
·sun~
• microsystems

Sun™ Common Lisp
User's Guide

I)art Number 800-1517-10
Revision: A February 2, 1987

Asun
• microsystems

Sun™ Common Lisp
User's Guide

Credits and Trademarks

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

SunStation, Sun Microsystems, Sun Core, Sun Windows, Sun View, DVMA, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Information Systems, Inc.

Intel and Multibus are registered trademarks of Intel Corporation.

DEC, PDP, VT, and VAX are registered trademarks of Digital Equipment Corporation.

Copyright @ 1986 by Sun Microsystems, Inc.
Copyright @ 1986 by Lucid, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. Published with modifications by Sun
Microsystems, Inc., under license from Lucid, Inc. No part of this publication may be reproduced, stored in a retrieval
system, translated, transcribed, or transmitted, in any form, or by any means-manual, electric, electronic, electromagnetic,
mechanical, chemical, optical, or otherwise-without prior explicit written permission from Sun Microsystems, Inc. and
Lucid, Inc.

About This Book

Sun Common Lisp is a computer programming language that you can use to
develop software. Common Lisp is a functional programming language-one that
is especially suited to the writing of large, complex programs that can manipulate
symbols as well as numbers.

This book presents the fundamentals of using Common Lisp. It is not designed to
be a comprehensive description and specification of the Common Lisp language.
Rather, it is a concise guide to Sun Common Lisp.

About This Book iii

Organization of This Book

The Sun Common Lisp User's Guide has thirteen chapters and three appendixes.

• Chapter 1. "Introduction" contains an overview of the Common Lisp language.
It also describes the notational conventions and syntax used throughout the
book.

• Chapter 2. "Starting Up" discusses invoking the Lisp environment, saving Lisp
images, exiting Lisp, customizing the Lisp environment, entering and exiting
the Debugger, and using the display facilities.

• Chapter 3. "Debugging Lisp Programs" describes the features of the Debugger.

• Chapter 4. "Tracing Functions" describes the features of the Trace Facility, a
tool for debugging programs.

• Chapter 5. "Stepping Through an Evaluation" explains the use of the Stepper,
a tool for examining programs.

• Chapter 6. "Inspecting Data Structures" describes the Inspector, a tool for
inspecting and modifying Lisp objects.

• Chapter 7. "The Foreign Function Interface" describes the interface to foreign
files and libraries.

• Chapter 8. "Running UNIX Programs from Lisp" discusses the function that
is used to run Shell programs from the Lisp environment.

• Chapter 9. "Compiling Lisp Programs" describes the Compiler, which
transforms code to a more efficient form for execution.

• Chapter 10. "Storage Management in Common Lisp" describes the Garbage
Collector and explains how storage is allocated.

• Chapter 11. "The Flavor System" describes the facility for object-oriented
programming.

• Chapter 12. "The Window Tool Kit" describes the tools for creating and
accessing windows, bitmaps, and viewports.

• Chapter 13. "The Editor" is a guide to the Editor and its commands.

• Appendix A. "Alphabetical Listing of Common Lisp Functions" is a list of all
the Common Lisp functions and extensions to Common Lisp described in the
Sun Common Lisp Reference Manual.

• Appendix B. "Extensions to Common Lisp" is a list of all the extensions that
are described in this guide.

iv Sun Common Lisp User's Guide

• Appendix C. "Implementing Editor Commands" explains the data structures
used by the Editor and describes the Lisp functions and macros that can be
used to implement new Editor commands.

Related Publications

The following publications contain related information that you may find useful:

• Sun Common Lisp Reference Manual is a complete technical reference to the
language.

• Common Lisp: The Language by Guy L. Steele Jr. (Digital Press) is the basic
implementation specification for the language.

• Programming in Common Lisp by Rodney A. Brooks (John Wiley & Sons) is
an introductory text for those who are new to Lisp.

About This Book v

Contents

Chapter 1. Introduction 1-1

About Common Lisp .. 1-3
Notational Conventions and Syntax 1-4

Chapter 2. Starting Up 2-1

Starting Up Lisp ... 2-3
Sample Lisp Program ... 2-7
abort ... 2-11
disksave ... 2-12
ed .. 2-14
quit .. 2-16

Chapter 3. Debugging Lisp Programs 3-1

The Debugger ... 3-3
Debugger Commands ... 3-6
.debug-print-Iength •... 3-14
.debug-print-Ievel •... 3-16

Chapter 4. Tracing Functions 4-1

Trace-A Tool for Debugging 4-3
.max-trace-indentation. . .. 4-6
trace ... 4-7
.trace-arglist.. 4-9
.trace-bar-p. . .. 4-10
.trace-columns-per-Ievel •.. 4-11
.trace-Ievel •.. 4-12
.trace-new-definitions •.. 4-13
.trace-values •... 4-14
.traced-function-list •... 4-15
untrace .. 4-16

Contents vii

Chapter 5. Stepping Through an Evaluation 5-1

The Stepper-A Tool for Debugging 5-3
I(cmax-step-indentationl(c .. 5-5
step ... 5-6
I(cstep-columns-per-Ievell(c ... 5-7
I(cstep-Ievell(c .. 5-8

Chapter 6. Inspecting Data Structures 6-1

About the Inspector .. 6-3
inspect . 6-5

Chapter 7. The Foreign Function Interface 7-1

Introduction to the Foreign Function Interface 7-3
define-c-callable . 7-7
define-c-function, define-fortran-function 7-9
define-foreign-symbol. .. 7-12
extract-stream-handles ... 7-13
foreign-address-of ... 7-14
I(cforeign-temporary-directoryl(c 7-15
load-foreign-files .. 7-16
load-foreign-libraries ... 7-17
make-lisp-stream .. 7-19
register-lisp-function ... 7-20
syscall .. 7-21

Chapter 8. Running UNIX Programs from Lisp 8-1

Introduction to Running UNIX Programs .. 8-3
run-unix-program ... 8-11

Chapter 9. Compiling Lisp Programs 9-1

Introduction to the Compiler 9-3
Compiling and Keyword Options .. 9-4
How the Compiler Uses Declarations 9-5
clear-undef .. 9-8
compile 9-9
compile-file .. 9-10
compiler-options .. 9-12

viii Sun Common Lisp User's Guide

declare 9-13
eval-when .. 9-15
locally 9-16
proclaim ... 9-17
the ... 9-18

Chapter 10. Storage Management in Common Lisp 10-1

About the Garbage Collector 10-3
The Room Function ... 10-5
Altering Storage Allocator Parameters. 10-8
change-memory-management 10-10
gc ... 10-12
gc-off . 10-13
gc-on .,. 10-15
.gc-silence •.. 10-17
get-stack-remaining . 10-18
room .. 10-19

Chapter 11. The Flavor System 11-1

Introduction to Flavors ... 11-5
Mixing Flavors .. 11-15
Defining Flavors ... 11-24
Defining Methods for Messages. 11-29
Compiling a Flavor ... 11-32
Creating Instances. 11-35
The Vanilla Flavor ... 11-37
.all-flavor-names •... 11-40
cleanup-all-flavors .. 11-41
compile-flavor-methods .. 11-42
continue-whopper, lexpr-continue-whopper,

continue-whopper-all . 11-43
deffiavor . 11-45
defmethod, undefmethod. 11-47
defwhopper ... 11-48
defwrapper. 11-49
flavor-allowed-init-keywords, flavor-allows-init-keyword-p 11-50
instancep . 11-51
make-instance ... 11-52
recompile-flavor .. 11-53
self .. 11-54
send ... 11-55
symeval-in-instance, set-in-instance 11-56

Contents ix

without-cleaning-flavors ... 11-57

Chapter 12. The Window Tool Kit 12-1

Introduction to the Window Tool Kit. 12-5
Sample Code .. 12-23
activate-viewport, deactivate-viewport 12-31
active-region-bitmap .. 12-32
active-region-method .. 12-33
active-region-p ... 12-35
attach-active-region, detach-active-region, bitmap-active-regions,

clear-bitmap-active-regions 12-36
bitblt, bit bit-position, bit bit-region 12-37
bitmap-extent, bitmap-height, bitmap-width 12-39
bitmap-output-stream-p . 12-40
bitmap-p . 12-41
bitmap-value . 12-42
charblt, stringblt ... 12-43
clear-bitmap .. 12-44
copy-bitmap. 12-45
copy-font . 12-46
current-mouse-cursor .. 12-47
default-font . 12-48
default-font-baseline, default-font-code-limit, default-font-height 12-49
delete-font .. 12-50
draw-circle, draw-line, draw-polyline, draw-polypoint 12-51
expose-viewport, hide-viewport 12-52
extent-height, extent-width 12-53
extentp. 12-54
find-font. 12-55
font-baseline, font-height, font-fixed-width 12-56
font-bitmap, font-code-limit, font-name 12-57
font-set-char, font-clear-char . 12-58
fontp .. 12-59
initialize-windows .. 12-60
keyboard-input .. 12-62
leave-window-system .. 12-63
listen-any ... 12-64
load-bitmap, store-bitmap. 12-65
load-font, store-font ... 12-66
make-active-region .. 12-67
make-bitmap . 12-69
make-bitmap-output-stream 12-70
make-extent ... 12-72

x Sun Common Lisp User's Guide

make-font. 12-73
make-mouse-cursor, maximum-cursor-height,

maximum-cursor-width .. 12-75
make-mouse-input-stream .. 12-76
make-pop-up-menu ... 12-77
make-position ... 12-78
make-region ... 12-79
make-viewport . 12-81
make-window. 12-83
menu-mouse-buttons . 12-87
mouse-buttons, mouse-x, mouse-y 12-88
",mouse-buttons"" ",mouse-x"" ",mouse-y", 12-89
mouse-cursor-bi tmap, mouse-cursor-x-offset, mouse-cursor-y-offset,

mouse-cursor-operation .. 12-90
mouse-cursor-p .. 12-91
mouse-event-p ... 12-92
mouse-event-x, mouse-event-y, mouse-event-event-type,

mouse-event-buttons .. 12-93
mouse-input : . 12-94
mouse-input-stream-interrupt-char . 12-95
mouse-input-stream-p ... 12-96
mouse-input-stream-queue-mouse-events-p 12-97
mouse-input-stream-viewport 12-98
move-mouse ... 12-99
move-viewport . 12-100
peek-any .. 12-101
pop-up-menu-choose . 12-103
pop-up-menu-p ... 12-104
position-x, position-y. 12-105
positionp . 12-106
read-any, read-any-no-hang 12-107
region-contains-point-p, region-contains-position-p 12-108
region-corner, region-corner-x, region-corner-y, region-height,

region-width, region-origin, region-origin-x, region-origin-y,
region-size . 12-109

region-intersection, region-union 12-111
region<,region<=, region=, region/=, region>, region>= 12-112
regionp .. 12-114
rename-font .. 12-115
reshape-viewport .. 12-116
root-viewport ~ 12-117
stream-current-font .. 12-118
stream-draw-circle, stream-draw-line, stream-draw-polyline 12-119
stream-linefeed-distance .. 12-120
stream-operation .. 12-121

Contents xi

stream-position, stream-x-position, stream-y-position 12-122
string-width. 12-123
unread-any. 12-124
viewport-at-point, viewport-at-position . 12-125
viewport-bitmap .. 12-126
viewport-bitmap-offset, viewport-bitmap-x-offset,

viewport-bitmap-y-offset . 12-127
viewport-bitmap-region, viewport-screen-region. 12-128
viewport-children, viewport-parent . 12-129
viewportp ... 12-130
window-frame .. 12-131
window-inner-border-width, window-outer-border~width 12-132
window-title, window-title-font . 12-133
window-vertical-scroll-ratio, window-horizontal-scroll-ratio 12-134
windowp .. 12-135
windows-available-p .. 12-136
with-asynchronous-method-invocation-allowed . 12-137
with-fast-drawing-environment . 12-138
with-mouse-methods-preempted . 12-139

Chapter 13. The Editor 13-1

Introduction to the Editor .. 13-3
Motion Commands ... 13-12
Modification Commands ... 13-16
Searching, Replacing, and Filtering 13-20
Buffers, Files, and Editor Windows 13-23
Editing Lisp ... 13-27
Interacting with Lisp .. 13-30
Customizing the Editor .. 13-33
Editor Commands and Key Bindings 13-35

Appendix A. Alphabetical Listing of Common Lisp
Functions

Appendix B. Extensions to Common Lisp

xii Sun Common Lisp User's Guide

A-I

B-1

Appendix C. Implementing Editor Commands C-I

fu&x ~l

Contents xiii

Figures

7-1. Table of Data Types for C Programs 7-5
7-2. Table of Data Types for FORTRAN Programs 7-6
11-1. Tree of Component Flavors 11-17
12-1. Interpretation of mouse-buttons 12-15
12-2. Mouse Events .. 12-15

Figures xv

Chapter 1. Introduction

Introduction 1-1

Chapter 1. Introduction

About Common Lisp .. 1-3
The Language ... 1-3
The Environment .. 1-3

Notational Conventions and Syntax .. 1-4
Syntactic Descriptions ... 1-4
Examples and Code ... 1-7

1-2 Sun Common Lisp User's Guide

About Common Lisp

Sun Common Lisp is a complete implementation of the Common Lisp language. It
includes all of the Common Lisp functions, constants, variables, macros, and special
forms. In addition, Sun Common Lisp provides many functions as extensions to
Common Lisp and as enhancements to the user environment.

The Language

Common Lisp is a functional, or applicative, language. It has two salient
features-a list-based representation of data and an evaluator, or interpreter, that
treats some lists as programs.

Lisp functions are equivalent to subroutines or procedures in other languages. In
contrast to most other languages, Lisp functions can create and return arbitrary
data objects as their values. These data objects can then be passed as arguments
to other functions.

Programs and data have the same form in Lisp, and thus Lisp programs can easily
process other Lisp programs. Programs are sequences of expressions composed of
function calls.

While iteration, or looping, as a control structure is common in most programming
languages, Lisp makes extensive use of recursion.

The Environment

The Lisp system is an interactive one. When you type an expression at
the terminal, Lisp evaluates it and displays the result automatically. Other
programming languages compute by compiling and running programs. Lisp
computes by evaluating the expressions that are typed to it.

Sun Common Lisp has a compiler that compiles Lisp code into machine code. User
programs may run more efficiently as a result.

Debugging in Lisp can be done as a program is written. Every expression typed
to Lisp is evaluated, and therefore at each stage of testing, the Lisp environment
is available for examining the state of a program and its data structures. Large,
complex programs can be incrementally built and tested.

Lisp manages storage by providing a dynamic heap of storage that is automatically
allocated as needed and then reclaimed, or garbage collected, when no longer
needed.

Introduction 1-3

Notational Conventions and Syntax

This manual adheres to a number of notational conventions.

Syntactic Descriptions

The names of all Common Lisp functions, macros, special forms, constants, and
variables are in boldface (max, for example). Names of the parameters are in
italics (number, for example).

The syntactic descriptions of Common Lisp functions are presented using the
Common Lisp lambda list syntax. Lambda lists consist of a series of arguments
and lambda list keywords. The lambda list keywords indicate how arguments are
processed; they do not appear in the actual function call form. In the syntactic
descriptions of functions, they appear in a typewriter font.

• Required parameters appear first, immediately following the function name.

• Any optional parameters are specified next. They are preceded by the
toptionallambda list keyword. Use of the toptional lambda list keyword
indicates that arguments that follow it are optional.

• An trest parameter may be specified next. It is preceded by the trest lambda
list keyword. Use of the trest parameter indicates that an indefinite number
of arguments may appear in the function call form and are bound to that
parameter.

• The lambda list keyword tkey indicates that the function accepts keyword
arguments. The lambda list keyword tkey is followed by the keywords that are
permitted. Keywords are symbols preceded by a colon (: start, : end, : count,
and so forth). When the function is called, a keyword argument is specified by
giving the keyword itself, followed by the value that the keyword argument is
to have. The keyword-value pairs may occur in any order in the argument list;
they are not constrained by the order of the keyword parameters in the lambda
list.

The first box illustrates the syntactic description of a Common Lisp function.
When a function is called, its name and arguments, except for keyword arguments,
must be typed in the order shown. Arguments may appear across several lines,
since carriage-returns and linefeeds can occur wherever a space can occur and do
not have any special meaning to the Lisp reader (the input-handling part of the
Lisp system).

1-4 Sun Common Lisp User's Guide

max number trest more-numbers [Function]

The expressions

(max 1)

(max 2)

(max 1 2 3)

represent syntactically correct calls to the function max.

The syntactic descriptions of Common Lisp macros and special forms are given in
an extended Backus-Naur form (BNF) notation.

• A word in italics indicates a syntactic category (for example, symbol, argument,
variable) .

• Braces, brackets, stars, plus signs, and vertical bars are metasyntactic marks.

• Braces, { and }, group what they enclose. Braces may be followed by a star
(*), which indicates that what they enclose may appear any number of times or
not at all, or they may be followed by a plus sign (+), which indicates that what
is enclosed may appear any nonzero number of times (that is, must appear at
least once).

{x} * zero or more occurrences of x
{ x} + one or more occurrences of x

• Brackets, [and], indicate that what they enclose is optional and can appear
only once.

[xl zero or one occurrences of x

• A vertical bar (I) separates mutually exclusive alternatives.

• The symbol ::= means "is defined by." It indicates that the term on the left
side is defined by the expression on the right.

The boxed examples that follow illustrate the syntactic descriptions for macros
and special forms. While functions are called according to a uniform syntax, the
syntax of macros and special forms tends to vary widely.

Introduction 1-5

This box shows the syntax of a macro:

prog ({ var I (var [in it])} *) {declaration} *
{tag I statement}*

The following is a syntactically correct use of the prog macro:

(prog (x)
(setq x 2)
(return x»

This box shows the syntax of a special form:

I if test then [else]

[Macro]

[Special Form]

The expressions shown below are syntactically correct calls to the if special form.

(if t 1 2)

(if t 1)

The next box illustrates the documentation of a global variable. Note that global
variables in Common Lisp by convention have names that begin and end with an
asterisk.

.print-radix. [Variable]

The following box illustrates the documentation of a constant:

pi [Constant]

1-6 Sun Common Lisp User's Guide

Examples and Code

The examples represent what is displayed on the screen during interaction with
Lisp. The Common Lisp prompt is given by>. The expression that follows it
displays what you have entered at the key board. This in turn is followed by the
response of the Lisp system. Examples are printed in a typewriter font.

Lisp code in this manual is in lowercase. In general, the Lisp reader converts
symbols into uppercase, and the Lisp system displays its responses in uppercase.
You can write programs in either uppercase or lowercase, or a combination of the
two, whichever you prefer.

In the text of this manual, everything that would be typed at the keyboard or
that would appear on the terminal screen is typeset in a typewriter font with this
exception: an argument or parameter is printed in italics, indicating that it serves
as a placeholder for a real argument value that you are to supply.

Normal text is set in a roman font.

Numbers, including those appearing in examples, are in decimal format unless
explicitly noted otherwise.

Parentheses stand for themselves. Parentheses enclose lists. Lists may contain zero
or more items, including other lists. Calls to functions, special forms, and macros
are lists and are therefore enclosed in parentheses.

The single quote character (.) is an abbreviation for the Lisp function quote.
Thus, evaluating the Lisp expression 'form is the same as evaluating the expression
(quote form). It means that the form following quote is not evaluated.

The semicolon character (;) indicates the beginning of a comment. A comment
extends from the semicolon to the end of the line.

The #1 and 1# characters are nested comment characters that may appear in
examples of code. They comment out sections of code.

The #' character is an abbreviation for the Lisp function function. Thus,
evaluating the Lisp expression # t function is the same as evaluating the Lisp
expression (function function). It indicates that the form that follows it is to be
interpreted as a function object.

The # syntax is used in the printed representation of many data types.

Introduction 1-7

Chapter 2. Starting Up

Starting Up 2-1

Chapter 2. Starting Up

Starting Up Lisp ... 2-3
Invoking Lisp .. 2-3
Entering and Exiting the Debugger .. 2-3
Exiting Lisp ... 2-4
Customizing the Lisp Environment .. 2-4
Saving Lisp Images ... 2-5
Using the Display Facilities ... 2-5

Sample Lisp Program ... 2-7
The Program File .. 2-7
Terminal Session ... 2-9

abort ... 2-11
disksave ... 2-12
ed .. 2-14
quit .. 2-16

2-2 Sun Common Lisp User's Guide

Starting Up Lisp

Sun Common Lisp is an interactive environment. This section explains how to
start up Lisp, how to use the facility known as the Debugger from within the Lisp
environment, and how to return to what is known as the top level of Lisp.

Invoking Lisp

Sun Common Lisp is invoked by typing the command lisp to the operating system
prompt:

% lisp

After executing its initialization routines, Lisp responds with a prompt:

>

The prompt indicates that Lisp is ready to read an expression that is typed by
the user at the terminal and to evaluate it. After evaluation, Lisp displays on the
screen a response that is immediately followed by another prompt. This routine is
known as the read-eval-print loop, or the top-level loop. While operating in this
fashion, Lisp is said to be at the top level.

Entering and Exiting the Debugger

If Lisp reads an invalid form, encounters an interrupt, or for any reason cannot
perform an evaluation, an error is signaled and the Debugger is entered. Upon
entry, the Debugger prints a characterization of the type of error, which is followed
by the Debugger prompt:

->

In the Debugger, the Lisp environment is available for evaluating and inspecting
Lisp expressions. This means that any expression that can be typed to the top-level
prompt can also be typed to the Debugger prompt.

The manner in which the Debugger evaluates what it reads and displays a response
is similar to the evaluation that occurs at the top level. If the Debugger encounters
an error, you enter a lower level of the Debugger. When this happens, the Debugger
again characterizes the error and displays an additional prompt:

->->

Starting Up 2-3

The number of consecutive Debugger prompts corresponds to the Debugger level
to which you are typing.

After characterizing an error, the Debugger displays a list of commands for
responding to the situation. This list varies depending on the type of error but
always includes the :a command:

:A Abort to Lisp Top Level

By typing :a you exit the Debugger and reenter the top level of Lisp. (Because
:a is a constant, it is not an error for the top level to read and evaluate it. The
ensuing evaluation returns :a.)

See the chapter "Debugging Lisp Programs" for a more detailed discussion of the
Debugger.

Exiting Lisp

You can exit Lisp and return to the operating system environment by typing either
the function quit or the function abort to the top-level prompt or to the Debugger
prompt:

> (quit)
%

or

> (abort)
%

Customizing the Lisp Environment

You can customize your Lisp environment by creating a file of expressions to
be evaluated before the top-level prompt is printed. This file should be created
on your home directory and named tllisp-init.lisptl, tllisp-init.lbintl , or
tllisp-init.2bintl. The extensions .lbin and .2bin denote binary files compiled
from source . lisp files; the .lbin extension indicates that the default value for the
:target option applies, and the .2bin extension indicates that the source file was
compiled with the :target option of 68020.

When you invoke Lisp, your home directory is first searched for a file named
tllisp-init .lbintl or tllisp-init. 2bintl and then for a file named tllisp-init .lisp".
IT the file in question exists, it is loaded. IT both the source and binary versions of
the file exist, the appropriate binary version is loaded if it is more recent. IT the
source version is more recent, you will be asked which version to use. The files can

2-4 Sun Common Lisp User's Guide

contain arbitrary Lisp expressions, which are evaluated when the file is loaded. If
none of the files exists, no error is signaled.

Saving Lisp Images

You may save your Lisp images with the function disksave, which is an extension
to Common Lisp. The function saves a copy of the executing Lisp image on disk.

Using the Display Facilities

Sun Common Lisp normally starts up in terminal interaction mode. In this
mode, the characters you type are read directly by the top-level Lisp reader.

If you wish, you can start up Lisp in Editor interaction mode rather than in
terminal interaction mode. In Editor interaction mode, the characters you type
are displayed in an Editor buffer called the Lisp Buffer. The behavior of Lisp is
the same in both modes except that in Editor interaction mode you can use Editor
commands. In the Lisp Buffer, the Editor maintains a record of your interaction
with Lisp, which you can review and correct.

Lisp will start up in Editor interaction mode when you type lisp to the Shell
prompt if you have the function ed in your initialization file ("lisp-init . lisp",
"lisp-init.lbin", or "lisp-init.2bin"). Lisp will also start up in Editor
interaction mode if you save your Lisp image by calling the function disksave with
ed specified as the value of the keyword argument :restart-function.

From terminal interaction mode, you can enter or reenter the Editor by using the
function ed. You can use the key sequence Ctrl-XCtrl-Z to exit the Editor and
enter Lisp in terminal interaction mode.

All of the Editor facilities are available within the Lisp Buffer, which is integrated
with the Lisp environment. The Editor provides a wide variety of commands for
manipulating text, for evaluating Lisp expressions, and for compiling functions.
You can, for example, create new Editor buffers, edit source code text files, copy
source code text to the Lisp Buffer, and execute code in the Lisp Buffer.

The Editor can be integrated with the Window Tool Kit on graphics displays that
support the suntools system. You must start up Lisp from within the suntools
environment. Then, by calling the function ed, you initialize the Window Tool Kit
and enter Editor interaction mode. The Window Tool Kit displays the Lisp Buffer,
a scratch buffer, and any other Editor buffers that are current.

In the Window Tool Kit environment, each window created by the Editor has a
pop-up menu that describes the various commands that you may use. You can
access this menu by clicking the right mouse button on the window you wish to
manipulate. The menu lists the options for moving a window and for changing its

Starting Up 2-5

size, and you can use the mouse to select an option by clicking the right mouse
button. To mark text and to move the cursor, you click the left mouse button. See
the chapter "The Window Tool Kit" for more detailed information.

You can also use the Editor window commands to select and delete windows. For
example, the New Window command (Ctrl-X2) creates a new Editor window.
The Next Window command (Ctrl-XN) allows you to select other windows. To
delete a window, you can invoke the Delete Window (Ctrl-XD) command. See
the chapter "The Editor" for details on all window and buffer commands.

2-6 Sun Common Lisp User's Guide

Sample Lisp Program

Displayed below is a sample Lisp program for balancing bank accounts. It is in a
file called "sample .lisp" that is loaded into Lisp as shown in the session transcript
in the following section. In this program, each time the function create-account is
called, it creates an account that is a lexical closure.

Lexical closures can be viewed as data objects with local variable bindings. They
are more fully explained in the Sun Oommon Lisp Reference Manual.

This particular closure includes the variable balance. Such a closure behaves like a
function, that is, you can invoke it with the function funcall. The account closures
can be called with such "verbs" as deposit, withdraw, and query. In the program,
another function-transfer-is defined that permits the transfer of funds between
accounts.

The Program File

The file "sample. lisp" contains the program.

;;; Create a closure to represent a particular account.

(defun create-account (account-type)
(let «balance 0»

(function
(lambda (transaction-type ioptional (amount 0»

(case transaction-type

;; Add to the account

«deposit credit)
(when (minusp amount)

(format
t
"You can't deposit a negative amount of money.-a
Try withdrawing instead.-%")

(setf amount 0»
(format
t

Starting Up 2-7

"Crediting $-$ to your -A account. for a new balance -
of $-$.-%"

amount
account-type
(incf balance amount»

amount)

;; Subtract from the account

«withdraw debit deduct)
(when (minusp amount)

(format
t
"You can·t withdraw a negative amount of money.-a
Try depositing instead.-%")

(setf amount 0»
(when (> amount balance)

(format
t

"Your -A account lacks sufficient funds -
for a $-$ withdrawal.-%" account-type amount)

(setf amount 0»
(format
t
"Deducting $-$ from your -A account. leaving $-$ in the -
account.-%"

amount
account-type
(decf balance amount»

amount)

;; Set the balance

(set-balance
(format
t
"Setting your -A account balance to $-$-%"
account-type
amount)

(setf balance amount»

;; Request the current balance

«query inquire)
(format
t
"Your -A account contains $-$-%" account-type balance)

balance)

2-8 Sun Common Lisp User's Guide

:: Unknown transaction-type

(otherwise
(cerror "Ignore unknown-type transaction."

"Unknown transaction-type: -A"
transaction-type»»»)

, , , Withdraw funds from ODe account and deposit them in another.

(defun transfer (amount source-account destination-account)
(funcall destination-account

'deposit
(funcall source-account 'withdraw amount»)

Terminal Session

The program file "sample . lisp" is loaded into Lisp as shown in the following
terminal session. The session illustrates the interactive nature of programming in
Lisp and demonstrates the use of some fundamental features of Common Lisp, such
as closures. The session also demonstrates what to do when errors are signaled.

> (load "sample")
#P"sample.lisp"
> (compile 'create-account)
CREATE-ACCOUNT
> (compile 'transfer)
TRANSFER
> (setq checkiDg (create-account "checking"»
#<Compiled-FunctioD 4AB6CF>
> (setq savings (create-account "savingsll»
#<Compiled-FunctioD 4AB7DF>
> (funcall checking 'set-balance 22.26)
Setting your checking account balance to $22.26
22.26
> (funcall savings 'set-balance 643.12)
Setting your savings account balance to $643.12
643.12
> (funcall checking 'withdraw 17.34)
Deducting $17.34 from your checking account, leaving $4.91 in the account.
17.34
> (transfer 80.00 savings checking)
Deducting $80.00 from your savings account, leaving $463.12 in the account.
Crediting $80.00 to your checking account, for a new balance of $84.91.
80.0

Starting Up 2-9

> (funcall checking 'credti 350.00)
»Error: Unknown transaction-type: CREDTI

CERROR:
Required arg 0 (CONTINUE-FORMAT-STRING): "Ignore unknown-type transac

tion."
Required arg 1 (FORMAT-STRING): "Unknown transaction-type: -A"
Rest arg (FORMAT-ARGS): (CREDTI)

:A Abort to Lisp Top Level
:C Ignore unknown-type transaction.
-> :c
Ignore unknown-type transaction.
NIL
> (funcall checking 'credit 350.00)
Crediting $350.00 to your checking account. for a new balance of $434.91.
350.0
> (funcall checking 'deduct 500.00)
Your checking account lacks sufficient funds for a $500.00 withdrawal.
Deducting $0. from your checking account. leaving $434.91 in the account.
o
> (funcall checking 'query)
Your checking account contains $434.91
434.91
> (setf ira (create-account "retirement"»
#<Compiled-Function 4ACCC7>
> (funcall ira 'credit 2000.00)
Crediting $2000.00 to your retirement account. for a new balance of
$2000.00.
2000.0
> (quit)
%

2-10 Sun Common Lisp User's Guide

abort

Purpose:

Syntax:

Remarks:

The function abort always terminates the Lisp environment. It immediately
returns you to the operating system environment and reports status as the exit
status of the Lisp process.

abort ioptional status [Function]

Unlike the function quit, the function abort exits the Lisp environment
immediately.

The optional argument status sets the exit status of the process that was running
Lisp. It defaults to o.
This function is an extension to Common Lisp.

Examples: > (abort)
%

See Also: quit

Starting Up 2-11

disksave

Purpose:

Syntax:

Remarks:

The function disks ave saves a copy of an executing Lisp image on disk.

disks ave target-file lkey :restart-function :full-gc :gc
:reserved-free-segments
:dynamic-free-segments :verbose

[Function]

The argument target-file is a simple string containing the system-dependent
namestring of the Lisp image file to be created; no pathname defaults are applied.

When the resulting disk file is executed, Lisp first calls any function specified as a
value for the keyword argument :restart-function. The restart-function is called
with no arguments. Lisp then processes the usual initialization file if one exists.
Finally, Lisp enters the normal read-eval-print loop. H the restart-function does
not return, no initialization or top-level evaluation is done. In this way, the saved
image can be made to behave like a program.

The keyword arguments :full-gc and :gc control garbage collection during the
save. H :full-gc is specified and non-nil, a garbage collection is performed before
the image is saved. After the garbage collection, all dynamic storage is converted
to static storage. Objects converted from dynamic storage to static storage are
never recopied during a garbage collection. However, they are scanned for pointers
to update. As a result, performance improvements in garbage collection may occur
when large systems are loaded into Lisp and saved.

H :gc is specified and non-nil and :full-gc is unspecified or nil, a normal garbage
collection is performed before the image is saved. Due to memory management
constraints, disksave may force a garbage collection in addition to any requested
through use of the :full-gc and :gc keywords.

Note: H neither :gc nor :full-gc is specified, the saved image may contain all of
the garbage that is currently in the image, and therefore the files saved on disk
may be considerably larger than necessary. When you call disksave, specifying
:gc or :full-gc is recommended.

The keyword argument :reserved-free-segments specifies the number of segments
of reserved memory that should be free in the saved image; if used, it should be set
to a positive integer. Specifying a large number of segments permits you to load
large amounts of code into the image or to create many foreign data structures
without having to expand reserved memory and garbage collect. However,
specifying a large number of segments also increases the size of your saved image
as well as the amount of memory that is required to start it up.

2-12 Sun Common Lisp User's Guide

disksave

The keyword argument :dynamic-free-segments specifies the number of segments
of dynamic-O space that should be free in the image; if used, it should be set to a
positive integer. The total amount of dynamic space will be as follows:

(amount of dynamic-O space in use + free dynamic-O space requested) X 2

The amount is doubled because an equal amount of dynamic-l space will be
allocated. If you do not specify this keyword, all dynamic space that is allocated
in the running image will be preserved when you call disksave.

If :verbose is specified and non-nil, the progress of the saving process is reported
to the terminal.

If the Window Tool Kit has been initialized and the function disksave is invoked,
the window environment is temporarily suspended. Once the disksave function
has saved the Lisp image on disk, the windows on the running Lisp image are
restored automatically to the state they were in before the disksave function call.
To restore the state of the windows in the newly saved image, call the function
initialize-windows or the function ed with no arguments (see the chapter "The
Window Tool Kit").

This function is an extension to Common Lisp.

Examples: > (disksave "test-lisp") Saves Lisp as
"test-lisp".

> (disksave "appl" :restart-function #'init-function) Saves Lisp as
"appl".
init-function is
called on start-up
of "appl".

Starting Up 2-13

ed

Purpose:

Syntax:

Remarks:

The function ed invokes the Editor.

IT you are in the 8untools environment, the function ed initializes the Window
Tool Kit and invokes the Editor in a default display. The default display consists
of a Lisp Buffer window that occludes a scratch buffer window.

IT you do not specify an optional argument to ed, you enter the Editor in the same
state in which you last left it.

ed toptional z tkey :windows tallow-other-keys [Function]

You can specify a pathname, a string, or a symbol as the optional argument z.
IT you specify either a pathname or a string argument, ed allows you to edit the
contents of the indicated file. If you specify a symbol argument that represents
the name of an interpreted function, ed pretty-prints the corresponding function
into a buffer that becomes the current buffer. You may then edit the text of the
function definition. Any interpreted function that you edit must be reevaluated to
make the changes effective in the current Lisp environment; the edited version is
treated as a new function definition.

By default, the Editor starts up in the window environment, if one exists. IT you
have already used the Editor during the current Lisp session, buffers and window
configurations that you established earlier are restored.

IT you specify the keyword :windows, its argument must have one of the following
values:

• nil
IT the keyword argument has this value, the Editor starts up as a terminal
editor.

• t
IT the keyword argument has this value, the Editor starts up in the available
window environment; if no window environmerrt is available, an error is
signaled.

• :default

IT the keyword argument has this value, the Editor restarts in the available
window environment with a default configuration of windows. Changes you
made to the window configuration in previous editing sessions are not retained.
IT no window environment is available, an error is signaled.

2-14 Sun Common Lisp User's Guide

See Also:

ed

If you start up the Editor as a terminal editor, you cannot use it in the window
environment in subsequent editing sessions. Similarly, if you start up the Editor in
the Window Tool Kit, you must remain in the window environment in subsequent
editing sessions.

You may also specify any of the keyword options that are valid for the function
initialize-windows. These options are passed by ed to initialize-windows to
initialize the Window Tool Kit in an environment that supports a window system.
By invoking the function windows-avaiIable-p, you can determine if a window
environment is available.

See the chapters "The Editor" and "The Window Tool Kit" for more information.

The keyword :windows and the keyword options that are passed to the function
initialize-windows are extensions to the Common Lisp function ed.

initialize-windows

windows-available-p

Starting Up 2-15

quit

Purpose:

Syntax:

Remarks:

The function quit terminates the Lisp environment. Before returning to the
operating system environment, however, quit exits to the top level of Lisp by
using the special form throw. Therefore, if quit is called from inside the special
form unwind-protect, all of the clean-up forms specified by the invocation
of unwind-protect are executed before quit returns to the operating system
environment. Thus, quit can be used to close all files.

quit I;optional status [Function]

The optional argument status sets the exit status of the process that was running
Lisp. It defaults to o.
This function is an extension to Common Lisp.

Examples: > (quit)
%

See Also: abort

2-16 Sun Common Lisp User's Guide

Chapter 3. Debugging Lisp Programs

Debugging Lisp Programs 3-1

Chapter 3. Debugging Lisp Programs

The Debugger ... 3-3
Invoking the Debugger .. 3-3
The Debugger Stack .. 3-4

Debugger Commands ... 3-6
Exiting the Debugger ... 3-7
Moving in the Stack .. 3-7
Examining Stack Frames ... 3-8
Examining and Modifying Local Variables 3-11
Using the Debugger .. 3-12

debug-print-Iength ... 3-14
debug-print-Ievel .. 3-16

3-2 Sun Common Lisp User's Guide

The Debugger

In Sun Common Lisp, the facility called the Debugger allows interactive
examination and modification of elements of the Lisp environment, while providing
the same interpretive facilities that are available at the top level of Lisp. Unlike
the top level, the Debugger can be called recursively; that is, you can enter lower
levels of it from inside the facility itself. At each recursive level of the Debugger,
instructions for exiting and returning to the top level of Lisp are automatically
displayed.

Invoking the Debugger

The Debugger can be invoked by signals generated by Lisp and by signals generated
by the operating system. A Lisp-generated signal is created by calls to the functions
error, cerror, or break, or by a call to the macro trace (with the keyword
:break set to non-nil). Calls such as these suspend Lisp evaluation and enter the
Debugger in a controlled, explicit manner.

Signals, or interrupts, generated by the operating system can be encountered at any
time and thus may interrupt the normal flow of Lisp evaluation in an unpredictable
manner. The most common and useful interrupt is the keyboard interrupt.

The examples in this chapter assume that the interrupt character is Control-C.

The Debugger recognizes the manner in which it was invoked. The type of signal
that caused invocation is identified upon entry and displayed on the screen followed
by a colon (:) and a brief diagnosis of the calling situation. For example, if a
key board interrupt is encountered, the Debugger prints the following:

» Interrupt: Interrupt

The wrong number of arguments to a function looks like this:

> (load)
»Error: LOAD cannot be called with 0 arguments

When you call the function error with the mandatory string argument, the
argument is taken as the diagnosis:

> (error "This is my error.")
»Error: This is my error.

Debugging Lisp Programs 3-3

The style of this last example is useful for building user-defined programs and
functions. For example, you can construct a function that signals an error if its
argument is not an integer:

>(defun integer-only(arg)
(cond «not (integerp arg» (error "Argument is not an integer"»

(t (+ 2 arg»»
INTEGER-ONLY
> (integer-only 3)
6
> (integer-only 'fool
»Error: Argument is not an integer

The Debugger Stack

The Debugger makes the dynamic state of the Lisp environment available for
examination by organizing this state into a series of stack frames called the stack.
A stack uame corresponds to one function call and contains the name of that
function, its arguments, and any local variables. You can look at and examine the
contents of a stack frame, and you can alter certain parameters of the contents by
typing commands to the Debugger.

When it is entered, the Debugger decides which frame it is currently pointing to
and displays the name of the associated function and the function's arguments
below the signal. For example, calling an undefined function causes the function
symbol-function to signal an error:

> (undefined 4)
»Error: UNDEFINED has no global function definition

SYMBOL-FUNCTION: ; This is the stack frame.
Required arg 0 (S): UNDEFINED

Calling a compiled function with the wrong number of arguments causes the
function itself to signal the error:

> (eq 3 4 45)
»Error: EQ cannot be called with 3 arguments
EQ:

Required arg 0 (X): 3
Required arg 1 (Y): 4

3-4 Sun Common Lisp User's Guide

The following code defines and compiles the function add-one, which contains no
argument type checking:

> (compile (defun add-one(arg) (+ 1 arg»)
;;; Compiling function ADD-ONE ... assembling ... emitting ... done.
ADD-ONE

If you call add-one with a nonnumeric argument, the function +, not add-one,
signals an error:

> (add-one 'z)
»Error: Improper numeric arguments.

+:
Required arg 0 (X): Z
Required arg 1 (Y): 1

A partial examination of the stack reveals the following:

ERROR <- + <- ADD-ONE

In this stack frame, the arrows «-) point toward the top of the stack. The first
word, ERROR, is the function that called the Debugger. It is at the top of the
stack. The arrows can also be thought of as representing the expression "calls the
function." Thus, ADD-ONE "calls the function" +, which "calls the function" ERROR.

Debugging Lisp Programs 3-5

Debugger Commands

When an error occurs and the Debugger is entered, it displays this prompt:

->

Mter this prompt, you can type any of the expressions that you would type to the
top level of Lisp. The Debugger also responds to specialized commands. With these
commands you can examine the stack and change the state of your environment.

You can see the complete list of possible commands by typing a question mark (?)
to the prompt, as shown below. (Note that you can type Debugger commands in
either uppercase or lowercase.)

-> ?
:N
:N k
:N fn
:P
:P k
:P fn
:>
:> k
:> fn
:<
:< k
:< fn
:A

Go down one frame (towards the caller).
Go down k frames.
Go down to the next occurrence of the named function.
Go up one frame.
Go up k frames.
Go up to the previous occurrence of the named function.
Go to the bottom of the stack (towards Lisp Top Level).
Go k frames up from the bottom of the stack.
Go to the bottommost occurrence of the named function.
Go to the top of the stack.
Go k frames down from the top of the stack.
Go to the topmost occurrence of the named function.
Abort to Lisp Top Level.

:B Backtrace to the bottom of the stack.
:B k Backtrace k frames.
:B fn
:BC
:BC k
:BC fn
:C
:D
:V
:V k
:PP
:E

Backtrace to the named function.
Backtrace. showing catches. to the bottom of the stack.
Backtrace. showing catches. k frames.
Backtrace. showing catches. to the named function.
Continue from the debugger. at the place it was called.
Display this frame and show options.
Verbosely display this frame. showing up to 32 10~a1 variables.
Verbosely display this frame. showing up to k local variables.
PPRINT the source code. if any. associated with this frame.
Escape to previous break. .

:I k Inspect local variable numbered k. and set * to result.
:I k var2 Inspect as above. but also set var2 to result.
:I var Inspect local variabl~ named var. and set * to result.
:I var var2 Inspect as above. but also set var2 to result.
:L k Print local variable numbered k. and set * to its value.
:L k var2 Print as above. but also set var2 to the same value.
:L var Print local variable named var. and set * to its value.

3-6 Sun Common Lisp User's Guide

:L var var2 Print as above. but also set var2 to the same value.
:S k exp Evaluate exp and store result in local variable numbered k.
:S var exp Evaluate exp and store result in local variable named var.
:R value Return a value to caller of currently displayed frame.
:R (VALUES ...) Return multiple values.
: HIDE fn Suppress the named function in backtraces.
: HIDE :PACKAGE pkg Suppress internal symbols in named package.
:UNHIDE fn Permit the named function to appear in backtraces.
:UNHIDE :PACKAGE pkg Permit internal symbols in named package to appear.
: UNHIDE : ALL Permi t e"rerything to appear.
:BUG <filename> Write a (verbose) bug report to the named file.
:1 Describe the commands available (1. :H. :HELP. and HELP also work).
Any other expression will be evaluated and printed.
->

IT you type the commands :i, :1, :8, :r, :hide, :unhide, and :bug with no
arguments, you are prompted for those arguments.

IT you wish to abort a command that is in progress, type Control-C to get a lower
level of the Debugger. Then type :e at that lower level to return to the Debugger
prompt at the level you were in when you decided to abort.

Exiting the Debugger

Upon entry, the Debugger displays commands for exiting and returning to the top
level of Lisp. This list of commands may vary, depending on the recursive level of
the program and the type of entry into the Debugger. However 1 the list always
includes the :a command:

:A Abort to Lisp Top Level.

Moving in the Stack

The Debugger provides commands for displaying the stack and for moving from
one frame to another. The command :b displays or executes a backtrace on the
stack from the current frame to the bottom of the stack. You can give a numeric
argument k to some Debugger commands. The command :b k, for example,
backtraces k frames from the current frame. You can also specify a function name
as an argument to some Debugger commands. The command : b fn performs a
backtrace from the current frame to the specified function.

The four frame-moving commands are the following:

• The:n command moves toward the bottom of the stack.

• The:p command moves toward the top of the stack.

Debugging Lisp Programs 3-1

• The: > command moves to the frame at the bottom of the stack.

• The:< command moves to the frame at the top of the stack.

These commands accept both numbers and functions as arguments. A numeric
argument to either :n or :p is taken as the number of frames to move in the
specified direction. The default is 1. A numeric argument to :> or :< is taken as
the number of frames to move away from the specified stack end. Thus, typing the
command : < 3 moves you to the third frame from the top of the stack.

H you specify a function as an argument to these commands, they search for the
next occurence of the named function in the specified direction (for :n or :p) or
from the specified stack end (for :> or :<) and move to it.

The full session of the add-one example is displayed below:

> (add-one 'z)
»Error: Improper numeric arguments.

+:
Required arg 0 (X): Z
Required arg 1 (Y): 1

:A Abort to Lisp Top Level
-> :b add-one
+ <- ADD-ONE
-> :<
ERROR:

This is the contents of the frame
when the Debugger is entered.

This is an exit command.
Backtrace to function add-one.

Move to the top of the stack.
Contents of the frame at top of
the stack.

Required arg 0 (FORMAT-STRING): "Improper numeric argument-P."
Rest arg (FORMAT-ARGS): (2)

-> :b add-one ; Backtrace to function add-one.
ERROR <- + <- ADD-ONE
->

Examining Stack Frames

The Debugger commands for examining individual stack frames are as follows:

• The:d command displays the current frame and exit options.

• The:v command prints a long display of the current frame, showing local
variables.

• The :pp command pretty-prints the source code, if there is any, associated
with the current frame.

3-8 Sun Common Lisp User's Guide

The :d command acts 88 a convenient reminder. The:v command can take a
numeric argument specifying the number of local variables to be displayed. The
default is 32.

The code that follows demonstrates the use of these commands. It defines a
function, bad-fun, that attempts to add an argument to a symbol if the argument
is greater than 8:

> (defun bad-fun(x) (if (> x 8) (+ x 'q»)
BAD-FUN
> (bad-fun 9)
»Error: Q should be of type NUMBER

+:
Rest arg (RESTARG): (9 Q)

:A Abort to Lisp Top Level
:C Supply a new value

-> :b ; Backtrace from function +.

+ <- IF <- BLOCK <- BAD-FUN <- EVAL <- UDDamed function

-> :n block ; Go to the next frame called BLOCK.

BLOCK:
Original code: (BLOCK BAD-FUN (IF (> X 8) (+ X I»)

-> :pp

(BLOCK BAD-FUN
(IF (> X 8)

(+ X 'Q»)

-> :n
BAD-FUN:

; PPRINT the associated code.

; Go to the next frame.

Original code: (NAMED-LAMBDA BAD-FUN (X) (BLOCK BAD-FUN (IF I #»)
Local 0 (X): 9

-> :pp

(NAMED-LAMBDA BAD-FUN
(X)
(BLOCK BAD-FUN

(IF I
I»)

Note the difference between this
code and the code associated with
the block frame.

Debugging Lisp Programs 3-9

-> :<
CERROR:

: Go to the top of the stack.

Required arg 0 (CONTINUE-FORMAT-STRING): "Supply a new value"
Required arg 1 (FORMAT-STRING): "-S should be of type -A"
Rest arg (FORMAT-ARGS): (Q NUMBER)

-> :b : Backtrace.

CERROR <- + <- IF <- BLOCK <- BAD-FUN <- EVAL <- unnamed function

-> :n +
+:

Rest arg (RESTARG): (9 Q)

: Move to the + frame.

-> :v Verbose display.
+.

Rest arg (RESTARG): (9 Q)

Local 1: 9
Local 2: Q
Local 3: (Q)

-> :d Display the frame and options.
»Error: Q should be of type NUMBER

+:
Rest arg (RESTARG): (9 Q)

:A Abort to Lisp Top Level
:C Supply a new value

-> :c
Supply a new value
Enter a form to be evaluated: 1
10
>

Debugger message.
Set the value of q to 1.
(+ 9 1)
This is the top level.

Notice the use of :c in the example. Although the exact workings of :c vary
depending on each situation, its general purpose is to continue evaluation at the
top level. In this case, it was determined that a new value was needed for the
symbol Q before Lisp could continue evaluating the function bad-fun.

Notice the use of # when displaying source code. This symbol designates a form
that is at a level that is nested beyond the value of the variable .print-Ievel •.
Upon entry, the Debugger binds the variable .print-Ievel. to the value of the
variable .debug-print-Ievel.. The value of .debug-print-Ievel. defaults to 3.
Thus, in the example, the Debugger printed three levels of forms. All forms on the
same level are indented equally, as shown below:

3-10 Sun Common Lisp User's Guide

(NAMED-LAMBDA BAD-FUN
(X)
(BLOCK BAD-FUN

(IF #

I»~)

Because .print-Ievel. is bound to .debug-print-Ievel. upon entry to the
Debugger, if you rebind .debug-print-Ievel. to a new value, it has no effect on
the current recursive level of the Debugger.

The variables .print-Iength. and .debug-print-Iength. are similarly applied to
the length in atoms of a particular form. A form whose length exceeds the specified
value has its excess atoms represented by periods. IT you alter .print-Iength. or
.print-Ievel. while in the Debugger, you are prompted to restore them to their
old values when you exit the Debugger.

Examining and Modifying Local Variables

The Debugger also supplies commands for examining and modifying a stack frame's
local variables:

• The:i command inspects a variable.

• The:1 prints a variable.

• The:8 command sets the value of a variable.

These commands require a variable name or variable number as their first
argument. The:i command enters the Inspector, a facility that allows you to
inspect data structures (see the chapter "Inspecting Data Structures" for a detailed
discussion of the Inspector). The :1 command prints the value of the given variable.
An optional second argument to :i or :1 is taken as a nonlocal variable name, and
the result of inspecting or printing is stored in that variable. This is useful when
you want to examine data structures without worrying about accidentally altering
the contents of the original. The result is also stored in the Lisp history variable *.
Thus, the following examples are synonymous:

-> :L 1 NyVar

-> :L 1
-> (setq NyVar *)

Print the value of local variable number 1 and store
this value in the global variable NyVar.

Print the value of local variable number 1.
Store the value of the previous evaluation in MyVar.

The :8 command requires a Lisp expression as a second argument. The expression
is evaluated, and the designated variable is set to the result. IT no required
arguments are given, all three of these commands prompt for them.

Debugging Lisp Programs 3-11

Using the Debugger

The sample debugging session in this section demonstrates the use of some of the
variable examination commands.

The code that follows defines the function bad-loop, which returns t if its first
argument is greater than 3 and its second argument is less than 5; otherwise it
loops continually.

> (defun bad-loop (x y)
(do «i 0 (+ 1 i»)

(nil)
(if (and (> x 3) « y 5» (return t»»

BAD-LOOP

Typing this expression induces a loop:

> (bad-loop 3 6)

Typing Control-C causes a keyboard interrupt that breaks the loop and enters
the Debugger:

»Interrupt: Interrupt

IF:
Original code: (IF NIL (RETURN NIL»

:A Abort to Lisp Top Level
:C Resume Interrupted Instruction

-> :b ; Backtrace the stack.
IF <- PROGN <- TAGBODY <- LET <- BLOCK <- BLOCK <- BAD-LOOP <- EVAL

-> :n let
LET:
Original code: (LET «I 0»

; Move to the LET frame.

(TAGBODY #:G4 (IF NIL #) (IF # #) (PSETQ I #) (GO #:G4»)
Local 0 (I): 1049 Notice that the variable I from

the DO loop has grown quite large.
The interpreter has expanded the
DO loop into a TAGBODY.

3-12 Sun Common Lisp User's Guide

-> :n bad-loop
BAD-LOOP:

i Move to the BAD-LOOP frame.

Original code: (NAMED-LAMBDA BAD-LOOP (X Y) (BLOCK BAD-LOOP (DO # # #»)
Local 0 (X): 3 The variables do not satisfy the
Local 1 (Y): 5 return condition. X must be

-> :s 0 4

-> :1 0 y
4

-> Y
4

-> :v
BAD-LOOP:

> than 3.and Y must be < than 5.

Set the variable 0 (X) to 4.

Look at the variable 0 and set Y
to the result.

Y is set to 4.

i Look at the variables again.

Original code: (NAMED-LAMBDA BAD-LOOP (X y) (BLOCK BAD-LOOP (DO # # #»)
Local 0 (X): 4
Local 1 (Y): 5 But Y was set to 4. Remember

that the second argument to

-> :s y 4

-> :v
BAD-LOOP:

:L is a global variable. not a
local variable. despite the
name duplication.

Set Y to 4 in an accepted manner.

Now look at the variables.

Original code: (NAMED-LAMBDA BAD-LOOP (X y) (BLOCK BAD-LOOP (DO # # #»)
Local 0 (X): 4
Local 1 (Y): 4

-> :c

Resume Interrupted Instruction
T
>

Continue the interrupted
instruction.

The values of the local variables are now changed, and the loop has been exited.

Debugging Lisp Programs 3-13

de bug-print-Iength

Purpose:

Syntax:

The variable .debug-print-Iength. controls the length of printing in the
Debugger.

When the Debugger, the Stepper, or the Inspector is entered, or when the tracing
information for a traced function is being printed, the variable .print-Iength. is
bound to the value of .debug-print-Iength •. If you bind .debug-print-Iength.
to nil or to a fixnum greater than or equal to 1, .print-Iength. is bound to that
value; otherwise it is bound to 10. The default value of .debug-print-Iength. is
10.

.debug-print-Iength. [Variable]

Remarks: This variable is an extension to Common Lisp.

Examples: > (setq a 1 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15»
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
> (break)
»Break:

EVAL:
Required arg 0 (EXPRESSION): (BREAK)

:A Abort to Lisp Top Level
:c Return from break
-> a
(123 4 5 6 7 8 9 10 ...)
-> :c
Return from break
NIL
> (dolist (dpl 1 (nil 3 12 Ifoo»

(let «*debug-print-length* dpl» (break»)
»Break: *debug-print-length* is nil;

; thus *print-length* is nil.
LET:
Original code: (LET «*DEBUG-PRINT-LENGTH* DPL» (BREAK»

Local 0 (0): NIL

:A Abort to Lisp Top Level
:C Return from break
-> a
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

3-14 Sun Common Lisp User's Guide

-> :c
Return from break
»Break:

LET:

.debug-print-Iength*

debug-print-length is 3;
thus *print-length* is 3.

Original code: (LET «*DEBUG-PRINT-LENGTH* DPL» (BREAK»
Local 0 (0): 3

:A Abort to Lisp Top Level
:C Return from break
-> a
(1 2 3 ...)
-> :c
Return from break
»Break:

LET:

debug-print-length is 12;
thus *print-length* is 12.

Original code: (LET «*DEBUG-PRINT-LENGTH* DPL» (BREAK»
Local 0 (0): 12

:A Abort to Lisp Top Level
:C Return from break
-> a
(1 234 561 8 9 10 11 12 ...)
-> :c
Return from break
»Break:

LET:

debug-print-length is 'foo;
thus *print-length* is 10.

Original code: (LET «*DEBUG-PRINT-LENGTH* DPL» (BREAK»
Local 0 (0): (QUOTE FOO)

:A Abort to Lisp Top Level
:C Return from break
-> a
(1 2 3 4 5 6 1 8 9 10 ...)
-> :c
Return from break
NIL

Debugging Lisp Programs 3-15

debug-print-Ievel

Purpose:

Syntax:

The variable .debug-prInt-Ievel. controls the level of printing in the Debugger.

When the Debugger, the Stepper, or the Inspector is entered, or when the tracing
information for a traced function is being displayed, the variable .print-Ievel. is
bound to the value of .debug-print-Ievel.. If you bind .debug-print-Ievel. to
nil or to a fixnum greater than or equal to 1, .print-Ievel. is bound to that value.
Otherwise .print-Ievel. is bound to 3. The default value of -debug-print-Ievel.
is 3.

.debug-print-Ievel. [Variable]

Remarks: This variable is an extension to Common Lisp.

Examples: > (setq a '(1 (2 (3 (4 (5 (6 (7»»»»
(1 (2 (3 (4 (5 (6 (7»»»)
> (break)
»Break:

EVAL:
Required arg 0 (EXPRESSION): (BREAK)

:A Abort to Lisp Top Level
:c Return from break
-> a
(1 (2 (3 I»~)
-> :c
Return from break
NIL
> (dolist (dpl '(nil 5 'fool)

(let «*debug-print-level* dpl» (break»)
»Break: Now *debug-print-level* is bound to nil;

; thus *print-level* is nil.
LET:
Original code: (LET «*DEBUG-PRINT-LEVEL* DPL» (BREAK»

Local 0 (0): NIL

:A Abort to Lisp Top Level
:C Return from break
-> a
(1 (2 (3 (4 (5 (6 (7»»»)

3-16 Sun Common Lisp User's Guide

-> :c
Return from break
»Break:

LET:

.debug-print-Ievel*

debug-print-level is bound to 6;
thus *print-level* is bound to 6.

Original code: (LET «*DEBUG-PRINT-LEVEL* DPL» (BREAK»
Local 0 (0): 6

:A Abort to Lisp Top Level
:c Return from break
-> a
(1 (2 (3 (4 (6 I»~»~)
-> :c
Return from break
»Break:

LET:

*debug-print-level is bound to 'foo;
thus *print-level* is bound to 3.

Original code: (LET «*DEBUG-PRINT-LEVEL* DPL» (BREAK»
Local 0 (0): (QUOTE FOO)

:A Abort to Lisp Top Level
:C Return from break
-> a
(1 (2 (3 I»~)
-> :c
Return from break
NIL

Debugging Lisp Programs 3-11

Chapter 4. Tracing Functions

Tracing Functions 4-1

Chapter 4. Tracing Functions

Trace-A Tool for Debugging ... 4-3
Syntax for Trace ... 4-4
Keyword Options .. 4-4

max-trace-indentation ... 4-6
trace ... 4-7
trace-arglist ... 4-9
trace-bar-p ... 4-10
trace-columns-per-Ievel ... 4-11
trace-Ievel .. 4-12
trace-new-definitions ... 4-13
trace-values ... '. 4-14
traced-function-list .. 4-15
untrace .. 4-16

4-2 Sun Common Lisp User's Guide

Trace-A Tool for Debugging

The 7race FacHity is a tool for debugging. It allows you to trace one or more
functions and provides the ability to perform certain actions at the time a function
is called or at the time it exits. It returns as its value a list of names of all functions
it has traced. H trace is called with no arguments, a list of all functions that are
currently being traced is returned. H a function is already being traced, trace calls
the macro untrace before starting the new trace.

Calling untrace restores functions to their normal state. The macro may take
multiple arguments. Calling it with no arguments untraces all the functions
currently being traced.

Forms are evaluated in the lexical environment at the time of the trace call. Special
forms cannot be traced because they are neither functions nor macros. Calling
trace on a macro traces the macro expansion, not the evaluation of the form.

When the tracing information for a traced function is being printed, the variable
.print-Ievel. is bound to the value of the variable .debug-print-Ievel., and
the variable .print-Iength. is bound to the value of the variable .debug-print
length •.

The Common Lisp forms that are part of the Trace Facility are listed below:

.max-trace-indentation.
trace
.trace-arglist.
• trace-bar-p.
• trace-columns-per-Ievel.

.trace-Ievel •
• trace-new-definitioDs.
.trace-values •
.traced-function-list •
untrace

Tracing Functions 4-3

Syntax for Trace

The syntax for trace is displayed below:

trace { trace-spec} *

trace-spec::= function-name I
({function-name I ({function-name}+)} {keyword form}*)

keyword ::= :cond I

Keyword Options

: entrycond I
:exitcond I
:break I
:exitbreak I
:entry I
:exit I
: step

The macro trace may take the following keyword options:

• :cond form

:entrycond form

:exitcond form

[Macro]

Tracing information is normally printed upon entry and exit. Unless modified
by the :entry and :'exit options, the printed information consists of the
name of the function followed at entry by its arguments and on exit by its
return values. You can control the printing with the keywords listed above.
Information is printed upon entry if both the form for :cond and the form for
:entrycond evaluate to non-nil. Information is printed upon exit if both the
form for :cond and the form for :exitcond evaluate to non-nil. In each case,
if the keyword is not specified, the default value of form is non-nil.

• :break form

This keyword causes a breakpoint to be entered after printing the entry trace
information, but before applying the traced function to its arguments. This
occurs if and only if form evaluates to non-nil.

4-4 Sun Common Lisp User's Guide

• :exitbreak form

This option works exactly like : break except that the breakpoint is entered
after the function has been executed and the exit trace information has been
printed and before control returns.

• :entry ({form} +)

This option prints the values of the forms in the list upon function entry. They
are preceded by two backslashes (\ \).

• :exit ({form} +)

This option prints the values of the forms in the list upon exit from the
function. They are preceded by two backslashes (\ \).

• :step form

This turns on the stepping facility if and only if form evaluates to non-nil.
The stepping facility allows you to step through the execution of the function
that is being traced and is explained in more detail in the chapter "Stepping
Through an Evaluation."

Tracing Functions 4-5

max-trace-indentation

Purpose: In the trace output, the variable .max-trace-indentation. represents the
maximum number of spaces for indentation. The default is 60.

Syntax: .max-trace-indentation.

Remarks: This variable is an extension to Common Lisp.

~xamples: > (defun recur(x) (when (> x 0) (recur (1- x»»
RECUR
> (trace recur)
(RECUR)
> (recur 2)
1 Enter RECUR 2
I 2 Enter RECUR 1
I 3 Enter RECUR 0
I 3 Exit RECUR NIL
I 2 Exit RECUR NIL
1 Exit RECUR NIL
NIL
> (let «*max-trace-indentation* 2»(recur 2»
1 Enter RECUR 2
I 2 Enter RECUR 1
I 3 Enter RECUR 0
I 3 Exit RECUR NIL
I 2 Exit RECUR NIL
1 Exit RECUR NIL
NIL

4-6 Sun Common Lisp User's Guide

[Variable]

trace

Purpose:

Syntax:

Remarks:

The trace macro allows you to trace one or more functions and to perform certain
actions at the time a function is called or at the time it returns. It returns as its
value a list of names of all the functions it has traced.

trace {trace-spec} *

trace-spec::= function-name I
({function-name I ({function-name} +)} {keyword form}*)

keyword ::=: cond I
: entrycond I
:exitcond I
:break I
: exitbreak I
:entry I
:exit I
: step

[Macro]

The macro may take multiple arguments. IT trace is called with no arguments, a
list of all functions that are currently being traced is returned.

IT a function is already being traced, trace calls untrace before starting the new
trace. Calling untrace restores all functions to their normal state.

Calling trace on a macro traces the macro expansion, not the evaluation of the
form. Special forms cannot be traced because they are neither functions nor
macros.

In the trace output, two backslashes (\ \) precede the tracing information.

Examples: > (prop (untrace) (trace»
NIL
> (trace cdr)
(CDR)
> (trace)
(CDR)
> (cdr '(1 2»
1 Enter CDR (1 2)
1 Exit CDR (2)
(2)
> (trace (cdr :cond nil»
(CDR)
> (cdr '(1 2»
(2)

Tracing Functions 4-7

trace

See Also:

> (trace (cdr :entry ("entry banner") :exitcond nil»
(CDR)
> (cdr • (1 2»
1 Enter CDR (1 2) \\ "entry banner"
(2)

untrace

4-8 Sun Common Lisp User's Guide

*trace-arglist *

Purpose: The variable *trace-arglist* provides information on the arguments of the
function that is being traced. It is bound to the traced function's argument list
and is available for inspection, but you should not change it.

Syntax: *trace-arglist *

Remarks: This variable is an extension to Common Lisp.

~xamples: > (defun foo (x) (if (null x) x (foo (cdr x»»
FOO
> (trace (foo :entry (*trace-arglist*»)
(FOO)
> (foo '(1 2 3»
1 Enter FOO (1 2 3) \\ «1 2 3»
I 2 Enter FOO (2 3) \\ «2 3»
I 3 Enter FOO (3) \\ «3»
I I 4 Enter FOO NIL \\ (NIL)
I I 4 Exit FOO NIL
I 3 Exit FOO NIL
I 2 Exit FOO NIL
1 Exit FOO NIL
NIL

[Variable]

Tracing Functions 4-9

trace-bar-p

Purpose: The variable .trace-bar-p. controls whether columns of vertical bars are printed
in the Trace Facility's output. Bars are printed if the value is not nil; otherwise
spaces are printed. The default is t.

Syntax:

Remarks: This variable is an extension to Common Lisp.

