

SPARCompilers C2.0.1 Programmer's Guide

.SunPro
A Sun Microsystems, Inc. Business

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Part No: 800-6578-11
Revision A, October 1992

© 1991 by Sun Microsystems, Inc.-Printed in USA.
2550 Garcia Avenue, Mountain View, California 94043-1100

All rights reserved. No part of this work covered by copyright may be reproduced in any form or by
any means-graphic, electronic or mechanical, including photocopying, recording, taping, or storage
in an information retrieval system- without prior written permission of the copyright owner.

The OPEN LOOK and the Sun Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun's licensees.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS252.227-7013 (October 1988) and FAR 52.227-19
(June 1987).

The product described in this manual may be protected by one or more U.S. patents,
foreign patents, and/ or pending applications.

TRADEMARKS

The Sun logo, Sun Microsystems, Sun Workstation, NeWS, SunPro, and SunLink are
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SunCD, SunInstall, SunOS, Sun View, NFS, and
Open Windows are trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

PostScript is a registered trademark of Adobe Systems Incorporated. Adobe also owns
copyrights related to the PostScript language and the PostScript interpreter. The
trademark PostScript is used herein only to refer to material supplied by Adobe or to
programs written in the PostScript language as defined by Adobe.

X Window System is a product of the Massachusetts Institute of Technology.

SPARC is a registered trademark ofSPARC International, Inc. Products bearing the
SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.
SPARCstation is a trademark of SPARC International, Inc., licensed exclusively to Sun
Microsystems, Inc.

All other products or services mentioned in this document are identified by the
trademarks, service marks, or product names as designated by the companies who market
those products. Inquiries concerning such trademarks should be made directly to those
companies.

Portions © AT&T 1983-1990 and reproduced with permission from AT&T.

Contents
Preface. .. xix

Part l-ANSI C Overview

1. Introduction to ANSI C . 1

Operating Environment. 1

C Language. 2

Modular Programming in C 2

Libraries and Header Files . 3

Creating an Executable 3

C-Related Programming Tools. 4

Program Analysis. 4

Program Management. 5

Program Development ... , 6

Other Advanced Programming Utilities. 6

2. Compiling and Linking. 9

Compiling and Linking. 9

iii

Compiler Command Line Syntax - Basics 12

How C Programs Communicate with the Shell. 18

Linking Overview 19

Linking Summary. 22

3. ace Compiler Options for SunOS 4.x. 27

Option Syntax. 27

Options. 28

Summary of acc Compiler Options . 42

Commonly Used Command Line Options. 45

Searching for a Header File. 45

Preparing Your Program for Symbolic Debugging 46

Preparing Your Program for Profiling. 46

N on-Standard Floating Point . 47

4. cc Compiler Options for SunOS 5.0. 49

Option Syntax. 49

Options.. 50

Summary of cc Compiler Options. 66

Commonly Used cc Command Line Options 69

Searching for a Header File. 69

Preparing Your Program for Symbolic Debugging. 70

Preparing Your Program for Profiling. 70

Non-Standard Floating Point. 71

5. The Parts of C 73

Introduction. 73

iv SPARCompilers C 2.0 Programmer's Guide-October 1992

Compilation Modes. 73

Global Behavior: Value vs. Unsigned Preserving. 74

How To Use This Chapter..... 75

Phases of Translation. 75

Source Files and Tokenization. 76

Tokens.. 76

Identifiers 77

Keywords 77

Constants. 77

Wide Characters and Multibyte Characters 80

String Literals 81

Wide String Literals. 81

Comments. 81

Preprocessing 82

Trigraph Sequences . 82

Preprocessing Tokens. 82

Preprocessing Directives. 83

Declarations and Definitions 92

Introduction. 92

Types .. 92

Scope.......... 95

Storage Class Specifiers. 96

Storage Duration 97

Declarators . 98

Contents v

vi

Function Definitions. .. 101

Conversions and Expressions 102

Implicit Conversions. .. 102

Expressions 105

Operators. .. 106

Asociativity and Precedence of Operators 114

Constant Expressions 114

Initialization. .. 115

Statements. .. 118

Expression Statement 118

Compound Statement. 118

Selection Statements. .. 119

Iteration Statements. .. 120

Jump Statements. .. 122

Portability Considerations. .. 123

6. C Error Messages. 125

Introduction. .. 125

Message Types and Applicable Options. 126

Operator Names in Messages.. .. 127

Messages .. 128

Operator Names. 232

Other Error Messages. .. 234

Part 2-C Programming Tools

7. escape Source Code Browser. 239

SPARCompilers C 2.0 Programmer's Guide-October 1992

Introduction. .. 239

How escape Works. .. 239

escape - Basic Use. 240

Step 1: Set Up the Environment .. 240

Step 2: Invoke the escape Program. 241

Step 3: Locate the Code. .. 242

Step 4: Edit the Code. .. 249

Command Line Options .. 250

Using Viewpaths. 253

Stacking esc ape and Editor Calls. 254

Examples.. 255

Notes. 260

Unknown Terminal Type. .. 260

Command Line Syntax for Editors. 261

SourceBrowser. .. 262

8. 1 in t Source Code Checker. 263

Scope of this Chapter. .. 263

Introduction. .. 263

Options and Directives .. 264

Message Formats .. 264

What 1 in t Does. .. 265

Consistency Checks .. 265

Portability Checks. .. 266

Suspicious Constructs .. 268

Contents vii

viii

Usage. 269

lint Libraries. .. 271

1 in t Filters. .. 272

Options and Directives Listed. .. 273

lint-specific Messages. .. 278

Part 3- Appendices

A. ANSI C Data Representations . 317

Storage Allocation. .. 318

Data Representations. .. 318

Integer Representations " 318

float and double Representation. 319

Extreme Number Representation. 321

Hexadecimal Representation of Selected Numbers 322

Pointer Representation 322

Array Storage .. 322

Arithmetic Operations on Extreme Values. 322

Argument Passing Mechanism. .. 325

Referencing Data Objects in C. .. 326

Referencing Simple Variables " 326

Referencing With Pointers. .. 327

Referencing Array Elements. .. 327

Referencing Structures and Unions 328

B. Implementation-Defined Behavior. 331

Translation. .. 331

SPARCompilers C 2.0 Programmer's Guide-October 1992

Environment. .. 332

Identifiers. .. 332

Characters. .. 333

Integers. .. 334

Floating Point. .. 335

Arrays And Pointers. .. 336

Registers. .. 337

Structures, Unions, Enumerations And Bit-Fields. 337

Qualifiers .. 339

Dec1arators. .. 339

Statements .. 339

Preprocessing Directives. .. 339

Library Functions. .. 342

Signals. .. 344

Streams and Files. .. 346

Errno. 348

Memory .. 354

abort Function. .. 354

exi t Function .. 354

getenv Function................................ 354

system Function................................ 355

s trerror Function.............................. 355

Locale Behavior. .. 355

Contents ix

x

c. Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x)
359

Library Differences. .. 359

Search Paths. .. 359

libc Differences. .. 360

Library libansi.a .. 361

Header Files .. 362

ANSI C Functionality Supplied by libansi.a. 362

Name Space Pollution. .. 363

Header Files Modified for SunOS 4.x. 363

/ usr / include / arpa/ nameser.h. .. 363

/usr/include/des_crypt.h 364

/usr/include/hsfs/hsfs_spec.h .. · . 364

/usr/include/hsfs/hsnode.h 364

/usr/include/hsfs/iso_spec.h. . 364

/usr/include/mon/eeprom.h 366

/usr/include/pixrect/gt_fbi.h (SunOS 4.1.2 and 4.1.3). 366

/ usr / include/ pixrect/ pixrect.h. 367

/usr/include/rfs/ns_xdr.h .. · . 367

/usr/include/rfs/rfs_xdr.h .. · . 367

/usr/include/rpc/auth.h. .. 367

/usr/include/sparc/asm_linkage.h 368

/usr/include/stand/scsi.h 368

/usr/include/sun4c/asm_linkage.h. 368

SPARCompilers C 2.0 Programmer's Guide-October 1992

/usr/include/sun4c/debug/asm_linkage.h .. 368

/ us r / inc 1 ude / sun4m/ asm_l inkage . h (SunGS 4.1.2 and
4.1.3). .. 369

/usr / include/ sun4m/ iommu. h (SunGS 4.1.2 and 4.1.3)
369

/usr / include/ sun4m/vmparam. h (SunOS 4.1.2 and
4.1.3) .. 369

/usr/include/sundev/scsi.h. . 369

/usr/include/suntaol/wmgr.h ... 370

/usr/include/sunwindow/io_stream.h. . 370

/usr/include/sys/debug.h. 371

I usr I include I sys I ioccom.h. .. 371

lusr/include/sys/termios.h 374

lusr/include/sys/ttychars.h. .. 374

lusr/include/sys/types.h .. 375

lusr/include/sys/wait.h 375

lusr linclude/values.h .. 375

Problems with Header Files using the -Xc Mode. 376

Bit fields which are not of type int or unsigned int 376

Tokens at the end of #else or #endif are not enclosed within
comments .. 376

Enumerated types which have a trailing comma. 376

Miscellaneous Differences. .. 376

Type Qualifier canst. 376

size_t Type. .. 377

D. -Xs Differences for Sun C and ANSI c. 379

Contents xi

xii

Introduction. .. 379

Glossary .. 381

Index. 393

SPARCompilers C 2.0 Programmer's Guide-October 1992

Figures

Figure 2-1

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figure 7-7

Figure 7-8

Figure 7-9

Figure 7-10

Figure 7-11

Figure 7-12

Figure 7-13

Figure 7-14

Organization of C Compilation System

The cscope Menu of Tasks

Requesting a Search for a Text String

escape Lists Lines Containing the Text String

Examining a Line of Code Found by cscope

Requesting a List of Functions That Call alloctestO

escape Lists Functions That Call alloctestO

escape Lists Functions That Call mymallocO

Viewing dispini t () in the Editor

Using escape to Fix the Problem

Changing a Text String

escape Prompts for Lines to Changed

Marking Lines to Be Changed

escape Displays Changed Lines of Text

Escaping from escape ta the Shell

11

242

243

244

245

246

247

248

249

250

255

256

257

258

259

Figure A-I Examples of Simple Variable References. 326

xiii

Figure A-2 Examples of Pointer References. 327

Figure A-3 Examples of Array Variable References 328

Figure A-4 Examples of Accessing Members of Structures. 329

xiv SPARCompilers C 2.0 Programmer's Guide-October 1992

Tables
Table 2-1

Table 3-1

Table 4-1

Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 5-5

Table 5-6

Table 5-7

Table 5-8

Table 5-9

Table 5-10

Table 5-11

Table 5-12

Table 6-1

Components of C Compilation System 11

Summary of acc Compiler Options . 42

Summary of cc Options 66

Identifiers . 77

Data Type Suffixes. 78

Multiple-character Constant (ASCII) . 79

Multiple-character Constant (non-ASCII) 79

Character Constants . 80

Trigraph Sequences. 82

Expansion of # and ## Macros. 85

Constant Expression Evaluation. 87

Pre-defined Identifiers . 91

Storage Classes in C 97

Function Definitions. 101

Associativity and Precedence of Operators. 114

Explanation of Compiler Diagnostics. 126

xv

xvi

Table 7-1 escape Menu Manipulation Commands. 242

Table 7-2 Commands for Use after an Initial Search. 244

Table 7-3 Commands for Selecting Lines to Be Changed... 256

Table A-I Storage Allocation for Data Types. 318

Table A-2 Representation of short . 318

Table A-3 Representation of int and long. 319

Table A-4 Representation of long long............................ 319

Table A-5 float Representation . 320

Table A-6 double Representation. 320

Table A-7 float Representations. 321

Table A-8 double Representations. 321

Table A-9 Hexadecimal Representation of Selected Numbers. 322

Table A-I0 Extreme Values Usage.. 323

Table A-II Addition and Subtraction Results. 323

Table A-12 Multiplication Results 324

Table A-13 Division Results. 324

Table A-14 Comparison Results........ 325

Table B-1 Representations and sets of values of integers. 334

Table B-2

Table B-3

Table B-4

Table B-5

Table B-6

Table B-7

Table B-8

Values of floating-point numbers

Padding and alignment of structure members

Character sets tested by isalpha, islower, etc

Values returned on domain errors

Semantics for signal signals

Error Messages generated by perror

Names of Months

SPARCompilers C 2.0 Programmer's Guide-October 1992

335

338

342

343

344

349

356

Table B-9 Days of the Week. 356

Table B-IO Abbreviated Days of the Week.. 357

Table C-l Directory Search Paths. 360

Table C-2 libc Differences. 360

Table D-l -Xs Behavior. 379

Tables xvii

xviii SPARCompilers C 2.0 Programmer's Guide-October 1992

Preface

The SPARCompilers™ C 2.0.1 Programmer's Guide is a reference guide to this
implementation of the ANSI C language.

Operating Environment
The SPARCompiler C 2.0.1 compiler runs under two operating environments:

• SunOS™ 4.1.1 (and later) operating system

• SunOS 5.0 operating system

The ace compiler runs under:

• SunOS 4.1.1 (and later) operating system

• A SPARCTM computer, either a server or a workstation

• The OpenWIndows™ 3.0 application development platform.

The SunOS 4.1.1 (and later) operating system is based on the DCB BSD 4.3
operating system.

The cc compiler runs under:

• SunOS 5.0 operating system

• A SPARC computer, either a server or a workstation

• The Open WIndows 3.0 application development platform.

xix

The SunOS 5.0 operating system is based on the System V Release 4 (SVR4)
UNIX} operating system, and the ONCTM family of published networking
protocols and distributed services.

Organization of this Book

xx

This book covers the following broad areas:

• introduction and overview of C
• an overview of the compiling process, and an introduction to linking
• the various options available with the ace compiler
• the various options available with the cc compiler
• the diagnostic, or error, messages you may see when compiling
• data representations
• implementation-specific behavior
• the C programming tools escape and lint

In this manual, we do not attempt to teach you how to program in C.

See the manual Installing SPARCworks and SPARCompiler Software for
instructions on installing the C compiler.

Refer to these other manuals for more information on programming in ANSI C:

SPARCompilers C 2.0.1 Library Reference Manual
Describes selected functions of the C library.

C 2.0.1 Transition Guide
Shows how to port your C code from previous versions of C to ANSI C.

Profiling Tools
Information on various profiling tools.

We recommend two texts for programmers new to the C language:

• Kernighan and Ritchie, The C Language, Second Edition, 1988, Prentice-Hall

• Harbison and Steele, C: A Reference Manual, Second Edition, 1987, Prentice
Hall.

1. UNIX is a registered trademark of UNIX System Laboratories, Inc.

SPARCompilers C 2.0 Programmer's Guide-October 1992

For implementation-specific details not covered in this book, refer to the
Application Binary Interface for your machine.

Conventions in this Manual
This manual uses the following conventions:

Bold face typewriter font
Indicates commands that you should type in exactly as printed in the
manual.

Regular typewriter font
Represents what the system prints on your workstation screen, as well as
keywords, identifiers, program names, filenames and names of libraries.

Italic font

$

Indicates variables or parameters that you should replace with an
appropriate word or string. It is also used for emphasis.

Represents your system prompt for a non-privileged user account.

Preface xxi

xxii SPARCompilers C 2.0 Programmer's Guide-October 1992

Part l-ANSI C Overview

Introduction to ANSI C

1.1 Operating Environment
This C compiler runs under two operating environments:

• SunOS™ 4.1.1 (and later) operating system

• SunOS 5.0 operating system

The ace compiler runs under:

• SunOS 4.1.1 (and later) operating system

• A SPARCTM computer, either a server or a workstation

• The OpenWIndowsTM 3.0 application development platform.

