

SPARCompiler
C++3.0.1 Language System

Product Reference Manual

.SunPro
A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Part No: 800-7025-11
Revision A, October 1992

© 1992 by Sun Microsystems, Inc.-Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-11 00 U.s.A.

All rights reserved. This product and related documentation is protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems,
licensed from UNIX Systems Laboratories, Inc. and the University of California,
respectively. Third party font software in this product is protected by copyright and
licensed from Sun's Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

TRADEMARKS

Sun Microsystems, Sun Workstation, Solaris, and NeWS are registered trademarks of Sun
Microsystems, Inc.Sun, Sun-4, SunOS, SunPro, the SunPro logo, Sun View, XView,
XlI/NeWS, and OpenWindows are trademarks of Sun Microsystems, Inc. All other
product names mentioned herein are the trademarks of their respective owners.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

All SPARe trademarks, including the SCD Compliant Logo, are trademarks or registered
trademarks of SPARC International, Inc. SPARCworks and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun ™ Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUI's and otherwise comply with Sun's written license agreements.

X Window System is a trademark and product of the Massachusetts Institute of
Technology.

Contents

1. Introduction.. 1

Introduction. 1

Overview.. 2

Syntax Notation. 2

2. Lexical Conventions. 5

Lexical Conventions 5

Tokens.............. 5

Comments.................................. 6

Identifiers. 6

Keywords................................... 6

Literals. 7

3. Basic Concepts. 11

Basic Concepts. 11

Declarations and Definitions. 11

Scopes. 12

iii

Program and Linkage. 14

Start and Termination. 15

Storage Classes 17

Fundamental Types . 17

Type Names. 20

Lvalues. 20

4. Standard Conversions . 21

Standard Conversions. 21

Integral Promotions. 21

Integral Conversions . 22

Float and Double . 22

Floating and Integral. 22

Arithmetic Conversions. 22

Pointer Conversions 23

Reference Conversions 24

Pointers to Members . 24

5. Expressions.. 27

Expressions . 27

Primary Expressions. 28

Unary Operators. 34

Explicit Type Conversion. 39

Pointer-to-Member Operators 42

Multiplicative Operators. 42

Additive Operators. 43

iv Product Reference Manual- October 1992

Shift Operators . 44

Relational Operators. 44

Equality Operators. 45

Bitwise AND Operator 45

Bitwise Exclusive OR Operator. 46

Bitwise Inclusive OR Operator. 46

Logical AND Operator. 46

Logical OR Operator 46

Conditional Operator. 47

Assignment Operators 48

Comma Operator . 49

Constant Expressions. 50

6. Statements... 51

Statements. 51

Labeled Statement. 51

Expression Statement. 52

Compound Statement, or Block . 52

Selection Statements. 52

Iteration Statements. 54

Do statement. 55

The for Statement. 55

Jump Statements. 56

The break Statement. 56

The continue Statement. 56

Contents v

The return Statement 57

The goto Statement. 57

Declaration Statement. 58

Ambiguity Resolution . 60

7. Declarations.. 63

Declarations. 63

Specifiers . 63

Storage Class Specifiers. 65

Function Specifiers. 67

Enumeration Declarations. 73

Asm Declarations. 75

Linkage Specifications. 75

8. Declarators... 79

Declarators. 79

Type Names. 80

Ambiguity Resolution. 81

Meaning of Declarators . 82

Pointers . 83

References . 84

Arrays. 86

Functions. 88

Default Arguments. 90

Function Definitions. 93

Initializers . 94

vi Product Reference Manual- October 1992

Aggregates

Character Arrays

References

9. Classes

Classes

Class Names

Class Members

Member Functions

Inline Member Functions

Static Members

Unions .. .

Bit-Fields .. .

Nested Class Declarations

Local Class Declarations

Local Type Names

10. Derived Classes

Derived Classes

Multiple Base Classes

Ambiguities

Virtual Functions

Abstract Classes

Summary of Scope Rules

11. Member Access Control.

Member Access Control

Contents

96

98

99

101

101

102

105

108

111

111

114

115

116

118

119

121

121

123

125

127

129

131

135

135

vii

Access Specifiers

Access Specifiers for Base Classes

Access Declarations

Friends .. .

Protected Member Access

Access to Virtual Functions

Multiple Access

12. Special Member Functions

Special Member Functions

Constructors

Temporary Objects

Conversions

Destructors

Free Store

Initialization

Constructors and Destructors

Copying Class Objects

13. Overloading

Overloading .. .

Declaration Matching

Argument Matching

Address of Overloaded Function

Overloaded Opera tors

14. Templates

viii Product Reference Manual - October 1992

136

136

137

140

143

144

145

147

147

147

149

150

154

156

158

163

164

169

169

171

173

178

179

185

Templates. .. 185

Class Templates. .. 186

Type Equivalence. .. 188

Function Templates. .. 188

Declarations and Definitions. .. 191

Member Function Templates. .. 192

Friends. .. 193

Static Members and Variables. .. 193

15. Exception Handling .. 195

Exception Handling .. 195

16. Preprocessing... 197

Preprocessing .. 197

Phases of Preprocessing. .. 198

Trigraph Sequences. .. 198

Macro Definition and Expansion 199

File Inclusion 203

Conditional Compilation. .. 204

Line Control .. 205

Error Directive 206

Pragmas .. 206

Null Directive. .. 206

Predefined Names .. 206

A. Appendix A: Grammar Summary .. 209

Keywords. .. 209

Contents ix

x

Expressions. .. 210

Declarations. .. 213

Declarators. .. 216

Class Declarations. .. 218

Statements. .. 220

Preprocessor. .. 221

Templates .. 222

Exception Handling .. 222

B. Appendix B: Compatibility. .. 225

Extensions .. 226

C++ Features Available in 1985 226

C++ Features Added Since 1985. 227

C++ and ANSI C. 228

How to Cope. .. 230

Anachronisms. .. 231

Old Style Function Definitions 231

Old Style Base Class Initializer. .. 232

Assignment to this. .. 233

Cast of Bound Pointer .. 233

N onnested Classes 234

Product Reference Manual- October 1992

Preface

The C++ Language System Product Reference Manual provides a complete
definition of the c++ language supported by Release 3.0.1 of the C++
Language System. The manual is part of a set of four documents that are
supplied with your C++ Language System. The other documents are:

• the C++ 3.0.1 Language System Release Notes, which describe the contents of
this release, how to install it, and changes to the language

• the C++ 3.0.1 Language System Selected Readings, which contains papers
describing aspects of the C++ language

• the C++ 3.0.1 Language System Library Manual, which describes the three C++
class libraries and tells you how to use them

This manual contains 16 chapters covering the various aspects of the C++
language:

1. Introduction

2. Lexical Conventions

3. Basic Concepts

4. Standard Conversions

5. Expressions

6. Statements

7. Declarations

xi

xii

8. Declara tors

9. Classes

10. Derived Classes

II. Member Access Control

12. Special Member Functions

13. Overloading

14. Templates

15. Exception Handling (experimental)

16. Preprocessing

Note - Chapter 15 is a place marker for an experimental feature that is not
implemented in Release 3.0.1.

The Product Reference Manual proper is followed by appendices that describe
grammar and compatibility in Release 3.0.1:

• Appendix A: Grammar Summary

• Appendix B: Compatibility

To make the best use of the Product Reference Manual, you should be familiar
with the C programming language and the C programming environment
under the UNIX ® operating system.

Product Reference Manual- October 1992

1.1 Introduction

Introduction

Note - This reference manual is by Bjarne Stroustrup.
This is the May 1991 version of the C++ Reference Manual

This manual describes the C++ programming language as of May 1991. C++ is
a general purpose programming language based on the C programming
languagel . In addition to the facilities provided by C, C++ provides classes,
inline functions, operator overloading, function name overloading, constant
types, references, free store management operators, and function argument
checking and type conversion. These extensions to C are summarized in
Section B.1, "Extensions," on page 226. The differences between C++ and ANSI
C2 are summarized in "C++ and ANSI C" on page 228. The extensions to C++
since the 1985 edition of this manual are summarized in "C++ Features Added
Since 1985" on page 227. The section related to exception handling Chapter 15,
"Exception Handling," is a placeholder for planned language extensions.

1. "The C Programming Language" by Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 1978 and
1988.

2. American National Standard X3.159-1989.

1

2

Overview

This manual is organized like this:

1. Introduction

2. Lexical Conventions

3. Basic Concepts

4. Standard Conversions

5. Expressions

6. Statements

7. Declarations

8. Declarators

9. Classes

10. Derived Classes

11. Member Access Control

12. Special Member Functions

13. Overloading

14. Templates

15. Exception Handling (not implemented)

16. Preprocessing

• Appendix A: Grammar Summary

• Appendix B: Compatibility

Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicated
by italic type, and literal words and characters in constant width type.
Alternatives are listed on separate lines except in a few cases where a long set

Product Reference Manual- October 1992

of alternatives is presented on one line, marked by the phrase lione of." An
optional terminal or nonterminal symbol is indicated by the subscript liopt," so
{ expressionopt } indicates an optional expression enclosed in braces.

Introduction 3

4 Product Reference Manual- October 1992

Lexical Conventions

2.1 Lexical Conventions

2.2 Tokens

A c++ program consists of one or more files, see Section 3.3, "Scopes," on page
12. A file is conceptually translated in several phases. The first phase is
preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the
first character other than white space, see Section 2.2, "Tokens," on page 5. The
result of preprocessing is a sequence of tokens. Such a sequence a tokens, that
is, a file after preprocessing is called a translation unit.

There are five kinds of tokens: identifiers, keywords, literals, operators, and
other separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and
comments (collectively, "white space"), as described below, are ignored except
as they serve to separate tokens. Some white space is required to separate
otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to be the longest string of characters that could possibly
constitute a token.

5

2.3 Comments

2.4 Identifiers

2.5 Keywords

asm continue

auto default

break delete

case do

catch double

char else

class enum

const extern

6

The characters / * start a comment, which terminates with the characters * /.
These comments do not nest. The characters / / start a comment, which
terminates at the end of the line on which they occur. The comment characters
/ /, / *, and * / have no special meaning within a / / comment and are treated
just like other characters. Similarly, the comment characters / / and / * have no
special meaning within a / * comment.

An identifier is an arbitrarily long sequence of letters and digits. The first
character must be a letter; the underscore _ counts as a letter. Upper- and
lower-case letters are different. All characters are significant.

The following identifiers are reserved for use as keywords, and may not be
used otherwise:

float new signed try

for operator sizeof typedef

friend private static union

goto protected struct unsigned

if public switch virtual

in-line register template void

int return this volatile

long short throw while

In addition, identifiers containing a double underscore are reserved for use by
C++ implementations and standard libraries and should be avoided by users.

Product Reference Manual- October 1992

2.6 Literals

The ASCII representation of C++ programs uses the following characters as
operators or for punctuation:

I ~ %

\ I.

& () +=

<> ?

{}

/

and the following character combinations are used as operators:

I -> ++ -- .* ->*
1 1 *= / = %= t+=

Each is a single token.

« » <=> =

«= »=
!=

&= A= 1=
&&

In addition, the following tokens are used by the preprocessor:

Certain implementation-dependent properties, such as the type of a sizeof

and the ranges of fundamental types, are defined in the standard header files

<float.h> <limits.h> <stddef.h>

These headers are part of the ANSI C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are
part of the ANSI C standard; <new. h> is C++ specific.

There are several kinds of literals (often referred to as "constants").

literal:
integer-constant
character-constant
floating-constant
string-literal

Lexical Conventions 7

8

Integer Constants
An integer constant consisting of a sequence of digits is taken to be decimal
(base ten) unless it begins with 0 (digit zero). A sequence of digits starting with
o is taken to be an octal integer (base eight). The digits 8 and 9 are not octal
digits. A sequence of digits preceded by Ox or Ox is taken to be a hexadecimal
integer (base sixteen). The hexadecimal digits include a or A through f or F

with decimal values ten through fifteen. For example, the number twelve can
be written 12, 014, or oxe.

The type of an integer constant depends on its form, value, and suffix. If it is
decimal and has no suffix, it has the first of these types in which its value can
be represented: int, long int, unsigned long into If it is octal or
hexadecimal and has no suffix, it has the first of these types in which its value
can be represented: int, unsigned int, long int, unsigned long into If it
is suffixed by u or U, its type is the first of these types in which its value can be
represented: unsigned int, unsigned long into If it is suffixed by 1 or L,
its type is the first of these types in which its value can be represented: long
int, unsigned long into If it is suffixed by ul, lu, uL, LU, UI, IU, UL, or LU,
its type is unsigned long into

Character Constants
A character constant is one or more characters enclosed in single quotes, as in

f x f • Single character constants have type char. The value of a single character
constant is the numerical value of the character in the machine's character set.
Multicharacter constants have type in t. The value of a multicharacter constant
is implementation dependent.

Certain nongraphic characters, the single quote f, the double quote f f, the
question mark?, and the backslash \, may be represented according to the
following table of escape sequences:

new-line NL(LF) \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

Product Reference Manual- October 1992

alert

backslash

question mark

single quote

double quote

octal number

hex number

BEL

\

?

000

hhh

\a

\\

\?

\ I

\ "

\000

\xhhh

If the character following a backslash is not one of those specified, the behavior
is undefined. An escape sequence specifies a single character.

The escape \000 consists of the backslash followed by one, two, or three octal
digits that are taken to specify the value of the desired character. The escape
\ xhhh consists of the backslash followed by x followed by a sequence of
hexadecimal digits that are taken to specify the value of the desired character.
There is no limit to the number of hexadecimal digits in the sequence. A
sequence of octal or hexadecimal digits is terminated by the first character that
is not an octal digit or a hexadecimal digit, respectively. The value of a
character constant is implementation dependent if it exceeds that of the largest
char.

A character constant immediately preceded by the letter L, for example,
L I ab " is a wide-character constant. A wide-character constant is of type
wchar_t, an integral type defined in the standard header <stddef . h>.

Wide-characters are intended for character sets where a character does not fit
into a single byte.

Floating Constants
A floating constant consists of an integer part, a decimal point, a fraction part,

an e or E, an optionally signed integer exponent, and an optional type suffix.
The integer and fraction parts both consist of a sequence of decimal (base ten)
digits. Either the integer part or the fraction part (not both) may be missing;
either the decimal point or the letter e (or E) and the exponent (not both) may
be missing. The type of a floating constant is double unless explicitly
specified by a suffix. The suffixes f and F specify float, the suffixes 1 and L
specify long double.

Lexical Conventions 9

10

String Literals
A string literal is a sequence of characters as defined in Section, "Character
Constants," on page 8, surrounded by double quotes, as in ' , ... fl. A string
has type "array of char" and storage class static (see Section 3.5, "Start and
Termination," on page 15), and is initialized with the given characters.
Whether all string literals are distinct (that is, are stored in nonoverlap ping
objects) is implementation dependent.The effect of attempting to modify a
string literal is undefined.

Adjacent string literals are concatenated. Characters in concatenated strings are
kept distinct. For example,

"\xA" "B"

contains the two characters I \xA I and I B I after concatenation (and not the
single hexadecimal character I \ xAB I).

After any necessary concatenation I \ 0 I is appended so that programs that
scan a string can find its end. The size of a string is the number of its characters
including this terminator. Within a string, the double quote character I f must
be preceded by a \.

A string literal immediately preceded by the letter L, for example, L' 'asdf f I ,

is a wide-character string. A wide-character string is of type "array of
wchar_t I " where wchar_t is an integral type defined in the standard
header <stddef . h>. Concatenation of ordinary and wide-character string
literals is undefined.

Product Reference Manual- October 1992

3.1 Basic Concepts

Basic Concepts

A name denotes an object, a function, a set of functions, an enumerator, a type,
a class member, a template, a value, or a label. A name is introduced into a
program by a declaration. A name can be used only within a region of program
text called its scope. A name has a type, which determines its use. A name used
in more than one translation unit may (or may not) refer to the same object,
function, type, template, or value in these translation units depending on the
linkage (see Section 3.3, "Scopes," on page 12) specified in the translation units.

An object is a region of storage. A named object has a storage class (see Section
3.5, "Start and Termination," on page 15) that determines its lifetime. The
meaning of the values found in an object is determined by the type of the
expression used to access it.

3.2 Declarations and Definitions
A declaration, Chapter 7, "Declarations," introduces one or more names into a
program. A declaration is a definition unless it declares a function without
specifying the body (see Section 8.4, "Function Definitions," on page 93), it
contains the extern specifier (see "Storage Class Specifiers" on page 65) and
no initializer or function body, it is the declaration of a static data member in a
class declaration (see Section 9.5, "Static Members," on page 111), it is a class
name declaration (see Section 9.1, "Classes," on page 101), or it is a typedef

11

3.3 Scopes

12

declaration (see "The typedef Specifier" on page 68). The following, for
example, are definitions:

int ai

extern canst c = 1i
int f(int x) { return x+ai

struct S { int ai int bi }i

enum { up, down }i

whereas these are just declarations:

extern int ai

extern canst Ci

int f(int)i
struct Si

typedef int Inti

There must be exactly one definition of each object, function, class, and
enumerator used in a program (see Section 3.3, "Scopes," on page 12). If a
function is never called and its address is never taken, it need not be defined.
Similarly, if the name of a class is used only in a way that does not require its
definition to be known, it need not be defined.

There are four kinds of scope: local, function, file, and class.

• Local: A name declared in a block (see Section 6.4, "Compound Statement, or
Block," on page 52) is local to that block and can be used only in it and in
blocks enclosed by it after the point of declaration. Names of formal
arguments for a function are treated as if they were declared in the
outermost block of that function.

• Function: Labels (see Section 6.2, "Labeled Statement," on page 51) can be
used anywhere in the function in which they are declared. Only labels have
function scope.

Product Reference Manual- October 1992

• File: A name declared outside all blocks (see Section 6.4, "Compound
Statement, or Block," on page 52) and classes (see Chapter 9, "Classes,") has
file scope and can be used in the translation unit in which it is declared after
the point of declaration. Names declared with file scope are said to be global.

• Class: The name of a class member is local to its class and can be used only
in a member function of that class (see Section 9.4, "Member Functions," on
page 108), after the. operator applied to an object of its class (see "Class
Member Access" on page 32) or a class derived from (see Chapter 10,
"Derived Classes,") its class, after the -> operator applied to a pointer to an
object of its class (see "Class Member Access" on page 32) or a class derived
from its class, or after the: : scope resolution operator (see Section 5.2,
"Primary Expressions," on page 28) applied to the name of its class or a
class derived from its class. A name first declared by a friend declaration
(see Section 11.5, "Friends," on page 140) belongs to the same scope as the
class containing the friend declaration. A class first declared in a return or
argument type belongs to the global scope.

Special rules apply to names declared in function argument declarations (see
"Functions" on page 88), and friend declarations (see Section 11.5, "Friends,"
on page 140).

A name may be hidden by an explicit declaration of that same name in an
enclosed block or in a class. A hidden class member name can still be used
when it is qualified by its class name using the: : operator (see Section 5.2,
"Primary Expressions," on page 28, Section 9.5, "Static Members," on page 111,
Chapter 10, "Derived Classes,". A hidden name of an object, function, type, or
enumerator with file scope can still be used when it is qualified by the unary
: : operator (see Section 5.2, "Primary Expressions," on page 28). In addition, a
class name (see Section 9.2, "Class Names," on page 102) may be hidden by the
name of an object, function, or enumerator declared in the same scope. If a
class and an object, function, or enumerator are declared in the same scope (in
any order) with the same name the class name is hidden. A class name hidden
by a name of an object, function, or enumerator in local or class scope can still
be used when appropriately (see "Type Specifiers" on page 70) prefixed with
class, struct, or union. Similarly, a hidden enumeration name can be used
when appropriately (see "Type Specifiers" on page 70) prefixed with enum. The
scope rules are summarized in Section 10.5, "SumIl1ary of Scope Rules," on
page 131.

The point of declaration for a name is immediately after its complete declarator
(see Chapter 8, "Declarators,") and before its initializer (if any). For example,

Basic Concepts 13

14

int x = 12i { int x = xi }

Here the second x is initialized with its own (unspecified) value.

The point of declaration for an enumerator is immediately after the identifier
that names it. For example,

enum { x = x } i

Here, again, the enumerator x is initialized to its own (uninitialized) value.

3.4 Program and Linkage
A program consists of one or more files (see Chapter 2, "Lexical Conventions,")
linked together. A file consists of a sequence of declarations.

A name of file scope that is explicitly declared static is local to its translation
unit and can be used as a name for other objects, functions, and so on, in other
translation units. Such names are said to have internal linkage. A name of file
scope that is explicitly declared inl ine is local to its translation unit. A name
of file scope that is explicitly declared cons t and not explicitly declared
extern is local to its translation unit. So is the name of a class that has not
been used in the declaration of an object, function, or class that is not local to
its translation unit and has no static members (see Section 9.5, "Static
Members," on page 111) and no noninline member functions (see "Inline
Member Functions" on page 111). Every declaration of a particular name of file
scope that is not declared to have internal linkage in one of these ways in a
multifile program refers to the same object (see Section 3.7, "Lvalues," on page
20), function (see "Functions" on page 88), or class (see Chapter 9, "Classes,").
Such names are said to be external or to have external linkage. In particular,
since it is not possible to declare a class name static, every use of a particular
file scope class name that has been used in the declaration of an object or
function with external linkage or has a static member or a noninline member
function refers to the same class.

Typedef names (see "The typedef Specifier" on page 68), enumerators (see
Section 7.3, "Enumeration Declarations," on page 73), and template names (see
Chapter 14, "Templates,") do not have external linkage.

Static class members (see Section 9.5, "Static Members," on page 111) have
external linkage.

Product Reference Manual- October 1992

Noninline class member functions have external linkage. Inline class member
functions must have exactly one definition in a program.

Local names (see Section 3.3, "Scopes," on page 12) explicitly declared extern
have external linkage unless already declared static (see Section, "Storage
Class Specifiers," on page 65).

The types specified in all declarations of a particular external name must be
identical except for the use of typedef names (see "The typedef Specifier" on
page 68) and unspecified array bounds (see "Arrays" on page 86).There must
be exactly one definition for each function, object, class and enumerator used
in a program. If, however, a function is never called and its address is never
taken, it need not be defined. Similarly, if the name of a class is used only in a
way that does not require its definition to be known, it need not be defined.

A function may be defined only in file or class scope.

Linkage to non-C++ declarations can be achieved using a linkage-specification
(see Section 7.5, "Linkage Specifications," on page 75).

3.5 Start and Termination

A program must contain a function called main (). This function is the
designated start of the program. This function is not predefined by the
compiler, it cannot be overloaded, and its type is implementation dependent. It
is recommended that the two examples below be allowed on any
implementation and that any further arguments required be added after argv.
The function main () may be defined as

int main() { /* ... */ }

or

int main(int argc, char* argv[]) { /* ... */ }

In the latter form argc shall be the number of parameters passed to the
program from an environment in which the program is run. If argc is nonzero
these parameters shall be supplied as zero-terminated strings in argvO
through argv [argc-l] and argvO shall be the name used to invoke the
program or \ \ , , . It is guaranteed that argv [argc] = = o.

Basic Concepts 15

16

The function main () may not be called from within a program. The linkage
(see Section 3.4, "Program and Linkage," on page 14) of main () is
implementation dependent. The address of main () cannot be taken and
main () may not be declared inline or static.

Calling the function

void exit (int) i

declared in <stdlib. h> terminates the program. The argument value is
returned to the program's environment as the value of the program.

A return statement in main () has the effect of calling exi t () with the return
value as the argument.

The initialization of nonlocal static objects (see Section 3.6, "Storage Classes,"
on page 17) in a translation unit is done before the first use of any function or
object defined in that translation unit. Such initializations (see Section 8.5,
"Initializers," on page 94, Section 9.5, "Static Members," on page 111, Section
12.1, "Special Member Functions," on page 147, "Explicit Initialization" on
page 158) may be done before the first statement of main () or deferred to any
point in time before the first use of a function or object defined in that
translation unit. The default initialization of all static objects to zero (see
Section 8.5, "Initializers," on page 94) is performed before any dynamic (that is,
run-time) initialization. No further order is imposed on the initialization of
objects from different translation units. The initialization of local static objects
is described in Section 8.5, "Initializers," on page 94.

Destructors (see "Destructors" on page 154) for initialized static objects are
called when returning from main () and when calling exi t (). Destruction is
done in reverse order of initialization. The function a texi t () from
< s tdl ib . h> can be used to specify that a function must be called at exit. If
atexi t () is to be called, objects initialized before an atexi t () call may not
be destroyed until after the function specified in the a texi t () call has been
called. Where a C++ implementation coexists with a C implementation, any
actions specified by the C implementation to take place after the a texi t ()
functions have been called take place after all destructors have been called.

Calling the function

void abort();

Product Reference Manual- October 1992

3.6 Storage Classes

declared in <stdlib. h> terminates the program without executing
destructors for static objects and without calling the functions passed to
atexit ().

There are two declarable storage classes: automatic and static.

• Automatic objects are local to each invocation of a block.

• Static objects exist and retain their values throughout the execution of the
entire program.

Automatic objects are initialized (see Section 12.1, "Special Member
Functions," on page 147) each time the control flow reaches their definition and
are destroyed (see "Destructors" on page 154) on exit from their block (see
Section 6.8, "Declaration Statement," on page 58).

A named automatic object may not be destroyed before the end of its block nor
mayan automatic named object of a class with a constructor or a destructor
with side effects be eliminated even if it appears to be unused.

Similarly, a global object of a class with a constructor or a destructor with side
effects may not be eliminated even if it appears to be unused.

Static objects are initialized and destroyed as described in Section 3.5, "Start
and Termination," on page 15 and Section 6.8, uDeclaration Statement," on
page 58. Some objects are not associated with names; see "New" on page 36
and "Temporary Objects" on page 149. All global objects have storage class
static.Local objects and class members can be given static storage class by
explicit use of the static storage class specifier (see "Storage Class Specifiers"
on page 65).

Types

There are two kinds of types: fundamental types and derived types.

Fundamental Types

There are several fundamental types. The standard header <limi ts. h>
specifies the largest and smallest values of each for an implementation.

Basic Concepts 17

18

Objects declared as characters (char) are large enough to store any member of
the implementation's basic character set. If a character from this set is stored in
a character variable, its value is equivalent to the integer code of that character.
Characters may be explicitly declared unsigned or signed. Plain char,
signed char, and unsigned char are three distinct types. A char, a signed
char, and an unsigned char consume the same amount of space.

Up to three sizes of integer, declared short int ,int, and long int, are
available. Longer integers provide no less storage than shorter ones, but the
implementation may make either short integers or long integers, or both,
equivalent to plain integers. Plain integers have the natural size suggested by
the machine architecture; the other sizes are provided to meet special needs.

For each of the types signed char, short, int, and long, there exists a
corresponding unsigned type, which occupies the same amount of storage
and has the same alignment requirements. An alignment requirement is an
implementation-dependent restriction on the value of a pointer to an object of
a given type (see "Explicit Type Conversion" on page 39).

Unsigned integers, declared uns igned, obey the laws of arithmetic modulo 2n

where n is the number of bits in the representation. This implies that unsigned
arithmetic does not overflow.

There are three floating types: float, double, and long double. The type
double provides no less precision than float, and the type long double
provides no less precision than double. An implementation will define the
characteristics of the fundamental floating point types in the standard header
<float .h>.

Types char, int of all sizes, and enumerations (see Section 7.3, "Enumeration
Declarations," on page 73) are collectively called integral types. Integral and
floating types are collectively called arithmetic types.

The void type specifies an empty set of values. It is used as the return type for
functions that do not return a value. No object of type void may be declared.
Any expression may be explicitly converted to type void (see Section 5.3,
"Explicit Type Conversion," on page 39); the resulting expression may be used
only as an expression statement (see Section 6.3, "Expression Statement," on
page 52), as the left operand of a comma expression (Section 5.17, "Comma
Operator," on page 49), or as a second or third operand of ?: (see Section 5.15,
"Conditional Operator," on page 47).

Product Reference Manual- October 1992

Derived Types
There is a conceptually infinite number of derived types constructed from the
fundamental types in the following ways:

• arrays of objects of a given type, (see "Arrays" on page 86);

• functions, which take arguments of given types and return objects of a given
type, (see "Functions" on page 88).

• pointers to objects or functions of a given type, (see "Pointers" on page 83);

• references to objects or functions of a given type, (see "References" on page
84).

• constants, which are values of a given type, (see "Type Specifiers" on page
70).

• classes containing a sequence of objects of various types (see Chapter 9,
"Classes,"), a set of functions for manipulating these objects (see Section 9.4,
"Member Functions," on page 108), and a set of restrictions on the access to
these objects and functions (see Chapter 11, "Member Access Control,")

• structures, which are classes without default access restrictions, (see Chapter
11, "Member Access Control,");

• unions, which are structures capable of containing objects of different types
at different times, (see Section 9.6, "Unions," on page 114;)

• pointers to class members, which identify members of a given type within
objects of a given class, (see "Pointers to Members" on page 85).

In general, these methods of constructing objects can be applied recursively;
restrictions are mentioned in (see "Pointers" on page 83, U Arrays" on page 86,
"Functions" on page 88, "References" on page 84).

A pointer to objects of a type T is referred to as a "pointer to T. " For example,
a pointer to an object of type int is referred to as "pointer to int" and a
pointer to an object of class X is called a "pointer to x. "

Objects of type void* (pointer to void), const void*, and volatile void*
can be used to point to objects of unknown type. A void* must have enough
bits to hold any object pointer. Except for pointers to static members, text
referring to "pointers" does not apply to pointers to members.

Basic Concepts 19

Type Names

3.7 Lvalues

20

Fundamental and derived types can be given names by the typedef
mechanism (see "The typedef Specifier" on page 68), and families of types and
functions can be specified and named by the template mechanism (see
Chapter 14, "Templates,").

An object is a region of storage; an lvalue is an expression referring to an object
or function. An obvious example of an lvalue expression is the name of an
object. Some operators yield lvalues. For example, if E is an expression of
pointer type, then *E is an lvalue expression referring to the object to which E

points. The name "lvalue" comes from the assignment expression El = E2 in
which the left operand El must be an lvalue expression. The discussion of each
operator in Chapter 5, "Expressions," indicates whether it expects lvalue
operands and whether it yields an lvalue. An lvalue is modifiable if it is not a
function name, an array name, or canst.

Product Reference Manual- October 1992

Standard Conversions

4.1 Standard Conversions
Some operators may, depending on their operands, cause conversion of the
value of an operand from one type to another. This section summarizes the
conversions demanded by most ordinary operators and explains the result to
be expected from such conversions; it will be supplemented as required by the
discussion of each operator. These conversions are also used in initialization
(see Section 8.5, "Initializers," on page 94, "References" on page 84, "Copying
Class Objects" on page 164, "Constructors" on page 147, "Conversions" on
page 150 and Section 13.2, "Argument Matching," on page 173) describe user
defined conversions and their interaction with standard conversions. The result
of a conversion is an Ivalue only if the result is a reference (see "References" on
page 84).

Integral Promotions

A char, a short int, enumerator, object of enumeration type (see Section 7.3,
"Enumeration Declarations," on page 73), or an int bit-field (see Section 9.7,
"Bit-Fields," on page 115) (in both their signed and unsigned varieties) may be
used wherever an integer may be used. If an int can represent all the values of
the original type, the value is converted to int; otherwise it is converted to
unsigned into This process is called integral promotion.

21

22

Integral Conversions

When an integer is converted to an unsigned type, the value is the least
unsigned integer congruent to the signed integer (modulo 2n where n is the
number of bits used to represent the unsigned type). In a two's complement
representation, this conversion is conceptual and there is no change in the bit
pattern.

When an integer is converted to a signed type, the value is unchanged if it can
be represented in the new type; otherwise the value is implementation
dependent.

Float and Double

Single-precision floating point arithmetic may be used for float expressions.
When a less precise floating value is converted to an equally or more precise
floating type, the value is unchanged. When a more precise floating value is
converted to a less precise floating type and the value is within representable
range, the result may be either the next higher or the next lower representable
value. If the result is out of range, the behavior is undefined.

