argument is not specified or is nil, the stream that is the
current value of .standard-input. is used. H input-stream is t, the stream that
is the value of .terminal-io. is used.

~xamples: > (progn (print (read» (print (read» (values» 1 2

1
2
> (progn (print (read» (clear-input) (print (read» (values» 1 2

1 this-must-now-be-typed-in

THI8-MU8T-NOi-BE-TYPED-IN
> (with-input-from-string (is "1 2 3")

(format t "-8 " (read is»
(clear-input is)

1 2
NIL

(format t 11-8 " (read is»)

Input/Output 21-45

clear-output

Purpose:

Syntax:

The function clear-output is used to exercise control over the internal handling
of buffered stream output. It causes as much of the output data as possible to be
discarded instead of being sent to its original destination.

The function clear-output returns nil.

clear-output toptional output-stream [Function]

Remarks: If the output-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-output. is used. If output-stream is t, the stream that
is the value of .terminal-io. is used.

Examples: > (progn (print "am i seen?") (clear-output»

NIL

21-46 Sun Common Lisp Reference Manual

copy-readtable

Purpose:

Syntax:

The function copy-readtable is used to copy readtables.

H the from-readtable argument is not specified, the readtable that is the current
value of the variable .readtable. is copied. If from-readtable is nil, the standard
Common Lisp readtable is copied.

H the to-readtable argument is not specified or is nil, a new readtable is created
and returned. Otherwise the readtable specified by the to-readtable argument is
modified and returned.

copy-readtable toptional from-readtable to-readtable [Function]

Examples: > (setq zvar 123)
123
> (set-syntax-from-char #\z #\' (setq table2 (copy-readtable»)
T
> zvar
123
> (copy-readtable table2 *readtable*)
#<Readtable 42A11B>
> zvar
VAR
> (setq *readtable* (copy-readtable»
#<Readtable 42AF33>
> zvar
VAR
> (setq *readtable* (copy-readtable nil»
#<Readtable 42B4B3>
> zvar
123

Input/Output 21-47

finish-output, force-output

Purpose:

Syntax:

The functions finish-output and force-output are used to exercise control over
the internal handling of buffered stream output.

The functions finish-output and force-output cause output buffers to be forced
out to their final destination. Both of these functions return nil, but finish-output
does so only after waiting to make sure that any buffered output has reached its
target.

finish-output loptional output-stream

force-output loptional output-stream

[Function]

[Function]

Remarks: H the output-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-output. is used. H output-stream is t, the stream that
is the value of .terminal-io. is used.

Examples: > (progn (print "am i seen?") (force-output) (clear-output»

"am i seen?"
NIL

> (progn (print "am i seen?") (finish-output) (clear-output»

"am i seen?"
NIL

21-48 Sun Common Lisp Reference Manual

format

Purpose:

Syntax:

The function format produces formatted text. The formatting is controlled by a
format control string, which is made up of simple text and embedded directives.
The simple text is written as is; each embedded directive specifies further text
output that is to appear at the corresponding point within the simple text. All
directives begin with a tilde (-) character.

If the destination argument is nil, format creates and returns a string containing
the output from format-control-string. If destination is non-nil, format sends
the output to the specified destination and returns nil. In this case, the value of
destination must be a string with a fill pointer, a stream, or t. If destination is a
string with a fill pointer, the output is added to the end of the string. If destination
is a stream, the output is sent to that stream. If destination is t, output is sent to
the stream that is the value of the variable .standard-output •.

format destination format-control-string &:rest arguments [Function]

Remarks: The section "Formatted Output" explains how the format control string is
interpreted and how the elements of arguments are processed.

Examples: > (format t "no args")
no args
NIL
> (format nil "some -A returned -% as a -Set 'args 'string)
"some ARGS returned
as a STRING"

> (format *standard-output* II-{-S-%-}" '(1 2 3»
1
2
3
NIL
> (format t "-s -:* -d -:* -b -:* -0 -:* -x -:* -r -:* -35r -:* -:C)r" 99)
99 99 1100011 143 63 ninety-nine 2T LXXXXVIIII
NIL
> (format t "-R pupp-:Op" 8)
eight puppies
NIL

Input/Output 21-49

get-dispatch-macro-character

Purpose:

Syntax:

Remarks:

The function get-dispatch-macro-character returns the dispatch function
associated with a particular dispatching macro character pair in a readtable.

The argument disp-char must be a dispatching macro character in the indicated
readtable. The value returned is the dispatch function for the subcharacter
sub-char associated with the macro character disp-char. If the subcharacter has
no dispatch function, get-dispatch-macro-character returns nil.

get-dispatch-macro-character disp-char sub-char
I:optional readtable

[Function]

If the readtable argument is not specified, the readtable that is the current value of
the variable .readtable. is used.

IT sub-char is a lowercase letter, it is converted to its uppercase equivalent. IT
sub-char is a decimal digit, get-dispatch-macro-character returns nil.

Examples: > (null (get-dispatch-macro-character #\# #\{»

See Also:

T
> (null (get-dispatch-macro-character #\# #\x»
l.TTT
n.;a.

set-dispatch-macro-character

21-50 Sun Common Lisp Reference Manual

get-macro-character

Purpose:

Syntax:

The function get-macro-character returns the function associated with a specified
macro character in a readtable. If there is no such function, get-macro-character
returns nil.

A second value is returned that indicates whether the character is a nonterminating
macro character. If the character is a nonterminating macro character, this value
is true; otherwise it is false.

get-macro-character char ioptional readtable [Function]

Remarks: If the readtable argument is not specified, the readtable that is the current value of
the variable .readtable. is used.

Examples: > (null (get-macro-character #\{»

See Also:

T
> (null (get-macro-character #\;»
NIL

set-macro-character

Input/Output 21-51

* ignore-extra-right-parens *

Purpose:

Syntax:

Remarks:

The variable .ignore-extra-right-parens. is used to control the action of the
reader when excess right parentheses are encountered in the input stream. If
.ignore-extra-right-parens. is t, excess right parentheses in the input stream
are ignored; if it is :just-warn, a warning message is generated; if it is nil, a
continuable error is signaled.

.ignore-extra-right-parens. [Variable]

The initial value of .ignore-extra-right-parens. is :just-warn.

The variable .ignore-extra-right-parens. is an extension to Common Lisp.

Examples: > *ignore-extra-right-parens*
: JUST-WARN
> (read-from-string ")1")
III Warning: Ignoring an unmatched right parenthesis.
1
2
> (let«*ignore-extra-right-parens* t»

1
2

(declare (special *ignore-extra-right-parens*»
(read-from-string !!) 1!!»

21-52 Sun Common Lisp Reference Manual

listen

Purpose:

Syntax:

Remarks:

The predicate listen is true if a character can be read from a given input streamj
otherwise it is false.

listen i:optional input-stream [Function]

If the input-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-input. is used. If input-stream is t, the stream that is
the value of .terminal-io. is used.

If an end-of-file is encountered, listen returns nil.

This function is designed to allow a program to avoid waiting for input. It is often
used with a stream associated with a keyboard to determine if the user has typed
a character.

Examples: > (listen) 1
T

See Also:

>
1
> (progn (clear-input) (listen»
NIL

read-char-no-hang

Input/Output 21-53

make-dispatch-macro-character

Purpose:

Syntax:

Remarks:

The function make-dispatch-macro-character makes the character char a
dispatching macro character in a given readtable. The function make-dispatch
macro-character returns t.

make-dispatch-macro-character char ioptional [Function]
non-terminating-p readtable

A dispatching macro character has an associated table that specifies the function
to be called for each character that can be read following the dispatching macro
character. This dispatch table is initialized by make-dispatch-macro-character,
so that every such character has an associated function that signals an error. The
function set-dispatch-macro-character is used to specify the dispatch functions
for characters that follow a dispatching macro character.

If the argument non-terminating-p is non-nil, the dispatching macro character is
made a nonterminating macro character; otherwise it is made a terminating macro
character. The default value for non-terminating-p is nil.

If the readtable argument is not specified, the readtable that is the current value of
the variable .readtable. is used.

Examples: > (get-macro-character #\{)
NIL

See Also:

> (make-dispatch-macro-character #\{)
T
> (null (get-macro-character #\{»
NIL

set-dispatch-macro-character

21-54 Sun Common Lisp Reference Manual

parse-integer

Purpose:

Syntax:

Remarks:

The function parse-integer reads an integer from a given string, using a specified
radix. White space before and after the integer is ignored.

The parsing operation may be restricted to a substring of the string by specifying
the :start and :end keyword arguments.

The function parse-integer returns two values. The first value is the integer
parsed. If no integer is found and :junk-allowed is true, the first value is nil. The
second value specifies the index within the string of the character that caused the
parse to terminate (or one character beyond the end of the substring if the parse
reached the end of the substring).

parse-integer string &:key : start : end : radix : junk-allowed [Function]

The :start and :end keyword arguments take integer values that specify offsets
into the string. The :start argument marks the beginning position of the substringj
the :end argument marks the position following the last element of the substring.
The start value defaults to OJ the end value defaults to the length of the string.

The :radix keyword argument specifies the base in which the number is to be
read. It must be an integer from 2 to 36 inclusive. If :radix is not specified, base
10 is used.

The :junk-allowed keyword argument specifies whether the given substring is
permitted to contain anything besides the integer and whitespace characters. If
:junk-allowed is nil, the substring must contain precisely one integer, optional
leading and trailing whitespace characters, and nothing else. If :junk-allowed is
non-nil, the substring can contain arbitrary text following the integer.

Integers parsed by parse-integer must consist of an optional sign and one or more
digits in the indicated radix.

Examples: > (parse-integer "123")
123
3
> (parse-integer "123" :start 1 :radix 5)
13
3
> (parse-integer "foo" : junk-allowed t)
NIL
o

Input/Output 21-55

peek-char

Purpose:

Syntax:

Remarks:

The function peek-char returns the next character in an input stream without
actually reading it, thus leaving the character to be read at a later time. It can
also be used to skip over and discard intervening characters in the input stream
until a particular character is found.

peek-char toptional peek-type input-stream eo/-error-p
eo/-value recursive-p

[Function]

H the peek-type argument is nil, peek-char simply looks at the next character in
the input stream and returns it without reading it out of the stream.

H peek-type is t, peek-char reads and discards any whitespace characters at the
front of the input stream and returns the first nonwhitespace character in the
stream without actually reading it. Note that comments are not discarded in this
process.

H peek-type is a character, peek-char discards characters from the front of the
input stream until encountering a character that is the same as peek-type (char=).
That character is returned without being read out of the stream.

H an end-of-file occurs before such a character can be read, an error is signaled
if eo/-error-p is true. H an end-of-file occurs and eo/-error-p is nil, no error is
signaled and eo/-value is returned. The default value of eo/-error-p is true. The
default value of eo/-value is nil.

The argument recursive-p should be true if this call is embedded in a higher-level
call to read or a similar function.

The input-stream argument specifies the stream to be used. H it is not specified or
is nil, the stream that is the value of the variable tstandard-inputt is used. If
input-stream is t, the stream that is the value of tterminal-jot is used.

Examples: > (with-input-from-string (is " 1 2 3 4 6")
(format t II-S -S -SIt

#\1 #\4 #\4
NIL

(peek-char tis)
(peek-char #\4 is)
(peek-char nil is»)

21-56 Sun Common Lisp Reference Manual

print-array

Purpose:

Syntax:

The variable *print-array* controls the format in which arrays are printed.

If the value of *print-array* is non-nil, arrays are printed in their entirety with
the #(, #*, or InA syntax. If *print-array* is nil, just enough is printed, using
the #< ... > syntax, to identify the array.

print-array [Variable]

Remarks: The initial value of *print-array* is nil.

Examples: > *print-array*
NIL
> (setq a (make-array '(2 3»)
#<Simple-Array T (2 3) 4789D3>
> (let «*print-array* t» (format t II-S" a»
#2A«NIL NIL NIL) (NIL NIL NIL»
NIL

Input/Output 21-57

print-base, *print-radix*

Purpose:

Syntax:

Remarks:

Examples:

The variables .print-base. and .print-radix. control the printing of rational
numbers.

The value of the variable .print-base. is the numerical base in which integers and
ratios are printed.

The value of the variable .print-radix. determines whether a radix indicator
is included with each integer or ratio printed. If the value of .print-radix. is
non-nil, a radix indicator is printed.

.print-base.

.print-radix.

The initial value of .print-base. is 10.

The initial value of .print-radix. is nil.

[Variable]

[Variable]

The value of .print-base. must be an integer value between 2 and 36 inclusive.
When the value of .print-base. is greater than 10, capital letters are used for
digits greater than 9, starting with A for 10, B for 11, and so on.

When the value of .print-radix. is non-nil, a decimal base is indicated for
integers by a decimal point following the number; for ratios, a leading #10r is used.
For a base of 2, 8, or 16, a leading #b, #0, or #x is used respectively. For other
values of .print-base., a leading #nr radix indicator is used, with the base n itself
printed in decimal.

> *print-base*
10
> (dotimes (i 35)

(let «*print-base*
(write 40)
(if (zerop (mod i

101000

(+ i 2») ;print the decimal number 40
;in each base from 2 to 36

10» (terpri) (format t II II»»

1111 220 130 104 55 50 44 40 37 34
31 2C 2A 28 26 24 22 20 lJ 11
lH lG lF lE lD lC lB lA 19 18
17 16 15 14
NIL

21-58 Sun Common Lisp Reference Manual

> *print-radix*
NIL
> (dolist (pb '(2 3 8 10 16»

print-base, *print-radix*

(let «*print-radix* t) ;print the integer 10 and
(*print-base* pb» ;the ratio 1/10 in bases 2,

(format t 11-8 -8 II 10 1/10») ;3, 8, 10, 16
#bl0l0 #bl/l010 #3rl0l #3rl/l0l #012 #01/12 10. #10rl/l0 #xA #xl/A
NIL

Input/Output 21-59

Purpose:

Syntax:

Remarks:

The variable .print-case. determines the case used in printing the names of
symbols.

Normally, symbol names are stored internally with uppercase letters and are
printed with uppercase letters. The value of .print-case. specifies the case in
which uppercase letters in symbol names are printed. Lowercase letters in symbol
names are always printed in lowercase.

The value of .print-case. must be either :upcase, :downcase, or :capitalize.
Corresponding to these three possible values, the printing of uppercase letters of
symbols is in uppercase, in lowercase, or in a combination of cases in which words
are capitalized.

[Variable]

The initial value of .print-case. is :upcase.

For purposes of capitalization, a word is considered to be any consecutive sequence
of alphanumeric characters that is preceded and followed by nonalphanumeric
characters or the end of the symbol name.

Examples: > *print-case*
: UP CASE
> (dolist (pc '(:upcase :downcase :capitalize»

(let «*print-case* pc» (format t "-S " 'foo-bar»)
FOO-BAR foo-bar Foo-bar
NIL

21-60 Sun Common Lisp Reference Manual

print-circle

Purpose:

Syntax:

The variable .print-circle. controls the attempt to detect circularity in an object
being printed.

If .print-circle. is non-nil and a circular object is detected, the #n= and #n#

constructs are used to denote the circular structure.

IT .print-circle. is nil, an attempt to print a circular object may cause Common
Lisp to loop indefinitely.

.print-circle. [Variable]

Remarks: The initial value of *print-circle. is nil.

Examples: > *print-circle*
NIL
> (progn (setq a '(1 2 3»

(setf (cdddr a) a) ;create a circular list
(values»

> (let «*print-circle* t» (write a) (values» ;print it
#1=(1 2 3 . #1#)

Input/Output 21-61

print-escape

Purpose: The variable *print-eseapet controls the printing of escape characters. If
tprint-eseapet is nil, the printing of escape characters is suppressed.

Syntax:

Remarks: The initial value of tprint-eseapet is t.

Examples: > *print-escape*

See Also:

T
> (write #\a)
#\a
#\a
> (let «*print-escape* nil» (write #\a»
a
#\a

prine

prinl

21-62 Sun Common Lisp Reference Manual

[Variable]

print-gensym

Purpose: The variable *print-gensym* controls the printing of the names of uninterned
symbols. If *print-gensym* is non-nil, the prefix #: is printed before the name
of any uninterned symbol.

Syntax: *print-gensym*

Remarks: The initial value of *print-gensym* is t.

Examples: > *print-gensym*
T
> (format t II-S" (gensym»
#:G39
NIL
> (let «*print-gensym* nil» (format t "-S" (gensym»)
G40
NIL

[Variable]

Input/Output 21-63

print-Ievel, *print-Iength*

Purpose:

Syntax:

The variables *print-Ievel* and *print-Iength* are used to limit the amount of
output when an object is printed. These two variables affect the printing of any
object with a list like syntax, including lists, vectors, and arrays.

If *print-Ievel* is set to an integer value, the printing depth of an object is limited
to that value. The object itself is considered to be at level o. Any portion at
or below the level of *print-Ievel* is printed as just # if that portion contains
components. If *print-Ievel* is nil, no limit is imposed on the printing depth.

If *print-Iength* is set to an integer value, the maximum number of consecutive
elements printed at any level is limited to that value. An ellipsis (...) is used to
represent further objects at that level. If *print-Iength* is nil, no limit is imposed
on the number of elements printed.

print-Ievel

print-Iength

[Variable]

[Variable]

Remarks: The initial value of both *print-Ievel* and *print-Iength* is nil.

Examples: > *print-level*
NIL
> (setq a '(1 (2 (3 (4 (5 (6»»»)
(1 (2 (3 (4 (6 (6»»»
> (dotimes (i 3) (let «*print-level* (* i 3») (format t "-S-%" a»)

(1 (2 (3 I»~)
(1 (2 (3 (4 (5 (6»»»
NIL
> *print-length*
NIL
> (setq a '(1 2 3 4 5 6»
(1 2 3 4 6 6)
> (dotimes (i 3) (let «*print-length* (* i 3») (format t "-S-%" a»)
(...)
(1 2 3 ...)
(1 2 3 4 5 6)
NIL

21-64 Sun Common Lisp Reference Manual

print-pretty, *pp-line-Iength*

Purpose:

Syntax:

Remarks:

The variables .print-pretty. and .pp-line-Iength are used to control pretty
printing.

The value of the variable .print-pretty. controls the use of whitespace characters.
If the value of .print-pretty. is non-nil, additional whitespace characters are
written in order to make printed expressions easier to read. If .print-pretty. is
nil, a minimal amount of white space is used.

The value of the variable .pp-line-Iength. is an integer that specifies the output
line length to be used for pretty-printing (for example, when .print-pretty. is
true).

.print-pretty.

.pp-line-Iength.

The initial value of .print-pretty.· is nil.

The initial value of .pp-line-Iength. is 80.

The variable .pp-line-Iength. is an extension to Common Lisp.

[Variable]

[Variable]

Examples: > *print-pretty*
NIL

See Also:

> (progn (write '(let«a 1)(b 2)(e 3»(+ a b e») (values»
(LET «A 1) (B 2) (e 3» (+ A Be»
> (let «*print-pretty* t»

(progn (write • (let{{a 1){b 2)(e 3»{+ a b e») (values»)
{LET ({A 1)

(B 2)
(e 3»

(+ A Be»

grindef

Input/Output 21-65

print-structure

Purpose:

Syntax:

Remarks:

The variable .print-structure. controls the printing of structures.

If the value of .print-structure. is non-nil, structures are printed in detail, using
the #S syntax. If .print-structure. is nil, they are printed with the abbreviated
#< ... > syntax.

.print-structure. [Variable]

The initial value of .print-structure. is t.

The variable .print-structure. is an extension to Common Lisp.

Examples: > *print-structure*
T
> (defstruct family mom dad brother sister dog)
FAMILY
> (setq jones (make-family :mom 'simone :dad 'sam :brother 'basket-ball

:sister 'sally :dog 'bowser»
#S(FAMILY MOM SIMONE DAD SAM BROTHER BASKET-BALL SISTER SALLY DOG BOWSER)
> (let «*print-structure* nil» (print jones) (values»

#<Structure FAMILY 428F3B>

21-66 Sun Common Lisp Reference Manual

read, read-preserving-whitespace

Purpose:

Syntax:

Remarks:

The function read reads the printed representation of an object from an input
stream. The object itself is constructed from its printed representation and
returned as the value of read.

The function read-preserving-whitespace is like read but preserves any
whitespace character that delimits the printed representation of the object.

read ioptional input-stream eo/-error-p eo/-value recursive-p

read-preserving-whitespace ioptional input-stream eo/-error-p
eo/-value recursive-p

[Function]

[Function]

If the input-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-input. is used. If input-stream is t, the stream that is
the value of .terminal-io. is used.

If an end-of-file occurs before an object can be read, an error is signaled if
eo/-error-p is true. An error is always signaled if an end-of-file occurs in the middle
of an incomplete object, such as before the right parenthesis that ends a list. If
eo/-error-p is nil and an end-of-file occurs anywhere else, no error is signaled and
eo/-value is returned. The default value of eo/-error-p is true. The default value of
eo/-value is nil.

