

SPARCompiler
C++3.0.1 Language System

Release Notes

+SunPro
A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Part No: 800-6988-11
Revision A, October 1992

© 1992 by Sun Microsystems, Inc.-Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation is protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems,
licensed from UNIX Systems Laboratories, Inc. and the University of California,
respectively. Third party font software in this product is protected by copyright and
licensed from Sun's Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more u.s. patents,
foreign patents, or pending applications.

TRADEMARKS

Sun Microsystems, Sun Workstation, Solaris, and NeWS are registered trademarks of Sun
Microsystems, Inc.sun, Sun-4, SunOS, SunPro, the SunPro logo, Sun View, XView,
X11 /NeWS, and Open Windows are trademarks of Sun Microsystems, Inc. All other
product names mentioned herein are the trademarks of their respective owners.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered
trademarks of SPARC International, Inc. SPARCworks and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUl's and otherwise comply with Sun's written license agreements.

X Window System is a trademark and product of the Massachusetts Institute of
Technology.

Contents
Preface. v

1. Introduction.. 1

2. Compatibility.. 3

Overview... 3

Upgrading from Release 2.1 to Release 3.0.1. 3

Recompilation of Release 2.1 Code. 4

New Features. 4

Language-Related Fixes. 13

Upgrading from Release 2.0 to Release 2.1 32

Recompilation of Release 2.0 Code Not Required. 32

Header Files . 33

Changes to the CC Command 33

Language-Related Fixes. 37

Reference Manual Changes. 46

New Warning Messages . 79

iii

Library Changes. 81

Future Compatibility Issues . 81

Anachronisms 81

The Old Stream Library 88

A. Known Problems. 89

B. Implementation Specific Behavior. 113

C. Not Implemented Messages............................ 121

Index ... 147

iv Release Notes - October 1992

Preface

The C++ 3.0.1 Language System Release Notes describes Release 3.0 of the C++
Language System. The manual is part of a set of four documents that are
supplied with your C++ Language System. The other documents are:

• The C++ 3.0.1 Language System Product Reference Manual, which provides a
complete definition of the C++ language supported by Release 3.0.1 of the
C++ Language System

• The C++ 3.0.1 Language System Selected Readings, which contains papers that
describe aspects of the C++ language

• The C++ 3.0.1 Language System Library Manual, which describes the three
C++ class libraries and tells you how to use them.

This Release Notes consists of two chapters and three appendices, that describe
how to use the translator, changes in the C++ language for this release, and
other information you need to know.

• Chapter 1, "Introduction," is a general description of the C++ Language
System and new features that are part of this release. You should read this
chapter as a general introduction to the release.

• Chapter 2, "Compatibility," describes compatibility between different
releases of the C++ Language System; it describes things that have changed
and might require you to make changes in code written for previous
releases. This chapter discusses the following release changes:

o Upgrading from Release 2.0 or Release 2.1 to Release 3.0.1.

v

vi

o Future compatibility - changes and enhancements that are planned for
the next major release of the C++ Language System This chapter contains
detailed discussions of new features and changes included in the release,
and, as such, should be an important reference for all users.

• Appendix A, "Known Problems," describes known problems with the C++
Language System which are of general interest to C++ programmers, and
suggests workarounds for these problems.

• Appendix B, "Implementation Specific Behavior," describes implementation
specific behavior.

• Appendix C, "Not Implemented Messages," is a list of "not implemented"
messages issued by Release 3.0.1.

To make the best use of the Release Notes, you must be familiar with the C
programming language and the C programming environment under the UNIX
operating system.

Release Notes - October 1992

Introduction

The C++, Release 3.0.1, translates C++ source code to object code by first
translating the source into intermediate C code and then invoking the C
compiler to create an object file. The CC command invokes the acpp, cfront,
acomp, fbe and ld programs to translate the C++ program into the executable
format. The CC command may also invoke the ptcomp and ptlink programs
to handle templates.

New Features Introduced in Release 3.0.1
Release 3.0.1 is a release of C++, that is source- and link-compatible with
Release 2.0 and Release 2.1. Release 3.0.1 provides the following new or
enhanced features:

• The major feature for the release is Template classes and functions. For a
definition and description of how to use this feature, please refer to
Stroustrup, "Parameterized Types for C++" in the C++ 3.0.1 Language System
Selected Readings as well as Chapter 14 of the Reference Manual, by Margaret
Ellis and Bjarne Stroustrup (Addison-Wesley, 1990). This implementation
conforms to the draft submitted to and preliminarily accepted by the ANSI
C++ standards committee. However, users should note that there continues
to be much discussion in the ANSI committee about the precise details of
syntax and semantics regarding templates. While we do not expect major,
incompatible changes in the definition of templates, it is likely that various
refinements and extensions to the feature will be made in the course of the
standardization activity. Users should be aware that any such refinements
and extensions will be reflected in future releases of the AT&T USL C++

1

2

Language System. The Templates implementation is based on work
originally done at Object Design Inc., in which they implemented template
classes based on Stroustrup's initial design. We have licensed this initial
templates implementation from Object Design and evolved it to include
function templates, and have extended the class implementation to provide
support for various language features such as friends and static members.

• Release 3.0.1 completes the implementation of true nested scopes introduced
in Release 2.1. The transition model is no longer supported. Code that
compiled warning-free under Release 2.1 will correctly reflect the new
nested semantics.

• Release 3.0.1 begins a phased approach to improving the architecture of
cfront. This release includes reworking of the front end symbol table, type
checking, function matching, operator overloading and user-defined
conversions.

• Release 3.0.1 implements various Release 2.1 Reference Manual upgrades,
including allowing constructors in which all parameters have default
arguments to be used as the default constructor in initializing arrays,
overloaded prefix and postfix increment and decrement, extension of
dominance to data, and use of constructor syntax for built-in types and
protected derivations.

• Release 3.0.1 treats as errors most anachronisms which were warned about
by default in Release 2.1. Those that were +w only warnings are generally
being warned about by default in Release 3.0.1 and will be disabled in the
release following 3.0.1.

Release Notes - October 1992

2.1 Overview

Compatibility

This chapter describes compatibility issues that pertain to both Release 2.1 and
Release 3.0.1. If you are currently using Release 2.1 and want to know about
upgrading to Release 3.0.1, you can read the section "Upgrading from Release
2.1 to Release 3.0.1" below. If you are currently using Release 2.0, you should
begin with "U pgrading from Release 2.0 to Release 2.1" on page 32. In either
case you should also read the last section, "Future Compatibility Issues" on
page 81, to learn about changes that will occur in the next major release of the
C++ Language System.

2.2 Upgrading from Release 2.1 to Release 3.0.1
This section describes differences between Release 2.1 and Release 3.0.1. This
section provides information on the following topics:

• New Features

• Language Related Fixes

Note - For further information on migration from release 2.1 to Release 3.0.1,
see the C++ 3.0.1 Programmer's Guide, Appendix C, section C.3 "C++ 2.1 K&R
and C++ 3.0.1 ANSI Differences" and the SunOS Transition Guide.

3

4

Recompilation of Release 2.1 Code

New Features

Code which compiled warning-free under Release 2.1 will not need to be
recompiled. Code which uses nested types and which was not upgraded to use
the transition model of Release 2.1 will need to be recompiled:

struct A {

} ;

struct B {
void f();

} ;

typedef A: : B T;

void T: :foo() {}i II encoded as f __ 1BFv in 2.1
II encoded as f __ Q2_1A1BFv in 3.0

However, code which used the new nesting semantics in Release 2.1 will
continue to link correctly:

struct B {};
struct A {

II force new nesting semantics

struct B {
void f()i

} ;

} ;

typedef A:: B T i

void T:: f () {} i II encoded as f __ Q2_1A1BFv in 2.1 and 3.0

Refer to the section below on Nested Types for further information.

The major new feature for the release is the implementation of Templates.
Various new features introduced in the Release 2.1 Reference Manual have also
been implemented.

Release Notes - Odober 1992

Templates
The major enhancement in this release is the implementation of Templates.
Both template classes and functions are supported. Automatic instantiation of
templates is also provided. For a description of the feature and its uses, see
Chapter 14 of the c++ 3.0.1 Language System Product Reference Manual, and
"Parameterized Types for C++," B. Stroustrup, in the c++ 3.0.1 Language
System Selected Readings manual. For information about support for automatic
instantiation, refer to the C++ 3.0.1 Language System Selected Readings, Chapter
7, "Template Instantiation in C++ Release 3.0.1, Overview," G. McCluskey and
R. B. Murray, which presents an overview and technical rationale for the
instantiation mechanism and Chapter 8, "Template Instantiation, Users Guide,"
G. McCluskey, which presents various examples of use of the automated
support for instantiations.

This implementation conforms to the draft submitted to and preliminarily
accepted by the ANSI C++ standards committee. However, users should note
that there continues to be much discussion in the ANSI committee about the
precise details of syntax and semantics regarding templates. While we do not
expect major, incompatible changes in the definition of templates, it is likely
that various refinements and extensions to the feature will be made in the
course of the standardization activity. Users should be aware that any such
refinements and extensions will be reflected in future releases of the AT&T USL
C++ Language System.

During AT&T USL C++ Release 3.0.1 beta testing, the restrictive function
matching rules specified in the C++ 3.0.1 Language System Product Reference
Manual were found to be too restrictive for practical use. We have, therefore,
implemented extensions to the strict function matching rules in the C++ 3.0.1
Language System Product Reference Manual. It is likely that the ANSI definition
will at least be relaxed to allow these extensions and may extend the definition
to encompass full function matching. This is currently an active topic of
discussion within the ANSI committee. In the meantime, we have made the
smallest set of extensions we found feasible.

The first extension allows the consideration of trivial conversions when
searching for an exact match. This implies that for a template function declared
as follows:

template <class T> max(canst T*, int)i

Compatibility 5

6

the following call is legal in the Release 3.0.1 implementation:

int ia[10] = { ... }i

II error in the Reference Manual
II accepted by 3.0
int best = max(ia, 10)i

The second extension allows the conversion of derived classes to public base
classes in calls of template functions. This is necessary to ensure that template
functions support object-oriented programming. For example, under the strict
rules the following calls of function print_vector () fail:

template <class T> void print_vector(const Vector<T>&)i

template <class T>
class BoundedVector

template <class T>

public Vector<T> { ... }i

class SortedVector : public Vector<T> { ... }i

BoundedVector<int> bVi
SortedVector<int> SVi

print_vector(bv)i

print_vector(sv)i

II
II

II
II

error in Reference Manual
accepted by 3.0

error in Reference Manual
accepted by 3.0

and separate print functions for each class derived from Vector<T> must be
written. Permitting the conversions of BoundedVector<int> and
SortedVector<int> to Vector<int> allows the use of the polymorphic
print_vector () function.

These extensions are designed to be interim solutions until the ANSI
committee votes on a full resolution to the template function matching issue.

An important aspect of the Release 3.0.1 implementation is support for
automatic instantiation of template class and template function references. The
Release 3.0.1 implementation provides an instantiation mechanism designed to

Release Notes - October 1992

free the programmer from direct manual intervention. Manual overrides for
complicated systems are provided to customize and tailor instantiation support
for specialized applications. As discussed above, papers describing template
instantiation are included in the C++ 3.0.1 Language System Selected Readings
with this release. These papers make clear that some assumptions are made
about coding style and conventions:

• A class or function template is declared in a . h header. For a function
template this declaration looks like a forward function declaration:

template <class T> void f(T) i

The template. h header should include headers, with multiple-include
guards, for "unbound", i.e., non-template-arg types that it uses.

• A class or function template is implemented in a . c header.

Compatibil ity 7

8

• Template arguments of non-fundamental type are declared in . h header
files. These files should be self-contained, i.e., include other files they need
using multiple-include guards. Here is a simple example to get started with:

II Sample.h
template <class T> class Sample {

char* p;
public:

Sample(char* s) : p(s) {}
char* get();
char* get2() {return T: :f();}

II Sample.c
template <class T> char* Sample<T>: :get()
{

return p;

1/ A.h
struct A {

static char* f() {return" ";}
} ;

1/ application
#include <stdio.h>
#include "Sample.h"
#include "A.h"

Sample<A> a ("Hello") ;

main()
{

Sample<A> b ("world") ;

printf("%s%s%s", a.get(), a.get2(), b.get(»;

This is a complicated way of printing "Hello world." To compile this
example, you would create the various files noted above and say:

$ CC app.c

Release Notes - October 1992

It is instructive to look in the directory. /ptreposi tory after such a
compile. There are three files there whose use is fully explained in the
paper:
o xxx. c- the instantiation file

o xxx. 0- the instantiation itself

o xxx.cs- the checksum used for dependency management

Nested Types
Release 3.0.1 also completes the implementation of true nested scopes
introduced in Release 2.1. The transition model is no longer supported. Code
that compiled warning free under Release 2.1 will correctly reflect the new
nested semantics. Please note that code that generated warnings under Release
2.1 may produce results under complete nested semantics that differ from
Release 2.0 behavior:

class A {
class B {

} ;

} ;

B bvar;

II 2.1: warning: use A:: to access nested class type B
II (anachronism)

II 3.0: error: B bvar : B is not a type name
II error: type expected for bvar

Compatibility 9

10

Support for deeply nested classes is also now provided:

class A {

class B {

class C {

} ;

} ;

} ;

Reference to the inner class C is now possible:

A: :B::C cvar;

Default Constructors
The Release 2.0 Reference Manual explicitly stated that a default constructor is a
constructor with no formal parameters, thereby excluding constructors that can
be called with no arguments by virtue of having default arguments. The
Release 2.1 and Release 3.0.1 versions of the Reference Manual lift this
restriction; the constructor in the example below is now considered a default
constructor.

struct S {
S(int = 0);
} ;

Release Notes - October 1992

Release 2.1 does not conform to this rule. Instead, it adheres to the old
definition of default constructor. Here are some examples:

S s1 [2] ;
Ss2[2] =

struct X {

1 };

S s [2] ;

} ;

void f ()

II legal, OK in 3.0, error in 2.1
II legal, OK in 3.0, sorry in 2.1

II legal, OK in 3.0, error in 2.1

S* P new S[2]; II legal, OK in 3.0 and 2.1

Release 3.0.1 correctly conforms to this rule.

Explicit Type Conversions with Empty Initializers
The Release 2.1 and 3.0.1 versions of the Reference Manual allow you to specify
an explicit type conversion with an empty initializer, as in the following
examples:

int i = int();

struct Empty {};
Emptye = Empty();

Release 2.1 does not implement this capability and reports an error instead.

line 1: error: value missing in conversion to int
line 4: error: cannot make a Empty

Release 3.0.1 implements this capability.

Prefix and Postfix Increment and Decrement Operators
The Release 2.0 Reference Manual provided no way to distinguish user-defined
prefix increment and decrement operators from postfix increment and
decrement operators. The Release 2.1 and 3.0.1 versions of the Reference Manual

Compatibility 11

12

specify a separate syntax for defining prefix and postfix increment and
decrement operators. The prefix increment and decrement operators take one
argument (the implicit this argument for a member function), whereas the
postfix version takes two arguments (including the implicit thi s argument).
For example,

struct S {
operator++()i II 2.0: prefix or postfix

II 2.1: prefix, but not implemented as such
II 3.0: prefix, implemented as such

operator++(int)i 112.1: postfix ++, not implemented
II 3.0: postfix ++, implemented

} i

However, Release 2.1 does not recognize the new syntax. Use of the postfix
form results in the following error message:

line 4: error: S:: operator ++() takes no argument

Release 3.0.1 correctly handles these operators.

Extension of Dominance Rule to Objects
The Release 2.1 Reference Manual extended dominance to data and enumerators
as well as functions. Release 2.1 did not implement this. Release 3.0.1 does:

enum E {a, b} i
struct V {void f() i int Xi E Yi}i
struct B: public virtual V {void f()i int Xi E Yi}i
struct c: public virtual V{}i

struct D: public B, public C {void g()i}i

void D::g() {
X++i

Y = ai

f () i

}

II ambiguous in 2.0/2.1
II ok in 3.0, refers to B::x
II ambiguous in 2.0/2.1
II ok in 3.0, refers to B::y
II ok in 2.0/2.1 and 3.0, refers to B::f

Release Notes - October 1992

Protected Derivation
The Release 2.0 Reference Manual explicitly disallowed the use of protected
as an access specifier for a base class. The Release 2.1 Reference Manual lifts this
restriction. However, Release 2.1 does not implement the new behavior.

struct B {}i

struct D : protected B {}ill legal, but rejected by 2.1
II accepted by 3.0

Release 3.0.1 correctly implements the new behavior.

Exception Handling Syntax
Release 3.0.1 does not include an implementation of exception handling.
However, the ANSI C++ committee has preliminarily accepted the exception
handling scheme as described in Chapter 15 of The Annotated C++ Reference
Manual. In Release 2.1, reserved words were added for exception handling. In
Release 3.0.1, the likely syntax for exception handling has been incorporated
into the grammar and a "sorry not implemented" message is generated for
users. Again, code that compiled warning free under Release 2.1 will continue
to compile and execute correctly under Release 3.0.1. Please note that Release
2.1 code that compiled with warnings about use of reserved words may result
in surprising error messages under Release 3.0.1:

int trYi

II 2.1: warning: try is a future reserved keyword

II 3.0: sorry, not implemented: try
II error: syntax error

Language-Related Fixes

The focus of development for Release 3.0.1 has been to implement the
Templates feature and to reengineer selected portions of the implementation.
The reengineering focus has been on function matching, operator overloading,
user-defined conversions, type checking and reworking the front end symbol
table. We know of no bugs in the function matching or operator overloading
and many of the scoping and name reuse bugs that existed in previous releases

Compatibility 13

14

have been fixed. The reworking of type checking has uncovered previously
existing bugs that are now fixed. Please note, some of these fixes may change
the behavior of programs for which Release 2.0 or Release 2.1 incorrectly
accepted illegal code or produced incorrect results.

Section numbers (§) following a heading identify the section of the Release
3.0.1 Reference Manual that describes the correct behavior.

Declarations in for Initializers (§6.6, 6.8)
The Release 2.0 Reference Manual stated that a for statement containing a
declaration in its for-init-statement was not allowed to be the statement after an
if, else, swi tch, while, do, or for. In other words, this code was illegal:

void f(int i) {
if (i)

for (int j i; j; j--) II error

This restriction was an error not enforced by the Release 2.0 implementation,
and the Release 2.1 Reference Manual omits it.

The Release 2.1 Reference Manual, however, does specify a related restriction:
"An auto variable constructed under a condition is destroyed under that
condition and cannot be accessed outside that condition."

Here is an example:

int g(int i) {
if (i)

for (int j = 5; j; j--)

return j;11 error

In the above code, j cannot be accessed at the point of the return statement
because the return statement is outside the body of the if statement.
According to the Release 2.1 Reference Manual, an error should be reported, but
Release 2.1 quietly accepts this code. Release 3.0.1 correctly reports the error.