The SunOS 4.1.1 (and later) operating system is based on the UCB BSD 4.3
operating system.

The cc compiler runs under:

• SunOS 5.0 operating system

• A SPARC computer, either a server or a workstation

• The Open WIndows 3.0 application development platform.

The SunOS 5.0 operating system is based on the System V Release 4 (SVR4)
UNIXl operating system, and the ONCTM family of published networking
protocols and distributed services.

1

2

1.2 C Language
Over the past few years, C has become the worldwide programing language of
choice. C was developed on the UNIX operating system and is largely used to
code that operating system's kernel. A very large number of UNIX and UNIX
derived applications are written in C.

Chapter 5, "The Parts of C," provides a reference guide to the C language. Here
are some features of the language:

• basic data types: characters, integers of various sizes, and floating point
numbers;

• derived data types: functions, arrays, pointers, structures, and unions;

• a rich set of operators, including bit-wise operators;

• flow of control: if, if-else, switch, while, do-while, and for
statements.

Application programs written in C usually can be transported to other
machines without difficulty. Programs written in ANSI standard C (conforming
to standards set down by the American National Standards Institute) enjoy an
even higher degree of portability.

Programs that require direct interaction with the kernel- for low-level I/O,
memory management, interprocess communication, and the like - can be
written efficiently in C using the calls to system functions contained in the
standard C library, and described in Section 2 of the SunOS Reference Manual.

Modular Programming in C

C is a language that lends itself readily to modular programming. It is natural
in C to think in terms of functions. And since the functions of a C program can
be compiled separately, the next logical step is to put each function, or group of
related functions, in its own file. Each file can then be treated as a component,
or a module, of your program.

1. UNIX is a registered trademark of UNIX System Laboratories, Inc.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Chapter 2, "Compiling and Linking," describes briefly how to link C programs
so that the modules of programs can communicate with each other. What we
want to stress here is that coding a program in small pieces eases the job of
making changes: you need only recompile the revised modules. It also makes it
easier to build programs from code you have written already; as you write
functions for one program, you will surely find that many can be picked up for
another.

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/ output, string handling,
and other high-level operations that are not explicitly provided by the C
language. Header files contain definitions and declarations that your program
will need if it calls a library function. The functions that perform standard I/O,
for example, use the definitions and declarations in the header file s tdi 0 . h.
When you use the line

I #include <stdio.h>

in your program, you ensure that the interface between your program and the
standard I/O library agrees with the interface that was used to build the
library.

The SPARCompilers C 2.0 Programmer's Guide describes some of the more
important standard libraries and lists the header files that you need to include
in your program if you call a function in those libraries. It also shows you how
to use library functions in your program and how to include a header file. You
can, of course, create your own libraries and header files.

1.3 Creating an Executable
Chapter 2, "Compiling and Linking," describes the C compilation system, the
set of software tools that you use to generate an executable program from C
language source files. It contains material that may be of interest to the novice
and expert programmer alike.

Additionally, Chapter 2, "Compiling and Linking," details the command line
syntax that is used to produce a binary representation of a program - an
executable object file. We mentioned earlier that the modules of a C program

Introduction to ANSI C 3

4

can communicate with each other. A symbol declared in one source file can be
defined in another, for example. Link editing refers to the process whereby the
symbol referenced in the first file is connected with the definition in the
second. By means of command line options to the cc command, you can select
either of two link editing models:

• static linking, in which external references are resolved before execution;

• dynamic linking, in which external references are resolved during execution.

Use the cc command and its options to control the process in which object files
are created from source files, then linked with each other, and with the library
functions called in your program.

Chapter 6, "C Error Messages," lists the warning and error messages produced
by the C compiler. Check the code examples given in the compiler diagnostics
chapter when you need to clarify your understanding of the rules of syntax
and semantics summarized in the language chapter. In many cases they'll
prove helpful.

1.4 C-Related Programming Tools
There are a number of tools that you can use to aid you in developing,
maintaining, and improving your C programs. The two most closely tied to C,
escape and lint, are described in this manual. Others are described in the
SunOS 5.0 Reference Manual; some are given detailed treatment in the books
Programming Utilities - SunOS5.0 and Profiling Tools.

Program Analysis

lint

Checks for code constructs that may cause your C program not to compile,
or to execute with unexpected results. 1 in t issues every error and warning
message produced by the C compiler. It also issues lint- specific warnings
about inconsistencies in definition and use across files and about potential
portability problems. The chapter includes a list of these warnings, with
examples of source code that would elicit them.

Use lint to check your program for portability and cross-file consistency, and to assure
it will compile.

SPARCompilers C 2.0 Programmer's Guide-October 1992

tcov is also supported in
ANSI C. See tcov (1) for
further information.
Profilers are tools that
analyze the dynamic
behavior of your program:
how fast and how often the
parts of its code are
executed.

prof

Reports the amount of time and the percentage of time that was spent
executing the parts of a program. It also reports the number of calls to each
function and the average execution time of the calls.

gprof

In addition to reporting execution times and percentages, like prof, gprof
produces acall-graph profile that displays a list of modules that call, and/ or
are called by, other modules.

Iprof

A line-by-line frequency profiler. It reports how many times each line of C
source code was executed. In that way, it lets you identify the unexecuted
and most frequently executed parts of your code. Iprof is available with
SunOS 5.0 only.

cscope

An interactive program that locates specified elements of code in C, 1 ex, or
yacc source files. It lets you search and, if you want, edit your source files
more efficiently than you could with a typical editor. That's because cscope
knows about function calls - when a function is being called, when it is
doing the calling - and C language identifiers and keywords. cscope is
available with SunOS 5.0 only.

Use prof and Iprof to identify, and cscope to rewrite, inefficient lines of code.
Use cscope for any other program-editing task.

Program Management

make

Used to keep track of the dependencies between modules of a program, so
that when one module is changed, dependent ones are brought up to date.
make reads a specification of how the modules of your program depend on
each other, and what to do when one of them is modified. When make finds
a component that has been changed more recently than modules that
depend on it, the specified commands - typically to recompile the
dependent modules - are passed to the shell for execution.

Introduction to ANSI C 5

6

SCCS

The Source Code Control System, SCCS, is a set of programs that you can
use to track evolving versions of files, ordinary text files as well as source
files. When a file has been put under control of SCCS, you can specify that
only a single copy of any version of it can be retrieved for editing at a time.
When the edited file is returned to SCCS, the changes are recorded. That
makes it possible to audit the changes and reconstruct the file's earlier
versions.

Use make for any program with multiple files. Use sees to keep track of program
versions.

Program Development

Two system tools were designed to make it easier to build C programs. 1 ex
and yacc generate C language modules that can be useful components of a
larger application, in fact, any kind of application that needs to recognize and
act on a systematic input.

lex

Generates a C language module that performs lexical analysis of an input
stream. The lexical analyzer scans the input stream for sequences of
characters - tokens - that match regular expressions you specify. When a
token is found, an action, which you also specify, is performed.

yacc

Generates a C language module that parses tokens that have been passed to
it by a lexical analyzer. The parser describes the grammatical form of the
tokens according to rules you specify. When a particular grammatical form
is found, an action, which again you specify, is taken. The lexical analyzer
need not have been generated by lex. You could write it in C, with
somewhat more effort.

Use lex to create the lexical analyzer, and yacc the parser, of a user interface.

Other Advanced Programming Utilities

m4

SPARCompilers C 2.0 Programmer's Guide-October 1992

A general-purpose macro processor that can be used to preprocess C and
assembly language programs.

Tools for analyzing source code:

eb

A C program "beautifier." Formats your source code to make it more
readable.

eflaw

Produces a chart of the external references in C, lex, yaee, and assembly
language files. Use it to check program dependencies.

etraee

Prints out variables as each program statement is executed. Use it to follow
the execution of a C program statement by statement.

exref

Analyzes a group of C source files and builds a cross-reference table for the
automatic, static, and global symbols in each file. Use it to check program
dependencies and to expose program structure.

indent

Correctly indents and formats C source files.

Tools for reading and manipulating object files:

dis

Dis-assembles object code.

dump

Dumps selected parts of object files.

larder

Generates an ordered listing of object files.

mes

Manipulates the sections of an object file.

Introduction to ANSI C 7

8

run

Prints the symbol table of an object file.

size

Reports the number of bytes in an object file's sections or load able segments.

strip

Removes symbolic debugging information and symbol tables from an object
file.

unifdef

Resolves and removes #ifdef'd code lines from preprocessor output.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Compiling and Linking

2.1 Compiling and Linking
The C compilation system consists of a compiler, assembler, and link editor.
The cc command invokes each of these components automatically unless you
use command line options to specify otherwise. Before we turn to the cc
command line syntax, let's look briefly at the four general steps in which an
executable C program is created:

1. The preprocessor component of the compiler reads lines in your source files
that direct it to replace a name with a token string (#define), perhaps
conditionally (# i f, for example).1 It also accepts directives in your source
files to include the contents of a named file in your program (#include).

Included header files for the most part consist of #define directives and
declarations of external symbols, definitions and declarations that you want
to make available to more than one source file.

2. The compiler proper translates the C language code in your source files,
which now contain the preprocessed contents of any included header files,
into assembly language code.

3. The assembler translates the assembly language code into the machine
instructions of the computer your program is to run on. These instructions
are stored in object files that correspond to each of your source files. In other

1. The preprocessor is built directly into the compiler (except in - Xs mode, where it is called separately).

9

10

words, each object file contains a binary representation of the C language
code in the corresponding source file. Object files are made up of sections, of
which there are usually at least two. The text section consists mainly of
program instructions; text sections normally have read and execute, but not
write, permissions. Data sections normally have read, write, and execute
permissions.

4. The link editor links these object files with each other and with any library
functions that you have called in your program, although when it links with
the library functions depends on the link editing model you have chosen:

An archive, or statically linked, library

A statically linked library is a collection of object files each of which
contains the code for a function or a group of related functions in the
library. When you use a library function in your program, and specify a
static linking option on the cc command line, a copy of the object file
that contains the function is incorporated in your executable at link time.

A shared object, or dynamically linked, library

A dynamically linked library is a single object file that contains the code
for every function in the library. When you call a library function in your
program, and specify a dynamic linking option on the cc command line,
the entire contents of the shared object are mapped into the virtual
address space of your process at run time. As its name implies, a shared
object contains code that can be used simultaneously by different
programs at run time.

We'll discuss briefly these two ways in which libraries are implemented in
"Linking Overview" on page 19.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Figure 2-1 shows the organization of the C compilation system. Note that we
have omitted discussing the optimizer here because it is optional. (See
Chapters 3 and 4).

Figure 2-1 Organization of C Compilation System

Here are the specific components, by name (in order):

Table 2-1 Components of C Compilation System

Component Description
When
Used

cpp Preprocessor -xs

acomp Compiler (preprocessor built in for non-Xs modes)

basicblk Basic block ctr for use with lprof (SunOS 5.0 only) -ql

iropt Code optimizer -0
-xO[2-4]

cg Code generator -xa
-fast

inline Inline code generator . il file
present

as (cc) Assembler

fbe (ace) Assembler

ld Linker

Compiling and Linking 11

12

Compiler Command Line Syntax - Basics

Now let's look at how this process works for a C language program called
takeover. c. Here is the source code for the program:

#include <stdio.h>
main (void)
{

(void) printf ("Coelenterates Rule! \n") i
return(O) i

When compiled and executed, the program prints the words Coelenterates Rule!

The command to create an executable program from C language source files is
cc:

I $ cc takeover. c

The source files to be compiled must have names that end in the characters. c.

Since we haven't committed any syntactic or semantic errors in our source
code, the above command will create an executable program in the file a. out
in our current directory:

I $ 1. a.out
:akeover.c

(Note that no. 0 file is created when you compile a single source file.)

We can execute the program by entering its name after the system prompt:

I $ a.out
Coelenterates Rule!

Since the name a. ou t is only of temporary usefulness, we'll rename the
program (or executable):

$ mv a.out takeover

SPARCompilers C 2.0 Programmer's Guide-October 1992

We could also have named the program takeover when we compiled it, with
the -0 option to the ee command:

I $ cc -0 takeover takeover.c

In either case, we execute the program by entering its name after the system
prompt:

I

$ takeover
Coelenterates Rule!

Now let's look at how the ee command controls the four-step process that we
described earlier in "Compiling and Linking" on page 9. Using compiler
options, we'll break down the compilation process.

When we specify the -P option to ee, only the preprocessor component of the
compiler is invoked:

I $ cc -p takeover.c

The preprocessor's output - the source code plus the preprocessed contents of
stdio. h - is left in the file takeover. i in our current directory:

I $ Is
takeover.~

takeover.l

That output could be useful if, for example, you received a compiler error
message for the undefined symbol a in the following fragment of erroneous
source code:

if (i > 4)

int ai

a = 4i

Compiling and Linking

/* declaration follows
/* end of declaration */

13

14

Because the comment on the third line is unterminated (the word follows
should be followed by *j), the compiler would treat the declaration that follows
(int a;) it as part of the comment. Because the preprocessor removes
comments, its output

I if Ii > 4) {
a = 4;

}

would clearly show the effect of the unterminated comment on the declaration.

You can also use the preprocessed output to examine the results of conditional
compilation and macro expansion.

If we specify the -8 option to the ee command, only the preprocessor and
compiler phases are invoked:

I $ cc -s takeover.c

The output - the assembly language code for the compiled source - is left in
the file takeover. s in our current directory. That output could be useful if
you were writing an assembly language routine and wanted to see how the
compiler went about a similar task.

If, finally, we specify the -e option to ee, all the components but the link
editor are invoked:

I $ cc -c takeover.c

The output - the assembled object code for the program - is left in the object
file takeover. 0 in our current directory. You would typically want this
output when using make.

Now we need only enter the command

$ cc takeover.o

SPARCompilers C 2.0 Programmer's Guide-October 1992

to create the executable object file a. ou t. By default, the link editor arranges
for the standard C library function that we have called in our program
printf () - to be linked with the executable at run time. In other words, the
standard C library is a shared object, at least in the default arrangement we are
describing here.

The outputs we have described above are, of course, inputs to the components
of the compilation system. They are not the only inputs, however. The link
editor, for example, will supply code that runs just before and just after your
program to do startup and cleanup tasks. This code is automatically linked
with your program only when the link editor is invoked through cc. That's
why we specified

cc takeover.o

in the previous example rather than

Id takeover.o

For similar reasons, you should invoke the assembler through cc rather than
the assembler (fbe):

I $ cc takeover. s

The last line of takeover. c

return (0) i

causes the program to terminate gracefully: flushing buffers, closing files, and
returning allocated memory to the environment.

When you run this program from a shell, as above, the return (0) ; statement
is not needed. However, when you execute it from any environment where the
exit status is examined, such as executing from a make file, the absence of the
statement return (0) ; will cause trouble.

In the Makefile example below, the return (0) ; statement has been left out
of takeover. c.

tutorial% cat Makefile
a.out: takeover.c

cc takeover.c
a.out

Compiling and Linking 15

16

Upon execution of the Makefile, you are likely to get the following:

tutorial% make
cc takeover.c
a.out
Coelenterates Rule!
*** Error code 1
make: Fatal error: Command failed for target 'a.out'
tutorial%

This error occurred because make examined a . ou t and discovered that its exit
status was undefined and therefore in error. You can use lint to detect this
error, as shown below.

tutorial% lint takeover.c
(6) warning: function has no return statement: main
function falls off bottom before returning value

(6) main
tutorial%

To correct the program takeover. c, add

exit(O)i

or

return(O) ;

More generally, if a function is declared with a result type, but ends without
returning a result, then the program is in error.