The argument recursive-p should be true if the call to read is from within some
function that itself has been called from read or from a similar input function,
rather than from the top level. For instance, a macro character function that has to
read from the input stream beyond the macro character should specify recursive-p
as true. The reasons for this are as follows. First of all, the scoping of the
constructs #n= and #n# occurs within a top-level call, so calls to read from macro
character functions must specify recursive-p as true to ensure that these constructs
are interpreted correctly. Second, for white space to be preserved correctly by
low-level calls to read occurring within a call to read-preserving-whitespace,
the recursive-p argument must be true. Otherwise a low-level call to read does
not know that it needs to preserve white space for the higher-level call.

A macro character function should not rely on any side effects it has on the
reader's global variables, such as .readtable., unless such effects are made only
for a top-level call to read. The reader caches certain variables during the entry
to read at the top level, where recursive-p is nil, and thus may not notice changes
to those variables below the top level.

Input/Output 21-67

read, read-preserving-whitespace

Examples: > (read)
'a
(QUOTE A)
> (with-input-from-string (is" II) (read is nil 'the-end»
THE-END
> (defun skip-then-read-char (s c n)

(if (char= c #\{) (read s) (read-preserving-whitespace s»
(read-char-no-hang s»

SKIP-THEN-BEAD-CHAR
> (let «*readtable* (copy-readtable nil»)

(set-dispatch-macro=character #\# #\{ #'skip-then-read-char)
(set-dispatch-macro-character #\# #\} #'skip-then-read-char)
(with-input-from-string (is "#{123 x #}123 yll)

(format t II-S -SIt (read is) (read is»»
#\x #\Space
NIL

21-68 Sun Common Lisp Reference Manual

Purpose:

Syntax:

Remarks:

The value of the variable _read-base_ is the numerical base used for reading
integers and ratios.

Floating-point numbers are always read as decimal numbers regardless of the
value of -read-base-. Any number whose base is specified explicitly, such as a
number that contains a decimal point or that starts with #0, #X, #B, or #nR, is also
unaffected by -read-base-.

[Variable]

The value of _read-base_ can be any integer from 2 to 36 inclusive. The initial
value of _read-base_ is 10.

When _read-base_ is greater than 10, ambiguity can arise over a symbol name
composed of letters, all of which are digits in the current base; such a symbol may
be read as a number.

The use of a read base other than decimal is not recommended except for reading
data files. Nondecimal numbers within programs should be notated with #0, #X,

#B, or #nR.

Examples: > *read-base*
10
> (setq dad 'pop)
POP
> 16
16
> dad
POP
> (setq *read-base* 16)
16
> 16
22
> dad
3601

Input/Output 21-69

read-byte

Purpose:

Syntax:

Remarks:

The function read-byte reads a single byte from a specified binary input stream.
The byte is returned as an integer.

read-byte binary-input-stream ioptional eo/-error-p eo/-value [Function]

The size of the byte read depends on the :element-type argument given in the
open or with-open-file construct that created the stream binary-input-stream.
Unless the byte size of that element type is one, two, or four bits, each call to
read-byte uses up an integral number of 8-bit bytes, namely the minimum number
necessary to hold the number of bits indicated by the given element type. If the
byte size of the element type is one, two, or four bits, then as many elements as
possible (eight, four, or two respectively) are unpacked from each 8-bit byte.

If an end-of-file occurs before a byte can be read, an error is signaled if eo/-error-p
is true. If an end-of-file occurs and eo/-error-p is nil, no error is signaled and
eo/-value is returned. The default value of eo/-error-p is true. The default value of
eo/-value is nil.

Examples: > (with-open-file (s "temp-bytes"

See Also:

101

:direction :output
:element-type 'unsigned-byte)

(write-byte 101 s»

> (with-open-file (s "temp-bytes" :element-type 'unsigned-byte)
(format t "-S -SIt (read-byte s) (read-byte s nil 'eof»)

101 EOF
NIL

write-byte

21-70 Sun Common Lisp Reference Manual

read-char

Purpose:

Syntax:

Remarks:

The function read-char reads a character from an input stream. The character
that is read is returned as the result of read-char.

read-char toptional input-stream eo/-error-p eo/-value recursive-p [Function]

If the input-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-input. is used. If input-stream is t, the stream that is
the value of .terminal-io. is used.

If an end-of-file occurs before a character can be read, an error is signaled if
eo/-error-p is true. If an end-of-file occurs and eo/-error-p is nil, no error is signaled
and eo/-value is returned. The default value of eo/-error-p is true. The default
value of eo/-value is nil.

The argument recursive-p should be true if this call is embedded in a higher-level
call to read or a similar function.

The function read-char does not perform case conversion on alphabetic characters.

Examples: > (with-input-from-string (is "0123")

See Also:

(do ((c (read-char is) (read-char is nil 'the-end»)
((not (characterp c»)

(format t ,,-S" c»)
#\0#\1#\2#\3
NIL

read

Input/Output 21-71

read-char-no-hang

Purpose:

Syntax:

Remarks:

The function read-char-no-hang reads and returns a character from the
input stream if such a character is available. H no character is available,
read-char-no-hang returns nil.

read-char-no-hang toptional input-stream eo/-error-p
eo/-value recursive-p

[Function]

The input-stream argument specifies the stream to be used. H it is not specified or
is nil, the stream that is the value of the variable .standard-input. is used. If
input-stream is t, the stream that is the value of .terminal-io. is used.

H an end-of-file occurs, an error is signaled if eo/-error-p is true. H an end-of-file
occurs and eo/-error-p is nil, no error is signaled and eo/-value is returned. The
default value of eo/-error-p is true. The default value of eo/-value is nil.

The argument recursive-p should be true if this call is embedded in a higher-level
call to read or a similar function.

This function is designed to allow a program to avoid waiting for input.

Examples: > (format t "-S -S -SIt (read-char-no-hang)
(read-char-no-hang)
(read-char-no-hang})a

See Also:

#\a #\Newline NIL
NIL

listen

21-72 Sun Common Lisp Reference Manual

read-default-float-format

Purpose:

Syntax:

Remarks:

The variable *read-default-float-format* specifies the floating-point format
that is to be used when reading a floating-point number that contains no explicit
format indicator.

*read-default-float-format * [Variable]

The initial value of *read-default-float-format* is single-float.

In Sun Common Lisp, all floating-point numbers are represented in single-float
format, and the value of *read-default-float-format* has no effect.

Examples: > *read-defaul t-float-format*
SINGLE-FLOAT

Input/Output 21-73

read-delimited-list

Purpose:

Syntax:

Remarks:

The function read-delimited-list reads objects from an input stream until a
specified delimiting character is found. A list of the objects that have been read up
to that point is returned.

read-delimited-list char &optional input-stream recursi1Je-p [Function]

The argument char must not be a whitespace character in the current readtable,
because whitespace characters are ignored by read-delimited-list. A terminating
macro character is usually chosen as the delimiting character so that it can follow
the last object to be read without any intervening white space.

The input-stream argument specifies the stream to be used. If it is not specified or
is nil, the stream that is the value of the variable .standard-input. is used. If
input-stream is t, the stream that is the value of .terminal-io. is used.

The argument recursi1Je-p should be true if this call is embedded in a higher-level
call to read or a similar function.

An error is signaled if an end-of-file is encountered during read-delimited-list.

Examples: > (read-delimited-list #\])
123
456]
(1 2 3 4 5 6)

See Also: read

21-74 Sun Common Lisp Reference Manual

read-from-string

Purpose:

Syntax:

Remarks:

The function read-from-string reads an object's printed representation from a
specified string instead of from an input stream. The object is constructed from its
printed representation and returned as the value of read-from-string. A second
value is returned that specifies the index within the string of the character just
beyond the last character read.

The operation may be restricted to a substring of the string by specifying the
:start and :end keyword arguments.

read-from-string string &optional eo/-error-p eo/-value [Function]
&key :start :end :preserve-whitespace

The :start and :end keyword arguments take integer values that specify offsets
into the string. The :start argument marks the beginning position of the substring;
the :end argument marks the position following the last element of the substring.
The start value defaults to 0, the end value to the length of the string.

rr the :preserve-whitespace keyword argument is non-nil, the read operation
preserves white space; otherwise it does not. The default value of :preserve
whitespace is nil.

rr the end of the specified substring occurs before an object can be read, an error is
signaled if eo/-error-, is true. An error is always signaled if the end of the substring
occurs in the middle of an incomplete object. If eo/-error-p is nil and if the end of
the substring occurs anywhere else, no error is signaled and eo/-value is returned.
The default value of eo/-error-, is true. The default value of eo/-value is nil.

rr any keyword arguments are supplied to read-from-string, both of the optional
arguments must also be specified. Otherwise the first keyword and its value are
taken as the optional arguments.

Examples: > (read-from-string " 1 3 SIt t nil : start 2)
3

See Also:

S

read

read-preserving-whitespace

Input/Output 21-75

read-line

Purpose:

Syntax:

Remarks:

The function read-line reads a line of text from an input stream. The characters
up to but not including the newline character that ends the line are returned as a
string. A second value is also returned; it is nil if the line was terminated normally
and non-nil if a non empty line was terminated by an end-of-file.

read-line &:optional input-stream eo/-error-p eo/-value recursive-p [Function]

H the input-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-input. is used. H input-stream is t, the stream that is
the value of .terminal-io* is used.

H an end-of-file occurs before any characters are read in the line, an error is
signaled if eo/-error-p is true. H an end-of-file occurs and eo/-error-p is nil, no
error is signaled and eo/-value is returned. The default value of eo/-error-p is true.
The default value of eo/-value is nil.

The argument recursive-p should be true if this call is embedded in a higher-level
call to read or a similar function.

Examples: > (setq a "line 1

See Also:

"line 1
line2"
> (read-line (setq is (make-string-input-stream a»)
"line 1"
NIL
> (read-line is)
"line2"
T
> (read-line is nil 'empty)
EMPTY
T

read

21-76 Sun Common Lisp Reference Manual

read-suppress

Purpose:

Syntax:

Remarks:

The variable .read-suppress. can be used to suppress many of the operations
normally performed by the reader.

If the value of .read-suppress. is non-nil, much of the interpretation that
is usually carried out when expressions are read is suppressed. Suppression of
interpretation is needed by the conditional-read constructs #+ and #-, whose
principal use is to make a single program work under other Lisp systems that have
slight differences in syntax.

When .read-suppress. is nil, normal read operations take place.

.read-suppress. [Variable]

When .read-suppress. is non-nil, the reader skips over certain printed constructs
that may not be entirely valid. The effects of a non-nil value of *read-suppress*
are listed below. Constructions other than those listed continue to be interpreted
normally.

• Extended tokens are not interpreted but are discarded and treated as if they
were nil. For instance, potential numbers and symbols qualified with package
markers are not checked for valid syntax.

• Standard # dispatching macro character constructs ignore normal restrictions
on the presence, absence, or value of a numeric argument, such as that in #nR.

• The construct #\ reads a following character or character name but generates
nil in all cases. Unknown character names do not cause errors.

• The constructs #B, #0, #X, and #nR read the next token and generate nil. No
errors are signaled, even if the token does not have numeric syntax.

• The construct #* reads the next token and generates nil. No errors are signaled,
even if the token contains characters other than 0 or 1.

• The constructs #. and #. read the following form without evaluating it and
then generate nil.

• The constructs #A, #S, and #: read the following form without interpreting it
and without requiring it to be a list (for #s) or a symbol (for #:). The value
nil is generated.

• The construct #n= (where n is an integer) is completely ignored, generates no
object, and is treated as white space.

• The construct #n# (where n is an integer) generates nil.

Input/Output 21-77

read-suppress

Examples: > *read-suppress*
NIL

See Also:

> (let «*read-suppress* t»
(format t "-~input here>
(format t "evaluated as:
(format t "-~input here>
(format t "evaluated as:
(format t "-~input here>
(format t "evaluated as:
(format t "-%input here>
(format t "evaluated as:
(values»

input here> 101
evaluated as: NIL

input here> #\a
evaluated as: NIL

input here> :test
evaluated as: NIL

input here> (list 1 2 3)
evaluated as: NIL
> 101
101

read

21-78 Sun Common Lisp Reference Manual

It)

-S-~" (eval (read»)
It)

-S-~" (eval (read»)
It)

-S-~" (eval (read»)
It)

-8-%" (eval (read»)

Purpose: The variable *readtable* specifies the current readtable.

Syntax: [Variable]

Remarks: The initial value of this variable is a readtable that provides the standard Common
Lisp syntax.

Examples: > (readtablep *readtable*)
T
> (setq zvar 123)
123
> (set-syntax-from-char #\z #\' (setq table2 (copy-readtable»)
T

> zvar
123
> (setq *readtable* table2)
#<Readtable 429B13>
> zvar
VAR
> (setq *readtable* (copy-readtable nil»
#<Readtable 42A11B>
> zvar
123

Input/Output 21-79

readtablep

Purpose: The predicate readtablep is true if its argument is a read table; otherwise it is
false.

Syntax: readtablep object

Examples: > (readtablep *readtable*)
T
> (readtablep (copy-readtable»
T
> (readtablep '*readtable*)
NIL

21-80 Sun Common Lisp Reference Manual

[Function]

set-dispatch-macro-character

Purpose:

Syntax:

Remarks:

The function set-dis,patch-macro-character installs a dispatch function to be
called when a particular dispatching macro character pair is read.

The function function is installed as the dispatch function to be called when the
readtable readtable is in use and when the character disp-char is followed by
the character Bub-char. The argument disp-char must be a dispatching macro
character in the indicated read table.

The function set-dispatch-macro-character returns t.

set-dispatch-macro-character disp-char sub-char function
lopt ional readtable

[Function]

Whenever the indicated character sequence is read, the dispatch function function
is called with three arguments: the current input stream, sub-char, and the
nonnegative decimal number that was read between disp-char and sub-char. If no
such number has been read, the third argument is nil.

If the readtable argument is not specified, the read table that is the current value of
the variable *readtable* is used.

The argument sub-char must not be a decimal digit. If sub-char is a lowercase
letter, it is converted to its uppercase equivalent. Thus case is not significant in a
dispatching macro subcharacter.

Examples: > (get-dispatch-macro-character #\# #\ {)
NIL

See Also:

> (set-dispatch-macro-character #\# #\{ ;dispatch on #{
#'(lambda(s c n)

(let «list (read s nil (values) t») ;list is object after #n{
(when (consp list) ;return nth element of list

(unless (and n « 0 n (length list») (setq nO»
(setq list (nth n list»)

list»)
T
> #{(1 2 3 4)
1
> #3{(0 1 2 3)
3
> #{123
123

get-dispatch-macro-character

Input/Output 21-81

set-macro-character

Purpose:

Syntax:

Remarks:

The function set-macro-character makes the specified readtable character a
macro character and installs a function to be called whenever that character is
read and the given readtable is in use.

The function set-macro-character always returns t.

set-macro-character char function [Function]
ckoptional non-terminating-p readtable

The character is made a macro character in the readtable readtable. If the readtable
argument is not specified, then char is made a macro character in the readtable
that is the current value of the variable .readtable •.

When the character char is read and the specified readtable is current, the function
function is called. It is passed two arguments: the input stream from which
characters are being read and the macro character that caused it to be invoked.
Normally, such a function returns a Common Lisp object that it reads from the
input stream; this is the object whose printed representation starts with char.
However, the function may return no values to indicate that no object has been
read, as may be the case when a comment is scanned.

If the non-terminating-p argument is specified and is non-nil, the character
becomes a nonterminating macro character; otherwise it becomes a terminating
macro character. A nonterminating macro character that appears in the middle
of an extended token is treated like a constituent character, and the macro
character's function is not called in that case. A terminating macro character
always terminates any token it appears in, and the terminating macro character's
function is always called. The non-terminating-p argument defaults to nil.

Examples: > (set-macro-character #\{ ;makes { read an obj ect
#'(lambda (s c) ;and return a string

T
> {123
"123"

(with-output-to-string (os) ;of its -S format output
(format os II-S" (read s nil (values) t»»)

21-82 Sun Common Lisp Reference Manual

set-syntax-from-char

Purpose:

Syntax:

Remarks:

The function set-syntax-from-char sets the syntax of one readtable character
from the syntax of another readtable character.

The syntax type of the character to-char in the readtable to-readtable is set to the
syntax type of the character from-char in the readtable from-readtable.

set-syntax-from-char to-char from-char [Function]
&:optional to-readtable from-readtable

H the to-readtable argument is not specified, the readtable that is the current value
of the variable .readtable. is used.

H the from-readtable argument is not specified or is nil, the standard Common
Lisp readtable is used.

If the character is a macro character, the function associated with the character is
also copied. H the character is a dispatching macro character, its entire dispatch
table of functions is copied. The constituent character attributes, however, are not
copied.

Examples: > (set-synta:ic-from-char #\7 #\;)
T
> 123579
1235

Input/Output 21-83

terpri, fresh-line

Purpose:

Syntax:

The functions terpri and fresh-line ensure that subsequent output begins on a
new line.

The function terpri writes a newline character and returns nU. The function
fresh-line writes a newline character and returns t if the output stream is not
already at the beginning of a line; otherwise fresh-line does nothing and returns
nil.

terpri "optional output-stream

fresh-line &:optional output-stream

[Function]

[Function]

Remarks: H the output-stream argument is not specified or is nil, the stream that is the
current value of the variable .standard-output. is used. H output-stream is t,
the stream that is the value of .terminal-io. is used.

Examples: > (with-output-to-string (s)
(f ormat s "not an ,,)
(format s "empty line")
(terpri s)
1+ __ .; ... \
\. U'G.&.,l'.&..&. DI

(format s "aftermath"»
"not an empty line

aftermath"
> (with-output-to-string (s)

(format s "not an II)
(format s "empty line")
(fresh-line 8)
(fresh-line 8)
(format 8 "aftermath"»

"not an empty line
aftermath"

21-84 Sun Common Lisp Reference Manual

unread-char

Purpose:

Syntax:

Remarks:

The function unread-char returns the specified character to the front of an input
stream so that the character will be read again as the next character in that
stream.

unread-char character i;optional input-stream [Function]

The character argument must be the last character that was read from the given
input stream.

The input-stream argument specifies the stream to be used. If it is not specified or
is nil, the stream that is the value of the variable .standard-input. is used. If
input-stream is t, the stream that is the value of .terminal-io. is used.

Examples: > (with-input-from-string (is "0123")
(dotimes (i 6)

o #\0
2 #\1
4 #\2
NIL

(let «c (read-char is»)
(if (evenp i) (format t II-S -S-%" i c) (unread-char cis»»)

Input/Output 21-85

write, print, prine, print, pprint

Purpose:

Syntax:

Remarks:

The functions write, print, prine, print, and pprint write the printed
representation of an object to an output stream.

The function write is the general output function. It has the ability to specify all
the parameters applicable to the printing of an object.

The functions print, princ, print, and pprint implicitly set certain print
parameters to particular values. The remaining parameter values are taken
from the global variables .print-escape., .print-radix., .print-base.,
.print-circlet, .print-pretty., .print-Ievel., .print-Iength., .print-ease.,
.print-gensym., .print-array., and .print-structure •.

Each of the functions write, print, print, and princ returns object as its value.
The function pprint returns no values.

write object ikey : stream : escape : radix : base
:circle :pretty :level :length
:case :gensym :array :structure

print object .toptional output-stream

princ object .toptional output-stream

print object I;optional output-stream

pprint object ioptional output-stream

[Function]

[Function]

[Function]

[Function]

[Function]

The keyword argument :stream of write and the optional output-stream
arguments of print, princ, print, and pprint specify the stream to which output
is to be sent. If the argument is not specified or is nil, the stream that is the value
of the variable .standard-output. is used. H :stream or output-stream is t, the
stream that is the value of .terminal-io. is used.

The other keyword arguments of write are described below. H any keyword
argument is not specified, its value is taken from the corresponding global
variable, namely .print-escap e., .print-radix., .print-base., .print-circle.,
.print-pretty., .print-Ievel., .print-Iength., .print-case., .print-gensym.,
.print-array., or .print-structure •.

• The :escape keyword argument controls the printing of escape characters. H
the value of :escape is nil, the printing of escape characters is suppressed.

• The value of the :radix keyword argument determines whether a radix
indicator is included with each integer or ratio printed. H the value of :radix
is non-nil, a radix indicator is printed.

2!-86 Sun Common Lisp Reference Manual

write, print, prine, print, pprint

• The value of the :base keyword argument is the numerical base (radix) in
which integers and ratios are printed.

• The :circle keyword argument controls the attempt to detect circularity in an
object being printed. If :circle is non-nil and a circular object is detected, the
#n- and #n# constructs are used to denote the circular structure. If :circle
is nil, an attempt to print a circular object may cause Common Lisp to loop
indefinitely.

• The :pretty keyword argument is used to control pretty-printing. If the value
of :pretty is non-nil, additional whitespace characters are written in order to
make printed expressions easier to read.

• The :level keyword argument is used to limit the amount of text output when
an expression is printed. If an integer value is specified, the printing depth of
the expression is limited to that value. A value of nil means that no print limit
is imposed.

• The :length keyword argument is used to limit the amount of text output
when an expression is printed. An integer value specifies the maximum number
of consecutive elements printed at one level. An ellipsis (...) is used to
represent further objects at that level. A value of nil means that no print limit
is imposed.

• The :case keyword argument determines the case used in printing the names
of symbols. The value of :case must be either :upcase, :downcase, or
:capitalize. Corresponding to these three possible values, uppercase letters in
symbol names are printed in uppercase, in lowercase, or in a combination of
cases in which words are capitalized.