Release Notes - October 1992

Enforcement of Return from Value-Returning Functions (§6.7)
In C++, unlike C, it is an error to fail to return a value from a value-returning
function. See Section 6.6.3 of the C++ 3.0.1 Language System Product Reference
Manual. Earlier releases of the compiler warned about failure to return a value.
For Release 3.0.1, these warnings are errors for all member functions and all
function templates. For non-member functions, failure to return a value when a
return type is explicitly specified is an error; warnings will continue to be
generated for non-member functions that implicitly return ints. As with
previous releases, we will continue to warn about failure to return from main
only under +w:

main () { I * ... * I } ;

f() { 1* ... *1 };

int f2 () { 1* ... * I };

struct A {
f() {/* ... */};

II no return from main
II +w warning in 2.0, 2.1 and 3.0

II no return, implicit return type
II warning in 2.0, 2.1 and 3.0

II no return, explicit return type
II warning in 2.0, 2.1
II error in 3.0

II no return, implicit return type
II warning in 2.0, 2.1
II error in 3.0

int f2 () {/ * ... * /} ; II no return, explicit return type
II warning in 2.0, 2.1
II error in 3.0

} ;

cons t Typedefs (§7.2)
Previous releases failed to unwind cons t typedefs correctly:

typedef char *T;

const char *p;
const T cp;

Compatibility

II p is a pointer to a const char
II cp is a constant pointer to char

15

16

Previous releases incorrectly evaluated cp as a pointer to canst char.

Scope of a Class Member's Initializer (§8.5)
The Release 2.1 Reference Manual states explicitly that an initializer for a static
member is in the scope of the member's class. This rule was not explicitly
given in the previous Reference Manual.

Release 2.1 does not apply this rule consistently. For example, in

canst int a =

struct X {

static
static

} ;

int X::a 1;
int X::b a;

5;

int a;
int b;

the correct behavior is implemented: X: : b is initialized with X: : a.

However, default arguments for member functions are not resolved within the
scope of the class. In the following code,

canst int y = 2 ;

struct Y {

static int y;
static int f(int) ;

} ;

int Y: : f (int i y) { return i· I

Release 2.1 incorrectly determines that the default argument for Y: : f () is
global y, not Y: : y. Release 3.0.1 correctly resolves the argument.

Reference Initializers (§8.5)
The Release 2.0 Reference Manual allowed a reference to be initialized with a
temporary, as in the following declaration:

Release Notes - October 1992

int& r = 5;

However, the Release 2.1 Reference Manual has tightened the rules for reference
initializations so that only canst references may legally be initialized with
non-Ivalues. This means that, instead of the previous declaration, you must use
the following:

canst int& cr = 5;

The Release 2.0 C++ Language System already treated temporary initializers
for non-cons t reference initializations at global scope as errors, although it
allowed them at local scope. To provide a smooth transition to the more
restrictive rules, Release 2.1 issues an anachronism warning, under control of
the +w option, for non-cons t reference initializations that were accepted by
Release 2.0 but are now illegal.

Compatibil ity 17

18

Here are some examples:

int& r1 = 5; II illegal, error in 2.0, 2.1 and 3.0

struct A { A(int); -A(); };
A& a1 = 5; II illegal, sorry in 2.0, error in 2.1, 3.0
const A& a2 = 5; II legal

int& f1 () ;
int& r2 = f1 () ;

const int& r3 5;

int f2 (int&) ;
int j = f2 (5) ;

void x() {

int& r1 = 0;

A& a1 5;

const A& a2 = 5;
int j = f2(5);

struct 81 {};
struct 82 {

operator 81();
} ;

II ok, 'f()' returns an lvalue

II ok, 'r3' is 'const int&'

II illegal, error in 2.0 and 2.1

II illegal, 2.1 warns under +w
II illegal, 3.0 warns by default
II illegal, 2.1 warns under +w
II illegal, 3.0 warns by default
II legal, accepted by 2.0 and 2.1
II illegal, 2.0 and 2.1 warn under
II illegal, 3.0 warns by default

+w

void f3(81&);
void y(82 s2)

f3 (s2) ; II illegal, 2.0 and 2.1 warn under +w
Ilillegal, 3.0 warns by default

Release 3.0.1 issues an unconditional warning, or an error if the +p option is in
effect. The anachronism warnings turn into errors if the +p option is specified
to the cc command.

Release Notes - October 1992

Calls to Non-cons t Member Functions from cons t Objects
(§9.4)

Calling a non-canst member function on a canst object has been illegal since
Release 2.0. However, to ease transition to this new rule, calling a non-cons t
member function on a cons t object was flagged with a warning in Release 2.0
and Release 2.1. This type of call is an error in Release 3.0.1. The obvious
example of the effect of this change is the simple changing of a warning to an
error as in the following case:

struct A
A() ;

void foo();
} ;

const A a;
a.foo(); II a warning in 2.0 and 2.1

II an error in 3.0

However, this change may also cause more subtle changes of behavior in code
using function matching, operator overloading, or conversion functions. For
example, a non-cons t member function is now eliminated from consideration
in a call to an overloaded member function using a const object. For example:

struct A

A () ;

void foo (int) ; II #1
void foo(char) const; II #2
void foo(const A*) ; II #3

} ;

const A a;
a.foo(l) ;

a. foo (&a) ;

II used to call #1 with warning
II now will call #2
II used to call #3 with warning
II now flagged as no match error

Similarly, non-cons t user-defined operators are not considered for calls with
cons t objects, and no non-cons t conversion operators will be applied to
cons t objects.

Compatibili ty 19

20

An example with conversion operators:

class B {
public:

B();
operator int();

const B b;
int i b; II error in 3.0

New errors that occur as a result of all usable functions being non-const should
issue messages that include that information. For example, the program above
gives the following error in Release 3.0.1:

"prog.c", line 8: error: bad initializer type const B for i (int
expected)
(no usable const conversion)

Enforcement of canst in canst Member Functions (§9.4)

As with calls to non-cons t member functions from cons t objects, the
enforcement of canst within canst member functions was introduced via
warnings in Release 2.0 and Release 2.1. In Release 3.0.1, the canst rules are
strictly enforced. The release correctly reports errors for assignment to data
members or calls to non-canst member functions from within a canst
member function. It is also illegal for cons t member functions to return non-

Release Notes - October 1992

const references to a data member if the member is a class object. If the data
member being returned is a built-in type, however, Release 3.0.1 still
incorrectly reports this with just a warning.

struct B{ } i

struct A {
int ii
B bi

int& f() {return ii}i

void f1(int j) canst {
i = ji

i f () i

II ok, non-canst member

II warning in 2.0/2.1

II warning in 2.0/2.1
II error in 3.0

int& f2() canst {return ii} II warning in 2.0/2.1

B& f3() canst {return bi}

} i

II warning in 2.0/2.1/3.0
II error in 3.0

Static Data Members of Local Classes (§9.5)

The Release 2.1 Reference Manual states that static data members are not
allowed for local classes. Previously, a local class could have a static data
member only if no explicit initialization was required.

Release 2.1 does not enforce the new restriction properly. If a static data
member of a local class is declared but never used, a warning is reported but
the program links successfully

int main() {

struct S {

static int i i

} i

II
return Oi

Compatibility 21

22

line 2: warning: static member S::i in local class S (anachronism)

Release 3.0.1 enforces this restriction, and correctly reports an error.

Access Specifiers in Unions (§11.1)
The Release 2.1 Reference Manual allows access specifiers in unions. Formerly,
these were forbidden.

union u {
public:

U () i

int ii
private:

double d;
protected:11 legal

float f;
} ;

U Ui

float f u. f;

II legal

II legal

II protection violation

Release 2.1 accepts the definition of U shown above but does not report the
protection violation. Release 3.0.1 correctly flags the protection violation.

Access to Static Members of Private Base Classes (§ 11.3)
The Release 2.1 Reference Manual states that a private derivation of a base class
does not restrict access to the static members of the base class. Without this
rule, a member function would have less access to a base class's static members
than a global function.

Release Notes - October 1992

Release 2.1 does not implement this rule consistently. For access to a static
member of an immediate base class, some illegal accesses are not reported:

struct B {
static void f();

} ;

struct D : private B {}
struct E : private D {

} ;

void g() {
f () ;
this->f();
B::f();

I I illegal, reported by 2.1 and 3.0
I I illegal, reported by 2.1 and 3.0
I I legal, OK in 3.0, rej ected by 2.1

In the above code, the calls f () and thi s - > f () are illegal because they refer
to f () via the this pointer, and thus the access protection for private
members is applied. The call B: : f () is legal because it refers to f () directly,
just as a global function could refer to B : : f () .

Release 3.0.1 enforces the rule consistently. If multi-level derivation is involved,
both Releases 2.0 and 2.1 are overly conservative; they report an error for
X: : f () even though it is legal.

struct X {
static void f();

} ;

struct Y : private X {};
struct Z : public Y {

void g () {

} ;

Compatibility

}

f(); II illegal, error in 2.0, 2.1 and 3.0
this->f();11 illegal, error in 2.0, 2.1 and 3.0
X: :f(); II legal, error in 2.0 and 2.1

23

24

Scope of Friend Functions (§11.5)
The Release 2.1 Reference Manual states that a friend function defined within
a class declaration is in the lexical scope of that class, just like a member
function.

In general, Release 2.1 does not implement this rule. Consider the following
example:

extern int s;
extern int e;

struct S {

} ;

static int s;
enum { e = 5 };
friend f() { return e;
friend void g(int = s)

II which 'e'?
}; II which's'?

According to the Release 2.1 Reference Manual, f () returns S: : e and the
default argument for g () is S: : s. Instead, both Release 2.0 and 2.1 incorrectly
resolve these names to : : e and : : S respectively. Release 3.0.1 resolves these
names correctly.

Constructor and Destructor Declarations (§12.2, 12.5,9.4)
The Release 2.1 Reference Manual specifies that constructors and destructors
cannot be declared canst, volatile, or static. Release 2.1 correctly reports
an error for constructors and destructors that are declared static, but it

Release Notes - October 1992

incorrectly allows constructors and destructors to be declared const. Release
2.1 does not implement volatile member functions at all; these are rejected
with a "not implemented" message.

struct S {

} ;

static S();
static -S();

struct T {
T () canst;

-T () canst;

T(char*) volatile;

} ;

II illegal, error in 2.0, 2.1 and 3.0
II illegal, error in 2.0, 2.1 and 3.0

II illegal, but accepted by 2.1
II rejected by 3.0
II illegal, but accepted by 2.1
II rejected by 3.0
II illegal, sorry in 2.1
II rejected by 3.0

Release 3.0.1 correctly reports these errors.

Destructors for Built-In Types (§12.5)

The Release 2.1 Reference Manual allows explicit destructor calls for any built-in
type, as in the example below. However, Release 2.1 does not implement this
syntax.

void f(int* p) {
p->int: :-int(); II legal, but error in 2.1

II legal, handled properly in 3.0
} ;

Release 3.0.1 correctly implements this syntax.

Delete Operator (§12.6)
The Release 2.1 Reference Manual tightens the rules for the delete operator.
Only one operator delete () may be declared per class, and the global
operator delete () may not be overloaded. Release 2.1 does not enforce
these restrictions.

Compatibility 25

26

For example, the second declaration of the delete operator in each scope
below is illegal, but the code is accepted by both Release 2.0 and 2.1.

typedef unsigned int size_t;

void operator delete(void*);
void operator delete(const void*); II error, correctly reported

II in 3.0

struct S {

} ;

void* operator new (size_t) ;
void* operator new(size_t, void*);
void operator delete(void*);

void operator delete (void*, size_t); I I error, correctly
Ilreported in 3.0

Release 3.0.1 correctly reports these errors.

Argument Matching Rules (§13.3)
Several details about the function matching rules have changed.

• In the Release 2.0 Reference Manual there was a rule that a call needing only
standard conversions is preferred over one requiring user-defined
conversions. This rule has been eliminated in the Release 2.1 Reference
Manual and the new semantics have been implemented in Release 2.1. For
example,

struct Complex { Complex (double) ; };
void f2(int, Complex);
void f2(double, double);

void y2 () {
f2(3, 4) ;11 ambiguous

For this code, Release 2.1 and 3.0.1 correctly report an ambiguity.

Release Notes - October 1992

• The second function matching change involves the treatment of arguments
of type T that require temporaries. The Release 2.0 Reference Manual
specified that a match with conversions requiring temporaries was a legal
match. So, for example, the call to f3 (char&) in the following code was
legal and was accepted by Release 2.0:

void f3(char&);
void x3() {

f3 ('c') ; II illegal, 2.1 warns under +w
II illegal, 3.0 warns by default

Furthermore, since standard conversions were preferred to conversions
requiring temporaries, the Reference Manual specified that the call to f4 ()
below would be resolved to f 4 (in t) . Instead, Release 2.0 resolved it to
f4 (char&):

void f4 (int) ;
void f4 (char&) ;
void x4() {

f4 ('c') ; II illegal, 2.1 warns under +w
II illegal, 3.0 warns by default

Under the new rules, the calls to f3 () and f4 () are in error because a non
cons t reference cannot be initialized with a non-Ivalue (see §8.4.3).
However, Release 2.1 and 3.0.1 allow this behavior, with warnings, to
provide the opportunity to migrate old code. Release 3.0.1 correctly warns
by default in both case. Release 2.1 warns under +w.

Improved Operator Overloading (§13.5)
Operator overloading and the resolution of operator expressions has been
more clearly specified for Release 3.0.1, notably in the area of choosing
between user-defined operators and built-in operators using conversions to
basic types. For instance, given the following class definition: class Foo (
public: operator intO; int operator+(const Foo&,int); }; and an object of class
Foo, foo, the expression foo + 1 could be resolved two ways. It could be

Compatibility 27

28

resolved as operator+ (foo, 1) by calling the user-defined + operator, or as
operator int (foo) + 1 by using the built-in + operator on integers after
applying the user-defined conversion to into

For Release 3.0.1, the operator overloading algorithm has been updated to
match the function matching algorithm. Therefore, argument matching is used
to compare built-in operators to user-defined operators.

The only exceptions to this rule are operators which must be defined as
members, i.e., operator= (), operator [], operator-> (), operator () ().
For expressions involving these operators, the user-defined version of the
operator is always preferred.

Release Notes - October 1992

The effect of this clarification is that some expressions involving operators
which used to call a user-defined operator will now be ambiguous. Other
expressions which used to give an ambiguity error will now be resolved. For
example,

class String

public:

String (char) ;
friend Stringoperator+(String&,char); };

class MyClass

public:
operator int();
friend int operator+(MyClass&,int);
int operator[] (unsigned int);

} ;

main()
{

MyClass a;
int i;

i a + 3 ;

i a + 3.2 ;

i a [3] ;

i 3 + a;

II
II
II
II
II
II
II
II

1 : used to call operator+(MyClass&,int);
still does

2 : used to call operator+(MyClass&,int) ;
now ambiguous

3: used to call operator[] (unsigned int);
still does
4 : used to be ambiguous
now calls built-in +

In callI, Release 3.0.1 uses argument matching and chooses the user-defined
operator. The best match on the first operand is the user-defined
operator+ (); the best matches on the second operand are both the user
defined operator+ () and the built-in operator+ () on integers. Thus, the
intersection of best match functions is the user-defined operator+ () .

Changing the right operand to a double makes call 2 ambiguous when using
argument matching because the best match on the second operand will now be
the built-in opera tor+ () on doubles.

Compatibility 29

30

Call 3 still calls the user-defined operator+ () because the user-defined
version of operator [] is always preferred, since it must be defined as a
member.

The last call (4) was ambiguous in pre-Release 3.0.1 versions of C++ because
the call of the built-in opera tor+ () on integers conflicted with
operator+ (String&, char). Using argument matching, the call resolves to
the built-in opera tor+ () as the user would expect.

Miscellaneous Fixes & Enhancements
• Classes with destructors are now permitted in I I and && expressions.

• The limit on the size of inlines has been increased so that larger inline
functions should now be laid down inline.

• The number of nested include files that cfront can handle has been made
dynamic. The limit in Release 2.0/2.1 had been 127. Note that, of course,
local cpp's may vary in the limit they can process.

• Significant improvements have been made and extensive testing has been
performed on the +al (ANSI) option.

• Error messages for ambiguous function calls have been enhanced. The error
message now lists the set of overloaded functions which were equivalently
good.

• All known line numbering bugs are fixed.

Release 3.0.1 supports a return value optimization which may avoid the
copying of potentially large data structures which are returned from functions.

For instance, given the following class definition and function declaration:

class T {

public:
T(const T&) i

} i

T faa () i

An object of class T may be initialized with the return value of fooO as follows:

T x = foo() i

Release Notes - October 1992

Such a function, foo (), will often have a definition something like the
following:

T foo ()
{

T result;
II do stuff to result
return result;

This means that in order to do the above initialization, a copy will be done of
resul t into x. If instead the function and the initialization had been written to
look as follows:

void foo(T& result)

II construct result
II do stuff to result
return;

T X;
foo (x) ;

the copy would be avoided altogether while achieving the same results.

Under certain conditions, cfront will now perform a transformation from the
original, more natural, definition of foo () to the second definition
automatically, thus avoiding the copy on the return.

This return value optimization is done under the following conditions:

• The function returns an object of type T, where T has a copy constructor, and

• The function creates a local variable of type T, say resul t, which is
declared and returned at the top block of the function.

• The function does not return anything but resul t, from anywhere in the
function between the declaration and return of resul t.

This optimization can eliminate the non-intuitive tricks that programmers
often use to avoid copying of large objects on returns.

Compatibility 31

32

2.3 Upgrading from Release 2.0 to Release 2.1

Release 2.1 of the C++ Language System is source compatible with Release 2.0.
That is, a legal C++ program that compiled and executed correctly with
Release 2.0 will continue to compile and execute correctly with Release 2.l.

In addition, Release 2.1 is link compatible with Release 2.0. This means that
libraries that were compiled using Release 2.0 do not need to be recompiled
before linking with programs compiled with Release 2.l.

This section lists changes in Release 2.1. Most of these changes are bug fixes
that have been made so that Release 2.1 more accurately reflects the definition
of the C++ language given in the Reference Manual.

This section covers the following topics:

• Header Files - tells you about changes to the header files in Release 2.1

• Changes to the Cc Command - tells you about changes in options to the Cc

command, macro name changes, and other changes in functionality

• Language-Related Fixes - tells you about fixes to the compiler that enforce
language rules more accurately

• Reference Manual Changes - describes differences between the Release 2.0
Reference Manual and the Release 2.1 Reference Manual.