Notice that both main and printf () are declared to be type void. This
means that they do not return any value when called . takeover. c will
compile and run perfectly well without these declarations; however, lint will
complain about their absence. It's good programming practice to declare the
return value of functions, to avoid unexpected return results (an int where
you expected a double, for example).

SPARCompilers C 2.0 Programmer's Guide-October 1992

The compilation process is largely identical if your program is in multiple
source files. The only difference is that the default cc command line will create
object files, as well as the executable object file a. au t, in your current
directory:

$ cc filel.c file2.c file3.c
$ Is
a.out
filel.c
filel.o
file2.c
file2.o
file3.c
file3.o

What this means is that if one of your source files fails to compile, you need
not recompile the others. Suppose, for example, you receive a compiler error
diagnostic for filel. c in the above command line. Your current directory will
look like this:

$ Is
filel.c
file2.c
file2.o
file3.c
file3.o

That is, compilation proceeds but linking is suppressed. Assuming you have
fixed the error, the following command

I $ cc filel.c file2.o file3.o

will create the object file filel. a and link it with file2 . a and file3 . a to
produce the executable program a. aut. As the example suggests, C source
files are compiled separately and independently. To create an executable
program, the link editor must connect the definition of a symbol in one source
file with external references to it in another.

Note, finally, that not all the cc command line options that we have discussed
are compiler options. Because, for example, it is the link editor that creates an
executable program, the -a option - the one you use to give your program a

Compiling and Linking 17

18

name other than a. au t - is actually an Id option that is accepted by the cc
command and passed to the link editor. We'll see further examples of this
below. The main reason we mention it is so that you can read about these
options on the appropriate manual page.

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on
the command line, which is to say, by the shell. We have already seen, for
instance, how you invoke the cc command with the names of your source files
as arguments:

I $ cc filel.c file2.c file3.c

Note - This section shows examples of invoking the cc ("K&R" C compiler).
For the ANSI C compiler, use acc.

When you execute a C program, command line arguments are made available
to the function main () in two parameters, an argument count, conventionally
called argc, and an argument vector, conventionally called argv. (Every C
program is required to have an entry point named main.) argc is the number
of arguments with which the program was invoked. argv is an array of
pointers to character strings that contain the arguments, one per string. Since
the command name itself is considered to be the first argument, or argv [0] ,
the count is always at least one. Here is the declaration for main () :

lint main(int argc, char *argv[])

See the C 2.0.1 Libraries Reference Manual for more information on using these
variables.

The shell, which makes arguments available to your program, considers an
argument to be any sequence of non-blank characters. Characters enclosed in
single quotes ('abc de f') or double quotes ("abc de f II) are passed to the
program as one argument even if blanks or tabs are among the characters. You
are responsible for error checking and otherwise making sure that the
argument received is what your program expects it to be.

SPARCompilers C 2.0 Programmer's Guide-October 1992

C programs exit voluntarily, returning control to the operating system, by
returning from main () or by calling the exi t () function. That is, a return
(n) from main () is equivalent to the call exi t (n). (Remember that main ()
has type function returning int.)

Your program should return a value to the operating system to say whether it
completed successfully or not. The value gets passed to the shell, where it
becomes the value of the $? (Bourne shell) $ s ta tus (C shell) shell variable if
you executed your program in the foreground. By convention, a return value of
zero denotes success, a non-zero return value means some sort of error
occurred. You can use the macros EXIT_SUCCESS and EXIT_FAILURE,

defined in the header file stdlib. h, as return values from main () or
argument values for exi t () .

In addition to the chapters discussed here, this manual includes appendices on
assembly language escapes that use the keyword asm, and on mapfiles, a
facility for mapping object file input sections to executable file output
segments. It also includes a glossary and an index.

Linking Overview

Note - Linking is covered in detail in the manual Linker and Libraries Manual
SunOS 5.0.

Link editing refers to the process in which a symbol referenced in one module
of your program is connected with its definition in another - more concretely,
the process by which the symbol pr in t f () in our sample source file
takeover. c is connected with its definition in the standard C library.
Whichever link editing model you choose, static or dynamic, the link editor
will search each module of your program, including any libraries you have
used, for definitions of undefined external symbols in the other modules. If it
does not find a definition for a symbol, the link editor will report an error by
default, and fail to create an executable program. (Multiply defined symbols
are treated differently, however, under each approach.) The principal difference
between static and dynamic linking lies in what happens after this search is
completed:

Compiling and Linking 19

20

• Under static linking, copies of the archive library object files that satisfy still
unresolved external references in your program are incorporated in your
executable at link time. External references in your program are connected
with their definitions - assigned addresses in memory - when the
executable is created.

• Under dynamic linking, the contents of a shared object are mapped into the
virtual address space of your process at run time. External references in
your program are connected with their definitions when the program is
executed.

Here are the reasons why you might prefer dynamic to static linking:

• Dynamically linked programs save disk storage and system process memory
by sharing library code at run time.

• Dynamically linked code can be fixed or enhanced without having to relink
applications that depend on it.

Default Arrangement
We stated earlier that the default cc command line

I $ cc filel.c file2.c file3.c

would create object files corresponding to each of your source files, and link
them with each other to create an executable program. These object files are
called relocatable object files because they contain references to symbols that
have not yet been connected with their definitions - have not yet been
assigned addresses in memory.

We also suggested that this command line would arrange for the standard C
library functions that you have called in your program to be linked with your
executable automatically. The standard C library is, in this default
arrangement, a shared object called libc. so, which means that the functions
you have called will be linked with your program at run time. (There are some
exceptions. A number of C library functions have been left out of libc. so by
design. If you use one of these functions in your program, the code for the
function will be incorporated in your executable at link time. That is, the
function will still be automatically linked with your program, only statically
rather than dynamically.) The standard C library contains the system calls

SPARCompilers C 2.0 Programmer's Guide-October 1992

described in Section 2 of the SunOS Reference Manual, and the C language
functions described in Section 3, Subsections 3C and 3S. See also the
SPARCompiler C Libraries Reference Manual.

Now let's look at the formal basis for this arrangement:

1. By convention, shared objects, or dynamically linked libraries, are
designated by the prefix lib and the suffix .so; archives, or statically linked
libraries, are designated by the prefix lib and the suffix .a. Then libe. so
is the shared object version of the standard C library and 1 ibc . a is the
archive version.

2. These conventions are recognized, in turn, by the -1 option to the ce
command. That is, the command

$ cc filel.c file2.c file3.c -lx

directs the link editor to search the shared object libx. so or the archive
library libx. a. The ec command automatically passes -Ie to the link
editor.

3. By default, the link editor chooses the shared object implementation of a
library, libx. so, in preference to the archive library implementation,
1 ibx . a, in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system, /usr/lib and /usr/ces/lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/lib.

Adding it up, we can say, more exactly than before, that the default ee
command line will direct the link editor to search /usr / lib/ libc. so rather
than its archive library counterpart.

libc. so is, with one exception, the only shared object library supplied by the
C compilation system. (The exception, libdl . so, is used with the
programming interface to the dynamic linking mechanism described later.
Other shared object libraries are supplied with the operating system, and
usually are kept in the standard places.) In the next section, we'll show you
how to link your program with the archive version of 1 ibc to avoid the
dynamic linking default. Of course, you can link your program with libraries

Compiling and Linking 21

22

that perform other tasks as well. Finally, you can create your own shared
objects and archive libraries. We'll show you the mechanics of doing that
below.

The default arrangement, then, is this: the cc command creates and then links
relocatable object files to generate an executable program, then arranges for the
executable to be linked with the shared C library at run time. If you are
satisfied with this arrangement, you need make no other provision for link
editing on the cc command line.

Linking Summary

By convention, shared objects, or dynamically linked libraries are ,designated
by the prefix lib and the suffix. so; archives, or statically linked libraries, are
designated by the prefix 1 ib and the suffix . a. Then 1 ibc . so is the shared
object version of the standard C library and 1 ibc . a is the archive version.

1. These conventions are recognized, in turn, by the -1 option to the cc
command. That is, -lx directs the link editor to search the shared object
1ibx. so or the archive library 1ibx. a. The cc command automatically
passes -1 c to the link editor. In other words, the compilation system
arranges for the standard C library to be linked with your program
transparently.

2. By default, the link editor chooses the shared object implementation of a
library, 1ibx. so, in preference to the archive library implementation,
1 ibx . a, in the same directory.

3. By default, the link editor searches for libraries in the standard places on
your system, /usr/1ib and /usr/ccs/1ib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr /lib.

In this arrangement, then, C programs are dynamically linked with 1ibc. so
automatically:

I $ cc filel.c file2.c file3.c

SPARCompilers C 2.0 Programmer's Guide-October 1992

To link your program statically with 1 ibc . a, turn off the dynamic linking
default with the -dn option:

I $ cc -dn filel.c file2.c file3.c

Specify the -1 option explicitly to link your program with any other library. If
the library is in the standard place, the command

I $ cc filel.c file2.c file3.c -lx

will direct the link editor to search for 1ibx. so, then search for 1ibx. a in the
standard place. Note that the compilation system supplies shared object
versions only of 1ibc and 1ibdl. (Other shared object libraries are supplied
with the operating system and usually are kept in the standard places.) Note,
too, that, as a rule, it's best to place -1 at the end of the command line.

If the library is not in the standard place, specify the path of the directory in
which it is stored with the -L option

I $ cc -Ldir filel.c file2.c file3.c -lx

or the environment variable LD_LIBRARY_PATH.

Note - The SunOS 5.0 linker assumes that the LD_LIBRARY_PATH value inthe
user's environment, if not semicolon separated, should be interpreted as if the
semicolon has been appended. Furthermore, the value cannot be overriden by
any other option (such as, -L).

Bourne Shell:

$ LD_LIBRARY_PATH=dir; export LD_LIBRARY_PATH

$ cc -Ldir filel.c file2.c file3.c -lx

C Shell:

% setenv LD_LIBRARY_PATH dir
% cc filel.c file2.c file3.c -lx

Compiling and Linking 23

24

If the library is a shared object and is not in the standard place, you must also
specify the path of the directory in which it is stored with either the
environment variable LD_RUN_PATH (read by SunGS 5.0 only) at link time, or
the environment variable LD_LIBRARY_PATH at run time

Note - For SunGS 5.0, do not include the /usr/ccs/lib directory in the
LD_LIBRARY_PATH environment variable. If /usr/ccs/lib is included,
particularly if placed before /opt/SUNWspro/SC2. 0, the unbundled
compilers will pick up the incorrect librn. a from /usr / ccs / lib.

Note - For SunOS 5.0, if using cc and linking with FORTRAN libraries (such as,
cc hello. c -IF77), set LD_RUN_PATH to /opt/SUNWspro/SC2. 0, or to
where ever you have installed the compilers. Alternatively, you can use the - R

option to Id(1) to specify the path.

Bourne Shell:

$ LD_RUN_PATH=dir; export LD_RUN_PATH

$ LD_LIBRARY_PATH=dir; export LD_LIBRARY_PATH

C Shell:

% setenv LD_RUN_PATH dir
% setenv LD_LIBRARY_PATH dir

It's best to use an absolute path when you set these environment variables.
Note that LD_LIBRARY_PATH is read both at link time and at run time.

For SunGS 5.0, to direct the link editor to search libx. a where libx. so exists
in the same directory, turn off the dynamic linking default with the -dn option:

I $ cc -dn -Ldir filel.c file2.c file3.c -lx

SPARCompilers C 2.0 Programmer's Guide-October 1992

That command will direct the link editor to search 1 ibc . a well as 1 ibx . a. To
link your program statically with libx. a and dynamically with libc. so, use
the -Bstatic and -Bdynamic options to turn dynamic linking off and on:

$ cc -Ldir fiIel.c fiIe2.c fiIe3.c -Bstatic -Ix -Bdynamic

Files, including libraries, are searched for definitions in the order they are
listed on the cc command line. The standard C library is always searched last.

Compiling and Linking 25

26 SPARCompilers C 2.0 Programmer's Guide-October 1992

3.1 Option Syntax

acc Compiler Options for Sun OS 4.x

This chapter describes the various options available with the C compiler (ace).

If you are porting a "K&R" C program to ANSI C, make special note of the
sections on - sys 5 and -x (compatibility) flags, described later in this chapter.
Using them will make the migration to ANSI C easier. Also see the
SPARCompiler C 2.0.1 Transition Guide.

The SunOS 4.x operating system is not fully compliant with the ANSI C
standard. See Table C-l and Table C-2 for further details.

The syntax of the ace command is shown below:

tutorial% ace [options] filenames [libraries] ...

where

• options represents one or more of the various options described in this
chapter

• filenames represent one or more files used in building the executable
program

27

3.2 Options

28

ace accepts a list of C source files and object files contained in the list of
files specified by filenames. The resulting executable code is placed in a. out,
unless the (-0) option (see below) is used. In that case, the code is placed in
the file named by the (-0) option.

ace lets you compile and link any combination of the following:

o C source files, with a . c suffix
o C preprocessed source files, with a . i suffix
o Operating system object-code files, with . a suffixes
o Assembler source files, with. s suffixes

After linking, ace places the linked files, which are now in executable code,
into a file named a. out, or into the file specified by the -0 option.

• libraries represents any of a number of standard or user-provided libraries
containing functions, macros, and definitions of constants.

Note that unless otherwise specified, options may follow the filename, as in

tutorial% acc sourcefilename.c -0 outputfilename.

See Table 3-1 on page 42 for a summary of available options.

- Aname [(tokens)]

Associates name as a predicate with the specified tokens as if by an #assert
preprocessing directive.

Preassertions:

system (unix)
cpu (spare)
machine (spare)

These preassertions are not valid in - Xc mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-a

This option directs acc to insert code to count the number of times the
program executes each of its blocks. It then creates a . d file with the
accumulated execution data for each corresponding. c source file. You may
then run tcov(1) on the source files to generate statistics about the program.

-a is not compatible with the -g option.

-bsdmalloc

Specifies faster malloc. Use the more efficient malloc from the library
libbsdmalloc. a. This option also causes the flags

-u _malloc /lib/libbsdrnalloc.a

to be passed to the linker.

-Bbinding

-c

-c

This option specifies whether bindings of libraries for linking are static or
dynamic, indicating whether libraries are non-shared or shared,
respectively.

This option prevents the C preprocessor from removing comments (except
those on preprocessing directive lines).

Directs acc to suppress linking with Id (1) and to produce a .0 file for
each source file. You may explicitly name a single object file using the -0

option.

-cg87

This floating-point code generation option does not exploit features such as
the fsqrts and fsqrtd instructions that are not implemented in hardware
on all Sun-4 workstations. It is the default.

Note - Compile with the -cg87 option to get code that must run on the older
Sun-4/lxx or Sun-4/2xx systems as well as on all newer Sun-4 systems. Code
compiled with -cg89 or -cg92 will not execute on Sun-4/1xx or Sun-4/2xx
hardware.

acc Compiler Options for SunOS 4.x 29

30

-cg89

This floating-point code generation option will generate code for any newer
Sun-4 that has features like hardware fsqrts and fsqrtd instructions.
Code compiled with -cg89 should be executed on Sun-4/1xx and Sun-
4/2xx systems with Weitek 1164/65 floating-point hardware.