Floating and Integral

Conversion of a floating value to an integral type truncates; that is, the
fractional part is discarded. Such conversions are machine dependent; for
example, the direction of truncation of negative numbers varies from machine
to machine. The result is undefined if the value cannot be represented in the
integral type.

Conversions of integral values to floating type are as mathematically correct as
the hardware allows. Loss of precision occurs if an integral value cannot be
represented exactly as a value of the floating type.

Arithmetic Conversions

Many operators cause conversions and yield result types in a similar way. This
pattern will be called the "usual arithmetic conversions."

• If either operand is of type long double, the other is converted to long
double.

Product Reference Manual- October 1992

• Otherwise, if either operand is double, the other is converted to double.

• Otherwise, if either operand is float, the other is converted to float.

• Otherwise, the integral promotions (see Section 4.1, "Standard
Conversions," on page 21) are performed on both operands.

• Then, if either operand is unsigned long the other is converted to
unsigned long.

• Otherwise, if one operand is a long int and the other unsigned int, then
if a long int can represent all the values of an unsigned int, the
unsigned int is converted to a long int; otherwise both operands are
converted to unsigned long into

• Otherwise, if either operand is long, the other is converted to long.

• Otherwise, if either operand is unsigned, the other is converted to
unsigned.

• Otherwise, both operands are in t.

Pointer Conversions

The following conversions may be performed wherever pointers (see
"Pointers" on page 83) are assigned, initialized, compared, or otherwise used:

• A constant expression (see Section 5.18, "Constant Expressions," on page 50)
that evaluates to zero is converted to a pointer, commonly called the null
pointer. It is guaranteed that this value will produce a pointer
distinguishable from a pointer to any object or function.

• A pointer to any non-const and non- volatile object type may be
converted to a void*.

• A pointer to function may be converted to a void* provided a void* has
sufficient bits to hold it.

• A pointer to a class may be converted to a pointer to an accessible base class
of that class (see Chapter 10, "Derived Classes,") provided the conversion is
unambiguous (see Section 10.1, "Derived Classes," on page 121); a base class
is accessible if its public members are accessible (see Section 11.2, "Access
Specifiers," on page 136). The result of the conversion is a pointer to the
base class sub-object of the derived class object. The null pointer (0) is
converted into itself.

Standard Conventions 23

24

• An expression with type Uarray of T" may be converted to a pointer to the
initial element of the array.

• An expression with type Ufunction returning T" is converted to Upointer to
function returning T" except when used as the operand of the address-of
operator & or the function call operator ().

Reference Conversions

The following conversion may be performed wherever references (see Section,
uReferences," on page 84) are initialized (including argument passing (see
uFunction Call" on page 31) and function value return (see uThe return
Statement" on page 57) or otherwise used:

• A reference to a class may be converted to a reference to an accessible base
class (see Chapter 10, uDerived Classes,", Section 11.2, uAccess Specifiers,"
on page 136) of that class (see uReferences" on page 84) provided this
conversion can be done unambiguously (see U Ambiguities" on page 125).
The result of the conversion is a reference to the base class sub-object of the
derived class object.

Pointers to Members

The following conversion may be performed wherever pointers to members
(see uPointers" on page 83) are initialized, assigned, compared, or otherwise
used:

• A constant expression (see Section 5.18, uConstant Expressions," on page 50)
that evaluates to zero is converted to a pointer to member. It is guaranteed
that this value will produce a pointer to member distinguishable from any
other pointer to member.

• A pointer to a member of a class may be converted to a pointer to member
of a class derived from that class provided the (inverse) conversion from the
derived class to the base class pointer is accessible (see Section 11.2, U Access
Specifiers," on page 136) and provided this conversion can be done
unambiguously (see "Ambiguities" on page 125).

Product Reference Manual- October 1992

The rule for conversion of pointers to members (from pointer to member of
base to pointer to member of derived) appears inverted compared to the rule
for pointers to objects (from pointer to derived to pointer to base) (see "Pointer
Conversions" on page 23, Chapter 10, "Derived Classes,"). This inversion is
necessary to ensure type safety.

Note that a pointer to member is not a pointer to object or a pointer to function
and the rules for conversions of such pointers do not apply to pointers to
members. In particular, a pointer to member cannot be converted to a void*.

Standard Conventions 25

26 Product Reference Manual- October 1992

5.1 Expressions

Expressions

This section defines the syntax, order of evaluation, and meaning of
expressions. An expression is a sequence of operators and operands that
specifies a computation. An expression may result in a value and may cause
side effects.

Operators can be overloaded, that is, given meaning when applied to
expressions of class type (see Chapter 9, "Classes,"). Uses of overloaded
operators are transformed into function calls as described in (see Section 13.4,
"Overloaded Operators," on page 179). Overloaded operators obey the rules
for syntax specified in this section, but the requirements of operand type,
lvalue, and evaluation order are replaced by the rules for function call.
Relations between operators, such as ++a meaning a+=l, are not guaranteed
for overloaded operators (see Section 13.4, "Overloaded Operators," on page
179).

This section defines the operators when applied to types for which they have
not been overloaded. Operator overloading cannot modify the rules for
operators applied to types for which they are defined by the language itself.

The order of evaluation of subexpressions is determined by the precedence and
grouping of the operators. The usual mathematical rules for associativity and
commutativity of operators may be applied only where the operators really are
associative and commutative. Except where noted, the order of evaluation of
operands of individual operators is undefined. In particular, if a value is

27

28

modified twice in an expression, the result of the expression is undefined
except where an ordering is guaranteed by the operators involved. For
example:

= v[i++]; II the value of 'i' is undefined
i=7,i++,i++; II 'if becomes 9

The handling of overflow and divide check in expression evaluation is
implementation dependent. Most existing implementations of C++ ignore
integer overflows. Treatment of division by zero and all floating point
exceptions vary among machines, and is usually adjustable by a library
function.

Except where noted, operands of types const T, volatile T, T&, const T&,
and volatile T& can be used as if they were of the plain type T. Similarly,
except where noted, operands of type T*const and T*volatile can be used
as if they were of the plain type T *. Similarly, a plain T can be used where a
volatile T or a const T is required. These rules apply in combination so
that, except where noted, a const T*volatile can be used where a T* is
required. Such uses do not count as standard conversions when considering
overloading resolution (see Section 13.2, "Argument Matching," on page 173).

If an expression has the type "reference to T II (see "References" on page 84) ,the
value of the expression is the object of type "T" denoted by the reference. The
expression is an lvalue. A reference can be thought of as a name of an object.

User-defined conversions of class objects to and from fundamental types,
pointers, and so on, can be defined (see Section, "Conversions," on page 150).
If unambiguous (see Section 13.2, "Argument Matching," on page 173), such
conversions may be applied by the compiler wherever a class object appears as
an operand of an operator, as an initializer (see Section 8.5, "Initializers," on
page 94), as the controlling expression in a selection (see Section 6.5, "Selection
Statements," on page 52) or iteration (see Section 6.6, "Iteration Statements," on
page 54) statement, as a function return value «sc6.6.3), or as a function
argument (see "Function Call" on page 31).

5.2 Primary Expressions
Primary expressions are literals, names, and names qualified by the scope
resolution operator : :.

Product Reference Manual- October 1992

primary-expression:
literal
this
:: identifier
:: operator-function-name
:: qualified-name
(expression)
name

A literal is a primary expression. Its type depends on its form (see Section 2.5,
"Keywords," on page 6).

In the body of a nonstatic member function (Section 9.4, "Member Functions,"
on page 108), the keyword this names a pointer to the object for which the
function was invoked. The keyword thi s cannot be used outside a class
member function body.

The operator: : followed by an identifier, a qualified-name, or an operator
function-name is a primary expression. Its type is specified by the declaration of
the identifier, name, or operator-function-name. The result is the identifier, name,
or operator-function-name. The result is an lvalue if the identifier is an 1 val vee
The identifier or operator-function-name must be of file scope. Use of : : allows a
type, an object, a function, or an enumerator to be referred to even if its
identifier has been hidden (see Section 3.4, "Program and Linkage," on page
14).

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses
does not affect whether the expression is an lvalue.

A name is a restricted form of a primary-expression that can appear after. and
-> (see "Class Member Access" on page 32):

name:
identifier
operator-function-name
conversion-Junction-name
- class-name
qualified-name

Expressions 29

30

An identifier is a name provided it has been suitably declared (see Chapter 7,
"Declarations,"). For operator-Junction-names, see Section 13.4, "Overloaded
Operators," on page 179. For conversion-Junction-names, see "Conversion
Functions" on page 151. A dass-name prefixed by ~ denotes a destructor; see
"Destructors" on page 154.

qualified-name:
qualified-dass-name :: name

A qualified-class-name (see "Type Specifiers" on page 70) followed by : : and the
name of a member of that class (see Section 9.3, "Class Members," on page
105), or a member of a base of that class (see Chapter 10, "Derived Classes,"), is
a qualified-name; its type is the type of the member. The result is the member.
The result is an lvalue if the member is IvaI ve. The class-name may be hidden
by a nontype name, in which case the class-name is still found and used. Where
class-name: : class-name or class-name: : ~ dass-name is used, the two class
names must refer to the same class; this notation names constructors (see
"Constructors" on page 147) and destructors ("Destructors" on page 154),
respectively. Multiply qualified names, such as Nl : : N2 : : N3 : : n, can be used
to refer to nested types (see Section 9.8, "Nested Class Declarations," on page
116).

Postfix Expressions
Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt)

simple-type-name (expression-list opt)
postfix-expression. name
postfix-expression -> name
postfix-expression ++
postfix-expression --

expression-list:
assignment-expression
expression-list, assignment-expression

Product Reference Manual- October 1992

Subscripting
A postfix expression followed by an expression in square brackets is a postfix
expression. The intuitive meaning is that of a subscript. One of the expressions
must have the type "pointer to T" and the other must be of integral type. The
type of the result is "T." The expression El [E2] is identical (by definition) to
* ((El) + (E2)). See "Unary Operators" on page 34 and Section 5.6, "Additive
Operators," on page 43 for details of * and + and "Arrays" on page 86 for
details of arrays.

Function Call
A function call is a postfix expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the
actual arguments to the function. The postfix expression must be of type
"function returning T, " "pointer to function returning T, " or "reference to
function returning T, " and the result of the function call is of type "T."

When a function is called, each formal argument is initialized (see "Character
Arrays" on page 98, "Copying Class Objects" on page 164, "Constructors" on
page 147) with its actual argument. Standard (see Chapter 4, "Standard
Conversions,") and user-defined (see "Conversions" on page 150 conversions
are performed. A function may change the values of its nonconstant formal
arguments, but these changes cannot affect the values of the actual arguments
except where a formal argument is of a non-c cons t reference type (see
"References" on page 84). Where a formal argument is of reference type a
temporary variable is introduced if needed (see "Type Specifiers" on page
70,Section 2.6, "Literals," on page 7, "String Literals" on page 10, "Arrays" on
page 86, "Temporary Objects" on page 149). In addition, it is possible to
modify the values of nonconstant objects through pointer arguments.

A function may be declared to accept fewer arguments (by declaring default
arguments (see "Default Arguments" on page 90) or more arguments (by using
the ellipsis, . . . (see "Functions" on page 88) than are specified in the function
definition (see Section 8.4, "Function Definitions," on page 93).

A function can be called only if a declaration of it is accessible from the scope
of the call. This implies that, except where the ellipsis (...) is used, a formal
argument is available for each actual argument.

Expressions 31

32

Any actual argument of type f 1 oa t for which there is no formal argument is
converted to double before the call; any of char, short, enumeration, or a
bit-field type for which there is no formal argument are converted to int or
unsigned by integral promotion (see Section 4.1, "Standard Conversions," on
page 21). An object of a class for which no formal argument is declared is
passed as a data structure.

An object of a class for which a formal argument is declared is passed by
initializing the formal argument with the actual argument by a constructor call
before the function is entered (see "Temporary Objects" on page 149).

The order of evaluation of arguments is undefined; take note that compilers
differ. All side effects of argument expressions take effect before the function is
entered. The order of evaluation of the postfix expression and the argument
expression list is undefined.

Recursive calls are permitted.

A function call is an lvalue only if the result type is a reference.

Explicit Type Conversion
A simple-type-name (see "Type Specifiers" on page 70) followed by a
parenthesized expression-list constructs a value of the specified type given the
expression list. If the expression list specifies more than a single value, the type
must be a class with a suitably declared constructor (see Section 8.5,
"Initializers," on page 94, "Constructors" on page 147).

A simple-type-name (see "Type Specifiers" on page 70) followed by a (empty)
pair of parentheses constructs a value of the specified type. If the type is a class
with a suitably declared constructor that constructor will be called; otherwise
the result is an undefined value of the specified type. See also Section 5.4,
"Pointer-to-Member Operators," on page 42.

Class Member Access
A postfiX expression followed by a dot . followed by a name is a postfix
expression. The first expression must be a class object, and the name must
name a member of that class. The result is the named member of the object,
and it is an lvalue if the member is an lvalue.

Product Reference Manual- October 1992

A postfix expression followed by an arrow (- » followed by a name is a postfix
expression. The first expression must be a pointer to a class object and the name
must name a member of that class. The result is the named member of the
object to which the pointer points and it is an lvalue if the member is an lvalue.
Thus the expression E1->MOS is the same as (*E1) . MOS.

Note that "class objects" can be structures (see Section 9.3, "Class Members,"
on page 105) and unions (see Section 9.6, "Unions," on page 114). Classes are
discussed in Chapter 9, "Classes,".

Increment and Decrement
The value obtained by applying a postfix + + is the value of the operand. The
operand must be a modifiable lvalue. The type of the operand must be an
arithmetic type or a pointer type. After the result is noted, the object is
incremented by 1. The type of the result is the same as the type of the operand,
but it is not an lvalue. See also Section 5.6, "Additive Operators," on page 43
and Section 5.16, "Assignment Operators," on page 48.

The operand of postfix - - is decremented analogously to the postfix + +
operator.

Expressions 33

34

Unary Operators

Expressions with unary operators group right-to-Ieft.

unary-expression:
postfix -expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
s i z eo f unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
*&+-!-

The unary * operator means indirection: the expression must be a pointer, and
the result is an lvalue referring to the object to which the expression points. If
the type of the expression is "pointer to T II/the type of the result is "T."

The result of the unary & operator is a pointer to its operand. The operand
must be a function, an lvalue, or a qualified-name. In the first two cases, if the
type of the expression is "T," the type of the result is "pointer to T . 1/ In
particular, the address of an object of type canst T has type canst T*;

volatile is handled similarly. For a qualified-name, if the member is not static
and of type "T" in class "C," the type of the result is "pointer to member of c
of type T . 1/ For a static member of type T, the type is plain "pointer to T . 1/

The address of an overloaded function (see Chapter 13, "Overloading,") can be
taken only in an initialization or an assignment where the left side uniquely
determines which version of the overloaded function is referred to (see Section
13.4, "Overloaded Operators," on page 179).

The operand of the unary + operator must have arithmetic or pointer type and
the result is the value of the argument. Integral promotion is performed on
integral operands. The type of the result is the type of the promoted operand.

The operand of the unary - operator must have arithmetic type and the result
is the negation of its operand. Integral promotion is performed on integral
operands. The negative of an unsigned quantity is computed by subtracting its
value from 2n, where n is the number of bits in the promoted operand. The
type of the result is the type of the promoted operand.

Product Reference Manual- October 1992

The operand of the logical negation operator! must have arithmetic type or be
a pointer; its value is 1 if the value of its operand is 0 and 0 if the value of its
operand is nonzero. The type of the result is in t.

The operand of - must have integral type; the result is the one's complement
of its operand. Integral promotions are performed. The type of the result is the
type of the promoted operand.

Increment and Decrement
The operand of prefix ++ is incremented by 1. The operand must be a
modifiable lvalue. The type of the operand must be an arithmetic type or a
pointer type. The value is the new value of the operand; it is an lvalue. The
expression ++x is equivalent to x+=1. See the discussions of addition (see
Section 5.6, "Additive Operators," on page 43) and assignment operators (see
Section 5.16, "Assignment Operators," on page 48) for information on
conversions.

The operand of prefix - - is decremented analogously to the prefix + +
operator.

Sizeo!
The s i z eo f operator yields the size, in bytes, of its operand. The operand is
either an expression, which is not evaluated, or a parenthesized type name.
The sizeof operator may not be applied to a function, a bit-field, an
undefined class, the type void, or an array with an unspecified dimension. A
byte is undefined by the language except in terms of the value of sizeof;
sizeof (char) is 1.

When applied to a reference, the result is the size of the referenced object.
When applied to a class, the result is the number of bytes in an object of that
class including any padding required for placing such objects in an array. The
size of any class or class object is larger than zero. When applied to an array,
the result is the total number of bytes in the array. This implies that the size of
an array of n elements is n times the size of an element.

The sizeof operator may be applied to a pointer to a function, but not to a
function.

The result is a constant of type size_t, an implementation-dependent
unsigned integral type defined in the standard header <stddef . h>.

Expressions 35

36

New
The new operator attempts to create an object of the type-name (see Section 8.2,
"Type Names," on page 80) to which it is applied. This type must be an object
type; functions cannot be allocated this way, though pointers to functions can.

allocation-expression:
::opt new placementopt new-type-name new-initializeropt
::opt new placementopt (type-name) new-initializeropt

placement:
(expression-list)

new-type-name:
type-specifier-list new-declarator opt

new-declarator:
* cv-qualifier-listopt new-declarator opt
class-name :: * cv-qualifier-listopt new-declaratoropt
new-declarator opt [expression]

new-initializer:
(initializer-listopt)

The lifetime of an object created by new is not restricted to the scope in which
it is created. The new operator returns a pointer to the object created. When
that object is an array, a pointer to its initial element is returned. For example,
both new int and new int [10] return an int* and the type of new
in t [i] [10] is in t (*) [10]. Where an array type (see "Arrays" on page 86)
is specified all array dimensions but the first must be constant expressions (see
"Constant Expressions" on page 50) with positive values. The first array
dimension can be a general expression even when the type-name is used (despite
the general restriction of array dimensions in type-names to constant-expressions
(see "Constant Expressions" on page 50).

This implies that an operator new () can be called with the argument zero. In
this case, a pointer to an object is returned. Repeated such calls return pointers
to distinct objects.

The type-specifier-list may not contain const, volatile, class declarations, or
enumeration declarations.

The new operator will call the function opera tor new () to obtain storage (see
Section, "Free Store," on page 156). A first argument of sizeof (T) is
supplied when allocating an object of type T. The placement syntax can be used

Product Reference Manual- October 1992

to supply additional arguments. For example, new T results in a call of
operator new(sizeof (T)) and new(2, f) T results in a call operator
new(sizeof(T) ,2,f).

The placement syntax can be used only provided an operator new () with
suitable argument types (see Section 13.2, "Argument Matching," on page 173)
has been declared.

When an object of a nonclass type (including arrays of class objects) is created
with operator new, the global: : operator new () is used. When an object of a
class T is created with operator new, T: : opera tor new () is used if it exists
(using the usual lookup rules for finding members of a class and its base
classes; (see Section 10.2, "Multiple Base Classes," on page 123); otherwise the
global: : operator new () is used. Using: : new ensures that the global
: : opera tor new () is used even if T: : opera tor new () exists.

A new-initializer may be supplied in an allocation-expression. For objects of
classes with a constructor (see "Constructors" on page 147) this argument list
will be used in a constructor call; otherwise the initializer must be of the form
(expression) or (). If present, the expression will be used to initialize the
object; if not, the object will start out with an undefined value.

If a class has a constructor an object of that class can be created by new only if
suitable arguments are provided or if the class has a default constructor (see
"Constructors" on page 147). Whether operator new allocates the memory
itself or leaves that up to the constructor when creating an object of a class with
a constructor is implementation dependent. Access and ambiguity control are
done for both operator new () and the constructor; see Section 12.1, "Special
Member Functions," on page 147.

No initializers can be specified for arrays. Arrays of objects of a class with
constructors can be created by operator new only if the class has a default
constructor (see "Constructors" on page 147). In that case, the default
constructor will be called for each element of the array.

Initialization is done only if the value returned by operator new () is
nonzero. If the value returned by the operator new () is 0 (the null pointer)
the value of the expression is o.

The order of evaluation of the call to an operator new () to get memory and
the evaluation of arguments to constructors is undefined. It is also undefined if
the arguments to a constructor are evaluated if operator new () returns o.

Expressions 37

38

In a new-type-name used as the operand for new, parentheses may not be used.
This implies that

new int(*[10]) ()i II error

is an error because the binding is

(new int) (* [10]) () i / I error

Objects of general type can be expressed using the explicitly parenthesized
version of the new operator. For example,

new (in t (* [10]) ()) i

allocates an array of 10 pointers to functions (taking no argument and
returning int).

The new-type-name in an allocation-expression is the longest possible sequence of
new-declarators. This prevents ambiguities between declarator operators &, *,
[], and their expression counterparts. For example,

new int*ii II syntax error: parsed as \ (new int*) i'
II not as \ (new int)*i'

The * is the pointer declarator and not the multiplication operator.

Delete
The delete operator destroys an object created by the new operator.
deal location-expression:

::opt delete cast-expression
::opt delete [] cast-expression

The result has type void. The operand of delete must be a pointer returned
by new. The effect of applying delete to a pointer not obtained from the new
operator without a placement specification is undefined and usually harmful.
Deleting a pointer with the value zero, however, is guaranteed to be harmless.

The effect of accessing a deleted object is undefined and the deletion of an
object may change its value. Furthermore, if the expression denoting the object
in a delete expression is a modifiable lvalue, its value is undefined after the
deletion.

A pointer to constant cannot be deleted.

Product Reference Manual- October 1992

The delete operator will invoke the destructor (if any), (see "Destructors" on
page 154) for the object pointed to.

To free the storage pointed to, the delete operator will call the function
operator delete (); see "Free Store" on page 156. For objects of a nonclass
type (including arrays of class objects), the global: : operator delete () is
used. For an object of a class T, T: : operator delete () is used if it exists
(using the usual lookup rules for finding members of a class and its base
classes; (see "Ambiguities" on page 125); otherwise the global: : operator
delete () is used. Using: : delete ensures that the global : : opera tor
delete () is used even if T: : operator delete () exists.

The form

delete [] cast-expression

is used to delete arrays. The expression points to an array. The destructors (if
any) for the objects pointed to will be invoked.

The effect of deleting an array with the plain delete syntax is undefined, as is
deleting an individual object with the delete [] syntax.

5.3 Explicit Type Conversion
An explicit type conversion can be expressed using either functional notation
(see "Explicit Type Conversion" on page 32) or the cast notation.

cast-expression:
unary-expression

(type-name) cast-expression

The cast notation is needed to express conversion to a type that does not have a
simple-type-name.

Types may not be defined in casts.

Any type conversion not mentioned below and not explicitly defined by the
user (see "Conversions" on page 150) is an error.

Any type that can be converted to another by a standard conversion «sc4) can
also be converted by explicit conversion and the meaning is the same.

Expressions 39

40

A pointer may be explicitly converted to any integral type large enough to
hold it. The mapping function is implementation dependent, but is intended to
be unsurprising to those who know the addressing structure of the underlying
machine.

A value of integral type may be explicitly converted to a pointer. A pointer
converted to an integer of sufficient size (if any such exists on the
implementation) and back to the same pointer type will have its original value;
mappings between pointers and integers are otherwise implementation
dependent.

A pointer to one object type may be explicitly converted to a pointer to another
object type (subject to the restrictions mentioned in this section). The resulting
pointer may cause addressing exceptions on use if the subject pointer does not
refer to an object suitably aligned in storage. It is guaranteed that a pointer to
an object of a given size may be converted to a pointer to an object of the same
or smaller size and back again without change. Different machines may differ
in the number of bits in pointers and in alignment requirements for objects.
Aggregates are aligned on the strictest boundary required by any of their
constituents. A void * is considered a pointer to object type.

A pointer to a class B may be explicitly converted to a pointer to a class D that
has B as a direct or indirect base class if an unambiguous conversion from D to
B exists (see "Pointer Conversions" on page 23, "Ambiguities" on page 125)
and if B is not a virtual base class (see Section 10.2, "Multiple Base Classes," on
page 123). Such a cast from a base to a derived class assumes that the object of
the base class is a sub-object of an object of the derived class; the resulting
pointer points to the enclosing object of the derived class. If the object of the
base class is not a sub-object of an object of the derived class, the cast may
cause an exception.

The null pointer (0) is converted into itself.

A yet undefined class may be used in a pointer cast, in which case no
assumptions will be made about class lattices (see Section 10.2, "Multiple Base
Classes," on page 123).

An object may be explicitly converted to a reference type X& if a pointer to that
object may be explicitly converted to an X *. Constructors or conversion
functions are not called as the result of a cast to a reference. Conversion of a

Product Reference Manual- October 1992

reference to a base class to a reference to a derived class is handled similarly to
the conversion of a pointer to a base class to a pointer to a derived class with
respect to ambiguity, virtual classes, and so on.

The result of a cast to a reference type is an lvalue; the results of other casts are
not. Operations performed on the result of a pointer or reference cast refer to
the same object as the original (uncast) expression.

A pointer to function may be explicitly converted to a pointer to an object type
provided the object pointer type has enough bits to hold the function pointer.
A pointer to an object type may be explicitly converted to a pointer to function
provided the function pointer type has enough bits to hold the object pointer.
In both cases, use of the resulting pointer may cause addressing exceptions, or
worse, if the subject pointer does not refer to suitable storage.

A pointer to a function may be explicitly converted to a pointer to a function of
a different type. The effect of calling a function through a pointer to a function
type that differs from the type used in the definition of the function is
undefined. See also "Pointer Conversions" on page 23.

An object or a value may be converted to a class object (only) if an appropriate
constructor or conversion operator has been declared (see "Conversions" on
page 150).

A pointer to member may be explicitly converted into a different pointer to
member type when the two types are both pointers to members of the same
class or when the two types are pointers to member functions of classes one of
which is unambiguously derived from the other (see "Pointers to Members" on
page 24).

A pointer to an object of a canst type can be cast into a pointer to a non
- canst type. The resulting pointer will refer to the original object. An object of
a cons t type or a reference to an object of a cons t type can be cast into a
reference to a non- canst type. The resulting reference will refer to the original
object. The result of attempting to modify that object through such a pointer or
reference will either cause an addressing exception or be the same as if the
original pointer or reference had referred a non- cons t object. It is
implementation dependent whether the addressing exception occurs.

A pointer to an object of a volatile type can be cast into a pointer to a non-c
volatile type. The resulting pointer will refer to the original object. An
object of a volatile type or a reference to an object of a volatile type can
be cast into a reference to a non- volatile type.

Expressions 41

42

5.4 Pointer-to-Member Operators
The pointer-to-member operators - > * and . * group left-to-right.

pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

The binary operator . * binds its second operand, which must be of type
"pointer to member of class T" to its first operand, which must be of class T or
of a class of which T is an unambiguous and accessible base class. The result is
an object or a function of the type specified by the second operand.

The binary operator ->* binds its second operand, which must be of type
"pointer to member of T" to its first operand, which must be of type "pointer
to T" or "pointer to a class of which T is an unambiguous and accessible base
class." The result is an object or a function of the type specified by the second
operand.

If the result of . * or - > * is a function, then that result can be used only as the
operand for the function call operator (). For example,

(ptr_to_obj->*ptr_to_mfct) (10) ;

calls the member function denoted by ptr_to_mfct for the object pointed to
by ptr_to_obj. The result of an . * expression or a ->* expression is an
lvalue if its second operand is an lvalue.

5.5 Multiplicative Operators
The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

The operands of * and / must have arithmetic type; the operands of % must
have integral type. The usual arithmetic conversions (see II Arithmetic
Conversions" on page 22) are performed on the operands and determine the
type of the result.

Product Reference Manual- October 1992

The binary * operator indicates multiplication.

The binary / operator yields the quotient, and the binary % operator yields the
remainder from the division of the first expression by the second. If the second
operand of / or % is 0 the result is undefined; otherwise (a/b) *b + a%b is
equal to a. If both operands are nonnegative then the remainder is
nonnegative; if not, the sign of the remainder is implementation dependent.

5.6 Additive Operators

The additive operators + and - group left-to-right. The usual arithmetic
conversions (see 1/ Arithmetic Conversions" on page 22) are performed for
operands of arithmetic type.

addi tive-expression:
mu I tipl icative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The operands must be of arithmetic or pointer type. The result of the +
operator is the sum of the operands. A pointer to an object in an array and a
value of any integral type may be added. The result is a pointer of the same
type as the original pointer, which points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an object
in an array, the expression P+ 1 is a pointer to the next object in the array. If the
resulting pointer points outside the bounds of the array, except at the first
location beyond the high end of the array, the result is undefined.

The"result of the - operator is the difference of the operands. A value of any
integral type may be subtracted from a pointer, and then the same conversions
apply as for addition.

No further type combinations are allowed for pointers.

If two pointers to objects of the same type are subtracted, the result is a signed
integral value representing the number of objects separating the pointed-to
objects. Pointers to successive elements of an array differ by 1. The type of the
result is implementation dependent, but is defined as ptrdiff_t in the
standard header <stddef . h>. The value is undefined unless the pointers
point to elements of the same array; however, if P points to the last element of
an array then (P+1) -1 is P.

Expressions 43

44

5.7 Shift Operators
The shift operators « and » group left-to-right.

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

The operands must be of integral type and integral promotions are performed.
The type of the result is that of the promoted left operand. The result is
undefined if the right operand is negative, or greater than or equal to the
length in bits of the promoted left operand. The value of El « E2 is El

(interpreted as a bit pattern) left-shifted E2 bits; vacated bits are O-filled. The
value of El » E2 is El right-shifted E2 bit positions. The right shift is
guaranteed to be logical (O-fill) if El has an unsigned type or if it has a
nonnegative value; otherwise the result is implementation dependent.

5.B Relational Operators
The relational operators group left-to-right, but this fact is not very useful;
a<b<c means (a<b) <c and not (a<b) && (b<c).

relational-expression:
shift -expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands must have arithmetic or pointer type. The operators < (less
than), > (greater than), <= (less than or equal to), and >= (greater than or equal
to) all yield a if the specified relation is false and 1 if it is true. The type of the
result is into

The usual arithmetic conversions are performed on arithmetic operands.
Pointer conversions are performed on pointer operands. This implies that any
pointer may be compared to a constant expression evaluating to a and any
pointer can be compared to a pointer of type void* (in the latter case the
pointer is first converted to void *). Pointers to objects or functions of the same
type (after pointer conversions) may be compared; the result depends on the
relative positions of the pointed-to objects or functions in the address space.

Product Reference Manual- October 1992

Two pointers to the same object compare equal. If two pointers point to
non static members of the same object, the pointer to the later declared member
compares higher provided the two members not separated by an access-specifier
label (see Section 11.2, "Access Specifiers," on page 136) and provided their
class is not a union. If two pointers point to nonstatic members of the same
object separated by an access-specifier label (see Section 11.2, "Access
Specifiers," on page 136) the result is undefined. If two pointers point to data
members of the same union, they compare equal. If two pointers point to
elements of the same array or one beyond the end of the array, the pointer to
the object with the higher subscript compares higher. Other pointer
comparisons are implementation dependent.

5.9 Equality Operators
equality-expression: r

elational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The == (equal to) and the! = (not equal to) operators are exactly analogous to
the relational operators except for their lower precedence. (Thus a<b == c<d
is 1 whenever a<b and c<d have the same truth-value.)

In addition, pointers to members of the same type may be compared. Pointer to
member conversions (see "Pointers to Members" on page 24) are performed. A
pointer to member may be compared to a constant expression that evaluates to
O.

5.10 Bitwise AND Operator
and -expression:

equal ity-expression
and-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND
function of the operands. The operator applies only to integral operands.

Expressions 45

5.11 Bitwise Exclusive OR Operator
exclusive-or-expression:

and -expression
exclusive-or-expression /\ and-expression

The usual arithmetic conversions are performed; the result is the bitwise
exclusive OR function of the operands. The operator applies only to integral
operands.

5.12 Bitwise Inclusive OR Operator
inclusive-or-expression:

exclusive-or-expression
inclusive-or-expression I exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise
inclusive OR function of its operands. The operator applies only to integral
operands.