• The :gensym keyword argument controls the printing of the names of
uninterned symbols. If :gensym is non-nil, the prefix #: is printed before the
name of any uninterned symbol.

• The :array keyword argument controls the format in which arrays are printed.
If the value of :array is non-nil, arrays are printed in their entirety with the
#(, #*, or InA syntax. If :array is nil, just enough is printed to identify the
array, using the #< ••• > syntax.

• The :structure keyword argument controls the printing of structures. If
the value of :structure is non-nil, structures are printed in detail, using
the #s syntax. If :structure is nil, they are printed with the abbreviated
#< ••• > syntax. The :structure keyword argument of write is an extension to
Common Lisp.

Input/Output 21-87

write, print, prine, print, pprint

The function prinl acts like write with :eseape t, that is, escape characters are
written where appropriate. This tends to make it possible to use read to read
back the output of print.

The function prine acts like write with :eseape nil. Thus no escape characters
are written. This function is generally used when the output is to be read by
humans, not by Common Lisp.

The function print acts like write with :eseape t, but in addition it causes the
output to begin with a newline character and to end with a space.

The function pprint acts like write with :eseape t :pretty t but also causes the
output to begin with a newline character.

Examples: > (write #\a)
#\a
#\a
> (prin1 #\a)
#\a
#\a
> (print #\a)

#\a
#\a
> (prine #\a)
a
#\a
> (write '(let«a 1)(b 2»(+ a b»)
(LET «A 1) (B 2» (+ A B»
(LET «A 1) (B 2» (+ A B»
> (pprint '(let«a 1)(b 2»(+ a b»)

(LET «A 1)
(B 2»

(+ A B»
> (write '(let«a 1)(b 2»(+ a b» :pretty t)
(LET «A 1)

(B 2»
(+ A B»

(LET «A 1) (B 2» (+ A B»
> (with-output-to-string (s)

(write 'write :stream s)
(prin1 'prin1 s»

"WRITEPRIN1"

21-88 Sun Common Lisp Reference Manual

See Also: .print-escape.

.print-radix •

• print-base •

• print-circle •

• print-pretty •

• print-Ievel •

• print-Iength •

• print-case •

• print-gensym •

• print-array •

• print-structure.

write, print, prine, print, pprint

Input/Output 21-89

write-byte

Purpose:

Syntax:

The function write-byte writes a single byte to a specified binary output stream.

The integer argument is written as a byte to the output stream specified by
binary-output-stream. The integer argument must be of the type :element-type
that was specified in the call to open or to with-open-file that created the
stream.

write-byte integer binary-output-stream [Function]

Remarks: The size of the byte written depends on the :element-type argument from open
or with-open-file. Unless the byte size of that element type is one, two, or four
bits, each call to write-byte generates an integral number of 8-bit bytes, namely
the minimum number necessary to hold the number of bits indicated by the given
element type. If the byte size of the element type is one, two, or four bits, then as
many elements as possible (eight, four, or two respectively) are packed into each
8-bit byte.

Examples: > (with-open-file (s "temp-bytes"

See Also:

101

:direction :output
:element-type 'unsigned-byte)

(write-byte 101 s»

> (with-open-file (s "temp-bytes" :element-type 'unsigned-byte)
(format t "-S -S" (read-byte s) (read-byte s nil 'eof»)

101 EOF
NIL

read-byte

21-90 Sun Common Lisp Reference Manual

write-char

Purpose: The function write-char writes a character to an output stream and returns the
given character as its result.

Syntax: write-char character ctoptional output-stream [Function]

Remarks: IT the output-stream argument is not specified or is nil, the stream that is the
current value of the variable .standard-output. is used. IT output-stream is t,
the stream that is the value of .terminal-io. is used.

Examples: > (write-char #\a)
a
#\a
> (with-output-to-string (s) (write-char #\b s»
"b"

Input/Output 21-91

write-line, write-string

Purpose:

Syntax:

Remarks:

The functions write-line and write-string write a string to an output stream.
The function write-line writes a newline character after the string, whereas
write-string does not.

The output operation may be restricted to a substring of the original string by
specifying the :start and :end keyword arguments.

Both write-line and write-string return the original string as a result.

write-string string loptional output-stream lkey : start : end

write-line string loptional output-stream lkey : start : end

[Function]

[Function]

The :start and :end keyword arguments take integer values that specify offsets
into the string. The :start argument marks the beginning position of the substring;
the :end argument marks the position following the last element of the substring.
The start value defaults to 0; the end value defaults to the length of the string.

If the output-stream argument is not specified or is nil, the stream that is the value
of the variable .standard-output. is used. If output-stream is t, the stream that
is the value of .terminal-io. is used.

If any keyword arguments are supplied to write-line or write-string, the optional
argument must also be specified. Otherwise the first keyword is taken as the
optional argument.

Examples: > (write-string "beans")
beans
"beans"
> (write-line "limas" *standard-output* :end 4)
lima
"limas"

21-92 Sun Common Lisp Reference Manual

write-to-string, prinl-to-string, princ-to-string

Purpose:

Syntax:

Remarks:

The functions write-to-string, prinl-to-string, and princ-to-string are used
to create a string consisting of the printed representation of an object.

The function write-to-string is the general output function. It has the ability to
specify all the parameters applicable to the printing of an object.

The functions prinl-to-string and princ-to-string implicitly set certain print
parameters to particular values. The remaining parameter values are taken from the
global variables *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, * print-level * , *print-Iength*, *print-case*, *print-gensym*,
print-array, and *print-structure*.

Each of these functions returns the created string as its result.

write-to-string object "key : escape : radix :base

prinl-to-string object

princ-to-string object

:circle :pretty :level :length
:case :gensym :array :structure

[Function]

[Function]

[Function]

The keyword arguments of write-to-string are described below. If any keyword
argument is not specified, its value is taken from the corresponding global
variable, namely *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, *print-Ievel*, *print-length*, *print-case*, *print-gensym*,
print-array, or *print-structure*.

• The :escape keyword argument controls the printing of escape characters. If
the value of :escape is nil, the printing of escape characters is suppressed.

• The value of the :radix keyword argument determines whether a radix
indicator is included with each integer or ratio printed. If the value of :radix
is non-nil, a radix indicator is printed.

• The value of the :base keyword argument is the numerical base (radix) in
which integers and ratios are printed.

• The :circle keyword argument controls the attempt to detect circularity in an
object being printed. If :circle is non-nil and a circular object is detected, the
#n= and #n# constructs are used to denote the circular structure. If :circle
is nil, an attempt to print a circular object may cause Common Lisp to loop
indefinitely.

Input/Output 21-93

write-to-string, prinl-to-string, princ-to-string

• The :pretty keyword argument is used to control pretty-printing. If the value
of :pretty is non-nil, additional whitespace characters are written to make
printed expressions easier to read.

• The :level keyword argument is used to limit the amount of text output when
an expression is printed. If an integer value is specified, the printing depth of
the expression is limited to that value. A value of nil means that no print limit
is imposed.

• The :length keyword argument is used to limit the amount of text output
when an expression is printed. An integer value specifies the maximum number
of consecutive elements printed at one level. An ellipsis (...) is used to
represent further objects at that level. A value of nil means that no print limit
is imposed.

• The :case keyword argument determines the case used in printing the names
of symbols. The value of :case must be either :upcase, :downcase, or
:capitalize. Corresponding to these three possible values, uppercase letters in
symbol names are printed in uppercase, in lowercase, or in a combination of
cases in which words are capitalized.

• The :gensym keyword argument controls the printing of the names of
uninterned symbols. If :gensym is non-nil, the prefix #: is printed before the
name of any uninterned symbol.

!!!! The :array keyword argument controls the format in which arrays are printed.
If the value of :array is non-nil, arrays are printed in their entirety with the
(, #*, or #nA syntax. If :array is nil, just enough is printed to identify the
array, using the #< ••• > syntax.

• The :structure keyword argument controls the printing of structures. If the
value of :structure is non-nil, structures are printed in detail, using the #8

syntax. If :structure is nil, they are printed with the abbreviated #< ••• >
syntax. The :structure keyword argument of write-to-string is an extension
to Common Lisp.

The function prin1-to-string acts like write-to-string with :escape t, that is,
escape characters are written where appropriate.

The function princ-to-string acts like write-to-string with :escape nil. Thus
no escape characters are written.

Examples: > (prinl-to-string "abc")
"\"abc\""
> (princ-to-string "abc")
"abc"

21-94 Sun Common Lisp Reference Manual

See Also:

write-to-string, prinl-to-string, princ-to-string

print-eseape

print-radix

print-base

print-eirele

print-pretty

print-Ievel

print-Iength

print-ease

print-gensym

print-array

print-strueture

write

prinl

prine

Input/Output 21-95

y-or-n-p, yes-or-no-p

Purpose:

Syntax:

Remarks:

The functions y-or-n-p and yes-or-no-p are used to ask questions of the user;
they return t if the answer was "yes" and nil if the answer was "no."

The function y-or-n-p allows the user to answer the question with a Y or an N. It
should be used if the question is anticipated or if the resulting decision is not of
major impact.

The function yes-or-no-p requires the user to answer with either YES or NO. This
function should be used for unexpected questions or for questions with possibly
serious impact.

If the format-control-string argument is specified and is non-nil, the function
fresh-line is called. Its output is followed by the output of the text specified by
the format control string and by a list of response choices.

y-or-n-p toptional format-control-string trest arguments

yes-or-no-p toptionalformat-control-string trest arguments

[Function]

[Function]

The stream that is the value of the variable *query-io* is used for all input and
output operations.

Both y-or-n-p and yes-or-no-p ignore the alphabetic case in the user's answer.

The section "Formatted Output" explains how the format control string is
interpreted and how the elements of arguments are processed.

Examples: > (y-or-n-p "(t or nil) given by")
(t or nil) given by (Y or N) Y
T
> (yes-or-no-p "a -S message" 'frightening)
a FRIGHTENING message (Yes or No) no
NIL

21-96 Sun Common Lisp Reference Manual

Chapter 22. File System Interface

File System Interface 22-1

Chapter 22. File System Interface

About the File System Interface .. 22-3
Categories of Operations .. 22-4

Data Type Predicates .. 22-4
Operations on Names .. 22-4
Opening Files .. 22-4
Deleting Files .. 22-5
Loading Files ... 22-5
File Attributes .. 22-5
Directory Functions .. 22-5

default-pathname-defaults ... 22-6
delete-file . 22-7
directory .. 22-8
enough-namestring .. 22-9
file-author .. 22-10
file-length ... 22-11
file-position ... 22-12
file-write-date ... 22-13
load, *load-verbose* .. 22-14
make-pathname ... 22-16
merge-pathnames .. 22-17
namestring, file-namestring, directory-namestring, host-namestring 22-19
open ... 22-20
parse-namestring ... 22-22
pathname .. 22-24
pathname-host, pathname-device, pathname-directory, pathname-name,

pathname-type, pathname-version ... 22-25
pathnamep .. 22-26
probe-file ... 22-27
rename-file .. 22-28
truename ... 22-29
user-homedir-pathname .. 22-30
with-open-file .. 22-31

22-2 Sun Common Lisp Reference Manual

About the File System Interface

File systems are among the least standardized of the major features of computing
environments. Since Common Lisp is designed for use under a variety of operating systems
and file systems, it uses its own method for designating files, a method called pathnames.
A pathname consists of six fields: host, device, directory, name, type, and version. In
many of the functions that require a pathname argument, the argument may be specified
as a pathname, a string, or a stream associated with the file. When necessary, a pathname
is converted into the description that is appropriate to the outside file system; that
description is a string called a namestring.

The six parts of a pathname are as follows:

• The host field specifies the name of the file system that contains the file. When a
pathname is specified as a string, if a colon occurs in the string, anything preceding
the colon is considered to be the name of the host. Although the host field may be
specified as part of a pathname, this information is not used in Sun Common Lisp.

• The device field specifies the name of the physical or logical device that contains the
file. Although the device field may be specified as part of a pathname, this information
is not used in Sun Common Lisp.

• The directory field specifies the location of the file in the file system in terms of its
directory structure.

• The name field specifies a particular set of related files. The source version and the
compiled version of a Lisp program generally have the same name.

• The type field specifies the kind or format of the file. This is often the file extension.

• The version field specifies the file version. When a pathname is specified as a string
and the character #, followed by a number, ends that string, the number is the version
number of the corresponding file.

The keyword :wild may be used in a pathname argument in functions that permit it.
This keyword indicates that the pathname component may match anything.

The keyword :newest may be used in a pathname to specify the most recent version of a
file.

The function equal should be used when testing pathnames for equality.

Many functions described in this chapter, such as delete-file, open, and rename-file, are
implemented using the functionality provided by the underlying operating system. Thus,
their behavior may mirror that of the underlying primitives.

File System Interface 22-3

Categories of Operations

This section groups file system operations according to functionality.

Data Type Predicates

pathnamep

This predicate determines whether an object is a pathname.

Operations on Names

pathname
truename
make-pathname
merge-pathnames
rename-file

pathname-host
pathname-device
pathname-directory
pathname-name

pathname-type
pathname-version
user-homedir-pathname
namestring
file-namestring
director'.I~namestring

host-namestring
enough-namestring
parse-namestring

These constructs manipulate pathnames and namestrings.

Opening Files

open with-open-file

These functions open files.

22-4 Sun Common Lisp Reference Manual

Deleting Files

delete-file

This function deletes files.

Loading Files

load

These constructs are used to load files.

File Attributes

file-author
file-length
file-position

.load-verbose.

file-write-date
probe-file

These functions provide information about files.

Directory Functions

directory

This function examines directories.

File System Interface 22-5

default-pathname-defaults

Purpose:

Syntax:

The value of the variable *default-pathnallle-defaults* is a pathname. This
pathname is used whenever a function needs a default pathname and one is not
supplied.

default-pathnallle-defaults [Variable]

Relllarks: The default value of *default-pathnallle-defaults* is the working directory that
was current when Lisp was started up.

~xalllples: > *default-pathname-defaults* ;current working directory is set to /etc
#P"/etc/"
> (setq *default-pathname-defaults* "/usr/bin/")
"/usr/bin/"
> (setq q "calendar")
"calendar"
> (merge-pathnames (make-pathname :name q»
#P"/usr/bin/calendar"

22-6 Sun Common Lisp Reference Manual

delete-file

Purpose:

Syntax:

Remarks:

The function delete-file deletes the specified file. It returns a non-nil value if it
succeeds.

delete-file file [Function]

The file argument is a pathname, a string, or a stream. If the file argument is an
open stream associated with a file, that stream is closed and the file is deleted.

The pathname may not contain a :wild component.

The function delete-file is implemented by using operations provided by the
operating system.

Examples: > (with-open-file (s "/tmp/delete-test" : if-does-not-exist : create)
(setq p (merge-pathnames s»)

#P"/tmp/delete-test"
> (probe-file p)
#P"/tmp/delete-test"
> (delete-file "/tmp/delete-test")
#P"/tmp/delete-test"
> (probe-file p)
NIL
> (setq p (merge-pathnames

(setq s (open "/tmp/delete-test" :direction :output»»
#P"/tmp/delete-test"
> (probe-file p)
#P"/tmp/delete-test"
> (probe-file s)
#P"/tmp/delete-test"
> (delete-file s)
#P"/tmp/delete-test"
> (probe-file p)
NIL
> (probe-file s)
NIL

File System Interface 22-7

directory

Purpose:

Syntax:

Remarks:

Examples:

The function directory is used to examine a file system directory. It returns a
list of the pathnames of all files in the system that correspond to the pathname
argument.

directory pathname [Function]

The pathname argument is a pathname, a string, or a stream associated with a file.

Use of the keyword :wild is permitted in the pathname. It indicates that the
corresponding pathname component may match anything.

•••
" ,

assume that there is a subdirectory under /tmp that contains
three files called a, b, and c

> (directory "/tmp/sub")
(#P"/tmp/sub")
> (directory "/tmp/sub/")
(#P"/tmp/sub/c" #P"/tmp/sub/b" #P"/tmp/sub/a")

22-8 Sun Common Lisp Reference Manual

enough-namestring

Purpose:

Syntax:

Remarks:

The function enough-namestring converts its pathname argument into a
namestring. It returns a shortened version of that namestring that is sufficient to
identify the file when merged with the pathname defaults.

enough-namestring pathname "optional defaults [Function]

If the defaults argument is not specified, the value of the variable *default
pathname-defaults* is used.

The pathname argument is a pathname, a string, a symbol, or a stream that is or
was associated with a file.

If pathname is a stream, the namestring is the name used to open the file. This
name may be different from the true name of the file.

Examples: > *default-pathname-defaults*
#P"/etc/"

;current working directory is set
;to /etc

See Also:

> (enough-namestring "passwd")
"passwd"
> (setq q (make-pathname :name "passwd"

: directory
(pathname-directory *default-pathname-defaults*»)

#P"/etc/passwd"
> (enough-name string q *default-pathname-defaults*)
"passwd"
> (enough-name string q "/etc/")
"passwd"
> (enough-name string q)
"passwd"

merge-pathnames

namestring

File System Interface 22-9

file-author

Purpose: The function file-author returns the name of the author or last writer of the file as
a string. If the name cannot be determined by the operating system, file-author
returns nil.

Syntax: file-author file [Function]

Remarks: The file argument is a pathname, a string, or a stream that is open to a file.

Examples: > *default-patbname-defaults*
#P"/etc/"
> (setq s (open (merge-pathnames "passwd"»)
#<Stream BUFFERED-STREAM 101DB7CB>
> (file-author s)
"root"
> (file-author "/etc/passwd tl

)

"root"

22-10 Sun Common Lisp Reference Manual

file-length

Purpose:

Syntax:

Remarks:

The function file-length returns the length of the specified file as a nonnegative
integer. If the length cannot be determined by the operating system, file-length
returns nil.

file-length file-stream [Function]

The file-stream argument must be a stream that is open to a file.

The unit of length for a binary file is that specified by the :element-type argument
used in the open command that created the stream.

Examples: > (setq s (open "/tmp/file-len-test"
:direction :output
:if-exists :supersede»

#<Stream BUFFERED-STREAM 101DC673>

See Also:

> (format s "0123456789")
NIL
> (file-length s)
10

open

File System Interface 22-11

file-position

Purpose:

Syntax:

Remarks:

The function file-position returns the current position within a file or sets that
position. Its action depends on whether the position argument is specified.

rr the position argument is omitted, file-position returns a nonnegative integer
that indicates the current position in the file. If this position cannot be determined
by the operating system, file-position returns nU.

rr the position argument is specified, file-position sets the current position in
the file to that value. The position may be specified by a nonnegative integer,
by the keyword :start, or by the keyword :end. If position is too large, an error
is signaled. The function file-position returns a non-nil value if the operation
succeeds; otherwise it returns nU.

file-position file-stream toptional position [Function]

The file-stream argument must be a stream that is open to a random-access file.

The position is given in units corresponding to the element type argument specified
when the file was opened.

The value of the starting position is o.

Examples: > (setq s (open II /tmp/file-pos-test II
:direction :output
:if-exists :supersede»

#<Stream BUFFERED-STREAM 101DCF3B>

See Also:

> (file-position s)
o
> (format s "abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba")
NIL
> (file-position s)
52

open

file-length

22-12 Sun Common Lisp Reference Manual

file-write-date

Purpose:

Syntax:

Remarks:

The function file-write-date returns in universal time format the time at which
the file was last written (or created). This value is an integer. If the time cannot
be determined by the operating system, file-write-date returns nil.

file-write-date file [Function]

The file argument is a pathname, a string, or a stream that is open to a file.

File System Interface 22-13

load, *load-verbose*

Purpose:

Syntax:

Re:marks:

The function load reads the file specified by the filename argument and evaluates
each form in that file. A non-nil value is returned if the operation is successful.

The variable .load-verbose. provides a default value for the :verbose argument
of load. The initial value of .load-verbose. is nil.

load filename lkey :verbose :print : if~does~not~exist

.load-verbose.

[Function]

[Variable]

The filename argument is a pathname, stream, string, or symbol. If the filename
argument is not fully specified, default values are taken from the value of the variable
.default-pathna:me-defaults. by using the function :merge-pathna:mes.

If the file type is not specified and both source and binary versions of the file exist,
load will use the binary version if it is more recent. If the source version is more
recent, load asks the user to specify the action to be taken.

If the filename argument specifies a stream, load determines the type of the stream
and loads directly from the stream.

The keyword arguments control details of the performance of the function load.

If the :verbose argument is non-nil, load prints information about its progress on
the standard output. The default value of this argument is nil.

If the :print argument is non-nil, load prints the value of each expression that is
loaded on the standard output. The default value of this argument is nil.

The :if-does-not-exist argument controls what happens if the specified file does
not exist. The function load calls the function open with the :if-does-not-exist
argument bound to this value. This value can be either :error (signal an error),
:create (create an empty file), or nil (return nil from the function load). It
defaults to : error .

22-14 Sun Common Lisp Reference Manual

Examples:

See Also:

load, *load-verbose*

... assuming the file /test/load-test-file.lisp contains .. .
••• 1

••• (setq a 888)

•• • .. . then ...