~xamples: > (defun recur(x) (when (> x 0) (recur (1- x»»
RECUR
> (trace recur)
(RECUR)
> (recur 1)
1 Enter RECUR 1
I 2 Enter RECUR 0
I 2 Exit RECUR NIL
1 Exit RECUR NIL
NIL
> (let «*trace-bar-p* nil» (recur 1»
1 Enter RECUR 1

2 Enter RECUR 0
2 Exit RECUR NIL

1 Exit RECUR NIL
NIL

4-10 Sun Common Lisp User's Guide

[Variable]

trace-columns-per-Ievel

Purpose: The variable .trace-columns-per-Ievel. controls how many columns are added
to the Trace Facility's output for each level of function call. The value must be a
positive integer, and the default is 2.

Syntax: .trace-columns-per-Ievel.

Remarks: This variable is an extension to Common Lisp.

~xamples: > (defun recur(x) (when (> x 0) (recur (1- x»»
RECUR
> (trace recur)
(RECUR)
> (recur 1)
1 Enter RECUR 1
I 2 Enter RECUR 0
I 2 Exit RECUR NIL
1 Exit RECUR NIL
NIL
> (let «*trace-columns-per-level* 10» (recur 1»
1 Enter RECUR 1
I 2 Enter RECUR 0
I 2 Exit RECUR NIL
1 Exit RECUR NIL
NIL

[Variable]

Tracing Functions 4-11

trace-Ievel

Purpose: The variable .trace-Ievel. represents how deeply nested a call to the macro trace
is. The value is an integer.

Syntax: .trace-Ievel. [Variable]

Remarks: This variable is an extension to Common Lisp.

~xamples: > (defun recur2(x) (unless « x 0) (cons *trace-level* (recur2 (1- x»»)
RECUR2
> (trace recur2)
(RECUR2)
> (recur2 2)
1 Enter RECUR2 2
I 2 Enter RECUR2 1
I 3 Enter RECUR2 0
I I 4 Enter RECUR2 -1
I I 4 Exit RECUR2 NIL
I 3 Exit RECUR2 (3)
I 2 Exit RECUR2 (2 3)
1 Exit RECUR2 (1 2 3)
(1 2 3)

4-12 Sun Common Lisp User's Guide

trace-new-definitions

Purpose: The variable .trace-new-definitions. traces all new definitions when its value is
non-nil. Its default value is nil, which means that new definitions are not traced.

Syntax: .trace-new-definitions.

Remarks: This variable is an extension to Common Lisp.

Examples: > (defun new10)
NEW1
> (trace)
NIL
> (let«*trace-new-definitions* t» (defun new2 (»)
NEW2
> (trace)
(NEW2)

[Variable]

Tracing Functions 4-13

trace-values

Purpose: The variable * trace-values * provides information on the returned values of the
function that is currently being traced. You can inspect *trace-values*, but you
cannot control the behavior of the macro trace with it. It is bound to the traced
function's list of returned values.

Syntax:

Remarks: This variable is an extension to Common Lisp.

Examples: > (trace (cdr : exitbreak t»
(CDR)
> (cdr '(1 2 3»
1 Enter CDR (1 2 3)
1 Exit CDR (2 3)
»Break: Trace exit

(:TRACED CDR):
Rest arg (G12703): «1 2 3»

:A Abort to Lisp Top Level
:C Return from break
-> *trace-values*
«2 3»
-> (setq *trace-values* '«override-return»)
«OVERRIDE-RETURN»
-> :c
Return from break
(OVERRIDE-RETURN)

4-14 Sun Common Lisp User's Guide

[Variable]

traced-function-list

Purpose: The variable .traced-function-list. checks whether a function is being traced.
Its value is a list of the names of all the functions that are being traced.

Syntax: .traced-function-list.

Remarks: This variable is an extension to Common Lisp.

Examples: > *traced-function-list*
NIL
> (trace cdr car)
(CDR CAR)
> *traced-function-list*
(CAR CDR)

[Variable]

Tracing Functions 4-15

untrace

Purpose:

Syntax:

The macro untrace restores functions to their normal state. It may take multiple
arguments. Calling it with no arguments untraces all the functions currently being
traced.

untrace {function-name}* [Macro]

~xanaples: > (progn (untrace) (trace car caar caaar»
(CAR CAAR CAAAR)

See Also:

> (untrace car)
(CAR)
> (trace)
(CAAAR CAAR)
> (untrace)
(CAAR CAAAR)
> (trace)
NIL
> (untrace)
NIL

trace

4-16 Sun Common Lisp User's Guide

Chapter 5. Stepping Through an Evaluation

Stepping Through an Evaluation 5-1

Chapter 5. Stepping Through an Evaluation

The Stepper-A Tool for Debugging ... 5-3
U sing the Stepper .. 5-4
Stepping Commands .. 5-4

max-step-indentation .. 5-5
step ... 5-6
step-columns-per-Ievel ... 5-7
step-Ievel ... 5-8

5-2 Sun Common Lisp User's Guide

The Stepper-A Tool for Debugging

The step macro facility, or Stepper, is a tool for examining programs. It
allows you to step through the evaluation of a function or form to discover why
it is behaving unexpectedly. The step macro can be called on any compiled
or interpreted function. However, it is most useful when called on interpreted
functions, since it only displays the steps involved in the evaluation of interpreted
functions.

When step is called on a form, the variable *print-Ievel* is bound to the value of
debug-print-Ievel, and the variable *print-Iength* is bound to the value of
debug-print-Iength .

Before evaluation of any form begins, the form to be evaluated is partially
displayed. To illustrate the recursion pattern, the display of each form is indented
in proportion to its level of recursion. In the examples, the prompts -> and --> are
part of what the Stepper displays. Characters to the right of these prompts are
what the user types. After printing, the Stepper waits for a command that will tell
it how to proceed.

The Stepper consists of the step macro and three variables:

max-step-indentation
step

step-columns-per-Ievel
step-Ievel

The variables, which are extensions to Common Lisp, allow you to adjust the
format of the Stepper's output:

• *max-step-indentation*

The variable *max-step-indentation* controls indentation of the Stepper's
output. With this variable you can set the maximum number of spaces allowed
for indentation of the output.

• *step-columns-per-Ievel*

The variable *step-columns-per-Ievel* controls the number of columns that
are added to the output for each level of function call.

• *step-Ievel*

The value of the variable *step-Ievel* reflects how deeply nested the call to
step is.

Stepping Through an Evaluation 5-3

Using the Stepper

If you type the expression (step form), the form argument is evaluated in step
mode. If you type the expression (step funl fun2 ... funn) , the Stepper is entered
only when one of the functions in the list is called by interpreted code. This is
equivalent to typing the expression

(trace «funl ... funn) :cond nil :step t»

Stepping Commands

After printing, the Stepper waits for a command that will tell it how to proceed.
If you type a question mark (?) after stepping through an evaluation, the Stepper
displays a list of the basic stepping commands:

:n
:s
:u

:x
:p
:pp
:b
:q
:h or ?

Evaluate current expression in step mode.
Evaluate current expression without stepping.
Evaluate current expression without stepping

and go up one level of stepping.
Finish evaluation, but turn Stepper off.
Print current expression.
Pretty-print current expression.
Enter the Debugger.
Exit to Top Level.
Print this text.

5-4 Sun Common Lisp User's Guide

max-step-indentation

Purpose:

Syntax:

Remarks:

The variable tmax-step-indentationt sets the maximum number of spaces
allowed for indentation of the Stepper's output. The default is 60.

tmax-step-indentationt [Variable]

This variable is an extension to Common Lisp.

Stepping Through an Evaluation 5-5

step

Purpose:

Syntax:

The step macro is a debugging tool that examines the behavior of programs by
stepping through the evaluation of functions.

step form I {function-name} + [Macro]

Remarks: The macro step may be called on any compiled or interpreted function.

Examples: > (defun f(x) (when x (1+ x»)
F
> (step (f 1»

(F 1) -> :n

(FUNCTION F) -> :n

The symbol -> is a prompt
printed by the Stepper. and
characters to the right of
this prompt are entered by
the user.

#<Interpreted-Function (NAMED-LAMBDA F (X) (BLOCK F (WHEN X I»~)
60A217>

2
2

1 = 1
(BLOCK F (WHEN X (1+ X») -> :s
2

> (step f)
(F)
> (f 1)

2

(BLOCK F (WHEN X (1+ X») -> :n
(WHEN X (1+ X» --> :n

2
2

X = 1
(1+ X) -> :u
2

5-6 Sun Common Lisp User's Guide

The symbol--> is a prompt
printed by the Stepper. and
characters to the right of
this prompt are entered by
the user. Unlike ->. -->
indicates that the displayed
form is a macro expansion.

step-columns-per-Ievel

Purpose:

Syntax:

Remarks:

The variable *step-coluIDDs-per-level* controls how many columns are added to
the Stepper's output for each level of function call. The value is an integer, and
the default is 2.

step-columns-per-Ievel [Variable]

This variable is an extension to Common Lisp.

Stepping Through an Evaluation 5-7

step-Ievel

Purpose: The variable *step-Ievel* represents how deeply nested the call to the macro step
is. The value is an integer.

Syntax: *step-Ievel.

Remarks: This variable is an extension to Common Lisp.

Examples: > *step-level*
o

5-8 Sun Common Lisp User's Guide

[Variable]

Chapter 6. Inspecting Data Structures

Inspecting Data Structures 6-1

Chapter 6. Inspecting Data Structures

About the Inspector .. 6-3
Summary of Inspector Commands ... 6-3
Sample Terminal Session ... 6-4

inspect ... 6-5

6-2 Sun Common Lisp User's Guide

About the Inspector

The Inspector facility allows you to inspect data structures. The command level
of the Inspector is a read-eval-inspect loop, similar to the top-level read-eval-print
loop. When the function inspect is called on a particular object, it displays the
components of that object, and the object can then be modified. The components
displayed depend on the kind of object.

Summary of Inspector Commands

The Inspector is entered by calling the function inspect. This is the syntax:

inspect object [Function]

When inspect has been called on an object, typing a question mark (?) at the
prompt (») returns a list of possible commands, which is displayed on the screen
as shown below. You may type the commands in either uppercase or lowercase.

» ?
:Q Quit the inspector. returning the current object.
:R Redisplay the current object.
:U Pop the inspector stack.
:S N EXP

Evaluate EXP and store the result in slot N of the current object.
:L N Set *PRINT-LENGTH* for the inspector to N· (possibly NIL).
:D N Set *PRINT-LEVEL* for the inspector to N (possibly NIL).
1. :1. :H. :HELP

Print this message.

A positive integer selects a component of the current object to be
inspected. pushing the current object on the inspector stack. Any
other input is evaluated and inspected. also pushing the current object
on the stack. The variable * can be used to refer to the current object
in an expression to be evaluated.
»

Inspecting Data Structures 6-3

Sample Terminal Session

> (defstruct (foo) a b (c 0»
FOO

> (defstruct (baz) x y z)
BAZ

> (setq aa (make-foo»
#S(FOO A NIL B NIL C 0)
> (inspect aa)
#<Structure FOO 3D9293>

[0: A] NIL
[1: B] NIL
[2: C] 0

» 44
44 is out of range as an index for this item.
» 2
o

» :u
#<Structure FOO 3D9293>

[0: A] NIL
[1: B] NIL
[2: C] 0

Define a Lisp structure,
foo, with constructor
make-foo and slots a. b.
and c, with slot c
initialized to O.
Define a Lisp structure.
baz. with constructor
make-baz and slots x, y. z.

The Inspector displays the
structure aa with its slots
numbered for reference.

Pop to previous level.

» (setq bb (make-baz :x 11 :y (list 22 33»); This input is evaluated
#<Structure BAZ 3DC3A3> and then inspected.

[0: X] 11
[1: Y] (22 33)
[2: Z] NIL
» 1
#<List 3DCC99>
[0] 22
[1] 33
» :q
(22 33)

Note: The value returned from the Inspector is that of the last object examined.

6-4 Sun Common Lisp User's Guide

inspect

Purpose:

Syntax:

Example:

The function inspect is used for examining data structures. When called on an
object, inspect displays the object's components. The object can then be modified.

inspect object

> (setq a 1)
1
> (inspect a)
1

» :q
1
> (inspect 'a)
#<Symbol 3C81FD>

[0: NAME] "A"
[1: VALUE] 1
[2: FUNCTION] Undefined
[3: PLIST] NIL
[4: PACKAGE] #<Package "USER" 39DDOB>
» :q
A

[Function]

Inspecting Data Structures 6-5

6-6 Sun Common Lisp User's Guide

Chapter 7. The Foreign Function Interface

The Foreign Function Interface 7-1

Chapter 7. The Foreign Function Interface

Introduction to the Foreign Function Interface 7-3
Defining and Calling Foreign Functions ... 7-3
Loading Foreign Language Files ... 7-4
Making Lisp Streams from File Descriptors 7-4
Calling System Functions .. 7-4
Data Types Passed to Foreign Functions , , , , , 7-5

define-c-callable . 7-7
define-c-function, define-fortran-function .. 7-9
define-foreign-symbol. 7-12
extract-stream-handles ... 7-13
foreign-address-of ... 7-14
foreign-temporary-directory .. 7-15
load-foreign-files .. 7-16
load-foreign-libraries ... 7-17
make-lisp-stream .. 7-19
register-lisp-function ... 7-20
syscall .. 7-21

7-2 Sun Common Lisp User's Guide

Introduction to the Foreign Function Interface

Sun Common Lisp provides a foreign function interface that allows you to link
compiled C and FORTRAN files with a Lisp program and to link Lisp programs
into running C code. With this interface, you can create Lisp streams and extract
file descriptors associated with Lisp streams so that you can send input to or
receive output from foreign files. The foreign function interface also lets you make
operating system calls from within Lisp.

All of the functions, macros, and variables in the foreign function interface are
extensions to Common Lisp. See the function pages at the end of this chapter for
complete syntactic descriptions of these extensions.

Defining and Calling Foreign Functions

The following macros and functions allow you to define and locate functions and
symbols that can be used in the foreign function interface:

define-c-callable
define-c-function
define-foreign-symbol

define-fortran-function
foreign-address-of
register-lisp-function

The macros define-c-function and define-fortran-function create a Lisp
function that calls a foreign function. Lisp arguments are converted to the
appropriate foreign data type before the foreign function call. The value returned
by the foreign function is then converted to a Lisp data type.

The macro define-c-callable defines a Lisp function that can be called from C
code. The C arguments are converted to Lisp data types, and the value returned
by the function is coerced to a C data type and returned to the caller.

The macro define-foreign-symboI prepares its argument to be bound to the
value of a foreign symbol. This allows Lisp functions that have been created
with define-c-function and define-fortran-function to access symbols from
compiled foreign language functions.

The function foreign-address-of accepts a Lisp symbol that has been defined
with define-c-function or define-fortran-function and returns the integer
starting address of the associated foreign function. The starting address allows
you to pass a foreign procedure as an argument to another foreign function. The
function register-lisp-function accepts the name of a Lisp function that has
been defined with define-c-callable and returns its integer starting address. This
address allows you to pass a Lisp function as an argument to a C procedure.

The Foreign Function Interface 7-3

Loading Foreign Language Files

The following variable and functions allow you to load foreign functions and
symbols that have been defined in the foreign function interface:

foreign-temporary-directory
load-foreign-files

load-foreign-libraries

The function load-foreign-files loads foreign language compiled files into the
running Lisp environment. The function load-foreign-libraries loads selected
functions from foreign language library files. Files have .0 extensions, and libraries
have .a extensions.

When invoked, both load-foreign-files and load-foreign-libraries automatically
load all functions and symbols that have been defined with define-c-function,
define-fortran-function, and define-foreign-symbol since the last load call.

The variable *foreign-temporary-directory* specifies the directory in which
temporary files are created during the loading of foreign files.

Making Lisp Streams from File Descriptors

The following functions allow you to perform input and output operations from
within the foreign function interface:

I extract-stream-handles make-lisp-stream

The function make-lisp-stream creates a Common Lisp stream from a UNIX file
descriptor. The function extract-stream-handles returns the UNIX input and
output file descriptors for a given Common Lisp stream.

Calling System Functions

The function syscall uses a UNIX system call number to call system functions.

syscall

7-4 Sun Common Lisp User's Guide

Data Types Passed to Foreign Functions

The data types listed in the tables that follow may be passed to foreign functions.
All Common Lisp simple strings are stored with a terminating null byte so that
they may be passed to C functions without difficulty. This terminating null byte is
not included in the length of the string returned by the length function.

For functions that are defined with define-fortran-function, arguments of the
data type integer or float are copied and passed by reference. IT the FORTRAN
subroutine modifies the argument, ~he modification is not reflected in the Lisp
calling program. IT you need a modifiable integer or float argument to use with
a FORTRAN program, use a single-element array of type (signed-byte 32) or
type single-float. Any string argument passed to FORTRAN functions must be
a simple string; that is, the string argument must be a simple array that is not
displaced and does not contain fill pointers.

Before you call a given foreign function for the first time, you must invoke either
define-c-function or define-fortran-function to make the foreign function
available in Lisp. You must also load the foreign function with load-foreign-files
or load-foreign-libraries.

Lisp

integer (32 bits or less)
character
float
(array (unsigned-byte 8»
(array (signed-byte 8»
(array (unsigned-byte 16»
(array (signed-byte 16»
(array (unsigned-byte 32»
(array (signed-byte 32»

(array string-char)
(array single-float)
boolean (t or nil)

Figure 7-1. Table of nata Types for C Programs

c

long
long
double
unsigned char []
char []
unsigned short []
short []
unsigned long []
long []
char []
float []
boolean (lor 0)

The Foreign Function Interface 7-5

Lisp

integer (32 bits or less)
character
Boat
(array (unsigned-byte 8»
(array (signed-byte 8»
(array (unsigned-byte 16»
(array (signed-byte 16»
(array (unsigned-byte 32»
(array (signed-byte 32»
(array string-char)
(array single-Boat)

FORTRAN

integer.'
integer. 4
real.4
logical.l array
logical.l array
integer.2 array
integer.2 array
logical.4 array
integer.' array
character.n
real.4 array

Figure 7-2. Table of Data Types for FORTRAN Programs

7-6 Sun Common Lisp User's Guide

define-c-callable

Purpose:

Syntax:

Remarks:

The macro define-c-callable defines a Lisp function that can be called from a
running C program.

define-c-callable name arglist {form}* [Macro]

The name argument must be a symbol; it is not evaluated. The name of the Lisp
function is returned as the value of the macro.

The arglist argument is a list of lists of the form (symbol type), where symbol is
the name of an argument and type is a keyword that specifies the data type of the
argument. The type element must be one of the following:

• :integer

This keyword indicates that a C argument of type int will be passed to the
Lisp function.

• :string

This keyword indicates that a C string argument with a terminating null
byte will be passed to the Lisp function. The symbol argument is bound to
a Lisp string that contains a copy of the string passed by the C procedure.
Modifications made to the copied string are not made to the C string that is
passed.

• :coerce-double-to-single

This keyword indicates that a C argument of type double will be passed to
the Lisp function; all floating-point arguments that C passes to procedures
must be in double-float format. The double-float argument is coerced to a Lisp
single-float argument.

• :pointer

This keyword indicates that a pointer to an arbitrary C object will be passed
to the Lisp function.

The value returned by the Lisp function is converted to the appropriate C data
type before it is returned to the calling procedure. Any of the types listed in the
"Table of Data Types for C Programs" is valid except for the type boolean. If the
Lisp function attempts to return a data object that does not have one of the types
listed in the, table, the value returned is o.
The body of the function consists of the forms specified by the form arguments;
these forms are executed in order when the function is called.

The Foreign Function Interface 7-7

define-c-callable

Examples:

This macro is an extension to Common Lisp.

This example assumes that the file callmeback.o has been compiled from
the following C source code with cc -c callmeback.c.

int callmeback(lproc)
int (*lproc) () ;
{

(*lproc)(1234.1.234."Bazola");
}

> (define-c-function callmeback (fn»
CALLMEBACK
> (load-foreign-files '("callmeback.o"»
NIL
> (define-c-callable anytime

«x :integer)
(y :coerce-double-to-single)
(z : string))

Define a C function with
one argument.
Load the C code above.

Define the function to be
called.

(format t lI-tCalled with -8. -8. -8.-%" x y z)
123) 123 is the value to be

ANYTIME returned.
> (callmeback (register-lisp-function 'anytime»
Called with 1234. 1.234. "Bazola".
123

7-8 Sun Common Lisp User's Guide

define-c-function, define-fortran-function

Purpose:

Syntax:

Remarks:

The macros define-c-function and define-fortran-function create a Lisp
function that calls a foreign function. Lisp arguments are converted to the
appropriate foreign data type before the foreign function call. The value returned
by the foreign function is then converted to a Lisp data type.

define-c-function function-name arglist
ikey :result-type

define-fortran-function function-name arglist
ikey :result-type

[Macro]

[Macro]

The function-name argument to define-c-function and define-fortran-function
associates a Lisp function name with an appropriate foreign function name. Once
the association has been specified, the resulting Lisp function can be used to call
the foreign function from within Lisp. The function-name argument can be one of
the following:

• a list of the form (symbol string)

In the list (symbol string), the symbol element stands for the Lisp function
you are defining, and the string element is the name of the foreign function.
You would use this form of list as the function-name argument when the
Lisp function name cannot be directly associated with the appropriate foreign
function name, either because the foreign function name contains letters in
both uppercase and lowercase or because the foreign function name is entirely
different from the Lisp function name.

• a symbol

You would use a symbol as the function-name argument when the Lisp function
name can be directly associated with the foreign function name. The Lisp
function name is lowercased, any dashes in the name are converted to underbar
characters, and either an underbar prefix or suffix is added if appropriate.

Before you call a given foreign function for the first time, you must call either
define-c-function or define-fortran-function to make the appropriate foreign
function available in Lisp. You must also call1oad-foreign-files or load-foreign
libraries to load all the functions that have been defined with define-c-function
or define-fortran-function since the last load.

The Foreign Function Interface 7-9

define-c-function, define-fortran-function

The arglist argument to define-c-function and define-fortran-function is a list
of the arguments accepted by the foreign function. The argument list differs from
a Common Lisp lambda list in the following ways:

• keywords

The &optional lambda list keyword and the &rest lambda list keyword are
allowed, but the &key lambda list keyword and associated keyword arguments
are not allowed.

• supplied-p-parameter variable

A supplied-p-parameter variable to the &optional lambda list keyword is not
allowed.

• type-checking syntax

When the name of an argument appears in the argument list, it can be
replaced by a list of the form (name type), where the element type is a keyword
specifying what kind of argument is to be passed to the function. Possible
argument types include all of the types that the keyword :result-type accepts,
as well as the keyword :string. The keyword :string forces a simple string
to be passed as a C string. If a function defined by define-c-function or
define-fortran-function is called with an argument that does not match the
given type, an error is signaled.

The :result-type keyword option to define-c-function and define-fortran
function specifies the type of result to be returned from the foreign function. The
possible values of this option are as follows:

• :procedure

This keyword indicates that the foreign function returns no value (a C function
of type void, for example).

• :boolean

This keyword indicates that the foreign function returns true (non-O) or false
(0). Lisp converts these values to t and nil respectively.

• :fixnum

This keyword indicates that the foreign function returns a signed 30-bit integer.
This is a special type that is provided because returning a :fixnum value does
not allocate new storage.

• :integer

This keyword indicates that the foreign function returns a signed 32-bit integer.

7-10 Sun Common Lisp User's Guide

Examples:

define-c-function, define-fortran-function

• :ulnteger

This keyword indicates that the foreign function returns an unsigned 32-bit
integer.

• :polnter

This keyword indicates that the foreign function returns a foreign pointer.
Foreign pointers returned with the :pointer keyword can only be used as
arguments to other foreign function calls.

• :single

For define-fortran-function, this keyword indicates that the FORTRAN
function returns a floating-point number in single-float format; the Lisp function
also returns the number in single-float format. For define-c-function, this
keyword is not supported because C routines cannot return floating-point
arguments in single-float format.

• :coerce-double-to-single

This keyword indicates that the foreign function returns a foreign floating-point
number in double-float format, which Lisp converts to single-float format.

These macros are extensions to Common Lisp.

This example defines a function that calls the C library "printf"
function with a control string and some arguments to print.

> (define-c-function printf «ctl-strinl :string) trest args»
PRINTF
> (load-foreign-libraries '("..printf"»
"/tmp/LuOO268060.0"
> (printf "It's %d %s" 3 "in the morning.")
21
> (printf "
")

It'. 3 in the morning.

; Actually load the code.

Print a string.

Print a newline character
so that the string will
appear. Until you enter
this command. the string
is kept in a buffer used
by printf.

The Foreign Function Interface 7-11

define-foreign-symbol

Purpose:

Syntax:

Remarks:

The macro define-foreign-symbol arranges for a Lisp symbol to be bound to the
value of a symbol from a compiled foreign language file.

define-foreign-symbol symbol-name [Macro]

The symbol-name argument to define-foreign-symbol associates a Lisp symbol
with an appropriate foreign symbol. Once the association has been specified, the
resulting Lisp symbol can be used to access the foreign symbol from within Lisp.
The symbol-name argument can be one of the following:

• a list of the form (symbol string)

In the list (symbol string), the symbol element stands for the Lisp symbol you
are defining, and the string element is the name of the foreign symbol. You
would use this form of list as the symbol-name argument when the Lisp symbol
name cannot be directly associated with the appropriate foreign symbol name,
either because the foreign symbol name contains letters in both uppercase and
lowercase or because the foreign symbol name is entirely different from the Lisp
symbol name.

• a symbol

You would use a symbol as the symbol-name argument when the Lisp symbol
name can be directly associated with the foreign symbol name.

The Lisp symbol is not bound until you have defined it with define-foreign
symbol and have loaded it with either load-foreign-files or load-foreign
libraries.

This macro is an extension to Common Lisp.

7-12 Sun Common Lisp User's Guide

extract-stream-handles

Purpose:

Syntax:

Remarks:

The function extract-stream-handles returns the UNIX file descriptors that the
given Common Lisp stream uses for input and output.

extract-stream-handles common-lisp-stream [Function]

The function always returns two values. For unidirectional streams, one of the
returned values is nil, which indicates that there is no associated UNIX file
descriptor.

Note: You should not perform input or output operations that involve both the
file descriptors and the Common Lisp stream associated with them. Doing so may
cause unpredictable results.

This function is an extension to Common Lisp.

The Foreign Function Interface 7-13

foreign-address-of

Purpose:

Syntax:

Remarks:

The function foreign-address-of accepts a Lisp symbol that has been defined
with define-c-function or define-fortran-function and returns as an integer
the starting address of the given foreign function.

foreign-address-of function-name [Function]

You would use such a starting address to pass a foreign function as an argument
to another foreign function.

This function is an extension to Common Lisp.

1-14 Sun Common Lisp User's Guide

foreign-temporary-directory

Purpose:

Syntax:

Remarks:

The variable *foreign-temporary-directory* specifies the directory in which
temporary files are created during the loading of foreign files. The default directory
is "/tmp".

foreign-temporary-directory [Variable]

The temporary files are named Lun.o, where n is a unique number constructed
from the UNIX process identifier. These files are required for successful execution
of the function disksave and for subsequent loadings of foreign files.

Note: You should not delete the Lun. 0 files from the temporary directory while you
are in the Lisp environment. The temporary files are deleted automatically when
you exit Lisp with a call to the function quit. However, if the Lisp environment
is terminated abnormally, the Lun. 0 files sometimes are not deleted automatically.
In that case you may delete them with no adverse side effects.

This variable is an extension to Common Lisp.

The Foreign Function Interface 7-15

load-foreign-files

Purpose:

Syntax:

Remarks:

Examples:

The function load-foreign-files loads foreign language compiled (.0) files into
Lisp.

load-foreign-files files i:optional libraries [Function]

The files argument is a list of strings that name the files to be loaded.

The default value for the libraries argument is the list ("-lc"); that is, the loader
automatically searches the C run-time library. If you wish to search other libraries
as well as the C run-time library, you must include "-Ie" at the end of the list.

If you load FORTRAN code, you should include the FORTRAN libraries "-lF77",
"-lI77", and "-IU77" along with the C library "-lc".

When you invoke this function, it loads all the functions and symbols that you have
defined with define-c-function, define-fortran-function, or define-foreign
symbol since the last load.

This function is an extension to Common Lisp.

This example assumes that the file for-eg-ex.o has been compiled from
the following C source code with cc -c for-eg-ex.c.

int cfunc(s)
char s[];
{

}

strcpy (s, "Hello");
return(4);

> (define-c-function cfunc(s) :result-type :integer)
CFUNC
> (load-foreign-files ·("for-eg-ex.o"»
T
> (setq s " ..•........... ,,)
" "
> (cfunc s)
4
> s
"Hello "

7-16 Sun Common Lisp User's Guide

load-foreign-libraries

Purpose:

Syntax:

Remarks:

Examples:

The function load-foreign-libraries loads functions from foreign language
compiled library files (.a) into Lisp.

load-foreIgn-libraries symbols .t:optional libraries [Function]

The symbols argument is a list of Lisp strings that name the foreign functions as
they appear in a foreign object file: "..:fn" for C functions named fn, and "fn_"
for FORTRAN functions named fn. Such functions are then called from Lisp
with the name fn. Symbols that have been defined by define-c-function or
define-fortran-function since the last load are loaded automatically and should
not be specified here. The symbols argument is provided for backward compatibility
with foreign-load-libraries; it should normally be nil.

The default value for the libraries argument is the list ("-Ie"); that is, the loader
automatically searches the C run-time library. If you wish to search other libraries
as well as the C run-time library, you must include "-Ie" at the end of the list.

If you load FORTRAN code, you should include the FORTRAN libraries "-IF77",
"-lI77", and "-lU77" along with the C library "-Ie".

When you invoke this function, it loads all the functions and symbols that you have
defined with define-c-function, define-fortran-function, or define-foreign
symbol since the last load.

This function is an extension to Common Lisp.

hypot is a C math library routine that computes the hypotenuse of
a triangle whose other sides are given by two floating-point numbers.
mktemp is a routine that makes a unique filename from its string
argument.

> (define-e-funetion mktemp (name) :result-type :pointer)
MKTEMP
> (define-e-funetion hypot (x y) :result-type :single)
HYPOT
> (load-foreign-libraries '("..mktemp" "..hypot") '("-1m"»
T
> (hypot 23.6 12.2)
26.666896

The Foreign Function Interface 7-17

load -foreign-libraries

> (setq s "abcXXXXXX")
"abcXXXXXX"
> (mktemp s)
1344269752
> S

" abca00305 "

7-18 Sun Common Lisp User's Guide

make-lisp-stream

Purpose:

Syntax:

Remarks:

The function make-lisp-stream constructs a Common Lisp stream from UNIX
file descriptors.

make-lisp-stream Itkey : input-handle : output-handle
:element-type :stream-type :name

[Function]

IT the Common Lisp stream you construct is used for input, the :input-handle
keyword argument must be a UNIX file descriptor for a device that is opened
for input. IT the Common Lisp stream is used for output, the :output-handle
keyword argument must be a UNIX file descriptor for a device that is opened for
output. You may construct bidirectional Common Lisp streams either from two
separate file descriptors or from a single file descriptor for a device that is opened
for both input and output.

The :element-type keyword argument gives the element type to be associated
with the stream; it is specified as if for the Common Lisp function open. The
default value is 'string-char.

The :stream-type keyword option indicates whether seeking is easy, difficult, or
impossible on the device designated by the UNIX file descriptor that is associated
with the stream. The possible values of this option are as follows:

• :random

This keyword indicates that the device designated by the file descriptor has
,random access and that seeking is easy. This value is the default.

• :sequential

This keyword indicates that the device designated by the file descriptor has
sequential access and that seeking is difficult.

• :ephemeral

This keyword indicates that seeking is impossible on the device designated by
this file descriptor, as it is with pipes or network connections.

The :name keyword argument is a filename that is associated with the constructed
stream. It defaults to "Unknown-file".

This function is an extension to Common Lisp.

The Foreign Function Interface 7-19

register-lisp-function

Purpose:

Syntax:

Remarks:

The function register-lisp-function accepts a foreign symbol that has been
defined with define-c-callable and returns as an integer the starting address of
the associated Lisp function.

register-lisp-function function-name

You would use such a starting address to pass a Lisp function as an argument to a
foreign function.

This function is an extension to Common Lisp.

7-20 Sun Common Lisp User's Guide

syscall

Purpose:

Syntax:

Remarks:

Examples:

The function syscall calls system functions.

syscall system-calC-number trest arguments [Function]

The system-call-number argument gives the number of a UNIX. system call,
as defined in /usr/include/syscall.h (see the UNIX Programmer's Reference
Manual).

The remaining arguments are those that will be passed to the foreign function that
has been called. Each argument is a Lisp object reference that is converted to a
form suitable for a C function. A maximum of 64 arguments may be passed to a
foreign function.

The function syscall returns two values-the results returned by the system in the
registers DO and D 1.

This function is an extension to Common Lisp.

142 is the system call number for the function "gethostid." as defined
in /usr/include/syscall.h.

> (syscall 142)
16782277
o

The Foreign Function Interface 1-21

7-22 Sun Common Lisp User's Guide

Chapter 8. Running UNIX Programs from Lisp

Running UNIX Programs 8-1

Chapter 8. Running UNIX Programs from Lisp

Introduction to Running UNIX Programs ... 8-3
Keyword Options .. 8-3
Annotated Examples .. 8-8

run-unix-program ... 8-11

8-2 Sun Common Lisp User's Guide

Introduction to Running UNIX Programs

The function run-unix-program, which is an extension to Common Lisp, provides
the ability to run other UNIX programs (that is, programs that can be called from
the Shell) from the Lisp environment. Its syntax is as follows:

run-unix-program name tkey : input : output
: error-output
:wait :arguments
:if-input-does-not-exist
:if-output-exists
:if-error-output-exists

[Function]

The name argument is a pathname or an object that can be coerced to a pathname.
It represents the name of the program to be run. If the pathname is a relative
pathname, each directory in the environment variable PATH is searched for the
filename that corresponds to name. If the pathname is an absolute pathname, that
is, if the name begins with a slash (I), then that file is used. The namestring of
name is the argv[O] parameter for the program.

Four values are returned by run-unix-program.

1. The first value is a stream. If either the :input or the :output keyword
argument is :stream, that stream communicates with the running process and
is the first value returned. If neither keyword is :stream, the first value is nil.

2. If the :error-output keyword argument is :stream, the second value returned
is the resulting input stream from which Lisp can read the program's error
output. If :error-output is not :stream, the second value returned is nil.

3. If the :wait keyword argument is t, the third value is the exit status of the
program that was run. Otherwise the exit status is nU.

4. If the program is running, the fourth value is its UNIX process ide If the
program has run to completion, the fourth value is nU.

Keyword Options

You can specify a number of keyword arguments to run-unix-program, as
the syntactic description shows. The keyword arguments :input, :output, and
:error-output determine where the program gets and where it sends its standard
input, standard output, and error output respectively.

Running UNIX Programs 8-3

• :input

nil

H the :input keyword argument is nil, the standard input for the program
is taken from the standard input for Lisp, which is normally input from the
terminal. This is analogous to typing a simple command to the Shell with
no redirection. The default value for :input is nil.

a filename

H the :input keyword argument is a filename, the standard input for the
program is read from the file. This is analogous to using the symbol < with
a Shell command. H the file does not exist, what happens depends on the
value of the argument :if-input-does-not-exist.

: error

H :if-input-does-not-exist is : error , an error is signaled.

:create

H :if-input-does-not-exist is :create, an empty file to read from is
created and given the specified filename.

nil

H :if-input-does-not-exist is nil, run-unix-program returns nil
without taking any action.

:stream

H the :input keyword argument is :stream, the standard input for the
program is read from Lisp through a newly created output stream that is
returned as the first value of run-unix-program. Anything written to
that stream by Lisp is read by the program. When the stream is closed,
the program reads an end-of-file indicator. H for some reason the program
terminates, writing to that stream notifies Lisp with a broken pipe signal.

a stream

H the :input keyword argument is a stream, the standard input for the
program is read from that Common Lisp stream. The stream must be an
input stream open to a file or another process. The stream must not be
given a string stream, synonym stream, or other higher-level Lisp stream.

The stream must have been created by a call to the function open or by
a call to the function run-unix-program. (Note that the with-open-file
macro does an implicit open; that is, if with-open-file is called, a stream
is created.)

You can make pipes by taking the output from one program and feeding
it to another. First, make an input stream by calling run-un ix-program

8-4 Sun Common Lisp User's Guide

with :output :stream. Then call run-unix-program, using that stream
as the :input argument.

When a Lisp stream is passed to a subprogram, that stream can no longer
be written to or read from by Lisp. It is effectively closed.

• :output

nil

If the :output keyword argument is nil, the standard output of the
program goes to the standard output of Lisp, which is normally the
terminal. This is analogous to typing a simple command to the Shell and
specifying no redirection. The default value for :output is nil.

a filename

If the :output keyword argument is a filename, the standard output of the
program will be written to the specified file. This is analogous to using the
symbol> with a Shell command. If the file already exists, then the action
taken depends on the :if-output-exists argument.

: error

If :if-output-exists is :error or is omitted, an error is signaled.

:append

If :if-output-exists is :append, standard output from the program is
appended to the end of the file.

:supersede

If :if-output-exists is :supersede, the file is replaced by the standard
output from the program.

nil

If :if-output-exists is nil, then run-unix-program returns nil
without taking any other action.

:stream

If the :output keyword argument is :stream, the standard output of the
program goes to a newly created input stream that is returned as the first
value of run-unix-program. Lisp can read from this stream to get the
program's standard output.

a stream

If the :output keyword argument is a stream, the standard output of the
program is written to the stream. The stream must be an output stream.
The same restrictions that apply to a stream specified as :input apply to
one specified as :output. Once a Lisp stream is passed to a subprogram,

Running UNIX Programs 8-5

the stream can no longer be written to or read from by Lisp. It is effectively
closed.

• : error-output

The :error-output keyword argument specifies where error output from the
program is to go. Its possible values and their meanings are the same as
those of the :output keyword argument, but an additional possible value for
:error-output of :output allows error output to be merged with the program's
standard output. .Also, the action ta.ken when a. specified error output file
already exists is determined by the :if-error-output-exists argument, rather
than by the :if-output-exists argument.

nil

IT the :error-output keyword argument is nil, the standard output of
the program goes to the standard output of Lisp, which is normally the
terminal. This is analogous to typing a simple command to the Shell and
specifying no redirection. The default value for :error-output is nil.

a filename

IT the :error-output keyword argument is a filename, the standard output
of the program will be written to the specified file. IT the file already exists,
then the action taken depends on the :if-error-output-exists argument.

: error

IT :if-error-output-exists is :error or is omitted, an error is signaled.

:append

IT :if-error-output-exists is :append, error output from the program
is appended to the end of the file.

:supersede

IT :if-error-output-exists is :supersede, the file is replaced by the
error output from the program.

nil

IT :if-error-output-exists is nil, then run-unix-program returns nil
without taking any other action.

:stream

IT the :error-output keyword argument is :stream, an input stream is
created and returned as the second value of run-unix-program. Lisp can
then read the error output of the program from this stream.

8-6 Sun Common Lisp User's Guide

a stream

H the :error-output keyword argument is a stream, the error output of
the program is written to the stream. The stream must be an output
stream. The same restrictions that apply to a stream specified as :input
apply to one specified as :error-output. Once a Lisp stream is passed to a
subprogram, the stream can no longer be written to or read from by Lisp.
It is effectively closed.

:output

H the :error-output keyword argument is :output, the error output for
the program is merged with the standard output. Both are sent to the
location indicated by the :output argument.

• :wait

The keyword argument :wait determines whether or not Lisp waits for the
program to complete. Its default value is t.

H :wait is t or is omitted, Lisp does not begin running until the program
has completed.

H :wait is nil, Lisp continues to run in parallel with the program.

H :wait is t a.nd if :input, :output, or :error-output is :stream, an
error is signaled. Waiting and having a stream open to a process can lead
to deadlock; thus these combinations are not permitted.

• :arguments

The keyword :arguments must be a list of strings that are the normal Shell
arguments to the program. Together with the name argument, it determines
the argv and argc parameters of the program.

The keyword arguments :if-input-does-not-exist, :if-output-exists, and
:if-error-output-exists are significant only if : input , :output, or :error-output
is a filename. The default value of each of the three arguments is : error .

• :if-input-does-not-exist

The keyword :if-input-does-not-exist can be one of the following:

:error, which is the default, signals an error.

:create creates an empty file.

nil returns nil without doing anything if the file mentioned does not exist.

Running UNIX Programs 8-7

• :if-output-exists

:if-error-output-exists

The keyword arguments :if-output-exists and :if-error-output-exists can
be one of the following:

:error, which is the default, signals an error.

:append appends output to the file.

:supersede replaces the file with the new output.

nil returns nil without doing anything if the file mentioned already exists.

Annotated Examples

The three examples that follow illustrate various uses of run-unix-program.

Example 1-Running a Program

This example shows how to run a program and have Lisp communicate with it
through a stream. Lisp does not wait for the program to complete. This example
assumes you have a program called "banner" on /usr/games.

> (defun type-until-hung (stream)
(do «char (read-char-no-hang stream)

(read-char-no-hang stream»)
«null char»

(write-char char»)

TYPE-UN TIL-HUNG

This function prints the
output from a program
that has been started
with run-unix-program.
On a heavily loaded system.
pauses in program output
may cause premature
termination of this function.
In this case the function
may simply be called again
to get the rest of the
output.

> (setq shell (run-unix-program "csh" :input :stream :output :stream
:wait nil»

#<Stream BUFFERED-STREAM 101BF73B> The shell is set to the
stream that is stdin and
stdout for csh. The terminal
remains stderr.

> (format shell "/usr/games/banner test-%")
NIL

8-8 Sun Common Lisp User's Guide

Send a banner command to csh.

> (type-until-hung shell)

NIL
> (format shell "unknown-%")
NIL

> unknown: Command not found.

(type-until-hung shell)
NIL
> (format shell "exit-%")
NIL
> (close shell)

NIL

Print the output from banner.

Send an erroneous command
to the shell.
This is stderr output; it is
not trapped.
No output was sent to stdout.

Make csh exit.

Close the stream used for
stdin and stdout.

Note: Many UNIX programs exit on reading EOF from stdin. H you run a
program that does not, you should always give it an exit command before you close
its input stream.

Example 2-Creating Output for Lisp to Process

In the next example, output is created tha.t Lisp can process. H you had an UNIX
program named "frob" that created output you wanted to process in Lisp, you
could write the following:

(defun frobify (input arguments)
(with-open-stream (frob (run-unix-program "frob" :output :stream

:input input
:arguments arguments
:wait nil»

(process-frob-stream frob»)

The input parameter could be a filename or a stream, and the arguments would
consist of a list of the necessary command line arguments to the program "frob".

Running UNIX Programs 8-9

Example 3-Program with Unusual Syntax

In this final example, if you had a natural language front-end for a program that
took an unusual syntax, you could write the following:

(defun run-strange-interactive-program-smartly (args)
(with-open-stream (strange (run-unix-program

"strange-interactive-program"
:input :stream

In this program,

(loop

:output :stream
:error-output :output
:wait nil
: arguments
(strangify-arguments args»)

(write-string
(strangify-command
(read-english-command *standard-input*»

strange)
(write-line
(smarten-up-response (read-strange-response strange»
standard-output»»

• read-english-command knows how to parse a natural language command.

• strangify-command turns the parsed English command into a command that is
suitable for the strange program.

• read-strange-response knows how to parse the output from the strange
program.

• smarten-up-response turns output from the strange program into a readable
format.

8-10 Sun Common Lisp User's Guide

• run-unIx-program

Purpose:

Syntax:

Remarks:

The function run-unix-program provides the ability to run other UNIX programs
from the Lisp environment.

run-un ix-program name tkey : input : output : error-output
:wait :arguments
:if-input-does-not-exist
:if-output-exists
:if-error-output-exists

[Function]

The name argument is a pathname or an object that can be coerced to a pathname.
It represents the name of the program to be run. If the pathname is a relative
pathname, each directory in the environment variable PATH is searched for the
filename that corresponds to name. If the pathname is an absolute pathname, that
is, if the name begins with a slash (I), then that file is used. The namestring of
name is the argv [0] parameter for the program.

Four values are returned by run-unix-program.

1. The first value is a stream. If either the :input or the :output keyword
argument is :stream, that stream communicates with the running process and
is the first value returned. If neither keyword is :stream, the first value is nil.

2. If the :error-output keyword argument is :stream, the second value returned
is the resulting input stream from which Lisp can read the program's error
output. If :error-output is not :stream, the second value returned is nil.

3. If the :wait keyword argument is t, the third value is the exit status of the
program that was run. Otherwise the exit status is nil.

4. If the program is running, the fourth value is its UNIX process id. If the
program has run to completion, the fourth value is nil.

This function is an extension to Common Lisp.

Running UNIX Programs 8-11

run-unix-program

Examples: II This example shows how to run a program and have Lisp wait for it to
II complete. The example assumes you have a program called "banner"
lion /usr/games.

> (run-unix-program "csh")
% /usr/games/banner test

% exit
% NIL
NIL
o
NIL

8-12 Sun Common Lisp User's Guide

Chapter 9. Compiling Lisp Programs

Compiling Lisp Programs 9-1

Chapter 9. Compiling Lisp Programs

Introduction to the Compiler ... 9-3
Compiling and Keyword Options .. 9-~
How the Compiler Uses DeClarations ... 9-5

Special Declarations .. 9-5
Type Declarations .. 9-5
Inline and Notinline Declarations .. 9-6
Ignore Declarations ... 9-7
Optimization Declarations ... 9-7

clear-undef .. 9-8
compile .. 9-9
compile-file .. 9-10
compiler-options .. 9-12
declare .. 9-13
eval-when .. 9-15
locally .. 9-16
proclaim ... 9-17
the ... 9-18

9-2 Sun Common Lisp User's Guide

Introduction to the Compiler

The Compiler allows you to transform interpreted code to a more efficient form.
Generally, compiled code behaves exactly like its interpreted counterpart but does
not do as much checking. AB a result, compiled code may cause obscure behavior
in situations in which the interpreted version would signal an error. Compiling can
be done in two ways: by compiling a file or by compiling an individual function in
the current environment.

To compile a file, use the function compile-file, which produces binary files from
Lisp source files. The compiled functions contained in the binary files become
available for use when the binary files are loaded into Lisp. By convention, Lisp
source files usually have the extension . lisp. The corresponding extension for
binary files is one of the following:

• .lbin

H the value of the :target option to compile-file is the default, the extension
for binary files is .lbin. Typing the expression (compile-file "foo .lisp")
produces the file "foo .lbin".

• .2bin

H the value of the :target option to compile-file is 68020, the extension
for binary files is .2bin. Typing the expression (compile-file "foo .lisp")

produces the file "foo. 2bin".

To compile an interpreted function in the current Lisp environment, use the
function compile, which replaces the interpreted function's definition with the
compiled version.

The functions and forms listed below are relevant to compiling files.

clear-undef
compile
compile-file
compiled-function-p
compiler-let
compiler-options

declare
eval-when
locally
proclaim
the

Compiling Lisp Programs 9-3

Compiling and Keyword Options

You may specify keyword options to the function compile-file and to the function
compiler-options, which is an extension to Common Lisp.

compile-file input-pathname tkey : output-file
:messages

compiler-options A:key :messages
: warnings

: warnings
: fast-entry
: tail-merge
:notinline
: target

: fast-entry
: tail-merge
:notinline
: target

[Function]

[Function]

The keyword options have default values, but you may supply different ones by
specifying values to the keyword arguments of compile-file. In the following code,
for example, nil is specified as the value of the keyword :tail-merge. This tells the
Compiler to compile the file "foo" and to do no tail recursion optimizations on it.

(compile-file "foo" :tail-merge nil)

The keyword options :messages, :warnings, :fast-entry, : tail-merge ,
:notinline, and :target are extensions to Common Lisp. You may reset their
default values with the function compiler-options.

Note: You cannot reset the default value of the keyword :output-file.

9-4 Sun Common Lisp User's Guide

How the Compiler Uses Declarations

An important difference between the Interpreter and the Compiler lies in how they
treat declarations. Declarations that are ignored by the Interpreter are often used
by the Compiler as advice in order to produce faster and more efficient code. This
applies in particular to type declarations. Global declarations, or proclamations,
affect only the dynamic bindings of variables; thus proclaiming a variable to be of
certain type has no effect on the lexical bindings of that variable. There are several
categories of declarations.

Special Declarations

A special declaration specifies that the given variables are all special variables.
References to the variables will thus refer to the dynamic binding of the variables.
H the declare special form is used to make a special declaration, the declaration
observes the rules of lexical scope. H, however, a special proclamation is made, all
bindings of variables with the given name are special.

The effect of a special declaration is exactly the same in both the Compiler and
the Interpreter. However, compiled access to special variables is done through an
in-line coding of the function symbol-value. H the special variable is unbound,
obscure errors may result. You may declare the function symbol-value notinline
in situations where checking is desired.

Type Declarations

Declarations known as type declarations, which are ignored in interpreted code, are
extensively used by the Compiler to produce faster and more efficient code. Their
use is especially important in code that involves array and sequence manipulation.
Declaring simple vectors and simple arrays may result in significant improvements
in the running speed of the code. Similarly, specialized arithmetic operations,
fixnum operations in particular, tend to run faster than their generic counterparts.

Care must be exercised when using declarations. For example, the expression
(+ x y) cannot be optimized to its fixnum version even if the x and y arguments
have been declared as fixnums. Because of potential overflow into the nonfixnum
domain, the Compiler needs to know that the result type of this form is a fixnum.

You can pass result type information to the Compiler by using ftype or the special
form the. In the following expression, for example, the Compiler views the form
argument as having the type given by the type-specifier argument:

(the type-specifier form)

Compiling Lisp Programs 9-5

In the following code, the Compiler will replace the call to the generic aref function
with 8vref, which expands to a simple in-line memory reference:

(defun foo (x)
(declare (type simple-vector x»
(aref xl»

Similarly, the call to generic + is replaced by in-line fixnum arithmetic in this code:

(defun baz (x y)
(declare (type fixnum x y»
(the fixnum (+ x y»)

Often only fixnum arithmetic is needed. Type declarations can be used to write
fixnum-specific versions for generic routines. For example, you can define binary
fixnum addition as follows:

(defmacro fixnum-plus (x y)
'(the fixnum (+ (the fixnum ,x) (the fixnum ,y»»

This code specifies that fixnum-plus will be used wherever + occurs, and this may
result in faster arithmetic operations.

Type information can be propagated using ftype declarations. For example, the
proclamation (proclaim • (ftype (function (fixnum) fixnum) erk» causes the
fixnum version of addition to be used in the code that follows:

(defun do-some-arithmetic (x)
(declare (type fixnum x»
(the fixnum (+ x (erk x»»

Inline and Notinline Declarations

The Interpreter ignores inline and notinline declarations.

Many of the accessors, setters, and constructors (such as car, cdr, cons, and
8vrer) for Common Lisp data types are coded in-line by the Compiler. Obscure
errors may result when these operations are applied to illegitimate data. Any
Lisp function can be declared notinline. IT a function is so declared, a call to the
corresponding function replaces the in-line code. The inline declaration has no
effect on user-supplied functions.

9-6 Sun Common Lisp User's Guide

Ignore Declarations

The ignore declaration prevents the Compiler from issuing a warning when the
variable in question is not referred to in the body of the code.

Optimization Declarations

Common Lisp provides a mechanism for telling the Compiler your priorities in
trade-offs with which it might be faced. The implementation of the Common Lisp
specification translates the given advice to Compiler keyword options.

In Common Lisp you can proclaim or declare advice to the Compiler with an
optimize declaration. The following code is an example:

(optimize (speed 2) (safety 1»

There are four optimization classes. Each class is assigned an integer between 0
and 3 inclusive. The default values are shown below:

speed
safety
space
compilation-speed

3
1
o
o

The keyword options :fast-entry, : tail-merge , and :notinline, which can be
specified to compile-file and compiler-options, may be activated or suppressed
by declared advice to the Compiler by using the four optimization classes.
Conditions under which they are activated are the following:

:fast-entry
:tail-merge
:notinline

safety = 0
speed = 1, 2, 3
speed = 0

Compiling Lisp Programs 9-7

clear-undef

Purpose:

Syntax:

Remarks:

At the end of compilation, the Compiler prints out a list of all the currently
undefined functions. The function clear-under resets this list to nil.

clear-under [Function]

This function is an extension to Common Lisp.

9-8 Sun Common Lisp User's Guide

compile

Purpose:

Syntax:

The function complle is used to compile an interpreted function in the current Lisp
environment. It replaces the interpreted function's definition with the compiled
version. It produces a compiled code object from a lambda expression. The
lambda expression is the argument definition if it is present; otherwise the function
definition of the symbol name is the relevant lambda expression.

H the name argument is nll, compile returns the compiled code object; otherwise
the function definition of the symbol name is set to the compiled code object, and
compile returns that symbol.

compile name It;optional definition [Function]

Examples: > (defun foo (x) (+ x x»
FOO
> (compile 'fool
;;; Compiling function FOO ... assembling ... emitting ... done.
;;; Warning: Redefining FOO
FOO
> (foo 2)
4
> (funcall (compile nil '(lambda (x) (+ x x») 3)
III Compiling function ... assembling ... emitting ... done.
6

Compiling Lisp Programs 9-9

compile-file

Purpose:

Syntax:

Remarks:

The function compile-file produces binary files from Lisp source files. The
compiled functions contained in the binary files become available for use when the
binary files are loaded into Lisp.

compile-file input-pathname &:key : output-file
:messages
: warnings
: fast-entry
: tail-merge
:notinline
: target

[Function]

The function converts a file specified by the input-pathname argument into
compiled code.

H given, the :output-file option specifies where the compiled code is sent; its
argument should be a pathname or a string describing a valid filename. The binary
file that is produced from the source file is given that name, and any existing file
with that name is overwritten.

H this option is not specified or if its argument is bound to nil, the file extension
for the binary file is determined as follows:

• source file has the extension . lisp

In this case, the extension .lisp is replaced by one of these extensions .

. lbin

H the value of the :target option is the default, the extension .lisp
becomes .lbin .

. 2bin

H the value of the :target option is 68020, the extension .lisp becomes
.2bin.

9-10 Sun Common Lisp User's Guide

See Also:

compile-file

• source file does not have the extension . lisp

When the extension is different from .lisp or when there is no extension, one
of these extensions is attached to the end of the source filename .

. lbin

H the value of the :target option is the default, the extension .lbin is
attached to the end of the filename .

. 2bin·

If the value of the :target option is 68020, the extension .2bin is attached
to the end of the filename.

The default value of this option is nil.

The :messages option controls the fate of the progress messages issued by the
Compiler. A value of nil means issue no progress messages; otherwise the value
should specify a stream to which messages can be sent. The default value is t,
which sends the messages to the standard terminal device.

The :warnings option controls the warnings issued by the Compiler. A value
of nil means issue no warnings; otherwise the value must specify a stream to
which warnings can be sent. The default value is t, which sends the warnings to
.error-output •.

H the :fast-entry option has a non-nil value, the Compiler does not insert code
to check the number of arguments on entry to a function with a fixed number of
arguments. Thus, calls to functions compiled in this manner are slightly faster.
The default value is nil.

H the :tail-merge option has a non-nil value, the Compiler converts tail-recursive
calls to iterative constructions and thus eliminates the overhead of some function
calls. The default value is t.

H the :notinline option has a non-nil value, the Compiler behaves as if all
functions have been declared notinline; see the section on inline and notinline
declarations for more details. The default value is nil.

H the value of the :target option is 68020, the Compiler generates binary files
specifically for the MC68020 processor. Such files will run slightly faster in some
cases, but they will not run on MC68010 processors. The binary files produced
have a default extension of .2bin. The default value of the :target option is 68K.
In this case, the Compiler produces code that can be run on both the MC68010
and the MC68020 processors, and the default file extension is .lbin.

The keywords :messages, :warnings, :fast-entry, : tail-merge , :notinline, and
:target are extensions to Common Lisp.

compiler-options

Compiling Lisp Programs 9-11

compiler-options

Purpose:

Syntax:

Remarks:

See Also:

The function compiler-options resets the default values of the keyword options
:messages, :warnings, :fast-entry, :tail-merge, :notinline, and :target of the
function compile-file.

compiler-options lkey : messages
: warnings
: fast-entry
: tail-merge
:notinline
: target

The keyword :messages controls the fate of the progress messages issued by the
Compiler. A value of nil means issue no progress messages; otherwise the keyword
should specify a stream to which messages can be sent. The default value is t,
which sends the messages to the standard terminal device.

The keyword :warnings controls the warnings issued by the Compiler. A value of
nil means issue no warnings; otherwise the keyword value must specify a stream to
which warnings can be sent. The default value is t, which sends the warnings to
.error-output •.

If the :fast-entry keyword has a non-nil value, the Compiler does not check the
number of arguments on entry to a function with a fixed number of arguments.
Thus, calls to functions compiled in this manner are slightly faster. The default
value of :fast-entry is nil.

ff the :tail-merge option has a non-nil value, the Compiler converts tail-recursive
calls to iterative constructions and thus eliminates the overhead of some function
calls. The default value of :tail-merge is t.

If the :notinline option has a non-nil value, the Compiler behaves as if all
functions have been declared notinline; see the section on in line and notinline
declarations for more details. The default value of :notinline is nil.

ff the value of the :target keyword is 68020, the Compiler generates binary files
specifically for the MC68020 processor. Such files will run slightly faster in some
cases, but they will not run on MC68010 processors. The binary files produced
have a default extension of .2bin. The default value of the :target option is 68K.
In this case, the Compiler produces code that can be run on both the MC68010
and the MC68020 processors, and the default file extension is .lbin.

This function is an extension to Common Lisp.

compile-file

9-12 Sun Common Lisp User's Guide

declare

Purpose:

Syntax:

Remarks:

The declare special form may be used to make declarations within certain forms.
Declarations may occur in lambda expressions and in the following forms:

defmacro
defsetf
deftype
defun
do
do.
do-alI-symbols
do-external-symbols
do-symbols
dolist
dotimes
:Bet

declare {decl-spec} *

decl-spec::= (special {1Jar}*) I

labels
let
let.
localIy
macrolet
multiple-value-bind
prog
prog.
with-open-stream
wi th-open-file
with-output-to-string
with-input-from-string

(type type-specifier {1Jar} *) I
(ftype type-specifier {function-name}*) I

[Special Form]

(funct ion function-name ({ type-specifier} *) {type-specifier} *) I
(inline {function-name}*) I
(notinline {function-name}*) I
(ignore {1Jar} *) I
(optimize {quality 1Jalue} *) I
(declaration {declaration-name }*)

quality::= speed I space I safety I compilation-speed

1Jalue::= 0 I 1 I 2 I 3

Declarations may only occur where specified by the syntax of these forms.

Macros may expand into declarations as long as this syntax is observed.

The declaration specifier argument is not evaluated.

For more information, see the Sun Common Lisp Reference Manual.

Compiling Lisp Programs 9-13

declare

Examples: > (defun foo (y)

FOD

(declare (special y»
(let «y t»

(list y
(locally (declare (special y» y»»

> (foo nil)
(T NIL)

9-14 Sun Common Lisp User's Guide

This Y is regarded
as special.
This y is regarded
as lexical.
This y refers to the
special binding of y.

eval-when

Purpose:

Syntax:

The special form eval-when is used to specify when a particular body of code is
to be executed.

This time is defined by the situation arguments. The value of each argument must
be compile, load, or eval.

H eval is specified, the evaluator evaluates the form arguments at execution time.
H compile is specified, the Compiler evaluates the form arguments at compilation
time. H load is specified and the file containing the eval-when is compiled, then
the forms are compiled; they are executed when the output file produced by the
Compiler is loaded.

The value of the last form evaluated is returned as the result of eval-when. If no
forms are executed, eval-when returns nil.

eval-when ({ situation} *) {form} * [Special Form]

Remarks: The form arguments are executed in order.

Examples: > (aetc{ foo 3)
3
> (eval-when (compile) (aetq foo 2»
NIL
> foo
3
> (eval-when (eval) (aetq foo 2»
2
> foo
2

Compiling Lisp Programs 9-15

locally

Purpose: The locally macro makes local declarations that affect only its form arguments.

Syntax: locally {declaration} * {form} *

Examples: > (defun foo (y)

FDD

(declare (special y»
(let «y t»

(list y
(locally (declare (special y» y»»

> (foo nil)
(T NIL)

9-16 Sun Common Lisp User's Guide

[Macro]

This Y is re«arded
as special.
This y is regarded
as lexical.
This y refers to the
special binding of y.

proclaim

Purpose:

Syntax:

Remarks:

The proclaim function makes a global declaration, or proclamation.

A proclamation whose declaration specifier declares a variable to be special makes
all occurrences of that variable name special references.

proclaim decl-spec [Function]

Although the effect of a proclamation is global, it may be overridden by a local
declaration.

The argument of proclaim is evaluated. It may therefore be a computed
declaration specifier.

Examples: > (proclaim '(special prosp»

See Also:

T
> (setq prosp 1 reg 1)
1
> (let «prosp 2) (reg 2»

(set 'prosp 3) (set 'reg 3)
(list prosp reg»

(3 2)
> (list prosp reg)
(1 3)

defvar

defparameter

(In the Sun Common Lisp Reference Manual)

Compiling Lisp Programs 9-17

the

Purpose:

Syntax:

The special form the specifies that the value produced by a form will be of a
certain type.

The value-type argument is a type specifier; it is not evaluated. The form argument
is evaluated.

The the special form returns the value or values that result from form.

the value-type form [Special Form]

Remarks: You can use the macro setfwith the type declarations. In this case the declaration
is transferred to the form that specified the new value. The resulting setf form is
then analyzed.

Examples: > (the list • (a b»
(A B)
> (the (values integer list) (values 5 '(a b»)
5
(A B)
> (let «i 100»

(declare (fixnum i»
(the fixnum (1+ i»)

101

9-18 Sun Common Lisp User's Guide

Chapter 10. Storage Management in Common Lisp

Storage Management in Common Lisp 10-1

Chapter 10. Storage Management in Common Lisp

About the Garbage Collector .. 10-3
Areas ... 10-3
Garbage Collection-What Happens .. 10-4

The Room Function ... 10-5
Example 1 . 10-5
Example 2 . 10-5
Example 3 ... 10-5

Altering Storage Allocator Parameters. 10-8
Examples .. 10-9
Sample Lisp Session ... 10-9

change-memory-management 10-10
gc ... 10-12
gc-off . 10-13
gc-on .. 10-15
gc-silence ... 10-17
get-stack-remaining ... 10-18
room .. 10-19

10-2 Sun Common Lisp User's Guide

About the Garbage Collector

Areas

A program called the Garbage Conector manages storage in Sun Common
Lisp. The Garbage Collector (GC) is a stop-and-copy compacting collector. It
organizes memory into areas. Each area consists ot some number of 64-kilobyte
Lisp segments and is typed according to the kind of data it may contain.

Note: In this chapter, the notion of a segment refers to the way in which Lisp
organizes memory, not to the way in which the operating system or underlying
hardware is structured.

The possible area types are read-only, static, and dynamic.

Read-only areas contain data structures that can never be garbage-collected
and whose contents can never be altered. The system code and some system data
structures are put into read-only areas.

Static areas contain data structures that can never be garbage-collected, but
whose contents may be altered. Certain permanent data structures are put in
static areas.

Dynamic areas are the areas from which storage is recovered through garbage
collection. Dynamic storage is organized into two semi-spaces: Dynamic-O-Area
and Dynamic-I-Area. Normally, only one of the semi-spaces is in use at any given
time. When a garbage collection occurs, the retained objects from the semi-space
in use are copied into the other semi-space, which then becomes the current
semI-space.

Dynamic and static memory are expanded as required. For example, dynamic
space can be expanded if the total size of the retained objects does not permit
creation of a new object. This expansion typically happens upon the attempted
creation of a new object. Another point of expansion occurs when the space for
nondynamic storage is exhausted. H this space is exhausted, it will be expanded.

Storage Management in Common Lisp 10-3

Garbage Collection-What Happens

When the Garbage Collector is invoked, the message

;;; GC:

is displayed on the screen. When garbage collection is finished, further information
is printed after the' colon. Here is an example of a final message:

t t t

t t t

t t t

GC: 360 words [1440 bytes] of dynamic storage in use.
458140 words [1832560 bytes] of free storage available before a GC.
916640 words [3666560 bytes] of free storage available if GC is

disabled.

The first line states the amount of dynamic storage in use. The second line tells
how much storage is available before the next garbage collection occurs. The
third line tells how much storage would be available if the Garbage Collector were
disabled.

H all the dynamic storage in both semi-spaces is to be used for consing, call the
function gc-off to disable the Garbage Collector. Note, however, that disabling
the Garbage Collector may make future garbage collection impossible. When
the Garbage Collector is disabled, all memory normally allocated for dynamic
semi-spaces is used for creating objects. This typically implies that garbage
collection is impossible because there may not be enough room in which to copy
the retained objects.

Whenever 50 percent of the remaining space has been consumed, the Garbage
Collector asks whether you want to reconsider and enable it. The optional
argument no-reconsideration to gc-off controls this periodic querying. When
no-reconsideration is non-nil, you can use all the available storage without being
asked to reconsider. The default value is nil.

10-4 Sun Common Lisp User's Guide

The Room Function

The function room reports information on the memory management state.
Depending on the arguments, room reports three levels of detail.

Example 1

> (room nil)
;;; 412144 words [1648676 bytes] free
NIL

This reports the least amount of information, namely the same sort of information
that is reported in the second line of the garbage collection message.