5.13 Logical AND Operator
logical-and -expression:

inclusive-or-expression
logical-and-expression && inclusive-or-expression

The && operator groups left-to-right. It returns 1 if both its operands are
nonzero, 0 otherwise. Unlike &, && guarantees left-to-right evaluation;
moreover the second operand is not evaluated if the first operand evaluates to
o.

The operands need not have the same type, but each must have arithmetic type
or be a pointer. The result is an into All side effects of the first expression
happen before the second expression is evaluated.

5.14 Logical OR Operator

.46

logical-or-expression:
logical-and -expression
logical-or-expression I I logical-and-expression

Product Reference Manual- October 1992

The I I operator groups left-to-right. It returns 1 if either of its operands is
nonzero, and 0 otherwise. Unlike I, I I guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates to
nonzero.

The operands need not have the same type, but each must have arithmetic type
or be a pointer. The result is an into All side effects of the first expression
happen before the second expression is evaluated.

5.15 Conditional Operator
conditional-expression:

logical-or-expression
logical-or-expression ? expression: conditional-expression

Conditional expressions group right-to-left. The first expression must have
arithmetic type or be a pointer type. It is evaluated and if it is nonzero, the
result of the conditional expression is the value of the second expression,
otherwise that of the third expression. All side effects of the first expression
happen before the second or third expression is evaluated.

If both the second and the third expressions are of arithmetic type, then if they
are of the same type the result is of that type; otherwise the usual arithmetic
conversions are performed to bring them to a common type. Otherwise, if both
the second and the third expressions are either a pointer or a constant
expression that evaluates to 0, pointer conversions are performed to bring
them to a common type. Otherwise, if both the second and the third
expressions are references, reference conversions are performed to bring them
to a common type. Otherwise, if both the second and the third expressions are
void, the common type is void. Otherwise, if both the second and the third
expressions are of the same class T, the common type is T. Otherwise the
expression is illegal. The result has the common type; only one of the second
and third expressions is evaluated. The result is an Ivalue if the second and the
third operands are of the same type and both are Ivalues.

Expressions 47

5.16 Assignment Operators

48

There are several assignment operators, all of which group right-to-Ieft. All
require a modifiable lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The result of the assignment operation is
the value stored in the left operand after the assignment has taken place; the
result is an lvalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= »= «= &= A= 1=

In simple assignment (=), the value of the expression replaces that of the object
referred to by the left operand. If both operands have arithmetic type, the right
operand is converted to the type of the left preparatory to the assignment.
There is no implicit conversion to an enumeration (see Section 7.3,
"Enumeration Declarations," on page 73), so if the left operand is of an
enumeration type the right operand must be of the same type. If the left
operand is of pointer type, the right operand must be of pointer type or a
constant expression that evaluates to 0; the right operand is converted to the
type of the left before the assignment.

A pointer of type T*const can be assigned to a pointer of type T*, but the
reverse assignment is illegal (see "Type Specifiers" on page 70). Objects of
types const T and volatile T can be assigned to plain T lvalues and to
lvalues of type volatile T; see also Section 8.5, "Initializers," on page 94.

If the left operand is of pointer to member type, the right operand must be of
pointer to member type or a constant expression that evaluates to 0; the right
operand is converted to the type of the left before the assignment.

Assignment to objects of a class (see Chapter 9, "Classes,") X is defined by the
function x: : operator= () (see" Assignment" on page 182). Unless the user
defines an x: : operator= (), the default version is used for assignment (see
"Copying Class Objects" on page 164). This implies that an object of a class
derived from X (directly or indirectly) by unambiguous public derivation (see
Section 4.1, "Standard Conversions," on page 21) can be assigned to an x.

Product Reference Manual- October 1992

A pointer to a member of class B may be assigned to a pointer to a member of
class D of the same type provided D is derived from B (directly or indirectly) by
unambiguous public derivation (see Section 10.2, "Multiple Base Classes," on
page 123).

Assignment to an object of type "reference to Til assigns to the object of type T

denoted by the reference.

The behavior of an expression of the form Elop = E2 is equivalent to El = El

op (E2); except that El is evaluated only once. In += and -=, the left operand
may be a pointer, in which case the (integral) right operand is converted as
explained in Section 5.6, "Additive Operators," on page 43; all right operands
and all nonpointer left operands must have arithmetic type.

For class objects, assignment is not in general the same as initialization (see
Section 8.5, "Initializers," on page 94, "Constructors" on page 147,
"Initialization" on page 158, "Copying Class Objects" on page 164.)

5.17 Comma Operator

The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the
value of the left expression is discarded. All side effects of the left expression
are performed before the evaluation of the right expression. The type and value
of the result are the type and value of the right operand; the result is an lvalue
if its right operand is an 1 val ve.

In contexts where comma is given a special meaning, for example, in lists of
actual arguments to functions (see "Function Call" on page 31) and lists of
initializers (see Section 8.5, "Initializers," on page 94), the comma operator as
described in this section can appear only in parentheses; for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5.

Expressions 49

5.18 Constant Expressions

50

In several places, C++ requires expressions that evaluate to an integral
constant: as array bounds (see II Arrays" on page 86), as case expressions (see
liThe switch Statement" on page 53), as bit-field lengths (see Section 9.7, "Bit
Fields," on page 115), and as enumerator initializers (see Section 7.3,
"Enumeration Declarations," on page 73).

cons tan t -expression:
conditional-expression

A constant-expression can involve only literals (see Section 2.6, "Literals," on
page 7), enumerators, canst values of integral types initialized with constant
expressions (see Section 8.5, "Initializers," on page 94), and sizeof
expressions. Floating constants (see "Floating Constants" on page 9) must be
cast to integral types. Only type conversions to integral types may be used. In
particular, except in sizeof expressions, functions, class objects, pointers, and
references cannot be used. The comma operator and assignment-operators may
not be used in a constant expression.

Product Reference Manual- October 1992

6.1 Statements

Statements

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound -statement
selection-statement
iteration-statement
jump-statement
declaration-statement

6.2 Labeled Statement
A statement may be labeled.

labeled -statement:
identifier: statement
case constant-expression: statement
defaul t : statement

51

52

An identifier label declares the identifier. The only use of an identifier label is
as the target of a goto. The scope of a label is the function in which it appears.
Labels cannot be redeclared within a function. A label can be used in a goto
statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

Case labels and default labels may occur only in switch statements.

6.3 Expression Statement
Most statements are expression statements, which have the form

expression-statement:
expressionopt ;

Usually expression statements are assignments or function calls. All side effects
from an expression statement are completed before the next statement is
executed. An expression statement with the expression missing is called a null
statement; it is useful to carry a label just before the} of a compound
statement and to supply a null body to an iteration statement such as while
(see "The while Statement" on page 54).

6.4 Compound Statement, or Block
So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called "block") is provided.

compound-statement:
{ statement-list opt }

statement-list:
statement
statement-list statement

Note that a declaration is a statement. See Section 6.7, "Jump Statements," on
page 56.

6.5 Selection Statements
Selection statements choose one of several flows of control.

Product Reference Manual- October 1992

selection-statement:
if (expression) statement
if (expression) statement else statement
swi tch (expression) statement

The statement in a selection-statement may not be a declaration.

The if Statement
The expression must be of arithmetic or pointer type or of a class type for
which an unambiguous conversion to arithmetic or pointer type exists (see
"Conversions" on page 150).

The expression is evaluated and if it is nonzero, the first sub statement is
executed. If else is used, the second substatement is executed if the
expression is zero. The else ambiguity is resolved by connecting an else
with the last encountered else-less if.

The swi t ch Statement
The swi tch statement causes control to be transferred to one of several
statements depending on the value of an expression.

The expression must be of integral type or of a class type for which an
unambiguous conversion to integral type exists (see "Conversions" on page
150). Integral promotion is performed. Any statement within the statement
may be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression (see Section 5.18, "Constant Expressions," on page
50) is converted to the promoted type of the switch expression. No two of the
case constants in the same switch may have the same value.

There may be at most one label of the form

default :

within a swi tch statement.

Switch statements may be nested; a case or defaul t label is associated with
the smallest switch enclosing it.

Statements 53

54

When the swi tch statement is executed, its expression is evaluated and
compared with each case constant. If one of the case constants is equal to the
value of the expression, control is passed to the statement following the
matched case label. If no case constant matches the expression, and if there is a
defaul t label, control passes to the statement labeled by the default label. If
no case matches and if there is no defaul t then none of the statements in the
switch is executed.

case and defaul t labels in themselves do not alter the flow of control, which
continues unimpeded across such labels. To exit from a switch, see break,
"The break Statement" on page 56.

Usually, the statement that is the subject of a switch is compound.
Declarations may appear in the statement of a switch-statement. It is illegal,
however, to jump past a declaration with an explicit or implicit initializer
unless the declaration is in an inner block that is not entered (that is,
completely bypassed by the transfer of control; (see Section 6.8, "Declaration
Statement," on page 58). This implies that declarations that contain explicit or
implicit initializers must be contained in an inner block.

6.6 Iteration Statements
Iteration statements specify looping.

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (for-init-statement expressionopt ; expressionopt statement

for-init-statement:
expression-statement
declaration-statement

A for-init-statement ends with a semicolon.

The statement in an iteration-statement may not be a declaration.

The whi 1 e Statement
In the while statement the sub statement is executed repeatedly until the value
of the expression becomes zero. The test takes place before each execution of
the substatement.

Product Reference Manual- October 1992

Do statement

The expression must be of arithmetic or pointer type or of a class type for
which an unambiguous conversion to arithmetic or pointer type exists (see
"Conversions" on page 150).

In the do statement the sub statement is executed repeatedly until the value of
the expression becomes zero. The test takes place after each execution of the
substatement.

The expression must be of arithmetic or pointer type or of a class type for
which an unambiguous conversion to arithmetic or pointer type exists (see
"Conversions" on page 150).

The for Statement

The for statement

for (for-in it-statement expression-lopt ; expression-2opt statement

is equivalent to

for-in it-statement
while (expression-l) {
statement
expression-2 ;

except that a continue in statement will execute expression-2 before
reevaluating expression-l. Thus the first statement specifies initialization for the
loop; the first expression specifies a test, made before each iteration, such that
the loop is exited when the expression becomes zero; the second expression
often specifies incrementing that is done after each iteration. The first
expression must have arithmetic or pointer type or a class type for which an
unambiguous conversion to arithmetic or pointer type exists (see
"Conversions" on page 150).

Either or both of the expressions may be dropped. A missing expression-l
makes the implied while clause equivalent to while (1).

Statements 55

56

If the for-init-statement is a declaration, the scope of the names declared extends
to the end of the block enclosing the for-statement.

6.7 Jump Statements

Jump statements unconditionally transfer control.

jump-statement:
break i

continue
return expressionopt ;
goto identifier;

On exit from a scope (however accomplished), destructors (see "Destructors"
on page 154) are called for all constructed class objects in that scope that have
not yet been destroyed. This applies to both explicitly declared objects and
temporaries (see "Temporary Objects" on page 149).

The break Statement

The break statement may occur only in an iteration-statement or a swi tch
statement and causes termination of the smallest enclosing iteration-statement or
swi tch statement; control passes to the statement following the terminated
statement, if any.

The con tinue Statement

The continue statement may occur only in an iteration-statement and causes
control to pass to the loop-continuation portion of the smallest enclosing
iteration-statement, that is, to the end of the loop. More precisely, in each of the

Product Reference Manual- October 1992

statements

while (faa) {do {for (ii)

II II ... II

cantin: cantin: cantin:

} while (fOO)i

a continue not contained in an enclosed iteration statement is equivalent to
goto contino

The return Statement

A function returns to its caller by the return statement.

A return statement without an expression can be used only in functions that do
not return a value, that is, a function with the return value type void, a
constructor (see "Constructors" on page 147), or a destructor (see
"Destructors" on page 154). A return statement with an expression can be used
only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an
initialization, to the return type of the function in which it appears. This may
involve the construction and copy of a temporary object (see "Temporary
Objects" on page 149). Flowing off the end of a function is equivalent to a
return with no value; this is illegal in a value-returning function.

The go to Statement

The goto statement unconditionally transfers control to the statement labeled
by the identifier. The identifier must be a label (see Section 6.2, "Labeled
Statement," on page 51) located in the current function.

Statements 57

58

6.8 Declaration Statement
A declaration statement introduces a new identifier into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer
block, the outer declaration is hidden for the remainder of the block, after
which it resumes its force.

Any initializations of auto or register variables are done each time their
declaration-statement is executed. Destruction of local variables declared in the
block is done on exit from the block (see Section 6.7, "Jump Statements," on
page 56). Destruction of auto variables defined in a loop is done once per
iteration. For example, here the Index j is created and destroyed once each
time round the i loop:

for (int i = 0; i<100; i++)
for (Index j = 0; j<100; j++) {

/ / ...

Transfer out of a loop, out of a block, or back past an initialized auto variable
involves the destruction of au to variables declared at the point transferred
from but not at the point transferred to. "-

It is possible to transfer into a block, but not in a way that causes initializations
not to be done. It is illegal to jump past a declaration with an explicit or
implicit initializer unless the declaration is in an inner block that is not entered
(that is, completely bypassed by the transfer of control) or unless the jump is

Product Reference Manual- October 1992

from a point where the variable has already been initialized. For example:

void f ()
{

ly:

Ix:

I I ...
goto Ix; II error: jump past initializer
I I ...

X a = 1;

I I ...

goto ly; II ok, jump implies destructor
II call for 'a'

An auto variable constructed under a condition is destroyed under that
condition and cannot be accessed outside that condition. For example,

if (i)
for (int j
I I ...
}

0; j<100; j++) {

if (j!=100) II error: access outside condition
I I ...

Initialization of a local object with storage class static (see "Storage Class
Specifiers" on page 65) is done the first time control passes through its
declaration (only). Where a static variable is initialized with an expression
that is not a constant-expression, default initialization to 0 of the appropriate
type (see Section 8.5, "Initializers," on page 94) happens before its block is first
entered.

The destructor for a local static object will be executed if and only if the
variable was constructed. The destructor must be called either immediately
before or as part of the calls of the atexi t () functions (see Section 3.5, "Start
and Termination," on page 15). Exactly when is undefined.

Statements 59

60

6.9 Ambiguity Resolution

There is an ambiguity in the grammar involving expression-statements and
declarations: An expression-statement with a function-style explicit type
conversion (see "Explicit Type Conversion" on page 32) as its leftmost
subexpression can be indistinguishable from a declaration where the first
declarator starts with a (. In those cases the statement is a declaration.

To disambiguate, the whole statement may have to be examined to determine if
it is an expression-statement or a declaration. This disambiguates many examples.
For example, assuming T is a simple-type-name (see "Type Specifiers" on page
70),

T(a)->m = 7;
T(a)++;
T(a,5)«c;

T(*e) (int);
T(f) [];
T(g) = { 1, 2 };
T(*d) (double(3));

II expression-statement
II expression-statement
II expression-statement

II declaration
II declaration
II declaration
II declaration

The remaining cases are declarations. For example,

T(a) ; II declaration
T(*b) (); II declaration
T(c)=7i II declaration
T(d),e,f=3i II declaration
T(g) (h,2); II declaration

The disambiguation is purely syntactic; that is, the meaning of the names,
beyond whether they are type-names or not, is not used in the disambiguation.

Product Reference Manual- October 1992

A slightly different ambiguity between expression-statements and declarations is
resolved by requiring a type-name for function declarations within a block (see
Section 6.4, "Compound Statement, or Block," on page 52). For example:

void g()
{

int f(); II declaration
int a; II declaration
f(); II expression-statement
a; II expression-statement

Statements 61

62 Product Reference Manual- October 1992

7.1 Declarations

7.2 Specifiers

Declarations

Declarations specify the interpretation given to each identifier; they do not
necessarily reserve storage associated with the identifier (see Section 3.2,
"Declarations and Definitions," on page 11). Declarations have the form

declaration:
decl-specifiersopt declarator-list opt;
asm-declaration
function -defin ition
linkage-specification

The declarators in the declarator-list (see Chapter 8, "Declarators,") contain the
identifiers being declared. Only in function definitions (see Section 8.4,
"Function Definitions," on page 93) and function declarations may the decl
specifiers be omitted. Only when declaring a class (see Chapter 9, "Classes,") or
enumeration (see Section 7.2, "Specifiers," on page 63), that is, when the decl
specifier is a class-specifier or enum-specifier, may the declarator-list be empty. asm
declarations are described in Section 7.3, "Enumeration Declarations," on page
73, and linkage-specifications in Section 7.4, "Asm Declarations," on page 75. A
declaration occurs in a scope (see Section 3.3, "Scopes," on page 12); the scope
rules are summarized in Section 10.5, "Summary of Scope Rules," on page 131.

The specifiers that can be used in a declaration are

63

64

decl-specifier:
storage-class-specifier
type-specifier
fct-specifier
template-specifier
friend
typedef

decl-specifiers:
decl-specifiersopt decl-specifier

The longest sequence of decl-specifiers that could possibly be a type name is
taken as the decl-specifiers of a declaration. The sequence must be self-consistent
as described below. For example,

typedef char* Pc;
static Pc; II error: name missing

Here, the declaration static Pc is illegal because no name was specified for
the static variable of type Pc. To get a variable of type int called Pc, the type
specifier int must be present to indicate that the typedef-name Pc is the name
being (re)declared, rather than being part of the decl-specifier sequence. For
example,

void f(const Pc); II void f(char*const)
void g(const int Pc); II void g(const int)

Since signed, unsigned, long, and short by default imply int, a typedef
name appearing after one of those specifiers must be the name being
(re)declared. For example,

void h(unsigned Pc); II void h(unsigned int)
void k(unsigned int Pc); II void k(unsigned int)

Product Reference Manual- October 1992

Storage Class Specifiers

The storage class specifiers are
storage-class-specifier:

auto
register
static
extern

The auto or register specifiers can be applied only to names of objects
declared in a block (see Section 6.4, "Compound Statement, or Block," on page
52) and for formal arguments (see Section 8.4, "Function Definitions," on page
93). The auto declarator is almost always redundant and not often used; one
use of auto is to distinguish a declaration-statement from an expression-statement
(see Section 6.3, "Expression Statement," on page 52) explicitly.

A register declaration is an auto declaration, together with a hint to the
compiler that the variables declared will be heavily used. The hint may be
ignored and in most implementations it will be ignored if the address of the
variable is taken.

An object declaration is a definition unless it contains the extern specifier and
has no initializer (see Section 3.2, "Declarations and Definitions," on page 11).

A definition causes the appropriate amount of storage to be reserved and any
appropriate initialization (see Section 8.5, "Initializers," on page 94) to be done.

The static and extern specifiers can be applied only to names of objects
and functions and to anonymous unions. There can be no static function
declarations within a block, nor any static or extern formal arguments.
Static class members are described in (see Section 9.5, "Static Members," on
page 111); extern cannot be used for class members.

A name specified static has internal linkage. Objects declared const have
internal linkage unless they have previously been given external linkage. A
name specified extern has external linkage unless it has previously been
given internal linkage. A file scope name without a storage-dass-specifier has
external linkage unless it has previously been given internal linkage and
provided it is not declared const. For a nonmember function an inline

Declarations 65

66

specifier is equivalent to a static specifier for linkage purposes (see Section
3.4, "Program and Linkage," on page 14). All linkage specifications for a name
must agree. For example,

static char* f()i II f() has internal linkage
char* f() II f() still has internal linkage

1* ... *1 }

char* g()i II g() has external linkage
static char* g() II error: inconsistent linkage

{ 1* ... *1 }

static int ai II 'a' has internal linkage
int ai II error: two definitions

static int bi II 'b' has internal linkage
extern int bi II 'b' still has internal linkage

int Ci II 'c' has external linkage
static int Ci II error: inconsistent linkage

extern int di II 'd' has external linkage
static int di II error: inconsistent linkage

The name of an undefined class can be used in an extern declaration. Such a
declaration, however, cannot be used before the class has been defined. For
example,

struct Si

extern S ai
extern S f()i
extern void g(S)i

void h()
{

g (a) i

f()i
Ilerror: S undefined
II error: S undefined

Product Reference Manual- October 1992

Function Specifiers

Some specifiers can be used only in function declarations.

fct-specifier:
inline
virtual

The inl ine specifier is a hint to the compiler that inline substitution of the
function body is to be preferred to the usual function call implementation. The
hint may be ignored. For a nonmember function inl ine specifier also gives
the function default internal linkage (see Section 3.4, "Program and Linkage,"
on page 14). A function (see "Function Call" on page 31, "Functions" on page
88) defined within the declaration of a class is inl ine by default.

An inline member function must have exactly the same definition in every
compilation in which it appears.

Declarations 67

68

A class member function need not be explicitly declared inl ine in the class
declaration to be inline. When no inline specifier is used, linkage will be
external unless an inline definition appears before the first call.

class X {
public:

int f () ;
inline int g(); II X::g() has internal linkage
int h();

} ;

void k(X* p)

int i = p->f(); II now X: :f() has external linkage
int j = p->g () ;
I I ...

inline int X::f() II error: called before defined
II as inline

I I ...

inline int X:: g ()
{

I I ...

inl ine in t X:: h ()

II

II now X: :h() has internal linkage

The virtual specifier may be used only in declarations of nonstatic class
member functions within a class declaration; see Section 10.3, UVirtual
Functions," on page 127.

The typedef Specifier
Declarations containing the decl-specifier typedef declare identifiers that can
be used later for naming fundamental or derived types. The typedef specifier
may not be used in a function-definition (see Section 8.4, UFunction Definitions,"
on page 93).

Product Reference Manual- October 1992

typedef-name:
identifier

Within the scope (see Section 3.3, "Scopes," on page 12) of a typedef
declaration, each identifier appearing as part of any declarator therein becomes
syntactically equivalent to a keyword and names the type associated with the
identifier in the way described in Chapter 8, "Declarators,". A typedef-name is
thus a synonym for another type. A typedef-name does not introduce a new type
the way a class declaration (see Section 9.2, "Class Names," on page 102) does.
For example, after

typedef int MILES, *KLICKSPi

the constructions

MILES distancei
extern KLICKSP metricPi

are all legal declarations; the type of distance is int; that of metricp is
"pointer to in t . "

A typedef may be used to redefine a name to refer to the type to which it
already refers - even in the scope where the type was originally declared. For
example,

typedef struct s { /* ... */ } Si

typedef int Ii

typedef int Ii

typedef I Ii

An unnamed class defined in a typedef gets its typedef name as its name. For
example,

typedef struct { /* ... *1 } Si II the struct is named S

A typede f may not redefine a name of a type declared in the same scope to
refer to a different type. For example,

class complex { 1* ... *1 }i

typedef int complexi II error: redefinition

Declarations 69

70

Similarly, a class may not be declared with the name of a type declared in the
same scope to refer to a different type. For example,

typedef int complex;
class complex { 1* ... *1 }; II error: redefinition

A typedef-name that names a class is a class-name (see Section 9.2, "Class
Names," on page 102). The synonym may not be used after a class, struct,
or union prefix and not in the names for constructors and destructors within
the class declaration itself. For example,

struct 8 {
8 () ;

-8 ();

} ;

typedef struct 8 T;

8 a = T(); II ok
struct T * p; II error

The templa te Specifier
The template specifier is used to specify families of types or functions; see
Chapter 14, "Templates,".

The f r i end Specifier
The friend specifier is used to specify access to class members; see Section
11.5, "Friends," on page 140.

Type Specifiers
The type-specifiers are

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier

Product Reference Manual- October 1992

:: class-name
canst
volatile

The words canst and volatile may be added to any legal type-specifier in
the declaration of an object. Otherwise, at most one type-specifier may be given
in a declaration. A cons t object may be initialized, but its value may not be
changed thereafter. Unless explicitly declared extern, a cons t object does not
have external linkage and must be initialized (see Section 8.5, "Initializers," on
page 94; UConstructors" on page 147). An integer canst initialized by a
constant expression may be used in constant expressions (see UConstant
Expressions" on page 50). Each element of a canst array is canst and each
nonfunction, nonstatic member of a canst class object is canst (see "The this
Pointer" on page 109). A canst object of a type that does not have a
constructor or a destructor may be placed in read-only memory. The effect of a
write operation on any part of such an object is either an addressing exception
or the same as if the object had been non- canst.

There are no implementation-independent semantics for volatile objects;
volatile is a hint to the compiler to avoid aggressive optimization involving
the object because the value of the object may be changed by means
undetectable by a compiler. Each element of a volatile array is volatile
and each nonfunction, nonstatic member of a volatile class object is
volatile (see uThe this Pointer" on page 109).

If the type-specifier is missing from a declaration, it is taken to be into

simple-type-name:
complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void

Declarations 71

72

At most one of the words long or short may be specified together with into
Either may appear alone, in which case int is understood. The word long
may appear together with double. At most one of the words signed and
unsigned may be specified together with char, short, int, or long. Either
may appear alone, in which case int is understood. The signed specifier
forces char objects and bit-fields to be signed; it is redundant with other
integral types.

class-specifiers and enum-specifiers are discussed in Chapter 9, "Classes,"and
Section 7.2, "Specifiers," on page 63, respectively.

elaborated-type-specifier:
class-key class-name
class-key identifier
enum enum-name

class-key:
class
struct
union

If an identifier is specified, the elaborated-type-specifier declares it to be a class
name; see Section 9.2, "Class Names," on page 102.

If defined, a name declared using the uni on specifier must be defined as a
union. If defined, a name declared using the class specifier must be defined
using the class or struct specifier. If defined, a name declared using the
struct specifier must be defined using the class or struct specifier. Names
of nested types (see Section 9.8, "Nested Class Declarations," on page 116) can
be qualified by the name of their enclosing class:

qualified -type-name:
typedef-name
class-name :: qualified-type-name

complete-class-name:
qualified-class-name
:: qualified-class-name

qual ified -c lass-name:
class-name
class-name :: qualified-class-name

Product Reference Manual- October 1992

A name qualified by a class-name must be a type defined in that class or in a
base class of that class. As usual, a name declared in a derived class hides
members of that name declared in base classes; see Section 3.3, "Scopes," on
page 12.

7.3 Enumeration Declarations
An enumeration is a distinct integral type (see "Fundamental Types" on page
17) with named constants. Its name becomes an enum-name, that is, a reserved
word within its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enum-listopt }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants, and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the corresponding constants begin at zero and increase by one as the
declaration is read from left to right. An enumerator with = gives the
associated identifier the value indicated; subsequent identifiers without
initializers continue the progression from the assigned value. The value of an
enumerator must be an in t or a value that can be promoted to in t by integral
promotion (see Section, "Integral Promotions," on page 21).

Declarations 73

74

The names of enumerators must be distinct from those of ordinary variables
and other enumerators in the same scope. The values of the enumerators need
not be distinct. An enumerator is considered defined immediately after it and
its initializer, if any, has been seen. For example,

I enurn { a, b, c=O };
enum { d, e, f=e+2 };

defines a, c, and d to be 0, band e to be 1, and f to be 3.

Each enumeration defines an integral type that is different from all other
integral types. The type of an enumerator is its enumeration. The value of an
enumerator or an object of an enumeration type is converted to an integer by
integral promotion (see "Integral Promotions" on page 21). For example,

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) II

makes color an integral type describing various colors, and then declares col
as an object of that type, and cp as a pointer to an object of that type. The
possible values of an object of type color are red, yellow, green, blue;
these values can be converted to the in t values 0, 1, 20, and 21. Since
enumerations are distinct types, objects of type color may be assigned only
values of type color. For example,

color c = 1; II error: type mismatch,
II no conversion from int to color

int i yellow; II ok: yellow converted to int value 1
II integral promotion

Enumerators defined in a class (Chapter 9, "Classes,") are in the scope of that
class and can be referred to outside member functions of that class only by
explicit qualification with the class name (see Section 5.2, "Primary

Product Reference Manual- October 1992

Expressions," on page 28). The name of the enumeration itself is also local to
the class (see Section 9.8, "Nested Class Declarations," on page 116). For
example,

class X
public:

enum direction { left='l', right='r' };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
} ;

void g(X* p)

direction d; II error: 'direction' not in
int i;
i p->f(left); II error: 'left' not in scope
i = p->f (X: : right) ; II ok

II

7.4 Asm Declarations

An asm declaration has the form

asm-declaration:
asm (string-literal) ;

scope

The meaning of an asm declaration is implementation dependent. Typically it
is used to pass information through the compiler to an assembler.

7.5 Linkage Specifications

Linkage (see Section 3.4, "Program and Linkage," on page 14) between C++
and non-C++ code fragments can be achieved using a linkage-specification:

linkage-specification:
extern string-literal { declaration-listopt }

extern string-literal declaration

declaration-list:
declaration
declaration-list declaration

Declarations 75

76

The string-literal indicates the required linkage. The meaning of the string
literal is implementation dependent. Linkage to a function written in the C
programming language, "C" I and linkage to a c++ function, "C++" I mustbe
provided by every implementation. Default linkage is "C++". For example,

complex sqrt(complex)i
extern "C" {

II c++ linkage by default

double sqrt(double) i II C linkage

Linkage specifications nest. A linkage specification does not establish a scope.
A linkage-specification may occur only in file scope (see Section 3.3, "Scopes," on
page 12). A linkage-specification for a class applies to nonmember functions and
objects declared within it. A linkage-specification for a function also applies to
functions and objects declared within it. A linkage declaration with a string
that is unknown to the implementation is an error.

If a function has more than one linkage-specification, they must agree; that is,
they must specify the same string-literal. A function declaration without a
linkage specification may not precede the first linkage specification for that
function. A function may be declared without a linkage specification after an
explicit linkage specification has been seen; the linkage explicitly specified in
the earlier declaration is not affected by such a function declaration.

At most one of a set of overloaded functions (see Chapter 13, "Overloading,")
with a particular name can have C linkage. See Section 7.5, "Linkage
Specifications," on page 75.

Linkage can be specified for objects. For example,

extern "C" {
I I ...
_iobuf _iob[_NFILEli
I I ...
int _flsbuf(unsigned,_iobuf*) i

I I ...

Functions and objects may be declared static within the {} of a linkage
specification. The linkage directive is ignored for such a function or object.

Product Reference Manual- October 1992

Otherwise, a function declared in a linkage specification behaves as if it was
explicitly declared extern. For example,

extern "C" double f();
static double f(); II error

is an error (see Section 7.2, "Specifiers," on page 63). An object defined within
an

extern "C" { 1* ... *1 }

construct is still defined (and not just declared).

Linkage from C++ to objects defined in other languages and to objects defined
in*C++ from other languages is implementation and language dependent. Only
where the object layout strategies of two language implementations are similar
enough can such linkage be achieved.

When the name of a programming language is used to name a style of linkage
in the string-literal in a linkage-specification, it is recommended that the spelling
be taken from the document defining that language, for example,
Ada(notADA) and FORTRAN(not Fortran).

Declarations 77

78 Product Reference Manual- October 1992

8.1 Declarators

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which may have an initializer.

declarator-list:
in it-declarator
declarator-list , in it-declarator

init-declarator:
declarator initializer opt

The two components of a declaration are the specifiers (decl-specifiers; (see
Section 7.1, "Declarations," on page 63) and the declarators (declarator-list). The
specifiers indicate the fundamental type, storage class, or other properties of
the objects and functions being declared. The declarators specify the names of
these objects and functions and (optionally) modify the type with operators
such as * (pointer to) and () (function returning). Initial values can also be
specified in a declarator; initializers are discussed in Section 8.5, "Initializers,"
on page 94 and "Initialization" on page 158.

Declarators have the syntax

declarator:
dname
ptr-operator declarator
declarator (argument-declaration-list) cv-qualifier-listopt
declarator [constant-expressionopt]

79

8.2 Type Names

80

(declarator)
ptr-operator:

* cv-qualifier-listopt
& cv-qualifier-listopt
complete-class-name :: * cv-qualifier-listopt

cv-qualifier-list:
cv-qualifier cv-qualifier-listopt

cv-qualifier:
const
volatile

dname:
name
class-name
-class-name
typedef-name
qualified-type-name

A class-name has special meaning in a declaration of the class of that name and
when qualified by that name using the scope resolution operator : : (see
"Constructors" on page 147, "Destructors" on page 154.