> (load "/test/load-test-file")
#P"/test/load-test-file.lisp"
> a
888
> (load (setq p (merge-pathnames "/test/load-test-file"» :verbose t)
;;; Loading source file "/test/load-test-file.lisp"
#P"/test/load-test-file.lisp"
> (load p :print t)
1
888
#P"/test/load-test-file.lisp"

merge-pathnames

error

File System Interface 22-15

make-pathname

Purpose:

Syntax:

Remarks:

The function make-pathname constructs a pathname from the specified keyword
arguments and returns the result. Any fields of the pathname that are left
unspecified are filled with the corresponding values from the :defaults argument.

make-pathname lkey :host :device :directory :name
:type :version :defaults

[Function]

If the :defaults argument is not specified, the value of *default-pathname
defaults* is used by merge-pathnames to supply the host component, if it is
missing. Any other missing components will be nil.

The :directory argument is a list of directories leading to the desired directory.

The :version argument is an integer.

The other keyword arguments are strings.

Although the host and device fields may be specified as part of a pathname, this
information is not used in Sun Common Lisp.

Examples: > *default-pathname-defaults*
#P"/etc/ Ie

See Also:

> (setq q (make-pathname :name "getty"
: directory

#P"/etc/getty"
> (pathnamep q)
T

(pathname-directory *default-pathname-defaults*»)

> (make-pathname :directory (list "dev") :name "ttya")
#P"/dev/ttya"
> (make-pathname :directory (list "usr" "bin") :name "calendar")
#P"/usr/bin/calendar"
> (make-pathname :host "edsel"

:directory (pathname-directory *default-pathname-defaults*)
:name "getty")

#P"edsel:/etc/getty"
> (make-pathname :directory (pathname-directory *default-pathname-defaults*)

:name "getty" :version 1)
#P"/etc/getty#l"
> (make-pathname :directory (list "usr" "include")

:name "stdio" :type "h")
#P"/usr/include/stdio.h"

merge-pathnames

22-16 Sun Common Lisp Reference Manual

merge-pathnames

Purpose:

Syntax:

Remarks:

The function merge-pathnames constructs a pathname from the pathname
argument by filling in any unspecified components with the corresponding values
from the defaults and default-version arguments. It returns the resulting pathname.

merge-pathnames pathname Il:optional defaults default-version [Function]

The pathname and defaults arguments are each a pathname, a string, a symbol, or
a stream.

If the defaults argument is not specified, the value of *default-pathnarne
defaults* is used.

If pathname specifies a host but not a device, the value for the device is taken from
the defaults argument only if the two hosts agree. Otherwise the device is set to
the default device for that host.

If pathname specifies a name but not a version, the version is copied from default
version rather than from defaults. If the pathname argument does not specify a
name component, the version is copied from defaults, if defaults specifies a version.
If defaults does not have a version, the version is copied from default-version. If
the default-version argument is also not specified, the newest version is used. If
default-version is nil, the version component will remain unspecified.

Examples: > *default-pathname-defaults* ; current working directory is set
lP"/etc/" ;to /etc
> (merge-pathnames "")
lP"/etc/"
> (merge-pathnames "subdir")
#P"/etc/subdir"
> (setq q (merge-pathnames "subdir/"»
#P"subdir/"
> (truename q)
#P"/etc/subdir/"
> (merge-pathnames "/subdir/")
#P"/subdir/"
> (setq q (merge-pathnames "subdir/isfile"»
#P"subdir/isfile"
> (truename q) ;file /etc/subdir/isfile exists
#P"/etc/subdir/isfile"

File System Interface 22-17

merge-pathnames

See Also:

> (setq q (merge-pathnames "subdir/" "isfile"»
#P"subdir/isfile"
> (truename q)
#P"/etc/subdir/isfile"

* default-pathname-defaults *

22-18 Sun Common Lisp Reference Manual

namestring, file-namestring, directory-namestring,
host-namestring

Purpose:

Syntax:

Remarks:

These functions convert a pathname argument into a namestring and return the
result.

The function namestring returns the namestrirrg that corresponds to the specified
pathname components. If the value of pathname is a string, that string is returned.

The function file-namestring returns only that part of the namestring that
corresponds to the name, type, and version components of the pathname.

The function directory-namestring returns only that part of the namestring
that corresponds to the directory component.

The function host-namestring returns only that part of the namestring that
corresponds to the host component.

namestring pathname

file-namestring pathname

directory-namestring pathname

host-namestring pathname

The pathname argument is a pathname, a string, a symbol, or a stream.

[Function]

[Function]

[Function]

[Function]

If pathname is a stream, the namestring is the name used to open the file. This
name may be different from the true name of the file.

Examples: > (name string "getty") ;current working directory is /etc

See Also:

"getty"
> (setq q (make-pathname :host "edsel"

: directory
(pathname-directory *default-pathname-defaults*)

:name "getty"»
#P"edsel:/etc/getty"
> (file-name string q)
"getty"
> (directory-name string q)
It/etc/It
> (host-name string q)
"edsel"

truename

File System Interface 22-19

open

Purpose:

Syntax:

Remarks:

The function open opens the specified file and returns a stream that is connected
to it.

open filename &key : direction : element-type
:if-exists :if-does-not-exist

The filename argument may be a pathname, a string, or a stream.

The function open may be used with the following keyword arguments:

[Function]

The :direction argument determines the direction of the stream. Its value is one
of the following keywords:

• The keyword :input specifies an input stream; this is the default.

• The keyword :output specifies an output stream.

• The keyword :io specifies a bidirectional stream.

• The keyword :probe checks to see if the file exists.

The :element-type argument determines the basic unit for the stream. It must
be a type-specifier for a bounded subrange of integer or character. If the keyword
:default is specified or if no :element-type argument is given, a default character
type is used.

The :if-exists argument is relevant if the stream is open for output and the
specified file already exists. Its value is one of the following keywords:

• The keyword :error causes an error to be signaled if the file already exists. It
is the default if the version is not :newest.

• The keyword :new-version causes the creation of a new file with the same
name but a larger version number. It is the default if the version is :newest.

• The keyword :rename causes the old file to be renamed and a new file with
the specified name to be created.

• The keyword :rename-and-delete causes the old file to be renamed and then
deleted. A new file is created with the specified name.

• The keyword :overwrite uses the existing file. The file pointer is set to the
beginning of the file. Output to the stream modifies the file.

• The keyword :append uses the existing file. Output to the stream modifies
the file. The file pointer is set to the end of the file.

22-20 Sun Common Lisp Reference Manual

open

• The keyword :supersede replaces the existing file. It does not use a new
version number.

• The keyword nil causes open to fail, returning nil.

The :if-does-not-exist argument specifies the action to be taken if the file does
not exist. Its value is one of the following:

• The keyword :error signals an error if the file does not exist. This is the
default if the direction is :input or if the :if-exists argument is :append or
:overwrite.

• The keyword :create causes the creation of an empty file with the specified
name. This is the default if the direction is :output or :io, or if the :if-exists
argument is not :append or :overwrite.

• The value nil causes open to fail, returning nil. This is the default if the
:direction argument is :probe.

Examples: > (open "/dev/ttya" :direction :probe)
#<Stream %STREAM 101DB6B3>

See Also:

> (setq q (merge-pathnames (user-homedir-pathname) "mbox"»
#P"/u/foo/mbox" ;home directory is /u/foo
> (open q :direction :output :if-exists :append)
#<Stream BUFFERED-STREAM 101DCA23>
> (open "/tmp/bar" :if-does-not-exist :create)
#<Stream BUFFERED-STREAM 101DCA33>
> (setq s (open "/tmp/bar" :direction :probe»
#<Stream %STREAM 101DCD43>
> (truename s)
#P"/tmp/bar"
> (open s :direction :output : if-exists nil)
NIL

with-open-file

close

;file bar does not
;exist in /tmp

File System Interface 22-21

parse-namestring

Purpose:

Syntax:

Remarks:

The function parse-namestring converts its thing argument into a pathname and
returns the result.

parse-namestring thing "optional host defaults [Function]
"key :start :end :junk-allowed

The thing argument may be a pathname, a string, a symbol, or a stream. If a
symbol is specified, the print name of the symbol is used.

If the host argument is specified, the thing argument must not specify a host unless
the two are the same. If neither thing nor hosts specifies a host, a host field is
taken from defaults. This argument defaults to *default-pathname-defaults*.

If a string or symbol (print name) is specified, the :start and :end keyword
arguments may be used to restrict the parsing operation to a substring of the
string. The keyword arguments :start and :end take integer values that specify
offsets into the original string. The :start argument marks the beginning position
of the substring; the :end argument marks the position following the last element
of the substring. The start value defaults to 0; the end value defaults to the length
of the string.

If :junk-allowed is nil, the entire substring is parsed, and the resulting pathname
is returned. An error is signaled if the substring contains anything besides a valid
pathname. If :junk-allowed is non-nil, the pathname that is parsed is returned.
If a syntactically correct pathname is not found, nil is returned. The default value
for :junk-allowed is nil.

A second value is also returned; this value is the index into the string that
corresponds to the position following the last one that was part of the pathname.

If the thing argument is not a string or a symbol, the second value is the start
value.

Note that if the keyword arguments are to be used, the optional arguments must
also be given.

22-22 Sun Common Lisp Reference Manual

Examples: > (setq q (parse-name string "/ete/getty"»
#P"/ete/getty"
> (pathnamep q)
T
> (parse-namestring "getty")
#P"getty"
5
> (setq s (open "/usr/inelude/sys/types.h"»
#<Stream BUFFERED-STREAM 101DE06B>
> (parse-namestring s)
#P"/usr/inelude/sys/types.h"
o

parse-namestring

> (parse-namestring "/usr/inelude/sys/types.h" nil nil :start 6 :end 15)
#P"nelude/sy"
15
> (parse-namestring s nil nil :start 5 :end 12)
#P"/usr/inelude/sys/types.h"
5

File System Interface 22-23

pathname

Purpose: The function pathname converts its argument into a pathname and returns the
result.

Syntax: pathname pathname [Function]

Remarks: The pathname argument is a pathname, a string, a symbol, or a stream.

Examples: > (patbname "/ete/getty")
#P"/ete/getty"
> (setq p (patbname '/ete/getty»
#P"/ETC/GETTY"
> (patbnamep p)
T
> (eq p (patbname p»
T
> (eq (patbname '/ete/getty) (patbname '/ete/getty»
NIL
> (setq s (open "/ete/getty"»
#<Stream BUFFERED-STREAM 101E1503>
> (patbname s)
#P"/ete/getty"

22-24 Sun Common Lisp Reference Manual

:no conversion
: required
:ereates new
:patbname structures

pathname-host, pathname-device,
pathname-directory, pathname-name,
pathname-type, pathname-version

Purpose:

Syntax:

Remarks:

These functions return the corresponding components of the pathname argument.

pathname-host pathname

pathname-device pathname

pathname-directory pathname

pathname-name pathname

pathname-type pathname

pathname-version pathname

The pathname argument is a pathname, a string, a symbol, or a stream.

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The device component is not used in Sun Common Lisp. The function pathname
device returns nil.

The version component is returned as an integer or nil.

The directory component is returned as a list of strings or symbols or as nil.

All other specified components are returned as strings or nil.

Examples: > *def aul t -pa thname-def aul t s*
#P"/usr/lucid/src/"

;current working directory is
;/usr/lucid/src

> (pathname-directory "chase.c")
(:RELATIVE)
> (pathname-version "chase.c")
NIL
> (setq q (make-pathname :host "edsel"

:directory (list "usr" "lucid" "src")
:name "chase" :type "c"»

#P"edsel:/usr/lucid/src/chase.c"
> (pathname-host q)
"edsel"
> (pathname-directory q)
("usr" "lucid" "src")
> (pathname-name q)
"chase"
> (pathname-type q)
"c"

File System Interface 22-25

pathnamep

Purpose: The predicate pathnamep is true if its argument is a pathname; otherwise it is
false.

Syntax: pathnamep object

Examples: > (setq q "/etc/getty")
"/etc/getty"
> (pathnamep q)
NIL
> (setq q (pathname "/etc/getty"»
#P"/etc/getty"
> (pathnamep q)
T

22-26 Sun Common Lisp Reference Manual

[Function]

probe-file

Purpose:

Syntax:

The function probe-file tests whether a file exists. It returns nil if the specified
file does not exist. Otherwise it returns the true name of the file.

probe-file file [Function]

Remarks: The file argument is a pathname, a string, or a stream that is open to a file.

Examples: > *default-pathname-defaults*
#P"/etc/"
> (probe-file (make-pathname

:directory (pathname-directory *default-pathname-defaults*)
:name "passwd ll»)

See Also:

#P"/etc/passwd"
> (probe-file "/dev/ttya")
#P"/dev/ttya"
> (probe-file "/dev/nofile")
NIL

truename

open

File System Interface 22-27

rename-file

Purpose:

Syntax:

Remarks:

The function rename-file modifies the file system in such a way that the file
indicated by file is renamed to new-name.

The function rename-file returns three values. The first is new-name with any
missing components supplied from file; the second and third values are the true
names of the file, before and after renaming respectively.

rename-file file new-name [Function]

The file argument is a pathname, stream, or string. The new-name argument is a
pathname, string, or symbol.

The function rename-file is implemented by using operations provided by the
operating system.

Examples: > (with-open-file (s "/tmp/rename-test.a" :if-does-not-exist :create)
(setq p (merge-pathnames s»)

#P"/tmp/rename-test.a"
> (rename-file "/tmp/rename-test.a" "rename-test.b")
#P"/tmp/rename-test.b"
#P"/tmp/rename-test.a"
#P"/tmp/rename-test.b"
> (probe-file p)
NIL

See Also: truename

22-28 Sun Common Lisp Reference Manual

truename

Purpose:

Syntax:

Remarks:

The function truename tries to find the file indicated by its pathname argument.
If it finds that file, it returns the tru~ name of that file, that is, it returns the name
that the operating system considers to be the primary name for the file. This name
is returned as a pathname. If the file cannot be found, truename signals an error.

truename pathname [Function]

The pathname argument is a pathname, a string, a symbol, or a stream.

Examples: > *defaul t-pathname-defaul ts*
#P"/usr/"

jcurrent working directory is
jset to /usr

> (setq s (open "/etc/passwd"»
#<Stream BUFFERED-STREAM 101DB763>
> (truename s)
#P"/etc/passwd"
> (truename "bin")
#P"/usr/bin"

File System Interface 22-29

user-homedir-pathname

Purpose:

Syntax:

The function user-homedir-pathname returns a pathname that corresponds
to the user's home directory on the machine host. The name, type, and version
components that are returned are always nil. The function user-homedir
pathname returns nil if it cannot determine what the home directory is.

user=homedir=pathname .toptional host [Function]

Remarks: If the host argument is not specified, user-homedir-pathname always succeeds.

Examples: > (pathnamep (user-homedir-pathname»
T
> (file-namestring (user-homedir-pathname»

""

22-30 Sun Common Lisp Reference Manual

with-open-file

Purpose:

Syntax:

Remarks:

The macro with-op en-file uses open to generate a stream that reads or writes
the specified file. The macro then performs a specified series of actions on the open
file.

The options arguments are passed as arguments to open. The stream that open
returns is bound to the variable stream. The form arguments are then executed in'
order.

with-open-file (stream filename {options} *) {declaration} * {form} * [Macro]

The filename argument specifies the file that is to be opened; filename is a
pathname, a string, or a stream.

The file is closed automatically when with-open-file terminates or aborts.

Examples: > (setq p (merge-pathnames "/tmp/w-open-fl. tmp"»
#P"/tmp/w-open-fl.tmp"

See Also:

> (with-open-file (s p :direction :output :if-exists :supersede)
(format s "Here are a couple-%of test data lines-%"»

NIL
> (with-open-file (s p)

(do «1 (read-line s) (read-line s nil 'eof»)
«eq 1 'eof) "Reached end-of-file")

(format t "==>-A-%" 1»)
==>Here are a couple
==>of test data lines
"Reached end-of-file"

open

close

File System Interface 22-31

22-32 Sun Common Lisp Reference Manual

Chapter 23. Errors

Errors 23-1

Chapter 23. Errors

About Errors ... 23-3
Categories of Operations .. 23-4

General Error-Signaling Facilities ... 23-4
Specialized Error Checking .. 23-4

assert . 23-5
break ... 23-6
cerror ... 23-7
check-type ... 23-8
error .. 23-9
warn, *break-on-warnings* ... 23-10

23-2 Sun Common Lisp Reference Manual

About Errors

Common Lisp provides a variety of facilities for signaling errors.

An error causes Common Lisp to stop whatever it is doing and enter the debugger. The
debugger then displays some information about what caused the error and the courses of
action available to the user. Errors may be either continuable or fatal. A continuable
error allows the program to regain control and to provide options for repairing the cause
of the error. A fatal error is one that forces the current computation to end.

A warning causes a warning message to be issued. The user may specify whether a
warning is to cause the debugger to be entered.

A break causes the debugger to be entered. It is possible to continue from a break. The
break facility is intended for use in debugging.

The user is referred to the Sun Common Lisp User's Guide for a more detailed discussion
of debugging facilities.

Errors 23-3

Categories of Operations

This section groups error-signaling operations according to functionality.

General Error-Signaling Facilities

error
cerror
break

These constructs are used to signal errors.

Specialized Error Checking

assert

warn
* break-on-warnings*

check-type

These functions perform specific tests and may signal continuable errors.

23-4 Sun Common Lisp Reference Manual

assert

Purpose:

Syntax:

Remarks:

The macro assert tests whether a given form evaluates to nil. If the specified test
form evaluates to nil, assert signals a continuable error and causes the debugger
to be entered. If the value of the test form is non-nil, assert returns nil.

If the user continues from such an error, assert prompts for new values for the
generalized variables specified by the place arguments. It then re-evaluates the
test-form argument. If test-form again evaluates to nil, assert once again signals
a continuable error. When test-form evaluates to non-nil, assert returns nil.

assert test-form [({place }*) [format-string {arg}*]] [Macro]

Each place argument must be a generalized variable acceptable to the macro setf.

The function format is used to produce a string from the format-string and arg
arguments. That string is passed on to the debugger for use as an error message.
The format-string and arg arguments are evaluated only if an error is signaled.

~xamples: > (defun assert-example (x) (assert (numberp x) (x» (+ x x»
ASSERT-EXAMPLE

See Also:

> (compile 'assert-example)
;;; Compiling function ASSERT-EXAMPLE ... assembling ... emitting ... done.
ASSERT-EXAMPLE
> (assert-example t)
»Error: Assert form (NUMBERP X) failed.

ASSERT-RUNTIME:
Required arg 0 (PLACES-LIST): (X)
Required arg 1 (FORM): (NUMBERP X)
Required arg 2 (STRING): NIL
Required arg 3 (ARGS): NIL

:A Abort to Lisp Top Level
:C Replace some values and test the assertion again
-> :c
Replace some values and test the assertion again
Give a new value for X? (Y or N) y
Form to evaluate and store as the value of X: 2
4

format

Errors 23-5

break

Purpose:

Syntax:

Remarks:

The function break causes the debugger to be entered. It is possible to continue
from a break.

When the user continues from the breakpoint, break returns nil.

break &optional format-string &rest args [Function]

The function break is intended for use in debugging; it allows the user to examine
values and then continue the computation.

The function format is used to generate a string from the arguments to break.
That string is passed on to the debugger for use as a break message.

Examples: > (break Ita break message with -sIt 'arguments)
»Break: a break message with ARGUMENTS

See Also:

EVAL:
Required arg 0 (EXPRESSION): (BREAK Ita break message with -SIt (QUOTE

ARGUMENTS»

:A Abort to Lisp Top Level
:c Return from break
-> :c
Return from break
NIL

format

23-6 Sun Common Lisp Reference Manual

cerror

Purpose:

Syntax:

Remarks:

The function cerror signals a continuable error and causes the debugger to be
entered.

If the user continues from the error, cerror returns nil.

cerror continue-format-string error-format-string "rest args [Function]

The function format is used to generate strings from the arguments to cerror.
Those strings are passed on to the debugger. The error-format-string argument
is used to produce an error message when the debugger is entered. The continue
format-string is used to describe directions for or the effect of continuing from the
error.

Examples: > (defun foo (a)

See Also:

(loop (when (numberp a) (return (1+ a»)

Faa

(cerror "enter new value" "-s is not a number" a)
(format t " -> II)
(setq a (read»»

> (compile "foo)
;;; Compiling function FOO ... assembling ... emitting ... done.
Faa
> (foo 1)
2
> (foo t)
»Error: T is not a number

Faa:
Required arg 0 (A): T

:A Abort to Lisp Top Level
:C enter new value
-> :c
enter new value -> 2
3

error

format

Errors 23-7

check-type

Purpose:

Syntax:

Remarks:

The macro check-type tests the type of the value of a generalized variable. It
signals a continuable error if the value in place is not of type typespec. If the value
is of the specified type, check-type returns nil.

If the user continues from such an error, check-type prompts for a new value for
the generalized variable specified by the place argument. It then tests the type of
the new value of the variable. If the value is not of the specified type, check-type
once again signals a continuable error. When the value in place is of the specified
type, check-type returns nil.

check-type place typespec &optional string [Macro]

The place argument must be a generalized variable acceptable to the macro setf.

