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Preface 

The C++ Language System Product Reference Manual provides a complete 
definition of the c++ language supported by Release 3.0.1 of the C++ 
Language System. The manual is part of a set of four documents that are 
supplied with your C++ Language System. The other documents are: 

• the C++ 3.0.1 Language System Release Notes, which describe the contents of 
this release, how to install it, and changes to the language 

• the C++ 3.0.1 Language System Selected Readings, which contains papers 
describing aspects of the C++ language 

• the C++ 3.0.1 Language System Library Manual, which describes the three C++ 
class libraries and tells you how to use them 

This manual contains 16 chapters covering the various aspects of the C++ 
language: 

1. Introduction 

2. Lexical Conventions 

3. Basic Concepts 

4. Standard Conversions 

5. Expressions 

6. Statements 

7. Declarations 

xi 



xii 

8. Declara tors 

9. Classes 

10. Derived Classes 

II. Member Access Control 

12. Special Member Functions 

13. Overloading 

14. Templates 

15. Exception Handling (experimental) 

16. Preprocessing 

Note - Chapter 15 is a place marker for an experimental feature that is not 
implemented in Release 3.0.1. 

The Product Reference Manual proper is followed by appendices that describe 
grammar and compatibility in Release 3.0.1: 

• Appendix A: Grammar Summary 

• Appendix B: Compatibility 

To make the best use of the Product Reference Manual, you should be familiar 
with the C programming language and the C programming environment 
under the UNIX ® operating system. 
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1.1 Introduction 

Introduction 

Note - This reference manual is by Bjarne Stroustrup. 
This is the May 1991 version of the C++ Reference Manual 

This manual describes the C++ programming language as of May 1991. C++ is 
a general purpose programming language based on the C programming 
languagel . In addition to the facilities provided by C, C++ provides classes, 
inline functions, operator overloading, function name overloading, constant 
types, references, free store management operators, and function argument 
checking and type conversion. These extensions to C are summarized in 
Section B.1, "Extensions," on page 226. The differences between C++ and ANSI 
C2 are summarized in "C++ and ANSI C" on page 228. The extensions to C++ 
since the 1985 edition of this manual are summarized in "C++ Features Added 
Since 1985" on page 227. The section related to exception handling Chapter 15, 
"Exception Handling," is a placeholder for planned language extensions. 

1. "The C Programming Language" by Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 1978 and 
1988. 

2. American National Standard X3.159-1989. 

1 



2 

Overview 

This manual is organized like this: 

1. Introduction 

2. Lexical Conventions 

3. Basic Concepts 

4. Standard Conversions 

5. Expressions 

6. Statements 

7. Declarations 

8. Declarators 

9. Classes 

10. Derived Classes 

11. Member Access Control 

12. Special Member Functions 

13. Overloading 

14. Templates 

15. Exception Handling (not implemented) 

16. Preprocessing 

• Appendix A: Grammar Summary 

• Appendix B: Compatibility 

Syntax Notation 

In the syntax notation used in this manual, syntactic categories are indicated 
by italic type, and literal words and characters in constant width type. 
Alternatives are listed on separate lines except in a few cases where a long set 
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of alternatives is presented on one line, marked by the phrase lione of." An 
optional terminal or nonterminal symbol is indicated by the subscript liopt," so 
{ expressionopt } indicates an optional expression enclosed in braces. 

Introduction 3 
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Lexical Conventions 

2.1 Lexical Conventions 

2.2 Tokens 

A c++ program consists of one or more files, see Section 3.3, "Scopes," on page 
12. A file is conceptually translated in several phases. The first phase is 
preprocessing, which performs file inclusion and macro substitution. 
Preprocessing is controlled by directives introduced by lines having # as the 
first character other than white space, see Section 2.2, "Tokens," on page 5. The 
result of preprocessing is a sequence of tokens. Such a sequence a tokens, that 
is, a file after preprocessing is called a translation unit. 

There are five kinds of tokens: identifiers, keywords, literals, operators, and 
other separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and 
comments (collectively, "white space"), as described below, are ignored except 
as they serve to separate tokens. Some white space is required to separate 
otherwise adjacent identifiers, keywords, and constants. 

If the input stream has been parsed into tokens up to a given character, the 
next token is taken to be the longest string of characters that could possibly 
constitute a token. 

5 



2.3 Comments 

2.4 Identifiers 

2.5 Keywords 

asm continue 

auto default 

break delete 

case do 

catch double 

char else 

class enum 

const extern 

6 

The characters / * start a comment, which terminates with the characters * /. 
These comments do not nest. The characters / / start a comment, which 
terminates at the end of the line on which they occur. The comment characters 
/ /, / *, and * / have no special meaning within a / / comment and are treated 
just like other characters. Similarly, the comment characters / / and / * have no 
special meaning within a / * comment. 

An identifier is an arbitrarily long sequence of letters and digits. The first 
character must be a letter; the underscore _ counts as a letter. Upper- and 
lower-case letters are different. All characters are significant. 

The following identifiers are reserved for use as keywords, and may not be 
used otherwise: 

float new signed try 

for operator sizeof typedef 

friend private static union 

goto protected struct unsigned 

if public switch virtual 

in-line register template void 

int return this volatile 

long short throw while 

In addition, identifiers containing a double underscore are reserved for use by 
C++ implementations and standard libraries and should be avoided by users. 
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2.6 Literals 

The ASCII representation of C++ programs uses the following characters as 
operators or for punctuation: 

I ~ % 

\ I. 

& () += 

<> ? 

{} 

/ 

and the following character combinations are used as operators: 

I -> ++ -- .* ->* 
1 1 *= / = %= t+= 

Each is a single token. 

« » <=> = 

«= »= 
!= 

&= A= 1= 
&& 

In addition, the following tokens are used by the preprocessor: 

# ## 

Certain implementation-dependent properties, such as the type of a sizeof 

and the ranges of fundamental types, are defined in the standard header files 

<float.h> <limits.h> <stddef.h> 

These headers are part of the ANSI C standard. In addition the headers 

<new.h> <stdarg.h> <stdlib.h> 

define the types of the most basic library functions. The last two headers are 
part of the ANSI C standard; <new. h> is C++ specific. 

There are several kinds of literals (often referred to as "constants"). 

literal: 
integer-constant 
character-constant 
floating-constant 
string-literal 

Lexical Conventions 7 
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Integer Constants 
An integer constant consisting of a sequence of digits is taken to be decimal 
(base ten) unless it begins with 0 (digit zero). A sequence of digits starting with 
o is taken to be an octal integer (base eight). The digits 8 and 9 are not octal 
digits. A sequence of digits preceded by Ox or Ox is taken to be a hexadecimal 
integer (base sixteen). The hexadecimal digits include a or A through f or F 

with decimal values ten through fifteen. For example, the number twelve can 
be written 12, 014, or oxe. 

The type of an integer constant depends on its form, value, and suffix. If it is 
decimal and has no suffix, it has the first of these types in which its value can 
be represented: int, long int, unsigned long into If it is octal or 
hexadecimal and has no suffix, it has the first of these types in which its value 
can be represented: int, unsigned int, long int, unsigned long into If it 
is suffixed by u or U, its type is the first of these types in which its value can be 
represented: unsigned int, unsigned long into If it is suffixed by 1 or L, 
its type is the first of these types in which its value can be represented: long 
int, unsigned long into If it is suffixed by ul, lu, uL, LU, UI, IU, UL, or LU, 
its type is unsigned long into 

Character Constants 
A character constant is one or more characters enclosed in single quotes, as in 

f x f • Single character constants have type char. The value of a single character 
constant is the numerical value of the character in the machine's character set. 
Multicharacter constants have type in t. The value of a multicharacter constant 
is implementation dependent. 

Certain nongraphic characters, the single quote f, the double quote f f, the 
question mark?, and the backslash \, may be represented according to the 
following table of escape sequences: 

new-line NL(LF) \n 

horizontal tab HT \t 

vertical tab VT \v 

backspace BS \b 

carriage return CR \r 

form feed FF \f 
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alert 

backslash 

question mark 

single quote 

double quote 

octal number 

hex number 

BEL 

\ 

? 

000 

hhh 

\a 

\\ 

\? 

\ I 

\ " 

\000 

\xhhh 

If the character following a backslash is not one of those specified, the behavior 
is undefined. An escape sequence specifies a single character. 

The escape \000 consists of the backslash followed by one, two, or three octal 
digits that are taken to specify the value of the desired character. The escape 
\ xhhh consists of the backslash followed by x followed by a sequence of 
hexadecimal digits that are taken to specify the value of the desired character. 
There is no limit to the number of hexadecimal digits in the sequence. A 
sequence of octal or hexadecimal digits is terminated by the first character that 
is not an octal digit or a hexadecimal digit, respectively. The value of a 
character constant is implementation dependent if it exceeds that of the largest 
char. 

A character constant immediately preceded by the letter L, for example, 
L I ab " is a wide-character constant. A wide-character constant is of type 
wchar_t, an integral type defined in the standard header <stddef . h>. 

Wide-characters are intended for character sets where a character does not fit 
into a single byte. 

Floating Constants 
A floating constant consists of an integer part, a decimal point, a fraction part, 

an e or E, an optionally signed integer exponent, and an optional type suffix. 
The integer and fraction parts both consist of a sequence of decimal (base ten) 
digits. Either the integer part or the fraction part (not both) may be missing; 
either the decimal point or the letter e (or E) and the exponent (not both) may 
be missing. The type of a floating constant is double unless explicitly 
specified by a suffix. The suffixes f and F specify float, the suffixes 1 and L 
specify long double. 
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String Literals 
A string literal is a sequence of characters as defined in Section, "Character 
Constants," on page 8, surrounded by double quotes, as in ' , ... fl. A string 
has type "array of char" and storage class static (see Section 3.5, "Start and 
Termination," on page 15), and is initialized with the given characters. 
Whether all string literals are distinct (that is, are stored in nonoverlap ping 
objects) is implementation dependent.The effect of attempting to modify a 
string literal is undefined. 

Adjacent string literals are concatenated. Characters in concatenated strings are 
kept distinct. For example, 

"\xA" "B" 

contains the two characters I \xA I and I B I after concatenation (and not the 
single hexadecimal character I \ xAB I ). 

After any necessary concatenation I \ 0 I is appended so that programs that 
scan a string can find its end. The size of a string is the number of its characters 
including this terminator. Within a string, the double quote character I f must 
be preceded by a \. 

A string literal immediately preceded by the letter L, for example, L' 'asdf f I , 

is a wide-character string. A wide-character string is of type "array of 
wchar_t I " where wchar_t is an integral type defined in the standard 
header <stddef . h>. Concatenation of ordinary and wide-character string 
literals is undefined. 
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3.1 Basic Concepts 

Basic Concepts 

A name denotes an object, a function, a set of functions, an enumerator, a type, 
a class member, a template, a value, or a label. A name is introduced into a 
program by a declaration. A name can be used only within a region of program 
text called its scope. A name has a type, which determines its use. A name used 
in more than one translation unit may (or may not) refer to the same object, 
function, type, template, or value in these translation units depending on the 
linkage (see Section 3.3, "Scopes," on page 12) specified in the translation units. 

An object is a region of storage. A named object has a storage class (see Section 
3.5, "Start and Termination," on page 15) that determines its lifetime. The 
meaning of the values found in an object is determined by the type of the 
expression used to access it. 

3.2 Declarations and Definitions 
A declaration, Chapter 7, "Declarations," introduces one or more names into a 
program. A declaration is a definition unless it declares a function without 
specifying the body (see Section 8.4, "Function Definitions," on page 93), it 
contains the extern specifier (see "Storage Class Specifiers" on page 65) and 
no initializer or function body, it is the declaration of a static data member in a 
class declaration (see Section 9.5, "Static Members," on page 111), it is a class 
name declaration (see Section 9.1, "Classes," on page 101), or it is a typedef 
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3.3 Scopes 
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declaration (see "The typedef Specifier" on page 68). The following, for 
example, are definitions: 

int ai 

extern canst c = 1i 
int f(int x) { return x+ai 

struct S { int ai int bi }i 

enum { up, down }i 

whereas these are just declarations: 

extern int ai 

extern canst Ci 

int f(int)i 
struct Si 

typedef int Inti 

There must be exactly one definition of each object, function, class, and 
enumerator used in a program (see Section 3.3, "Scopes," on page 12). If a 
function is never called and its address is never taken, it need not be defined. 
Similarly, if the name of a class is used only in a way that does not require its 
definition to be known, it need not be defined. 

There are four kinds of scope: local, function, file, and class. 

• Local: A name declared in a block (see Section 6.4, "Compound Statement, or 
Block," on page 52) is local to that block and can be used only in it and in 
blocks enclosed by it after the point of declaration. Names of formal 
arguments for a function are treated as if they were declared in the 
outermost block of that function. 

• Function: Labels (see Section 6.2, "Labeled Statement," on page 51) can be 
used anywhere in the function in which they are declared. Only labels have 
function scope. 
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• File: A name declared outside all blocks (see Section 6.4, "Compound 
Statement, or Block," on page 52) and classes (see Chapter 9, "Classes,") has 
file scope and can be used in the translation unit in which it is declared after 
the point of declaration. Names declared with file scope are said to be global. 

• Class: The name of a class member is local to its class and can be used only 
in a member function of that class (see Section 9.4, "Member Functions," on 
page 108), after the. operator applied to an object of its class (see "Class 
Member Access" on page 32) or a class derived from (see Chapter 10, 
"Derived Classes,") its class, after the -> operator applied to a pointer to an 
object of its class (see "Class Member Access" on page 32) or a class derived 
from its class, or after the: : scope resolution operator (see Section 5.2, 
"Primary Expressions," on page 28) applied to the name of its class or a 
class derived from its class. A name first declared by a friend declaration 
(see Section 11.5, "Friends," on page 140) belongs to the same scope as the 
class containing the friend declaration. A class first declared in a return or 
argument type belongs to the global scope. 

Special rules apply to names declared in function argument declarations (see 
"Functions" on page 88), and friend declarations (see Section 11.5, "Friends," 
on page 140). 

A name may be hidden by an explicit declaration of that same name in an 
enclosed block or in a class. A hidden class member name can still be used 
when it is qualified by its class name using the: : operator (see Section 5.2, 
"Primary Expressions," on page 28, Section 9.5, "Static Members," on page 111, 
Chapter 10, "Derived Classes,". A hidden name of an object, function, type, or 
enumerator with file scope can still be used when it is qualified by the unary 
: : operator (see Section 5.2, "Primary Expressions," on page 28). In addition, a 
class name (see Section 9.2, "Class Names," on page 102) may be hidden by the 
name of an object, function, or enumerator declared in the same scope. If a 
class and an object, function, or enumerator are declared in the same scope (in 
any order) with the same name the class name is hidden. A class name hidden 
by a name of an object, function, or enumerator in local or class scope can still 
be used when appropriately (see "Type Specifiers" on page 70) prefixed with 
class, struct, or union. Similarly, a hidden enumeration name can be used 
when appropriately (see "Type Specifiers" on page 70) prefixed with enum. The 
scope rules are summarized in Section 10.5, "SumIl1ary of Scope Rules," on 
page 131. 

The point of declaration for a name is immediately after its complete declarator 
(see Chapter 8, "Declarators,") and before its initializer (if any). For example, 
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int x = 12i { int x = xi } 

Here the second x is initialized with its own (unspecified) value. 

The point of declaration for an enumerator is immediately after the identifier 
that names it. For example, 

enum { x = x } i 

Here, again, the enumerator x is initialized to its own (uninitialized) value. 

3.4 Program and Linkage 
A program consists of one or more files (see Chapter 2, "Lexical Conventions,") 
linked together. A file consists of a sequence of declarations. 

A name of file scope that is explicitly declared static is local to its translation 
unit and can be used as a name for other objects, functions, and so on, in other 
translation units. Such names are said to have internal linkage. A name of file 
scope that is explicitly declared inl ine is local to its translation unit. A name 
of file scope that is explicitly declared cons t and not explicitly declared 
extern is local to its translation unit. So is the name of a class that has not 
been used in the declaration of an object, function, or class that is not local to 
its translation unit and has no static members (see Section 9.5, "Static 
Members," on page 111) and no noninline member functions (see "Inline 
Member Functions" on page 111). Every declaration of a particular name of file 
scope that is not declared to have internal linkage in one of these ways in a 
multifile program refers to the same object (see Section 3.7, "Lvalues," on page 
20), function (see "Functions" on page 88), or class (see Chapter 9, "Classes,"). 
Such names are said to be external or to have external linkage. In particular, 
since it is not possible to declare a class name static, every use of a particular 
file scope class name that has been used in the declaration of an object or 
function with external linkage or has a static member or a noninline member 
function refers to the same class. 

Typedef names (see "The typedef Specifier" on page 68), enumerators (see 
Section 7.3, "Enumeration Declarations," on page 73), and template names (see 
Chapter 14, "Templates,") do not have external linkage. 

Static class members (see Section 9.5, "Static Members," on page 111) have 
external linkage. 
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Noninline class member functions have external linkage. Inline class member 
functions must have exactly one definition in a program. 

Local names (see Section 3.3, "Scopes," on page 12) explicitly declared extern 
have external linkage unless already declared static (see Section, "Storage 
Class Specifiers," on page 65). 

The types specified in all declarations of a particular external name must be 
identical except for the use of typedef names (see "The typedef Specifier" on 
page 68) and unspecified array bounds (see "Arrays" on page 86).There must 
be exactly one definition for each function, object, class and enumerator used 
in a program. If, however, a function is never called and its address is never 
taken, it need not be defined. Similarly, if the name of a class is used only in a 
way that does not require its definition to be known, it need not be defined. 

A function may be defined only in file or class scope. 

Linkage to non-C++ declarations can be achieved using a linkage-specification 
(see Section 7.5, "Linkage Specifications," on page 75). 

3.5 Start and Termination 

A program must contain a function called main (). This function is the 
designated start of the program. This function is not predefined by the 
compiler, it cannot be overloaded, and its type is implementation dependent. It 
is recommended that the two examples below be allowed on any 
implementation and that any further arguments required be added after argv. 
The function main () may be defined as 

int main() { /* ... */ } 

or 

int main(int argc, char* argv[]) { /* ... */ } 

In the latter form argc shall be the number of parameters passed to the 
program from an environment in which the program is run. If argc is nonzero 
these parameters shall be supplied as zero-terminated strings in argvO 
through argv [argc-l] and argvO shall be the name used to invoke the 
program or \ \ , , . It is guaranteed that argv [ argc ] = = o. 
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The function main () may not be called from within a program. The linkage 
(see Section 3.4, "Program and Linkage," on page 14) of main () is 
implementation dependent. The address of main () cannot be taken and 
main () may not be declared inline or static. 

Calling the function 

void exit (int) i 

declared in <stdlib. h> terminates the program. The argument value is 
returned to the program's environment as the value of the program. 

A return statement in main () has the effect of calling exi t () with the return 
value as the argument. 

The initialization of nonlocal static objects (see Section 3.6, "Storage Classes," 
on page 17) in a translation unit is done before the first use of any function or 
object defined in that translation unit. Such initializations (see Section 8.5, 
"Initializers," on page 94, Section 9.5, "Static Members," on page 111, Section 
12.1, "Special Member Functions," on page 147, "Explicit Initialization" on 
page 158) may be done before the first statement of main () or deferred to any 
point in time before the first use of a function or object defined in that 
translation unit. The default initialization of all static objects to zero (see 
Section 8.5, "Initializers," on page 94) is performed before any dynamic (that is, 
run-time) initialization. No further order is imposed on the initialization of 
objects from different translation units. The initialization of local static objects 
is described in Section 8.5, "Initializers," on page 94. 

Destructors (see "Destructors" on page 154) for initialized static objects are 
called when returning from main () and when calling exi t (). Destruction is 
done in reverse order of initialization. The function a texi t () from 
< s tdl ib . h> can be used to specify that a function must be called at exit. If 
atexi t () is to be called, objects initialized before an atexi t () call may not 
be destroyed until after the function specified in the a texi t () call has been 
called. Where a C++ implementation coexists with a C implementation, any 
actions specified by the C implementation to take place after the a texi t ( ) 
functions have been called take place after all destructors have been called. 

Calling the function 

void abort(); 
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3.6 Storage Classes 

declared in <stdlib. h> terminates the program without executing 
destructors for static objects and without calling the functions passed to 
atexit (). 

There are two declarable storage classes: automatic and static. 

• Automatic objects are local to each invocation of a block. 

• Static objects exist and retain their values throughout the execution of the 
entire program. 

Automatic objects are initialized (see Section 12.1, "Special Member 
Functions," on page 147) each time the control flow reaches their definition and 
are destroyed (see "Destructors" on page 154) on exit from their block (see 
Section 6.8, "Declaration Statement," on page 58). 

A named automatic object may not be destroyed before the end of its block nor 
mayan automatic named object of a class with a constructor or a destructor 
with side effects be eliminated even if it appears to be unused. 

Similarly, a global object of a class with a constructor or a destructor with side 
effects may not be eliminated even if it appears to be unused. 

Static objects are initialized and destroyed as described in Section 3.5, "Start 
and Termination," on page 15 and Section 6.8, uDeclaration Statement," on 
page 58. Some objects are not associated with names; see "New" on page 36 
and "Temporary Objects" on page 149. All global objects have storage class 
static.Local objects and class members can be given static storage class by 
explicit use of the static storage class specifier (see "Storage Class Specifiers" 
on page 65). 

Types 

There are two kinds of types: fundamental types and derived types. 

Fundamental Types 

There are several fundamental types. The standard header <limi ts. h> 
specifies the largest and smallest values of each for an implementation. 
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Objects declared as characters (char) are large enough to store any member of 
the implementation's basic character set. If a character from this set is stored in 
a character variable, its value is equivalent to the integer code of that character. 
Characters may be explicitly declared unsigned or signed. Plain char, 
signed char, and unsigned char are three distinct types. A char, a signed 
char, and an unsigned char consume the same amount of space. 

Up to three sizes of integer, declared short int ,int, and long int, are 
available. Longer integers provide no less storage than shorter ones, but the 
implementation may make either short integers or long integers, or both, 
equivalent to plain integers. Plain integers have the natural size suggested by 
the machine architecture; the other sizes are provided to meet special needs. 

For each of the types signed char, short, int, and long, there exists a 
corresponding unsigned type, which occupies the same amount of storage 
and has the same alignment requirements. An alignment requirement is an 
implementation-dependent restriction on the value of a pointer to an object of 
a given type (see "Explicit Type Conversion" on page 39). 

Unsigned integers, declared uns igned, obey the laws of arithmetic modulo 2n 

where n is the number of bits in the representation. This implies that unsigned 
arithmetic does not overflow. 

There are three floating types: float, double, and long double. The type 
double provides no less precision than float, and the type long double 
provides no less precision than double. An implementation will define the 
characteristics of the fundamental floating point types in the standard header 
<float .h>. 

Types char, int of all sizes, and enumerations (see Section 7.3, "Enumeration 
Declarations," on page 73) are collectively called integral types. Integral and 
floating types are collectively called arithmetic types. 

The void type specifies an empty set of values. It is used as the return type for 
functions that do not return a value. No object of type void may be declared. 
Any expression may be explicitly converted to type void (see Section 5.3, 
"Explicit Type Conversion," on page 39); the resulting expression may be used 
only as an expression statement (see Section 6.3, "Expression Statement," on 
page 52), as the left operand of a comma expression (Section 5.17, "Comma 
Operator," on page 49), or as a second or third operand of ?: (see Section 5.15, 
"Conditional Operator," on page 47). 
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Derived Types 
There is a conceptually infinite number of derived types constructed from the 
fundamental types in the following ways: 

• arrays of objects of a given type, (see "Arrays" on page 86); 

• functions, which take arguments of given types and return objects of a given 
type, (see "Functions" on page 88). 

• pointers to objects or functions of a given type, (see "Pointers" on page 83); 

• references to objects or functions of a given type, (see "References" on page 
84). 

• constants, which are values of a given type, (see "Type Specifiers" on page 
70). 

• classes containing a sequence of objects of various types (see Chapter 9, 
"Classes,"), a set of functions for manipulating these objects (see Section 9.4, 
"Member Functions," on page 108), and a set of restrictions on the access to 
these objects and functions (see Chapter 11, "Member Access Control,") 

• structures, which are classes without default access restrictions, (see Chapter 
11, "Member Access Control,"); 

• unions, which are structures capable of containing objects of different types 
at different times, (see Section 9.6, "Unions," on page 114;) 

• pointers to class members, which identify members of a given type within 
objects of a given class, (see "Pointers to Members" on page 85). 

In general, these methods of constructing objects can be applied recursively; 
restrictions are mentioned in (see "Pointers" on page 83, U Arrays" on page 86, 
"Functions" on page 88, "References" on page 84). 

A pointer to objects of a type T is referred to as a "pointer to T. " For example, 
a pointer to an object of type int is referred to as "pointer to int" and a 
pointer to an object of class X is called a "pointer to x. " 

Objects of type void* (pointer to void), const void*, and volatile void* 
can be used to point to objects of unknown type. A void* must have enough 
bits to hold any object pointer. Except for pointers to static members, text 
referring to "pointers" does not apply to pointers to members. 
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3.7 Lvalues 
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Fundamental and derived types can be given names by the typedef 
mechanism (see "The typedef Specifier" on page 68), and families of types and 
functions can be specified and named by the template mechanism (see 
Chapter 14, "Templates,"). 

An object is a region of storage; an lvalue is an expression referring to an object 
or function. An obvious example of an lvalue expression is the name of an 
object. Some operators yield lvalues. For example, if E is an expression of 
pointer type, then *E is an lvalue expression referring to the object to which E 

points. The name "lvalue" comes from the assignment expression El = E2 in 
which the left operand El must be an lvalue expression. The discussion of each 
operator in Chapter 5, "Expressions," indicates whether it expects lvalue 
operands and whether it yields an lvalue. An lvalue is modifiable if it is not a 
function name, an array name, or canst. 
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Standard Conversions 

4.1 Standard Conversions 
Some operators may, depending on their operands, cause conversion of the 
value of an operand from one type to another. This section summarizes the 
conversions demanded by most ordinary operators and explains the result to 
be expected from such conversions; it will be supplemented as required by the 
discussion of each operator. These conversions are also used in initialization 
(see Section 8.5, "Initializers," on page 94, "References" on page 84, "Copying 
Class Objects" on page 164, "Constructors" on page 147, "Conversions" on 
page 150 and Section 13.2, "Argument Matching," on page 173) describe user
defined conversions and their interaction with standard conversions. The result 
of a conversion is an Ivalue only if the result is a reference (see "References" on 
page 84). 

Integral Promotions 

A char, a short int, enumerator, object of enumeration type (see Section 7.3, 
"Enumeration Declarations," on page 73), or an int bit-field (see Section 9.7, 
"Bit-Fields," on page 115) (in both their signed and unsigned varieties) may be 
used wherever an integer may be used. If an int can represent all the values of 
the original type, the value is converted to int; otherwise it is converted to 
unsigned into This process is called integral promotion. 
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Integral Conversions 

When an integer is converted to an unsigned type, the value is the least 
unsigned integer congruent to the signed integer (modulo 2n where n is the 
number of bits used to represent the unsigned type). In a two's complement 
representation, this conversion is conceptual and there is no change in the bit 
pattern. 

When an integer is converted to a signed type, the value is unchanged if it can 
be represented in the new type; otherwise the value is implementation 
dependent. 

Float and Double 

Single-precision floating point arithmetic may be used for float expressions. 
When a less precise floating value is converted to an equally or more precise 
floating type, the value is unchanged. When a more precise floating value is 
converted to a less precise floating type and the value is within representable 
range, the result may be either the next higher or the next lower representable 
value. If the result is out of range, the behavior is undefined. 

Floating and Integral 

Conversion of a floating value to an integral type truncates; that is, the 
fractional part is discarded. Such conversions are machine dependent; for 
example, the direction of truncation of negative numbers varies from machine 
to machine. The result is undefined if the value cannot be represented in the 
integral type. 

Conversions of integral values to floating type are as mathematically correct as 
the hardware allows. Loss of precision occurs if an integral value cannot be 
represented exactly as a value of the floating type. 

Arithmetic Conversions 

Many operators cause conversions and yield result types in a similar way. This 
pattern will be called the "usual arithmetic conversions." 

• If either operand is of type long double, the other is converted to long 
double. 
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• Otherwise, if either operand is double, the other is converted to double. 

• Otherwise, if either operand is float, the other is converted to float. 

• Otherwise, the integral promotions (see Section 4.1, "Standard 
Conversions," on page 21) are performed on both operands. 

• Then, if either operand is unsigned long the other is converted to 
unsigned long. 

• Otherwise, if one operand is a long int and the other unsigned int, then 
if a long int can represent all the values of an unsigned int, the 
unsigned int is converted to a long int; otherwise both operands are 
converted to unsigned long into 

• Otherwise, if either operand is long, the other is converted to long. 

• Otherwise, if either operand is unsigned, the other is converted to 
unsigned. 

• Otherwise, both operands are in t. 

Pointer Conversions 

The following conversions may be performed wherever pointers (see 
"Pointers" on page 83) are assigned, initialized, compared, or otherwise used: 

• A constant expression (see Section 5.18, "Constant Expressions," on page 50) 
that evaluates to zero is converted to a pointer, commonly called the null 
pointer. It is guaranteed that this value will produce a pointer 
distinguishable from a pointer to any object or function. 

• A pointer to any non-const and non- volatile object type may be 
converted to a void*. 

• A pointer to function may be converted to a void* provided a void* has 
sufficient bits to hold it. 

• A pointer to a class may be converted to a pointer to an accessible base class 
of that class (see Chapter 10, "Derived Classes,") provided the conversion is 
unambiguous (see Section 10.1, "Derived Classes," on page 121); a base class 
is accessible if its public members are accessible (see Section 11.2, "Access 
Specifiers," on page 136). The result of the conversion is a pointer to the 
base class sub-object of the derived class object. The null pointer (0) is 
converted into itself. 
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• An expression with type Uarray of T" may be converted to a pointer to the 
initial element of the array. 

• An expression with type Ufunction returning T" is converted to Upointer to 
function returning T" except when used as the operand of the address-of 
operator & or the function call operator (). 

Reference Conversions 

The following conversion may be performed wherever references (see Section, 
uReferences," on page 84) are initialized (including argument passing (see 
uFunction Call" on page 31) and function value return (see uThe return 
Statement" on page 57) or otherwise used: 

• A reference to a class may be converted to a reference to an accessible base 
class (see Chapter 10, uDerived Classes,", Section 11.2, uAccess Specifiers," 
on page 136) of that class (see uReferences" on page 84) provided this 
conversion can be done unambiguously (see U Ambiguities" on page 125). 
The result of the conversion is a reference to the base class sub-object of the 
derived class object. 

Pointers to Members 

The following conversion may be performed wherever pointers to members 
(see uPointers" on page 83) are initialized, assigned, compared, or otherwise 
used: 

• A constant expression (see Section 5.18, uConstant Expressions," on page 50) 
that evaluates to zero is converted to a pointer to member. It is guaranteed 
that this value will produce a pointer to member distinguishable from any 
other pointer to member. 