• New Warning Messages - lists warning messages that have been added for
Release 2.1

• Library Changes - describes changes to the libraries supplied with Release
2.1

Recompilation Of Release 2.0 Code Not Required

Code compiled using Release 2.0 does not need to be recompiled.

You might, however, want to recompile your old code using Release 2.1
anyway, as Release 2.1 enforces some language rules that were not enforced by
Release 2.0. If you recompile your code, you will find out if it makes use of
constructs that are illegal.

Release Notes - October 1992

Header Files

Header File Bug Fixes
Bug fixes made to header files for Release 2.1 fall into several categories:

• Missing prototypes were added,

• Prototypes for functions specified by the ANSI C standard were updated to
match the prototypes in the ANSI specification,

• Some headers that were missing for certain platforms have been added.

stdlib.handlibc.h
In Release 2.0, stdlib.h and libc.h were similar, but not identical. In
Release 2.1, they are identical. stdlib. h is the ANSI C-specified header file
used to declare many standard C library functions previously undeclared in C
header files. 1 ibc . h is retained for compatibility with previous releases of the
C++ Language System.

curses. h Proto-Headers Reorganized
Because of the great differences between various versions of curses. h, the
proto-header for curses. h has been divided into three separate files: one for
SVR 2 (c proto-headers/curses. svr2), one for SVR 3 (c proto
headers/curses. svr3), and one for all the other systems supported
(proto-headers/curses.h).

In addition, the curses. h header for SVR 3 has been upgraded to SVR 3.2.

Changes to the Cc Command

a . au t File Permissions
Under Release 2.0 the cc command left the resulting a. out file with
executable permission even if the munch or pa tch step of the compilation
process failed. The Release 2.1 cc command does not make the a. ou t file
executable if the pa tch or munch step of the process fails.

Compatibility 33

34

+L Option
The + L option had no effect in Release 2.0 because the compiler always
generates source line information using the format #line %d . The +L option
has therefore been removed from the cc man page for Release 2.1.

-Fe Option
The -F and -Fc options produce identical results in Release 2.0 and Release
2.1. They both run only the preprocessor and the compiler on the source files
and send the generated C source code to the standard output. Therefore the -
Fc option has been dropped as a separate option on the cc man page for
Release 2.1, although it is still implemented.

Position-Independent Options
Options such as -Y, +a [01], -E, -F, -C, -P, -H, -S, -c, -I, -D, -u and -g are
no longer position-dependent on the command line. Instead, they apply to all
files specified on the command line. For example, under Release 2.1 the
command:

CC foo.c -DDEBUG bar.c

defines the macro DEBUG for both foo. c and bar. c, whereas in Release 2.0
DEBUG was only defined for bar. c.

Not all options have been made position-independent, however. The +d, +p,

and +w options are still position-dependent, as they were in Release 2.0. These
options affect only those files named after the option is specified; the files
named before the option are not affected. For example, the following command
causes the +w option to be applied only to y. c, and not to x. c.

CC x.c +w y.c

The +e [01] options are also still position-dependent. Each +e option applies
to all files listed before the next +e option is encountered. For example, in the
case below +eO is applied to the files x. c and y. c, whereas +e1 is applied to
z .c:

CC +eO x.c y.c +el z.c

The +a option specifies whether uClassic" C code or ANSI C-conforming code
should be produced. Because the cc command invokes a single C compiler, it
is assumed that only one setting of the +a option is appropriate. If multiple

Release Notes - October 1992

+a [01] options are specified on the command line, the last option is the one
actually used, and it is applied to all files. For example, the following
command causes the +a1 option to be applied to x. c, y. c, and z. c.

cc x.c +aO y.c +al z.c

Partial Compilation Options
If the options specified to the cc command contain a combination of the - p

(run only the preprocessor step), -s (stop after creating the assembler input),
and -c (compile but do not link) options, the option referring to the earliest
stage of compilation is chosen and the others are ignored. For example, the
following invocation causes the cc command to perform the preprocessing
step only on the three files:

cc x.c -p y.c -8 z.c

Virtual Table Optimization Improved
Release 2.1 provides the same virtual table strategy that was provided by
Release 2.0.

Release 2.1 provides a further improvement on the treatment of virtual tables.
Under Release 2.0, each virtual table had a companion pointer variable, which
was used to hold housekeeping information necessary for the virtual table
optimization. Under Release 2.1 these pointers are allocated in an array, rather
than one per virtual table, so that only one symbol table entry is required in the
generated object file. This change reduces the symbol table size (but not the
runtime data size) of programs compiled with Release 2.1.

The new optimization is link compatible with Release 2.0.

More Debugging Information Generated Under the -g Option
Under Release 2.0, the -g option, which causes additional debugging
information to be generated, was only passed to the underlying C compiler; it
did not affect the behavior of the compiler itself. Under Release 2.1, however,
the -g option also affects the behavior of cfront. If -g is specified, the
compiler produces C code for every declaration in the compilation, rather than
only for those declarations that are actually needed or used. This additional
information allows for easier debugging, but it also increases the size of the
object file because the symbol table is larger.

Compatibility 35

36

Warnings about Inline Functions Issued under the +w Option
Several customers have noted that Release 2.0 did not treat consistently inline
functions that cannot be successfully inlined. Release 2.1 addresses this
problem by providing more consistent information about whether inline
functions are actually being inlined.

There are several cases:

• If an inline function is seen for which cfront cannot generate inline code,
and cfront cannot recover from the error condition, a Unot implemented"
message is reported. (The "not implemented" messages are described in
Appendix D of the Release 2.1 Reference Manual.)

• If an inline function is seen which cannot be inlined for some other reason
(e.g., it is too long or it is a virtual function), and cfront can recover, the
function will not be inlined and a warning message will be issued if the +w
option is specified.

• If a call to an inline function is seen and, because of the characteristics of the
call site, the particular call cannot be generated inline, a warning message
will be issued if the +w option is specified.

• If the address of an inline function is taken, a warning message will be
issued if the +w option is specified. Because the inl ine keyword is a "hint"
to the compiler, and because the C++ Language System issues warnings
unconditionally only about constructs that are almost certainly serious
problems, warnings about inlines are issued only if the +w option is
specified.

The following code illustrates the treatment of inlines:

inline in faint {return i;}

in g(int i) { return f(i); }

inline void h() {
static int i 5;
/ / ...

struct S {
virtual void f() {}

} i

Release Notes - October 1992

If you compile this code using cc +w you get the following output:

line 5: sorry, not implemented: cannot expand inline function wi th
static i
line 10: warning: virtual function S::f() cannot be inlined
line 12: warning: out-of-line copy of S::f() created

For more information about inline functions, see Chapter 8 of the Selected
Readings.

Language-Related Fixes

This section describes bug fixes in Release 2.1 that may break some code that
used to be accepted, but should never have been accepted. Section numbers (§)
following a heading identify the section of the Release 2.1 Reference Manual that
describes the correct behavior.

Implicit Conversions of Pointers to Members (§4.9)
Release 2.0 incorrectly permitted several kinds of implicit conversions
involving pointers to members.

• Implicit conversions between pointers to members of unrelated types were
permitted:

struct X { int ii }i
struct Y { int ii }i
int x:: *pmXi = &Y:: i i II error

• Conversions from pointers to objects to pointers to members were also
allowed:

struct Z { int ii }i
int ii
int Z::*pmZi = &iill error

Compatibility 37

38

• Finally, conversion from a pointer to member of a base class to a pointer to
member of one of its derived classes was permitted:

struct B { int i; }i

struct D : B { int i; }i

int B::*pmBi = &D::iill error

Release 2.1 correctly enforces these rules and reports an error in these cases.

Casts of Pointer Types (§5.5)
The Reference Manual states that a pointer may be explicitly converted to any
integral type large enough to hold it. If the integral type is not large enough,
the conversion is illegal. Release 2.1 enforces this rule; Release 2.0 did not.

char *Pi
unsigned short us = (unsigned short) Pill error
unsigned short usl = (unsigned short) (int) Pill ok

Better Enforcement of cons t (§7.2)
Release 2.0 did not always realize that a member of a cons t object is itself a
cons t. For example, the assignment to b. a . i in the code below was
permitted, even though b is const and therefore its members are also const.

struct A {
int i;

} i

struct B {
A a;
B()i

} i

void f () {
const B b;
b.a.i 5i II error

Release 2.1 issues the following message:

line 10: error: assignment to member A::i of const B

Release Notes - October 1992

Initialization of cons t Class Objects (§7.2)

The Reference Manual states that all const objects not explicitly declared to be
extern must be initialized. Although Release 2.0 enforced this rule for built-in
types, it did not require explicit initializations for canst class objects, such as
al in the example below:

struct A { int a; };
struct B { B()i };

const A al;
const A a2 =
const B bl;
A a3i

{ 1
II error, no initializer

}i II ok, explicit initialization
I 10k, implicit initialization by constructor

II ok, non-const

Release 2.1 generates the following error for this code:

line 3: error: uninitialized const : :al

Linkage Specifications (§7.6)
Release 2.0 did not enforce all the constraints on the use of linkage
specifications. For example, it allowed a function declaration without a linkage
specification to precede one with a linkage specification. This error is flagged
by Release 2.1

:

int f () i

extern "e" int f();11 error

.line 2: error: inconsistent linkage specifications for f()

Local Variables in Default Arguments (§8.3, §10.5)
The Reference Manual forbids the use of local variables in default argument
expressions. For example,

void f(int i) {
void g(int = i);
II
}

Compatibility 39

40

causes Release 2.1 to report the following error:

line 2: error: local i used as default argument

This error was not reported by Release 2.0.

Braced Initializers for Aggregates (§8.5)
The Reference Manual states that braced initializers may be used to initialize
aggregates, which by definition cannot have private or protected members,
constructors, base classes, or virtual functions. Release 2.0 did not enforce this
rule for classes with private members, or for aggregate members that were not
themselves aggregates. For example, Release 2.0 incorrectly allowed both
initializations shown below.

class A {

int ai

} i

struct B

A obji

} i

A a 5 } i II error
B b 5 } i II error

Release 2.1 correctly generates errors for the initializations of a and b:

line 9: error: cannot initialize ::a with initializer list
line 10: error: cannot initialize ::b with initializer list

Release Notes - October 1992

cons t Violations in cons t Member Functions (§9.4)
Release 2.0 did not consistently detect const violations in const member
functions. For example, the following code is illegal because the value of this,
which has type const S *const, is assigned to an object of type S *const.
Because this code was accepted, illegal assignments to members within cons t
member functions, such as the assignment to i, were not detected.

struct S {
int i;
void f () const {

} ;

S *const p this;!! error
p->i = 5;

Release 2.1 correctly reports the following error for this code:

line 4: error: S::f() const: assignment of S::this (const struct S
*const) to S *const

vola tileMember Functions Not Implemented (§9.4)
Release 2.1 issues a "not implemented" error message if a volatile member
function is seen. Release 2.0 silently ignored the keyword volatile when
applied to a member function.

Member Functions in Local Classes Must Be Defined Inline (§9.9)
When a class is defined within a function definition (that is, a local class), all
member functions of the class must be defined within the class definition itself
or not at all.

Compatibility 41

42

For example, the following code declares the function f2 () but fails to define
it:

void f() {
struct Local {

} ;

int fl() { return 0; }
int f2(int);

Local var;

Release 2.0 quietly accepted the above code. Release 2.1, however, issues the
following warning:

line 6: warning: f2 () must be defined inline within local class Local

Protection Violations of Anonymous Union Members (§11.1)

Release 2.0 did not enforce access protection for members that are anonymous
unions. For example, the following code was silently accepted:

class S {

union { int i; double d; };
} ;

void f() {

s s;
s.i = 5; /1 error

} ;

Release 2.1 correctly reports an error for the assignment to s . i because i is
declared in the private part of s.

Release Notes - October 1992

Friend Declarations Cannot Be Class Definitions (§11.5)

The syntax for declaring a class to be a friend of another class allows the use of
an elaborated-type-specifier, but not a complete class definition, in the
declaration. Therefore, the first friend declaration in the example below is
legal, but the second is not.

class C {
friend struct A; II ok
friend struct B { int f(); }; II error

} ;

Release 2.0 did not recognize the error in the friend declaration for B, but
Release 2.1 issues the following error message:

line 3: error: friend struct B { ... }

Access to Protected Members (§11.6)

The Reference Manual states that a derived class may refer to a protected
member of a base class only if the reference is through a pointer to, reference to,
or object of the derived class. For example, in the code below, although class
D is derived from class B, D: : f () cannot call the protected function B: : g ()

through a B pointer. The same rules apply to constructors, making the calls to
B: : B () in D: : f () illegal.

class B {
B(int) ;
void g (in t) ;

protected:
B();
void g();

} ;

class D : public B { void f(); };
void D: : f () {

B b;

B* bp new B;
bp->g() ;

Compatibility

II error
II error
II error

43

44

In general, Release 2.0 reported the protection violations in code such as this.
In some cases, however, no errors were reported. Such cases generally involved
overloaded functions, one of which was protected, as shown in the above
example.

Release 2.1 correctly generates the following messages for this code:

line 11: error: D: :f() cannot access B::B(): protected member
line 12: error: D: :f() cannot access B::B(): protected member
line 13: error: D::f() cannot access B::g(): protected member

Redundant Initializers (§12.7)
The following code was accepted by Release 2.0 but is incorrect because it
specifies two initializers for the same object. Release 2.1 reports an error.

struct Point { Point (int, int); };
void f () {

Point p(l, 2) = Point(3, 4) ;11 error

Illegal Function Overloading (§13.1)
The Reference Manual states that functions with parameter types that differ only
with respect to const or volatile may not have the same name. Release 2.0
did not enforce this rule consistently and accepted code such as the following:

void f(int *);
void f(int *const) ;11 error

Release 2.1, however, correctly reports an error for the second declaration of
f ().

line 2: error: the overloading mechanism cannot tell a void (int *)
from a void (int *const)

Release Notes -October 1992

"Intersection Rule" Applied to Function Matching (§13.3)
Release 2.0 did not fully implement the "intersection rule" for function
matching described in §13.2 of the Reference Manual. For example, the following
code was accepted and a call to f (double, double) was generated.

double f(double, double);
double f(float, float);
double d = f(double(l.O),float(l.O)) ;11 ambiguous

According to §13.2, however, this call is ambiguous. If you look for possible
matches, parameter by parameter, you see that the set of best matches for the
first parameter has only one element, f (doubl e , doubl e) , and the set of best
matches for the second parameter also has only one element,
f (float, float). The intersection of these sets is empty, so the call is
ambiguous.

For this example, Release 2.1 correctly issues the following message:

line 3: error: ambiguous call of f(); double (double, double) and
double (float, float)

This change in behavior may affect class libraries that provide functions that
overload system functions. For example, suppose you define a type String
and then overload the system function read () to handle objects of type
String:

struct String {
String (char*) ;
I I .,.
} ;

int read(int, String&, int);

However, you do not notice that the last parameter of the system read ()
function is an unsigned rather than an int:

int read(int, void*, unsigned);I/ system 'read()'

Compatibility 45

46

Because Release 2.0 did not correctly implement the intersection rule, calls to
the library's read () were considered unambiguous. Under Release 2.1 they
are ambiguous because the intersection rule is strictly applied:

void g(int fd, char* cp) {
(void) read(fd, cp, 3);// ambiguous

The point here, especially for library writers, is to be careful when overloading
system functions. The types of the parameters that are intended to be the same
should match exactly.

Restrictions on Overloaded Operators (§13.5)

The Reference Manual places a number of restrictions on the ways in which
operators can be overloaded. For example, operator= () must be a non-static
member function. Release 2.1 enforces these rules more strictly than Release 2.0
did.

struct S {
static operator=(int);// error
} ;

Release 2.1 reports the following error for the above example:

line 2: error: S::operator=() cannot be a static member function

Reference Manual Changes

Release 2.1 provided a new, revised Reference Manual, which incorporated
hundreds of customer comments on the draft Reference Manual distributed with
Release 2.0. The Release 2.1 Reference Manual clarified the wording and intent
of the language definition, corrected errors, and removed inconsistencies. In a
very few cases, the language rules were deliberately changed, in response to
feedback from programmers using C++. The revised Reference Manual was
submitted to the American National Standards Institute (ANSI) and has been
accepted as the basis for standardizing the C++ language. An annotated
version of the Reference Manual, entitled The Annotated C++ Reference Manual,
was published in early 1990 by Addison-Wesley.

Release Notes - Odober 1992

This section lists the changes in the Release 2.1 Reference Manual, ordered by
section of the Reference Manual. To help you determine quickly which changes
might impact your code, each change has been classified into one of the
following categories:

• Extension, which is implemented in Release 2.1

• Restriction, also implemented in Release 2.1

• Clarification, which makes a language rule more explicit and which does not
affect the behavior of the C++ Language System

• Change, for which no corresponding change has yet been made to the C++
Language System

Note - Release 2.1 will continue to compile successfully every legal C++
program that compiled under Release 2.0. As usual, you will get a warning
message if you use a construct that is no longer legal, but your program will
still compile just as it did under Release 2.0. If your program compiles without
any anachronism warnings, then it will work the same way when the new
rules are completely phased in and the old rules are completely phased out.
Remember that some anachronism warnings appear only if +w is specified.

New Keyword try (§2.5, restriction)
There is a new keyword, try, for exception handling. Although Release 2.1
does not implement exception handling, a warning message is issued if an
identifier named try is encountered.

int try;
line 1: warning: try is a future reserved keyword

Note - Release 3.0.1 recognizes the full exception handling syntax, but issues a
"sorry, not implemented" message.

Compatibility 47

48

One Definition of an Inline Member Function (§3 .4, change)
According to the Release 2.1 Reference Manual, an inline member function must
have exactly one definition in a program. In other words, an inline member
function cannot legally have different definitions in different files. Previously,
this restriction was not explicitly stated.

This rule might be easily enforced in a C++ environment where a library
manager keeps track of all definitions in a program, but the C++ Language
System does not enforce this rule.

Character Types (§3.7, clarification)
The Release 2.1 Reference Manual states that the types char, unsigned char,
and signed char are three distinct types. This corrects a misstatement in the
previous Reference Manual and conforms with the ANSI C standard.

Because the C++ Language System ignores the keyword signed, Release 2.1
provides two character types: char and unsigned char.

Qualified Name Syntax for Nested Types (§5.2, §9.8, extension)
The Release 2.1 Reference Manual extends the qualified name syntax to apply to
type names as well as class members. This new syntax allows a nested type to
be named outside the class in which it is defined.