The typespec argument is a type specifier; it is not evaluated.

The string argument should describe the desired type; it is used to provide an error
message. If string is not present, a string is generated automatically from typespec.

~xamples: > (defun foo (a) (check-type a integer) (+ a a»
FOO
> (compile 'foo)
;;; Compiling function FOO ... assembling ... emitting ... done.
Faa
> (foo 1)
2
> (foo t)
»Error: T should be of type INTEGER

Faa:
Required arg 0 (A): T

:A Abort to Lisp Top Level
:C Supply a new value
-> :c
Supply a new value
Enter a form to be evaluated: (+ 3 4)
Value is 7. OK? (Y or N) y
14

23-8 Sun Common Lisp Reference Manual

error

Purpose: The function error signals a fatal error and causes the debugger to be entered.

Syntax: error format-string &:rest args [Function]

Remarks: The function format is used to generate a string from the arguments to error.
That string is passed on to the debugger for use as an error message.

Examples: > (error "Uncontinuable problem")
»Error: Uncontinuable problem

See Also:

EVAL:
Required arg 0 (EXPRESSION): (ERROR "Uncontinuable problem")

:A Abort to Lisp Top Level
-> :a
Back to Lisp Top Level

> (setq a 'fool
FOO
> (if (numberp a)

(1+ a)
(error "-S is not a number" a»

»Error: FOO is not a number

EVAL:
Required arg 0 (EXPRESSION): (ERROR "-S is not a number" A)

:A Abort to Lisp Top Level
-> :a
Back to Lisp Top Level

cerror

format

Errors 23-9

warn, * break-on-warnings*

Purpose:

Syntax:

Remarks:

The function warn prints an error message and may cause the debugger to be
entered.

The variable • break-on-warnings. controls the behavior of warn. If. break
on-warnings. is nil, warn prints an error message and returns nil. If the value
of • break-on-warnings. is non-nil, warn also causes the debugger to be entered.
When the user continues from the debugger, warn returns nil.

warn format-string &rest args

• break-on-warnings.

The initial value of • break-on-warnings. is nil.

[Function]

[Variable]

The function format is used to generate a string from the arguments to warn.
These arguments should provide the error message.

Examples: > *break-on-warnings*
NIL

See Also:

> (warn "caveat emptor")
::: Warning: caveat emptor
NIL
> (let «*break-on-warnings* t» (warn "caveat emptor"»
»Break on warning: caveat emptor

WARN:
Required arg 0 (FORMAT-STRING): "caveat emptor"
Rest arg (FORMAT-ARGS): NIL

:A Abort to Lisp Top Level
:C Return from break on warning
-> :c
Return from break on warning
NIL

break

format

23-10 Sun Common Lisp Reference Manual

Chapter 24. Environmental Features

Environmental Features 24-1

Chapter 24. Environmental Features

About Environmental Features ... 24-3
The Compiler .. 24-3
Debugging Facilities ... 24-3
Time ... 24-4

Categories of Operations .. 24-5
Compilation .. 24-5
Debugging Facilities ... 24-5
Documentation 24-5
Editor .. 24-5
Time Functions 24-6
Other Environmental Functions .. 24-6
Quitting Lisp ... 24-6

abort ... 24-7
apropos, apropos-list ... 24-8
arglist. 24-9
compile .. 24-10
compile-file ... 24-11
decode-universal-time ... 24-13
describe .. 24-14
disassemble ... 24-15
documentation ... 24-16
dribble ... 24-17
ed ... 24-18
encode-universal-time ... 24-20
features .. 24-21
get-decoded-time ... 24-22
get-internal-real-time .. 24-23
get-internal-run-time .. 24-24
get-universal-time .. 24-25
inspect ... 24-26
internal-time-units-per-second ... 24-27
lisp-implementation-type, lisp-implementation-version 24-28
machine-type, machine-version, machine-instance 24-29
quit ... 24-30
room .. 24-31
short-site-name, long-site-name .. 24-32
sleep. 24-33
software-type, software-version .. 24-34
step ... 24-35
time ... 24-36
trace, untrace ... 24-37

24-2 Sun Common Lisp Reference Manual

About Environmental Features

Common Lisp supplies various tools that allow the user to interact with the programming
environment. These facilities include a compiler, debugging facilities, an editor, time
functions, and functions for obtaining information about the current system.

The user is referred to the Sun Common Lisp User's Guide for a more detailed presentation
of the compiler, debugging facilities, and the editor.

The Compiler

The compiler transforms Common Lisp code into a form that is more efficient to execute
than interpreted code. Generally, compiled code behaves like its interpreted counterpart
but does not do as much checking for errors.

Another important difference between the interpreter and the compiler lies in the treatment
of declarations. Those declarations that are ignored by the interpreter are often used by
the compiler as advice in order to produce faster and more efficient code. This applies in
particular to type declarations.

The compiler is discussed in the chapter "Compiling Lisp Programs" of the Sun Common
Lisp User's Guide.

Debugging Facilities

Sun Common Lisp provides extensive facilities for debugging programs. When an error
or interrupt occurs, an interactive debugger is entered that allows the dynamic status of
the program to be examined. The debugger is described in the chapter "Debugging Lisp
Programs" of the Sun Common Lisp User's Guide.

The trace facility is a tool for debugging. It allows one or more functions to be traced
and provides the ability to perform certain actions at the time a function is called or at
the time it exits. The trace facility is described in the chapter "Tracing Functions" of the
Sun Common Lisp User's Guide.

The step facility allows the user to examine program behavior by stepping through the
evaluation of forms and functions. The step macro is intended for use on interpreted
functions. The step facility is described in the chapter "Stepping Through an Evaluation"
of the Sun Common Lisp User's Guide.

The inspector facility allows the user to inspect data structures. It displays the
components of the selected objects and allows them to be modified. The inspector facility
is described in the chapter "Inspecting Data Structures" of the Sun Common Lisp User's
Guide.

Environmental Features 24-3

Time

Common Lisp uses three formats to represent time:

In the Universal Time format, time is measured in seconds. The representation of an
interval of time is the nonnegative integer that specifies the number of seconds in the
interval. The representation of a particular time is the nonnegative integer that specifies
the number of seconds from midnight Janunary 1, 1900 GMT until the particular time.
Note that times prior to January 1, 1900 GMT cannot be represented.

In the Internal Time format, time is measured in implementation-dependent units. The
representation of an interval is the nonnegative integer that specifies the number of units
in the interval. The representation of a particular time is the number of units from an
arbitrary time (for example, when the machine was booted) until that particular time.

The Decoded Time format is used only for a particular time. This format has the
following nine fields:

• The second is an integer in the range [0,60).

• The minute is an integer in the range [0,60).

• The hour is an integer in the range [0,24).

• The date is an integer in the range [1,31]; the actual upper bound of the interval
depends on the month and year of the particular date.

• The month is an integer in the range [1,12].

• The year is a nonnegative integer. If the integer is less than 100, it indicates the year
in the range [current year - 50, current year + 50) with those last two digits.

• The day of the week is an integer in the range [0,6]; 0 means Monday, 1 means
'l'uesday, and so on.

• The daylight-saving-time flag, if non-nil, indicates that daylight saving time is in
effect.

• The time zone is an integer in the range [0,24); it is the number of hours from GMT
west to the particular time zone.

24-4 Sun Common Lisp Reference Manual

Categories of Operations

This section groups environmental features according to functionality.

Compilation

compile
compile-file

disassemble

These functions are used to compile and disassemble code.

Debugging Facilities

trace
untrace
step
inspect
apropos

These functions are used in debugging.

Documentation

documentation

apropos-lis t
arglist
describe
dribble

This function is used to add documentation to programs.

Editor

ed

This function invokes the editor.

Environmental Features 24-5

Time Functions

get-decoded-time
get-universal-time
decode-universal-time
encode-universal-time
internal-time-units-per-second

get-internal-run-time
get-internal-real-time
time
sleep

These functions provide timing facilities and information about time.

Other Environmental Functions

lisp-implementation-type
lisp-implementation-version
machine-type
machine-version
machine-instance
software-type

software-version
short-site-name
long-site-name
features
room

These constructs provide information about the current implementation and the
system on which Common Lisp is running.

Quitting Lisp

quit abort

These functions terminate the current invocation of Lisp.

24-6 Sun Common Lisp Reference Manual

abort

Purpose:

Syntax:

Remarks:

The function abort is used to exit from Lisp. It terminates the Lisp environment.
It immediately returns the user to the operating system environment.

abort ckoptional status [Function]

The optional argument status sets the exit status of the process that was running
Lisp. It defaults to o.
The function abort is an extension to Common Lisp.

See Also: quit

Environmental Features 24-7

apropos, apropos-list

Purpose:

Syntax:

Remarks:

The functions apropos and apropos-list are used to find all the symbols in the
current environment whose print names contain a specified string.

The function apropos prints the names of the symbols that were found and
information about the function definition and the value of those symbols on the
standard output. It returns no values.

The function apropos-list returns a list of the symbols that were found.

apropos string &:optional package

apropos-list string &:optional package

[Function]

[Function]

The string argument may be either a string or a symbol. If it is a symbol, the
symbol's print name is used.

If the package argument is specified, only symbols in that package will be found by
either function.

The standard output is defined by the value of the variable .standard-output •.

24-8 Sun Common Lisp Reference Manual

arglist

Purpose:

Syntax:

Remarks:

The function arglist returns a list that describes the arguments to a function.

arglist function [Function]

The function argument may be a function object or a symbol. If the argument
is a function or a symbol that has a function definition, a list that describes the
arguments of the function is returned. Otherwise, an error is signaled.

The function arglist is an extension to Common Lisp.

Environmental Features 24-9

compile

Purpose:

Syntax:

The function compile compiles an interpreted function in the current Lisp
environment.

The function compile produces a compiled code object from a lambda expression.
The lambda expression is specified by the definition argument if it is present;
otherwise the function definition associated with the symbol name is used.

If the name argument is non-nil, compile sets the function definition associated
with the specified symbol to the compiled code object and returns that symbol.
Otherwise if name is nil, compile returns the compiled code object.

compile name i:optional definition [Function]

Remarks: Use of the compiler is discussed further in the Sun Common Lisp User's Guide.

Examples: > (defun foo 0 "bar")
Faa

See Also:

> (compiled-function-p #'foo)
NIL
> (compile 'fool
;;; Compiling function FOO ... Rssembling ... emitting ... done.
Faa
> (compiled-function-p #'foo)
T
> (setf (symbol-function 'fool

(compile nil #' (lambda 0 "replaced"»)
;;; Compiling function ... assembling ... emitting ... done.
#<Compiled-Function 4BEE9F>
> (foo)
"replaced"

compile-file

24-10 Sun Common Lisp Reference Manual

compile-file

Purpose:

Syntax:

Remarks:

The function compile-file produces binary files from Lisp source files. It converts
the file specified by the input-pathname argument into compiled code. The
:output-file argument, if present, specifies where to put the compiled code.

compile-file input-pathname I:key : output-file
:messages
: warnings
: fast-entry
: tail-merge
:notinline
: target

[Function]

The binary file produced by compile-file overwrites any file with the same name.

H the :output-file option is specified, the corresponding argument should be a
pathname or a string describing a valid filename. The binary file that is produced
is given that name. H this option is not specified or if it is bound to nil, the binary
file in question is named in the following way. H the source file has the extension
. lisp, that extension is changed to . lbin if the value of the :target option is
the default or to .2bin if the value of the :target option is 68020. Otherwise the
extension . lbin or .2bin is concatenated to the end of the source filename.

The following keyword options are extensions to Common Lisp.

The keyword argument :messages controls the progress messages issued by the
compiler. A value of nil means issue no progress messages; otherwise the value
should specify a stream to which messages can be sent. The default value is t,
which sends the messages to the standard output.

The keyword argument :warnings controls the warnings issued by the compiler.
A value of nil means issue no warnings; otherwise the value must specify a stream
to which warnings can be sent. The default value is t, which causes the warnings
to be sent to the stream that is the value of *error-output*.

H the :fast-entry keyword argument has a non-nil value, the compiler does not
insert code to check the number of arguments on entry to a function with a fixed
number of arguments. Thus calls to functions compiled in this manner are slightly
faster. The default value of :fast-entry is nil.

H the :tail-merge keyword argument has a non-nil value, the compiler converts
tail-recursive calls to iterative constructions and thus eliminates the overhead of
some function calls. The default value of :tail-merge is t.

H the :notinline keyword argument has a non-nil value, the compiler behaves as if
all functions have been declared notinline. The default value of :notinline is nil.

Environmental Features 24-11

compile-file

See Also:

If the value of the :target option is 68020, the Compiler generates binary files
specifically for the M C68020 processor. Such files will run slightly faster in some
cases, but they will not run on MC68010 processors. The binary files produced
have a default extension of .2biD. The default value of the :target option is 68K.
In this case, the Compiler produces code that can be run on both the MC68010
and the MC68020 processors, and the default file extension is .1biD.

The use of compile-file is discussed further in the Sun Oommon Lisp User's
Guide.

compile

declare

24-12 Sun Common Lisp Reference Manual

decode-universal-time

Purpose:

Syntax:

The function decode-universal-time converts a time from Universal Time
format to Decoded Time format. It returns the time as nine values. These values
correspond to the second, minute, hour, day, month, year, day of the week, a flag
indicating whether the time is a daylight saving time value, and the time zone
respectively.

decode-universal-time universal-time &optional time-zone [Function]

Remarks: If the time-zone argument is not specified, the current time zone is used.

Examples: > (decode-universal-time 0 0)
o

See Also:

o
o
1
1
1900
o
NIL
o

enco de-universal-time

get-universal-time

Environmental Features 24-13

describe

Purpose: The function describe prints information about a given object on the standard
output. The function· describe returns no values.

Syntax: describe object [Function]

Remarks: The standard output is defined by the value of the variable *standard-output*.

Examples: > (describe • -)
#<Symbol 364FF5>

See Also:

[0: NAME] ,,_II
[1: VALUE] (DESCRIBE (QUOTE -»
[2: FUNCTION] #<Compiled-Function - 27780F>
[3: PLIST] NIL
[4: PACKAGE] #<Package "LISP" 2E0003>
> (describe :test)
#<Symbol 362DBD>

[0: NAME] "TEST"
[1: VALUE] :TEST
[2: FUNCTIONj Undefined
[3: PLIST] NIL
[4: PACKAGE] #<Package "KEYWORD" 2FE143>
> (describe "abc")
"abc"

inspect

24-14 Sun Common Lisp Reference Manual

disassemble

Purpose:

Syntax:

Remarks:

The function disassemble disassembles a compiled function and prints the
resulting code on the standard output. It returns nil.

disassemble name-or-compiled-function [Function]

If the argument is the name of an interpreted function, that function is first
compiled and then disassembled. The function definition that is attached to the
name as the content of the symbol's function cell is not changed.

The standard output is defined by the value of the variable *standard-output*.

En vironmental Features 24-15

documentation

Purpose:

Syntax:

Remarks:

The function documentation returns the documentation string of type doc-type
for a given symbol. If no documentation string is associated with the symbol,
documentation returns nil.

documentation symbol doc-type [Function]

The doc-type argument is a symbol. It can be one of the following types: variable,
function, structure, type, and setf.

The macro setf may be used with documentation to update the documentation
for a symbol.

Examples: > (defvar grz 0 "grz variable documentation")
GRZ
> (documentation 'grz 'variable)
"grz variable documentation"

24-16 Sun Common Lisp Reference Manual

dribble

Purpose:

Syntax:

Remarks:

The function dribble is used to produce a record of input and output.

If a pathname argument is specified, dribble records input and output in the file
indicated by the pathname.

If no argument is given, dribble terminates the recording of input and output and
closes the file it has been using.

dribble "optional pathname [Function]

Only one dribble file may be in use at a time.

The pathname argument may be a pathname, string, stream, or symbol.

Examples: > (dribble "/test/dribble-test")
;;; Dribble file #P"/test/dribble-test" started
T
> 'this-will-be-on-file
THIS-WILL-BE-ON-FlLE
> (dribble)
••• Dribble transcript to #P"/test/dribble-test" ended
T

Environmental Features 24-17

ed

Purpose:

Syntax:

Remarks:

The function ed invokes the editor.

H no arguments are specified or the optional argument is nil, the editor is entered
in the same state in which the user last left it.

ed ~optioDal z ~key :windows ~allow-other-keys [Function]

The optional argument z may be specified as a pathname, a string, or a symbol. H
either a pathname or a string is specified, ed allows the user to edit the contents
of the corresponding file. IT a symbol argument that represents the name of an
interpreted function is specified, ed pretty-prints the corresponding function into
a buffer that becomes the current buffer. The user may then edit the text of the
function definition. Any interpreted function that is edited must be reevaluated
in order for the changes to become effective in the current Lisp environment; the
edited version is treated as a new function definition.

By default, the editor starts up in the window environment, if one exists. Buffers
and window configurations that were established earlier in the current Lisp session
are restored.

H the :windows keyword argument is specified, it can have one of the following
values:

• nil
H the keyword argument has this value, the editor starts up as a terminal
editor.

• t
H the keyword argument has this value, the editor starts up in the available
window environment; if no window environment is available, an error is
signaled.

• : default

H the keyword argument has this value, the editor restarts in the available
window environment with a default configuration of windows. Changes made
to the window configuration in previous editing sessions are not retained. H no
window environment is available, an error is signaled.

H the editor is started up as a terminal editor, it cannot be used in the window
environment in subsequent editing sessions. Similarly, if the editor starts up in
the window environment, subsequent editing sessions must remain in the window
environment.

24-18 Sun Common Lisp Reference Manual

ed

The user can also specify any keyword options that are valid for the function
initialize-windows. These options are passed by ed to initialize-windows to
initialize the Window Tool Kit in an environment that supports a window system.
By invoking the function windows-available-p, the user can determine if a
window environment is available.

The editor, the Window Tool Kit, and the functions initialize-windows and
windows-available-p are described in the Sun Common Lisp User's Guide.

The keyword :windows and the keyword options passed to the function
initialize-windows are extensions to the Common Lisp function ed.

Environmental Features 24-19

encode-universal-time

Purpose: The function encode-universal-time converts a time from Decoded Time format
to Universal Time format and returns the resulting value.

Syntax: encode-universal-time second minute hour date month year
&optional time-zone

[Function]

Remarks: The time-zone argument defaults to the current time zone. This default value is
adjusted for daylight saving time, if necessary. If the time zone is specified, there
is no adjustment for daylight saving time.

Examples: > (encode-universal-time 0 0 0 1 1 1900 0)
o

See Also: decode-universal-time

get-decoded-time

24-20 Sun Common Lisp Reference Manual

Purpose:

Syntax:

Remarks:

The value of the variable *features* is a list of symbols. These symbols are the
names of features that are provided by the current implementation of Common
Lisp.

features [Variable]

The features :common-lisp, :compiler, and :lucid are some of the features that
are known. These symbols are in the keyword package.

The *features* variable is used by the #+ and #- syntax in the Lisp reader. The
constructs #+feature and i-feature control the reading of a given form based on the
presence or absence of the feature in the *features* list. The reader and the #+

and #- syntax are discussed in the chapter "Input/Output."

Environmental Features 24-21

get-decoded-time

Purpose: The function get-deco ded-time returns the current time in Decoded Time
format. It returns· the time as nine values. These values correspond to the second,
minute, hour, day, month, year, day of the week, a flag indicating whether the time
is a daylight saving time value, and the time zone respectively.

Syntax: get:-decoded-time

Examples: > (get-decoded-time)
10
35
15
13
5
1986
1
T
8

See Also: decode-universal-time

encode-universal-iime

;run at Tue May 13 15:35:10 PDT 1986

24-22 Sun Common Lisp Reference Manual

[Function]

get-internal-real-time

Purpose:

Syntax:

The function get-internal-real-time returns the current time in Internal Time
format. The result is an integer.

get-internal-real-time [Function]

Environmental Features 24-23

get-internal-run-time

Purpose:

Syntax:

The function get-internal-run-time returns the current run time in Internal
Time format. The result is an integer.

get-internal-run-time [Function]

24-24 Sun Common Lisp Reference Manual

get-universal-time

Purpose:

Syntax:

The function get-universal-time returns the current time in Universal Time
format. The result is an integer.

get-universal-time [Function]

Environmental Features 24-25

inspect

Purpose:

Syntax:

Remarks:

See Also:

The function inspect is used for examining data structures. When called on an
object, inspect prints information about the object and its components on the
standard output. This function gives the user interactive control over what is
printed out and allows the user to modify the given object. It returns as its value
the last object examined.

inspect object [Function]

The standard output is defined by the value of the variable *standard-output*.

The inspect facility is described in the Sun Common Lisp User's Guide.

describe

24-26 Sun Common Lisp Reference Manual

internal-time-units-per-second

Purpose:

Syntax:

Remarks:

The value of the constant internal-time-units-per-second is an integer that
defines the number of internal time units that are in one second.

internal-time-units-per-second [Constant]

These units form the basis of the Internal Time format representation.

Environmental Features 24-27

lisp-im plementation-type, lisp-implementation-version

Purpose:

Syntax:

The functions lisp-implementation-type and lisp-implementation-version
return strings that identify the current implementation of Common Lisp.

The function lisp-implementation-type returns a generic name for the Lisp.