• A pointer to a member of a class may be converted to a pointer to member 
of a class derived from that class provided the (inverse) conversion from the 
derived class to the base class pointer is accessible (see Section 11.2, U Access 
Specifiers," on page 136) and provided this conversion can be done 
unambiguously (see "Ambiguities" on page 125). 
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The rule for conversion of pointers to members (from pointer to member of 
base to pointer to member of derived) appears inverted compared to the rule 
for pointers to objects (from pointer to derived to pointer to base) (see "Pointer 
Conversions" on page 23, Chapter 10, "Derived Classes,"). This inversion is 
necessary to ensure type safety. 

Note that a pointer to member is not a pointer to object or a pointer to function 
and the rules for conversions of such pointers do not apply to pointers to 
members. In particular, a pointer to member cannot be converted to a void*. 
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5.1 Expressions 

Expressions 

This section defines the syntax, order of evaluation, and meaning of 
expressions. An expression is a sequence of operators and operands that 
specifies a computation. An expression may result in a value and may cause 
side effects. 

Operators can be overloaded, that is, given meaning when applied to 
expressions of class type (see Chapter 9, "Classes,"). Uses of overloaded 
operators are transformed into function calls as described in (see Section 13.4, 
"Overloaded Operators," on page 179). Overloaded operators obey the rules 
for syntax specified in this section, but the requirements of operand type, 
lvalue, and evaluation order are replaced by the rules for function call. 
Relations between operators, such as ++a meaning a+=l, are not guaranteed 
for overloaded operators (see Section 13.4, "Overloaded Operators," on page 
179). 

This section defines the operators when applied to types for which they have 
not been overloaded. Operator overloading cannot modify the rules for 
operators applied to types for which they are defined by the language itself. 

The order of evaluation of subexpressions is determined by the precedence and 
grouping of the operators. The usual mathematical rules for associativity and 
commutativity of operators may be applied only where the operators really are 
associative and commutative. Except where noted, the order of evaluation of 
operands of individual operators is undefined. In particular, if a value is 
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modified twice in an expression, the result of the expression is undefined 
except where an ordering is guaranteed by the operators involved. For 
example: 

= v[i++]; II the value of 'i' is undefined 
i=7,i++,i++; II 'if becomes 9 

The handling of overflow and divide check in expression evaluation is 
implementation dependent. Most existing implementations of C++ ignore 
integer overflows. Treatment of division by zero and all floating point 
exceptions vary among machines, and is usually adjustable by a library 
function. 

Except where noted, operands of types const T, volatile T, T&, const T&, 
and volatile T& can be used as if they were of the plain type T. Similarly, 
except where noted, operands of type T*const and T*volatile can be used 
as if they were of the plain type T *. Similarly, a plain T can be used where a 
volatile T or a const T is required. These rules apply in combination so 
that, except where noted, a const T*volatile can be used where a T* is 
required. Such uses do not count as standard conversions when considering 
overloading resolution (see Section 13.2, "Argument Matching," on page 173). 

If an expression has the type "reference to T II (see "References" on page 84) ,the 
value of the expression is the object of type "T" denoted by the reference. The 
expression is an lvalue. A reference can be thought of as a name of an object. 

User-defined conversions of class objects to and from fundamental types, 
pointers, and so on, can be defined (see Section, "Conversions," on page 150). 
If unambiguous (see Section 13.2, "Argument Matching," on page 173), such 
conversions may be applied by the compiler wherever a class object appears as 
an operand of an operator, as an initializer (see Section 8.5, "Initializers," on 
page 94), as the controlling expression in a selection (see Section 6.5, "Selection 
Statements," on page 52) or iteration (see Section 6.6, "Iteration Statements," on 
page 54) statement, as a function return value «sc6.6.3), or as a function 
argument (see "Function Call" on page 31). 

5.2 Primary Expressions 
Primary expressions are literals, names, and names qualified by the scope 
resolution operator : :. 
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primary-expression: 
literal 
this 
:: identifier 
:: operator-function-name 
:: qualified-name 
( expression ) 
name 

A literal is a primary expression. Its type depends on its form (see Section 2.5, 
"Keywords," on page 6). 

In the body of a nonstatic member function (Section 9.4, "Member Functions," 
on page 108), the keyword this names a pointer to the object for which the 
function was invoked. The keyword thi s cannot be used outside a class 
member function body. 

The operator: : followed by an identifier, a qualified-name, or an operator
function-name is a primary expression. Its type is specified by the declaration of 
the identifier, name, or operator-function-name. The result is the identifier, name, 
or operator-function-name. The result is an lvalue if the identifier is an 1 val vee 
The identifier or operator-function-name must be of file scope. Use of : : allows a 
type, an object, a function, or an enumerator to be referred to even if its 
identifier has been hidden (see Section 3.4, "Program and Linkage," on page 
14). 

A parenthesized expression is a primary expression whose type and value are 
identical to those of the unadorned expression. The presence of parentheses 
does not affect whether the expression is an lvalue. 

A name is a restricted form of a primary-expression that can appear after. and 
-> (see "Class Member Access" on page 32): 

name: 
identifier 
operator-function-name 
conversion-Junction-name 
- class-name 
qualified-name 

Expressions 29 



30 

An identifier is a name provided it has been suitably declared (see Chapter 7, 
"Declarations,"). For operator-Junction-names, see Section 13.4, "Overloaded 
Operators," on page 179. For conversion-Junction-names, see "Conversion 
Functions" on page 151. A dass-name prefixed by ~ denotes a destructor; see 
"Destructors" on page 154. 

qualified-name: 
qualified-dass-name :: name 

A qualified-class-name (see "Type Specifiers" on page 70) followed by : : and the 
name of a member of that class (see Section 9.3, "Class Members," on page 
105), or a member of a base of that class (see Chapter 10, "Derived Classes,"), is 
a qualified-name; its type is the type of the member. The result is the member. 
The result is an lvalue if the member is IvaI ve. The class-name may be hidden 
by a nontype name, in which case the class-name is still found and used. Where 
class-name: : class-name or class-name: : ~ dass-name is used, the two class
names must refer to the same class; this notation names constructors (see 
"Constructors" on page 147) and destructors ("Destructors" on page 154), 
respectively. Multiply qualified names, such as Nl : : N2 : : N3 : : n, can be used 
to refer to nested types (see Section 9.8, "Nested Class Declarations," on page 
116). 

Postfix Expressions 
Postfix expressions group left-to-right. 

postfix-expression: 
primary-expression 
postfix-expression [ expression] 
postfix-expression ( expression-listopt ) 

simple-type-name ( expression-list opt ) 
postfix-expression. name 
postfix-expression -> name 
postfix-expression ++ 
postfix-expression --

expression-list: 
assignment-expression 
expression-list, assignment-expression 
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Subscripting 
A postfix expression followed by an expression in square brackets is a postfix 
expression. The intuitive meaning is that of a subscript. One of the expressions 
must have the type "pointer to T" and the other must be of integral type. The 
type of the result is "T." The expression El [E2] is identical (by definition) to 
* ( (El) + (E2) ). See "Unary Operators" on page 34 and Section 5.6, "Additive 
Operators," on page 43 for details of * and + and "Arrays" on page 86 for 
details of arrays. 

Function Call 
A function call is a postfix expression followed by parentheses containing a 
possibly empty, comma-separated list of expressions which constitute the 
actual arguments to the function. The postfix expression must be of type 
"function returning T, " "pointer to function returning T, " or "reference to 
function returning T, " and the result of the function call is of type "T." 

When a function is called, each formal argument is initialized (see "Character 
Arrays" on page 98, "Copying Class Objects" on page 164, "Constructors" on 
page 147) with its actual argument. Standard (see Chapter 4, "Standard 
Conversions,") and user-defined (see "Conversions" on page 150 conversions 
are performed. A function may change the values of its nonconstant formal 
arguments, but these changes cannot affect the values of the actual arguments 
except where a formal argument is of a non-c cons t reference type (see 
"References" on page 84). Where a formal argument is of reference type a 
temporary variable is introduced if needed (see "Type Specifiers" on page 
70,Section 2.6, "Literals," on page 7, "String Literals" on page 10, "Arrays" on 
page 86, "Temporary Objects" on page 149). In addition, it is possible to 
modify the values of nonconstant objects through pointer arguments. 

A function may be declared to accept fewer arguments (by declaring default 
arguments (see "Default Arguments" on page 90) or more arguments (by using 
the ellipsis, . . . (see "Functions" on page 88) than are specified in the function 
definition (see Section 8.4, "Function Definitions," on page 93). 

A function can be called only if a declaration of it is accessible from the scope 
of the call. This implies that, except where the ellipsis ( ... ) is used, a formal 
argument is available for each actual argument. 
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Any actual argument of type f 1 oa t for which there is no formal argument is 
converted to double before the call; any of char, short, enumeration, or a 
bit-field type for which there is no formal argument are converted to int or 
unsigned by integral promotion (see Section 4.1, "Standard Conversions," on 
page 21). An object of a class for which no formal argument is declared is 
passed as a data structure. 

An object of a class for which a formal argument is declared is passed by 
initializing the formal argument with the actual argument by a constructor call 
before the function is entered (see "Temporary Objects" on page 149). 

The order of evaluation of arguments is undefined; take note that compilers 
differ. All side effects of argument expressions take effect before the function is 
entered. The order of evaluation of the postfix expression and the argument 
expression list is undefined. 

Recursive calls are permitted. 

A function call is an lvalue only if the result type is a reference. 

Explicit Type Conversion 
A simple-type-name (see "Type Specifiers" on page 70) followed by a 
parenthesized expression-list constructs a value of the specified type given the 
expression list. If the expression list specifies more than a single value, the type 
must be a class with a suitably declared constructor (see Section 8.5, 
"Initializers," on page 94, "Constructors" on page 147). 

A simple-type-name (see "Type Specifiers" on page 70) followed by a (empty) 
pair of parentheses constructs a value of the specified type. If the type is a class 
with a suitably declared constructor that constructor will be called; otherwise 
the result is an undefined value of the specified type. See also Section 5.4, 
"Pointer-to-Member Operators," on page 42. 

Class Member Access 
A postfiX expression followed by a dot . followed by a name is a postfix 
expression. The first expression must be a class object, and the name must 
name a member of that class. The result is the named member of the object, 
and it is an lvalue if the member is an lvalue. 
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A postfix expression followed by an arrow ( - » followed by a name is a postfix 
expression. The first expression must be a pointer to a class object and the name 
must name a member of that class. The result is the named member of the 
object to which the pointer points and it is an lvalue if the member is an lvalue. 
Thus the expression E1->MOS is the same as (*E1) . MOS. 

Note that "class objects" can be structures (see Section 9.3, "Class Members," 
on page 105) and unions (see Section 9.6, "Unions," on page 114). Classes are 
discussed in Chapter 9, "Classes,". 

Increment and Decrement 
The value obtained by applying a postfix + + is the value of the operand. The 
operand must be a modifiable lvalue. The type of the operand must be an 
arithmetic type or a pointer type. After the result is noted, the object is 
incremented by 1. The type of the result is the same as the type of the operand, 
but it is not an lvalue. See also Section 5.6, "Additive Operators," on page 43 
and Section 5.16, "Assignment Operators," on page 48. 

The operand of postfix - - is decremented analogously to the postfix + + 
operator. 
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Unary Operators 

Expressions with unary operators group right-to-Ieft. 

unary-expression: 
postfix -expression 
++ unary-expression 
-- unary-expression 
unary-operator cast-expression 
s i z eo f unary-expression 
sizeof ( type-name) 
allocation-expression 
deallocation-expression 

unary-operator: one of 
*&+-!-

The unary * operator means indirection: the expression must be a pointer, and 
the result is an lvalue referring to the object to which the expression points. If 
the type of the expression is "pointer to T II/the type of the result is "T." 

The result of the unary & operator is a pointer to its operand. The operand 
must be a function, an lvalue, or a qualified-name. In the first two cases, if the 
type of the expression is "T," the type of the result is "pointer to T . 1/ In 
particular, the address of an object of type canst T has type canst T*; 

volatile is handled similarly. For a qualified-name, if the member is not static 
and of type "T" in class "C," the type of the result is "pointer to member of c 
of type T . 1/ For a static member of type T, the type is plain "pointer to T . 1/ 

The address of an overloaded function (see Chapter 13, "Overloading,") can be 
taken only in an initialization or an assignment where the left side uniquely 
determines which version of the overloaded function is referred to (see Section 
13.4, "Overloaded Operators," on page 179). 

The operand of the unary + operator must have arithmetic or pointer type and 
the result is the value of the argument. Integral promotion is performed on 
integral operands. The type of the result is the type of the promoted operand. 

The operand of the unary - operator must have arithmetic type and the result 
is the negation of its operand. Integral promotion is performed on integral 
operands. The negative of an unsigned quantity is computed by subtracting its 
value from 2n, where n is the number of bits in the promoted operand. The 
type of the result is the type of the promoted operand. 
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The operand of the logical negation operator! must have arithmetic type or be 
a pointer; its value is 1 if the value of its operand is 0 and 0 if the value of its 
operand is nonzero. The type of the result is in t. 

The operand of - must have integral type; the result is the one's complement 
of its operand. Integral promotions are performed. The type of the result is the 
type of the promoted operand. 

Increment and Decrement 
The operand of prefix ++ is incremented by 1. The operand must be a 
modifiable lvalue. The type of the operand must be an arithmetic type or a 
pointer type. The value is the new value of the operand; it is an lvalue. The 
expression ++x is equivalent to x+=1. See the discussions of addition (see 
Section 5.6, "Additive Operators," on page 43) and assignment operators (see 
Section 5.16, "Assignment Operators," on page 48) for information on 
conversions. 

The operand of prefix - - is decremented analogously to the prefix + + 
operator. 

Sizeo! 
The s i z eo f operator yields the size, in bytes, of its operand. The operand is 
either an expression, which is not evaluated, or a parenthesized type name. 
The sizeof operator may not be applied to a function, a bit-field, an 
undefined class, the type void, or an array with an unspecified dimension. A 
byte is undefined by the language except in terms of the value of sizeof; 
sizeof (char) is 1. 

When applied to a reference, the result is the size of the referenced object. 
When applied to a class, the result is the number of bytes in an object of that 
class including any padding required for placing such objects in an array. The 
size of any class or class object is larger than zero. When applied to an array, 
the result is the total number of bytes in the array. This implies that the size of 
an array of n elements is n times the size of an element. 

The sizeof operator may be applied to a pointer to a function, but not to a 
function. 

The result is a constant of type size_t, an implementation-dependent 
unsigned integral type defined in the standard header <stddef . h>. 
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New 
The new operator attempts to create an object of the type-name (see Section 8.2, 
"Type Names," on page 80) to which it is applied. This type must be an object 
type; functions cannot be allocated this way, though pointers to functions can. 

allocation-expression: 
::opt new placementopt new-type-name new-initializeropt 
::opt new placementopt ( type-name) new-initializeropt 

placement: 
( expression-list ) 

new-type-name: 
type-specifier-list new-declarator opt 

new-declarator: 
* cv-qualifier-listopt new-declarator opt 
class-name :: * cv-qualifier-listopt new-declaratoropt 
new-declarator opt [ expression ] 

new-initializer: 
( initializer-listopt ) 

The lifetime of an object created by new is not restricted to the scope in which 
it is created. The new operator returns a pointer to the object created. When 
that object is an array, a pointer to its initial element is returned. For example, 
both new int and new int [10] return an int* and the type of new 
in t [ i] [10] is in t (*) [10]. Where an array type (see "Arrays" on page 86) 
is specified all array dimensions but the first must be constant expressions (see 
"Constant Expressions" on page 50) with positive values. The first array 
dimension can be a general expression even when the type-name is used (despite 
the general restriction of array dimensions in type-names to constant-expressions 
(see "Constant Expressions" on page 50). 

This implies that an operator new () can be called with the argument zero. In 
this case, a pointer to an object is returned. Repeated such calls return pointers 
to distinct objects. 

The type-specifier-list may not contain const, volatile, class declarations, or 
enumeration declarations. 

The new operator will call the function opera tor new () to obtain storage (see 
Section, "Free Store," on page 156). A first argument of sizeof (T) is 
supplied when allocating an object of type T. The placement syntax can be used 
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to supply additional arguments. For example, new T results in a call of 
operator new(sizeof (T) ) and new(2, f) T results in a call operator 
new(sizeof(T) ,2,f). 

The placement syntax can be used only provided an operator new () with 
suitable argument types (see Section 13.2, "Argument Matching," on page 173) 
has been declared. 

When an object of a nonclass type (including arrays of class objects) is created 
with operator new, the global: : operator new () is used. When an object of a 
class T is created with operator new, T: : opera tor new () is used if it exists 
(using the usual lookup rules for finding members of a class and its base 
classes; (see Section 10.2, "Multiple Base Classes," on page 123); otherwise the 
global: : operator new () is used. Using: : new ensures that the global 
: : opera tor new () is used even if T: : opera tor new () exists. 

A new-initializer may be supplied in an allocation-expression. For objects of 
classes with a constructor (see "Constructors" on page 147) this argument list 
will be used in a constructor call; otherwise the initializer must be of the form 
( expression) or (). If present, the expression will be used to initialize the 
object; if not, the object will start out with an undefined value. 

If a class has a constructor an object of that class can be created by new only if 
suitable arguments are provided or if the class has a default constructor (see 
"Constructors" on page 147). Whether operator new allocates the memory 
itself or leaves that up to the constructor when creating an object of a class with 
a constructor is implementation dependent. Access and ambiguity control are 
done for both operator new () and the constructor; see Section 12.1, "Special 
Member Functions," on page 147. 

No initializers can be specified for arrays. Arrays of objects of a class with 
constructors can be created by operator new only if the class has a default 
constructor (see "Constructors" on page 147). In that case, the default 
constructor will be called for each element of the array. 

Initialization is done only if the value returned by operator new () is 
nonzero. If the value returned by the operator new () is 0 (the null pointer) 
the value of the expression is o. 

The order of evaluation of the call to an operator new () to get memory and 
the evaluation of arguments to constructors is undefined. It is also undefined if 
the arguments to a constructor are evaluated if operator new () returns o. 
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In a new-type-name used as the operand for new, parentheses may not be used. 
This implies that 

new int(*[10]) ()i II error 

is an error because the binding is 

(new int) (* [10] ) () i / I error 

Objects of general type can be expressed using the explicitly parenthesized 
version of the new operator. For example, 

new ( in t ( * [10] ) () ) i 

allocates an array of 10 pointers to functions (taking no argument and 
returning int). 

The new-type-name in an allocation-expression is the longest possible sequence of 
new-declarators. This prevents ambiguities between declarator operators &, *, 
[], and their expression counterparts. For example, 

new int*ii II syntax error: parsed as \ (new int*) i' 
II not as \ (new int)*i' 

The * is the pointer declarator and not the multiplication operator. 

Delete 
The delete operator destroys an object created by the new operator. 
deal location-expression: 

::opt delete cast-expression 
::opt delete [ ] cast-expression 

The result has type void. The operand of delete must be a pointer returned 
by new. The effect of applying delete to a pointer not obtained from the new 
operator without a placement specification is undefined and usually harmful. 
Deleting a pointer with the value zero, however, is guaranteed to be harmless. 

The effect of accessing a deleted object is undefined and the deletion of an 
object may change its value. Furthermore, if the expression denoting the object 
in a delete expression is a modifiable lvalue, its value is undefined after the 
deletion. 

A pointer to constant cannot be deleted. 
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The delete operator will invoke the destructor (if any), (see "Destructors" on 
page 154) for the object pointed to. 

To free the storage pointed to, the delete operator will call the function 
operator delete ( ); see "Free Store" on page 156. For objects of a nonclass 
type (including arrays of class objects), the global: : operator delete () is 
used. For an object of a class T, T: : operator delete () is used if it exists 
(using the usual lookup rules for finding members of a class and its base 
classes; (see "Ambiguities" on page 125); otherwise the global: : operator 
delete () is used. Using: : delete ensures that the global : : opera tor 
delete () is used even if T: : operator delete () exists. 

The form 

delete [ ] cast-expression 

is used to delete arrays. The expression points to an array. The destructors (if 
any) for the objects pointed to will be invoked. 

The effect of deleting an array with the plain delete syntax is undefined, as is 
deleting an individual object with the delete [] syntax. 

5.3 Explicit Type Conversion 
An explicit type conversion can be expressed using either functional notation 
(see "Explicit Type Conversion" on page 32) or the cast notation. 

cast-expression: 
unary-expression 

( type-name) cast-expression 

The cast notation is needed to express conversion to a type that does not have a 
simple-type-name. 

Types may not be defined in casts. 

Any type conversion not mentioned below and not explicitly defined by the 
user (see "Conversions" on page 150) is an error. 

Any type that can be converted to another by a standard conversion «sc4) can 
also be converted by explicit conversion and the meaning is the same. 

Expressions 39 



40 

A pointer may be explicitly converted to any integral type large enough to 
hold it. The mapping function is implementation dependent, but is intended to 
be unsurprising to those who know the addressing structure of the underlying 
machine. 

A value of integral type may be explicitly converted to a pointer. A pointer 
converted to an integer of sufficient size (if any such exists on the 
implementation) and back to the same pointer type will have its original value; 
mappings between pointers and integers are otherwise implementation 
dependent. 

A pointer to one object type may be explicitly converted to a pointer to another 
object type (subject to the restrictions mentioned in this section). The resulting 
pointer may cause addressing exceptions on use if the subject pointer does not 
refer to an object suitably aligned in storage. It is guaranteed that a pointer to 
an object of a given size may be converted to a pointer to an object of the same 
or smaller size and back again without change. Different machines may differ 
in the number of bits in pointers and in alignment requirements for objects. 
Aggregates are aligned on the strictest boundary required by any of their 
constituents. A void * is considered a pointer to object type. 

A pointer to a class B may be explicitly converted to a pointer to a class D that 
has B as a direct or indirect base class if an unambiguous conversion from D to 
B exists (see "Pointer Conversions" on page 23, "Ambiguities" on page 125) 
and if B is not a virtual base class (see Section 10.2, "Multiple Base Classes," on 
page 123). Such a cast from a base to a derived class assumes that the object of 
the base class is a sub-object of an object of the derived class; the resulting 
pointer points to the enclosing object of the derived class. If the object of the 
base class is not a sub-object of an object of the derived class, the cast may 
cause an exception. 

The null pointer (0) is converted into itself. 

A yet undefined class may be used in a pointer cast, in which case no 
assumptions will be made about class lattices (see Section 10.2, "Multiple Base 
Classes," on page 123). 

An object may be explicitly converted to a reference type X& if a pointer to that 
object may be explicitly converted to an X *. Constructors or conversion 
functions are not called as the result of a cast to a reference. Conversion of a 
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reference to a base class to a reference to a derived class is handled similarly to 
the conversion of a pointer to a base class to a pointer to a derived class with 
respect to ambiguity, virtual classes, and so on. 

The result of a cast to a reference type is an lvalue; the results of other casts are 
not. Operations performed on the result of a pointer or reference cast refer to 
the same object as the original (uncast) expression. 

A pointer to function may be explicitly converted to a pointer to an object type 
provided the object pointer type has enough bits to hold the function pointer. 
A pointer to an object type may be explicitly converted to a pointer to function 
provided the function pointer type has enough bits to hold the object pointer. 
In both cases, use of the resulting pointer may cause addressing exceptions, or 
worse, if the subject pointer does not refer to suitable storage. 

A pointer to a function may be explicitly converted to a pointer to a function of 
a different type. The effect of calling a function through a pointer to a function 
type that differs from the type used in the definition of the function is 
undefined. See also "Pointer Conversions" on page 23. 

An object or a value may be converted to a class object (only) if an appropriate 
constructor or conversion operator has been declared (see "Conversions" on 
page 150). 

A pointer to member may be explicitly converted into a different pointer to 
member type when the two types are both pointers to members of the same 
class or when the two types are pointers to member functions of classes one of 
which is unambiguously derived from the other (see "Pointers to Members" on 
page 24). 

A pointer to an object of a canst type can be cast into a pointer to a non 
- canst type. The resulting pointer will refer to the original object. An object of 
a cons t type or a reference to an object of a cons t type can be cast into a 
reference to a non- canst type. The resulting reference will refer to the original 
object. The result of attempting to modify that object through such a pointer or 
reference will either cause an addressing exception or be the same as if the 
original pointer or reference had referred a non- cons t object. It is 
implementation dependent whether the addressing exception occurs. 

A pointer to an object of a volatile type can be cast into a pointer to a non-c 
volatile type. The resulting pointer will refer to the original object. An 
object of a volatile type or a reference to an object of a volatile type can 
be cast into a reference to a non- volatile type. 
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5.4 Pointer-to-Member Operators 
The pointer-to-member operators - > * and . * group left-to-right. 

pm-expression: 
cast-expression 
pm-expression .* cast-expression 
pm-expression ->* cast-expression 

The binary operator . * binds its second operand, which must be of type 
"pointer to member of class T" to its first operand, which must be of class T or 
of a class of which T is an unambiguous and accessible base class. The result is 
an object or a function of the type specified by the second operand. 

The binary operator ->* binds its second operand, which must be of type 
"pointer to member of T" to its first operand, which must be of type "pointer 
to T" or "pointer to a class of which T is an unambiguous and accessible base 
class." The result is an object or a function of the type specified by the second 
operand. 

If the result of . * or - > * is a function, then that result can be used only as the 
operand for the function call operator (). For example, 

(ptr_to_obj->*ptr_to_mfct) (10) ; 

calls the member function denoted by ptr_to_mfct for the object pointed to 
by ptr_to_obj. The result of an . * expression or a ->* expression is an 
lvalue if its second operand is an lvalue. 

5.5 Multiplicative Operators 
The multiplicative operators *, /, and % group left-to-right. 

multiplicative-expression: 
pm-expression 
multiplicative-expression * pm-expression 
multiplicative-expression / pm-expression 
multiplicative-expression % pm-expression 

The operands of * and / must have arithmetic type; the operands of % must 
have integral type. The usual arithmetic conversions (see II Arithmetic 
Conversions" on page 22) are performed on the operands and determine the 
type of the result. 
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The binary * operator indicates multiplication. 

The binary / operator yields the quotient, and the binary % operator yields the 
remainder from the division of the first expression by the second. If the second 
operand of / or % is 0 the result is undefined; otherwise (a/b) *b + a%b is 
equal to a. If both operands are nonnegative then the remainder is 
nonnegative; if not, the sign of the remainder is implementation dependent. 

5.6 Additive Operators 

The additive operators + and - group left-to-right. The usual arithmetic 
conversions (see 1/ Arithmetic Conversions" on page 22) are performed for 
operands of arithmetic type. 

addi tive-expression: 
mu I tipl icative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

The operands must be of arithmetic or pointer type. The result of the + 
operator is the sum of the operands. A pointer to an object in an array and a 
value of any integral type may be added. The result is a pointer of the same 
type as the original pointer, which points to another object in the same array, 
appropriately offset from the original object. Thus if P is a pointer to an object 
in an array, the expression P+ 1 is a pointer to the next object in the array. If the 
resulting pointer points outside the bounds of the array, except at the first 
location beyond the high end of the array, the result is undefined. 

The"result of the - operator is the difference of the operands. A value of any 
integral type may be subtracted from a pointer, and then the same conversions 
apply as for addition. 

No further type combinations are allowed for pointers. 

If two pointers to objects of the same type are subtracted, the result is a signed 
integral value representing the number of objects separating the pointed-to 
objects. Pointers to successive elements of an array differ by 1. The type of the 
result is implementation dependent, but is defined as ptrdiff_t in the 
standard header <stddef . h>. The value is undefined unless the pointers 
point to elements of the same array; however, if P points to the last element of 
an array then (P+1) -1 is P. 
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5.7 Shift Operators 
The shift operators « and » group left-to-right. 

shift-expression: 
additive-expression 
shift-expression « additive-expression 
shift-expression » additive-expression 

The operands must be of integral type and integral promotions are performed. 
The type of the result is that of the promoted left operand. The result is 
undefined if the right operand is negative, or greater than or equal to the 
length in bits of the promoted left operand. The value of El « E2 is El 

(interpreted as a bit pattern) left-shifted E2 bits; vacated bits are O-filled. The 
value of El » E2 is El right-shifted E2 bit positions. The right shift is 
guaranteed to be logical (O-fill) if El has an unsigned type or if it has a 
nonnegative value; otherwise the result is implementation dependent. 

5.B Relational Operators 
The relational operators group left-to-right, but this fact is not very useful; 
a<b<c means (a<b) <c and not (a<b) && (b<c). 

relational-expression: 
shift -expression 
relational-expression < shift-expression 
relational-expression> shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 

The operands must have arithmetic or pointer type. The operators < (less 
than), > (greater than), <= (less than or equal to), and >= (greater than or equal 
to) all yield a if the specified relation is false and 1 if it is true. The type of the 
result is into 

The usual arithmetic conversions are performed on arithmetic operands. 
Pointer conversions are performed on pointer operands. This implies that any 
pointer may be compared to a constant expression evaluating to a and any 
pointer can be compared to a pointer of type void* (in the latter case the 
pointer is first converted to void *). Pointers to objects or functions of the same 
type (after pointer conversions) may be compared; the result depends on the 
relative positions of the pointed-to objects or functions in the address space. 
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Two pointers to the same object compare equal. If two pointers point to 
non static members of the same object, the pointer to the later declared member 
compares higher provided the two members not separated by an access-specifier 
label (see Section 11.2, "Access Specifiers," on page 136) and provided their 
class is not a union. If two pointers point to nonstatic members of the same 
object separated by an access-specifier label (see Section 11.2, "Access 
Specifiers," on page 136) the result is undefined. If two pointers point to data 
members of the same union, they compare equal. If two pointers point to 
elements of the same array or one beyond the end of the array, the pointer to 
the object with the higher subscript compares higher. Other pointer 
comparisons are implementation dependent. 

5.9 Equality Operators 
equality-expression: r 

elational-expression 
equality-expression == relational-expression 
equality-expression != relational-expression 

The == (equal to) and the! = (not equal to) operators are exactly analogous to 
the relational operators except for their lower precedence. (Thus a<b == c<d 
is 1 whenever a<b and c<d have the same truth-value.) 

In addition, pointers to members of the same type may be compared. Pointer to 
member conversions (see "Pointers to Members" on page 24) are performed. A 
pointer to member may be compared to a constant expression that evaluates to 
O. 

5.10 Bitwise AND Operator 
and -expression: 

equal ity-expression 
and-expression & equality-expression 

The usual arithmetic conversions are performed; the result is the bitwise AND 
function of the operands. The operator applies only to integral operands. 
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5.11 Bitwise Exclusive OR Operator 
exclusive-or-expression: 

and -expression 
exclusive-or-expression /\ and-expression 

The usual arithmetic conversions are performed; the result is the bitwise 
exclusive OR function of the operands. The operator applies only to integral 
operands. 

5.12 Bitwise Inclusive OR Operator 
inclusive-or-expression: 

exclusive-or-expression 
inclusive-or-expression I exclusive-or-expression 

The usual arithmetic conversions are performed; the result is the bitwise 
inclusive OR function of its operands. The operator applies only to integral 
operands. 