To specify type conversions explicitly, and as an argument of sizeof or new,
the name of a type must be specified. This is done with a type-name, which is
syntactically a declaration for an object or function of that type that omits the
name of the object or function.

type-name:
type-specifier-list abstract-declarator opt

type-specifier-list:
type-specifier type-specifier-listopt

abstract-declarator:
ptr-operator abstract-declarator opt

Product Reference Manual- October 1992

abstract-declarator opt (argument-declaration-list) cv-qualifier-listopt
abstract-declarator opt [constant-expressionopt]
(abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where
the identifier would appear if the construction were a declarator in a
declaration. The named type is then the same as the type of the hypothetical
identifier.

For example,

int II int i
int * II int *pi
int * [3] II int *p[3]
int (*) [3] II int (*p3i) [3]
int *() II int *f ()
int (*) (double) II int (*pf) (double)

name respectively the types "integer," "pointer to integer," "array of 3 pointers
to integers," "pointer to array of 3 integers," "function taking no arguments
and returning pointer to integer," and "pointer to function taking a double

argument and returning an integer."

Ambiguity Resolution

The ambiguity arising from the similarity between a function-style cast and a
declaration mentioned in Section 6.9, "Ambiguity Resolution," on page 60 can
also occur in the context of a declaration. In that context, it surfaces as a choice
between a function declaration with a redundant set of parentheses around an
argument name and an object declaration with a function-style cast as the
initializer. Just as for statements, the resolution is to consider any construct that

Declarators 81

82

could possibly be a declaration a declaration. A declaration can be explicitly
disambiguated by a nonfunction-style cast or a = to indicate initialization. For
example,

struct S {
S (int) i

} ;

void foo(double a)
{

s x(int(a»;
s y((int)a);
S z = int(a)i

B.3 Meaning of Declarators

II function declaration
II object declaration
II object declaration

A list of declarators appears after a (possibly empty) list of decl-specifiers (see
Section 7.1, "Declarations," on page 63). Each declarator contains exactly one
dna me; it specifies the identifier that is declared. Except for the declarations of
some special functions (see "Conversions" on page 150, Section 13.4,
"Overloaded Operators," on page 179) a dname will be a simple identifier. An
auto,static,extern,registe~ friend,inline,virtual,ortypedef
specifier applies directly to each dname in a declarator-list; the type of each
dname depends on both the decl-specifiers (see Section 7.1, "Declarations," on
page 63) and its declarator.

Thus, a declaration of a particular identifier has the form

T D

where T is a type and D is a declarator. In a declaration where D is an
unadorned identifier the type of this identifier is T.

In a declaration where D has the form

(Dl)

the type of Dl is the same as that of D. Parentheses do not alter the type of the
embedded dna me, but they may alter the binding of complex declarators.

Product Reference Manual- October 1992

Pointers

In a declaration T D where D has the form

* cv-qualifier-listopt D1

the type of the contained identifier is " ... cv-qualifier-list pointer to T. II The cv
qualifiers apply to the pointer and not to the object pointed to.

For example, the declarations

const ci = 10, *pc = &ci, *const cpc PCi

int i, *p, *const cp = &ii

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a
constant pointer to a constant integer; i, an integer; p, a pointer to integer; and
cp, a constant pointer to integer. The value of ci, cpc, and cp cannot be
changed after initialization. The value of pc can be changed, and so can the
object pointed to by cpo

Examples of legal operations are

i Cii

*cp = Cii

PC++i

pc CpCi

pc = Pi

Examples of illegal operations are

ci = 1· II error ,
Ci++i II error
*pc = 2 i II error
cp = &Cii II error
CpC++i II error
p = PCi II error

Each is illegal because it would either change the value of an object declared
canst or allow it to be changed through an unqualified pointer later.

Declarators 83

References

84

volatile specifiers are handled similarly.

See also Section 5.16, U Assignment Operators," on page 48 and Section 8.5,
"Initializers," on page 94.

There can be no pointers to references (see "References" on page 84) or
pointers to bit-fields (see Section 9.7, "Bit-Fields," on page 115).

In a declaration T D where D has the form

& cv-qualifier-list*opt D1

the type of the contained identifier is u ... cv-qualifier-list reference to T ." The
type void& is not permitted.

For example,

void f(double& a) { a += 3.14; }
II

double d = 0;
f (d) i

declares a to be a reference argument of f so the call f (d) will add 3 . 14 to d.

int v[20];
I I ...
int& g(int i) { return v[i]; }
I I ...
g(3) = 7;

declares the function 9 () to return a reference to an integer so g (3) = 7 will

Product Reference Manual- October 1992

assign 7 to the fourth element of the array v.

struct link {
link* next;

} ;

link* first;
void h(link*& p)
{

II 'p' is a reference to pointer

p->next = first;
first = p;
p = 0;

void k()
{

link* q
h(q) ;

new link;

declares p to be a reference to a pointer to 1 ink so h (q) will leave q with the
value O. See also "References" on page 84.

There can be no references to references, no references to bit-fields (see Section
9.7, "Bit-Fields," on page 115), no arrays of references, and no pointers to
references. The declaration of a reference must contain an initializer (see
"References" on page 84) except when the declaration contains an explicit
extern specifier (see "Storage Class Specifiers" on page 65), is a class member
(see Section 9.3, "Class Members," on page 105) declaration within a class
declaration, or is the declaration of an argument or a return type (see
"Functions" on page 88); see Section 3.2, "Declarations and Definitions," on
page 11.

Pointers to Members
In a declaration T D where D has the form

complete-class-name :: * cv-qualifier-listopt Dl

the type of the contained identifier is " ... cv-qualifier-list pointer to member of
class complete-class-name of type T . II

Declarators 85

Arrays

86

For example,

class X {
pUblic:

} ;

void f (int) ;
int a;

int X:: * pmi = &X: :a;
void (X::* pmf) (int) = &X::f;

declares pmi and pmf to be a pointer to a member of X of type int and a
pointer to a member of X of type void (int), respectively. They can be used
like this:

X obj;
// ...
obj.*pmi = 7;

(obj . *pmf) (7) ;

// assign 7 to an integer
// member of obj
// call a function member of obj
// with the argument 7

Note that a pointer to member cannot point to a static member of a class (see
Section 9.5, "Static Members," on page 111). See also Section 5.4, "Pointer-to
Member Operators," on page 42 and "Unary Operators" on page 34.

In a declaration T D where D has the form

Dl [constant-expressionopt]

then the contained identifier has type " ... array of T. II If the constant-expression
(see "Constant Expressions" on page 50) is present, it must be of integral type
and have a value greater than o. The constant expression specifies the number
of elements in the array. If the constant expression is N, the array has N

elements numbered a to N-l.

An array may be constructed from one of the fundamental types (except void),
from a pointer, from a pointer to member, from a class, from an enumeration,
or from another array.

Product Reference Manual- October 1992

When several "array of" specifications are adjacent, a multidimensional array
is created; the constant expressions that specify the bounds of the arrays may
be omitted only for the first member of the sequence. This elision is useful for
function arguments of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere. The first constant
expression may also be omitted when the declarator is followed by an initializer
list (see Section 8.5, "Initializers," on page 94). In this case the size is calculated
from the number of initial elements supplied (see "Aggregates" on page 96).

The declaration

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float
numbers. The declaration

static int x3d[3] [5] [7];

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. In
complete detail, x3d is an array of three items; each item is an array of five
arrays; each of the latter arrays is an array of seven integers. Any of the
expressions x3d, x3d[i], x3d[i] [j], x3d[i] [j] [k] may reasonably
appear in an expression.

When an identifier of array type appears in an expression, except as the
operand of sizeof or & or used to initialize a reference (see "References" on
page 84), it is converted into a pointer to the first member of the array. Because
of this conversion, arrays are not modifiable lvalues. Except where it has been
declared for a class (see "Subscripting" on page 182), the subscript operator []
is interpreted in such a way that El [E2] is identical to * ((El) + (E2)) .
Because of the conversion rules that apply to +, if El is an array and E2 an
integer, then El [E2] refers to the E2-th member of El. Therefore, despite its
asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed for multidimensional arrays. If E is an n
dimensional array of rank i x j x ... x k, then E appearing in an expression is
converted to a pointer to an (n-1)-dimensional array with rank j x ... x k. If the
* operator, either explicitly or implicitly as a result of subscripting, is applied
to this pointer, the result is the pointed-to (n-l)-dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x [3] [5] ;

Declarators 87

Functions

88

Here x is a 3 x 5 array of integers. When x appears in an expression, it is
converted to a pointer to (the first of three) five-membered arrays of integers.
In the expression x [i] , which is equivalent to * (x+ i) , x is first converted to a
pointer as described; then x+i is converted to the type of x, which involves
multiplying i by the length of the object to which the pointer points, namely
five integer objects. The results are added and indirection applied to yield an
array (of five integers), which in turn is converted to a pointer to the first of the
integers. If there is another subscript the same argument applies again; this
time the result is an integer.

It follows from all this that arrays in C++ are stored row-wise (last subscript
varies fastest) and that the first subscript in the declaration helps determine the
amount of storage consumed by an array but plays no other part in subscript
calculations.

In a declaration T D where D has the form

Dl (argurnent-declaration-list) cv-qualifier-listopt

the contained identifier has the type " ... cv-qualifier-listopt function taking
arguments of type argument-declaration-list and returning T. "

argument-declaration-list:
arg-declaration-listopt .. 'opt
arg-declaration-list , ...

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argumen t -dec laration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator opt
decl-specifiers abstract-declarator opt = expression

If the argument-declaration-list terminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of
argument types specified; if it is empty, the function takes no arguments. The
argument list (void) is equivalent to the empty argument list. Except for this

Product Reference Manual- October 1992

special case void may not be an argument type (though types derived from
void, such as void*, may). Where legal, ", ... "'is synonymous with " ... ".
The standard header < s tdarg . h> contains a mechanism for accessing
arguments passed using the ellipsis. See "Constructors" on page 147 for the
treatment of array arguments.

A single name may be used for several different functions in a single scope;
this is function overloading (see Chapter 13, "Overloading,"). All declarations
for a function taking a given set of arguments must agree exactly both in the
type of the value returned and in the number and type of arguments; the
presence or absence of the ellipsis is considered part of the function type.
Argument types that differ only in the use of typedef names or unspecified
argument array bounds agree exactly. The return type and the argument types,
but not the default arguments (see "Default Arguments" on page 90), are part
of the function type. A cv-qualifier-list can be part of a declaration or definition
of a nonstatic member function, and of a pointer to a member function; see
"The this Pointer" on page 109. It is part of the function type.

Functions cannot return arrays or functions, although they can return pointers
and references to such things. There are no arrays of functions, although there
may be arrays of pointers to functions.

Types may not be defined in return or argument types.

The argument-declaration-list is used to check and convert actual arguments in
calls and to check pointer-to-function and reference-to-function assignments
and initializations.

An identifier can optionally be provided as an argument name; if present in a
function declaration, it cannot be used since it immediately goes out of scope;
if present in a function definition (see Section 8.4, "Function Definitions," on
page 93), it names a formal argument. In particular, argument names are also
optional in function definitions and names used for an argument in different
declarations and the definition of a function need not be the same.

The declaration

int i,
*pi,
f () ,

*fpi (int) ,
(*pif) (const char*, const char*);

Declarators 89

90

declares an integer i, a pointer pi to an integer, a function f taking no
arguments and returning an integer, a function fpi taking an integer argument
and returning a pointer to an integer, and a pointer pif to a function which
takes two pointers to constant characters and returns an integer. It is especially
useful to compare the last two. The binding of * fpi (int) is * (fpi (int)),
so the declaration suggests, and the same construction in an expression
requires, the calling of a function fpi, and then using indirection through the
(pointer) result to yield an integer. In the declarator (*pif) (canst char*,
cons t char *) , the extra parentheses are necessary to indicate that
indirection through a pointer to a function yields a function, which is then
called.

The declaration

fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no
return value type is specified it is taken to be in t (see "Type Specifiers" on
page 70). The declaration

printf(const char* ...);

declares a function that can be called with varying number and types of
arguments. For example,

printf("hello world");
printf("a=%d b=%d" , a, b);

It must always have a value, however, that can be converted to a canst char*
as its first argument.

Default Arguments

If an expression is specified in an argument declaration this expression is used
as a default argument. All subsequent arguments must have default arguments
supplied in this or previous declarations of this function. Default arguments
will be used in calls where trailing arguments are missing. A default argument
cannot be redefined by a later declaration (not even to the same value). A
declaration may add default arguments, however, not given in previous
declara tions.

The declaration

Product Reference Manual- October 1992

point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type
in t. It may be called in any of these ways:

point(1,2); point(l); point();

The last two calls are equivalent to point (1,4) and point (3,4),
respectively.

Default argument expressions have their names bound and their types checked
at the point of declaration, and are evaluated at each point of call. In the
following example, g will be called with the value f (2)

int a = 1;
int f(int);
int g(int x

void h()

a 2;

int a
g() ;

f(a)); II default argument: f(::a)

3 ;
II g(f(::a))

Local variables may not be used in default argument expressions. For example

void f ()
{

}

int i;
extern void g(int x
II

i) ;11 error

Note that default arguments are evaluated before entry into a function and that
the order of evaluation of function arguments is implementation dependent.
Consequently, formal arguments of a function may not be used in default

Declarators 91

92

argument expressions. Formal arguments of a function declared before a
default argument expression are in scope and may hide global and class
member names. For example,

int a;
int f(int a, int b a) ; II error: argument 'a'

II used as default argument
typedef int I;

int g(int I, int b 1(2)); II error: 'int' called

Similarly, the declaration of X: : meml () in the following example is illegal
because no object is supplied for the nonstatic member x: : a used as an
initializer.

class X {

} ;

int a;
static b;
mem1 (int i

mem2(int i

a); II error: nonstatic member 'a'
II used as default argument

b); II ok

The declaration of X: : mem2 () is legal, however, since no object is needed to
access the static member X: : b. Classes, objects, and members are described in
Chapter 9, "Classes,".

A default argument is not part of the type of a function.

int f(int = 0);

void h()
{

int j

int k
f (1) ;

f () ; II fine, means f(O)

int (*p1) (int) &f;
int (*p2) () = &f; II error: type mismatch

An overloaded operator (see Section 13.4, "Overloaded Operators," on page
179) cannot have default arguments.

Product Reference Manual- October 1992

8.4 Function Definitions
Function definitions have the form

function-definition:
decl-specifiersopt declarator ctor-initializer opt fet-body

fct-body:
compound-statement

The declarator in a function-definition must contain a declarator with the form

Dl (argument-declaration-list) cv-qualifier-listopt

as described in "Functions" on page 88.

The formal arguments are in the scope of the outermost block of the fct-body.

A simple example of a complete function definition is

int max(int a, int b, int c)

int m = (a > b) ? a : b;
return (m > c) ? m : c;

Here intis the decl-specifiers; max (in t a, in t b, in t c) is the declarator; {
/ * ... * / } is the fct-body.

A etor-initializer is used only in a constructor; see "Constructors" on page 147
and "Initialization" on page 158.

A cv-qualifier-list can be part of a nonstatic member function declaration,
nonstatic member function definition, or pointer to member function only; see
"The this Pointer" on page 109. It is part of the function type.

Note that unused formal arguments need not be named. For example,

void print (int a, int)
{

printf("a = %d\n",a);

Declarators 93

8.5 Initializers

94

A declarator may specify an initial value for the identifier being declared.

initializer:
= assignment-expression
= { initializer-list 'opt }
(expression-list)

initializer-list:
assignment-expression
initializer-list , assignment-expression
{ initializer-list 'opt }

Automatic, register, static, and external variables may be initialized by
arbitrary expressions involving constants and previously declared variables
and functions.

int f(int);
int a = 2;
int b = f (a) ;
int c (b) ;

A pointer of type canst T*, that is, a pointer to constant T, can be initialized
with a pointer of type T*, but the reverse initialization is illegal. Objects of type
T can be initialized with objects of type T independently of cons t and
volatile modifiers on both the initialized variable and on the initializer. For

Product Reference Manual- October 1992

example,

int a;
const int b a;
int c = b;

const int* pO
const int* pi
int* p2 = &b;

int *const p3
int *const p4

const int* p5

&a;
&b;

p2;

II error: makes a pointer to
II nonconst point to a const

pi; II error: makes a pointer to
II nonconst point to a const

pi;

The reason for the two errors is the same: had those initializations been
allowed they would have allowed the value of something declared canst to
be changed through an unqualified pointer.

Default argument expressions are more restricted; see "Default Arguments" on
page 90.

Initialization of objects of classes with constructors is described in "Explicit
Initialization" on page 158. Copying of class objects is described in "Copying
Class Objects" on page 164. The order of initialization of static objects is
described in Section 3.5, "Start and Termination," on page 15 and Section 6.8,
"Declaration Statement," on page 58.

Variables with storage class static (Section 3.6, "Storage Classes," on page 17)
that are not initialized are guaranteed to start off as 0 converted to the
appropriate type. So are members of static class objects. The initial values of
automatic and register variables that are not initialized are undefined.

When an initializer applies to a pointer or an object of arithmetic type, it
consists of a single expression, perhaps in braces. The initial value of the object
is taken from the expression; the same conversions as for assignment are
performed.

Note that since () is not an initializer,

x a ();

Declarators 95

Aggregates

96

is not the declaration of an object of class x, but the declaration of a function
taking no argument and returning an x.

An initializer for a static member is in the scope of the member's class. For
example,

int ai

struct X {

static int a;
static int b;

} ;

int x: :a 1;
int x: :b a; II X::b X::a

See Section 8.3, "Meaning of Declarators," on page 82 for initializers used as
default arguments.

An aggregate is an array or an object of a class (see Chapter 9, "Classes,") with
no constructors (see "Constructors" on page 147), no private or protected
members (see Chapter 11, "Member Access Control,"), no base classes (see
Chapter 10, "Derived Classes,"), and no virtual functions (see Section 10.3,
"Virtual Functions," on page 127). When an aggregate is initialized the
initializer may be an initializer-list consisting of a brace-enclosed, comma
separated list of initializers for the members of the aggregate, written in
increasing subscript or member order. If the aggregate contains subaggregates,
this rule applies recursively to the members of the subaggregate. If there are
fewer initializers in the list than there are members of the aggregate, then the
aggregate is padded with zeros of the appropriate types.

For example,

struct S int a; char* b; int Ci }i

S ss = { 1, "asdf" };

initializes ss. a with 1, ss. b with "asdf" , and ss. c with o.

Product Reference Manual- October 1992

An aggregate that is a class may also be initialized with an object of its class or
of a class publicly derived from it (see "Copying Class Objects" on page 164).

Braces may be elided as follows. If the initializer-list begins with a left brace,
then the succeeding comma-separated list of initializers initializes the members
of the aggregate; it is erroneous for there to be more initializers than members.
If, however, the initializer-list or a subaggregate does not begin with a left
brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next
member of the aggregate of which the current aggregate is a part.

For example,

int x [] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three members,
since no size was specified and there are three initializers.

float y[4] [3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

} ;

is a completely-bracketed initialization: 1,3, and 5 initialize the first row of the
array y [0], namely y [0] [0], y [0] [1], and y [0] [2]. Likewise the next two
lines initialize y [1] and y [2] . The initializer ends early and therefore y [3] is
initialized with zeros. Precisely the same effect could have been achieved by

float y[4] [3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

} ;

The last (rightmost) index varies fastest (see "Arrays" on page 86).

Declarators 97

98

The initializer for y begins with a left brace, but the one for y [0] does not,
therefore three elements from the list are used. Likewise the next three are
taken successively for y [1] and y [2] . Also,

I float y[4] [3] = {
{1}, {2}, {3

} ;

}, { 4 }

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest o.

Initialization of arrays of objects of a class with constructors is described in
"Explicit Initialization" on page 158.

The initializer for a union with no constructor is either a single expression of
the same type, or a brace-enclosed initializer for the first member of the union.
For example,

union u int a; char* b; };

u a 1 } ;

u b a;
u c 1; II error
u d 0, "asdf" } ; II error
u e { "asdf" } ; II error

There may not be more initializers than there are members or elements to
initialize. For example,

char cv [4] = { 'a', ' s', ' d', 'f', 0 }; I / error

is an error.

Character Arrays

A char array (whether signed or unsigned) may be initialized by a string
literal; successive characters of the string initialize the members of the array.
For example,

char msg [] = II Syntax error on line %s \n II ;

Product Reference Manual- October 1992

References

shows a character array whose members are initialized with a string. Note that
because I \n I is a single character and because a trailing I \ 0 I is appended,
sizeof (msg) is 25.

There may not be more initializers than there are array elements. For example,

char cv[4] = "staff"; II error

is an error since there is no space for the implied trailing I \ 0 I •

A variable declared to be a T&, that is "reference to type T /I (see "References"
on page 84), must be initialized by an object of type T or by an object that can
be converted into a T. For example,

void f ()
{

int i;
int& r i;
r = 1;
int* p &r;
int& rr = r;

II
II
II
II
II

'r'
the
'p'
'rr'
that

refers to 'i'
value of 'i' becomes 1
points to 'i'
refers to what 'r' refers to,
is, to 'i'

A reference cannot be changed to refer to another object after initialization.
Note that initialization of a reference is treated very differently from
assignment to it. Argument passing (see "Function Call" on page 31 and
function value return "The return Statement" on page 57) are initializations.

The initializer may be omitted for a reference only in an argument declaration
(see "Functions" on page 88), in the declaration of a function return type, in the
declaration of a class member within its class declaration (see Section 9.3,
"Class Members," on page 105), and where the extern specifier is explicitly
used.

For example,

int& r1; II error: initializer missing
extern int& r2; II ok

Declarators 99

100

If the initializer for a reference to type T is an lvalue of type T or of a type
derived (see Chapter la, "Derived Classes,") from T for which T is an
accessible base (see "Pointer Conversions" on page 23), the reference will refer
to the initializer; otherwise, if and only if the reference is to a cons t an object
of type T will be created and initialized with the initializer. The reference then
becomes a name for that object. For example,

double d = 1. 0 i

double& rd = di
const double& rcd

double& rd2 = 1i
const double& rcd2

II rd refers to 'd'
di II rcd refers to 'd'

II error: type mismatch
lill rcd2 refers to temporary

II with value '1'

A reference to a volatile T can be initialized with a volatile T or a plain T
but not a canst T. A reference to a canst T can be initialized with a canst T
or a plain T or something that can be converted into a plain T but not a
volatile T. A reference to a plain T can be initialized only with a plain T.

The lifetime of a temporary object created in this way is the scope in which it is
created (see Section 3.6, "Storage Classes," on page 17). Note that a reference to
a class B can be initialized by an object of a class D provided B is an accessible
and unambiguous base class of D (in that case a D is a B); see "Reference
Conversions" on page 24.

Product Reference Manual- October 1992

9.1 Classes

Classes

A class is a type. Its name becomes a class-name (see Section 9.1, "Classes," on
page 101), that is, a reserved word within its scope.

class-name:
identifier

Class-specifiers and elaborated-type-specifiers (see "Type Specifiers" on page 70)
are used to make class-names. An object of a class consists of a (possibly empty)
sequence of members.

class-specifier:
class-head { member-listopt }

class-head:
class-key identifier oprt base-spec opt
class-key class-name base-specopt

class-key:
class
struct
union

101

9.2 Class Names

102

The name of a class can be used as a class-name even within the member-list of
the class specifier itself. A class-specifier is commonly referred to as a class
declaration. A class is considered defined when its class-specifier has been seen
even though its member functions are in general not yet defined.

Objects of an empty class have a nonzero size.

,Class objects may be assigned, passed as arguments to functions, and returned
by functions (except objects of classes for which copying has been restricted;
see "Copying Class Objects" on page 164. Other plausible operators, such as
equality comparison, can be defined by the user; see Section 13.4, "Overloaded
Operators," on page 179.

A structure is a class declared with the class-key struct; its members and base
classes (see Chapter 10, "Derived Classes,") are public by default (see Chapter
11, "Member Access Control,"). A union is a class declared with the class-key
union; its members are public by default and it holds only one member at a
time (Section 9.6, "Unions," on page 114).

A class declaration introduces a new type. For example,

struct X
struct y

X al;
y a2;
int a3;

int a; };
int ai };

declares three variables of three different types. This implies that

al
al

a2;
a3;

II error: Y assigned to X
II error: int assigned to X

are type mismatches, and that

lint f(X);
int f (Y) i

Product Reference Manual- October 1992

declare an overloaded (see Chapter 13, "Overloading,") function f () and not
simply a single function f () twice. For the same reason,

struct S
struct S

int ai } i

int ai }i II error, double definition

is an error because it defines s twice.

A class declaration introduces the class name into the scope where it is
declared and hides any class, object, function, or other declaration of that name
in an enclosing scope (see Section 3.3, "Scopes," on page 12). If a class name is
declared in a scope where an object, function, or enumerator of the same name
is also declared the class can be referred to only using an elaborated-type-specifier
(see "Type Specifiers" on page 70). For example,

struct stat
I I ...

} i

stat gstati II use plain 'stat' to
II define variable

int stat(struct stat*)i II redefine 'stat' as function
void f ()
{

struct stat* pSi II 'struct' prefix needed
II to name struct stat

I I ...
stat(ps) i

I I ...
I I call stat ()

An elaborated-type-specifier with a class-key used without declaring an object or
function introduces a class name exactly like a class declaration but without

Classes 103

104

defining a class. For example,

struct s { int ai }i

void g ()
{

struct Si II hide global struct 's'
s* Pi II refer to local struct 's'
struct s { char* Pi }i II declare local struct 's'

Such declarations allow declaration of classes that refer to each other. For
example,

class vectori

class matrix {
I I ...
friend vector operator*(matrix&, vector&)i

} i

class vector {
I I ...
friend vector operator*(matrix&, vector&)i

Declaration of friends is described in Section 11.5, "Friends," on page 140,
operator functions in Section 13.4, "Overloaded Operators," on page 179. If a
class mentioned as a friend has not been declared its name is entered in the
same scope as the name of the class containing the friend declaration (see
Section 11.5, "Friends," on page 140).

Product Reference Manual- October 1992

9.3 Class Members

An elaborated-type-specifier (see "Type Specifiers" on page 70) can also be used
in the declarations of objects and functions. It differs from a class declaration in
that if a class of the elaborated name is in scope the elaborated name will refer
to it. For example,

struct s { int ai }i

void g()
{

struct s* p = new Si II refer to global's'
p->a = 1i

A name declaration takes effect immediately after the identifier is seen. For
example,

class A * Ai

first specifies A to be the name of a class and then redefines it as the name of a
pointer to an object of that class. This means that the elaborated form class A

must be used to refer to the class. Such artistry with names can be confusing
and is best avoided.

A typedef-name (see "The typedef Specifier" on page 68) that names a class is a
class-name; see also "The typedef Specifier" on page 68.

member-list:
member-declaration member-listopt
access-specifier: member-lisfopt

member-declaration:
decl-specifiersopt member-declarator-listopt ;
function-definition ;opt
qualified-name;

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

Classes 105

106

member-declarator:
declarator pure-specifier opt
identifier opt : constant-expression

pure-specifier:
=0

A member-list may declare data, functions, classes, enumerations (see Section
7.3, "Enumeration Declarations," on page 73), bit-fields (see Section 9.7, "Bit
Fields," on page 115), friends (see Section 11.5, "Friends," on page 140), and
type names (see "The typedef Specifier" on page 68, Section 9.2, "Class
Names," on page 102). A member-list may also contain declarations adjusting
the access to member names; see Section 11.4, "Access Declarations," on page
137. A member may not be declared twice in the member-list. The member-list
defines the full set of members of the class. No member can be added
elsewhere.

Note that a single name can denote several function members provided their
types are sufficiently different (see Chapter 13, "Overloading,"). Note that a
member-declarator cannot contain an initializer (see Section 8.5, "Initializers," on
page 94). A member can be initialized using a constructor; see "Constructors"
on page 147.

A member may not be auto, extern, or register.

The decl-specifiers can be omitted in function declarations only. The member
declarator-list can be omitted only after a class-specifier, an enum-specifier, or decl
specifiers of the form friend elaborated-type-specifier. A pure-specifier may be
used only in the declaration of a virtual function (Section 10.3, "Virtual
Functions," on page 127).

Members that are class objects must be objects of previously declared classes.
In particular, a class el may not contain an object of class el, but it may
contain a pointer or reference to an object of class el. When an array is used as
the type of a nonstatic member all dimensions must be specified.

Product Reference Manual- October 1992

A simple example of a class declaration is

struct tnode {

} ;

char tword[20];
int count;
tnode *left;
tnode *right;

which contains an array of twenty characters, an integer, and two pointers to
similar structures. Once this declaration has been given, the declaration

tnode Sf *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these
declarations, sp->count refers to the count member of the structure to which
sp points; s . left refers to the left subtree pointer of the structure s; and
s . right->tword [0] refers to the initial character of the tword member of
the right subtree of s.

Nonstatic data members of a class declared without an intervening access
specifier are allocated so that later members have higher addresses within a
class object. The order of allocation of nonstatic data members separated by an
access-specifier is implementation dependent (see Section 11.2, "Access
Specifiers," on page 136). Implementation alignment requirements may cause
two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (see Section 10.3,
"Virtual Functions," on page 127) and virtual base classes (see Section 10.4,
"Abstract Classes," on page 129); see also Section 5.3, "Explicit Type
Conversion," on page 39.

A function member (see Section 9.4, "Member Functions," on page 108) with
the same name as its class is a constructor ("Constructors" on page 147). A
static data member, enumerator, member of an anonymous union, or nested
type may not have the same name as its class.

Classes 107

108

9.4 Member Functions
A function declared as a member (without the friend specifier; (see Section
11.5, "Friends," on page 140) is called a member function, and is called using
the class member syntax (see IIClass Member Access" on page 32). For
example,

struct tnode {

} ;

char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* 1, tnode* r);

Here set is a member function and can be called like this:

void f(tnode nl, tnode n2)
{

ni . set (II abc II , &n2 , 0) ;
n2.set(ldef",O,O);

The definition of a member function is considered to be within the scope of its
class. This means that (provided it is non static (see Section 9.5, IIStatic
Members," on page 111) it can use names of members of its class directly. A
static member function can use only the names of static members, enumerators,
and nested types directly. If the definition of a member function is lexically
outside the class declaration, the member function name must be qualified by

Product Reference Manual- October 1992

the class name using the: : operator. For example,

void tnode: :set(char* w, tnode* I, tnode* r)

count = strlen(w)+l;
if (sizeof(tword)<=count)

error("tnode string too long");
strcpy(tword,w) ;
left = 1;
right = r;

The notation tnode: : set specifies that the function set is a member of and
in the scope of class tnode. The member names tword, count, left, and
rig h t refer to members of the object for which the function was called. Thus,
in the call nl. set ("abc" ,&n2, 0) , tword refers to nl. tword, and in the
call n2 . set ("def",O,O) it refers to n2 . two rd. The functions strlen, error,
and s trcpy must be declared elsewhere.

Members may be defined (see Section 3.2, "Declarations and Definitions," on
page 11) outside their class declaration if they have already been declared but
not defined in the class declaration; they may not be redeclared. See also
Section 3.4, "Program and Linkage," on page 14. Function members may be
mentioned in friend declarations after their class has been defined. Each
member function that is called must have exactly one definition in a program.

The effect of calling a nonstatic member function (see Section 9.5, "Static
Members," on page 111) of a class X for something that is not an object of class
X is undefined.

The this Pointer
In a nonstatic (see Section 9.4, "Member Functions," on page 108) member
function, the keyword thi s is a pointer to the object for which the function is
called. The type of this in a member function of a class X is X *const unless
the member function is declared const or volatile; in those cases, the type
of this is const X *const and volatile X *const, respectively. A function
declared const and volatile has a this with the type const volatile X

Classes 109

110

*canst. For example, The a++ in the body of s: : h is an error because it tries

struct s {
int a;
int f() canst;
int g() { return a++; }
int h() canst { return a++; } II error

} ;

int s::f() canst { return a; }

to modify (a part of) the object for which s: : h () is called. This is not allowed
in a canst member function where this is a pointer to canst, that is, *this
is a canst.