For example, to refer to the enumeration type E outside the definition of
Outer, the syntax Outer: : E should be used, as shown below.

struct Outer
enum E e }ill nested type

} i

Outer::E varlill use of a nested type

To provide compatibility with Release 2.0, Release 2.1 also allows you to refer
to a nested type name without qualification, as in the following declaration:

E var2i

Release 2.1 issues a warning message, however, for this use:

Release Notes - October 1992

line 1: warning: use Outer:: to access nested enum type E
(anachronism)

The qualified name syntax is recursive, but Release 2.1 does not implement
qualified names with more than two identifiers:

struct Sl {
struct 82 {

typedef int Ti

} i

} i

Sl : : 82 : : T var3 i II legal, sorry in 2.1

For this code, the following message is issued:

line 7: not implemented: class names do not nest, use typedef x::y
y_in_x

Note - True nested types are implemented in Release 3.0.1, and the transition
model supplied in Release 2.1 is no longer supported.

Class Arguments to f (...) (§5.3, extension)
The Release 2.0 Reference Manual specified that it was illegal to pass an object of
a class with a constructor to a function with an ellipsis formal parameter. This
restriction is lifted in the Release 2.1 Reference Manual and the new behavior is
implemented in Release 2.1. The following code, which produced an error
under Release 2.0, compiles without complaint under Release 2.1. The copy
constructor is not invoked to pass the argument. Instead, a bit-wise copy is
done.

struct S {
S();
S(const S&)i

} i

void f (...) i

void g(S s)
f (s) ;

Compatibility

II legal, accepted by 2.1

49

50

Explicit Type Conversions with Empty Initializers (§5.4, change)
The 2.1 Reference Manual allows you to specify an explicit type conversion with
an empty initializer, as in the following examples:

int i = int () ;

struct Empty {};
Emptye = EmptY()i

Release 2.1 does not implement this capability and reports an error instead.

line 1: error: value missing in conversion to int
line 4: error: cannot make a Empty

Note - Release 3.0.1 implements this capability.

Size of a Function (§5.4, restriction)
In C++, as in ANSI C, you are allowed to apply the sizeof operator to a
pointer to a function but not to the function itse~f. For example, this code is
legal:

I void f ();
int i = sizeof(&f);

but this is not:

int j = sizeof(f);

Release 2.1 enforces this restriction.

Release Notes - October 1992

Access Protection for opera tor new () (§5.4, restriction)
Release 2.0 did not check access protection for calls to class-specific opera tor
new () . The Release 2.1 Reference Manual explicitly extends access protection to
calls to class-specific operator new (), and Release 2.1 implements this
behavior. For example, the following code compiled without error under
Release 2.0, but produces an error message under Release 2.1.

#include <stddef.h>
class C {

void* operator new(size_t)i
void operator delete(void*);

pUblic:
C() ;

void f() {
C *cp new C;// illegal, error in 2.1

Release 2.1 issues the following diagnostic for this code:

line 8: error: f() cannot access C: : operator new(): private member

Empty In it ializers for opera tor new () (§5.4, clarification)
The Release 2.1 Reference Manual explicitly allow~ the initialization expression
in an allocation expression to be empty, as in the following examples:

double* dp = new double();
struct Complex {
Complex () ;
/ / .. ,

} ;

Complex* cp new Complex();

For a built-in type, this means that an object with an undefined value is
created. For a class type, this means that the default constructor is called. If
there is more than one default constructor, an error is reported because the call
is ambiguous. If there is no default constructor, an object with an undefined
value is created.

Compatibility 51

52

Both Releases 2.0 and 2.1 implement this behavior correctly.

Deleting an Array (§5.4, extension)
It used to be necessary to specify the number of elements when deleting an
array. For example, you were required to specify the expression 10 when
deleting the array pointed to by p in the following code:

struct 8 { 8 (); -8 (); };
void f1 () {

8 *p = new 8[10];
/ / ...
delete [10] p;

With Release 2.1 this is no longer necessary, and the following code is now
accepted:

void f2 ()
8 *p = new 8[10];
/ / ...
delete [] p;// no size necessary

Use of the old syntax is considered an anachronism, and Release 2.1 issues the
following diagnostic if the +w option is specified to the cc command:

line 4: warning: v in 'delete[v] , is redundant; use 'delete[]'
instead (anachronism)

This capability frees the programmer from having to keep track of array sizes.
It also prevents subtle problems caused by discrepancies between the number
of allocated elements and the number of deleted elements.

Note - Release 3.0.1 issues an unconditional warning if this syntax is detected.

Release Notes - October 1992

When an array is created using the placement version of operator new,
destruction and deletion of that array are the user's responsibility. For
example:

class T

} i

T*

T()i

~T() i

I I ...

create_T_array_in_buffer(void* buff, int n)
{

return new (buff) T[n]i

void foo ()

pv = malloc(sizeof(T)*5)i
T* pT = create_T_array_in_buffer(pv, 5) i

delete [] pTi II does not work!!!

Here are some approaches the user can take to this problem:

delete [5] pTi

This (anachronistic) syntax will run the destructor on the objects in the array
and free the storage using the global operator delete. Possibly this syntax
should be resurrected.

T* ppT = pT + 5i
while (pT <= --ppT)

ppT - >T: : ~T () i

This loop destroys the objects in the array but does not free the storage,
appropriate in case the storage is managed by specialized code.

Compatibility 53

54

Type Definitions in Casts (§5.5, clarification)
The Release 2.1 Reference Manual clearly states that it is illegal to define a type
in a cast. For example, the following declaration is illegal and is rejected by the
c++ Language System:

enum E { e1 = (enum { z = 10 }) 3, e2 };// error in 2.0 and 2.1

Declarations in for In itializers (§6.6, §6.8, clarification)
The Release 2.0 Reference Manual stated that a for statement containing a
declaration in its for-in it-statement was not allowed to be the statement after an
if, else, swi tch, while, do, or for. In other words, this code was illegal:

void f(int i) {
if (i)

for (int j i; j; j--)// error

This restriction was an error not enforced by the Release 2.0 implementation,
and the Release 2.1 Reference Manual omits it.

The Release 2.1 Reference Manual, however, does specify a related restriction:
/I An au to variable constructed under a condition is destroyed under that
condition and cannot be accessed outside that condition."

Here is an example:

int g(int i) {
if (i)

for (int j = 5; j; j--)

return j;/I error

In the above code, j cannot be accessed at the point of the return statement
because the return statement is outside the body of the if statement.
According to the Release 2.1 Reference Manual, an error should be reported, but
Release 2.1 quietly accepts this code.

Release Notes - October 1992

Note - Release 3.0.1 correctly reports the error.

Another example:

struct S {

} ;

S (int);
-s ();
operator int();
S& operator--();

int h(int i) {

if (i)
for (S s = 5; s; s--)

return s;// error

The destructor for s is invoked at the end of the if statement. Release 2.1
(correctly) issues the error message

line 11: error: s undefined

at the return statement.

Global Inline Functions Are Static (§7.2, §7.2, §3.4, change)
The Release 2.0 Reference Manual allowed a non-member inline function to have
external linkage. The Release 2.1 Reference Manual specifies, however, that a
name of global scope that is declared inline is local to its file.

Release 2.1 does not conform to these rules. For example, the following code is
accepted by Releases 2.0 and 2.1: f () is treated as a static function, and a
static definition of f () is laid down.

extern int f(int);
inline int f(int i) return i; }/I error, not reported
int i = f(O);
int (*pf) (int) = &f;

Instead, the C++ Language System should report an error that f () cannot be
redeclared as inline after being declared extern.

Compatibility 55

56

Use p.f ty,pedefName as Synonym for a Class Name (§7.2,
clarificatlon)
The Release 2.0 Reference Manual was not explicit about where a typedef

name could be used in place of a class name. The Release 2.1 Reference Manual
clarifies this: "The synonym may not be used after a class, struct, or union
prefix and not in the names for constructors and destructors within the class
declaration itself." These restrictions have not been implemented by Release
2.1.

struct S {
S()i

-S() i

} i

typedef struct S Ti

S a = T()i II legal, accepted by 2.0 and 2.1
struct T *Pi II illegal, but accepted by 2.0 and 2.1
class Ci

typedef class C Ui

struct U {}i II illegal, but accepted by 2.0 and 2.1

Because typedef names cannot be used in the names of constructors, both
Release 2.0 and 2.1 treat the use of a typedef name in a member function
declaration as introducing an ordinary member function of that name, not a
constructor. Since this is likely to be an error, the C++ Language System
should, but does not, issue a warning. However, both Release 2.0 and 2.1
correctly reject the use of a typedef name in a destructor:

typedef struct X Yi
struct X {

} i

X()i II constructor
Y(int)i II illegal, accepted by 2.0 and 2.1
-Y()i II illegal, detected by 2.0 and 2.1

Release Notes - October 1992

Scope ofa Nested Enumeration (§7.3, §9.8, extension)
In conjunction with the introduction of nested types, the name of an
enumeration type declared within a class declaration is local to the class. This
marks a change from the Release 2.0 semantics. As a result of this change, the
scope of an enumerator declared within a class is the same as the scope of its
enumeration type.

struct S {

} ;

enum E { el, e2 };
I I ...

S::E var = S::el;11 'E' and 'el' have the same scope

canst Functions (§8.3, restriction)
The Release 2.1 Reference Manual restricts the use of the canst and volatile
qualifiers to non-static member functions. Release 2.1 implements this
restriction. Release 2.0 accepted the declarations of g () and x () below,
whereas Release 2.1 correctly rejects them:

class C {
int f () const; II legal
static int g() const; II illegal, error in 2.1

} ;

void x () const; II illegal, error in 2.1

Defal;tlf.Arf?uments Illegal for Overloaded Operators (§8.3, §13.5,
restrzctzon!
The Release 2.1 Reference Manual explicitly states that default arguments are
illegal for user-defined operators. Release 2.1 implements this rule. The code
below was accepted by Release 2.0 but is rejected by Release 2.1.

struct S {

} ;

friend int operator+(S, int
I I ...

Compatibility

0) ;11 illegal, error in 2.1

57

58

Scope ofa Class Member's Initializer (§8.5, clarification)
The Release 2.1 Reference Manual states explicitly that an initializer for a static
member is in the scope of the member's class. This rule was not explicitly
given in the previous Reference Manual.

Release 2.1 does not apply this rule consistently. For example, in

const int a = 5;

struct X {

static int a;
static int b;

} ;

int X: :a 1;
int X: :b a;

the correct behavior is implemented: X: : b is initialized with X: : a.

However, default arguments for member functions are not resolved within the
scope of the class. In the following code,

const int y = 2;

struct y {

static int y;
static int f (int);

} ;

int Y: : f (int i y) { return i;

Release 2.1 incorrectly determines that the default argument for Y: : f () is
global y, not Y: : y.

Note - Release 3.0.1 correctly resolves the argument.

Release Notes - October 1992

Reference Initializers (§8.5, restriction)
The Release 2.0 Reference Manual allowed a reference to be initialized with a
temporary, as in the following declaration:

int& r = 5;

However, the Release 2.1 Reference Manual has tightened the rules for reference
initializations so that only cons t references may legally be initialized with
non-Ivalues. This means that, instead of the previous declaration, you must use
the following:

canst int& cr = 5;

The Release 2.0 C++ Language System already treated temporary initializers
for non-cons t reference initializations at global scope as errors, although it
allowed them at local scope. To provide a smooth transition to the more
restrictive rules, Release 2.1 issues an anachronism warning, under control of
the +w option, for non-canst reference initializations that were accepted by
Release 2.0 but are now illegal.

Compatibility 59

60

Here are some examples:

int& r1 = 5; II illegal, error in 2.0 and 2.1

struct A { A(int); -A(); };
A& a1 = 5; II illegal, sorry in 2.0, error in 2.1
const A& a2 = 5; II legal, sorry in 2.0, bad code in 2.1

int& f1 () ;
int& r2 = f1();

const int& r3

int f2(int&);
int j = f2 (5) ;

void x() {

II ok, 'f()' returns an lvalue

5; II ok, 'r3' is 'const int&'

II illegal, error in 2.0 and 2.1

int& r1 = 0; II illegal, 2.1 warns under +w
A& a1 = 5; II illegal, 2.1 warns under +w
const A& a2 = 5; II legal, accepted by 2.0 and 2.1
int j = f2(5); II illegal, 2.0 and 2.1 warn under +w

struct 81 {};
struct 82 {
operator 81();
} ;

void f3(81&);
void y(82 s2)
f3(s2);
}

II illegal, 2.0 and 2.1 warn under +w

Note - Release 3.0.1 issues an unconditional warning, or an error if the +p

option is in effect.

The anachronism warnings turn into errors if the +p option is specified to the
cc command.

Release Notes - October 1992

Reuse of a Class Name by its Members (§9.3, clarification)
The Release 2.1 Reference Manual limits the ways in which a class name can be
reused by members of the class. The rule is that a static data member,
enumerator, member of an anonymous union, or nested type may not have the
same name as its class.

Release 2.1 does not enforce these restrictions completely. An error is reported
if an enumerator or nested type has the same name as its enclosing class, but a
static data member or member of an anonymous union are not caught.

struct 81 {
static int 81;
} ;

struct 82 {

II illegal, no error in 2.0 or 2.1

union { int i; float 82; };II illegal, no error in 2.0 or 2.1
} ;

Static Data Members of Local Classes (§9.5, change)
The Release 2.1 Reference Manual states that static data members are not
allowed for local classes. Previously, a local class could have a static data
member only if no explicit initialization was required.

Release 2.1 does not enforce the new restriction properly. If a static data
member of a local class is declared but never used, a warning is reported but
the program links successfully.

int main() {

struct 8 {

static int i;
} ;

II
return 0;

line 2: warning: static member 8::i in local class 8 (anachronism)

Note - Release 3.0.1 enforces this restriction, and correctly reports an error.

Compatibility 61

62

If the static data member is used, the program usually cannot be linked.

int main() {

struct S {

static int i;
} ;

S: : i 5;
II ...
return 0;

When the above code is compiled and linked, the following messages are
reported on UNIX System V. They indicate that the static member S: : i was
declared but never defined:

CC x.c:
line 2: warning: static member S::s in local class S
cc -Wl,-L/c++/cfront/cycle16 x.c -lC
undefined first referenced
symbol in file
S __ main __ Fv __ Ll::s lusr/tmp/CC.28949/x.o
ld fatal: Symbol referencing errors. No output written to a.out

No Virtual Functions in Unions (§9.6, clarification)
Because a union cannot be used as a base class, it makes no sense for member
functions of unions to be declared virtual. The Release 2.1 Reference Manual
states this restriction explicitly, and Release 2.1 implements it.

union u {
int i;
double d;
virtual int f();11 error
} ;

Release 2.1 reports the following error for this code:

line 3: error: f(): cannot declare virtual function within union

Release Notes - October 1992

Introduction of True Nested Types (§9.8, extension)
The Release 2.1 Reference Manual introduces true nested types. In previous
versions of the C++ language, as well as in C, nested classes are treated as a
lexical convenience; they are "hoisted" to the scope of the enclosing class. With
Release 2.1, however, all names declared within a class definition are local to
the class and are not hoisted. The new rules provide greater consistency,
improved modularity, and more intuitive behavior. In addition, they remove
some of the anomalies that previously occurred with nested local classes.

To avoid breaking code that worked under Release 2.0, Release 2.1 implements
a transition model for nested types, which is designed to preserve the behavior
of existing programs while allowing a smooth transition to the new semantics.
The old Release 2.0 behavior is now considered anachronistic.

Note - True nested types are implemented in Release 3.0.1, and the transition
model supplied in Release 2.1 is no longer supported.

Briefly, the transition model consists of three rules:

• Programs that are legal under the old rules and mean something else under
the new rules (legal or illegal) continue to follow the old rules, and a
warning is issued. For example, the use of the nested type E below is illegal
under the new rules, but because it was legal under Release 2.0, Release 2.1
issues a warning rather than an error.

class X {
enum E { };

} ;

E e; II legal in 2.0, warning in 2.1

Release 2.1 issues the following warning for the above declaration of e:

Warning - Use x: : to access nested enum type E (anachronism)

If the +p option (which disallows anachronistic constructs) to the cc command
is specified, the anachronism warning turns into an error.

Compatibility 63

64

Here is an example of code that is legal under both old and new rules, but
means different things:

extern int i;
struct S {

} ;

static int i;
struct Embedded

int f() { return i;
} ;

Under Release 2.0, Embedded: : f () returned global : : i, whereas under the
new nested types rules, it should return S : : i. In this case Release 2.1 issues a
warning

line 6: warning: i , accessed within nested class Embedded, is
visible both globally
and within enclosing class S -- using ::i (anachronism)

and preserves the old behavior.

The +p option has no effect on this example; the warning does not turn into an
error.

• Programs that are legal and mean the same thing under both sets of rules
behave the same.

• Programs that are legal under the new rules and illegal under the old rules
follow the new rules. For example, the new qualified name syntax was
illegal under Release 2.0, but is legal under Release 2.1.

X::E xe; II syntax error in 2.0, legal in 2.1

Release Notes - October 1992

There is one case that causes difficulty for the transition model. Consider the
following program, which is illegal under the old rules because the class
Nested is defined twice:

struct S {
class Nested {}i

} ;

void f (Nested) i

struct T {

} ;

class Nested {}; II old rules in effect; illegal in 2.0
II and 2.1

This program fails under the transition model for a subtle reason. When the
compiler sees the declaration of f (), it does not know whether Nested should
be treated under the old or the new rules. It has to know so that it can decide
how to encode the function name in the generated C code. For compatibility, it
must assume the old rules. Thus when it sees the second definition of Nested,

it reports an error.

To allow this program to compile, you must do something early on to force the
program to be considered unquestionably illegal under the old rules. The
easiest way to do this is to define a global class with the same name as the
nested class before the nested class definition. In the example below, Inner is
the nested type that is defined within two global classes and thus requires a
dummy global definition:

struct Inner {}; II dummy class; tells the compiler
II to use the new nested types semantics

class C {

class Inner { 1* ... *1 }ill legal in 2.1, error in 2.0
} ;

void g (C: : Inner) {} II legal in 2.1, error in 2.0

class D {

class Inner { 1* ... *1 };II legal in 2.1, error in 2.0
} i

void g (D: : Inner) {} II legal in 2.1, error in 2.0

Compatibility 65

66

The above code compiles and links properly.

To preserve link compatibility with libraries compiled under Release 2.0, you
should not force your programs to use the new rules, as is done with Inner in
the example above. If the new rules are applied, then function names are
encoded differently, and new code will not link with old libraries.

Nested Local Types (§9.8, §9.9, extension)
The transition model for nested types guarantees that code that is legal under
both the old and new rules but that changes meaning under the new rules
preserves its former meaning. In this situation, Release 2.1 issues an
anachronism warning.

Note - Full nested types are implemented in Release 3.0.1, and the transition
model supplied in Release 2.1 is no longer supported.