5.13 Logical AND Operator 
logical-and -expression: 

inclusive-or-expression 
logical-and-expression && inclusive-or-expression 

The && operator groups left-to-right. It returns 1 if both its operands are 
nonzero, 0 otherwise. Unlike &, && guarantees left-to-right evaluation; 
moreover the second operand is not evaluated if the first operand evaluates to 
o. 

The operands need not have the same type, but each must have arithmetic type 
or be a pointer. The result is an into All side effects of the first expression 
happen before the second expression is evaluated. 

5.14 Logical OR Operator 

.46 

logical-or-expression: 
logical-and -expression 
logical-or-expression I I logical-and-expression 
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The I I operator groups left-to-right. It returns 1 if either of its operands is 
nonzero, and 0 otherwise. Unlike I, I I guarantees left-to-right evaluation; 
moreover, the second operand is not evaluated if the first operand evaluates to 
nonzero. 

The operands need not have the same type, but each must have arithmetic type 
or be a pointer. The result is an into All side effects of the first expression 
happen before the second expression is evaluated. 

5.15 Conditional Operator 
conditional-expression: 

logical-or-expression 
logical-or-expression ? expression: conditional-expression 

Conditional expressions group right-to-left. The first expression must have 
arithmetic type or be a pointer type. It is evaluated and if it is nonzero, the 
result of the conditional expression is the value of the second expression, 
otherwise that of the third expression. All side effects of the first expression 
happen before the second or third expression is evaluated. 

If both the second and the third expressions are of arithmetic type, then if they 
are of the same type the result is of that type; otherwise the usual arithmetic 
conversions are performed to bring them to a common type. Otherwise, if both 
the second and the third expressions are either a pointer or a constant 
expression that evaluates to 0, pointer conversions are performed to bring 
them to a common type. Otherwise, if both the second and the third 
expressions are references, reference conversions are performed to bring them 
to a common type. Otherwise, if both the second and the third expressions are 
void, the common type is void. Otherwise, if both the second and the third 
expressions are of the same class T, the common type is T. Otherwise the 
expression is illegal. The result has the common type; only one of the second 
and third expressions is evaluated. The result is an Ivalue if the second and the 
third operands are of the same type and both are Ivalues. 
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5.16 Assignment Operators 

48 

There are several assignment operators, all of which group right-to-Ieft. All 
require a modifiable lvalue as their left operand, and the type of an assignment 
expression is that of its left operand. The result of the assignment operation is 
the value stored in the left operand after the assignment has taken place; the 
result is an lvalue. 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

assignment-operator: one of 
= *= /= %= += -= »= «= &= A= 1= 

In simple assignment (=), the value of the expression replaces that of the object 
referred to by the left operand. If both operands have arithmetic type, the right 
operand is converted to the type of the left preparatory to the assignment. 
There is no implicit conversion to an enumeration (see Section 7.3, 
"Enumeration Declarations," on page 73), so if the left operand is of an 
enumeration type the right operand must be of the same type. If the left 
operand is of pointer type, the right operand must be of pointer type or a 
constant expression that evaluates to 0; the right operand is converted to the 
type of the left before the assignment. 

A pointer of type T*const can be assigned to a pointer of type T*, but the 
reverse assignment is illegal (see "Type Specifiers" on page 70). Objects of 
types const T and volatile T can be assigned to plain T lvalues and to 
lvalues of type volatile T; see also Section 8.5, "Initializers," on page 94. 

If the left operand is of pointer to member type, the right operand must be of 
pointer to member type or a constant expression that evaluates to 0; the right 
operand is converted to the type of the left before the assignment. 

Assignment to objects of a class (see Chapter 9, "Classes,") X is defined by the 
function x: : operator= () (see" Assignment" on page 182). Unless the user 
defines an x: : operator= (), the default version is used for assignment (see 
"Copying Class Objects" on page 164). This implies that an object of a class 
derived from X (directly or indirectly) by unambiguous public derivation (see 
Section 4.1, "Standard Conversions," on page 21) can be assigned to an x. 
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A pointer to a member of class B may be assigned to a pointer to a member of 
class D of the same type provided D is derived from B (directly or indirectly) by 
unambiguous public derivation (see Section 10.2, "Multiple Base Classes," on 
page 123). 

Assignment to an object of type "reference to Til assigns to the object of type T 

denoted by the reference. 

The behavior of an expression of the form Elop = E2 is equivalent to El = El 

op (E2); except that El is evaluated only once. In += and -=, the left operand 
may be a pointer, in which case the (integral) right operand is converted as 
explained in Section 5.6, "Additive Operators," on page 43; all right operands 
and all nonpointer left operands must have arithmetic type. 

For class objects, assignment is not in general the same as initialization (see 
Section 8.5, "Initializers," on page 94, "Constructors" on page 147, 
"Initialization" on page 158, "Copying Class Objects" on page 164.) 

5.17 Comma Operator 

The comma operator groups left-to-right. 

expression: 
assignment-expression 
expression, assignment-expression 

A pair of expressions separated by a comma is evaluated left-to-right and the 
value of the left expression is discarded. All side effects of the left expression 
are performed before the evaluation of the right expression. The type and value 
of the result are the type and value of the right operand; the result is an lvalue 
if its right operand is an 1 val ve. 

In contexts where comma is given a special meaning, for example, in lists of 
actual arguments to functions (see "Function Call" on page 31) and lists of 
initializers (see Section 8.5, "Initializers," on page 94), the comma operator as 
described in this section can appear only in parentheses; for example, 

f(a, (t=3, t+2), c); 

has three arguments, the second of which has the value 5. 
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5.18 Constant Expressions 

50 

In several places, C++ requires expressions that evaluate to an integral 
constant: as array bounds (see II Arrays" on page 86), as case expressions (see 
liThe switch Statement" on page 53), as bit-field lengths (see Section 9.7, "Bit
Fields," on page 115), and as enumerator initializers (see Section 7.3, 
"Enumeration Declarations," on page 73). 

cons tan t -expression: 
conditional-expression 

A constant-expression can involve only literals (see Section 2.6, "Literals," on 
page 7), enumerators, canst values of integral types initialized with constant 
expressions (see Section 8.5, "Initializers," on page 94), and sizeof 
expressions. Floating constants (see "Floating Constants" on page 9) must be 
cast to integral types. Only type conversions to integral types may be used. In 
particular, except in sizeof expressions, functions, class objects, pointers, and 
references cannot be used. The comma operator and assignment-operators may 
not be used in a constant expression. 
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6.1 Statements 

Statements 

Except as indicated, statements are executed in sequence. 

statement: 
labeled-statement 
expression-statement 
compound -statement 
selection-statement 
iteration-statement 
jump-statement 
declaration-statement 

6.2 Labeled Statement 
A statement may be labeled. 

labeled -statement: 
identifier: statement 
case constant-expression: statement 
defaul t : statement 
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An identifier label declares the identifier. The only use of an identifier label is 
as the target of a goto. The scope of a label is the function in which it appears. 
Labels cannot be redeclared within a function. A label can be used in a goto 
statement before its definition. Labels have their own name space and do not 
interfere with other identifiers. 

Case labels and default labels may occur only in switch statements. 

6.3 Expression Statement 
Most statements are expression statements, which have the form 

expression-statement: 
expressionopt ; 

Usually expression statements are assignments or function calls. All side effects 
from an expression statement are completed before the next statement is 
executed. An expression statement with the expression missing is called a null 
statement; it is useful to carry a label just before the} of a compound 
statement and to supply a null body to an iteration statement such as while 
(see "The while Statement" on page 54). 

6.4 Compound Statement, or Block 
So that several statements can be used where one is expected, the compound 
statement (also, and equivalently, called "block") is provided. 

compound-statement: 
{ statement-list opt } 

statement-list: 
statement 
statement-list statement 

Note that a declaration is a statement. See Section 6.7, "Jump Statements," on 
page 56. 

6.5 Selection Statements 
Selection statements choose one of several flows of control. 
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selection-statement: 
if (expression) statement 
if ( expression ) statement else statement 
swi tch ( expression) statement 

The statement in a selection-statement may not be a declaration. 

The if Statement 
The expression must be of arithmetic or pointer type or of a class type for 
which an unambiguous conversion to arithmetic or pointer type exists (see 
"Conversions" on page 150). 

The expression is evaluated and if it is nonzero, the first sub statement is 
executed. If else is used, the second substatement is executed if the 
expression is zero. The else ambiguity is resolved by connecting an else 
with the last encountered else-less if. 

The swi t ch Statement 
The swi tch statement causes control to be transferred to one of several 
statements depending on the value of an expression. 

The expression must be of integral type or of a class type for which an 
unambiguous conversion to integral type exists (see "Conversions" on page 
150). Integral promotion is performed. Any statement within the statement 
may be labeled with one or more case labels as follows: 

case constant-expression : 

where the constant-expression (see Section 5.18, "Constant Expressions," on page 
50) is converted to the promoted type of the switch expression. No two of the 
case constants in the same switch may have the same value. 

There may be at most one label of the form 

default : 

within a swi tch statement. 

Switch statements may be nested; a case or defaul t label is associated with 
the smallest switch enclosing it. 
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When the swi tch statement is executed, its expression is evaluated and 
compared with each case constant. If one of the case constants is equal to the 
value of the expression, control is passed to the statement following the 
matched case label. If no case constant matches the expression, and if there is a 
defaul t label, control passes to the statement labeled by the default label. If 
no case matches and if there is no defaul t then none of the statements in the 
switch is executed. 

case and defaul t labels in themselves do not alter the flow of control, which 
continues unimpeded across such labels. To exit from a switch, see break, 
"The break Statement" on page 56. 

Usually, the statement that is the subject of a switch is compound. 
Declarations may appear in the statement of a switch-statement. It is illegal, 
however, to jump past a declaration with an explicit or implicit initializer 
unless the declaration is in an inner block that is not entered (that is, 
completely bypassed by the transfer of control; (see Section 6.8, "Declaration 
Statement," on page 58). This implies that declarations that contain explicit or 
implicit initializers must be contained in an inner block. 

6.6 Iteration Statements 
Iteration statements specify looping. 

iteration-statement: 
while ( expression) statement 
do statement while ( expression) ; 
for (for-init-statement expressionopt ; expressionopt statement 

for-init-statement: 
expression-statement 
declaration-statement 

A for-init-statement ends with a semicolon. 

The statement in an iteration-statement may not be a declaration. 

The whi 1 e Statement 
In the while statement the sub statement is executed repeatedly until the value 
of the expression becomes zero. The test takes place before each execution of 
the substatement. 
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Do statement 

The expression must be of arithmetic or pointer type or of a class type for 
which an unambiguous conversion to arithmetic or pointer type exists (see 
"Conversions" on page 150). 

In the do statement the sub statement is executed repeatedly until the value of 
the expression becomes zero. The test takes place after each execution of the 
substatement. 

The expression must be of arithmetic or pointer type or of a class type for 
which an unambiguous conversion to arithmetic or pointer type exists (see 
"Conversions" on page 150). 

The for Statement 

The for statement 

for ( for-in it-statement expression-lopt ; expression-2opt statement 

is equivalent to 

for-in it-statement 
while ( expression-l ) { 
statement 
expression-2 ; 

except that a continue in statement will execute expression-2 before 
reevaluating expression-l. Thus the first statement specifies initialization for the 
loop; the first expression specifies a test, made before each iteration, such that 
the loop is exited when the expression becomes zero; the second expression 
often specifies incrementing that is done after each iteration. The first 
expression must have arithmetic or pointer type or a class type for which an 
unambiguous conversion to arithmetic or pointer type exists (see 
"Conversions" on page 150). 

Either or both of the expressions may be dropped. A missing expression-l 
makes the implied while clause equivalent to while (1). 
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If the for-init-statement is a declaration, the scope of the names declared extends 
to the end of the block enclosing the for-statement. 

6.7 Jump Statements 

Jump statements unconditionally transfer control. 

jump-statement: 
break i 

continue 
return expressionopt ; 
goto identifier; 

On exit from a scope (however accomplished), destructors (see "Destructors" 
on page 154) are called for all constructed class objects in that scope that have 
not yet been destroyed. This applies to both explicitly declared objects and 
temporaries (see "Temporary Objects" on page 149). 

The break Statement 

The break statement may occur only in an iteration-statement or a swi tch 
statement and causes termination of the smallest enclosing iteration-statement or 
swi tch statement; control passes to the statement following the terminated 
statement, if any. 

The con tinue Statement 

The continue statement may occur only in an iteration-statement and causes 
control to pass to the loop-continuation portion of the smallest enclosing 
iteration-statement, that is, to the end of the loop. More precisely, in each of the 
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statements 

while (faa) {do {for (ii) 

II II ... II 

cantin: cantin: cantin: 

} while (fOO)i 

a continue not contained in an enclosed iteration statement is equivalent to 
goto contino 

The return Statement 

A function returns to its caller by the return statement. 

A return statement without an expression can be used only in functions that do 
not return a value, that is, a function with the return value type void, a 
constructor (see "Constructors" on page 147), or a destructor (see 
"Destructors" on page 154). A return statement with an expression can be used 
only in functions returning a value; the value of the expression is returned to 
the caller of the function. If required, the expression is converted, as in an 
initialization, to the return type of the function in which it appears. This may 
involve the construction and copy of a temporary object (see "Temporary 
Objects" on page 149). Flowing off the end of a function is equivalent to a 
return with no value; this is illegal in a value-returning function. 

The go to Statement 

The goto statement unconditionally transfers control to the statement labeled 
by the identifier. The identifier must be a label (see Section 6.2, "Labeled 
Statement," on page 51) located in the current function. 
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6.8 Declaration Statement 
A declaration statement introduces a new identifier into a block; it has the form 

declaration-statement: 
declaration 

If an identifier introduced by a declaration was previously declared in an outer 
block, the outer declaration is hidden for the remainder of the block, after 
which it resumes its force. 

Any initializations of auto or register variables are done each time their 
declaration-statement is executed. Destruction of local variables declared in the 
block is done on exit from the block (see Section 6.7, "Jump Statements," on 
page 56). Destruction of auto variables defined in a loop is done once per 
iteration. For example, here the Index j is created and destroyed once each 
time round the i loop: 

for (int i = 0; i<100; i++) 
for (Index j = 0; j<100; j++) { 

/ / ... 

Transfer out of a loop, out of a block, or back past an initialized auto variable 
involves the destruction of au to variables declared at the point transferred 
from but not at the point transferred to. "-

It is possible to transfer into a block, but not in a way that causes initializations 
not to be done. It is illegal to jump past a declaration with an explicit or 
implicit initializer unless the declaration is in an inner block that is not entered 
(that is, completely bypassed by the transfer of control) or unless the jump is 
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from a point where the variable has already been initialized. For example: 

void f () 
{ 

ly: 

Ix: 

I I ... 
goto Ix; II error: jump past initializer 
I I ... 

X a = 1; 

I I ... 

goto ly; II ok, jump implies destructor 
II call for 'a' 

An auto variable constructed under a condition is destroyed under that 
condition and cannot be accessed outside that condition. For example, 

if (i) 
for (int j 
I I ... 
} 

0; j<100; j++) { 

if (j!=100) II error: access outside condition 
I I ... 

Initialization of a local object with storage class static (see "Storage Class 
Specifiers" on page 65) is done the first time control passes through its 
declaration (only). Where a static variable is initialized with an expression 
that is not a constant-expression, default initialization to 0 of the appropriate 
type (see Section 8.5, "Initializers," on page 94) happens before its block is first 
entered. 

The destructor for a local static object will be executed if and only if the 
variable was constructed. The destructor must be called either immediately 
before or as part of the calls of the atexi t () functions (see Section 3.5, "Start 
and Termination," on page 15). Exactly when is undefined. 
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6.9 Ambiguity Resolution 

There is an ambiguity in the grammar involving expression-statements and 
declarations: An expression-statement with a function-style explicit type 
conversion (see "Explicit Type Conversion" on page 32) as its leftmost 
subexpression can be indistinguishable from a declaration where the first 
declarator starts with a (. In those cases the statement is a declaration. 

To disambiguate, the whole statement may have to be examined to determine if 
it is an expression-statement or a declaration. This disambiguates many examples. 
For example, assuming T is a simple-type-name (see "Type Specifiers" on page 
70), 

T(a)->m = 7; 
T(a)++; 
T(a,5)«c; 

T(*e) (int); 
T(f) []; 
T(g) = { 1, 2 }; 
T(*d) (double(3)); 

II expression-statement 
II expression-statement 
II expression-statement 

II declaration 
II declaration 
II declaration 
II declaration 

The remaining cases are declarations. For example, 

T(a) ; II declaration 
T(*b) (); II declaration 
T(c)=7i II declaration 
T(d),e,f=3i II declaration 
T(g) (h,2); II declaration 

The disambiguation is purely syntactic; that is, the meaning of the names, 
beyond whether they are type-names or not, is not used in the disambiguation. 
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A slightly different ambiguity between expression-statements and declarations is 
resolved by requiring a type-name for function declarations within a block (see 
Section 6.4, "Compound Statement, or Block," on page 52). For example: 

void g() 
{ 

int f(); II declaration 
int a; II declaration 
f(); II expression-statement 
a; II expression-statement 
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7.1 Declarations 

7.2 Specifiers 

Declarations 

Declarations specify the interpretation given to each identifier; they do not 
necessarily reserve storage associated with the identifier (see Section 3.2, 
"Declarations and Definitions," on page 11). Declarations have the form 

declaration: 
decl-specifiersopt declarator-list opt; 
asm-declaration 
function -defin ition 
linkage-specification 

The declarators in the declarator-list (see Chapter 8, "Declarators,") contain the 
identifiers being declared. Only in function definitions (see Section 8.4, 
"Function Definitions," on page 93) and function declarations may the decl
specifiers be omitted. Only when declaring a class (see Chapter 9, "Classes,") or 
enumeration (see Section 7.2, "Specifiers," on page 63), that is, when the decl
specifier is a class-specifier or enum-specifier, may the declarator-list be empty. asm
declarations are described in Section 7.3, "Enumeration Declarations," on page 
73, and linkage-specifications in Section 7.4, "Asm Declarations," on page 75. A 
declaration occurs in a scope (see Section 3.3, "Scopes," on page 12); the scope 
rules are summarized in Section 10.5, "Summary of Scope Rules," on page 131. 

The specifiers that can be used in a declaration are 
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decl-specifier: 
storage-class-specifier 
type-specifier 
fct-specifier 
template-specifier 
friend 
typedef 

decl-specifiers: 
decl-specifiersopt decl-specifier 

The longest sequence of decl-specifiers that could possibly be a type name is 
taken as the decl-specifiers of a declaration. The sequence must be self-consistent 
as described below. For example, 

typedef char* Pc; 
static Pc; II error: name missing 

Here, the declaration static Pc is illegal because no name was specified for 
the static variable of type Pc. To get a variable of type int called Pc, the type
specifier int must be present to indicate that the typedef-name Pc is the name 
being (re)declared, rather than being part of the decl-specifier sequence. For 
example, 

void f(const Pc); II void f(char*const) 
void g(const int Pc); II void g(const int) 

Since signed, unsigned, long, and short by default imply int, a typedef
name appearing after one of those specifiers must be the name being 
(re)declared. For example, 

void h(unsigned Pc); II void h(unsigned int) 
void k(unsigned int Pc); II void k(unsigned int) 
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Storage Class Specifiers 

The storage class specifiers are 
storage-class-specifier: 

auto 
register 
static 
extern 

The auto or register specifiers can be applied only to names of objects 
declared in a block (see Section 6.4, "Compound Statement, or Block," on page 
52) and for formal arguments (see Section 8.4, "Function Definitions," on page 
93). The auto declarator is almost always redundant and not often used; one 
use of auto is to distinguish a declaration-statement from an expression-statement 
(see Section 6.3, "Expression Statement," on page 52) explicitly. 

A register declaration is an auto declaration, together with a hint to the 
compiler that the variables declared will be heavily used. The hint may be 
ignored and in most implementations it will be ignored if the address of the 
variable is taken. 

An object declaration is a definition unless it contains the extern specifier and 
has no initializer (see Section 3.2, "Declarations and Definitions," on page 11). 

A definition causes the appropriate amount of storage to be reserved and any 
appropriate initialization (see Section 8.5, "Initializers," on page 94) to be done. 

The static and extern specifiers can be applied only to names of objects 
and functions and to anonymous unions. There can be no static function 
declarations within a block, nor any static or extern formal arguments. 
Static class members are described in (see Section 9.5, "Static Members," on 
page 111); extern cannot be used for class members. 

A name specified static has internal linkage. Objects declared const have 
internal linkage unless they have previously been given external linkage. A 
name specified extern has external linkage unless it has previously been 
given internal linkage. A file scope name without a storage-dass-specifier has 
external linkage unless it has previously been given internal linkage and 
provided it is not declared const. For a nonmember function an inline 
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specifier is equivalent to a static specifier for linkage purposes (see Section 
3.4, "Program and Linkage," on page 14). All linkage specifications for a name 
must agree. For example, 

static char* f()i II f() has internal linkage 
char* f() II f() still has internal linkage 

1* ... *1 } 

char* g()i II g() has external linkage 
static char* g() II error: inconsistent linkage 

{ 1* ... *1 } 

static int ai II 'a' has internal linkage 
int ai II error: two definitions 

static int bi II 'b' has internal linkage 
extern int bi II 'b' still has internal linkage 

int Ci II 'c' has external linkage 
static int Ci II error: inconsistent linkage 

extern int di II 'd' has external linkage 
static int di II error: inconsistent linkage 

The name of an undefined class can be used in an extern declaration. Such a 
declaration, however, cannot be used before the class has been defined. For 
example, 

struct Si 

extern S ai 
extern S f()i 
extern void g(S)i 

void h() 
{ 

g (a) i 

f()i 
Ilerror: S undefined 
II error: S undefined 
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Function Specifiers 

Some specifiers can be used only in function declarations. 

fct-specifier: 
inline 
virtual 

The inl ine specifier is a hint to the compiler that inline substitution of the 
function body is to be preferred to the usual function call implementation. The 
hint may be ignored. For a nonmember function inl ine specifier also gives 
the function default internal linkage (see Section 3.4, "Program and Linkage," 
on page 14). A function (see "Function Call" on page 31, "Functions" on page 
88) defined within the declaration of a class is inl ine by default. 

An inline member function must have exactly the same definition in every 
compilation in which it appears. 
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A class member function need not be explicitly declared inl ine in the class 
declaration to be inline. When no inline specifier is used, linkage will be 
external unless an inline definition appears before the first call. 

class X { 
public: 

int f () ; 
inline int g(); II X::g() has internal linkage 
int h(); 

} ; 

void k(X* p) 

int i = p->f(); II now X: :f() has external linkage 
int j = p->g () ; 
I I ... 

inline int X::f() II error: called before defined 
II as inline 

I I ... 

inline int X:: g () 
{ 

I I ... 

inl ine in t X:: h ( ) 

II 

II now X: :h() has internal linkage 

The virtual specifier may be used only in declarations of nonstatic class 
member functions within a class declaration; see Section 10.3, UVirtual 
Functions," on page 127. 

The typedef Specifier 
Declarations containing the decl-specifier typedef declare identifiers that can 
be used later for naming fundamental or derived types. The typedef specifier 
may not be used in a function-definition (see Section 8.4, UFunction Definitions," 
on page 93). 

Product Reference Manual- October 1992 



typedef-name: 
identifier 

Within the scope (see Section 3.3, "Scopes," on page 12) of a typedef 
declaration, each identifier appearing as part of any declarator therein becomes 
syntactically equivalent to a keyword and names the type associated with the 
identifier in the way described in Chapter 8, "Declarators,". A typedef-name is 
thus a synonym for another type. A typedef-name does not introduce a new type 
the way a class declaration (see Section 9.2, "Class Names," on page 102) does. 
For example, after 

typedef int MILES, *KLICKSPi 

the constructions 

MILES distancei 
extern KLICKSP metricPi 

are all legal declarations; the type of distance is int; that of metricp is 
"pointer to in t . " 

A typedef may be used to redefine a name to refer to the type to which it 
already refers - even in the scope where the type was originally declared. For 
example, 

typedef struct s { /* ... */ } Si 

typedef int Ii 

typedef int Ii 

typedef I Ii 

An unnamed class defined in a typedef gets its typedef name as its name. For 
example, 

typedef struct { /* ... *1 } Si II the struct is named S 

A typede f may not redefine a name of a type declared in the same scope to 
refer to a different type. For example, 

class complex { 1* ... *1 }i 

typedef int complexi II error: redefinition 
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Similarly, a class may not be declared with the name of a type declared in the 
same scope to refer to a different type. For example, 

typedef int complex; 
class complex { 1* ... *1 }; II error: redefinition 

A typedef-name that names a class is a class-name (see Section 9.2, "Class 
Names," on page 102). The synonym may not be used after a class, struct, 
or union prefix and not in the names for constructors and destructors within 
the class declaration itself. For example, 

struct 8 { 
8 () ; 

-8 (); 

} ; 

typedef struct 8 T; 

8 a = T(); II ok 
struct T * p; II error 

The templa te Specifier 
The template specifier is used to specify families of types or functions; see 
Chapter 14, "Templates,". 

The f r i end Specifier 
The friend specifier is used to specify access to class members; see Section 
11.5, "Friends," on page 140. 

Type Specifiers 
The type-specifiers are 

type-specifier: 
simple-type-name 
class-specifier 
enum-specifier 
elaborated-type-specifier 
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:: class-name 
canst 
volatile 

The words canst and volatile may be added to any legal type-specifier in 
the declaration of an object. Otherwise, at most one type-specifier may be given 
in a declaration. A cons t object may be initialized, but its value may not be 
changed thereafter. Unless explicitly declared extern, a cons t object does not 
have external linkage and must be initialized (see Section 8.5, "Initializers," on 
page 94; UConstructors" on page 147). An integer canst initialized by a 
constant expression may be used in constant expressions (see UConstant 
Expressions" on page 50). Each element of a canst array is canst and each 
nonfunction, nonstatic member of a canst class object is canst (see "The this 
Pointer" on page 109). A canst object of a type that does not have a 
constructor or a destructor may be placed in read-only memory. The effect of a 
write operation on any part of such an object is either an addressing exception 
or the same as if the object had been non- canst. 

There are no implementation-independent semantics for volatile objects; 
volatile is a hint to the compiler to avoid aggressive optimization involving 
the object because the value of the object may be changed by means 
undetectable by a compiler. Each element of a volatile array is volatile 
and each nonfunction, nonstatic member of a volatile class object is 
volatile (see uThe this Pointer" on page 109). 

If the type-specifier is missing from a declaration, it is taken to be into 

simple-type-name: 
complete-class-name 
qualified-type-name 
char 
short 
int 
long 
signed 
unsigned 
float 
double 
void 
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At most one of the words long or short may be specified together with into 
Either may appear alone, in which case int is understood. The word long 
may appear together with double. At most one of the words signed and 
unsigned may be specified together with char, short, int, or long. Either 
may appear alone, in which case int is understood. The signed specifier 
forces char objects and bit-fields to be signed; it is redundant with other 
integral types. 

class-specifiers and enum-specifiers are discussed in Chapter 9, "Classes,"and 
Section 7.2, "Specifiers," on page 63, respectively. 

elaborated-type-specifier: 
class-key class-name 
class-key identifier 
enum enum-name 

class-key: 
class 
struct 
union 

If an identifier is specified, the elaborated-type-specifier declares it to be a class
name; see Section 9.2, "Class Names," on page 102. 

If defined, a name declared using the uni on specifier must be defined as a 
union. If defined, a name declared using the class specifier must be defined 
using the class or struct specifier. If defined, a name declared using the 
struct specifier must be defined using the class or struct specifier. Names 
of nested types (see Section 9.8, "Nested Class Declarations," on page 116) can 
be qualified by the name of their enclosing class: 

qualified -type-name: 
typedef-name 
class-name :: qualified-type-name 

complete-class-name: 
qualified-class-name 
:: qualified-class-name 

qual ified -c lass-name: 
class-name 
class-name :: qualified-class-name 
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A name qualified by a class-name must be a type defined in that class or in a 
base class of that class. As usual, a name declared in a derived class hides 
members of that name declared in base classes; see Section 3.3, "Scopes," on 
page 12. 

7.3 Enumeration Declarations 
An enumeration is a distinct integral type (see "Fundamental Types" on page 
17) with named constants. Its name becomes an enum-name, that is, a reserved 
word within its scope. 

enum-name: 
identifier 

enum-specifier: 
enum identifieropt { enum-listopt } 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

The identifiers in an enum-list are declared as constants, and may appear 
wherever constants are required. If no enumerators with = appear, then the 
values of the corresponding constants begin at zero and increase by one as the 
declaration is read from left to right. An enumerator with = gives the 
associated identifier the value indicated; subsequent identifiers without 
initializers continue the progression from the assigned value. The value of an 
enumerator must be an in t or a value that can be promoted to in t by integral 
promotion (see Section, "Integral Promotions," on page 21). 
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The names of enumerators must be distinct from those of ordinary variables 
and other enumerators in the same scope. The values of the enumerators need 
not be distinct. An enumerator is considered defined immediately after it and 
its initializer, if any, has been seen. For example, 

I enurn { a, b, c=O }; 
enum { d, e, f=e+2 }; 

defines a, c, and d to be 0, band e to be 1, and f to be 3. 

Each enumeration defines an integral type that is different from all other 
integral types. The type of an enumerator is its enumeration. The value of an 
enumerator or an object of an enumeration type is converted to an integer by 
integral promotion (see "Integral Promotions" on page 21). For example, 

enum color { red, yellow, green=20, blue }; 
color col = red; 
color* cp = &col; 
if (*cp == blue) II 

makes color an integral type describing various colors, and then declares col 
as an object of that type, and cp as a pointer to an object of that type. The 
possible values of an object of type color are red, yellow, green, blue; 
these values can be converted to the in t values 0, 1, 20, and 21. Since 
enumerations are distinct types, objects of type color may be assigned only 
values of type color. For example, 

color c = 1; II error: type mismatch, 
II no conversion from int to color 

int i yellow; II ok: yellow converted to int value 1 
II integral promotion 

Enumerators defined in a class (Chapter 9, "Classes,") are in the scope of that 
class and can be referred to outside member functions of that class only by 
explicit qualification with the class name (see Section 5.2, "Primary 
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Expressions," on page 28). The name of the enumeration itself is also local to 
the class (see Section 9.8, "Nested Class Declarations," on page 116). For 
example, 

class X 
public: 

enum direction { left='l', right='r' }; 
int f(int i) 

{ return i==left ? 0 : i==right ? 1 : 2; } 
} ; 

void g(X* p) 

direction d; II error: 'direction' not in 
int i; 
i p->f(left); II error: 'left' not in scope 
i = p->f (X: : right) ; II ok 

II 

7.4 Asm Declarations 

An asm declaration has the form 

asm-declaration: 
asm ( string-literal) ; 

scope 

The meaning of an asm declaration is implementation dependent. Typically it 
is used to pass information through the compiler to an assembler. 