The -cg87 and -cg89 options are mutually exclusive. That is, if you
compile one procedure with one of these two options, then you should
compile all procedures of the program with the same option. Similarly, for a
library: compile all procedures in a library with the same -cg87 or -cg89
options.

If you are binding an executable, or building a non-shared library, then this
consistency is enforced at load time; a message is issued that the link/load
failed.

But, if you are building a shared library with -cg89 and -pic, then there is
no load-time check for any modules mis-combining -cg87 and -cg89
options.

-cg92

Generates code for machines implementing SPARC version 8 (such as the
SPARCstation-l0 series). In particular, the following instructions may be
generated in-line: smul, smulcc, sdi v, sdi vcc, umul, umulcc, udi v,
udi vcc, and f smuld. In addition, the built-in assembler pass will perform
TI, TMS390Z5x-specific instruction scheduling automatically. Code compiled
with -cg92 will run, but possibly much more slowly on pre-SPARC version
8 machines; as such the practice is strongly discouraged.

- Dname [=tokens]

Associates name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied.

Predefinitions:

sparc
sun
unix

These pre definitions are not valid in -xc mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-dalign

Generates double load/store instructions wherever possible for improved
performance. Assumes that all double-type data are double aligned;
-dalign should not be used when correct alignment is not assured.

-dryrun

-E

This option directs acc to show, but not execute, the commands constructed
by the compilation driver.

This option runs the source file through the preprocessor only and sends the
output to stdio.1 Includes the preprocessor line numbering information.
(See also the - P option.)

-fast

This option allows you to select the best combination of compilation options
for speed. This should provide close to the maximum performance for most
realistic applications.

It is a convenience option, and it chooses the fastest code generation option
available on the compile-time hardware (cgx on a Sun-4), the optimization
level -02, a set of inline expansion templates, and the fnonstd floating
point option.

If you combine -fast with other options, the last specification applies. The
code generation option, the optimization level and use of inline template
files can be overridden by subsequent switches. For example, although the
optimization part of -fast is -02, the optimization part of -fast -01 is
-01.

Do not use this option for programs that depend on IEEE standard
exception handling; you can get different numerical results, premature
program termination, or unexpected SIGFPE signals.

1. The preprocessor is built directly into the compiler (except in - Xs mode, where it is called directly).

ace Compiler Options for Sun OS 4.x 31

32

-fnonstd

This option causes non-standard initialization of floating-point arithmetic
hardware. By default, IEEE 754 floating-point arithmetic is nonstop, and
underflows are gradual.The -fnonstd option causes hardware traps to be
enabled for floating-point overflow, division by zero, and invalid operations
exceptions. These are converted into SIGFPE signals, and if the program has
no SIGFPE handler, it will terminate with a memory dump.

-fsingle

-g

(-Xt and -Xs modes only) Causes the compiler to evaluate float
expressions as single precision rather than double precision. (This option
has no effect if the compiler is used in either -Xa or -xc modes, as float
expressions are already evaluated as single precision.)

This option produces additional symbol table information for dbx.

Note - Unlike other versions of the C compiler, this version allows the -0

option to be used with -g. The combination, -04 -g, turns off the in-lining
that you usually get with -04.

-H

Prints to the standard output, the path name, one per line, of each file
included during the current compilation.

The display is indented so as to show which files are included by other files.
Here the program sample. c includes the files stdio. h and math. h;
math. h includes the file floatingpoint. h, which itself includes
functions that use ieeefp. h:

$ ace -H sample.c
/usr/include/stdio.h
/usr/include/math.h

/usr/include/floatingpoint.h
/usr/include/ieeefp.h

$

SPARCompilers C 2.0 Programmer's Guide-October 1992

-help

This option displays information about acc.

-1pathname

This option adds pathname to the list of directories that are searched for
#include files with relative filenames (those not beginning with slash).

The preprocessor first searches for # inc 1 ude files in the directory
containing sourcefile, then in directories named with -I options (if any), and
finally, in /usr / include. Programs that use system calls, for example,
would need to use the file types. h as one of their #include files.
types. h contains many type definitions used by common system calls. (See
Section 3.4, "Commonly Used Command Line Options," for more details.)

-inline= [func1 [func2 . ..]]

Inlines func1, func2 ... and excludes all others, regardless of optimization
level. The compiler does not inline a function if doing so changes the
program semantics. Function names must be spelled correctly to match how
they appear in the source code being compiled. - inl ine= with no function
list supresses all inlining.

-keeptmp

Causes temporary files created during compilation to be retained instead of
deleted automatically.

-L dir

Add dir to the list of directories searched for libraries by ld(1). This option
and its arguments are passed to ld.

-1 library

This option directs ld to link with object library library. The ordering of
libraries in the command line is important, as symbols are resolved from left
to right.

Note - This option must follow the sourcefile arguments.

acc Compiler Options for Sun OS 4.x 33

34

-libmieee

Force IEEE 754 style return values for math routines in exceptional cases. In
such cases, no exception message will be printed, and errno will not be set.

-libmil

-M

This option selects the best inline templates for the floating-point option and
operating system release available on this system.

This option runs only the cpp macro preprocessor on the named C
programs, requesting that it generate makefile dependencies and send the
result to the standard output (see make(1) for details about make files and
dependencies) .

-misalign

Generates code to allow loading and storage of misaligned data.

-native

This option ascertains which floating-point options are available on the
machine running the compiler and directs the compiler to compile code
targeted for that machine. For a SunGS 4.x, the floating-point options for C
are - e g 87, - e g 89, or - e g 92.

-nolib

Does not link any libraries by default; that is, no -1 options are passed to
Id. Normally, the ace driver passes -1m -lansi -Ie to Id.

When you use -nolib, you have to pass all -1 options yourself. For
example:

ace test.e -nolib -lansi -Bstatie -1m -Bdynamie -Ie

links 1 ibm statically and the other libraries dynamically.

-nolibmil

This option resets -fast so that it does not include inline templates. Use it
after the -fast option. For example: ace -fast -nolibmil

SPARCompilers C 2.0 Programmer's Guide-October 1992

-noqueue

The -noqueue option tells the compiler not to queue this compile request if
a license is not available. Under normal circumstances, if no license is
available, the compiler waits until one becomes available. With this option,
the compiler returns immediately.

-0 [level]

Optimize the object code. May be used with -g; ignored when -a is used.
-0 with the level omitted is equivalent to -02. level is one of:

1 Do only the minimum amount of optimization (peephole). This is
postpass assembly-level optimization.

2 Do basic local and global optimization. This is induction variable
elimination, local and global common subexpression elimination,
algebraic simplification, copy propagation, constant propagation,
loop-invariant optimization, register allocation, basic block
merging, tail recursion elimination, dead code elimination, tail call
elimination and complex expression expansion.

The -02 level does not optimize references or definitions for
external or indirect variables. In general, the -02 level results in
minimum code size.

3 Beside what -02 does, this also optimizes references or definitions
for external variables. The -03 level does not trace the effects of
pointer assignments. Do not use -03 when compiling either device
drivers, or programs that modify external variables from within
signal handlers. In general, the -03 level results in increased code
size.

4 Beside what -03 does, this also does automatic inlining of
functions contained in the same file; this usually improves
execution speed. In general, the -04 level results in increased code
size.

If the optimizer runs out of memory, it tries to recover by retrying the
current procedure at a lower level of optimization and resumes
subsequent procedures at the original level specified in the command
line option.

ace Compiler Options for Sun OS 4.x 35

36

If you optimize at -03 or -04 with very large procedures (thousands of
lines of code in the same procedure), the optimizer may require an
unreasonable amount of memory. In such cases, machine performance
may degrade. You can prevent this in the C-shell by limiting the amount
of virtual memory available to a single process. To do this, use the 1 imi t
command (see esh(1».

- a outputfile

-P

-p

This option names the output file outputfile (as opposed to the default,
a. out). outputfile must have the appropriate suffix for the type of file to be
produced by the compilation. outputfile cannot be the same as sourcefile, since
ace will not overwrite the source file. This option and its arguments are
passed to 1 d(1).

This option runs the source file through the C preprocessor only. It then puts
the output in a file with a . i suffix. Unlike - E, it does not include
preprocessor-type line number information in the output. (See also the - E

option.)

This option prepares the object code to collect data for profiling with
prof(l). -p invokes a run-time recording mechanism that produces a
man. out file at normal termination. See Profiling Tools for more on prof.

-pg

This option prepares the object code to collect data for profiling with
gprof(1). It invokes a run-time recording mechanism that produces a
gmon. au t file at normal termination.

-PIC

This option produces position-independent code. Each reference to a global
datum is generated as a de-reference of a pointer in the global offset table.
Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

- PIC lets the global offset table span the range of 32-bit addresses in those
rare cases where there are too many global data objects for -pic.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-pic

This option produces position-independent code. It is similar to -PIC, but
the size of the global offset table is limited to 8K.

There are two nominal performance costs with -pic and -PIC, namely:

• A routine compiled with either -pic or -PIC executes a few extra
instructions upon entry (in order to set a register to point at a table
(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library's
global or static variables.

• Each access to a global or static variable involves an extra indirect
memory reference through _GLOBAL_OFFSET_TABLE_. (If the
compile is done with -PIC, there are an additional two
instructions per global! static memory reference.)

When considering the above costs, one should remember that the use of
-pic and -PIC can significantly reduce system memory requirements, due
to the effect of library code sharing. Every page of code in a shared library
compiled -pic or -PIC can be shared by every process that uses the library.
If a page of code in a shared library contains even a single non-pic (i.e.,
absolute) memory reference, the page becomes nonsharable, and a copy of
the page must be created each time a program using the library is executed.

The easiest way to tell whether or not a .0 file has been compiled with -
pic or -PIC is with the nm command:

tutorial% nmfile.o I grep _GLOBAL_OFFSET_TABLE_

U _GLOBAL_OFFSET_TABLE_
tutorial%

A . 0 file containing position-independent code will contain an unresolved
external reference to _GLOBAL_OFFSET_TABLE_ (indicated by the letter
W.

To determine whether to use -pic or -PIC, use nm to identify the number
of distinct global! static variables used or defined in the library. If the size of
_GLOBAL_OFFSET_TABLE_ is under 8192 bytes, you may use -pic.
Otherwise, you must use -PIC.

acc Compiler Options for SunOS 4.x 37

38

-Qdir or -qdir directory

This option allows you to search for compiler components in directory X.

-Qoption or -qoption prog opt

This option passes the option opt to the compiler phase prog. The option
must be appropriate to that program and may begin with a minus sign. prog
can be one of as(1), cpp(1), inline(1), or ld(1).

-Qpath or -qpath pathname

This option inserts a directory pathname into the search path used to locate
compiler components. This path will also be searched first for certain
relocatable object files that are implicitly referenced by the compiler driver,
for example *crt * .0 and bb_link. o. This lets you choose whether or not
to use default versions of programs invoked during compilation.

-Qproduce or -qproduce sourcetype

-R

-8

This option causes ace to produce source code of the type sourcetype.
sourcetype can be one of the following:

o C C source.

o i Preprocessed C source from cpp.

00 Object file from as.

oS Assembler source (from acomp, or inline(1)).

This option directs ace to merge the data segment with the text segment for
as(1). Data initialized in the object file produced by this compilation is read
only, and (unless linked with ld -N) is shared between processes. This
option is ignored when -g is used.

This option directs ace to produce an assembly source file but not to
assemble the program.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-s

Removes all symbolic debugging information from the output object file.
Passed to Id(1).

-sb

This option generates extra symbol table information for the SourceBrowser.

-sbfast

This option creates the database for the SourceBrowser, but does not
compile.

-streonst

This option inserts string literals into the text segment instead of the data
segment.

-sys5

This option adds the System V header files and libraries to the compiler
directory search paths. See Table C-l and Table C-2 for further details.

-temp= dir

This option sets the directory to contain temporary files generated during
the compilation process to be dir.

-time

This option directs ace to report execution times for the various
compilation passes.

-Uname

This option removes any initial definition of the preprocessor symbol name.
This option is the inverse of the -D option. Multiple -u options may be
given.

-unroll=n

Specifies whether or not the compiler optimizes (unrolls) loops. n is a
positive integer. When n is I, it is a command and the compiler unrolls no
loops. When n is greater than 1, the -unroll=n merely suggests to the
compiler that it unroll loops n times.

acc Compiler Options for Sun OS 4.x 39

40

-v

-v

This option directs ace to print the name and version ID of each pass as the
compiler executes.

Verbose. Print the version number of the compiler and the name of each
program it executes.

-ve

This option directs the compiler to perform stricter semantic checks and to
enable other lint-like checks. For example, the code

#inelude <stdio.h>
main (void)
{

-w

printf (" Solipsism isn't for everybody. \n") ;

will compile and execute without problem. With -ve, it still compiles;
however, the compiler displays this warning:

"solipsism.e", line 5: warning: function has no return
statement: main

Note that -ve does not give all the warnings that lint(1) does. (Try
running the above example through lint.)

See Chapter 6, lie Error Messages," for an explanation of the compiler error
messages.

This option directs ace to not print warnings.

The following - X (note case) options provide varying degrees of compliance to
the ANSI C standard. -Xt is the default mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-Xa

(a = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C interpretation.

-Xc

(c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler will reject programs that use non
ANSI C constructs.

-Xs

(s = Sun C) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation. This is the default
compiler mode.

-xlicinfo

The -xlicinfo option returns information about the licensing system. In
particular, it returns the name of the license server and the userids of users
who have licenses checked out. When you use this option, the compiler is
not invoked and a license is not checked out.

ace Compiler Options for SunOS 4.x 41

42

3.3 Summary of acc Compiler Options
Table 3-1 contains a summary of the acc compiler options.

Table 3-1 Summary of acc Compiler Options (Sheet 1 of 3)

Option or Flag Description

- Aname [(tokens)] Preprocessor predicate assertion

-a Count number of times a program executes each of its blocks

-Bbinding Specify binding type (dynamic or static)

-bsdmalloe Use malloe from libbsdmalloe. a library

-c Preprocessor comments left in

-e Produce . 0 file but do not actually do linking

-eg87 Generates floating-point code; fsqrts nad fsqrtd not imple-
mented in hardware

-eg89 Generates floating-point code; fsqrts nad fsqrtd implemented
in hardware

-eg92 Generates floating-point code for machines implementing SPARC
version 8 (such as the SPARCstation-lO series)

- Dname[= token] Associate name with token as if by #define

-dalign Assume doubles are doubleword aligned

-dryrun Show constructed command, but do not execute

-E Run source through preprocessor only

-fast Options for best performance

-fnonstd Non-standard initialization of floating-point hardware

-fsingle Use single-precision arithmetic (-Xt and -xs modes only)

-g Generate info for dbx

-H Print paths of included files during compilation

-help Display information about ace

-Ipathname Add dir to include search path

-inline=[func1 [,func2 ... J] Inline func1 ,func2 ... and excludes all others, regardless of op-
timization level

-keeptmp Keep temporary files

SPARCompilers C 2.0 Programmer's Guide-October 1992

Table 3-1 Summary of acc Compiler Options (Sheet 2 of 3)

Option or Flag Description

-Ldir Add dir to ld library path

-llibrary Link object library (for ld)

-libmil Select best inline templates for floating-point

-M Run macro processor only; generate makefile dependencies

-misalign Allow loading and storage of misaligned data

-native Target code for machine doing the compiling

-nolib No default linking of libraries

-nolibmil Reset -fast; do not include inline templates

-noqueue Do not queue compiler request if license is unavailable

-0 file Set name of output file

-0 Generate optimized code (equivalent to -x02)

-P Run source through preprocessor only; send output to . i file

-p Collect data for pro f

-pg Collect data for gprof

-PIC Produce position independent code

-pic Like - PIC, but with a smaller global offset table

-Qdir or -qdir dir Search for compiler components in dir x

-Qoptionor-qoption Pass option opt to compiler phase prog
prog opt

-Qpath or -qpath Insert directory pathname into compiler component search
pathname path

-Qproduce or Produce source code of type sourcetype
-qproduce sourcetype

-R Merge data segment with text segment for assembler

-8 Product. s file only (do not assemble or link)

-s strip (4.1); pass to ld (5.0)

-sb Generate and compile symbol table information for SourceBrowser

-sbfast Generate, but do not compile, symbol table information for Source-
Browser

ace Compiler Options for Sun OS 4.x 43

Table 3-1 Summary of ace Compiler Options (Sheet 3 of 3)

Option or Flag Description

-strconst Insert string literals into text segment rather than data segment

-sys5 Add System V header files and libraries to directory search path

-temp= dir Sets the directory dir to contain compiler generated temporary files

-time Report execution times for various compilation passes

-Uname Undefine preprocessor symbol name as if by #undef

-unroll=n Specify whether compiler optimizes loops

-v Report versions of invoked programs

-v Print compiler version no. and name of programs executed

-vc Impose stricter semantic checks and enable other lint-like
checks

-w Do not print warnings

-xa (a = ANSI) Compatibility options (ANSI, conformant, K&R C,
transition)

-Xc (c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions

-xs (s = Sun C) Compiled language includes all features compatible with
(pre-ANSI) K&R C

-xt (t = transition) ANSI C plus K&R compatibility extensions,
without semantic changes required by ANSI C

-xlicinfo Returns information about the licensing system

44 SPARCompilers C 2.0 Programmer's Guide-October 1992

3.4 Commonly Used Command Line Options

Searching for a Header File

Recall that the first line of our sample program was

I #include <stdio.h>

The format of that directive is the one you should use to include any of the
standard header files that are supplied with the C compilation system. The
angle brackets (<>) tell the preprocessor to search for the header file in the
standard place for header files on your system, usually the /usr / include
directory.