Example 2

> (room)
••• 46376 words [186604 bytes] of dynamic storage in use .
••• 412124 words [1648496 bytes] of free storage available before a GC .
••• 870624 words [3482496 bytes] of free storage available if GC is

disabled.
NIL

The code above reports an intermediate amount of information, the same sort of
information that is reported by the garbage collection message.

Example 3

> (room t)
••• 46410 words [186640 bytes] of dynamic storage in use .
••• 412090 words [1648360 bytes] of free storage available before a GC .
••• 870590 words [3482360 bytes] of free storage available if GC is

...
•••
•••

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled
Reserved Free Space: 192K bytes [3 segments]
Memory Growth Limit: 12800K bytes [200 segments]. total
Memory Growth Rate: 266K bytes [4 segments]

disabled.

Reclamation Ratio: 33% desired free after garbage collection

Storage Management in Common Lisp 10-5

" ,
" ,
" ,
" ,
" ,
" ,
" ,
" ,
NIL

Area Information:
Name

Dynamic-O-Area
Dynamic-l-Area
Static-Area
Readonly-Pointer-Area
Readonly-Non-Pointer-Area

Size [used/allocated]

182K/1792K bytes,
OK/1792K bytes,
1168K/1216K bytes,
488K/612K bytes,
2640K/2688K bytes,

3/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments

The first three lines in Example 3 contain the same type of information as the
garbage collection message. The next three lines give the current size of the
semi-spaces and report which of the two semi-space areas is currently in use and
whether the Garbage Collector has been disabled:

" ,
" ,
" ,

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled

The next four lines give the current values of parameters that affect memory
expansion:

" ,
" ,
" ,
" ,

Reserved Free Space: 192K bytes [3 segments]
Memory Growth Limit: 12800K bytes [200 segments], total
Memory Growth Rate: 266K bytes [4 segments]
Reclamation Ratio: 33~ desired free after garbage collection

Reserved .Free Space is the amount of free storage that is currently in reserve
for read-only and static data. The Memory Growth Limit is the maximum
total size to which the Lisp system is allowed to grow. The Memory Growth
Rate is the amount of additional storage that is added each time memory is
expanded. The Reclamation Ratio determines when memory is expanded by
specifying the desired ratio of free storage to total storage. H garbage collection
has not reached this ratio (or a higher one), then at a point at which a garbage
collection would normally take place, memory is expanded instead. You may use
the function change-memory-management to alter these parameters or to force
memory expansion explicitly.

The last section of the expanded room report gives a breakdown of the current
storage allocation by area. For each area, the report gives the total amount of
storage allocated to that area and the current amount in use.

When a garbage collection does not reclaim enough room to continue consing,
there are two options: to return to the top level (type :a to do this) or to disable
the Garbage Collector and start consing in the area normally reserved for copying

10-6 Sun Common Lisp User's Guide

(type :c to do this). Here is what may be displayed after invocation of a function
(cons-a-Iot, in the example) that requires a large amount of storage:

»Error: Not enough storage after GC.

CONS-A-LOT:
Required arg 0 (CONS-COUNT): 1000000

:A Abort to Lisp Top Level
:C GC will be disabled:
CONSers will use the storage normally reserved
for copying currently allocated dynamic storage.
The next GC might fail.
->

When half of the remaining free segments have been allocated, another continuable
error may be signaled:

»Error: There are 1407206 words left and GC is disabled.

CONS-A-LOT:
Required arg 0 (CONS-COUNT): 1000000

:A Abort to Lisp Top Level
:C GC Will Remain Disabled
->

When only one free segment remains, a continuable error is signaled. Continuing
from this error will probably result in disaster:

»Error: There are 16134 words left and GC is disabled.
This is the last warning before memory is exhausted.

CONS-A-LOT:
Required arg 0 (CONS-COUNT): 1000000

:A Abort to Lisp Top Level
:C GC Will Remain Disabled
->

Storage Management in Common Lisp 10-7

Altering Storage Allocator Parameters

The function change-memory-management is used to alter the parameters
affecting memory expansion. Its syntax is as follows:

change-memory-management .tkey : growth-limit
: growth-rate
:expand :expand-p
: reclamation-ratio
: expand-stack
: help

[Function]

The parameters are set by specifying various keyword arguments, which are
described as follows:

• :growth-limit

This keyword argument specifies the maximum size of memory in segments (a
segment is 64 kilobytes).

• :growth-rate

This sets the number of dynamic segments that are added to each dynamic
semi-space whenever memory is expanded.

• :expand

This forces an immediate expansion of each semi-space of dynamic memory by
the specified number of segments. H it is necessary, the current :growth-limit
is increased.

• :expand-p

A value of t for :expand-p specifies that rather than invoking a garbage
collection, memory should be expanded at the next point at which additional
storage is required.

• :reclamation-ratio

This alters the desired ratio of free to total dynamic storage and is specified as
a fraction between 0.0 and 1.0.

• :expand-stack

This increases the number of segments allocated to the stack by the specified
number of segments.

• :help

This reminds the user of the various keyword arguments.

10-8 Sun Common Lisp User's Guide

Examples

(change-memory-management :growth-limit 246)

(change-memory-management :growth-limit 246 :growth-rate 6)

(change-memory-management :expand 20)

(change-memory-management :expand-p t)

(change-memory-management :reclamation-ratio .33)

(change-memory-management :expand-stack 5)

(change-memory-management :help t)

Sample Lisp Session

> (change-memory-management :help t)
Supply:
:growth-limit as a number of segments,
:growth-rate as a number of segments,
:reclamation-ratio as a fraction between 0.0 and 1.0,
:expand-stack as a number of segments,
:expand as a number of segments, or
:expand-p, as T or NIL,
where 1 segment is 64K bytes
T

Storage Management in Common Lisp 10-9

change-memory-management

Purpose:

Syntax:

Remarks:

The function change-memory-management is used to alter some of the
parameters of the storage allocator. The parameters are set by specifying various
keyword arguments.

change-memory-management lkey :growth-limit :growth-rate [Function]
:expand :expand-p
: reclamation-ratio
:expand-stack :help

The keyword argument :growth-limit specifies the maximum size of memory in
segments (a segment is 64 kilobytes).

The keyword argument :growth-rate sets the number of dynamic segments that
are added to each dynamic semi-space when memory is expanded.

The keyword argument :expand forces an immediate expansion of each semi
space of dynamic memory by the specified number of segments. The current
:growth-Iimit is increased if necessary.

If the keyword argument :expand-p has a value of t, memory is expanded at
the next point at which additional storage is required. No garbage collection is
invoked.

The keyword argument :reclamation-ratio alters the desired ratio of free to total
dynamic storage and is specified as a fraction between 0.0 and 1.0.

The keyword argument :expand-stack increases the number of segments allocated
to the stack by the specified number of segments.

The keyword :help reminds the user of the various keyword argument options.

This function is an extension to Common Lisp.

Examples: > (room t)
",47390 words [189660 bytes] of dynamic storage in use.
'" 411110 words [1644440 bytes] of free storage available before a GC.
",869610 words [3478440 bytes] of free storage available if GC is

" ,
" ,
" ,
" ,
" ,
" ,
" ,

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled
Reserved Free Space: 192K bytes [3 segments]
Memory Growth Limit: 12800K bytes [200 segments], total
Memory Growth Rate: 266K bytes [4 segments]

disabled.

Reclamation Ratio: 33% desired free after garbage collection
Area Information:

10-10 Sun Common Lisp User's Guide

" ,
" ,
" ,
" ,
" ,

" ,
NIL

Name

Dynamic-O-Area
Dynamic-l-Area
Static-Area
Readonly-Pointer-Area
Readonly-Non-Pointer-Area

change-memory-management

Size [used/allocated]

186K/1792K bytes,
OK/1792K bytes,
1158K/1216K bytes,
488K/512K bytes,
2640K/2688K bytes,

3/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments

> (change-memory-management :growth-limit 202 :growth-rate 16
:reclamation-ratio 0.25)

T
> (room t)
.,,47626 words [190504 bytes] of dynamic storage in use .
••• 410874 words [1643496 bytes] of free storage available before a GC .
••• 869374 words [3477496 bytes] of free storage available if GC is

... .. ,
,
., ,
., .
, ..
" ,

, . ,
" ,

" .

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled
Reserved Free Space: 192K bytes [3 segments]
Memory Growth Limit: 12928K bytes [202 segments], total
Memory Growth Rate: 1024K bytes [16 segments]

disabled.

Reclamation Ratio: 25% desired free after garbage collection
Area Information:
Name

Dynamic-O-Area
Dynamic-l-Area
Static-Area

Size [used/allocated]

,., Readonly-Pointer-Area

187K/1792K bytes,
OK/1792K bytes,
1158K/1216K bytes,
488K/512K bytes,
2640K/2688K bytes,

3/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments '" Readonly-Non-Pointer-Ar ••

NIL

Storage Management in Common Lisp 10-11

gc

Purpose:

Syntax:

Remarks:

The function gc invokes the Garbage Collector.

gc [Function]

The function returns three values: the amount of dynamic storage in use, the
amount of free storage available before a GC, and the amount of free storage
available if the Garbage Collector were to be disabled. These are the numbers
displayed in the gc message when the variable .gc-silence. is set to nil, which is
the default.

This function is an extension to Common Lisp.

Examples: > (room)

See Also:

III 47776 words [191104 bytes] of dynamic storage in use.
410724 words [1642896 bytes] of free storage available before a GC.

",869224 words [3476896 bytes] of free storage available ifGC is
disabled.

NIL
> (gc)
'" GC: 472 words [1888 bytes] of dynamic storage in use.
II. 458028 words [1832112 bytes] of free storage available before a GC.
'" 916628 words [3666112 bytes] of free storage available if GC is

1888
1832112
3666112
> (room)

I "
492 words [1968 bytes] of dynamic storage in use.

disabled.

•• I

I I •

468008 words [1832032 bytes] of free storage available before a GC .
916.608 words [3666032 bytes] of free storage available if GC is

disabled.
NIL

• gc-silence.

10-12 Sun Common Lisp User's Guide

gc-off

Purpose:

Syntax:

Remarks:

The function gc-ofF disables the Garbage Collector. Its optional argument controls
whether disabling the Garbage Collector causes periodic reconsideration of the
issue. If no-reconsideration is set to t, you can use all the available storage without
being asked to reconsider. The default value of no-reconsideration is nU.

gc-ofF ioptional no-reconsideration [Function]

If Dynamic-I-Area is the current Dynamic Area, a garbage collection will occur
when gc-ofF is invoked.

This function is an extension to Common Lisp.

Examples: > (room t)
'" 838 words [3352 bytes] of dynamic storage in use.
;;; 457662 words [1830648 bytes] of free storage available before a GC.
'" 916162 words [3664648 bytes] of free storage available if GC is

, , ,
, , , . , ,
, , ,
, , .
, , ,
, , ,
, , .
, , ,
, , ,
, , ,
, , ,
, . ,

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled
Reserved Free Space: 192K bytes [3 segments]
Memory Growth Limit: 12800K bytes [200 segments], total
Memory Growth Rate: 676K bytes [9 segments]

disabled.

Reclamation Ratio: 33' desired free after garbage collection
Area Information:
Name

Dynamic-O-Area
Dynamic-I-Area
Static-Area

Size [used/allocated]

;;; Readonly-Pointer-Area

4K/1792K bytes,
OK/1792K bytes,
1168K/1216K bytes,
488K/612K bytes,
2640K/2688K bytes,

1/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments :;; Readonly-Non-Pointer-Area

NIL
> (gc-off)
T
> (room t)
". 1008 words [4032 bytes] of dynamic storage in use.
; ;.: 916244 words [3664976 bytes] of free storage available before a GC.
;:; 916244 words [3664976 bytes] of free storage available if GC is

, , ,
, , .
, , ,
, , ..

Semi-apace Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Statua: Disabled
Reaerved Free Space: 192K bytes [3 segment's]

disabled.

Storage Management in Common Lisp 16-13

gc-off

See Also:

... ...
•••
NIL

Memory Growth Limit: 12800K bytes [200 segments]. total
Memory Growth Rate: 676K bytes [9 segments]
Reclamation Ratio: 33~ desired free after garbage collection
Area Information:
Name

Dynamic-O-Area
Dynamic-1-Area
Static-Area
Readonly-Pointer-Area
Readonly-Non-Pointer-Area

Size [used/allocated]

6K/1792K bytes.
OK/1792K bytes.
1168K/1216K bytes.
488K/512K bytes.
2640K/2688K bytes.

1/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments

gc-on

10-14 Sun Common Lisp User's Guide

gc-on

Purpose: This function enables the Garbage Collector.

Syntax: gc-on [Function]

Remarks: This function is an extension to Common Lisp.

Examples: > (gc-off)
T
> (room t)
...

...

...

...
"
• I.
NIL

514 words [2056 bytes] of dynamic storage in use .
916738 words [3666952 bytes] of free storage available before a GC .
916738 words [3666952 bytes] of free storage available if GC is

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Disabled
Reserved Free Space: 192K bytes [3 segments]

disabled.

Memory Growth Limit: 12800K bytes [200 segments]. total
Memory Growth Rate: 576K bytes [9 segments]
Reclamation Ratio: 33% desired free after garbage collection
Area Information:
Name

Dynamic-O-Area
Dynamic-i-Area
Static-Area
Readonly-Pointer-Area
Readonly-Non-Pointer-Area

Size [used/allocated]

3K/1792K bytes.
OK/1792K bytes.
1158K/1216K bytes.
488K/512K bytes,
2640K/2688K bytes.

1/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments

> (gc-on)
T
> (room t)

• I'
• I'

• I'
I' •

...
I' •

684 words [2736 bytes] of dynamic storage in use.
457816 words [1831264 bytes] of free storage available before a GC.
916316 words [3665264 bytes] of free storage available if GC is

Semi-space Size: 1792K bytes [28 segments]
Current Dynamic Area: Dynamic-O-Area
GC Status: Enabled
Reserved Free Space: 192K bytes [3 segments]
Memory Growth Limit: 12800K bytes [200 segments]. total
Memory Growth Rate: 576K bytes [9 segments]

disabled.

Reclamation Ratio: 33% desired free after garbage collection
Area Information:

Storage Management in Common Lisp 10-15

gc-on

See Aiso:

, , ,
" ,
" ,
" ,
" ,

Name

Dynamic-O-Area
Dynamic-1-Area
Static-Area

'" Readonly-Pointer-Area
;;; Readonly-Non-Pointer-Area
NIL

gc-off

10-16 Sun Common Lisp User's Guide

Size [used/allocated]

3K/1792K bytes,
OK/1792K bytes,
1158K/1216K bytes,
488K/612K bytes,
2640K/2688K bytes,

1/28 segments
0/28 segments
19/19 segments
8/8 segments
42/42 segments

gc-silence

Purpose:

Syntax:

H you set the variable *gc-sllence* to t, all garbage collection messages are
suppressed. The default value of *gc-silence* is nil.

gc-sllence [Variable]

Remarks: This variable is an extension to Common Lisp.

Examples: > (room)
••• 101682 words [406728 bytes] of dynamic storage in use .
••• 356818 words [1427272 bytes] of free storage available before a GC .
••• 816318 words [3261272 bytes] of free storage available if GC is

NIL
> (let «*gc-silence* t» (gc»
2968
1831032
3666032
> (room)

disabled.

••• 762 words [3048 bytes] of dynamic storage in use .
••• 467738 words [1830962 bytes] of free storage available before a GC .
••• 916238 words [3664962 bytes] of free storage available if GC is

disabled.
NIL

Storage Management in Common Lisp 10-17

get-stack-remaining

Purpose:

Syntax:

ReDlarks:

The function get-stack-reDlaining returns the number of words of stack space
that may be used before the stack will overflow.

get-stack-remaining

One memory segment contains 64 kilobytes, or 16,384 words.

This function is an extension to Common Lisp.

[Function]

10-18 Sun Common Lisp User's Guide

room

Purpose:

Syntax:

Remarks:

The function room prints information about the current state of internal memory
on the standard output.

If the optional argument is specified as nil, a terse summary is printed. If the
optional argument is non-nil, a verbose description is given. If no argument is
specified, room prints a moderate amount of information.

room ioptional x [Function]

The standard output is defined by the value of the variable .standard-output •.

Storage Management in Common Lisp 10-19

Chapter 11. The Flavor System

The Flavor System 11-1

Chapter 11. The Flavor System

Introduction to Flavors ... 11-5
What Is an Object? .. 11-5
What Is a Flavor? ... 11-5
Sending a Message. 11-6
Flavors Versus Structures ... 11-9
Modularity. 11-9
Generic Operations ... 11-10
Extensibility .. 11-11
Creating Simple Instances. 11-12

Mixing Flavors .. 11-15
Simple Mixing ... 11-15
Inheriting Values ... 11-16
Creating the Components List .. 11-16
Introduction to Combined Methods . 11-17
More on Combined Methods .. 11-18
Some Examples of Combination Types. 11-19
Whoppers and Wrappers ... 11-21

Defining Flavors ... 11-24
Required Arguments .. 11-24
Options . 11-25

Defining Methods for Messages .. 11-29
Subroutines ... 11-30
Forcing a Combined Method to be Recalculated . 11-30
Resuming Calculation of Combined Methods. 11-31
Inhibiting Calculation ... 11-31

Compiling a Flavor ... 11-32
When Compilation Occurs .. 11-32
The Steps in Compiling a Flavor .. 11-32
Detailed Information on Flavor Compilation . 11-33

Creating Instances. 11-35
The Vanilla Flavor ... 11-37

Printing an Instance .. 11-3i
Describing an Instance 11-38
Determining Messages Handled by an Instance . 11-38
Unclaimed Messages .. 11-39

alI-flavor-names .. 11-40
cleanup-all-flavors .. 11-41
compile-flavor-methods .. 11-42
continue-whopper, lexpr-continue-whopper, continue-whopper-all . 11-43
deffiavor . 11-45
defmethod, undefmethod ... 11-47
defwhopper ... 11-48

11-2 Sun Common Lisp User's Guide

defwrapper. 11-49
flavor-allowed-init-keywords, flavor-allows-init-keyword-p 11-50
instancep . 11-51
make-instance . 11-52
recompile-flavor . 11-53
self .. 11-54
send ... 11-55
symeval-in-instance, set-in-instance .. 11-56
without-cleaning-flavors ... 11-57

The Flavor System 11-3

Introduction to Flavors

What Is an Object?

A program can often be thought of as an algorithm for manipulating objects. A
graphics program might deal with such objects as circles, polygons, line segments,
and windows. An operating system might deal with files, processes, disks, and
terminals.

For each of these objects, there are certain operations that can be performed on it.
Given a circle, .a programmer might want to know its area or diameter or might
want to have it move to the right a certain number of pixels. For a window, a
programmer might want to move it, to expose it, or to place an object in it at a
certain point.

In object-oriented programming, this viewpoint is modified slightly. Objects are
not treated as passive entities but as active participants. You do not calculate the
area of a circle; rather, you request that the circle calculate its area and return the
result. Similarly, you do not move a window; it moves itself or places an object at
a certain point.

What Is a Flavor?

The Flavor System is designed to provide a convenient and modular way of creating
objects and of describing what each object can do.

There is a standard terminology for dealing with objects. An abstract object,
such as a circle or a window, is called an abstract data type or a flavor.
A particular incarnation of one of these is called an instance. Requesting an
action or information from a particular instance is called sending the instance a
message. The action that is performed by an instance upon receiving a particular
message is that instance's method for the message.

The following example illustrates the operation of defining a flavor.

(defflavor circle-flavor
(x-center y-center radius)
()
:gettable-instance-variables)

(defmethod (circle-flavor :diameter) ()
(* 2 radius»

The Flavor System 11~5

(defmethod (circle-flavor :area) ()
(* pi radius radius» pi is a built-in constant

(defmethod (circle-flavor :moveright) (amount)
(setq x-center (+ x-center amount»)

The demavor macro creates a flavor called circle-flavor. The next line says that
a circle has three instance variables: the x position of its center, the y position
of its center, and its radius. The instance variables of a flavor are similar to the
fields of a structure. They are names for the important attributes of an instance of
a flavor. Every instance of a circle has these three instance variables.

The syntax of the defmethod in the preceding example is nearly identical to that
of a defun. The function name is replaced by (flavor message). The lambda
list has the full generality of a defun lambda list. (See the chapter "Program
Structure" of the Sun Common Lisp Reference Manual for more information on
lambda lists.)

All message names are keywords. The :gettable-instance-variables option
to demavor in the preceding example creates methods for the three messages
: radius, : x-center, and : y-center. These methods simply return the value of the
corresponding instance variable.

The next few lines describe other messages that an instance of a circle-flavor can
receive and the methods that correspond to these messages. The first defmethod
says that if an instance of the flavor circle-flavor receives a : diameter message,
it should return a value equal to twice the radius. Similarly, if the instance receives
an : area message, it should calculate and return '" radius2

•

The last defmethod says that if an instance of flavor circle-flavor receives
a :moveright message, the instance should increment the value of its x-center
instance variable by the amount of the single argument.

Sending a Message

H the variable a-circle is bound to an instance of a circle, evaluating
the form (send a-circle : area) returns the area of the circle. Evaluating
(send a-circle :moveright 15) moves the circle to the right by 15 units.

The function send sends the keyword message message to the instance instance.
The Flavor System finds the appropriate method corresponding to this message.
The remaining arguments are passed to this method and are bound to the variables
in the lambda list of the defmi!thod.

11-6 Sun Common Lisp User's Guide

The syntax of send is

send instance message trest args [Function]

The syntax of send may seem complicated for two reasons. First, the message
argument, although it is a symbol in the keyword package, is not a keyword
argument. (See the chapter "Program Structure" of the Sun Common Lisp
Reference Manual for more information on keyword arguments.) Second, when the
args arguments are passed to the instance's method for message, the manner in
which these arguments are bound depends on the lambda list of the appropriate
defmethod and cannot be determined a priori.

The following examples should clarify the process of sending a message.

First, a flavor named flavor-1 is created. It has no instance variables. The value
of the variable x1 is set to an instance of this flavor.

> (defflavor flavor-1 () ()) ; flavor-1 is a simple flavor;
FLAVOR-1
> (setq x1 (make-instance 'flavor-1»
;;; Compiling function ... tail merging ... assembling ... emitting ... done.
#<Instance FLAVOR-1 92D4D3>

The first method for this flavor has two required arguments. If any additional
arguments are passed, the first is bound to the variable c, and a list of the
remaining is bound to the variable d.

> (defmethod (flavor-1 :msg1) (a b toptional c trest d)
(list abc d»

:MSG1
> (send x1 :msg1 1 2)
(1 2 NIL NIL)
> (send x1 :msg1 1 2 3 4)
(1 2 3 (4»

Notice that neither the x1 argument nor the :msg1 argument to the send function
is used in the binding process. These two arguments are removed before the rest
of the arguments are bound to the variables of the lambda list of the defmethod.

Here is a slightly more complicated example:

> (defmethod (flavor-1 :msg2) (a ioptional c ikey key1 key2)
(list a c key1 key2»

: MSG2

The preceding method has one required argument, one optional argument, and two
keyword arguments.

The Flavor System 11-7

> (send xl :msg2 3 6 :key2 'abc :keyl 'xyz)
(3 6 XYZ ABC)

The argument 3 is bound to variable a in the lambda list, and the argument 5 is
bound to the variable c in the lambda list. The remaining arguments are treated
as keyword arguments. The value of 'abc gets bound to the variable key2, and
the value of • xyz gets bound to keyl. Again, the first two arguments to the send
function are not involved in the binding of values to variables in the lambda list.
The message argument serves only to deterrraJne which of xi's methods to ca.ll.

> (send xl :msg2 :keyl 'abc :key2 'xyz)
(:KEYl ABC NIL XYZ)

The : keyl argument is treated not as a keyword argument but as the first required
argument. The value of 'abc gets bound to the second argument. The remaining
arguments are treated as keyword-value pairs.

The following code creates another flavor, flavor-2. The variable x2 contains an
instance of that flavor. It also creates a :msg2 method for flavor-2.

> (defflavor flavor-2 () (»
FLAVOR-2
> (setq x2 (make-instance 'flavor-2»
;;; Compiling function ... tail merging ... assembling ... (assembling ... (sharing
previous code vector»(sharing previous code vector)emitting ... done.
#<Instance FLAVOR-2 96DDF3>
> (defmethod (flavor-2 :msg2)(a b c ioptional d)

(list abc d»
: MSG2

Notice that flavor-2's lambda list for the message :msg2 is quite different from
flavor-l's lambda list. Send the same message and arguments to x2.

> (send x2 :msg2 :keyl 'abc :key2 'xyz)
(: KEY1 ABC : KEY2 XYZ)

In this case, the value of each argument gets bound to a variable of the lambda
list. Not surprisingly, a different result is returned.

11-8 Sun Common Lisp User's Guide

Flavors Versus Structures

You can define a circle as a structure rather than as a flavor. The code for this
would be the following:

(defstruct circle
x-center
y-center
radius)

(defmacro circle-diameter (circle)
'(* 2 (circle-radius .circle»)

This code may be faster than code using flavors because structures use in-line
substitution, whereas flavors use function calls. However, the Flavor System is
designed to support modularity, extensibility, and the ability to perform generic
operations.

Modularity

When you program any large system, it is almost essential that you break the
system into smaller, more manageable pieces. You should be able to deal with each
piece, often called a module, without paying too much attention to any of the
other pieces.

The interface between modules should be thin, that is, no module should have
to concern itself with the internal workings of any other module. Instead, each
module has an interface-a small number of functions, variables, and data types
that can be accessed from outside the module. What the module does is clearly
specified, but not how it does what it does.

A module may be thought of as a "black box." The module specifies what
instructions it understands and what it returns in response to those instructions.
The internal workings of the black box are of no concern to anything outside of it.

The Flavor System is designed to support modularity. You can think of a flavor
or a group of flavors as a module. The specifications for a flavor are the methods
that exist for that flavor. The user of a flavor need not know what the instance
variables of the flavor are nor what the corresponding methods are.

The Flavor System 11-9

For example, circle-flavor in the initial example of defining a flavor could have
been defined as follows:

(defflavor circle-flavor (x-center y-center diameter)
o
:gettable-instance-variables)

(defmethod (circle-flavor :radius) ()
(I diameter 2»

(defmethod (circle-flavor :area) ()
(* 1/4 pi diameter diameter»

(defmethod (circle-flavor :moveright) (amount)
(setq x-center (+ x-center amount»)

You need not recompile a program that interacts with an object of type circle
flavor only through the messages : x-center, : y-center, : radius, : diameter, : area,
and :moveright. A future implementation of circle-flavor might rearrange the
instance variables and add more of them or add more methods, but old programs
using circle-flavor should not require modifications.

If structures were used in a program, every piece of code that referred to a circle
would have to be recompiled whenever the implementation of circle changed.
With flavors and messages, you should be able to ignore details of the flavor's
implementation.

Generic Operations

A generic operation is one that depends on the type of argument passed. This
is not as unusual as it sounds. Many computers have two different instructions for
multiplication of numbers-one for integers and one for floating-point numbers.

Suppose the flavor rectangle-flavor were defined as follows:

(defflavor rectangle-flavor
(height width top-left-x top-left-y)
o
:gettable-instance-variables)

(defmethod (rectangle-flavor :area) ()
(* height width»

Given an object that is an instance of either circle-flavor or rectangle-flavor,
you can send it an : area message, and no matter whether it is a circle or a
rectangle, the appropriate method is used. If you were using structures, you
would have to test the object to see if it was a circle or a rectangle (or any other

11-10 Sun Common Lisp User's Guide

object with an area), and you would have to decide whether to call circle-area or
rectangle-area.

An important aspect of generic operations is inheritability, which is the ability
of one flavor to automatically incorporate all the instance variables and methods
of another flavor.

Suppose you wanted to model rectangular pieces of farmland. The attributes
of such pieces of farmland might include types-of-crops, soil-acidity, and the
like. Such pieces might also have height, width, and all the other attributes of a
rectangle. The flavor farmland-flavor could then be defined as follows:

(defflavor farmland-flavor
(types-of-crops soil-acidity)
(rectangle-flavor)
:gettable-instance-variables)

instance variables
component flavors
options

The second argument to the defBavor in the above example is a list of flavors
that the flavor farmland-flavor inherits. An instance of flavor farmland-flavor
not only has the instance variables types-of-crops and soil-acidity, but it also
inherits all the instance variables of rectangle-flavor. More importantly, the
instance inherits all the messages and corresponding methods of rectangle-flavor.
It automatically understands an : area message. If you were to write a new method
for rectangle-flavor called :perimeter, an instance of farmland-flavor would
automatically understand this new message and call rectangle-flavor's method
for that message.

Extensibility

To add new methods to a flavor, you need only add new code. You need not modify
already existing code. Moreover, you should be able to make these additions
without knowing any details of the flavor's implementation.

Suppose that another programmer has written a flavor called circle-flavor that
understands all of the messages described in the initial example (see "What Is
an Object?"). This flavor is just what you need, except that you would like a
: perimeter message.

You can write the following code:

(defmethod (circle-flavor :perimeter) ()
(* pi (send self :diameter»)

When the body of the dermethod is executed, self is bound to the instance to
which the message is sent. By sending a message to self, the : perimeter method
can find its own diameter without knowing anything about the implementation of
circle-flavor.

The Flavor System 11-11

Creating Simple Instances

To actually create instances of flavors, use the make-instance function.

The argument to make-instance is the name of a flavor. There may be additional
keyword arguments. What is returned is an instance, which is usually displayed as
follows:

#<Instance flavor-name hexadecimal-address>

(To modify what is displayed, see the section "The Vanilla Flavor.")

For example, typing the expression (setq a-circle (make-instance 'circle
flavor» creates an instance of flavor circle-flavor. It returns an instance of a
circle whose displayed representation looks like

#<Instance CIRCLE-FLAVOR 3A25DC3>

Since all of the instance variables of a-circle are unbound, it is not very interesting.
Not much can be done with a-circle. IT the describe function is called on it, the
result is as follows:

(describe a-circle)
An instance of flavor CIRCLE-FLAVOR.
Instance variables:
X-CENTER unbound
Y-CENTER unbound
RADIUS unbound
#<Instance CIRCLE-FLAVOR 3A26DC3>

Its x-center, y-center, and radius are all unbound. IT you were to type the
expression (send a-circle :y-center) the result would be

FLAVORS-SYSTEM::UNBOUND

which is a special value used by the system for marking unbound instance variables.

The describe function explicitly ignores modularity. It displays the names and
values of all the instance variables, which are supposed to be hidden from the user
of a flavor. The values of the instance variables that are displayed can be a great
aid in debugging a program. Since describe is primarily intended for debugging,
you get implementation-dependent information.

Note: Because the output of describe is implementation dependent, you should
remember that it may change.

11-12 Sun Common Lisp User's Guide

In the previous example, the output of describe shows that a-circle is a rather
uninteresting circle because everything about it is unspecified. Typing

(send a-circle :radius)

returns the uninteresting value PLAYORS-SYSTEM: :UNBOUND, and typing

(send a-circle :area)

signals an error because PLAYORS-SYSTEM: :UNBOUND is not a number.

The original definition of circle-flavor can be modified slightly so that
make-instance creates useful instances of circles.

(defvar *default-x-center* 0)
(defvar *default-y-center* 0)

(defflavor circle-flavor
«x-center *default-x-center*)
(y-center *default-y-center*)
radius)

()
:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

There are four things to take note of in this example.

• The: settable-instance-variables option creates methods for the three
messages : set-x-center, : set-y-center, and : set-radius. Each of these
methods takes a single argument and causes the corresponding instance
variable to be set to the value of the argument.

• The: gettable-instance-variables option creates methods for the three
messages :x-center, :y-center, and : radius. Each of these methods takes no
arguments and returns the value of the corresponding instance variable.

• The: ini table-instance-variables option allows you to initialize the values of
the instance variables in the make-instance function call. Thus you can type

(setq a-circle
(make-instance 'circle-flavor :x-center 3 :y-center 6 :radius 10»

to create a circle whose instance variables will have the values specified.

• The instance variables x-center and y-center now have default values. If no
initial value is specified for either of these in the call to make-instance, then
both get the value O. The value of radius is unbound.

The Flavor System 11-13

The : gettable-instance-variables and : ini table-instance-variables options
are redundant in this case because both options .are implied by the : settable
instance-variables option. (See the section "Defining Flavors.") The readability
and understandability of the program may be improved by including all three.

Now you can type the following:

> (setq a-circle
(make-instance 'circle-flavor :y-center 3 :radius 6»

#<Instance CIRCLE-FLAVOR 369ABC>

At last a useful circle is created. Notice that since a new instance of circle
flavor has been created, it has a different hexadecimal number in its printed
representation. You can now type the following:

> (describe a-circle)
An instance of flavor CIRCLE-FLAVOR.
Instance variables:
X-CENTER 0
Y-CENTER 3
RADIUS 6
'<Instance CIRCLE-FLAVOR 369ABC>

> (send a-circle :radius)
6
> (send a-circle :diameter)
10
> (send a-circle :set-x-center (send a-circle :y-center»
3
> (send a-circle :x-center)
3
> (send a-circle :area)
18.63981
> (send a-circle :set-radius 2)
2
> (send a-circle :area)
12.66631

11-14 Sun Common Lisp User's Guide

Mixing Flavors

The power and versatility of the Flavor System is enhanced by its ability to mix
flavors. You can create specialized flavors from already existing flavors.

Simple Mixing

Suppose two flavors called farmland-flavor and plist-mixin already exist on your
system. The flavor farmland-flavor is the one described in the example in the
section "Introduction to Flavors"; plist-mixin provides the functionality of a
property list by supplying methods for these three messages:

(send instance :putprop property value)

(send instance :getprop property I:optional default-value)

(send instance :remprop property)

The following code is one possible implementation of plist-mixin:

(defflavor plist-mixin
«property-list nil»
(»

(defmethod (plist-mixin :putprop) (property value)
(setf (getf property-list property) value»

(defmethod (plist-mixin :getprop) (property I:optional default)
(getf property-list property default»

(defmethod (plist-mixin :remprop) (property)
(remf property-list property»

To create a flavor that understands the messages dealing with farmland and the
messages for a property list, you can write the following:

(defflavor farmland-with-plist-mixin
()

(farmland-flavor plist-mixin»
no new instance variables
component flavors

This code creates a new flavor, which is named farmland-with-plist-mixin,
that understands the messages of both farmland-flavor and plist-mixin. Its
instance variables are the union of the instance variables of farmland-flavor and
plist-mixin.

The Flavor System 11-15

Inheriting Values

A flavor may inherit the instance variables and methods of another flavor. In
the section "Introduction to Flavors," farmland-flavor was defined so that it
automatically included all of the methods and instance variables of rectangle
flavor. This was accomplished by including rectangle-flavor in the list of
component flavors for farmland-flavor.

Inheritance lets you take a general abstract data type and build a more specialized
data type on top of it. A farmer in Massachusetts could create the flavor
cranberry-growing-farmland-flavor, and his Wisconsin counterpart could write
the flavor cattle-grazing-farmland-flavor. Although each flavor ,would have
its own specialized set of messages and methods, each would also have an
understanding of the basic messages for farmland-flavor.

A flavor with components can be thought of as a tree. A flavor may have several
flavors on its list of component flavors. Each of these component flavors may have
its own components.

Simple flavors that provide a few convenient methods are frequently found at
the very bottom of the tree. Flavors, such as plist-mixin, that provide a few
convenient operations but that are never to be instantiated by themselves are often
called mOOns.

Creating the Components List

The order in which component flavors appear in the components list is important
because it may affect the order in which methods are combined. The more specific
flavors should appear at the beginning of the list. The less specific, more basic
flavors should appear at the end.

When a flavor is compiled, the tree of components is converted into a single list of
component flavors. A preorder depth-first search is performed on the tree.

Suppose the following were true:

• flavor1 's c:omponent flavors are flavor2 and flavor3.

• flavor2's component flavors are flavor4 and flavorS.

• flavor3's component flavors are flavorS, flavor6, and flavor7.

• The other flavors have no component flavors.

11-16 Sun Common Lisp User's Guide

The tree of component flavors would look like the following diagram:

inaVOrli

I navor2

l
I navor3

l
flavor4 flavor6 flavor6 flavor7

Figure 11-1. Ttoee of Com.ponent Flavor.

The final list of component flavors would be the following:

flavor1, flavor2,flavor4,flavor6,flavorS,flavor6,flavor7

This is how the Flavor System performs the calculation. The first item on the list
is flavor1. Each of its children is examined. The first child is flavor2. It is added
to the list, and then its children, flavor4 and flavor6, are added. Since flavor2
has no more children, the next child of flavor1, namely flavorS, is added to the
list and examined. The first child of flavor3, which is flavor6, is already on the
list, so it is not added again. Then flavorS's remaining two children, flavor6 and
flavor7, are added.

The instance variables of the resulting flavor are the union of all the instance
variables of the flavors on the components list. If an instance variable var appears
in both flavorS and flavor7, both flavors refer to the same instance variable when
referring to var. The different component flavors can use this sharing of instance
variables to communicate with each other. If an instance variable is initialized by
a default value in more than one component, it receives the value specified in the
component closest to the front of the list.

Introduction to Combined Methods

Until this point in our discussion of methods, primary methods have been
the only type discussed. They are the default. In the section "Introduction to
Flavors," rectangle-flavor had primary methods for :height, :width, :top-Ieft-x,
:top-Ieft-y, and : area. The flavor farmland-flavor had primary methods for
:types-of-crops and: soil-acidity; farmland-flavor did not have a primary
method for : height or : area but inherited rectangle-flAvor's method.

The Flavor System 11-17

When several flavors on the component list provide a primary method for a given
message, all but the first are ignored. Thus you can write a flavor that is identical
to a second flavor except for a single message. The new flavor simply inherits the
first flavor but overrides the primary method of that first flavor by writing a new
method.

More often, if a new flavor is written on top of an old flavor, the new flavor does not
want to override any of the old flavor's messages. There may be certain messages
for which the new flavor expects the old flavor to provide a method. Instead of
overriding these methods, the new Havor may want to add some preprocessing or
postprocessing (or both). This means that the new Havor wants to provide what
is called daemon method types. The two method types :before and :after
provide this flexibility.

To specify such a method type, the first argument to defmethod should be

(flavor method-type message)

where method-type must be either : before or : aft er .

When a message is sent, it is not handled by a single primary method. The Flavor
System calculates a combined method to handle the message. The combined
method for a message consists of all of the :before methods for that message, a
single primary method, and all of the :after methods for that message. The values
returned are the values returned by the primary method. The :before methods
are called in the order in which their flavor appears on the components list. The
primary method is the single method that is the first primary method to appear
on the components list. The :after methods are called in the reverse order.

Although it may seem strange, this ordering is intentional. The components list
in the deffiavor should be from the highest-level flavor to the lowest-level. H
flavor1 is built on top of flavor2, then flavor1 should not care how flavor2 is
defined. The flavor flavor1 thinks of itself as doing some precomputation and
some postcomputation. It does not concern itself with whether flavor2 has several
daemons.

More on Combined Methods

Creating a flavor can cause several other flavors to be mixed in, and these flavors
can themselves cause other flavors to be mixed in. For a given message, several
component flavors may have methods associated with them. Each of these methods
has one of the following types associated with it:

• :primary is the default if no type is given to defmethod.

• : before indicates a daemon method that should be run before the :primary
method.

11-18 Sun Common Lisp User's Guide

• :after indicates a daemon method that should be run after the :primary
method.

A method combination type associated with each message indicates how
the individual methods are to be combined to form a combined method. Each
component flavor is checked to see if it has a :method-combination option. (See
the section "Defining Flavors.") This option gives both a type and a modifier. Any
message not specified in an option has the default type :daemon and the default
modifier :base-flavor-Iast. If more than one flavor specifies the combination type
for a message, these two types must be the same.

The modifier, which is :base-flavor-first or :base-flavor-Iast, indicates the order
in which the methods are to be combined. The base flavor is the last flavor
in the component list. The type modifier :base-flavor-Iast indicates that the
methods should be combined in the order in which they appear on the list. The
type modifier :base-flavor-first indicates that the methods should be combined
in the reverse order.

Here are the possible method combination types:

• :progn, :and, :or, :list, :append, :nconc

All of the primary methods are inserted in the appropriate function in the
order indicated by the type modifier. Methods of type : before and :after are
ignored.

• :daemon

All of the : before methods are called in the order specified by the type
modifier. Then a single primary method is called. H the type modifier is
:base-flavor-Iast (the default), the component list is searched until a flavor
with a :primary method is found. If the type modifier is :base-flavor-first,
the list is searched in the reverse order. Finally, all of the :after methods are
called in the reverse order of that specified by the modifier.

Some Examples of Combination Types

Suppose that the list of component flavors is a-flavor, b-flavor, c-flavor,
d-flavor, and e-flavor; a-flavor and d-flavor have :before methods for the
message :msg; b-flavor and d-flavor have :after methods; and c-flavor and
e-flavor have :primary methods. The methods are combined in the following
ways:

• H the combination type is :list and the modifier is :base-flavor-Iast, the
methods are called in the following order:

The Flavor System 11-19

c-flavor's :primary method. Let the value it returns be vall.

e-flavor's :primary method. Let the value it returns be valt.

The result returned from the combined method is the list (val1 valt). Note
that the :before and :after daemons are ignored.

• If the combination type is :or and the modifier is :base-:8avor-:6rst, the
methods are called in the following order:

e-flavor's :primary method is evaluated. H it returns a non-nil value,
that value is returned immediately, and no other method is evaluated.

c-flavor's :primary method is evaluated. The combined method returns
whatever values this method returns.

• If the combination type is :daemon and the modifier is :base-:8avor-Iast, the
methods are called in the following order:

a-flavor's :before method

d-flavor's :before method

c-flavor's :primary method

d-flavor's :after method

b-flavor's :after method

The values returned from the call to c-flavor's :primary method are returned
as the values of the combined method.

Note that :daemon :base-:8avor-Iast is the default combination type.

• H the combination type is :daemon and the modifier is :base-:8avor-first,
the methods are called in the following order:

d-flavor's :before method

a-flavor's :before method

e-flavor's :primary method

b-flavor's :after method

d-flavor's :after method

Again, the values returned from the combined method are the values returned
from the single primary method.

11-20 Sun Common Lisp User's Guide

Whoppers and Wrappers

Whoppers and wrappers are a specialized means of controlling the actions of a
combined method. A primary aspect of whoppers and wrappers is that they go
around the combined method for a message. That is, they are wrapped around the
execution of the combined method.

The difference between whoppers and wrappers is that whoppers are functions,
whereas wrappers are macros. A flavor can provide both whoppers and wrappers,
in which case the wrapper goes around the whopper. H more than one flavor on
the component list provides a whopper and/or a wrapper, all the wrappers are
wrapped around all the whoppers, and all the whoppers are wrapped around the
combined method.

The syntax of a whopper is identical to that of a defmethod except that there is
no method-type in the second argument.

defwhopper (/lavor message) lambda-list
{declaration I documentation} * {form} *

[Macro]

When message is sent to an instance, the outermost whopper is called. It is
executed as if it were the method for that message. The form arguments are
executed until one of the following three macros, which are legal only within the
form arguments of a defwhopper, is called:

continue-whopper {arg}* [Macro]

continue-whopper-all

lexpr-continue-whopper {arg}* arg-list

[Macro]

[Macro]

Each of these macros causes the execution of the wrapped combined method. H
there is another whopper inside of this one, it is called; otherwise the combined
method is called. The macro continue-whopper-all causes the wrapped code to
be called with the identical arguments that were passed to this execution of the
whopper code.

The macro continue-whopper allows you to modify the arguments or to pass
different ones. The lexpr-continue-whopper macro is similar to continue
whopper except that the last argument must be a list of arguments. The argument
list that is passed to the wrapped code is the last argument to lexpr-continue
whopper appended to the end of the list of all the other arguments. The function
lexpr-continue-whopper is analogous to the Common Lisp function apply. (See
the chapter "Program Structure" of the Sun Common Lisp Reference Manual for
more information on the apply function.)

The Flavor System 11-21

These three macros return as their values whatever values are returned from the
execution of the wrapped combined methods. The defwhopper may return these
values unchanged, or it may examine them and return different values.

In general, a whopper is used to set up a special dynamic environment in which
the combined methods may be executed. For example, a flavor's :before or :after
method might call the function throw. A whopper can be set up to catch the
throw. The following example demonstrates how a whopper might do this:

(defwhopper (a-flavor :a-message) (trest args)
(declare (ignore args»
(catch 'a-throw (continue-whopper-all»)

Alternatively, several different component methods of a combined method might
communicate via a special variable. A defwhopper can be set up to initialize this
special variable to a default value.

A wrapper is like a whopper except that the text of the wrapper is literally wrapped
around the text of the combined method. This code modifies the combined method
so that it is only called if the first argument is non-nil. Otherwise nil is returned
immediately.

The complete syntax of defwrapper is the following:

defwrapper (flavor message)
(lambda-list. body-var)
{declaration I documentation} * {form} *

[Macro]

To calculate the new combined method, the Flavor System first calculates what the
combined method would be without the wrapper. The forms are then evaluated
with body-var bound to a list of length one, whose single element is the unwrapped
combined method. The value that the last form returns becomes the body of the
wrapped combined method. The argument list of the wrapped combined method
is the lambda-list argument.

The format of a wrapper is best shown by an example:

(defwrapper (a-flavor :a-message) «arg1 arg2) . body)
'(unless (null arg1)

. • body»

Notice that in the last line, body has a comma before it, but arg1 does not. The
reason is that the variables arg1 and arg2 are arguments to the combined method
and are bound when the message is sent. However, body is bound when the form
arguments of the defwrapper are being evaluated to create the combined method.

During the execution of the body of a defwhopper or a defwrapper, a special
lexical environment is created in which the variable self is bound to the instance
that received the message that caused the invocation of this whopper or wrapper.

11-22 Sun Common Lisp User's Guide

(See the chapter "Program Structure" of the Sun Common Lisp Reference Manual
for more information on lexical environments.) The variable self is also bound to
the instance during the execution of the body of a defmethod. See the section
"Defining Methods for Messages."

Note: Wrappers have several advantages over whoppers. Wrappers do not
cause an extra function call. Wrappers have greater generality because you can
use the full power of the macro expansion facility. Finally, wrappers can set
up both lexical and dynamic environments, whereas whoppers can only set up
dynamic environments.

Despite these advantages, wrappers have certain drawbacks. For example,
wrappers may waste space. IT a wrapper is used in more than one combined
method, its entire code is duplicated for each. Changing a wrapper requires
recompiling the entire combined method, whereas changing a whopper only
requires recompiling the body of the whopper.

The Flavor System 11-23

Defining Flavors

The demavor macro is used to define a new flavor. Its syntax is

demavor flavor-name ({ var I (var default-form)} *)
({flavor} *) {option} *

These arguments to demavor are required:

• Flavor name

[Macro]

The first argument is the name of the flavor being defined. By convention,
high-level flavor names end with the suffix -flavor. Flavors that are intended
to implement a special optional feature have names that end with the suffix
-mix in.

Note: H flavor-name is already defined as a flavor, the Flavor System assumes
that you are redefining flavor-name and throws away the old definition. All
instances that are built on top of the old definition of flavor-name may cease
to work correctly. Sending them a message may cause undefined behavior. You
must re-instantiate each of them.

• Instance variables

The second argument is a list. Each element of the list has either the form var
or the form (var default-form).

In both cases, var is declared to be an instance variable of the flavor flavor
name. The latter form specifies a default form to be evaluated as the initial
value of var. See the section "Creating Instances" for more information.

• Component flavors

The third argument is flavor-name's component list. Whenever an instance
of flavor-name is created, the instance automatically inherits the instance
variables and methods of each of these flavors. These flavors must already be
defined. See the section "Mixing Flavors" for more information. on component
flavors.

11-24 Sun Common Lisp User's Guide

Options

The remaining arguments to defHavor are options. Each option has the form
(option-name {arg}*). H no arguments are being passed, the simpler form
option-name can be used.

All of the options are effective both when an instance of flafJor-name is being
created directly and when flafJor-name is being instantiated indirectly because it
is a component of another flavor.

Frequently Used Options

Three frequently used options are the following:

• :settable-instance-variables

Each argument must be an instance variable of this flavor. For each fJar
argument, a method for the : set-var message is created that sets the value
of the instance variable argument to the supplied value. For example,
evaluating (send test-circle : set-radius 5) sets the instance variable radius
of test-circle to the value 5.

H this option is given no arguments, then a method for the : set-var message
is created for every instance variable var in the second argument to defHavor.

The option (: settable-instance-variables fJar .•.) automatically implies the
options (:gettable-instance-variables fJar ...) and (:initable-instance
variables fJar •..). Thus, when the Flavor System creates the method
for the: set-var message, it also creates a method for the :var message
and allows :var as a keyword argument when make-instance creates an
instance of this flavor. See the :gettable-instance-variables option and the
:initable-instance-variables option for more information.

H this option is given an argument list, then each argument must appear in
the second argument to defHavor. Otherwise the Flavor System assumes that
there is a misspelling and signals an error.

• :gettable-instance-variables

Each argument must be an instance variable of this flavor. For each fJar
argument, a method for the :var message is created that returns the value of
that instance variable.

H this option is given no arguments, then a method for the : var message is
created for every instance variable fJar in the second argument to defHavor.

H this option is given an argument list, then each argument must appear in
the second argument to defHavor. Otherwise the Flavor System assumes that
there is a misspelling and signals an error.

The Flavor System 11-25

• :initable-instance-variables

Each argument must be an instance variable of this flavor. For each var
argument, a :var keyword option is allowed when calling make-instance.
This option lets you initialize the value of an instance variable when creating
the instance. Instance variables that can be initialized in this manner are said
to be iDitializable.

If this option is given no arguments, then every instance variable in the second
argument to demavor is initializable.

If this option is given an argument list, then each argument must appear in
the second argument to deftlavor. Otherwise the Flavor System assumes that
there is a misspelling and signals an error.

Less Frequently Used Options

Simple flavor applications usually do not need these options:

• :init-keywords

The arguments to this option are the keywords that the flavor's method
for the : ini t message understands. When the make-instance function
is called, an initial property list is created. The Flavor System checks
whether all the keywords on the initial property list either are arguments
in one of the component flavor's :init-keywords options or are keywords
corresponding to instance variables that have been made initializable using the
:initable-instance-variables or :settable-instance-variables option.

See the section "Creating Instances" for more information.

• :default-init-plist

The argument list to this option must have the form

keywordl forml keyword£ form£ ...

When an instance containing flavor-name as a component is created, an initial
property list is formed from the list of keyword-value pairs passed to make
instance. The function make-instance then examines the keywords in the
argument list to :default-init-plist in turn. If any of these keywords is already
on the property list, the keyword's corresponding form is ignored. Otherwise
the keyword's corresponding form is evaluated, and the keyword-value pair is
added to the property list.

With this option, a flavor can give a default value to variables or options
of component flavors. The values are not used if you have provided another
default.

11-26 Sun Common Lisp User's Guide

The :defauIt-init-pIist pairs that initialize instance variables are not put on
the initial property list passed to the: init message.

• :required-instance-variables

Each argument is an instance variable. Any flavor that is eventually
instantiated and that contains flavor-name as a component must have the
specified arguments as instance variables. Instance variables declared as
:required-instance-variables may be used by this flavor's methods even
though they do not occur in the list of instance variables.

The main difference between declaring an instance variable in the instance
variable list and declaring it as a :required-instance-variable is stylistic.
The former declares that a flavor is "responsible" for the variable and ensures
that it is initialized properly. The latter says that flavor-name makes use of
this variable but that some other flavor is responsible for it.

• :required-init-keywords

Each argument is a keyword.

Whenever an instance of flavor-name is being created, each keyword argument
must appear on the initial property list that is created. Each argument must
appear either as a keyword-value pair in the call to make-instance or as a
keyword-form pair in some component flavor's :defauIt-init-pIist. See the
section "Creating Instances" for more information.

• :required-methods

Each of the arguments is the name of a message. H an attempt is made to
instantiate flavor-name, then some component flavor must provide a method
for each of these messages.

This option can be used in a base flavor that is not intended to be a stand-alone
flavor. It might send itself messages, expecting that one of the other component
flavors built on top of it has provided a method for that message. This option
causes the Flavor System to catch errors when the flavor is compiled rather
than when an illegal message is sent at run-time.

• :required-ftavors, :included-flavors

For these options, each argument is a flavor name. When an instance of
flavor-name is instantiated, all flavor arguments must also be components.

These options differ as to what happens when one of the listed flavors does not
appear in the final list of component flavors. The :required-ftavors option
signals an error. The :included-flavors option adds the listed flavors to the
end of the component list of flavors.

The Flavor System 11-27

Specifying a flavor as an argument to these options differs from including the
flavor in the list of component flavors. By specifying a flavor as an argument,
you are stating that it must appear at some point in the component list. You
are not causing the flavor to occur immediately in the component list. This is
useful when you want to ensure that the :before and :after daemons are called
in the correct order. These declarations indicate a flavor's indirect dependence
on another flavor.

• :no-vanilla-flavor

Every component list usually has the flavor vanilla-flavor automatically
added to its end. The vanilla flavor provides default methods for several
useful operations. Any flavor that has flavor-name as a component flavor
does not have vanilla-flavor. See the section "The Vanilla Flavor" for more
information.

• :method-combination

Each argument has the form (type modifier msg1 msge ...).

The type argument is a defined type of method combination; the modifier
argument is either :base-flavor-first or :base-flavor-Iast; and msg1, msge,
and so on are message names. The message names are declared to have the type
type and modifier modifier. Any component flavor may specify the method
combination type of a message. The default is :daemon :base-flavor-Iast.
H more than one component specifies a method-combination type, these types
must be the same.

11-28 Sun Common Lisp User's Guide

Defining Methods for Messages

The Flavor System allows you to dynamically modify methods. H an instance is
created and one of its methods is later modified, the instance uses the most recent
method.

The defmethod macro creates or modifies a flavor's method for a message. The
undefmethod macro deletes a flavor's method. The syntax for these two macros
is as follows:

defmethod (flavor [method-type] message) lambda-list
{declaration I documentation} * {form} *

undefmethod (flavor [method-type] message)

[Macro]

[Macro]

When a defmethod is executed, the flavor argument is given a new method of
type method-type for the message mes8age. H a message of that method type
already exists, it is removed. The argument method-type must be :primary,
:before, or :after. H method-type is omitted, it is assumed to be :primary.

When an undefmethod is executed, the flavor argument's method of type
method-type for the message me88age is deleted. To remove a whopper or
a wrapper, the method-type should be :whopper or :wrapper respectively.
Otherwise method-type must be :primary, :before, or :after. H method-type is
omitted, it is assumed to be :primary. An error is signaled if the flavor flavor
does not have a method of type method-type for the me88age argument.

The lambda-li8t argument has the full generality of a lambda list for a defun. (See
the chapter "Program Structure" of the Sun Common Lisp Reference Manual for
more information on lambda lists.)

During the execution of the form arguments of a defmethod, a special lexical
environment is created. The variable self is bound to the instance that received
the message that caused the invocation of the method. In addition, the instance
variables of self that are declared in the deffiavor of flavor can be accessed and
modified by giving their name. (For more information on lexical environments, see
the chapter "Program Structure" of the Sun Oommon Lisp Reference Manual.)

Both defmethod and undefmethod examine all the existing flavors to find any
that have already been compiled and that have the specified flavor as a component
flavor. The Flavor System then calculates a new combined method for the message
argument for each of these flavors.

The Flavor System 11-29

Subroutines

The Flavor System lets you access and modify the values of instance variables only
from within the form arguments of a defmethod. Modularity demands that free
referencing of the instance variables of a flavor be limited.

This design has one drawback. You may want a subroutine that is called from
one or more methods. However, subroutines are defined using defun rather than
defmethod. Thus the subroutine is not able to access or modify the instance
variables.

There are two ways to handle this situation. IT the subroutine accesses the instance
variables but does not modify them, the instance variables can be passed to it as
arguments. The alternative is to make the subroutine into another defmethod.
Its message name can be : internal-fix-labels, for example. Any other methods
that wish to use the subroutine can send self an :internal-fix-labels message.
The name of the message indicates both what the method does and the fact that
it is not intended for public use.

Forcing a Combined Method to be Recalculated

You can force the Flavor System to recalculate all combined methods that depend
on a particular method by calling the function recompile-flavor.

This function is used primarily when, a method for a message contains a call to a
macro. IT the definition of the macro is modified, the Flavor System is not informed
that the method is now modified and should be recalculated. The function
recompile-flavor explicitly informs the Flavor System of the modification.

Its syntax is as follows:

recompile-flavor flavor I:optional messages do-dependents [Function]

IT the messages argument is nil or omitted, then all combined methods that depend
on one of the flavor argument's methods are recalculated. Otherwise messages is
either a single message name or a list of message names. Only those methods that
depend on one of the flavor argument's methods for messages are recalculated.

IT the do-dependents argument is non-nil or omitted, both the flavor argument
and any already compiled flavors that have flavor as a component flavor have their
combined methods for messages recalculated.

IT do-dependents is nil, then only flavor's combined methods for messages are
recalculated. H flavor is not a compiled flavor, then no combined methods are
modified.

11-30 Sun Common Lisp User's Guide

Flavors that are used only as components of other flavors and that are not
instantiated on their own are not recompiled because they do not have their own
compiled methods.

Resuming Calculation of Combined Methods

Aborting a calculation while the Flavor System is in the middle of calculating
combined methods for a message may leave the Flavor System in an inconsistent
state. The function cleanup-alI-flavors restores the Flavor System to a consistent
state by forcing the recalculation and recompilation of all combined method
calculations that have been interrupted.

Inhibiting Calculation

The macro without-cleaning-flavors temporarily inhibits calculation of
combined methods. It is primarily used when you intend to modify the methods of
a particular message for several different flavors. The combined methods for that
message are not recalculated after each defmethod.

The Flavor System 11-31

Compiling a Flavor

At certain times the Flavor System automatically compiles a flavor. This means
that it calculates the components list for an instance of that flavor and does error
checking. It then creates and compiles all the combined methods for the messages
that an instance of that flavor can receive and sets up a hash table to allow rapid
access to the methods.

The Flavor System is designed so that only flavors that are to be instantiated are
compiled-there is no need to compute the combined methods of a flavor that is
only to be a mixin for other flavors.

Note: The use of the word "compile" here is a slight misnomer. Compilation here
means that a flavor's combined methods, which contain the user-written methods,
are calculated only once. The methods for a flavor are not recalculated every time
an instance is created.

When Compilation Occurs

A complete compilation occurs at the following times:

• When the Flavor System tries to create an instance of a flavor, but the flavor
has not previously been compiled.

• When a call to the macro compile-ftavor-methods explicitly forces
compilation of a flavor.

The Steps in Compiling a Flavor

The compiling of a flavor by the Flavor System consists of the following steps,
which. are not necessarily performed in the order given:

• Calculate the component list of flavors.

• Determine the instance variables.

• Determine the acceptable keyword arguments.

• Determine the list of messages accepted.

• Create and compile the combined methods.

11-32 Sun Common Lisp User's Guide

• Check for errors.

Verify :requlred-instance-variables.

Verify:required-methods.

Verify :required-flavors.

Detailed Information on Flavor Compilation

Here is more detailed information on the steps involved in the compilation of a
flavor.

• Calculate the component list of flavors.

The list of component flavors is created via a preorder depth-first search, as
described in the section "Mixing Flavors.» If any of the flavors has an option
of the form (: included-flavors jlafJorl jlafJorR ...), the specified flavors are
added to the list of component flavors if they are not already there.

If new flavors are added because of an :included-flavors option, each is checked
to see whether more flavors must be added because of their component-flavors
list or an :included-flavors option.

Unless one of the component flavors specifies the :no-vanilla-flavor option,
the flavor vanilla-flavor is added to the end of the list of component flavors.

• Determine the instance variables.

The instance variables of the compiled flavor are the union of the instance
variables of each component flavor. If an instance variable name occurs in more
than one flavor, the two instance variable names refer to the same instance
variable.

• Determine the acceptable keyword arguments.

Each component flavor is checked to see what keywords it allows. A defHavor
can do this in one of three ways:

The :initable-instance-variables option declares that certain instance
variables of a flavor can be initialized with a keyword. The keyword for
initializing an instance variable fJar is :var.

The :settable-instance-variables option declares that certain instance
variables of a flavor can be set. Declaring that a variable can be set also
declares that it can be initialized.

The Flavor System 11-33

The :init-keywords option specifies that each of its arguments is a
keyword that is acceptable to make-instance. The flavor should provide
an :init method to interpret the keyword.

When you use make-instance to create an instance of a flavor, the set of
acceptable keywords is the union of acceptable keywords for each component
flavor.

• Determine the list of messages accepted.

The set of messages that an instance accepts is the union of messages for which
each component flavor has a method.

• Create and compile the combined methods.

The combined methods for each message that an instance of a flavor accepts
are calculated. See the section "Mixing Flavors" for more information on the
way in which the individual methods are combined.

• Check for errors.

If any component flavor has a :required-instance-variables option, all
the variables specified as arguments to this option must be in the set of
instance variables.

If any component flavor has a :required-methods option, each of the
messages given as arguments to this option must be in the list of accepted
messages.

If any of the component flavors has a :required-ftavors option, all the
flavors given as arguments to this option must be on the list of component
flavors.

An error is signaled if any of the conditions described is not satisfied.

11-34 Sun Common Lisp User's Guide

Creating Instances

The make-instance function creates instances of a Havor. Its syntax is as follows:

make-instance flavor {keyword value}* [Function]

The argument flavor is the name of the flavor that is to be instantiated. The
remaining arguments are pairs of keywords and values.

The operation of make-instance consists of several stages:

• Compile the Havor if necessary.

The Havor is compiled (see the section "Compiling a Flavor") if it has not
yet been compiled. The function make-instance needs to know the Havor's
component list of flavors, the acceptable keyword arguments, and the instance
variables.

• Create the property list.

The initial property list consists of the pairs of keyword-value pairs passed to
the make-instance function.

Each component Bavoris checked to see if it has a :derault-init-pIist option.
IT it does, each keyword-form pair of the :derault-init-plist option is checked
to determine if the keyword component of the pair is already on the property
list. IT it is, the keyword-form pair is ignored. Otherwise the form component
is evaluated, returning the value value. The pair keyword-value is added to the
property list.

Each keyword on the final property list must be one of the acceptable keywords.

For the component Havors that have a :required-init-keywords option, each
keyword argument must appear as a keyword on the property list.

• Give each instance variable an initial value.

The following rules govern how an instance variable receives its initial value.
The rule that applies first determines the initial value.

1. For an instance variable var, if :var is a keyword on the property list, the
keyword-value pair is removed from the property list, and the instance
variable receives the value value.

2. IT one of the flavors on the list of components has a default-value form
for the instance variable, that form is evaluated, and the instance variable
receives the result as its initial value. IT the variable is given a default-value
form by more than one component flavor, then the default-value form
of the component flavor that is closest to the front of the list is the one

The Flavor System 11-35

evaluated. (See the section "Defining Flavors" for more information on
giving an instance variable a default value.)

3. All other instance variables are set to the default value flavors
system: :unbound.

• Create the instance.

• Send the instance an : ini t message.

The message is sent only if the instance has a method for ha.ndling it. The
instance thus initializes itself in a manner specified by the writer of the flavor.
The : ini t method is passed the property list that has been created as a single
argument. This property list has the form (keywordl valuel keyword! value!
...).

11-36 Sun Common Lisp User's Guide

The Vanilla Flavor

There are certain standard messages for which every flavor should provide methods.
They include the following:

• :print-self

• : describe

• :Which-operations

• :operation-handled-p

• :send-if-handles

The flavor vanilla-flavor is a system-provided flavor that supplies useful default
methods for these standard messages. Unless a flavor or one of a flavor's component
flavors contains the option :no-vanilla-flavor, vanilla-flavor is automatically
added at the end of the list of component flavors that is created when a flavor is
compiled.

The methods provided by the vanilla flavor are simply useful defaults. You may
write more specific methods for these messages, especially for :print-self and
:describe.

Printing an Instance

The :print-self message is sent to an instance whenever an attempt is made
to display the instance. You send an instance a :print-self message using the
following form:

send instance :print-self stream prindepth

The stream argument is the output stream to which the displayed representation
should be sent. The prindepth argument is the current depth of the list structure
of the object being displayed. The vanilla flavor method for :print-self ignores the
last argument and displays something like the following:

#<Instance flavor-name hexadecimal-address>

The flavor name tells you what kind of object the instance is. The hexadecimal
address helps distinguish this object from other objects of the same flavor unless,
of course, the Garbage Collector has moved the instance.

H you write your own :print-self method, the output by convention should
start with #< and end with > so that the Lisp reader will complain if the
form is accidentally read back in. You may wish to compare the value of the
prindepth argument with the value of .print-Ievel. and to examine the values

The Flavor System 11 ~37

of .print-pretty. and .print-escape •. (See the chapter "Input/Output" of
the Sun Common Lisp Reference Manual for more information on .print-Ievel.,
.print-pretty., and .print-escape •.)

In the following example, the instance created by the make-instance function
receives a :print-self message because of Lisp's read-eval-print loop.