7.5 Linkage Specifications 

Linkage (see Section 3.4, "Program and Linkage," on page 14) between C++ 
and non-C++ code fragments can be achieved using a linkage-specification: 

linkage-specification: 
extern string-literal { declaration-listopt } 

extern string-literal declaration 

declaration-list: 
declaration 
declaration-list declaration 
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The string-literal indicates the required linkage. The meaning of the string
literal is implementation dependent. Linkage to a function written in the C 
programming language, "C" I and linkage to a c++ function, "C++" I mustbe 
provided by every implementation. Default linkage is "C++". For example, 

complex sqrt(complex)i 
extern "C" { 

II c++ linkage by default 

double sqrt(double) i II C linkage 

Linkage specifications nest. A linkage specification does not establish a scope. 
A linkage-specification may occur only in file scope (see Section 3.3, "Scopes," on 
page 12). A linkage-specification for a class applies to nonmember functions and 
objects declared within it. A linkage-specification for a function also applies to 
functions and objects declared within it. A linkage declaration with a string 
that is unknown to the implementation is an error. 

If a function has more than one linkage-specification, they must agree; that is, 
they must specify the same string-literal. A function declaration without a 
linkage specification may not precede the first linkage specification for that 
function. A function may be declared without a linkage specification after an 
explicit linkage specification has been seen; the linkage explicitly specified in 
the earlier declaration is not affected by such a function declaration. 

At most one of a set of overloaded functions (see Chapter 13, "Overloading,") 
with a particular name can have C linkage. See Section 7.5, "Linkage 
Specifications," on page 75. 

Linkage can be specified for objects. For example, 

extern "C" { 
I I ... 
_iobuf _iob[_NFILEli 
I I ... 
int _flsbuf(unsigned,_iobuf*) i 

I I ... 

Functions and objects may be declared static within the {} of a linkage 
specification. The linkage directive is ignored for such a function or object. 

Product Reference Manual- October 1992 



Otherwise, a function declared in a linkage specification behaves as if it was 
explicitly declared extern. For example, 

extern "C" double f(); 
static double f(); II error 

is an error (see Section 7.2, "Specifiers," on page 63). An object defined within 
an 

extern "C" { 1* ... *1 } 

construct is still defined (and not just declared). 

Linkage from C++ to objects defined in other languages and to objects defined 
in*C++ from other languages is implementation and language dependent. Only 
where the object layout strategies of two language implementations are similar 
enough can such linkage be achieved. 

When the name of a programming language is used to name a style of linkage 
in the string-literal in a linkage-specification, it is recommended that the spelling 
be taken from the document defining that language, for example, 
Ada(notADA) and FORTRAN(not Fortran). 
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8.1 Declarators 

Declarators 

The declarator-list appearing in a declaration is a comma-separated sequence of 
declarators, each of which may have an initializer. 

declarator-list: 
in it-declarator 
declarator-list , in it-declarator 

init-declarator: 
declarator initializer opt 

The two components of a declaration are the specifiers (decl-specifiers; (see 
Section 7.1, "Declarations," on page 63) and the declarators (declarator-list). The 
specifiers indicate the fundamental type, storage class, or other properties of 
the objects and functions being declared. The declarators specify the names of 
these objects and functions and (optionally) modify the type with operators 
such as * (pointer to) and () (function returning). Initial values can also be 
specified in a declarator; initializers are discussed in Section 8.5, "Initializers," 
on page 94 and "Initialization" on page 158. 

Declarators have the syntax 

declarator: 
dname 
ptr-operator declarator 
declarator ( argument-declaration-list ) cv-qualifier-listopt 
declarator [ constant-expressionopt ] 
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( declarator ) 
ptr-operator: 

* cv-qualifier-listopt 
& cv-qualifier-listopt 
complete-class-name :: * cv-qualifier-listopt 

cv-qualifier-list: 
cv-qualifier cv-qualifier-listopt 

cv-qualifier: 
const 
volatile 

dname: 
name 
class-name 
-class-name 
typedef-name 
qualified-type-name 

A class-name has special meaning in a declaration of the class of that name and 
when qualified by that name using the scope resolution operator : : (see 
"Constructors" on page 147, "Destructors" on page 154. 

To specify type conversions explicitly, and as an argument of sizeof or new, 
the name of a type must be specified. This is done with a type-name, which is 
syntactically a declaration for an object or function of that type that omits the 
name of the object or function. 

type-name: 
type-specifier-list abstract-declarator opt 

type-specifier-list: 
type-specifier type-specifier-listopt 

abstract-declarator: 
ptr-operator abstract-declarator opt 

Product Reference Manual- October 1992 



abstract-declarator opt ( argument-declaration-list ) cv-qualifier-listopt 
abstract-declarator opt [ constant-expressionopt ] 
( abstract-declarator) 

It is possible to identify uniquely the location in the abstract-declarator where 
the identifier would appear if the construction were a declarator in a 
declaration. The named type is then the same as the type of the hypothetical 
identifier. 

For example, 

int II int i 
int * II int *pi 
int * [3] II int *p[3] 
int (*) [3] II int (*p3i) [3] 
int *() II int *f () 
int (*) (double) II int ( *pf) (double) 

name respectively the types "integer," "pointer to integer," "array of 3 pointers 
to integers," "pointer to array of 3 integers," "function taking no arguments 
and returning pointer to integer," and "pointer to function taking a double 

argument and returning an integer." 

Ambiguity Resolution 

The ambiguity arising from the similarity between a function-style cast and a 
declaration mentioned in Section 6.9, "Ambiguity Resolution," on page 60 can 
also occur in the context of a declaration. In that context, it surfaces as a choice 
between a function declaration with a redundant set of parentheses around an 
argument name and an object declaration with a function-style cast as the 
initializer. Just as for statements, the resolution is to consider any construct that 
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could possibly be a declaration a declaration. A declaration can be explicitly 
disambiguated by a nonfunction-style cast or a = to indicate initialization. For 
example, 

struct S { 
S (int) i 

} ; 

void foo(double a) 
{ 

s x(int(a»; 
s y((int)a); 
S z = int(a)i 

B.3 Meaning of Declarators 

II function declaration 
II object declaration 
II object declaration 

A list of declarators appears after a (possibly empty) list of decl-specifiers (see 
Section 7.1, "Declarations," on page 63). Each declarator contains exactly one 
dna me; it specifies the identifier that is declared. Except for the declarations of 
some special functions (see "Conversions" on page 150, Section 13.4, 
"Overloaded Operators," on page 179) a dname will be a simple identifier. An 
auto,static,extern,registe~ friend,inline,virtual,ortypedef 
specifier applies directly to each dname in a declarator-list; the type of each 
dname depends on both the decl-specifiers (see Section 7.1, "Declarations," on 
page 63) and its declarator. 

Thus, a declaration of a particular identifier has the form 

T D 

where T is a type and D is a declarator. In a declaration where D is an 
unadorned identifier the type of this identifier is T. 

In a declaration where D has the form 

( Dl ) 

the type of Dl is the same as that of D. Parentheses do not alter the type of the 
embedded dna me, but they may alter the binding of complex declarators. 
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Pointers 

In a declaration T D where D has the form 

* cv-qualifier-listopt D1 

the type of the contained identifier is " ... cv-qualifier-list pointer to T. II The cv
qualifiers apply to the pointer and not to the object pointed to. 

For example, the declarations 

const ci = 10, *pc = &ci, *const cpc PCi 

int i, *p, *const cp = &ii 

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a 
constant pointer to a constant integer; i, an integer; p, a pointer to integer; and 
cp, a constant pointer to integer. The value of ci, cpc, and cp cannot be 
changed after initialization. The value of pc can be changed, and so can the 
object pointed to by cpo 

Examples of legal operations are 

i Cii 

*cp = Cii 

PC++i 

pc CpCi 

pc = Pi 

Examples of illegal operations are 

ci = 1· II error , 
Ci++i II error 
*pc = 2 i II error 
cp = &Cii II error 
CpC++i II error 
p = PCi II error 

Each is illegal because it would either change the value of an object declared 
canst or allow it to be changed through an unqualified pointer later. 
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volatile specifiers are handled similarly. 

See also Section 5.16, U Assignment Operators," on page 48 and Section 8.5, 
"Initializers," on page 94. 

There can be no pointers to references (see "References" on page 84) or 
pointers to bit-fields (see Section 9.7, "Bit-Fields," on page 115). 

In a declaration T D where D has the form 

& cv-qualifier-list*opt D1 

the type of the contained identifier is u ... cv-qualifier-list reference to T ." The 
type void& is not permitted. 

For example, 

void f(double& a) { a += 3.14; } 
II 

double d = 0; 
f (d) i 

declares a to be a reference argument of f so the call f (d) will add 3 . 14 to d. 

int v[20]; 
I I ... 
int& g(int i) { return v[i]; } 
I I ... 
g(3) = 7; 

declares the function 9 () to return a reference to an integer so g ( 3 ) = 7 will 
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assign 7 to the fourth element of the array v. 

struct link { 
link* next; 

} ; 

link* first; 
void h(link*& p) 
{ 

II 'p' is a reference to pointer 

p->next = first; 
first = p; 
p = 0; 

void k() 
{ 

link* q 
h(q) ; 

new link; 

declares p to be a reference to a pointer to 1 ink so h ( q) will leave q with the 
value O. See also "References" on page 84. 

There can be no references to references, no references to bit-fields (see Section 
9.7, "Bit-Fields," on page 115), no arrays of references, and no pointers to 
references. The declaration of a reference must contain an initializer (see 
"References" on page 84) except when the declaration contains an explicit 
extern specifier (see "Storage Class Specifiers" on page 65), is a class member 
(see Section 9.3, "Class Members," on page 105) declaration within a class 
declaration, or is the declaration of an argument or a return type (see 
"Functions" on page 88); see Section 3.2, "Declarations and Definitions," on 
page 11. 

Pointers to Members 
In a declaration T D where D has the form 

complete-class-name :: * cv-qualifier-listopt Dl 

the type of the contained identifier is " ... cv-qualifier-list pointer to member of 
class complete-class-name of type T . II 
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For example, 

class X { 
pUblic: 

} ; 

void f (int) ; 
int a; 

int X:: * pmi = &X: :a; 
void (X::* pmf) (int) = &X::f; 

declares pmi and pmf to be a pointer to a member of X of type int and a 
pointer to a member of X of type void (int), respectively. They can be used 
like this: 

X obj; 
// ... 
obj.*pmi = 7; 

(obj . *pmf) (7) ; 

// assign 7 to an integer 
// member of obj 
// call a function member of obj 
// with the argument 7 

Note that a pointer to member cannot point to a static member of a class (see 
Section 9.5, "Static Members," on page 111). See also Section 5.4, "Pointer-to
Member Operators," on page 42 and "Unary Operators" on page 34. 

In a declaration T D where D has the form 

Dl [constant-expressionopt ] 

then the contained identifier has type " ... array of T. II If the constant-expression 
(see "Constant Expressions" on page 50) is present, it must be of integral type 
and have a value greater than o. The constant expression specifies the number 
of elements in the array. If the constant expression is N, the array has N 

elements numbered a to N-l. 

An array may be constructed from one of the fundamental types (except void), 
from a pointer, from a pointer to member, from a class, from an enumeration, 
or from another array. 
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When several "array of" specifications are adjacent, a multidimensional array 
is created; the constant expressions that specify the bounds of the arrays may 
be omitted only for the first member of the sequence. This elision is useful for 
function arguments of array types, and when the array is external and the 
definition, which allocates storage, is given elsewhere. The first constant
expression may also be omitted when the declarator is followed by an initializer
list (see Section 8.5, "Initializers," on page 94). In this case the size is calculated 
from the number of initial elements supplied (see "Aggregates" on page 96). 

The declaration 

float fa[17], *afp[17]; 

declares an array of float numbers and an array of pointers to float 
numbers. The declaration 

static int x3d[3] [5] [7]; 

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. In 
complete detail, x3d is an array of three items; each item is an array of five 
arrays; each of the latter arrays is an array of seven integers. Any of the 
expressions x3d, x3d[i], x3d[i] [j], x3d[i] [j] [k] may reasonably 
appear in an expression. 

When an identifier of array type appears in an expression, except as the 
operand of sizeof or & or used to initialize a reference (see "References" on 
page 84), it is converted into a pointer to the first member of the array. Because 
of this conversion, arrays are not modifiable lvalues. Except where it has been 
declared for a class (see "Subscripting" on page 182), the subscript operator [] 
is interpreted in such a way that El [E2] is identical to * ( (El) + (E2) ) . 
Because of the conversion rules that apply to +, if El is an array and E2 an 
integer, then El [E2] refers to the E2-th member of El. Therefore, despite its 
asymmetric appearance, subscripting is a commutative operation. 

A consistent rule is followed for multidimensional arrays. If E is an n
dimensional array of rank i x j x ... x k, then E appearing in an expression is 
converted to a pointer to an (n-1)-dimensional array with rank j x ... x k. If the 
* operator, either explicitly or implicitly as a result of subscripting, is applied 
to this pointer, the result is the pointed-to (n-l)-dimensional array, which itself 
is immediately converted into a pointer. 

For example, consider 

int x [3] [5] ; 
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Here x is a 3 x 5 array of integers. When x appears in an expression, it is 
converted to a pointer to (the first of three) five-membered arrays of integers. 
In the expression x [ i ] , which is equivalent to * (x+ i ) , x is first converted to a 
pointer as described; then x+i is converted to the type of x, which involves 
multiplying i by the length of the object to which the pointer points, namely 
five integer objects. The results are added and indirection applied to yield an 
array (of five integers), which in turn is converted to a pointer to the first of the 
integers. If there is another subscript the same argument applies again; this 
time the result is an integer. 

It follows from all this that arrays in C++ are stored row-wise (last subscript 
varies fastest) and that the first subscript in the declaration helps determine the 
amount of storage consumed by an array but plays no other part in subscript 
calculations. 

In a declaration T D where D has the form 

Dl ( argurnent-declaration-list ) cv-qualifier-listopt 

the contained identifier has the type " ... cv-qualifier-listopt function taking 
arguments of type argument-declaration-list and returning T. " 

argument-declaration-list: 
arg-declaration-listopt .. 'opt 
arg-declaration-list , ... 

arg-declaration-list: 
argument-declaration 
arg-declaration-list , argument-declaration 

argumen t -dec laration: 
decl-specifiers declarator 
decl-specifiers declarator = expression 
decl-specifiers abstract-declarator opt 
decl-specifiers abstract-declarator opt = expression 

If the argument-declaration-list terminates with an ellipsis, the number of 
arguments is known only to be equal to or greater than the number of 
argument types specified; if it is empty, the function takes no arguments. The 
argument list (void) is equivalent to the empty argument list. Except for this 
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special case void may not be an argument type (though types derived from 
void, such as void*, may). Where legal, ", ... "'is synonymous with " ... ". 
The standard header < s tdarg . h> contains a mechanism for accessing 
arguments passed using the ellipsis. See "Constructors" on page 147 for the 
treatment of array arguments. 

A single name may be used for several different functions in a single scope; 
this is function overloading (see Chapter 13, "Overloading,"). All declarations 
for a function taking a given set of arguments must agree exactly both in the 
type of the value returned and in the number and type of arguments; the 
presence or absence of the ellipsis is considered part of the function type. 
Argument types that differ only in the use of typedef names or unspecified 
argument array bounds agree exactly. The return type and the argument types, 
but not the default arguments (see "Default Arguments" on page 90), are part 
of the function type. A cv-qualifier-list can be part of a declaration or definition 
of a nonstatic member function, and of a pointer to a member function; see 
"The this Pointer" on page 109. It is part of the function type. 

Functions cannot return arrays or functions, although they can return pointers 
and references to such things. There are no arrays of functions, although there 
may be arrays of pointers to functions. 

Types may not be defined in return or argument types. 

The argument-declaration-list is used to check and convert actual arguments in 
calls and to check pointer-to-function and reference-to-function assignments 
and initializations. 

An identifier can optionally be provided as an argument name; if present in a 
function declaration, it cannot be used since it immediately goes out of scope; 
if present in a function definition (see Section 8.4, "Function Definitions," on 
page 93), it names a formal argument. In particular, argument names are also 
optional in function definitions and names used for an argument in different 
declarations and the definition of a function need not be the same. 

The declaration 

int i, 
*pi, 
f () , 

*fpi (int) , 
(*pif) (const char*, const char*); 
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declares an integer i, a pointer pi to an integer, a function f taking no 
arguments and returning an integer, a function fpi taking an integer argument 
and returning a pointer to an integer, and a pointer pif to a function which 
takes two pointers to constant characters and returns an integer. It is especially 
useful to compare the last two. The binding of * fpi (int) is * (fpi (int) ), 
so the declaration suggests, and the same construction in an expression 
requires, the calling of a function fpi, and then using indirection through the 
(pointer) result to yield an integer. In the declarator (*pif) (canst char*, 
cons t char * ) , the extra parentheses are necessary to indicate that 
indirection through a pointer to a function yields a function, which is then 
called. 

The declaration 

fseek(FILE*, long, int); 

declares a function taking three arguments of the specified types. Since no 
return value type is specified it is taken to be in t (see "Type Specifiers" on 
page 70). The declaration 

printf(const char* ... ); 

declares a function that can be called with varying number and types of 
arguments. For example, 

printf("hello world"); 
printf("a=%d b=%d" , a, b); 

It must always have a value, however, that can be converted to a canst char* 
as its first argument. 

Default Arguments 

If an expression is specified in an argument declaration this expression is used 
as a default argument. All subsequent arguments must have default arguments 
supplied in this or previous declarations of this function. Default arguments 
will be used in calls where trailing arguments are missing. A default argument 
cannot be redefined by a later declaration (not even to the same value). A 
declaration may add default arguments, however, not given in previous 
declara tions. 

The declaration 
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point(int = 3, int = 4); 

declares a function that can be called with zero, one, or two arguments of type 
in t. It may be called in any of these ways: 

point(1,2); point(l); point(); 

The last two calls are equivalent to point (1,4) and point (3,4), 
respectively. 

Default argument expressions have their names bound and their types checked 
at the point of declaration, and are evaluated at each point of call. In the 
following example, g will be called with the value f ( 2 ) 

int a = 1; 
int f(int); 
int g(int x 

void h() 

a 2; 

int a 
g() ; 

f(a)); II default argument: f(::a) 

3 ; 
II g(f(::a)) 

Local variables may not be used in default argument expressions. For example 

void f () 
{ 

} 

int i; 
extern void g(int x 
II 

i) ;11 error 

Note that default arguments are evaluated before entry into a function and that 
the order of evaluation of function arguments is implementation dependent. 
Consequently, formal arguments of a function may not be used in default 
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argument expressions. Formal arguments of a function declared before a 
default argument expression are in scope and may hide global and class 
member names. For example, 

int a; 
int f(int a, int b a) ; II error: argument 'a' 

II used as default argument 
typedef int I; 

int g(int I, int b 1(2)); II error: 'int' called 

Similarly, the declaration of X: : meml () in the following example is illegal 
because no object is supplied for the nonstatic member x: : a used as an 
initializer. 

class X { 

} ; 

int a; 
static b; 
mem1 (int i 

mem2(int i 

a); II error: nonstatic member 'a' 
II used as default argument 

b); II ok 

The declaration of X: : mem2 () is legal, however, since no object is needed to 
access the static member X: : b. Classes, objects, and members are described in 
Chapter 9, "Classes,". 

A default argument is not part of the type of a function. 

int f(int = 0); 

void h() 
{ 

int j 

int k 
f (1) ; 

f () ; II fine, means f(O) 

int (*p1) (int) &f; 
int (*p2) () = &f; II error: type mismatch 

An overloaded operator (see Section 13.4, "Overloaded Operators," on page 
179) cannot have default arguments. 
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8.4 Function Definitions 
Function definitions have the form 

function-definition: 
decl-specifiersopt declarator ctor-initializer opt fet-body 

fct-body: 
compound-statement 

The declarator in a function-definition must contain a declarator with the form 

Dl ( argument-declaration-list ) cv-qualifier-listopt 

as described in "Functions" on page 88. 

The formal arguments are in the scope of the outermost block of the fct-body. 

A simple example of a complete function definition is 

int max(int a, int b, int c) 

int m = (a > b) ? a : b; 
return (m > c) ? m : c; 

Here intis the decl-specifiers; max ( in t a, in t b, in t c) is the declarator; { 
/ * ... * / } is the fct-body. 

A etor-initializer is used only in a constructor; see "Constructors" on page 147 
and "Initialization" on page 158. 

A cv-qualifier-list can be part of a nonstatic member function declaration, 
nonstatic member function definition, or pointer to member function only; see 
"The this Pointer" on page 109. It is part of the function type. 

Note that unused formal arguments need not be named. For example, 

void print (int a, int) 
{ 

printf("a = %d\n",a); 
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A declarator may specify an initial value for the identifier being declared. 

initializer: 
= assignment-expression 
= { initializer-list 'opt } 
( expression-list) 

initializer-list: 
assignment-expression 
initializer-list , assignment-expression 
{ initializer-list 'opt } 

Automatic, register, static, and external variables may be initialized by 
arbitrary expressions involving constants and previously declared variables 
and functions. 

int f(int); 
int a = 2; 
int b = f (a) ; 
int c (b) ; 

A pointer of type canst T*, that is, a pointer to constant T, can be initialized 
with a pointer of type T*, but the reverse initialization is illegal. Objects of type 
T can be initialized with objects of type T independently of cons t and 
volatile modifiers on both the initialized variable and on the initializer. For 
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example, 

int a; 
const int b a; 
int c = b; 

const int* pO 
const int* pi 
int* p2 = &b; 

int *const p3 
int *const p4 

const int* p5 

&a; 
&b; 

p2; 

II error: makes a pointer to 
II nonconst point to a const 

pi; II error: makes a pointer to 
II nonconst point to a const 

pi; 

The reason for the two errors is the same: had those initializations been 
allowed they would have allowed the value of something declared canst to 
be changed through an unqualified pointer. 

Default argument expressions are more restricted; see "Default Arguments" on 
page 90. 

Initialization of objects of classes with constructors is described in "Explicit 
Initialization" on page 158. Copying of class objects is described in "Copying 
Class Objects" on page 164. The order of initialization of static objects is 
described in Section 3.5, "Start and Termination," on page 15 and Section 6.8, 
"Declaration Statement," on page 58. 

Variables with storage class static (Section 3.6, "Storage Classes," on page 17) 
that are not initialized are guaranteed to start off as 0 converted to the 
appropriate type. So are members of static class objects. The initial values of 
automatic and register variables that are not initialized are undefined. 

When an initializer applies to a pointer or an object of arithmetic type, it 
consists of a single expression, perhaps in braces. The initial value of the object 
is taken from the expression; the same conversions as for assignment are 
performed. 

Note that since () is not an initializer, 

x a (); 
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is not the declaration of an object of class x, but the declaration of a function 
taking no argument and returning an x. 

An initializer for a static member is in the scope of the member's class. For 
example, 

int ai 

struct X { 

static int a; 
static int b; 

} ; 

int x: :a 1; 
int x: :b a; II X::b X::a 

See Section 8.3, "Meaning of Declarators," on page 82 for initializers used as 
default arguments. 

An aggregate is an array or an object of a class (see Chapter 9, "Classes,") with 
no constructors (see "Constructors" on page 147), no private or protected 
members (see Chapter 11, "Member Access Control,"), no base classes (see 
Chapter 10, "Derived Classes,"), and no virtual functions (see Section 10.3, 
"Virtual Functions," on page 127). When an aggregate is initialized the 
initializer may be an initializer-list consisting of a brace-enclosed, comma
separated list of initializers for the members of the aggregate, written in 
increasing subscript or member order. If the aggregate contains subaggregates, 
this rule applies recursively to the members of the subaggregate. If there are 
fewer initializers in the list than there are members of the aggregate, then the 
aggregate is padded with zeros of the appropriate types. 

For example, 

struct S int a; char* b; int Ci }i 

S ss = { 1, "asdf" }; 

initializes ss. a with 1, ss. b with "asdf" , and ss. c with o. 
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An aggregate that is a class may also be initialized with an object of its class or 
of a class publicly derived from it (see "Copying Class Objects" on page 164). 

Braces may be elided as follows. If the initializer-list begins with a left brace, 
then the succeeding comma-separated list of initializers initializes the members 
of the aggregate; it is erroneous for there to be more initializers than members. 
If, however, the initializer-list or a subaggregate does not begin with a left 
brace, then only enough elements from the list are taken to account for the 
members of the aggregate; any remaining members are left to initialize the next 
member of the aggregate of which the current aggregate is a part. 

For example, 

int x [] = { 1, 3, 5 }; 

declares and initializes x as a one-dimensional array that has three members, 
since no size was specified and there are three initializers. 

float y[4] [3] = { 
{ 1, 3, 5 }, 
{ 2, 4, 6 }, 
{ 3, 5, 7 }, 

} ; 

is a completely-bracketed initialization: 1,3, and 5 initialize the first row of the 
array y [ 0 ], namely y [ 0] [0], y [ 0] [1], and y [ 0] [2]. Likewise the next two 
lines initialize y [ 1] and y [ 2 ] . The initializer ends early and therefore y [ 3] is 
initialized with zeros. Precisely the same effect could have been achieved by 

float y[4] [3] = { 
1, 3, 5, 2, 4, 6, 3, 5, 7 

} ; 

The last (rightmost) index varies fastest (see "Arrays" on page 86). 
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The initializer for y begins with a left brace, but the one for y [0] does not, 
therefore three elements from the list are used. Likewise the next three are 
taken successively for y [1] and y [2] . Also, 

I float y[4] [3] = { 
{1}, {2}, {3 

} ; 

}, { 4 } 

initializes the first column of y (regarded as a two-dimensional array) and 
leaves the rest o. 

Initialization of arrays of objects of a class with constructors is described in 
"Explicit Initialization" on page 158. 

The initializer for a union with no constructor is either a single expression of 
the same type, or a brace-enclosed initializer for the first member of the union. 
For example, 

union u int a; char* b; }; 

u a 1 } ; 

u b a; 
u c 1; II error 
u d 0, "asdf" } ; II error 
u e { "asdf" } ; II error 

There may not be more initializers than there are members or elements to 
initialize. For example, 

char cv [4] = { 'a', ' s', ' d', 'f', 0 }; I / error 

is an error. 

Character Arrays 

A char array (whether signed or unsigned) may be initialized by a string
literal; successive characters of the string initialize the members of the array. 
For example, 

char msg [] = II Syntax error on line %s \n II ; 
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shows a character array whose members are initialized with a string. Note that 
because I \n I is a single character and because a trailing I \ 0 I is appended, 
sizeof (msg) is 25. 

There may not be more initializers than there are array elements. For example, 

char cv[4] = "staff"; II error 

is an error since there is no space for the implied trailing I \ 0 I • 

A variable declared to be a T&, that is "reference to type T /I (see "References" 
on page 84), must be initialized by an object of type T or by an object that can 
be converted into a T. For example, 

void f () 
{ 

int i; 
int& r i; 
r = 1; 
int* p &r; 
int& rr = r; 

II 
II 
II 
II 
II 

'r' 
the 
'p' 
'rr' 
that 

refers to 'i' 
value of 'i' becomes 1 
points to 'i' 
refers to what 'r' refers to, 
is, to 'i' 

A reference cannot be changed to refer to another object after initialization. 
Note that initialization of a reference is treated very differently from 
assignment to it. Argument passing (see "Function Call" on page 31 and 
function value return "The return Statement" on page 57) are initializations. 

The initializer may be omitted for a reference only in an argument declaration 
(see "Functions" on page 88), in the declaration of a function return type, in the 
declaration of a class member within its class declaration (see Section 9.3, 
"Class Members," on page 105), and where the extern specifier is explicitly 
used. 

For example, 

int& r1; II error: initializer missing 
extern int& r2; II ok 
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If the initializer for a reference to type T is an lvalue of type T or of a type 
derived (see Chapter la, "Derived Classes,") from T for which T is an 
accessible base (see "Pointer Conversions" on page 23), the reference will refer 
to the initializer; otherwise, if and only if the reference is to a cons t an object 
of type T will be created and initialized with the initializer. The reference then 
becomes a name for that object. For example, 

double d = 1. 0 i 

double& rd = di 
const double& rcd 

double& rd2 = 1i 
const double& rcd2 

II rd refers to 'd' 
di II rcd refers to 'd' 

II error: type mismatch 
lill rcd2 refers to temporary 

II with value '1' 

A reference to a volatile T can be initialized with a volatile T or a plain T 
but not a canst T. A reference to a canst T can be initialized with a canst T 
or a plain T or something that can be converted into a plain T but not a 
volatile T. A reference to a plain T can be initialized only with a plain T. 

The lifetime of a temporary object created in this way is the scope in which it is 
created (see Section 3.6, "Storage Classes," on page 17). Note that a reference to 
a class B can be initialized by an object of a class D provided B is an accessible 
and unambiguous base class of D (in that case a D is a B); see "Reference 
Conversions" on page 24. 
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9.1 Classes 

Classes 

A class is a type. Its name becomes a class-name (see Section 9.1, "Classes," on 
page 101), that is, a reserved word within its scope. 

class-name: 
identifier 

Class-specifiers and elaborated-type-specifiers (see "Type Specifiers" on page 70) 
are used to make class-names. An object of a class consists of a (possibly empty) 
sequence of members. 

class-specifier: 
class-head { member-listopt } 

class-head: 
class-key identifier oprt base-spec opt 
class-key class-name base-specopt 

class-key: 
class 
struct 
union 
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The name of a class can be used as a class-name even within the member-list of 
the class specifier itself. A class-specifier is commonly referred to as a class 
declaration. A class is considered defined when its class-specifier has been seen 
even though its member functions are in general not yet defined. 

Objects of an empty class have a nonzero size. 

,Class objects may be assigned, passed as arguments to functions, and returned 
by functions (except objects of classes for which copying has been restricted; 
see "Copying Class Objects" on page 164. Other plausible operators, such as 
equality comparison, can be defined by the user; see Section 13.4, "Overloaded 
Operators," on page 179. 

A structure is a class declared with the class-key struct; its members and base 
classes (see Chapter 10, "Derived Classes,") are public by default (see Chapter 
11, "Member Access Control,"). A union is a class declared with the class-key 
union; its members are public by default and it holds only one member at a 
time (Section 9.6, "Unions," on page 114). 

A class declaration introduces a new type. For example, 

struct X 
struct y 

X al; 
y a2; 
int a3; 

int a; }; 
int ai }; 

declares three variables of three different types. This implies that 

al 
al 

a2; 
a3; 

II error: Y assigned to X 
II error: int assigned to X 

are type mismatches, and that 

lint f(X); 
int f (Y) i 
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declare an overloaded (see Chapter 13, "Overloading,") function f () and not 
simply a single function f () twice. For the same reason, 

struct S 
struct S 

int ai } i 

int ai }i II error, double definition 

is an error because it defines s twice. 

A class declaration introduces the class name into the scope where it is 
declared and hides any class, object, function, or other declaration of that name 
in an enclosing scope (see Section 3.3, "Scopes," on page 12). If a class name is 
declared in a scope where an object, function, or enumerator of the same name 
is also declared the class can be referred to only using an elaborated-type-specifier 
(see "Type Specifiers" on page 70). For example, 

struct stat 
I I ... 