The format is different for header files that you have stored in your own
directories:

I #include "header.h"

The quotation marks (" ") tell the preprocessor to search for header. h first in
the directory of the file containing the # inc 1 ude line, which will usually be
your current directory, then in the standard place.

If your header file is not in the current directory, specify the path of the
directory in which it is stored with the -I option to acc. Suppose, for instance,
that you have included both stdio. h and header. h in the source file
mycode.c:

#include <stdio.h>
#include "header.h"

Suppose further that header. h is stored in the directory ... /defs. The
command

I $ ace -I •• /defs mycode.c

will direct the preprocessor to search for header. h first in the current
directory, then in the directory ... / de f s, and finally in the standard place. It
will also direct the preprocessor to search for s tdi 0 . h first in. . . / de f s, then

ace Compiler Options for SunOS 4.x 45

46

in the standard place - the difference being that the current directory is
searched only for header files whose name you have enclosed in quotation
marks.

You can specify the -I option more than once on the acc command line. The
preprocessor will search the specified directories in the order they appear on
the command line. Needless to say, you can specify multiple options to acc on
the same command line:

I $ ace -0 prog -I .. /defs mycode.c

Preparing Your Program for Symbolic Debugging

When you specify the -g option to acc,

I $ ace -g mycode. c

you arrange for the compiler to generate information about program variables
and statements that will be used by the symbolic debugger dbx. The
information supplied to dbx will allow you to use the symbolic debugger to
trace function calls, display the values of variables, set breakpoints, and so on.

Note - Both the -0 and -g options support the debugging of optimized code.
For detailed information, see the discussion in Debugging a Program.

Preparing Your Program for Profiling

The various pro filers for optimizing your source code are described briefly in
Chapter 1, "Introduction to ANSI C," and extensively in Profiling Tools.

To use the profilers that are supplied with the C compilation system, you must
do two things:

SPARCompilers C 2.0 Programmer's Guide-October 1992

1. Compile and link your program with a profiling option:

$ ace -pg -0 prog mycode.c
$ ace -a -0 prog mycode.c
$ ace -p -0 prog mycode.c

2. Run the profiled program:

I $ prog

(for gprof)
(for tcov)
(for prof)

At the end of execution, data about your program's run-time behavior is
written to a file in your current directory:

$ ls
groon.out
mon.out
mycode.c
mycode.d

3. Run the profiler:

$ gprof prog > output.file
$ tcov mycode.c
$ prof prog > output.file

The files are inputs to the profilers.

(for gprof)
(for prof)

(for tcov)

(produces mycode. tcov file)

See the Profiling Tools manual for more information on gprof(1), tcov(1), and
prof(1).

Non-Standard Floating Point

This explanation is by
necessity rather over
simplified. See the Numerical
Computation Guide for more
rigorous descriptions.

IEEE 754 floating-point default arithmetic is "nonstop" and underflows are
"gradual." What do we mean by these terms?

Nonstop means that execution doesn't halt on things like division by zero,
floating-point overflow, or invalid operation exceptions. For example, consider
the following, where x is zero and y is positive:

z = y / x;

acc Compiler Options for SunOS 4.x 47

48

By default, x gets set to the value + Inf, and execution continues. With the
- fnons td option, however, this code causes an ungraceful exit (say, a core
dump).

Here's how gradual underflow works. Suppose you have the following code:

x = 10;
for (i

x =
0; i < LARGE_NUMBER; i++)
x / 10;

The first time through the loop, x is set to 1; the second time through, to 0.1;
the third time through, to 0.01; and so on. Eventually, x will reach the lower
limit of the machine's capacity to represent its value. What happens the next
time the loop runs?

Let's say that the smallest number characterizable is

1.234567e-38

The next time the loop runs, the number is modified by "stealing" from the
mantissa and "giving" to the exponent:

1.23456e-39

and, subsequently,

1.2345e-40

and so on. This is know as "gradual underflow" and it's the default behavior.
In non-standard behavior, none of this "stealing" goes on; typically, x is simply
set to zero.

SPARCompilers C 2.0 Programmer's Guide-October 1992

4.1 Option Syntax

cc Compiler Options for Sun OS 5.0

This chapter describes the various options available with the C compiler (cc).

If you are porting a "K&R" C program to ANSI C, make special note of the
section on -x (compatibility) flags described later in this chapter. Using them
will make the migration to ANSI C easier. And see also the C 2.0.1 Transition
Guide.

The syntax of the cc command is shown below:

tutorial% cc [options] filenames [libraries] ...

where

• options represents one or more of the various options described in this
chapter

• filenames represent one or more files used in building the executable
program

cc accepts a list of C source files and object files contained in the list of files
specified by filenames. The resulting executable code is placed in a. out,
unless the (-0) option (see below) is used. In that case, the code is placed in
the file named by the (-0) option.

cc lets you compile and link any combination of the following:

49

4.2 Options

50

o C source files, with a . c suffix
o C preprocessed source files, with a . i suffix
o Operating system object-code files, with . 0 suffixes
o Assembler source files, with . s suffixes

After linking, cc places the linked files, which are now in executable code,
into a file named a. out, or into the file specified by the -0 option.

• libraries represents any of a number of standard or user-provided libraries
containing functions, macros, and definitions of constants.

Note that unless otherwise specified, options may follow the filename, as in

tutorial% cc sourcefilename.c -0 outputfilename.

See Table 4-1 on page 66 for a summary of available options.

-#

Causes the compiler to work in verbose mode, showing each component as it
is invoked.

-###

Shows each component as it is invoked, but does not actually execute it.

- Aname [(tokens)]

Associates name as a predicate with the specified tokens as if by an #assert
preprocessing directive.

Preassertions:

system(unix)
cpu (spare)
machine (spare)

These preassertions are not valid in -xc mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-Bbinding

-c

-c

This option specifies whether bindings of libraries for linking are static or
dynamic, indicating whether libraries are non-shared or shared,
respectively.

This option prevents the C preprocessor from removing comments (except
those on preprocessing directive lines).

Directs cc to suppress linking with ld (1) and to produce a .0 file for each
source file. You may explicitly name a single object file using the -0 option.

- Dname [=tokens]

Associates name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied.

Predefinitions:

sparc
sun
unix

These predefinitions are not valid in - Xc mode.

-de

e can be either y or n.

o -dy specifies dynamic linking, which is the default, in the link editor.
o -dn specifies static linking in the link editor.

This option and its arguments are passed to ld(1).

-dalign

Generates double load/store instructions wherever possible for improved
performance. Assumes that all double-type data are double aligned;
-dalign should not be used when correct alignment is not assured.

cc Compiler Options for Sun OS 5.0 51

52

-E

This option runs the source file through the preprocessor only and sends the
output to stdio.1 Includes the preprocessor line numbering information.
(See also the - P option.)

-Foption

Reserved for future floating-point options.

-fast

This option allows you to select the best combination of compilation options
for speed. This should provide close to the maximum performance for most
realistic applications.

It is a convenience option, and it chooses the fastest code generation option
available on the compile-time hardware, the optimization level -x02, a set
of inline expansion templates, and the fnons td floating-point option. It
also adds -1m to link in the math library.

If you combine -fast with other options, the last specification applies. The
code generation option, the optimization level and use of inline template
files can be overridden by subsequent switches. For example, although the
optimization part of -fast is -x02, the optimization part of -fast -xOl
is -xOl.

Do not use this option for programs that depend on IEEE standard
exception handling; you can get different numerical results, premature
program termination, or unexpected SIGFPE signals.

-flags

Prints a one-line summary of each option.

-fnonstd

This option causes non-standard initialization of floating-point arithmetic
hardware. By default, IEEE 754 floating-point arithmetic is nonstop, and
underflows are gradual. (See UNon-Standard Floating Point" on page 71 for
a further explanation.) The - fnons td option causes hardware traps to be

1. The preprocessor is built directly into the compiler (except in -Xs mode, where it is called directly).

SPARCompilers C 2.0 Programmer's Guide-October 1992

enabled for floating-point overflow, division by zero, and invalid operations
exceptions. These are converted into SIGFPE signals, and if the program has
no SIGFPE handler, it will terminate with a memory dump.

- fnons td also causes the math library to be linked in, by passing -1m to
the linker.

-fsingle

-G

-g

(-Xt and -Xs modes only) Causes the compiler to evaluate float
expressions as single precision rather than double precision. (This option
has no effect if the compiler is used in either -Xa or -xc modes, as float
expressions are already evaluated as single precision.)

Used to direct the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to ld(1). It cannot be
used with the-dn option.

This option produces additional symbol table information for dbx.

Note - Unlike other versions of the C compiler, this version allows the -0

option to be used with -g. The combination, -04 -g, turns off the in-lining
that you usually get with -04.

-H

Prints to the standard output, the path name, one per line, of each file
included during the current compilation.

cc Compiler Options for SunOS 5.0 53

54

The display is indented so as to show which files are included by other files.
Here the program sample. c includes the files stdio. h and math. h;
rna th . h includes the file f 1 oa t ingpo in t . h, which itself includes
functions that use ieeefp. h:

$ cc -H sample.c
/usr/include/stdio.h
/usr/include/math.h

$

/usr/include/floatingpoint.h
/usr/include/ieeefp.h

-h name

This option assigns a name to a shared dynamic library as a way to have
different versions of a library. In general, the name after - h should be the
same as the filename given after the - 0 option. (The space between - hand
name is optional.)

The loader assigns the specified name to the library and records the name in
the library file as the intrinsic name of the library. If there is no - hname
option, then no intrinsic name is recorded in the library file.

When the run-time linker loads the library into an executable file, it copies
the intrinsic name from the library file into the executable, into a list of
needed shared library files. (Every executable has such a list.) If there is no
intrinsic name of a shared library, then the linker copies the path of the
shared library file instead.

Here's how you'd make and use one version of a shared library:

$ ld -G -0 libxyz.l -h libxyz.l
$ In libxyz.l libxyz.so
$ cc -0 verA -lxyz . . .

(create shared library)
(link libxyz. so to libxyz.1)
(executable verA needs libxyz .1)

Here's how you'd make and use a different version of the library:

$ ld -G -0 libxyz.2 -h libxyz.2
$ rm libxyz. so
$ In libxyz.2 libxyz.so
$ cc -0 verB -lxyz . . .

(create shared library)
(remove old link)
(link libxyz. so to libxyz. 2)
(executable verB needs 1 ibxyz .2)

SPARCompilers C 2.0 Programmer's Guide-October 1992

-1pathname

-i

This option adds pathname to the list of directories that are searched for
#include files with relative filenames (those not beginning with slash).

The preprocessor first searches for # inc 1 ude files in the directory
containing sourcefile, then in directories named with -I options (if any), and
finally, in /usr / include.

This option tells the compiler to ignore any LD_L1BRARY_PATH setting.

-KP1C

This option produces position-independent code. Each reference to a global
datum is generated as a de-reference of a pointer in the global offset table.
Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

- KP1C lets the global offset table span the range of 32-bit addresses in those
rare cases where there are too many global data objects for -Kpic.

-Kpic

This option produces position-independent code. It is similar to -KP1C, but
the size of the global offset table is limited to BK.

There are two nominal performance costs with -kpic and -KP1C, namely:

o A routine compiled with either -kpic or -KP1C executes a few extra
instructions upon entry (in order to set a register to point at a table
(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library's global
or static variables.

o Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE_. (If the compile is done
with -KP1C, there are an additional two instructions per global/static
memory reference.)

When considering the above costs, one should remember that the use of
-kpic and -KP1C can significantly reduce system memory requirements,
due to the effect of library code sharing. Every page of code in a shared
library compiled -kpic or -KP1C can be shared by every process that uses
the library. If a page of code in a shared library contains even a single non-

cc Compiler Options for Sun OS 5.0 55

56

pic (Le., absolute) memory reference, the page becomes nonsharable, and a
copy of the page must be created each time a program using the library is
executed.

The easiest way to tell whether or not a .0 file has been compiled with
-kpic or -KPIC is with the nm command:

tutorial% nmfile.o I grep _GLOBAL_OFFSET_TABLE_
U _GLOBAL_OFFSET_TABLE_
tutorial%

An . 0 file containing position-independent code will contain an unresolved
external reference to _GLOBAL_OFFSET_TABLE_ (indicated by the letter
U).

To determine whether to use -kpic or -KPIC, use nm to identify the
number of distinct global/static variables used or defined in the library. If
the size of _GLOBAL_OFFSET_TABLE_ is under 8192 bytes, you may use
-kpic. Otherwise, you must use -KPIC.

-keeptmp

Causes temporary files created during compilation to be retained instead of
deleted automatically.

cc normally creates temporary files in the directory Ivar I tmp. You may
specify another directory by setting the environment variable TMPDIR to the
directory of your choice. (If TMPDIR isn't a valid directory, cc will use
Ivar Itmp.)

Bourne Shell:

$ TMPDIR=dir; export TMPDIR

C Shell:

% setenv TMPDIR dir

-Ldir

Add dir to the list of directories searched for libraries by Id(1). This option
and its arguments are passed to Id.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-llibrary

This option directs ld to link with object library library. The ordering of
libraries in the command line is important, as symbols are resolved from left
to right.

Note - This option must follow the sourcefile arguments.

-misalign

Generates code to allow loading and storage of misaligned data.

-native

This option ascertains which floating-point options are available on the
machine running the compiler and directs the compiler to compile code
targeted for that machine. For a SunOS 5.0, the floating-point options for C
are -xcg89 or -xcg9 2.