> (defmethod (circle-flavor :print-self) (stream prindepth)
(declare (ignore prindepth»
(format stream "#<circie of radius -A. center (=A. =Aj>ii

(send self :radius)
(send self :x-center)
(send self :y-center»)

: PRINT-SELF
> (make-instance 'circle-flavor :radius 6 :x-center 3 :y-center 7)
#<circle of radius 6. center (3.7»

Describing an Instance

The describe function sends an instance a :describe message without arguments
to make the instance describe itself. The :describe method should describe the
instance, displaying whatever information is appropriate. The method should write
its output to the stream .standard-output •.

The :describe method is called by describe as follows:

send instance :describe

The vanilla flavor method displays the flavor of the instance and the value of each
of its instance variables. It returns the value of the instance argument.

Determining Messages Handled by an Instance

The messages :which-operations, :operation-handled-p, and :send-if-handles
allow you to find out whether an instance knows how to handle a given message.

You send these messages to an instance using the following forms:

send instance :which-operations

send instance :operation-handled-p msg

send instance :send-if-handles msg ~rest args

11-38 Sun Common Lisp User's Guide

The vanilla flavor methods for these three messages do the following:

• :which-operations returns a list of the messages that instance has methods
for.

• :operation-handled-p returns t if instance has a method for the msg message,
and nil otherwise.

• :send-if-handles checks to see if instance has a method for the msg message.
If it does, it calls that method with the arguments it has been passed and
returns whatever values that method returns. Otherwise it returns nil.

Warning: You should not write your own methods for these messages.

The vanilla flavor method for :operation-handled-p is equivalent to the following:

(defmethod (vanilla-flavor :operation-handled-p) (message)
(not (null (member message (send self :which-operations»»)

The vanilla Havor method for :send-if-handles is equivalent to the following:

(defmethod (vanilla-flavor :send-if-handles) (message trest args)
(when (send self :operation-handled-p message)

(apply #'send self message args»)

Unclaimed Messages

If an instance is sent a message for which it has no method, and it has an
. :unclaimed-message method, the message and its arguments are passed to the
:unclaimed-message method.

The vanilla flavor does not provide a default method for the message :unclaimed
message.

You should provide an :unclaimed-message method if you want special handling
of unknown messages.

The following is an example:

> (defmethod (circle-flavor : unclaimed-message) (msg trest args)
(declare (ignore args»
(format *error-output* "I'm ignoring a message of type -A-%" msg)
nil)

: UNCLAIMED-MESSAGE
> (send (make-instance 'circle-flavor) :youve-never-heard-of-this)
I'm ignoring a message of type :YOUVE-NEVER-HEARD-OF-THIS
NIL

The Flavor System 11-39

* all-flavor-names *

Purpose: The variable tall-flavor-names. provides a list of all defined flavors.

Syntax: .all-flavor-nanaes.

Remarks: This variable is an extension to Common Lisp.

Examples: > (defflavor new-flavor (x y z) 0)
NEW-FLAVOR
> (not (null (member 'new-flavor *all-flavor-names*»)
T

11-40 Sun Common Lisp User's Guide

[Variable]

cleanup-all-flavors

Purpose:

Syntax:

Remarks:

The function cleanup-all-ftavors causes all aborted computations to be performed
again. Aborting the calculation and the compilation of a combined method can
cause the Flavor System to be left in an inconsistent state. This function
recalculates and recompiles the combined methods.

cleanup-all-ftavors [Function]

This function is an extension to Common Lisp.

The Flavor System 11-41

compile-flavor-methods

Purpose:

Syntax:

Remarks:

The macro compile-flavor-methods explicitly forces the compilation of a flavor,
even if no instances of the flavor exist.

compile-flavor-methods {flavor} * [Macro]

The macro compile-flavor-methods when seen by the Compiler causes the
compilation of each of the flavor arguments if necessary. The compiled methods
and internal data structures are written out to the binary file. When the binary
file is loaded, each of the flavor arguments is an already compiled flavor.

Normally, a flavor is compiled the first time an instance of it is created. By
explicitly calling compile-flavor-methods on a flavor, there is no delay at
run-time when an instance is created the first time (unless a method or wrapper
has been added).

The compile-flavor-methods must appear after the methods, wrappers,
whoppers, and component flavors of all the flavors being compiled have been
defined.

This macro when seen by the interpreter causes the compilation of the flavor
arguments if they have not already been compiled.

This macro is an extension to Common Lisp.

Examples: > (defflavor flavorl 0 0)
FLAVOR I

flavorl is a trivial flavor.

> (defflavor flavor2 () ())
FLAVOR2

flavor2 is also a trivial flavor.

> (make-instance 'flavor1) Instantiate flavor1.
;;; Compiling function ... assembling ... (assembling ...)emitting ... done.
#<Instance FLAVOR1 444B33>
> (compile-flavor-methods flavor2) ; Force flavor2 to be compiled.
;;; Compiling function ... assembling ... (assembling ...)emitting ... done.
NIL
> (make-instance 'flavor2)
#<Instance FLAVOR2 467343>

11-42 Sun Common Lisp User's Guide

; There is no recompilation.

continue-whopper, lexpr-continue-w hopper,
continue-w hopper-all

Purpose:

Syntax:

Remarks:

Examples:

The macros continue-whopper, lexpr-continue-whopper, and continue
whopper-all cause the execution of the next innermost whopper or combined
method. They can only appear within the form arguments of a whopper.

continue-whopper {arg}*

lexpr-continue-whopp er {arg} * arg-list

continue-whopper-all

[Macro]

[Macro]

[Macro]

The macro continue-whopper explicitly lists the arguments that are to be passed
to the next innermost function.

The macro lexpr-continue-whopper treats its last argument as a list. The last
argument passed to lexpr-continue-whopper appended to the list of all the
other arguments is the argument list for the next innermost function.

The macro continue-whopper-all passes the identical arguments that were
passed to the whopper to the next innermost function.

These macros are extensions to Common Lisp.

" This is an example of a whopper that returns nil if the first argument
" is 0; otherwise it lets the combined method execute normally.

> (defflavor my-flavor () (»
MY-FLAVOR

my-flavor is a trivial flavor.

> (defmethod (my-flavor :my-message) (x) x)
: MY-MESSAGE
> (defwhopper (my-flavor : my-message) (argl trest args)

(declare (ignore args»
(if (eql argl 0)

nil
(continue-whopper-all»)

: MY-MESSAGE
> (setq x (make-instance 'my-flavor»
;;; Compiling function ... assembling ... (assembling ...)emitting ... done.
;;; Compiling function ... assembling ... (assembling ...)emitting ... done.
#<Instance MY-FLAVOR 4B725B>
> (send x :my-message 0)
NIL
> (send x :my-message 3)
3

The Flavor System 11-43

continue-w hopp er, lexpr-continue-w hopper, continue-w hopper-all

See Also:

I I You can replace the preceding whopper with .a new whopper that takes
II a list of all its arguments and passes that list as a single argument
II to the wrapped combined method.

> (defwhopper (my-flavor : my-message) (trest args)
(continue-whopper args»

::: Warning: Redefining MY-FLAVOR-MY-FLAVOR-MY-MESSAGE-WHOPPER-WHOPPER
PRIMARY
::: Warning: Redefining MY-FLAVOR-MY-MESSAGE-WHOPPER
: MY-MESSAGE
> (send x :my-message 3 4 5)
(3 4 5)
> (send x :my-message)
NIL

defwhopper

11-44 Sun Common Lisp User's Guide

defHavor

Purpose:

Syntax:

Remarks:

The macro defHavor creates a new Havor or redefines an already existing Havor.

defHavor flavor-name ({ var I (var default-form)}*)
({flavor} *) {option} *

[Macro]

The flavor-name argument is the name of the Havor being created or redefined.

The second argument is a list of variable names that are the instance variables of
this Havor.

The third argument is a list of Havors that are the component Havors of this Havor.
H a default form is specified, it is evaluated as the initial value of the form var.

The following arguments are options. Each argument is either the name of an
option or a list whose car is the option and whose cdr is a list of arguments.

• :default-init-plist adds additional keyword-value pairs to the initial list of
keyword-value pairs given to make-instance.

• :gettable-instance-variables creates methods to access the value of the
instance variables that are arguments to this option. H no argument is given,
methods are created to access the value of all the instance variables.

• :included-:8avors. Any instance containing flavor-name as a component
Havor must also contain each of the arguments to this option as a component
Havor. H it does not contain a particular argument to :included-ftavors, that
argument is added to the end of the components list.

• :init-keywords declares that the keywords that are its arguments are allowed
in the call to make-instance.

• :initable-instance-variables declares that the instance variables passed as
arguments can have their values initialized in the call to make-instance. H no
argument is given, then all instance variables can have their values initialized.

• :method-combination. Each argument to the option is a list of the form

(type modifier {msg}*)

The method combination type for each message msg is type type with modifier
modifier.

• :no-vanilla-flavor declares that vanilla-flavor will not be added to any
instance containing flavor-name as a component Havor.

The Flavor System 11-45

defilavor

Examples:

• :required-flavors. Any instance containing flavor-name as a component
flavor must also contain each of the arguments to this option as a component
flavor.

• :required-init-keywords. When an instance containing flavor-name as a
component is being created, the initial list of keyword-value pairs must have
each of the keyword arguments to this option as a keyword.

• :required-instance-variables. Any instance that contains flavor-name as a
component must also have the arguments to this option as instance variables.

• :settable-instance-variables creates methods to modify the values of the
instance variables that are arguments to this option. If no argument is given,
methods are created to modify all the instance variables.

This macro is an extension to Common Lisp.

:: plist-mixin is the flavor described in the section "Mixing Flavors."

> (defflavor circle-with-plist-flavor
«x-center 0)
(y-center 0)
radius)

(plist-mixin)
:settable-instance-variables
(:required-methods :getprop :putprop»

CIRCLE-WITH-PLIST-FLAVOR
> (setq x (make-instance 'circle-with-plist-flavor»
:;; Compiling function ... assembling .•. (assem<bling ...)emitting ... done.
#<Instance CIRCLE-WITH-PLIST-FLAVOR 4EC6B3>
> (send x :x-center)
o

11-46 Sun Common Lisp User's Guide

defmethod, undefmethod

Purpose:

Syntax:

Remarks:

The macro defmethod creates or modifies the method that an instance of a flavor
uses to handle a message. The macro undefmethod deletes a flavor's method for
a message of type method-type.

defmethod (flavor [method-type] message) lambda-list
{declaration I documentation} * {form} *

undefmethod (flavor [method-type] message)

[Macro]

[Macro]

For both macros, if the method-type argument is omitted, it is assumed to be
:primary.

For defmethod, the method-type argument must be :primary, :before, or :after.

For undefmethod, method-type must be :primary, :before, :after, :whopper,
or :wrapper. To delete a whopper, use undefmethod with method-type
:whopper. To delete a wrapper, use defmethod with method-type :wrapper.

Both defmethod and undefmethod cause the Flavor System to recalculate and
to recompile the combined method for message of all compiled flavors that contain
flavor as a component.

These macros are extensions to Common Lisp.

Examples: > (defmethod (circle-flavor :print-self) (stream prindepth)
;; circle-flavor is the flavor defined in the section
;; "Introduction to Flavors."

See Also:

(declare (ignore prindepth»
(format stream "'<circle of radius -A>" radius»

: PRINT-SELF
> (setq x (make-instance 'circle-flavor :radius 3»
'<circl~ of radius 3>
> (undefmethod (circle-flavor :print-self»
: PRINT-SELF
> x
'<Instance CIRCLE-FLAVOR 66022B>

recompile-flavor

without-cleaning-flavors

The Flavor System 11-47

defwhopper

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The macro defwhopper creates a whopper to go around the combined method
for the message message of any flavor that contains the flavor argument as a
component Havor.

defwhopper (,flatJor message) lambda-list
{declaration I documentation} * {form} *

[Macro]

When a message is sent to an instance that contains the flavor argument as a
component flavor, the arguments of the message are bound to the variables of the
lambda-list argument, and the form arguments are evaluated. Whatever value is
returned by the last form is the value of the combined method.

Within the form arguments, three special macros are recognized: continue
whopper, lexpr-continue-whopper, and continue-whopper-all. These
macros cause the execution of either the next innermost whopper or the original
combined method.

This macro is an extension to Common Lisp.

II The following examples show the use of a whopper to reverse the order of
II the first two arguments.

> (defflavor new-flavor () ())
NEW-FLAYOR
> (setq x (make-instance 'new-flavor»

new-flavor is a trivial flavor.

iii Compiling function ... tail merging ..• assembling ... emitting ... done.
#<Instance NEW-FLAYOR 58B15B>
> (defmethod (new-flavor :msg) (trest args) args)
:MSG
> (send x :msg 1 2 3 4)
(1 2 3 4)
> (defwhopper (new-flavor :msg) (arg1 arg2 trest args)

(lexpr-continue-whopper arg2 arg1 args»
;;; Compiling function ... assembling ... (assembling ...)emitting ... done.
:MSG
> (send x :msg 1 2 3 4)
(2 1 3 4)

continue-whopper

continue-whopper-all

lexpr-continue-whopper

undefmethod

11-48 Sun Common Lisp User's Guide

defwrapper

Purpose:

Syntax:

Remarks:

The macro defwrapper creates a wrapper to go around the combined method
for the message message of any flavor that contains the flavor argument as a
component flavor.

defwrapper (flavor message)
(lambda-list. body-var)
{declaration I documentation} * {form} *

[Macro]

To calculate the new combined method, the Flavor System first calculates what the
combined method would be without the wrapper. The forms are then evaluated
with the body-var argument bound to a list of length one whose single element is
the unwrapped combined method. The value returned by the last form becomes
the body of the wrapped combined method. The argument list of the wrapped
combined method is the lambda-list argument.

Whoppers may be easier to use than wrappers.

This macro is an extension to Common Lisp.

Examples: > (defflavor new-flavor () ())
NEW-FLAVOR

new-flavor is a trivial flavor.

See Also:

> (defmethod (new-1lavor :message) (x) x)
: MESSAGE
> (setq x (make-instance 'new-flavor»
#<Instance NEW-FLAVOR 5B9893>
> (send x :message 4)
4
> (send x :message :key)
: KEY
> (defwrapper (new-flavor :message)«arg) . body)

'(when (numberp arg)
(- (progn ,I body»»

'" Compiling function ... assembling ... (assembling ...)emitting ... done.
: MESSAGE
> (send x :message 4)
-4
> (send x :message :key)
NIL

undefmethod

The Flavor System 11-49

flavor-allowed-init-keywords,
flavor-allows-init-keyword-p

Purpose:

Syntax:

Remarks:

The function :8avor-allowed-init-keywords returns a list, which is sorted
alphabetically, of all the keywords that are valid keyword options when creating
an instance of a flavor. The specified flavor and all flavors that are components of
tha.t fla.vor are rhecked.

The function flavor-allows-init-keyword-p returns nil if the function make
instance does not allow keyword as a keyword option when creating an instance
of flavor. Otherwise it returns flavor.

:8avor-allowed-init-keywords flavor

flavor-allows-init-keyword-p flavor keyword

These functions are extensions to Common Lisp.

[Function]

[Function]

Examples: > (defflavor another-flavor
(varl var2)
(circle-flavor)
:settable-instance-variables
:gettable-instance-variables
:initable-instance-variables
(:init-keywords :keyl :key2»

ANOTHER-FLAVOR

circle-flavor is the flavor described
in the section "Introduction
to Flavors."

> (flavor-allowed-init-keywords 'circle-flavor)
;;; Compiling function ... tail mersing ... assembling ... emitting ... done.
(:RADIUS :X-CENTER :Y-CENTER)
> (flavor-allowed-init-keywords 'another-flavor)
;;; Compiling function ... tail mersing ... assembling ... emitting ... done.
(:KEYl :KEY2 :RADIUS :VARl :VAR2 :X-CENTER :Y-CENTER)
> (flavor-allows-init-keyword-p 'another-flavor :keyl)
ANOTHER-FLAVOR
> (flavor-allows-init-keyword-p 'another-flavor :no-such-key)
NIL

11-50 Sun Common Lisp User's 9uide

instancep

Purpose: The predicate instancep tests whether its argument object is an instance of a
flavor.

Syntax: instancep object [Function]

Remarks: This function is an extension to Common Lisp.

Examples: ;; circle-flavor is defined in the section "Introduction to Flavors."

> (instancep (make-instance 'circle-flavor»
T
> (instancep 7)
NIL

The Flavor System 11-51

make-instance

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function make-instance creates an instance of a flavor. The Flavor System
compiles the flavor if it has not already been compiled.

make-instance fla'Vor {keyword 'Value} * [Function]

The acceptable values for the keyword argument depend on the flavor. The
function :8avor-allowed-init-keywords returns a list of the acceptable values for
keyword.

This function is an extension to Common Lisp.

;; circle-flavor is defined in the section "Introduction to Flavors."

> (describe (make-instance 'circle-flavor
:x-center 3 :y-center 7 :radius 10»

An instance of flavor CIRCLE-FLAVOR.
Instance variables:
X-CENTER 3
Y-CENTER 7
RADIUS 10

#<Instance CIRCLE-FLAVOR 96F363>

:8avor-allowed-init-keywords

11-52 Sun Common Lisp User's Guide

recompile-flavor

Purpose:

Syntax:

Remarks:

The function recompile-:Oavor recalculates any existing combined method that
contains a flavor's methods for certain messages.

recompile-:Oavor flavor .optional messages do-dependents [Function]

H the messages argument is nil or omitted, then all combined methods that depend
on one of the flavor's methods are recalculated. Otherwise messages is either a
single message name or a list of message names. Only those methods that depend
on one of the flavor's methods for messages are recalculated.

H the do-dependents argument is non-nil or omitted, the specified flavor and any
already compiled flavors that have the specified flavor as a component flavor have
their combined methods for messages recalculated.

H do-dependents is nil, then only the specified flavor's combined methods for
messages are recalculated. H the flavor is not a compiled flavor, no combined
methods are modified.

This function is an extension to Common Lisp.

The Flavor System 11-53

self

Purpose:

Syntax:

Remarks:

The variable self is used by methods to send themselves messages. It is bound to
the instance receiving the message that caused the execution of the defmethod,
the defwrapper, or the defwhopper.

self [Variable]

The variable self is used when a flavor is built on top of component flavors and
when an instance wishes to make use of one of the component flavor's methods.

The variable self is not a special variable.

This variable is an extension to Common Lisp.

Examples: > (defflavor rectangle-flavor
(width height)
o
:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

RECTANGLE-FLAVOR
> (defflavor rectangle-with-perimeter-flavor

o
(rectangle-flavor)
(:required-methods :height :width)

•• The :required-methods option is used here to ensure that
•• rectangle-flavor has methods for the two messages :height
•• and : width.

)

RECTANGLE-WITH-PERIMETER-FLAVOR
> (defmethod (rectangle-with-perimeter-flavor :perimeter) ()

(* 2 (+ (send self :height)
(send self :width»»

: PERIMETER
> (setq x (make-instance 'rectangle-with-perimeter-flavor

:width 7 :height 5»
#<Instance RECTANGLE-WITH-PERlMETER-FLAVOR 69683B>
> (send x :perimeter)
24

11-54 Sun Common Lisp User's Guide

send

Purpose:

Syntax:

The function send sends a message to an instance. Lisp determines what the
specified instance's flavor is and finds its combined method for the message
argument. It then calls that method, passing arguments to the method.

send instance message trest args [Function]

Remarks: This function is an extension to Common Lisp.

Examples: ;; circle-flavor is defined in the section "Introduction to Flavors."

> (setq a-circle (make-instance 'circle-flavor»
#<Instance CIRCLE-FLAVOR 67681B>
> (send a-circle :set-radius 3)
3
> (send a-circle :diameter)
6

The Flavor System 11-55

symeval-in-instance, set-in-instance

Purpose:

Syntax:

Remarks:

Examples:

The functions symeval-in-instance and set-in-instance allow you to find or to
set the value of a particular instance variable within a particular instance.

The function symeval-in-instance finds the value of the instance variable symbol
in the specified instance.

The function set-in-instance sets the value of the instance variable symbol of
instance to the specified value argument.

symeval-in-instance instance symbol [Function]
ioptional no-error-p unbound

set-in-instance instance symbol value [Function]

H there is no instance variable whose name is symbol, the value of no-error-p is
examined. H it is nil, an error is signaled. H it is non-nil, nil is returned.

H the instance variable symbol is unbound in the instance, then the unbound
argument (whose default value is nil) is returned.

These functions are intended for debugging and may be inefficient. Therefore
production code should never use these functions.

These functions are extensions to Common Lisp.

;; circle-flavor is described in the section "Introduction to Flavors."

> (setq a-circle (make-instance 'circle-flavor :x-center 3»
#<Instance CIRCLE-FLAVOR 56C74B>
> (symeval-in-instance a-circle 'x-center)
3
> (symeval-in-instance a-circle 'radius nil 'unknown-radius)
UNKNOWN-RADIUS
> (set-in-instance a-circle 'y-center

(symeval-in-instance a-circle 'x-center»
3
> (symeval-in-instance a-circle 'width t)
NIL

11-56 Sun Common Lisp User's Guide

without-cleaning-flavors

Purpose:

Syntax:

Remarks:

The macro without-cleaning-flavors is designed to make the modification of
several different methods more efficient. It can prevent the same combined method
from being repeatedly calculated.

without-cleaning-:8avors {form} * [Macro]

Each form argument is evaluated. No recalculation of combined methods is done
until all of the forms have been evaluated.

This macro is an extension to Common Lisp.

The Flavor System 11-57

Chapter 12. The Window Tool Kit

The Window Tool Kit 12-1

Chapter 12. The Window Tool Kit

Introduction to the Window Tool Kit. 12-5
Initializing the Window Tool Kit ... 12-5
Restoring Windows in a Saved Image .. 12-6
Basic Structures .. 12-7
Bitmaps . 12-8
Fonts ... 12-9
Viewports .. 12-10
Bitmap Output Streams . 12-12
Using the Mouse . 12-13
Windows .. ' 12-19
Keyboard Input and Interrupt Characters 12-21
Pop-Up Menus ... 12-22

Sample Code .. 12-23
activate-viewport, deactivate-viewport .. 12-31
active-region-bitmap .. 12-32
active-region-method . 12-33
active-region-p ... 12-35
attach-active-region, detach-active-region, bitmap-active-regions,

clear-bitmap-active-regions ... 12-36
bitblt, bit bIt-position , bitblt-region .. 12-37
bitmap-extent, bitmap-height, bitmap-width . 12-39
bitmap-output-stream-p . 12-40
bitmap-p : 12-41
bitmap-value . 12-42
charblt, stringblt . 12-43
clear-bitmap .. 12-44
copy-bitmap. 12-45
copy-font . 12-46
current-mouse-cursor .. 12-47
* default-font * ... 12-48
default-font-baseline, default-font-code-limit, default-font-height 12-49
delete-font .. 12-50
draw-circle, draw-line, draw-polyline, draw-polypoint . 12-51
expose-viewport, hide-viewport .. 12-52
extent-height, extent-width . 12-53
extentp. 12-54
find-font .. 12-55
font-baseline, font-height, font-fixed-width . 12-56
font-bitmap, font-code-limit, font-name ... 12-57
font-set-char, font-clear-char . 12-58
fontp .. 12-59
initialize-windows .. 12-60

12-2 Sun Common Lisp User's Guide

keyboard-input .. 12-62
leave-window-system . 12-63
listen-any ... 12-64
load-bitmap, store-bitmap. 12-65
load-font, store-font ... 12-66
make-active-region. 12-67
make-bitmap . 12-69
make-bitmap-output-stream .. 12-70
make-extent ... 12-72
make-font ... 12-73
make-mouse-cursor, maximum-cursor-height, maximum-cursor-width 12-75
make-mouse-input-stream .. 12-76
make-pop-up-menu ... 12-77
make-position ... 12-78
make-region ... 12-79
make-viewport ... 12-81
make-window .. 12-83
menu-mouse-buttons . .. 12-87
mouse-buttons, mouse-x, mouse-y ... 12-88
mouse-buttons, *mouse-x*, *mouse-y* .. 12-89
mouse-cursor-bitmap, mouse-cursor-x-offset, mouse-cursor-y-offset,

mouse-cursor-operation .. 12-90
mouse-cursor-p .. 12-91
mouse-event-p . 12-92
mouse-event-x, mouse-event-y, mouse-event-event-type, mouse-event-buttons 12-93
mouse-input. 12-94
mouse-input-stream-interrupt-char . 12-95
mouse-input-stream-p . 12-96
mouse-input-stream-queue-mouse-events-p 12-97
mouse-input-stream-viewport ... 12-98
move-mouse ... 12-99
move-viewport . 12-100
peek-any .. 12-101
pop-up-menu-choose . 12-103
pop-up-menu-p ... 12-104
position-x, position-y . 12-105
positionp .. 12-106
read-any, read-any-no-hang ; 12-107
region-contains-point-p, region-contains-position-p 12-108
region-corner, region-corner-x, region-corner-y, region-height, region-width,

region-origin, region-origin-x, region-origin-y, region-size 12-109
region-intersection, region-union .. 12-111
region<, region<=, region=, region/=, region>, region>= 12-112
regionp .. 12-114
rename-font . 12-115

The Window Tool Kit 12-3

reshape-viewport .. 12-116
root-viewport ... 12-117
stream-current-font .. 12-118
stream-draw-circle, stream-draw-line, stream-draw-polyline 12-119
stream-linefeed-distance .. 12-120
stream-operation . 12-121
stream-position, stream-x-position, stream-y-position 12-122
string-width . 12-123
unread-any ... 12-124
viewport-at-point, viewport-at-position . 12-125
viewport-bitmap . 12-126
viewport-bitmap-offset, viewport-bitmap-x-offset, viewport-bitmap-y-offset 12-127
viewport-bitmap-region, viewport-screen-region. 12-128
viewport-children, viewport-parent. 12-129
viewportp ... 12-130
window-frame .. 12-131
window-inner-border-width, window-outer-border-width 12-132
window-title, window-title-font . 12-133
window-vertical-scroll-ratio, window-horizontal-scroll-ratio . 12-134
windowp .. 12-135
windows-available-p. 12-136
with-asynchronous-method-invocation-allowed . 12-137
with-fast-drawing-environment . 12-138
with-mouse-methods-preempted . 12-139

12-4 Sun Common Lisp User's Guide

Introduction to the Window Tool Kit

The Window Tool Kit allows you to create and access windows, viewports, and
bitmaps, and to access the mouse. It supports both character output and graphic
output, and it displays characters in a variety of fonts.

Initializing the Window Tool Kit

To use the Window Tool Kit, you must first invoke Lisp from within the suntools
environment.

You must then initialize the Window Tool Kit. The method you choose depends on
whether you want to use the Editor in the window environment. The two methods
are as follows:

• Using the Editor in the Window Tool Kit

You normally call the function ed to initialize the Window Tool Kit and to
invoke the Editor. Type ed without any arguments to the top-level prompt:

> (ed)

The default display that ed returns consists of a Lisp Buffer window that
occludes a scratch buffer window. The top level of Lisp is accessible through
the Lisp Buffer.

The syntax for ed is as follows:

ed loptional % ikey :windows lallow-other-keys [Function]

The optional argument % is either a pathname that represents a file or a symbol
that represents a function definition to be edited. When you are running Lisp
from within the suntools environment, the value of the :windows keyword
argument is t by default. You may also specify any of the keyword options that
are valid for the function initialize-windows.

• Using the Window Tool Kit without the Editor

If you want to use the Window Tool Kit without the Editor, call initialize
windows without any arguments:

> (initialize-windows)

The function initialize-windows creates a Sun View system window that
contains the root viewport. The top level of Lisp is still accessible from the
suntools Shell window from which you invoked the function.

The Window Tool Kit 12-5

The syntax for initialize-windows is as follows:

initialize-windows ikey : height : width
:8creen-x :8creen-y
:label :icon-image
:icon-x :icon-y
:icon-label :icon-font

[Function]

See the function page at the end of this chapter for a detailed description of
the keyword arguments.

Restoring Windows in a Saved Image

H the Window Tool Kit has been initialized and the function disksave is invoked,
the window environment is temporarily suspended. Once the disks ave function
has saved the Lisp image on disk, the windows on the running Lisp image are
restored automatically to the state they were in before the disks ave function call.

To restore the state of the windows in the newly saved image, you may call either
ed or initialize-windows with no arguments. The result of the call depends
on whether you were using the Editor in the Window Tool Kit before invoking
disksave.

• Using the Window Tool Kit without the Editor

H you used initialize-windows to initialize the Window Tool Kit without
invoking the Editor in the saved image, you may use either of the following
functions to restore the window environment:

initialize-windows

H you use this function to restore the windows in the saved image, the
windows are restored to the state they were in before the disksave
function call.

ed

If you use this function to restore the windows in the saved image, the
windows are restored and the Editor is invoked. However, the Editor
buffer windows may cover some or all of the previously initialized
windows.

12-6 Sun Common Lisp User's Guide

• Using the Editor in the Window Tool Kit

H you initialized the Window Tool Kit with ed before calling disksave, the
following command restores the window environment in the saved image:

ed

Calling this function puts you back into the Editor and restores all
previous Editor buffers.

Note: Do not use initialize-windows to restore windows if you initialized the
Window Tool Kit with ed before you called disksave.

Basic Structures

The Window Tool Kit has three basic data structures: positions, extents, and
regions.

• Positions

A position is a data structure with two fixnum components, x and y. A
position is specified in Cartesian coordinates in which the x component is the
distance to the right of the origin, and the y component is the distance below
the origin.

The following operations are defined for positions:

make-position
position-x

• Extents

position-y
positionp

An extent is a data structure that describes the size of a rectangular area. An
extent has two nonnegative fixnum components called width and height.

The following operations are defined for extents:

extent-height
extent-width

extentp
make-extent

The Window Tool Kit 12-7

Bitmaps

• Regions

A region describes a rectangular area.

The origin of a region is its top-left point. The corner of a region is the point
just below and to the right of its bottom-right point.

The Window Tool Kit includes functions for accessing the attributes of a
region, for finding the corners of a region, for testing containment and equality
for regions, and for testing whether a position is inside a region.

The following operations are defined for regions:

make-region
region-contains-point-p
region-contains-position-p
region-corner
region-corner-x
region-corner-y
region-height
region-intersection
region-origin
region-origin-x
region-origin-y

region-size
region-union
region-width
region/=
region <
region < =
region =
region>
region> =
regionp

In the Window Tool Kit, all graphic operations are performed either directly or
indirectly.on bitmaps. A bitmap is a rectangular array of bits.

Most bitmaps are created with the function make-bitmap. The Window Tool Kit
also provides functions for accessing bitmap data structures, for setting the width
or height of a bitmap, for copying bitmaps, for storing bitmap images in files, and
for loading bitmap images from files.

12-8 Sun Common Lisp User's Guide

Fonts

The following operations are defined for bitmaps:

bitblt
bit bIt-position
bit bIt-region
bitmap-extent
bitmap-height
bitmap-p
bitmap-value
bitmap-width
charblt
clear-bitmap

copy-bitmap
draw-circle
draw-llne
draw-polyline
draw-polypoint
load-bitmap
make-bitmap
store-bitmap
stringblt
with-fast-drawing-environment

A font is a set of character images and an associated font name. Each image
specifies what the corresponding character looks like when displayed.

Each font has an underlying bitmap that holds the font's character images. Each
character's image is a region of the bitmap.

Each character's image in a font has a width. The width is the width of its image's
region in the bitmap. Some fonts are fixed width, which means that every character
has the same width. Other fonts are variable width, which means, for example,
that a "W" may be wider than an "i."

Some characters have an ascender, which is the part of the character above the
baseline. Some characters, such as "j" and "q," also have a descender, which is the
part of the character below the baseline. The height of a character is the combined
height of its ascender and descender. The baseline height of a character is the
height of just its ascender.

Every character in a Window Tool Kit font must have the same height and baseline
height. Short character images must be padded on the top. Characters with short
descenders or no descenders must be padded on the bottom.

The Window Tool Kit 12-9

Operations on Fonts

The following operations are defined for fonts:

copy-font
delete-font
font-baseline
font-bitmap
font-clear-char
font-co de-limit
font-fixed-width
font-height

The Font Registry

font-name
fontp
font-set-char
load-font
make-font
rename-font
store-font
string-width

The Window Tool Kit maintains a registry of all fonts in the window system. This
registry lets you access a font by name. Any time you create or load a new font
into the window system, the new font is stored in the font registry.

The function find-font finds a font in the font registry. Its syntax is the following:

find-font name [Function]

The name argument is either a string or a symbol. H name is a symbol, it is
converted into a string by using its print name. The function find-font finds the
font whose name is name and returns that font. It returns nil if it cannot find a
font with that name.

Any function that takes a font as an argument can be given a string or a symbol
instead. The function find-font is called to find the corresponding font.

Viewports

In the Window Tool Kit, a viewport is a mapping between a region of a bitmap
and a region of the screen. The bitmap clipping region is the piece of a bitmap
that a viewport views. The screen clipping region is the region of the screen
onto which the viewport maps. The screen clipping region and the bitmap clipping
region must be the same size.

Whether or not a viewport is actually displayed on the display screen depends on
whether the viewport is activated and whether it is occluded (covered up) by other
viewports.

12-10 Sun Common Lisp User's Guide

The mapping between the bitmap and the screen is as follows: bits in the bitmap
that are within the bitmap clipping region are mapped into the viewport's
coordinate system by subtracting the origin of the clipping region. These bits
are then mapped onto the screen by adding the origin of the viewport's screen
clipping region. Bitmap positions that are outside of the bitmap clipping region
are undefined under this mapping. Similarly, if a bitmap position maps onto a
screen position that is occluded by another viewport, the screen position of the bit
is undefined.

Whenever the mouse position lies on top of an unoccluded portion of some
viewport, the inverse mapping carries it back to some point of that viewport's
corresponding bitmap.

You can reshape viewports and move them around on the screen.

Creating a Viewport

The following function creates a viewport:

make-viewport

The Viewport Hierarchy

Viewports are arranged in a hierarchy that controls occlusion. The root of the
hierarchy is the root viewport, which is created when the Window Tool Kit is
initialized. The function root-viewport returns the root viewport. The root
viewport is a viewport onto a special bitmap that requires less memory but has
limited capabilities. You cannot modify the bits of this special bitmap in any way
without signaling an error. The root viewport covers the entire screen and cannot
be reshaped or moved. All other viewports occlude the root viewport.

Every viewport except the root viewport has a parent viewport. A viewport
does not need to lie within its parent's region.

All viewports that are children of one viewport are called sibling viewports.
They may overlap on the screen.

Sibling viewports are arranged in a stack. The function viewport-children
returns a list of a viewport's children in the order that they appear in the sibling
stack, with the sibling at the top of the stack appearing at the beginning of the
list. The function expose-viewport moves a viewport to the top of its sibling
stack. The function hide-viewport moves a viewport to the bottom of its sibling
stack. You can perform more complicated manipulations of the sibling stack using
the setf macro with the function viewport-children.

The Window Tool Kit 12-11

A viewport may be either active or inactive. A viewport is displayed on the screen
only if it is active. A viewport that is inactive is still in the viewport hierarchy,
but it is not displayed. H a viewport is inactive, none of its descendants are active.

H two active viewports overlap on the screen, the following rules determine which
viewport occludes the other:

IIlII A viewport occludes all of its ancestor viewports.

= If two viewports a.re siblings, then the viewport that is closest to the top of
the sibling stack and all of its descendants occlude the viewport that is farther
down and all of its descendants.

Accessing Viewport Data Structures

The following operations are defined for viewports:

activate-viewport
deactivate-viewport
expose-viewport
hide-viewport
move-viewport
reshape-viewport
root-viewport
viewport-at-point
viewport-at-position

viewport-bitmap
viewport-bitmap-offset
viewport-bitmap-region
viewport-bitmap-x-offset
viewport-bitmap-y-offset
viewport-chUdren
viewport-parent
viewport-screen-region
viewportp

Any function that takes a bitmap argument can be passed a viewport argument.
The function is then performed on the viewport's bitmap.

Bitmap Output Streams

Because both input and output in Common Lisp are stream oriented, the Window
Tool Kit provides a stream-oriented interface to bitmaps, the bitznap output
stream, which is an output stream that supports all the Common Lisp character
output functions.

Each bitmap output stream maintains an output position that specifies the next
available position for writing to the bitmap. You can modify this position.

Each bitmap output stream also maintains a current font and a current linefeed
distance. The linefeed distance of a stream is initially the character height of

12-12 Sun Common Lisp User's Guide

the initial font. H the user does not specify a font, the value of the variable
.default-font. becomes the initial font.

A bitmap output stream has a default operation for combining new bits with bits
already in the bitmap. This operation can be any of the 16 boolean constants that
can be the first argument to the function boole. The default value is the value of
the constant boole-xor. (See the chapter "Numbers" in the Sun Common Lisp
Reference Manual for more information on boole.)

The following operations are defined for bitmap output streams:

bitmap-output-stream-p
make-bitmap-output-stream
stream-current-font
stream-draw-circle
stream-draw-line
stream-draw-polyline

stream-linefeed-distance
stream-operation
stream-position
stream-x-position
stream-y-position

A bitmap output stream can be used as the stream argument in any Common Lisp
function. (See the chapter "Streams" in the Sun Common Lisp Reference Manual
for more information on Common Lisp streams.)

Any function that takes a bitmap argument can be passed a bitmap output stream.
The operation is performed on the bitmap output stream's underlying bitmap.

U sing the Mouse

The Window Tool Kit provides several ways in which the mouse can be accessed
and used in programs. These include polling the mouse, queuing mouse events,
and specifying active regions.

The Mouse Cursor

The position of the mouse is indicated on the screen by a mouse cursor. To specify
a cursor, you need to specify a bitmap of the cursor, a boolean operation, and x
and y-offsets.

The bitmap contains an image of the cursor. The maximum width and height
of the bitmap are specified by the constants maxiUUlm-cursor-width and
maximum-curs or-height respectively.

The operation specifies the boolean operation that combines the bits already on
the screen with the bits of the bitmap. The x- and !I-offsets specify which point of

The Window Tool Kit 12-13

the bitmap should be placed on the screen at the exact location where the mouse
is pointing.

Mouse cursors are manipulated by using mouse cursor objects) which are
specifications of mouse cursors.

The following functions create and access mouse cursor objects:

current-mouse-cursor
make-mouse-cursor
mouse-cursor-bitmap
mouse-cursor-operation

mouse-cursor-p
mouse-cursor-x-offset
mouse-cursor-y-offset

The function current-mouse-cursor returns the mouse cursor object that is
currently tracking the mouse on the screen. The setf macro can be used with
current-mouse-cursor to change the cursor.

In addition) the following form allows you to move the cursor:

move-mouse

Polling the Mouse

The most basic way to access the mouse is poning-that is) having a program
examine the current state of the mouse. The following functions and variables
provide information about the position of the mouse and the status of the mouse
buttons:

mouse-buttons
mouse-x
mouse-y

mouse-buttons
mouse-x
mouse-y

The functions mouse-x and mouse-y return the current z- and y-coordinates
of the mouse) which are specified in terms of the root viewport. The variables
mouse-x and *mouse-y* contain the current z- and y-coordinates of the
mouse relative to the root viewport. These variables are provided for backward
compatibility; you should use the corresponding functions in most instances.

The function mouse-buttons returns a 3-bit number-that is, a number in the
range 0 to 7. H the right mouse button is depressed) the low-order bit is 1. H the
middle mouse button is depressed, the middle bit is 1. H the left mouse button is

12-14 Sun Common Lisp User's Guide

depressed, the high-order bit is 1. This information is summarized in the following
table:

Value Binary Meaning

a 000 No button is depressed.
1 001 Right button is depressed.
2 010 Middle button is depressed.
3 all Middle and right buttons are depressed.
4 100 Left button is depressed.
5 101 Left and right buttons are depressed.
6 110 Left and middle buttons are depressed.
7 111 Left, middle, and right buttons are depressed.

Figure 12-1. Interpretation or mouse-buttons

A mouse with two buttons has only a left button and right button, and the middle
bit is always o.
The variable *mouse-buttons* contains a 3-bit number that has an interpretation
shown in the table above. However, this variable is provided for backward
compatibility; you should use the corresponding function in most instances.

Handling Mouse Events

Queuing mouse eVeJ1ts is a more versatile way to access the mouse.

A mouse event occurs when the mouse is moved or when one of its buttons is
pressed or released. Mouse events recognized by the Window Tool Kit are the
following:

:mouse-left-down
:mouse-middle-down
:mouse-right-down
:mouse-left-up
:mouse-middle-up
:mouse-right-up

Figure 12-2. Mouse Events

:mouse-enter-region
:mouse-exit-region
:mouse-moved
:mouse-still

The Window Tool Kit 12-15

The meaning of each mouse event is summarized below:

• :mouse-Ieft-down

:mouse-middle-down

:mouse-right-down

The corresponding button has been pressed.

• :mouse-Ieft-up

:mouse-middle-up

:mouse-right-up

The corresponding button has been released.

• :mouse-enter-region

:mouse-exit-region

The mouse has entered or exited an active region. (Active regions are discussed
in the next subsection.)

• :mouse-moved

The mouse has been moved.

• :mouse-still

The mouse stopped moving approximately half a second ago.

If your mouse has only two buttons, the two mouse events :mouse-middle-down
and :mouse-middle-up cannot occur.

A mouse event object is a special data structure that is used to encode mouse
events. A mouse event object specifies what mouse event has occurred, where the
mouse was when the event occurred, and which buttons were pushed at the time.

The following operations are defined for mouse event objects:

mouse-event-buttons
mouse-event-event-type
mouse-event-p

12-16 Sun Common Lisp User's Guide

mouse-event-x
mouse-event-y

Special input streams called mouse bJput streams can queue both character
input and mouse event objects. Characters typed at the terminal and mouse events
are queued on a mouse input stream in the order in which they occur.

The following functions create and access mouse input streams:

make-mouse-input-stream

mouse-input-stream-p

mouse-input-stream-queue-mouse-events-p

mouse-input-stream-viewport

When a mouse event occurs, the value of the function mouse-input is examined;
it must be a mouse input stream. You cannot read from a mouse input stream
unless the stream is the value of mouse-input. IT the value of the expression
(mouse-input-stream-queue-mouse-events-p (mouse-input» is true, then a mouse
event object encoding the mouse event is created and queued on the stream.
Otherwise the mouse event is ignored, and no mouse event object is created. The
setf macro can be used with the function mouse-input to modify the mouse input
stream to which mouse input is sent.

Each mouse input stream is associated with a particular viewport. The values
of the functions mouse-event-x and mouse-event-y for mouse event objects
queued on a mouse input stream are relative to the origin of that viewport. The
value of mouse-event-buttons for mouse event objects is the 3-bit value of
tmouse-buttonst at the time of the event.

A mouse input stream can be used in the same manner as other Common Lisp
input streams. IT any Common Lisp input function is used on a mouse input
stream, mouse event objects at the front of the queue are removed and discarded.
IT you call the functions listen or peek-char on a mouse input stream, mouse
events at the beginning of the mouse input stream are lost. (See the chapter
"Input/Output" in the Sun Common Lisp Reference Manual for more information
on listen and peek-char.)

The following operations are defined for mouse input streams:

listen-any
peek-any
read-any

read-any-no-hang
unread-any

The Window Tool Kit 12-17

These five functions are similar to the Common Lisp functions listen, peek-char,
read-char, read-char-no-hang, and unread-char respectively. (See the chapter
"Input/Output" in the Sun Common Lisp Reference Manual for more information.)
They differ from their Common Lisp analogues in that they check the input stream
for both mouse event objects and characters.

Active Regions

Specifying active regioDs is a third way to access the mouse. Active regions
facilitate the creation of menus, scroll bars, and other display objects that interact
with the mouse.

An active region is a region that can be attached to a bitmap and that causes that
region of the bitmap to become mouse seDsitive. H that region of the bitmap
is displayed on the display screen and the mouse enters or leaves that region of
the screen, the Window Tool Kit's mouse handler calls a method specified by the
active region. Similarly, if a mouse event occurs while the mouse is inside an active
region displayed on the screen, a method specified by the active region is called.
See Figure 12-2 for the possible mouse events.

The following operations are defined for active regions:

active-region-bitmap
active-region-method
active-region-p
attach-active-region

bitmap-active-regions
clear-bitmap-active-regions
detach-active-region
make-active-region

Any function that can be passed a region can be passed an active region instead.

When a mouse event occurs, the process handling the mouse determines which
mouse methods, if any, are invoked. First, the viewport containing the mouse
is found. Then, if the viewport's bitmap contains any active regions, they are
searched. H the mouse's projected position on the viewport's bitmap is such that
it falls inside one or more active regions, then the following rules apply:

• H the mouse has exited an active region, the active region's exit method is
invoked.

• H the mouse has entered an active region, the active region's entry method is
invoked.

• H the mouse is inside one or more active regions, each active region's method
for the event is invoked.

12-18 Sun Common Lisp User's Guide

Windows

The method is called with the following sequence of arguments:

• The viewport on which the mouse event occurred

• The active region

• The mouse event

• The x-coordinate of the position on which the mouse event occurred

• The y-coordinate of the position on which the mouse event occurred

The x- and !I-coordinates are given relative to the origin of the active region's
bitmap.

For all mouse events except :mouse-exit-region, the x-coordinate and !I
coordinate arguments specify a position inside the active region. For :mouse-exit
region, the specified position lies outside the active region; it may also lie outside
the bitmap.

You can use the macro with-mouse-methods-preempted to force the Window
Tool Kit to ignore all active regions or to ignore all active regions except those
attached to a specific bitmap.

Normally, active region methods and interrupt character methods are executed
in the order that they occur, and no method is executed until the code for the
previous method has finished. You can use the macro with-asynchronous
method-invocation-allowed inside a method to allow the execution of other
methods before that method has finished execution.

A window is a composite object that combines the functionality of a bitmap, a
viewport, a bitmap output stream, and a mouse input stream. Any function that
takes one of these as an argument can take a window as an argument.

The predicates viewportp, bitmap-output-stream-p, and mouse-input
stream-p are true for a window.

Windows are included in the viewport hierarchy and, like viewports, are mappings
from a bitmap onto the screen. A window can have a border and a title. The
border consists of two parts: a black strip around the edge of the window and
a white strip inside the black strip. strip is displayed in the displayed in the
background color.

The window's viewport and bitmap output stream write onto the area inside the
border.

The Window Tool Kit 12-19

Scroll Bars

You can create windows with two BeroD bars by using the options provided for
the function make-window. Scroll bars do the following:

• They indicate what portion of the bitmap is inside the viewport's bitmap
clipping region.

• They let you move the bitmap clipping region with the mouse.

Scroll bars are generally used when a window's bitmap is larger than the bitmap
clipping region of the window's viewport. When this is the case, you see only a
portion of the bitmap at a time.

Scroll bars are two gray bars-a vertical bar that appears on the right-hand side of
the window and a horizontal bar that appears at the bottom of the window. The
top and bottom edges of the vertical scroll bar represent the top and bottom edges
of the bitmap respectively. Similarly, the left and right edges of the horizontal
scroll bar represent the left and right edges of the bitmap respectively.

Within each of the two scroll bars is a "bubble" that contains a double-edged
arrow. This bubble represents the position of the bitmap clipping region within
the bitmap. H the bubble is near the top of the vertical scroll bar, then the visible
portion of the bitmap is near the top of the bitmap. H the bubble is near the
center of the horizontal scroll bar, then the visible portion of the bitmap is about
halfway between the right and left edges of the bitmap.

H the window's viewport is not smaller in a given dimension than its bitmap, or
if it is so small that the bubble would fill an entire scroll bar, then the window
will not have a scroll bar in that dimension. The scroll bars will only appear when
suitable space constraints are met. The size of the bubble is fixed.

Scroll bars are mouse sensitive. You can move the bitmap clipping region by
moving the mouse onto the risht or bottom scroll bar. When you move the mouse
onto a scroll bar, the mouse cursor changes into a dark block. This new cursor
indicates that you can now use the mouse to move the bitmap clipping region.

To move the bitmap clipping region, you use the mouse in one of the following
ways:

• H you put the mouse outside the bubble and click the right mouse button,
the bubble will move so that its center is approximately where the mouse was
clicked. The viewport's bitmap clipping region changes to correspond to the
new bubble position.

• You can put the mouse inside the bubble, hold the right mouse button down,
and then "drag" the bubble. The bubble moves with the mouse cursor. Mter
you release the mouse button, the viewport's bitmap clipping region changes
to correspond to the new bubble position.

12-20 Sun Common Lisp User's Guide

Once you move the mouse off either of the scroll bars, the mouse cursor changes
back to its former shape.

Operations on Windows

The following operations are defined for windows:

make-window
window-frame
window-horizontal-scroll-ratio
window-inner-border-width
window-outer-border-width

window-title
window-title-font
window-vertical-scroll-ratio
windowp
windows-avaflable-p

Keyboard Input and Interrupt Characters

When a character is typed at the keyboard, that character is sent to the mouse
input stream that is the value of the function keyboard-input. The setf macro
can be used to modify the mouse input stream to which characters typed at the
keyboard are sent.

Each mouse input stream can have a set of interrupt characters associated with
it. When they are typed to the mouse input stream, these interrupt characters do
not get queued on the stream. Instead, the Window Tool Kit immediately calls the
function that is associated with that character.

The function mouse-input-stream-interrupt-char accesses the function that
is called when a character is typed to a mouse input stream. Its syntax is the
following:

mouse-input-stream-interrupt-char
mouse-input-stream char

[Function]

This function returns nfl if the char argument is not an interrupt character on the
stream mouse-input-stream.

The setf macro can be used with mouse-input-stream-interrupt-char to
modify a character's interrupt function. If you set the value to nfl, the character is
no longer an interrupt character. H you set the value to a function, the character
becomes an interrupt character on that mouse input stream.

The Window Tool Kit 12-21

When an interrupt character is typed on the mouse input stream, the corresponding
function is called with these two arguments:

• The mouse input stream that received the character.

• The character.

Normally, active region methods and interrupt character methods are executed
in the order that they occur, and no method is executed until the code for the
previous method has finished. You can use the macro with-asynchronous
method-invocation-allowed inside a method to allow the execution of other
methods before that method has finished execution.

Pop-Up Menus

A pop-up menu is a viewport that is displayed temporarily on the screen and that
offers you a set of options. You can either select one of the options by placing the
mouse over that item and clicking the right button or make no choice by moving
the mouse off the menu. In either case, the pop-up menu then disappears.

This process is divided into two steps. The function make-pop-up-menu creates
a new pop-up menu object. When the function pop-up-menu-choose is passed
a pop-up menu object, that menu appears on the screen near the current location
of the mouse. The function returns a value that depends on what you choose
from the menu. A pop-up menu object can be passed repeatedly to the function
pop-up-menu-choose.

You can select menu items by pressing any of the mouse buttons that are returned
by the function menu-mouse-buttons. You can use the setf macro with the
menu-mouse-buttons to specify which buttons activate menu options.

The following operations are defined for pop-up menus:

make-pop-up-menu
menu-mouse-buttons

12-22 Sun Common Lisp User's Guide

pop-up-menu-choose
pop-up-menu-p

Sample Code

The following sample code could be used to implement pop-up menus.

(in-package 'windows)

::: Define the inner and outer border width for menu windows.

(defparameter *menu-inner-border-width* 2)
(defparameter *menu-outer-border-width* 1)

::: Define the margins for a selection as a fraction of the font height.

(defparameter *menu-top-margin* 0.1)
(defparameter *menu-bottom-margin* 0.1)
(defparameter *menu-left-margin* 0.1)
(defparameter *menu-right-margin* 0.1)

" , Define the POP-UP-MENU structure.

" ,
" ,
" ,
" ,

When the menu window is finally displayed, the top-left corner
of the window must in the region whose origin is the point
(min-mouse-x, min-mouse-y) and whose corner i8 the point
(max-mouse-x, max-mouse-y).

(def8truct
(pop-up-menu

(:COD8tructor create-pop-up-menu»

window
width
height
min-mou8e-x
max-mOU8e-x
min-mou8e-y
max-mou8e-y
(8tate 'not-choosing»

Function to create a blank pop-up
menu object.
The menu window.
Width of the menu window.
Height of the menu window.

Current 8tate of the menu.

The Window Tool Kit 12-23

••• You call the function MAKE-POP-UP-MENU to construct a new
pop-up menu.

(defun make-pop-up-menu (choice-list ioptional default-value)
(declare (special *default-font*)}
(check-type choice-list list) ; Verify choice-list is a list.
(let* «root-viewport (root-viewport})

(root-bitmap (viewport-bitmap root-viewport)}
(screen-width (bitmap-width root-bitmap)}
(screen-height (bitmap-height root-bitmap»
(font-height (font-height *default-font*)}
(top-margin (round (* *menu-top-margin* font-height)}}
(bottom-margin (round (* *menu-bottom-margin* font-height)}}
(left-margin (round (* *menu-Ieft-margin* font-height}»
(right-margin (round (* *menu-right-margin* font-height»)

: Extra margin to leave on sides.
(combined-border-width (+ *menu-inner-border-width*

menu-outer-border-width»
(selection-height (+ top-margin font-height bottom-margin»

(inner-width 0)
(menu-width O)
(menu-height 0»

Height of each entry.
Inside width of the menu.
These two variables will
eventually hold the menu's width
and height .

•• Verify that each item on the choice list is either a symbol
•• or a cons whose car is a string. Also figure the maximum
•• width of the strings.

• I

•• Determine the height of the menu by adding selection-height
" into menu-height for each item seen.

· .
•• The variable inner-width contains the width of the largest string
• I seen so far.

(dolist (choice choice-list)
;; Verify each item.
(unless (or (symbolp choice)

(and (consp choice) (stringp (car choice}»)
(error "Element -8 of choice-list -8 must be a symbol or -

a cons whose car is a string" choice choice-list)}
(setq inner-width

(max inner-width (string-width (if (symbolp choice)
(symbol-name choice)
(car choice})

default-font}}}
(incf menu-height selection-height)}

12-24 Sun Common Lisp User's Guide

•• The value of menu-width is the sum of the left and right margins and
•• the inner width. Check to see if the menu is too long or too wide.

(setq menu-width (+ inner-width left-margin right-margin»
(when (> (+ menu-width (* 2 combined-border-width» screen-width)

(error
"Pop-Up Menu for choice-list ·8 is wider than the screen"

. choice-list»
(when (> (+ menu-height (* 2 combined-border-width» screen-height)

(error
"Pop-Up Menu for choice-list ·S is taller than the screen"
choice-list»

•• Create an inactive window. For now. set viewport-x and
•• viewport-y to o. They will be changed by pop-up-menu-choose
•• before the menu is displayed .

•• Once the window is created. you have all the information needed
•• to create the pop-up menu .

•• The variable choice-number will keep track of where you are in
•• the choice-list.

(let* «window (make-window :viewport-x 0 :viewport-y 0
:width menu-width :height menu-height
:inner-border-width

menu-inner-border-width
:outer-border-width

menu-outer-border-width
:initial-font *default-font*
:activate nil»

(bitmap (viewport-bitmap window» ;; The window's bitmap.
(menu (create-pop-up-menu

:window window
:width menu-width
:height menu-height
:min-mouse-x (+ combined-border-width

(round menu-width 2»
:max-mouse-x (- screen-width combined-border-width

(round menu-width 2) 1)
:min-mouse-y combined-border-width
:max-mouse-y (- screen-height combined-border-width

menu-height 1»)

(choice-number 0»

The Window Tool Kit 12-25

Now attach active regions to the window's bitmap. Attach one that
•• covers the entire bitmap. so that you will know if the mouse
•• moves off the bitmap. Also make an active region for each choice
•• item so that you will know if the mouse moves onto or off that
•• choice item. or if the mouse is clicked on that item .

•• First. the active region that covers the entire bitmap.
(make-active-region

(make-region :x 0 :y 0 :extent (bitmap-extent bitmap»
:bitmap bitmap

" If you leave the bitmap and the menu's state indicates that
" a value is expected, then set the state to indicate that you
" are returning a value. THROW the value default-value. The
" function pop-up-menu-choice will set up the CATCH.

:mouse-exit-region
"(lambda (viewport active-region mouse-event x y)

(declare (ignore viewport active-region mouse-event x y»
(when (eq (pop-up-menu-state menu) 'awaiting-choice)

(setf (pop-up-menu-state menu) 'returning-choice)
(throw 'pop-up-menu-choose default-value»»

12-26 Sun Common Lisp User's Guide

" For each item in the choice list, create an active region and
" write an appropriate string onto the bitmap. The active region
" covers an area menu-width wide by selection-height high.
" The top-left corner of the region is
" (* choice-number selection-height). The string is written
" just a little below and to the right of that.

(do1ist (choice choice-list)
(let «name (if (symbo1p choice)

(symbol-name choice)
(car choice»)

(value (if (symbo1p choice) choice (cdr choice»»
(make-active-region

(make-region :x 0 :y (* choice-number selection-height)
:width menu-width :height selection-height)

:bitmap bitmap

" If you enter the region, invert it by using the bitb1t
" function with the operation boo1e-c1.

:mouse-enter-region
#'(lambda (viewport active-region mouse-event x y)

(declare (ignore mouse-event x y»
(bitb1t-region (viewport-bitmap viewport) active-region

(viewport-bitmap viewport) active-region
boo1e-e1»

" If you leave the region, reinvert it so that it will
" return to a normal state.

:mouse-exit-region
"(lambda (viewport active-region mouse-event x y)

(declare (ignore mouse-event x y»
(bitb1t-region (viewport-bitmap viewport) active-region

(viewport-bitmap viewport) active-region
boo1e-e1»

" If the right button is clicked and the menu is waiting
" for a choice, indicate that a choice has been found and
" THROW the appropriate value to the CATCH set up by
" pop-up-menu.

:mouse-right-down
#'(lambda (viewport active-region mouse-event x y)

(declare (ignore viewport active-region mouse-event x y»
(when (eq (pop-up-menu-state menu) 'awaiting-choice)

(setf (pop-up-menu-state menu) 'returning-choice)
(throw 'pop-up-menu-choose value»»

The Window Tool Kit 12-27

;; Write the string out to the bitmap.
(stringblt bitmap

(make-position
(+ left-margin

(truncate (- inner-width
(string-width name *default-font*»

2»
(+ (* choice-number selection-height)

top-margin
(font-baseline *default-font*»)

default-font
name»

(incf choice-number»

;; Everything is finished. Return the menu.
menu»)

12-28 Sun Common Lisp User's Guide

.. . .. , .. ,

...

The user calls POP-UP-MENU-CHOOSE to display a pop-up menu object .
This function is rather simple. It exposes the pop-up menu object's
viewport at an appropriate place and then goes to sleep. One of the
active regions will cause a THROW to 'pop-up-menu-choose when it has
a value .

In this code you may find it curious that a CATCH is being done around
an invocation of SLEEP. The reason this works is that the interrupt
handler is invoked in much the same way as a function call. and thus
the SLEEP is a dynamically enclosing context. just as if it had called
the active region method .

(defun pop-up-menu-choose (pop-up-menu)
(declare (special *mouse-x* *mouse-y*»
(check-type pop-up-menu pop-up-menu)
(catch 'pop-up-menu-choose

(let* «window (pop-up-menu-windowpop-up-menu»

:: Try to position the top-left corner of the window so that
;; the center of the window is where the mouse is right now.
(desired-x (- *mouse-x*

(round (pop-up-menu-width pop-up-menu) 2»)
(desired-y (- *mouse-y*

(round (pop-up-menu-height pop-up-menu) 2»)

•• Set actual-x and actual-y so that they are within the
•• region defined by min-Mouse-x. min-mouse-y. max-mouse-x
•• and mouse-Max-yo
(actual-x (min (max (pop-up-menu-min-mouse-x pop-up-menu)

desired-x)
(pop-up-menu-max-mouse-x pop-up-menu»)

(actual-y (min (max (pop-up-menu-min-mouse-y pop-up-menu)
desired-y)

(pop-up-menu-max-mouse-y pop-up-menu»»

The Window Tool Kit 12-29

(unwind-protect
(prop

;; Position the menu.
(move-viewport window actual-x actual-y)

;; Indicate that this menu wants a value returned.
(setf (pop-up-menu-state pop-up-menu) 'awaiting-choice)

;; Expose it before activating it. to make sure it gets put on
;; the screen fully visible.
(expose-viewport window)
(activate-viewport window)
(sleep 1000000» ; Good night.

(setf (pop-up-menu-state pop-up-menu) 'not-choosing)
(deactivate-viewport window»»)

12-30 Sun Common Lisp User's Guide

activate-viewport, deactivate-viewport

Purpose:

Syntax:

Remarks:

The function activate-viewport makes the specified viewport and all of its
ancestors active. H the optional descendants argument is non-nil, then all of the
viewport's descendants are also made active.

The function deactivate-viewport makes the specified viewport and all of its
descendants inactive. The viewport viewport maintains its position in the display
stack of its siblings. However, the viewport and its descendants do not appear on
the screen until they are reactivated.

activate-viewport viewport ioptional descendants

deactivate-viewport viewport

[Function]

[Function]

H a viewport is active, all of its ancestors are active. H a viewport is inactive, all
of its descendants are inactive.

H deactivate-viewport tries to deactivate a viewport that is already inactive,
nothing happens.

H activate-viewport tries to activate a viewport that is already active, nothing
happens.

These functions are extensions to Common Lisp.

The Window Tool Kit 12-31

active-region-bitmap

Purpose:

Syntax:

Remarks:

The function active-region-bitmap returns the bitmap to which the argument
active-region is attached. H active-region is not attached to a bitmap, it returns
nil.

active--region-bitmap active-iegion [Function]

This function is an extension to Common Lisp.

12-32 Sun Common Lisp User's Guide

active-region-m.ethod

Purpose:

Syntax:

Remarks:

The function active-region-method accesses the method that is called when a
mouse event occurs inside an active region or when the mouse enters or leaves an
active region. The function returns nil if no method is associated with the event.

active-region-method active-region event-name [Function]

The event-name argument must be one of the mouse events listed in Figure 12-2.

The setf method for this function updates the appropriate method. IT you set the
value to nil, no method is called when the corresponding mouse event occurs.

The method is called with the following sequence of arguments:

• The viewport on which the mouse event occurred

• The active region

• The mouse event

• The x-coordinate of the position on which the mouse event occurred

• The y-coordinate of the position on which the mouse event occurred

The x- and y-coordinates are given relative to the origin of the active region's
bitmap. For all mouse events except :mouse-exit-region, the x-coordinate
and y-coordinate arguments specify a position inside the active region. For
:mouse-exit-region, the specified position lies outside the active region; it may
also lie outside the bitmap.

IT the mouse's projected position on the viewport's bitmap falls inside one or more
active regions, the following methods are invoked in the order given:

• If the mouse has exited an active region, the active region's exit method is
invoked.

• If the mouse has entered an active region, the active region's entry method is
invoked.

• If the mouse is inside one or more active regions, each active region's method
for the event is invoked.

The Window Tool Kit 12-33

active-region-method

Note: An active region method is called inside the system's interrupt handler; no
other user interrupts are permitted while the function is running. H your method
has an infinite loop, there is no way to interrupt it.

This function is an extension to Common Lisp.

12-34 Sun Common Lisp User's Guide

active-region-p

Purpose:

Syntax:

Remarks:

The predicate active-region-p tests whether its argument object is an active
region. It returns true if object is an active region.

active-region-p object [Function]

This function is an extension to Common Lisp.

The Window Tool Kit 12-35

attach-active-region, detach-active-region,
bitmap-active-regions, clear-bitmap-active-regions

Purpose:

Syntax:

Remarks:

The function attach-active-regioD attaches an active region to a bitmap.

The function detach-active-regioD detaches an active region from its bitmap.

The function bitmap-active-regioDs returns a list of all the active regions that
are attached to a bitmap.

The function clear-bitmap-active-regioDs detaches all active regions that are
attached to a bitmap.

attach-active-regioD bitmap active-region

detach-active-regioD active-region

bitDlap-active-regioDs bitmap

clear-bitDlap-active-regioDs bitmap

[Function]

[Function]

[Function]

[Function]

When you attempt to attach an active region to a bitmap, the active region must
be located in the bitmap.

H detach-active-regioD is called with an active region that is not attached to a
bitmap, nothing happens.

These functions are extensions to Common Lisp.

12-36 Sun Common Lisp User's Guide

bitblt, bitblt-position, bitblt-region

. Purpose:

Syntax:

Remarks:

The function bitbIt copies regions from one bitmap to another .

The function bitblt-position is similar to bitblt, except that the locations in
each bitmap are expressed as positions rather than as :1;- and y-coordinates.

The function bit bIt-region is similar to bitbIt, except that the arguments
explicitly specify the source and destination regions.

bitbIt source-bitmap source-x source-,
destination-bitmap destination-x destination-,
width height operation
tkey :clipping-region

bit bIt-position source-bitmap source-position
destination- bitmap destination-position
width height operation
ikey :clipping-region

bitbIt-region source-bitmap source-region
destination-bitmap destination-region
operation

[Function]

[Function]

[Function]

The arguments source-bitmap and destination-bitmap specify the bitmap from
which the copying is performed and the bitmap to which the copying is done
respectively. They may be the same bitmap.

The source-bitmap region that is copied is specified by one of the following:

• The source-x, source-" width, and height arguments of bitbIt. The source-x
and source-, arguments specify the :1;- and y-coordinates respectively of the
region's origin. The width and height arguments specify the region's width and
height respectively.

• The source-position, width, and height arguments of bit bIt-position. The
source-position argument specifies the position of the region's origin. The width
and height arguments specify the region's width and height respectively.