} i 

stat gstati II use plain 'stat' to 
II define variable 

int stat(struct stat*)i II redefine 'stat' as function 
void f () 
{ 

struct stat* pSi II 'struct' prefix needed 
II to name struct stat 

I I ... 
stat(ps) i 

I I ... 
I I call stat ( ) 

An elaborated-type-specifier with a class-key used without declaring an object or 
function introduces a class name exactly like a class declaration but without 
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defining a class. For example, 

struct s { int ai }i 

void g () 
{ 

struct Si II hide global struct 's' 
s* Pi II refer to local struct 's' 
struct s { char* Pi }i II declare local struct 's' 

Such declarations allow declaration of classes that refer to each other. For 
example, 

class vectori 

class matrix { 
I I ... 
friend vector operator*(matrix&, vector&)i 

} i 

class vector { 
I I ... 
friend vector operator*(matrix&, vector&)i 

Declaration of friends is described in Section 11.5, "Friends," on page 140, 
operator functions in Section 13.4, "Overloaded Operators," on page 179. If a 
class mentioned as a friend has not been declared its name is entered in the 
same scope as the name of the class containing the friend declaration (see 
Section 11.5, "Friends," on page 140). 
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9.3 Class Members 

An elaborated-type-specifier (see "Type Specifiers" on page 70) can also be used 
in the declarations of objects and functions. It differs from a class declaration in 
that if a class of the elaborated name is in scope the elaborated name will refer 
to it. For example, 

struct s { int ai }i 

void g() 
{ 

struct s* p = new Si II refer to global's' 
p->a = 1i 

A name declaration takes effect immediately after the identifier is seen. For 
example, 

class A * Ai 

first specifies A to be the name of a class and then redefines it as the name of a 
pointer to an object of that class. This means that the elaborated form class A 

must be used to refer to the class. Such artistry with names can be confusing 
and is best avoided. 

A typedef-name (see "The typedef Specifier" on page 68) that names a class is a 
class-name; see also "The typedef Specifier" on page 68. 

member-list: 
member-declaration member-listopt 
access-specifier: member-lisfopt 

member-declaration: 
decl-specifiersopt member-declarator-listopt ; 
function-definition ;opt 
qualified-name; 

member-declarator-list: 
member-declarator 
member-declarator-list , member-declarator 
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member-declarator: 
declarator pure-specifier opt 
identifier opt : constant-expression 

pure-specifier: 
=0 

A member-list may declare data, functions, classes, enumerations (see Section 
7.3, "Enumeration Declarations," on page 73), bit-fields (see Section 9.7, "Bit
Fields," on page 115), friends (see Section 11.5, "Friends," on page 140), and 
type names (see "The typedef Specifier" on page 68, Section 9.2, "Class 
Names," on page 102). A member-list may also contain declarations adjusting 
the access to member names; see Section 11.4, "Access Declarations," on page 
137. A member may not be declared twice in the member-list. The member-list 
defines the full set of members of the class. No member can be added 
elsewhere. 

Note that a single name can denote several function members provided their 
types are sufficiently different (see Chapter 13, "Overloading,"). Note that a 
member-declarator cannot contain an initializer (see Section 8.5, "Initializers," on 
page 94). A member can be initialized using a constructor; see "Constructors" 
on page 147. 

A member may not be auto, extern, or register. 

The decl-specifiers can be omitted in function declarations only. The member
declarator-list can be omitted only after a class-specifier, an enum-specifier, or decl
specifiers of the form friend elaborated-type-specifier. A pure-specifier may be 
used only in the declaration of a virtual function (Section 10.3, "Virtual 
Functions," on page 127). 

Members that are class objects must be objects of previously declared classes. 
In particular, a class el may not contain an object of class el, but it may 
contain a pointer or reference to an object of class el. When an array is used as 
the type of a nonstatic member all dimensions must be specified. 
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A simple example of a class declaration is 

struct tnode { 

} ; 

char tword[20]; 
int count; 
tnode *left; 
tnode *right; 

which contains an array of twenty characters, an integer, and two pointers to 
similar structures. Once this declaration has been given, the declaration 

tnode Sf *sp; 

declares s to be a tnode and sp to be a pointer to a tnode. With these 
declarations, sp->count refers to the count member of the structure to which 
sp points; s . left refers to the left subtree pointer of the structure s; and 
s . right->tword [0] refers to the initial character of the tword member of 
the right subtree of s. 

Nonstatic data members of a class declared without an intervening access
specifier are allocated so that later members have higher addresses within a 
class object. The order of allocation of nonstatic data members separated by an 
access-specifier is implementation dependent (see Section 11.2, "Access 
Specifiers," on page 136). Implementation alignment requirements may cause 
two adjacent members not to be allocated immediately after each other; so may 
requirements for space for managing virtual functions (see Section 10.3, 
"Virtual Functions," on page 127) and virtual base classes (see Section 10.4, 
"Abstract Classes," on page 129); see also Section 5.3, "Explicit Type 
Conversion," on page 39. 

A function member (see Section 9.4, "Member Functions," on page 108) with 
the same name as its class is a constructor ("Constructors" on page 147). A 
static data member, enumerator, member of an anonymous union, or nested 
type may not have the same name as its class. 
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9.4 Member Functions 
A function declared as a member (without the friend specifier; (see Section 
11.5, "Friends," on page 140) is called a member function, and is called using 
the class member syntax (see IIClass Member Access" on page 32). For 
example, 

struct tnode { 

} ; 

char tword[20]; 
int count; 
tnode *left; 
tnode *right; 
void set(char*, tnode* 1, tnode* r); 

Here set is a member function and can be called like this: 

void f(tnode nl, tnode n2) 
{ 

ni . set ( II abc II , &n2 , 0) ; 
n2.set(ldef",O,O); 

The definition of a member function is considered to be within the scope of its 
class. This means that (provided it is non static (see Section 9.5, IIStatic 
Members," on page 111) it can use names of members of its class directly. A 
static member function can use only the names of static members, enumerators, 
and nested types directly. If the definition of a member function is lexically 
outside the class declaration, the member function name must be qualified by 
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the class name using the: : operator. For example, 

void tnode: :set(char* w, tnode* I, tnode* r) 

count = strlen(w)+l; 
if (sizeof(tword)<=count) 

error("tnode string too long"); 
strcpy(tword,w) ; 
left = 1; 
right = r; 

The notation tnode: : set specifies that the function set is a member of and 
in the scope of class tnode. The member names tword, count, left, and 
rig h t refer to members of the object for which the function was called. Thus, 
in the call nl. set ( "abc" ,&n2, 0) , tword refers to nl. tword, and in the 
call n2 . set ( "def",O,O) it refers to n2 . two rd. The functions strlen, error, 
and s trcpy must be declared elsewhere. 

Members may be defined (see Section 3.2, "Declarations and Definitions," on 
page 11) outside their class declaration if they have already been declared but 
not defined in the class declaration; they may not be redeclared. See also 
Section 3.4, "Program and Linkage," on page 14. Function members may be 
mentioned in friend declarations after their class has been defined. Each 
member function that is called must have exactly one definition in a program. 

The effect of calling a nonstatic member function (see Section 9.5, "Static 
Members," on page 111) of a class X for something that is not an object of class 
X is undefined. 

The this Pointer 
In a nonstatic (see Section 9.4, "Member Functions," on page 108) member 
function, the keyword thi s is a pointer to the object for which the function is 
called. The type of this in a member function of a class X is X *const unless 
the member function is declared const or volatile; in those cases, the type 
of this is const X *const and volatile X *const, respectively. A function 
declared const and volatile has a this with the type const volatile X 

Classes 109 



110 

*canst. For example, The a++ in the body of s: : h is an error because it tries 

struct s { 
int a; 
int f() canst; 
int g() { return a++; } 
int h() canst { return a++; } II error 

} ; 

int s::f() canst { return a; } 

to modify (a part of) the object for which s: : h () is called. This is not allowed 
in a canst member function where this is a pointer to canst, that is, *this 
is a canst. 

A cans t member function (that is, a member function declared with the 
canst qualifier) may be called for canst and non-canst objects, whereas a 
non-canst member function may be called only for a non-c canst object. For 
example, 

void k(s& x, canst s& y) 
{ 

x.f() ; 
x.g(); 

y. f () ; 
y.g() ; II error 

The call y. g () is an error because y is canst and s: : g () is a non-canst 
member function that could (and does) modify the object for which it was 
called. 

Similarly, only valatile member functions (that is, a member function 
declared with the valatile specifier) may be invoked for valatile objects. 
A member function can be both canst and volatile. 

Constructors (see UConstructors" on page 147) and destructors (see 
UDestructors" on page 154) may be invoked for a canst or valatile object. 
Constructors (see UConstructors" on page 147) and destructors (see 
UDestructors" on page 154) cannot be declared canst or valatile. 
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Inline Member Functions 

9.S Static Members 

A member function may be defined (see "Function Definitions" on page 93) in 
the class declaration, in which case it is inline (see "Function Specifiers" on 
page 67). Defining a function within a class declaration is equivalent to 
declaring it inl ine and defining it immediately after the class declaration; this 
rewriting is considered to be done after preprocessing but before syntax 
analysis and type checking of the function definition. Thus 

int b; 
struct x { 

} ; 

char* f() { return b; } 
char* b; 

is equivalent to 

int b; 
struct x { 

char* f(); 
char* b; 

} ; 

inline char* x: :f() { return b; } II moved 

Thus the b used in x: : f () is X: : b and not the global b. 

Member functions can be defined even in local or nested class declarations 
where this rewriting would be syntactically illegal. See Section 9.9, "Local 
Class Declarations," on page 118 for a discussion of local classes and Section 
9.8, "Nested Class Declarations," on page 116 for a discussion of nested classes. 

A data or function member of a class may be declared static in the class 
declaration. There is only one copy of a static data member, shared by all 
objects of the class in a program. A static member is not part of objects of a 
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class. Static members of a global class have external linkage (see Section 3.4, 
"Program and Linkage," on page 14). The declaration of a static data member 
in its class declaration is not a definition. A definition is required elsewhere. 

A static member function does not have a thi s pointer so it can access 
nonstatic members of its class only by using. or ->. A static member function 
cannot be virtual. There cannot be a static and a nonstatic member function 
with the same name and the same argument types. 

Static members of a local class (see Section 9.9, "Local Class Declarations," on 
page 118) have no linkage and cannot be defined outside the class declaration. 
It follows that a local class cannot have static data members. 

A static member mem of class cl can be referred to as cl: :mem (see Section 5.2, 
"Primary Expressions," on page 28), that is, independently of any object. It can 
also be referred to using the. and -> member access operators (see "Class 
Member Access" on page 32). When a static member is accessed through a 
member access operator, the expression on the left side of the . or - > is not 
evaluated. The static member mem exists even if no objects of class cl have 
been created. For example, in the following, run_chain, idle, and so on exist 
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even if no process objects have been created: 

class process { 
static int no_of-processesj 
static process* run_chainj 
static process* runningj 
static process* idlej 
II 

pUblic: 
II 
int state()j 
static void reschedule() j 

I I ... 
} j 

and reschedule can be used without reference to a process object, as 
follows: 

void f () 
{ 

process::reschedule() ; 

Static members of a global class are initialized exactly like global objects and 
only in file scope. For example, 

void process::reschedule() { 1* ... *1 }j 

int process::no_of-processes = 1; 
process* process: : running = get_main(); 
process* process::run_chain = process::runningj 

Static members obey the usual class member access rules (see Chapter 11, 
uMember Access Contra!,") except that they can be initialized (in file scope). 

The type of a static member does not involve its class name; thus the type of 
process : : no_of-IJrocesses is int and the type of &process .. 
reschedule is void (*) (). 
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9.6 Unions 

114 

A union may be thought of as a structure whose member objects all begin at 
offset zero and whose size is sufficient to contain any of its member objects. At 
most one of the member objects can be stored in a union at any time. A union 
may have member functions (including constructors and destructors), but not 
virtual (see Section 10.3, "Virtual Functions," on page 127) functions. A union 
may not have base classes. A union may not be used as a base class. An object 
of a class with a constructor or a destructor or a user-defined assignment 
operator (see "Assignment" on page 182) cannot be a member of a union. A 
union can have no static data members. 

A union of the form 

union {member-list}; 

is called an anonymous union; it defines an unnamed object (and not a type). 
The names of the members of an anonymous union must be distinct from other 
names in the scope in which the union is declared; they are used directly in 
that scope without the usual member access syntax (see "Class Member 
Access" on page 32). For example, Here a and p are used like ordinary 

void f () 
{ 

union 
a = 1i 
/ / ... 

int ai char* Pi }i 

P = "Jennifer" i 
/ / ... 

(nonmember) variables, but since they are union members they have the same 
address. 

A global anonymous union must be declared static. An anonymous union 
may not have private or protected members (see Chapter 11, "Member 
Access Control,"). An anonymous union may not have function members. 
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9.7 Bit-Fields 

A union for which objects or pointers are declared is not an anonymous union. 
For example, 

union { int aai char* Pi } obj, *ptr &obj; 
aa = 1 i I I error 
ptr->aa = 1; II ok 

The assignment to plain aa is illegal since the member name is not associated 
with any particular object. 

Initialization of unions that do not have constructors is described in 
"Aggregates" on page 96. 

A member-declarator of the form 

identifier opt : constant-expression 

specifies a bit-field; its length is set off from the bit-field name by a colon. 
Allocation of bit-fields within a class object is implementation dependent. 
Fields are packed into some addressable allocation unit. Fields straddle 
allocation units on some machines and not on others. Alignment of bit-fields is 
implementation dependent. Fields are assigned right-to-left on some machines, 
left-to-right on others. 

An unnamed bit-field is useful for padding to conform to externally-imposed 
layouts. As a special case, an unnamed bit-field with a width of zero specifies 
alignment of the next bit-field at an allocation unit boundary. 

An unnamed field is not a member and cannot be initialized. 

A bit-field must have integral type (see "Fundamental Types" on page 17). It is 
implementation dependent whether a plain (neither explicitly signed nor 
unsigned) in t field is signed or unsigned. The address-of operator & may not 
be applied to a bit-field, so there are no pointers to bit-fields. Nor are there 
references to bit-fields. 
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9.8 Nested Class Declarations 

116 

A class may be declared within another class. A class declared within another 
is called a nested class. The name of a nested class is local to its enclosing class. 
The nested class is in the scope of its enclosing class. Except by using explicit 
pointers, references, and object names, declarations in a nested class can use 
only type names, static members, and enumerators from the enclosing class. 

int x; 
int y; 

class enclose 
public: 

int X; 
static int s; 

class inner { 

void f(int i) 

X i; II 
s i; II 
: :x = i; II 
y i; II 
} 

error: assign 
ok: assign to 
ok: assign to 
ok: assign to 

void g(enclose* P, int i) 

to enclose: :x 
enclose: :s 
global X 

global y 

p->x = i; II ok: assign to enclose::x 

} ; 

} ; 

inner* p 0; II error 'inner' not in scope 

Member functions of a nested class have no special access to members of an 
enclosing class; they obey the usual access rules (see Chapter 11, "Member 
Access Control,"). Member functions of an enclosing class have no special 
access to members of a nested class; they obey the usual access rules. For 
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example, 

class E 
int x; 

} ; 

class I 
int y; 
void f(E* P, int i) 
{ 

p->x = i; // error: E::x is private 

int g(I* p) 

return p->y; // error: I::y is private 

} ; 

Member functions and static data members of a nested class can be defined in 
the global scope. For example, 

class enclose { 

} ; 

class inner 
static int x; 
void f (int i); 

} ; 

typedef enclose::inner ei; 
intei: : x = 1; 

void enclose: : inner: :f(int i) { /* ... */ } 

Like a member function, a friend function defined within a class is in the 
lexical scope of that class; it obeys the same rules for name binding as the 
member functions (described above and in Section 10.5, "Summary of Scope 
Rules," on page 131) and like them has no special access rights to members of 
an enclosing class or local variables of an enclosing function (see Chapter 11, 
"Member Access Control,"). 
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9.9 Local Class Declarations 
A class can be declared within a function definition; such a class is called a local 
class. The name of a local class is local to its enclosing scope. The local class is 
in the scope of the enclosing scope. Declarations in a local class can use only 
type names, static variables, extern variables and functions, and enumerators 
from the enclosing scope. For example, 

118 

int Xi 

void f () 
{ 

static 
int Xi 

extern 
struct 

} i 

II 

int 
int 
int 
int 

int s i 

int g()i 

local { 

h() { return 
j() { return 
k() { return 
l() { return 

Xi } II error: 'X' 

Si } II ok 
: :Xj II ok 
g()i II ok 

local* p = Dill error: 'local' not in scope 

is auto 

An enclosing function has no special access to members of the local class; it 
obeys the usual access rules (see Chapter 11, uMember Access Control,"). 
Member functions of a local class must be defined within their class definition. 
A local class may not have static data members. 
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9.10 Local Type Names 
Type names obey exactly the same scope rules as other names. In particular, 
type names defined within a class declaration cannot be used outside their 
class without qualification. For example, 

class X { 
public: 

} i 

typedef int Ii 

class Y { 1* ... *1 }i 

I ai 

I bi 
Y Ci 

X::Y di 

II error 
II error 
II ok 

The following rule limits the context sensitivity of the rewrite rules for inline 
functions and for class member declarations in general. A class-name or a 
typedef-name or the name of a constant used in a type name may not be 
redefined in a class declaration after being used in the class declaration, nor 
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maya name that is not a class-name or a typedef-name be redefined to a class
name or a typedef-name in a class declaration after being used in the class 
declaration. For example, 

typedef int Ci 

enum { i = 1 }i 

class X { 

} i 

char V[i]i 
int f() { return 
char Ci 

enum {i 2}i 

typedef char* Ti 

struct y { 

} i 

T ai 

typedef long Ti 

T bi 

sizeof (c) i } 

II error: typedef name 
II redefined after use 
II error: 'i' redefined after 
II use in type name 'char[i]' 

II error: T already used 
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10.1 Derived Classes 

Derived Classes 

A list of base classes may be specified in a class declaration using the notation: 

base-spec: 
: base-list 

base-list: 
base-specifier 
base-list, base-specifier 

base-specifier: 
complete-dass-name 
vir t ua 1 access-specifier opt complete-dass-name 
access-specifier vir t ua lopt complete-dass-name 

access-specifier: 
private 
protected 
public 

The dass-name in a base-specifier must denote a previously declared class (see 
Chapter 9, "Classes,"), which is called a base class for the class being declared. 
A class is said to be derived from its base classes. For the meaning of access
specifier see Chapter 11, "Member Access Control,". Unless redefined in the 
derived class, members of a base class can be referred to as if they were 
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members of the derived class. The base class members are said to be inherited 
by the derived class. The scope resolution operator: : (see Section 5.2, 
"Primary Expressions," on page 28) may be used to refer to a base member 
explicitly. This allows access to a name that has been redefined in the derived 
class. A derived class can itself serve as a base class subject to access control; 
see Section 11.3, "Access Specifiers for Base Classes," on page 136. A pointer to 
a derived class may be implicitly converted to a pointer to an accessible 
unambiguous base class (see "Pointer Conversions" on page 23). A reference to 
a derived class may be implicitly converted to a reference to an accessible 
unambiguous base class (see "Reference Conversions" on page 24). 

For example, 

class base 
public: 

int a, b; 
} ; 

class derived : public base { 
public: 

int b, c; 
} ; 

void f () 
{ 

derived d; 
d.a = 1; 
d. base: : b 2 ; 
d.b = 3; 
d.c = 4; 
base* bp &d; II standard conversion: 

II derived* to base* 

assigns to the four members of d and makes bp point to d. 

A class is called a direct base if it is mentioned in the base-list and an indirect base 
if it is not a direct base but is a base class of one of the classes mentioned in the 
base-list. 
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Note that in the class-name: : name notation, name may be a name of a member 
of an indirect base class; the notation simply specifies a class in which to start 
looking for name. For example, 

class A public: void f()i }i 

class B public A { }i 

class C public B { public: void f(); }; 

void C: : f () 
{ 

f () i II Call C's f () 

A: : f () i II call A's f() 

B: : f () i II call A's f() 

Here, A: : f () is called twice since it is the only f () in B. 

Initialization of objects representing base classes can be specified in 
constructors; see "Initializing Bases and Members" on page 160. 

10.2 Multiple Base Classes 
A class may be derived from any number of base classes. For example, The use 

class A 1* *1 } i 

class B 1* *1 } i 

class C 1* *1 } i 

class D public A, public B, public C { 1* ... *1 } ; 

of more than one direct base class is often called multiple inheritance. 

The order of derivation is not significant except possibly for default 
initialization by constructor (see "Constructors" on page 147), for cleanup (see 
"Destructors" on page 154), and for storage layout (see Section 5.3, "Explicit 
Type Conversion," on page 39, Section 9.4, "Member Functions," on page 108, 
Section 11.2, "Access Specifiers," on page 136). The order in which storage is 
allocated for base classes is implementation dependent. 
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A class may not be specified as a direct base class of a derived class more than 
once but it may be an indirect base class more than once. 

class B 1* ... *1 } ; 

class D public B, public B { 1* ... *1 } ; II illegal 

class L 1* ... *1 } ; 

class A public L { 1* ... *1 } ; 

class B public L { 1* ... *1 } ; 

class C public A, public B { 1* ... *1 } ; II legal 

Here, an object of class C will have two sub-objects of class L. 

The keyword virtual may be added to a base class specifier. A single sub
object of the virtual base class is shared by every base class that specified the 
base class to be virtual. For example, 

class V 1* ... *1 } ; 

class A virtual public V 1* ... *1 } ; 

class B virtual public V 1* ... *1 } ; 

class C public A, public B { 1* ... *1 } ; 

Here class C has only one sub-object of class v. 

A class may have both virtual and nonvirtual base classes of a given type. 

class B 
class X 

1* ... *1 }; 
virtual public B { 1* ... *1 }; 

class Y virtual public B { 1* ... *1 }; 
class Z public B { 1* ... *1 }; 
class AA : public X, public Y, public Z { 1* ... *1 }; 

Here class AA has two sub-objects of class B: z's B and the virtual B shared by 
X and Y. 
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Ambiguities 

Access to base class members must be unambiguous. Access to a base class 
member is ambiguous if the expression used refers to more than one function, 
object, type, or enumerator. The check for ambiguity takes place before access 
control (see Chapter 11, "Member Access Control,"). For example, 

class A { 
public: 

} i 

int ai 

int (*b) () i 

int f () i 

int f(int)i 
int g() i 

class B { 

int a; 
int b(); 

public: 
int f(); 
int g; 
int h(); 
int h(int) ; 

} ; 

class C : public A, public B {}; 
void g(C* pc) 
{ 

pc->a = 1; II error: ambiguous: 
pc->b () ; II error: ambiguous: 
pc->f () ; II error: ambiguous: 
pc->f(l); II error: ambiguous: 
pc->g () ; II error: ambiguous: 
pc->g = 1; II error: ambiguous: 
pc->h () ; II ok 
pc->h(l) ; II ok 

A: :a or B: :a 
A: :b or B: :b 
A: :f or B:: f 
A: :f or B:: f 
A: :g or B: :g 
A: :g or B: :g 

If the name of an overloaded function is unambiguously found overloading 
resolution also takes place before access control. Ambiguities can be resolved 
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by qualifying a mime with its class name. For example, 

class A { 
public: 

int f () i 

} i 

class B { 
public: 

int f () i 

} i 

class C : public A, public B { 
int f() { return A::f() + B: :f()i } 

} i 

When virtual base classes are used, a single function, object, type, or 
enumerator may be reached through more than one path through the directed 
acyclic graph of base classes. This is not an ambiguity. The identical use with 
nonvirtual base classes is an ambiguity; in that case more than one sub-object is 
involved. For example, 

class V 
class A 
class B 
class C 

class D 

public: int Vi }i 

pUblic: int ai }i 

public A, public virtual V {}i 

public A, public virtual V {}i 

public B, public C { public: void f()i }i 

void D: : f () 
{ 

V++i /1 ok: only one 'v' in 'D' 
a++i /1 error, ambiguous: two 'a's in 'D' 

When virtual base classes are used, more than one function, object, or 
enumerator may be reached through paths through the directed acyclic graph 
of base classes. This is an ambiguity unless one of the names found dominates 
the others. The identical use with nonvirtual base classes is an ambiguity; in 
that case more than one sub-object is involved. 
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A name B: : f dominates a name A: : f if its class B has A as a base. If a name 
dominates another no ambiguity exists between the two; the dominant name is 
used when there is a choice. For example, 

class V public: 
class B public 
class C public 

class D public 

void D: :g() 
{ 

int f () ; 
virtual V 
virtual V 

B, public 

int x; } ; 

pUblic: int 
} ; 

C { void g(); 

x++; II ok: B::x dominates V::x 

f(); 

} ; 

f ( ) ; I I ok: B:: f () dominates V:: f ( ) 

int x; } ; 

An explicit or implicit conversion from a pointer or reference to a derived class 
to a pointer or reference to one of its base classes must unambiguously refer to 
the same object representing the base class. For example, 

class V 
class A 
class B 
class C 

class D 

void g () 
{ 

D d; 
B* pb 
A* pa 
V* pv 

10.3 Virtual Functions 

} ; 

} ; 

public A, public virtual V } ; 

public A, public virtual V } ; 

public B, public C { } ; 

&d; 
&d; II error, ambiguous: CIS A or Bls A ? 

&d; II fine: only one V sub-object 

If a class base contains a virtual (see "Function Specifiers" on page 67) 
function vf, and a class derived derived from it also contains a function vf 
of the same type, then a call of vf for an object of class der i ved invokes 
deri ved: : vf (even if the access is through a pointer or reference to base). 
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The derived class function is said to override the base class function. If the 
function types (see "Functions" on page 88) are different, however, the 
functions are considered different and the virtual mechanism is not invoked 
(see also "Declaration Matching" on page 171). It is an error for a derived class 
function to differ from a base class' virtual function in the return type only. For 
example, The calls invoke derived: : vfl, base: : vf2, and base: : f, 

struct base { 

} i 

virtual void vfl(); 
virtual void vf2(); 
virtual void vf3(); 
void f(); 

class derived : public base { 
public: 

} i 

void vfl() i 

void vf2(int);11 hides base::vf2() 
char vf3()i II error: differs in return type only 
void f()i 

void g() 
{ 

derived di 
base* bp = &d; II standard conversion: 

bp->vfl() i 

bp->vf2() i 

bp->f() i 

II derived* to base* 
II calls derived::vfl 
II calls base::vf2 
II calls base::f 

respectively, for the class derived object named d. That is, the interpretation 
of the call of a virtual function depends on the type of the object for which it is 
called, whereas the interpretation of a call of a nonvirtual member function 
depends only on the type of the pointer or reference denoting that object. For 
example, bp->vfl () calls derived: :vfl () because bp points to an object of 
class der i ved in which der i ved: : vf 1 () has overridden the virtual function 
base: :vfl (). 

The virtual specifier implies membership, so a virtual function cannot be 
a global (nonmember) (see IIFunction Specifiers" on page 67) function. Nor can 
a virtual function be a static member, since a virtual function call relies on a 
specific object for determining which function to invoke. A virtual function can 
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10.4 Abstract Classes 

be declared a f r i end in another class. An overriding function is itself 
considered virtual. The virtual specifier may be used for an overriding 
function in the derived class, but such use is redundant. A virtual function in a 
base class must be defined or declared pure (see Section 10.4, Ii Abstract 
Classes," on page 129). A virtual function that has been defined in a base class 
need not be defined in a derived class. If it is not, the function defined for the 
base class is used in all calls. 

Explicit qualification with the scope operator (see Section 5.2, IiPrimary 
Expressions," on page 28) suppresses the virtual call mechanism. For example, 

class B public: virtual void f()i }i 
class D public B { pUblic: void f()i }i 

void D: :f() { /* */ B::f()i } 

Here, the call of f in D really does call B: : f and not D: : f. 

The abstract class mechanism supports the notion of a general concept, such as 
a shape, of which only more concrete variants, such as circle and square, 
can actually be used. An abstract class can also be used to define an interface 
for which derived classes provide a variety of implementations. 

An abstract class is a class that can be used only as a base class of some other 
class; no objects of an abstract class may be created except as objects 
representing a base class of a class derived from it. A class is abstract if it has 
at least one pure virtual function. A virtual function is specified pure by using a 
pure-specifier (see Section 9.3, "Class Members," on page 105) in the function 
declaration in the class declaration. A pure virtual function need be defined 
only if explicitly called with the qualified-name syntax (see Section 5.2, "Primary 
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Expressions," on page 28). For example, 

class point { 1* ... *1 }; 
class shape { II abstract class 

point center; 
I I ... 

public: 
point where() { return center; } 
void move (point p) { center=p; draw(); 
virtual void rotate(int) 0; II pure virtual 
virtual void draw() = 0; II pure virtual 

I I ... 
} ; 

An abstract class may not be used as an argument type, as a function return 
type, or as the type of an explicit conversion. Pointers and references to an 
abstract class may be declared. For example, 

shape X; 
shape* p; 
shape f(); 
void 9 (shape) ; 
shape& h(shape&); 

II error: object of abstract class 
II ok 
II error 
II error 
II ok 
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Pure virtual functions are inherited as pure virtual functions. For example, 

class ab_circle : public shape { 
int radius; 

pUblic: 
void rotate(int) {} 
II ab_circle::draw() is a pure virtual 

} ; 

Since shape: : draw () is a pure virtual function ab_circle: : draw () is a 
pure virtual by default. The alternative declaration, 

class circle : public shape { 
int radius; 

public: 
void rotate(int) {} 
void draw(); II must be defined somewhere 

} ; 

would make class circle nonabstract and a definition of circle: : draw () 
must be provided somewhere. 

Member functions can be called from a constructor of an abstract class; the 
effect of calling a pure virtual function directly or indirectly for the object being 
created from such a constructor is undefined. 

10.5 Summary of Scope Rules 
The scope rules for c++ programs can now be summarized. These rules apply 

uniformly for all names (including typedef-names (see "The typedef Specifier" 
on page 68) and class-names (see Section 9.2, "Class Names," on page 102) 
wherever the grammar allows such names in the context discussed by a 
particular rule. This section discusses lexical scope only; see Section 3.4, 
"Program and Linkage," on page 14 for an explanation of linkage issues. The 
notion of point of declaration is discussed in (see Section 3.3, "Scopes," on 
page 12). 
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Any use of a name must be unambiguous (up to overloading) in its scope (see 
II Ambiguities" on page 125). Only if the name is found to be unambiguous in 
its scope are access rules considered (see Chapter 11, "Member Access 
Control,"). Only if no access control errors are found is the type of the object, 
function, or enumerator named considered. 

A name used outside any function and class or prefixed by the unary scope 
operator : : (and not qualified by the binary : : operator or the - > or . 
operators) must be the name of a global object, function, enumerator, or type. 