Here is an example that involves nested local types:

struct Nested { int ii }i

typedef int Ti

enum E { e } i

void f ()
struct Local {

} i

struct Nested { int if ji }i

typedef double Ti

enum E { e }i

Nested nli
T tli
E eli

In this example, nl had type Local: : Nested under Release 2.0 because the
declaration of Local: :Nested was exported into the scope of f (). Similarly,
tl had type double. Release 2.0 incorrectly reported an error for the
declaration of E within Local, so el was also reported as an illegal
declaration.

Release Notes -October 1992

Release 2.1 preserves this behavior (except for the bogus error) and issues the
following messages:

line 11: warning: Nested occurs at global and nested local class
scope; using class type Local: :Nested

line 12: warning: T occurs at global and nested local class scope;
using typedef Local: :T

line 13: warning: E occurs at global and nested local class scope;
using enum type Local: :E

Under the +p option to the cc command, the behavior does not change:
Local: : Nes ted, Local: : T, and Local: : E are still used. You are
encouraged, however, to change your declarations to

Local::Nested n1;
Local::T t1;
Local::E eli

to ensure that your code continues to have the same meaning after nested
types are fully implemented.

Protected Derivation (§10.1, change)
The Release 2.0 Reference Manual explicitly disallowed the use of protected
as an access specifier for a base class. The Release 2.1 Reference Manual lifts this
restriction. However, Release 2.1 does not implement the new behavior.

struct B {};
struct D : protected B {};// legal, but rejected by 2.1

Note - Release 3.0.1 correctly implements the new behavior.

Compatibility 67

68

Extension of Dominance Rule to Objects and Enumerators (§10.2,
change)
The Release 2.0 Reference Manual restricted the concept of dominance to apply
only to functions. That is, dominance was used only when disambiguating
function names in an inheritance hierarchy involving virtual base classes. With
the Release 2.1 Reference Manual, the dominance concept is extended to data
members and enumerators. However, Release 2.1 does not implement the new
semantics. In the following example, Release 2.1 incorrectly considers the use
of x to be ambiguous, even though B: : x dominates v: : x .

struct V
struct B
struct C

struct D

void f(); int x; };
public virtual V { void f(); int x; };
public virtual V {};

public B, public C { void g(); };

void D:: g () {
x++; II legal, but rejected by 2.0 and 2.1
f(); II legal, accepted by both 2.0 and 2.1

Note - The extension of dominance to objects is implemented in Release 3.0.1.

Inheritance of Pure Virtual Functions (§10.4, extension)
The Release 2.0 Reference Manual required that a derived class define or declare
pure every pure virtual function in its immediate base. This restriction is lifted
in the Release 2.1 Reference Manual; pure virtual functions are now inherited as
pure virtual functions. The new behavior is implemented in Release 2.1.

For example, the following code is legal under Release 2.1, but produced an
error under Release 2.0:

struct A {
virtual void f ()

} ;

struct A2 public A {};

Release Notes -October 1992

II abstract class
0;

Although f () is not redeclared as pure virtual in A2, Release 2.1 (but not
Release 2.0) considers A2 to be an abstract class because A: : f () is inherited as
pure virtual.

Access Specifiers in Unions (§11.1, change)
The Release 2.1 Reference Manual allows access specifiers in unions. Formerly,
these were forbidden.

union U {
public: II legal

U() i

int ii
private: II legal

double d;
protected: I I legal

float f;
} i

U u;
float f = U.fi II protection violation

Release 2.1 accepts the definition of u shown above but does not report the
protection violation.

Note - Release 3.0.1 flags the protection violation.

Access to Static Members of Private Base Classes (§11.3, change)
The Release 2.1 Reference Manual states that a private derivation of a base class
does not restrict access to the static members of the base class. Without this
rule, a member function would have less access to a base class's static members
than a global function.

Compatibility 69

70

Release 2.1 does not implement this rule consistently. For access to a static
member of an immediate base class, some illegal accesses are not reported:

struct B {
static void f();
} ;

struct D : private B {}
struct E : private D {

void g() {
f(); II illegal, not reported by 2.0 or 2.1
this->f();11 illegal, not reported by 2.0 or 2.1
B::f(); II legal, rejected by 2.0 and 2.1

} ;

In the above code, the calls f () and thi s - > f () are illegal because they refer
to f () via the this pointer, and thus the access protection for private
members is applied. The call B: : f () is legal because it refers to f () directly,
just as a global function could refer to B: : f () .

Note - Release 3.0.1 implements the rule consistently.

If multi-level derivation is involved, both Releases 2.0 and 2.1 are overly
conservative; they report an error for X: : f () even though it is legal.

struct X {
static void f();

} ;

struct Y : private X {};
struct Z : public Y {

} ;

void g() {
f () ;

this->f();
X: : f ();

Release Notes - October 1992

II illegal, error in 2.0 and 2.1
II illegal, error in 2.0 and 2.1
II legal, error in 2.0 and 2.1

Access Declarations (§11.4, clarification)
The Release 2.1 Reference Manual explicitly imposes the following restriction on
access declarations: an access declaration may not adjust the access to a base
class member if the derived class also defines a member of the same name.

This rule is implemented by both Releases 2.0 and 2.1:

struct B {
int ii

} i

struct D : private B
B: : ii
int ii

} i

II error

Linkage of Friend Functions (§11.5, restriction)
The Release 2.1 Reference Manual specifies that the default linkage for friend
functions is extern. For example,

static f()i

struct S {

} i

friend f() ill ok, internal linkage
friend g()ill 'g()' has external linkage

static g()ill illegal, error in 2.0 and 2.1

Release 2.1 warns about static friend functions such as fO in the example above
because, although legal, these could in principle be used to subvert the
protection system. Release 2.1 issues the following messages for the example
above:

line 3: warning: static f() declared friend to class S
line 8: error: g() declared as both static and extern

Compatibility 71

72

Friendship Is Not Inherited (§11.5, clarification)
The Release 2.0 Reference Manual incorrectly stated that friendship is inherited.
The Release 2.1 Reference Manual corrects this mistake. In Release 2.1, as in
previous releases of the c++ Language System, friendship is not inherited.

Friendship Applies to Non-Functions (§11.5, clarification)
The Release 2.1 Reference Manual makes it explicit that class friendship extends
to all members of the class - not just to functions. Release 2.0 and Release 2.1
both implement this behavior. For example,

class X {

enum e = 100 } i

friend class Yi

} i

class Y {

int arr [X: :e] i II legal, accepted by 2.0 and 2.1
} i

class Z {

int arr [X: : e] i II error, 'X: :e' is private
} i

Scope of Friend Functions (§11.5, §9.8, change)
The Release 2.1 Reference Manual states that a friend function defined within
a class declaration is in the lexical scope of that class, just like a member
function.

Release Notes - October 1992

In general, Release 2.1 does not implement this rule. Consider the following
example:

extern int Si

extern int ei

struct S {

static
enum {

friend
friend

} i

int Si

e = 5 } i

f () { return
void g(int =

ei

s)
II which 'e'?

}i II which's'?

According to the Release 2.1 Reference Manual, f () returns S: : e and the
default argument for g () is S : : s. Instead, both Release 2.0 and 2.1 incorrectly
resolve these names to : : e and: : s respectively.

Note - Release 3.0.1 resolves these names correctly.

If the declaration of a friend function within a class declaration uses a nested
type, however, the nested type name is resolved according to the new
semantics.

typedef void* Ti

struct X {

} i

typedef int Ti

friend T h(T t) i

In the above example, Release 2.1 treats h () as having type int (int), not
void* (void*).

Compatibility 73

74

Default Constructors (§12.2, change)
The Release 2.0 Reference Manual explicitly stated that a default constructor is a
constructor with no formal parameters, thereby excluding constructors that can
be called with no arguments by virtue of having default arguments. The
Release 2.1 Reference Manual lifts this restriction; the constructor in the example
below is now considered a default constructor.

I struct S {
} ; S {int = O};

Release 2.1 does not conform to this rule. Instead, it adheres to the old
definition of default constructor. Here are some examples:

8 sl[2];
8 s2 [2] =

struct X {

II legal, sorry in 2.0, error in 2.1
1}; II legal, sorry in 2.0, sorry in 2.1

8 s[2];11 legal, sorry in 2.0, error in 2.1
} ;

void f() {
8* p = new 8[2];11 legal, error in 2.0 and 2.1

Note - Release 3.0.1 correctly conforms to this rule.

Constructor and Destructor Declarations (§12.2, §12.5, §9.4,
clarification)
The Release 2.1 Reference Manual specifies that constructors and destructors
cannot be declared canst, volatile, or static. Release 2.1 correctly reports
an error for constructors and destructors that are declared static, but it

Release Notes - October 1992

incorrectly allows constructors and destructors to be declared const. Release
2.1 does not implement volatile member functions at all; these are rejected
with a "not implemented" message.

struct S {

static S(); II illegal, error in 2.0 and 2.1
static -S() ; II illegal, error in 2.0 and 2.1

} ;

struct T {

T () const; II illegal, but accepted by 2.1
-T() const; II illegal, but accepted by 2.1
T(char*) volatile; II illegal, sorry in 2.1

} ;

Note - Release 3.0.1 correctly reports these errors.

Destructors for Built-In Types (§12.5, change)
The Release 2.1 Reference Manual allows explicit destructor calls for any built-in
type, as in the example below. However, Release 2.1 does not implement this
syntax.

void f (int * p) {
p->int::-int(); II legal, but error in 2.1
} ;

Note - Release 3.0.1 correctly implements this syntax.

Delete Operator (§12.6, change)
The Release 2.1 Reference Manual tightens the rules for the delete operator.
Only one operator delete () may be declared per class, and the global
operator delete () may not be overloaded. Release 2.1 does not enforce
these restrictions.

Compatibil ity 75

76

For example, the second declaration of the delete operator in each scope
below is illegal, but the code is accepted by both Release 2.0 and 2.1.

typedef unsigned int size_t;

void operator delete (void*) ;
void operator delete(const void*}; II error, not reported

struct S {
void* operator new(size_t};
void* operator new(size_t, void*};
void operator delete(void*};
void operator delete (void* , size_t} ;11 error, not reported

} ;

Note - Release 3.0.1 correctly reports these errors.

Generating the Default Assignment Operator (§12.9, clarification)
The Release 2.1 Reference Manual states the condition under which a default
assignment operator is generated differently from the old Reference Manual.
Formerly, the condition was the following:

"If a class X has any x: : opera tor= () defined, even one that takes an
argument of a type unrelated to X, x: : operator= (const X&) will not be
generated."

The Release 2.1 Reference Manual says

"If a class X has any X: : operator= () that takes an argument of class X,
the default assignment will not be generated."

The new description reflects the behavior of Release 2.0 and 2.1.

Argument Matching Rules (§13.3, clarification)
Several details about the function matching rules have changed.

Release Notes - October 1992

• In the Release 2.0 Reference Manual there was a rule that a call needing only
standard conversions is preferred over one requiring user-defined
conversions. This rule has been eliminated in the Release 2.1 Reference
Manual and the new semantics have been implemented in Release 2.1. For
example,

struct Complex { Complex (double) ; };
void f2(int, Complex);
void f2(double, double);

void y2 () {
f2(3, 4);// ambiguous

For this code, Release 2.1 correctly reports an ambiguity.

• The second function matching change involves the treatment of arguments
of type T that require temporaries. The Release 2.0 Reference Manual
specified that a match with conversions requiring temporaries was a legal
match. So, for example, the call to f3 (char&) in the following code was
legal and was accepted by Release 2.0:

void f3 (char&) ;
void x3() {

f3 ('c') ;

Furthermore, since standard conversions were preferred to conversions
requiring temporaries, the Reference Manual specified that the call to f 4 ()
below would be resolved to f 4 (in t) . Instead, Release 2.0 resolved it to
f4 (char&):

void f4(int);
void f4(char&);
void x4() {

f4 (' c') ;

Compatibility 77

78

Under the new rules, the calls to f3 () and f4 () are in error because a non
cons t reference cannot be initialized with a non-Ivalue (see §8.4.3). However,
Release 2.1 does not report these errors and instead preserves the Release 2.0
behavior by resolving the calls to f 3 (char &) and f 4 (char &) respectively.

Note - Release 3.0.1 correctly reports errors in this situation.

Prefix and Postfix Increment and Decrement Operators (§13.5,
change)
The Release 2.0 Reference Manual provided no way to distinguish user-defined
prefix increment and decrement operators from postfix increment and
decrement operators. The Release 2.1 Reference Manual specifies a separate
syntax for defining prefix and postfix increment and decrement operators. The
prefix increment and decrement operators take one argument (the implicit
thi s argument for a member function), whereas the postfiX version takes two
arguments (including the implicit thi s argument). For example,

struct S {
operator++(); 112.0: prefix or postfix

II 2.1: prefix, but not implemented as such
operator++(int);11 2.1: postfix ++, not implemented

However, Release 2.1 does not recognize the new syntax. Use of the postfix
form results in the following error message:

line 4: error: S:: operator ++() takes no argument

Note - Release 3.0.1 correctly recognizes this syntax.

ANSI C Preprocessing (§16.1, change)
The description of preprocessing in the Release 2.1 Reference Manual reflects the
rules of ANSI C rather than of K&R C. Because the c++ Language System does
not include a preprocessor, the actual preprocessing behavior of Release 2.1
depends on the preprocessor resident on the host machine.

Release Notes - October 1992

New Warning Messages

"Not Used" Warning Messages Reported More Consistently
Release 2.1 issues warning messages more consistently if an object is declared
but not used.

For example, Release 2.0 did not issue a °not used" message for the follo\ving
code:

int f () {
int array[5]j
return OJ

Release 2.1 issues a warning that array is not used.

Warning for Pure Virtual Destructors (§10.4, §12.5)
Release 2.1 issues a new warning if a pure virtual destructor is declared but not
defined. For example, the code

I

struct B {
/ / ...
virtual -B(l

. } j

elicits the warning

OJ

line 1: warning: please provide an out-of-line definition: B::-B()
{}j which is needed by derived classes

to remind you that a definition of B: : ~ B () is required.

Compatibility 79

80

To understand why a pure virtual destructor of an abstract class must be
defined, consider what happens when a class D is derived from the class B

defined above:

struct D : B {

} ;

// ...
virtual -D();

D::-D() { /* ... */

The Reference Manual says that base class destructors are implicitly executed
after the destructors for their derived classes (§12.4). This means that the
compiler will generate code to call B: : - B () at the end of D: : - D () . Therefore
B: : - B () must have a definition; otherwise, a link-time error will occur
because the definition is missing.

Why doesn't the compiler implicitly generate an empty definition for
B: : - B () ? The reason is that it is legal for the user to define a B: : - B () that is
not empty! If the compiler generated an empty B: : - B () in one compilation
and the user defined a non-empty B: : - B () in another compilation, then there
would be two different definitions of the destructor. Although this
inconsistency would probably be detectable at link time, it is preferable to
avoid the inconsistency altogether by requiring the user to define the
destructor explicitly.

Anachronism Warning Messages
Release 2.1 issues warning messages for all uses of anachronisms. Section 2.4,
"Future Compatibility Issues," on page 81 describes these messages in more
detail.

Release Notes -October 1992

Library Changes

iostream: :get () and iostream: :put () Now Inline
The Release 2.0 version of the iostream library declared iostream: :get ()
and iostrearn: :put () to be inline, but both functions were too complex
to be successfully inlined. The Release 2.1 implementations of these functions
have been changed so that most calls can be generated inline. For example, the
call to is. get () is inlined by Release 2.1:

#include <iostream.h>
void f () {

istream is(O)i
char Ci

is.get(c) ;

Task Library Ported to Amdahl UTS Computers
For Release 2.1 the task library has been ported to a new platform, Amdahl
UTS. To build the task library for the Amdahl UTS computer, either set
MACH=uts in the top level makefile or specify it on the command line when
building the task library. For example,

make MACH=uts libtask.a

patch
The file BSDpa tch . c has been modified so that pa tch works under BSD
Release 4.3 running on "DEC VAX" computers.

2.4 Future Compatibility Issues

Anachronisms

The C++ Language System provides several extensions to the C++ language to
enable users to make a gradual transition from previous versions of the C++
language to the current definition, which is specified in the Reference Manual. In

Compatibility 81

82

general, these extensions allow constructs to be used that are no longer legal
under the current definition, but were previously legal. The +p option disables
most of these extensions so that only the "pure" language is accepted.

The following set of extensions were provided in Release 2.0 and 2.1, and most
have been phased out in Release 3.0.1. Most of these extensions are listed and
explained in §B.3 of the C++ 3.0.1 Language System Product Reference Manual.
The complete list appears below, with additional references to sections of the
Reference Manual and example programs that demonstrate each anachronism.

Release 2.1 reports uses of these extensions, except the last two, by issuing a
warning message, as shown. Each of these messages has the string
(anachronism) at the end. All of the anachronism warnings are issued

unconditionally, except as noted.

In most cases, anachronisms that were warned about by default in Release 2.1
are considered errors by Release 3.0.1. Anachronisms that produced warnings
only when the +w option in effect in Release 2.1 are now warnings by default
and will be disallowed in the next release.