• The source-region argument of bit bIt-region.

The Window Tool Kit 12-37

bitblt, bitblt-position, bitblt-region

The destination-bitmap region that is to be modified is specified by one of the
following:

• The destination-x, destination-" width, and height arguments of bitblt. The
destination-x and destination-, arguments specify the z- and !I-coordinates
respectively of the region's origin. The width and height arguments specify the
region's width and height respectively.

• The destination-position, width, and height arguments of bitblt-position. The
destination-position argument specifies the position oi the region's origin. The
width and height arguments specify the region's width and height respectively.

• The destination-region argument of bit bIt-region.

Each position in the source bitmap region is combined with the corresponding
position in the destination bitmap region, and the result is stored in the destination
bitmap. The new value of the destination bitmap is the value returned when the
function boole is applied to these three arguments: the operation argument, the
value of the bit at the source bitmap position, and the value of the bit at the
destination bitmap position.

The keyword argument :clipping-region specifies a region of the destination
bitmap. H this keyword argument is given, only the region of the destination region
that is located inside the clipping region is modified.

H the source-region and destination-region arguments of bit bIt-region are different
widths, the width of the region that is actually copied is the smaller of the two.
Similarly, if the source-region and destination-region arguments have different
heights, the height of the region that is copied is the smaller of the two.

These functions are extensions to Common Lisp.

12-38 Sun Common Lisp User's Guide

bitmap-extent, bitmap-height, bitmap-width

Purpose:

Syntax:

Remarks:

These functions access and modify information about a bitmap.

The function bitmap-extent creates a copy of a bitmap's extent.

The function bitmap-height returns the height of a bitmap.

The function bitmap-width returns the width of a bitmap.

bitmap-extent bitmap .optional result-extent

bitmap-height bitmap

bitmap-width bitmap

[Function]

[Function]

[Function]

If a result-extent argument is specified for bitmap-extent, that extent is modified
to the output extent and then returned. Otherwise a new extent is created and
returned.

You can use the setf macro with these functions. Increasing the width or height
of a bitmap causes new area to appear at its boundaries. Decreasing the width or
height may cause loss of data.

These functions are extensions to Common Lisp.

~xamples: > (setq my-bitmap (make-bitmap :width 100 :height 200»
#<Bitmap 100x200 25F391>
> (bitmap-extent my-bitmap)
#<Extent 100x200 25F7A7>
> (bitmap-height my-bitmap)
200
> (bitmap-width my-bitmap)
100
;; Create a OxO extent.
> (setq empty-extent (make-extent»
#<Extent OxO 25F84C>
;; Copy the extent of my-bitmap into empty-extent.
> (bitmap-extent my-bitmap empty-extent)
#<Extent 100x200 25F84C>
;; Now look at the value of empty-extent.
> empty-extent
#<Extent 100x200 25F84C>

The Window Tool Kit 12-39

hitmap-output-stream-p

Purpose: The predicate bitmap-output-stream-p tests whether its argument object is a
bitmap output stream. It returns true if object is a bitmap output stream.

Syntax: bitmap-output-stream-p object

Remarks: This function is an extension to Common Lisp.

Examples: > (bi tmap-output-stream-p (make-bi tmap-output-stream))
T
> (bitmap-output-stream-p 7)
NIL

12-40 Sun Common Lisp User's Guide

[Function]

hitmap-p

Purpose:

Syntax:

The predicate bitmap-p tests whether its argument object is a bitmap. It returns
true if object is a bitmap.

bitmap-p object [Function]

Remarks: This function is an extension to Common Lisp.

Examples: > (bitmap-p (make-bitmap :height 100 :width 200»
T
> (bitmap-p 7)
NIL

The Window Tool Kit < 12-41

bitmap-value

Purpose:

Syntax:

Remarks:

The function bitmap-value returns the value of a bitmap's point at a given x-y
coordinate.

bitmap-value bitmap x 11 [Function]

The result is either 0 or 1.

You can use the setf macro with this function to set the value of a point in a
bitmap.

This function is an extension to Common Lisp.

Examples: ;; Create a 100x200 bitmap.
> (setq bmp (make-bitmap :width 100 :height 200»
#<Bitmap 100x200 AEC25B>
;; Look at the value of a point.
> (bitmap-value bmp 23 56)
o
;; Set the point to one.
> (setf (bitmap-value bmp 23 56) 1)
1
;; Look at the value of that point.
> (bitmap-value bmp 23 66)
1

12-42 Sun Common Lisp -User's Guide

charblt, stringblt

Purpose:

Syntax:

Remarks:

See Also:

The function charblt paints a character image from a font onto a bitmap.

The function stringbIt paints a string of character images from a font onto a
bitmap.

charblt bitmap position font char &:key : operation

stringblt bitmap position font string &:key : operation

[Function]

[Function]

The font argument must be a font, a string, or a symbol. If the argument is a
string or a symbol, the function find-font is called to find the font whose name is
the string or symbol.

The :operation keyword argument controls how the font is painted onto the
bitmap. The new value of the destination bitmap is the value returned by applying
the function boole to these three arguments: the :operation argument, the
value of the font's bit, and the value of the destination bitmap position. If the
:operation keyword argument is omitted or nil, the default value is the value
of boole-l. This default value causes the bits of the font's bitmap to overwrite
whatever was previously on the bitmap.

The position argument specifies the position at which the character or characters
are output. The first character is aligned so that the left-most point of its baseline
is at the point given by the position argument.

The function stringblt cannot handle tabs and other characters that have an
ambiguous print representation. It can handle newline and space characters.

These functions are extensions to Common Lisp.

bit bIt

The Window Tool Kit 12-43

clear-bitmap

Purpose:

Syntax:

Remarks:

The function clear-bitmap clears a bitmap. That is, the value of every point in
the bitmap is set to O.

clear-bitmap bitmap ioptional region [Function]

If a region argument is specified, only that region of the bitmap is cleared.
Otherwise the entire bitmap is cleared.

This function is an extension to Common Lisp.

Examples: :: Create a 10xl0 bitmap.
> (setq btmp (make-bitmap :width 10 :height 10»
.<Bitmap 10xl0 696D6D>
;; Put ones on the diagonal of the bitmap.
> (dotimes (i 10)

{setf (bitmap-value btmp i i) 1»
NIL
;; A point on the diagonal has a value of one.
> (bitmap-value btmp 3 3)
1
:: A point not on the diagonal has a value of zero.
> (bitmap-value btmp 3 2)
o
;; Clear a region of the bitmap.
> {clear-bitmap btmp (make-region :x 2 :y 2 :height 3 :width 3»
.<Bitmap 10x10 696D6D>
;; Look at a diagonal point that was cleared.
> (bitmap-value btmp 3 3)
o
;; Look at a diagonal point that was not cleared.
> (bitmap-value btmp 9 9)
1

12-44 Sun Common Lisp User's Guide

copy-bitmap

Purpose: The function copy-bitmap copies a bitmap.

Syntax: copy-bitmap bitmap [Function]

Remarks: The original bitmap and the copy can be modified without affecting each other.

This function is an extension to Common Lisp.

Examples: ;; Create a 100x200 bitmap.
> (make-bitmap :height 100 :width 200)
#<Bitmap 200xl00 6D96EE>
;; Make a copy of the bitmap.
> (copy-bitmap *)
#<Bitmap 200xl00 6D9937>

See Also: store-bitmap

The Window Tool Kit 12-45

copy-font

Purpose:

Syntax:

Remarks:

The function copy-font copies a font.

The new font is stored in the font registry under the name new-name.

copy-font font new-name [Function]

The font argument should be a font, a string, or a symbol. If the argument is a
string or a symbol, the function find-font is called to find the font whose name is
the string or symbol.

The original font and the copy can be modified without affecting each other.

This function is an extension to Common Lisp.

Examples: > *default-font*
#<Fixed-Width-Font ROMAN 4FB3CE>

See Also:

;; Create a copy of the default font. Call it "NEWROMAN".
> (copy-font *default-font* 'newroman)
#<Fixed-Width-Font NEWROMAN 6DA2C3>

find-font

store-font

12-46 Sun Common Lisp User's Guide

current-mouse-cursor

Purpose:

Syntax:

Remarks:

See Also:

The function current-mouse-cursor returns the mouse cursor object that is
currently tracking the mouse on the display screen.

current-mouse-cursor [Function]

You can use the macro setf with this function to modify the mouse cursor object
that is tracking the mouse.

This function is an extension to Common Lisp.

make-mouse-cursor

The Window Tool Kit 12-47

* default-font *

Purpose: The value of the variable .default-font. is used as a default value by the functions
make-bitmap-output-stream and make-window.

Syntax:

Remarks:

• default-font.

The initial value of .default-font. is the font whose name is "ROMAN".

This variable is an extension to Common Lisp.

Examples: ;; Create a bitmap output stream.

See Also:

;; Do not give an :initial-font keyword argument.
> (make-bitmap-output-stream :width 100 :height 200)
#<Output-Stream to #<Bitmap 100x200 lA4SD8> lA49EO>
;; Check to see that the stream's font is *default-font*.
> (eq (stream-current-font *) *default-font*)
T

find-font

12-48 Sun Common Lisp User's Guide

[Variable]

default-font-baseline, default-font-code-limit,
default-font-height

Purpose:

Syntax:

The constants default-font-baseline, default-font-code-limit, and default
font-height are default values for the keyword arguments of make-font.

The constant default-font-baseline is the default value for the baseline height of
every character in a font.

The constant default-font-height is the default value for the height of every
character in a font.

The constant default-co de-limit is the default value for the number of characters
in a font.

default-font-baseline

default-font-code-limit

default-font-height

[Constant]

[Constant]

[Constant]

Remarks: These constants are extensions to Common Lisp.

~xamples: ;; Create a font. Give no baseline, height, or code limit.

See Also:

> (setq font (make-font "NEW"» ; Create a font with no options.
#<Variable-Width-Pont NEW AA66E3>
;; Check the value of the font's baseline.
> (- default-font-baseline (font-baseline font»
T
;; Check the value of the font's code limit.
> (- default-font-code-limit (font-code-limit font»
T
;; Check the value of the font's height.
> (= default-font-height (font-height font»
T
;; Note that its width is nil.
> (null (font-fixed-width font»
T

make-font

The Window Tool Kit 12-49

delete-font

Purpose:

Syntax:

Remarks:

The function delete-font deletes a font from the font registry.

delete-font font [Function]

The font argument must be a font, a string, or a symbol. H it is a string or a
symbol, the function find-font is called to convert the argument to a font.

The deleted font continues to exist. However, the function find-font no longer
recognizes its name.

This function is an extension to Common Lisp.

12-50 Sun Common Lisp User's Guide

draw-circle, draw-line, draw-polyline, draw-polypoint

Purpose:

Syntax:

Remarks:

The function draw-circle draws a circle whose center is the position center and
whose radius is radius.

The function draw-line draws a line segment from the position start to the
position end.

The function draw-polyline takes a sequence of positions positions and connects
each adj acent pair.

The function draw-polypoint takes a sequence of positions positions and draws
a dot at each one.

draw-circle bitmap center radius
tkey :width :operation

draw-line bitmap start end
tkey :width :operation

draw-polyline bitmap positions
tkey :width :operation

draw-polypoint bitmap positions
tkey :width :operatioD

[Function]

[Function]

[Function]

[Function]

If the :width keyword argument is given, it defines the line width that is used for
drawing the line segments and circles. For draw-polypoint, the :width argument
specifies the diameter of the dot. For draw-circle, the border is drawn so that its
outer edge is at the specified radius; the width must be less than or equal to the
radius. If the :width keyword argument is omitted or nil, the default value 1 is
used.

The :operation keyword value is used to control how the values that are being
written onto the bitmap combine with the values that are already present. If this
keyword argument is omitted or nil, the default value is the value of the constant
boole-l; this default value causes the values that are being written onto the
bitmap to overwrite whatever was already on the bitmap.

These functions are extensions to Common Lisp.

The Window Tool Kit 12-51

expose-viewport, hide-viewport

Purpose:

Syntax:

Remarks:

See Also:

The function expose-viewport moves a viewport to the top of its sibling stack.
Nothing happens if the viewport is already at the top of the stack.

The function hide-viewport moves a viewport to the bottom of its sibling stack.
Nothing happens if the viewport is already at the bottom of the stack.

expose-viewport 1Jiewport

hide-viewport 1Jiewport

[Function]

[Function]

In complex hierarchies, expose-viewport may not place the viewport on the
screen unoccluded because it may be occluded by its children, or because its parent
may be occluded.

If two active viewports overlap on the screen, the following rules determine which
viewport occludes the other:

• A viewport occludes all of its ancestor viewports.

• If two viewports are siblings, then the viewport that is closest to the top of
the sibling stack and all of its descendants occlude the viewport that is farther
down and all of its descendants.

These functions are extensions to Common Lisp.

viewport-children

12-52 Sun Common Lisp User's Guide

extent-height, extent-width

Purpose:

Syntax:

Remarks:

The function extent-height returns the height of an extent.

The function extent-width returns the width of an extent.

extent-height extent

extent-width extent

[Function]

[Function]

You can use the setf macro with these functions to modify the height and width
of an extent.

These functions are extensions to Common Lisp.

Examples: > (setq x (make-extent 100 200»
#<Extent 100x200 lA4D04>
> (extent-height x)
200
> (setf (extent-width x) 300)
300
> x
#<Extent 300x200 lA4D04>

The Window Tool Kit 12-53

extentp

Purpose: The predicate extentp tests whether its argument object is an extent. It returns
true if object is an extent.

Syntax: extentp object

Remarks: This function is an extension to Common Lisp.

Examples: > (extentp (make-extent»
T
> (extentp 7)
NIL

12-54 Sun Common Lisp User's Guide

[Function]

find-font

Purpose:

Syntax:

Remarks:

See Also:

The function find-font finds the font whose name is the name argument and
returns that font. The function returns nil if it cannot find a font with that name.

find-font name [Function]

The argument must be a string or a symbol. If it is a symbol, its print name is
used.

The font registry initially contains three fonts that are named "ROMAN",
"BOLD-ROMAN", and "ITALIC".

This function is an extension to Common Lisp.

copy-font

delete-font

load-font

make-font

rename-font

store-font

The Window Tool Kit 12-55

font-baseline, font-height, font-fixed-width

Purpose:

Syntax:

Remarks:

The function font-baseline returns the baseline height of a font. This number is
the baseline height of every character in the font.

The function font-height returns the height of a font. This number is the height
of every character in the font.

The function font-fixed-width returns the width of every character in a font if
the font is a fixed-width font; otherwise it returns nil.

font-baseline font

font-height font

font-fixed-width font

[Function]

[Function]

[Function]

The font argument must be a font, a string, or a symbol. If the argument is a
string or a symbol, the function find-font is called to find the font whose name is
the string or symbol.

These functions are extensions to Common Lisp.

~xamples: ;; Create a font. Specify the font's height. baseline. and fixed width.
> (setq font1

See Also:

(make-font "NEW-ROMAN" :height 12 :baseline 12 :fixed-width T»
'<Fixed-Width-Font NEW-ROMAN A9D46B>
;; Look at the new font's baseline.
> (font-baseline font1)
12
;; Look at the new font's height.
> (font-height font1)
12
;; Look at the new font"s width.
> (font-fixed-width font1)
7
;; Create another font, specifying no fixed width.
> (setq font2 (make-font 'blank-font» ; This is a variable width font.
#<Variable-Width-Font BLANK-FONT A9FB93>
;; Note that the fixed width is nil.
> (font-fixed-width font2)
NIL

default-font-baseline

default-font-height

find-font

12-56 Sun Common Lisp User's Guide

font-bitmap, font-code-limit, font-name

Purpose:

Syntax:

Remarks:

The function font-bitmap returns the underlying bitmap in which a font stores
its character images.

The function font-co de-limit returns the number of character images that can be
stored in a font.

The function font-name returns the name of a font.

font-bitmap font

font-co de-limit font

font-name font

[Function]

[Function]

[Function]

The font argument must be a font, a string, or a symbol. H the argument is a
string or a symbol, the function find-font is called to find the font whose name is
the string or symbol.

These functions are extensions to Common Lisp.

~xamples: ;; Create a font, specifying code limit, height, baseline, and fixed width.
> (setq font (make-font 'new-roman :code-limit 256 :height 20

See Also:

:baseline 16 :fixed-width 8»
#<Fixed-Width-Font NEW-ROMAN AA584B>
;; Look at the font's code limit.
> (font-code-limit font)
256
;; Look at the font's name.
> (font-name font)
"NEW-ROMAN"
;; Look at the font 's bitmap.
> (font-bitmap font)
#<Bitmap 2048x20 AA4363>

default-font-code-limit

find-font

rename-font

The Window Tool Kit 12-57

font-set-char, font-clear-char

Purpose:

Syntax:

Remarks:

See Also:

The function font-set-char defines the character image of the character char in
the font font.

The function font-clear-char makes the character image of char in font undefined.

jont-set-char jont char offset [Function]
toptional width bitmap position

font-clear-char font char [Function]

The char argument specifies the character whose image in the font bitmap is being
defined or cleared. This argument must satisfy the condition that the expression
(char-code char) is less than the number of characters in the font. The number of
characters in the font is given by the expression (font-code-limit font).

For both functions, the font argument must be a font, a string, or a symbol. H the
argument is a string or a symbol, the function find-font is called to find the font
whose name is the string or symbol.

The offset argument specifies that the top-left corner of the character's image in
the font's bitmap is the position given by the expression (make-position offset 0).

The width argument specifies the width of the character. H the font is fixed-width,
then this argument must be omitted, must be nil, or must be the same as the width
of the font. H the font is variable-width, this argument must be a nonnegative
fixnum and cannot be omitted.

The character's height is the height of the given font.

The bitmap a.rgument specifies the bitmap from which the image of the character
is copied. The image of the character is taken from the region whose origin is
specified by the position argument and whose width and height are the same as the
width and height respectively of the character. H the position argument is omitted
or nil, the origin of the region is the top-left corner of the bitmap.

H the bitmap argument is omitted or nil, the character's initial image is blank.

These functions are extensions to Common Lisp.

find-font

12-58 Sun Common Lisp User's Guide

fontp

Purpose:

Syntax:

The predicate fontp tests whether its argument obiect is a font. It returns true if
obiect is a font.

fontp obiect [Function]

Remarks: This function is an extension to Common Lisp.

Examples: > (fontp *default-font*)
T
> (fontp 7)
NIL

The Window Tool Kit 12-59

initialize-windows

Purpose:

Syntax:

Remarks:

The function initialize-windows initializes the Window Tool Kit.

initialize-windows tkey : height : width
:screen-x :screen-y
:label :icon-image
:icon-x :icon-y
:icon-label :icon-font

[Function]

The Window Tool Kit is normally initialized when the Editor is first entered. H
you are not using the Editor, you must call the function initialize-windows to
initialize the window system.

The keyword argument pair :height and :width specifies the size of the Sun View
system window that will be the root viewport. Because the actual root viewport
lies within the Sun View borders, it will be slightly smaller than the specified size.

The keyword argument pair :screen-x and :screen-y indicates the position of the
upper left corner of the Sun View window.

The keyword argument :label names the Sun View window.

The keyword argument :icon-image names the file that stores the image that will
be used as the Lisp screen icon when an initialized window is closed.

The keyword argument pair :icon-x and :icon-y specifies the position for the icon
when the window is closed.

The keyword argument pair :icon-Iabel and :icon-ront denotes the label displayed
on the icon and the label's font.

Note: Paired keyword arguments must be used together or not at all; when the
Sun View system receives one of the paired arguments, it expects the other as well.

H you try to initialize the Window Tool Kit but it has already been initialized,
nothing happens.

H the Window Tool Kit has been initialized and the function disksave is invoked,
the window environment is temporarily suspended. Once the disksave function
has saved the Lisp image on disk, the windows on the running Lisp image are
restored automatically to the state they were in before the disksave function
call. To restore the state of the window environment in the newly saved image,
call initialize-windows or ed with no arguments. (See the section "Restoring
Windows in a Saved Image" for more information.)

This function is an extension to Common Lisp.

12-60 Sun Common Lisp User's Guide

initialize-windows

See Also: leave-window-system

The Window Tool Kit 12-61

keyboard-input

Purpose:

Syntax:

Remarks:

The function keyboard-input determines where keyboard input is sent. Any
character typed at the keyboard is sent to the mouse input stream that is the value
of this function.

kevboard-innut .,. ~ II;" --- [Function]

The setf macro can be used with this function to change the stream to which
keyboard input is sent. The second argument to setf must be a mouse input
stream.

The initial value of this function is the value of .termlnal-jo •.

This function is an extension to Common Lisp.

12-62 Sun Common Lisp User's Guide

leave-window-system

Purpose:

Syntax:

Remarks:

See Also:

The function leave-window-system exits the Window Tool Kit.

leave-window-system [Function]

H you exit the window environment by calling leave-window-system, you cannot
return to it. H you wish to use the Window Tool Kit after calling this function,
you must set up new windows by invoking ed or initialize-windows.

This function is an extension to Common Lisp.

initialize-windows

The Window Tool Kit 12-63

listen-any

Purpose:

Syntax:

Remarks:

See Also:

The predicate listen-any is true if a character or mouse event object can be read
from the given mouse input stream; otherwise it is false.

listen-any loptional mouse-input-stream [Function]

The argument mouse-input-stream specifies a mouse input stream. H this argument
is omitted or nil, the mouse input stream that is the value of the function mouse
input is used. H the mouse-input-stream argument is t, the mouse input stream
that is the value of the function keyboard-input is used.

H end-of-file occurs, listen-any returns nil.

This function is an extension to Common Lisp.

keyboard-input

mouse-input

peek-any

read-any

read-any-no-hang

12-64 Sun Common Lisp User's Guide

load-bitmap, store-bitmap

Purpose: The function load-bitmap reads in a bitmap from the file file-name and returns
the bitmap.

Syntax:

The function store-bitmap stores a bitmap into the file file-name.

load-bitmap file-name

store-bitmap bitmap file-name

Remarks: These functions are extensions to Common Lisp.

~xamples: ;; Create a 10xl0 bitmap with a random value at each point.
> (setq bitmap (make-bitmap :width 10 :height 10»
#<Bitmap 10xl0 4B3F2B>

See Also:

> (dotimes (i 10)
(dotimes (j 10)

(setf (bitmap-value bitmap i j) (random 2»»
NIL
;; Store this bitmap in a file named "/tmp/temp".
> (store-bitmap bitmap "/tmp/temp")
#P"/tmp/temp"
;; Read the bitmap back in.
> (setq new-bitmap (load-bitmap "/tmp/temp"»
#<Bitmap 10xl0 4B66BB>
;; Print a message if the two bitmaps differ at any point.
> (dotimes (i 10)

NIL

(dotimes (j 10)
(if (/= (bitmap-value bitmap i j)

(bitmap-value new-bitmap i j»
(format t "values differ at -D -D-%" i j»»

copy-bitmap

[Function]

[Function]

The Window Tool Kit 12-65

load-font, store-font

Purpose:

Syntax:

Remarks:

See Also:

The function load-font reads in a font from the file file-name. The function
returns the font.

The function store-font stores a font in the file file-name.

load-font file-name

store-font font file-name

[Function]

[Function}

The font argument to store-font must be a font, a string, or a symbol. IT the
argument is a string or a symbol, the function find-font is called to find the
font whose name is the string or symbol. The information stored by store-font
includes the font's name.

The font that is read in by load-font is stored in the font registry.

These functions are extensions to Common Lisp.

copy-font

find-font

12-66 Sun Common Lisp User's Guide

make-active-region

Purpose:

Syntax:

Remarks:

The function make-active-region creates an active region for the region region;
as an option it can attach that active region to a bitmap.

make-active-region region ikey : bi tmap
:mouse-left-down
:mouse-left-up
:mouse-middle-down
:mouse-middle-up
:mouse-right-doWD
:mouse-right-up
: mouse-moved
: mouse-still
:mouse-enter-region
:mouse-exit-region

[Function]

The :bitmap keyword argument is the bitmap to which this active region should
be attached. If this keyword argument is omitted or nil, then the active region is
not attached to any bitmap. Later it may be attached to a bitmap by using the
function attach-active-region.

The rest of the keyword arguments specify the methods for each of the ten types
of mouse events. The value of each keyword argument must be a function of five
arguments. The method is called whenever the corresponding mouse event occurs
inside the created active region.

If a mouse event keyword argument is omitted or nil, no method is associated with
the mouse event. No function is called when the mouse event occurs inside the
created active region.

The method is called with the following sequence of arguments:

• The viewport on which the mouse event occurred

• The active region

• The mouse event

• The x-coordinate of the position on which the mouse event occurred

• The y-coordinate of the position on which the mouse event occurred

The z- and y-coordinates are given relative to the origin of the active region's
bitmap.

The Window Tool Kit 12-67

make-active-region

See Also:

For all mouse events except :mouse-exit-region, the x-coordinate and y
coordinate arguments specify a position inside the active region. For :mouse-exit
region, the specified position lies outside the active region; it may also lie outside
the bitmap.

This function is an extension to Common Lisp.

attach-active-region

12-68 Sun Common Lisp User's Guide

make-bitmap

Purpose: The function make-bitmap creates a bitmap.

Syntax: make-bitmap ikey :extent :width :height [Function]

Remarks: The width and height of the bitmap are specified by using the :width and :height
keyword arguments or by supplying an extent with the :extent keyword argument.

Unspecified dimensions default to o.
This function is an extension to Common Lisp.

Examples: > (make-bitmap : height 100 : width 200)
#<Bitmap 200xl00 856EE6>

The Window Tool Kit 12-69

make-hitmap-output-stream

Purpose:

Syntax:

Remarks:

The function make-bitmap-output-stream creates a bitmap output stream.
The bitmap output stream can be attached to an already existing bitmap, or it
can be attached to a new bitmap created by this function.

make-bitmap-output-streaTn ~key :bitmap
:extent :width :height
: operation
: initial-font

[Function]

The value of the :bitmap keyword argument must be a bitmap. The bitmap
output stream is attached to that bitmap. H this keyword argument is omitted or
nil, a new bitmap is created. The new bitmap's size can be specified with either the
:width and :height keyword arguments or with the :extent keyword argument
(whose value should be an extent). An unspecified width or height defaults to o.
The :operation keyword argument is the boolean operation used by the stream to
write onto the bitmap. Its default value is the value of the constant boole-xor.

The :initial-font keyword argument is the font in which characters are painted
onto the bitmap. The value of this keyword argument must be a font, a string, or
a symbol. H the argument is a string or a symbol, the function find-font is called
to find the font whose name is the string or symbol. The default value is the value
of -default-font-.

The stream position of a newly created bitmap output stream is the position whose
x-coordinate is 0 and whose y-coordinate is the baseline height of the initial font.
Its linefeed distance is the height of the initial font.

Note: Do not attach an output stream to the bitmap that is associated with the
root viewport.

This function is an extension to Common Lisp.

12-70 Sun Common Lisp User's Guide

make-bitmap-output-stream

~xanaples: :: Create a 100x200 bitmap and a bitmap output stream to that bitmap.
> (make-bitmap-output-stream :width 100 :height 200)

See Also:

'<Output-Stream to .<Bitmap 100x200 864AF6> 864EFD>
:: Check that the stream's current font is *default-font*.
> (eq (stream-current-font *) *default-font*)
T
:: Create another 100x200 bitmap.
> (setq btmp (make-bitmap :width 100 :height 200»
.<Bitmap 100x200 86603A>
:: Create a bitmap output stream that writes onto that bitmap.
> (make-bitmap-output-stream :bitmap btmp)
.<Output-Stream to .<Bitmap 100x200 86603A> 85646A>

find-font

The Window Tool Kit 12-71

make-extent

Purpose:

Syntax:

Remarks:

The function make-extent creates an extent whose width is width and whose
height is height.

make-extent ioptional width height [Function]

The arguments to make-extent are fixnums. Ii either argument is omitted, the
default value 0 is used.

This function is an extension to Common Lisp.

Examvles: > (make-extent)
#<Extent OxO 866B6B>
> (make-extent 100 200)
#<Extent 100x200 866B80>

12-72 Sun Common Lisp User's Guide

make-font

Purpose:

Syntax:

Remarks:

The function make-font creates a font whose name is name.

make-font name &:key : bitmap : bitmap-width : code-limit
:fixed-width :height :baseline

[Function]

The name argument is either a string or a symbol. H it is a symbol, the symbol's
print name is used. The newly created font is stored in the font registry under this
name.

All characters in the created font must have the same height and baseline height.
The font can have either a fixed width or a variable width.

The keyword argument :code-limit specifies the maximum number of characters
in the font. H this keyword argument is omitted, the value of default-font-code
limit is used.

The keyword argument : baseline gives the baseline height of every character in
the font. H this keyword argument is omitted, the value of default-font-baseline
is used.

The keyword argument :height gives the height of every character in the font. H
this keyword argument is omitted, the value of default-font-height is used.

The keyword argument :fixed-width gives the fixed width of every character in
the font. H the keyword argument is omitted or nil, the font has a variable width.

The :bitmap keyword argument specifies a bitmap to be used as the font bitmap.
H this keyword argument is omitted or nil, a new bitmap is created for this font.
The width and height of the created bitmap are specified by the value of the
:bitmap-width keyword argument and the font's height. For fixed-width fonts,
if the :bitmap-width keyword argument is omitted, the default bitmap width
is the fixed width (specified by the :fixed-width keyword argument) times the
number of characters in the font (specified by the :code-limit keyword argument).
For variable-width fonts, there is no default bitmap width; either the :bitmap or
:bitmap-width keyword argument must be specified.

There is no initial assignment of character images to characters. This assignment
must be done with the function font-set-char.

This function is an extension to Common Lisp.

The Window Tool Kit 12-73

make-font

Examples: ;; Create a variable-width font named "NEW-ROMAN".
> (make-font 'new-roman)

See Also:

#<Variable-Width-Font NEW-ROMAN A97E03>
;; Create a fixed-width font named "New-font".
> (make-font "New-font" :height 12 :baseline 10 :fixed-width 6)
#<Fixed-Width-Font New-font A98603>

default-font-baseline

default-font-cod~limit

default-font-height

find-font

font-set-char

12-74 Sun Common Lisp User's Guide

make-mouse-cursor, maximum-cursor-height,
maximum-cursor-width

Purpose:

Syntax:

Remarks:

See Also:

The function make-mouse-cursor creates a mouse cursor object.

The constants maximum-cursor-height and maximum-cursor-width are
hardware constraints on the maximum height and width respectively of a mouse
cursor.

make-mouse-cursor bitmap ikey :x-offset :y-offset
:operatioD

maximum-curs or-height

maximum-cursor-width

The bitmap argument is a bitmap that contains an image of the cursor.

[Function]

[Constant]

[Constant]

The :x-o:ffset and :y-o:ffset keyword arguments specify which point of the bitmap
should be placed on the screen at the exact location where the mouse is pointing.
H either keyword argument is omitted or nil, the default value 0 is used.

The :operation keyword argument specifies the boolean operation that combines
the bits of the mouse cursor's bitmap with the bits already on the screen. H
this keyword argument is omitted or nil, it defaults to the value of the constant
boole-or.

The value of the expression (bitmap-height bitmap) must be less than or equal to
maximum-cursor-height.

The value of the expression (bitmap-width bitmap) must be less than or equal to
maximum-cursor-width.

The function make-mouse-cursor and the constants maximum-curs or-height
and maximum-cursor-width are extensions to Common Lisp.

current-mouse-cursor

. The Window Tool Kit 12-75

make-mouse-input-stream

Purpose:

Syntax:

Remarks:

See Also:

The function make-mouse-input-stream creates a mouse input stream. A
mouse input stream is identical to a Common Lisp input stream except that a
mouse input stream can queue both characters and mouse event objects.

:rnake-rnouse-input-strea..."ll lkey : queue-mcuse-events-p [Function]
: viewport

The :queue-mouse-events-p keyword argument determines whether this mouse
input stream initially queues mouse event objects. The default value for this
keyword argument is nil, which means that only characters are queued on the
newly created mouse input stream.

The :viewport keyword argument is the viewport associated with the mouse
input stream that is being created. If this keyword argument is omitted or nil, the
mouse input stream is associated with the root viewport.

This function is an extension to Common Lisp.

listen-any

mouse-input-stream-queue-mouse-events-p

peek-any

read-any

unread-any

12-76 Sun Common Lisp User's Guide

make-pop-up-menu

Purpose:

Syntax:

Remarks:

See Also:

The function make-pop-up-menu creates a pop-up menu object.

make-pop-up-menu choice-list ioptional default-value [Function]

The argument choice-list is a list. Each element of the list is either a symbol or a
cons whose car is a string.

If the element is a symbol, then when the function pop-up-menu-choose displays
the pop-up menu, the print name of the element is displayed as one of the choices.
If chosen, the element is returned as the value of pop-up-menu-choose.

If the element is a cons, then the car of the element, which must be a string,
is displayed as one of the choices. If the element is chosen, the value of
pop-up-menu-choose is the cdr of the cons.

If the mouse is moved off the choice menu, the default-value argument is returned.
If this argument is omitted, the default value is nil.

This function is an extension to Common Lisp.

pop-up-menu-choose

The Window Tool Kit 12-77

make-position

Purpose:

Syntax:

Re:marks:

The function make-position creates a position. The coordinates of this position
are the x and II arguments.

:make-position ioptional x 11 [Function]

The arguments must be nonnegative fixnums. If either argument is omitted, the
default value 0 is used.

This function is an extension to Common Lisp.

Exa:mples: > (make-position)
#<Position (0.0) 856C2D>
> (make-position 100 200)
#<Position (100.200) 866C3E>

12-18 Sun Common Lisp User's Guide

make-region

Purpose:

Syntax:

Remarks:

Examples:

The function make-region creates a new region.

make-region I:key : origin : x : y
:extent :width :height
:corner :corner-x :corner-y

[Function]

To create a region, you must specify two of the following three attributes of a
region: its origin, its corner, and its size. A region's origin is its top-left position. A
region's corner is the point just below and to the right of its bottom-right position.
A region's size is its height and width.

You specify the origin of a region by specifying the position of the origin with the
:origin keyword argument or by specifying the x- and !I-coordinates of the origin
separately with the :x and :y keyword arguments.

You specify the corner of a region by specifying the position of the corner with the
:corner keyword argument or by specifying the x- and !I-coordinates of the corner
separately with the :corner-x and :corner-y keyword arguments.

You specify the size of a region by specifying the region's extent with the :extent
keyword argument or by specifying the width and height of the region separately
with the :width and :height keyword arguments.

This function is an extension to Common Lisp.

" You can specify a region whose origin is the point (400,600)
" and whose corner is the point (480,690) in several different ways.

" mid-screen is the position of the origin.
> (setq mid-screen (make-position 400 500»
'<Position (400,600) 865D50>
;; ext is the size of the region.
> (setq ext (make-extent 80 90»
'<Extent 80x90 855D64>
;; Give the origin and size of the region.
> (setq reg1 (make-region :origin mid-screen :extent ext»
'<Region 80x90 at (400,500) 865D84>
;: Give the origin and size but specify each coordinate separately.
> (setq reg2 (make-region :x 400 :y 600 :width 80 :height 90»
'<Region 80x90 at (400,600) 855DBE>

The Window Tool Kit 12-79

make-region

;; Give the size and the corner.
> (setq regS (make-region :extent ext :corner (make-position 480 590»)
#<Region 80x90 at (400,500) 855DEB>
;; Verify that all three regions specify the same region.
> (region= reg1 reg2 regS)
T

12-80 Sun Common Lisp User's Guide

make-viewport

Purpose:

Syntax:

Remarks:

The function make-viewport creates a viewport. The viewport is attached to an
already existing bitmap or to a newly created bitmap.

The function returns two values: the newly created viewport and the bitmap to
which the viewport is attached.

make-viewport tkey : bitmap : width : height
: bitmap-region
:parent :fixed
: screen-position
:screen-x :screen-y
: activate

[Function]

The keyword options to this function are described as follows:

• :bitmap

This keyword argument specifies the bitmap to which the viewport is attached.
Its value must be a bitmap made with the function make-bitmap.

IT this keyword argument is omitted or nil, the viewport is attached to a new
bitmap whose dimensions are specified by :width and :height.

• :width, :height

These keyword arguments specify the width and height of the bitmap to which
the viewport is attached. The value of each must be a nonnegative fixnum. IT
either is omitted or nil, its default value is o.
You only need to use :width and :height if :bitmap is omitted or nil.

• :bitmap-region

This keyword argument specifies the viewport's bitmap clipping region. Its
value must be a region made with the function make-region.

If this keyword argument is omitted or nil, the bitmap clipping region is the
entire bitmap; thus, the viewport and bitmap have the same size.

• :parent

This keyword argument specifies the parent viewport of the new viewport. Its
value must be an existing viewport. If it is omitted or nil, the root viewport
becomes the parent viewport. The new viewport is put at the top of its sibling
stacIe

The Window Tool Kit 12-81

make-viewport

Examples:

• ::6xed

This keyword argument specifies whether the viewport can be moved
independently of its parent. H it is omitted or nil, the viewport can be moved
independently. H it is non-nil, the viewport cannot be moved independently;
the Window Tool Kit assumes that the area of the parent viewport that the
child viewport obscures need not be saved, since it can never be exposed.

• :screen-position

This keyword argument specifies the position of the viewport's top-left corner.
Its value must be a position made with the function make-position.

The :screen-x and :screen-y keyword arguments can be used as an alternative
to :screen-position. The default value for the x- and y-coordinates is o.

• :screen-x, :screen-y

These keyword arguments specify the coordinates of the viewport's top-left
corner relative to the root viewport. The value of each must be a nonnegative
fixnum. H either is omitted, its default 'value is o.

• :activate

This keyword argument specifies whether the viewport is active or inactive. H
it is omitted or non-nil, the viewport is active. H it is specified and nil, the
viewport is inactive.

Note: A viewport's screen clipping region is the region whose top-left corner is
the point specified by either :screen-position or :screen-x and :screen-y, and
whose extent is the same as that of the viewport's bitmap clipping region.

This function is an extension to Common Lisp.

" To run this example, you must have already initialized the
" Window Tool Kit.

" Create a 100x200 bitmap and a viewport onto that bitmap.
> (make-viewport :width 100 :height 200)
.<Viewport 100x200 at (0,0) onto .<Bitmap 100x200 85516A> 855572>
.<Bitmap 100x200 85516A>
;; Create another 100x200 bitmap.
> (setq btmp (make-bitmap :width 100 :height 200»
.<Bitmap 100x200 85560C>
;; Create a viewport onto that bitmap. Note that the bitmap is returned
;; as the second value.
> (make-viewport :bitmap btmp)
'<Viewport 100x200 at (0,0) onto .<Bitmap 100x200 85560C> 855A2A>
.<Bitmap 100x200 85660C>

12-82 Sun Common Lisp User's Guide

make-window

Purpose:

Syntax:

Remarks:

The function make-window creates and returns a window.

A window combines the functionality of a viewport, a bitmap, a bitmap output
stream, and a mouse input stream. On the display screen, a window appears as a
viewport. It may be surrounded by a border and may have a title. A window may
also have a scroll bar.

make-window Ilkey :position :x :y
:extent :width :height
:viewport-x :viewport-y
:inner-border-width :outer-border-width
:viewport-width :viewport-height
:initial-font :operation
:title :title-font
:parent :scroll :activate
:calculate-vertical-scroll-ratio
:calculate-horizontal-scroll-ratio
:vertical-scroll :horizontal-scroll

The keyword options to this function are described as follows:

• :position

[Function]

This keyword argument specifies the position of the window's top-left corner.
Its value must be a position made with the function make-position.

The :x and :y keyword arguments can be used as an alternative to :position.
The default value for the x- and y-coordinates is o.

• :x,:Y

These keyword arguments specify the coordinates of the window's top-left
corner relative to the root viewport. The value of each must be a nonnegative
fixnum. If either is omitted, its default value is o.

• : extent

This keyword argument specifies the size of the window's bitmap. Its value
must be an extent made with the function make-extent.

The :width and :height keyword arguments can be used as an alternative to
:extent.

The Window Tool Kit 12-83

make-window

• :width, :height

These keyword arguments specify the size of the window's bitmap. The value
of each must be nonnegative fixnum. If either is omitted or nil, its default
value is o.

• :viewport-x, :viewport-y

These keyword arguments specify the coordinates of the top-left corner of the
window's viewport.

• :inner-border-width, :outer-border-width

These keyword arguments specify the width of the window's inner and
outer borders. The inner border is strip of white space that surrounds the
viewport, and the outer border is a black box that surrounds the inner
border. If :inner-border-width is omitted or nil, its default value is 2. If
:outer-border-width is omitted or nil, its default value is 1.

• :viewport-width, :viewport-height

These keyword arguments specify the width and height of the window's
viewport. These dimensions can be different from those of the window's
bitmap (specified with either :width and :height or :extent). However, if
:viewport-width and :viewport-height are omitted or nil, their default
values are the width and height of the bitmap respectively.

The total width of the window is the width of the viewport plus twice the
thickness of the inner border plus twice the thickness of the outer border. The
total height of the window is the height of the viewport plus twice the thickness
of the inner border plus twice the thickness of the outer border plus the height
of the title.

• : initial-font

This keyword argument specifies the initial font used by the window's bitmap
output stream. Its value must be a font, a string, or a symbol. If it is omitted
or nil, its default value is the value of the variable -default-font-. .

• :operation

This keyword argument specifies the boolean operation that the bitmap output
stream uses to write onto the bitmap. Its value must be an acceptable first
argument to the boole function. If it is omitted or nil, its default value is the
value of the constant boole-xor.

12-84 Sun Common Lisp User's Guide

make-window

• :title

This keyword argument specifies the title of the window. Its value must be a
string. If the window has a title, it appears in a title bar at the top of the
window. If this keyword argument is omitted or nil, the window has no title.

• :title-font

This keyword argument specifies the font in which the title is displayed. Its
value must be a font, a string, or a symbol. If it is omitted or nil, its default
value is the value of the :initial-font keyword argument.

• :parent

This keyword argument specifies the parent viewport of the new viewport. Its
value must be an existing viewport. If it is omitted or nil, the root viewport
becomes the parent viewport. The new viewport is put at the top of its sibling
stack.

• :activate

This keyword argument specifies whether the viewport is active or inactive.
If it is omitted or non-nil, the viewport is active. If it is nil, the viewport is
inactive.

• :scroll

This keyword argument specifies whether the window has scroll bars. If it is t,
the window is created with scroll bars on the right and bottom. If it is omitted
or nil, the window is created without scroll bars. Do not give this keyword any
value other than t or nil.

• :calculate-vertical-scroll-ratio, :calcuiate-horizontal-scroll-ratio

These keyword arguments calculate the vertical and horizontal scroll ratio
respectively. The scroll ratio is a Common Lisp ratio between 0 and 1.
Generally, the scroll ratio is the ratio of the current location of the window
to the size of the window's underlying bitmap. However, window system
developers may redefine the methods for scrolling and for calculating these
ratios so that scrolling may be performed over an abstract bitmap or extent.
If either keyword argument is specified, it must be a function that takes the
window as an argument. The functions cannot be used with the macro setf to
specify the respective ratios; they can only return a ratio or nil.

• :vertical-scrolI, :horizontal-scroll

These keyword arguments replace the default scrolling methods for the window.
If either is given, it must be a function that takes two arguments: the window
to be scrolled and a vertical or horizontal scroll ratio that describes the location
of scrolling.

The Window Tool Kit 12-85

make-window

Examples:

See Also:

This function is an extension to Common Lisp.

•• To run this example. you must have already initialized the
•• Window Tool Kit.

> (setq w (make-window :width 100 :height 200 :title "hello"»
.... lAFTJ.Tnntlf A A,." An
'JI"" - n .LI'41t.1 n -anv".n.&I'

> (windowp w)
T

window-vertical-scroll-ratio

win dow-horiz ont al-scroll-rat io

12-86 Sun Common Lisp User's Guide

menu-mouse-buttons

Purpose:

Syntax:

Remarks:

The function menu-mouse-buttons returns a list of keywords that indicate which
mouse buttons select menu items.

menu-mouse-buttons [Function]

The default list returned by menu-mouse-buttons is (: left : middle : right) .

When you press a mouse button that is included in the list returned by this
function, a menu item is selected. IT the mouse button is not listed, no selection is
made.

You can use the setf macro with this function to set the mouse buttons that select
menu items.

This function is an extension to Common Lisp.

The Window Tool Kit 12-87

mouse-buttons, mouse-x, mouse-y

Purpose:

Syntax:

Remarks:

See Also:

The function mouse-buttons returns an integer in the range 0 to 7. This integer
encodes the mouse buttons that are currently depressed.

The functions mouse-x and mouse-y return the current x- and y-coordinates of
the mouse. These positions are relative to the root viewport.

mouse-buttons

mouse-x

mouse-y

See Figure 12-1 for the possible values returned by mouse-buttons.

These functions are extensions to Common Lisp.

mouse-buttons

mouse-x

mouse-y

mouse-event-buttons

mouse-event-x

mouse-event-y

move-mouse

[Function]

[Function]

[Function]

12-88 Sun Common Lisp User's Guide

mouse-buttons, *mouse-x*, *mouse-y*

Purpose:

Syntax:

Remarks:

See Also:

The variable *mouse-buttons* contains an integer in the range 0 to 7. This
integer encodes the mouse buttons that are currently depressed.

The variables *mouse-x* and *mouse-y* contain the current x- and y-coordinates
of the mouse. These positions are relative to the root viewport.

mouse-buttons

mouse-y

[Variable]

[Variable]

[Variable]

See Figure 12-1 for the possible values of *mouse-buttons*.

Note: These variables are provided for backward compatibility; you should use
the functions mouse-buttons, mouse-x, and mouse-y in most instances.

These variables are extensions to Common Lisp.

mouse-buttons

mouse-event-buttons

mouse-event-x

mouse-event-y

mouse-x

mouse-y

move-mouse

The Window Tool Kit 12-89

mouse-cursor-bitmap, mouse-cursor-x-offset,
mouse-cursor-y-offset, mouse-cursor-operation

",----- - - - -rurpuse;

Syntax:

Remarks:

These functions return cOlllponents of a mOUse cursor object.

The function mouse-cursor-bitmap returns a mouse cursor object's bitmap.

The function mouse-cursor-x-offset returns a mouse cursor object's x-offset.

The function mouse-cursor-y-offset returns a mouse cursor object's !I-offset.

The function mouse-cursor-operation returns the boolean constant that is used
to write the mouse cursor object onto the display screen.

mouse-cursor-bitmap mouse-cursor-object

mouse-cursor-x-offset mouse-cursor-object

mouse-cursor-y-offset mouse-cursor-object

mouse-cursor-opera,tion mouse-cursor-object

[Function]

[Function]

[Function]

[Function]

You can use the setf macro with these functions to modify a mouse cursor object.

These functions are extensions to Common Lisp.

12--90 Sun Common Lisp User's Guide

mouse-cursor-p

Purpose:

Syntax:

Remarks:

The predicate mouse-cursor-p tests whether its argument object is a mouse
cursor object. It returns true if object is a mouse cursor object.

mouse-cursor-p object [Function]

This function is an extension to Common Lisp.

The Window Tool Kit 12-91

mouse-event-p

Purpose:

Syntax:

Remarks:

The predicate mouse-event-p tests whether its argument object is a mouse event
object. It returns true if object is ~ mouse e'Vent object.

mouse-event-p object [Function]

This function is an extension to Common Lisp.

12-92 Sun Common Lisp User's Guide

mouse-event-x, mouse-event-y,
mouse-event-event-type, mouse-event-buttons

Purpose:

Syntax:

Remarks:

These functions access the fields of a mouse event object.

The functions mouse-event-x and mouse-event-y give the x- and y-coordinates
of the mouse when the mouse event occurred that created the mouse event object.
These coordinates are relative to the viewport that owns the mouse input stream
on which the mouse event object was read.

The function mouse-event-event-type returns a keyword that indicates what
mouse event created a particular mouse event object. See Figure 12-2 for a list of
the possible mouse events.

The function mouse-event-buttons returns the value of the variable *mouse
buttons* at the time the mouse event occurred. See Figure 12-1 for the values of
mouse-buttons and their meanings.

mouse-event-x mouse-event-object

mouse-event-y mouse-event-object

mouse-event-event-type mouse-event-object

mouse-event-buttons mouse-event-object

These functions are extensions to Common Lisp.

[Function]

[Function]

[Function]

[Function]

The Window Tool Kit 12-93

mouse-input

Purpose:

Syntax:

Remarks:

The function mouse-input determines where mouse input is sent.

mouse-input [Function]

The value of the function mouse-input is exairdned when a luouse event occurs.
If the expression

(mouse-input-stream-queue-mouse-events-p (mouse-input»

is non-nil, an object encoding the mouse event is appended to the mouse input
stream that is the value of the expression (mouse-input).

The setf macro can be used with this function to change the stream to which
mouse input is sent. The second argument to setf must be a mouse input stream.

This function is an extension to Common Lisp.

12-94 Sun Common Lisp User's Guide

mouse-input-stream-interrupt-char

Purpose:

Syntax:

Remarks:

The function mouse-input-stream-interrupt-char returns the function that is
called when the given character is typed to a mouse input stream.

mouse-input-stream-interrupt-char
mouse-input-stream char

[Function]

The function returned by mouse-input-stream-interrupt-char takes two
arguments: mouse-input-stream and char. The function is called as soon as char is
typed to mouse-input-stream.

H the char argument is not an interrupt character, this function returns nil. H
the character causes the Debugger to be entered, the function returns the keyword
value : debugger .

You can use the setf macro to modify a character's interrupt handler. If you set
the function value to nil, char is no longer an interrupt character on mouse-input
stream. H you set the function value to a function of two arguments, char becomes
an interrupt character, and the function is called when char is typed. H you set
the function value to the keyword value : debugger , typing this character causes
the Debugger to be entered.

Note: The function corresponding to an interrupt character is called inside
the system's interrupt handler; no other user interrupts are permitted while the
function is running. H your function has an infinite loop, there is no way to
interrupt it.

This function is an extension to Common Lisp.

The Window Tool Kit 12-95

mouse-input-stream-p

Purpose: The predicate mouse-input-stream-p tests whether its argument object is a
Tnn11Cl.o 1TlT'\11t. Clt. ... 'O!llTn Tt.ot.11 ... TlCl t. ... no ;.f ,.1.;D~f ;0 ~ 'I'YOn.u .. "", ; T'I>u4- .,,4-....... .,. ____ y_v _w ... __ v .a._u,...,..,.A.&..., VA,...," "'''.1''''''' .&u ~&'"'''-Lu'"' '&.LI.,t''-&U gu.a."I#Q'&.I..&.

Syntax: mouse-input-stream-p object [Function]

Remarks: This function is an extension to Common Lisp.

12-96 Sun Common Lisp User's Guide

mouse-input-stream-queue-mouse-events-p

Purpose:

Syntax:

Remarks:

See Also:

When a mouse event occurs, the predicate mouse-input-stream-queue-mouse
events-p is called on the mouse input stream that is the value of the function
mouse-input. If the value returned is non-nil, a mouse event object encoding the
mouse event is queued on the mouse input stream that is the value of the function
mouse-input.

mouse-input-stream-queue-mouse-events-p
mouse-input-stream

[Function]

You can use the setf macro with this function to cause a mouse input stream to
start or stop queueing mouse event objects.

The initial value for this function can be set in the function make-mouse-input
stream with the :queue-mouse-events-p keyword argument.

This function is an extension to Common Lisp.

make-mouse-input-stream

read-any

The Window Tool Kit 12-97

mouse-input-stream-viewport

Purpose: The function mouse-input-stream-viewport returns the viewport that is

Syntax: mouse-input-stream-viewport mouse-input-stream [Function]

Remarks: This function is an extension to Common Lisp.

12-98 Sun Common Lisp User's Guide

move-mouse

Purpose:

Syntax:

Remarks:

See Also:

The function move-mouse moves the mouse cursor from its current position to
the position specified by the z and 11 arguments.

move-mouse z 11 [Function]

This function is an extension to Common Lisp.

tmouse-yt

The Window Tool Kit 12-99

move-viewport

Purpose:

Syntax:

Remarks:

The function move-viewport moves a viewport's origin so that its top-left corner
is at the point whose screen coordinates are specified by the x and y arguments 0

move-viewport viewport z 11 [Function]

The root viewport cannot be moved.

This function is an extension to Common Lisp.

12-100 Sun Common Lisp User's Guide

peek-any

Purpose:

Syntax:

Remarks:

The function peek-any peeks at and returns the next character or mouse event
object in a mouse input stream without reading it. The character or mouse event
object is read at a later time.

You can also use peek-any for skipping over characters and mouse event objects
in the input stream until a particular character is encountered.

peek-any &:optional peek-type mouse-input-stream
eo/-error-p eo/-value recursive-p

[Function]

The argument mouse-input-stream specifies a mouse input stream. If this argument
is omitted or nil, the mouse input stream that is the value of the function mouse
input is used. If the mouse-input-stream argument is t, the mouse input stream
that is the value of the function keyboard-input is used.

If end-of-file occurs, an error is signaled if the eo/-error-, argument is omitted or
true. If the eo/-error-p argument is nil, then the eo/-value argument is returned on
end-of-file.

If the call to peek-any comes not from the top-level, but from within some
function that itself has been called from read or a similar input function, the
argument recursive-, must be non-nil. If this argument is omitted, the default
value nil is used.

The peek-type argument specifies the type of object searched for on the mouse
input stream. If peek-type is specified, it must be either nil, t, or a character. If
this argument is omitted, the peek-type argument defaults to nil.

If the peek-type argument is nil, peek-any looks at and returns the next character
or mouse event object in the mouse input stream without reading it from the
stream.

If the peek-type argument is t, then peek-any reads and discards any white space
characters at the front of the mouse input stream and returns the first mouse
event object or character that is not white space without reading it from the
stream. Note that comments are not discarded. (See the chapter "Input/Output"
in the Sun Common Lisp Re/erence Manual for more information on white space
characters.)

If the peek-type argument is a character, then peek-any discards characters and
mouse event objects from the front of the input stream until it encounters a
character that is equal to (char=) the peek-type argument. That character is
returned without being read from the stream.

This function is an extension to Common Lisp.

The Window Tool Kit 12-101

peek-any

See Also: keyboard-input

listen-any

mouse-event-p

mouse-input

read-any

read-any-no-hang

12-102 Sun Common Lisp User's Guide

pop-up-menu-choose

Purpose:

Syntax:

Remarks:

See Also:

The function pop-up-menu-choose displays a pop-up menu specified by the
pop-up-menu-object argument. The menu appears on the display screen near the
current position of the mouse. You can choose one of the objects on the menu by
clicking the right button on top of the selected item, or you can move the mouse
off the menu.

pop-up-menu-choose pop-up-menu-object [Function]

Once you have made a choice or moved the mouse off the menu, the menu
disappears and two values are returned. The first value is the item that you
selected, and the second is a keyword that indicates which button you used to
select the item. H you did not make a selection and the menu has a default value,
the default value and nil are returned; if the menu does not have a default value,
both of the values returned are nil.

This function is an extension to Common Lisp.

make-pop-up ... menu

The Window. Tool Kit 12-103

pop-up-menu-p

Purpose:

Syntax:

Remarks:

The predicate pop-up-menu-p tests whether its argument object is a pop-up
menu. It returns true if object is a pop-up menu.

pop-up-menu-p object [Function]

This function is an extension to Common Lisp.

12-104 Sun Common Lisp User's Guide

position-x, position-y

Purpose:

Syntax:

Remarks:

The functions positlon-x and position-y return the x- and !I-coordinates
respectively of a position.

position-x position

position-y position

[Function]

[Function]

You can use the setf macro with the functions position-x and position-y to set
the x- and !I-coordinates of a position.

These functions are extensions to Common Lisp.

Examples: > (setq pos (make-position 100 200»
#<position (100.200) 696ha3>
> (position-x pos)
100
> (setf (position-y pos) 300)
300
> pos
#<position (100.300) 596ha3>

The Window Tool Kit 12-105

positionp

Purpose: The predicate positionp tests whether its argument object is a position. It returns
true if object is a position.

Syntax:: positionp object

Remarks: This function is an extension to Common Lisp.

Examples: > (positionp (make-position 100 200»
T
> (positionp 7)
NIL

12.....;106 Sun Common Lisp User's Guide

[Function]

read-any, read-any-no-hang

Purpose:

Syntax:

Remarks:

See Also:

The functions read-any and read-any-no-hang read either a single character or
a single mouse event object from a mouse input stream.

read-any ioptional mouse-input-stream [Function]
eo/-error-p eo/-value recursive-p

read-any-no-hang ioptional mouse-input-stream [Function]
eo/-error-p eo/-value recursive-p

The argument mouse-input-stream specifies a mouse input stream. If this argument
is omitted or nil, the mouse input stream that is the value of the function mouse
input is used. If the mouse-input-stream argument is t, the mouse input stream
that is the value of the function keyboard-input is used~

If there is no character or mouse event object ready to be input, the function
read-any waits until a character is typed to the stream or a mouse event
occurs on the stream mouse-input-stream. In this same situation, the function
read-any-no-hang returns the value nil without waiting.

For both functions, when end-of-file occurs, an error is signaled if the eo/-error-p
argument is omitted or true. If the eo/-error.p argument is nil, then the eo/-value
argument is returned when end-of-file occurs.

If the call to read-any or read-any-no-hang comes not from the top-level but
from within some function that itself has been called from read or a similar input
function, the argument recursitJe-p must be non-nil. If this argument is omitted,
the default value nil is used.

These functions are extensions to Common Lisp.

keyboard-input

listen-any

make-mouse-input-stream

mouse-event-p

mouse-input

mouse-input-stream-queue-mouse-events-p

peek-any

unread-any

The Window Tool Kit 12-107

region-contains-point-p, region-contains-position-p

Purpose:

Syntax:

The predicates region-contains-point-p and region-contains-position-p test
whether a given position is in a given region.

The predicate region-contains-point-p is true if the position whose coordinates
are x and y is in the given region.

The predicate region-contains-position-p is true when the position position is
in the given region.

region-contains-point-p region x 11

region-contains-position-p region position

[Function]

[Function]

Remarks: These functions are extensions to Common Lisp.

~xamples: ;; Create a region whose origin is (100,100) and whose corner is (400,300).
> (setq reg (make-region :x 100 :y 100 :width 300 :height 200»
'<region 300x200 at (100,100) 596507>
> (region-contains-point-p reg 150 299)
T
> (region-contains-position-p reg (make-position 150 300»
NIL

12-108 Sun Common Lisp User's Guide

• • • regIon-corner, reglon-corner-x, reglon-corner-y,
region-height, region-width, region-origin,

• • • • • • •• regIon-orIgIn-x, reglon-orlgln-y, regIon-sIze

Purpose:

Syntax:

Remarks:

Each of these functions returns a component of a region.

region-corner region toptional result-position

region-corner-x region

region-corner-y region

region-height region

region-width region

region-origin region toptional result-position

region-origin-x region

region-origin-y region

region-size region toptional result-extent

You can use the macro setf with all these functions.

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

H a result-position argument is given for region-corner and region-origin, that
position is modified to the region's corner position or origin position and returned.
Otherwise a new position is created and returned.

H a result-extent argument is given for region-extent, that extent is modified
to the region's extent and then returned. Otherwise a new extent is created and
returned.

These functions are extensions to Common Lisp.

~xamples: :: Create a region whose origin is (400,500) and whose corner is (480,590).
> (setq r (make-region :x 400 :y 500 :width 80 :height 90»
#<region 80x90 at (400,,500) ada243>
> (region-corner r)
#<position (480,590) ada2e3>
> (region-corner-x r)
480
> (region-corner-y r)
590
> (region-height r)
90
> (region-width r)
80

The Window Tool Kit 12-109

region-corner, region-corner-x, region-corner-y, region-height,

> (region-origin r)
#<position (400.600) adbldb>
> (region-origin-x r)
400
> (region-origin-y r)
600
> (regiou-si&8 r)
#<extent 80x90 adb263>

12-110 Sun Common Lisp User's Guide

region-intersection, region-union

Purpose:

Syntax:

The function region-intersection returns the region covered in common by all of
the given regions. IT there is no intersection, it returns nU.

The function region-union returns the smallest region that contains all of the
supplied regions.

region-intersection region region treat regions

region-union region region treat regions

[Function]

[Function]

Remarks: These functions are extensions to Common Lisp.

Examples: > (setq rl (make-region :x 0 :y 0 :width 100 :height 200»
#<region 100x200 at (0,0) 6ac09S>
> (setq r2 (make-region :x 60 :y 160 :width 100 :height 100»
#<region 100xl00 at (50,160) 6acObd>
> (region-union rl r2)
#<region 150x250 at (0,0) 6acOce>
> (region-intersection rl r2)
#<region 50x50 at (60,160) 6acOe3>

The Window Tool Kit 12-111

region<, region<=, region=, region/=, region>,
region>=

Purpose:

Syntax:

Remarks:

Examples:

These functions test containment and equality fer regions.

The predicate region < is true if each argument except the last is contained in the
following argument.

The predicate region < = is true if each argument except the last is contained in
or equals the following argument.

The predicate region= is true if every argument is the same region ..

The predicate region/= is true if no two arguments are the same region.

The predicate region> is true if each argument except the last contains the
argument that follows it.

The predicate region>= is true if each argument except the last contains or is
equal to the argument that follows it.

region < region region I:reat region8

region<= region region I:reat region8

region= region region I:reat region8

region/ = region region I:reat region8

region> region region I:reat region8

region> = region region I:reat region8

[Function]

[Functio~]

[Function]

[Function]

[Function]

[Function]

These functions are extensions to Common Lisp.

> (aetq regionl (make-region:x O:y
region2 (make-region:x O:y 0
region3 (make-region:x 60:y 60
region4 (make-region :x 200 :y 300
region6 (make-region :x 160 :y 299
region6 (make-region :x 160 :y 299

#<Region 360x401 at (160.299) 4860CB>
> (region< regionl region2)
T
> (region< regionl regionl)
NIL
> (region<= regionl region2)
T

o :corner-x 100 :corner-y 100)
:corner-x 100 :corner-y 101)
:corner-x 200 :corner-y 300)
:corner-x 600 :corner-y 700)
:corner-x 600 :corner-y 701)
:corner-x 600 :corner-y 700»

12-112 Sun Common Lisp User's Guide

region<, region<=, region=, region/=, region>, region>=

> (region<- region1 region1)
T
> (region> region2 region1)
T
> (region> region2 region2)
NIL
> (region>- region2 region1)
T
> (region>- region2 region2)
T
;; For region/= to be true. the regions must be all different.
> (region/- region1 region2 regionS region4 region5 region6)
T
> (region/= region1 region2 regionS region4 region5 region6 region1)
NIL
> (region= region1 region1 region1 region1 region1)
T
> (region= region1 region2)
NIL

The Window Tool Kit 12-113

• reglonp

Purpose: The predicate regionp tests whether its argument object is a region. It returns
true if object is a region.

Syntax: regionp object

Remarks: This function is an extension to Common Lisp.

~xamples: > (regionp (make-region :x 0 :y 0 :width 100 :height 200»
T
> (regionp 8)
NIL

12-114 Sun Common Lisp User's Guide

[Function]

rename-font

Purpose:

Syntax:

Remarks:

See Also:

The function rename-font changes the name of the font font to the name
new-name. The name of the font in the registry is changed from its previous name
to the new name.

rename-font font new-name [Function]

The font argument must be a font, a string, or a symbol. If the argument is a
string or a symbol, the function find-font is called to find the font whose name is
the string or symbol.

The new-name argument is either a string or a symbol. H it is a symbol, the
symbol's print name is used.

This function is an extension to Common Lisp.

font-name

The Window Tool Kit 12-115

reshape-viewport

Purpose:

Syntax:

Remarks:

The function reshape-viewport moves and reshapes a viewport so that its screen
region is the region specified by the keyword arguments.

reshape-viewport viewport tkey : region : x : y
:width :height
:corner-x :corner-y

[Function]

The keyword arguments are used to specify the new region. All coordinates are
given in terms of the root viewport. You must specify enough keyword arguments
to identify the region uniquely.

The :x and :y keyword arguments specify the x- and !I-coordinates respectively of
the top-left corner of the region.

The :corner-x and :corner-y keyword arguments specify the x- and !I-coordinates
respectively of the point just below and to the right of the region.

The :width and :height keyword arguments specify the width and height
respectively of the region.

Moving a viewport also moves all of its descendants.

The root viewport cannot be reshaped.

This function is an extension to Common Lisp.

12-116 Sun Common Lisp User's Guide

root-viewport

Purpose:

Syntax:

Remarks:

The function root-viewport returns the root viewport.

root-viewport [Function]

The root viewport is a viewport onto a special bitmap that requires less memory
but has limited capabilities. You cannot modify the bits of this special bitmap in
any way without signaling an error.

This function is an extension to Common Lisp.

The Window Tool Kit 12-117

stream-current-font

Purpose:

Syntax:

Remarks:

The function stream-current-font returns the current font of a bitmap output
stream.

stream-current-font bitmap-output-stream [Function]

You can use the macro setf to modify the stream's current font. The second
argument to setf must be a font, a string, or a symbol. If the argument is a string
or a symbol, the function find-font is called to find the font whose name is the
string or symbol. Changing a stream's current font does not modify the stream's
linefeed distance.

This function is an extension to Common Lisp.

Examples: ;; Create a 100x200 bitmap.