A name specified after X: :, after obj ., where obj is an X or a reference to X, 

or after ptr->, where ptr is a pointer to X must be the name of a member of 
class X or be a member of a base class of x. In addition, ptr in ptr-> may be 
an object of a class y that has operator-> () declared so 
ptr->operator-> () eventually resolves to a pointer to X (see "Binary 
Operators" on page 181). 

A name that is not qualified in any of the ways described above and that is 
used in a function that is not a class member must be declared in the block in 
which it occurs or in an enclosing block or be a global name. The declaration of 
a local name hides declarations of the same name in enclosing blocks and 
global names. In particular, no overloading occurs of names in different scopes 
(see Section 13.4, "Overloaded Operators," on page 179). 

A name that is not qualified in any of the ways described above and that is 
used in a function that is a nonstatic member of class X must be declared in the 
block in which it occurs or in an enclosing block, be a member of class X or a 
base class of class X, or be a global name. The declaration of a local name hides 
declarations of the same name in enclosing blocks, members of the function's 
class, and global names. The declaration of a member name hides declarations 
of the same name in base classes and global names. 

A name that is not qualified in one of the ways described above and is used in 
a static member function of a class X must be declared in the block in which it 
occurs, in an enclosing block, be a static member of class X, or a base class of 
class X, or be a global name. 

A function argument name in a function definition (see Section 8.4, "Function 
Definitions," on page 93) is in the scope of the outermost block of the function 
(in particular, it is a local name). A function argument name in a function 
declaration (see "Functions" on page 88) that is not a function definition is in a 
local scope that disappears immediately after the function declaration. A 
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default argument is in the scope determined by the point of declaration (see 
Section 3.3, "Scopes," on page 12) of its formal argument, but may not access 
local variables or nonstatic class members; it is evaluated at each point of call 
(see "Default Arguments" on page 90). 

A ctor-initializer (see "Initializing Bases and Members" on page 160) is 
evaluated in the scope of the outermost block of the constructor it is specified 
for. In particular, it can refer to the constructor's argument names. 

Derived Classes 133 



134 Product Reference Manual- October 1992 



Member Access Control 

11.1 Member Access Control 
A member of a class can be 

• private; that is, its name can be used only by member functions and 
friends of the class in which it is declared. 

• protected; that is, its name can be used only by member functions and 
friends of the class in which it is declared and by member functions and 
friends of classes derived from this class (see Section 11.6, "Protected 
Member Access," on page 143). 

• public; that is, its name can be used by any function. 

Members of a class declared with the keyword class are private by default. 
Members of a class declared with the keywords struct or union are public 
by default. For example, 

class X { 
int ai II X::a is private by default 

} i 

struct S { 
int ai II S::a is public by default 

} i 
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11.2 Access Specifiers 
Member declarations may be labeled by an access-specifier (see Chapter 10, 
HDerived Classes,"): 

access-specifier: member-listopt 

An access-specifier specifies the access rules for members following it until the 
end of the class or until another access-specifier is encountered. For example, 

class X { 

int a; II X: :a is private by default: 'class' used 
public: 

int b; II X: :b is public 
int c; II X: :c is public 

} ; 

Any number of access specifiers is allowed and no particular order is required. 
For example, 

struct S { 

int a; II s: :a is public by default: 'struct' used 
protected: 

int b; II S: :b is protected 
private: 

int c; II S: :c is private 
public: 

int d; II S: :d is public 
} ; 

The order of allocation of data members with separate access-specifier labels is 
implementation dependent (see Section 9.3, HClass Members," on page 105). 

-

11.3 Access Specifiers for Base Classes 

136 

If a class is declared to be a base class (see Chapter 11, "Member Access 
Control,") for another class using the public access specifier, the public 
members of the base class are public members of the derived class and 
protected members of the base class are protected members of the derived 
class. If a class is declared to be a base class for another class using the 
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private access specifier, the public and protected members of the base 
class are private members of the derived class. Private members of a base 
class remain inaccessible even to derived classes unless friend declarations 
within the base class declaration are used to grant access explicitly. 

In the absence of an access-specifier for a base class, public is assumed when 
the derived class is declared struct and private is assumed when the class 
is declared class. For example, 

class B { 1* ... * I }; 
class Dl private B { 1* ... *1 }; 
class D2 : public B { 1* ... *1 }; 
class D3 : B { 1* ... *1 }; II 'B' private by default 
struct D4 public B { 1* ... *1 }; 
struct D5 private B { 1* ... *1 }; 
struct D6 B { 1* ... *1 }; II 'B' public by default 

Here B is a public base of D2, D4, and D6, and a private base of Dl, D3, and D5. 

Specifying a base class private does not affect access to static members of the 
base class. If, however, an object or a pointer requiring conversion is used to 
select the static member the usual rules for pointer conversions apply. 

Members and friends of a class X can implicitly convert an X* to a pointer to a 
private immediate base class of x. 

11.4 Access Declarations 
The access to a member of a base class in a derived class can be adjusted by 
mentioning its qualified-name in the public or protected part of a derived 
class declaration. Such mention is called an access declaration. 
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For example, 

class B { 
int a; 

public: 
int b , c; 
int bf() ; 

} ; 

class D : private B { 
int d; 

pUblic: 

} ; 

B: :c; II adjust access to 'B: :c' 
int e; 
int df(); 

int ef (D&) ; 

The external function ef can use only the names c, e, and df. Being a member 
of D, the function df can use the names b, c, bf, d, e, and df, but not a. Being 
a member of B, the function bf can use the members a, b, c, and bf. 

Product Reference Manual- October 1992 



An access declaration may not be used to restrict access to a member that is 
accessible in the base class, nor may it be used to enable access to a member 
that is not accessible in the base class. For example, 

class B { 
pUblic: 

int a; 
private: 

int b; 
protected: 

int c; 
} ; 

class D : private B { 
pUblic: 

B::a; II make 'a' a public member of D 
B::b; II error: attempt to grant access 

II can't make 'b' a public member of D 
protected: 

} ; 

B::c; II make 'c' a protected member of D 
B::a; II error: attempt to reduce access 

II can't make 'a' a protected member of D 

An access declaration for the name of an overloaded function adjusts the access 
to all functions of that name in the base class. For example, 

class X { 
pUblic: 

f () ; 
f (int) ; 

} ; 

class Y : private X { 
pUblic: 

X::f; II makes X::f() and X::f(int) public in Y 
} ; 

Member Access Control 139 



11.5 Friends 
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The access to a base class member cannot be adjusted in a derived class that 
also defines a member of that name. For example, 

class X { 
pUblic: 

void f()i 
} ; 

class Y : private X { 
pUblic: 

void f (int) ; 
X::f; II error: two declarations of f 

A friend of a class is a function that is not a member of the class but is 
permitted to use the private and protected member names from the class. The 
name of a friend is not in the scope of the class, and the friend is not called 
with the member access operators (see "Class Member Access" on page 32) 
unless it is a member of another class. The following example illustrates the 
differences between members and friends: 

class X { 
int a; 
friend void friend_set (X*, int); 

pUblic: 
void member_set(int); 

} ; 

void friend_set{X* p, int i) { p->a = i; 
void X: : member_set (int i) { a = i; } 

void f () 

X obj; 
friend_set(&obj,lO); 

obj.member_set(lO); 
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When a friend declaration refers to an overloaded name or operator, only the 
function specified by the argument types becomes a friend. A member function 
of a class x can be a friend of a class Y. For example, 

class Y { 

} ; 

friend char* X::foo(int); 
I I .. , 

All the functions of a class x can be made friends of a class Y by a single 
declaration using an elaborated-type-specifier (see Section 9.2, uClass Names," on 
page 102): 

I 

class Y { 
friend class X; 
I I ... 

} 

Declaring a class to be a friend also implies that private and protected names 
from the class granting friendship can be used in the class receiving it. For 
example, 

class X 

} ; 

enum a=100}; 
friend class Y; 

class Y { 
int v[X::a]; II ok, Y is a friend of X 

} ; 

class Z { 
int v[X::a]; II error: X::a is private 

} ; 

If a class or a function mentioned as a friend has not been declared its name is 
entered in the same scope as the name of the class containing the friend 
declaration (see Section 9.2, "Class Names," on page 102). 
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A function first declared in a friend declaration is equivalent to an extern 
declaration (see Section 3.4, UProgram and Linkage," on page 14, and UStorage 
Class Specifiers" on page 65. 

A friend function defined in a class declaration is inline and the rewriting 
rule specified for member functions (see uInline Member Functions" on page 
111) is applied. A friend function defined in a class is in the (lexical) scope of 
the class in which it is defined. A friend function defined outside the class is 
not. 

Friend declarations are not affected by access-specifiers (see Section 9.4, 
uMember Functions," on page 108). 

Friendship is neither inherited nor transitive. For example, 

class A { 

} i 

friend class Bi 

int ai 

class B { 
friend class Ci 

} i 

class C { 
void f(A* p) 

p->a++i II error: C is not a friend of A 
II despite being a friend of a friend 

} i 

class D public B 
void f(A* p) 

p->a++i II error: D is not a friend of A 
II despite being derived from a friend 

} i 
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11.6 Protected Member Access 
A friend or a member function of a derived class can access a protected static 
member of a base class. A friend or a member function of a derived class can 
access a protected nonstatic member of one of its base classes only through a 
pointer to, reference to, or object of the derived class (or any class derived from 
that class). For example, 

class B { 
protected: 

int i; 
} ; 

class D1 
} ; 

class D2 

public B 

public B 
friend void fr(B*,D1*,D2*); 
void mem(B*,D1*); 

} ; 

void fr(B* pb, D1* p1, D2* p2) 
{ 

1; II illegal 
2; II illegal 

pb->i 
p1->i 
p2->i 3; II ok (access through a D2) 

void D2::mem(B* pb, D1* p1) 
{ 

pb->i = 1; II illegal 
p1->i = 2; II illegal 
i = 3; II ok (access through 'this') 

void g(B* pb, D1* p1, D2* p2) 
{ 

pb->i 1; II illegal 
p1->i 2; II illegal 
p2->i 3 ; II illegal 
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The access rules (see Section 11, "," on page 135) for a virtual function are 
determined by its declaration and are not affected by the rules for a function 
that later overrides it. For example, 

class B { 
public: 

virtual f(); 
} ; 

class D : public B 
private: 

f ( ) ; 
} ; 

void f () 
{ 

D d; 
B* pb &d; 
D* pd &d; 

pb->f(); /1 ok: B::f() is public, 
/1 D::f() is invoked 

pd->f(); /1 error: D::f() is private 

Access is checked at the call point using the type of the expression used to 
denote the object for which the member function is called ( B* in the example 
above). The access of the member function in the class in which it was defined 
( D in the example above) is in general not known. 
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11.8 Multiple Access 
If a name can be reached by several paths through a multiple inheritance 
graph, the access is that of the path that gives most access. For example, 

class W pUblic: void f(); }; 
class A private virtual W { }; 
class B public virtual W { }; 
class C public A, public B { 

void f () { W:: f ( ); } / / ok 
} ; 

Since W: : f () is available to c: : f () along the public path through B, access is 
legal. 
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Special Member Functions 

12.1 Special Member Functions 

Constructors 

Some member functions are special in that they affect the way objects of a class 
are created, copied, and destroyed, and how values may be converted to values 
of other types. Often such special functions are called implicitly. 

These member functions obey the usual access rules (see Chapter 11, uMember 
Access Control,"). For example, declaring a constructor protected ensures 
that only derived classes and friends can create objects using it. 

A member function with the same name as its class is called a constructor; it is 
used to construct values of its class type. If a class has a constructor, each object 
of that class will be initialized before any use is made of the object; see 
ulnitialization" on page 158. 

A constructor can be invoked for a canst or volatile object. A constructor 
may not be declared canst or volatile (see uThe this Pointer" on page 109). 
A constructor may not be virtual. A constructor may not be sta tic. 

Constructors are not inherited. Default constructors and copy constructors, 
however, are generated (by the compiler) where needed (seeUCopying Class 
Objects" on page 164). Generated constructors are public. 
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A default constructor for a class X is a constructor of class X that can be called 
without an argument. A default constructor will be generated for a class X only 
if no constructor has been declared for class x . 

A copy constructor for a class X is a constructor that can be called to copy an 
object of class X; that is, one that can be called with a single argument of type 
X. For example, x: :X(const X&) and x: :X(X&, int=O) are copy 
constructors. A copy constructor is generated only if no copy constructor is 
declared. 

A copy constructor for a class X may not take an argument of type X. For 
example, X: : X (X) is illegal. 

Constructors for array elements are called in order of increasing addresses (see 
"Arrays" on page 86). 

If a class has base classes or member objects with constructors, their 
constructors are called before the constructor for the derived class. The 
constructors for base classes are called first. See "Initializing Bases and 
Members" on page 160 for an explanation of how arguments can be specified 
for such constructors and how the order of constructor calls is determined. 

An object of a class with a constructor cannot be a member of a union. 

No return type (not even void) can be specified for a constructor. A return 

statement in the body of a constructor may not specify a return value. It is not 
possible to take the address of a constructor. 

A constructor can be used explicitly to create new objects of its type, using the 
syntax 

class-name ( expression-listopt ) 

For example, 

complex zz = complex(l,2.3)i 
cprint( complex(7.8,l.2) )i 

An object created in this way is unnamed (unless the constructor was used as 
an initializer for a named variable as for zz above), with its lifetime limited to 
the expression in which it is created; see "Temporary Objects" on page 149. 
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Member functions may be called from within a constructor; see "Constructors 
and Destructors" on page 163. 

Temporary Objects 
In some circumstances it may be necessary or convenient for the compiler to 
generate a temporary object. Such introduction of temporaries is 
implementation dependent. When a compiler introduces a temporary object of 
a class that has a constructor it must ensure that a constructor is called for the 
temporary object. Similarly, the destructor must be called for a temporary 
object of a class where a destructor is declared. For example, 

class X 
II 

pUblic: 

} ; 

II 
X(int) ; 

X(X&) ; 
~X() ; 

X f(X); 

void g () 

{ 

X a(l); 
X b = f(X(2)); 
a = f (a); 

Here, one might use a temporary in which to construct X ( 2) before passing it 
to f () by X (X& ) ; alternatively, X ( 2) might be constructed in the space used to 
hold the argument for the first call of f () . Also, a temporary might be used to 
hold the result of f (X ( 2) ) before copying it to b by X (X& ) ; alternatively, 
f ( ) 's result might be constructed in b. On the other hand, for many functions 
f ( ) , the expression a= f (a) requires a temporary for either the argument a or 
the result of f (a) to avoid undesired aliasing of a. 
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The compiler must ensure that a temporary object is destroyed. The exact point 
of destruction is implementation dependent. There are only two things that can 
be done with a temporary: fetch its value (implicitly copying it) to use in some 
other expression, or bind a reference to it. If the value of a temporary is 
fetched, that temporary is then dead and can be destroyed immediately. If a 
reference is bound to a temporary, the temporary must not be destroyed until 
the reference is. This destruction must take place before exit from the scope in 
which the temporary is created. 

Another form of temporaries is discussed in "References" on page 84. 

Type conversions of class objects can be specified by constructors and by 
conversion functions. 

Such conversions, often called user-defined conversions, are used implicitly in 
addition to standard conversions (see Chapter 4, "Standard Conversions,"). For 
example, a function expecting an argument of type X can be called not only 
with an argument of type X but also with an argument of type T where a 
conversion from T to X exists. User-defined conversions are used similarly for 
conversion of initializers (see Section 8.5, "Initializers," on page 94), function 
arguments (see "Function Call" on page 31, UFunctions" on page 88), function 
return values (see "The return Statement" on page 57, "Functions" on page 88), 
expression operands (see Chapter 5, "Expressions,"), expressions controlling 
iteration and selection statements (see Section 6.5, "Selection Statements," on 
page 52, Section 6.6, "Iteration Statements," on page 54, and explicit type 
conversions (see "Explicit Type Conversion" on page 32. 

User-defined conversions are applied only where they are unambiguous (see 
"Ambiguities" on page 125, "Conversion Functions" on page 151). Conversions 
obey the access control rules (see Chapter 11, uMember Access Control,"). As 
ever access control is applied after ambiguity resolution (see Section 10.5, 
"Summary of Scope Rules," on page 131). 

See Section 13.2, "Argument Matching," on page 173 for a discussion of the use 
of conversions in function calls as well as examples below. 
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Conversion by Constructor 
A constructor accepting a single argument specifies a conversion from its 
argument type to the type of its class. For example, 

class X 
II 

public: 
X(int) ; 
X(const char*, int 0); 

} ; 

void f (X arg) { 
X a = 1; II a = X(l) 
X b = "Jessie"; II b = X("Jessie",O) 
a = 2; II a = X(2) 
f(3); II f(X(3)) 

When no constructor for class X accepts the given type, no attempt is made to 
find other constructors or conversion functions to convert the assigned value 
into a type acceptable to a constructor for class X. For example, 

class X { 1* 
class Y { 1* 
Y a = 1; 

* I X (int); }; 
*1 Y(X); }; 

II illegal: Y(X(l)) not tried 

Conversion Functions 
A member function of a class X with a name of the form 

conversion-Junction-name: 
opera tor conversion-type-name 

conversion-type-name: 
type-specifier-list ptr-operator opt 

specifies a conversion from X to the type specified by the conversion-type-name. 
Such member functions are called conversion functions. Classes, enumerations, 
and typedef-names may not be declared in the type-specifier-list. Neither 
argument types nor return type may be specified. 
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Here is an example: 

class X 
II 

public: 
operator int(); 

} ; 

void f(X a) 

int i = int (a) ; 
i = (int)a; i = a; 

In all three cases the value assigned will be converted by X: : operator 
int ( ). User-defined conversions are not restricted to use in assignments and 
initializations. For example, 

void g(X at X b) 
{ 

int i = (a) ? l+a : 0; 
int j = (a&&b) ? a+b : i; 
if (a) { I I ... 

Conversion operators are inherited. 

Conversion functions can be virtual. 
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At most one user-defined conversion (constructor or conversion function) is 
implicitly applied to a single value. For example, 

class X 
II 

public: 
operator int(); 

} ; 

class Y 
II 

public: 
operator X(); 

} ; 

Y a; 
int b 

int c 

a; II illegal: 
II a.operator X().operator int() not tried 

X(a); II ok: a.operator X() . operator int() 

User-defined conversions are used implicitly only if they are unambiguous. A 
conversion function in a derived class does not hide a conversion function in a 
base class unless the two functions convert to the same type. For example, 

class X 
public: 

II 
operator int(); 

} ; 

class Y : public X { 
public: 

II 
operator void*(); 

} ; 

void f(Y& a) 
{ 

if (a) 

II 
II error: ambiguous 
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A member function of class cl named -cl is called a destructor; it is used to 
destroy values of type cl immediately before the object containing them is 
destroyed. A destructor takes no arguments, and no return type can be 
specified for it (not even void). It is not possible to take the address of a 
destructor. A destructor can be invoked for a canst or volatile object. A 
destructor may not be declared canst or volatile (see "The this Pointer" on 
page 109). A destructor may not be static. 

Destructors are not inherited. If a base or a member has a destructor and no 
destructor is declared for its derived class a default destructor is generated. 
This generated destructor calls the destructors for bases and members of the 
derived class. Generated destructors are pUblic. 

The body of a destructor is executed before the destructors for member objects. 
Destructors for nonstatic member objects are executed before the destructors 
for base classes. Destructors for nonvirtual base classes are executed before 
destructors for virtual base classes. Destructors for nonvirtual base classes are 
executed in reverse order of their declaration in the derived class. Destructors 
for virtual base classes are executed in the reverse order of their appearance in 
a depth-first left-to-right traversal of the directed acyclic graph of base classes; 
"left-to-right" is the order of appearance of the base class names in the 
declaration of the derived class. 

Destructors for elements of an array are called in reverse order of their 
construction. 

A destructor may be virtual. 

Member functions may be called from within a destructor; see "Constructors 
and Destructors" on page 163. 

An object of a class with a destructor cannot be a member of a union. 

Destructors are invoked implicitly (1) when an auto (see Section 3.6, "Storage 
Classes," on page 17) or temporary (see "Temporary Objects" on page 149, 
"References" on page 84) object goes out of scope, (2) for constructed static (see 
Section 3.6, "Storage Classes," on page 17) objects at program termination (see 
Section 3.5, "Start and Termination," on page IS), (3) through use of the 
delete operator (see "Delete" on page 38) for objects allocated by the new 
operator (see "New" on page 36), and (4) explicitly called. When invoked by 
the delete operator, memory is freed by the destructor for the most derived 
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class (see "Initializing Bases and Members" on page 160) of the object using an 
operator delete () (see "Delete" on page 38). For example, 

class X 
II 

pUblic: 

} ; 

X(int) ; 
-X() ; 

void g(X*); 

void f()11 common use: 

X* P = new X(111); II allocate and initialize 
g(p) ; 
delete p; II cleanup and deallocate 

Explicit calls of destructors are rarely needed. One use of such calls is for 
objects placed at specific addresses using a new operator. Such use of explicit 
placement and destruction of objects can be necessary to cope with dedicated 
hardware resources and for writing memory management facilities. For 
example, 

void* operator new(size_t, void* p) { return p; } 

void f (X* p); 

static char buf[sizeof(X)]; 

void g() II rare, specialized use: 
{ 

X* P new(buf) X(222); II use buf[] 
II and initialize 

f (p) ; 

p->X: :-X(); II cleanup 
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The notation for explicit call of a destructor may be used for any simple type 
name. For example, 

I int* p, 
I I ... 
p->int::~int()i 

Using the notation for a type that does not have a destructor has no effect. 
Allowing this enables people to write code without having to know if a 
destructor exists for a given type. 

When an object is created with the new operator, an opera tor new () function 
is (implicitly) used to obtain the store needed (see "New" on page 36). 

If operator new () cannot allocate storage it will return o. 

An x: : opera tor new () for a class X is a static member (even if not explicitly 
declared static). Its first argument must be of type size_t, an 
implementation-dependent integral type defined in the standard header 
<stddef . h>; it must return void*. For example, 

class X { 
I I ... 
void* operator new(size_t) i 

void* operator new(size_t, Arena*) i 

} i 

See "New" on page 36 for the rules for selecting an operator new (). 
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An X: : opera tor delete () for a class X is a static member (even if not 
explicitly declared static) and must have its first argument of type void*; a 
second argument of type size_t may be added. It cannot return a value; its 
return type must be void. For example, 

class X { 
/ / ... 
void operator 

delete(void*); 
} ; 

class Y { 
/ / ... 
void operator delete (void* , size_t); 

} ; 

Only one operator delete () may be declared for a single class; thus 
operator delete () cannot be overloaded. The global operator delete () 
takes a single argument of type void *. 

If the two argument style is used, operator delete () will be called with a 
second argument indicating the size of the object being deleted. The size 
passed is determined by the destructor (if any) or by the (static) type of the 
pointer being deleted; that is, it will be correct either if the type of the pointer 
argument to the delete operator is the exact type of the object (and not, for 
example, just the type of base class) or if the type is that of a base class with a 
virtual destructor. 

The global operator new () and operator delete () are used for arrays of 
class objects (see uNew" on page 36"Delete" on page 38. 
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Since X: : operator new () and X: : operator delete () are static they 
cannot be virtual. A destructor finds the operator delete () to use for 
freeing store using the usual scope rules. For example, 

struct B { 
virtual ~B{); 
void* operator new{size_t); 
void operator delete{void*); 
} ; 

struct D B { 
~D () ; 

} ; 

void* operator new{size_t); 
void operator delete{void*); 

void f () 

B* P new D; 
delete p; 

Here, storage for the object of class D is allocated by D: : opera tor new () and, 
thanks to the virtual destructor, deallocated by D: : opera tor delete ( ) . 

An object of a class with no constructors, no private or protected members, no 
virtual functions, and no base classes can be initialized using an initializer list; 
see "Aggregates" on page 96. An object of a class with a constructor must 
either be initialized or have a default constructor (see "Constructors" on page 
147). The default constructor is used for objects that are not explicitly 
initialized. 

Explicit Initialization 
Objects of classes with constructors (see "Constructors" on page 147) can be 
initialized with a parenthesized expression list. This list is taken as the 
argument list for a call of a constructor doing the initialization. Alternatively a 
single value is specified as the initializer using the = operator. This value is 
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used as the argument to a copy constructor. Typically, that call of a copy 
constructor can be eliminated. For example, 

class complex 
I I ... 

public: 
complex(); 
complex (double) ; 
complex(double,double)i 
I I ... 

} i 

complex sqrt(complex,complex) i 

complex a(l); II initialize by a call of 
II complex (double) 

complex b ai II initialize by a copy of 'a' 
complex c complex(1,2)i II construct complex(1,2) 

II using complex (double, double) 
II copy it into 'c' 

complex d = sqrt(b,c)i II call sqrt (complex, complex) 
II and copy the result into 'd' 

complex e; II initialize by a call of 
I I complex () 

complex f = 3i II construct complex(3) using 
II complex (double) 
II copy it into 'f 

Overloading of the assignment operator = has no effect on initialization. 

The initialization that occurs in argument passing and function return is 
equivalent to the form 

T x = ai 

The initialization that occurs in new expressions (see "New" on page 36) and in 
base and member initializers (see "Initializing Bases and Members" on page 
160) is equivalent to the form 

T x(a) i 
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Arrays of objects of a class with constructors use constructors in initialization 
(see "Constructors" on page 147) just like individual objects. If there are fewer 
initializers in the list than elements in the array, the default constructor (see 
"Constructors" on page 147) is used. If there is no default constructor the 
initializer-list must be complete. For example, 

complex cc = { 1, 2 }; II error; use constructor 
complex v[6] = { l,complex(l,2),complex(),2 }; 

Here, v [0] and v [3] are initialized with complex: : complex (double) , 
v [1] is initialized with complex: : complex (double, double) , and v [2], 
v [4], and v [5] are initialized with complex: : complex (). 

An object of class M can be a member of a class X only if (1) M does not have a 
constructor, or (2) M has a default constructor, or (3) X has a constructor and if 
every constructor of class X specifies a ctor-initializer (see "Initializing Bases 
and Members" on page 160) for that member. In case 2 the default constructor 
is called when the aggregate is created. If a member of an aggregate has a 
destructor, then that destructor is called when the aggregate is destroyed. 

Constructors for nonlocal static objects are called in the order they occur in a 
file; destructors are called in reverse order. See also Section 3.5, "Start and 
Termination," on page 15, Section 6.8, "Declaration Statement," on page 58, 
Section 9.5, "Static Members," on page 111. 

Initializing Bases and Members 
Initializers for immediate base classes and for members not inherited from a 

base class may be specified in the definition of a constructor. This is most 
useful for class objects, constants, and references where the semantics of 
initialization and assignment differ. A ctor-initializer has the form 

ctor-initializer: 
: mem-initializer-list 

mem-initializer-list: 
mem-initializer 
mem-initializer , mem-initializer-list 

mem-initializer: 
complete-dass-name ( expression-listopt ) 
identifier ( expression-listopt ) 
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The argument list is used to initialize the named nonstatic member or base 
class object. This is the only way to initialize nonstatic const and reference 
members. For example, 

struct Bl 
struct B2 

Bl(int); /* 
B2 (int); / * 

struct D : Bl, B2 { 
D(int) ; 
Bl b; 
canst c; 

} ; 

* / }; 
* / }; 

D: :D(int a) 
{ /* ... */ 

B2(a+l) I Bl(a+2) I c(a+3) I b(a+4) 

D d(lO); 

First, the base classes are initialized in declaration order (independent of the 
order of mem-initializers), then the members are initialized in declaration order 
(independent of the order of mem-initializers), then the body of D: : D () is 
executed (see "Constructors" on page 147). The declaration order is used to 
ensure that sub-objects and members are destroyed in the reverse order of 
ini tializa tion. 

Virtual base classes constitute a special case. Virtual bases are constructed 
before any nonvirtual bases and in the order they appear on a depth-first left
to-right traversal of the directed acyclic graph of base classes; Hleft-to-right" is 
the order of appearance of the base class names in the declaration of the 
derived class. 

A complete object is an object that is not a sub-object representing a base class. 
Its class is said to be the most derived class for the object. All sub-objects for 
virtual base classes are initialized by the constructor of the most derived class. 
If a constructor of the most derived class does not specify a mem-initializer for a 
virtual base class then that virtual base class must have a default constructor or 
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no constructors. Any mem-initializers for virtual classes specified in a 
constructor for a class that is not the class of the complete object are ignored. 
For example, 

class V { 
public: 

} ; 

V(); 
V(int) ; 
II ... 

class A : public virtual V { 
public: 

} ; 

A(); 
A(int) ; 
I I ... 

class B : public virtual V { 
public: 

} ; 

B(); 
B(int) ; 
I I ... 

class C : public A, public B, private virtual V { 
public: 

C(); 
C(int) ; 
I I ... 

} ; 

A: :A(int i) 
B: :B(int i) 
C: :C (int i) 

V v(l); 
A a (2) ; 
B b (3) ; 
C c (4) ; 

V(i) { 1* *1 
1* *1 
1* ... *1 

II use V(int) 

II use V(int) 
II use V() 
II use V() 
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A mem-initializer is evaluated in the scope of the constructor in which it 
appears. For example, 

class X { 
int ai 

public: 
canst int& ri 
X(): r(a) {} 

initializes X: : r to refer to X: : a for each object of class X. 

Constructors and Destructors 

Member functions may be called in constructors and destructors. This implies 
that virtual functions may be called (directly or indirectly). The function called 
will be the one defined in the constructor's (or destructor's) own class or its 
bases, but not any function overriding it in a derived class. This ensures that 
unconstructed objects will not be accessed during construction or destruction. 
For example, 

class X { 
public: 

virtual void f() i 

X () { f () i} I I calls X:: f () 
-X () { f ( ) i } I I calls X:: f ( ) 

class Y : public X { 

int& ri 
public: 

void f() 

r++i II disaster if 'r' is uninitialized 

Y(int& rr) :r(rr) {} 
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The effect of calling a pure virtual function directly or indirectly for the object 
being constructed from a constructor, except using explicit qualification, is 
undefined (see Section 10.4, "Abstract Classes," on page 129). 

Copying Class Objects 

A class object can be copied in two ways, by assignment (see Section 5.16, 
"Assignment Operators," on page 48) and by initialization (see "Constructors" 
on page 147, "Initializers" on page 94) including function argument passing 
(see "Function Call" on page 31) and function value return (see "The return 
Statement" on page 57). Conceptually, for a class x these two operations are 
implemented by an assignment operator and a copy constructor (see 
"Constructors" on page 147). The programmer may define one or both of these. 
If not defined by the programmer, they will be defined as memberwise 
assignment and memberwise initialization of the members of x, respectively. 

If all bases and members of a class x have copy constructors accepting canst 
arguments, the generated copy constructor for x will take a single argument of 
type canst X&, as follows: 

x: :X(const X&) 

Otherwise it will take a single argument of type X&: 

x: :X(X&) 

and initialization by copying of canst X objects will not be possible. 