-noqueue

-0

The -noqueue option tells the compiler not to queue this compile request if
a license is not available. Under normal circumstances, if no license is
available, the compiler waits until one becomes available. With this option,
the compiler returns immediately.

Equivalent to -x02.

- 0 outputfile

-p

This option names the output file outputfile (as opposed to the default,
a. out). outputfile cannot be the same as sourcefile, since cc will not
overwrite the source file. This option and its arguments are passed to
ld(1).

This option runs the source file through the C preprocessor only. It then puts
the output in a file with a . i suffix. Unlike - E, it does not include
preprocessor-type line number information in the output. (See also the - E

option.)

cc Compiler Options for SunOS 5.0 57

58

-p

This option prepares the object code to collect data for profiling with
prof(l). -p invokes a run-time recording mechanism that produces a
mon. ou t file at normal termination. See Profiling Tools for more on pro f.

-Qc

c can be either y or n. -Qy is the default.

If c is y, identification information about each invoked compilation tool will
be added to the output files. This can be useful for software administration.

-Qn suppresses this information.

-qc

c can be either 1 or p.

-ql causes the invocation of the basic block analyzer and arranges for the
production of code that counts the number of times each source line is
executed. A listing of these counts can be generated by use of Iprof(1).

-qp is a synonym for -po -q cannot be used with either -0 or -xO options.
See Profiling Tools for more on Iprof.

-R path [: dir]

-5

-s

This option passes a colon-separated list of directories that specify the
library search path used by the run-time linker. If present and not null, it is
recorded in the output object file and passed to the run-time linker.

If both LD_RUN_PATH and the -R option are specified, the -R option takes
precedence.

This option directs cc to produce an assembly source file but not to
assemble the program.

Removes all symbolic debugging information from the output object file.
Passed to Id(1).

SPARCompilers C 2.0 Programmer's Guide-October 1992

-Uname

-v

-v

This option removes any initial definition of the preprocessor symbol name.
This option is the inverse of the -D option. Multiple -u options may be
given.

This option directs c c to print the name and version ID of each pass as the
compiler executes.

This option directs the compiler to perform stricter semantic checks and to
enable other lint-like checks. For example, the code

#inelude <stdio.h>
main (void)

printf (" Solipsism isn't for everybody. \n") i

will compile and execute without problem. With -v, it still compiles;
however, the compiler displays this warning:

"solipsism.e", line 5: warning: function has no return
statement: main

Note that -v does not give all the warnings that lint(1) does. (Try running
the above example through lint.)

See Chapter 6, lie Error Messages," for an explanation of the compiler error
messages.

-wtool,argl[arg2]

Hands off the argument(s) argi each as a separate argument to tool. Each
argument must be separated from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character.) tool can be one of the following:

a assembler (£be)

b basic block analyzer (basicblk)

c C code generator (cg)

cc Compiler Options for SunOS 5.0 59

60

inliner (inline)

1 link editor (ld)

p preprocessor (cpp)

a compiler (acomp)

2 optimizer (iropt)

-w

This option directs cc to not print warnings.

The following -x (note case) options provide varying degrees of compliance to
the ANSI C standard. - Xt is the default mode.

-Xa

(a = ANSD ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C interpretation.

-Xc

(c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler will reject programs that use non
ANSI C constructs.

-Xs

(s = senescent) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation. This is the default
compiler mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-xa

Inserts code to count how many times each basic block is executed. Invokes
a run-time recording mechanism that creates a . d file for every. c file (at
normal termination). The. d file accumulates execution data for the
corresponding source file. tcov(1) can then be run on the source file to
generate statistics about the program. Since this option entails some
optimization, it is incompatible with -g. See Profiling Tools for more on
tcov.

-xcg89

This floating-point code generation option will generate code for any newer
Sun-4 that has features like hardware fsqrts and fsqrtd instructions.
Code compiled with -xcg89 should be executed on Sun-4/1xx and Sun-
4/2xx systems with Weitek 1164/65 floating-point hardware.

-xcg92

Generates code for machines implementing SPARC version 8 (such as the
SPARCstation-lO series). In particular, the following instructions may be
generated in-line: smul, smulcc, sdi v, sdi vcc, umul, umulcc, udi v,
udi vcc, and f smuld. In addition, the built-in assembler pass will perform
TI, TMS390Z5x-specific instruction scheduling automatically. Code compiled
with -cg92 will run, but possibly much more slowly on pre-SPARC version
8 machines; as such the practice is strongly discouraged.

Normally, -xcg92 passes -1m to the linker; however, when -xnolib is
used, -1m is not passed to the linker.

-xF

Enables perforamance analysis of the executable using the SPARCWorks
Analyzer and Debugger. (See analyzer(1) and debugger(1) man pages.)
Produces code that can be reordered at the function level. Each function in
the file is placed in a separate section; for example, functions foo () and
bar () will be placed in the sections. text%foo and. text%bar,
respectively. Function ordering in the executable can be controlled by using
-xF in conjunction with the -M option to Id (see Id(1». This option will
also cause fbe to generate some debugging information in the object file,
necessary for date collection.

cc Compiler Options for Sun OS 5.0 61

62

-xinl ine= [-func1 [func2 . ..]]

Inlines func1, func2 ... and excludes all others, regardless of optimization
level. The compiler does not inline a function if doing so changes the
program semantics. Function names must be spelled correctly to match how
they appear in the source code being compiled. -xinline= with no
function list supresses all inlining.

-xlibmiee

Force IEEE 754 style return values for math routines in exceptional cases. In
such case, no exception message will be printed, and errno will not be set.

-xlibmil

Includes inline expansion templates for libm.

-xlieinfo

The -xlieinfo option returns information about the licensing system. In
particular, it returns he name of the license server and the userids of users
who have licenses checked out. When you give this option, the compiler is
not invoked and a license is not checked out.

-xM

This option runs only the macro preprocessor (;usr / ees /bin/ epp) on the
named C programs, requesting that it generate makefile dependencies and
send the result to the standard output (see make(1) for details about
makefiles and dependencies).

-xnolib

Does not link any libraries by default; that is, no -1 options are passed to
ld. Normally, the cc driver passes -Ie to ld.

When you use -xnolib, you have to pass all -1 options yourself. For
example:

ee test.e -xnolib -Bstatie -1m -Bdynamie -Ie

links 1 ibm statically and the other libraries dynamically.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-xnolibmil

This option resets -fast so that it does not include inline templates. Use it
after the -fast option. For example:

cc -fast -xnolibmil

-xO [level]

This option directs cc to optimize the object code. -xO [level] may be
combined with-g, but not with -a.

Note - If you use -0 without specifying the level, it is equivalent to using
-x02.

Note - Unlike other versions of the C compiler, this version allows the -0

option to be used with -g.

level can be one of the following:

1 Do only the minimum amount of optimization (peephole). This is
postpass assembly-level optimization.

2 Do basic local and global optimization. This is induction variable
elimination, local and global common subexpression elimination,
algebraic simplification, copy propagation, constant propagation,
loop-invariant optimization, register allocation, basic block
merging, tail recursion elimination, dead code elimination, tail call
elimination and complex expression expansion.

The -x02 level does not optimize references or definitions for
external or indirect variables. In general, the -x02 level results in
minimum code size.

3 Beside what -x02 does, this also optimizes references or
definitions for external variables. The -x03 level does not trace the
effects of pointer assignments. Do not use -x03 when compiling
either device drivers, or programs that modify external variables
from within signal handlers. In general, the -x03 level results in
increased code size.

cc Compiler Options for SunOS 5.0 63

64

-xpg

4 Beside what -x03 does, this also does automatic inlining of
functions contained in the same file; this usually improves
execution speed. In general, the -x04 level results in increased
code size.

If the optimizer runs out of memory, it tries to recover by retrying the
current procedure at a lower level of optimization and resumes
subsequent procedures at the original level specified in the command
line option.

If you optimize at -x03 or -x04 with very large procedures (thousands
of lines of code in the same procedure), the optimizer may require an
unreasonable amount of memory. In such cases, machine performance
may degrade. You can prevent this in the C-shell by limiting the amount
of virtual memory available to a single process. To do this, use the 1 iroi t
command (see csh(1».

This option prepares the object code to collect data for profiling with
gprof(1). It invokes a run-time recording mechanism that produces a
groon. out file at normal termination. See Profiling Tools for more on gprof.

-xs
This option disables autoload for dbx. This is in case you cannot keep the.o
files around. This passes the - s option to the assembler and the linker.

No Autoload: This is the older way of loading symbol tables.

• Place all symbol tables for dbx in the executable file.

• The linker links more slowly and dbx initializes more slowly.

• If you move the executables to another directory, then to use dbx
you must move the source files, but you do not need to move the
object (. 0) files.

Autoload: This is the newer (and default) way of loading symbol tables.

• Distribute this information in the. 0 files so that dbx loads the
symbol table information only if and when it is needed.

• The linker links faster and dbx initializes faster.

• If you move the executables to another directory, then to use dbx
you must move both the source files and the object (. 0) files.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-xsb

This option generates extra symbol table information for the Source Code
Browser.

-xsbfast

- Create the database for the Source Code Browser, but do not actually
compile.

-xstrconst

This option inserts string literals into the read-only data segment instead of
the default data segment.

-xunroll=n

Specifies whether or not the compiler optimizes (unrolls) loops. n is a
positive integer. When n is I, it is a command and the compiler unrolls no
loops. When n is greater than I, the -xunroll=n merely suggests to the
compiler that it unroll loops n times.

-Yitem, dir

Specify a new directory dir for the location of item. item can consist of any of
the characters representing tools that are listed under the - W option, or it
may be any of the following characters representing directories containing
special files:

I directory searched last for include files; (see - I).

P New default directories for finding libraries; dir in this case is a
colon-separated path list.

S directory containing the start-up object files.

If the location of a tool is being specified, then the new path name for the
tool will be dirtool. If more than one - Y option is applied to anyone item,
then the last occurrence holds.

cc Compiler Options for SunOS 5.0 65

66

4.3 Summary of cc Compiler Options
Table 4-1 contains a summary of cc compiler options.

Table 4-1 Summary of cc Options (Sheet 1 of 3)

Option or Flag Description

-# Verbose mode

-### Show components, but do not execute

-Asymbol Preprocessor predicate assertion

-Bbinding Specify binding type (dynamic or static)

-C Preprocessor comments left in

-c Produce . 0 file but do not actually do linking

-Dname[= token] Associate name with token as if by #define

-d[yln] Dynamic linking [yes I no]

-dalign Assume doubles are doubleword aligned

-E Run source through preprocessor only

-F Reserved for future floating-point optimization directives

-fast Options for best performance

-flags Print summary of compiler options

-fnonstd Non-standard initialization of floating-point hardware

-fsingle Use single-precision arithmetic (-Xt and -Xs modes only)

-G Like -dy, but no crtl. 0 is linked

-g Generate info for dbx

-H Print paths of included files during compilation

-h Name a shared dynamic library

-Idir Add dir to include path

-i Ignore any LD_LIBRARY_PATH setting

-KPIC Produce position independent code

-Kpic Like KPIC, but with a smaller global offset table

-keeptrnp Keep temporary files

-Ldir Add dir to ld library path

SPARCompilers C 2.0 Programmer's Guide-October 1992

Table 4-1 Summary of cc Options (Sheet 2 of 3)

Option or Flag Description

-ldir Read object library (for ld)

-misalign Allow loading and storage of misaligned data

-native Ascertain available floating-point options and generate code
for the best one.

-noqueue Don't queue license requests

-0 file Set name of output file

-0 Generate optimized code (equivalent to -x02)

-p Run source thru preprocessor, output to . i

-p Collect data for pro f

-Q[yln] Add or don't add version stamp info

-q[llp] Collect data for lprof or prof

- Rdir [: dir] Specify library search path for dynamic linker

-8 Product. s file only (do not assemble or link)

-s strip (4.1); pass to ld (5.0)

-Uname Undefine preprocessor symbol name as if by #undef

-v Report versions of invoked programs

-v Do stricter, lint-like semantic checking

-wtool, arg(s) Hand off arguments to other components

-w Do not print warnings

-X[a,c,s,t] Compatibility options (ANSI, conformant, K&R C, transition)

-xa Collect data for basic block profiling (tcov)

-xcg89 Generate code to run on SP ARC platform; this is the default

-xcg92 Generate code for machines implementing SPARC version 8 (such as
the SPARCstation-lO series)

-xF Produce code that can be re-ordered at function level

-xinl ine= [func1 Inlines funcI, func2 ... and excludes all others, regardless of optimi-
[,func2 ...]] zation level

-xlibmil Include inline templates as part of -fast

cc Compiler Options for SunOS 5.0 67

Table 4-1 Summary of cc Options (Sheet 3 of 3)

Option or Flag Description

-xlicinfo Return status of licensing system

-xM Preprocess, send makefile dependencies to standard output

-xnolib No default linking of libraries

-xnolibmil Reset -fast so that it does not include inline templates

-xO[l,2,3,4] Generate optimized code (default is -x02)

-xpg Collect data for gprof

-xs Places all stabs in . s tab section

-xsb Collect info for code browser

-xsbfast Collect info for code browser, but do not compile

-xstrconst Place string literals into read-only data segment

-xunroll Specifies whether compiler optimizes loops

-yitem, dir Change pathname for components

68 SPARCompilers C 2.0 Programmer's Guide-October 1992

4.4 Commonly Used cc Command Line Options

Searching for a Header File

Recall that the first line of our sample program was

I #include <stdio.h>

The format of that directive is the one you should use to include any of the
standard header files that are supplied with the C compilation system. The
angle brackets (< >) tell the preprocessor to search for the header file in the
standard place for header files on your system, usually the /usr / include
directory.

The format is different for header files that you have stored in your own
directories:

I #include "header.h"

The quotation marks (" ") tell the preprocessor to search for header. h first in
the directory of the file containing the # inc 1 ude line, which will usually be
your current directory, then in the standard place.

If your header file is not in the current directory, specify the path of the
directory in which it is stored with the -I option to cc. Suppose, for instance,
that you have included both stdio. h and header. h in the source file
mycode.c:

#include <stdio.h>
#include "header.h"

Suppose further that header. h is stored in the directory .. / de f s. The
command

I $ cc -I •• /defs mycode.c

will direct the preprocessor to search for header. h first in the current
directory, then in the directory .. / defs, and finally in the standard place. It
will also direct the preprocessor to search for s tdi 0 . h first in .. / de f s, then

cc Compiler Options for Sun OS 5.0 69

70

in the standard place - the difference being that the current directory is
searched only for header files whose name you have enclosed in quotation
marks.

You can specify the -I option more than once on the ee command line. The
preprocessor will search the specified directories in the order they appear on
the command line. Needless to say, you can specify multiple options to ee on
the same command line:

I $ cc -0 prog -I •• Idefs mycode. c

Preparing Your Program for Symbolic Debugging

When you specify the -g option to ee,

I $ cc -g mycode.c

you arrange for the compiler to generate information about program variables
and statements that will be used by the symbolic debugger dbx. The
information supplied to dbx will allow you to use the symbolic debugger to
trace function calls, display the values of variables, set breakpoints, and so on.

Note - Both the -0 and -g options support the debugging of optimized code.
For detailed information, see the discussion in Debugging a Program.

Preparing Your Program for Profiling

The various profilers for optimizing your source code are described briefly in
Chapter I, "Introduction to ANSI C," and extensively in Profiling Tools.