See Also:

> (setq btmp (make-bitmap :height 100 :width 200»
#<Bitmap 200xl00 6ACEC3>
;; Create a bitmap output stream to that bitmap.
> (setq b-o-s (make-bitmap-output-stream :bitmap btmp»
#<Output-Stream to #<Bitmap 200xl00 6ACEC3> 6AD21D>
;; The bitmap output stream's current font is *default-font*.
> Ceq (stream-current-font *) *default-font*)
T

stream-llnereed-distance

12-118 Sun Common Lisp User's Guide

stream-draw-circle, stream-draw-line,
stream-draw-polyline

Purpose:

Syntax:

Remarks:

See Also:

The function stream-draw-circle draws a circle of radius radius around a bitmap
output stream's current position.

The function stream-draw ... line draws a line segment from a bitmap output
stream's current position to the position end. The bitmap output stream's new
current position becomes the position end.

The function stream-draw ... polyline draws a series of connected line segments,
starting at a bitmap output stream's current position and then going through each
position in a sequence of positions. The current position of the bitmap output
stream is left at the final position.

stream-draw-circle bitmap-output-stream radius
tkey :width :operation

stream-draw ... line bitmap-output-stream end
tkey :width :operation

stream-draw-polyline 6itmap-output-stream positions
tkey :width :operation

[Function]

[Function]

[Function]

If the :width keyword argument is specified, it defines the line width that is used
for drawing the line segments and circles. For the function stream-draw-circle,
the border is drawn so that its outer edge is at the specified radius; the width must
be less than or equal to the radius. If this keyword argument is omitted or nil, the
default value 1 is used.

The value of the keyword argument :operation controls how the bits that are
written onto the bitmap are combined with the bits that are already there. If this
keyword argument is omitted or nil, the bitmap output stream's operation is used.
You can find that operation by using the function stream-operation.

These functions are extensions to Common Lisp.

draw-circle

draw-line

draw-polyline

stream-operation

The· Window Tool Kit 12-119

stream-linefeed-distance

Purpose:

Syntax:

Remarks:

The function stream-linefeed-distance accesses the linefeed distance of a bitmap
output stream.

stream-linefeed-distance bitmap-output-stream [Function]

You can use the setf macro with this function to modify a bitmap output stream's
linefeed distance.

When a bitmap output stream is created, its linefeed distance is the height of the
initial font.

A stream's linefeed distance is used when one of the Common Lisp output
functions sends a newline character to the bitmap output stream. The bitmap
output stream's !I-coordinate is incremented by the linefeed distance, and the
x-coordinate is set to o.
This function is an extension to Common L!sp.

12-120 Sun Common Lisp User's Guide

stream-operation

Purpose:

Syntax:

Remarks:

The function stream-operation returns a bitmap output stream's default bitblt
operation, which is used in writing characters or figures to the bitmap output
stream's bitmap.

stream-operation bitmap-output-stream [Function]

You can use the macro setf with this function to set a new value. The new value
must be an acceptable first argument to the boole function.

This function is an extension to Common Lisp.

Examples: ;; Create a 100x200 bitmap.
> (setq x (make-bitmap :height 100 :width 200»
.<Bitmap 200xl00 AD476B>
;; Create a bitmap output stream to that bitmap. Specify an operation.
> (setq b-o-s (make-bitmap-output-stream :bitmap x :operation boole-l»
'<Output-Stream to .<Bitmap 200xl00 AD476B> AD64B3>
;; The stream operation of b-o-s is the specified operation.
> (eql (stream-operation b-o-s) boole-l)
T

The Window Tool Kit 12-121

stream-position, stream-x-position, stream-y-position

Purpose:

Syntax:

Remarks:

These functions return the output position of a bitmap output stream. The output
position specifies the next position for writing to the bitmap output stream '8

bitmap.

The function stream-position returns a position.

The function stream-x-position returns the x-coordinate of the position.

The function stream-y-position returns the !I-coordinate of the position.

stream-position bitmap-output-stream
I:optional result-position

stream-x-position bitmap-output-stream

stream-y-position bitmap-output-stream

[Function]

[Function]

[Function]

If a result-position argument is given for the function stream-position, that
position is modified to the output position and then returned. Otherwise a new
position is created and returned.

You can use the setf macro with these functions to modify a bitmap output
stream's position.

When a bitmap output stream is created, its stream position is the position whose
z-coordinate is 0 and whose !I-coordinate is the baseline height of the initial font.

These functions are extensions to Common Lisp.

Examples: ;; Create a bitmap and a bitmap output stream.
> (setq b-o-s (make-bitmap-output-stream :width 100 :height 200»
#<Output-Stream to #<Bitmap 100x200 AD75BB> AD8463>
;; Check the initial value.
> (and (= 0 (stream-x-position b-o-s»

(= (font-baseline *default-font*) (stream-y-position b-o-s»)
T
II Set the x position to a new value.
> (setf (stream-x-position b-o-s) 50)
60

12-122 Sun Common Lisp User's Guide

string-width

Purpose:

Syntax:

Remarks:

The function string-width determines how many bits wide the string string is
when printed in the font font.

string-width string font [Function]

The font argument must be a font, a string, or a symbol. If the argument is a
string or a symbol, the function find-font is called to find the font whose name is
the string or symbol.

The function may give false results if the string contains any characters that cannot
be printed, such as the newline character. The space character is a printable
character.

This function is an extension to Common Lisp.

The· Window Tool Kit 12-123

unread-any

Purpose:

Syntax:

Remarks:

See Also:

The function unread-any returns a character or mouse event object to the front
of a. meuse input :tre&m'g queue. The character or mouse event object must be the
same object that was last read from the queue.

unread-any cnar-or-mouse-eveni
ioptional mouse-input-stream

[Function]

The argument mouse-input-stream specifies a mouse input stream. H this argument
is omitted or nil, the mouse input stream that is the value of the function mouse
input is used. H the mouse-in put-stream argument is t, the mouse input stream
that is the value of the function keyboard-input is used.

This function is an extension to Common Lisp.

keyboard-input

mouse-input

read-any

12-124 Sun Common Lisp User's Guide

viewport-at-point, viewport-at-position

Purpose:

Syntax:

Remarks:

The function viewport-at-point interprets x and !I as the coordinates of a point
on the screen. It returns as its value the viewport that is displayed at that point
on the screen.

The function viewport-at-position is identical to viewport-at-point except
that it is passed a single position argument rather than x- and !I-coordinates.

viewport-at-point z 11

viewport-at-position position

These functions are extensions to Common Lisp.

[Function]

[Function]

The Window Tool Kit 12-125

viewport-bitmap

Purpose: The function viewport-bitmap returns a viewport's underlying bitmap.

Syntax: viewport-bitmap viewport [Function]

Remarks: This function is an extension to COlliIDon Lisp.

12-126 Sun Common Lisp User's Guide

viewport-hitmap-offset, viewport-hitmap-x-offset,
viewport-hitmap-y-offset

Purpose:

Syntax:

Remarks:

The function viewport-bitmap-offset returns the position that represents the
offset (from the bitmap's origin) of a viewport's origin. This offset indicates what
part of the bitmap is being displayed in the viewport.

The functions viewport-bitmap-x-offset and viewport-bitmap-y-offset
return the %- and !I-coordinates of the offset respectively.

viewport-bitmap-offset viewport &:optional result-position

viewport-bitmap-x-offset viewport

viewport-bitmap-y-offset viewport

[Function]

[Function]

[Function]

H a result-position argument is given for the function viewport-bitmap-offset,
that position is modified to the viewport's offset and returned. Otherwise a new
position containing the viewport's offset is created and returned.

You can use the setf macro with these functions to change the viewport's offset.
In particular, modifying viewport-bitmap-y causes vertical scrolling.

Any attempt to set the offset 80 that part of the viewport's clipping region falls
outside the bitmap boundaries results in an error.

These functions are extensions to Common Lisp.

The Window Tool Kit 12-127

viewport-bitmap-region, viewport-screen-region

Purpose:

Syntax:

Remarks:

The function viewport-hitmap-region returns a copy of a viewport's bitmap

The function viewport-screen-region returns a copy of a viewport's screen
clipping region.

viewport-hitmap-region viewport toptional result-region

viewport-screen-region viewport toptional result-region

[Function]

[Function]

H a region is passed as the second argument to these functions, the result is copied
into that region object and returned; otherwise a new region is created.

These functions are extensions to Common Lisp.

12-128 Sun Common Lisp User's Guide

viewport-children, viewport-parent

Purpose:

Syntax:

Remarks:

The function viewport-children returns a list of a viewport's children. The list
is in the same order as the children's sibling stack.

The function viewport-parent returns a viewport's parent.

viewport-children viewport

viewport-parent viewport

[Function]

[Function]

The setf macro for viewport-parent changes a viewport's parent. You can only
change a viewport's parent when the viewport is inactive. The viewport is put at
the top of the sibling stack of its new parent's children.

The setf macro can be used with the viewport-children function. The second
argument to setf must be a list of inactive viewports. All of the viewport
argument's children must also be inactive. The viewport argument's list of children
is modified to be the second argument; children in the sibling stack will appear in
the same order as in the viewport list. Any viewport in the viewport list whose
parent was not the viewport argument is modified so that its parent becomes
the viewport argument. Any viewport whose parent was formerly the viewport
argument but that is not in the viewport list becomes detached from the tree.

The parent of the root viewport is nil.

These functions are extensions to Common Lisp.

The Window Tool Kit 12-129

viewportp

Purpose: The predicate viewportp tests whether its argument object is a viewport. It

Syntax: viewportp object

Remarks: This function is an extension to Common Lisp.

Examples: "To run this example, you must have already initialized the
" Window Tool Kit.

" Create a 10xl0 bitmap and a viewport onto that bitmap.

[Function]

" Note that make-viewport returns two values, the viewport and the bitmap.
> (multiple-value-setq (vwpt btmp) (make-viewport :width 10 :height 10»
'Viewport 10xl0 at (0,0) onto '<Bitmap 10xl0 40D4E6> 40D61D>
> (viewportp vwpt)
T

> (viewportp btmp)
NIL

12-130 Sun Common Lisp User's Guide

window-frame

Purpose:

Syntax:

Remarks:

The function window-frame returns the window frame that is associated with a
given window.

window-frame window [Function]

The window frame can be thought of as a special bitmap; the image that this
bitmap displays on the screen is the window's frame. You cannot modify the bits
of this special bitmap in any way without signaling an error. You may attach
active regions to window frames in the same way that you normally attach active
regions to bitmaps.

You cannot use the setf macro with this function.

This function is an extension to Common Lisp.

The Window Tool Kit 12-131

window-inner-border-width,
window-outer-border-width

Purpose:

Syntax:

Remarks:

The function windQw-inner-border-width return!:! the width of the inner border
of the window.

The function window-outer-border-width returns the width of the outer border
of the window.

The window border consists of two strips: the black strip around the edge of the
window is the outer border, and the white strip inside the black strip is the inner
border.

window-inner-border-width window

window-outer-border-width window

[Function]

[Function]

The setf macro can be used with these functions to modify the widths of the inner
and outer borders of a window.

These functions are extensions to Common Lisp.

12-132 Sun Common Lisp User's Guide

window-title, window-title-font

Purpose:

Syntax:

Remarks:

Examples:

The function window-title returns the title of a window as a string.

The function window-title-font returns the font in which a window's title is
displayed.

window-title window

window-title-font window

[Function]

[Function]

You can use the setf macro with the function window-title to modify the title of
a window. The second argument to setf must be a string.

You can use the setf macro with the function window-title-font. Doing so
redraws the title of the window in the new font. The second argument to setf
must be a font, a string, or a symbol. If the argument is a string or a symbol, the
function find-font is called to find the font whose name is the string or symbol.

These functions are extensions to Common Lisp.

•• To run this example. you must have already initialized the
•• Window Tool Kit .

•• Create a window with the title "hello".
> (setq w (make-window :width 100 :height 2qO :tit1e "hello"»
#<WINDOW 4ACOAB>
> (window-title w)
"hello"
;; Note that the title font is *defau1t-font*.
> (eq (window-tit1e-font w) *defau1t-font*)
T
;; Modify the title.
> (setf (window-title w) "new-name")
"new-name"
> (window-title w)
"new-name"

The Window Tool Kit 12-133

window-vertical-scroll-ratio,
window-horizontal-scroll-ratio

Purpose:

Syntax:

Remarks:

See Also:

The functions windQw-vertical-@croll-ratio a.nd w 1ndow-horizoIltaI-scro!!
ratio return the vertical and horizontal scroll ratio respectively of a given
window.

window-vertical-scroll-ratio window

window-horizontal-scroll-ratio window

[Function]

[Function]

The scroll ratio is a Common Lisp ratio between 0 and 1. Generally the scroll
ratio is the ratio of the current location of the window to the size of the window's
underlying bitmap. However, window system developers may redefine the methods
for scrolling and for calculating these ratios so that scrolling may be performed
over an abstract bitmap or extent.

These functions may be used with the macro setf to specify a vertical or horizontal
ratio for the given window. H the value of the ratio is set to nfl, the window cannot
scroll and the scroll bars disappear.

These functions are extensions to Common Lisp.

make-window

12-134 Sun Common Lisp User's Guide

windowp

Purpose: The predicate windowp tests whether its argument object is a window. It returns
true if object is a window.

Syntax: windowp object

Remarks: This function is an extension to Common Lisp.

~xar.ople8: "To run this example, you must have already initialized the
•• Window Tool Kit.

> (setq w (make-window :width 100 :height 200 :title "hello"»
.<WINDOW 4ACOAB>
> (windowp w)
T
> (windowp 7)
NIL

[Function]

The Window Tool Kit 12-135

windows-available-p

Purpose:

Syntax:

Remarks:

The function windows-available-p checks the Lisp environment for a window
system that is capable of supporting the Window Tool Kit.

windows-available-p [Function]

The function windows-available-p returns a non-nil value if a window system is
available for the Window Tool Kit; otherwise it returns nil.

This function is an extension to Common Lisp.

12-136 Sun Common Lisp User's Guide

with-asynchronous-method-invocation-allowed

Purpose:

Syntax:

Remarks:

The macro with-asynchronous-method-invocation-allowed allows active
region methods and interrupt character methods to occur asynchronously rather
than sequentially.

It is only used inside the body of an active region method or an interrupt character
method. The form arguments are evaluated. Any pending active region methods
and any interrupt character methods that would normally be queued until the
current method terminated are instead run immediately.

with-asynchronous-method-invocation-allowed {form} * [Macro]

Normally, all active region and interrupt character methods are executed
sequentially. However, sometimes an active region or interrupt character
method needs to wait for the action taken by another active region method or
interrupt character method to occur. The macro with-asynchronous-method
invocation-allowed provides for this.

The form arguments are evaluated in an an environment where pending active
region methods and interrupt character methods are allowed to run. These
methods are executed sequentially with respect to each other unless one of them
contains a with-asynchronous-method-invocation-allowed form. .

Here is an example of the use of the with-asynchronous-method-invocation
allowed macro. H you wanted an active region method to display a pop-up menu,
the code would be similar to the following:

(with-asynchronous-method-invocation-allowed
(pop-up-menu-choose a-menu»

The with-asynchronous-method-invocation-allowed macro is necessary
because pop-up menus use active regions that must be allowed to execute
immediately.

This macro is an extension to Common Lisp.

The Window Tool Kit 12-137

with-fast-drawing-environment

Purpose:

Syntax:

Remarks:

The macro with-fast-drawing-environment groups display operations.
Overhead operations that are required to produce output are executed only once
rather than for every display operation in the group.

with ... fast=drawing ... environment {form} * [Macro]

The output for the group may not appear on the screen until the macro is exited.
Therefore, you should not use this macro to group operations that require user
input or that will run for a long time.

This macro is an extension to Common Lisp.

12-138' Sun Common. Lisp User's Guide

with-mouse-methods-preempted

Purpose:

Syntax:

Remarks:

The with-mouse-methods-preempted macro evaluates each of its form
arguments. While these forms are being evaluated, any active region that is not
attached to the bitmap argument is disabled. Its methods are not called even if a
mouse event occurs inside it.

The bitmap argument can also be nil. In this case, all active regions are disabled.

with-mouse-metho ds-preempted bitmap {form} * [Macro]

The results of evaluating the last form are returned as the results of with-mouse
methods-preempted.

This macro is an extension to Common Lisp.

The Window Tool Kit 12-139

12-140 Sun Common Lisp User's Guide

Chapter 13. The Editor

The Editor 13-1

Chapter 13. The Editor

Introduction to the Editor .. 13-3
Definitions and Notation .. 13-3
Functions and Commands ... 13-4
Entering and Leaving the Editor ... 13-5
The Display .. 13-6
The Editor Window ... 13--5
The Mode Line ... 13-7
The Echo Area ... 13-8
The Help Facility ... 13-10
Other Useful Information .. 13-11

Motion Commands ... 13-12
Keyboard Commands ... 13-12
Mark Commands ... 13-14

Modification Commands ... 13-16
Insertion Commands . 13-16
Deletion Commands .. 13-17
Killing and Unkilling .. 13-17
Miscellaneous Modification Commands 13-18

Searching, Replacing, and Filtering .. 13-20
Search Commands .. 13-20
Replacement Commands ... 13-21
Filtering .. 13-22

Buffers, Files, and Editor Windows .. 13-23
Buffer Commands .. 13-23
File Commands .. 13-24
File System Commands .. 13-25
Editor Window Commands ... 13-25

Editing Lisp. 13-27
Interacting with Lisp .. 13-30

Evaluation and Compilation .. 13-30
Top-Level Mode .. 13-31

Customizing the Editor .. 13-33
Editor Commands and Key Bindings ... 13-35

13-2 Sun Common Lisp User's Guide

Introduction to the Editor

The text editor for Sun Common Lisp is based on EMACS and its various
descendants. The Editor is a dIsplay editor: it exhibits on the screen the piece
of text that you are editing. Somewhere on the screen it places a cursor, an
indication of a location of current importance. You issue commands to move the
cursor or to modify the text near the cursor. Many commands are typed as a small
number of keystrokes, sometimes in sequence and sometimes as chords.

To understand the commands, you will need to become familiar with the definitions
discussed in the section that follows. After practicing the basic movement and
modification commands, you will be ready to try the more specialized commands,
such as those used for searching and replacing.

Certain editing capabilities are useful for Lisp programming. Sun Common Lisp
provides commands for formatting Lisp and for interacting with the outside Lisp
environment.

Advanced users should read the final section of this chapter, which deals with
customizing the Editor.

Definitions and Notation

Point

Several terms used throughout this chapter have special meanings. They are
gathered here for easy reference. Note in particular that "region" and "window"
in this chapter refer to Editor objects and not to window system objects.

In the Editor, the poiDt is the center of attention. The point lies between two
characters. It is represented in the display by the cursor, which is on the character
just after the point. Most Editor commands involve the point in some way. Here
are some examples. The command to insert a character inserts that character at
the point. There are two commands to delete characters: one deletes the character
before the point, and the other deletes the character after the point.

Mark and Region

The mark is another important location. Many commands store the point into
the mark. The regIon extends from the point to the mark. Many commands
limit their effects to the region. It is common to move the point to one end of an
intended region, store it in the mark, move the point to the other end, and then

The Editor 13-3

execute the regional command. The section "Mark Commands" discusses marks
and regions in more detail.

Buffer, File, and Editor Window

The terms "buffer," "file," and "Editor window" can all be used to refer to the
text that is being edited. The three terms emphasize different aspects of that text.
A bufFer is the Editor's internal representation of text. .A. file is the machine's
representation of text outside the Editor. An Editor window might be considered
the user's representation of text; it is what appears on the screen. The section
"Buffers, Files, and Editor Windows" contains a more detailed discussion of these
objects.

Typing Control Keys and Meta Keys

The Editor interprets various chords and sequences of keystrokes as single keys.
You may already be accustomed to some of these. "Capital B" is a single keystroke,
although you type it by holding down Shift and typing B.

Control keys are similar. Type "control-b" by holding down Ctrl and typing B.
This chord is called Ctrl-B.

Meta keys are entirely different. They use Esc as a prefix. To type "meta-b,"
press Esc, release it, and then type B.

Most meta-control keys can be typed by combining the ways of typing meta keys
and control keys. Another way to type these keys uses Ctrl-Z as a prefix; to type
"meta-control-b," type Ctrl-Z followed by B.

Ctrl-X is also used as a prefix for keys. Ctrl-XB is typed as Ctrl-X followed by
B.

Functions and Commands

The Editor performs many different functions. You control which function the
Editor performs by issuing commands. You may issue commands by typing a key
that is bound to the command or by typing an extended command.

Commonly used commands are bound to individual keys. Typing that key issues
the associated command. This allows you to give the command with just a few
keystrokes. The section "Customizing the Editor" explains how to modify key
bindings.

13-4 Sun Common Lisp User's Guide

Any command can be given as an extended command. Each command has a name.
You issue an extended command by using the Extended Command command.
(That command itself is invoked using its key binding to meta-X.)

Extended Command meta-X [Oommand]

The Extended COJDlDand command prompts for a command name and then
executes that command. The section "Other Arguments" discusses commands
that simplify the typing of the command name. In particular, Ctrl-G exits from
Extended Command without issuing another command.

Entering and Leaving the Editor

You can enter the Editor by typing the function ed to the top-level Lisp prompt:

> (ed)

IT you have invoked Lisp from an environment that supports a window system,
typing the function ed puts you in the Editor and initializes the Window Tool Kit.

Exit Editor Ctrl-XCtrl-Z [Oommand]

This command returns you to the top level of Lisp. It does not save any changes
you may have made to the buffer; the file version of the text is left unchanged. The
section "Buffers, Files, and Editor Windows" explains how to save modifications
so that they are visible from outside the Editor.

Mter using this exit command, typing the function ed to the top-level prompt
returns you to the same place in the Editor; it is as if you never left the Editor.

Note: IT you use ed to initialize the Window Tool Kit, you must continue to use
the Editor in the window environment for subsequent editing sessions. Similarly, if
you started the Editor as a terminal editor, you cannot integrate the Editor with
the Window Tool Kit in subsequent editing sessions; you must continue to use the
Editor as a terminal editor.

The Editor 13-5

The Display

The Editor divides the screen into three important parts: the· Editor window, the
mode line, and the echo area.

• The Editor window is a large rectangular area that displays text. It occupies
most of the screen.

• The mode line is one line of information just below the Editor window.
Normally, the mode line is displayed in reverse video for emphasis.

• The echo area is the bottom line of the screen.

The functions of the parts of the display are described in the following sections.

The Editor Window

The Editor window shows a portion of the current buffer. In general, each line of
the buffer appears on one line of the Editor window. However, if the line is too long
to fit on one line of the screen, it continues on the next line of the Editor window.
The character backslash (\) appears in the last column of a line to indicate that
the next line of the Editor window is a continuation.

The cursor shows the current location of the point. The cursor is on top of the
character following the point. Certain characters are displayed on the screen
as more than one character. In particular, a tab character can appear as some
number of space characters, and various nonprinting control characters appear in
a two-character form. For example, the newpage character (control-L) appears as
"L. When the point precedes one of these characters, the cursor appears on the
first character of the representation.

H you are using the Editor from within the Window Tool Kit, each window has a
pop-up menu that describes the available commands. You can access this menu
by clicking the right mouse button on the window you wish to manipulate. The
menu lists the options for moving a window and for changing its size. By clicking
the right mouse button, you can select an option. To mark text and to move the
cursor, you click the left mouse button. See the chapter "The Window Tool Kit"
for more detailed information.

You can use the following commands to create, to move to, or to delete windows
or to redisplay a window that looks different from what is described in the section
"The Display."

13-6 Sun Common Lisp User's Guide

Refresh Screen Ctrl-L [Oommand]
This command clears the screen and then redisplays what was supposed to be on
the screen.

Next Window Ctrl-XN [Oommand]
Ctrl-XO

When there are multiple Editor windows, the point is in only one of them. This
command moves the point to the next window.

Delete Next Window Ctrl-Xl [Oommand]
This command deletes the next window. Repeated use of the command makes the
current window the only window.

New Window Ctrl-X2 [Oommand]
This command creates a new Editor window.

The Mode Line

The mode line displays important information about the buffer, including the
name of the editor, the buffer name, the buffer status, and the editor mode. Here
is an example of a mode line:

-**--Ed: test.file (Fundamental)-----------------------------------

This particular mode line states that the editor is the Common Lisp Editor (Ed:).
Thus, confusion with other programs that have similar displays (EMACS, for
example) is avoided. The mode line's Editor window contains a buffer named
test. file. The characters ** indicate that the buffer has been modified since
it was last written. H the characters -- rather than the characters ** appear in
that position on the mode line, the buffer has not been modified since it was last
written. The Editor is in fundamental mode «(Fundamental».

Fundamental Mode [Oommand]
The normal behavior of certain commands may change somewhat depending on the
current mode. Fundamental mode is the basic mode of the Editor. H the Editor
somehow gets into another mode, the command Fundamental Mode returns the
Editor to its normal behavior. The section "Editing Lisp" discusses another mode.

The Editor 13-7

The Echo Area

The echo area is located at the bottom of the screen. It is used for communication
with the user. The Editor sometimes prints out messages about what it is doing. It
also prints error messages there when you ask it to do something that it cannot do.
For example, if you issue a command to move the point backwards one line from
the first line of the buffer, the Editor prints No previous line in the echo area.

Prefix Arguments

A prefix argument is a number that can be supplied to a command. The prefix
argument is set just before issuing the command. The most common use of the
prefix argument is as a repeat count. In general, a negative prefix argument causes
a command to be executed "backwards." (There is a command to move the point
to the next line of the buffer. With a negative prefix argument, that command
moves the point toward the beginning of the buffer.)

Argument Digit meta-digit [Command]
This command is used to set the prefix argument. Typing meta-4meta-3 sets the
prefix argument to 43. This command is intended to be invoked only through a
key binding.

Negative Argument meta-- [Command]
This command is used to generate a negative prefix argument. It negates any
numeric prefix argument that follows it, or it sets the prefix argument to -1 if
there is no following argument.

Universal Argument
Universal Argument Default

Ctrl-U [Command]

[Variable]
The command Universal Argument sets or modifies the prefix argument. If
it is followed by a number, it sets the prefix argument to that number. Typing
Ctrl-U43 also sets the prefix argument to 43.

If the command Universal Argument is followed immediately by another
command, then it multiplies its own prefix argument by Universal Argument
Default, a variable whose default value is 4. Typing Ctrl-UCtrl-F would
normally pass a prefix argument of 4 to the command bound to Ctrl-F, and typing
Ctrl-UCtrl-UCtrl-F would normally pass that command an argument of 16.

13-8 Sun Common Lisp User's Guide

Other Arguments

Many commands prompt for arguments. Both the prompt and the characters you
type appear in the echo area. These arguments are of two types: single-character
arguments and string arguments.

Single-character arguments are relatively simple. You type a character and the
corresponding command is executed.

String arguments are more complicated. Often the string must be one of a small
set of possible answers. Many times there is a default value for the string. Most of
the motion commands and modification commands are available for editing string
arguments. (In particular, Quoted Insert, which is bound to Ctrl-Q, can be used
to put unusual characters in the string.) In addition, you can use the following
commands to type and edit arguments.

Help on Prompt Ctrl-_ [Oommand]
meta-H

Most commands that prompt for an argument set a help string that explains in
more detail what the command needs. This command prints that string. Moreover,
if there are only a few, it prints a list of possible completions of the current string.
This command ignores the prefix argument.

Complete Keyword Tab [Oommand]
Complete Field Space [Oommand]
These commands attempt to complete some of the current string argument. IT they
cannot complete that part, then they beep the terminal. IT there are only a few
possible completions, then they display those completions. Complete Keyword
tries to finish the entire string. Complete Field only tries to complete it up to
the next separator.

Confirm Parse Return [Oommand]
Linefeed

This finishes the prompting. IT nothing has been typed to- the prompt, then it
returns the default value. Otherwise it checks whether the string is a valid answer
to the prompt and either returns the string or signals an error. This command
ignores the prefix argument.

Next Parse
Previous Parse

Ctrl-N
Ctrl-P

[Oommand]
[Oommand]

The Editor maintains a record of previous attempts at string arguments. These
commands replace the current incomplete attempt with another try. The prefix
argument is used to choose an old string argument that is not adjacent to the
current one. IT the current string is not the empty string, it is added to the list of
old strings. IT the prefix argument is 0, it displays the record of strings.

The Editor 13-9

Beginning Of Parse Ctrl-A [Command]
This command moves the point to the beginning of the string argument. It is
careful not to do anything to the prompt. It ignores the prefix argument.

Kill Parse Ctrl-W [Command]
This command removes all the text from the current attempt at a string. It ignores
the prefix argument. (See the section "Killing and Unkilling.")

Insert Parse Default [Command]
This command inserts the default string at the point. This allows you to edit
that string to get a string that is similar to it. This comm~d ignores the prefix
argument.

The Help Facility

The Editor includes a list of all the commands, a brief description of each command,
and information about what keys are bound to which commands. This information
is available through the command Help.

Help meta-? [Command]
meta-H
Ctrl-_

This command is the help facility. It prompts for a single character that determines
what sort of help to give. These are the choices:

A

C

D

G

H
?

List commands whose names include a specified string.

Describe the command bound to a particular key.

Give the documentation for a particular Editor command.

Give the documentation for a particular Editor object.

Explain the options in the help command.

L List the last 60 characters typed.

N Quit (from help) without doing anything.
Q
Backspace
Delete

W List all the key bindings for a particular Editor command.

13-10 Sun Common Lisp User's Guide

Apropos [Oommand]
This command prompts for a string. It then displays the name of each command
that includes that string as part of its name.

Describe Key [Oommand]

This command prompts for a keystroke. It then shows the name of the function, if
any, that is bound to that key.

Describe Command [Oommand]

This command prompts for the name of a command. It then prints out the
documentation string associated with that command.

Generic Describe [Oommand]

This command uses two user-supplied arguments. First it asks what sort of thing
it is supposed to describe: a command, a key, a variable, or a character attribute.
Then it asks which particular thing it is supposed to describe. After it collects all
this information, it displays the corresponding documentation string.

View Lossage [Oommand]

This command prints out the last 60 characters typed. This is useful when
something unusual has just occurred and you want to know what you actually
typed.

Where Is [Oommand]
This command prompts for the name of a command. It prints out a list of all keys
that are bound to that command.

Other Useful Information

Many commands interpret Ctrl-G as a signal to stop execution and return
(unfinished). This signal is most often used to get out of prompting.

You may use the meta-H key to get some sort of help message in many
circumstances. Many commands that prompt for input also type a help message
in response to meta-H.

It is important to remember the difference between a buffer and a file. After
editing text, the buffer (that is, the edited version) differs from the corresponding
file. The command Save File should be used to make your changes permanent.
H, in retrospect, the changes were a mistake, the command Revert Buffer can
be used to restore the buffer to its earlier state if it has not been saved in the
corresponding file. (See the section "Buffers, Files, and Editor Windows" for more
information.)

There are commands that remove large portions of text in just a few keystrokes.
That text can be recovered. (See the section "Killing and Unkilling.")

The Editor 13-11

Motion Commands

Perhaps the most frequently used commands are those that move the point around
in the buffer. They are divided into two groups: keyboard commands that move
the point, and keyboard commands that manipulate the point and the mark.

Keyboard Commands

The following commands move the point around in the buffer. The point is always
displayed in the Editor window. IT the point is moved outside the Editor window,
then the Editor window is changed so that the new location of the point is inside
the Editor window.

Next Line Ctrl-N [Command]

Previous Line Ctrl-P [Command]

These commands move the point to the same position in another line. Without a
repeat count, the point moves to an adjacent line. With a repeat count, the point
is positioned that many lines away. A negative repeat count moves the point in the
opposite direction. IT the destination line is too short to have the same position,
the point is put at the end of the line.

Next Line with no argument or with an argument of 1, and with the point on
the last line of the buffer, lengthens the buffer by one line. Other attempts to
move the point outside the current bounds of the buffer fail; the point moves to
the beginning or end of the buffer, but no farther.

Forward Character Ctrl-F [Command]

Backward Character Ctrl-B [Command]

Echo Area Backward Character Ctrl-B [Command]

These commands move the point one character in the buffer. Forward Character
moves the point forward one character in the buffer. With a repeat count, it moves
the point forward that many characters. A negative repeat count moves the point
backward in the buffer. Moving forward from the end of a line puts the point at
the beginning of the next line. This command does not increase the size of the
buffer; the point stops at the end of the buffer. Backward Character is similar
except that it moves the point backward in the buffer. Echo Area Backward
Character is used during prompting; it is particularly careful not to move into
the prompt.

13-12 Sun Common Lisp User's Guide

Forward Word meta-F [Command]

Backward Word meta-B [Command]

Echo Area Backward Word meta-B [Command]

These commands move the point one word in the buffer. A word is a collection
of consecutive letters and numbers. Forward Word with no repeat count moves
the point forward to the end of the first word it finds. (H the point is already in a
word, then the command finds that word.) With a repeat count, it moves the point
to the far end of the indicated word. Backward Word moves the point toward
the beginning of the buffer to the far end of the indicated word. With a negative
prefix argument, these commands move the point in the opposite direction. Echo
Area Backward Word is careful to avoid damaging the prompt.

Beginning of Line Ctrl-A
End of Line Ctrl-E

[Command]

[Command]
These commands position the point at one end of a line. With no argument or with
an argument of 0, the point is repositioned on the current line. H the argument is
-1, the point is repositioned on the previous line. All negative arguments position
the point on previous lines. H the argument is 1, then the point is put on the
following line. Larger arguments move the point to later lines. These commands
do not make the buffer larger; they move the point to the beginning or end of the
buffer, but not beyond.

Beginning of Buffer meta-< [Command]

End of Buffer meta-> [Command]

These commands position the point at one end of the buffer. They save the point
by pushing it onto the mark stack (see the section "Mark Commands"). They
ignore the prefix argument.

Move to Window Line meta-R [Command]

This command moves the point to the beginning of a particular line in the window.
The prefix argument specifies which line. A value of 0 indicates the top line of
the window, and larger numbers indicate successive lines. A value of -1 indicates
the bottom line, and larger (negative) numbers indicate earlier lines. The prefix
argument for this command defaults to o.
Back to Indentation meta-M [Command]

meta-Ctrl-M
This command moves the point to the first printing character on the current line.

Scroll Window Down
Scroll Window Up
Scroll Overlap

Ctrl-V
meta-V

[Command]

[Command]

[Variable]

These commands show the next or the previous screenful of text in the buffer.
Scroll Overlap determines how many lines from one screenful are also in the next
screenful. H the new screenful does not contain the point, then the point is moved

The Editor 13-13

to a new position that is just barely in the Editor window. H a prefix argument is
supplied, then these commands scroll the Editor window by that many lines.

Next Page Ctrl-X] [Command]

Previous Page Ctrl-X[[Command]

Pages are separated by the newpage character (control-L). These commands place
the point at the beginning of a page. Next Page places it at the beginning of the
next page, and Previous Page places it at the beginning of the current page. The
prefix argument determines which page boundary is the new location of the point.

Count Lines Page Ctrl-XL [Command]

This command displays in the echo area three numbers: the number of lines on
the current page, the number of lines on the current page before the point, and
the number of lines on the current page after the point. This command ignores the
prefix argument.

Mark Commands

Various commands manipulate the mark in some manner. The Editor actually
maintains the mark as a stack of marks ten deep, the top of which is the mark
itself. Most commands that change the mark do so by pushing a new value for the
mark onto the stack.

The mark and the point together define the region. Use these commands to make
sure the region is correct before using a region command.

Set/Pop Mark Ctrl-@ [Command]
This command performs various functions, depending on its prefix argument. It
examines Universal Argument Default to interpret its prefix argument. If you
supply a prefix argument whose value is different from the value of the Universal
Argument Default or its square, an error is signaled.

Ctrl-@ sets the mark to the current location of the point.

Ctrl-UCtrl-O moves the point to the mark and then pops the mark off the stack.

Ctrl-UCtrl-UCtrl-@ pops the mark off the stack.

Exchange Point and Mark Ctrl-XCtrl-X [Command]
This command exchanges the point with the mark. It pops the old mark off the
stack; it does not push the point on top of the old value.

Mark Page Ctrl-XCtrl-P [Command]
This command places the point at the beginning of a page and the mark at the
end of the same page. Normally, this command uses the current page. A positive
prefix argument indicates which following page to use; a negative one chooses a
previous page.

13-14 Sun Common Lisp User's Guide

Mark Whole Buff'er Ctrl-XH [Command]
First, this command pushes the current location of the point onto the mark stack.
Then it places the point at one end of the buffer and the mark at the other end.
Normally, the point is placed at the beginning and the mark at the end. If there is
a prefix argument, then the mark is placed at the beginning and the point at the
end.

Count Lines Region [Command]
This command displays in the echo area the number of lines in the region. This
command ignores the prefix argument.

The Editor 13-15

Modification Commands

This section describes the commands for changing the contents of a buffer.
Roughly speaking, the commonly used commands come first. The commands
for case modification~ transposition! and modifying white space are useful; but
occasions for using them arise less often.

Insertion Commands

These commands put new characters at the point. (Remember that the point is
insertion between characters.) The new location of the point is usually after the
new character in the buffer. This means that inserting large blocks of text is just
like typing in text in the normal way.

Self Insert [Command]

This command inserts the character into the buffer at the point. With a repeat
count, that many copies of the character are inserted at the point. It is bound to
all printing characters and to Space. This command is intended to be invoked
only through a key binding.

Quoted Insert Ctrl-Q [Command]

Many characters, particularly control characters, have a special meaning to the
Editor. This command is used to insert those characters into the buffer. It reads
the next character from the keyboard and inserts that character, whatever it is,
into the buffer at the point. H it has a repeat count, then it inserts that many
copies of the character at the point.

New Line Return [Command]

This command moves the point to the beginning of a new line. This usually works
like inserting a newline character at the point. However, if the point is at the end
of the current line and the next two lines are blank, then this command moves the
point to the beginning of the next line and cleans away any white space characters
on that line. This command interprets a prefix argument as a repeat count.

Open Line Ctrl-O [Command]

This command inserts a newline character after the point. The prefix argument
tells how many newline characters to insert.

13-16 Sun Common Lisp User's Guide

Deletion Commands

These commands are used to remove a small piece of text from the buffer. They all
use the prefix argument as a count of how many characters to remove. To remove
a large section of text, consider using a kill command instead.

Delete Next Character
Delete Previous Character

Echo Area Delete Previous Character

Ctrl-D
Delete

Backspace
Delete

Backspace

[Command]
[Command]

[Command]

These commands remove from the buffer a character that is next to the point.
(Remember that the point is between two characters.) The echo-area version is
particularly careful to avoid damaging the prompt.

Delete Previous Character Expanding Tabs [Command]
This command is exactly like Delete Previous Character except for its
treatment of tab characters. This command converts a preceding tab character
into some number of space characters before removing a character from the buffer.

Killing and Unkilling

Like the deletion commands, the commands for killing remove text from the
buffer. However, there is an important difference between these commands. The
commands for killing save the text in a structure called the kill ring, which means
that the text can be recovered. The recovery process, called unkilling, puts the
text back at the point. Consecutive commands for killing save their text in the
same chunk, so all that text can be restored with a single command.

~hen used with motion commands, commands for killing and unkilling can move
chunks of text around in a buffer.

Kill Line
Backward Kill Line

Ctrl-K [Command]
[Command]

These commands remove a line of text. Without a prefix argument, Kill Line kills
the text after the point on the current line. If the line is blank after the point, then
the command kills any white space at the end of the line and kills the following
newline character. Therefore, if the point is at the beginning of a nonblank line,
issuing Kill Line twice completely removes the line. Backward Kill Line either
removes all characters preceding the point on the current line or, if there are no
characters, removes the preceding newline character and any trailing white space
from the previous line.

The prefix argument is not really a repeat count for these commands. Instead, it
tells how many lines to kill. A prefix argument of 16 causes 16 lines to be killed. If

The Editor 13-17

it were a repeat count, it would cause somewhere from 8 to 16 lines to be killed,
depending on just how many of them were blank.

Kill Next Word
Kill Previous Word

Echo Area Kill Previous Word

meta-D

meta-Delete
meta-Backspace

meta-Delete
meta-Backspace

[Command]

[Command]

[CO-mmand]

These co!!'unands are related to Forward Word and Backward 'Word. The
motion commands move the point to a new location. The killing commands make
the point and the new location identical by killing the intervening text. The
echo-area version of the command, as usual, is careful about the prompt.

Kill Region Ctrl-W [Command]

Save Region meta-W [Command]
These commands remove and restore regions of text. Kill Region kills the current
region. It is a way to remove large pieces of text. Save Region makes a copy of
the current region and stores that in the kill ring.

Un-Kill Ctrl-Y [Command]

This command restores the most recently killed portion of text. Using this
command more than once produces multiple copies of the most recently killed text.
A prefix argument indicates which portion of killed text should be restored.

Rotate Kill Ring meta-Y [Command]
This command kills the current region and replaces it with the next most recently
killed portion of text. A prefix argument indicates which portion of text should be
restored.

Miscellaneous Modification Commands

You may use the following commands for other common modifications.

Case Modification Commands

Uppercase Word meta-U [Command]

Lowercase Word meta-L [Command]

Capitalize Word meta-C [Command]

These commands modify the case of a word, as indicated. A prefix argument tells
how many words to modify. A negative prefix argument says to modify words
before the point.

13-18 Sun Common Lisp User's Guide

Transposition Commands

Transpose Characters Ctrl-T [Command]

Transpose Words meta-T [Command]

Transpose Lines Ctrl-XCtrl-T [Command]

These commands reorder pieces of text; they exchange the next piece with the
previous piece. (If the point is inside an appropriate piece of text, that piece is
used instead of one that follows.) Transpose Characters trades the letters before
and after the point. The point is advanced one character position, so repeated use
drags a character through the following text. Transpose Words trades the next
word with the word before that. It affects only the words themselves; punctuation
and white space are preserved. The point is put at the end of the new second
word. Transpose Lines trades the current line and the previous line. The point
is put at the beginning of the line following the two that are exchanged. These
commands interpret the prefix argument as a repeat count.

White Space Commands

Delete Horizontal Space [Command]

This command removes all space characters and tab characters on either side of
the point.

Delete Indentation meta-A [Command]
meta-Ctrl- A

This command joins the current line to the previous line by deleting the newline
character and any extra white space between them. Normally, exactly one space
character is left in place of the newline character. However, there are three
situations in which no white space is left behind: when the space character would
be the first character of the line, when the space character would immediately
follow a left parenthesis, or when the space character would immediately precede a
right parenthesis.

Just One Space [Command]

This command deletes the space surrounding the point. Then it inserts one space
character. The prefix argument tells how many space characters to insert at the
point.

Indent Rigidly Ctrl-XTab [Command]

This command modifies the indentation for each line in the current region. The
prefix argument tells how many space characters to insert in the indentation. A
negative prefix argument says to delete space from the indentation. If possible,
space characters in the indentation are converted to tab characters.

The Editor 13-19

Searching, Replacing, and Filtering

Search commands move the point to a place in the buffer that matches a given
pattern. Replacement commands substitute one block of text for another uniformly
in the buffer. Both search commands and replacement commands come in two
varieties: interactive and noninteractive.

Filtering is a more general form of replacement. A filter is a Lisp function that
maps strings into strings. The filter command uses a filter on several consecutive
lines of the buffer.

Search Commands

Forward Search [Command]

Reverse Search [Command]

These commands search for a given string in the current buffer. First they prompt
for the string. Then they move the point to the far end of the string. These
commands, particularly in large buffers, are faster than the interactive search
commands. These commands push their starting location onto the mark stack.
These commands ignore the prefix argument.

Incremental Search Ctrl-S
Ctrl-R

[Command]

[Command] Reverse Incremental Search
These commands invoke an interactive search mechanism. They prompt for
a search string. After each character of the search string is typed, the search
mechanism moves the point to the first instance in the appropriate direction of the
current search string. H there is no instance of the search string, then the search
fails and the point stays in the same place. Printing characters, those bound to
Self Insert, are added to the search string. Almost any other character stops
the searching and issues another command through its key binding. The following
characters have special meaning to the search routines:

Ctrl-S
or
Ctrl-R

Ctrl-Q

Delete

H the current search string is null, insert the default search string.
(The default is whatever was used last time.) Then look for the next
instance of the current search string in the indicated direction-forward
for Ctrl-S or backward for Ctrl-R.

Append the next character to the search string and continue searching.
This prevents the next character from being interpreted as a command.

Undo the effect of the last character typed.

13-20 Sun Common Lisp User's Guide

Ctrl-G

Esc

H the search is currently succeeding, that is, if it found something after
the last character was typed, end the searching and return the point to
its location when the search was started. H the search is currently failing,
return the point to the last location where a successful search ended.

Exit search at the current location.

Replacement Commands

Replace String [Command]

This command prompts for old text and then for new text. It replaces all instances
of the old text following the point with the new text. A prefix argument specifies
how many substitutions to perform. If there are not enough instances of the old
text to allow that many substitutions, the Editor makes as many substitutions as
it can.

Query Replace meta-% [Command]

This command prompts for old text, then for new text. It looks for the old text in
the current buffer after the point. Whenever it finds the old text, it prompts you
for the next action. These are the available choices:

y
Space

N
Delete

Do the replacement and keep searching.

Do not perform the replacement but keep searching.

Replace this instance and all later ones.

Replace this instance but do not look for any more.

Esc Do not replace this one; do not look for any more.

? Show a list of available options.
H

The Editor 13-21

Filtering

Filtering can cause regular changes that are more complicated than just
substitution. A filter is a Lisp function that takes a single string as an argument
and returns a string as its result.

Filter Region [Command]

This command prompts for a filter. It then replaces each line in the region with
the string that is returned as a result of calling the filter. This command ignores
the prefix argument.

13-22 Sun Common Lisp User's Guide

Buffers, Files, and Editor Windows

The Editor supports multiple buffers and Editor windows. Each buffer may be
displayed in zero or one or more Editor windows. Different Editor windows can
display different parts of the same buffer. The current Editor window is the Editor
window that contains the point. The current buffer is displayed in the current
Editor window.

Buffer Commands

Select Previous Buffer meta-Ctrl-L [Oommand]

Select Buffer Ctrl-XB [Oommand]

These commands find a different buffer to display in the current Editor window.
Select Previous Buffer chooses the buffer that was most recently displayed.
Select Buffer prompts for the name of a buffer to use. The default choice of
buffer is the previous buffer. Select Buffer creates a new buffer if the indicated
buffer does not exist.

Kill Buffer Ctrl-XK [Oommand]

This command destroys a buffer. It prompts for the buffer to destroy. Since the
contents of the buffer disappear forever when the buffer is destroyed, the Editor
first gives you the opportunity to save the buffer in a file. H the current buffer is
destroyed, the previous buffer replaces the current buffer in all Editor windows
that displayed the current buffer. H any noncurrent buffer is destroyed, all Editor
windows that displayed that buffer are destroyed also.

List Buffers Ctrl-XCtrl-B [Oommand]

This command creates or selects the buffer .buffer list •. It puts a list of all the
existing buffers into that buffer along with certain useful information about each
buffer. Finally, it displays that buffer in another Editor window.

Buffer Not Modified meta-'" [Oommand]

A buffer is considered modified if it is different from the most recent permanent
version of the buffer. This means that a buffer is unmodified right after reading it
in from a file or right after writing it out to a file. Some sequences of commands
leave the buffer exactly the same but convince the Editor that the buffer is now
modified. For example, killing a portion of text and then immediately unkilling it
leaves the buffer the same as it was before. The Editor offers you an opportunity
to save modified buffers before destroying them.

The command Buffer Not Modified tells the Editor that the current buffer has
not really changed.

The Editor 13-23

Revert Buffer [Command]

This command discards the text in the buffer and replaces it with the text from
the corresponding file. (There must be a corresponding file.) It first queries you to
make sure this is not a mistake. It ignores its prefix argument.

Rename Buffer [Command]

This command prompts for a new name for the current buffer. The default value
for the name is the same as the name of the associated file, if any. This command
then cha.nges the na.me of the current buffer to the indicated value.

Insert Buffer [Command]

This command prompts for the name of a buffer. It then inserts the contents of
the indicated buffer at the point.

File Commands

Visit File Ctrl-XCtrl-V [Command]

This command replaces the contents of the current buffer with the contents of the
indicated file. IT the current buffer is modified, this command gives you a chance
to save the changes. Then it prompts for the name of a file. Finally, it reads the
contents of that file into the current buffer.

Find File Ctrl-XCtrl-F [Command]

This command displays the indicated file in a buffer. First it prompts for the name
of a file to display. H that file already has an associated buffer, then it chooses that
buffer and displays it. (There are several options available if that buffer contains
an old version of the file.) Otherwise, the Editor creates a new buffer and reads
the indicated file into that buffer. There are additional choices if the default name
for that buffer is already in use.

Backup File
Save File
Write File

Ctrl-XCtrl-S
Ctrl-XCtrl-W

These commands write the contents of the current buffer into a file.

[Command]

[Command]

[Command]

Save File
writes it in the file associated with the buffer, if there is one; otherwise it prompts
for the name of the file to use. Write File always prompts for the name of the
file. It uses the name of the associated file as a default. Both commands set the
associated file to the one used. They also change the name of the buffer to match
if that buffer name is not already in use. Backup File prompts like Write File
but does not change the associated file or the name of the buffer.

13-24 Sun Common Lisp User's Guide

Save All Files
Save All Files and Exit Ctrl-XCtrl-C

[Command]
[Command]

These commands save modified buffers in their associated files. If a buffer is not
marked as modified, it is not saved; if a buffer does not have an associated file, it is
not saved. After all files are saved, Save All Files and Exit returns you to Lisp.

Insert File [Command]
This command inserts the contents of a file at the point. It prompts for the name
of the file.

File System Commands

Delete File [Command]
This command prompts for the name of a file and then tries to delete that file from
the external file system. It ignores the prefix argument.

Rename File [Command]
This command prompts for the current name of a file and for a new name for that
file. It then tries to rename that file in the external file system. This command
ignores the prefix argument.

Copy File [Command]
This command prompts for the name of an existing file and for the name of a new
file. It then tries to copy the first file into the second file. This command ignores
its prefix argument.

Directory [Command]
This command prompts for a pathname, which may contain wildcards. Then it
tries to print a directory list of the indicated files. This command ignores the prefix
argument.

Editor Window Commands

The Editor divides the screen into Editor windows. If you have used the function
ed to invoke the Editor from the suntools environment, the Editor windows are
actually Window Tool Kit windows and can be manipulated as such. (See the
chapter "The Window Tool Kit.") Each editor window displays part of some buffer
and has a mode line that describes some details of that buffer.

Refresh Screen Ctrl-L [Command]
This command combines two functions. It clears and redisplays the entire screen,
and it repositions the current window. With no prefix argument, it centers the
current line in the current window. A prefix argument specifies the new location in
the current window of the current line; nonnegative prefix arguments indicate lines

The Editor 13-25

counting from the top of the window (0 means the first line), and negative prefix
arguments indicate lines counting from the bottom of the window (-1 means the
bottom line).

Next Window Ctrl-XN
Ctrl-XO

[Command]

"P ... n. .. ,.~,.,. ft UT~ ;I,.,...... ".L_'I ~_ r,.., .1
A ... "' ~IL&"" ~~....... "'''J.-J.-..A..C" l~-ommanaJ

These commands move the point to another Editor window. The windows are
kept in a circular list. Next Window moves through the list in one direction,
and Previous Window moves in the other. These commands ignore the prefix
argument.

New Window Ctrl-X2 [Command]
This command splits the currently selected Editor window on the screen into two
pieces. The new window displays the current buffer. This command ignores the
prefix argument.

Delete Window Ctrl-XD [Command]
Delete Next Window Ctrl-Xl [Command]
These commands delete Editor windows from the display. The area of the deleted
Editor windows is added to adjacent Editor windows. These commands ignore the
prefix argument.

Enlarge Window Ctrl-X" [Command]
This command makes the current Editor window larger. The prefix argument, if
present, specifies how much to expand the Editor window.

Line to Top of Window [Command]
Line to Center of Window [Command]
These commands modify the display so that the current line is in the indicated
position of the current Editor window. These commands ignore the prefix
argument.

Scroll Window Down
Scroll Window Up
Scroll Next Window Down
Scroll Next Window Up

Ctrl-V
meta-V

[Command]
[Command]
[Command]
[Command]

These commands display an adjacent part of the buffer in the designated editor
window. Scroll Window Down and Scroll Window Up are explained in
detail in the section "Motion Commands." The "next window" versions of these
commands behave in the same manner but affect the next Editor window instead
of the current Editor window.

13-26 Sun Common Lisp User's Guide

Editing Lisp"

This section describes commands to move around the buffer by units of Lisp
expressions instead of by units of words or lines. It also describes commands that
modify and format Lisp code.

LISP Mode [Oommand]
This command sets the major mode of the Editor to Lisp mode. This alters some of
the key bindings. Certain commands are made more easily available for formatting
Lisp programs. This command ignores the prefix argument.

Forward List meta-Ctrl-N [Oommand]
Backward List meta-Ctrl-P [Oommand]
These commands operate on balanced sets of parentheses. Note that the balanced
sets of parentheses may not be lists in the Lisp sense; some of the parentheses may
be in strings or in comments. Forward List searches forward for a parenthesis. If
it finds a right parenthesis, then it places the point just after that parenthesis; if it
finds a left parenthesis, then it places the point just after the corresponding right
parenthesis. Backward List works similarly, but in the opposite direction. Both
commands interpret the prefix argument as a repeat count.

Forward Form meta-Ctrl-F [Oommand]
Backward Form meta-Ctrl-B [Oommand]
These commands try to find the right form in the buffer and then move the point
to the far end of that form. For these commands, a form is considered to be a list,
a symbol, or a quoted string. Each form may be preceded by certain characters
that are significant to Lisp and that are a part of the form. Again, the Editor
does not really understand strings and comments. The prefix argument is a repeat
count for these commands.

Backward Up List meta-Ctrl-([Oommand]
meta-Ctrl-U

Forward Up List meta-Ctrl-) [Oommand]
These commands move the point to a place just outside a containing list. The
prefix argument is a repeat count.

Down List meta-Ctrl-D [Oommand]
This command moves the point forward past a left parenthesis. The prefix
argument is a repeat count.

Move Over) meta-) [Oommand]
This command searches for the next right parenthesis. It deletes any horizontal
white space just before the parenthesis and inserts a newline character just after
the parenthesis. This command ignores the prefix argument.

The Editor 13-27

Beginning of Defun meta-Ctrl-[[Oommand]
meta-Ctrl-A

End of Defun meta-Ctrl-] [Oommand]
meta-Ctrl-E

These commands act on sets of balanced parentheses whose first left parenthesis is
in column 1 of the buffer. (It need not actually be a defun; the Editor does not
examine the first element of the list.) These commands place the point just outside
the appropriate object. The prefix argument is a repeat count.

Insert 0 meia-([Oommand]
This command introduces a balanced pair of parentheses. The left parenthesis
is inserted at the point. If there is no prefix argument, the right parenthesis is
inserted right after it. If there is a positive prefix argument, the closing parenthesis
is inserted after that many following forms. A negative prefix argument causes an
error.

Lisp Insert)) [Oommand]
Par en Pause Period [Variable]
This command inserts a right parenthesis at the point. It searches backward for
the balancing left parenthesis. If the left parenthesis is displayed on the screen,
the cursor is moved to it for Paren Pause Period seconds. If it is not displayed
on the screen, then the line of text containing the balancing left parenthesis is
displayed in the echo area. This command ignores its prefix argument.

Lisp New Line Linefeed [Oommand]
This command deletes horizontal space at the point, inserts a newline character,
and moves the point to the current indentation on the new line. The prefix
argument controls how many newline characters are inserted.

Mark Form meta-Ctrl-@ [Oommand]
This command pushes a new mark on the mark stack. It does not move the point.
The new mark is where Forward Form, with the same prefix argument, would
place the point.

Mark Defun meta-Ctrl-H [Oommand]
This command places the point just before a top-level form and places the mark
just after the top-level form. (It pushes the mark on the mark stack.) If the point
is inside a top-level form when this command is issued, that form is the one that
is used; otherwise the next top-level form after the point is used. This command
ignores the prefix argument.

Forward Kill Form meta-Ctrl-K [Oommand]
Backward Kill Form meta-Ctrl-Delete [Oommand]
These commands are related to Forward Form and Backward Form. They kill
the text from the point to the place where the corresponding motion command
would put the point. The prefix argument is used as a repeat count. A negative
prefix argument changes the direction of the killing. Notice that this is different

13-28 Sun Common Lisp User's Guide

from passing the prefix argument to the motion command in a case where the
motion command would fail.

Extract List meta-Ctrl-X [Command)
This command finds the smallest list containing the point and saves that list. Then
it finds the next larger surrounding list and kills that list. The smaller list is then
inserted where the bigger list used to be. H there is a prefix argument, it controls
how many times Extract List finds the next larger surrounding list before killing
the chunk of text.

Transpose Forms meta-Ctrl-T [Command]
This command exchanges the next or current form and the previous form. The
point is placed after the new second form. The prefix argument is interpreted as a
repeat count.

Defindent [Command]

Normally, all of the arguments in a form are indented the same amount. Certain
symbols cause the first few arguments to have different (greater) indentation. For
example, in a form beginning with the symbol do, the first argument is a list of
variable bindings and the second is a termination condition; these arguments are
generally indented farther than the remaining arguments.

The command Defindent sets the number of special arguments that are to be
associated with the symbol at the beginning of the current list. It sets that value
to the prefix argument, if present; otherwise it sets the value to o.
Indent for Lisp Tab [Command]
This command indents the current line according to Lisp conventions. If there is a
prefix argument, it indents that many lines.

Indent Form meta-Ctrl-Q [Command]

This command indents the current form according to Lisp conventions. It ignores
the prefix argument.

Lisp Indent Region meta-Ctrl-\ [Command]
This command indents all lines between the point and mark according to Lisp
convention. It ignores the prefix argument.

The Editor 13-29

Interacting with Lisp

This section describes the commands that allow you to use Lisp from the Editor.
The compilation and evaluation commands allow you to test changes to code
without leaving the Editor. The top-level commands let you use the Editor as an
intermediary between you and Lisp. They let you store a record of the Lisp session
and bring the full strength of the Editor to typing and modifying expressions.

Evaluation and Compilation

Process File Options [Oommand]

Set Buffer Package [Oommand]
Each buffer has associated with it a Lisp package that is current for any Lisp
compilations or evaluations. The default package is the same as the current
package in the running Lisp image. The default can be changed in various ways.
Whenever it reads a Lisp file into a buffer, the Editor tries to parse the first line
as a comment specifying the correct Editor mode for the corresponding buffer and
the correct package to associate with the buffer.

The command Process File Options forces the Editor to reread the first line of
the buffer to set those values. It ignores the prefix argument.

The command Set Buffer Package prompts for the name of a package and
sets it for the current buffer. This command overrides anything that the other
mechanisms may have set. It ignores the prefix argument.

Evaluate Defun Ctrl-CCtrl-E [Oommand]

This command uses Lisp to evaluate the current or next top-level form and prints
the result in the echo area. It ignores the prefix argument.

Evaluate Expression meta-Esc [Oommand]
This command prompts for an expression. That expression is evaluated in Lisp
environment, and the result is printed in the echo area. This command ignores the
prefix argument.

Evaluate Region [Oommand]

This command passes the current region to Lisp for evaluation. The results are
not printed to the screen. This command ignores the prefix argument.

Evaluate Buffer [Oommand]

This command passes the entire buffer to Lisp for evaluation. The output from
that evaluation is printed in the echo area. This command ignores the prefix
argument.

13-30 Sun Common Lisp User's Guide

Compile Defun Ctrl-CCtrl-C [Oommand]
This command finds the current or next top-level form and passes it to Lisp for
compilation. This command ignores the prefix argument.

Compile Region [Oommand]
This command passes the current region to Lisp for compilation. This command
ignores the prefix argument.

Compile Buffer [Oommand]
This ~ommand passes the entire buffer to Lisp for compilation. It ignores the prefix
argument.

Compile File [Command]
This command compiles a file and directs diagnostic output to the buffer
.Compiler Warnings •. Normally, the file chosen for compilation is the one
associated with the current buffer. (The buffer is saved first if it has been modified.)
H there is a prefix argument or if the current buffer has no associated file, this
command prompts for the name of the file to compile.

Load File [Command]
Load Pathname Defaults [Variable]
This command prompts for the name of a file and causes Lisp to load that file.
Load Pathname Defaults is the default value for the name of the file. It is
normally whatever· the name was in the last call. This command ignores the prefix
argument.

Top-Level Mode

Top-level mode makes the current buffer behave like a window into Lisp. You
edit the end of the buffer (either by inserting text or by using more complicated
procedures). When you give the appropriate command, the last part of the buffer
is passed to Lisp for evaluation. The output of the evaluation is inserted at the
end of the buffer. Then you can edit the end of the buffer.

The key Ctrl-C receives special treatment in this mode. It interrupts any ongoing
evaluation and invokes the Debugger in the current window.

Top-Level Mode [Command]
This command changes the minor mode of the current buffer. H the buffer is not in
top-level mode, this command puts it in that mode; if it is in top-level mode, this
command takes it out of that mode. This command ignores the prefix argument.

The Editor 13-31

Top-Level Eval Ctrl-] [Command]
This command finds the appropriate piece of the end of the buffer and passes it to
Lisp for evaluation. Any output from that evaluation is appended to the end of
the buffer. Then a prompt is printed in the buffer.

The appropriate piece of the buffer is normally everything from the last prompt
to the end of the buffer. However, if the point is somewhere before that prompt,
Top-Level Eval chooses the last form that ends on the current line. Any text
after the last prompt is killed, and that form is copied to the end of the buffer:
This command ignores the prefix argument.

Previous Top ... Level Input meta ... P [Command]
Next Top-Level Input meta-N [Command]

The Editor maintains a ring of recent inputs to the top level of Lisp. These
commands insert the requested input at the point. (The point should be after the
most recent prompt.) The prefix argument determines which input is inserted. A
prefix argument of 0 displays the ring of recent inputs.

Kill Top-Level Input Ctrl ... W [Command]
This command kills all the text between the point and the most recent prompt.
The point should not precede the prompt. This command ignores the prefix
argument.

Top-Level Beginning of Line Ctrl-A [Command]
This command is very much like Beginning of Line. In the special case when
the point is on the same line with the prompt and the point is being moved to the
beginning of that line, the point is placed just after the prompt instead.

Line Buffered Input [Variable]
This variable determines when input in top-level mode is read and evaluated by
Lisp. H its value is t, input is read and evaluated by Lisp after either the New
Line command or the Top ... Level Eval command is executed; the default value is
t. H the value of this variable is nil, input is read and evaluated by Lisp as soon
as a complete expression is typed.

13-32 Sun Common Lisp User's Guide

Custom.izing the Editor

There are several ways to modify the Editor's behavior. Most Editor commands
are issued by using bindings between commands and particular keys. The Editor
has commands to change these key bindings. Several details in the Editor's
operation are controlled by variables, and there are commands that can change
these variables. Finally, there are commands that define and execute keyboard
macros. These allow you to define your own commands.

Bind Key [Command]
Delete Key Binding [Command]
These commands alter specific key bindings. Bind Key prompts for the name of
a command. Then it prompts for the particular key to bind to this command and
for the scope of the particular binding. The binding may be global, or it may be
restricted either to a particular mode or to a particular buffer. If the binding is to
be restricted to a particular buffer, the command prompts for the particular buffer
involved. If the restriction is to a particular mode, then Bind Key prompts for
that mode.

Delete Key Binding prompts for a key and then for a scope. It then removes
any applicable key binding for that key.

While these commands can alter any binding, certain bindings should be left intact.
Binding a key that is a prefix of another key sequence masks those bindings. Do
not bind Ctrl-X or meta-X or Ctrl-Z. For a similar reason, do not bind meta-[;
it is a prefix for function keys on certain terminals. Do not rebind meta-O; it is a
prefix for function keys on the VT-IOO.

Do not bind Ctrl-G (or Ctrl-C in the Editor's top-level mode). These keys are
treated specially.

Set Variable [Oommand]
This command prompts for the name of an Editor variable and then prompts for a
new value for that variable. After collecting the information, it sets the indicated
variable to the desired value.

Define Keyboard Macro Ctrl-X([Command]
End Keyboard Macro Ctrl-X) [Command]
These commands are used to define a keyboard macro. A keyboard macro is
a sequence of commands that are bundled together as a single unit. Define
Keyboard Macro starts the definition process and End Keyboard Macro
finishes it. The commands in between are executed as they are typed and are
stored away for future use. These commands ignore their prefix arguments.

The Editor 13-33

Keyboard Macro Query Ctrl-XQ [Oommand]
This command gives you some control over the execution of a macro. During the
definition of a keyboard macro, this command has no effect. During the execution
of a keyboard macro, this command prompts for a single character that determines
whether the rest of the macro is to be executed this time and whether the macro is
to be executed again after it reaches completion. These chara.cter! a.re interpreted
just like the characters in Query Replace. This command ignores its prefix
argument.

Last Keyboard Macro Ctrl-XE [Oommand]
This command executes the most recently defined keyboard macro. The prefix
argument tells how many times to execute the macro. An Editor error stops all
execution of keyboard macros.