Similarly, if all bases and members of a class X have assignment operators 
accepting canst arguments, the generated assignment operator for X will take 
a single argument of type cans t X& I as follows: 

X& X::operator=(const X&) 

Otherwise it will take a single argument of type X&: 

X& X::operator=(X&) 

and assignment by copying of cans t X objects will not be possible. The default 
assignment operator will return a reference to the object for which is invoked. 

Objects representing virtual base classes will be initialized only once by a 
generated copy constructor. Objects representing virtual base classes will be 
assigned only once by a generated assignment operator. 
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Memberwise assignment and memberwise initialization implies that if a class X 

has a member of a class M, M's assignment operator and M's copy constructor 
are used to implement assignment and initialization of the member, 
respectively. If a class has a cons t member, a reference member, or a member 
or a base of a class with a private opera tor= ( ) , the default assignment 
operation cannot be generated. Similarly, if a member or a base of a class M has 
a private copy constructor then the default copy constructor cannot be 
generated. 

The default assignment and copy constructor will be declared, but they will 
not be defined (that is, a function body generated) unless needed. That is, 
X: : operator= () will be generated only if no assignment operation is 
explicitly declared and an object of class X is assigned an object of class X or an 
object of a class derived from X or if the address of X: : operator= is taken. 
Initialization is handled similarly. 

If implicitly declared, the assignment and the copy constructor will be public 
members and the assignment operator for a class X will be defined to return a 
reference of type X& referring to the object assigned to. 

If a class X has any x: : operator= () that takes an argument of class X, the 
default assignment will not be generated. If a class has any copy constructor 
defined, the default copy constructor will not be generated. For example, 

class X 
II 

pUblic: 
X(int) ; 
X(const X&, int 1); 

} ; 

x a(l); 
x b(a, 0); 
x c = b; 

II calls X(int); 
II calls X(const X&,int); 
II calls X(const X&,int); 
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Assignment of class X objects is defined in terms of X: : opera tor= (canst 
X&) . This implies (see "Conversions" on page 150) that objects of a derived 
class can be assigned to objects of a public base class. For example, 

class X { 
public: 

int b; 
} ; 

class Y : public X { 
public: 

int c; 
} ; 

void f () 

X xl; 
Y yl; 
xl yl; 

yl = xl; 
II ok 
II error 

Here yl . b is assigned to xl . band yl . c is not copied. 
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Copying one object into another using the default copy constructor or the 
default assignment operator does not change the structure of either object. For 
example, 

struct s { 
virtual f()i 
II ... 

} i 

struct ss : public s { 
f () i 

II ... 
} i 

void f () 

s ai 

ss bi 

a = bi 
b = ai 

a. f () i 

b. f () i 

II really a.s::operator=(b) 
II error 
II calls s::f 
II calls ss::f 

(s&)b = ai II assign to b'S s part 
II really ((s&)b) .s::operator=(a) 

b.f() i II still calls ss::f 

The call a . f () will invoke 8: : f () (as is suitable for an object of class 8 (see 
Section 10.3, UVirtual Functions," on page 127) and the call b. f () will call 
88: : f () (as is suitable for an object of class 88). 
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13.1 Overloading 

Overloading 

When several different function declarations are specified for a single name in 
the same scope, that name is said to be overloaded. When that name is used, 
the correct function is selected by comparing the types of the actual arguments 
with the types of the formal arguments. For example, 

double abs(double)i 
int abs(int)i 

abs (1) i I I call abs (int) i 

abs(1.0)i II call abs(double)i 

Since for any type T, a T and a T& accept the same set of initializer values, 
functions with argument types differing only in this respect may not have the 
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same name. For example, 

int f(int i) 

II ... 

int f(int& r) II error: function types 
II not sufficiently different 

II ... 

Similarly, since for any type T, a T, a const T, and a volatile T accept the 
same set of initializer values, functions with argument types differing only in 
this respect may not have the same name. It is, however, possible to distinguish 
between const T&, volatile T&, and plain T& so functions that differ only in 
this respect may be defined. Similarly, it is possible to distinguish between 
const T*, volatile T*, and plain T* so functions that differ only in this 
respect may be defined. 

Functions that differ only in the return type may not have the same name. 

Member functions that differ only in that one is a static member and the 
other isn't may not have the same name (see Section 9.5, "Static Members," on 
page 111). 
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A typedef is not a separate type, but only a synonym for another type (see 
"The typedef Specifier" on page 68). Therefore, functions that differ by typedef 
"types" only may not have the same name. For example, 

typedef int Int; 

void f(int i) 
void f(Int i) 

/* 
/* 

*/ 
*/ // error: redefinition of f 

Enumerations, on the other hand, are distinct types and can be used to 
distinguish overloaded functions. For example, 

enum E { a }; 

void f(int i) { /* ... */ 
void f (E i) { / * ... * / } 

Argument types that differ only in a pointer * versus an array [] are identical. 
Note that only the second and subsequent array dimensions are significant in 
argument types (see "Arrays" on page 86). 

f (char*) ; 
f (char []); // same as f(char*); 
f ( char [ 7] ) ; // same as f(char*); 
f (char [9]) ; // same as f(char*); 

g(char(*) [10]); 
g ( char [ 5] [10] ) ; // same as g(char(*) [10]); 
g ( char [ 7] [10] ) ; // same as g ( char ( *) [10] ) ; 
g ( char ( *) [20] ) ; // different from g (char (*) [10] ) ; 

Declaration Matching 

Two function declarations of the same name refer to the same function if they 
are in the same scope and have identical argument types (see Chapter 13, 
"Overloading,"). A function member of a derived class is not in the same scope 
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as a function member of the same name in a base class. For example, 

class B { 
public: 

int f (int) ; 
} ; 

class D : public B 
public: 

int f (char*) ; 
} ; 

Here D: : f (char*) hides B: : f (int) rather than overloading it. 

void h(D* pd) 
{ 

pd->f(l); II error: 
II D::f(char*) hides B::f(int) 

pd->B::f(l); II ok 
pd->f("Ben"); II ok, calls D::f 

A locally declared function is not in the same scope as a function in file scope. 

in t f ( char *) ; 
void g() 
{ 

extern f (int) ; 
f("asdf"); II error: f(int) hides f(char*) 

II so there is no f(char*) in this scope 
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Different versions of an overloaded member function may be given different 
access rules. For example, 

class buffer { 
private: 

char* p; 
int size; 

protected: 
buffer(int s, char* store) { size 

/ / ... 
public: 

} ; 

13.2 Argument Matching 

buffer(int s) {p new char[size 
/ / ... 

s; p store; } 

s]; } 

A call of a given function name chooses, from among all functions by that 
name that are in scope and for which a set of conversions exists so that the 
function could possibly be called, the function that best matches the actual 
arguments. The best-matching function is the intersection of sets of functions 
that best match on each argument. Unless this intersection has exactly one 
member, the call is illegal. The function thus selected must be a strictly better 
match for at least one argument than every other possible function (but not 
necessarily the same argument for each function). Otherwise, the call is illegal. 

For purposes of argument matching, a function with n default arguments (see 
"Default Arguments" on page 90) is considered to be n+l functions with 
different numbers of arguments. 

For purposes of argument matching, a nonstatic member function is considered 
to have an extra argument specifying the object for which it is called. This extra 
argument requires a match either by the object or pointer specified in the 
explicit member function call notation (see "Class Member Access" on page 32) 
or by the first operand of an overloaded operator (see Section 13.4, 
"Overloaded Operators," on page 179). No temporaries will be introduced for 
this extra argument and no user-defined conversions will be applied to achieve 
a type match. 
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Where a member of a class x is explicitly called for a pointer using the - > 
operator, this extra argument is assumed to have type const X* for const 
members, volatile X* for volatile members, and X* for others. Where the 
member function is explicitly called for an object using the. operator or the 
function is invoked for the first operand of an overloaded operator (see Section 
13.4, "Overloaded Operators," on page 179), this extra argument is assumed to 
have type const X& for const members, volatile X& for volatile 
members, and X& for others. The first operand of - > * and . * is treated in the 
same way as the first operand of - > and ., respectively. 

An ellipsis in a formal argument list (see "Functions" on page 88) is a match 
for an actual argument of any type. 

For a given actual argument, no sequence of conversions will be considered 
that contains more than one user-defined conversion or that can be shortened 
by deleting one or more conversions into another sequence that leads to the 
type of the corresponding formal argument of any function in consideration. 
Such a sequence is called a best-matching sequence. 

For example, int (->float (->double is a sequence of conversions from int 
to double, but it is not a best-matching sequence because it contains the 
shorter sequence int (->double. 

Except as mentioned below, the following trivial conversions involving a type T 

do not affect which of two conversion sequences is better: 

from: to: 

T T& 

T& T 

T[] T* 

T (args) T(*) (args) 

T const T 

T volitale T 

T* const T* 

T* volatile T* 
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Sequences of trivial conversions that differ only in order are indistinguishable. 
Note that functions with arguments of type T, const T, volatile T, T&, 
const T&, and volatile T& accept exactly the same set of values. Where 
necessary, const and volatile are used as tie-breakers as described in rule 
[1] below. 

A temporary variable is needed for a formal argument of type T& if the actual 
argument is not an lvalue, has a type different from T, or is a volatile and T 
isn't. This does not affect argument matching. It may, however, affect the 
legality of the resulting match since a temporary may not be used to initialize a 
non-c const reference (see "References" on page 84). 

Sequences of conversions are considered according to these rules: 

[1] Exact match: Sequences of zero or more trivial conversions are better 
than all other sequences. Of these, those that do not convert T* to const 
T*, T* to volatile T*, T& to const T&, or T& to volatile T& are better 
than those that do. 

[2] Match with promotions: Of sequences not mentioned in [1], those that 
contain only integral promotions (see "Integral Promotions" on page 21), 
conversions from float to double, and trivial conversions are better than 
all others. 

[3] Match with standard conversions: Of sequences not mentioned in [2], 
those with only standard (see "Integral Promotions" on page 21, "Integral 
Conversions" on page 22, "Float and Double" on page 22, "Floating and 
Integral" on page 22, "Arithmetic Conversions" on page 22, "Pointer 
Conversions" on page 23, "Reference Conversions" on page 24, "Pointers to 
Members" on page 24) and trivial conversions are better than all others. Of 
these, if B is publicly derived directly or indirectly from A, converting a B * 
to A * is better than converting to void * or cons t void *; further, if C is 
publicly derived directly or indirectly from B, converting a C * to B * is better 
than converting to A * and converting a C& to B& is better than converting to 
A&. The class hierarchy acts similarly as a selection mechanism for pointer to 
member conversions (see "Pointers to Members" on page 24). 

[4] Match with user-defined conversions: Of sequences not mentioned in [3], 
those that involve only user-defined conversions (see "Conversions" on 
page 150), standard (see Chapter 4, "Standard Conversions,") and trivial 
conversions are better than all other sequences. 
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[5] Match with ellipsis: Sequences that involve matches with the ellipsis are 
worse than all others. 

User-defined conversions are selected based on the type of variable being 
initialized or assigned to. 

class Y 
II 

public: 
operator int()i 
operator double()i 

} i 

void f(Y y) 

int i = Yi II call 
double di 
d = Yi II call 

Y: : operator 

Y: : operator 
float f = Yi II error: ambiguous 

int() 

double () 

Standard conversions (Chapter 4, "Standard Conversions,") may be applied to 
the argument for a user-defined conversion, and to the result of a user-defined 
conversion. 

struct 8 { 8(long)i operator int()i }i 

void f(long) , f(char*)i 
void g(8), g(char*)i 
void h(const 8&), h(char*)i 
void k(8& a) 
{ 

f (a) i 

g(l) i 

h(l) i 

II f(long(a.operator int())) 
II g(S(long(l))) 
II h(S(long(l))) 

If user-defined coercions are needed for an argument, no account is taken of 
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any standard coercions that might also be involved. For example, 

class x { 
public: 

x(int) i 

} i 

class y { 
public: 

y(long) i 

} i 

void f (x) i 

void f (y) i 

void g () 
{ 

f (1) i II ambiguous 

The call f ( 1) is ambiguous despite f (y ( long ( 1) ) ) needing one more 
standard conversion than f (x ( 1) ) . 
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No preference is given to conversion by constructor (see "Constructors" on 
page 147) over conversion by conversion function (see "Conversion Functions" 
on page 151) or vice versa. 

struct X { 
operator int()i 

} i 

struct Y { 
Y(X) i 

} i 

Y operator+(Y,Y)i 

void f(X a, X b) 
{ 

a+bi II error, ambiguous: 
II operator+(Y(a) , Y(b)) or 
II a.operator int() + b.operator int() 

13.3 Address of Overloaded Function 

178 

A use of a function name without arguments selects, among all functions of 
that name that are in scope, the (only) function that exactly matches the target. 
The target may be 

• an object being initialized (see Section 8.5, "Initializers," on page 94) 

• the left side of an assignment (see Section 5.16, "Assignment Operators," on 
page 48) 

• a formal argument of a function (see "Function Call" on page 31) 

• a formal argument of a user-defined operator (see Section 13.4, "Overloaded 
Operators," on page 179) 

• a function return type (see "Functions" on page 88) 

Note that if f () and g () are both overloaded functions, the cross product of 
possibilities must be considered to resolve f ( &g) , or the equivalent expression 
f (g). 
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For example, 

int f(double)i 
int f(int)i 
int (*pfd) (double) = &fi 
int (*pfi) (int) &fi 
int (*pfe) ( ... ) = &fi II error: type mismatch 

The last initialization is an error because no f () with type int ( ... ) has been 
defined, and not because of any ambiguity. 

Note also that there are no standard conversions (see Chapter 4, "Standard 
Conversions,") of one pointer to function type into another (see "Pointer 
Conversions" on page 23). In particular, even if B is a public base of D we have 

D* f () i 

B* (*pl) () &fi II error 

void g(D*)i 
void (*p2) (B*) 

13.4 Overloaded Operators 

&gi II error 

Most operators can be overloaded. 

operator-Junction-name: 
operator operator 
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operator: one of 

new delete 
+ * I % & 

< > += *= 1= %= 
"= &= 1= « » »= «= != 
<= >= && II ++ ->* -> 
() [] 

The last two operators are function call (see "Function Call" on page 31) and 
subscripting (see "Subscripting" on page 31). 

Both the unary and binary forms of 

+ - * & 

can be overloaded. 

The following operators cannot be overloaded: 

. . * :: ?: sizeof 

nor can the preprocessing symbols # and ## (see Chapter 16, 
"Preprocessing,") . 

Operator functions are usually not called directly; instead they are invoked to 
implement operators (see "Unary Operators" on page 181, "Binary Operators" 
on page 181). They can be explicitly called, though. For example, 

complex z = a.operator+(b); II complex z = a+b; 
void* p operator new(sizeof(int)*n); 

The operators new and delete are described in "New" on page 36 and 
"Delete" on page 38 and the rules described below in this section do not apply 
to them. 

An operator function must either be a member function or take at least one 
argument of a class or a reference to a class. It is not possible to change the 
precedence, grouping, or number of operands of operators. The predefined 
meaning of the operators =, (unary) &, and I (comma) applied to class objects 
may be changed. Except for operator= (), operator functions are inherited; 
see "Copying Class Objects" on page 164 for the rules for operator= () . 
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Identities among operators applied to basic types (for example, ++a (== a+=l) 
need not hold for operators applied to class types. Some operators, for 
example, +=, require an operand to be an lvalue when applied to basic types; 
this is not required when the operators are declared for class types. 

An overloaded operator cannot have default arguments (see "Default 
Arguments" on page 90). 

Operators not mentioned explicitly below in "Assignment" on page 182 to 
"Increment and Decrement" on page 183 act as ordinary unary and binary 
operators obeying the rules of section "Unary Operators" on page 181 or 
"Binary Operators" on page 181. 

Unary Operators 
A prefix unary operator may be declared by a nonstatic member function (see 
Section 9.4, "Member Functions," on page 108) taking no arguments or a 
nonmember function taking one argument. Thus, for any prefix unary operator 
@, @x can be interpreted as either x. operator@ () or operator@ (x). If both 
forms of the operator function have been declared, argument matching (see 
Section 13.2, "Argument Matching," on page 173) determines which, if any, 
interpretation is used. See "Increment and Decrement" on page 183 for an 
explanation of postfix unary operators, that is, ++ and --. 

Binary Operators 
A binary operator may be declared either by a nonstatic member function (see 
Section 9.4, "Member Functions," on page 108) taking one argument or by a 
nonmember function taking two arguments. Thus, for any binary operator @, 

x@y can be interpreted as either x. operator@ (y) or operator@ (x, y) . If 
both forms of the operator function have been declared, argument matching 
(see Section 13.2, "Argument Matching," on page 173) determines which, if 
any, interpretation is used. 
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Assignment 
The assignment function operator= () must be a nonstatic member function; 
it is not inherited (see "Copying Class Objects" on page 164). Instead, unless 
the user defines opera tor= for a class x, opera tor= is defined, by default, as 
memberwise assignment of the members of class x. 

X& X::operator=(const X& from) 
{ 

II copy members of X 

Function Call 
Function call 

primary-expression ( expression-listopt) 

is considered a binary operator with the primary-expression as the first operand 
and the possibly empty expression-list as the second. The name of the defining 
function is operator (). Thus, a call x (argl f arg2 f arg3) is interpreted as 
x. operator () (argl f arg2 f arg3) for a class object x. operator () must 
be a nonstatic member function. 

Subscripting 
Subscripting 

primary-expression [ expression ] 

is considered a binary operator. A subscripting expression x [y] is interpreted 
as x. operator [] (y) for a class object x. operator [] must be a nonstatic 
member function. 

Class Member Access 
Class member access using - > 

primary-expression -> primary-expression 
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is considered a unary operator. An expression x->m is interpreted as 
(x. operator-> () ) ->m for a class object x. It follows that operator-> () 
must return either a pointer to a class or an object of or a reference to a class for 
which operator-> () is defined. operator-> must be a nonstatic member 
function. 

Increment and Decrement 
A function called operator++ taking one argument defines the prefix 
increment operator ++ for objects of some class. A function called operator++ 
taking two arguments defines the postfix increment operator ++ for objects of 
some class. For postfix operator++, the second argument must be of type 
int and the operator++ () will be called with the second argument a when 
invoked by a postfix increment expression. For example, 

class X { 
public: 

X operator++() i II prefix ++a 
X operator++(int) ill postfix a++ 

} i 

void f(X a) 

++ai II a.operator++() i 

a++i II a.operator++(O) i 

a.operator++() i II explicit call: like 
a.operator++(O)i II explicit call: like 

++ai 

a++i 

The prefix and postfix decrement operators - - are handled similarly. 
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14.1 Templates 

Templates 

A template defines a family of types or functions. 

template-declaration: 
template < template-argument-list > declaration 

template-argument-list: 
template-argument 
template-argument-list I template argument 

template-argument: 
type-argument 
argument-declaration 

type-argument: 
class identifier 

The declaration in a template-declaration must declare or define a function or a 
class. 

A type-argument defines its identifier to be a type-name in the scope of the 
template declaration. Template names obey the usual scope and access control 
rules. A template-declaration is a declaration. A template-declaration may appear 
only as a global declaration. 
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Class Templates 

A class template specifies how individual classes can be constructed much as a 
class declaration specifies how individual objects can be constructed. A vector 
class template might be declared like this: 

template<class T> class vector { 
T* Vi 

int SZi 

public: 

} i 

vector (int) i 

T& operator[] (int); 
T& elem(int i) { return V[i]i 

II 

The prefix template <class T> specifies that a template is being declared 
and that a type-name T will be used in the declaration. In other words, vector 
is a parameterized type with T as its parameter. 

A class can be specified by a template-dass-name: 

template-class-name: 
template-name < template-arg-list > 

template-arg-list: 
template-arg 
template-arg-list , template-arg 

template-arg: 
expression 
type-name 

A template-dass-name is a dass-name (see Chapter 9, "Classes,"). 

A class generated from a class template is called a template class, as is a class 
specifically defined with a template-dass-name as its name; see "Member 
Function Templates" on page 192. 

A template-dass-name where the template-name is not defined names an 
undefined class. 
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A class template name must be unique in a program and may not be declared 
to refer to any other template, class, function, object, value, or type in the same 
scope. 

The types of the template-args specified in a template-class-name must match the 
types specified for the template in its template-argument-list. 

Other template-args must be constant-expressions, addresses of objects or 
functions with external linkage, or of static class members. An exact match (see 
Section 13.2, "Argument Matching," on page 173) is required for nontype 
arguments. 

For example, vectors can be used like this: 

vector<int> vl(20)i 
vector<complex> v2(30)i 

typedef vector<complex> cvecill make cvec a synonym 
II for vector<complex> 

cvec v3(40)i II v2 and v3 are of the same type 

vl [3] 
v2 [3] 

7 i 
v3.elem(4) complex(7,8) i 

Here, vector<int> and vector<complex> are template classes, and their 
definitions will by default be generated from the vector template. 

Since a template-class-name is a class-name, it can be used wherever a class-name 
can be used. For example, 

class vector<Shape*>i 

vector<Window>* current_windowi 

class svector : public vector<Shape*> { 1* ... *1 }i 

Definition of class template member functions is described in "Member 
Function Templates" on page 192. 
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Type Equivalence 

Two template-class-names refer to the same class if their template names are 
identical and their arguments have identical values. For example, 

template<class E, int size> class bufferi 

buffer<char,2*512> Xi 

buffer<char,1024> Yi 
buffer<char,512> Zi 

declares x and y to be of the same type and z of a different type, and, 

template<class T, void(*err_fct) (» 
class list { / * .. , * / } i 

list<int,&error_handlerl> Xli 

list<int,&error_handler2> X2i 

list<int,&error_handler2> X3i 

list<char,&error_handler2> X4i 

declares x2 and x3 to be of the same type. Their type differs from the types of 
xl and x4. 

Function Templates 

A function template specifies how individual functions can be constructed. A 
family of sort functions, for example, might be declared like this: 

template<class T> void sort(vector<T»i 

A function template specifies an unbounded set of (overloaded) functions. A 
function generated from a function template is called a template function, as is 
a function defined with a type that matches a function template; see "Function 
Templates" on page 188. 
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Template arguments are not explicitly specified when calling a function 
template; instead, overloading resolution is used. For example, 

vector<complex> cv(lOO); 
vector<int> ci(200); 

void f(vector<complex>& cv, vector<int>& ci) 
{ 

sort (cv) ; 
sort (ci) ; 

II invoke sort (vector<complex» 
II invoke sort (vector<int» 

A template function may be overloaded either by (other) functions of its name 
or by (other) template functions of that same name. Overloading resolution for 
template functions and other functions of the same name is done in three steps: 

[1] Look for an exact match (see Section 13.2, "Argument Matching," on 
page 173) on functions; if found, call it. 

[2] Look for a function template from which a function that can be called 
with an exact match can be generated; if found, call it. 

[3] Try ordinary overloading resolution (see Section 13.2, "Argument 
Matching," on page 173) for the functions; if a function is found, call it. If no 
match is found the call is an error. In each case, if there is more than one 
alternative in the first step that finds a match, the call is ambiguous and is 
an error. 

A match on a template (step [2]) implies that a specific template function with 
arguments that exactly matches the types of the arguments will be generated 
(see "Member Function Templates" on page 192). Not even trivial conversions 
(see "Argument Matching" on page 173) will be applied in this case. 

The same process is used for type matching for pointers to functions (see 
Section 13.3, "Address of Overloaded Function," on page 178). 
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Here is an example: 

template<class T> T max(T a, T b) { return a>b?a:bi }i 

void f(int a, int b, char c, char d) 
{ 

int ml = max(a,b)i II max(int a, int b) 
char m2 = max(c,d)i// max(char a, char b) 
int m3 = max(a,c)i II error: cannot generate 

I I max ( in t , char) 

For example, adding 

int max(int,int) i 

to the example above would resolve the third call, by providing a function that 
could be called for max ( a , c) after using the standard conversion of char to 
int for c. 

A function template definition is needed to generate specific versions of the 
template; only a function template declaration is needed to generate calls to 
specific versions. 

Every template-argument specified in the template-argument-list must be used in 
the argument types of a function template. 

template<class T> T* create()i II error 

template<class T> 
void f() { II error 

T ai 
I I ... 

All template-arguments for a function template must be type-arguments. 
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Declarations and Definitions 

There must be exactly one definition for each template of a given name in a 
program. There can be many declarations. The definition is used to generate 
specific template classes and template functions to match the uses of the 
template. 

Using a template-class-name constitutes a declaration of a template class. 

Calling a function template or taking its address constitutes a declaration of a 
template function. There is no special syntax for calling or taking the address 
of a template function; the name of a function template is used exactly as is a 
function name. Declaring a function with the same name as a function template 
with a matching type constitutes a declaration of a specific template function. 

If the definition of a specific template function or specific template class is 
needed to perform some operation and if no explicit definition of that specific 
template function or class is found in the program, a definition is generated. 

The definition of a (nontemplate) function with a type that exactly matches the 
type of a function template declaration is a definition of that specific template 
function. For example, 

template<class T> void sort(vector<T>& v) { /* ... */ } 

void sort(vector<char*>& v) { /* ... */ } 

Here, the function definition will be used as the sort function for arguments of 
type vector<char*>. For other vector types the appropriate function 
definition is generated from the template. 

A class can be defined as the definition of a template class. For example, 

template<class T> class stream { /* ... */ }; 

class stream<char> { /* ... */ }; 

Here, the class declaration will be used as the definition of streams of 
characters (c stream<char». Other streams will be handled by template 
functions generated from the function template. No operation that requires a 
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defined class can be performed on a template class until the class template has 
been seen. After that, a specific template class is considered defined 
immediately before the first global declaration that names it. 

Member Function Templates 

A member function of a template class is implicitly a template function with 
the template arguments of its class as its template arguments. For example, 

template<class T> class vector { 
T* Vi 

int SZi 
public: 

vector (int) i 

} i 

T& operator[] (int)i 
T& elem(int i) { return V[i]i 
II 

declares three function templates. The subscript function might be defined like 
this: 

template<class T> T& vector<T>: :operator[] (int i) 
{ 

if (i<O I I sz<=i) error ("vector: range error")i 
return V[i]i 

The template argument for vector<T>: : operator [] () will be determined 
by the vector to which the subscripting operation is applied. 

vector<int> vl(20)i 
vector<complex> v2(30)i 

vl [3] 
v2[3] 

7i II vector<int>::operator[] () 
complex(7,8) ill vector<complex>::operator[] () 
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Friends 

A friend function of a template is not implicitly a template function. For 
example, 

template<class T> class task 
/ / ... 

} i 

friend void next_time()i 
friend task<T>* preempt(task<T>*)i 
friend task* prmt(task*)i// error 
/ / ... 

Here, next_time ( ) becomes the friend of all task classes, and each task has 
an appropriately typed function called preempt () as a friend. The preempt 
functions might be defined as a template. 

template<class T> 
task<T>* preempt(task<T>* t) { /* ... */ } 

The declaration of prmt () is an error because there is no type task, only 
specific template types, task<int>, task<record>, and so on. 

Static Members and Variables 

Each template class or function generated from a template has its own copies 
of any static variables or members. For example, 

template<class T> class X { 
static T Si 

/ / ... 
} i 

x<int> aai 
X<char*> bbi 

Here x<int> has a static member s of type int and X<char*> has a static 
member s of type char * . 
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Similarly, 

tmplate<class T> f(T* p) 
{ 

} i 

static T Si 

/ / ... 

void g(int a, char* b) 

f (&a) i 

f (&b) i 

} 

Here f (int *) has a static member s of type int and f (char* *) has a static 
member s of type char * * . 
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Exception Handling 

15.1 Exception Handling 
Exception handling, as described in Ellis and Stroustrup: The Annotated C++ 
Reference Manual (Addison-Wesley 1990) and in Stroustrup: The C++ 
Programming Language (2nd edition) (Addison-Wesley 1991), has been adopted 
into the working drafts of the ANSI and ISO C++ standards committees. It is 
not supported by this release but will be supported in some future release. 
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16.1 Preprocessing 

Preprocessing 

A c++ implementation contains a preprocessor capable of macro substitution, 
conditional compilation, and inclusion of named files. 

Lines beginning with #, optionally preceded by space and horizontal tab 
characters, (also called "directives") communicate with this preprocessor. 
These lines have syntax independent of the rest of the language; they may 
appear anywhere and have effects that last (independent of the scoping rules 
of C++) until the end of the translation unit (see Chapter 2, "Lexical 
Conventions,") . 

A preprocessing directive (or any other line) may be continued on the next line 
in a source file by placing a backslash character, \, immediately before the 
new-line at the end of the line to be continued. The preprocessor effects the 
continuation by deleting the backslash and the new-line before the input 
sequence is divided into tokens. A backslash character may not be the last 
character in a source file. 

A preprocessing token is a language token (see Section 2.2, "Tokens," on page 
5), a file name as in a # inc 1 ude directive, or any single character, other than 
white space, that does not match another preprocessing token. 
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Phases of Preprocessing 

Preprocessing is defined to occur in several phases. An implementation may 
collapse these phases, but the effect must be as though they had been executed. 

1. If needed, new-line characters are introduced to replace system-dependent 
end-of-line indicators and any other necessary system-dependent character 
set translations are done. Hygrograph sequences are replaced by their single 
character equivalents (see "Trigraph Sequences" on page 198). 

2. Each pair of a backslash character \ immediately followed by a new-line is 
deleted, with the effect that the next source line is appended to the line that 
contained the sequence. 

3. The source text is decomposed into preprocessing tokens and sequences of 
white space. A single white space replaces each comment. A source file may 
not end with a partial token or comment. 

4. Preprocessing directives are executed and macros are expanded (see 
"Macro Definition and Expansion" on page 199, "File Inclusion" on page 
203, "Conditional Compilation" on page 204, "Conditional Compilation" on 
page 204, "Error Directive" on page 206, and "Pragmas" on page 206). 

5. Escape sequences in character constants and string literals are replaced by 
their equivalents (see "Character Constants" on page 8). 

6. Adjacent string literals are concatenated. 

The result of preprocessing is syntactically and semantically analyzed and 
translated, then linked together as necessary with other programs and libraries. 

Trigraph Sequences 

Before any other processing takes place, each occurrence of one of the 
following sequences of three characters ("trigraph sequences") is replaced by 
the single character indicated in the table below. 

??= 

?? / 

??' 

# 

\ 

A 

??( 

??) 

??! 
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For example, 

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??) 

becomes 

#define arraycheck(a,b) a[b] I I b[a] 

Macro Definition and Expansion 

A preprocessing directive of the form 

#define identifier token-string 

causes the preprocessor to replace subsequent instances of the identifier with 
the given sequence of tokens. White space surrounding the replacement token 
sequence is discarded. Given, for example, 

#define SIDE 8 

the declaration 

char chessboard [SIDE] [SIDE] ; 

after macro expansion becomes 

char chessboard [8] [8]; 

An identifier defined in this form may be redefined only by another #define 
directive of this form provided the replacement list of the second definition is 
identical to that of the first. All white space separations are considered 
identical. 