• Use of the overload keyword (§2.4)

overload f;

Release 2.1 - warning under the +w option

line 1: warning: 'overload' used (anachronism)

Release 3.0.1 - unconditional warning, or error if the +p option is in effect

• Use of . instead of : : for scoping (§S.l)

struct S {
int f ();

} ;

int S.f() { return 0; }

Release 2.1 - warning

line 4: warning:
(anachronism)

Release 3.0.1 - error

Release Notes - October 1992

used for qualification; please use ':: '

• Use of the delete [nJ syntax (§5.3.4)

struct 8 8 (); -8 (); };
void f ()

8* P new 8[10];
II
delete [10] p;

Release 2.1 - warning under the +w option

line 5: warning: v in 'delete[v]' is redundant; use 'delete[]'
instead (anachronism)

Release 3.0.1 - warning under the +p option

• Cast of a bound pointer (§5.4, §B.3.4)

struct 8 {
int f () ;

} s;
typedef int (*PF) ();
PF pf = (PF) &s.f;

Release 2.1 - warning

line 5: warning: address of bound function (try using "8 : :*"
for pointer type and "&8 ::f" for address)
(anachronism)

Release 3.0.1 - error

• Assignment of a value of integral type to an enumeration type (§7.2)

enum E { e1, e2 };
void f(int i) {

E local = i;

Release 2.1 - warning

Compatibility 83

84

line 3: warning: int assigned to enum E (anachronism)

Release 3.0.1 - error

• Non-canst reference initializer not an lvalue (§8.4.3)

void f() {
int& r 5;

Release 2.1 - warning under the +w option

line 2: warning: initializer for non-canst reference not an
lvalue (anachronism)

Release 3.0.1 - unconditional warning, or error if the +p option is in effect

• Non-canst member function called for a canst object (§9.3.1)

struct S
int f () ;

} ;

extern canst S Si

int i = s. f () ;

Release 2.1 - warning

line 4: warning: non-canst member function S::f() called for
canst object (anachronism)

Release 3.0.1 - error

• Static data member declared within a local class (§9.4)

int main() {

struct S {

static int i;
} ;

II
return 0;

Release 2.1 - warning

Release Notes - October 1992

line 3: warning: static member S::i in local class S
(anachronism)

Release 3.0.1 - error

• Use of an unqualified nested type name outside its enclosing class definition
(§9.7)

struct Enclosing {
enum Nested { el, e2 }i

} i

Nested vari

Release 2.1 - warning

line 5: warning: use Enclosing:: to access nested enum type
Nested (anachronism)

Release 3.0.1 - error

• Use of an identifier that is declared at global and local scope within a nested
type definition (§9.7)

int i;
struct S {

static int ii
struct Nested

static int f() { return ii
} ;

} i

Release 2.1 - warning

line 5: warning: i, accessed within nested class Nested, is
visible both globally and within enclosing class S -- using ::i
(anachronism)

Release 3.0.1 - accepted under complete nested semantics

Compatibility 85

86

• Use of a type name that is declared at global scope and within a local nested
class (§9. 7)

typedef int T;

void f () {
struct Nested

typedef char T;
} ;

T var;

Release 2.1 - warning

line 7: warning: T occurs at outer and nested local class scope;
using typedef Nested::T (anachronism)

Release 3.0.1- accepted under complete nested semantics

• First parameter of operator new () not of type size_t (§12.5)

• Second parameter of operator delete () not of type size_t (§12.5)

struct S {
void* operator new(long);
void operator delete (void*, long);

} ;

Release 2.1- warning

line 2: warning: operator new() first argument should be size_t
(anachronism)
line 3: warning: operator delete() 's 2nd argument should be a
size_t (anachronism)

Release 3.0.1 - error

Release Notes - October 1992

• opera tor= () declared as a global function (§13.4.3)

I struct S { /* ... */ };
S& operator=(S&, S&);

•

Release 2.1 - warning

line 2: warning: non-member operator =() (anachronism)

Release 3.0.1 - error

Use of the "Classic C" style function definition syntax (§B.3.1)

int f(i)
int i;

return i;

Release 2.1 - warning

line 1: warning: old style definition of f() (anachronism)

Release 3.0.1 - remains a warning to maintain "Classic C" compatibility

• Use of an old-style base class initializer in a constructor definition (§B.3.2)

class B {
int b;

public:
B (int i) { b = i;

} ;

struct D : public B {
D (int i) : (i) {}

} ;

Release 2.1 - warning

line 7: warning: name of base class B missing from base class
initializer (anachronism)

Release 3.0.1 - remains a warning to allow portability between Release 2.0
and Release 3.0.1.

Compatibility 87

88

• Assignment to thi s (§B.3.4)

•
•

extern void* myalloc(unsigned int);
struct X { X(); };
X::X() {

if (this == 0)

else

this = (X*) myalloc(sizeof(X»;
II

this this;
I I ...

Release 2.1 - warning under the +w option

line 3: warning: assignment to this (anachronism)

Release 3.0.1 - unconditional warning, or error if the +p option is in effect

Use of the c-p1usplus preprocessor macro (§16.1)

Static data member declared but never defined (§9.4)

Note - This anachronism is enforced for template classes, and will be
disallowed in the next release.

The last two extensions - use of the cJ)lusplus preprocessor macro and
implicit definition of a static data member - are difficult for the compiler by
itself to detect, and do not produce warning messages. Uses of cJ)lusplus
are generally known only to the preprocessor, and implicit definitions of static
data members can only be detected at link time, or after linking has taken
place. You can look for uses of cJ)l uspl us by scanning your source code for
that pattern. On some systems you can also find implicit definitions of static
data members by examining the executable file produced by the linker for
instances of uninitialized data with class-scope names.

The Old Stream Library

The old stream library, which is available as 1 ib as tream. a in Release 2.1, is
not provided with this release of the C++ Language System.

Release Notes - October 1992

Known Problems

The following sections describe specific problem areas that remain in the C++
Language System. Where appropriate, the related sections of the c++ 3.0.1
Language System Product Reference Manual are noted.

A.l Multiple Definitions (§3.4)

• In K&R C and in the ANSI C standard, implementations are free to decide
how to treat multiple, uninitialized definitions of objects with external
linkage at global scope. In C++ exactly one definition, initialized or
uninitialized, may occur in a single program. In order to enforce this rule,
the C++ Language System initializes most global variables to o. However, in
order to reduce object file space, no initialization is done for global arrays.
Similarly, since most K&R C compilers reject such code, no initialization is
done for unions or for classes or arrays of classes whose first element is a
union.

Users should be aware that invalid multiple definitions for these cases may
go undetected.

89

90

• For compatibility with previous releases of the C++ Language System, static
data members of non-template classes are implicitly defined. This means
that multiple definitions of the same static member in multiple files will
result in multiple calls to the constructor. For example, suppose that the
header file a. h defines a class with a static member:

struct A A();};
struct B static A ab; };

and file a. c contains the definition of the static data member:

#include "a.h"
A B: :ab;

as does file main. c:

#include "a.h"
A B: :ab;
main () { / * ... * / }

When these files are compiled and linked together, the duplicate definitions
of B: : ab will not be reported and the constructor for B: : ab will be called
twice.

A.2 Global Inline Functions Are Static (§7.2, §7.2, §3.4)

The Release 2.0 Reference Manual allowed a non-member inline function to have
external linkage. The Release 3.0.1 Reference Manual specifies, however, that a
name of global scope that is declared inl ine is local to its file.

Release Notes - October 1992

Release 2.1 and Release 3.0.1 do not conform to these rules. For example, the
following code is accepted by Releases 2.0, 2.1 and 3.0.1: f () is treated as a
static function, and a static definition of f () is laid down.

extern int f(int);
inline int f(int i) return i; }// error, not reported
int i = f(O);
int (*pf) (int) = &f;

Instead, the C++ Language System should report an error that fO cannot be
redeclared as inline after being declared extern.

A.3 Reuseofa Class Name by its Members (§9.3)

The Release 3.0.1 Reference Manual limits the ways in which a class name can be
reused by members of the class. The rule is that a static data member,
enumerator, member of an anonymous union, or nested type may not have the
same name as its class.

Release 3.0.1 does not enforce these restrictions completely. An error is
reported if an enumerator or nested type has the same name as its enclosing
class, but a static data member or member of an anonymous union are not
caught.

struct 81 {
static int 81;// illegal, no error
} ;

struct 82 {
union { int i; float 82; };// illegal, no error
} ;

Known Problems 91

A.4 Unions (§9.4)

The c++ Language System invalidly allows union members of a type which
contains a user defined assignment operator. It correctly detects union
members of a type with a constructor or destructor:

struct assign {
I I . ..
assign& operator =(const assign&)i
} i

struct ctor
I I ...
ctor() i

} i

struct dtor
I I ...
-dtor () i

} i

union U {
assign aill undetected error
ctor bill correctly detected
dtor cill correctly detected
} i

The following correct errors are reported

line 16: error: member U::b of class ctor with constructor in
union

line 16: error: member U: : c of class dtor wi th destructor in union

but there should be a similar error

line 16: error: member U::a of class assign with operator= in union

A.S Nested Types (§9.6)

92

This release completes the introduction of true nested types. There are two
known problems in the new implementation:

Release Notes - October 1992

• The C++ Language System generates invalid C code for uses of nested
classes as virtual base classes:

struct Outer {
struct InnerBase
I I ...
} ;

struct InnerDerived
I I . ..
} ;

} ;

public virtual Outer: : InnerBase {

• Protection has not yet been implemented for nested types:

class A {
enum E {/* ... */}; II private
I I ...
} ;

A::E evar;11 undetected error,
II A::E should not be accessible

A.6 Pure Virtual Functions (§10.4)

• The c++ Language System fails to detect the use of a pure virtual function
inside the class's own destructor. Other invalid uses of a pure virtual
function are correctly detected:

struct Base
Base() ;
-Base() ;
virtual void f() =0;
} ;

Base: : -Base ()
f(); II undetected error
} ;

Base: : Base () {
f(); II correctly detected
} ;

Base f(); II correctly detected
f(Base); II correctly detected

Known Problems 93

The following errors are correctly reported

line 13: error: call of pure virtual function Base::f() in
constructor Base::Base()
line 15: error: abstract class Base cannot be used as a function
return type
line 15: Base: :f() is a pure virtual function of class Base
line 16: error: abstract class Base cannot be used as an argument
type
line 16: Base::f() is a pure virtual function of class Base

but there should be a similar error reported on for the case involving the
destructor.

A.7 Friendship (§11.5)

The c++ Language System invalidly extends friendship throughout the class
hierarchy in a multiple inheritance lattice:

94

class basel
friend void foo();
protected:
int i;
} ;

class base2
protected:
int j;
} ;

class derived
protected:
int k;
public:
derived();
} ;

void foo ()
derived der;

public basel, public base2 {

der.i
der.j
der.k
} ;

1;1/ ok, foo is friend of basel
2;11 undetected error
3;11 detected error

The following correct error is reported:

Release Notes - October 1992

Line 23: error: foo() cannot access derived::k: protected member

but there should be a similar error for the assignment to der . j:

Line 22: error: foo() cannot access derived::j: protected member

A.B Static Members (§11.6)
• Release 3.0.1 is too restrictive in its treatment of protected static members of

a base class when they are accessed by friends of a derived class. The
following example should compile without complaint:

class 81 {
protected:
static int Si

} i

struct 82 : public 81 {
friend int f1() { return 81: :Si }// legal
friend int f2() { return 82: :Si }// legal
} i

Instead, the following errors are incorrectly reported:

error: f2() cannot access 81::s: protected member
error: f1() cannot access 81::s: protected member

This problem can be circumvented by referring to the base class's static
member through an object of the derived class:

friend int f3(const 82& s2) { return S2.Si }

Known Problems 95

96

• Section 11.5 of the C++ 3.0.1 Language System Product Reference Manual states
that" a friend or a member function of a derived class can access a protected
static member of a base class" and section 12.5 specifies that "An X::operator
newO [deleteO] for a class X is a static member." The C++ Language System
fails to allow the implied access to static members new and delete:

typedef unsigned int size_ti
class base {
protected:
void * operator new(size_t)i
void operator delete(void *) i

void static_memf() i

} i

class derived : public base {
public:
void f() {
base *b = new base()ill invalidly rejected
delete bill invalidly rejected
static_memf() ill correctly allowed
} i

} i

Produces the following invalid errors:

line 10: error: derived::f() cannot access base::operator
delete(): protected member
line 10: error: derived: :f() cannot access base: : operator new():
protected member

A.9 Access control and constructors and destructors (§12.4)
• The reference manual stipulates that normal access control is applied to

constructors and destructors. This implies that making a destructor private
or protected disallows automatic and static allocation of such objects since
they could never be destroyed. The c++ Language System correctly enforces
this rule in most situations. However, it invalidly creates temporaries of
such types when passing arguments as const references and then invalidly
calls the private destructor:

Release Notes - October 1992

class Ai
struct B
B() i

-B() i

void foo (A const&) i

} i

class A {
private:
-A() i

void operator=(A&)i
A(A&) i

public:
A(B) i

} i

main()
B bi
A a(b) i

A al = A(b) i

b. foo (b) i

b. foo (A(b)) i

} i

II correctly detected
II correctly detected
II undetected error
II undetected error

The following correct errors are reported:

line 21: error: main() cannot access A::-A(): private member
line 22: error: main() cannot access A: :-A(): private member

but there should be similar errors for the calls to b.foo.

• The C++ Language System also fails to detect invalid calls to operator delete
for classes with a private destructor:

class B
-B() ill private
} i

main() {
B bill correctly detected
B* bp = new B;II legal
delete bp;11 undetected error
} ;

Known Problems 97

A.l0 Protection and Destructors (§12.5)

• If a base class has a private destructor, only member and friend functions of
that class may destroy objects of that class. However, Release 3.0.1 fails to
enforce this protection for derived classes that do not redefine the destructor
at the same protection level. Thus, protection can be overridden by a
derived class that simply fails to declare a destructor or by a derived class
that declares a destructor with less restrictive protection. For example, the
following code compiles without complaint:

class B {
private:
~B () ;

} ;

class D: public B {};
class D2: public B {
public:
~D2 () { }
} ;

void f () {
D d; II undetected error
D2 d2; II undetected error
}

Instead, f () should not be able to create objects of type D or D2.

A.ll Template Formal Type Declarations (§14.2)

98

• The C++ Language System is unable to parse some complicated formal
template arguments. For example, function pointer arguments are invalidly
rejected. Typedefs can be used to work around such problems:

template <void (*fp) (» struct A {};II invalidly rejected
typedef void (*T) ();
template <T p> struct B {II correctly accepted
T var;
} ;

Release Notes - October 1992

• It is possible to construct suitably complicated function names that internal
name limits are overrun. This can happen when generating function
signatures with template type arguments which use literal formal
arguments:

struct Application_area {};
template <class T, int i> struct Vector {
T data[i];
} ;

typedef Vector<Application_area,37> Tl;
typedef Vector<Application_area*,47> T2;
typedef Vector<Application_area&,89> T3;
template <class T, class U, class v> struct A {};II ok
A<Tl,T2,T3> a;11 ok
void f(A<Tl,T2,T3» {}II bad c generated

A.12 Template Classes (§14.3)

• In processing templates, the C++ Language System builds up internal
representations of template classes and functions but does not type check or
otherwise validate user code until a template is instantiated. For example, in
the code below, the definition of the non-existent static member y is not
detected until a variable of the template type A is declared:

template <class T> struct A {
static int x;
} ;

template <class T> int A<T>::y
II a variable of type A< ... >
II is declared

Known Problems

37; II error not detected until

99

It is a good idea, therefore, when developing code that defines template
classes or functions to include simple references to the template type to force
instantiation time type checking and other semantic checking. For example,
if the above code had been compiled with a use of template A, the error
would have been correctly reported:

template <class T> struct A {
static int X;
} ;

template <class T> int A<T>::y 37;
A<int> _dummy;

Produces the following correct error messages:

line 8: error: y: only static data members can be parameterized

A.13 Template Declarations(§14.6)

100

If two class templates refer to each other, one referring to the other only via a
pointer or reference, and the other referring to the first in a way that requires
the full definition to be known, the C++ compiler may produce errors
depending on the order in which uses of the templates appear in user code. For
example:

template <class T> class B;
template <class T> class A {
B<T>* ptr;
} ;

template <class T> class B {
A<T> not_a-ptr;
} ;

A<int> something; //Causes error

Release Notes - October 1992

produces the following invalid errors:

line 9: error: A undefined, size not known
line 9: error detected during the instantiation of B <int >
line 9: the instantiation path was:
line 3: template: B <int >
line 12: template: A <int >

If a use of A<int> is seen before a use of B<int>, the instantiation will either
fail, or produce invalid C code. If a reference to B<int> is seen first, there are
no errors. The workaround is to add a dummy reference to B<int> before the
first reference to A<int>:

I t~edef B<int~ dummy;
A<lnt> somethlng;

A.14 Member Function Templates (§14.7)

• In processing templates, the C++ Language System builds up an internal
representation for the template, but does not actually process instantiations
until the end of the file. This is to allow for correct processing of template
specializations. However, this approach has several side effects with respect
to processing inline member function templates. To be inlined, member
functions must be defined inside the class definition. For example, the
Vector constructor in the following code will be laid down out of line in
each file rather than being inlined:

template<class T> class Vector
public:
inline Vector(int size);
T& operator[] (int i) {return vec[i];}
private:
int size;
T* vec;
} ;

template<class T>
inline Vector<T>::Vector(int sz)
main()
{

typedef char *String;

Known Problems

vec(new T[size=sz]) {}

101

102

template<class T> class Vector
String a = "foo_bar"i
Vector<String> str_vec(2) i

str_vec[OJ = ai

}

Similarly, errors will be reported if a member function is not declared to be
inline in the class template but is but subsequently defined as inline. For
example:

template <class T> class A {
public:
voidf(Tt)i
} i

template <class T> inline void A<T>::f(T t)
{

}

main()
{

A<int> ai

a. f (0) i

}

produces the following errors:

line 7: error: A <int>::f() declared with external linkage and
called before defined as inline
line 7: error detected during the instantiation of A <int >
line 24: is the site of the instantiation

• Specializations of template functions that are friends are not recognized as
friends if the friend declaration is not itself specialized:

template <class T> class A {
friend void f(A<T>&)i 1/ each f is a friend of A<T>
int ii
} i

template <class U>
void f(A<U> &a
{

int j = a.ii II ok

Release Notes - October 1992

1/ template instance of f

template <class T> class A {
void f(A<int> &a) II define a specialization for f
{

int j = a.ii
}

II spurious error: A<int>::i private

Produces the following spurious error:

line 14: error: f() cannot access A <int >::i: private member

The workaround is to include a friend declaration for each specialization:

template <class T> class A2 {
friend void f2(A2<T>&) ill each f is a friend of A<T>
II specializations must be explicitly declared friends
friend void f2(A2<int>&) i

int ii
} i

template <class U>
void f2(A2<U> &a)
{

int j = a.ii

void f2(A2<int> &a)
{

int j = a.iill ok

A.1S Incompatibilities with the ANSI C Standard
• Release 3.0.1 fails to accept ANSI C-conforming declarations for functions

taking function arguments. For example,

void f (int ()) i

produces the following error:

line 1: error: bad base type: void f

If a function pointer is specified as a parameter, like this,

void f(int(*) (»i

the code is accepted.

Known Problems 103

A.16 Missing or Extraneous Warnings

104

• The C++ Language System is sometimes too cautious in deciding when it is
necessary to generate code to invoke a destructor. As a result, unreachable
code containing destructor invocations is sometimes generated, and some C
compilers warn about this unreachable code. For example:

struct A {
A() i

-A() ;

} ;

void f(int i)
switch(i) {
case 0: {
A ai

break;
} ;

}

}

This code may result in the C compiler warning

line 6: warning: statement not reached

which can be safely ignored.