A cans t member function (that is, a member function declared with the
canst qualifier) may be called for canst and non-canst objects, whereas a
non-canst member function may be called only for a non-c canst object. For
example,

void k(s& x, canst s& y)
{

x.f() ;
x.g();

y. f () ;
y.g() ; II error

The call y. g () is an error because y is canst and s: : g () is a non-canst
member function that could (and does) modify the object for which it was
called.

Similarly, only valatile member functions (that is, a member function
declared with the valatile specifier) may be invoked for valatile objects.
A member function can be both canst and volatile.

Constructors (see UConstructors" on page 147) and destructors (see
UDestructors" on page 154) may be invoked for a canst or valatile object.
Constructors (see UConstructors" on page 147) and destructors (see
UDestructors" on page 154) cannot be declared canst or valatile.

Product Reference Manual- October 1992

Inline Member Functions

9.S Static Members

A member function may be defined (see "Function Definitions" on page 93) in
the class declaration, in which case it is inline (see "Function Specifiers" on
page 67). Defining a function within a class declaration is equivalent to
declaring it inl ine and defining it immediately after the class declaration; this
rewriting is considered to be done after preprocessing but before syntax
analysis and type checking of the function definition. Thus

int b;
struct x {

} ;

char* f() { return b; }
char* b;

is equivalent to

int b;
struct x {

char* f();
char* b;

} ;

inline char* x: :f() { return b; } II moved

Thus the b used in x: : f () is X: : b and not the global b.

Member functions can be defined even in local or nested class declarations
where this rewriting would be syntactically illegal. See Section 9.9, "Local
Class Declarations," on page 118 for a discussion of local classes and Section
9.8, "Nested Class Declarations," on page 116 for a discussion of nested classes.

A data or function member of a class may be declared static in the class
declaration. There is only one copy of a static data member, shared by all
objects of the class in a program. A static member is not part of objects of a

Classes 111

112

class. Static members of a global class have external linkage (see Section 3.4,
"Program and Linkage," on page 14). The declaration of a static data member
in its class declaration is not a definition. A definition is required elsewhere.

A static member function does not have a thi s pointer so it can access
nonstatic members of its class only by using. or ->. A static member function
cannot be virtual. There cannot be a static and a nonstatic member function
with the same name and the same argument types.

Static members of a local class (see Section 9.9, "Local Class Declarations," on
page 118) have no linkage and cannot be defined outside the class declaration.
It follows that a local class cannot have static data members.

A static member mem of class cl can be referred to as cl: :mem (see Section 5.2,
"Primary Expressions," on page 28), that is, independently of any object. It can
also be referred to using the. and -> member access operators (see "Class
Member Access" on page 32). When a static member is accessed through a
member access operator, the expression on the left side of the . or - > is not
evaluated. The static member mem exists even if no objects of class cl have
been created. For example, in the following, run_chain, idle, and so on exist

Product Reference Manual- October 1992

even if no process objects have been created:

class process {
static int no_of-processesj
static process* run_chainj
static process* runningj
static process* idlej
II

pUblic:
II
int state()j
static void reschedule() j

I I ...
} j

and reschedule can be used without reference to a process object, as
follows:

void f ()
{

process::reschedule() ;

Static members of a global class are initialized exactly like global objects and
only in file scope. For example,

void process::reschedule() { 1* ... *1 }j

int process::no_of-processes = 1;
process* process: : running = get_main();
process* process::run_chain = process::runningj

Static members obey the usual class member access rules (see Chapter 11,
uMember Access Contra!,") except that they can be initialized (in file scope).

The type of a static member does not involve its class name; thus the type of
process : : no_of-IJrocesses is int and the type of &process ..
reschedule is void (*) ().

Classes 113

9.6 Unions

114

A union may be thought of as a structure whose member objects all begin at
offset zero and whose size is sufficient to contain any of its member objects. At
most one of the member objects can be stored in a union at any time. A union
may have member functions (including constructors and destructors), but not
virtual (see Section 10.3, "Virtual Functions," on page 127) functions. A union
may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment
operator (see "Assignment" on page 182) cannot be a member of a union. A
union can have no static data members.

A union of the form

union {member-list};

is called an anonymous union; it defines an unnamed object (and not a type).
The names of the members of an anonymous union must be distinct from other
names in the scope in which the union is declared; they are used directly in
that scope without the usual member access syntax (see "Class Member
Access" on page 32). For example, Here a and p are used like ordinary

void f ()
{

union
a = 1i
/ / ...

int ai char* Pi }i

P = "Jennifer" i
/ / ...

(nonmember) variables, but since they are union members they have the same
address.

A global anonymous union must be declared static. An anonymous union
may not have private or protected members (see Chapter 11, "Member
Access Control,"). An anonymous union may not have function members.

Product Reference Manual- October 1992

9.7 Bit-Fields

A union for which objects or pointers are declared is not an anonymous union.
For example,

union { int aai char* Pi } obj, *ptr &obj;
aa = 1 i I I error
ptr->aa = 1; II ok

The assignment to plain aa is illegal since the member name is not associated
with any particular object.

Initialization of unions that do not have constructors is described in
"Aggregates" on page 96.

A member-declarator of the form

identifier opt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon.
Allocation of bit-fields within a class object is implementation dependent.
Fields are packed into some addressable allocation unit. Fields straddle
allocation units on some machines and not on others. Alignment of bit-fields is
implementation dependent. Fields are assigned right-to-left on some machines,
left-to-right on others.

An unnamed bit-field is useful for padding to conform to externally-imposed
layouts. As a special case, an unnamed bit-field with a width of zero specifies
alignment of the next bit-field at an allocation unit boundary.

An unnamed field is not a member and cannot be initialized.

A bit-field must have integral type (see "Fundamental Types" on page 17). It is
implementation dependent whether a plain (neither explicitly signed nor
unsigned) in t field is signed or unsigned. The address-of operator & may not
be applied to a bit-field, so there are no pointers to bit-fields. Nor are there
references to bit-fields.

Classes 115

9.8 Nested Class Declarations

116

A class may be declared within another class. A class declared within another
is called a nested class. The name of a nested class is local to its enclosing class.
The nested class is in the scope of its enclosing class. Except by using explicit
pointers, references, and object names, declarations in a nested class can use
only type names, static members, and enumerators from the enclosing class.

int x;
int y;

class enclose
public:

int X;
static int s;

class inner {

void f(int i)

X i; II
s i; II
: :x = i; II
y i; II
}

error: assign
ok: assign to
ok: assign to
ok: assign to

void g(enclose* P, int i)

to enclose: :x
enclose: :s
global X

global y

p->x = i; II ok: assign to enclose::x

} ;

} ;

inner* p 0; II error 'inner' not in scope

Member functions of a nested class have no special access to members of an
enclosing class; they obey the usual access rules (see Chapter 11, "Member
Access Control,"). Member functions of an enclosing class have no special
access to members of a nested class; they obey the usual access rules. For

Product Reference Manual- October 1992

example,

class E
int x;

} ;

class I
int y;
void f(E* P, int i)
{

p->x = i; // error: E::x is private

int g(I* p)

return p->y; // error: I::y is private

} ;

Member functions and static data members of a nested class can be defined in
the global scope. For example,

class enclose {

} ;

class inner
static int x;
void f (int i);

} ;

typedef enclose::inner ei;
intei: : x = 1;

void enclose: : inner: :f(int i) { /* ... */ }

Like a member function, a friend function defined within a class is in the
lexical scope of that class; it obeys the same rules for name binding as the
member functions (described above and in Section 10.5, "Summary of Scope
Rules," on page 131) and like them has no special access rights to members of
an enclosing class or local variables of an enclosing function (see Chapter 11,
"Member Access Control,").

Classes 117

9.9 Local Class Declarations
A class can be declared within a function definition; such a class is called a local
class. The name of a local class is local to its enclosing scope. The local class is
in the scope of the enclosing scope. Declarations in a local class can use only
type names, static variables, extern variables and functions, and enumerators
from the enclosing scope. For example,

118

int Xi

void f ()
{

static
int Xi

extern
struct

} i

II

int
int
int
int

int s i

int g()i

local {

h() { return
j() { return
k() { return
l() { return

Xi } II error: 'X'

Si } II ok
: :Xj II ok
g()i II ok

local* p = Dill error: 'local' not in scope

is auto

An enclosing function has no special access to members of the local class; it
obeys the usual access rules (see Chapter 11, uMember Access Control,").
Member functions of a local class must be defined within their class definition.
A local class may not have static data members.

Product Reference Manual- October 1992

9.10 Local Type Names
Type names obey exactly the same scope rules as other names. In particular,
type names defined within a class declaration cannot be used outside their
class without qualification. For example,

class X {
public:

} i

typedef int Ii

class Y { 1* ... *1 }i

I ai

I bi
Y Ci

X::Y di

II error
II error
II ok

The following rule limits the context sensitivity of the rewrite rules for inline
functions and for class member declarations in general. A class-name or a
typedef-name or the name of a constant used in a type name may not be
redefined in a class declaration after being used in the class declaration, nor

Classes 119

120

maya name that is not a class-name or a typedef-name be redefined to a class
name or a typedef-name in a class declaration after being used in the class
declaration. For example,

typedef int Ci

enum { i = 1 }i

class X {

} i

char V[i]i
int f() { return
char Ci

enum {i 2}i

typedef char* Ti

struct y {

} i

T ai

typedef long Ti

T bi

sizeof (c) i }

II error: typedef name
II redefined after use
II error: 'i' redefined after
II use in type name 'char[i]'

II error: T already used

Product Reference Manual- October 1992

10.1 Derived Classes

Derived Classes

A list of base classes may be specified in a class declaration using the notation:

base-spec:
: base-list

base-list:
base-specifier
base-list, base-specifier

base-specifier:
complete-dass-name
vir t ua 1 access-specifier opt complete-dass-name
access-specifier vir t ua lopt complete-dass-name

access-specifier:
private
protected
public

The dass-name in a base-specifier must denote a previously declared class (see
Chapter 9, "Classes,"), which is called a base class for the class being declared.
A class is said to be derived from its base classes. For the meaning of access
specifier see Chapter 11, "Member Access Control,". Unless redefined in the
derived class, members of a base class can be referred to as if they were

121

122

members of the derived class. The base class members are said to be inherited
by the derived class. The scope resolution operator: : (see Section 5.2,
"Primary Expressions," on page 28) may be used to refer to a base member
explicitly. This allows access to a name that has been redefined in the derived
class. A derived class can itself serve as a base class subject to access control;
see Section 11.3, "Access Specifiers for Base Classes," on page 136. A pointer to
a derived class may be implicitly converted to a pointer to an accessible
unambiguous base class (see "Pointer Conversions" on page 23). A reference to
a derived class may be implicitly converted to a reference to an accessible
unambiguous base class (see "Reference Conversions" on page 24).

For example,

class base
public:

int a, b;
} ;

class derived : public base {
public:

int b, c;
} ;

void f ()
{

derived d;
d.a = 1;
d. base: : b 2 ;
d.b = 3;
d.c = 4;
base* bp &d; II standard conversion:

II derived* to base*

assigns to the four members of d and makes bp point to d.

A class is called a direct base if it is mentioned in the base-list and an indirect base
if it is not a direct base but is a base class of one of the classes mentioned in the
base-list.

Product Reference Manual- October 1992

Note that in the class-name: : name notation, name may be a name of a member
of an indirect base class; the notation simply specifies a class in which to start
looking for name. For example,

class A public: void f()i }i

class B public A { }i

class C public B { public: void f(); };

void C: : f ()
{

f () i II Call C's f ()

A: : f () i II call A's f()

B: : f () i II call A's f()

Here, A: : f () is called twice since it is the only f () in B.

Initialization of objects representing base classes can be specified in
constructors; see "Initializing Bases and Members" on page 160.

10.2 Multiple Base Classes
A class may be derived from any number of base classes. For example, The use

class A 1* *1 } i

class B 1* *1 } i

class C 1* *1 } i

class D public A, public B, public C { 1* ... *1 } ;

of more than one direct base class is often called multiple inheritance.

The order of derivation is not significant except possibly for default
initialization by constructor (see "Constructors" on page 147), for cleanup (see
"Destructors" on page 154), and for storage layout (see Section 5.3, "Explicit
Type Conversion," on page 39, Section 9.4, "Member Functions," on page 108,
Section 11.2, "Access Specifiers," on page 136). The order in which storage is
allocated for base classes is implementation dependent.

Derived Classes 123

124

A class may not be specified as a direct base class of a derived class more than
once but it may be an indirect base class more than once.

class B 1* ... *1 } ;

class D public B, public B { 1* ... *1 } ; II illegal

class L 1* ... *1 } ;

class A public L { 1* ... *1 } ;

class B public L { 1* ... *1 } ;

class C public A, public B { 1* ... *1 } ; II legal

Here, an object of class C will have two sub-objects of class L.

The keyword virtual may be added to a base class specifier. A single sub
object of the virtual base class is shared by every base class that specified the
base class to be virtual. For example,

class V 1* ... *1 } ;

class A virtual public V 1* ... *1 } ;

class B virtual public V 1* ... *1 } ;

class C public A, public B { 1* ... *1 } ;

Here class C has only one sub-object of class v.

A class may have both virtual and nonvirtual base classes of a given type.

class B
class X

1* ... *1 };
virtual public B { 1* ... *1 };

class Y virtual public B { 1* ... *1 };
class Z public B { 1* ... *1 };
class AA : public X, public Y, public Z { 1* ... *1 };

Here class AA has two sub-objects of class B: z's B and the virtual B shared by
X and Y.

Product Reference Manual- October 1992

Ambiguities

Access to base class members must be unambiguous. Access to a base class
member is ambiguous if the expression used refers to more than one function,
object, type, or enumerator. The check for ambiguity takes place before access
control (see Chapter 11, "Member Access Control,"). For example,

class A {
public:

} i

int ai

int (*b) () i

int f () i

int f(int)i
int g() i

class B {

int a;
int b();

public:
int f();
int g;
int h();
int h(int) ;

} ;

class C : public A, public B {};
void g(C* pc)
{

pc->a = 1; II error: ambiguous:
pc->b () ; II error: ambiguous:
pc->f () ; II error: ambiguous:
pc->f(l); II error: ambiguous:
pc->g () ; II error: ambiguous:
pc->g = 1; II error: ambiguous:
pc->h () ; II ok
pc->h(l) ; II ok

A: :a or B: :a
A: :b or B: :b
A: :f or B:: f
A: :f or B:: f
A: :g or B: :g
A: :g or B: :g

If the name of an overloaded function is unambiguously found overloading
resolution also takes place before access control. Ambiguities can be resolved

Derived Classes 125

126

by qualifying a mime with its class name. For example,

class A {
public:

int f () i

} i

class B {
public:

int f () i

} i

class C : public A, public B {
int f() { return A::f() + B: :f()i }

} i

When virtual base classes are used, a single function, object, type, or
enumerator may be reached through more than one path through the directed
acyclic graph of base classes. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case more than one sub-object is
involved. For example,

class V
class A
class B
class C

class D

public: int Vi }i

pUblic: int ai }i

public A, public virtual V {}i

public A, public virtual V {}i

public B, public C { public: void f()i }i

void D: : f ()
{

V++i /1 ok: only one 'v' in 'D'
a++i /1 error, ambiguous: two 'a's in 'D'

When virtual base classes are used, more than one function, object, or
enumerator may be reached through paths through the directed acyclic graph
of base classes. This is an ambiguity unless one of the names found dominates
the others. The identical use with nonvirtual base classes is an ambiguity; in
that case more than one sub-object is involved.

Product Reference Manual- October 1992

A name B: : f dominates a name A: : f if its class B has A as a base. If a name
dominates another no ambiguity exists between the two; the dominant name is
used when there is a choice. For example,

class V public:
class B public
class C public

class D public

void D: :g()
{

int f () ;
virtual V
virtual V

B, public

int x; } ;

pUblic: int
} ;

C { void g();

x++; II ok: B::x dominates V::x

f();

} ;

f () ; I I ok: B:: f () dominates V:: f ()

int x; } ;

An explicit or implicit conversion from a pointer or reference to a derived class
to a pointer or reference to one of its base classes must unambiguously refer to
the same object representing the base class. For example,

class V
class A
class B
class C

class D

void g ()
{

D d;
B* pb
A* pa
V* pv

10.3 Virtual Functions

} ;

} ;

public A, public virtual V } ;

public A, public virtual V } ;

public B, public C { } ;

&d;
&d; II error, ambiguous: CIS A or Bls A ?

&d; II fine: only one V sub-object

If a class base contains a virtual (see "Function Specifiers" on page 67)
function vf, and a class derived derived from it also contains a function vf
of the same type, then a call of vf for an object of class der i ved invokes
deri ved: : vf (even if the access is through a pointer or reference to base).

Derived Classes 127

128

The derived class function is said to override the base class function. If the
function types (see "Functions" on page 88) are different, however, the
functions are considered different and the virtual mechanism is not invoked
(see also "Declaration Matching" on page 171). It is an error for a derived class
function to differ from a base class' virtual function in the return type only. For
example, The calls invoke derived: : vfl, base: : vf2, and base: : f,

struct base {

} i

virtual void vfl();
virtual void vf2();
virtual void vf3();
void f();

class derived : public base {
public:

} i

void vfl() i

void vf2(int);11 hides base::vf2()
char vf3()i II error: differs in return type only
void f()i

void g()
{

derived di
base* bp = &d; II standard conversion:

bp->vfl() i

bp->vf2() i

bp->f() i

II derived* to base*
II calls derived::vfl
II calls base::vf2
II calls base::f

respectively, for the class derived object named d. That is, the interpretation
of the call of a virtual function depends on the type of the object for which it is
called, whereas the interpretation of a call of a nonvirtual member function
depends only on the type of the pointer or reference denoting that object. For
example, bp->vfl () calls derived: :vfl () because bp points to an object of
class der i ved in which der i ved: : vf 1 () has overridden the virtual function
base: :vfl ().

The virtual specifier implies membership, so a virtual function cannot be
a global (nonmember) (see IIFunction Specifiers" on page 67) function. Nor can
a virtual function be a static member, since a virtual function call relies on a
specific object for determining which function to invoke. A virtual function can

Product Reference Manual- October 1992

10.4 Abstract Classes

be declared a f r i end in another class. An overriding function is itself
considered virtual. The virtual specifier may be used for an overriding
function in the derived class, but such use is redundant. A virtual function in a
base class must be defined or declared pure (see Section 10.4, Ii Abstract
Classes," on page 129). A virtual function that has been defined in a base class
need not be defined in a derived class. If it is not, the function defined for the
base class is used in all calls.

Explicit qualification with the scope operator (see Section 5.2, IiPrimary
Expressions," on page 28) suppresses the virtual call mechanism. For example,

class B public: virtual void f()i }i
class D public B { pUblic: void f()i }i

void D: :f() { /* */ B::f()i }

Here, the call of f in D really does call B: : f and not D: : f.

The abstract class mechanism supports the notion of a general concept, such as
a shape, of which only more concrete variants, such as circle and square,
can actually be used. An abstract class can also be used to define an interface
for which derived classes provide a variety of implementations.

An abstract class is a class that can be used only as a base class of some other
class; no objects of an abstract class may be created except as objects
representing a base class of a class derived from it. A class is abstract if it has
at least one pure virtual function. A virtual function is specified pure by using a
pure-specifier (see Section 9.3, "Class Members," on page 105) in the function
declaration in the class declaration. A pure virtual function need be defined
only if explicitly called with the qualified-name syntax (see Section 5.2, "Primary

Derived Classes 129

130

Expressions," on page 28). For example,

class point { 1* ... *1 };
class shape { II abstract class

point center;
I I ...

public:
point where() { return center; }
void move (point p) { center=p; draw();
virtual void rotate(int) 0; II pure virtual
virtual void draw() = 0; II pure virtual

I I ...
} ;

An abstract class may not be used as an argument type, as a function return
type, or as the type of an explicit conversion. Pointers and references to an
abstract class may be declared. For example,

shape X;
shape* p;
shape f();
void 9 (shape) ;
shape& h(shape&);

II error: object of abstract class
II ok
II error
II error
II ok

Product Reference Manual- October 1992

Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;

pUblic:
void rotate(int) {}
II ab_circle::draw() is a pure virtual

} ;

Since shape: : draw () is a pure virtual function ab_circle: : draw () is a
pure virtual by default. The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); II must be defined somewhere

} ;

would make class circle nonabstract and a definition of circle: : draw ()
must be provided somewhere.

Member functions can be called from a constructor of an abstract class; the
effect of calling a pure virtual function directly or indirectly for the object being
created from such a constructor is undefined.

10.5 Summary of Scope Rules
The scope rules for c++ programs can now be summarized. These rules apply

uniformly for all names (including typedef-names (see "The typedef Specifier"
on page 68) and class-names (see Section 9.2, "Class Names," on page 102)
wherever the grammar allows such names in the context discussed by a
particular rule. This section discusses lexical scope only; see Section 3.4,
"Program and Linkage," on page 14 for an explanation of linkage issues. The
notion of point of declaration is discussed in (see Section 3.3, "Scopes," on
page 12).

Derived Classes 131

132

Any use of a name must be unambiguous (up to overloading) in its scope (see
II Ambiguities" on page 125). Only if the name is found to be unambiguous in
its scope are access rules considered (see Chapter 11, "Member Access
Control,"). Only if no access control errors are found is the type of the object,
function, or enumerator named considered.

A name used outside any function and class or prefixed by the unary scope
operator : : (and not qualified by the binary : : operator or the - > or .
operators) must be the name of a global object, function, enumerator, or type.

A name specified after X: :, after obj ., where obj is an X or a reference to X,

or after ptr->, where ptr is a pointer to X must be the name of a member of
class X or be a member of a base class of x. In addition, ptr in ptr-> may be
an object of a class y that has operator-> () declared so
ptr->operator-> () eventually resolves to a pointer to X (see "Binary
Operators" on page 181).

A name that is not qualified in any of the ways described above and that is
used in a function that is not a class member must be declared in the block in
which it occurs or in an enclosing block or be a global name. The declaration of
a local name hides declarations of the same name in enclosing blocks and
global names. In particular, no overloading occurs of names in different scopes
(see Section 13.4, "Overloaded Operators," on page 179).

A name that is not qualified in any of the ways described above and that is
used in a function that is a nonstatic member of class X must be declared in the
block in which it occurs or in an enclosing block, be a member of class X or a
base class of class X, or be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function's
class, and global names. The declaration of a member name hides declarations
of the same name in base classes and global names.

A name that is not qualified in one of the ways described above and is used in
a static member function of a class X must be declared in the block in which it
occurs, in an enclosing block, be a static member of class X, or a base class of
class X, or be a global name.

A function argument name in a function definition (see Section 8.4, "Function
Definitions," on page 93) is in the scope of the outermost block of the function
(in particular, it is a local name). A function argument name in a function
declaration (see "Functions" on page 88) that is not a function definition is in a
local scope that disappears immediately after the function declaration. A

Product Reference Manual- October 1992

default argument is in the scope determined by the point of declaration (see
Section 3.3, "Scopes," on page 12) of its formal argument, but may not access
local variables or nonstatic class members; it is evaluated at each point of call
(see "Default Arguments" on page 90).

A ctor-initializer (see "Initializing Bases and Members" on page 160) is
evaluated in the scope of the outermost block of the constructor it is specified
for. In particular, it can refer to the constructor's argument names.

Derived Classes 133

134 Product Reference Manual- October 1992

Member Access Control

11.1 Member Access Control
A member of a class can be

• private; that is, its name can be used only by member functions and
friends of the class in which it is declared.

• protected; that is, its name can be used only by member functions and
friends of the class in which it is declared and by member functions and
friends of classes derived from this class (see Section 11.6, "Protected
Member Access," on page 143).

• public; that is, its name can be used by any function.

Members of a class declared with the keyword class are private by default.
Members of a class declared with the keywords struct or union are public
by default. For example,

class X {
int ai II X::a is private by default

} i

struct S {
int ai II S::a is public by default

} i

135

11.2 Access Specifiers
Member declarations may be labeled by an access-specifier (see Chapter 10,
HDerived Classes,"):

access-specifier: member-listopt

An access-specifier specifies the access rules for members following it until the
end of the class or until another access-specifier is encountered. For example,

class X {

int a; II X: :a is private by default: 'class' used
public:

int b; II X: :b is public
int c; II X: :c is public

} ;

Any number of access specifiers is allowed and no particular order is required.
For example,

struct S {

int a; II s: :a is public by default: 'struct' used
protected:

int b; II S: :b is protected
private:

int c; II S: :c is private
public:

int d; II S: :d is public
} ;

The order of allocation of data members with separate access-specifier labels is
implementation dependent (see Section 9.3, HClass Members," on page 105).

-

11.3 Access Specifiers for Base Classes

136

If a class is declared to be a base class (see Chapter 11, "Member Access
Control,") for another class using the public access specifier, the public
members of the base class are public members of the derived class and
protected members of the base class are protected members of the derived
class. If a class is declared to be a base class for another class using the

Product Reference Manual- October 1992

private access specifier, the public and protected members of the base
class are private members of the derived class. Private members of a base
class remain inaccessible even to derived classes unless friend declarations
within the base class declaration are used to grant access explicitly.

In the absence of an access-specifier for a base class, public is assumed when
the derived class is declared struct and private is assumed when the class
is declared class. For example,

class B { 1* ... * I };
class Dl private B { 1* ... *1 };
class D2 : public B { 1* ... *1 };
class D3 : B { 1* ... *1 }; II 'B' private by default
struct D4 public B { 1* ... *1 };
struct D5 private B { 1* ... *1 };
struct D6 B { 1* ... *1 }; II 'B' public by default

Here B is a public base of D2, D4, and D6, and a private base of Dl, D3, and D5.

Specifying a base class private does not affect access to static members of the
base class. If, however, an object or a pointer requiring conversion is used to
select the static member the usual rules for pointer conversions apply.

Members and friends of a class X can implicitly convert an X* to a pointer to a
private immediate base class of x.

11.4 Access Declarations
The access to a member of a base class in a derived class can be adjusted by
mentioning its qualified-name in the public or protected part of a derived
class declaration. Such mention is called an access declaration.

Member Access Control 137

138

For example,

class B {
int a;

public:
int b , c;
int bf() ;

} ;

class D : private B {
int d;

pUblic:

} ;

B: :c; II adjust access to 'B: :c'
int e;
int df();

int ef (D&) ;

The external function ef can use only the names c, e, and df. Being a member
of D, the function df can use the names b, c, bf, d, e, and df, but not a. Being
a member of B, the function bf can use the members a, b, c, and bf.

Product Reference Manual- October 1992

An access declaration may not be used to restrict access to a member that is
accessible in the base class, nor may it be used to enable access to a member
that is not accessible in the base class. For example,

class B {
pUblic:

int a;
private:

int b;
protected:

int c;
} ;

class D : private B {
pUblic:

B::a; II make 'a' a public member of D
B::b; II error: attempt to grant access

II can't make 'b' a public member of D
protected:

} ;

B::c; II make 'c' a protected member of D
B::a; II error: attempt to reduce access

II can't make 'a' a protected member of D

An access declaration for the name of an overloaded function adjusts the access
to all functions of that name in the base class. For example,

class X {
pUblic:

f () ;
f (int) ;

} ;

class Y : private X {
pUblic:

X::f; II makes X::f() and X::f(int) public in Y
} ;

Member Access Control 139

11.5 Friends

140

The access to a base class member cannot be adjusted in a derived class that
also defines a member of that name. For example,

class X {
pUblic:

void f()i
} ;

class Y : private X {
pUblic:

void f (int) ;
X::f; II error: two declarations of f

A friend of a class is a function that is not a member of the class but is
permitted to use the private and protected member names from the class. The
name of a friend is not in the scope of the class, and the friend is not called
with the member access operators (see "Class Member Access" on page 32)
unless it is a member of another class. The following example illustrates the
differences between members and friends:

class X {
int a;
friend void friend_set (X*, int);

pUblic:
void member_set(int);

} ;

void friend_set{X* p, int i) { p->a = i;
void X: : member_set (int i) { a = i; }

void f ()

X obj;
friend_set(&obj,lO);

obj.member_set(lO);

Product Reference Manual- October 1992

When a friend declaration refers to an overloaded name or operator, only the
function specified by the argument types becomes a friend. A member function
of a class x can be a friend of a class Y. For example,

class Y {

} ;

friend char* X::foo(int);
I I .. ,

All the functions of a class x can be made friends of a class Y by a single
declaration using an elaborated-type-specifier (see Section 9.2, uClass Names," on
page 102):

I

class Y {
friend class X;
I I ...

}

Declaring a class to be a friend also implies that private and protected names
from the class granting friendship can be used in the class receiving it. For
example,

class X

} ;

enum a=100};
friend class Y;

class Y {
int v[X::a]; II ok, Y is a friend of X

} ;

class Z {
int v[X::a]; II error: X::a is private

} ;

If a class or a function mentioned as a friend has not been declared its name is
entered in the same scope as the name of the class containing the friend
declaration (see Section 9.2, "Class Names," on page 102).

Member Access Control 141

142

A function first declared in a friend declaration is equivalent to an extern
declaration (see Section 3.4, UProgram and Linkage," on page 14, and UStorage
Class Specifiers" on page 65.

A friend function defined in a class declaration is inline and the rewriting
rule specified for member functions (see uInline Member Functions" on page
111) is applied. A friend function defined in a class is in the (lexical) scope of
the class in which it is defined. A friend function defined outside the class is
not.

Friend declarations are not affected by access-specifiers (see Section 9.4,
uMember Functions," on page 108).

Friendship is neither inherited nor transitive. For example,

class A {

} i

friend class Bi

int ai

class B {
friend class Ci

} i

class C {
void f(A* p)

p->a++i II error: C is not a friend of A
II despite being a friend of a friend

} i

class D public B
void f(A* p)

p->a++i II error: D is not a friend of A
II despite being derived from a friend

} i

Product Reference Manual- October 1992

11.6 Protected Member Access
A friend or a member function of a derived class can access a protected static
member of a base class. A friend or a member function of a derived class can
access a protected nonstatic member of one of its base classes only through a
pointer to, reference to, or object of the derived class (or any class derived from
that class). For example,

class B {
protected:

int i;
} ;

class D1
} ;

class D2

public B

public B
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

} ;

void fr(B* pb, D1* p1, D2* p2)
{

1; II illegal
2; II illegal

pb->i
p1->i
p2->i 3; II ok (access through a D2)

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; II illegal
p1->i = 2; II illegal
i = 3; II ok (access through 'this')

void g(B* pb, D1* p1, D2* p2)
{

pb->i 1; II illegal
p1->i 2; II illegal
p2->i 3 ; II illegal

Member Access Control 143

11.7 Access to Virtual Functions

144

The access rules (see Section 11, "," on page 135) for a virtual function are
determined by its declaration and are not affected by the rules for a function
that later overrides it. For example,

class B {
public:

virtual f();
} ;

class D : public B
private:

f () ;
} ;

void f ()
{

D d;
B* pb &d;
D* pd &d;

pb->f(); /1 ok: B::f() is public,
/1 D::f() is invoked

pd->f(); /1 error: D::f() is private

Access is checked at the call point using the type of the expression used to
denote the object for which the member function is called (B* in the example
above). The access of the member function in the class in which it was defined
(D in the example above) is in general not known.

Product Reference Manual- October 1992

11.8 Multiple Access
If a name can be reached by several paths through a multiple inheritance
graph, the access is that of the path that gives most access. For example,

class W pUblic: void f(); };
class A private virtual W { };
class B public virtual W { };
class C public A, public B {

void f () { W:: f (); } / / ok
} ;

Since W: : f () is available to c: : f () along the public path through B, access is
legal.

Member Access Control 145

146 Product Reference Manual- October 1992

Special Member Functions

12.1 Special Member Functions

Constructors

Some member functions are special in that they affect the way objects of a class
are created, copied, and destroyed, and how values may be converted to values
of other types. Often such special functions are called implicitly.

These member functions obey the usual access rules (see Chapter 11, uMember
Access Control,"). For example, declaring a constructor protected ensures
that only derived classes and friends can create objects using it.

A member function with the same name as its class is called a constructor; it is
used to construct values of its class type. If a class has a constructor, each object
of that class will be initialized before any use is made of the object; see
ulnitialization" on page 158.