Name Keyboard Macro [Oommand]
This command defines a new Editor command. It prompts for the name of the
new command, and that name becomes the name of the most recently defined
keyboard macro, which can then be bound to a key. This allows you to have more
than one keyboard macro available at the same time. This command ignores its
prefix argument.

13-34 Sun Common Lisp User's Guide

Editor Commands and Key Bindings

Apropos
Argument Digit
Back to Indentation

Backup File
Backward Character
Backward Form
Backward Kill Form
Backward Kill Line
Backward List
Backward Up List

Backward Word
Beginning Of Parse
Beginning of Buffer
Beginning of Defun

Beginning of Line
Bind Key
Buffer Not Modified
Capitalize Word
Compile Buffer
Compile Defun
Compile File
Compile Region
Complete Field
Complete Keyword
Confirm Parse

Copy File
Count Lines Page
Count Lines Region
Defindent
Define Keyboard Macro
Delete File
Delete Horizontal Space
Delete Indentation

meta-digit

meta-M
meta-Ctrl-M

Ctrl-B
meta-Ctrl-B

meta-Ctrl-Delete

meta-Ctrl-P
meta-Ctrl-(

meta-Ctrl-U
meta-B

Ctrl-A
meta-<

meta-Ctrl-[
meta-Ctrl-A

Ctrl-A

meta-IV

meta-C

Ctrl-CCtrl-C

Space
Tab

R~turn
Linefeed

Ctrl-XL

Ctrl-X(

meta-
meta-Ctrl-

[Oommand]

[Oommand]

[Oommand]

[Command]

[Command]

[Oommand]

[Command]

[Oommand]

[Oommand]

[Oommand]

[Command]

[Oommand]

[Oommand]

[Oommand]

[Oommand]

[Oommand]

[Oommand]

[Oommand]

[Oommand]

[Oommand]

[Command]

[Oommand]

[Command]

[Oommand]

[Oommand]

[Command]

[Oommand]

[Oommand]

[Oommand]

[Command]

[Command]

[Command]

[Command]

The Editor 13-35

Delete Key Binding [Command]
Delete Next Character Ctrl-D [Command]
Delete Next Window Ctrl-X1 [Command]
Delete Previous Character Expanding Tabs [Command]
Delete Previous Character Delete [Command]

Backspace
Delete Window Ctrl-XD [Command]
Describe Command r 1"'!".-.om",_..11 LV.,,,. u.,.u.J

Describe Key [Command]
Directory [Command]

Down List meta-Ctrl-D [Command]
Echo Area Backward Character Ctrl-B [Command]
Echo Area Backward Word meta-B [Command]
Echo Area Delete Previous Character Delete [Command]

Backspace
Echo Area Klll Previous Word meta-Delete [Command]

meta-Backspace
End Keyboard Macro Ctrl-X) [Command]
End of Buffer meta-> [Command]
End of Defun meta-Ctrl-] [Command]

meta-Ctrl-E
End of Line Ctrl-E [Command]
Enlarge Window Ctrl-X'" [Command]
Evaluate Buffer [Command]
Evaluate Defun Ctrl-CCtrl-E [Command]
Evaluate Expression meta-Esc [Command]
Evaluate Region [Command]
Exchange Point and Mark Ctrl-XCtrl-X [Command]
Exit Editor Ctrl-XCtrl-Z [Command]
Extended Command meta-X [Command]

Extract List meta-Ctrl-X [Command]
Filter Region [Command]
Find File Ctrl-XCtrl-F [Command]
Forward Character Ctrl-F [Command]

Forward Form meta-Ctrl-F [Command]

Forward Klll Form " meta-Ctrl-K [Command]

Forward List meta-Ctrl-N [Command]

Forward Search [Command]

Forward Up List meta-Ctrl-) [Command]

Forward Word meta-F [Command]

13-36 Sun Common Lisp User's Guide

Fundamental Mode [Oommand]
Generic Describe [Oommand]
Help on Prompt Ctrl-_ [Oommand]

meta-H
Help mda-1 [Oommand]

meta-H
Ctrl-_

Incremental Search Ctrl-S [Oommand]
Indent Form meta-Ctrl-Q [Oommand]
Indent Rigidly Ctrl-XTab [Oommand]
Indent for Lisp Tab [Oommand]
Insert 0 meta-([Oommand]
Insert Buffer [Oommand]
Insert File [Oommand]
Insert Parse Default [Oommand]
Just One Space [Oommand]
Keyboard Macro Query Ctrl-XQ [Oommand]
Kill Buffer Ctrl-XK [Oommand]
Kill Line Ctrl-K [Oommand]
Kill Next Word meta-D [Oommand]
Kill Parse Ctrl-W [Oommand]
Kill Previous Word meta-Delete [Oommand]

meta-Backspace
Kill Region Ctrl-W [Oommand]
Kill Top-Level Input Ctrl-W [Oommand]
LISP Mode [Oommand]
Last Keyboard Macro Ctrl-XE [Oommand]
Line to Center of Window [Oommand]
Line to Top of Window [Oommand]
Lisp Indent Region meta-Ctrl-\ [Oommand]
Lisp Insert)) [Oommand]
Lisp New Line Linefeed [Oommand]
List Buffers Ctrl-XCtrl-B [Oommand]
Load File [Oommand]
Lowercase Word meta-L [Oommand]
Mark Defun meta-Ctrl-H [Oommand]
Mark Form meta-Ctrl-@ [Oommand]

Mark Page Ctrl-XCtrl-P [Oommand]
Mark Whole Buffer Ctrl-XH [Oommand]
Move Over) meta-) [Oommand]

The Editor 13-37

Move to Window Line meta-R [Command]
Name Keyboard Macro [Command]

Negative Argument meta-- [Command]

New Line Return [Command]

New Window Ctrl-X2 [Command]

Next Line Ctrl-N [Command]

Next Page Ctrl-X] [Command]

l"~ext Parse Ctrl-I"i
r ,.,., .,
l vommanct j

Next Top-Level Input meta-N [Command]

Next Window Ctrl-XN [Command]
Ctrl-XO

Open Line Ctrl-O [Command]
Previous Line Ctrl-P [Command]

Previous Page Ctrl-X[[Command]
Previous Parse Ctrl-P [Command]

Previous Top-Level Input meta-P [Command]
Previous Window Ctrl-XP [Command]

Process File Options [Command]

Query Replace meta-% [Command]

Quoted Insert Ctrl-Q [Command]

Refresh Screen Ctrl-L [Command]

Rename Buffer [Command]

Rename File [Command]

Replace String [Command]

Reverse Incremental Search Ctrl-R [Command]

Reverse Search [Command]

Revert Buffer [Command]

Rotate Km Ring meta-Y [Command]

Save All Files and Exit Ctrl-XCtrl-C [Command]

Save All Files [Command]

Save File Ctrl-XCtrl-S [Command]

Save Region meta-W [Command]

Scroll Next Window Down [Command]

Scroll Next Window Up [Command]

Scroll Window Down Ctrl-V [Command]

Scroll Window Up meta-V [Command]

Select Buffer Ctrl-XB [Command]

Select Previous Buffer meta-Ctrl-L [Command]

SeU'Insert [Command]

13-38 Sun Common Lisp User's Guide

Set Buffer Package [Command]
Set Variable [Command]
Set/Pop Mark Ctrl-@ [Command]
Top-Level Beginning of Line Ctrl-A [Command]
Top-Level Eval Ctrl-] [Command]
Top-Level Mode [Command]
Transpose Characters Ctrl-T [Command]
Transpose Forms meta-Ctrl-T [Command]
Transpose Lines Ctrl-XCtrl-T [Command]
Transpose Words meta-T [Command]
Un-Kill Ctrl-Y [Command]
Universal Argument Ctrl-U [Command]
Uppercase Word meta-U [Command]
View Lossage [Command]
Visit File Ctrl-XCtrl-V [Command]
Where Is [Command]
Write File Ctrl-XCtrl-W [Command]

The Editor 13-39

Appendix A. Alphabetical Listing of Common Lisp
Functions

This appendix is a listing of all the Common Lisp functions, macros, constants,
variables, special forms, and extensions to Common Lisp described in the Sun
Common Lisp Reference Manual.

* treat numbers [Function]

* [Variable]

** [Variable]

*** [Variable]

+ treat numbers [Function]

+ [Variable]

++ [Variable]

+++ [Variable]

- number treat more-numbers [Function]

[Variable]

I number treat more-numbers [Function]

I [Variable]

II [Variable]

III [Variable]

I = number treat more-numbers [Function]

1+ number [Function]

1- number [Function]

< number treat more-numbers [Function]

< = number treat more-numbers [Function]

= number treat more-numbers [Function]

> number treat more-numbers [Function]

> = number treat more-numbers [Function]

Common Lisp Functions A-I

abort toptional status

abs number

aeons key datum a-list

aeos number

aeosh number

adjoin item list tkey : test : test-not : key

adjust-array array new-dimensions tkey : element-type

adjustable-array-p array

alpha-ehar-p char

alphanumeriep char

and {form}*

append trest lists

apply function arg trest more-args

: initial-element
: initial-contents
: fill-pointer
: displaced-to
:displaced-index-offset

applyhook function args evalhookfn applyhookfn toptional env

.applyhook.

apropos string toptional package

apropos-list string toptional package

aref array trest subscripts

array-dimension array axis-number

array-dimension-limit

array-dimensions array

array-element-type array

array-has-fill-pointer-p array

array-in-bounds-p array trest subscripts

array-rank array

array-rank-limit

array-row-major-index array trest subscripts

A-2 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Oonstant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Oonstant]

[Function]

array-total-size array

array-total-size-Ilm1t

arrayp object

ash integer count

asin number

asinh number

assert test-form [({place} *) [format-string {arg} *]]

assoe item a-list lkey : test : test-not : key

assoe-if predicate a-list

assoe-if-not predicate a-list

assq object a-list

atan numberl loptional number!

atanh number

atom object

bit bit-array ctrest subscripts

bit-and bit-arrayl bit-array! ctoptional result-bit-array

bit-andel bit-arrayl bit-array! loptional result-bit-array

bit-andc2 bit-arrayl bit-array! loptional result-bit-array

bit-eqv bit-arrayl bit-array! loptional result-bit-array

bit-ior bit-arrayl bit-array! ctoptional result-bit-array

bit-nand bit-arrayl bit-array! ctoptional result-bit-array

bit-nor bit-arrayl bit-array! ctoptional result-bit-array

bit-not bit-array ctoptional result-bit-array

bit-orel bit-arrayl bit-array! ctoptional result-bit-array

bit-ore2 bit-arrayl bit-array! ctoptional result-bit-array

bit-veetor-p object

bit-xor bit-arrayl bit-array! ctoptional result-bit-array

block name {/orm}*

boole op integerl integer!

boole-l

[.Function]

[Oonstant]

[.Function]

[.Function]

[.Function]

[.Function]

[Macro]

[.Function]

[.Function]

[.Function]

[.Function]

[.Function]

[.Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Oonstant]

Common Lisp Functions A-3

boole-2

boole-and

boole-andel

boole-ande2

boole-el

boole-c2

boole-elr

boole-eqv

boole-ior

boole-nand

boole-nor

boole-orel

boole-ore2

boole-set

boole-xor

both-ease-p char

boundp symbol

break I:optional/ormat-string I:reat args

* break-on-warnings*

butlast list I:optional n

byte size position

byte-position bytespec

byte-size bytespec

eaaaar list

eaaadr list

caaar list

eaadar list

eaaddr list

caadr list

caar list

A-4 Sun Common Lisp User's Guide

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

cadaar list

cadadr list

cadar list

caddar list

cadddr list

caddr list

cadr list

c all-argument s-limit

car list

case keyform {({({key}*) I key} {form}*)}*

catch tag {form}*

cease keyplace {({({key} *) I key} {form} *)} *

cdaaar list

cdaadr list

cdaar list

cdadar list

cdaddr list

cdadr list

cdar list

cddaar list

cddadr list

cddar list

cdddar list

cddddr list

cdddr list

cddr list

cdr list

ceiling number toptional divisor

cerror continue-format-string error-format-string trest args

char string index

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Oonstant]

[Function]

[Macro]

[Special Form]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A~5

char-bit char name

char-bits char

char-bits-limit

char-code char

char-co de-limit

char-control-bit

char-doWDcase char

char-equal character &:reat more-characters

char-font char

char-font-limit

char-greaterp character &:reat more-characters

char-hyper-bit

char ... int char

char-Iessp character treat more-characters

char-met a-bit

char-name char

char-not-equal character treat more-characters

char-not-greaterp character treat more-characters

char-not-lessp character treat more-characters

char-super-bit

char-up case char

char / = character &:reat more-characters

char< character treat more-characters

char< = character treat more-characters

char= character &:reat more-characters

char> character &:reat more-characters

char> = character &:reat more-characters

character object

characterp object

check-type place typespec toptional string

A -6 Sun Common Lisp User's Guide

[Function]

[Function]

[Constant]

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Constant]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

cis radians

clear-input ioptional input-stream

clear-output ioptional output-stream

close stream ikey : abort

clrhash hash-table

code-char code &:optional (bits 0) (font 0)

coerce object result-type

commonp object

compile name &:optional definition

compile-file input-pathname "key : output-file

compiled-function-p object

:messages
: warnings
: fast-entry
: tail-merge
:notinline
: target

compiler-let ({var I (var value)}*) {form}*

complex realpart "optional imagpart

complexp object

concatenate result-type "rest sequences

cond {(test {form}*)}*

conjugate number

cons objectl object£

consp object

constantp object

copy-alist list

copy-list list

copy-readtable "optional from-readtable to-readtable

copy-seq sequence

copy-symbol symbol &:optional copy-props

copy-tree object

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-7

cos radians

cosh number

count item sequence ikey : from-end : test : test-not '
:start :end :key

count-if-not test sequence ikey : from-end : start : end : key

.L J r r I. r I '\ *' '\ * clIypecase lCeyp,ace 1.l type 1.J orm J) J

debug-io

decache-eval

decf place [delta]

declare {decl-spec} *

decode-Boat float

decode-universal-time universal-time ioptional time-zone

* default-pathname-defaults *

defconstant name initial-value [documentation]

define-function name function

define-macro name function

define-modify-macro name lambda-list function
[documentation]

define-setf-method access-fn lambda-list
{declaration I documentation} * {Iorm} *

defmacro name lambda-list
{declaration I documentation} * {form} *

defparameter name initial-value [documentation]

defsetf access-fn {update-In [documentation] I
lambda-list (store-variable)
{declaration I documentation}* {Iorm}*}

defstruct name-and-options [documentation] {slot-description} *
deftype name lambda-list

{declaration I documentation}* {Iorm}*

defun name lambda-list {declaration I documentation}* {Iorm}*

defvar name [initial-value [documentation]]

A -8 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Macro]

[Variable]

[Function]

[Macro]

[Special Form]

[Function]

[Function]

[Variable]

[Macro]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

delete item sequence tkey : from-end : test : test-not
:start :end :count :key

delete-duplicates sequence tkey : from-end : test : test-not
:start :end :key

delete-file file

delete-if test sequence tkey : from-end : start
:end :count :key

delete-if-not test sequence tkey : from-end : start
:end :count :key

delete-package package

denominator rational

deposit-field newbyte bytespec integer

describe object

digit-char weight toptional (radix 10) (font 0)

digit-char-p char toptional (radix 10)

directory pathname

directory-namestring pathname

disassemble name-or-compiled-function

do ({var I (var [init [step]])}*) (end-test {form}*)
{ declaration} * {tag I statement} *

do. ({ var I (var [init [step]])}*) (end-test {form}*)
{ declaration} * {tag I statement} *

do-alI-symbols (var [result-form]) {declaration}* {tag I statement}*

do-external-symbols (var [package [result-form]])
{declaration}* {tag I statement}*

do-symbols (var [package [result-form]])
{declaration}* {tag I statement}*

documentation symbol doc-type

doUst (var listform [result]) {declaration} * {tag I statement} *

dotimes (var count/orm [result]) {declaration}* {tag I statement}*

double-float-epsilon

double-f1oat-negative-epsilon

dpb newbyte bytespec integer

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Macro]

[Macro]

[Constant]

[Constant]

[Function]

Common Lisp Functions A-9

dribble I:optional pathname

ecase keyform {({({key} *) I key} {form} *)} *

ed I:optional z I:key :windows I:allow-other-keys

eighth list

elt sequence indez

encode-universal-time second minute hour date month year
I:optional time-zone

endp list

enough-namestring pathname I:optional defaults

eq z y

eql z y

equal z y

equalp z y

error format-8tring I:rest args

.error-output.

etypecase keyform {(type {form} *)} *

evalform

eval-when ({8ituation}*) {form}*

.evalhook.

evalhook form etJalhookfn applyhookfn I:optional entJ

evenp integer

every predicate sequence I:rest more-sequences

exp number

export symbols I:optional package

expt base-number power-number

fboundp symbol

fceiling number I:optional divisor

.features.

moor number I:optional divisor

fifth list

A-IO Sun Common Lisp User's Guide

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function}

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Macro]

[Function]

[Special Form]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

file-author file

file-length file-stream

file-namestring pathname

file-position file-stream ioptional position

file-write-date file

fill sequence item ikey : start : end

fill-pointer vector

find item sequence ikey : from-end : test : test-not
:start :end :key

find-aU-symbols string-or-symbol

find-if test sequence ikey : from-end : start : end : key

find-If-not test sequence ikey : from-end : start : end : key

find-package name

find-symbol string ioptional package

finish-output iopt ional output-stream

first list

fixnump object

:8et ({ (name lambda-list {declaration I documentation} *
{/orm}*)}*) {/orm}*

:8oat number ioptional float

:8oat-digits float

:8oat-precision float

:8oat-radix float

:8oat-sign float1 loptional float!

:8oatp object

:8oor number ioptional divisor

fmakunbound symbol

force-output ioptional output-stream

format destination format-control-string irest arguments

fourth list

fresh-line ioptional output-stream

[Function)

[Function)

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function)

[Function)

[Function)

Common Lisp Functions A-II

fround number &:optional divisor

ftruncate number &:optional divisor

funcall function &:rest args

function function

functionp object

gcd &:rest integers

gensym &:optional z

gentemp &:optional prefix package

get symbol indicator &:optional default

get-deco ded-time

get-dispatch-macro-character disp-char sub-char

get-internal-real-time

get-internal-run-time

&:optional readtable

get-macro-character char &:optional readtable

get-output-stream-string string-output-stream

get-properties place indicator-list

get-setf-metho d form

get-setf-metho d-multiple-value form

get-universal-time

getf place indicator &:optional default

get hash key hash-table &:optional default

go tag

graphic-char-p char

grindef &:rest function-name

hash-table-count hash-table

hash-table-p object

host-namestring pathname

identity object

if test then [else]

A-12 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special Form]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Special Form]

ignore-extra-rigbt-parens

lmagpart number

import symbols "optional package

in-package package-name "key : nicknames : use

incf place [delta]

input-stream-p stream

inspect object

int-char integer

integer-dec0 de-float float

integer-length integer

integerp object

intern string "optional package

internal-time-units-per-second

intersection list1 list! "key : test : test-not : key

isqrt integer

keywordp object

labels ({ (name lambda-list {declaration I documentation} *
{form}*)}*) {form}*

lambda-list-keywords

lambda-parameters-limit

last list

lcm integer "rest more-integers

ldb bytespec integer

ldb-test bytespec integer

ldiff list sublist

least-negative-double-float

least-negative-Iong-float

least-negative-short-ftoa t

least-negative-single-float

least-positive-double-float

[Variable)

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function)

[Function]

[Oonstant]

[Function]

[Function]

[Function]

[Special Form]

[Oonstant]

[Oonstant]

[Function]

[Function)

[Function]

[Function]

[Function]

[Oonstant]

[Oonstant]

[Oonstant]

[Oonstant]

[Oonstant]

Common Lisp Functions A-13

least-positive-Iong-float

least-positive-short-float

least-positive-single-float

length sequence

let ({var I (var value)}*) {declaration}* {form}*

let. ({ var I (var value)} *) {declaration} * {form} *

lisp-implementation-type

lisp-implementation-version

list .treat objects

list. object .treat more-objects

list-aIl-packages

list-length list

list-nreverse list

list-reverse list

listen .toptional input-stream

listp object

load filename .tkey :verboae :print : if-doea-not-exiat

.load-verbose.

locally {declaration} * {form} *

log number .toptional base

logand .treat integers

logandcl integerl integer!

logandc2 integer 1 integer!

logbitp index integer

logcount integer

logeqv .treat integers

logior .treat integers

lognand integer 1 integer!

lognor integer 1 integer!

lognot integer

A-14 Sun Common Lisp User's Guide

[Constant]

[Constant]

[Constant]

[Function]

[Special Form]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

logorcl integer1 integer!

logorc2 integer1 integer!

logtest integer1 integer!

logxor trest integers

long-Boat-epsilon

long-Boat-negative-epsilon

long-site-name

loop {form} *

lower-case-p char

machine-instance

machine-type

machine-version

macro-function symbol

macroexpand form toptional env

macroexpand-I form toptional env

.macroexpand-hook.

macrolet ({ (name lambda-list
{declaration I documentation} *
{form}*)}*) {form}*

make-array dimensions tkey :element-type :initial-element
:initial-contents :adjustable
:fill-pointer :displaced-to
:displaced-index-offset

make-broadcast-stream trest streams

make-char char toptional (bits 0) (font 0)

make-concatenated-stream trest streams

make-dispatch-macro-character char toptional
non-terminating-p
readtable

make-echo-stream input-stream output-stream

make-hash-table tkey : test : size
:rehash-size :rehash-threshold

make-list size tkey :initial-element

[FUnction]

[FUnction]

[FUnction]

[FUnction]

[Oonstant]

[Oonstant]

[FUnction]

[Macro]

[FUnction]

[FUnction]

[Function]

[FUnction]

[FUnction]

[Function]

[FUnction]

[Variable]

[Special Form]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[FUnction]

Common Lisp Functions A-15

make-package package-name &:key : nicknames : use

make-pathname &:key : host : device : directory : name
:type :version :defaults

make-random-state &:optional state

make-sequence type size "key ; ini tial-elemeni;

make-string size &:key :initial-element

make-string-input-stream string .toptional start end

make-string-output-stream &:optional string

make-symbol print-name

make-synonym-stream symbol

make-two-way-stream input-stream output-stream

makunbound symbol

map result-type function sequence &:rest more-sequences

mapc function list &:rest more-lists

mapcan function list trest more-lists

mapcar function list trest more-lists

mapcon function list trest more-lists

maphash function hash-table

mapl function list &:rest more-lists

maplist function list &:rest more-lists

mask-field bytespec integer

max number &:rest more-numbers

member item list &:key : test : test-not : key

member-if predicate list &:key : key

member-if-not predicate list &:key :key

memq object list

merge result-type sequence1 sequence! predicate &:key : key

merge-pathnames pathname
&:optional defaults default-version

min number &:rest more-numbers

minusp number

A-I6 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Funciionj

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Dli.smatch sequencel sequence£ A:key : from-end

mod number divisor

.modules.

most-negative-double-:8oat

most-negative-fixnum

most-negative-Iong-:8oat

most-negative-short-:8oat

most-negative-single-:Hoat

most-positive-double-:8oat

most-positive-fixnum

:test :test-not
:key :startl :start2
:endl :end2

[Function]

[Function]

[Variable]

[Oonstant]

[Oonstant]

[Oonstant]

[Oonstant]

[Oonstant]

[Oonstant)

[Oonstant)

most-positive-Iong-:Hoat [Oonstant]

most-positive-short-:8oat [Oonstant)

most-positive-single-:8oat [Oonstant)

multiple-value-bind ({ var}*) values-form {declaration}* {form}* [Macro)

multiple-value-call function {form} * [Special Form]

multiple-value-list form [Macro]

multiple-value-progl form {form} * [Special Form)

multiple-value-setq vars form [Macro]

multiple-values-limit [Oonstant]

name-char name

namestring pathname

nbutlast list I:optional n

nconc I:rest lists

nil

nintersection listl list£ I:key : test : test-not : key

ninth list

not z

notany predicate sequence I:rest more-sequences

[Function]

[Function]

[Function]

[Function]

[Oonstant]

[Function]

[Function)

[Function]

[Function]

Common Lisp Functions A -17

notevery predicate 8equence trest more-sequence8

nreconc li8t1 list!

nreverse 8equence

nset-difference list1 list! tkey : test : test-not : key

nset-exclusive-or list1 list! tkey :test :test-not :key

nstring-capitaIize 8tring tkey : start : end

nstring-downcase 8tring tkey : start : end

nstring-upcase 8tring tkey : start : end

nsublis a-li8t tree I:key : test : test-not : key

nsubst new old tree tkey : test : test-not : key

nsubst-if new test tree I:key : key

nsubst-if-not new te8t tree tkey : key

nsubstitute newitem olditem 8equence tkey : from-end : test
:test-not :start
:end :count :key

nsubstitute-if newitem test 8equence I:key : from-end
:start :end
:count :key

nsubstitute-if-not newitem te8t 8equence tkey : from-end
:start :end
:count :key

nth n list

nthcdr n list

null object

numberp object

numerator rational

nunion list1 list! tkey :test :test-not :key

oddp integer

open filename I:key : direction : element-type
:if-exists :if-does-not-exist

or {form}*

output-stream-p stream

.package.

A-1S Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Variable]

package-name package

package-nicknames package

package-shadowing-symbols package

package-use-list package

package-used-by-list package

packagep object

pairlis keys data A:optional a-list

parse-integer string A:key : start : end : radix : junk-allowed

parse-namestring thing A:optional host defaults
A:key :start :end :junk-allowed

pathname pathname

pathname-device pathname

pathname-directory pathname

pathname-host pathname

pathname-name pathname

pathname-type pathname

pathname-version pathname

pathnamep object

peek-char A:optional peek-type input-stream eo/-error-,
eo/-value recursive-p

phase number

pi

plusp number

pop place

position item sequence A:key : from-end : test : test-not
:start :end :key

position-if test sequence A:key : from-end : start : end : key

position-if-not test sequence A:key : from-end
:start :end :key

pp-line-Iength

pprint object A:optional output-stream

prinl object A:optional output-stream

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Oonstant]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function)

Common Lisp Functions A-19

prinl-to-string object

princ object toptional output-stream

princ-to-string object

print object toptional output-stream

print-array

*print-base.

print-case

print-circle

print-escape

print-gensYID

print-Iength

*print-Ievel.

print-pretty

print-radix

print-structure

probe-file file

proclaiID decl-spec

prog ({ l1ar I (l1ar [init])}*) {declaration}* {tag I statement}*

prog- ({ l1ar I (l1ar [in it])} *) {declaration} * {tag I statement} *

progl first {Iorm} *

prog2 first second {Iorm} *

progn {form}*

progv symbols l1alues {Iorm} *

_prompt *

provide module-name

psetf {place newl1alue} *

psetq {l1ar form} *

push item place

pushnew item place tkey :test :test-not :key

query-io

A-20 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Special Form]

[Special Form]

[Variable]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Variable]

quit ioptional status

quote object

random number ioptional state

.random-state.

random-state-p object

rassocitem a-list I:key : test : test-not : key

rassoc-if predicate a-list

rassoc-if-not predicate a-list

rational number

rationalize number

rationalp object

read ioptional input-stream eo/-error-p eo/-value recursive-p

.read-base.

read-byte binar,l-input-stream I:optional eo/-error-p eo/-value

read-char I:optional input-stream eo/-error-p
eo/-value recursive-p

read-char-no-hang I:optional input-stream eo/-error-p
eo/-value recursive-p

.read-default-float-format.

read-delimited-list char I:optional input-stream recursive-p

read-from-string string I:optional eo/-error-p eo/-value
I:key :start :end :preserve-whitespace

read-line I:optional input-stream eo/-error-p
eo/-value recursive-p

read-preserving-whitespace I:optional input-stream eo/-error-p
eo/-value recursive-p

.read-suppress.

.readtable.

readtablep object

realpart number

.redefinition-action.

reduce function sequence ikey : from-end : start
:end :initial-value

[Function]

[Special Form]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Function]

[Function]

[Variable]

[Function]

Common Lisp Functions A-21

rem number divisor

remf place indicator

remhash key hash-table

remove item sequence ikey :from-end :test :test-not
:start :end :count :key

remove-duplicates sequence ikey : from-end : test : test-not
:start :end :key

remove-if test sequence .tkey : from-end : start
:end :count :key

remove-if-not test sequence ikey : from-end : start
:end :count :key

remprop symbol indicator

rename-file file new-name·

rename-package package new-name
.toptional new-nicknames

replace sequencel sequencee ikey : start1 : end1
:start2 :end2

require module-name ioptional pathname

rest list

return [result]

return-from name [result]

revappend listl liste

reverse sequence

room ioptional x

rotatef {place} *
round number ioptional divisor

rplaca cons object

rplacd cons object

sbit simple-bit-array .trest subscripts

scale-Hoat float integer

schar simple-string index

search sequencel sequencee ikey :from-end :test :test-not
:key :start1 :start2
:end1 :end2

A-22 Sun Common Lisp User's Guide

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Special Form]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

second list

set symbol value

set-char-bit char name logical-value

set-difference listl list2 ikey : test : test-not : key

set-dispatch-macro-character disp-char sub-char function
ioptional readtable

set-exclusive-or list1 list2 ikey : test : test-not : key

set-macro-character char function
ioptional non-terminating-p readtable

set-syntax-from-char to-char from-char

setf {place newvalue}*

setq {var /orm}*

seventh list

ioptional to-readtable from-readtable

shadow symbols ioptional package

shadowing-import symbols ioptional package

shiftf {place} + newvalue

short-float-epsilon

short-float-negative-epsilon

short-site-name

signum number

simple-bit-vector-p object

simple-string-p object

simple-vector-p object

sin radians

single-float-epsilon

single-float-negative-epsilon

sinh number

sixth list

sleep seconds

software-type

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro)

[Special Form)

[Function]

[Function]

[Function]

[Macro)

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Function1

[Function]

Common Lisp Functions A-23

software-version

some predicate sequence irest more-sequences

sort sequence predicate ikey : key

source-code function

special-form-p symbol

sqrt number

stable-sort sequence predicate ikey : key

standard-char-p char

.standard-input.

.standard-output.

step form I {function-name} +

stream-element-type stream

streamp object

string x

string-capitalize string ikey : start : end

string-char-p char

string-downcase string I:key : start : end

string-equal string1 string! I:key : start1 : end1 : start2 : end2

string-greaterp string1 string! I:key : start 1 : end1
:start2 :end2

string-left-trim character-bag string

string-Iessp stringl string! I:key : start1 : end1 : start2 : end2

string-not-equal stringl string! ikey : start1 : end1
:start2 :end2

string-not-greaterp string1 string! I:key : start1 : end1
:start2 :end2

string-not-Iessp string1 string! I;key : start1 : end1
:start2 :end2

string-right-trim character-bag string

string-trim character-bag string

string-upcase string I:key : start : end

string/ = string1 string! I:key : start 1 : end1 : start2 : end2

A-24 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

string< stringl stringe i:key : startl : endl : start2 : end2

string< = stringl stringe "key : startl : endl : start2 : end2

string= stringl stringe "key : startl : endl : start2 : end2

string> stringl stringe i:key : start 1 : endl : start2 : end2

string> = stringl stringe "key : start 1 : endl : start2 : end2

stringp object

sublis a-list tree ikey :test :test-not :key

subseq sequence start "optional end

subsetp list1 liste ikey : test : test-not : key

subst new old tree kkey : test : test-not : key

subst-if new test tree "key : key

subst-if-not new test tree "key : key

substitute newitem olditem sequence "key : from-end : test
:test-not :start
:end :count :key

substitute-if newitem test sequence "key : from-end
:start :end
:count :key

substitute-if-not newitem test sequence "key : from-end
:start :end
:count :key

subtypep typel typee

svref simple-vector index

sxhash object

symbol-function symbol

symbol-name symbol

symbol-package symbol

symbol-plist symbol

symbol-value symbol

symbolp object

t

tagbody {tag I statement}*

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Special Form]

Common Lisp Functions A-25

tallp sublist list

tan radians

tanh number

tenth list

terminal-io

terpri toptional output-stream

the value-type form

third list

throw tag result

time form

trace { trace-spec} *

trace-output

tree-equal objectl objecte tkey : test : test-not

truename pathname

truncate number toptional divisor

type-of object

typecase keyform {(type {form}*)}*

typep object type-specifier

unexport symbols toptional package

unlntern symbol toptional package

union listl liste tkey :test :test-not :key

unless test {form} *

unread-char character toptional input-stream

untrace {function-name} *

unuse-package packages-to-unuse toptional package

unwind-protect protected-form {cleanup-form}*

upper-case-p char

use-package packages-to-use toptional package

user-homedir-pathname .toptional host

values trest args

A-26 Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Special Form]

[Function]

[Special Form]

[Macro]

[Macro]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Macro]

[Function]

[Special Form]

[Function]

[Function]

[Function]

[Function]

values-list list

vector trest objects

vector-pop vector

vector-push new-element vector

vector-push-extend new-element vector I:optional extension

vectorp object

warn format-string I:rest args

when test {form}*

with-input-from-string (var string {keyword value} *)
{declaration}* {form}*

with-open-file (stream filename {options} *)
{declaration}* {form}*

with-op en-stream (var stream) {declaration} * {form} *

with-output-to-string (var [string]) {declaration}* {form}*

write object I:key :stream :escape :radix :base
:circle :pretty :level :length
:case :gensym :array :structure

write-byte integer binary-output-stream

write-char character I:optional output-stream

write-line string I:optional output-stream I:key : start : end

write-string string I:optional output-stream I:key : start : end

write-to-string object I:key : escape : radix : base
:circle :pretty :level :length
:case :gensym :array :structure

y-or-n-p I:optional format-control-string I:rest arguments

yes-or-no-p I:optional format-control-string I:rest arguments

zerop number

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Common Lisp Functions A-27

Appendix B. Extensions to Common Lisp

This appendix is a listing of the extensions to Common Lisp described in this
guide. Note that these extensions are not part of the Common Lisp specification.
They are listed by chapter.

Starting Up

abort ckoptional status

disksave target-file ckkey : restart-function : full-gc : gc
:reserved-free-segments
:dynamic-free-segments :verbose

quit It:optional status

Debugging Lisp Programs

.debug-print-Ievel.

.debug-print-Iength.

Tracing Functions

.max-trace-indentation.

.trace-arglist.

.trace-bar-p.

.trace-columns-per-Ievel.

.trace-Ievel.

.trace-new-definitions.

.trace-values.

.traced-function-list.

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

Extensions to Common Lisp B-1

Stepping Through an Evaluation

max-step-indentation

step-columns-per-Ievel

step-Ievel

The Foreign Function Interface

define-c-callable name arglist {form} *
define-c-function function-name arglist

tkey :result-type

define-foreign-symbol symbol-name

define-fortran-function function-name arglist
tkey :result-type

extract-stream-handles common-lisp-stream

foreign-address-of function-name

foreign-temporary-directory

load-foreign-files files toptional libraries

load-foreign-libraries symbols toptional libraries

make-lisp-stream tkey : input-handle : output-handle
:element-type :stream-type :name

register-lisp-function function-name

syscall system-call-number trest arguments

B-2 Sun Common Lisp User's Guide

[Variable]

[Variable]

r Variablp.l L . -_. - - - - - J

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

Running UNIX Programs from Lisp

run-un ix-program name I:key : input : output
:error-output :wait

Compiling Lisp Programs

clear-undef

: arguments
:if-input-does-not-exist
:if-output-exists
:if-error-output-exists

compiler-options I:key : messages : warnings
:fast-entry :tai1-merge
:notin1ine :target

Storage Management in Lisp

change-memory-management I:key : growth-limit

gc

gc-off l:optiona1 no-reconsideration

gc-on

* gc-silence*

get-stack-remaining

: growth-rate
:expand :expand-p
: reclamation-ratio
: expand-stack
:he1p

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

Extensions to Common Lisp B-3

The Flavor System

.all-flavor-names.

cleanup-alI-flavors

comnlle-:8avor-rnethods .(llafJorl* - ~ ~

continue-whopper {arg}*

continue-whopper-all

deftlavor flavor-name ({ var I (var default-form) }*)
({flavor}*) {option}*

defmethod (flavor [method-type] message) lambda-list
{declaration I documentation} * {form} *

defwhopper (flavor message) lambda-list
{declaration I documentation} * {form} *

defwrapper (flavor message)
(lambda-list. body-var)
{declaration I documentation} * {form} *

flavor-allowed-init-keywords flavor

flavor-allows-init-keyword-p flavor keyword

instancep object

lexpr-continue-whopp er {arg} * arg-list

make-instance flavor {keyword value} *
recompile-flavor flavor toptional messages do-dependents

self

send instance message treat args

set-in-instance instance symbol value

symeval-in-instance instance symbol
toptional no-error-p unbound

undefmethod (flavor [method-type] message)

without-cleaning-flavors {form} *

B-4 Sun Common Lisp User's Guide

[Variable]

[Function]

[Macro]
r..... 1
LMacroJ

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Macro]

[Macro]

Window System Tools

activate-viewport viewport ioptional descendants

active-region-bitmap active-region

active-region-method active-region event-name

active-region-p object

attach-active-region bitmap active-region

bitblt source-bitmap source-x source-,
destination-bitmap destination-x destination-,
width height operation
ikey :clipping-region

bitblt-position source-bitmap source-position
destination- bitmap destination-position
width height operation
ikey :clipping-region

bit bIt-region source-bitmap source-region
destination-bitmap destination-region
operation

bitmap-actIve-regions bitmap

bitmap-extent bitmap ioptional result-extent

bitmap-height bitmap

bitmap-output-stream-p object

bitmap-p object

bitmap-value bitmap x ,

bitmap-width bitmap

charblt bitmap position font char &:key : operation

clear-bitmap bitmap ioptional region

clear-bitmap-active-regions bitmap

copy-bitmap bitmap

copy-font font new-name

current-mouse-cursor

deactivate-viewport viewport

.default-font.

default-font-baseline

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Oonstant]

Extensions to Common Lisp B-5

default-font-code-limit

default-font-height

delete-font font

detach-active-region active-region

draw-circle bitmap center radius
tkey :width :operation

draw-line bitmap start end
tkey :width :operation

draw-polyline bitmap positions
tkey :width :operation

draw-polypoint bitmap positions
tkey :width :operation

expose-viewport viewport

extent-height extent

extent-width extent

extentp object

find-font name

font-baseline font

font-bitmap font

font-clear-char font char

font-co de-limit font

font-fixed-width font

font-height font

font-name font

font-set-char font char offset
toptional width bitmap position

fontp object

hide-viewport viewport

initialize-windows tkey :height :width

keyboard-input

B-6 Sun Common Lisp User's Guide

:screen-x :screen-y
:label :icon-image
:icon-x :icon-y
:icon-label :icon-font

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

leave-window-system

listen-any ioptional mouse-input-stream

load-bitmap file-name

load-font file-name

make-active-region region ikey : bi tmap
:mouse-left-doWD
:mouse-left-up
:mouse-middle-doWD
:mouse-middle-up
:mouse-right-doWD
:mouse-right-up
: mouse-moved
:mouse-still
:mouse-enter-region
:mouse-exit-region

make-bitmap ikey :extent :width :height

make-bitmap-output-stream ikey :bitmap

make-extent ioptional width height

:extent :width :height
: operation
: initial-font

make-font name ikey :bitmap :bitmap-width :code-limit
:fixed-width :height :baseline

make-mouse-cursor bitmap ikey :x-offset :y-offset
: operation

make-mouse-input-stream ikey :queue-mouse-events-p
: viewport

make-pop-up-menu choice-list ioptional default-value

make-position ioptional Z 11

make-region I:key : origin : x : y
:extent :width :height
:corner :corner-x :corner-y

make-viewport I:key :bitmap :width :height
: bitmap-region
:parent :fixed
: screen-position
:screen-x :screen-y
: activate

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Extensions to Common Lisp B-7

make-window tkey :position :x :y
:extent :width :height
:viewport-x :viewport-y
:inner-border-width :outer-border-width
:viewport-width :viewport-height

:title :title-font
:parent :scroll :activate
:calculate-vertical-scroll-ratio
:calculate-horizontal-scroll-ratio
:vertical-scroll :horizontal-scroll

maximum-curs or-height

maximum-cursor-width

menu-mouse-buttons

mouse-buttons

mouse-buttons

mouse-curs or-bitmap mouse-cursor-object

mouse-cursor-operation mouse-cursor-object

mouse-cursor-p object

mouse-cursor-x-offset mouse-cursor-object

mouse-cursor-y-offset mouse-cursor-object

mouse-event-buttons mouse-event-object

mouse-event-event-type mouse-event-object

mouse-event-p object

mouse-event-x mouse-event-object

mouse-event-y mouse-event-object

mouse-input

mouse-input-stream-interrupt-char
mouse-input-stream char

mouse-input-stream-p object

mouse-input-stream-queue-mouse-events-p
mouse-input-stream

mouse-input-stream-viewport mouse-input-stream

mouse-x

B-8 Sun Common Lisp User's Guide

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

.:' .. ~~.

mouse-y

move-mouse x y

move-viewport viewport x y

peek-any toptional peek-type mouse-input-stream
eo/-error-p eo/-value recursive-p

pop-up-menu-choose pop-up-menu-object

pop-up-menu-p object

position-x position

position-y position

positionp object

read-any toptional mouse-input-stream
eo/-error-p eo/-value recursive-p

read-any-no-hang toptional mouse-input-stream
eo/-error-p eo/-value recursive-p

region-contains-point-p region x y

region-contains-position-p region position

region-corner region toptional result-position

region-corner-x region

region-corner-y region

region-height region

region-intersection region region treat regions

region-origin region toptional result-position

region-origin-x region

region-origin-y region

region-size region toptional result-extent

region-union region region treat regions

.": region-width region

region/ = region region treat regions

region< region region treat regions

[Variable]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Extensions to Common Lisp B-9

region<= region region treat regions

region= region region treat regions

region> region region treat regions

region>= region region treat regions

regionp object

rename-font font new-name

reshape-viewport tJiewport tkey : region : x : y

root-viewport

store-bitmap bitmap file-name

store-font font file-name

:width :height
:corner-x :corner-y

stream-current-font bitmap-output-stream

stream-draw-circle bitmap-output-stream radius
tkey :width :operation

stream-draw-line bitmap-output-stream end
tkey :width :operation

stream-draw-polyline bitmap-output-stream positions
tkey :width :operation

stream-linefeed-distance bitmap-output-stream

stream-operation bitmap-output-stream

stream-position bitmap-output-stream
toptional result-position

stream-x-position bitmap-output-stream

stream-y-position bitmap-output-stream

string-width string font

stringblt bitmap position font string tkey : operation

unread-any char-or-mouse-etJent
toptional mouse-input·stream

viewport-at-point x 11

viewport-at-p osition position

viewport-bitmap viewport

viewport-bitmap-offset viewport toptional result-position

B-IO Sun Common Lisp User's Guide

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

viewport-bitmap-region viewport .optional result-region

viewport-bitmap-x-offset viewport

viewport-bitmap-y-offset viewport

viewport-children viewport

viewport-parent viewport

viewport-screen-region viewport "optional result-region

viewportp object

window-frame window

window-horizontal-scroll-ratio window

window-inner-border-width window

window-outer-border-width window

window-title window

window-title-font window

window-vertical-scroll-ratio window

windowp object

windows-available-p

with-asynchronous-method-invocation-allowed {form} *
with-fast-drawing-environment {form} *
with-mouse-methods-preempted bitmap {form} *

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

Extensions to Common Lisp B-11

Appendix C. Implementing Editor Commands

This appendix explains the data structures used by the Editor. and describes the
Lisp functions and macros that can be used to implement new Editor commands.

The names of the functions and macros explained in this appendix are external
symbols of the package editor.

Editor Data Types

The Editor uses various special data types. These include lines, marks, regions,
buffers, windows, string-tables, and rings.

• A line is a portion of text containing no newline characters but delimited by
a newline character or by the end of the text. Each line is separated from the
next line by an implicit newline character.

• A mark is a pointer to a particular position within a line. Each mark points to
a location between two characters (or between a character and the beginning
or end of the text). The character position of a mark is equal to the number
of characters that precede it in the line. Thus, the character position of a mark
preceding the first character in the line is zero and that of a mark preceding a
newline character is equal to the number of characters in the line.

Each mark is one of three kinds: temporary, left-inserting permanent,
or right-inserting permanent. The two types of permanent marks differ
only in their effects on inserted text, which goes to the left of a left-inserting
mark and to the right of a right-inserting mark. A program may run faster by
using a temporary mark instead of a permanent mark, but using a temporary
mark after the text it points to has been altered will give undefined results. A
permanent mark, however, continues to point to a valid position even after the
text has been changed.

• A region is the area of text delimited by two marks, a starting mark and
an ending mark. Changing the position of either of these marks changes the
bounds of the region. Operations on regions in which the starting mark follows
the ending mark are undefined.

• A buffer is a data structure that includes a region of text, a buffer name, a
current position (the point) within the region, an optional file, key bindings,
modes, windows displaying the text, and some variables.

Implementing Editor Commands C-l

Hooks

• A window is an object that allows you to view some portion of a buffer.
Although each window displays only one buffer, a given buffer can be displayed
in more than one window.

• A string-table is a table that associates case-insensitive names (strings) with
objects. The names of variables, commands, modes, and buffers are stored in
string-tables. Thus, All such na.mes a.re case insensitive.

• A ring is a circular object that holds a fixed number of objects. When a
new object is pushed into a ring, each object already in the ring is moved
one position further from the beginning, and any object in the last position
of the ring is removed. A ring is circular in that the objects it contains are
contiguous even if the ring is not filled to capacity. A ring can be rotated in
either direction without disturbing the contiguous ordering of its elements .

• in-the-editor. [Variable]
This variable has the value t if you are currently in the Editor (that is, at some
level within the function ed). Otherwise the value of .in-the-editor. is nil.

Certain Editor actions have hooks associated with them. An action's hook is a list
of functions that are called before, or sometimes after, the action is taken. Calling
the functions in a hook's list is referred to as invoking the hook. Some objects
involved in the Editor action may be passed to the functions as arguments.

add-hook place hook-fun [Macro]
remove-hook place hook-fun [Macro]
These macros either add or remove a function from the hook list associated with
the place argument, which should be either the symbol for an Editor variable or a
generalized variable.

invoke-hook name treat ar98 [Function]
Calls the functions in the list that has the name given by the Editor variable
name. The named variable must exist. Each of these functions is called with the
arguments ar98.

Commands

The command interpreter is the function that normally controls the Editor. It
reads in keystrokes and invokes the corresponding commands.

Each command is implemented by some Lisp function. You can call a command
by typing a key that is bound to that command, by executing Lisp code that

C-2 Sun Common Lisp User's Guide

calls the command's Lisp function, or by giving the command's name to the
Extended Command prompt. A command's name is generally one or more
capitalized words separated by spaces-Scroll Window Down, for example.
The Lisp function names for most Editor commands are the same as the
command names, but all spaces are replaced by hyphens and "-command" is
appended-scroll-window-down-command, for example.

Every command has documentation that provides online help. The documenta
tion for a given command can be either a string or a function. In a documentation
string, the first line concisely describes the command, and the rest of the string
provides particular details. A documentation function takes one argument,
either :short or :fuIl, indicating whether the function should return a short
documentation string or fully document the command.

A key binding associates a single keystroke or a sequence of keystrokes with a
given command. The keystroke or sequence of keystrokes is called a key, and
typing that key causes the command interpreter to invoke the command to which
the key is bound.

A key binding can be global, or it can be local to a particular mode or buffer. The
command interpreter looks first for a key binding local to the current buffer, then
for a binding local to one of the current buffer's modes, and finally for a global key
binding. H no applicable key binding exists, the command interpreter indicates an
error by sounding a beep or by flashing the screen.

A transparent mode is one whose local key bindings do not shadow less local
bindings. Such key bindings are themselves called "transparent." Normally the
command interpreter stops searching when it finds the first applicable key binding.
H that binding is transparent, however, the command interpreter invokes the
corresponding command and continues to scan for other applicable key bindings, as
if the transparent one had not existed. A key can have many transparent bindings
and thus can cause many commands to be invoked.

When you call a command from Lisp code, you must include the prefix argument
as the first argument to the Lisp command; nil is acceptable as a first argument
and indicates the absence of a prefix argument. Arguments for which the command
normally prompts are passed as optional arguments after the prefix argument. The
command should prompt for any optional arguments that you do not supply.

command-names [Variable]

This is the string-table of all commands.

defcommand {command-name I (command-name function-name)} [Macro]
lambda-list command-doc function-doc {form}*

Creates the command command-name, which is called by the Lisp function
function-name. H the function-name argument is omitted, the function name is the
same as the command name, but all spaces are replaced by hyphens and "-command"

Implementing Editor Commands C-3

is appended. The command documentation is specified as command-doc, and the
function documentation is specified as function-doc.

make-command name documentation function [Function]
Creates the command name with the associated Lisp function function and with
the command documentation supplied in the argument documentation.

command-documentation command [Function]

command-function command [Function]
command-name command [Function]
These functions return or set (with setf) either the documentation, the function,
or the name of the specified command .

• invoke-hook. [Variable]
Holds a function that the command interpreter calls in order to invoke a command.
The arguments passed to this function are the desired command and its prefix
argument. The normal value of .invoke-hook. is a function that calls the
command-function of the command with the given prefix argument.

bind-key name key &:optional 8cope where [Function]
Binds the key argument to the command name. The binding can be limited to the
environment specified by the arguments scope and where. The argument 8cope can
have one of the following values:

• :global makes the binding global; this is the default.

• :mode makes the binding local to the mode where.

• :buffer makes the binding local to the buffer where.

command-bindings command [Function]

Returns a list of the key bindings for the argument command. Each key binding
returned is a list of three items: the key vector, the scope of the binding, and any
buffer or mode to which the binding is local. If the binding is global, the last item
in the list is nil.

link-key keyl 8copel wherel key! &:optional 8cope! where! [Function]
Creates a binding for the argument keyl in the environment defined by the
arguments scopel and wherel. The binding created is identical to the binding
for key! in the environment defined by the arguments scope! (which defaults to
:global) and where!. See bind-key for the meanings of the environment-defining
arguments. Cross-mode or cross-buffer bindings may have unexpected results.

delete-key-binding key &:optional 8cope where [Function]
Deletes the binding for the key argument in the environment defined by the
arguments 8cope (default :global) and where. See bind-key for the meanings of
the environment-defining arguments.

C-4 Sun Common Lisp User's Guide

get-command key ioptional scope where [Function]

Returns the command to which the argument key is bound in the environment
defined by the arguments scope and where. IT the scope argument is :current
or omitted, multiple values are returned. These values are the current command
bound in the current buffer and a list of the commands of any current transparent
bindings for the argument key. Otherwise only one command value is returned,
with the arguments scope and where interpreted as in bind-key.

map-bindings function scope "optional where [Function]

Maps the argument function over the key bindings in the environment defined by
the arguments scope and where, which are interpreted as in bind-key. For each
such key binding, the given function is called with two arguments: the key that is
bound and the command to which it is bound.

last-command-type [Function]

Returns or sets (with setf) the last command type. IT a completed command has
not set the command type, the value is set to nil unless the command was invoked
because of a transparent key binding. Command types are usually keywords.

prefix-argument argument [Function]

Returns or sets (with setf) the command prefix argument. IT a completed
command has not set the prefix argument, the value is set to nil unless the
command was invoked because of a transparent key binding. The prefix argument
should be either an integer or nil. The Lisp function for a command is passed the
command's prefix argument as the first Lisp argument.

recursive-edit
Enter Recursive Edit Hook

[Function]

[Variable]

. The function recursive-edit calls the command interpreter recursively. The
command interpreter reads keystrokes and invokes commands until either the
function exit-recursive-edit or the function abort-recursive-edit is called. The
hook Enter Recursive Edit Hook is invoked before the command interpreter is
called.

exit-recursive-edit "optional values-list

Exit Recursive Edit Hook
[Function]

[Variable]

The function exit-recursive-edit terminates the command interpreter and returns
as multiple values all the objects in the list values-list, which defaults to nil. This
function ends the innermost recursive edit, if one exists. IT there is no recursive
edit in progress, the top level of the command interpreter, which is invoked by a
call to the function ed, is terminated. The indicated multiple values are returned
by recursive-edit or by ed. The hook Exit Recursive Edit Hook is invoked
after the recursive edit terminates.

Implementing Editor Commands C-5

Lines

abort-recursive-edit treat args [Function]
Abort Recursive Edit Hook [Variable]
The function abort-recursive-edit terminates the command interpreter with the
error indicated by the arguments, which are processed just like the arguments
to format. The resulting formatted string is returned by the innermost
'l"o"""'I"c:tfvo..o':Ut in n'Pncr'PIPRR if s.nv n'P hv oel RIPfn'PlP thlP tIP'PTnlns.tlnn thlP hnn'lr ------ .. - ----1'--0----' --J' -- -.I --- ------ .., - v_ _v .. _ , v " "'''' ...

Abort Recursive Edit Hook is invoked with the same arguments given to
abort-recursive-edit.

line-string line [Function]
Returns as a simple string or sets (with setf) the characters in the given line. A
line must not be set to a string containing newline characters.

line-previous line [Function]
line-next line [Function]
These functions return either the line before or the line after the given line or nil
if there is no such preceding or succeeding line.

line-buffer line [Function]
Returns the buffer that contains the given line. If the line is not part of any buffer,
nil is returned.

line-length line [Function]
Returns the number of characters in the specified line, not counting the implicit
newline character at the end.

line-character line index [Function]
Returns the character that is preceded in the given line by the number of characters
specified by the index argument. If the index equals the number of characters
in the line, then a newline character is returned. The index value must not be
negative or greater than the number of characters in the line.

line-plist line [Function]
Returns the property list for the specified line. A line's property list is set to nil
whenever the text of the line is changed. The property list can be accessed with
setf, getf, and remf and can be used to cache information about the line.

C-6 Sun Common Lisp User's Guide

Marks

mark-line mark [Function]

Returns the line into which the specified mark points.

mark-charpos mark [Function]

Returns the character position to which the specified mark points.

mark-kind mark [Function]

Returns or sets (with setf) the kind of the given mark-:right-inserting,
:left-inserting, or : temporary .

previous-character mark [Function]

next-character mark [Function]

These functions return or set (with setf) either the character just before or the
character just after the specified mark; nil means there is no such character.
Setting the character causes the character formerly in that position to be replaced
by the new character.

mark line charp08 'optional kind [Function]

Creates a mark that points into the specified line at the character position charpos,
where zero is the position just before the first character on the line. The argument
kind specifies the kind of mark created-:right-inserting, :left-inserting, or
:temporary. The default is :temporary.

copy-mark mark I:optional kind [Function]

Creates a mark pointing at the same position as the given mark. The argument
kind specifies the kind of the new mark; the default is the kind of the original
mark.

delete-mark mark [Function]

Deletes the specified mark. Permanent marks should be deleted when no longer in
use.

with-mark ({(mark p08 [kind])}*) {form}* [Macro]

Evaluates the given forms; each variable mark is bound to a mark that points to
the position given by the corresponding mark pos. The kind of each mark is given
by the associated kind argument; the default is the kind of the corresponding mark
pos. The value of the last form is returned.

move-to-position mark charp08 I:optional line [Function]

Points the specified mark at the character position charpos on the given line. If no
line argument is given, the default is the line to which the mark currently points.

move-to-mark mark new-position [Function]

Points the argument mark at the position pointed to by the mark new-position
and returns the modified argument mark.

Implementing Editor Commands C-7

Regions

line-start mark ctoptional line [Function]

line-end mark ctoptional line [Function]

These functions point the specified mark at either the beginning or the end of the
given line. H no line argument is given, the default is the line to which the mark
currently points.

buffer-start mark ctoptional buffer [Function]

buffer-end mark ctoptional buffer [Function]

These functions point the specified mark at either the beginning or the end of the
given buffer. H no buffer argument is given, the default is the buffer into which the
mark currently points; the mark must point into some buffer.

mark-before mark [Function]

mark-after mark [Function]

These functions point the specified mark either one character position before or
one character position after its current position. H there is no such character before
or after the mark, the mark is unchanged and nil is returned.

character-offset mark n [Function]

Points the specified mark n characters after its current position or -n characters
before its current position if n is negative. H the specified number of characters do
not occur before or after the mark, the mark is unchanged and nil is returned.

line-offset mark n ioptional charpo8 [Function]

Points the specified mark n lines past its current position or -n lines before its
current position if n is negative. H there are not the specified number of lines before
or after the mark, the mark is unchanged and nil is returned. When the mark is
changed, the resulting character position within the new line is the minimum of
the argument charpo8 and the length of the new line, where charpo8 defaults to
the original character position of the mark.

region 8tart end [Function]

Creates a region from the two marks 8tart and end. These marks must point into
the same piece of text (such as a buffer), and the mark start must not follow the
mark end.

make-empty-region [Function]

Creates a region whose starting and ending marks point to the beginning of an
empty line. The starting mark is right inserting and the ending mark is left
inserting.

copy-region region [Function]

Creates a region that contains a copy of the text in the specified region.

C-8 Sun Common Lisp User's Guide

Buffers

region-to-strlng region [Function]
string-to-region string [Function]
These functions coerce either the specified region to a string or the specified string
to a region. Lines within a string are separated by newline characters.

line-to-region line [Function]
Creates a region that contains the characters in the specified line. The starting
mark is right inserting and the ending mark is left inserting.

region-start region [Function]
region-end region [Function]
These functions return either the starting or the ending mark of the specified
region.

region-bounds region [Function]
Returns as multiple values the starting mark and the ending mark of the specified
region.

set-region-bounds region start end [Function]
Makes the marks start and end the starting and ending marks of the specified
region. The starting and ending marks must be in the same piece of text (for
instance, the same buffer), and the starting mark must not follow the ending mark.

count-lines region [Function]
Returns the number of lines (or partial lines) in the specified region. A newline
character is considered to be part of the line that it ends.

count-characters region [Function]
Returns the number of characters in the specified region, including the implicit
newline character at the end of each line.

current-buffer [Function]
Set Buffer Hook [Variable]
After Set Buffer Hook [Variable]
The function current-buffer returns or sets (with setf) the currently selected
buffer, which is generally the buffer displayed in the current window. Before the
current buffer is changed, the hook Set Buffer Hook is invoked with the new
buffer as its argument, and after the current buffer has been changed, the hook
After Set Buffer Hook is invoked with the old buffer as its argument.

current-point [Function]
Returns the mark that is the current point within the current buffer.

Implementing Editor Commands C-9

·buffer-list. [Variable]
This is a list of all the buffers the Editor may presently access.

• buffer-names. [Variable]
This is the string-table of all buffers.
____ '1 __ '- __ .I:I!' ________ L __ L" ___ " __ -'__ rp_. __ .&: __ l
.IllaAe-UUll~r nu,111f: &OPll~OD.il..1. lI'(JU,f:1I L"'''lf,C;t.l(J1'J

Make Buffer Hook [Variable]
The function make-buffer creates the buffer name. H a buffer with that name
already exists, no buffer is created and nil is returned. The argument mode8 is a
list of modes to be active in the buffer, starting with the major mode. H the mode8
argument is omitted, the modes listed in the Editor variable Default Modes are
made active in the new buffer. The new buffer is added to the list .buffer-list.
and to the string-table .buffer-names •. Whenever a buffer is created, the hook
Make Buffer Hook is invoked with the new buffer as its argument.

buffer-name buffer [Function]
Buffer Name Hook [Variable]
The function buffer-name returns or sets (with setf) the name of the specified
buffer. A buffer name is a string. H a buffer exists with the same name as the
name being set, no name is changed and nil is returned. Whenever a buffer name
is changed, the hook Buffer Name Hook is invoked with the buffer and the new
name as arguments.

buffer-region buffer [Function]
Returns or sets (with setf) the region of the specified buffer.

buffer-pathname buffer [Function]
Buffer Pathname Hook [Variable]
The function buffer-pathname returns or sets (with setf) the pathname of the
file associated with the specified buffer. A value of nil means no file is associated
with the buffer. Whenever a pathname is changed, the hook Buffer Pathname
Hook is invoked with the buffer and the new pathname as arguments.

buffer-point buffer [Function]
Returns the mark that is the current point within the specified buffer.

buffer-writable buffer [Function]
Returns or sets (with setf) a flag indicating whether the specified buffer's text can
be changed. The flag is t if the text can be changed; otherwise it is nil.

buffer-modified buffer [Function]
Returns or sets (with setf) a flag indicating whether the specified buffer's text has
been changed. The flag is t if the text has been changed; otherwise it is nil.

buffer-variables buffer [Function]
Returns the string-table of all the Editor variables local to the specified buffer.

C-IO Sun Common Lisp User's Guide

buffer-windows buffer [Function]
Returns a list of all the windows in which the specified buffer might currently
appear. This list may include windows that are not currently visible.

delete-buffer buffer [Function]
Delete Buffer Hook [Variable]
The function delete-buffer deletes the specified buffer by removing it from the
list -buffer-list- and from the string-table -buffer-names-. The hook Delete
Buffer Hook is invoked with the buffer as its argument before the deletion occurs.

Predicates

linep object
markp object
editor-region-p object
bufferp object
editor-window-p object
string-table-p object
ringp object
commandp object

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

These functions are predicates that return a non-nil value if the argument object
is of the given type; otherwise they return nil.

start-line-p mark [Function]
Returns t if the specified mark is just before the first character in a line; otherwise
it returns nil.

end-line-p mark [Function]
Returns t if the specified mark is just after the last character in a line (that is, just
before a newline character); otherwise it returns nil.

empty-line-p mark [Function]
Returns t if the line pointed into by the specified mark has no characters in it (not
counting the newline character); otherwise it returns nil.

blank-line-p line [Function]
Returns t if all characters in the specified line have a :whitespace character
attribute of 1; otherwise it returns nil.

blank-before-p mark
blank-after-p mark

[Function]
[Function]

These functions return t if all characters between the specified mark and the
beginning or end of the line containing it have a :whitespace character attribute
of 1; otherwise they return nil.

Implementing Editor Commands C-ll

same-line-p markl mark! [Function]
Returns t if the two marks markl and mark! point into the same line; otherwise
it returns nil.

mark< markl mark!
mark<= markl mark!
mark>= markl mark!
mark> markl mark!

[Function]
[Function]
[Function]
[Function]

These functions return t if the two specified rnarks follow the given relative
ordering within a piece of text (such as a buffer); otherwise they return nil. Both
marks must be within the same piece of text.

mark= markl mark! [Function]
mark/ = markl mark! [Function]
These functions return t if the two specified marks do (mark=) or do not
(mark/=) point to the same location in the same piece of text (for instance, the
same buffer); otherwise they return nil.

line< linelline! [Function]
line<= linel line! [Function]
line>= linel line! [Function]
line> line1 line! [Function]
These functions return t if the two specified lines follow the given relative ordering
in a piece of text (such as a buffer); otherwise they return nil. The two lines must
be in the same piece of text.

lines-related linel line! [Function]
Returns t if the two lines linel and line! are in the same piece of text (for instance,
the same buffer); otherwise it returns nil.

first-line-p mark [Function]
last-line-p mark [Function]
These functions return t if there is no text before (first-line-p) or no text after
(last-line-p) the line into which the specified mark points; otherwise they return
nil.

C-12 Sun Common Lisp User's Guide

String-Tables

make-string-table [Function]
Creates and returns an empty string-table.

delete-string string table [Function]
Deletes the specified string from the string-table table.

getstring string table [Function]

Accesses the entry for the specified string in the string-table table and returns
multiple values or sets a single value with setf. The first value returned is the
value associated with the given string or nil if the string is not in the table. The
second value returned is t if the string is in the table and nU if it is not. When
setf is used with getstring, the given string is added to the table if necessary, and
the value associated with the string is set to the value specified by setf.

complete-string string tables [Function]

Returns multiple values indicating the best match of the specified string with the
names in the given string-tables. The tables argument is a list of the string-tables
to be searched. The first value returned is the longest leading substring that is
common to all the names of which the specified string is a leading substring. If
there is only one such name, the value for that name's table entry is returned as
the second value and t is returned as the third value; otherwise the second and
third values returned are nU. If no name in the tables starts with the specified
string, all three values returned are nU.

find-ambiguous string table

find-containing string table

[Function]

[Function]
These functions return an alphabetically ordered list of the strings in the specified
table that contain the substring string. For the function find-ambiguous, the list
includes only those strings whose leading substrings match the string argument.

do-strings (string-var value-var table) {declaration} * [Macro]
{tag I statement}*

Executes the given statement body once for each entry in the given string-table.
Execution is in alphabetical order by the table's strings. During a given iteration,
the variable string-var is bound to the string of an entry, and the variable value-var
is bound to the value of that entry.

Implementing Editor Commands C-13

Rings

make-ring length ioptional delete-function [Function]

Creates a ring that can hold the number of Lisp objects indicated by the argument
length, which must be a positive number. The delete-function argument specifies a
function that is called with each object just before the object is removed from the
end of the ring.

ring-length ring [Function]

Returns multiple values consisting of the number of objects currently in the
specified ring and the total number of objects the ring can hold.

ring-ref ring index [Function]

Returns or sets (with setf) the indexed object in the specified ring. An index of
zero represents the last object pushed into the ring (the object at the beginning of
the ring).

ring-push object ring [Function]

Pushes the specified object into the ring indicated. If the ring already contains
as many objects as it can hold, the object at the end of the ring is removed (and
passed to the ring's delete-function; see make-ring).

ring-pop ring [Function]

Removes and returns the object that is at the beginning of the specified ring, which
must not be empty. All other objects in the ring are moved one position closer to
the beginning of the ring.

rotate-ring ring offset [Function]

Rotates the specified ring by the number of positions indicated by the offset
argument. A positive number moves each object that much closer to the beginning
of the ring, with elements that pass the beginning of the ring moved to the end. A
negative number causes rotation in the other direction.