To use the pro filers that are supplied with the C compilation system, you must
do two things:

SPARCompilers C 2.0 Programmer's Guide-October 1992

10 Compile and link your program with a profiling option:

$ cc -xpg -0 prog mycodeoc
$ cc -ql -0 prog mycodeoc
$ cc -xa -0 prog mycodeoc
$ cc -qp -0 prog mycodeoc

20 Run the profiled program:

I $ prog

(jar gprof)
(for lprof)
(for tcov)
(jar prof; -p may replace -qp)

At the end of execution, data about your program's run-time behavior is
written to a file in your current directory:

$ Is
groon.out (for gprof)
mon.out (for prof)
mycode.c
mycode.d (for tcov)
prog
prog.cnt (for lprof:)

30 Run the profiler:

$ gprof prog > output. file
$ lprof -0 prog > output. file
$ tcov mycode. c (produces mycode . tcov file)
$ prof prog > output.file

The files are inputs to the profilers.

See the Profiling Tools manual for more information on gprof(1), lprof(1),
tcov(1), and prof(l).

Non-Standard Floating Point

IEEE 754 floating-point default arithmetic is "nonstop" and underflows are
"gradual." What do we mean by these terms?

cc Compiler Options for SunOS 5.0 71

This explanation is by
necessity rather over
simplified. See the Numerical
Computation Guide for more
rigorous descriptions.

72

Nonstop means that execution doesn't halt on things like division by zero,
floating-point overflow, or invalid operation exceptions. For example, consider
the following, where x is zero and y is positive:

z = y / x;

By default, x gets set to the value + Inf, and execution continues. With the
- fnons td option, however, this code causes an ungraceful exit (say, a core
dump).

Here's how gradual underflow works. Suppose you have the following code:

x = 10;
for (i 0; i < LARGE_NUMBER; i++)

x = x / 10;

The first time through the loop, x is set to 1; the second time through, to 0.1;
the third time through, to 0.01; and so on. Eventually, x will reach the lower
limit of the machine's capacity to represent its value. What happens the next
time the loop runs?

Let's say that the smallest number characterizable is

1.234567e-38

The next time the loop runs, the number is modified by "stealing" from the
mantissa and "giving" to the exponent:

1.23456e-39

and, subsequently,

1.2345e-40

and so on. This is know as "gradual underflow" and it's the default behavior.
In non-standard behavior, none of this "stealing" goes on; typically, x is simply
set to zero.

SPARCompilers C 2.0 Programmer's Guide-October 1992

5.1 Introduction

ThePartsofC

This chapter is a guide to the ANSI C language (not K&R C) compiler. The
level of presentation assumes some experience with C and familiarity with
fundamental programming concepts.

The compilers are compatible with the C language described in the American
National Standards Institute (ANSI) "American National Standard for
Information Systems-Programming Language -C," document number ANSI
X3.1S9-1989.

The standard language is referred to as ANSI C in this document. The notation
K&R C refers to non-ANSI (or pre-ANSI) C ..

Compilation Modes

The compilation system has the following compilation modes, which
correspond to degrees of compliance with ANSI C. - Xt is the default mode:

-Xa

(a = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C intrepretation.

73

74

-xc

(c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler will reject programs that use non
ANSI C constructs.

-Xs

(s = senescent) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation. This is the default
compiler mode.

Global Behavior: Value vs. Unsigned Preserving

A program that depends on unsigned-preserving arithmetic conversions will
behave differently. This is considered to be the most serious change made by
ANSI C to a widespread current practice.

In the first edition of Kernighan and Ritchie, The C Programming Language
(Prentice-Hall, 1978), unsigned specified exactly one type; there were no
unsigned chars, unsigned shorts, or unsigned longs, but most C
compilers added these very soon thereafter.

In previous C compilers, the unsigned preserving rule is used for promotions:
when an unsigned type needs to be widened, it is widened to an unsigned
type; when an unsigned type mixes with a signed type, the result is an
unsigned type.

The other rule, specified by ANSI C, came to be called value preserving, in
which the result type depends on the relative sizes of the operand types.
When an unsigned char or unsigned short is widened, the result type is
int if an int is large enough to represent all the values of the smaller type.
Otherwise the result type is unsigned into The value preserving rule produces
the least surprise arithmetic result for most expressions.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Only in the - Xt amd - Xs modes does the compiler use the unsigned preserving
promotions; in the other modes, - Xc and - Xa, the value preserving promotion
rules are used. No matter what the current mode may be, the compiler warns
about each expression whose behavior might depend on the promotion rules
used.

This warning is not optional because this is a serious change in behavior.

How To Use This Chapter

You can use this chapter either as a quick reference guide, or as a
comprehensive summary of the language as implemented by the compilation
system. Many topics are grouped according to their place in the ANSI
specified phases of translation, which describe the steps by which a source file
is translated into an executable program.

Phases of Translation

The compiler processes a source file into an executable in eight conceptual
steps, which are called phases of translation. While some of these phases may in
actuality be folded together, the compiler behaves as if they occur separately, in
sequence.

1. Trigraph sequences are replaced by their single-character equivalents.
(Trigraph sequences are explained in "Trigraph Sequences" on page 82).

2. Any source lines that end with a backslash and new-line are spliced together
with the next line by deleting the backslash and new-line.

3. The source file is partitioned into preprocessing tokens and sequences of
white-space characters. Each comment is, in effect, replaced by one space
character. (Preprocessing tokens are explained in "Preprocessing Tokens" on
page 82).

4. Preprocessing directives are executed, and macros are expanded. Any files
named in # inc 1 ude statements are processed from phase 1 through phase
4, recursively.

5. Escape sequences in character constants and string literals are converted to
their character equivalents.

The Parts of C 75

76

6. Adjacent character string literals and wide character string literals are
concatenated.

7. Each preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated. (Tokens are
explained under "Tokens" on page 76).

8. All external object and function references are resolved. Libraries are linked
to satisfy external references not defined in the current translation unit. All
translator output is collected into a program image which contains
information needed for execution.

Output from certain phases may be saved and examined by specifying option
flags on the compiler command line.

The preprocessing token sequence resulting from Phase 4 can be saved by
using the following options:

• -P leaves preprocessed output in a file with a .i extension.

• - E sends preprocessed output to the standard output.

Use the -c option to cc (or acc) to save output from Phase 7 in a file with a .0

extension. The output of Phase 8 is the compilation system's final output:

(a.out).

5.2 Source Files and Tokenization

Tokens

A token is a series of contiguous characters that the compiler treats as a unit.
Translation phase 3 partitions a source file into a sequence of tokens. Tokens
fall into seven classes:

• Identifiers

• Keywords

• Numeric Constants

• Character Constants

• String literals

• Operators

SPARCompilers C 2.0 Programmer's Guide-October 1992

Identifiers

Keywords

Constants

• Other separators and punctuators

• Identifiers name things such as variables, functions, data types, and macros.

• Identifiers are made up of a combination of letters, digits, or underscore (_)
characters.

• First character may not be a digit.

The following identifiers are reserved for use as keywords and may not be
used otherwise:

Table 5-1 Identifiers

asm default for short union

auto do goto signed unsigned

break double if sizeof void

case else int static volatile

char enum long struct while

const extern register switch

continue float return typedef

The keyword asm is reserved in all compilation modes except -xc. The
keyword _asm is a synonym for asm and is available under all compilation
modes, although a warning will be issued when it is used under the -xc mode.

Integral Constants
• Decimal

o Digits 0-9.
o First digit may not be 0 (zero).

The Parts of C 77

78

• Octal
o Digits 0-7.
o First digit must be 0 (zero).

• Hexadecimal
o Digits 0 - 9 plus letters a - f or A-F. Letters correspond to decimal values

10-15.
o Prefixed by 0 x or 0 X (digit zero).

Note - An octal or hexadecimal constant with the sign bit on is treated as an
unsigned value. For example, Ox80 through Oxff will not fit into a char, Ox8000
through Oxffff will not fit into a short, and Ox80000000 through Oxffffffff will not
fit into an int. If these values are used as initializers, the following error
message results: warning: initializer does not fit.

• Suffixes
o All of the above can be suffixed to indicate type, as follows:

Table 5-2 Data Type Suffixes

Suffix Type

u orU unsigned

lor L long

11 or LL long longa

1 u or L U or L u or 1 U unsigned long

llu or LLU or LLu or llU unsigned long longa

a.long long is not available in -Xc mode.

When assigning types to constants, the compiler uses the first of this list in
which the value can be represented:

int

long int

unsigned long int

long long int (not available in -xc mode)

unsigned long long int (not available in -xc mode)

SPARCompilers C 2.0 Programmer's Guide-October 1992

Floating Point Constants
Floating-point constants consist of integer part, decimal point, fraction part, an
e or E, an optionally signed integer exponent, and a type suffix, one of f, F, 1,
or L. Each of these elements is optional; however one of the following must be
present for the constant to be a floating point constant:

• A decimal point (preceded or followed by a number).

• An e with an exponent.

• Any combination of the above. Examples:

xxx e exp
xxx .
. xxx

• Type determined by suffix; f or F indicates float, 1 or L indicates long
double; otherwise type is double.

Character Constants
• One or more characters enclosed in single quotes, as in 'x'.

• All character constants have type into

• Value of a character constant is the numeric value of the character in the
ASCII character set.

• A multiple-character constant that is not an escape sequence (see below) has
a value derived from the numeric values of each character. For example, the
constant '123' has a value of

Table 5-3 Multiple-character Constant (ASCII)

I '3' I '2' '1'

or Ox333231. In other, non-ANSI versions of C the value is

Table 5-4 Multiple-character Constant (non-ASCII)

I '1' I '2' I '3'

or Ox313233.

The Parts ote 79

Character Abbreviation

new-line NL (LF)

horizontal tab HT

vertical tab VT

backspace BS

carriage return CR

formfeed FF

single quote
,

• Character constants may not contain the character I or new-line. To
represent these characters, and some others that may not be contained in the
source character set, the compiler provides the following escape sequences:

Table 5-5 Character Constants

Escape Sequence Character Abbreviation Escape Sequence

\n audible alert BEL \a

\t question mark ? \?

\v double quote " \"

\b octal escape 000 \000

\r hexadecimal escape hh \xhh

\f backslash \ \\

\'

If the character following a backslash is not one of those specified, the compiler
will issue a warning and treat the backslash-character sequence as the
character itself. Thus, \ q will be treated as q. However, if you represent a
character this way, you run the risk that the character may be made into an
escape sequence in the future, with unpredictable results. An explicit new-line
character is invalid in a character constant and will cause an error message.

• The octal escape consists of one to three octal digits.

• The hexadecimal escape consists of one or more hexadecimal digits.

Wide Characters and Multibyte Characters

80

• A wide character constant is a character constant prefixed by the letter L.

• A wide character has an external encoding as a multibyte character and an
internal representation as the integral type wchar_t, defined in stddef. h.

• A wide character constant has the integral value for the multibyte character
between single quote characters, as defined by the locale-dependent
mapping function mbtowc.

SPARCompilers C 2.0 Programmer's Guide-October 1992

String Literals
• One or more characters surrounded by double quotes, as in "xyz".

• Initialized with the characters contained in the double quotes.

• Have static storage duration and type array of characters.

• The escape sequences described in "Character Constants" may also be used
in string literals. A double quote within the string must be escaped with a
backslash. New-line characters are not valid within a string.

• Adjacent string literals are concatenated into a single string. A null
character, \ 0, is appended to the result of the concatenation, if any.

• String literals are also known as string constants.

Wide String Literals

Comments

• A wide-character string literal is a string literal immediately prefixed by the
letter L.

• Wide-character string literals have type array of wchar_t.

• Wide string literals may contain escape sequences, and they may be
concatenated like ordinary string literals.

Comments begin with the characters / * and end with the next * / .

I 1 * this is a comment * 1

Comments do not nest.

If a comment appears to begin within a string literal or character constant, it
will be taken as part of the literal or constant, as specified by the phases of
translation.

char *p = "1* this is not a comment *I"i 1* but this is *1

The Parts of C 81

82

5.3 Preprocessing
• Preprocessing handles macro substitution, conditional compilation, and file

inclusion.

• Lines beginning with # indicate a preprocessing control line. Spaces and
tabs may appear before and after the #.

• Lines that end with a backslash character \ and new-line are joined with the
next line by deleting the backslash and the new-line characters. This occurs
(in translation phase 2) before input is divided into tokens.

• Each preprocessing control line must appear on a line by itself.

Trigraph Sequences

Trigraph sequences are three-character sequences that are replaced by a
corresponding single character in Translation Phase 1. The trigraph sequences
are provided as a way to specify characters that are not available on some
terminals, but that the C language uses, as follows:

Table 5-6 Trigraph Sequences

Sequence
Replaced

Sequence
Replaced

Sequence
Replaced

By By By

??= # ??([??< {

?? / \ ??)] ??> }

??' 1\ ??! I ??-

No other such sequences are recognized.

Preprocessing Tokens

A token is the basic lexical unit of the language. All source input must be
formed into valid tokens by translation phase seven. Preprocessing tokens
(pp-tokens) are a superset of regular tokens. Preprocessing tokens allow the
source file to contain non-token character sequences that constitute valid
preprocessing tokens during translation. There are four categories of
preprocessing tokens:

SPARCompilers C 2.0 Programmer's Guide-October 1992

• Header file names, meant to be taken as a single token.

• Preprocessing numbers (discussed in "Preprocessing Numbers" on page 83).

• All other single characters that are not otherwise (regular) tokens. See the
example under "Preprocessing Numbers" on page 83.

• Identifiers, numeric constants, character constants, string literals, operators,
and punctuators.

Preprocessing Numbers
• A preprocessing number is made up of a digit, optionally preceded by a

period, and may be followed by letters, underscores, digits, periods, and
anyone of e+ e- E+ E-.

• Preprocessing numbers include all valid number tokens, plus some that are
not valid number tokens. For example, in the macro definition:

#define R 2e ## 3

the preprocessing number 2 e is not a valid number. However, the
preprocessing operator # # will paste it together with the preprocessing
number 3 when R is replaced, resulting in the preprocessing number 2e3,
which is a valid number. See "Preprocessing Operators" on page 83 for a
discussion of the ## operator.

Preprocessing Directives

Preprocessing Operators
The preprocessing operators are evaluated left to right, without any defined
precedence.

A macro parameter preceded by the # preprocessing operator has its
corresponding unexpanded argument tokens converted into a string literal.
(Any double quotes and backslashes contained in character constants or part
of string literals are escaped by a backslash). The # character is sometimes
referred to as the stringizing operator. This rule applies only within
function-like macros.

The Parts of C 83

84

If a replacement token sequence (see "Macro Definition and Expansion"
below) contains a ## operator, the ## and any surrounding white space are
deleted and adjacent tokens are concatenated, creating a new token. This
occurs only when the macro is expanded.

Macro Definition and Expansion
• An object-like macro is defined with a line of the form

#de fine identifier token-sequenceopt

where identifier will be replaced with token-sequence wherever identifier
appears in regular text.

• A function-like macro is defined with a line of the form

#define identifier (identifier-listopt) token-sequenceopt

where the macro parameters are contained in the comma-separated
identifier-list. The token-sequence following the identifier list determines
the behavior of the macro, and is referred to as the replacement list. There
can be no space between the identifier and the (character. For example:

#define FLM(a,b) a+b

The replacement-list a+b determines that the two parameters a and b will
be added.