• Similarly, for the following case, destructors are properly called on each
return path, but also at the end of the function:

struct A {
A();
-A() ;

} ;

int f(int i) {
A a;
if (i)
return i;
else
return i;

Release Notes - October 1992

• c++ allows conversions that may involve loss of information. Because such
conversions are likely to introduce errors in the user's code, the C++
Language System should warn about shortening conversions. In general,
such conversions are diagnosed only when assigning a float, double, or
long value to one of the smaller integral types. The following shortening
conversions are accepted without complaint:

extern char C;
extern short S;
extern unsigned char UCi

extern unsigned short us;
extern int i;
extern long 1;
extern float f;
extern double di
void x() {

f d;
C i;
1 d;
1 fi
C S;
s i;
uc i;
us = i;

• Some instances of "used before set" warnings are invalid. For example, the
code below causes the C++ Language System to warn incorrectly that s is
used before set.

struct S
short a;
short b;
} ;

void f ()
s S;
s.a = s.b = 0;// invalid "used before set" warning

Known Problems 105

Use of the sizeof operator also leads to invalid uused but not set"
warnings, as in the following code:

void g() {
char *Pi

int i = sizeof(p) illinvalid "used but not set" warning

A.17 Other Problems with Compiling and Linking

106

• Single files compiled directly to an a . ou t which contain specializations of
templates will occasionally fail. For example:

extern "e" void printf(...)i
template <class T> int foo(T) { return 1i }
main()
{

int i = 3i
printf("%d\n", foo(i)) i II should print 0

int foo(int) { return Oi }

Invalidly produces the following error from the C compiler:

line 11: redeclaration of foo __ Fi

This is because the single file case is optimized to avoid automated
instantiation support and the system invalidly instantiates the printf call
to create the template version of foo (int). When the subsequent

Release Notes - October 1992

specialization is seen, the template instance has already been created. This
problem can be avoided either by ensuring that all specializations precede
any use:

extern "e" void printf(...);
template <class T> int foo(T) { return 1; }
int foo(int) { return 0; }
main()
{

int i = 3;
printf("%d\n", foo(i)); II should print 0

or by compiling CC -ptn which ensures that full automated instantiation
support is invoked.

• At present, function templates declared in header files have only the raw
name extracted and added to the name mapping files. So for:

template <class T, class U> void f(T, int, U);

f will be extracted. This works for many simple cases, but fails in some
cases where two different headers declare a function template with the same
or different formal arguments.

• For compatibility with previous releases, the argument type of _vec_new
and vec_delete under the +al ANSI option are incorrect. Strict ANSI
compliance would declare these functions as:

__ vec_new(void*, int, int, void(*) ());
__ vec_delete(void *, int, int, void(*) (), int, int)i

However, doing so would lead to bootstrapping problems when building
the compiler using libC compiled with earlier releases.

• For compatibility with previous releases, static class members and static
template class members created from a template specialization are not
initialized to O. This may lead to problems with linkers that do not pull in
object files from an archive if there are no initialized external references. If a
file exists whose only external dependency is an uninitialized static data

Known Problems 107

108

member or an uninitialized global array, these linkers will fail to include the
object file and a runtime error will occur. For example, suppose ab. h
defines a class with a static data member:

II file "ab.h"
struet A {
int i;
A() { i = 3;
} ;

struet B
static A a;
} ;

and file ab. c defines the static member

II file "ab.e"
#inelude "ab.h"
A B: :a;

and file main. c refers to the static member

II file "main.e"
#inelude <stdio.h>
#inelude "ab.h"
main()
printf ("%d\n", B::a.i);
I I ...
return 0;

If these files are directly compiled and linked, the expected output of 3 is
printed on the standard output. However, if the file ab . c is compiled and
stored in a library and later linked with main. c, then the program prints 0

if a linker that does not resolve uninitialized data is used.

Release Notes - October 1992

• When two files are compiled separately in separate directories, but contain
identically named objects of the same class, problems will occur when an
attempt is made to link the two object files. For example, suppose you have
a header file x . h in your current directory, and you have two subdirectories
a and b, each of which contains a file named x. c.

II file "x.h"
struct X {
virtual void f() {}i

} i

II file "a/x.c"
#include " .. /x.h"
void f() {
X x;

II file "b/x.c"
#include " .. /x.h"
main()
X Xi

I I ...
return 0;

If these files are compiled separately and an attempt is made to link them
together,

cd a
CC -c x.c
cd .. Ib
CC -c x.c
cd
CC a/x.o b/x.o

they will fail to link, and messages similar to the following will be generated
by the linker:

Known Problems 109

ld: Symbol _
, .Olc'
, .Olc'_vtbl
, .Olc'_lX_
, .Olc'_x_c in b/x.o is multiply defined. First defined in a/x.o
ld: Symbol _
, .Olc'
, .Olc'-ptbl_
, .Olc'_lX_
, .Olc'_x_c in b/x.o is multiply defined. First defined in a/x.o
ld fatal: Error(s). No output written to a.out

These errors occur because the names of the virtual tables and associated
housekeeping information for the X objects in files a/x. c and b/x. care
encoded identically, so the symbols are multiply defined.

A workaround for this problem is to rename one of the files or to use a
longer pathname when compiling these files.

A.1B Library Problems

110

The implementation of the task library limits the number of levels of derivation
from class task to one. That is, a class derived from class task may not have
derived classes. However, use of multi-level inheritance is not detected and
usually results in an unexpected runtime core dump. One possible workaround

Release Notes - October 1992

for this limitation is to put the required complex structures in a class not
derived from task. Then derive a trivial class from task whose constructor
executes the coroutine in the complex task. For example:

class Task_base {
virtual int Main{);
} i

class Runner : public task {
Task_base*p;
public:
Runner (Task_base*) ;
} ;

Runner: : Runner {Task_base* fp)
{

resultis{p->Main{)) ;
}

p{fp)

Class Task_base is the base class from which the user should derive
whatever additional classes and structures are needed.

Known Problems 111

112 Release Notes - October 1992

Implementation Specific Behavior

This appendix describes implementation specific behavior of the Sun C++
Language System. Implementation specific behaviors can be categorized as
follows:

1. Behavior that the Reference Manual defines as "implementation dependent"

2. Behavior that depends on the ANSI-C compiler acomp (supplied with Sun
C++) or preprocessor used with Release 3.0.1

3. Properties that are defined in the standard header files stddef . h,
limits .h, and stdlib.h

4. Translation limits

5. Language constructs that are not implemented in this release

This appendix addresses categories I, 2, 4, and 5. For details about properties
defined in the standard header files (category 3), see the headers themselves.
Additional information about constructs that are not implemented is provided
in Appendix C, "Not Implemented Messages," which contains an alphabetical
listing of the "not implemented" error messages.

The ordering and numbering of sections in this appendix corresponds to the
order and numbering of the related sections in the Reference Manual. The
section entitled "Translation Limits" (which does not have a corresponding
section in the Reference Manual) precedes the numbered sections.

113

B.1 Translation Limits

B.2 Identifiers(§2.4)

Release 3.0.1 of the Sun C++ Language System imposes the following
translation limits:

• 50 nesting levels of compound statements

• 10 nesting levels of linkage declarations

• 4088 characters in a token

• 22222 virtual functions in a class

• 10000 identifiers generated by the implementation

These limits can be changed by recompiling the translator. Additional
translation limits may be inherited from the ANSI-C compiler acomp (supplied
with Sun C++) and preprocessor.

Release 3.0.1reserves identifiers that contain a sequence of two underscores for
its own use. In addition, identifiers reserved in the ANSI C standard are also
reserved by Release 3.0.1. Under the +w option, identifiers with double
underscores result in a warning in Release 3.0.1

B.3 Character Constants (§2.6)

114

The Reference Manual states that the value of a multi-character constant, such as
\ abcd I , is implementation dependent. Release 3.0.1 passes these constants to
the ANSI-C compiler acomp (supplied with Sun C++), which determines their
values. A multi-character constant containing more characters than
sizeof (int) is reported as an error by Release 3.0.1.

The Reference Manual states that the value of a character constant is
implementation dependent if it exceeds that of the largest char. Release 3.0.1
accepts octal and hexadecimal character literals that do not fit in a char. It uses
the low order bits that make up the value of the constant. For example, the
octal character constant \ \ 7 7 7 I , is treated as \ \ 3 77 I • The hexadecimal
character constant \ \x123 I is treated as \ \x23 I.

Release 3.0.1 does not implement wide character constants, such as L' ab I • A
"not implemented" error message is reported.

Release Notes - October 1992

B.4 Floating Constants (§2.6)

When compiling with the +aO option, Release 3.0.1 removes an 1 or L suffix
from a floating constant before passing the constant to the ANSI-C compiler
acomp. Under the +al option such a constant is passed unchanged to the
ANSI-C compiler acomp (supplied with Sun C++). In either case, the constant
is considered to be of type long double for purposes of resolving overloaded
function calls.

B.5 String Literals (§2.6)

The Reference Manual states that it is implementation dependent whether all
string literals are distinct. Release 3.0.1 does not attempt to detect cases where
string literals could be represented as overlapping objects. The ANSI-C
compiler acomp may, however, detect such cases and attempt to overlap their
storage.

Release 3.0.1 does not implement wide character strings, such as L \\ abcd ". A
"not implemented" error message is reported.

B.6 Start and Termination (§3.5)

The Reference Manual states that the type of main () is implementation
dependent. Release 3.0.1 itself does not impose any restrictions on the type of
main (), but the ANSI-C compiler acomp, or the target environment may
impose such restrictions.

The Sun C++ Language System treats main () as if its linkage were extern
"C'I.

B.7 Fundamental Types (§3.7)

Release 3.0.1does not implement the type specifier signed; it issues a warning
and proceeds as though the specifier signed had not appeared.

When Release 3.0.1 is invoked with the +aO option, the type long double is
considered to be the same size and precision as the type double in the ANSI
C compiler acomp. Under the +al option, long double is passed to the

Implementation Specific Behavior 115

ANSI-C compiler acomp as long double. In either case, type long double is
considered a distinct type for purposes of resolving overloaded function
declarations and invocations.

Release 3.0.1 does not impose any alignment restrictions when allocating
objects of a particular type. Such restrictions, if they exist, are enforced by the
ANSI-C compiler acomp.

B.B Integral Conversions (§4.3)

When a value of an integral type is converted to a signed integral type with
fewer bits in the representation, Release 3.0.1 issues a warning message if the
+w option is specified. The runtime behavior of such a conversion depends on
the treatment of the conversion by the ANSI-C compiler acomp.

B.9 Expressions (§5.l)

The Reference Manual states that the handling of overflow and divide check in
expression evaluation is implementation dependent. When the second operand
of a division or modulus operator is known to be zero at compile time, Release
3.0.1 reports an error. Overflow and other divide check conditions are handled
by the ANSI-C compiler acomp and execution environment.

B.10 Function Call (§5.3)

The Reference Manual states that the order of evaluation of arguments to a
function call is implementation dependent; similarly, the order of evaluation of
the postfix expression, which designates the function to be called, and the
argument expression list are implementation dependent. In both cases the
order depends on the treatment by the ANSI-C compiler acomp.

B.ll Explicit Type Conversion (§5.5)

116

The Reference Manual states that the value obtained by explicitly converting a
pointer to an integral type large enough to hold it is implementation
dependent. This behavior is defined by the ANSI-C compiler acomp. Similarly,
the behavior when explicitly converting an integer to a pointer depends on
acomp.

Release Notes - October 1992

B.12 Multiplicative Operators (§5.7)

The Reference Manual states that the sign of the result of the modulus operator
is non-negative if both operands are non-negative; otherwise, the sign of the
result is implementation dependent. This behavior depends on the ANSI-C
compiler acamp except when the values of both operands are known at
compile time. In this case, the sign of the result is the same as the sign of the
numerator.

B.13 Shift Operators (§5.9)

The Reference Manual states that the result of a right shift when the left operand
is a signed type with a negative value is implementation dependent. This
behavior depends on the ANSI-C compiler acampo

B.14 Relational Operators (§5.10)

According to the Reference Manual, certain pointer comparisons are
implementation dependent. For Release 3.0.1, the results of these comparisons
depend on the ANSI-C compiler acampo

B.15 Storage Class Specifiers (§7.2)

The Reference Manual states that the inl ine specifier is a hint to the compiler.
Chapter 8 of the C++ 3.0 Language System Selected Readings describes the
treatment of inl ine functions.

When compiling with the +d option, Release 3.0.1 always generates out-of-line
calls to inline functions.

B.16 Type Specifiers (§7.2)

Release 3.0.1 does not implement volatile type specifiers for functions; a flnot
implemented" error message is issued.

Implementation Specific Behavior 117

B.17 Asm Declarations (§7.4)

Release 3.0.1 passes asm declarations to the ANSI-C compiler acomp without
modification.

B.1B Linkage Specifications (§7.5)

Release 3.0.1supports linkage to C and C++.

The effect of a "C" linkage specification (extern "C") on a function that is not
a member function is that the function name is not encoded with type
information, as is otherwise done for C++ functions. Member functions are not
affected by linkage specifications.

The C linkage specification (extern "C"), when applied to a non-function
declaration, does not affect the C code generated.

B.19 Class Members (§9.3)

B.20 Bit-Fields (§9.7)

The Reference Manual states that the order of allocation of non-static data
members across access-specifiers is implementation dependent. Release 3.0.1
allocates non-static data members in declaration order.

The Reference Manual states that the allocation and alignment of bit-fields
within a class object is implementation dependent. Responsibility for the
allocation and alignment of bit-fields rests with the ANSI-C compiler acampo

Whether the high-order bit position of a "plain" in t bit-field is treated as a
sign bit depends on the behavior of acomp.

B.2l Multiple Base Classes (§lO.2)

118

The Reference Manual states that the order in which storage is allocated for base
classes is implementation dependent. For non-virtual base classes, Release 3.0.1
allocates storage in the order that they are mentioned in the derived class
declaration.

Release Notes - October 1992

B.22 Argument Matching (§13.3)

The type of the result of an integral promotion (§4.1) depends on the execution
environment, as does the type of an unsuffixed integer constant (§2.S.1).
Consequently, the determination of which overloaded function to call may also
depend on the execution environment, as illustrated by an example in §13.2 of
the Reference Manual.

B.23 Exception Handling (experimental) (§15.1)

Release 3.0.1does not implement exception handling. The keyword catch is
reserved for future use. A ~'not implemented" error message is reported if
catch is seen.

B.24 Predefined Names (§16.11)

The following macros are defined by Release 3.0.1:

_cplusplus The decimal constant 1.

c-p1 uspl us The decimal constant 1. This macro is provided for
compatibility with previous releases and will not be supported
in the next major release. Other macros may be predefined by
the underlying preprocessor.

B.25 Anachronisms (§B.4)

For compatibility with previous releases, Release 3.0.1 supports the
anachronisms described in this appendix. These anachronisms will not,
however, be supported in the next major release of the Sun c++ Language
System. Chapter 2, "Compatibility," describes current and future behavior.

Implementation Specific Behavior 119

120 Release Notes - October 1992

Not Implemented Messages

This appendix contains the text and explanation for all "not implemented"
messages produced by the Sun C++ Language System Release 3.0.1. They are
listed here in alphabetical order.

Each message is preceded by a file name and line number. The line number is
usually the line on which a problem has been diagnosed.

A "not implemented" message is issued when Release 3.0.1 encounters a legal
construct for which it cannot generate code. Because code is not generated,
"not implemented" messages cause the cc command to fail, and the program
is not linked. Release 3.0.1 does, however, attempt to examine the rest of your
program for other errors.

• actual parameter expression of type string literal

A template is instantiated with a sting literal actual argument:

template <char* s> struct S {/* ... */};

S<"hello world"> svar;

"file" I line 3: not implemented: actual parameter expression of
type string literal

121

122

• address of bound member as actual template argument

A template is instantiated with the address of a class member bound to an
actual class object:

template <int *pi> class x {}i

class y { public: int ii bi

x< &b. i > Xii

"file" I line 4: not implemented: address of bound member (& ::b .
y: :i) as actual template argument

• & of op

This message should not be produced.

• 1st operand of . * too complicated

The first operand of a function call expression involves a pointer to a
member function and is an expression that may have side effects or may
require a temporary.

struct 8 { virtual int f()i }i

int (8:: *pmf) () = &8:: f i

8 *f()i

int i = (f () ->*pmf) () i

"file" I line 5: not implemented: 1st operand of * too complicated

Release Notes - October 1992

• 2nd operand of . * too complicated

The second operand of a pointer to member operator is an expression that
has side effects.

struct 8 { int f(); };
in t (8: : *pmf) () = &8:: f ;
8 *sp
int i
int j

new 8;
5;
(sp->* (i+=5, pmf)) () ;

"file", line 5: not implemented: 2nd operand of * too complicated

• call of virtual function before class has been completely
declared.

class x
public:
virtual x& f();
int foo(x t = pt->f());
private:
static x* pt;
int i;
} ;

"file", line 6: not implemented: call of virtual function x: : f ()
before class x has been completely declared - try moving call from
argument list into function body or make function non-virtual

• cannot expand inline function wi th for statement in inline

A for statement appears in the definition of an inline function.

struct 8 {
int s[100];
8() { for (int i 0; i < 100; i++) s[i] i;

} ;

Not Implemented Messages 123

124

"file" I line 1: not implemented: cannot expand inline function
S::S() with for statement in inline

• cannot expand inline function function wi th statement after
"return"

A value-returning inline function contains a statement following a return
statement.

inline int f(int i) {
if (i) return ii
return 0;

"file" I line 4: not implemented: cannot expand inline function f ()
with statement after "return"

• cannot expand inline function function wi th two local variables
with the same name (name)

Two variables with the same name and different types are declared within
the body of a value-returning inline function.

inline int f(int i) {
{ int x = i i }

{ double x = ii
return 0;

"file" I line 5: not implemented: cannot expand inline function f ()
with two local variables with the same name (x)

Release Notes - October 1992

• cannot expand inline function needing temporary variable of
array type

An inline function that contains a local declaration of an array object is
called.

inline int f(int i)
int a[l];
a[O] = i;
return i;

}

int v f (0) ;

"file" I line 6: not implemented: cannot expand inline function
needing temporary variable of array type

• cannot expand inline function with return in if statement

This message should not be produced.

• cannot expand inline function wi th static name

An inline function contains the declaration of a static object.

inline void f() {
static int i = 5;

"file" I line 2: not implemented: cannot expand inline function with
static i

• cast of non-integer constant

A cast of a non-integer constant as an actual parameter to a template class.

template <int i> class x;
int yy;

x< (int)&yy > xi;

Not Implemented Messages 125

126

"file", line 4: not implemented: cast of non-integer constant

• cannot expand inline void function called in comma expression

A call of an inline void function that cannot be translated into an
expression (that is, one that includes a loop, a goto, or a swi tch statement)
appears as the first operand of a comma operator.

int i;
inline void f () { for (;;) ; }
void g() { for (f(), i = 0; i < 10; i++)

"file", line 3: not implemented: cannot expand inline void f ()
called in comma expression

• cannot expand inline void function called in for expression.

A call of an inline void function that cannot be translated into an
expression (that is, one that includes a loop, a goto, or a swi tch statement)
appears in the second expression of a f or statement.

void inline f () { for (;;) ;
void g () { for (;; f ()) ; }

"file", line 2: not implemented cannot expand void f () called in
for expression

• cannot expand value-returning incline function wi th call of ...