A constructor can be invoked for a canst or volatile object. A constructor
may not be declared canst or volatile (see uThe this Pointer" on page 109).
A constructor may not be virtual. A constructor may not be sta tic.

Constructors are not inherited. Default constructors and copy constructors,
however, are generated (by the compiler) where needed (seeUCopying Class
Objects" on page 164). Generated constructors are public.

147

148

A default constructor for a class X is a constructor of class X that can be called
without an argument. A default constructor will be generated for a class X only
if no constructor has been declared for class x .

A copy constructor for a class X is a constructor that can be called to copy an
object of class X; that is, one that can be called with a single argument of type
X. For example, x: :X(const X&) and x: :X(X&, int=O) are copy
constructors. A copy constructor is generated only if no copy constructor is
declared.

A copy constructor for a class X may not take an argument of type X. For
example, X: : X (X) is illegal.

Constructors for array elements are called in order of increasing addresses (see
"Arrays" on page 86).

If a class has base classes or member objects with constructors, their
constructors are called before the constructor for the derived class. The
constructors for base classes are called first. See "Initializing Bases and
Members" on page 160 for an explanation of how arguments can be specified
for such constructors and how the order of constructor calls is determined.

An object of a class with a constructor cannot be a member of a union.

No return type (not even void) can be specified for a constructor. A return

statement in the body of a constructor may not specify a return value. It is not
possible to take the address of a constructor.

A constructor can be used explicitly to create new objects of its type, using the
syntax

class-name (expression-listopt)

For example,

complex zz = complex(l,2.3)i
cprint(complex(7.8,l.2))i

An object created in this way is unnamed (unless the constructor was used as
an initializer for a named variable as for zz above), with its lifetime limited to
the expression in which it is created; see "Temporary Objects" on page 149.

Product Reference Manual- October 1992

Member functions may be called from within a constructor; see "Constructors
and Destructors" on page 163.

Temporary Objects
In some circumstances it may be necessary or convenient for the compiler to
generate a temporary object. Such introduction of temporaries is
implementation dependent. When a compiler introduces a temporary object of
a class that has a constructor it must ensure that a constructor is called for the
temporary object. Similarly, the destructor must be called for a temporary
object of a class where a destructor is declared. For example,

class X
II

pUblic:

} ;

II
X(int) ;

X(X&) ;
~X() ;

X f(X);

void g ()

{

X a(l);
X b = f(X(2));
a = f (a);

Here, one might use a temporary in which to construct X (2) before passing it
to f () by X (X&) ; alternatively, X (2) might be constructed in the space used to
hold the argument for the first call of f () . Also, a temporary might be used to
hold the result of f (X (2)) before copying it to b by X (X&) ; alternatively,
f () 's result might be constructed in b. On the other hand, for many functions
f () , the expression a= f (a) requires a temporary for either the argument a or
the result of f (a) to avoid undesired aliasing of a.

Special Member Functions 149

Conversions

150

The compiler must ensure that a temporary object is destroyed. The exact point
of destruction is implementation dependent. There are only two things that can
be done with a temporary: fetch its value (implicitly copying it) to use in some
other expression, or bind a reference to it. If the value of a temporary is
fetched, that temporary is then dead and can be destroyed immediately. If a
reference is bound to a temporary, the temporary must not be destroyed until
the reference is. This destruction must take place before exit from the scope in
which the temporary is created.

Another form of temporaries is discussed in "References" on page 84.

Type conversions of class objects can be specified by constructors and by
conversion functions.

Such conversions, often called user-defined conversions, are used implicitly in
addition to standard conversions (see Chapter 4, "Standard Conversions,"). For
example, a function expecting an argument of type X can be called not only
with an argument of type X but also with an argument of type T where a
conversion from T to X exists. User-defined conversions are used similarly for
conversion of initializers (see Section 8.5, "Initializers," on page 94), function
arguments (see "Function Call" on page 31, UFunctions" on page 88), function
return values (see "The return Statement" on page 57, "Functions" on page 88),
expression operands (see Chapter 5, "Expressions,"), expressions controlling
iteration and selection statements (see Section 6.5, "Selection Statements," on
page 52, Section 6.6, "Iteration Statements," on page 54, and explicit type
conversions (see "Explicit Type Conversion" on page 32.

User-defined conversions are applied only where they are unambiguous (see
"Ambiguities" on page 125, "Conversion Functions" on page 151). Conversions
obey the access control rules (see Chapter 11, uMember Access Control,"). As
ever access control is applied after ambiguity resolution (see Section 10.5,
"Summary of Scope Rules," on page 131).

See Section 13.2, "Argument Matching," on page 173 for a discussion of the use
of conversions in function calls as well as examples below.

Product Reference Manual- October 1992

Conversion by Constructor
A constructor accepting a single argument specifies a conversion from its
argument type to the type of its class. For example,

class X
II

public:
X(int) ;
X(const char*, int 0);

} ;

void f (X arg) {
X a = 1; II a = X(l)
X b = "Jessie"; II b = X("Jessie",O)
a = 2; II a = X(2)
f(3); II f(X(3))

When no constructor for class X accepts the given type, no attempt is made to
find other constructors or conversion functions to convert the assigned value
into a type acceptable to a constructor for class X. For example,

class X { 1*
class Y { 1*
Y a = 1;

* I X (int); };
*1 Y(X); };

II illegal: Y(X(l)) not tried

Conversion Functions
A member function of a class X with a name of the form

conversion-Junction-name:
opera tor conversion-type-name

conversion-type-name:
type-specifier-list ptr-operator opt

specifies a conversion from X to the type specified by the conversion-type-name.
Such member functions are called conversion functions. Classes, enumerations,
and typedef-names may not be declared in the type-specifier-list. Neither
argument types nor return type may be specified.

Special Member Functions 151

152

Here is an example:

class X
II

public:
operator int();

} ;

void f(X a)

int i = int (a) ;
i = (int)a; i = a;

In all three cases the value assigned will be converted by X: : operator
int (). User-defined conversions are not restricted to use in assignments and
initializations. For example,

void g(X at X b)
{

int i = (a) ? l+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { I I ...

Conversion operators are inherited.

Conversion functions can be virtual.

Product Reference Manual- October 1992

At most one user-defined conversion (constructor or conversion function) is
implicitly applied to a single value. For example,

class X
II

public:
operator int();

} ;

class Y
II

public:
operator X();

} ;

Y a;
int b

int c

a; II illegal:
II a.operator X().operator int() not tried

X(a); II ok: a.operator X() . operator int()

User-defined conversions are used implicitly only if they are unambiguous. A
conversion function in a derived class does not hide a conversion function in a
base class unless the two functions convert to the same type. For example,

class X
public:

II
operator int();

} ;

class Y : public X {
public:

II
operator void*();

} ;

void f(Y& a)
{

if (a)

II
II error: ambiguous

Special Member Functions 153

Destructors

154

A member function of class cl named -cl is called a destructor; it is used to
destroy values of type cl immediately before the object containing them is
destroyed. A destructor takes no arguments, and no return type can be
specified for it (not even void). It is not possible to take the address of a
destructor. A destructor can be invoked for a canst or volatile object. A
destructor may not be declared canst or volatile (see "The this Pointer" on
page 109). A destructor may not be static.

Destructors are not inherited. If a base or a member has a destructor and no
destructor is declared for its derived class a default destructor is generated.
This generated destructor calls the destructors for bases and members of the
derived class. Generated destructors are pUblic.

The body of a destructor is executed before the destructors for member objects.
Destructors for nonstatic member objects are executed before the destructors
for base classes. Destructors for nonvirtual base classes are executed before
destructors for virtual base classes. Destructors for nonvirtual base classes are
executed in reverse order of their declaration in the derived class. Destructors
for virtual base classes are executed in the reverse order of their appearance in
a depth-first left-to-right traversal of the directed acyclic graph of base classes;
"left-to-right" is the order of appearance of the base class names in the
declaration of the derived class.

Destructors for elements of an array are called in reverse order of their
construction.

A destructor may be virtual.

Member functions may be called from within a destructor; see "Constructors
and Destructors" on page 163.

An object of a class with a destructor cannot be a member of a union.

Destructors are invoked implicitly (1) when an auto (see Section 3.6, "Storage
Classes," on page 17) or temporary (see "Temporary Objects" on page 149,
"References" on page 84) object goes out of scope, (2) for constructed static (see
Section 3.6, "Storage Classes," on page 17) objects at program termination (see
Section 3.5, "Start and Termination," on page IS), (3) through use of the
delete operator (see "Delete" on page 38) for objects allocated by the new
operator (see "New" on page 36), and (4) explicitly called. When invoked by
the delete operator, memory is freed by the destructor for the most derived

Product Reference Manual- October 1992

class (see "Initializing Bases and Members" on page 160) of the object using an
operator delete () (see "Delete" on page 38). For example,

class X
II

pUblic:

} ;

X(int) ;
-X() ;

void g(X*);

void f()11 common use:

X* P = new X(111); II allocate and initialize
g(p) ;
delete p; II cleanup and deallocate

Explicit calls of destructors are rarely needed. One use of such calls is for
objects placed at specific addresses using a new operator. Such use of explicit
placement and destruction of objects can be necessary to cope with dedicated
hardware resources and for writing memory management facilities. For
example,

void* operator new(size_t, void* p) { return p; }

void f (X* p);

static char buf[sizeof(X)];

void g() II rare, specialized use:
{

X* P new(buf) X(222); II use buf[]
II and initialize

f (p) ;

p->X: :-X(); II cleanup

Special Member Functions 155

Free Store

156

The notation for explicit call of a destructor may be used for any simple type
name. For example,

I int* p,
I I ...
p->int::~int()i

Using the notation for a type that does not have a destructor has no effect.
Allowing this enables people to write code without having to know if a
destructor exists for a given type.

When an object is created with the new operator, an opera tor new () function
is (implicitly) used to obtain the store needed (see "New" on page 36).

If operator new () cannot allocate storage it will return o.

An x: : opera tor new () for a class X is a static member (even if not explicitly
declared static). Its first argument must be of type size_t, an
implementation-dependent integral type defined in the standard header
<stddef . h>; it must return void*. For example,

class X {
I I ...
void* operator new(size_t) i

void* operator new(size_t, Arena*) i

} i

See "New" on page 36 for the rules for selecting an operator new ().

Product Reference Manual- October 1992

An X: : opera tor delete () for a class X is a static member (even if not
explicitly declared static) and must have its first argument of type void*; a
second argument of type size_t may be added. It cannot return a value; its
return type must be void. For example,

class X {
/ / ...
void operator

delete(void*);
} ;

class Y {
/ / ...
void operator delete (void* , size_t);

} ;

Only one operator delete () may be declared for a single class; thus
operator delete () cannot be overloaded. The global operator delete ()
takes a single argument of type void *.

If the two argument style is used, operator delete () will be called with a
second argument indicating the size of the object being deleted. The size
passed is determined by the destructor (if any) or by the (static) type of the
pointer being deleted; that is, it will be correct either if the type of the pointer
argument to the delete operator is the exact type of the object (and not, for
example, just the type of base class) or if the type is that of a base class with a
virtual destructor.

The global operator new () and operator delete () are used for arrays of
class objects (see uNew" on page 36"Delete" on page 38.

Special Member Functions 157

Initialization

158

Since X: : operator new () and X: : operator delete () are static they
cannot be virtual. A destructor finds the operator delete () to use for
freeing store using the usual scope rules. For example,

struct B {
virtual ~B{);
void* operator new{size_t);
void operator delete{void*);
} ;

struct D B {
~D () ;

} ;

void* operator new{size_t);
void operator delete{void*);

void f ()

B* P new D;
delete p;

Here, storage for the object of class D is allocated by D: : opera tor new () and,
thanks to the virtual destructor, deallocated by D: : opera tor delete () .

An object of a class with no constructors, no private or protected members, no
virtual functions, and no base classes can be initialized using an initializer list;
see "Aggregates" on page 96. An object of a class with a constructor must
either be initialized or have a default constructor (see "Constructors" on page
147). The default constructor is used for objects that are not explicitly
initialized.

Explicit Initialization
Objects of classes with constructors (see "Constructors" on page 147) can be
initialized with a parenthesized expression list. This list is taken as the
argument list for a call of a constructor doing the initialization. Alternatively a
single value is specified as the initializer using the = operator. This value is

Product Reference Manual- October 1992

used as the argument to a copy constructor. Typically, that call of a copy
constructor can be eliminated. For example,

class complex
I I ...

public:
complex();
complex (double) ;
complex(double,double)i
I I ...

} i

complex sqrt(complex,complex) i

complex a(l); II initialize by a call of
II complex (double)

complex b ai II initialize by a copy of 'a'
complex c complex(1,2)i II construct complex(1,2)

II using complex (double, double)
II copy it into 'c'

complex d = sqrt(b,c)i II call sqrt (complex, complex)
II and copy the result into 'd'

complex e; II initialize by a call of
I I complex ()

complex f = 3i II construct complex(3) using
II complex (double)
II copy it into 'f

Overloading of the assignment operator = has no effect on initialization.

The initialization that occurs in argument passing and function return is
equivalent to the form

T x = ai

The initialization that occurs in new expressions (see "New" on page 36) and in
base and member initializers (see "Initializing Bases and Members" on page
160) is equivalent to the form

T x(a) i

Special Member Functions 159

160

Arrays of objects of a class with constructors use constructors in initialization
(see "Constructors" on page 147) just like individual objects. If there are fewer
initializers in the list than elements in the array, the default constructor (see
"Constructors" on page 147) is used. If there is no default constructor the
initializer-list must be complete. For example,

complex cc = { 1, 2 }; II error; use constructor
complex v[6] = { l,complex(l,2),complex(),2 };

Here, v [0] and v [3] are initialized with complex: : complex (double) ,
v [1] is initialized with complex: : complex (double, double) , and v [2],
v [4], and v [5] are initialized with complex: : complex ().

An object of class M can be a member of a class X only if (1) M does not have a
constructor, or (2) M has a default constructor, or (3) X has a constructor and if
every constructor of class X specifies a ctor-initializer (see "Initializing Bases
and Members" on page 160) for that member. In case 2 the default constructor
is called when the aggregate is created. If a member of an aggregate has a
destructor, then that destructor is called when the aggregate is destroyed.

Constructors for nonlocal static objects are called in the order they occur in a
file; destructors are called in reverse order. See also Section 3.5, "Start and
Termination," on page 15, Section 6.8, "Declaration Statement," on page 58,
Section 9.5, "Static Members," on page 111.

Initializing Bases and Members
Initializers for immediate base classes and for members not inherited from a

base class may be specified in the definition of a constructor. This is most
useful for class objects, constants, and references where the semantics of
initialization and assignment differ. A ctor-initializer has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
complete-dass-name (expression-listopt)
identifier (expression-listopt)

Product Reference Manual- October 1992

The argument list is used to initialize the named nonstatic member or base
class object. This is the only way to initialize nonstatic const and reference
members. For example,

struct Bl
struct B2

Bl(int); /*
B2 (int); / *

struct D : Bl, B2 {
D(int) ;
Bl b;
canst c;

} ;

* / };
* / };

D: :D(int a)
{ /* ... */

B2(a+l) I Bl(a+2) I c(a+3) I b(a+4)

D d(lO);

First, the base classes are initialized in declaration order (independent of the
order of mem-initializers), then the members are initialized in declaration order
(independent of the order of mem-initializers), then the body of D: : D () is
executed (see "Constructors" on page 147). The declaration order is used to
ensure that sub-objects and members are destroyed in the reverse order of
ini tializa tion.

Virtual base classes constitute a special case. Virtual bases are constructed
before any nonvirtual bases and in the order they appear on a depth-first left
to-right traversal of the directed acyclic graph of base classes; Hleft-to-right" is
the order of appearance of the base class names in the declaration of the
derived class.

A complete object is an object that is not a sub-object representing a base class.
Its class is said to be the most derived class for the object. All sub-objects for
virtual base classes are initialized by the constructor of the most derived class.
If a constructor of the most derived class does not specify a mem-initializer for a
virtual base class then that virtual base class must have a default constructor or

Special Member Functions 161

162

no constructors. Any mem-initializers for virtual classes specified in a
constructor for a class that is not the class of the complete object are ignored.
For example,

class V {
public:

} ;

V();
V(int) ;
II ...

class A : public virtual V {
public:

} ;

A();
A(int) ;
I I ...

class B : public virtual V {
public:

} ;

B();
B(int) ;
I I ...

class C : public A, public B, private virtual V {
public:

C();
C(int) ;
I I ...

} ;

A: :A(int i)
B: :B(int i)
C: :C (int i)

V v(l);
A a (2) ;
B b (3) ;
C c (4) ;

V(i) { 1* *1
1* *1
1* ... *1

II use V(int)

II use V(int)
II use V()
II use V()

Product Reference Manual- October 1992

}

A mem-initializer is evaluated in the scope of the constructor in which it
appears. For example,

class X {
int ai

public:
canst int& ri
X(): r(a) {}

initializes X: : r to refer to X: : a for each object of class X.

Constructors and Destructors

Member functions may be called in constructors and destructors. This implies
that virtual functions may be called (directly or indirectly). The function called
will be the one defined in the constructor's (or destructor's) own class or its
bases, but not any function overriding it in a derived class. This ensures that
unconstructed objects will not be accessed during construction or destruction.
For example,

class X {
public:

virtual void f() i

X () { f () i} I I calls X:: f ()
-X () { f () i } I I calls X:: f ()

class Y : public X {

int& ri
public:

void f()

r++i II disaster if 'r' is uninitialized

Y(int& rr) :r(rr) {}

Special Member Functions 163

164

The effect of calling a pure virtual function directly or indirectly for the object
being constructed from a constructor, except using explicit qualification, is
undefined (see Section 10.4, "Abstract Classes," on page 129).

Copying Class Objects

A class object can be copied in two ways, by assignment (see Section 5.16,
"Assignment Operators," on page 48) and by initialization (see "Constructors"
on page 147, "Initializers" on page 94) including function argument passing
(see "Function Call" on page 31) and function value return (see "The return
Statement" on page 57). Conceptually, for a class x these two operations are
implemented by an assignment operator and a copy constructor (see
"Constructors" on page 147). The programmer may define one or both of these.
If not defined by the programmer, they will be defined as memberwise
assignment and memberwise initialization of the members of x, respectively.

If all bases and members of a class x have copy constructors accepting canst
arguments, the generated copy constructor for x will take a single argument of
type canst X&, as follows:

x: :X(const X&)

Otherwise it will take a single argument of type X&:

x: :X(X&)

and initialization by copying of canst X objects will not be possible.

Similarly, if all bases and members of a class X have assignment operators
accepting canst arguments, the generated assignment operator for X will take
a single argument of type cans t X& I as follows:

X& X::operator=(const X&)

Otherwise it will take a single argument of type X&:

X& X::operator=(X&)

and assignment by copying of cans t X objects will not be possible. The default
assignment operator will return a reference to the object for which is invoked.

Objects representing virtual base classes will be initialized only once by a
generated copy constructor. Objects representing virtual base classes will be
assigned only once by a generated assignment operator.

Product Reference Manual- October 1992

Memberwise assignment and memberwise initialization implies that if a class X

has a member of a class M, M's assignment operator and M's copy constructor
are used to implement assignment and initialization of the member,
respectively. If a class has a cons t member, a reference member, or a member
or a base of a class with a private opera tor= () , the default assignment
operation cannot be generated. Similarly, if a member or a base of a class M has
a private copy constructor then the default copy constructor cannot be
generated.

The default assignment and copy constructor will be declared, but they will
not be defined (that is, a function body generated) unless needed. That is,
X: : operator= () will be generated only if no assignment operation is
explicitly declared and an object of class X is assigned an object of class X or an
object of a class derived from X or if the address of X: : operator= is taken.
Initialization is handled similarly.

If implicitly declared, the assignment and the copy constructor will be public
members and the assignment operator for a class X will be defined to return a
reference of type X& referring to the object assigned to.

If a class X has any x: : operator= () that takes an argument of class X, the
default assignment will not be generated. If a class has any copy constructor
defined, the default copy constructor will not be generated. For example,

class X
II

pUblic:
X(int) ;
X(const X&, int 1);

} ;

x a(l);
x b(a, 0);
x c = b;

II calls X(int);
II calls X(const X&,int);
II calls X(const X&,int);

Special Member Functions 165

166

Assignment of class X objects is defined in terms of X: : opera tor= (canst
X&) . This implies (see "Conversions" on page 150) that objects of a derived
class can be assigned to objects of a public base class. For example,

class X {
public:

int b;
} ;

class Y : public X {
public:

int c;
} ;

void f ()

X xl;
Y yl;
xl yl;

yl = xl;
II ok
II error

Here yl . b is assigned to xl . band yl . c is not copied.

Product Reference Manual- October 1992

Copying one object into another using the default copy constructor or the
default assignment operator does not change the structure of either object. For
example,

struct s {
virtual f()i
II ...

} i

struct ss : public s {
f () i

II ...
} i

void f ()

s ai

ss bi

a = bi
b = ai

a. f () i

b. f () i

II really a.s::operator=(b)
II error
II calls s::f
II calls ss::f

(s&)b = ai II assign to b'S s part
II really ((s&)b) .s::operator=(a)

b.f() i II still calls ss::f

The call a . f () will invoke 8: : f () (as is suitable for an object of class 8 (see
Section 10.3, UVirtual Functions," on page 127) and the call b. f () will call
88: : f () (as is suitable for an object of class 88).

Special Member Functions 167

168 Product Reference Manual- October 1992

13.1 Overloading

Overloading

When several different function declarations are specified for a single name in
the same scope, that name is said to be overloaded. When that name is used,
the correct function is selected by comparing the types of the actual arguments
with the types of the formal arguments. For example,

double abs(double)i
int abs(int)i

abs (1) i I I call abs (int) i

abs(1.0)i II call abs(double)i

Since for any type T, a T and a T& accept the same set of initializer values,
functions with argument types differing only in this respect may not have the

169

170

same name. For example,

int f(int i)

II ...

int f(int& r) II error: function types
II not sufficiently different

II ...

Similarly, since for any type T, a T, a const T, and a volatile T accept the
same set of initializer values, functions with argument types differing only in
this respect may not have the same name. It is, however, possible to distinguish
between const T&, volatile T&, and plain T& so functions that differ only in
this respect may be defined. Similarly, it is possible to distinguish between
const T*, volatile T*, and plain T* so functions that differ only in this
respect may be defined.

Functions that differ only in the return type may not have the same name.

Member functions that differ only in that one is a static member and the
other isn't may not have the same name (see Section 9.5, "Static Members," on
page 111).

Product Reference Manual- October 1992

A typedef is not a separate type, but only a synonym for another type (see
"The typedef Specifier" on page 68). Therefore, functions that differ by typedef
"types" only may not have the same name. For example,

typedef int Int;

void f(int i)
void f(Int i)

/*
/*

*/
*/ // error: redefinition of f

Enumerations, on the other hand, are distinct types and can be used to
distinguish overloaded functions. For example,

enum E { a };

void f(int i) { /* ... */
void f (E i) { / * ... * / }

Argument types that differ only in a pointer * versus an array [] are identical.
Note that only the second and subsequent array dimensions are significant in
argument types (see "Arrays" on page 86).

f (char*) ;
f (char []); // same as f(char*);
f (char [7]) ; // same as f(char*);
f (char [9]) ; // same as f(char*);

g(char(*) [10]);
g (char [5] [10]) ; // same as g(char(*) [10]);
g (char [7] [10]) ; // same as g (char (*) [10]) ;
g (char (*) [20]) ; // different from g (char (*) [10]) ;

Declaration Matching

Two function declarations of the same name refer to the same function if they
are in the same scope and have identical argument types (see Chapter 13,
"Overloading,"). A function member of a derived class is not in the same scope

Overloading 171

172

as a function member of the same name in a base class. For example,

class B {
public:

int f (int) ;
} ;

class D : public B
public:

int f (char*) ;
} ;

Here D: : f (char*) hides B: : f (int) rather than overloading it.

void h(D* pd)
{

pd->f(l); II error:
II D::f(char*) hides B::f(int)

pd->B::f(l); II ok
pd->f("Ben"); II ok, calls D::f

A locally declared function is not in the same scope as a function in file scope.

in t f (char *) ;
void g()
{

extern f (int) ;
f("asdf"); II error: f(int) hides f(char*)

II so there is no f(char*) in this scope

Product Reference Manual- October 1992

Different versions of an overloaded member function may be given different
access rules. For example,

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size

/ / ...
public:

} ;

13.2 Argument Matching

buffer(int s) {p new char[size
/ / ...

s; p store; }

s]; }

A call of a given function name chooses, from among all functions by that
name that are in scope and for which a set of conversions exists so that the
function could possibly be called, the function that best matches the actual
arguments. The best-matching function is the intersection of sets of functions
that best match on each argument. Unless this intersection has exactly one
member, the call is illegal. The function thus selected must be a strictly better
match for at least one argument than every other possible function (but not
necessarily the same argument for each function). Otherwise, the call is illegal.

For purposes of argument matching, a function with n default arguments (see
"Default Arguments" on page 90) is considered to be n+l functions with
different numbers of arguments.

For purposes of argument matching, a nonstatic member function is considered
to have an extra argument specifying the object for which it is called. This extra
argument requires a match either by the object or pointer specified in the
explicit member function call notation (see "Class Member Access" on page 32)
or by the first operand of an overloaded operator (see Section 13.4,
"Overloaded Operators," on page 179). No temporaries will be introduced for
this extra argument and no user-defined conversions will be applied to achieve
a type match.

Overloading 173

174

Where a member of a class x is explicitly called for a pointer using the - >
operator, this extra argument is assumed to have type const X* for const
members, volatile X* for volatile members, and X* for others. Where the
member function is explicitly called for an object using the. operator or the
function is invoked for the first operand of an overloaded operator (see Section
13.4, "Overloaded Operators," on page 179), this extra argument is assumed to
have type const X& for const members, volatile X& for volatile
members, and X& for others. The first operand of - > * and . * is treated in the
same way as the first operand of - > and ., respectively.

An ellipsis in a formal argument list (see "Functions" on page 88) is a match
for an actual argument of any type.

For a given actual argument, no sequence of conversions will be considered
that contains more than one user-defined conversion or that can be shortened
by deleting one or more conversions into another sequence that leads to the
type of the corresponding formal argument of any function in consideration.
Such a sequence is called a best-matching sequence.

For example, int (->float (->double is a sequence of conversions from int
to double, but it is not a best-matching sequence because it contains the
shorter sequence int (->double.

Except as mentioned below, the following trivial conversions involving a type T

do not affect which of two conversion sequences is better:

from: to:

T T&

T& T

T[] T*

T (args) T(*) (args)

T const T

T volitale T

T* const T*

T* volatile T*

Product Reference Manual- October 1992

Sequences of trivial conversions that differ only in order are indistinguishable.
Note that functions with arguments of type T, const T, volatile T, T&,
const T&, and volatile T& accept exactly the same set of values. Where
necessary, const and volatile are used as tie-breakers as described in rule
[1] below.

A temporary variable is needed for a formal argument of type T& if the actual
argument is not an lvalue, has a type different from T, or is a volatile and T
isn't. This does not affect argument matching. It may, however, affect the
legality of the resulting match since a temporary may not be used to initialize a
non-c const reference (see "References" on page 84).

Sequences of conversions are considered according to these rules:

[1] Exact match: Sequences of zero or more trivial conversions are better
than all other sequences. Of these, those that do not convert T* to const
T*, T* to volatile T*, T& to const T&, or T& to volatile T& are better
than those that do.

[2] Match with promotions: Of sequences not mentioned in [1], those that
contain only integral promotions (see "Integral Promotions" on page 21),
conversions from float to double, and trivial conversions are better than
all others.

[3] Match with standard conversions: Of sequences not mentioned in [2],
those with only standard (see "Integral Promotions" on page 21, "Integral
Conversions" on page 22, "Float and Double" on page 22, "Floating and
Integral" on page 22, "Arithmetic Conversions" on page 22, "Pointer
Conversions" on page 23, "Reference Conversions" on page 24, "Pointers to
Members" on page 24) and trivial conversions are better than all others. Of
these, if B is publicly derived directly or indirectly from A, converting a B *
to A * is better than converting to void * or cons t void *; further, if C is
publicly derived directly or indirectly from B, converting a C * to B * is better
than converting to A * and converting a C& to B& is better than converting to
A&. The class hierarchy acts similarly as a selection mechanism for pointer to
member conversions (see "Pointers to Members" on page 24).

[4] Match with user-defined conversions: Of sequences not mentioned in [3],
those that involve only user-defined conversions (see "Conversions" on
page 150), standard (see Chapter 4, "Standard Conversions,") and trivial
conversions are better than all other sequences.

Overloading 175

176

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are
worse than all others.

User-defined conversions are selected based on the type of variable being
initialized or assigned to.

class Y
II

public:
operator int()i
operator double()i

} i

void f(Y y)

int i = Yi II call
double di
d = Yi II call

Y: : operator

Y: : operator
float f = Yi II error: ambiguous

int()

double ()

Standard conversions (Chapter 4, "Standard Conversions,") may be applied to
the argument for a user-defined conversion, and to the result of a user-defined
conversion.

struct 8 { 8(long)i operator int()i }i

void f(long) , f(char*)i
void g(8), g(char*)i
void h(const 8&), h(char*)i
void k(8& a)
{

f (a) i

g(l) i

h(l) i

II f(long(a.operator int()))
II g(S(long(l)))
II h(S(long(l)))

If user-defined coercions are needed for an argument, no account is taken of

Product Reference Manual- October 1992

any standard coercions that might also be involved. For example,

class x {
public:

x(int) i

} i

class y {
public:

y(long) i

} i

void f (x) i

void f (y) i

void g ()
{

f (1) i II ambiguous

The call f (1) is ambiguous despite f (y (long (1))) needing one more
standard conversion than f (x (1)) .

Overloading 177

No preference is given to conversion by constructor (see "Constructors" on
page 147) over conversion by conversion function (see "Conversion Functions"
on page 151) or vice versa.

struct X {
operator int()i

} i

struct Y {
Y(X) i

} i

Y operator+(Y,Y)i

void f(X a, X b)
{

a+bi II error, ambiguous:
II operator+(Y(a) , Y(b)) or
II a.operator int() + b.operator int()

13.3 Address of Overloaded Function

178

A use of a function name without arguments selects, among all functions of
that name that are in scope, the (only) function that exactly matches the target.
The target may be

• an object being initialized (see Section 8.5, "Initializers," on page 94)

• the left side of an assignment (see Section 5.16, "Assignment Operators," on
page 48)

• a formal argument of a function (see "Function Call" on page 31)

• a formal argument of a user-defined operator (see Section 13.4, "Overloaded
Operators," on page 179)

• a function return type (see "Functions" on page 88)

Note that if f () and g () are both overloaded functions, the cross product of
possibilities must be considered to resolve f (&g) , or the equivalent expression
f (g).

Product Reference Manual- October 1992

For example,

int f(double)i
int f(int)i
int (*pfd) (double) = &fi
int (*pfi) (int) &fi
int (*pfe) (...) = &fi II error: type mismatch

The last initialization is an error because no f () with type int (...) has been
defined, and not because of any ambiguity.

Note also that there are no standard conversions (see Chapter 4, "Standard
Conversions,") of one pointer to function type into another (see "Pointer
Conversions" on page 23). In particular, even if B is a public base of D we have

D* f () i

B* (*pl) () &fi II error

void g(D*)i
void (*p2) (B*)

13.4 Overloaded Operators

&gi II error

Most operators can be overloaded.

operator-Junction-name:
operator operator

Overloading 179

180

operator: one of

new delete
+ * I % &

< > += *= 1= %=
"= &= 1= « » »= «= !=
<= >= && II ++ ->* ->
() []

The last two operators are function call (see "Function Call" on page 31) and
subscripting (see "Subscripting" on page 31).

Both the unary and binary forms of

+ - * &

can be overloaded.

The following operators cannot be overloaded:

. . * :: ?: sizeof

nor can the preprocessing symbols # and ## (see Chapter 16,
"Preprocessing,") .