The function lisp-implementation-version returns a detailed version name for
the Lisp.

lisp-implementation-type

lisp-implementation-version

[Function]

[Function]

Examples: > (lisp-implementation-type)
"Sun Common Lisp"

24-28 Sun Common Lisp Reference Manual

machine-type, machine-version, machine-instance

Purpose:

Syntax:

The functions machine-type, machine-version, and machine-instance return
strings that identify the machine on which the current instance of Common Lisp is
runnIng.

The function machine-type returns a generic name for the hardware.

The function machine-version returns a detailed version name for the hardware.

The function machine-instance returns the name of the specific machine.

machine-type

machine-version

machine-instance

[Function]

[Function]

[Function]

Environmental Features 24-29

quit

Purpose:

Syntax:

Remarks:

See Also:

The function quit is used to exit from Lisp. It terminates the Lisp environment.

quit "optional status [Function]

The optional argument status sets the exit status of the process that was running
Lisp. It defaults to o.
The function quit uses the special form throw to exit to the top level of Lisp
before returning to the operating system environment. Thus, if quit is called
from inside the special form unwind-protect, all the cleanup forms specified by
the invocation of unwind-protect are executed before returning to the operating
system environment. Thus, quit can be used to close all files before exiting Lisp.

The function quit is an extension to Common Lisp.

abort

throw

unwind-protect

24-30 Sun Common Lisp Reference Manual

room

Purpose:

Syntax:

Remarks:

The function rooUl prints information about the current state of internal memory
on the standard output.

If the optional argument is specified as nil, a terse summary is printed. If the
optional argument is non-nil, a verbose description is given. If no argument is
specified, room prints a moderate amount of information.

room &opt ional x [Function]

The standard output is defined by the value of the variable *standard-output*.

Memory management is discussed in the Sun Common Lisp User's Guide.

Environmental Features 24-31

short-site-name, long-site-name

Purpose:

Syntax:

Remarks:

The functions short-site-name and long-site-name return strings that identify
the location of the machine on which the current instance of Common Lisp is
running.

The function short-site-name returns a short or abbreviated name.

The function long-site-name returns the full name.

short-site-name

long-site-name

These strings are set by the user at installation time.

[Function]

[Function]

24-32 Sun Common Lisp Reference Manual

sleep

Purpose: The function sleep causes Common Lisp to pause for at least the specified number
of seconds.

The function sleep returns nil.

Syntax: sleep seconds

Remarks: The seconds argument is an integer.

Examples: > (sleep 1)
NIL

[Function]

Environmental Features 24-33

software-type, software-version

Purpose: The functions software-type and software-version return strings that identify
the software on which Common Lisp is running.

The function software-type returns a generic name for the software.

The function software-version returns a detailed version name for the software.

Syntax: software-type

software-version

Examples: > (software-type)
"UNIX"

24-34 Sun Common Lisp Reference Manual

[Function]

[Function]

step

Purpose:

Syntax:

Remarks:

The step macro is a debugging tool that examines the behavior of programs by
stepping through the evaluation of forms and functions.

The step macro evaluates a given form or function and allows the user to intervene
during the course of evaluation. It returns the result of evaluating the form.

step form I {function-name} + [Macro]

The function-name argument is an extension to Common Lisp.

The step facility is described in the Sun Common Lisp User's Guide.

Environmental Features 24-35

time

Purpose:

Syntax:

Remarks:

The macro time evaluates its argument and returns the result. It prints timing
statistics about the execution of the form on the stream that is the value of the
variable *trace-output*.

time form [Macro]

The accuracy of the results depends on the accuracy of the corresponding functions
provided by the underlying operating system.

24-36 Sun Common Lisp Reference Manual

trace, untrace

Purpose:

Syntax:

Remarks:

The macros trace and untrace control the invocation of the trace facility.

The macro trace with arguments trace-spec traces the specified functions. It
returns as its value a list of the function names. If trace is called with no
arguments, a list of all functions that are currently being traced is returned.

The macro untrace with arguments function-name untraces the specified functions.
The macro untrace with no arguments untraces all the functions currently being
traced.

If a function is already being traced, trace calls untrace before starting the new
trace.

Calling trace on a macro traces the macro expansion, not the evaluation of the
form. Special forms cannot be traced.

trace { trace-spec} *
untrace {function-name} *

[Macro]

[Macro]

Each trace-spec argument is the name of a function or a list consisting of the
function name followed by keyword options. These keyword options are extensions
to Common Lisp. They describe the circumstances under which the function is to
be traced.

The trace facility and the use of its keyword extensions are described further in
the Sun Common Lisp User's Guide.

See Also: step

Environmental Features 24-37

24-38 Sun Common Lisp Reference Manual

Appendix A. Alphabetical Listing of Common Lisp
Functions

This appendix is a listing of all Common Lisp functions, macros, constants, variables, and
special forms, including all extensions to Common Lisp described in this rnanual.

* &rest numbers [Function]

* [Variable]

** [Variable]

*** [Variable]

+ &rest numbers [Function]

+ [Variable]

++ [Variable]

+++ [Variable]

- number &rest more-numbers [Function]

[Variable]

I number &rest more-numbers [Function]

I [Variable]

II [Variable]

III [Variable]

I = number &rest more-numbers [Function]

1+ number [Function]

1- number [Function]

< number &rest more-numbers [Function]

< = number &rest more-numbers [Function]

= number &rest more-numbers [Function]

> number &rest more-numbers [Function]

> = number &rest more-numbers [Function]

abort &optional status [Function]

Common Lisp Functions A-I

abs number

aeons key datum a-list

aeos number

aeosh number

adjoin item list "key : test : test-not : key

adjust-array array new-dimensions &key : element-type

adjustable-array-p array

alpha-ehar-p char

alphanumeriep char

and {form}*

append "rest lists

apply function arg &rest more-args

: initial-element

: initial-contents
:fill-pointer

:displaced-to

:displaced-index-offset

applyhook function args evalhookfn applyhookfn &optional env

.applyhook.

apropos string &optional package

apropos-list string "optional package

aref array &rest subscripts

array-dimension array axis-number

array-dimension-limit

array-dimensions array

array-element-type array

array-has-fill-pointer-p array

array-in-bounds-p array &rest subscripts

array-rank array

array-rank-limit

array-row-major-index array &rest subscripts

array-total-size array

A-2 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

array-total-size-limit

arrayp object

ash integer count

asin number

asinh number

assert test-form [({place }*) [format-string {arg}*]]

assoc item a-list &key : test : test-not : key

assoc-if predicate a-list

assoc-if-not predicate a-list

assq object a-list

atan numberl &optional number2

atanh number

atom object

bit bit-array &rest subscripts

bit-and bit-arrayl bit-array2 "optional result-bit-array

bit-andcl bit-arrayl bit-array2 &optional result-bit-array

bit-ande2 bit-arrayl bit-array2 &optional result-bit-array

bit-eqv bit-arrayl bit-array2 &optional result-bit-array

bit-ior bit-arrayl bit-array2 &optional result-bit-array

bit-nand bit-arrayl bit-array2 &optional result-bit-array

bit-nor bit-arrayl bit-array2 &optional result-bit-array

bit-not bit-array &optional result-bit-array

bit-orel bit-arrayl bit-array2 &optional result-bit-array

bit-ore2 bit-arrayl bit-array2 &optional result-bit-array

bit-veetor-p object

bit-xor bit-arrayl bit-array2 &optional result-bit-array

block name {form} *
boole op integer 1 integer 2

boole-l

boole-2

[Constant]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Constant]

[Constant]

Common Lisp Functions A-3

boole-and

boole-andcl

boole-andc2

boole-cl

boole-c2

boole-clr

boole-eqv

boole-ior

boole-nand

boole-nor

boole-orcl

boole-orc2

boole-set

boole-xor

both-case-p char

boundp symbol

break &optional format-string &rest args

* break-on-warnings*

butlast list &optional n

byte size position

byte-position bytespec

byte-size bytespec

caaaar list

caaadr list

caaar list

caadar list

caaddr list

caadr list

caa~ list

cadaar list

A -4 Sun Common Lisp Reference Manual

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

cadadr list

cadar list

caddar list

cadddr list

caddr list

cadr list

c all-argument s-limit

car list

case keyform {({({key}*) I key} {form}*)}*

catch tag {form} *

cease keyplace {({({key}*) I key} {form}*)}*

cdaaar list

cdaadr list

cdaar list

cdadar list

cdaddr list

cdadr list

cdar list

cddaar list

cddadr list

cddar list

cdddar list

cddddr list

cdddr list

cddr list

cdr list

ceiling number loptional divisor

cerror continue-format-string error-format-string &rest args

char string index

char-bit char name

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Macro]

[Special Form]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-5

char-bits char

char-bits-limit

char-co de char

char-co de-limit

char-control-bit

char-downcase char

char-equal character &rest more-characters

char-font char

char-font-limit

char-greaterp character &rest more-characters

char-hyper-bit

char-int char

char-Iessp character &rest more-characters

char-met a-bit

char-name char

char-not-equal character &rest more-charaders

char-not-greaterp character &rest more-characters

char-not-Iessp character &rest more-characters

char-super-bit

char-upcase char

char / = character &rest more-characters

char< character &rest more-characters

char< = character &rest more-characters

char= character &rest more-characters

char> character &rest more-characters

char> = character &rest more-characters

character object

characterp object

check-type place typespec &optional string

cis radians

A -6 Sun Common Lisp Reference Manual

[Function]

[Constant]

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Constant]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

clear-input "optional input-stream

clear-output "optional output-stream

close stream "key : abort

clrhash hash-table

code-char code "optional (bits 0) (font 0)

coerce obiect result-type

co:rm:nonp obiect

compile name "optional definition

compile-file input-pathname "key : output-file
:messages

compiled-function-p object

: warnings
:fast-entry
: tail-merge

:notinline
:target

compiler-let ({var I (var value)}*) {form}*

complex realpart "optional imagpart

complexp obiect

concatenate result-type "rest sequences

cond {(test {form}*)}*

conjugate number

cons obiect1 obiect2

consp obiect

constantp obiect

copy-alist list

copy-list list

copy-readtable "optional from-readtable to-readtable

copy-seq sequence

copy-symbol symbol "opt ional copy-props

copy-tree obiect

cos radians

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-7

cosh number

count item sequence It:key :from-end :test :test-not

:start :end :key

count-if test sequence kkey : from-end : start : end : key

count-if-not test sequence kkey : from-end : start : end : key

ctypecase keyplace {(type {form}*)}*

debug-io

decache-eval

decf place [delta]

~eclare {decl-spec} *

decode-float float

decode-universal-time universal-time koptional time-zone

default-pathname-defaults

defconstant name initial-value [documentation]

define-function name function

define-macro name Junction

define-modify-macro name lambda-list function [documentation]

define-setf-metho d access-fn lambda-list
{declaration I documentation} * {form} *

defmacro name lambda-list {declaration I documentation} * {form} *

defparameter name initial-value [documentation]

defsetf access-fn {update-fn [documentation] I
lambda-list (store-variable)
{declaration I documentation}* {form}*}

defstruct name-and-options [documentation] {slot-description} *

deftype name lambda-list {declaration I documentation} * {form} *

defun name lambda-list {declaration I documentation} * {form} *

defvar name [initial-value [documentation]]

delete item sequence kkey : from-end : test : test-not
:start :end :count :key

delete-duplicates sequence It:key : from-end : test : test-not
:start :end :key

A -8 Sun Common Lisp Reference Manual

[Function]

[Function]

[Functi~n]

[Function]

[Macro]

[Variable]

[Function]

[Macro]

[Special Form]

[Function]

[Function]

[Variable]

[Macro]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

delete-file file

delete-if test sequence &key : from-end : start
:end :count :key

delete-if-not test sequence &key : from-end : start
:end :count :key

delete-package package

denominator rational

deposit-field newbyte bytespec integer

describe object

digit-char weight &optional (radix 10) (font 0)

digit-char-p char &optional (radix 10)

directory pathname

directory-namestring pathname

disassemble name-or-compiled-function

do ({var I (var [init [step]])}*) (end-test {form}*)
{declaration} * {tag I statement} *

do* ({var I (var [init [step]])}*) (end-test {form}*)
{ declaration} * {tag I statement} *

do-alI-symbols (var [result-form]) {declaration}* {tag I statement}*

do-external-symbols (var [package [result-form]]) {declaration}*
{tag I statement}*

do-symbols (var [package [result-form]]) {declaration}*
{tag I statement} *

documentation symbol doc-type

doUst (var listform [result]) {declaration}* {tag I statement}*

dotimes (var countform [result]) {declaration} * {tag I statement} *

double-Boat-epsilon

double-Boat-negative-epsilon

dpb newbyte bytespec integer

dribble &optional pathname

ecase keyform {({({key}*) I key} {form}*)}*

ed &optional x tkey :windows tallow-other-keys

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Macro]

[Macro]

[Constant]

[Constant]

[Function]

[Function]

[Macro]

[Function]

Common Lisp Functions A-9

eighth list

elt sequence index

encode-universal-time second minute hour date month year
&optional time-zone

endp list

enough-namestring pathname &optional defaults

eq x y

eql x y

equal x y

equalp x y

error format-string ckrest args

error-output

etypecase keyform {(type {form}*)}*

eval form

eval-when ({situation}*) {form}*

evalhook

evalhook form evalhookfn applyhookfn &:optional env

evenp integer

every predicate sequence &rest more-sequences

exp number

export symbols &opt ional package

expt base-number power-number

fboundp symbol

fceiling number &optional divisor

features

moor number &optional divisor

fifth list

file-author file

file-length file-stream

file-namestring pathname

A -10 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Macro]

[Function]

[Special Form]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

file-position file-stream &optional position

file-write-date file

fill sequence item &key : start : end

fill-pointer vector

find item sequence &key :from-end :test :test-not
:start :end :key

find-all-symbols string-or-symbol

find-if test sequence &key : from-end : start : end : key

find-if-not test sequence &key : from-end : start : end : key

find-package name

find-symbol string &optional package

finish-output &optional output-stream

first list

fixnump object

:Het ({ (name lambda-list {declaration I documentation}*
{form}*)}*) {form}*

:Hoat number &optional float

:Hoat-digits float

:Hoat-precision float

:Hoat-radix float

:Hoat-sign float1 &optional float2

:Hoatp object

:Hoor number &optional divisor

fmakunbound symbol

force-output &optional output-stream

format destination format-control-string &rest arguments

fourth list

fresh-line &optional output-stream

fround number &optional divisor

ftruncate number &optional divisor

funcall function &rest args

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-II

function function

functionp object

gcd &rest integers

gensym &optional x

gentemp loptional prefix package

get symbol indicator &optional default

get-decoded-time

get-dispatch-macro-character disp-char sub-char

get-internal-real-time

get-internal-run-time

&optional readtable

get-macro-character char &optional readtable

get-ou tput-stream-s tring string- output-stream

get-properties place indicator-list

get-setf-method form

get-setf-method-multiple-value form

get-universal-time

getf place indicator It:optional default

gethash key hash-table &optional default

go tag

graphic-char-p char

grindef lrest function-name

hash-table-count hash-table

hash-table-p object

host-namestring pathname

identity object

if test then [else]

ignore-extra-right-parens

imagpart number

import symbols &optional package

A-12 Sun Common Lisp Reference Manual

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Variable]

[Function]

[Function]

in-package package-name &key : nicknames : use

incf place [delta]

input-stream-p stream

inspect object

int-char integer

integer-decode-Hoat float

integer-length integer

integerp object

intern string &optional package

internal-time-units-per-second

intersection listl list2 &key : test : test-not : key

isqrt integer

keywordp object

labels ({ (name lambda-list {declaration I documentation} *
{form}*)}*) {form}*

lambda-list-keywords

lambda-parameters-limit

last list

lcm integer &rest more-integers

ldb bytespec integer

ldb-test bytespec integer

ldiff list sublist

least-nega tive-dou ble-Hoat

least-negative-Iong-Hoat

least-negative-short-float

least-negative-single-float

least-positive-double-float

least-positive-Iong-float

least-positive-short-float

least-positive-single-float

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Special Form]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

Common Lisp Functions A -13

length sequence

let ({var I (var value)} *) {declaration} * {form} *

let. ({var I (var value)}*) {declaration}* {form}*

lisp-implementation-type

lisp-implement a tion-version

list "rest objects

list. object "rest more-objects

list-alI-packages

list-length list

list-nreverse list

list-reverse list

listen "optional input-stream

listp object

load filename "key :verbose :print : if-does-not-exist

.load-verbose.

locally {declaration}* {form}*

log number "optional base

logand "rest integers

logandc1 integerl integer2

logandc2 integerl integer2

logbitp index integer

logcount integer

logeqv "rest integers

logior "rest integers

lognand integer 1 integer 2

lognor integer 1 integer 2

lognot integer

logorc1 integerl integer2

logorc2 integer 1 integer 2

logtest integerl integer2

A -14 Sun Common Lisp Reference Manual

[Function]

[Special Form]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

logxor &rest integers

long-float-epsilon

long-float-negative-epsilon

long-site-name

loop {form}*

lower-case-p char

machine-instance

machine-type

machine-version

macro-function symbol

macroexpand form &optional env

macroexpand-l form &optional env

macroexpand-hook

macrolet ({ (name lambda-list {declaration I documentation} *
{form}*)}*) {form}*

make-array dimensions &key : element-type : ini tial-element
:initial-contents :adjustable
:fill-pointer :displaced-to
:displaced-index-offset

make-broadcast-stream &rest streams

make-char char &optional (bits 0) (font 0)

make-concatenated-stream &rest streams

make-dispatch-macro-character char &optional
non-terminating-p readtable

make-echo-stream input-stream output-stream

make-hash-table &key : test : size
:rehash-size :rehash-threshold

make-list size &key : initial-element

make-package package-name &key :nicknames :use

make-pathname &key :host :device :directory :name
:type :version :defaults

make-random-state &optional state

make-sequence type size tkey : initial-element

[Function]

[Constant]

[Constant]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A -15

make-string size &key : initial-element

make-string-input-stream string &optional start end

make-string-output-stream &optional string

make-symbol print-name

make-synonym-stream symbol

make-two-way-stream input-stream output-stream

makunbound symbol

map result-type function sequence &rest more-sequences

mapc function list &rest more-lists

mapcan function list &rest more-lists

mapcar function list &rest more-lists

mapcon function list &rest more-lists

maphash function hash-table

mapl function list &rest more-lists

maplist function list &rest more-lists

max number &rest more-numbers

member item list &key :test :test-not :key

member-if predicate list &key : key

member-if-not predicate list &key : key

memq object list

merge result-type sequencel sequence2 predicate &key : key

merge-pathnames pathname &optional defaults default-version

min number &rest more-numbers

minusp number

mismatch sequencel sequence2 &key : from-end : test : test-not
:key :startl :start2
:endl :end2

mod number divisor

modules

most-negative-double-float

A -16 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Constant]

most-negative-fixnum

most-negative-Iong-float

most-negative-short-float

most-negative-single-float

most-positive-double-float

most-p os it ive-fixnum

most-positive-Iong-float

most-positive-short-float

most-positive-single-fioat

multiple-value-bind ({var} *) values-form {declaration} * {form} *
multiple-value-call function {form} *
multiple-value-list form

multiple-value-prog1 form {form} *
multiple-value-setq vars form

multiple-values-limit

name-char name

namestring pathname

nbutlast list &optional n

nconc &rest lists

nil

nintersection list1 list2 &key : test : test-not : key

ninth list

not x

notany predicate sequence &rest more-sequences

notevery predicate sequence &rest more-sequences

nreconc list1 list2

nreverse sequence

nset-difference list1 list2 &key :test :test-not :key

nset-exclusive-or list1 list2 &key : test : test-not : key

nstring-capitalize string &key : start : end

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Macro]

[Special Form]

[Macro]

[Special Form]

[Macro]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A -17

nstring-downcase string &key : start :end

nstring-upcase string &key : start : end

nsublis a-list tree &key :test :test-not :key

nsubst new old tree &key : test : test-not : key

nsubst-if new test tree &key :key

nsubst-if-not new test tree &key :key

nsubstitute newitem olditem sequence &key : from-end : test
:test-not :start

:end :count :key

nsubstitute-if newitem test sequence &key : from-end
:start :end
:count :key

nsubstitute-if-not newitem test sequence &key : from-end

:start :end
:count :key

nth n list

nthc dr n list

null object

numberp object

numerator rational

nunion list1 list2 &key : test : test-not : key

oddp integer

open filename &key :direction :element-type

:if-exists :if-does-not-exist

or {form}*

output-stream-p stream

package

package-name package

package-nicknames package

package-shadowing-symbols package

package-use-list package

package-used-by-list package

packagep object

A -18 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

pairlis keys data "optional a-list

parse-integer string "key : start : end : radix : junk-allowed

parse-namestring thing "optional host defaults
"key :start :end :junk-allowed

pathname pathname

pathname-device pathname

pathname-directory pathname

pathname-host pathname

pathname-name pathname

pathname-type pathname

pathname-version pathname

pathnamep object

peek-char "optional peek-type input-stream eo/-error-p
eo/-value recursive-p

phase number

pi

plusp number

pop place

position item sequence "key :from-end :test :test-not

:start :end :key

position-if test sequence &key : from-end : start : end : key

position-if-not test sequence &key : from-end
:start :end :key

pp-line-Iength

pprint object "optional output-stream

prin! object &optional output-stream

prin!-to-string object

princ object &optional output-stream

princ-to-string object

print object &optional output-stream

print-array

print-base

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

Common Lisp Functions A-!9

print-case

print-circle

print-escap e

print-gensym

print-Iength

print-Ievel

print-pretty

print-radix

print-structure

probe-file file

proclaim ded-spec

prog ({ var I (var [init])} *) {declaration} * {tag I statement} *

prog* ({ var I (var [in it])} *) {declaration} * {tag I statement} *

progl first {form}*

prog2 first second {form}*

progn {Jonn}*

progv symbols values {form} *

prompt

provide module-name

psetf {place newvalue} *

psetq {var form}*

push item place

pushnew item place "key : test : test-not : key

query-io

quit "optional status

quote obiect

random number "optional state

random-state

random-state-p obiect

rassoc item a-list "key : test : test-not : key

A-20 Sun Common Lisp Reference Manual

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Special Form]