Changing Text

insert-character mark character
insert-string mark string

insert-region mark region

[Function]
[Function]

[Function]

These functions insert the specified character, string, or region at the mark
indicated.

ninsert-region mark region [Function]

Destructively inserts the specified region (which should not be referenced elsewhere)
a.t the mark indicated. The region should not already be a part of a buffer.

C-14 Sun Common Lisp User's Guide

delete-characters mark n [Function]
Deletes the n characters following the specified mark or the -n characters preceding
the mark if n is negative; returns t. H there are less than n characters after the
mark (or less than -n characters before the mark), no characters are deleted and
nil is returned.

delete-region region [Function]

Deletes the specified region without copying the text to save it (see delete-and
save-region below).

delete-and-save-region region [Function]
Deletes the specified region and returns a region containing a copy of the text from
the deleted region.

filter-region function region [Function]
Destructively alters the specified region by mapping the function indicated
over simple strings containing the region's text lines, in order. The region is
reconstructed from the function output. The function must not destructively
modify the strings passed to it and must not return a string containing a newline
character. Destructively modifying such a string after it has been returned will not
change the reconstructed region.

Searching and Replacement

new-search-pattern kind direction pattern [Function]
I:opt ion.l result-search-pattern

Creates a search-pattern object that can be passed to find-pattern or replace
pattern. The argument result-search-pattern, if given, should be a search-pattern
to be destructively modified to the new pattern. The argument direction specifies
the search direction-:forward or :backward. The argument pattern specifies
what to search for; its interpretation depends on the kind argument, which can
have one of the following values:

• :string-insensitive makes a case-insensitive search-pattern from the search
string pattern.

• :string-sensitive makes a case-sensitive search-pattern from the search string
pattern.

• :character makes a case-sensitive search-pattern to find the character pattern.

• :not-character makes a case-sensitive search-pattern to find any character
except the character pattern.

• :test makes a search-pattern to find a character for which the function pattern
returns a non-nil value. The function should depend only on its one character
argument, and it should have no side effects.

Implementing Editor Commands C-15

Modes

• :test-not makes a search-pattern to find a character for which the function
pattern returns nil.

• :any makes a search-pattern to find any character in the string pattern.

• :not-any makes a search-pattern to find any character that is not in the string
pattern.

find-pattern mark search-pattern [Function]
Starting at the specified mark, searches for the first match of the pattern given by
the search-pattern argument. A successful search moves the mark to the position
preceding the matching text and returns the number of characters matched. An
unsuccessful search leaves the mark unchanged and returns nil.

replace-pattern mark search-pattern replacement I:optional n [Function]
Starting at the specified mark, replaces the first n matches of the given search
pattern with the string replacement. H n is omitted or nil, all matches found are
replaced. This function returns a mark pointing to the position preceding the place
where the last replacement occurred.

The modes selected in a buffer affect the operation of the Editor. For instance, a
given key may invoke different commands in different modes. Each mode has a
case-insensitive name, such as Lisp, that generally indicates what sort of editing
the mode is intended to facilitate.

A given mode is either a major mode or a minor mode. There is always just
one major mode selected in each buffer, but any number of minor modes can be
selected in a buffer.

Each mode has a hook, which is a list of functions that are called whenever the
mode is entered or exited for a given buffer. Each function in the hook list is passed
two arguments: the buffer whose mode is being changed and t if the mode is being
entered or nil if the mode is being exited. The mode hook name is made from
the mode name by changing spaces in the name to hyphens and then appending
-mode-hook.

Default Modes [Variable]

This is a list of the names of the modes initially selected in any buffer created
without an explicit list of modes. The initial value of Default Modes is
("Fundamental").

.mode-names. [Variable]

This is the string-table of all modes.

C-16 Sun Common Lisp User's Guide

defmode name Akey : setup-function : cleanup-function [Function]
:major-p :precedence :transparent-p

Creates a mode named by the string namf! and adds it to the string-table
-mode-names-. The mode will be a minor mode unless :major-p is supplied and
non-nil, in which case it will be a major mode. The functions :setup-function
and :cleanup-function are called after the mode is entered and before it is exited
respectively. The number :precedence, which applies only to minor modes,
determines the mode's precedence for the values of key bindings, Editor variables,
and character attributes. The order in which these values are chosen is explained in
the section "Scopes and Shadowing." H :traDsparent-p is given and non-nil, the
mode and all key bindings local to it are transparent. Commands for transparent
bindings are invoked without terminating the command interpreter's search for the
first nontransparent binding of a key. The function defmode also creates a hook
for the new mode by appending -mode-hook to the mode name and by changing
spaces in the name to hyphens.

buffer-maJor-mode buffer [Function]
Buffer Major Mode Hook [Variable]
The function buffer-major-mode returns or sets (with setf) the name of the
major mode for the specified buffer. After a buffer's major mode is changed, the
hook Buffer Major Mode Hook is invoked with the buffer and the new mode
as arguments.

buffer-minor-mode buffer name [Function]
Buffer Minor Mode Hook [Variable]
The function buffer-minor-mode returns or sets (with setf) a flag indicating
whether the minor mode name is selected in the specified buffer. The flag is t if
the mode is selected or nil if it is not selected. After a minor mode is changed, the
hook Buffer Minor Mode Hook is invoked with the buffer, the mode name, and
the new flag value as arguments.

mode-variables name [Function]
Returns the string-table of all Editor variables local to the mode specified by the
name argument.

mode-major-p name [Function]
Returns t if the mode with the specified name is a major mode or nil if it is a
minor mode. A mode with the given name must exist or an error is signaled.

Implementing Editor Commands C-17

Scopes and Shadowing

The scopes of key bindings, Editor variables, and character attributes may be
global, local to a mode, or local to a buffer. A buffer-local value applies only if its
buffer is the current buffer. A mode-local value applies only if its mode is selected
in the current buffer. A global value applies everywhere. H more than one value
applies in the current environment, however, any applicable local values shadow
less local ones, with the following selection priority (highest first):

• An applicable buffer-local value.

• Applicable mode-local values for minor modes, in order by precedence of the
modes, highest precedence first. For minor modes of equal precedence, any
applicable value may be selected.

• An applicable mode-local value for the major mode.

• An applicable global value.

Editor Variables

Editor variables provide useful facilities for the Editor that regular Lisp variables
cannot provide. The principal facilities of Editor variables are scoping appropriate
to the Editor, with mode- and buffer-local variables; hooks, which are lists of
functions to be called whenever a variable's value is set; and documentation
associated with each variable name so that variables and their meanings can be
found from within the Editor.

An Editor variable's hook is different from an Editor action's hook (such as Set
Buffer Hook). An Editor variable's hook is stored in its hook cell, but an Editor
action's hook is stored in the cell that contains the value of the Editor variable
associated with the action. A variable's hook is invoked when the variable is
explicitly set, and an action's hook is invoked when the corresponding Editor
action takes place.

The name of an Editor variable has two forms: a case-insensitive string and a
symbol. The string name normally consists of one or more words separated by
spaces. The corresponding symbol name is made by changing each space in the
string name into a hyphen and then entering the resulting symbol into the package
editor as an external symbol.

.global-variable-names. [Variable]
This is the string-table of all global Editor variables. The value for an entry is the
variable's symbol name. See also • buffer-variables. and .mode-variables •.

C-18 Sun Common Lisp User's Guide

edltor-defvar string-name documentation tkey : mode : buffer [Function]
:hooks :value

Creates an Editor variable with the name string-name. The argument documenta
tion is the variable's documentation string. The variable is made local to a given
buffer by including the argument :buffer, or it is made local to a given mode by
including the argument :mode. H neither of these keywords is used, the variable
is global. The arguments :hooks and :value specify the variable's initial hook
list and value, each of which defaults to nil. H the given variable already exists
with the given scope, this function sets the variable's hook list and value from any
corresponding arguments that are given.

variable-value name &:optional scope where [Function]

variable-documentation name &:optional scope where [Function]

variable-hooks name &:optional scope where [Function]

variable-name name &:optional scope where [Function]

These functions return either the value, the documentation, the hook list, or the
string name of the Editor variable name. The optional scope argument can have
one of the following values:

• :current selects the variable indicated by the current environment (checking
for buffer-local and mode-local variables first, then global variables); this is the
default scope.

• :global selects a global variable.

• :mode selects the variable local to the mode where.

• :buffer selects the variable local to the buffer where.

string-to-variable string [Function]

Returns the symbol name corresponding to the Editor variable with the string
name string. The given string does not have to name an actual Editor variable.

value name [Macro]

setv name new-tlalae [Macro]

The macro value returns or sets (with setf) the current value of the Editor
variable name. The macro setv sets the value of the Editor variable name to
the value of the argument new-tlalue. In each case, the name argument is not
evaluated.

editor-let ({ (tlar tlBlue)} *) {form} * [Macro]
Evaluates the given forms with each of the given Editor variables bound to the
corresponding value. The bindings exist only within the macro editor-let, which
returns the value of the last supplied form. No hooks are invoked for these bindings.

Implementing Editor Commands C-19

editor-boundp name &:optional scope where [Function]
Returns a non-nil value if there is an Editor variable with the given name in the
appropriate environment, which is interpreted as in variable-value; otherwise it
returns nil.

delete-variable name &:optional scope where [Function]

JJeJete Variable Hook [Variable]

The function delete-variable deletes the variable name, which must exist. The
deletion may be limited to a particular environment by specifying the scope and
where arguments, which have the same meanings as for variable-value; :current
is not allowed, however, and the default scope is global. Before the variable is
deleted, the hook Delete Variable Hook is invoked with the same arguments.

Character Attributes

The Editor maintains attributes for each character. Such attributes can be
tested-to tell if a character is whitespace, for instance. Editor character attributes
are normally global but can also be mode local to major modes. Attributes can be
readily changed.

The name of a character attribute has two forms: a case-insensitive string and
a symbol. The string name normally consists of one or more capitalized words
separated by spaces. The corresponding symbol name is made by changing each
space in the string name into a hyphen and then entering the resulting symbol into
the keyword package. For instance, "Whitespace" and :whitespace are the string
name and symbol name of one attribute.

Each character attribute has a hook, which is a list of functions that are called
whenever an attribute value is changed. Each function is called with the attribute,
the character, and the new attribute value as arguments.

character-attribute-names [Variable]
This is the string-table of character attributes.

defattribute string-name documentation [Function]
toptional type initial-value

Make Character Attribute Hook [Variable]
The function defattribute creates a character attribute with the name string
name. The argument documentation is the attribute's documentation string. The
values of this character attribute may be given a Lisp type, which can be any type
permitted in make-array. Each character has the specified initial value for this
attribute if the initial-value argument is given. After the attribute is defined, the
hook Make Character Attribute Hook is invoked with the same arguments.

C-20 Sun Common Lisp User's Guide

character-attribute-name attribute [Function]
character-attribute-documentation attribute [Function]
These functions return either the name or the documentation for the specified
character attribute.

character-attribute attribute character [Function]
Character Attribute Hook [Variable]
The function character-attribute returns or sets (with setf) the value of the
specified attribute for the character indicated. The attribute must already be
defined. Before an attribute's value is set, the hook Character Attribute Hook
is invoked with the same arguments. A character argument of nil represents the
beginning or end of a buffer; this allows special attributes to be associated' with a
buffer boundary.

character-attribute-p symbol [Function]
Returns t if the specified symbol is a character attribute's name; otherwise it
returns nil.

shadow-attribute attribute character value mode [Function]
Shadow Attribute Hook [Variable]
The function shadow-attribute sets a mode-local value, given by the value
argument, for the specified attribute, character, and major mode. When this
function is called, the hook Shadow Attribute Hook is invoked with the same
arguments. While a value set by shadow-attribute is in effect, setting the given
character attribute sets only the shadowing value, not the global value.

unshadow-attribute attribute character mode [Function]
Unshadow Attribute Hook [Variable]
The function unshadow-attribute removes the shadowing value for the given
attribute, character, and mode. The hook Unshadow Attribute Hook is
invoked with the same arguments.

find-attribute mark attribute &:optional test [Function]
reverse-find-attribute mark attribute &:optional test [Function]
These functions search forward and backward respectively from the specified mark
for the first character found whose value for the attribute argument satisfies the
given test function. The test function, which should take one argument and have
no side effects, defaults to not zerop. H the search succeeds, the mark is modified
to point to the position preceding (or succeeding, for reverse-find-attribute) the
character found; otherwise the mark is unchanged and nil is returned.

character-attribute-hooks attribute [Function]
Returns, sets (with setf), or modifies (with add-hook or remove-hook) the hook
list for the specified attribute.

Implementing Editor Commands C-21

Logical Characters

Logical characters make it easy to redefine the possible keyboard responses
indicating a particular choice. A logical character is a keyword that represents
some one-character response from the keyboard, such as a :help inquiry. Each
logical character represents a single response, but that response may be assigned
to several characters. Furthermore, a given character may correspond to several
logical characters; the character's interpretation at a given time depends on the
program reading the response.

The following standard logical characters are predefined:

• :yes means the action in question should be taken.

• :no means the action in question should not be taken.

• :do-aIl means the action in question should be repeated as many times as
possible.

• :exit means the command should end normally.

• :help means the command should provide some helpful information.

• :confirm confirms the input, if any; otherwise it means the default action
should be taken.

• :quote means the following character should be treated simply as a character,
not as a command.

• :recursive-edit means the command should begin a recursive edit from the
current environment.

A new logical character should be defined for any response that represents a
general action that might be invoked from different commands, for any response
that needs to be easy to change, or for a character that is not standard-char-p
and that thus may be implementation dependent.

logical-character-names [Variable]
This is the string-table of all logical characters. The value of an entry is a logical
character's keyword.

define-logical-character string-name documentation [Function]
Creates a logical character with the name string-name, the documentation string
documentati.on, and the keyword made by replacing all spaces in the string name
with hyphens.

C-22 Sun Common Lisp User's Guide

loglcal-character-name keyword [Function]
loglcal-character-documentation keyword [Function]
These functions return either the string name or the documentation of the logical
character keyword.

loglcal-char= character keyword [Function]
Returns or sets (with setf) a flag that is non-nil if the specified character has the
keyword argument as a logical character; if the keyword argument is not a logical
character of the character argument, the flag returned or set is nil. If the character
argument is a letter, its case is ignored; thus, uppercase and lowercase letters are
equivalent. Bits and fonts, however, are significant. The argument keyword must
be defined as a logical character.

logical-character-characters keyword [Function]
Returns a list of the characters that have the keyword argument as a logical
character.

The Display

A window is an object that allows you to view some portion of a buffer. Although
each window displays only one buffer, a given buffer can be displayed in more than
one window.

The current window is the one in which the cursor appears. The cursor follows the
current point within that buffer. Whenever the point is moved to a location that
is not on the screen, the window is recentered around the point's new location in
the buffer.

A mode line is a text line that may be displayed at the bottom of a window to
indicate the status of the window and its displayed buffer. A mode line is specified
by a format control string and a function. The string generates the text of the
mode line, and the function generates as multiple values any arguments to be used
by the string for formatting. The window containing the mode line is passed as the
argument to the function.

current-window [Function]
Set Window Hook [Variable]
The function current-window returns or sets (with setf) the current window
(where the cursor appears). Before the current window is set, the hook Set
Window Hook is invoked with the new window as its argument.

window-modeline-string window [Function]
window-madeline-function window [Function]
These functions return or set (with setf) either the mode-line string or the
mode-line function for the specified window.

Implementing Editor Commands C-23

update-window-modeline window [Function]
Causes the mode line for the specified window to be regenerated and updated. To
keep the mode-line display current, this function can be called from hooks on the
variables that are displayed in the mode line.

make-edit or-window mark i:optional modeline-string
modeline-iunction

[Function]

Make Editor Window Hook [Variable]
Default Modeline String [Variable]
Default Modeline Function [Variable]

The function make-editor-window creates a new window to display the text
starting at the specified mark, which must be in some buffer. The arguments
modeline-string and modeline-function specify the window's mode line. The
window has no mode line if modeline-string is nil. If no modeline-string argument
is given, the value of Default Modeline String is used; if no modeline-function
argument is given, the value of Default Modeline Function is used. The hook
Make Editor Window Hook is invoked with the new window as its argument.

-window-list- [Variable]
This is a list of all the windows created by the function make-edit or-window .

delete-window window [Function]

Delete Window Hook [Variable]

The function delete-window deletes the specified window after first invoking the
hook Delete Window Hook with the given window as its argument.

window-buffer window [Function]

Window Buffer Hook [Variable]
The function window-buffer returns or sets (with setf) the buffer being displayed
in the specified window. Before the displayed buffer is changed, the hook Window
Buffer Hook is invoked with the window and the new buffer as arguments.

window-display-start window [Function]

Returns or sets (with setf) a mark that points to the position preceding the first
character displayed in the specified window. If this mark changes, the window may
be recentered to keep the current buffer's point within the displayed area.

window-display-end window [Function]

Returns a mark that points to the position following the last character displayed
in the specified window.

window-point window [Function]
Returns or sets (with setf) a mark that points to the buffer location of the cursor
for the specified window. The cursor location cannot be set for the current window
because the cursor is located automatically at the current buffer point. Setting the

C-24 Sun Common Lisp User's Guide

cursor position for some other window sets the location to which the buffer point
will be moved when that window becomes the current window.

grow-window window n [Function]
Tries to make the specified window larger by n lines (or smaller by -n lines if n
is negative). This operation, which is constrained by the size of the screen, may
make an adj acent window smaller or larger.

center-window window mark I:optional fraction [Function]
Repositions the specified window so that the mark indicated is offset from the top
by the fraction of the window height given by the fraction argument. H the fraction
argument is omitted, the default value of 0.5 is used.

scroll-window window n [Function]
Scrolls the specified window down n lines in the buffer, or up -n lines if n is
negative. The cursor remains at the same text position unless that position leaves
the screen, in which case the cursor is centered within the text that is on the
screen.

displayed-p mark window [Function]
Returns t if the specified mark is adjacent to a character that is currently displayed
in the given window; otherwise it returns nU.

window-height window [Function]
window-width window [Function]'
These functions return or set (with setf) either the height or the width of the
window area in which the buffer text is displayed, in character positions. Setting
such a value may fail.

next-window window [Function]
previous-window window [Function]
These functions return the window that either immediately precedes or immediately
follows the specifed window.

mark-to-cursorpos mark window [Function]
Returns as multiple values the Cartesian coordinates of the specified mark in the
window indicated or nll if the mark is not displayed. The z and 11 values returned
are measured from the origin (0,0) in the upper left corner of the window in
character positions and line positions respectively.

cursorpos-to-mark z 11 window [Function]
Returns as a mark the cursor position (Z,lI) within the specifed window; returns nll
if that cursor position does not correspond to any text in the given window. The z
and 11 values given are measured from the origin (0,0) in the upper left corner of
the window in character positions and line positions respectively.

Implementing Editor Commands C-25

mark-column mark [Function]

Returns the position on the horizontal (x) axis where the specified mark would be
displayed on an infinitely wide screen, while taking into account special characters
such as tabs.

move-to-column mark column ioptional line [Function]

Moves the specified mark to the position within the given line that corresponds to
the column position column; the line argument defaults to the mark's current line.
H the indicated line does not reach to the given column, the mark is unchanged
and nU is returned.

show-mark mark window time [Function]

Highlights the position within the specified window of the given mark for time
seconds; then returns t. If the mark does not appear within the given window, nU
is returned.

redisplay [Function]

Causes the screen to be updated to reflect any changes to the text. The command
interpreter calls this function after each command has been completed.

redisplay-all [Function]
Causes the whole screen to be redisplayed.

echo-area-window [Variable]

* echo-area-buff'er * [Variable]

The echo area is a small window that appears at the bottom of the screen;
prompting, echoing of input, and brief information reports appear in the echo
area. The variable *echo-area-window* holds the echo area's window object,
and *echo-area-buff'er* holds the buffer displayed there, which is normally in the
mode Echo Area. The echo-area window has no mode line.

clear-echo-area [Function]

Clears all text from the echo-area window. This is normally done by the command
interpreter after each command has finished unless the message function has been
used or buffer-modified has been set to nil for the *echo-area-buff'er*.

message format-control-string .treat args [Function]

Displays a message in the echo area, starting on a fresh line. The message displayed
is generated from the format function arguments given. This is the recommended
way of displaying messages in the echo area.

echo-area-stream [Variable]

This buffered Editor output stream inserts its text at the current point in
echo-area-buff'er. Because the stream is buffered, you should use the function
force-output to assure that the text has been inserted.

C-26 Sun Common Lisp User's Guide

Prompting the User

Functions for prompting execute a recursive edit in the buffer Echo Area. Useful
parsing commands such as name completion and help are provided by commands
bound in the mode Echo Area.

prompt-for-buffer ikey :prompt :help :muBt-exiBt [Function]
:default :default-Btring

Prompts for a buffer name, provides name completion, and returns the selected
buffer. The keyword arguments for this function and for the other prompting
functions have the following meanings:

• :prompt specifies the string to be displayed as the prompt.

• :help specifies either a string to be displayed or a function to be called if the
help command is typed to the current prompt. H the value is a function, it
should take no arguments and return a help string to be displayed or nil after
carrying out some helpful action.

• :must-exist specifies whether the user must give a response of the expected
type. H :must-exist is non-nil, the user is reprompted after any response that
is not of the expected type. H :must-exist is nil and the response is not of the
expected type, the response given is returned as a string.

• :default specifies the default value to be returned if the user gives the
null response. H no default is given, a null response from the user causes
reprompting.

• :default-string specifies a string representing the default if :default is also
given. The string is displayed after the prompt. H :default is given but
:default-string is not, some representation of :default is displayed.

prompt-for-character ikey : prompt : change-window [Function]
Prompts for a single character without waiting for confirmation. The macro
command-case may be more useful. H the keyword : change-win dow is non-nil
or omitted, the current window is changed to the echo-area window while the
character is being read.

prompt-for-key ikey :prompt :help :must-exist [Function]
:default :default-Btring

Prompts for a key, which is a vector of characters that can be bound to a command.
H the keyword :must-exist is non-nil, the key given must be bound in the current
environment, in which case the command bound to the key is returned as a second
value.

Implementing Editor Commands C-27

pronnpt-for-file ikey :prompt :help :must-exist [Function]
:default :default-string

Prompts for a valid filename and returns a pathname. H the keyword :rnust-exist
is non-nfl, the named file must exist. H the named file does not exist, the filename
entered is merged with :default as if by the function nnerge-pathnannes. In all
cases, a pathname is returned.

pronnpt-for-integer ikey :prompt :help :must-exist
:default :default-string

Prompts for an optionally signed decimal integer.

pronnpt-for-keyword string-tables ikey :prompt :help
:must-exist :default
: default-string

[Function]

[Function]

Prompts for a keyword and provides completion from the names in the string-tables
argument, which is a list of string-tables. H the keyword :nnust-exist is non-nfl,
the user must give an unambiguous leading substring of one string name in the
string-tables list. In this case, the entire string name is returned, and the value of
the corresponding string-table entry is returned as a second value. H :must-exist
is nfl, the response string is returned exactly as given, although completion can be
requested with the Editor commands Connplete Parse and Connplete Field.

pronnpt-for-expression ikey :prompt :help :must-exist [Function]
:default :default-string

Prompts for a Lisp expression. H the keyword ::must-exist is nfl, the string given
is returned, even if a Lisp read error occurs.

pronnpt-for-string ikey :prompt :help :default :default-string

Prompts for and returns a string. No checking is done on the string.

pronnpt-for-variable ikey :prompt :help :must-exist
:default :default-string

[Function]

[Function]

Prompts for the name of an Editor variable. H the keyword :nnust-exist is
non-nfl, the user must give the name of a variable that is defined in the current
environment; the variable's symbol name is returned as a second value.

pronnpt-for-y-or-n ikey :prompt :help :must-exist [Function]
:default :default-string

Prompts for a single-character response of y or n (ignoring case) and returns t
(for y) or nil (for D). No confirmation is required. Giving a :default value allows
and specifies the result of typing just the confirmation character. H the keyword
:nnust-exist is nfl, the first character typed is returned if it is not y or D.

pronnpt-for-yes-or-no ikey :prompt :help :must-exist [Function]
:default :default-string

Prompts for Yes or No typed in full (ignoring case), plus confirmation. Giving
a :default value allows and specifies the result of typing just the confirmation

C-28 Sun Common Lisp User's Guide

character. The value returned is t (for Yes) or nil (for No). IT the response is
neither Yes nor No and if the keyword :must-exist is nil, the string of text typed
before the confirmation character is returned.

command-case ({key value}*) {({({tag}*) Itag} help {form}*)}* [Macro]
Prompts for a single-character response and evaluates the forms of the first option
that has a tag argument matching the given character. A tag can be either
a logical character (such as :help) or a standard character that satisfies the
predicate standard-char-p. The character read is compared to logical characters
with logical-char= or to standard characters with char=, but the letter case
is ignored. The reprompt macro within the body of an option restarts the
prompting and response reading.

The logical characters :help and :abort have default options that can be replaced
by explicit options. The default :help option displays a help message and then
reprompts. This help message consists of the string value of any :help key
argument, followed by all the help strings in the given options. The default :abort
option signals an Editor error.

IT t is specified in place of a tag list, a default option is created that has no help
string and that is evaluated only if no other option is matched, including the
default :help and :abort options. By default, the default option includes a beep
and a reprompt.

The keywords that can appear as key arguments in the macro command-case
and the uses of each corresponding value argument follow:

• :prompt specifies a string value for the prompt.

• :help specifies a string value to be displayed first by the default :help option.

• :bind binds the variable value to the response character during the evaluation
of the selected option.

• :character causes the character value to be treated as the first response
character, instead of reading a response from the user.

• :change-window specifies a flag value that determines whether the current
window is to be changed to the echo-area window during the character-reading
process. The current window is changed to the echo-area window if the flag
is non-nil or if no :change-window keyword is specified. In some cases it
may be useful not to change the current window so that the user can base the
response on the current point within the current buffer.

Implementing Editor Commands C-29

Parsing

Parsing is controlled by a character attribute, an Editor variable, and a collection
of global Lisp variables.

The character attribute Parse Field Separator is used to decide if a given
character is a fieid separator ior the Editor command Compiete Fieid. A
character with a value of 1 for this attribute is a field separator.

Beep On Ambiguity [Variable]
Attempting to complete an ambiguous parse when this variable is non-nil causes a
beep.

parse-verification-function [Variable]
This function is called by Confirm Parse to do most of the parsing work. The
function is called with one argument, namely the value of *parse-input-region*
at the time Confirm Parse was called. The function returns a list of values as
the result of the recursive edit or nil if the parse failed. A return of zero values
can be indicated by returning a nil first value and a non-nil second value.

parse-string-tables [Variable]
This is the list of string-tables used in the current parse.

parse-value-must-exist [Variable]
This contains the value of the :must-exist argument.

parse-default [Variable]
This is the default value for the parse.

parse-default-string [Variable]
This is the string representation of the variable *parse-default*. H Confirm
Parse is called when *parse-input-region* is empty, the value of the variable
parse-default-string is given to the function *parse-verification-function*.

parse-prompt [Variable]
This is the current prompt string.

parse-help [Variable]
This is the current help string or function.

parse-starting-mark [Variable]
This is a mark in the echo-area buffer where the parse started.

parse-input-region [Variable]
This is a region starting at *parse-starting-mark* and extending to the end of
the echo-area buffer. The text within this region is parsed by Confirm Parse.

C-30 Sun Common Lisp User's Guide

Editor I/O

beep [Function]
Attracts the user's attention by sounding a beep or flashing the screen.

.last-character-typed. [Variable]
This is the last character typed by the user .

• editor-input. [Variable]
Holds an input stream that reads characters from the keyboard without echoing
them.

text-character character [Function]
Turns the specified keyboard character into a character that can be placed into a
buffer .

• input-transcript. [Variable]
If non-nil, this should be a vector with a fill pointer, in which case all input read
is recorded by pushing it onto this vector.

make-editor-output-stream mark Ikoptional buffered [Function]
Creates an Editor output stream whose characters get inserted at the specified
permanent mark. The argument buffered creates the following strearris:

• :none makes an unbuffered stream; this is the default.

• :line makes a buffered stream that is forced out whenever a newline character
appears (or whenever an explicit force-output is done).

• :full makes a buffered stream that is never forced out except when an explicit
force-output is done.

make-editor-region-stream region [Function]
Returns an input stream from which the text in the specified region can be read.

with-input-from-region (var region) {declaration} * {form} * [Macro]
Evaluates the given forms with the variable var bound to an input stream that
provides the text from the specified region.

with-output-to-mark (var mark [buffered]) {declaration}* {form}* [Macro]
Evaluates the given forms with the variable var bound to an output stream that
inserts its text at the specified permanent mark. The argument buffered has the
same meaning as in make-editor-output-stream.

with-random-typeout (var n) {declaration} * {form} * [Macro]
Evaluates the given forms with the variable var bound to an output stream
that displays its text on the screen in some nice form. The argument n is the
approximate number of lines the output will require.

Implementing Editor Commands C-31

Handling Errors

editor-error trest args [Function]

Signals a minor Editor error (such as an unsuccessful search), aborts the command
in progress, and never returns. H there are no arguments, a beep occurs. Any
arguments given are taken as arguments to the function form.at for generating an
error message that is displayed.

catch-editor-error {form} * [Macro]

Evaluates the given forms and traps any Editor error that occurs within them.
When an Editor error occurs, evaluation is stopped and nil is returned. H no
Editor error occurs, the value returned is that of the last form.

Reading and Writing Files

buffer-write-date buffer [Function]

Returns in Universal Time format the time and date when the specified buffer was
last written out to a file.

read-file pathname mark [Function]

Inserts the text from the file specified by the pathname argument at the mark
indicated.

write-file pathname region [Function]

Writes the text from the region indicated to the file specified by the pathname
argument.

Exiting the Editor

exit-editor "optional value [Function]

Exit Hook [Variable]

The function exit-editor exits the Editor and returns the optional value, which
defaults to t. Before the Editor is exited, the hook Exit Hook is invoked.

C-32 Sun Common Lisp User's Guide

~\sun ~~ microsystems

D
Getting Fast Code from the Sun

Common Lisp Compiler

D.I. Compiler
Optimization Settings

D.2. Speedy Operations

D
Getting Fast Code from the Sun

Common Lisp Compiler

This appendix explains how to get optimized code from the Sun Common Lisp
compiler. Before reading this appendix, read the chapter on the compiler earlier
in this book. This appendix assumes that you understand declarations. If neces
sary, see Chapter 9 of COMMON USP, The Language, by Guy L. Steele Jr. for
more information on declarations.

The OPTIMI ZE declaration specifier influences the kind of code that the com
piler emits. The default values in Sun Common Lisp permit the compiler to gen
erate fast code.

Some operations are fast with or without TYPE declarations. These fast opera
tions include:

o References to variables except "closed-over" lexical variables

o Entry and exit of scopes that introduce no special variables

o if, cond, loop, do, go, ret urn, and others (local flow of control)

o and, or, not

o Most type testing (typep, consp, symbolp, null, and others)

o svref, schar

o eq

o setq except "closed-over" lexical variables

The Sun Common Lisp compiler generates fast code for these operations with the
default optimization settings.

Somewhat slower operations include:

o Entry and exit of blocks that bind special variables

o Entry and exit of blocks whose names are "closed-over"

o Access to "closed-over" lexical variables

o Creation of closures (functions that "close over" one or more lexical vari
ables)

D-4

D.3. Primitive Operations
on Speedy Types

D.4. Making Declarations

Fixnums

Vectors and Arrays

In Common Lisp, some types of objects are simple enough that a compiler can
generate good in-line code to operate on them. In particular, the compiler can
generate particularly fast code for the following common types:

o cons (and list)

o fixnum

C! char including string-char

o Simple general vectors (elements of type T) and simple strings

IJ Simple general arrays (elements of type T), especially of known dimensions

IJ Structures

In general, creating an object takes quite a bit longer than doing simple opera
tions on it, perhaps an order of magnitude more time.

To get fast code from the compiler, let it know enough about the types of inputs
or outputs so that it can dispense with overhead. You can eliminate four kinds of
overhead by requests to the compiler. They are:

IJ Type dispatching on inputs

IJ Type dispatching on outputs (for fixnum operations)

IJ Checking number of arguments (somewhat less important)

IJ Procedure call (somewhat less important)

For these types, primitive operations can be exceptionally fast. Overhead tends
to be a high proportion of the time spent doing simple operations on objects of
these types. When you make declarations, the compiler assumes that the declara
tions are true and eliminates that overhead.

To make optimizing declarations, make sure to tell the compiler the types of
things.

Fixnums are "fast integers", currently integers in the range from about -500 mil
lion to +500 million. Declare inputs to simple arithmetic operations and numeric
predicates as fixnums for fast code. For the basic arithmetic operations, also
declare the output to be a fixnum.

The "fastest arrays" are "simple arrays." Currently arrays of "general" type, type
T, are also faster than all other alternatives. Use svref for accesses to simple
vectors, or for 2-dimensional arrays use code such as this:

D.S. Types of Overhead

Type Dispatching

Checking Number of
Arguments

Procedure Call

D.6. How to Tell the
Compiler

Appendix D - Getting Fast Code from the Sun Common Lisp Compiler D-5

(proclaim' (type (simple-array t (512 512» tab»
(setq tab (make-array' (512 512»)

(defun f (a i j)
(declare (type (simple-array t (512 512» a»
(declare (fixnum i j»
(aref a i j»

There are three types of overhead described below:

[J Type Dispatching

[J Checking Number of Arguments

o Procedure Calls

Type dispatching includes checking that the types of arguments are legitimate for
the operation applied to them. It also includes determining how to do the opera
tion to the particular things passed to the function. For example, fetching an ele
ment from a sequence is done differently for a list, than for a simple vector, and
fetching from a non-simple vector is different again.

For ordinary function calls (not via FUNCALL or APPLY), the compiler can
check the number of arguments passed to functions at compile-time. When the
compiler generates in-line code, it does not generate code to check the number of
arguments. Some short functions are called as subroutines. For these, declaring
: fast-entry T makes the compiler generate calls on a version of the routine
that does not check the number of arguments passed to it.

The form of the : fast-entry T request is:

(eval-when (compile)
(compiler-options :fast-entry t»

When compiled code calls a procedure, there is overhead for the subroutine call
and return. Usually, registers are also saved and restored, arguments are pushed
onto the stack, etc. If a procedure call is not executed ("in-line code"), these
overheads are avoided.

How do you see to it that the compiler knows the types of expressions (inputs or
outputs)? It knows from declarations you make. The simplest form of declara
tion is the the declaration. the declares information about an individual
expression. Other declarations can be understood as implicitly putting the
declarations around a set of expressions.

Making a declaration about a variable implicitly declares every reference to the
variable and every expression assigned to the variable by setq, psetq, and
others.

~~sun ~~ microsystems

D-6

D.7. Specific Fast
Operations, By Type

Making a declaration about a function implicitly declares all the inputs and oup
tuts of all calls of that function that the compiler sees.

D CONS and LIST

CAR, CDR, RPLACA, RPLACD are fast, in-line.

D FIXNUM

The simple arithmetic operations on fixnums (mainly +, -, <, >, =, >=,
<=, /=) are fast and in-line. For fixnum operations there is normally a
check of the size of the result even when the inputs are fixnums. If the result
is too large to be a fixnum, an extended-precision integer is created. If the
output is declared to be a fixnum, no check of the output is made. It is sim
ply assumed to be a fixnum.

D CHAR including STRING-CHAR

Comparisons and conversion to and from integer are fast.

o Simple Arrays (including simple general vectors and simple strings)

It is important for the compiler to know that the array is in fact a vector and
the vector is simple. It is also important for it to know what types of ele
ments the vector can contain. SVREF automatically assumes a simple
GENERAL vector. SCHAR implicitly takes a simple string. SBIT impli
citly takes a simple bit vector.

There are other sorts of simple vectors as well. Uses of them should be
declared. Access to arrays of type fixnum is currently not as fast as access to
arrays of type T (general arrays).

for vectors known to be simple declared to have elements of type T, and
indices known to be fixnums, AREF, (SETF (AREF . • • » are fast
and in-line.

Access to multidimensional simple arrays (2D at least) is also fast and in
line with appropriate declarations as shown above.

o Arrays

The functions LENGTH and ARRAY-DIMENSION are fast and in-line.
Most other accessors of array attributes are fast.

o Structures

Structure accessors including slot setting functions are fast and in-line. They
are implicitly declared to assume that the structure argument is a structure of
the appropriate type. You do not need to make declarations to get fast code
for these operations.

D.S. Additional Topics

Tail Recursion

LABELS and FLET

Appendix 0 - Getting Fast Code from the Sun Common Lisp Compiler D-7

For those of you who understand what a tail call is (either to self or to some other
function), be it known that the compiler removes tail recursions, sometimes sav
ing greatly on stack usage.

Calls to functions defined by FLET or LABELS are much faster than calls on
other functions. In fact, the compiler can sometimes completely eliminate the
function call.

4l~sun ~ microsystems

, 1-7
; 1-7
1-7
#' 1-7
I 1-7

A

abort 2-4, 2-11
Abort Recursive Edit Hook 0-6
abstract data types 11-5
activate-viewport 12-31
activating a viewport 12-31
active regions 12-18

asynchronous method invocation 12-19
attaching 12-36
bitmap of 12-32
creating 12-67
detaching 12-36
method arguments 12-19, 12-33, 12-67
methods 12-18, 12-33, 12-67
operations on 12-18
preempting 12-19, 12-139

active viewports 12-12
active-region-bitmap 12-32
active-region-method 12-33
active-region-p 12-35
After Set Buffer Hook 0-9
all-:8avor-names 11-40
Apropos 13-11
aref 9-6
Argument Digit 13-8
arguments

character arguments 13-9
prefix arguments 13-8
string arguments 13-9

attach-active-region 12-36

B

Back to Indentation 13-13
Backup File 13-24
Backus-N aur form 1-5
Backward Character 13-12
Backward Form 13-27
Backward Kill Form 13-28
Backward Kill Line 13-17
Backward List 13-27
Backward Up List 13-27
Backward Word 13-13
Beep On Ambiguity 0-30
Beginning of Buffer 13-13
Beginning of Defun 13-28
Beginning of Line 13-13
Beginning Of Parse 13-10
binary files 9-10
binary fixnum addition 9-6
Bind Key 13-33
bit bIt 12-37
bitbIt-position 12-37
bitblt-region 12-37

Index

bitmap clipping regions 12-10, 12-81, 12-128
bitmap output streams 12-12

boolean operation 12-121
creating 12-70
current font 12-118
drawing 12-119
linefeed distance 12-120
operations on 12-13
position 12-122

bitmap-active-regions 12-36
bitmap-extent 12-39

Index X-I

bitmap-height 12-39
bitmap-output-stream-p 12-40
bitmap-p 12-41
bitmap-value 12-42
bitmap-width 12-39
bitmaps 12-8

active regions of 12-36
attaching active regions 12-36
clearing 12-44
clearing active regions 12-36
copying 12-45
copying regions 12-37
creating 12-69
detaching active regions 12-36
drawing on 12-51
extent 12-39
height 12-39
loading 12-65
operations on 12-9
storing 12-65
value at a point 12-42
width 12-39
writing to 12-43

BNF 1-5
break 3-3
breakpoint 4-4
Buffer Major Mode Hook C-17
Buffer Minor Mode Hook C-17
Buffer Name Hook C-10
Buffer Not Modified 13-23
Buffer Pathname Hook C-10
buffers 13-4,13-7,13-11,13-23

c
C 7-3

data types 7-5
calling subroutines from methods 11-30
Capitalize Word 13-18
cerror 3-3
change-memory-management 10-6, 10-8,
10-10
character arguments 13-9
Character Attribute Hook C-21

X~2 Sun Common Lisp User's Guide

charblt 12-43
cleanup-all-:8avors 11-31, 11-41
clear-bitmap 12-44
clear-bitmap-active-regions 12-36
clear-under 9-8
clearing bitmaps 12-44
clearing undefined functions 9-8
clipping regions 12-10
closures 2-9
combined methods 11-17, 11-18

inhibiting calculation of 11-31
recalculation of 11-30
resuming calculation of 11-31

commands 13-4,13-16
buffer 13-23
case modification 13-18
deletion 13-17
Editor window 13-25
extended commands 13-4
file 13-24
file system 13-25
filtering 13-22
keyboard macro 13-33
killing 13-17
Lisp editing 13-27
Lisp execution 13-30
mark 13-14
motion 13-12
replacement 13-21
search 13-20
transposition 13-19
unkilling 13-17
white space 13-19

comments 1-7
compile 9-3,9-9
Compile Buffer 13-31
Compile Defun 13-31
Compile File 13-31
Compile Region 13-31
compile-file 9-3,9-4,9-7,9-10
compile-Havor-methods 11-32, 11-42
compiled code 9-3
Compiler 1-3, 9-3, 9-5

clearing undefined functions 9-8
compiling files 9-3, 9-10

compiling functions 9-3, 9-9
default options 9-12
fast entry 9-11, 9-12
in-line coding 9-11,9-12
options 9-4
progress messages 9-11, 9-12
tail merging 9-11, 9-12
target processors 9-11, 9-12
warning messages 9-11, 9-12

compUer-options 9-4, 9-7, 9-12
compiling a flavor 11-32
compiling methods

delaying 11-57
Complete Field 13-9
Complete Keyword 13-9
Confirm Parse 13-9
continue-whopper 11-21,11-43
continue-whopper-all 11-21, 11-43
control keys 13-4
Oontrol-O 3-3, 3-7, 3-12
Copy File 13-25
copy-bitmap 12-45
copy-font 12-46
copying a bitmap 12-45
copying fonts 12-46
copying regions 12-37
Count Lines Page 13-14
Count Lines Region 13-15
creating flavor components lists 11-16
creating instances 11-35
creating simple instances 11-12
current mouse cursor 12-47
current-mouse-cursor 12-14, 12-47
cursor 13-3, 13-6
customization 13-33

D

daemon method types 11-18
data types for foreign functions 7-5
deactivate-viewport 12-31
deactivating a viewport 12-31
.debug-print-Iength. 3-11,3-14,4-3,5-3
.debug-print-Ievel. 3-10, 3-16, 4-3, 5-3

Debugger 2-3,3-3,12-95
commands 3-6
examining local variables 3-11
examining stack frames 3-8
exiting 3-7
invoking 3-3
modifying local variables 3-11
moving in the stack 3-7
print length 3-11
print level 3-10, 3-11
stack 3-4
using 3-12

debugging 1-3,4-3, 5-6
declarations 9-5, 9-13

ftype 9-5, 9-6
global 9-17
ignore 9-7
inline 9-6
local 9-16
notinline 9-6
optimize 9-7
special 9-5
type 9-5, 9-18

declare 9-13
default message handling 11-39
Default Modeline Function 0-24
Default Modeline String 0-24
Default Modes 0-16
.default-font. 12-13, 12-48
default-font-baseline 12-49
default-font-code-limit 12-49
default-font-height 12-49
dei8avor 11-5, 11-24, 11-45

options 11-25
syntax 11-24

Defindent 13-29
Define Keyboard Macro 13-33
define-c-callable 7-3, 7-7
define-c-function 7-3, 7-5, 7-9, 7-10
define-foreign-symbol 7-3, 7-12
define-fortran-function 7-3,7-5, 7-9, 7-10
defining flavors 11-24
defining methods 11-29
defmethod 11-5, 11-6, 11-7, 11-18, 11-23,
11-29,11-47

Index X-3

syntax 11-29
defwhopper 11-21, 11-22, 11-48
defwrapper 11-22, 11-49
Delete Buffer Hook 0-11
Delete File 13-25
Delete Horizontal Space 13-19
Delete Indentation 13-19
Delete Key Binding 13-33
Delete Next Character 13-17
Delete Next Window 13-7,13-26
Delete Previous Character 13-17
Delete Previous Character Expanding
Tabs 13-17
Delete Variable Hook C-20
Delete Window 2-6, 13-26
Delete Window Hook C-24
delete-font 12-50
deleting fonts 12-50
deleting methods 11-29
deleting text 13-17
describe 11-12, 11-13, 11-38
Describe Command 13-11
Describe Key 13-11
describing an instance 11-38
detach-active-region 12-36
Directory 13-25
disks ave 2-5,2-12
display editor 13-3
display objects 12-18
Down List 13-27
draw-circle 12-51
draw-line 12-51
draw-polyline 12-51
draw-polypoint 12-51
drawing

bitmap output streams 12-119
fast drawing environment 12-138

drawing on bitmaps 12-51
dynamic areas 10-3

expansion 10-8, 10-10
growth rate 10-8, 10-10

X-4 Sun Common Lisp User's Guide

E

echo area 13-6, 13-8
Echo Area Backward Character 13-12
Echo Area Backward Word 13-13
Echo Area Delete Previous Character
13-17
Echo Area Kill Previous Word 13-18
ed 2-5,2-14
Editor

interaction mode 2-5
invoking 2-14

Editor windows 13-4, 13-6, 13-12, 13-23,
13-25
EMACS 13-7
End Keyboard Macro 13-33
End of Buffer 13-13
End of Defun 13-28
End of Line 13-13
Enlarge Window 13-26
Enter Recursive Edit Hook C-5
environment 1-3
error 3-3
.error-output. 9-11,9-12
eval-when 9-15
Evaluate Buffer 13-30
Evaluate Defun 13-30
Evaluate Expression 13-30
Evaluate Region 13-30
evaluator 1-3
Exchange Point and Mark 13-14
Exit Editor 13-5
Exit Hook C-32
Exit Recursive Edit Hook C-5
exit status 2-11
exiting Lisp 2-4, 2-11, 2-16
expose-viewport 12-11,12-52
exposing a viewport 12-52
Extended Command 13-5
extended commands 13-4, 13-5
extensibility 11-11
extent-height 12-53
extent-width 12-53
extentp 12-54
extents 12-7

creating 12-72
height 12-53
operations on 12-7
width 12-53

Extract List 13-29
extract-stream-handles 7-4, 7-13

F

files 13-4, 13-11, 13-23, 13-24
Filter Region 13-22
filtering 13-22
filters 13-22
Find File 13-24
find-font 12-10, 12-55
finding a font 12-55
fixnum arithmetic 9-6
flavor compilation 11-32
flavor components lists 11-16
flavor names 11-40
Flavor System

cleaning up 11-41
sending a message 11-55

:8avor-allowed-init-keywords 11-50
:8avor-allows-init-keyword-p 11-50
flavors 11-5

allowed keywords 11-50
compiling 11-42
defining 11-45
recompiling 11-53

flavors vs. structures 11-9
font registry 12-10, 12-50, 12-55
font-baseline 12-56
font-bitmap 12-57
font-clear-char 12-58
font-code-liIDit 12-57
font-fixed-width 12-56
font-height 12-56
font-name 12-57
font-set-char 12-58
fontp 12-59
fonts 12-9

baseline 12-56
bitmap 12-57

code limit 12-57
copying 12-46
creating 12-73
default 12-48
default baseline 12-49
default code limit 12-49
default height 12-49
defining a character 12-58
deleting 12-50
deleting a character 12-58
finding 12-55
fixed width 12-56, 12-73
height 12-56
loading 12-66
name 12-55, 12-57
operations on 12-10
registry 12-50, 12-55
registry of 12-10
renaming 12-115
storing 12-66
string width 12-123
variable width 12-73

forcing recalculation of combined methods
11-30
foreign function interface 7-3

C data types 7-5
calling foreign functions 7-3
calling Lisp functions from C code 7-3, 7-7
calling system functions 7-4, 7-21
defining c functions 7-9
defining foreign functions 7-3
defining foreign symbols 7-12
defining fortran functions 7-9
extracting UNIX stream handles 7-4, 7-13
foreign data types 7-5
foreign function starting address 7-14
foreign function types 7-10
FORTRAN data types 7-6
Lisp function starting address 7-20
loading foreign files 7-4, 7-16
loading libraries 7-4, 7-17
making Lisp streams 7-4, 7-19
specifying temporary directory 7-15
starting address 7-3

foreign-address-of 7-3, 7-14

Index X-5

foreign-temporary-directory 7-15
FORTRAN 7-3

data types 7-6
Forward Character 13-12
Forward Form 13-27
Forward Kill Form 13-28
Forward List 13-27
Forward Search 13-20
Forward Up List 13-27
Forward Word 13-13
free storage 10-6
funcall 2-7
functions 1-3
fundamental mode 13-7
Fundamental Mode 13-7

G

Garbage Collector 10-3
disabling 10-4, 10-13
enabling 10-15
invoking 10-12
suppressing messages 10-17

gc 10-12
gc-off 10-4, 10-13
gc-on 10-15
gc-silence 10-12, 10-17
Generic Describe 13-11
generic operations 11-10
get-stack-remaining 10-18
global declarations 9-17

H

handling unclaimed messages 11-39
Help 13-10
Help on Prompt 13-9
hide-viewport 12-11,12-52
hiding a viewport 12-52
horizontal scroll ratio

calculating 12-85

X-6 Sun Common Lisp User's Guide

I

in-line code 9-6
inactive viewports 12-12
Incremental Search 13-20
Indent for Lisp 13-29
Indent Form 13-29
Indent Rigidly 13-19
inheritability 11-11
inheriting values 11-16
inhibiting calculation of combined methods
11-31
initial property list 11-26
initializable instance variables 11-26
initialization file 2-5
initialize-windows 12-60
Insert () 13-28
Insert Buffer 13-24
Insert File 13-25
Insert Parse Default 13-10
inserting text 13-16
inspect 6-3, 6-5
inspecting data structures 6-3
Inspector 3-11,6-3, 6-5

commands 6-3
sample terminal session 6-4

instance variables 11-6
instancep 11-51
instances 11-5

creating 11-52
determining messages handled by 11-38
setting instance variables 11-56
value of instance variable 11-56

interfaces 11-9
interpreted code 9-3
Interpreter 1-3, 9-5
interrupt characters i2-21

asynchronous method invocation 12-19
introduction to flavors 11-5
invoking the Debugger 3-3

J

Just One Space 13-19

K

key bindings 13-4, 13-33
keyboard input 12-21
keyboard interrupt 3-3
Keyboard Macro Query 13-34
keyboard macros 13-33
keyboard-input 12-21, 12-62
keys

control keys 13-4
Ctrl-G 13-11
Ctrl-Z 13-4
Esc 13-4
Help 13-11
meta keys 13-4
meta-control keys 13-4

Kill Buffer 13-23
Kill Line 13-17
Kill Next Word 13-18
Kill Parse 13-10
Kill Previous Word 13-18
Kill Region 13-18
kill ring 13-17
Kill Top-Level Input 13-32
killing 13-17

L

Last Keyboard Macro 13-34
leave-window-system 12-63
length 7-5
lexical closure 2-7
lexical environment 4-3
lexpr-continue-whopper 11-21, 11-43
Line Buffered Input 13-32
Line to Center of Window 13-26
Line to Top of Window 13-26
Lisp

exiting 2-4, 2-11, 2-16
invoking 2-3
starting up 2-3

Lisp Buffer 2-5
Lisp images 2-5

saving 2-12

Lisp Indent Region 13-29
Lisp Insert) 13-28
LISP Mode 13-27
Lisp New Line 13-28
List Buffers 13-23
listen-any 12-64
Load File 13-31
Load Pathname Defaults 13-31
load-bitmap 12-65
load-font 12-66
load-foreign-files 7-4, 7-5, 7-16
load-foreign-libraries 7-4, 7-5, 7-17
loading foreign files 7-4, 7-16
loading libaries 7-4
loading libraries 7-17
local declarations 9-16
locally 9-16
Lowercase Word 13-18

M

Make Buffer Hook C-I0
Make Character Attribute Hook C-20
Make Editor Window Hook C-24
make-active-region 12-67
make-bitmap 12-8, 12-69
make-bitmap-output-stream 12-70
make-extent 12-72
make-font 12-73
make-instance 11-12, 11-13, 11-26, 11-27,
11-34,11-35,11-38,11-52

syntax 11-35
make-lisp-stream 7-4, 7-19
make-mouse-cursor 12-75
make-mouse-input-stream 12-76
make-pop-up-menu 12-22, 12-77
make-position 12-78
make-region 12-79
make-viewport 12-81
make-window 12-83
Mark Defun 13-28
Mark Form 13-28
Mark Page 13-14
Mark Whole Buffer 13-15

Index X-7

marks 13-3, 13-14
max-step-lndentatlon 5-3, 5-5
max-trace-lndentation 4-6
maxiJIDlrn-cursor-height 12-75
maxiJIDlrn-cursor-width 12-75
memory

current usage 10-6, 10-19
expansion 10-6, 10-8
growth limit 10-6, 10-8, 10-10
growth rate 10-6

menu-mouse-buttons 12-87
messages 11-5
messages handled by an instance 11-38
meta keys 13-4
meta-control keys 13-4
method combination types 11-19, 11-28

examples 11-19
modifier 11-19

method invocation 12-18
methods 11-5

defining 11-47
deleting 11-47
recompiling 11-53

mixing flavors 11-15
mixins 11-16
mode line 13-6, 13-7
modularity 11-9
modules 11-9
mouse

buttons 12-15, 12-87, 12-88, 12-89
menu items 12-87
position of 12-88, 12-89

mouse cursor
lifting 12-14
moving 12-14

mouse cursor objects 12-14
bitmap 12-90
creating 12-75
current 12-47
maximum height 12-75
maximum width 12-75
offset 12-90
operation 12-90
operations on 12-14

mouse cursors 12-13

X-8 Sun Common Lisp User's Guide

mouse event objects 12-16
buttons 12-93
operations on 12-16
position 12-93
types 12-15, 12-93

mouse events 12-15, 12-18
mouse handling 12-13
mouse input streams 12-17

creating 12-76
current stream 12-62, 12-94
interrupt characters 12-95
listening 12-64
operations on 12-17
peeking 12-101
queueing mouse events 12-97
reading 12-17, 12-107
unreading 12-124
viewport 12-98

mouse polling 12-14
mouse sensitivity 12-18
mouse state functions 12-14
mouse state variables 12-14
mouse states 12-14
mouse-buttons 12-14, 12-88
mouse-buttons 12-15, 12-17, 12-89
mouse-cursor

moving 12-99
mouse-cursor-bitmap 12-90
mouse-cursor-operation 12-90
mouse-cursor-p 12-91
mouse-cursor-x-offset 12-90
mouse-cursor-y-offset 12-90
mouse-event-buttons 12-93
mouse-event-event-type 12-93
mouse-event-p 12-92
mouse-event-x 12-17, 12-93
mouse-event-y 12-17, 12-93
mouse-mput 12-17, 12-94
mouse-mput-stream-mterrupt-char
12-21, 12-95
mouse-mput-stream-p 12-96
mouse-mput-stream-queue-mouse
events-p 12-17, 12-97
mouse-mput-stream-viewport 12-98
mouse-x 12-14, 12-88

.mmouse-x.12-14,12-89
mmouse-y 12-14, 12-88
.mmouse-y. 12-14,12-89
Move Over) 13-27
Move to Window Line 13-13
mmove-mmouse 12-99
mmove-viewport 12-100
moving a viewport 12-100
moving the cursor 12-14
moving the mouse 12-99

N

Name Keyboard Macro 13-34
Negative Argumment 13-8
New Line 13-16
New Window 2-6,13-7,13-26
Next Line 13-12
Next Page 13-14
Next Parse 13-9
Next Top-Level Input 13-32
Next Window 2-6, 13-7, 13-26
notational conventions 1-4

o

objects 11-5
occlusion 12-11
open 8-4
Open Line 13-16
optimization classes 9-7
optimization declarations 9-7

p

Paren Pause Period 13-28
parentheses 1-7
peek-any 12-101
point 13-3, 13-6, 13-12
polling the mouse 12-14
pop-up menu 2-5, 13-6

pop-up menus 12-22
choosing 12-103
creating 12-77
implementing 12-23
operations on 12-22

pop-up-mmenu-choose 12-22, 12-103
pop-up-mmenu-p 12-104
position-x 12-105
position-y 12-105
positionp 12-106
positions 12-7

components of 12-105
creating 12-78
operations on 12-7

prefix arguments 13-8
Previous Line 13-12
Previous Page 13-14
Previous Parse 13-9
Previous Top-Level Input 13-32
Previous Window 13-26
primary methods 11-17
.print-escape. 11-38
.print-Iength. 3-11, 3-14, 4-3, 5-3, 6-3
.print-Ievel. 3-10, 3-16, 4-3, 5-3, 6-3,
11-38
.print-pretty. 11-38
printing an instance 11-37
Process File Options 13-30
proclaimB 9-17
programs 1-3
prompt

Lisp 1-7
prompting 13-9

Q

Query Replace 13-21
quit 2-4, 2-16
Quoted Insert 13-16

Index X-9

R

read-any 12-107
read-any-no-hang 12-107
read-eval-inspect 6-3
read-eval-print 6-3
read-oniy areas 10-3
reading from mouse input streams 12-17
reclamation ratio 10-6, 10-8, 10-10
recompile-flavor 11-30, 11-53
Refresh Screen 13-7,13-25
region-contalns-polnt-p 12-108
region-contains-position-p 12-108
region-corner 12-109
region-corner-x 12-109
region-corner-y 12-109
region-height 12-109
region-intersection 12-111
region-origin 12-109
region-origin-x 12-109
region-origln-y 12-109
region-size 12-109
region-union 12-111
region-width 12-109
region/= 12-112
region< 12-112
region<= 12-112
region= 12-112
region> 12-112
region>= 12-112
regionp 12-114
regions 12-7,12-8,13-3,13-14

components 12-109
containment 12-112
corner 12-109
creating 12-79
equality 12-112
height 12-109
inequality 12-112
intersection 12-111
operations on 12-8
origin 12-109
predicates on 12-108, 12-112
size 12-109
union 12-111

X-lO Sun Common Lisp User's Guide

width 12-109
register-lisp-function 7-3, 7-20
Rename Buffer 13-24
Rename File 13-25
rename-font 12-115
Replace String 13-21
replacing 13-21
reserved free space 10-6
reshape-viewport 12-116
resuming calculation of combined methods
11-31
Reverse Incremental Search 13-20
Reverse Search 13-20
Revert Buffer 13-11, 13-24
room 10-5,10-6,10-19
root viewport 12-11, 12-117
root-viewport 12-11, 12-117
Rotate Kill Ring 13-18
run-unix-program 8-3,8-11

keyword options 8-3

s
sample code 12-23
Save All Files 13-25
Save All Files and Exit 13-25
Save File 13-11, 13-24
Save Region 13-18
saving Lisp images 2-5, 2-12
screen clipping regions 12-10, 12-82, 12-128
scroll bars 12-20, 12-83

creating 12-85
Scroll Next Window Down 13-26
Scroll Next Window Up 13-26
Scroll Overlap 13-13
Scroll Window Down 13-13, 13-26
Scroll Window Up 13-13, 13-26
scrollilng

horizontally 12-85
scrolling

vertically 12-85
searching 13-20
Select Buffer 13-23
Select Previous Buffer 13-23

self 11-11, 11-22, 11-29, 11-54
Self Insert 13-16
send 11-6, 11-7, 11-55
sending a message 11-5, 11-6, 11-55
Set Buffer Hook C-9
Set Buffer Package 13-30
Set Variable 13-33
Set Window Hook C-23
set-in-instance 11-56
Set/Pop Mark 13-14
Shadow Attribute Hook C-21
sibling stack 12-129
sibling viewports 12-11
simple flavor mixing 11-15
stack expansion 10-8, 10-10
stack frame 3-4
static areas 10-3
step 5-3, 5-6
.step-columns-per-Ievel. 5-3,5-7
.step-Ievel. 5-3, 5-8
Stepper 5-3

columns per level 5-3, 5-7
commands 5-4
current step level 5-3, 5-8
maximum indentation 5-5
traced functions 4-5
using 5-4

stepping 5-3
storage allocator 10-10

parameters 10-8
storage area types 10-3
storage management 1-3
store-bitmap 12-65
store-font 12-66
stream-current-font 12-118
stream-draw-circle 12-119
stream-draw-line 12-119
stream-draw-polyline 12-119
stream-linefeed-distance 12-120
stream-operation 12-121
stream-position 12-122
stream-x-position 12-122
stream-y-position 12-122
string arguments 13-9
string width 12-123

string-width 12-123
stringblt 12-43
svref 9-6
symbol-function 3-4
symbol-value 9-5
symeval-in-instance 11-56
syntax 1-4
syscall 7-4, 7-21

T

the 9-5, 9-18
throw 2-16, 11-22
top level 13-31
Top-Level Beginning of Line 13-32
Top-Level Eval 13-32
Top-Level Mode 13-31
trace 3-3,4-3,4-4,4-7

keyword options 4-4
syntax 4-4

Trace Facility 4-3
argument list 4-9
columns per level 4-11
depth 4-12
function entry 4-4, 4-5
function exit 4-4,4-5
functions being traced 4-3, 4-15
indentation 4-6
nesting level 4-12
output 4-4
returned values 4-14
stepping 4-5
tracing bars 4-10
tracing new definitions 4-13
untracing 4-16

.trace-arglist. 4-9

.trace-bar-p. 4-10

.trace-columns-per-Ievel. 4-11

.trace-Ievel. 4-12

.trace-new-definitions. 4-13

.trace-values. 4-14

.traced-function-list. 4-15
Transpose Characters 13-19
Transpose Forms 13-29

Index X-II

Transpose Lines 13-19
Transpose Words 13-19

u

Un-Kill 13-18
unclaimed messages 11-39
undeimethod 11-29, 11-4i

syntax 11-29
Universal Argument 13-8
Universal Argument Default 13-8
UNIX programs

error output from 8-6
examples of calling from Lisp 8-8
exit status 8-3
input to 8-4
output from 8-5
running from Lisp 8-3

unkilling 13-17
unread-any 12-124
Unshadow Attribute Hook 0-21
untrace 4-3,4-7,4-16
untracing 4-3, 4-16
unwind-protect 2-16
Uppercase Word 13-18

v

vanilla-flavor 11-28,11-33,11-37
describing an instance 11-38
messages handles by an instance 11-38
printing an instance 11-37
unclaimed messages 11-39

vertical scroll ratio
calculating 12-85

View Lossage 13-11
viewport hierarchy 12-52, 12-129
viewport-at-point 12-125
viewport-at-position 12-125
viewport-bitmap 12-126
viewport-bitmap-offset 12-127
viewport-bitmap-region 12-128

X-12 Sun Common Lisp User's Guide

viewport-bitmap-x-offset 12-127
viewport-bitmap-y-offset 12-127
viewport-children 12-11, 12-129
viewport-parent 12-129
viewport-screen-region 12-128
viewportp 12-130
viewports 12-10

activ~ting 12-31
bitmap clipping regions 12-128
bitmap of 12-126
bitmap offset 12-127
children 12-129
creating 12-11, 12-81
deactivating 12-31
exposing 12-52
hiding 12-52
hierarchy 12-11
moving 12-100
operations on 12-12
parent 12-129
reshaping 12-116
root 12-11
screen clipping regions 12-128
siblings 12-129
viewport at specified position 12-125

Visit File 13-24

w

Where Is 13-11
whoppers 11-21, 11-43

defining 11-48
window

frame 12-131
horizontal scroll ratio 12-134
vertical scroll ratio 12-134

Window Buffer Hook C-24
window data structures 12-7
Window Tool Kit 2-5, 12-5

entering 12-5
initializing 12-5
restoring windows 12-6
sample code 12-23

window-frame 12-131

window-horizontal-scroll-ratio 12-134
window-lnner-border-width 12-132
window-outer-border-width 12-132
window-title 12-133
window-title-font 12-133
window-vertical-scroll-ratio 12-134
windowp 12-135
windows 12-19

availability 12-136
creating 12-83
initializing 12--60
inner border width 12-132
leaving 12-63
operations on 12-21
outer-border-width 12-132

title 12-133
title font 12-133

windows-available-p 12-136
with-asynchronous-method-invocation
allowed 12-19, 12-137
with-fast-drawing-environment 12-138
with-mouse-methods-preempted 12-19,
12-139
with-open-file 8-4
without-cleaning-ftavors 11-31, 11-57
words 13-13
wrappers 11-21

defining 11-49
Write File 13-24
writing to bitmaps 12-43

Index X-13

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
TLX 37-29639

For U.S. Sales Office
locations, call:
800821-4643
In CA: 800821-4642

European Headquarters Germany: (089) 95094-0
Sun Microsystems Europe, Inc. Hong Kong: 8525-8651688
Bagshot Manor, Green Lane Italy: (39) 6056337
Bagshot, Surrey GU19 5NL Japan: (03) 221-7021
England Korea: 2-7802255
027651440 Nordic Countries: + 46 (0)87647810
TLX859017 PRC: 1-8315568

Australia: (02) 413 2666
Canada: 416477-6745
France: (1) 40 94 80 00

Singapore: 2243388
Spain: (1) 2532003
Switzerland: (1) 8289555
The Netherlands: 02155 24888

Taiwan: 2-7213257
UK: 027662111

Europe, Middle East, and Africa,
call European Headquarters:
027651440

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