Operator functions are usually not called directly; instead they are invoked to
implement operators (see "Unary Operators" on page 181, "Binary Operators"
on page 181). They can be explicitly called, though. For example,

complex z = a.operator+(b); II complex z = a+b;
void* p operator new(sizeof(int)*n);

The operators new and delete are described in "New" on page 36 and
"Delete" on page 38 and the rules described below in this section do not apply
to them.

An operator function must either be a member function or take at least one
argument of a class or a reference to a class. It is not possible to change the
precedence, grouping, or number of operands of operators. The predefined
meaning of the operators =, (unary) &, and I (comma) applied to class objects
may be changed. Except for operator= (), operator functions are inherited;
see "Copying Class Objects" on page 164 for the rules for operator= () .

Product Reference Manual- October 1992

Identities among operators applied to basic types (for example, ++a (== a+=l)
need not hold for operators applied to class types. Some operators, for
example, +=, require an operand to be an lvalue when applied to basic types;
this is not required when the operators are declared for class types.

An overloaded operator cannot have default arguments (see "Default
Arguments" on page 90).

Operators not mentioned explicitly below in "Assignment" on page 182 to
"Increment and Decrement" on page 183 act as ordinary unary and binary
operators obeying the rules of section "Unary Operators" on page 181 or
"Binary Operators" on page 181.

Unary Operators
A prefix unary operator may be declared by a nonstatic member function (see
Section 9.4, "Member Functions," on page 108) taking no arguments or a
nonmember function taking one argument. Thus, for any prefix unary operator
@, @x can be interpreted as either x. operator@ () or operator@ (x). If both
forms of the operator function have been declared, argument matching (see
Section 13.2, "Argument Matching," on page 173) determines which, if any,
interpretation is used. See "Increment and Decrement" on page 183 for an
explanation of postfix unary operators, that is, ++ and --.

Binary Operators
A binary operator may be declared either by a nonstatic member function (see
Section 9.4, "Member Functions," on page 108) taking one argument or by a
nonmember function taking two arguments. Thus, for any binary operator @,

x@y can be interpreted as either x. operator@ (y) or operator@ (x, y) . If
both forms of the operator function have been declared, argument matching
(see Section 13.2, "Argument Matching," on page 173) determines which, if
any, interpretation is used.

Overloading 181

182

Assignment
The assignment function operator= () must be a nonstatic member function;
it is not inherited (see "Copying Class Objects" on page 164). Instead, unless
the user defines opera tor= for a class x, opera tor= is defined, by default, as
memberwise assignment of the members of class x.

X& X::operator=(const X& from)
{

II copy members of X

Function Call
Function call

primary-expression (expression-listopt)

is considered a binary operator with the primary-expression as the first operand
and the possibly empty expression-list as the second. The name of the defining
function is operator (). Thus, a call x (argl f arg2 f arg3) is interpreted as
x. operator () (argl f arg2 f arg3) for a class object x. operator () must
be a nonstatic member function.

Subscripting
Subscripting

primary-expression [expression]

is considered a binary operator. A subscripting expression x [y] is interpreted
as x. operator [] (y) for a class object x. operator [] must be a nonstatic
member function.

Class Member Access
Class member access using - >

primary-expression -> primary-expression

Product Reference Manual- October 1992

is considered a unary operator. An expression x->m is interpreted as
(x. operator-> ()) ->m for a class object x. It follows that operator-> ()
must return either a pointer to a class or an object of or a reference to a class for
which operator-> () is defined. operator-> must be a nonstatic member
function.

Increment and Decrement
A function called operator++ taking one argument defines the prefix
increment operator ++ for objects of some class. A function called operator++
taking two arguments defines the postfix increment operator ++ for objects of
some class. For postfix operator++, the second argument must be of type
int and the operator++ () will be called with the second argument a when
invoked by a postfix increment expression. For example,

class X {
public:

X operator++() i II prefix ++a
X operator++(int) ill postfix a++

} i

void f(X a)

++ai II a.operator++() i

a++i II a.operator++(O) i

a.operator++() i II explicit call: like
a.operator++(O)i II explicit call: like

++ai

a++i

The prefix and postfix decrement operators - - are handled similarly.

Overloading 183

184 Product Reference Manual- October 1992

14.1 Templates

Templates

A template defines a family of types or functions.

template-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list I template argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

The declaration in a template-declaration must declare or define a function or a
class.

A type-argument defines its identifier to be a type-name in the scope of the
template declaration. Template names obey the usual scope and access control
rules. A template-declaration is a declaration. A template-declaration may appear
only as a global declaration.

185

186

Class Templates

A class template specifies how individual classes can be constructed much as a
class declaration specifies how individual objects can be constructed. A vector
class template might be declared like this:

template<class T> class vector {
T* Vi

int SZi

public:

} i

vector (int) i

T& operator[] (int);
T& elem(int i) { return V[i]i

II

The prefix template <class T> specifies that a template is being declared
and that a type-name T will be used in the declaration. In other words, vector
is a parameterized type with T as its parameter.

A class can be specified by a template-dass-name:

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

A template-dass-name is a dass-name (see Chapter 9, "Classes,").

A class generated from a class template is called a template class, as is a class
specifically defined with a template-dass-name as its name; see "Member
Function Templates" on page 192.

A template-dass-name where the template-name is not defined names an
undefined class.

Product Reference Manual- October 1992

A class template name must be unique in a program and may not be declared
to refer to any other template, class, function, object, value, or type in the same
scope.

The types of the template-args specified in a template-class-name must match the
types specified for the template in its template-argument-list.

Other template-args must be constant-expressions, addresses of objects or
functions with external linkage, or of static class members. An exact match (see
Section 13.2, "Argument Matching," on page 173) is required for nontype
arguments.

For example, vectors can be used like this:

vector<int> vl(20)i
vector<complex> v2(30)i

typedef vector<complex> cvecill make cvec a synonym
II for vector<complex>

cvec v3(40)i II v2 and v3 are of the same type

vl [3]
v2 [3]

7 i
v3.elem(4) complex(7,8) i

Here, vector<int> and vector<complex> are template classes, and their
definitions will by default be generated from the vector template.

Since a template-class-name is a class-name, it can be used wherever a class-name
can be used. For example,

class vector<Shape*>i

vector<Window>* current_windowi

class svector : public vector<Shape*> { 1* ... *1 }i

Definition of class template member functions is described in "Member
Function Templates" on page 192.

Tamplates 187

188

Type Equivalence

Two template-class-names refer to the same class if their template names are
identical and their arguments have identical values. For example,

template<class E, int size> class bufferi

buffer<char,2*512> Xi

buffer<char,1024> Yi
buffer<char,512> Zi

declares x and y to be of the same type and z of a different type, and,

template<class T, void(*err_fct) (»
class list { / * .. , * / } i

list<int,&error_handlerl> Xli

list<int,&error_handler2> X2i

list<int,&error_handler2> X3i

list<char,&error_handler2> X4i

declares x2 and x3 to be of the same type. Their type differs from the types of
xl and x4.

Function Templates

A function template specifies how individual functions can be constructed. A
family of sort functions, for example, might be declared like this:

template<class T> void sort(vector<T»i

A function template specifies an unbounded set of (overloaded) functions. A
function generated from a function template is called a template function, as is
a function defined with a type that matches a function template; see "Function
Templates" on page 188.

Product Reference Manual- October 1992

Template arguments are not explicitly specified when calling a function
template; instead, overloading resolution is used. For example,

vector<complex> cv(lOO);
vector<int> ci(200);

void f(vector<complex>& cv, vector<int>& ci)
{

sort (cv) ;
sort (ci) ;

II invoke sort (vector<complex»
II invoke sort (vector<int»

A template function may be overloaded either by (other) functions of its name
or by (other) template functions of that same name. Overloading resolution for
template functions and other functions of the same name is done in three steps:

[1] Look for an exact match (see Section 13.2, "Argument Matching," on
page 173) on functions; if found, call it.

[2] Look for a function template from which a function that can be called
with an exact match can be generated; if found, call it.

[3] Try ordinary overloading resolution (see Section 13.2, "Argument
Matching," on page 173) for the functions; if a function is found, call it. If no
match is found the call is an error. In each case, if there is more than one
alternative in the first step that finds a match, the call is ambiguous and is
an error.

A match on a template (step [2]) implies that a specific template function with
arguments that exactly matches the types of the arguments will be generated
(see "Member Function Templates" on page 192). Not even trivial conversions
(see "Argument Matching" on page 173) will be applied in this case.

The same process is used for type matching for pointers to functions (see
Section 13.3, "Address of Overloaded Function," on page 178).

Tamplates 189

190

Here is an example:

template<class T> T max(T a, T b) { return a>b?a:bi }i

void f(int a, int b, char c, char d)
{

int ml = max(a,b)i II max(int a, int b)
char m2 = max(c,d)i// max(char a, char b)
int m3 = max(a,c)i II error: cannot generate

I I max (in t , char)

For example, adding

int max(int,int) i

to the example above would resolve the third call, by providing a function that
could be called for max (a , c) after using the standard conversion of char to
int for c.

A function template definition is needed to generate specific versions of the
template; only a function template declaration is needed to generate calls to
specific versions.

Every template-argument specified in the template-argument-list must be used in
the argument types of a function template.

template<class T> T* create()i II error

template<class T>
void f() { II error

T ai
I I ...

All template-arguments for a function template must be type-arguments.

Product Reference Manual- October 1992

Declarations and Definitions

There must be exactly one definition for each template of a given name in a
program. There can be many declarations. The definition is used to generate
specific template classes and template functions to match the uses of the
template.

Using a template-class-name constitutes a declaration of a template class.

Calling a function template or taking its address constitutes a declaration of a
template function. There is no special syntax for calling or taking the address
of a template function; the name of a function template is used exactly as is a
function name. Declaring a function with the same name as a function template
with a matching type constitutes a declaration of a specific template function.

If the definition of a specific template function or specific template class is
needed to perform some operation and if no explicit definition of that specific
template function or class is found in the program, a definition is generated.

The definition of a (nontemplate) function with a type that exactly matches the
type of a function template declaration is a definition of that specific template
function. For example,

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort(vector<char*>& v) { /* ... */ }

Here, the function definition will be used as the sort function for arguments of
type vector<char*>. For other vector types the appropriate function
definition is generated from the template.

A class can be defined as the definition of a template class. For example,

template<class T> class stream { /* ... */ };

class stream<char> { /* ... */ };

Here, the class declaration will be used as the definition of streams of
characters (c stream<char». Other streams will be handled by template
functions generated from the function template. No operation that requires a

Tamplates 191

192

defined class can be performed on a template class until the class template has
been seen. After that, a specific template class is considered defined
immediately before the first global declaration that names it.

Member Function Templates

A member function of a template class is implicitly a template function with
the template arguments of its class as its template arguments. For example,

template<class T> class vector {
T* Vi

int SZi
public:

vector (int) i

} i

T& operator[] (int)i
T& elem(int i) { return V[i]i
II

declares three function templates. The subscript function might be defined like
this:

template<class T> T& vector<T>: :operator[] (int i)
{

if (i<O I I sz<=i) error ("vector: range error")i
return V[i]i

The template argument for vector<T>: : operator [] () will be determined
by the vector to which the subscripting operation is applied.

vector<int> vl(20)i
vector<complex> v2(30)i

vl [3]
v2[3]

7i II vector<int>::operator[] ()
complex(7,8) ill vector<complex>::operator[] ()

Product Reference Manual- October 1992

Friends

A friend function of a template is not implicitly a template function. For
example,

template<class T> class task
/ / ...

} i

friend void next_time()i
friend task<T>* preempt(task<T>*)i
friend task* prmt(task*)i// error
/ / ...

Here, next_time () becomes the friend of all task classes, and each task has
an appropriately typed function called preempt () as a friend. The preempt
functions might be defined as a template.

template<class T>
task<T>* preempt(task<T>* t) { /* ... */ }

The declaration of prmt () is an error because there is no type task, only
specific template types, task<int>, task<record>, and so on.

Static Members and Variables

Each template class or function generated from a template has its own copies
of any static variables or members. For example,

template<class T> class X {
static T Si

/ / ...
} i

x<int> aai
X<char*> bbi

Here x<int> has a static member s of type int and X<char*> has a static
member s of type char * .

Tamplates 193

194

Similarly,

tmplate<class T> f(T* p)
{

} i

static T Si

/ / ...

void g(int a, char* b)

f (&a) i

f (&b) i

}

Here f (int *) has a static member s of type int and f (char* *) has a static
member s of type char * * .

Product Reference Manual- October 1992

Exception Handling

15.1 Exception Handling
Exception handling, as described in Ellis and Stroustrup: The Annotated C++
Reference Manual (Addison-Wesley 1990) and in Stroustrup: The C++
Programming Language (2nd edition) (Addison-Wesley 1991), has been adopted
into the working drafts of the ANSI and ISO C++ standards committees. It is
not supported by this release but will be supported in some future release.

195

196 Product Reference Manual- October 1992

16.1 Preprocessing

Preprocessing

A c++ implementation contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files.

Lines beginning with #, optionally preceded by space and horizontal tab
characters, (also called "directives") communicate with this preprocessor.
These lines have syntax independent of the rest of the language; they may
appear anywhere and have effects that last (independent of the scoping rules
of C++) until the end of the translation unit (see Chapter 2, "Lexical
Conventions,") .

A preprocessing directive (or any other line) may be continued on the next line
in a source file by placing a backslash character, \, immediately before the
new-line at the end of the line to be continued. The preprocessor effects the
continuation by deleting the backslash and the new-line before the input
sequence is divided into tokens. A backslash character may not be the last
character in a source file.

A preprocessing token is a language token (see Section 2.2, "Tokens," on page
5), a file name as in a # inc 1 ude directive, or any single character, other than
white space, that does not match another preprocessing token.

197

198

Phases of Preprocessing

Preprocessing is defined to occur in several phases. An implementation may
collapse these phases, but the effect must be as though they had been executed.

1. If needed, new-line characters are introduced to replace system-dependent
end-of-line indicators and any other necessary system-dependent character
set translations are done. Hygrograph sequences are replaced by their single
character equivalents (see "Trigraph Sequences" on page 198).

2. Each pair of a backslash character \ immediately followed by a new-line is
deleted, with the effect that the next source line is appended to the line that
contained the sequence.

3. The source text is decomposed into preprocessing tokens and sequences of
white space. A single white space replaces each comment. A source file may
not end with a partial token or comment.

4. Preprocessing directives are executed and macros are expanded (see
"Macro Definition and Expansion" on page 199, "File Inclusion" on page
203, "Conditional Compilation" on page 204, "Conditional Compilation" on
page 204, "Error Directive" on page 206, and "Pragmas" on page 206).

5. Escape sequences in character constants and string literals are replaced by
their equivalents (see "Character Constants" on page 8).

6. Adjacent string literals are concatenated.

The result of preprocessing is syntactically and semantically analyzed and
translated, then linked together as necessary with other programs and libraries.

Trigraph Sequences

Before any other processing takes place, each occurrence of one of the
following sequences of three characters ("trigraph sequences") is replaced by
the single character indicated in the table below.

??=

?? /

??'

\

A

??(

??)

??!

Product Reference Manual- October 1992

For example,

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] I I b[a]

Macro Definition and Expansion

A preprocessing directive of the form

#define identifier token-string

causes the preprocessor to replace subsequent instances of the identifier with
the given sequence of tokens. White space surrounding the replacement token
sequence is discarded. Given, for example,

#define SIDE 8

the declaration

char chessboard [SIDE] [SIDE] ;

after macro expansion becomes

char chessboard [8] [8];

An identifier defined in this form may be redefined only by another #define
directive of this form provided the replacement list of the second definition is
identical to that of the first. All white space separations are considered
identical.

A line of the form

#define identifier (identifier, ... , identifier) token-string

where there is no space between the first identifier and the (is a macro
definition with parameters, or a "function-like" macro definition. An identifier
defined as a function-like macro may be redefined by another function-like
macro definition provided the second definition has the same number and
spelling of parameters and the two replacement lists are identical. White space
separations are considered identical.

Subsequent appearances of an identifier defined as a function-like macro
followed by a (, a sequence of tokens delimited by commas, and a) are
replaced by the token string in the definition. White space surrounding the

Preprocessing 199

200

replacement token sequence is discarded. Each occurrence of an identifier
mentioned in the parameter list of the definition is replaced by the tokens
representing the corresponding actual argument in the call. The actual
arguments are token strings separated by commas; commas in quoted strings,
in character constants, or within nested parentheses do not separate
arguments. The number of arguments in a macro invocation must be the same
as the number of parameters in the macro definition.

Once the arguments to a function-like macro have been identified, argument
substitution occurs. Unless it is preceded by a # token (see "The # Operator" on
page 200) or is adjacent to a ## token (see "The ## Operator" on page 201), a
parameter in the replacement list is replaced by the corresponding argument
after any macros in the argument have been expanded (see "Res canning and
Further Replacement" on page 202).

For example, given the macro definitions

#define index_maskOXFFOO
#define extract(word,mask)word & mask

the call

index extract(packed_data,index_mask);

expands to

index = packed_data & OXFFOO;

In both forms the replacement string is res canned for more defined identifiers
(see "Res canning and Further Replacement" on page 202).

The # Operator
If an occurrence of a parameter in a replacement token sequence is
immediately preceded by a # token, the parameter and the # operator will be
replaced in the expansion by a string literal containing the spelling of the
corresponding argument. A \ character is inserted in the string literal before
each occurrence of a \ or a II within or delimiting a character constant or string
literal in the argument.

Product Reference Manual- October 1992

For example, given

#define path(logid,crnd) "/usr/" #logid "/bin/" #crnd
#define joe joseph

the call

char*mytool+path(joe,readrnail);

yields

char* rnytool=" /usr /" "j oe" "/bin/" "readrnail";

which is later concatenated «sc16.1) to become

char* rnytool="/usr/joe/bin/readmail";

The II Operator
If a ## operator appears in a replacement token sequence between two tokens,
first if either of the adjacent tokens is a parameter it is replaced, then the # #
operator and any white space surrounding it are deleted. The effect of the # #
operator, therefore, is concatenation.

Given

#define inherit (basenurn) public Pubbase ## basenurn, \
private Privbase ## basenurn

the call

class D inherit (1) { };

yields

class D public Pubbase1, private Privbase1 { };

Preprocessing 201

202

Any macros in the replaced tokens adjacent to the # # are not available for
further expansion, but the result of the concatenation is. Given

#define concat(a) a ## ball
#define base B
#define baseball sport

the call

concat(base)

yields

sport

and not

Bball

Rescanning and Further Replacement
After all parameters in the replacement list have been replaced, the resulting
list is rescanned for more macros to replace. If the name of the macro being
replaced is found during this scan or during subsequent res canning, it is not
replaced.

A completely replaced macro expansion is not interpreted as a preprocessing
directive, even if it appears to be one.

Scope of Macro Names and #undef

Once defined, a preprocessor identifier remains defined and in scope
(independent of the scoping rules of C++) until the end of the translation unit
or until it is undefined in a #unde f directive.

A #unde f directive has the form

#undef identifier

and causes the identifier's preprocessor definition to be forgotten. If the
specified identifier is not currently defined as a macro name, the #undef is
ignored.

Product Reference Manual- October 1992

File Inclusion

A control line of the form

#include <filename>

causes the replacement of that line by the entire contents of the file filename.
The named file is searched for in an implementation-dependent sequence of
places.

Similarly, a control line of the form

#include "filename"

causes the replacement of that line by the contents of the file filename, which is
searched for first in an implementation-dependent manner. If this search fails,
the file is searched for as if the directive had been of the form

#include <filename>

Neither the new-line character nor> may appear in filename delimited by < and
>. If any of the characters' , \, or ' , , or either of the sequences I * or II
appear in such a filename the behavior is undefined.

Neither the new-line character nor' , may appear in a filename delimited by a
" pair, although> may appear. If either of the characters ' or \ or either of the
sequences I * or I I appear in such a filename, the behavior is undefined.

If a directive appears of the form

#include token-string

not matching either of the forms given above, the preprocessing tokens within
token-string will be processed as normal text. The resulting directive must
match one of the forms defined above and will be treated as such.

A #include directive may appear within a file that is being processed as a
result of another #include directive.

An implementation may impose a limit on the depth of nesting of #include
directives within source files that have been read while processing a #include
directive in another source file.

Preprocessing 203

204

Conditional Compilation

The preprocessor allows conditional compilation of source code. The syntax for
conditional compilation follows:

conditional:
if-part elif-partsopt else-partopt endif-line

if-part:
if-line text

if-line:
if constant-expression
if de f identifier
i fndef identifier

elif-parts:
elif-line text
elif-parts elif-line text

elif-line:
el i f constant-expression

else-part:
else-line text

else-line:
else

endif-line:
endif

The constant expression in the #if and #elif's (if any) are evaluated in the
order in which they appear until one of the expressions evaluates to a nonzero
value. C++ statements following a line with a zero value are not compiled, nor
do preprocessor directives following such a line have any effect. When a
directive with a nonzero value is found, the succeeding #elif's, and #else's,
together with their associated text (C++ statements and preprocessor
directives) are ignored. The text associated with the successful directive (the

Product Reference Manual- October 1992

Line Control

first whose constant expression is nonzero) is preprocessed and compiled
normally. If the expressions associated with the #if and all #elif's evaluate
to zero, then the text associated with the #else (if any) is treated normally.

Within the constant-expression in a #if or #elif, a unary operator defined
can be used in either of the forms

defined identifier

or

defined (identifier)

When applied to an identifier, its value is 1 if that identifier has been defined
with a #def ine directive and not later undefined using #undef; otherwise its
value is o. The identifier defined itself may not be undefined or redefined.

After any de fined operators are evaluated, any remaining preprocessor
macros appearing in the constant expression will be replaced as described in
Section , "Macro Definition and Expansion," on page 199. The resulting
expression must be an integral constant expression as defined in Chapter 5,
"Expressions,", except that types int and unsigned int are treated as long
and unsigned long respectively, and it may not contain a cast, a sizeof
operator, or an enumeration constant.

A control line of the form

#ifdef identifier

is equivalent to

#i f defined identifier

A line of the form

#ifndef identifier

is equivalent to

if! de fined identifier

Conditional compilation constructs may be nested. An implementation may
impose a limit on the depth of nesting of conditional compilation constructs.

For the benefit of programs that generate C++ code, a line of the form

Preprocessing 205

206

#line constant "filename "opt

sets the predefined macro _LINE_ (see uPredefined Names" on page 206),
for purposes of error diagnostics or symbolic debugging, such that the line
number of the next source line is considered to be the given constant, which
must be a decimal integer. If "filename" appears, _FILE_ (see uPredefined
Names" on page 206), is set to the file named. If "filename" is absent the
remembered file name does not change.

Macros appearing on the line are replaced before the line is processed.

Error Directive

Pragmas

A line of the form

#error token-string

causes the implementation to generate a diagnostic message that includes the
given token sequence.

A line of the form

#pragma token-string

causes an implementation-dependent behavior when the token sequence is of a
form recognized by the implementation. An unrecognized pragma will be
ignored.

Null Directive

The null preprocessor directive, which has the form

has no effect.

Predefined Names

Certain information is available during compilation through predefined
macros.

LINE

Product Reference Manual- October 1992

A decimal constant containing the current line number in the C++ source
file.

FILE_

A string literal containing the name of the source file being compiled.

DATE
A string literal containing the date of the translation, in the form "Mmm dd

yyyy", or "Mmm d yyyy" if the value of the date is less than 10.

TIME
A string literal containing the time of the translation, in the form
"hh:rmn:ss".

In addition, the name _cplusplus is defined when compiling a C++
program.

These names may not be undefined or redefined.

LINE and _FILE_ can be set by the #line directive (see Section,
"Line Control," on page 205).

Whether _STDC_ is defined and, if so, what its value is are implementation
dependent.

Preprocessing 207

208 Product Reference Manual- October 1992

A.l Keywords

AppendixA: Grammar Summary

This appendix is not part of the c++ reference manual proper and does not
define c++ language features.

This summary of c++ syntax is intended to be an aid to comprehension. It is
not an exact statement of the language. In particular, the grammar described
here accepts a superset of valid C++ constructs. Disambiguation rules (see
Section 6.9, "Ambiguity Resolution," on page 60, Section 7.2, "Specifiers," on
page 63, "Ambiguities" on page 125) must be applied to distinguish
expressions from declarations. Further, access control, ambiguity, and type
rules must be used to weed out syntactically valid but meaningless constructs.

New context-dependent keywords are introduced into a program by typedef
(see "The typedef Specifier" on page 68), class (see Chapter 9, IiClasses,"),
enumeration (see Section 7.3, liE numeration Declarations," on page 73), and
template (see Chapter 14, IiTemplates,") declarations.

class-name:
identifier

enum-name:
identifier

typedef-name:
identifier

209

A.2 Expressions

210

Note that a typedef-name naming a class is also a class-name (see Section 9.2,
nClass Names," on page 102).

expression:
assignment-expression
expression, assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= +=

condi tiona I-express ion:
logical-or-expression

»= «= &= "'= 1=

logical-or-expression ? expression: conditional-expression

logical-or-expression:
logical-and -expression
logical-or-expression I I logical-and-expression

logical-and -expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression I exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression /\ and-expression

and-expression:
equality-expression
and-expression & equality-expression

Product Reference Manual- October 1992

equality-expression:
rela tional-expression
equality-expression == relational-expression
equality-expression != relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

add itive-expression:
mUltiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

pm-expression:
cast-expression
pm-expression. * cast-expression
pm-expression ->* cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

unary-expression:
postfix -expression
+ + unary-expression

Appendix A: Grammar Summary 211

212

unary-expression
unary-operator cast-expression
s i z eo f unary-expression
sizeof (type-name)
allocation -expression
deal location-expression

unary-operator: one of
* & + - ! ~

allocation-expression:
::opt new placementopt new-type-name new-initializeropt
::optnew placementopt (type-name) new-initializeropt

placement:
(expression-list)

new-type-name:
type-specifier-list new-declarator opt

new-declarator:
* cv-qual ifier-listoptnew-declarator opt
complete-class-name :: * cv-qualifier-listopt new-declaratoropt
new-declarator optl expression]

new-initializer:
(initializer-listopt

deallocation-expression:
::opt delete cast-expression
::opt delete [] cast-expression

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt
simple-type-name (expression-listopt
postfix-expression. name
postfix-expression -> name
postfix-expression ++

Product Reference Manual- October 1992

A.3 Declarations

postfix-expression --

expression-list:
assignment-expression
expression-list I assignment-expression

primary-expression:
literal
this:
: identifier
:: operator-Junction-name
:: qualified-name
(expression)
name

name:
identifier
operator-Junction-name
conversion-Junction-name
- class-name
qualified-name

qualified-name:
qualified-class-name :: name

literal:
integer-constant
character-constant
floating-constant
string-literal

declaration:
decl-specifiersopt declarator-listopt ;
asm-declaration
Junction-definition
template-declaration
linkage-specification

Appendix A: Grammar Summary 213

214

decl-speci fier:
storage-class-specifier
type-specifier
tct-specifier
friend
typedef

decl-speci fiers:
decl-speci fiers opt decl-speci fier

storage-class-specifier:
auto
register
static
extern

tct-specifier:
inline
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void

Product Reference Manual- October 1992

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

class-key:
class
struct
union

qualified-type-name:
typedef-name
class-name :: qualified-type-name

complete-class-name:
qual ified -class-name
:: qualified-class-name

qualified-class-name:
class-name
class-name :: qualified-class-name

enum-specifier:
enum identifieropt { enum-listopt }

enum-list:
enumerator
enum-list I enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification:
extern string-literal { declaration-listopt }
extern string-literal declaration

Appendix A: Grammar Summary 215

A.4 Declarators

216

declaration-list:
declaration
declaration-list declaration

asm-declaration:
asm (string-literal) ;

declarator-list:
in it-declarator
declarator-list I init-declarator

in it-declarator:
declarator initializer opt

declarator:
dname
ptr-operator declarator
declarator (argument-declaration-list) cv-qualifier-listopt
declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-listopt
& cv-qualifier-listopt
complete-class-name :: * cv-qualifier-listopt

cv-qualifier-list:
cv-qualifier cv-qualifier-listopt

cv-qualifier:
const
volatile

dname:
name
class-name
~ class-name
typedef-name

Product Reference Manual- October 1992

qualified-type-name

type-name:
type-specifier-list abstract-declarator opt

type-specifier-list:
type-specifier type-specifier-listopt

abstract-declarator:
ptr-operator abstract-declarator opt
abstract-declaratoropt (argument-declaration-list) cv-qualifier-listopt
abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

argument-declaration-list:
arg-declaration-listopt ···opt
arg-declaration-list , ...

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator opt
decl-specifiers abstract-declarator opt = expression

function -de fin ition:
decl-specifiersopt declarator ctor-initializeropt fct-body

fct-body:
compound-statement

initializer:
= assignment-expression
= { initializer-list ,opt}
(expression-list)

initializer-list:

Appendix A: Grammar Summary 217

assignment-expression
initializer-list , assignment-expression
{ initializer-list ,opt}

A.S Class Declarations

218

class-specifier:
class-head { member-listopt }

class-head:
class-key identifier opt base-specopt
class-key class-name base-spec opt

member-list:
member-declaration member-listopt
access-specifier : member-listopt

member-declaration:
decl-specifiersopt member-declarator-listopt ;
function-definition ;opt
qualified-name;

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifier opt
identifieropt : constant-expression

pure-specifier:
= 0

base-spec:
: base-list

base-list:
base-specifier
base-list, base-specifier

Product Reference Manual- October 1992

base-specifier:
complete-class-name
virtual access-specifieropt complete-class-name
access-specifier virtualopt complete-class-name

access-specifier:
private
protected
public

conversion-Junction-name:
opera tor conversion-type-name

conversion-type-name:
type-specifier-list ptr-operator opt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer I mem-initializer-list

mem-initializer:
complete-class-name (expression-list opt)
identifier (expression-list opt)

operator-Junction-name:
operator operator

operator: one of
new delete
+ - * / % " & 1

! = < > += -= *= /= %=
"= &= 1= « » »= «= == !=
<= >= && 1 I ++ -- I ->* ->

() []

Appendix A: Grammar Summary 219

A.6 Statements

220

statement:
labeled-statement
expression-statement
compound-statement
selection -statemen t
iteration-statement
jump-statement
declaration-statement

labeled -statement:
identifier: statement
case constant-expression: statement
defaul t : statement

expression-statement:
expression opt ;

compound-statement:
{ statement-listopt }

statement-list:
statement
statement-list statement

selection-statement:
if (expression) statement
if (expression) statement else statement
swi tch (expression) statement

iteration-statement:
whi 1 e (expression) statement
do statement while (expression) ;
for (for-init-statement expressionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

Product Reference Manual- October 1992

A.7 Preprocessor

jump-statement:
break ;
continue
return expressionopt ;
goto identifier;

declaration-statement:
declaration

#def ine identifier token-string
#def ine identifier< identifier I ••• I identifier) token-string

#include "filename"
#include <filename>

1 ine constant "filename"opt
#unde f identifier

conditional:
if-part elif-partsopt else-partopt endif-line

if-part:
if-line text

if-line:
if constant-expression
i fdef identifier
ifndef identifier

elif-parts:
elif-line text
elif-parts elif-line text

elif-line:
el i f constant-expression

else-part:
else-line text

Appendix A: Grammar Summary 221

A.B Templates

else-line:
else

end if-line:
endif

template-declaration:
templa te < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list , template argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

A.9 Exception Handling
try-block:

try compound-statement handler-list

222 Product Reference Manual- October 1992

handler-list:
handler handler-listopt

handler:
catch (exception-declaration) compound-statement

exception -dec laration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier -1 ist

throw-expression:
throwexpressionopt

exception-specification:
throw (type-list opt)

type-list:
type-name
type-list , type-name

Appendix A: Grammar Summary 223

224 Product Reference Manual- October 1992

Appendix B: Compatibility

This appendix is not part of the C++ reference manual proper and does not
define C++ language features.

C++ is based on C (K&R78) and adopts most of the changes specified by the
ANSI C standard. Converting programs among C++, K&R C, and ANSI C may
be subject to vicissitudes of expression evaluation. All differences between C++
and ANSI C can be diagnosed by a compiler. With the following three
exceptions, programs that are both C++ and ANSI C have the same meaning in
both languages: ,
In C, sizeof (' a ') equals sizeof (int); in C++, it equals sizeof (char).