A line of the form 

#define identifier ( identifier, ... , identifier) token-string 

where there is no space between the first identifier and the ( is a macro 
definition with parameters, or a "function-like" macro definition. An identifier 
defined as a function-like macro may be redefined by another function-like 
macro definition provided the second definition has the same number and 
spelling of parameters and the two replacement lists are identical. White space 
separations are considered identical. 

Subsequent appearances of an identifier defined as a function-like macro 
followed by a (, a sequence of tokens delimited by commas, and a ) are 
replaced by the token string in the definition. White space surrounding the 
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replacement token sequence is discarded. Each occurrence of an identifier 
mentioned in the parameter list of the definition is replaced by the tokens 
representing the corresponding actual argument in the call. The actual 
arguments are token strings separated by commas; commas in quoted strings, 
in character constants, or within nested parentheses do not separate 
arguments. The number of arguments in a macro invocation must be the same 
as the number of parameters in the macro definition. 

Once the arguments to a function-like macro have been identified, argument 
substitution occurs. Unless it is preceded by a # token (see "The # Operator" on 
page 200) or is adjacent to a ## token (see "The ## Operator" on page 201), a 
parameter in the replacement list is replaced by the corresponding argument 
after any macros in the argument have been expanded (see "Res canning and 
Further Replacement" on page 202). 

For example, given the macro definitions 

#define index_maskOXFFOO 
#define extract(word,mask)word & mask 

the call 

index extract(packed_data,index_mask); 

expands to 

index = packed_data & OXFFOO; 

In both forms the replacement string is res canned for more defined identifiers 
(see "Res canning and Further Replacement" on page 202). 

The # Operator 
If an occurrence of a parameter in a replacement token sequence is 
immediately preceded by a # token, the parameter and the # operator will be 
replaced in the expansion by a string literal containing the spelling of the 
corresponding argument. A \ character is inserted in the string literal before 
each occurrence of a \ or a II within or delimiting a character constant or string 
literal in the argument. 
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For example, given 

#define path(logid,crnd) "/usr/" #logid "/bin/" #crnd 
#define joe joseph 

the call 

char*mytool+path(joe,readrnail); 

yields 

char* rnytool=" /usr /" "j oe" "/bin/" "readrnail"; 

which is later concatenated «sc16.1) to become 

char* rnytool="/usr/joe/bin/readmail"; 

The II Operator 
If a ## operator appears in a replacement token sequence between two tokens, 
first if either of the adjacent tokens is a parameter it is replaced, then the # # 
operator and any white space surrounding it are deleted. The effect of the # # 
operator, therefore, is concatenation. 

Given 

#define inherit (basenurn) public Pubbase ## basenurn, \ 
private Privbase ## basenurn 

the call 

class D inherit (1) { }; 

yields 

class D public Pubbase1, private Privbase1 { }; 
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Any macros in the replaced tokens adjacent to the # # are not available for 
further expansion, but the result of the concatenation is. Given 

#define concat(a) a ## ball 
#define base B 
#define baseball sport 

the call 

concat(base) 

yields 

sport 

and not 

Bball 

Rescanning and Further Replacement 
After all parameters in the replacement list have been replaced, the resulting 
list is rescanned for more macros to replace. If the name of the macro being 
replaced is found during this scan or during subsequent res canning, it is not 
replaced. 

A completely replaced macro expansion is not interpreted as a preprocessing 
directive, even if it appears to be one. 

Scope of Macro Names and #undef 

Once defined, a preprocessor identifier remains defined and in scope 
(independent of the scoping rules of C++) until the end of the translation unit 
or until it is undefined in a #unde f directive. 

A #unde f directive has the form 

#undef identifier 

and causes the identifier's preprocessor definition to be forgotten. If the 
specified identifier is not currently defined as a macro name, the #undef is 
ignored. 
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File Inclusion 

A control line of the form 

#include <filename> 

causes the replacement of that line by the entire contents of the file filename. 
The named file is searched for in an implementation-dependent sequence of 
places. 

Similarly, a control line of the form 

#include "filename" 

causes the replacement of that line by the contents of the file filename, which is 
searched for first in an implementation-dependent manner. If this search fails, 
the file is searched for as if the directive had been of the form 

#include <filename> 

Neither the new-line character nor> may appear in filename delimited by < and 
>. If any of the characters' , \, or ' , , or either of the sequences I * or II 
appear in such a filename the behavior is undefined. 

Neither the new-line character nor' , may appear in a filename delimited by a 
" pair, although> may appear. If either of the characters ' or \ or either of the 
sequences I * or I I appear in such a filename, the behavior is undefined. 

If a directive appears of the form 

#include token-string 

not matching either of the forms given above, the preprocessing tokens within 
token-string will be processed as normal text. The resulting directive must 
match one of the forms defined above and will be treated as such. 

A #include directive may appear within a file that is being processed as a 
result of another #include directive. 

An implementation may impose a limit on the depth of nesting of #include 
directives within source files that have been read while processing a #include 
directive in another source file. 
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Conditional Compilation 

The preprocessor allows conditional compilation of source code. The syntax for 
conditional compilation follows: 

conditional: 
if-part elif-partsopt else-partopt endif-line 

if-part: 
if-line text 

if-line: 
# if constant-expression 
# if de f identifier 
# i fndef identifier 

elif-parts: 
elif-line text 
elif-parts elif-line text 

elif-line: 
# el i f constant-expression 

else-part: 
else-line text 

else-line: 
# else 

endif-line: 
# endif 

The constant expression in the #if and #elif's (if any) are evaluated in the 
order in which they appear until one of the expressions evaluates to a nonzero 
value. C++ statements following a line with a zero value are not compiled, nor 
do preprocessor directives following such a line have any effect. When a 
directive with a nonzero value is found, the succeeding #elif's, and #else's, 
together with their associated text (C++ statements and preprocessor 
directives) are ignored. The text associated with the successful directive (the 
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Line Control 

first whose constant expression is nonzero) is preprocessed and compiled 
normally. If the expressions associated with the #if and all #elif's evaluate 
to zero, then the text associated with the #else (if any) is treated normally. 

Within the constant-expression in a #if or #elif, a unary operator defined 
can be used in either of the forms 

defined identifier 

or 

defined (identifier) 

When applied to an identifier, its value is 1 if that identifier has been defined 
with a #def ine directive and not later undefined using #undef; otherwise its 
value is o. The identifier defined itself may not be undefined or redefined. 

After any de fined operators are evaluated, any remaining preprocessor 
macros appearing in the constant expression will be replaced as described in 
Section , "Macro Definition and Expansion," on page 199. The resulting 
expression must be an integral constant expression as defined in Chapter 5, 
"Expressions,", except that types int and unsigned int are treated as long 
and unsigned long respectively, and it may not contain a cast, a sizeof 
operator, or an enumeration constant. 

A control line of the form 

#ifdef identifier 

is equivalent to 

#i f defined identifier 

A line of the form 

#ifndef identifier 

is equivalent to 

# if! de fined identifier 

Conditional compilation constructs may be nested. An implementation may 
impose a limit on the depth of nesting of conditional compilation constructs. 

For the benefit of programs that generate C++ code, a line of the form 
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#line constant "filename "opt 

sets the predefined macro _LINE_ (see uPredefined Names" on page 206), 
for purposes of error diagnostics or symbolic debugging, such that the line 
number of the next source line is considered to be the given constant, which 
must be a decimal integer. If "filename" appears, _FILE_ (see uPredefined 
Names" on page 206), is set to the file named. If "filename" is absent the 
remembered file name does not change. 

Macros appearing on the line are replaced before the line is processed. 

Error Directive 

Pragmas 

A line of the form 

#error token-string 

causes the implementation to generate a diagnostic message that includes the 
given token sequence. 

A line of the form 

#pragma token-string 

causes an implementation-dependent behavior when the token sequence is of a 
form recognized by the implementation. An unrecognized pragma will be 
ignored. 

Null Directive 

The null preprocessor directive, which has the form 
# 
has no effect. 

Predefined Names 

Certain information is available during compilation through predefined 
macros. 

_LINE_ 
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A decimal constant containing the current line number in the C++ source 
file. 

FILE_ 

A string literal containing the name of the source file being compiled. 

_DATE_ 
A string literal containing the date of the translation, in the form "Mmm dd 

yyyy", or "Mmm d yyyy" if the value of the date is less than 10. 

_TIME_ 
A string literal containing the time of the translation, in the form 
"hh:rmn:ss". 

In addition, the name _cplusplus is defined when compiling a C++ 
program. 

These names may not be undefined or redefined. 

_LINE_ and _FILE_ can be set by the #line directive (see Section, 
"Line Control," on page 205). 

Whether _STDC_ is defined and, if so, what its value is are implementation 
dependent. 
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A.l Keywords 

AppendixA: Grammar Summary 

This appendix is not part of the c++ reference manual proper and does not 
define c++ language features. 

This summary of c++ syntax is intended to be an aid to comprehension. It is 
not an exact statement of the language. In particular, the grammar described 
here accepts a superset of valid C++ constructs. Disambiguation rules (see 
Section 6.9, "Ambiguity Resolution," on page 60, Section 7.2, "Specifiers," on 
page 63, "Ambiguities" on page 125) must be applied to distinguish 
expressions from declarations. Further, access control, ambiguity, and type 
rules must be used to weed out syntactically valid but meaningless constructs. 

New context-dependent keywords are introduced into a program by typedef 
(see "The typedef Specifier" on page 68), class (see Chapter 9, IiClasses,"), 
enumeration (see Section 7.3, liE numeration Declarations," on page 73), and 
template (see Chapter 14, IiTemplates,") declarations. 

class-name: 
identifier 

enum-name: 
identifier 

typedef-name: 
identifier 
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A.2 Expressions 

210 

Note that a typedef-name naming a class is also a class-name (see Section 9.2, 
nClass Names," on page 102). 

expression: 
assignment-expression 
expression, assignment-expression 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

assignment-operator: one of 
= *= /= %= += 

condi tiona I-express ion: 
logical-or-expression 

»= «= &= "'= 1= 

logical-or-expression ? expression: conditional-expression 

logical-or-expression: 
logical-and -expression 
logical-or-expression I I logical-and-expression 

logical-and -expression: 
inclusive-or-expression 
logical-and-expression && inclusive-or-expression 

inclusive-or-expression: 
exclusive-or-expression 
inclusive-or-expression I exclusive-or-expression 

exclusive-or-expression: 
and-expression 
exclusive-or-expression /\ and-expression 

and-expression: 
equality-expression 
and-expression & equality-expression 
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equality-expression: 
rela tional-expression 
equality-expression == relational-expression 
equality-expression != relational-expression 

relational-expression: 
shift-expression 
relational-expression < shift-expression 
relational-expression > shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 

shift-expression: 
additive-expression 
shift-expression « additive-expression 
shift-expression » additive-expression 

add itive-expression: 
mUltiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

multiplicative-expression: 
pm-expression 
multiplicative-expression * pm-expression 
multiplicative-expression / pm-expression 
multiplicative-expression % pm-expression 

pm-expression: 
cast-expression 
pm-expression. * cast-expression 
pm-expression ->* cast-expression 

cast-expression: 
unary-expression 
( type-name) cast-expression 

unary-expression: 
postfix -expression 
+ + unary-expression 
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unary-expression 
unary-operator cast-expression 
s i z eo f unary-expression 
sizeof ( type-name) 
allocation -expression 
deal location-expression 

unary-operator: one of 
* & + - ! ~ 

allocation-expression: 
::opt new placementopt new-type-name new-initializeropt 
::optnew placementopt ( type-name) new-initializeropt 

placement: 
( expression-list) 

new-type-name: 
type-specifier-list new-declarator opt 

new-declarator: 
* cv-qual ifier-listoptnew-declarator opt 
complete-class-name :: * cv-qualifier-listopt new-declaratoropt 
new-declarator optl expression ] 

new-initializer: 
( initializer-listopt 

deallocation-expression: 
::opt delete cast-expression 
::opt delete [ ] cast-expression 

postfix-expression: 
primary-expression 
postfix-expression [ expression] 
postfix-expression ( expression-listopt 
simple-type-name ( expression-listopt 
postfix-expression. name 
postfix-expression -> name 
postfix-expression ++ 
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A.3 Declarations 

postfix-expression --

expression-list: 
assignment-expression 
expression-list I assignment-expression 

primary-expression: 
literal 
this: 
: identifier 
:: operator-Junction-name 
:: qualified-name 
( expression ) 
name 

name: 
identifier 
operator-Junction-name 
conversion-Junction-name 
- class-name 
qualified-name 

qualified-name: 
qualified-class-name :: name 

literal: 
integer-constant 
character-constant 
floating-constant 
string-literal 

declaration: 
decl-specifiersopt declarator-listopt ; 
asm-declaration 
Junction-definition 
template-declaration 
linkage-specification 

Appendix A: Grammar Summary 213 



214 

decl-speci fier: 
storage-class-specifier 
type-specifier 
tct-specifier 
friend 
typedef 

decl-speci fiers: 
decl-speci fiers opt decl-speci fier 

storage-class-specifier: 
auto 
register 
static 
extern 

tct-specifier: 
inline 
virtual 

type-specifier: 
simple-type-name 
class-specifier 
enum-specifier 
elaborated-type-specifier 
const 
volatile 

simple-type-name: 
complete-class-name 
qualified-type-name 
char 
short 
int 
long 
signed 
unsigned 
float 
double 
void 
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elaborated-type-specifier: 
class-key identifier 
class-key class-name 
enum enum-name 

class-key: 
class 
struct 
union 

qualified-type-name: 
typedef-name 
class-name :: qualified-type-name 

complete-class-name: 
qual ified -class-name 
:: qualified-class-name 

qualified-class-name: 
class-name 
class-name :: qualified-class-name 

enum-specifier: 
enum identifieropt { enum-listopt } 

enum-list: 
enumerator 
enum-list I enumerator 

enumerator: 
identifier 
identifier = constant-expression 

constant-expression: 
conditional-expression 

linkage-specification: 
extern string-literal { declaration-listopt } 
extern string-literal declaration 
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A.4 Declarators 
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declaration-list: 
declaration 
declaration-list declaration 

asm-declaration: 
asm ( string-literal) ; 

declarator-list: 
in it-declarator 
declarator-list I init-declarator 

in it-declarator: 
declarator initializer opt 

declarator: 
dname 
ptr-operator declarator 
declarator ( argument-declaration-list ) cv-qualifier-listopt 
declarator [ constant-expressionopt ] 
( declarator ) 

ptr-operator: 
* cv-qualifier-listopt 
& cv-qualifier-listopt 
complete-class-name :: * cv-qualifier-listopt 

cv-qualifier-list: 
cv-qualifier cv-qualifier-listopt 

cv-qualifier: 
const 
volatile 

dname: 
name 
class-name 
~ class-name 
typedef-name 
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qualified-type-name 

type-name: 
type-specifier-list abstract-declarator opt 

type-specifier-list: 
type-specifier type-specifier-listopt 

abstract-declarator: 
ptr-operator abstract-declarator opt 
abstract-declaratoropt ( argument-declaration-list ) cv-qualifier-listopt 
abstract-declaratoropt [ constant-expressionopt ] 
( abstract-declarator) 

argument-declaration-list: 
arg-declaration-listopt ···opt 
arg-declaration-list , ... 

arg-declaration-list: 
argument-declaration 
arg-declaration-list , argument-declaration 

argument-declaration: 
decl-specifiers declarator 
decl-specifiers declarator = expression 
decl-specifiers abstract-declarator opt 
decl-specifiers abstract-declarator opt = expression 

function -de fin ition: 
decl-specifiersopt declarator ctor-initializeropt fct-body 

fct-body: 
compound-statement 

initializer: 
= assignment-expression 
= { initializer-list ,opt} 
( expression-list) 

initializer-list: 
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assignment-expression 
initializer-list , assignment-expression 
{ initializer-list ,opt} 

A.S Class Declarations 

218 

class-specifier: 
class-head { member-listopt } 

class-head: 
class-key identifier opt base-specopt 
class-key class-name base-spec opt 

member-list: 
member-declaration member-listopt 
access-specifier : member-listopt 

member-declaration: 
decl-specifiersopt member-declarator-listopt ; 
function-definition ;opt 
qualified-name; 

member-declarator-list: 
member-declarator 
member-declarator-list , member-declarator 

member-declarator: 
declarator pure-specifier opt 
identifieropt : constant-expression 

pure-specifier: 
= 0 

base-spec: 
: base-list 

base-list: 
base-specifier 
base-list, base-specifier 
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base-specifier: 
complete-class-name 
virtual access-specifieropt complete-class-name 
access-specifier virtualopt complete-class-name 

access-specifier: 
private 
protected 
public 

conversion-Junction-name: 
opera tor conversion-type-name 

conversion-type-name: 
type-specifier-list ptr-operator opt 

ctor-initializer: 
: mem-initializer-list 

mem-initializer-list: 
mem-initializer 
mem-initializer I mem-initializer-list 

mem-initializer: 
complete-class-name ( expression-list opt ) 
identifier ( expression-list opt ) 

operator-Junction-name: 
operator operator 

operator: one of 
new delete 
+ - * / % " & 1 

! = < > += -= *= /= %= 
"= &= 1= « » »= «= == != 
<= >= && 1 I ++ -- I ->* -> 

() [ ] 
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A.6 Statements 
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statement: 
labeled-statement 
expression-statement 
compound-statement 
selection -statemen t 
iteration-statement 
jump-statement 
declaration-statement 

labeled -statement: 
identifier: statement 
case constant-expression: statement 
defaul t : statement 

expression-statement: 
expression opt ; 

compound-statement: 
{ statement-listopt } 

statement-list: 
statement 
statement-list statement 

selection-statement: 
if ( expression ) statement 
if ( expression ) statement else statement 
swi tch ( expression) statement 

iteration-statement: 
whi 1 e ( expression ) statement 
do statement while ( expression ) ; 
for (for-init-statement expressionopt ; expressionopt ) statement 

for-init-statement: 
expression-statement 
declaration-statement 
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A.7 Preprocessor 

jump-statement: 
break ; 
continue 
return expressionopt ; 
goto identifier; 

declaration-statement: 
declaration 

#def ine identifier token-string 
#def ine identifier< identifier I ••• I identifier) token-string 

#include "filename" 
#include <filename> 

# 1 ine constant "filename"opt 
#unde f identifier 

conditional: 
if-part elif-partsopt else-partopt endif-line 

if-part: 
if-line text 

if-line: 
# if constant-expression 
# i fdef identifier 
# ifndef identifier 

elif-parts: 
elif-line text 
elif-parts elif-line text 

elif-line: 
# el i f constant-expression 

else-part: 
else-line text 
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A.B Templates 

else-line: 
# else 

end if-line: 
# endif 

template-declaration: 
templa te < template-argument-list > declaration 

template-argument-list: 
template-argument 
template-argument-list , template argument 

template-argument: 
type-argument 
argument-declaration 

type-argument: 
class identifier 

template-class-name: 
template-name < template-arg-list > 

template-arg-list: 
template-arg 
template-arg-list , template-arg 

template-arg: 
expression 
type-name 

A.9 Exception Handling 
try-block: 

try compound-statement handler-list 
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handler-list: 
handler handler-listopt 

handler: 
catch ( exception-declaration) compound-statement 

exception -dec laration: 
type-specifier-list declarator 
type-specifier-list abstract-declarator 
type-specifier -1 ist 

throw-expression: 
throwexpressionopt 

exception-specification: 
throw ( type-list opt ) 

type-list: 
type-name 
type-list , type-name 
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Appendix B: Compatibility 

This appendix is not part of the C++ reference manual proper and does not 
define C++ language features. 

C++ is based on C (K&R78) and adopts most of the changes specified by the 
ANSI C standard. Converting programs among C++, K&R C, and ANSI C may 
be subject to vicissitudes of expression evaluation. All differences between C++ 
and ANSI C can be diagnosed by a compiler. With the following three 
exceptions, programs that are both C++ and ANSI C have the same meaning in 
both languages: , 
In C, sizeof (' a ') equals sizeof (int); in C++, it equals sizeof (char). 

In C, given 

enum e { A }; 

sizeof (A) equals sizeof (int); in C++, it equals sizeof (e), which need 
not equal sizeof (int). 
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B.l Extensions 

A structure name declared in an inner scope can hide the name of an object, 
function, enumerator, or type in an outer scope. For example, 

int x[99]; 
void f () 
{ 

struct x { int a; }; 
sizeof(x); /* size of the array in C */ 
/* size of the struct in c++ */ 

This section summarizes the major extensions to C provided by c++. 

c++ Features Available in 1985 

226 

This subsection summarizes the extensions to C provided by C++ in the 1985 
version of this manual: 

The types of function arguments can be specified (see "Functions" on page 88) 
and will be checked (see "Function Call" on page 31). Type conversions will be 
performed (see "Function Call" on page 31). This is also in ANSI C. 

Single-precision floating point arithmetic may be used for f 1 oa t expressions; 
"Fundamental Types" on page 17 and "Float and Double" on page 22. This is 
also in ANSI C. 

Function names can be overloaded; (see Chapter 13, "Overloading,"). 

Operators can be overloaded; (see Section 13.4, "Overloaded Operators," on 
page 179). 

Functions can be inline substituted; (see "Function Specifiers" on page 67). 

Data objects can be cons t; (see "Type Specifiers" on page 70). This is also in 
ANSI C. 

Objects of reference type can be declared; (see "References" on page 84 and 
"References" on page 84). 
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A free store is provided by the new and delete operators; (see "New" on 
page 36, "Delete" on page 38). 

Classes can provide data hiding (see Chapter 11, "Member Access Control,"), 
guaranteed initialization (see "Constructors" on page 147), user-defined 
conversions (see IIConversions" on page 150), and dynamic typing through use 
of virtual functions (see Section 10.3, "Virtual Functions," on page 127). 

The name of a class or enumeration is a type name; (see Chapter 9, "Classes,"). 

A pointer to any non-c const and non-c volatile object type can be 
assigned to avoid *; (see "Pointer Conversions" on page 23). This is also in 
ANSIC. 

A pointer to function can be assigned to a void *; (see "Pointer Conversions" 
on page 23). 

A declaration within a block is a statement; (see Section 6.8, "Declaration 
Statement," on page 58). 

Anonymous unions can be declared; (see Section 9.6, "Unions," on page 114). 

c++ Features Added Since 1985 

This subsection summarizes the major extensions of C++ since the 1985 version 
of this manual: 

A class can have more than one direct base class (multiple inheritance); 
(seeSection 10.2, IIMultiple Base Classes," on page 123). 

Class members can be protected; (see Chapter 11, IIMember Access 
Control,"). 

Pointers to class members can be declared and used; (see "Pointers to 
Members" on page 85, Section 5.4, "Pointer-to-Member Operators," on page 
42). 

Operators new and delete can be overloaded and declared for a class; (see 
"New" on page 36, "Delete" on page 38, "Free Store" on page 156). This allows 
the lIassignment to this II technique for class specific storage management to 
be removed to the anachronism section. 

Objects can be explicitly destroyed; (see "Destructors" on page 154) 
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Assignment and initialization are defined as memberwise assignment and 
initialization; (see "Copying Class Objects" on page 164). 

The overload keyword was made redundant and moved to the anachronism. 

General expressions are allowed as initializers for static objects; (see Section 
8.5, "Initializers," on page 94). 

Data objects can be volatile; see "The typedef Specifier" on page 68. Also in 
ANSIC. 

Initializers are allowed for static class members; see Section 9.5, "Static 
Members," on page 111. 

Member functions can be static; (see Section 9.5, "Static Members," on page 
111). 

Member functions can be const and volatile; (see "The this Pointer" on 
page 109). 

Linkage to non-C++ program fragments can be explicitly declared; (see Section 
7.5, "Linkage Specifications," on page 75). 

Operators ->, ->*, and f can be overloaded; (see Section 13.4, "Overloaded 
Operators," on page 179). 

Classes can be abstract; (see Section lOA, "Abstract Classes," on page 129). 

Prefix and postfix application of ++ and - - on a user-defined type can be 
distinguished. 

Templates; (see Chapter 14, "Templates,"). 

Exception handling; (see Chapter 15, "Exception Handling,"). 

c++ and ANSI C 

In general, C++ provides more language features and fewer restrictions than 
ANSI C so most constructs in ANSI C are legal in C++ with their meanings 
unchanged. The exceptions are: 
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ANSI C programs using any of the C++ keywords 

asm catch class delete friend 

inline new operator private protected 

public template try this virtual 

throw 

as identifiers are not C++ programs; (see Section 2.5, "Keywords," on page 6. 

Though deemed obsolescent in ANSI C, a C implementation may impose 
Draconian limits on the length of identifiers; a C++ implementation is not 
permitted to; (see Section 2.4, "Identifiers," on page 6. 

In C++, a function must be declared before it can be called; (see "Function 
Call" on page 31). 

The function declaration f () ; means that f takes no arguments (see 
"Functions" on page 88); in C it means that f can take any number of 
arguments of any type at all. Such use is deemed obsolescent in ANSI C. 

In ANSI C a global data object may be declared several times without using the 
extern specifier; in C++ it must be defined exactly once; (see Section 3.4, 
"Program and Linkage," on page 14). 

In C++, a class may not have the same name as a typedef declared to refer to a 
different type in the same scope; (see Section 9.2, "Class Names," on page 102). 

In ANSI C a void * may be used as the right-hand operand of an assignment 
to or initialization of a variable of any pointer type; in C++ it may not; (see 
"The typedef Specifier" on page 68). 

C allows jumps to bypass an initialization; C++ does not. 

In ANSI C, a global canst by default has external linkage; in C++ it does not; 
(see Section 3.4, "Program and Linkage," on page 14). 

"Old style" C function definitions and calls of undeclared functions are 
considered anachronisms in C++ and may not be supported by all 
implementations. This is deemed obsolescent in ANSI C. 
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How to Cope 
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A struct is a scope in C++ (see Section 3.3, "Scopes," on page 12); in ANSI C 
a struct, an enumeration, or an enumerator declared in a struct is exported 
to scope enclosing the struct. 

Assignment to an object of enumeration type with a value that is not of that 
enumeration type is considered an anachronism in C++ and may not be 
supported by all implementations; (see Section 7.3, "Enumeration 
Declarations," on page 73). ANSI C recommends a warning for such 
assignments. 

Surplus characters are not allowed in strings used to initialize character arrays; 
(see "Character Arrays" on page 98). 

The type of a character constant is char in C++ (see "Character Constants" on 
page 8) and in t in C. 

The type of an enumerator is the type of its enumeration in C++ (see Section 
7.3, "Enumeration Declarations," on page 73) and int in C. 

In addition, the ANSI C standard allows conforming implementations to differ 
considerably; this may lead to further incompatibilities between C and C++ 
implementations. In particular, some C implementations may consider certain 
incompatible declarations legal. C++ requires consistency even across 
compilation boundaries; (see Section 3.4, "Program and Linkage," on page 14). 

In general, a C++ program uses many features not provided by ANSI C. For 
such a program, the minor differences don't matter since they are dwarfed by 
the C++ extensions. Where ANSI C and C++ need to share header files, care 
must be taken so that such headers are written in the common subset of the 
two languages. 

No advantage must be taken of C++ specific features such as classes, 
overloading, and so on. 

A name should not be used both as a structure tag and as the name of a 
different type. 

A function f taking no arguments should be declared f (void) and not simply 
f (). 

Global consts must be declared explicitly static or extern. 
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Conditional compilation using the C++ predefined name _cplusplus may 
be used to distinguish information to be used by an ANSI C program from 
information to be used by a C++ program. 

Functions that are to be callable from both languages must be explicitly 
declared to have C linkage. 

Anachronisms 

The extensions presented here may be provided by an implementation to ease 
the use of C programs as C++ programs or to provide continuity from earlier 
C++ implementations. Note that each of these features has undesirable aspects. 
An implementation providing them should also provide a way for the user to 
ensure that they do not occur in a source file. A C++ implementation is not 
obliged to provide these features. 

The word overload may be used as a decl-specifier (see Chapter 7, 
"Declarations,") in a function declaration or a function definition. When used 
as a decl-specifier, overload is a reserved word and cannot also be used as an 
identifier. 

Note - The following paragraph does not apply to this version of C++. 

The definition of a static data member of a class for which initialization by 
default to all zeros applies (see Section 8.5, "Initializers," on page 94, Section 
9.5, "Static Members," on page 111) may be omitted. 

An old style (that is, pre-ANSI C) C preprocessor may be used. 

An int may be assigned to an object of enumeration type. 

The number of elements in an array may be specified when deleting an array 
of a type for which there is no destructor; (see "Delete" on page 38). 

A single function operator++ () may be used to overload both prefix and 
postfix ++ and a single function operator-- () may be used to overload both 
prefix and postfix --; (see "Class Member Access" on page 182). 

Old Style Function Definitions 

The C function definition syntax 
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old-function-definition: 
decl-specifiersopt old-function-declarator declaration-listopt fct-body 

old-function-declarator: 
declarator ( parameter-listopt ) 

parameter-list: 
identifier 
parameter-list, identifier 

For example, 

max(a,b) int b; { return (a<b) ? b : a; } 

may be used. If a function defined like this has not been previously declared its 
argument type will be taken to be ( ... ), that is, unchecked. If it has been 
declared its type must agree with that of the declaration. 

Class member functions may not be defined with this syntax. 

Old Style Base Class Initializer 

In a mem-initializer(see "Initializing Bases and Members" on page 160), the 
class-name naming a base class may be left out provided there is exactly one 
immediate base class. For example, 

class B 
II 

public: 
B (int); 

} ; 

class D : public B { 
I I ... 

D(int i) : (i) { 1* ... *1 } 
} ; 

causes the B constructor to be called with the argument i. 
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Assignment to this 

Memory management for objects of a specific class can be controlled by the 
user by suitable assignments to the thi s pointer. By assigning to the thi s 
pointer before any use of a member, a constructor can implement its own 
storage allocation. By assigning a zero value to this, a destructor can avoid 
the standard deallocation operation for objects of its class. Assigning a zero 
value to this in a destructor also suppressed the implicit calls of destructors 
for bases and members. For example, 

class Z { 

} ; 

int z[lO]; 
Z() { this = my_allocator( sizeof(Z) ); } 
~Z() { my_deallocator( this); this = 0; } 

On entry into a constructor, this is nonzero if allocation has already taken 
place (as it will have for auto, static, and member objects) and zero 
otherwise. 

Calls to constructors for a base class and for member objects will take place 
(only) after an assignment to this. If a base class's constructor assigns to 
this, the new value will also be used by the derived class's constructor (if 
any). 

Note that if this anachronism exists either the type of the this pointer cannot 
be a * cons t or the enforcement of the rules for assignment to a constant 
pointer must be subverted for the thi s pointer. 

Cast of Bound Pointer 

A pointer to member function for a particular object may be cast into a pointer 
to function, for example, (int (*) () ) p->f. The result is a pointer to the 
function that would have been called using that member function for that 
particular object. Any use of the resulting pointer is - as ever - undefined. 
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Nonnested Classes 

Where a class is declared within another class and no other class of that name 
is declared in the program that class can be used as if it was declared outside 
its enclosing class (exactly as a C struct). For example, 

struct S { 
struct T { 

int a; 
} ; 

int b; 
} ; 

struct T x; / / meaning'S:: T x; I 
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