[Special Form]

[Variable]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Variable]

[Function]

[Special Form]

[Function]

[Variable]

[Function]

[Function]

rassoc-if predicate a-list

rassoc-if-not predicate a-list

rational number

rationalize number

rationalp object

read &optional input-stream eo/-error-p eo/-value recursive-p

read-base

read-byte binary-input-stream &optional eo/-error-p eo/-value

read-char &optional input-stream eo/-error-p eo/-value recursive-p

read-char-no-hang &optional input-stream eo/-error-p
eo/-value recursive-p

read-default-float-format

read-delimited-list char &optional input-stream recursive-p

read-from-string string &optional eo/-error-p eo/-value
&key :start :end :preserve-whitespace

read-line &optional input-stream eo/-error-p eo/-value recursive-p

read-preserving-whitespace &optional input-stream eo/-error-p
eo/-value recursive-p

tread-suppress *

readtable

readtablep object

realpart number

redefinition-action

reduce function sequence &key : from-end : start
:end :initial-value

rem number divisor

remf place indicator

remhash key hash-table

remove item sequence &key : from-end : test : test-not
:start :end :count :key

remove-duplicates sequence &key :from-end :test :test-not
:start :end :key

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

Common Lisp Functions A-21

remove-if test sequence kkey : from-end : start
:end :count :key

remove-if-not test sequence &key : from-end : start
:end :count :key

remprop symbol indicator

rename-file file new-name

rename-package package new-name koptional new-nicknames

replace sequencel sequence2 &key : start 1 : end1
:start2 :end2

require module-name koptional pathname

rest list

return [result]

return-from name [result]

revappend list1 list2

reverse sequence

room koptional x

rotatef {place} *
round number koptional divisor

rplaca cons object

rplacd cons object

sbit simple-bit-array krest subscripts

scale-float float integer

schar simple-string index

search sequence1 sequence2 kkey :from-end :test :test-not
:key :startl :start2
:end1 :end2

second list

set symbol value

set-char-bit char name logical-value

set-difference list1 list2 kkey : test : test-not : key

set-dispatch-macro-character disp-char sub-char function
koptional readtable

set-exclusive-or list1 list2 kkey : test : test-not : key

A-22 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Special Form]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

set-macro-character char function
"optional non-terminating-p readtable

set-syntax-from-char to-char from-char

setf {place newvalue} *

setq {var form}*

seventh list

"optional to-readtable from-readtable

shadow symbols "optional package

shadowing-import symbols "optional package

shiftf {place} + newvalue

short-Boa t-epsilon

short-floa t-nega tive-epsilon

short-site-name

signum number

simple-bit-vector-p object

simple-string-p object

simple-vector-p object

sin radians

single-Boa t-epsilon

single-Boat-negative-epsilon

sinh number

sixth list

sleep seconds

software-type

software-version

some predicate sequence &rest more-sequences

sort sequence predicate "key : key

source-code function

special-form-p symbol

sqrt number

stable-sort sequence predicate &key : key

[Function]

[Function]

[Macro]

[Special Form]

[Function]

[Function]

[Function]

[Macro]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-23

standard-char-p char

standard-input

standard-output

step form I {function-name} +

stream-element-type stream

streamp obiect

string x

string-capitalize string &key : start : end

string-char-p char

string-downcase string &key : start : end

string-equal stringl string2 &key : start1 : end1 : start2 : end2

string-greaterp stringl string2 &key : start 1 : end1 : start2 : end2

string-left-trim character-bag string

string-Iessp stringl string2 &key : start1 : end1 : start2 : end2

string-not-equal stringl string2 &key : start1 : end1 : start2 : end2

string-not-greaterp siringl string2 &key : starti : endi : start2 : end2

string-not-Iessp stringl string2 &key : start1 : end1 : start2 : end2

string-right-trim character-bag string

string-trim character-bag string

string-upcase string &key : start : end

string/= stringl string2 &key : start1 : end1 : start2 : end2

string< stringl string2 &key : start1 : end1 : start2 : end2

string< = stringl string2 &key : start1 : end1 : start2 : end2

string= stringl string2 &:key : start 1 : end1 : start2 : end2

string> stringl string2 &key : start1 : end1 : start2 : end2

string> = stringl string2 &key : start1 : end1 : start2 : end2

stringp obiect

sublis a-list tree &key : test : test-not : key

subseq sequence start &optional end

subsetp listl list2 &key :test :test-not :key

A -24 Sun Common Lisp Reference Manual

[Function]

[Variable]

[Variable]

[Macro]

[Function]

[Function]

rp . 1
l ·unctwnJ

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

subst new old tree &key : test : test-not : key

subst-if new test tree &key : key

subst-if-not new test tree &key : key

substitute newitem olditem sequence &key : from-end : test
:test-not :start

:end :count :key

substitute-if newitem test sequence &key : from-end
:start :end

:count :key

substitute-if-not newitem test sequence &key : from-end
:start :end
:count :key

subtypep typel type2

svref simple-vector index

sxhash object

symbol-function symbol

symbol-name symbol

symbol-package symbol

symbol-plist symbol

symbol-value symbol

symbolp object

t

tagbody {tag I statement}*

tailp sublist list

tan radians

tanh number

tenth list

terminal-io

terpri &optional output-stream

the value-type form

third list

throw tag result

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Special Form]

[Function]

[Special Form]

Common Lisp Functions A -25

time form

trace { trace-spec} *

trace-output

tree-equal object1 object2 "key : test : test-not

truename pathname

truncate number "optional divisor

type-of object

typecase keyform {(type {form}*)}*

typep object type-specifier

unexport symbols "optional package

unintern symbol "optional package

union list1 list2 "key : test : test-not : key

unless test {form}*

unread-char character "optional input-stream

untrace {function-name}*

unuse-paclc.age packages-to-unuse &optional package

unwind-protect protected-form {cleanup-form}*

upper-case-p char

use-package packages-to-use "optional package

user-homedir-pathname "optional host

values "rest args

values-list list

vector "rest objects

vector-pop vector

vector-push new-element vector

vector-push-extend new-element vector "optional extension

vectorp object

warn format-string &rest args

when test {form}*

A-26 Sun Common Lisp Reference Manual

[Macro]

[Macro]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Macro]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

with-input-from-string (var string {keyword vaLue }*)
{declaration}* {form}*

with-open-file (stream fiLename {options} *) {declaration} * {form} *

with-open-stream (var stream) {decLaration} * {form} *

with-output-to-string (var [string]) {declaration}* {form}*

write objectlkey :stream :escape :radix :base
:circle :pretty :level :length
:case :gensym :array :structure

write-byte integer binary-output-stream

write-char character loptional output-stream

write-line string loptional output-stream &key : start : end

write-string string loptional output-stream lkey : start : end

write-to-string object lkey : escape : radix : base
:circle :pretty :level :length
:case :gensym :array :structure

y-or-n-p loptional format-controL-string &rest arguments

yes-or-no-p loptional format-controL-string lrest arguments

zerop number

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-27

A-28 Sun Common Lisp Reference Manual

Appendix B. Extensions to Common Lisp

This appendix is a listing of the extensions to Common Lisp contained in this manual.
They are categorized according to use.

Note: These extensions are not part of the Common Lisp specification.

Program Structure

define-function name function

redefinition-action

Macros

define-macro name function

The Evaluator

decache-eval

grindef &rest function-name

prompt

source-code function

Packages

delete-package package

[Function]

[Variable]

[Function]

[Function]

[Macro]

[Variable]

[Function]

[Function]

Extensions to Common Lisp B-1

Numbers

fixnump object

Lists

assq object a-list

list-nreverse list

list-reverse list

memq object list

Input/Output

* ignore-extra-right-parens *

print-structun?

pp-line-Iength

Environmental Features

abort ctoptional status

arglist function

quit ctoptional status

B-2 Sun Common Lisp Reference Manual

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]
r TT • " , l vanaoleJ

[Variable]

[Function]

[Function]

[Function]

- 7-7, 12-13
, 1-7,21-15
(21-15
) 21-15
• 7-5, 12-11
•• 7-5
•• * 7-5
+ 7-6, 12-12
++ 7-6
+++ 7-6
,6-7,21-16
,. 6-7, 21-16
,@ 6-7, 21-16
/ 7-8,12-14
/ / 7-8
/ / / 7-8
/= 12-17
1- 12-15
1+ 12-15
; 1-7,21-15
< 12-16
<= 12-16
= 12-17
> 12-16
>= 12-16
~ 1-7,21-16,21-17
~' 1-7, 21-18
~(21-18
~) 21-20
~. 21-18
~+ 21-20
~, 21-18
~- 21-20
~. 21-18
~: 21-18
~< 21-20
~B 21-19
~C 21-19

#n= 21-19
#nA 21-19
#nR 21-19
#n# 21-19
#0 21-19
#S 21-19
#X 21-19
#1 21-20
#\ 21-17
H 21-15
""(21-34

"". 21-33
""< 21-36
",,1 21-33
""A 21-23
""B 21-25
""C 21-28
""D 21-24
""E 21-29
""F 21-28
""G 21-30
""Newline 21-32
",,0 21-25
""p 21-27
""R 21-26, 21-27
""S 21-24
""T 21-33
""X 21-26
""[21-34
",,$ 21-31
""% 21-32
",,&t. 21-32
""{ 21-35
"""" 21-32
"" A 21-37
""I 21-32
1 1-7
, 6-6, 21-15

Index

Index X-I

A

abort 24-7
aborting Lisp 24-6
abs 12-18
aeons 1S-9
aeos 12-20
aeosh 12-78
adjoin 1S-10
adjust-array 16-7
adjustable-array-p 16-10
&allow-other-keys 4-11,6-6
alpha-ehar-p 13-7
alphabetic characters 13-4
alphanumeriep 13-8
and 9-S
anonymous functions 4-9
append 1S-11
apply 4-1S
applyhook 7-11
.applyhook. 7-13
apropos 24-8
apropos-list 24-8
aref 16-11
arglist 24-9
arithmetic operations 12-8
array-dimension 16-12
array-dimension-limit 16-13
array-dimensions 16-14
array-element-type 16-15
array-has-fill-pointer-p 16-16
array-in-bounds-p 16-17
array-rank 16-18
array-rank-limit 16-19
array-row-major-index 16-20
array-total-size 16-21
array-total-size-limit 16-22
arrayp 16-23
arrays 2-6, 16-3

accessing elements of 16-S, 16-6
adjustable 16-3
attributes 16-6
creating 16-S
dimensions 16-3
displaced 16-3

X -2 Sun Common Lisp Reference Manual

fill pointers 2-6, 16-3
general 2-6, 16-3
indexing 16-3
logical operations on 16-6
modifying 16-S
multidimensional 16-3
predicates 16-S
printed representation of 2-12, 21-9
rank 16-3
simple 2-7, 16-4
specialized 2-6, 16-3
subscripts 16-3
vectors 16-3

ASCII characters 13-3
ash 12-19
asin 12-20
asinh 12-78
assert 23-S
assignment 2-S, S-S, S-9
assoe 1S-12
assoe-if 1S-12
assoe-if-not 1S-12
association lists 2-6, 1S-S

operations on 1S-8
assq 1S-13
atan 12-20
atanh 12-78
atom 1S-14
&aux 4-11, 6-6

B

backquote 6-6,21-1S
Backus-N aur form 1-5
bignums 2-3, 12-S
binary stream input 21-43
binary stream output 21-44
bindings 4-6

dynamic 4-6
function definition 4-14, 5-6
lexical 4-6,4-11
scope of 4-6
shadowing 4-6
variables 4-14, 5-6

bit 16-24
bit arrays

logical operations on 16-6
bit vectors 2-6, 16-3

logical operations on 16-6
printed representation of 2-13, 21-9

bit-and 16-25
bit-andcl 16-25
bit-andc2 16-25
bit-eqv 16-25
bit-ior 16-25
bit-nand 16-25
bit-nor 16-25
bit-not 16-27
bit-orcl 16-25
bit-orc2 16-25
bit-veetor-p 16-28
bit-xor 16-25
bits attribute 13-4
block 5-11
blocks 5-6

implicit 5-6
BNF 1-5
&body 6-5
boole 12-21
boole-l 12-21
boole-2 12-21
boole-and 12-21
boole-andcl 12-21
boole-andc2 12-21
boole-cl 12-21
boole-c2 12-21
boole-clr 12-21
boole-eqv 12-21
boole-ior 12-21
boole-nand 12-21
boole-nor 12-21
boole-orcl 12-21
boole-orc2 12-21
boole-set 12-21
boole-xor 12-21
both-case-p 13-34
boundp 4-16
break 23-6
break facility 23-3

• break-on-warnings. 23-10
butlast 15-15
byte 12-24
byte specifiers 12-6
byte-position 12-24
byte-size 12-24
bytes 12-6

c

call-arguments-limit 4-17
car 2-6, 15-5
car 15-16
case 5-12
catch 5-13
cease 5-27
cdr 2-6, 15-5
cdr 15-16
ceiling 12-40
cerror 23-7
char 17-6
char-bit 13-9
char-bits 13-10
char-bits-limit 13-11
char-code 13-12
char-code-limit 13-13
char-control-bit 13-14
char-downcase 13-20
char-equal 13-21
char-font 13-15
char-font-limit 13-16
char-greaterp 13-21
char-hyper-bit 13-14
ehar-int 13-17
char-lessp 13-21
char-met a-bit 13-14
char-name 13-18
char-not-equal 13-21
char-not-greaterp 13-21
char-not-Iessp 13-21
char-super-bit 13-14
char-up case 13-20
char /= 13-21
char< 13-21

Index X-3

char<= 13-21
char= 13-21
char> 13-21
char>= 13-21
character 13-23
character input control 21-42
character output control 21-42
character set 13-3
character stream input 21-43
character stream output 21-43
character syntax types 21-11

constituent 21-11
illegal 21-12
macro 21-12
multiple escape 21-12
single escape 21-12
table of 21-13
whitespace 21-12

characterp 13-24
characters 2-4, 13-3, 17-3

alphabetic 13-4
ASCII 13-3
attributes 13-4, 13-5
bits 13-5
comparison operations on 13-6
conversion operations on 13-6
creating 13-6
graphic 13-4
macro 21-15
predicates 13-5
printed representation of 2-11, 21-7
printing 13-4
standard 2-4, 13-4
string 2-5, 13-4, 17-3

check-type 23-8
cis 12-25
clear-input 21-45
clear-output 21-46
close 20-6
closures

lexical 4-11
clrhash 18-5
code attribute 13-4
code-char 13-25
coerce 3-9

X-4 Sun Common Lisp Reference Manual

comments 1-7,21-20
commonp 3-11
compilation 24-5
compile 24-10
compile-file 24-11
compiled-function-p 4-18
compiler 1-3, 24-3
Compiler

target processors 24-11
compiler-let 5-14
complex 12-26
complex numbers 12-6

canonical representation 2-4, 12-6
printed representation of 2-11, 21-7

complexp 12-27
concatenate 14-6
cond 5-16
conditionals 5-7, 5-10
conjugate 12-28
cons 15-18
conses 2-6, 15-5

operations on 15-6
printed representation of 2-12, 21-8

consp 15-19
constantp 4-19
constants 4-6

definition of 4-13
constituent characters 21-11

attributes 21-11, 21-14
continuable errors 23-3
control transfer 5-6, 5-7, 5-10
copy-alist 15-20
copy-list 15-21
copy-readtable 21-47
copy-seq 14-7
copy-symbol 10-5
copy-tree 15-22
cos 12-77
cosh 12-78
count 14-8
count-if 14-8
count-if-not 14-8
ctypecase 5-28

D

data type predicates 2-3
arrays 16-5
characters 13-5
functions 4-13
hash tables 18-4
lists 15-6
numbers 12-7
packages 11-7
pathnames 22-4
readtables 21-42
streams 20-4
strings 17-4
symbols 10-4

data types 2-3
.debug-io* 20-7
debugger 23-3, 24-3
debugging 1-3, 24-5
decache-eval 7-9
decf 12-42
declaration specifiers

syntax 8-3
declarations 8-3, 24-3

declaration 8-4
ftype 8-4
function 8-4
global 8-3
ignore 8-4
inline 8-4
notinline 8-4
operations 8-5
optimize 8-4
proclamations 8-3
special 8-3
special 8-3
type 8-4

declare 8-6
decode-float 12-29
decode-universal-time 24-13
Decoded Time 24-4
.default-pathname-defauIts. 22-6
defconstant 4-20
define-function 4-21
define-macro 6-9

define-modify-macro 5-18
define-setf-metho d 5-19
definite iteration 5-7, 5-10
defmacro 6-10
defparameter 4-22
defsetf 5-21
defstruct 19-11

options 19-6
slot options 19-5
syntax of 19-3

deftype 3-12
defun 4-23
defvar 4-25
delete 14-21
delete-duplicates 14-23
delete-file 22-7
delete-if 14-21
delete-if-not 14-21
delete-package 11-8
denominator 12-64
deposit-field 12-31
describe 24-14
destructuring 6-6
digit-char 13-26
digit-char-p 13-27
directories 22-5
directory 22-8
directory-namestring 22-19
disassemble 24-15
dispatching macro character syntax

table of 21-21
dispatching macro characters 21-17

21-17, 21-21
do 5-23
do. 5-23
do-alI-symbols 11-9
do-external-symbols 11-9
do-symbols 11-9
documentation 24-5
documentation 24-16
dolist 5-25
dotimes 5-26
dotted lists 2-6, 15-5
dotted pairs 2-6, 15-5
double-float-epsilon 12-74

Index X-5

double-ftoat-negative-epsnon 12-74
dpb 12-32
dribble 24-17
dynamic bindings 4-6
dynamic environment 4-7
dynamic variables 4-6, 5-5

E

ecase 5-27
ed 24-18
editor 24-3, 24-5
eighth 15-24
elt 14-9
encode-universal-time 24-20
endp 15-23
enough-namestring 22-9
environment 1-3, 4-7, 24-3,24-6

dynamic 4-7
global 4-7
lexical 4-7
null 4-7

&environment 6-4
eq 9-6
eqI 9-7
equal 9-8
equality predicates 9-3, 9-4
equalp 9-9
error 23-9
.error-output. 20-8
errors 23-3

continuable 23-3
detecting 23-4
fatal 23-3
signaling 23-4

escape characters 21-12
etypecase 5-28
eval 7-3, 7-10
eval-when 4-26
evalhook 7-11
.evalhook. 7-13
evaluation 4-14, 7-3
evaluator 1-3, 6-3, 7-3

functions 7-4

X -6 Sun Common Lisp Reference Manual

variables 7-4
evenp 12-33
every 14-10
exp 12-34
export 11-11
exported symbols 11-4
expt 12-34
external symbols 11-3, 11-4

F

false 9-3
fatal errors 23-3
fboundp 4-27
fceiling 12-40
.features. 24-21
moor 12-40
fifth 15-24
file system 20-3, 22-3
file-author 22-10
file-length 22-11
file-namestring 22-19
file-position 22-12
file-write-date 22-13
files

attributes 22-5
deleting 22-5
loading 22-5
opening 22-4

fill 14-11
fill pointers 2-7, 16-4, 16-6, 17-3
fill-pointer 16-29
find 14-12
find-alI-symbols 11-12
find-if 14-12
find-if-not 14-12
find-package 11-13
find-symbol 11-14
finish-output 21-48
first 15-24
fixnump 12-35
fixnums 2-3, 12-5
:Bet 5-29
:Boat 12-36

float-digits 12-37
float-precision 12-37
float-radix 12-37
float-sign 12-38
floating-point contagion 2-4, 12-6
floating-point numbers 2-4, 12-6

printed representation of 2-11, 21-7
floatp 12-39
floor 12-40
fxnakunbound 4-28
font attribute 13-4
force-output 21-48
forxnat 21-49
format control directives 21-22

summary of 21-38
syntax of 21-22,21-23
tv(21-34
tv. 21-33
tv< 21-36
tv? 21-33
tvA 21-23
tvB 21-25
tvC 21-28
tvD 21-24
tvE 21-29
tvF 21-28
tvG 21-30
tvNewline 21-32
tvO 21-25
tvP 21-27
tvR 21-26, 21-27
tvS 21-24
tvT 21-33
tvX 21-26
tv[21-34
tv$ 21-31
tv% 21-32
tv&, 21-32
tv{ 21-35
tvtv 21-32
tvA 21-37
tvl 21-32

format control strings 21-22
formatted output 21-22, 21-44
forms 4-5, 4-6

self-evaluating 4-6
fourth 15-24
fresh-line 21-84
fround 12-80
ftruncate 12-80
funcall 4-29
function 4-30
function bindings 4-14
function calls 4-6, 4-8
function cell 2-5, 10-3
functionp 4-31
functions 1-3, 2-8, 4-5, 4-8, 4-9

anonymous 4-9
applying 4-13
argument binding 4-9
definition of 4-9, 4-13
lambda lists 4-9
named 4-9
printed representation of 2-13, 21-10
redefinition of 4-13
syntax 4-9