In C, given

enum e { A };

sizeof (A) equals sizeof (int); in C++, it equals sizeof (e), which need
not equal sizeof (int).

225

B.l Extensions

A structure name declared in an inner scope can hide the name of an object,
function, enumerator, or type in an outer scope. For example,

int x[99];
void f ()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in c++ */

This section summarizes the major extensions to C provided by c++.

c++ Features Available in 1985

226

This subsection summarizes the extensions to C provided by C++ in the 1985
version of this manual:

The types of function arguments can be specified (see "Functions" on page 88)
and will be checked (see "Function Call" on page 31). Type conversions will be
performed (see "Function Call" on page 31). This is also in ANSI C.

Single-precision floating point arithmetic may be used for f 1 oa t expressions;
"Fundamental Types" on page 17 and "Float and Double" on page 22. This is
also in ANSI C.

Function names can be overloaded; (see Chapter 13, "Overloading,").

Operators can be overloaded; (see Section 13.4, "Overloaded Operators," on
page 179).

Functions can be inline substituted; (see "Function Specifiers" on page 67).

Data objects can be cons t; (see "Type Specifiers" on page 70). This is also in
ANSI C.

Objects of reference type can be declared; (see "References" on page 84 and
"References" on page 84).

Product Reference Manual- October 1992

A free store is provided by the new and delete operators; (see "New" on
page 36, "Delete" on page 38).

Classes can provide data hiding (see Chapter 11, "Member Access Control,"),
guaranteed initialization (see "Constructors" on page 147), user-defined
conversions (see IIConversions" on page 150), and dynamic typing through use
of virtual functions (see Section 10.3, "Virtual Functions," on page 127).

The name of a class or enumeration is a type name; (see Chapter 9, "Classes,").

A pointer to any non-c const and non-c volatile object type can be
assigned to avoid *; (see "Pointer Conversions" on page 23). This is also in
ANSIC.

A pointer to function can be assigned to a void *; (see "Pointer Conversions"
on page 23).

A declaration within a block is a statement; (see Section 6.8, "Declaration
Statement," on page 58).

Anonymous unions can be declared; (see Section 9.6, "Unions," on page 114).

c++ Features Added Since 1985

This subsection summarizes the major extensions of C++ since the 1985 version
of this manual:

A class can have more than one direct base class (multiple inheritance);
(seeSection 10.2, IIMultiple Base Classes," on page 123).

Class members can be protected; (see Chapter 11, IIMember Access
Control,").

Pointers to class members can be declared and used; (see "Pointers to
Members" on page 85, Section 5.4, "Pointer-to-Member Operators," on page
42).

Operators new and delete can be overloaded and declared for a class; (see
"New" on page 36, "Delete" on page 38, "Free Store" on page 156). This allows
the lIassignment to this II technique for class specific storage management to
be removed to the anachronism section.

Objects can be explicitly destroyed; (see "Destructors" on page 154)

Appendix B: Compatibility 227

228

Assignment and initialization are defined as memberwise assignment and
initialization; (see "Copying Class Objects" on page 164).

The overload keyword was made redundant and moved to the anachronism.

General expressions are allowed as initializers for static objects; (see Section
8.5, "Initializers," on page 94).

Data objects can be volatile; see "The typedef Specifier" on page 68. Also in
ANSIC.

Initializers are allowed for static class members; see Section 9.5, "Static
Members," on page 111.

Member functions can be static; (see Section 9.5, "Static Members," on page
111).

Member functions can be const and volatile; (see "The this Pointer" on
page 109).

Linkage to non-C++ program fragments can be explicitly declared; (see Section
7.5, "Linkage Specifications," on page 75).

Operators ->, ->*, and f can be overloaded; (see Section 13.4, "Overloaded
Operators," on page 179).

Classes can be abstract; (see Section lOA, "Abstract Classes," on page 129).

Prefix and postfix application of ++ and - - on a user-defined type can be
distinguished.

Templates; (see Chapter 14, "Templates,").

Exception handling; (see Chapter 15, "Exception Handling,").

c++ and ANSI C

In general, C++ provides more language features and fewer restrictions than
ANSI C so most constructs in ANSI C are legal in C++ with their meanings
unchanged. The exceptions are:

Product Reference Manual- October 1992

ANSI C programs using any of the C++ keywords

asm catch class delete friend

inline new operator private protected

public template try this virtual

throw

as identifiers are not C++ programs; (see Section 2.5, "Keywords," on page 6.

Though deemed obsolescent in ANSI C, a C implementation may impose
Draconian limits on the length of identifiers; a C++ implementation is not
permitted to; (see Section 2.4, "Identifiers," on page 6.

In C++, a function must be declared before it can be called; (see "Function
Call" on page 31).

The function declaration f () ; means that f takes no arguments (see
"Functions" on page 88); in C it means that f can take any number of
arguments of any type at all. Such use is deemed obsolescent in ANSI C.

In ANSI C a global data object may be declared several times without using the
extern specifier; in C++ it must be defined exactly once; (see Section 3.4,
"Program and Linkage," on page 14).

In C++, a class may not have the same name as a typedef declared to refer to a
different type in the same scope; (see Section 9.2, "Class Names," on page 102).

In ANSI C a void * may be used as the right-hand operand of an assignment
to or initialization of a variable of any pointer type; in C++ it may not; (see
"The typedef Specifier" on page 68).

C allows jumps to bypass an initialization; C++ does not.

In ANSI C, a global canst by default has external linkage; in C++ it does not;
(see Section 3.4, "Program and Linkage," on page 14).

"Old style" C function definitions and calls of undeclared functions are
considered anachronisms in C++ and may not be supported by all
implementations. This is deemed obsolescent in ANSI C.

Appendix B: Compatibility 229

How to Cope

230

A struct is a scope in C++ (see Section 3.3, "Scopes," on page 12); in ANSI C
a struct, an enumeration, or an enumerator declared in a struct is exported
to scope enclosing the struct.

Assignment to an object of enumeration type with a value that is not of that
enumeration type is considered an anachronism in C++ and may not be
supported by all implementations; (see Section 7.3, "Enumeration
Declarations," on page 73). ANSI C recommends a warning for such
assignments.

Surplus characters are not allowed in strings used to initialize character arrays;
(see "Character Arrays" on page 98).

The type of a character constant is char in C++ (see "Character Constants" on
page 8) and in t in C.

The type of an enumerator is the type of its enumeration in C++ (see Section
7.3, "Enumeration Declarations," on page 73) and int in C.

In addition, the ANSI C standard allows conforming implementations to differ
considerably; this may lead to further incompatibilities between C and C++
implementations. In particular, some C implementations may consider certain
incompatible declarations legal. C++ requires consistency even across
compilation boundaries; (see Section 3.4, "Program and Linkage," on page 14).

In general, a C++ program uses many features not provided by ANSI C. For
such a program, the minor differences don't matter since they are dwarfed by
the C++ extensions. Where ANSI C and C++ need to share header files, care
must be taken so that such headers are written in the common subset of the
two languages.

No advantage must be taken of C++ specific features such as classes,
overloading, and so on.

A name should not be used both as a structure tag and as the name of a
different type.

A function f taking no arguments should be declared f (void) and not simply
f ().

Global consts must be declared explicitly static or extern.

Product Reference Manual- October 1992

Conditional compilation using the C++ predefined name _cplusplus may
be used to distinguish information to be used by an ANSI C program from
information to be used by a C++ program.

Functions that are to be callable from both languages must be explicitly
declared to have C linkage.

Anachronisms

The extensions presented here may be provided by an implementation to ease
the use of C programs as C++ programs or to provide continuity from earlier
C++ implementations. Note that each of these features has undesirable aspects.
An implementation providing them should also provide a way for the user to
ensure that they do not occur in a source file. A C++ implementation is not
obliged to provide these features.

The word overload may be used as a decl-specifier (see Chapter 7,
"Declarations,") in a function declaration or a function definition. When used
as a decl-specifier, overload is a reserved word and cannot also be used as an
identifier.

Note - The following paragraph does not apply to this version of C++.

The definition of a static data member of a class for which initialization by
default to all zeros applies (see Section 8.5, "Initializers," on page 94, Section
9.5, "Static Members," on page 111) may be omitted.

An old style (that is, pre-ANSI C) C preprocessor may be used.

An int may be assigned to an object of enumeration type.

The number of elements in an array may be specified when deleting an array
of a type for which there is no destructor; (see "Delete" on page 38).

A single function operator++ () may be used to overload both prefix and
postfix ++ and a single function operator-- () may be used to overload both
prefix and postfix --; (see "Class Member Access" on page 182).

Old Style Function Definitions

The C function definition syntax

Appendix B: Compatibility 231

232

old-function-definition:
decl-specifiersopt old-function-declarator declaration-listopt fct-body

old-function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
parameter-list, identifier

For example,

max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its
argument type will be taken to be (...), that is, unchecked. If it has been
declared its type must agree with that of the declaration.

Class member functions may not be defined with this syntax.

Old Style Base Class Initializer

In a mem-initializer(see "Initializing Bases and Members" on page 160), the
class-name naming a base class may be left out provided there is exactly one
immediate base class. For example,

class B
II

public:
B (int);

} ;

class D : public B {
I I ...

D(int i) : (i) { 1* ... *1 }
} ;

causes the B constructor to be called with the argument i.

Product Reference Manual- October 1992

Assignment to this

Memory management for objects of a specific class can be controlled by the
user by suitable assignments to the thi s pointer. By assigning to the thi s
pointer before any use of a member, a constructor can implement its own
storage allocation. By assigning a zero value to this, a destructor can avoid
the standard deallocation operation for objects of its class. Assigning a zero
value to this in a destructor also suppressed the implicit calls of destructors
for bases and members. For example,

class Z {

} ;

int z[lO];
Z() { this = my_allocator(sizeof(Z)); }
~Z() { my_deallocator(this); this = 0; }

On entry into a constructor, this is nonzero if allocation has already taken
place (as it will have for auto, static, and member objects) and zero
otherwise.

Calls to constructors for a base class and for member objects will take place
(only) after an assignment to this. If a base class's constructor assigns to
this, the new value will also be used by the derived class's constructor (if
any).

Note that if this anachronism exists either the type of the this pointer cannot
be a * cons t or the enforcement of the rules for assignment to a constant
pointer must be subverted for the thi s pointer.

Cast of Bound Pointer

A pointer to member function for a particular object may be cast into a pointer
to function, for example, (int (*) ()) p->f. The result is a pointer to the
function that would have been called using that member function for that
particular object. Any use of the resulting pointer is - as ever - undefined.

Appendix B: Compatibility 233

234

Nonnested Classes

Where a class is declared within another class and no other class of that name
is declared in the program that class can be used as if it was declared outside
its enclosing class (exactly as a C struct). For example,

struct S {
struct T {

int a;
} ;

int b;
} ;

struct T x; / / meaning'S:: T x; I

Product Reference Manual- October 1992

Index

Symbols
$italicabstract-declarator$Previous, 80
$italicaccess-specifier$Previous, 121
$italicadditive-expression$Previous, 43
$italicallocation -expression$Previous, 36
$italicargument-declaration$Previous, 88
$italicassignment-

expression$Previous, 48
$italicassignment-operator$Previous, 48
$italicbase-list$Previous, 121
$italicbase-specifier$Previous, 121
$italiccast-expression$Previous, 39
$italicclass-key$Previous, 72, 101
$italicclass-name$Previous, 101
$italicclass-specifier$Previous, 101
$italiccomplete-class-name$Previous, 72
$italiccompound-statement$Previous, 52
$italicconditional$Previous, 204
$italicconstant-expression$Previous, 50
$italicconversion-function-

name$Previous, 151
$italicctor-initializer$Previous, 160
$italiccv-qualifier$Previous, 80
$italicdeallocation-

expression$Previous, 38
$italicdeclaration$Previous, 63
$italicdeclara tion-list$Previous, 75
$italicdeclaration-statement$Previous, 58
$italicdeclarator$Previous, 79
$italicdeclarator-list$Previous, 79
$italicdecl-specifier$Previous, 63
$italicdname$Previous, 80
$italicelaborated-type-

specifier$Previous, 72
$italicelif-line$Previous, 204
$italicelif-parts$Previous, 204
$italicelse-line$Previous, 204
$italicelse-part$Previous, 204
$italicendif-line$Previous, 204
$italicenumerator$Previous, 73
$italicequality-expression$Previous, 45
$italicexpression$Previous, 49
$italicexpression-list$Previous, 30
$italicexpression-statement$Previous, 52
$italicfct-body$Previous, 93
$italicfct-specifier$Previous, 67
$italicfilename$Previous

included, 203
$italicfunction-definition$Previous, 93
$italicif-line$Previous, 204

235

236

$italicif-part$Previous, 204
$italicinit-declarator$Previous, 79
$italicinitializer$Previous, 94
$italicinitializer-list$Previous, 94
$italiciteration-statement$Previous, 54,56
$italicjump-statement$Previous, 56
$italiclinkage-specification$Previous, 75
$italicliteral$Previous, 7
$italicmember-declaration$Previous, 105
$italicmember-declarator$Previous, 106
$italicmember-list$Previous, 105
$italicmem-initializer$Previous, 160
$italicmultiplicative-

expression$Previous, 42
$italicname$Previous, 29
$italicnew-type-name$Previous, 36
$italicoperator$Previous, 180
$italicoperator-function-

name$Previous, 179
$italicpm-expression$Previous, 42
$italicptr-operator$Previous, 80
$italicpure-specifier$Previous, 106
$italicqualified -class-name$Previous, 72
$italicqualified-name$Previous, 30
$italicqualified-type-name$Previous, 72
$italicrelational-expression$Previous, 44
$italicselection-statement$Previous, 52
$italicsimple-type-name$Previous, 71
$italicstatement$Previous, 51
$italictemplate-arg$Previous, 186
$italictemplate-arg-list$Previous, 186
$italictemplate-argument$Previous, 185
$italictemplate-argument-

list$Previous, 185
$italictemplate-class-name$Previous, 186
$italictemplate-declaration$Previous, 185
$italictype-argument$Previous, 185
$italictypedef-name$Previous, 68
$italictype-name$Previous, 80
$i talictype-specifier$Previous, 70

Product Reference Manual- October 1992

$italicunary-expression$Previous, 34
$italicunary-operator$Previous, 34
$Listing, 7,7,7,7,9, 10, 16, 17,17,35,48,

48,89
$Previous, 51, 115

$Listing#define$Previous, 199
$Listing#elif$Previous, 204
$Listing#else$Previous, 204
$Listing#endif$Previous, 204
$Listing#error$Previous, 206
$Listing#if$Previous, 204, 205
$Listing#ifdef$Previous, 205

nesting, 205
$Listing#ifndef$Previous, 205
$Listing#include$Previous, 203

nesting, 203
$Listing#line$Previous, 206
$Listing#pragma$Previous, 206
$Listing#undef$Previous, 202, 205
$Listing%=$Previous

operator, 48
$Listing&$Previous, 84
$Listing&=$Previous

operator, 48
$ListingO$Previous, 88
$Listing*$Previous, 83
$Listing*=$Previous

operator, 48
$Listing*const$Previous

example, 83
$Listing++$Previous

and, 183
$Listing+=$Previous

operator, 35,48
$Listing/ /$Previous

comment, 6
$Listing/ =$Previous

operator, 48
$Listing-=$Previous

operator, 48
$Listing/\ =$Previous

operator, 48

$Listing_$Previous, 6
$Listing __ cplusplus$Previous, 207,231
$Listing __ DATE __ $Previous, 207
$Listing __ FILE __ $Previous, 206, 207
$Listing __ LINE __ $Previous, 206, 207
$Listing __ STDC __ $Previous, 207
$Listing __ TIME __ $Previous, 207
$Listing_L}$Previous, 52,73,101
$Listing I =$Previous

operator, 48
$ListingO$Previous, 10
$ListingabortO$Previous, 17
$Listingargc$Previous, 15
$Listingasm$Previous, 75

declaration, 75
$ListingatexitO$Previous, 16
$Listingauto$Previous, 58

initialization, 58,59
restriction, 65
specifier, 65

$Listingbreak$Previous
statement, 56

$Listingcase$Previous
label, 52,53,54

$Listingchar$Previous
type, 18

$Listingconst$Previous, 14,65, 110, 147,
154, 170

array, 71
assignment, 48
cast, 41
example, 83
initialization, 71, 95
operand, 28
reference, 100
type, 71

$Listingcontinue$Previous
statement, 56

$Listingdefault$Previous
label, 52,53,54

$Listingdefined$Previous
operator, 205

$Listingdelete$Previous, 38,39, 154, 157

Index

array, 39
example, 157, 158

$Listingdo$Previous
statement, 54, 55

$Listingdouble$Previous
constant, 9
type, 18

$ListingE$Previous
suffix, 9

$Listingelse$Previous, 52
$Listingenum$Previous, 73,74, 171
$ListingexitO$Previous, 16
$Listingextern$Previous, 65

declaration, 11
restriction, 65

$ListingF$Previous
suffix, 9

$Listingf$Previous
suffix, 9

$Listingfloa t$Previous
constant, 9
type, 18

$Listingfor$Previous
statement, 54, 55, 56

$Listingfriend$Previous, 13, 129, 142, 193
class, 104, 141
example, 104
function, 117, 140, 142
specifier, 70

$Listinggoto$Previous, 58
statement, 52, 56, 57

$Listingif$Previous
statement, 52, 53

$Listingif$Previous-$Listingelse$Previous
ambiguity, 53

$Listinginline$Previous
specifier, 67

$Listingint$Previous, 71
type, 18

$ListingL$Previous
prefix, 9, 10
suffix, 8,9

$Listingl$Previous

237

238

suffix, 8,9
$Listinglong$Previous, 64

constant, 8
type, 18

$ListingmainO$Previous, 15, 16
$Listingnew$Previous, 36, 37, 156, 159

array, 36
$Listingoperator$Previous

function, 179
$Listingpragma$Previous, 206
$Listingprivate$Previous, 135
$Listingprotected$Previous, 135
$Listingptrdiff_t$Previous, 43
$Listingpublic$Previous, 135
$Listingregister$Previous

declaration, 65
initialization, 58
restriction, 65

$Listingreturn$Previous, 56, 57, 99
$Listingshort$Previous, 64

type, 18
$Listingsigned$Previous, 64

$Listingunsigned$Previous, 22
character, 18

$Listingsize_t$Previous, 35
$Listingsizeof$Previous, 102

array, 35
expression, 35
integral, 18
operator, 34,35
string, 10
type, 17

$Listingstatic$Previous, 14,65,76, 170
member, 14,34, 112, 113, 193
objects, 160
restriction, 65
specifier, 65
variable, 193

$Listingstruct$Previous, 19, 102
$Listingswitch$Previous

statement, 52,53,54,56
$Listingtemplate$Previous, 185

specifier, 70

Product Reference Manual - October 1992

$Listingthis$Previous, 29,109
anachronism, 233

$Listingtypedef$Previous, 14,20, 171
declaration, 11
example, 69
redefinition, 69, 119
specifier, 68

$ListingU$Previous
suffix, 8

$Listingu$Previous
suffix, 8

$Listingunion$Previous, 19, 102, 114
constructor, 114
destructor, 114
initialization, 98, 114
restriction, 114, 148

$Listingunsigned$Previous, 64
arithmetic, 18
constant, 8
type, 18

$Listingvirtual$Previous
specifier, 68

$Listingvoid$Previous
argument, 88
type, 18

$Listingvoid&$Previous, 84
$Listingvolatile$Previous, 71, 110, 147,

154, 170
assignment, 48
casting, 41
initialization, 95
operand, 28
reference, 100
type, 71

$Listingwchar_t$Previous, 9, 10
$Listingwhile$Previous

statement, 54
$Previous, 15,86
C 32
$Listing-, 86
$Listingargv -' 15

A
abstract

class, 129, 130, 131
access, 32, 135, 136, 143, 144, 173

control, 114, 135
declaration, 137
example, 138
operator, 32, 182
specifier, 136

addition
operator, 43

additive
operator, 43

address-of
operator, 34

alert, 8
alignment

of, 115
requirement, 18
restriction, 40

allocation, 107, 136
also

$Listingfriend$Previous, 67
$Listingvoid *$Previous, 19
base, 105
function, 31
indirection, 34
multiple, 122
type, 22
zero" 10

ambiguity, 23,24,38,64,95, 125, 127
detection, 173

anachronism, 231, 233, 234
and

$Listing--$Previous, 33,35
$Listingfriend$Previous, 140, 141,

142
$Listingnew$Previous, 37
access, 125, 147
array, 37
comma, 49
consistency, 230
constructor, 233

Index

conversion, 174
default, 173, 181
destructor, 154,233
ellipsis, 174, 176
initialization, 158, 159
logical, 46,47
member, 173
name, 92, 153
object, 136
pointer, 179
promotion, 175
shared, 230
standard, 175, 176
user-defined, 175, 176

anonymous
$Listingunion$Previous, 114

ANSC
C, 228,230

argument, 15, 93
conversion, 32, 89
declaration, 88, 89
evaluation, 32
passing, 31,99

arguments
to, 15

arithmetic
conversion, 22
exception, 28
type, 18

array, 37,40,88, 157
declaration, 86
example, 87
member, 106
order, 148, 154
type, 19

as
argument, 159
synonym, 69
type, 102

assembler, 75
assignment, 48,49

expression, 48
operator, 48, 164

239

240

B
backslash, 8

character, 8
backspace, 8
base

class, 24, 121, 123, 161,232
Ben, 172
binary

operator, 181
binding, 91
bit-field, 115

allocation, 115
declaration, 115
layout, 115
restriction, 115

bitwise
AND,45
exclusive, 46
inclusive, 46
operator, 45

block, 58
structure, 58

by
zero, 28,43

byte, 35

c
C

$Listingconst$Previous, 226
$Listingdelete$Previous, 227
$Listingnew$Previous, 227
$Listingprotected$Previous, 227
$Listingsizeof$Previous, 225
$Listingvolatile$Previous, 228
anonymous, 227
class, 227
declaration, 227
destructor, 227
expression, 225
function, 229
initialization, 229
inline, 226
jump, 229

Product Reference Manual- October 1992

linkage, 230
memberwise, 228
multiple, 227
name, 229
overloading, 226, 227
pointer, 227
reference, 226
scope, 226
single, 226
summary, 225
type, 226
user-defined, 227

C++, 1
call, 32,41,59, 129, 148, 154, 155, 180

example, 155
operator, 182
resolution, 173

carriage
return, 8

cast, 40,41
ambiguity, 81
operator, 34,39,80

casting, 39
change

to, 41
character

constant, 8
string, 10

checking, 31
class, 14, 17, 19,40,76, 101, 122, 124, 136,

161
declaration, 102, 103, 106
definition, 102
dominance, 126
initialization, 161, 164
member, 32,40, 137
name, 80,103
object, 48, 102, 166
objects, 37,98, 160
scope, 13
specifier, 65
type, 160

comma
operator, 49

comment, 6
comparison, 43,44,45
complete

object, 161
compound

statement, 52
concatenation, 198
conditional

compilation, 204, 205
expression, 47

consistency, 15, 76
constant, 7,9, 19,29

expression, 50
constructor, 147, 148, 151, 164, 165, 167

access, 165
anachronism, 233
and, 37
definition, 93
example, 148
order, 148
restriction, 147, 148, 165

continuation, 198
conversion, 21,23,24,57, 151, 152, 153

operator, 28, 151
copy, 149, 164

D

constructor, 148, 149, 164
example, 167

decimal
constant, 8

declaration, 11, 63, 65, 81, 82, 83, 90, 99,
103, 104, 105, 108, 116, 118, 190,
191

class, 105
enumerator, 14
example, 12,89, 117
in, 56
matching, 171
name, 13
specifier, 63
statement, 58

declarator, 63,79,82,87

Index

example, 81
decrement

operator, 33,34,35
default, 135

argument, 91, 92
constructor, 148, 160, 164
destructor, 154
initialization, 95

definition, 65, 108, 109, 111, 113, 129, 190,
191, 199

anachronism, 231
class, 12, 15
enumerator, 12, 15
example, 12
function, 12, 15
object, 12, 15

dereferencing, 28
derived

class, 121, 166, 171
type, 19

destruction
of, 150

destructor, 154
anachronism, 233
order, 154
restriction, 154

directive, 206
distinct

string, 10
division, 43

operator, 42
double

quote, 8
dynamic

initialization, 16

E
ellipsis

example, 90
empty

statement, 52
enumeration, 73

constant, 73

241

242

example, 74
enumerator, 14,73

class, 74
member, 75
redefinition, 74
restriction, 74

equality
operator, 45

equivalence, 188
escape

sequence, 8
evaluation, 91

of, 27
exact

match, 175
example, 35,66,81,83,90,91,93, 107, 108,

113,116,122,125,128,140
exit

from, 56
expansion, 199, 202
expression, 27

ambiguity, 60
statement, 52

extension
to, 1,226,227,231

external
linkage, 14

F
file, 5, 14,203

inclusion, 203
scope, 13

floating
point, 9, 18,22

form
feed, 8

formal
argument, 12, 13

forward
declaration, 66

function, 67,76,108,109,110,111,112,114,
128, 129, 131, 141, 142, 147

Product Reference Manual - October 1992

body, 93
call, 31, 109
cast, 41
comparison, 44
conversion, 24
declaration, 11,31,88
definition, 15,93, 129,231
example, 130
rewriting, 111
scope, 12
specifier, 67
template, 188
type, 19,89

function-like
macro, 199

fundamental
type, 17, 156

G
generation

of, 149
global

$Listingnew$Previous, 37
name, 13

grammar, 209
greater

than, 44

H
headers, 7
hex

number, 9
hexadecimal

constant, 8
hiding, 172
horizontal

tab,8

I
identifier, 6,30, 63

$Listing_$Previous, 6
implicit

in
conversion, 21,28

local, 111
nested, 111

increment
operator, 33,34,35

indirection, 34
operator, 34

inequality
operator, 45

inheritance, 121, 122
initialization, 16,31,54,58,59,65,94,95,

96,98,113,123,158,160,161
example, 59, 159

initializer, 93,94
inline

function, 14,65,67
integer

cast, 40
constant, 8
conversion, 22, 43

integral
promotion, 21, 32
type, 18
value, 22

internal
linkage, 14

iteration
statement, 54

J
Jennifer, 114
jump

statement, 56

K
keyword, 209

L
label, 12, 52, 57
labeled

Index

statement, 51
layout, 107, 123
left

shift, 44
less

than, 44
lexical

conventions, 5
library

headers, 7
line

continuation, 197, 198
linkage, 11, 14

consistency, 15,65
of, 16
specification, 75, 76
to, 76

list, 31,88
example, 90

literal, 7, 29
concatenation, 10

local
$Listingstatic$Previous, 59
class, 112, 118
name, 15
scope, 12
type, 119
variable, 58

logical
AND,46
negation, 34
OR,46

lvalue, 20,48

M

cast, 41
conversion, 21

macro
name, 202
replacement, 202

manual
organization, 2

member, 42

243

244

$Listingvoid*$Previous, 25
access, 102, 121
ambiguity, 125
assignment, 165
cast, 41
conversion, 24, 233
declaration, 105
declarator, 85
definition, 109
example, 86
function, 15,42, 118, 154, 163
initialization, 160, 161, 165
initializer, 93, 163
operator, 42

memberwise
assignment, 182

memory, 71
modifiable

lvalue, 20
modulus, 43

operator, 42
multicharacter

constant, 8
multidimensional

array, 87
multiple

declaration, 15
inheritance, 121, 123

multiplication
operator, 42

multiplicative
operator, 42

N
name, 6, 11, 12,29,69,70,72, 103, 105, 106,

119, 169
$Listing#include$Previous, 203
declaration, 11
example, 119
hiding, 13,29,30,58, 103, 172

names, 206
nested

class, 116,234

Product Reference Manual- October 1992

new-line, 8
null

o

pointer, 23,24,44
statement, 52

object, 11, 16,20,35,38,71,76, 77, 106, 110
linkage, 77

octal

of

constant, 8
number, 9

argument, 32
bit-field, 115
definition, 74
evaluation, 27, 37
execution, 154
function, 32

operator, 13,27,29,30,31,34,35,44,45,46,
47, 109, 122, 129, 164, 165, 167,
180,181,182,183,200,201,202

$Listingdelete$Previous, 157
access, 165
example, 125
list, 7, 179
restriction, 165
use, 113

OR
operator, 46

or
equal, 44

order
of, 148, 154

out
of, 22

outside
array, 43

overflow, 28
overloaded

$Listingoperator$Previous, 179
function, 34,76,178
operator, 27, 179, 180

overloading, 89, 103, 169

p

example, 169
resolution, 173, 189
restriction, 180

parenthesized
expression, 29

placement, 36
of, 155

point
conversion, 22

pointer, 38, 48, 170
arithmetic, 43
cast, 40
comparison, 44, 45
conversion, 23,43
declaration, 83
integer, 40
subtraction, 43
terminology, 19
to, 41,42,48,233
type, 19
versus, 171

postfix
expression, 30

preprocessing, 5, 198
phases, 198
token, 198

primary
expression, 28

program, 5, 14
environment, 15
start, 15, 16
termination, 16, 17

punctuators, 7
pure

specifier, 106

Q
qualified

name, 30,34, 72
question

mark,8

Index

R
range

of, 7
redefinition, 119
reference, 19,31,49, 170

argument, 31,84
assignment, 99
cast, 40
conversion, 24
declaration, 84
expression, 28
initialization, 85,99
operand, 28
restriction, 85
temporary, 100

relational
operator, 44

reserved
identifier, 6

resolution, 126
restriction, 53,54, 114, 118
restrictions, 180
return

type, 89, 159, 170
right

shift, 44
Ritchie, 1
rounding, 22
rules, 22, 175
run-time

initialization, 16

s
scope, 11, 171

resolution, 29
see

$Listingdelete$Previous, 38
$Listingnew$Previous, 36
$Listingnew$Previous" 36
$Listingreturn$Previous, 57
$Listingthis$Previous, 109
access, 121

245

246

also, 22,36,56,93, 101, 105, 169, 179
argument, 31
backslash, 8
base, 123
class, 32, 101, 102
comma, 49
default, 37,90, 154
derived, 121
floating, 17
fundamental, 17
integral, 17
local, 12, 116
macro, 198, 199
member, 105,108
modulus, 42
name, 58
nested, 116
ones', 34
overloading, 173
temporary, 149
type, 20,70
virtual, 127

selection
statement, 52

semantics, 32
sequence, 9

shift, 44
side

effects, 27
sign

of, 18, 115
single

quote, 8
size, 87
space, 52
specification, 75
specifier, 65, 71, 72
standard

conversion, 21
headers, 7

statement, 51
sequence, 51

storage
class, 11, 17

Product Reference Manual - October 1992

string, 10
concatenation, 10
constant, 10
literal, 10

structure, 19
subscripting

example, 87
explanation, 87
operator, 31, 180

subtraction
operator, 43

summary, 131,210,213,216,220,221,222
syntax, 32, 36

notation, 2
summary, 209,218,222

T
template, 14, 192

class, 186
declaration, 191

temporary, 100, 149
to, 19,231

$Listingconst$Previous, 71
$Listingnew$Previous, 36
constructor, 37
member, 49
pointer, 48
string, 10

token, 5,7
preprocessing, 197

translation
phases, 5
unit, 5,11

trigraph, 198
trivial

conversions, 174
truncation, 22
type, 11, 18,89, 101

$Listingvoid *$Previous, 19
checking, 91
declaration, 69, 82
equivalence, 69, 102
extension, 227

name, 20,80
of, 7,8,9, 10, 35,43

u
unary

expression, 34
minus, 34
operator, 34, 181
plus, 34

undefined
$Listingdelete$Previous, 38,39
class, 40
expression, 32
value, 43

unnamed
bit-field, 115
object, 148

use, 113
user-defined

conversion, 28, 151, 152

v
value, 31

of, 8,9
variable, 95
vertical

tab, 8

virtual, 121

w

base, 161
destructor, 154
function, 127, 131, 163

white
space, 5

wide-character, 9
string, 10

z
zero

pointer, 23,24,44

Index 247

248 Product Reference Manual - October 1992