A value-returning inline function is defined, and it contains a call to another
inline function that is not value-returning.

inline void f () { for (; ;) ; }
inline int g() { f(); return 0;

Release Notes - October 1992

"file" I line 2: not implemented: cannot expand value-returning
inline g() with call of non-value-returning inline f()

• cannot merge lists of conversion functions

A derived class with multiple bases is declared and there are conversion
operators declared in more than one of the base classes.

struct Bl {

operator int () ;
} ;

struct B2 {

operator float () ;
} ;

struct D : public Bl, public B2 { } ;

"file" I line 7: not implemented: cannot merge lists of conversion
functions

• catch

The keyword catch appears; catch is reserved for future use.

int catch;

"file" I line 1: not implemented: catch
"file" I line 1: warning: name expected in declaration list

Not Implemented Messages 127

128

• class defined wi thin sizeof

A class or union definition appears as the type name in a sizeof
expression.

int i = sizeof (struct 8 { int ii })i

"file", line 1: not implemented: class defined within sizeof
"file", line 1: error: 8 undefined, size not known

• class hierarchy too complicated

This message should not be produced.

• conditional expression wi th type

The second and third operands of a conditional expression are member
functions or pointers to members.

struct 8 { int i, ji }i

void f(int i) {
int 8::*pmi = i ? &S::i &8: : j i

"file", line 3: not implemented: conditional expression with int
8· . *

Release Notes - October 1992

• constructor needed for argument ini tializer

The default value for an argument is a constructor or is an expression that
invokes a constructor.

struct 8 { 8(int); };
int f(8 8(1));
int g(8 = 5);

"file", line 2: not implemented: constructor as default argument
"file", line 3: not implemented: constructor needed for argument
initializer

• copy of member [] , no memberwise copy for class

An implementation-generated copy operation for a class X is required, but
the operation cannot be generated because x has an array member whose
type is a class with either a virtual base class or its own defined copy
operation. The workaround is to add a memberwise copy operator to X.

struct 81 {};
struct 82 : 81 { 82& operator=(const 82&); };
struct X { 82 m[l]; };
X var1;
X var2 = var1;

"file", line 5: not implemented: copy of 82 [], no memberwise copy
for 82

• default argument too complicated

A default argument in a declaration not at file scope requires the generation
of a temporary.

struct 8 {
8 () ;

int f(const int &r 1);
} ;

Not Implemented Messages 129

130

"file", line 3: not implemented: default argument too complicated
"file", line 3: not implemented: needs temporary variable to
evaluate argument initializer

• ellipsis (...) in argument list of template function name

An ellipsis is used in a template function declaration:

template <class T> f(T, ...)i

"file", line 1: not implemented: ellipsis (...) in argument list of
template function f()

• explicit template parameter list for destructor of
specialized template class name

Explicit template parameters are included in declaration of a specialized
class' destructor:

template <class T> struct S { /* ... */ }i

struct S<int> {
-S<int>()i

} i

"file", line 4: not implemented: explicit template parameter list
for destructor of specialized template class S <> -- please drop
the parameter list

Instead, declare the specialized destructor as follows:

template <class T> struct S { /* ... */ }i

struct S<int>
-S() i

} i

Release Notes - October 1992

• formal type parameter name used as base class of template

The formal type parameter is used as the base class of a template class;

template <class T> struct S : public T {/* .. . */}i

"file", line 1: not implemented: formal type parameter T used as
base class of template

• forward declaration of a specialized version of template name

A forward declaration of a specialized, rather than generalized template;

template <class T> struct Si
struct S<int>i

"file", line 2: not implemented: forward declaration of a
specialized version of template S <int >

• general ini tializer in ini tializer list

The initializer list in a declaration contains an expression that cannot easily
be evaluated at compile time or that requires runtime evaluation.

int f()i
int i[l] { f() }i

"file", line 2: not implemented: general ini tializer in ini tializer
list

Not Implemented Messages 131

132

• initialization of name (automatic aggregate)

An aggregate at local scope is initialized. This message is not issued if the
+al option (produces declarations acceptable to an ANSI C compiler) is
specified.

void f ()
int i [1] {1} i

"file" I line 2: not implemented: initialization of i (automatic
aggregate)

• ini tialization of union wi th ini tializer list

An object of union type is initialized with an initializer list. This message is
not issued if the +al option (produces declarations acceptable to an ANSI C
compiler) is specified.

union U { int ii float fi }i

U u = {1} i

"file" I line 2: not implemented: initialization of union with
initializer list

• ini tializer for class member array wi th constructor

This message should always be accompanied by an error message. The Unot
implelnented" ITlessage is inappropriate and should not be reported.

• initializer for local static too complicated

This message should not be produced.

Release Notes - October 1992

• ini tializer for mul ti-dimensional array of a obj ects of a
class class wi th a constructor name.

A multi-dimensional array of a class with a constructor has an explicit
initializer.

struct S { S(int); };
S s[2] [2] = {1,2,3,4};

"file", line 2: not implemented: ini tializer for multi-dimensional
array of objects of class S with constructor ::s

• implicit static initializer for multi-dimensional array of
obj ects of class wi th constructor

class x
public:

} ;

main()

x()

static x xx[lO] [20];

"file", line 7: not implemented: implicit static initializer for
multi-dimensional array of objects of class x with constructor

• ini tializer list for local variable name

This message should not be produced.

Not Implemented Messages 133

134

• label in block wi th destructors

A labeled statement appears in a block in which an object with a destructor
exists.

struct S { S (int); (apS (); };
void f() {

S s (5) ;

xyz: ;

"file" I line 5: not implemented: label in block with destructors

• local class name within template function

A local class is defined inside a template function. A similar message is
issued for local enums and local typedefs defined inside a template
function:

template <class T> f() {
class 1 {/ * ... * / } ;
enum E {/* ... */};
typedef int* ip;
} ;

"file" I line 2: not implemented: local class 1 (local to f ()) within
template function
"file" I line 3: not implemented: local enum E (local to f ()) within
template function
"file" I line 4 : not implemented: local typedef ip within template
function

Release Notes - October 1992

• local static class name (type)

A static array of objects of a class with a constructor is declared at local
scope.

class 8
public:

8() ;

} ;

void f ()
static 8 s[9];

"file" I line 2: not implemented: local static class s (8 [9])

• local static name has class::""classO but no constructor (add
class::classO)

A static class object with a destructor, but no constructor, appears at local
scope.

struct 8
void f ()

-8 (); } i

static 8 Si }

"file" I line 1: warning: 8 has 8:: -S () but no constructor
"file" I line 2: not implemented: local static s has 8:: -8 () but no
constructor
(add 8:: 8 ())

• lvalue op too complicated

This message should not be produced.

Not Implemented Messages 135

136

• needs temporary variable to evaluate argument ini tializer

A default argument requires a temporary variable.

void f() {
int g(const int& 5);

"file" I line 2: not implemented: needs temporary variable to
evaluate argument initializer

• nested class type as parameter type to template class name

A nested class is used as the actual parameter for a template class
instantiation:

template <class T> struct S;

struct outer
struct inner {};

} ;

S<outer::inner> svar;

"file" I line 7: not implemented: nested class outer:: inner as
parameter type to template class S

• nested class name within nested class name within template
class name

Classes may only be nested directly within template classes, classes within
nested classes within template classes are not implemented:

template <class T> class S {
class nestl {

} ;

class nest2 {/* ... */};
} ;

Release Notes - October 1992

"file", line 3: not implemented: nested class 8:: nest1: : nest2
within nested class 8::nest1 within template class 8

• nested depth class beyond 9 unsupported

Classes are nested more than nine levels deep.

struct 81 {
struct 82 {
struct 83 {
struct 84 {
struct 85 {
struct 86 {
struct 87 {
struct 88 {
struct 89 {
struct 810 { enum { e }; };

}i}i}i}i}i }i}i}i}i

"file", line 20: not implemented: nested depth class beyond 9
unsupported

Not Implemented Messages 137

138

• non-trivial declaration in swi tch statement

A "non-trivial" declaration appears within a switch statement. Such a
declaration might declare an object of reference type, a static object, a cons t
object, an object of a class type with constructor or destructor, an object with
an initializer list, or an object initialized with a string literal.

void feint i) {
switch (i)
default:

int& j i;

"file" I line 2: not implemented: non-trivial declaration in switch
statement
(try enclosing it in a block)

Since it is illegal to jump past a declaration with an explicit or implicit
initializer unless the declaration is in an inner block that is not entered, most
declarations in swi tch statements and not contained in inner blocks will be
errors.

• out-of-line def ini tion of member function of class nested
wi thin template class

The member functions of a class nested within a template function must be
defined within the definition of the nested class.

template <class t> struct x {
struct y { void foo(); };
/ / ...

} ;

template <class t>
void x<t>::y::foo(){}

"file" I line 7: not implemented: out-of-line definition of member
function of class nested within template class (x: :y:: foo(»

Release Notes - October 1992

• overly complex op of op

This message should not be produced.

• parameter expression of type float t double or long double

A template taking a non-type argument is declared taking a float, double or
long double argument:

template <double d> struct S { 1* ... */};

"file" t line 1: not implemented: parameter expression of type
float t doublet or long double

• postfix template function operator ++ () : please make a class
member function

The postfix implementation of a template increment or decrement operator
must be a member function.

template <class t> struct x {
int operator++(int); II ok

} ;

template <class t>
int operator++(x<t>&tint); II sorry

x<int> xi;

"file" t "" t line 6: not implemented: postfix template function
operator ++(): please make a class member function

• pointer to member function type too complicated

This message should not be produced.

Not Implemented Messages 139

140

• public specification of overloaded function

The base class member in an access declaration refers to an overloaded
function. A similar message is issued for pri va te and protected access
declarations.

struct B { int f(); int f(int); };
class D : private B

public:
B: :f;

} ;

"file", line 2: not implemented: public specification of overloaded
B: : f ()

• reuse of formal template parameter name

A template formal parameter name is reused within the template
declaration:

template <class T> struct S {
int T;

} ;

"file", line 2: not implemented: reuse of formal template parameter
T

Release Notes - October 1992

• specialized template name not at global scope

A specialized template is declared at other than global scope:

template <class T> struct S {
T vari

} i

void f () {

} i

struct S <int >

int vari

} i

"file", line 6: not implemented: specialized template S not at
global scope

• static member anonymous union

A static class member is declared as an anonymous union.

class C {

} ;

static union
int ii
double d;

"file, line 5: not implemented: static member anonymous union

• struct name member name

This message should not be produced.

Not Implemented Messages 141

142

• template function actuals too complicated (please simplify)

#include <iostream.h>

template <class i> struct x { x(); };

template <class t>
ostream& operator«(ostream &os, x<t>&) { return os; }

x<int> Z;

main()
1*
* ok: simplified invocation of actual template function:
* cout « "hello"; cout « z « endl;
*1

II generates sorry message: actuals too complicated
cout « "hello" « z « endl;

"file", line 17: not implemented: template function operator «() :
actuals too complicated (please simplify)

• template function instantiated wi th local class name

template <class T> int f(T);

f2 ()
struct local {/* ... */};
local lvar;
f(lvar);

"file", line 6: not implemented: template function f () instantiated
with local class local

• temporary of class name with destructor needed in expr
expression

Release Notes - October 1992

An expression containing a ?:, I I, or && operator requires a temporary
object of a class that has a destructor.

struct 8 { 8(int)i (ap8()i }i

8 f (int i) {
return i ? 8 (1) : 8 (2) i

"file", line 3: not implemented: temporary of class 8 with
destructor needed in ?: expression

• too few ini tializers for name

The initializer list for an array of class objects has fewer initializers than the
number of elements in the array.

struct 8 { 8 (int) i 8 () i } i

8 a[2] {l}i

"file", line 2: not implemented: too few ini tializers for :: a

• type1 assigned to type2 (too complicated)

A pointer is initialized or assigned with an expression whose type is too
complicated.

struct 81 {}i

struct 82 { int ii } i

struct 83 : 81, 82 {}i

int 83: : *pmi = &82: : ii

"file", line 4: not implemented: int 82:: * assigned to int 83:: *
(too complicated)

• use of member with formal template parameter

Not Implemented Messages 143

144

An attempt to use a member of a formal parameter type, such as T: : type,
is not currently supported. For example,

template <class T> class U
{

} i

typedef T TU;
/ / ...

template <class Type> class V
{

} i

Type: :TU ti
/ / ...

"file", line 9: not implemented: use of Type: :TU with formal
template type parameter
"file", line 9: cannot recover from earlier errors

• visibili ty declaration for conversion operator

An access declaration is specified for a conversion operator.

struct B { operator int(); }i

class D : private B {
public:
B: : operator int i
} i

"file", line 1: not implemented: visibility declaration for
conversion operator

Release Notes - October 1992

• volatile functions

A member function is specified as volatile.

struct S {
int f() volatile;

} ;

"file", line 2: not implemented: volatile functions

• wide character constant

• wide character string

A wide character constant or a wide character string is used.

intwc=L'ab';
char *ws = L"abcd";

"file", line 1: not implemented: wide character constant
"file", line 2: not implemented: wide character string

Not Implemented Messages 145

146 Release Notes - October 1992

Index

Symbols
$italiclinkage-specification$Previous 118
$Listing%$Previous, 116, 117 '
$Listing+a$Previous

option, 34
$Listing+ L$Previous

option, 34
$Listing+w$Previous

option, 36,37
$Listing,$Default,

not, 126
$Listing/$Previous, 116
$Listingasm$Previous

declaration, 118
$Listing-c$Default

option, 35
$ListingCC$Previous,

partial, 35
position-independent, 34, 35

$Listingconst$Default
typedefs, 15

$Listingconst$Previous
functions, 57
parameters, 44

$Listingdelete$Previous
operator, 25,26,75,76,86

$Listing-Fc$Previous

option, 34
$Listingfriend$Previous

declarations, 43
$Listing-g$Previous

option, 35
$Listingint$Previouss

to, 83
$Listingiostream

getO$Previous, 81
putO$Previous, 81

$ListingmainO$Previous, 115
$Listingnew$Previous

operator, 51, 86
$Listingoperator

newO$Previous, 51
$Listingoperator=O$Previous, 87
$Listingoverload$Previous

keyword,82
$Listing-P$Default

option, 35
$Listing-S$Default

option, 35
$Listingsizeof$Previous

opera tor, 106
$Listingtry$Previous

keyword,47

147

148

$Listingtypedef$Previous
declarations, 56

$Listingvolatile$Previous
parameters, 44

$Previous
options, 35

(, 96
"not

used", 79

Numerics
$Listing+e, 35

A
access

declarations, 71
specifiers, 22, 69

actuals
too, 142

aggregates, 40,41
allocation

of, 118
anachronisms, 80,119
and

arrays, 83
function, 45, 46
linking, 106, 11 a
objects, 12, 68
unions, 62

anonymous
union, 141

argument
matching, 119

arrays,

as

B

deleting, 52, 53

parameter, 136
virtual, 92

between

Release Notes-October 1992

releases, 3,31,32,81
bit-fields, 118
block

with, 134
bound

member, 122
pointer, 83

built-in
types, 25,75

c
character

types, 48
class

members, 16,58
object, 135

classic, 87
command,

new, 33,37
complicated

not, 135
constant

or, 145
constants, 114,115
constructors,

declaration, 24,25,74,75
definition, 87

conversion, 116
conversions, 11,50, 105

D
declaration, 100
decrement

operators, 11, 12, 78
default

arguments, 57
constructors, la, 11, 74

definitions, 54
definitions,

multiple, 89,90
depth

unsupported, 137
destructors, 98, 104
destructors,

declaration, 24,25,74,75

E
enumerations, 57, 68
evaluation

order, 116
exception

handling, 13, 119
expression

of, 121

F
few

initializers, 143
file, 33, 113
files, 33
fixes, 13,31,37,46
for

$Listingoperator, 51
anachronisms, 80
argument, 129
class, 129
conversion, 144
pure, 79,80

formal
template, 140

friendship, 72
function

definition, 87
not, 123, 140
operator, 139

functions, 19,20,41,48,55,90,91
functions,

overloading, 44
value-returning, 15
with, 41

Index

I
identifiers, 114
iend

anachronisms, 88
libraries, 111

implemented
message, 127, 145
messages, 145

in
argument, 130
default, 39
initializer, 131

increment
operators, 11, 12, 78

initialization
of, 39

initializer
for, 132, 133

initializers, 14,54,55,84
initializers,

redundant, 44
inline

functions, 36,37, 117
instantiated

with, 142
invalidly

accepted, 92
iostream

library, 81
is tart

K

anachronisms, 81
libraries, 110

known, 111

L
limits

of, 110
linkage, 118

of, 71

149

150

specifications, 39
literals, 115
local, 66

scope, 132

M
macro, 88
Manual$Previous

changes, 46, 81
member

$italicname$Default, 141
function, 139
functions, 19,20,41,42
initialization, 132

members, 42,84,88,90,95
of, 38,39

members,
access, 43,44
of, 21, 22, 61, 62

messages, 79,80
messages,

missing, 104, 106
multi-dimensional

array, 133
multiple

inheritance, 94

N
names, 85, 114
needing

destructor, 143
nested, 63, 67

type, 85
types, 9,48,49

new
features, 4

non-function
members, 72

non-integer
constant, 125

not
at, 141

Release Notes-October 1992

o

implemented, 123, 124, 125, 126, 127,
128, 129, 132, 134

object
without, 135

of, 50
$italicop$Previous, 122
a, 131
member, 138
pointers, 37
private, 22,24,69,70
type, 139

old, 88
on

Amdahl, 81
operator, 76
operator,

scoping, 82
optimization, 30
overcomplicated

type, 143
overloaded

operators, 27,46

p
parameter

list, 130
parameter%n

used, 131
permissions, 33
pointer

types, 38
predefined-macro, 119
problems, 111
protected

derivation, 13, 67
new, 96

pure, 68

R
recom piling

existing, 4, 32
references, 16, 18,59,60
relational

operators, 117
requiring

temporary, 136
reuse

of, 61,91
rules, 26, 27, 76, 78

s
scope

of, 24, 72, 73
shift

operators, 117
signed

type, 116
specific

behavior, 119

specifier, 117
standard,

incompatibilities, 103
preprocessors, 78

storage,
for, 118

strategy, 35
switch

statement, 138

T
template

formals, 98
friends, 102
instantiations, 100

termination, 115
to, 88

$Listingf(. ..)$Previous, 49
C++, 1

translation

Index

limits, 113, 114
type, 48

names, 86
types, 63, 67
types,

u

fundamental, 115
nested, 9

under
BSD, 81

v
value-returning

functions, 15
virtual

functions, 62

w
with

future, 81, 88
previous, 3,81
type, 128

within
$Listingsizeof$Previous, 128
nested, 136

151

152 Release Notes-October 1992