G

gcd 12-41
general arrays 2-6, 16-3
general vectors 2-6, 16-3
generalized variables 5-5, 5-9
gensyxn 10-6
gentexnp 10-7
get 10-8
get-decoded-thne 24-22
get-dispatch-xnacro-character 21-50
get-internal-real-tixne 24-23
get-internal-run-tixne 24-24
get-macro-character 21-51
get-output-streaxn-string 20-9
get-properties 10-9
get-setf-xnethod 5-30
get-setf-xnethod-xnultiple-value 5-30
get-universal-thne 24-25
getf 10-9
gethash 18-6
global declarations 8-3

Index X-7

global environment 4-7
go 5-31
graphic characters 13-4
graphic-char-p 13-28
grindef 7-15

H

hash functions 18-4
hash tables 2-7, 18-3

creating 18-4
operations on 18-4
printed representation of 2-13, 21-10

hash-table-count 18-7
hash-table-p 18-8
home package 11-3
host-namestring 22-19

I

I/O 21-5
identity 4-32
identity operator 4-14
if 5-32
ignore-extra-right-parens 21-52
illegal characters 21-12
imagpart 12-72
import 11-15
in-package 11-16
incf 12-42
indefinite iteration 5-7, 5-10
inherited symbols 11-4
input

binary 21-43
character 21-42, 21-43

input streams 20-3
input-stream-p 20-10
input/output 20-3, 21-5
inspect 24-26
inspector facility 24-3
int-char 13-29
integer-decode-Boat 12-29

X -8 Sun Common Lisp Reference Manual

integer-length 12-43
integerp 12-44
integers 2-3, 12-5

printed representation of 2-11, 21-6
intern 11-17
internal symbols 11-3
Internal Time 24-4
internal-time-units-per-second 24-27
interned symbols 10-3, 11-3
interpretation 7-3
interpreter 1-3
intersection 15-25
isqrt 12-79
iteration 5-7, 5-10

K

definite 5-7, 5-10
indefinite 5-7, 5-10

&key 4-10, 6-5
keyword package 11-5
keyword symbols 11-5
keywordp 10-10

L

labels 5-33
lambda expressions 4-9
lambda lists 4-9, 6-4

in functions 4-9
in macros 6-4
keywords 4-9,4-10,4-11,6-4,6-5,6-6

lambda-list-keywords 4-33
lambda-parameters-limit 4-34
last 15-26
lcm 12-45
ldb 12-46
ldb-test 12-47
ldiff 15-27
least-negative-double-Boat 12-61
least-negative-Iong-Boat 12-61
least-negative-short-Boat 12-61

least-negative-s1ngle-:8oat 12-61
least-positive-double-:8oat 12-61
least-positive-Iong-:8oat 12-61
least-positive-short-:8oat 12-61
least-positive-single-:8oat 12-61
length 14-13
let 5-34
let. 5-34
lexical bindings 4-6
lexical closures 4-11

examples of 4-11,4-12
lexical environment 4-7
lexical variables 4-6, 5-5
lisp package 11-5
Lisp reader 2-7, 21-11
lisp-implementation-type 24-28
lisp-implementation-version 24-28
list 15-28
list. 15-28
list-all-packages 11-18
list-length 15-29
list-nreverse 15-30
list-reverse 15-30
listen 21-53
listp 15-31
lists 2-6, 15-5

accessing components of 15-7
as sets 15-5
association 15-5, 15-8
basic operations on 15-7
creating 15-7
dotted 15-5
mapping operations on 15-7
modifying 15-7
printed representation of 2-12, 21-8
set operations on 15-8
substitution operations on 15-8
tail 15-5
true 15-5

load 22-14
.load-verbose. 22-14
local exits 5-10
locally 8-7
log 12-48
logand 12-49

logandcl 12-49
logandc2 12-49
logbitp 12-51
log(ount 12-52
logeqv 12-49
logical constants 9-4
logical operations 9-4
logical values 9-3
logior 12-49
lognand 12-49
lognor 12-49
lognot 12-53
logorcl 12-49
logorc2 12-49
logtest 12-54
logxor 12-49
long-:8oat-epsllon 12-74
long-float-negative-epsllon 12-74
long-site-name 24-32
loop 5-35
lower-case-p 13-34

M

machine-instance 24-29
machine-type 24-29
machine-version 24-29
macro calls 4-6, 4-8, 6-3
macro characters 21-12, 21-15

, 21-15
(21-15
) 21-15
, 21-16
; 21-15
dispatching 21-17
nonterminating 21-12
terminating 21-12
21-16, 21-17
" 21-15
, 21-15

macro-function 6-12
macroexpand 6-13
macroexpand-l 6-13
.macroexpand-hook. 6-15

Index X-9

macrolet 5-36
macros 4-8, 6-3

backquote facility 6-6
definition of 6-3, 6-4, 6-8
destructuring facility 6-6
evaluation of 6-3
expansion of 6-3, 6-8
lambda lists 6-4
syntax of 6-4

make-array 16-30
make-broadcast-stream 20-11
make-char 13-30
make-concatenated-stream 20-12
make-dispatch-macro-character 21-54
make-echo-stream 20-13
make-hash-table 18-9
make-list 15-32
make-package 11-19
make-pathname 22-16
make-random-state 12-55
make-sequence 14-14
make-string 17-7
make-string-input-stream 20-14
make-string-output-stream 20-15
make-symbol 10-11
make-synonym-stream 20-16
make-two-way-stream 20-17
makunbound 4-35
map 14-15
mapc 15-33
mapcan 15-33
mapcar 15-33
mapcon 15-33
maphash 18-11
mapl 15-33
maplist 15-33
mask-field 12-56
max 12-57
member 15-35
member-if 15-35
member-if-not 15-35
memq 15-36
merge 14-16
merge-pathnames 22-17
min 12-57

X -10 Sun Common Lisp Reference Manual

minusp 12-58
mismatch 14-17
mod 12-59
modules 2-5,11-6

loading 11-6
operations on 11-7

modules 11-20
most-negative-double-float 12-61
most-negative-fixnum 12-60
most-negative-Iong-float 12-61
most-negative-short-float 12-61
most-negative-single-float 12-61
most-positive-double-float 12-61
most-positive-fixnum 12-60
most-positive-Iong-float 12-61
most-positive-short-float 12-61
most-positive-single-float 12-61
multidimensional arrays 16-3
multiple escape characters 21-12
multiple values 5-8, 5-10
multiple-value-bind 5-37
multiple-value-call 5-38
multiple-value-list 5-39
multiple-value-progl 5-40
multiple-value-setq 5-41
multiple-values-limit 5-42

N

name-char 13-18
namestring 22-19
namestrings 22-3

operations on 22-4
nbutlast 15-15
nconc 15-37
nil 9-3,9-10
nintersection 15-25
ninth 15-24
nonlocal exits 5-8, 5-10
nonterminating macro characters 21-12
not 9-11
not any 14-10
notational conventions 1-4
notevery 14-10

nreconc 15-38
nreverse 14-25
nset-difference 15-50
nset-exclusive-or 15-51
nstring-capitalize 17-14
nstring-downcase 17-14
nstring-upcase 17-14
nsublis 15-52
nsubst 15-54
nsubst-if 15-54
nsubst-if-not 15-54
nsubstitute 14-29
nsubstitute-if 14-29
nsubstitute-if-not 14-29
nth 15-39
nthcdr 15-40
null 15-41
null lexical environment 4-7
numberp 12-63
numbers 2-3, 12-5

arithmetic operations on 12-8
automatic type conversion of 12-5
bignums 2-3,12-5
byte manipulation functions 12-10
bytes 12-6
comparison operations on 12-7
complex 2-4, 12-6
equality predicates 12-5
exponential functions 12-8
fields of 12-6
fixnums 2-3, 12-5
floating-point 2-4, 12-6
implementation-dependent constants 12-10
integers 2-3, 12-5
logical operations on 12-9
predicates 12-7
random 12-10
rational 2-4, 12-5
ratios 2-4, 12-5
transcendental functions 12-8
trigonometric functions 12-8
type conversion operations on 12-9

nu~erator 12-64
numerical subranges 3-6
nunion 15-58

o

oddp 12-33
open 22-20
&optional 4-10, 6-5
or 9-12
output

binary 21-44
character 21-42, 21-43
formatted 21-22, 21-44

output streams 20-3
output-strea~-p 20-18

p

tpackaget 11-21
package cell 2-5, 10-3, 10-4, 11-3
package-name 11-22
package-nicknames 11-23
package-shadowing-sy~bols 11-24
package-use-list 11-25
package-used-by-list 11-26
packagep 11-27
packages 2-5, 10-3, 11-3

accessible symbols 11-3
current 11-3
external symbols 11-3
home 11-3
internal symbols 11-3
loading files into 11-5
names 11-3
nicknames 11-3
operations on 11-7
present symbols 11-3
printed representation of 2-13, 21-10

pairlis 15-42
parentheses 1-7
parse-integer 21-55
parse-namestring 22-22
pathna~e 22-24
pathna~e-device 22-25
pathna~e-directory 22-25
pathna~e-host 22-25
pathna~e-na~e 22-25

Index X-II

pathname-type 22-25
pathname-version 22-25
pathnamep 22-26
pathnames 2-8, 22-3

components of 22-3
operations on 22-4
printed representation of 2-13, 21-10

peek-char 21-56
phase 12-65
pi 12-66
plusp 12-58
pop 15-43
position 14-18
position-if 14-18
position-if-not 14-18
pp-line-Iength 21-65
pprint 21-86
predicates 9-3

equality 9-3, 9-4
logical 9-3

prinl 21-86
prinl-to-string 21-93
prine 21-86
princ-to-string 21-93
print 21-86
print names 2-5, 10-3, 10-4, 11-3
print-array 21-57
*print-base. 21-58
print-case 21-60
print-circle 21-61
print-escape 21-62
print-gensym 21-63
print-Iength 21-64
*print-Ievel. 21-64
print-pretty 21-65
*print-radix. 21-58
print-structure 21-66
printed representation of Lisp objects 21-6

arrays 21-9, 21-19
bit vectors 21-9, 21-18
characters 21-7, 21-17
circular objects 21-19
complex numbers 21-7, 21-19
floating-point numbers 21-7
function objects 21-10, 21-18

X-l2 Sun Common Lisp Reference Manual

hash tables 21-10
integers 21-6
lists 21-8
packages 21-10
pathnames 21-10
random states 21-10
rational numbers 21-7, 21-19
ratios 21-7
reading 21-11
!'eadtables 21-10
streams 21-10
strings 21-9
structures 21-10, 21-19
symbols 21-8
uninterned symbols 21-18
vectors 21-9, 21-18

printing characters 13-4
probe-file 22-27
proclaim 8-8
proclamations 8-3
prog 5-43
prog* 5-43
progl 5-45
prog2 5-46
progn 5-47
program structure 1-3, 4-5
progv 5-48
prompt 7-16
property lists 2-5, 10-3

indicators 10-3
operations on 10-4

provide 11-28
psetf 5-52
psetq 5-53
push 15-44
pushnew 15-45

Q

query-io 20-19
querying the user 21-44
quit 24-30
quitting Lisp 24-6
quote 4-36

R

random 12-67
random numbers 12-10
random states 2-8

printed representation of 2-13, 21-10
random-state 12-68
random-state-p 12-69
rank

of array 16-3
rassoc 15-46
rassoc-if 15-46
ras8oc-if-not 15-46
rational 12-70
rational numbers 2-3, 2-4, 12-5

canonical representation 2-4, 12-5
printed representation of 2-11, 21-7

rationalize 12-70
rationalp 12-71
ratios 2-4, 12-5

printed representation of 21-7
read 21-67
read-base 21-69
read-byte 21-70
read-char 21-71
read-char-no-hang 21-72
read-default-Hoat-format 21-73
read-delimited-list 21-74
read-eval-print loop 7-3
read-from-string 21-75
read-line 21-76
read-preserving-whitespace 21-67
read-suppress 21-77
reader

Lisp 21-11
readtable 21-79
readtablep 21-80
readtables 2-7, 21-11

printed representation of 2-13, 21-10
realpart 12-72
redefinition-action 4-37
reduce 14-20
rem 12-59
remf 10-12
remhash 18-12

remove 14-21
remove-duplicates 14-23
remove-if 14-21
remove-if-not 14-21
remprop 10-13
rename-file 22-28
rename-package 11-29
replace 14-24
require 11-30
rest 15-47
&rest 4-10,6-5
return 5-49
return-from 5-49
revappend 15-48
reverse 14-25
room 24-31
rotatef 5-50
round 12-80
rplaca 15-49
rplacd 15-49

s

sbit 16-24
scale-Hoat 12-73
schar 17-6
scope 4-6

dynamic 4-6
lexical 4-6

search 14-26
second 15-24
self-evaluating forms 4-6
sequences 2-6, 14-3

concatenating 14-5
creating 14-4
mapping operations on 14-5
merging 14-4
modifying 14-5
reducing 14-5
searching 14-4
sorting 14-4

sequencing 5-6, 5-9
set 5-51
set-char-bit 13-31

Index X-13

set-difference 15-50
set-dispatch-macro-character 21-81
set-exclusive-or 15-51
set-macro-character 21-82
set-syntax-from-char 21-83
setf 5-52
setq 5-53
sets 15-5

operations on 15-8
seventh 15-24
shadow 11-32
shadowing symbols 11-4
shadowing-import 11-33
shiftf 5-54
short-Hoat-epsilon 12-74
short-Hoat-negative-epsilon 12-74
short-site-name 24-32
signum 12-76
simple arrays 2-7, 16-4
simple strings 17-3
simple vectors 2-7, 16-4
simple-bit-vector-p 16-33
simple-string-p 17-8
simple-vector-p 16-34
sin 12-77
single escape characters 21-12
single-Hoat-epsilon 12-74
single-Hoat-negative-epsilon 12-74
sinh 12-78
sixth 15-24
sleep 24-33
software environment 24-6
software-type 24-34
software-version 24-34
some 14-10
sort 14-27
sorting 14-3
source-code 7-17
special declarations 8-3
special forms 4-6, 4-7
special variables 4-6
special-form-p 4-39
specialized arrays 2-6, 16-3
specialized vectors 2-6, 16-3
sqrt 12-79

X -14 Sun Common Lisp Reference Manual

stable-sort 14-27
standard characters 2-4, 13-4
standard streams 2-8, 20-3, 20-4
standard-char-p 13-32
.standard-input. 20-20
.standard-output. 20-21
step 24-35
step facility 24-3
storage management 1-3
stream-element-type 20-22
streamp 20-23
streams 2-8, 20-3, 21-5

.debug-io. 20-3

.error-io. 20-3

.query-io. 20-3

.standard-input. 20-3

.standard-output. 20-3

.terminal-io. 20-3

.trace-output. 20-3
bidirectional 20-3
closing 20-5
creating 20-5
input 20-3
operations on 20-5
output 20-3
predicates 20-4
printed representation of 2-13, 21-10
standard 2-8, 20-3, 20-4
synonym 20-3

string 17-9
string characters 2-5, 13-4, 17-3
string-capitalize 17-14
string-char-p 13-33
string-downcase 17-14
string-equal 17-12
string-greaterp 17-10
string-left-trim 17-13
string-Iessp 17-10
string-not-equal 17-10
string-not-greaterp 17-10
string-not-Iessp 17-10
string-right-trim 17-13
string-trim 17-13
string-up case 17-14
string/= 17-10

string< 17-10
string<= 17-10
string= 17-12
string> 17-10
string>= 17-10
stringp 17-16
strings 2-S, 2-7, 16-3, 17-3

accessing elements of 17-4
comparison operations on 17-4
creating 17-S
modifying 17-S
printed representation of 2-13, 21-9
simple 17-3

structures 2-7, 19-3
access functions 19-4, 19-6
as extensions of existing structures 19-7
BOA constructors 19-6
constructor functions 19-4, 19-5, 19-6
copier functions 19-4, 19-7
creating instances of 19-5
definition of 19-3, 19-4, 19-10
named 19-8
options 19-6
predicates 19-4, 19-8
printed representation of 2-13, 21-10
printing of 19-8
slot descriptions 19-4
slot options 19-5
slots 19-3
syntax of 19-3
type 19-9
unnamed 19-8

sublis lS-S2
subseq 14-28
subsetp lS-S3
subst lS-S4
subst-if lS-S4
subst-if-not lS-S4
substitute 14-29
substitute-if 14-29
substitute-it-not 14-29
subtypep 3-13
svref 16-3S
sxhash 18-13
symbol-function 4-40

symbol-name 10-14
symbol-package 10-1S
symbol-plist 10-16
symbol-value 4-41
symbolp 10-17
symbols 2-S, 10-3, 11-3

creating 10-4
external 11-4
function cell 10-3
inherited 11-4
internal 11-4
interned 10-3
package cell 10-3
print name 10-3
printed representation of 2-12, 21-8
property list 10-3
shadowing 11-4
uninterned 10-3
value cell 10-3

syntax 1-4
syntax types

character 21-11
system package 11-S

T

t 9-3,9-13
tagbody S-SS
tags S-7
tailp lS-S6
tan 12-77
tanh 12-78
tenth lS-24
.terminal-io. 20-24
terminating macro characters 21-12
terpri 21-84
the 8-9
third lS-24
throw S-S6
time

formats 24-4
functions 24-6

time 24-36
tokens 21-11

Index X-IS

trace 24-37
trace facility 24-3
.trace-output. 20-25
tree-equal 15-57
true 9-3
truename 22-29
truncate 12-80
type conversion operations 3-8, 12-9, 13-6
type specifiers 3-3

array subtypes 3-6
atomic 3-3
definition of 3-3, 3-8
for functions' 3-7
lists 3-3, 3-5
logical combinations of 3-5
manipulating 3-8
numerical subranges 3-6
specializations of 3-5
syntax of 3-4

type-of 3-14
typecase 5-57
typep 3-15
types

u

definition of 3-3, 3-8
discriminating among 3-3,3-8
hierarchy of 2-10

unexport 11-34
unintern 11-35
uninterned symbols 10-3, 11-3
union 15-58
Universal Time 24-4
unless 5-58
unread-char 21-85
untrace 24-37
unuse-package 11-36
un~ind-protect 5-59
upper-case-p 13-34
use-package 11-37
user package 11-5
user-defined data types 2-7, 19-3
user-homedir-pathname 22-30

X -16 Sun Common Lisp Reference Manual

v

value cell 2-5, 10-3
values 5-60
values-list 5-61
variables 2-5, 4-6, 5-5

bindings 4-6, 4-14, 5-6, 5-9
dynamic 4-6,5-5
generalized 5-5
global 4-13
lexical 4-6, 5-5
special 4-6

vector 16-36
vector-pop 16-37
vector-push 16-38
vector-push-extend 16-38
vectorp 16-40
vectors 2-6, 16-3, 17-3

accessing elements of 16-6
bit 2-6, 16-3
fill pointers 2-6, 16-3
general 2-6, 16-3
logical operations on 16-6
printed representation of 2-12, 21-9
simple 2-7, 16-4
specialized 2-6, 16-3

w
~arn 23-10
warnings 23-3
~hen 5-62
whitespace characters 21-12
&~hole 6-4
~ith-input-from-string 20-26
~ith-open-:6.le 22-31
~ith-open-stream 20-27
~ith-output-to-string 20-28
~ite 21-86
~ite-byte 21-90
~ite-char 21-91
~ite-line 21-92
~ite-string 21-92
~ite-to-string 21-93

y

y-or-n-p 21-96
yes-or-no-p 21-96

z
zerop 12-81

Index X-17

X -18 Sun Common Lisp Reference Manual

Systems for Open Computing ™

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
Tix 37-29639

For U.S. Sales Office
locations, call:
800 821-4643
In CA: 800821-4642

European Headquarters Germany: (089) 95094-0
Sun Microsystems Europe, Inc. Hong Kong: 8525-8651688
Bagshot Manor, Green Lane Italy: (39) 6056337
Bagshot, Surrey GU19 5NL Japan: (03) 221-7021
England Korea: 2-7802255
027651440 Nordic Countries: + 46 (0)8 7647810
TLX859017 PRC: 1-8315568

Australia: (02) 413 2666
Canada: 416477-6745
France: (1) 40 94 80 00

Singapore: 224 3388
Spain: (1) 2532003
Switzerland: (1) 8289555
The Netherlands: 02155 24888

Taiwan: 2-7213257
UK: 027662111

Europe, Middle East, and Africa,
call European Headquarters:
027651440

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