• A function-like macro is invoked in normal text by using its identifier,
followed by a (token, a list of token sequences separated by commas, and a
) token. For example:

FLM(3,2)

• The arguments in the invocation (comma-separated token sequences) may
be expanded, and they then replace the corresponding parameters in the
replacement token sequence of the macro definition. Macro arguments in
the invocation are not expanded if they are operands of # or # # operators in
the replacement string. Otherwise, expansion does take place. For example:

SPARCompilers C 2.0 Programmer's Guide-October 1992

Assume that Ml is defined as 3:

#define Ml 3

When the function-like macro FLM is used, use of the # or ## operators will
affect expansion (and the result), as follows:

Table 5-7 Expansion of # and ## Macros

Definition Invocation Result Expansion?

a+b FLM(Ml,2) 3 + 2 Yes, Yes

#a FLM(Ml) "Ml" No

a##b FLM(Ml, 2) M12 No, No

a+#b FLM(Ml,2) 3 + "2" Yes, No

In the last example line, the first a in a+#a is expanded, but the second a is
not expanded because it is an operand of the # operator.

• The number of arguments in the invocation must match the number of
parameters in the definition.

• A macro's definition, if any, can be eliminated with a line of the form:

#unde f identifier

There is no effect if the definition doesn't exist.

File Inclusion
• A line of the form:

I # inc 1 ude " filename"

causes the entire line to be replaced with the contents of filename. The
following directories are searched, in order:

a. The current directory (of the file containing the #include line).

b. Any directories named in - I options to the compiler, in order.

The Parts of C 85

86

c. A list of standard places, typically, but not necessarily, I us r I inc 1 ude.

• A line of the form:

inc 1 ude <filename>

causes the entire line to be replaced with contents of filename. The angle
brackets surrounding filename indicate that filename is not searched for in the
current directory.

• A third form allows an arbitrary number of preprocessing tokens to follow
the #include, as in:

#include preprocessing-tokens

The preprocessing tokens are processed the same way as when they are
used in normal text. Any defined macro name is replaced with its
replacement list of preprocessing tokens. The preprocessing tokens must
expand to match one of the first two forms « ... > or " ... ").

• A file name beginning with a slash I indicates the absolute pathname of a
file to include, no matter which form of # inc 1 ude is used.

• Any #include statements found in an included file cause recursive
processing of the named file(s).

Conditional Compilation
Different segments of a program may be compiled conditionally. Conditional
compilation statements must observe the following sequence:

1. One of: #if or #ifdef or #ifndef.

2. Any number of optional #elif lines.

3. One optional #else line.

4. One # endi f line.

• # i f integral-constant-expression

Is true, if integral-constant-expression evaluates to nonzero.

If true, tokens following the if line are included.

SPARCompilers C 2.0 Programmer's Guide-October 1992

The integral-constant-expression following the if is evaluated by following this
sequence of steps:

1. Any preprocessing tokens in the expression are expanded. Any use of the
de fined operator evaluates to 1 or 0 if its operand is, respectively, defined,
or not.

2. If any identifiers remain, they evaluate to o.

3. The remaining integral constant expression is evaluated. The constant
expression must be made up of components that evaluate to an integral
constant. In the context of a # i f, the integral constant expression may not
contain the sizeof operator, casts, or floating point constants.
The following table shows how various types of constant expressions
following a # if would be evaluated. Assume that name is not defined.

Table 5-8 Constant Expression Evaluation

Constant Expression Step 1 Step 2 Step 3

STDC 1 1 1 - -

! defined {_STDC_} !1 !1 0

311 name 31 1 name 31 10 1

2 + name 2 + name 2+0 2

• #ifdef

• identifier

Is true if identifier is currently defined by #define or by the -D option to
the compiler command line.

• #ifndef identifier

Is true if identifier is not currently defined by #define (or has been
undefined) .

• # eli f constant-expression

Indicates alternate if-condition when all preceding if-conditions are false.

• #else

The Parts of C 87

88

Indicates alternate action when no preceding if or el i f conditions are
true. A comment may follow the else, but a token may not.

• #endif

Terminates the current conditional. A comment may follow the endif, but
a token may not.

Line Control
• Useful for programs that generate C programs.

• A line of the form

I # 1 ine constant "filename"

causes the compiler to believe, for the purposes of error diagnostics and
debugging, that the line number of the next source line is equal to constant
(which must be a decimal integer) and the current input file is filename
(enclosed in double quotes). The quoted file name is optional. constant must
be a decimal integer in the range 1 to MAXINT. MAXINT is defined in
limits .h.

Assertions
A line of the form

. I #assert predicate <token-sequence)

associates the token-sequence with the predicate in the assertion name space
(separate from the space used for macro definitions). The predicate must be an
identifier token.

I #assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

SPARCompilers C 2.0 Programmer's Guide-October 1992

The compiler provides the following predefined predicates by default:

#assert machine (SPARC
#assert system (unix)
#assert cpu (SPARC)

Any assertion may be removed by using #unassert, which uses the same
syntax as assert. Using #unassert with no argument deletes all assertions
on the predicate; specifying an assertion deletes only that assertion.

An assertion may be tested in a # if statement with the following syntax:

I # i f #predicate<non-empty token-list)

For example, the predefined predicate system can be tested with the following
line:

I #if #system(unix)

which will evaluate true.

Version Control
The #ident directive is used to help administer version control information.

I #ident "version"

puts an arbitrary string in the. comment section of the object file. The
. comment section is not loaded into memory when the program is executed.

Pragmas
Preprocessing lines of the form

I #pragma pp-tokens

specify implementation-defined actions.

The following #pragmas are recognized by the compilation system:

The Parts of C 89

90

• #pragma f ini identifier
(SunOS 5.0 only). Marking identifier as a ufinalization function." Such
functions are expected to be of type void and to accept no arguments,
and are called either when a program terminates under program control
or when the containing shared object is removed from memory. As with
uinitialization functions," finalization functions are executed in the order
processed by the link editor(s).

• #pragma ini t identifier
(SunOS 5.0 only). Marking identifier as an uinitialization function." Such
functions are expected to be of type void and to accept no arguments,
and are called while constructing the memory image of the program at
the start of execution. In the case of initializers in a shared object, they
will be executed during the operation that brings the shared object into
memory, either program start-up or some dynamic loading operation
such as dlopen (). The only ordering of calls to initialization functions
is the order in which they were processed by the link editor(s), both static
and dynamic.

• #pragma ident string
Place string in the. comment section of the executable

• #pragma int_to_unsigned function name
For a function that returns a type of unsigned, in -xt or -Xs mode,
change the function return to be of type into

• #pragma unknown_control_flow (name, [, name]
Specifies a list of routines that violate the usual control flow properties of
procedure calls. For example, the statement following a call to
setjmp () can be reached from an arbitrary call to any other routine.
The statement is reached by a call to longjmp (). Since such routines
render standard flowgraph analysis invalid, routines that call them
cannot be safely optimized; hence, they are compiled with the optimizer
disabled.

• #pragma weak function name = _function name
(SunOS 5.0 only). If a defined global symbol function name exists, the
appearance of a weak symbol _function name with the same name will not
cause an error.

• #pragma weak function name
(SunOS 5.0 only). The linker will not complain if it does not find a
definition for function name.

SPARCompilers C 2.0 Programmer's Guide-October 1992

The compiler ignores unrecognized pragmas.

Error Generation
A preprocessing line consisting of

I #error token-sequence

causes the compiler to produce a diagnostic message containing the token
sequence, and stop.

Predefined Names
The following identifiers are predefined as object-like macros:

Table 5-9 Pre-defined Identifiers

Identifier Description

The current line number as a decimal constant.

A string literal representing the name of the file being compiled.

The date of compilation as a string literal in the form "Mmm dd
yyyy."

The time of compilation, as a string literal in the form "hh:mm:ss. /I

The constant 1 under compilation mode -Xc, otherwise O.

With the exception of _STDC_, these predefined names may not be
undefined or redefined. Under compilation mode - Xt, _STDC_ may be
undefined (#unde f _STDC_) to cause a source file to think it is being
compiled by a previous version of the compiler.

STDC_ is not defined in - Xs mode.

The Parts ofe 91

92

5.4 Declarations and Definitions

Introduction

Types

A declaration describes an identifier in terms of its type and storage duration.
The location of a declaration (usually, relative to function blocks) implicitly
determines the scope of the identifier.

Basic Types
The basic types and their sizes are:

• char (1 byte)

• short in t (2 bytes)

• int (4 bytes)

• long int (4 bytes)

• long long int (8 bytes)l

Each of char, short, int, long, and long long may be prefixed with
signed or unsigned. A type specified with signed is the same as the type
specified without signed.

• float (4 bytes)

• double (8 bytes)

• long double (16 bytes)

• void

Integral and floating types are collectively referred to as arithmetic types.
Arithmetic types and pointer types (see "Pointer Declarators" on page 98)
make up the scalar types.

1. long long is not available in - Xc mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Type Qualifiers
• const

The compiler may place an object declared const in read-only memory.
The program may not change its value and no further assignment may be
made to it. An explicit attempt to assign to a const object will provoke an
error.

• volatile

volatile advises the compiler that unexpected, asynchronous events may
affect the object so declared and warns it against making assumptions. An
object declared vo 1 at i 1 e is protected from optimization that might
otherwise occur.

Structures and Unions
• Structures

A structure is a type that consists of a sequence of named members. The
members of a structure may have different object types (as opposed to an
array, whose members are all of the same type). To declare a structure is to
declare a new type. A declaration of an object of type struct reserves
enough storage space so that all of the member types can be stored
simultaneously.

A structure member may consist of a specified number of bits, called a bit
field. The number of bits (the size of the bit-field) is specified by appending
a colon and the size (an integral constant expression, the number of bits) to
the declarator that names the bit-field. The declarator name itself is
optional; a colon and integer will declare the bit-field. A bit-field must have
integral type. The size may be zero, in which case the declaration name
must not be specified, and the next member starts on a boundary of the type
specified. For example:

char :0

The Parts of C 93

94

means "start the next member (if possible) on a char boundary." A named
bit-field number that is not declared with an explicitly uns igned type holds
values in the range

where n is the number of bits. A bit-field declared with an explicit signed
type holds values in the range

An optional structure tag identifier may follow the keyword struct. The
tag names the kind of structure described and s truc t may then be used as
a shorthand name for the declarations that make up the body of the
structure. For example:

struct t
int Xi

float Yi
} stl, st2i

Here, stl and st2 are structures, each made up of x, an int, and y, a
float. The tag t may be used to declare more structures identical to stl
and st2, as in:

struct t st3i

A structure may include a pointer to itself as a member; this is known as a
self-referential structure.

struct n
int Xi

struct n *lefti
struct n *righti
} i

Note - Bit-fields of type long long are not permitted in structures or unions.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Scope

• Unions

A union is an object that may contain one of several different possible
member types. A union may have bit-field members. Like a structure,
declaring a union declares a new type. Unlike a structure, a union stores the
value of only one member at a given time. A union does, however, reserve
enough storage to hold its largest member.

Enumerations
An enumeration is a unique type that consists of a set of constants called

enumerators. The enumerators are declared as constants of type in t, and
optionally may be initialized by an integral constant expression separated from
the identifier by an = character.

Enumerations consist of two parts:

• The set of constants.

• An optional tag.

For example:

I enum color {red, blue=5, yellow};

color is the tag for this enumeration type. red, blue, and yellow are its
enumeration constants. If the first enumeration constant in the set is not
followed by an =, its value is o. Each subsequent enumeration constant not
followed by an = is determined by adding 1 to the value of the previous
enumeration constant. Thus yellow has the value 6.

I enum color car_color;

declares car_color to be an object of type enum color.

The use of an identifier is limited to an area of program text known as the
identifier's scope. The four kinds of scope are function, file, block, and
function prototype.

The Parts of C 95

96

• The scope of every identifier (other than label names) is determined by the
placement of its declaration (in a declarator or type specifier).

• The scope of structure, union and enumeration tags begins just after the
appearance of the tag in a type specifier that declares the tag. Each
enumeration constant has scope that begins just after the appearance of its
defining enumerator in an enumerator list. Any other identifier has scope
that begins just after the completion of its declarator.

• If the declarator or type specifier appears outside a function or parameter
list, the identifier has file scope, which terminates at the end of the file (and
all included files).

• If the declarator or type specifier appears inside a block or within the list of
parameter declarations in a function definition, the identifier has block
scope, which ends at the end of the block (at the} that closes that block).

• If the declarator or type specifier appears in the list of parameter
declarations in a function prototype declaration, the identifier has function
prototype scope, which ends at the end of the function declarator (at the)
that ends the list).

• Label names always have function scope. A label name must be unique
within a function.

Storage Class Specifiers

• auto

An object may be declared auto only within a function. It has block scope
and the defined object has automatic storage duration.

• register

A register declaration is equivalent to an auto declaration. It also
advises the compiler that the object will be accessed frequently.

• static

static gives a declared object static storage duration (see "Storage
Duration"). The object may be defined inside or outside functions. An
identifier declared static with file scope has internal linkage. A function
may be declared or defined with static. If a function is defined to be
static, the function has internal linkage. A function may be declared with
static at block scope; the function should be defined with static as well.

SPARCompilers C 2.0 Programmer's Guide-October 1992

• extern

extern gives a declared object static storage duration. An object or
function declared with extern has the same linkage as any visible
declaration of the identifier at file scope. If no file scope declaration is
visible the identifier has external linkage.

• typedef

Using typedef as a storage class specifier does not reserve storage.
Instead, typedef defines an identifier that names a type.

Table 5-10 Storage Classes in C

Storage class Declaration in C Scope and initialization by compiler

Automatic auto int ai Local to block or function in which
int ai they are declared. Values do not

persist. Not initialized by compiler.

Register register int ai Local to block or function in which
they are declared. Values do not
persist. Not initialized by compiler.

Static static int ai Local to function in which they are
declared. Values persist. Initialized to
o at compile time.

External extern int ai Globally available to any function if
declared outside and above that
function. Globally available to all
functions, regardless of number of
source files, if declared as extern
within each function. Values persist.
Initialized to 0 at compile time.

Storage Duration
• Automatic Storage Duration

Storage is reserved for an automatic object, and is available for the object on
each entry (by any means) into the block in which the object is declared. On
any kind of exit from the block, storage is no longer reserved.

• Static Storage Duration

The Parts of C 97

Declarators

98

An object declared outside any block, or declared with the keywords
static or extern, has storage reserved for it for the duration of the
entire program. The object retains its last-stored value throughout program
execution.

A brief summary of the syntax of declarators:

declarator:
pointer opt direct-declarator

direct -declarator:
identifier
(declarator
direct-declarator [constant-expressionopt]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

Pointer Declarators
• Pointer to a type:

char *Pi

p is a pointer to type char. p contains the address of a char object.

Care should be taken when pointer declarations are qualified with cons t :

canst int *pCii

declares a pointer to a canst-qualified (read-only) into

int *canst CPii

declares a constant pointer to int that is itself read-only.

SPARCompilers C 2.0 Programmer's Guide-October 1992

• Pointer to a pointer:

char **t;

t points to a character pointer.

• Pointer to a function:

int (*f) ();

f is a pointer to a function that returns an into

• Pointer to void:

void *

A pointer to void may be converted to or from a pointer to any object or
incomplete type, without loss of information. This "generic pointer"
behavior was previously carried out by char *; a pointer to void has the
same representation and alignment requirements as a pointer to a character
type.

Array Declarators
• One-dimensional array:

int ia[10];

ia is an array of 10 integers.

• Two-dimensional array:

char d[4] [10] ;

d is an array of 4 arrays of 10 characters each.

• Array of pointers:

I char *p [7] ;

The Parts of C 99

100

p is an array of seven character pointers.

An array type of unknown size is known as an incomplete type.

Function Declarators
• A function declaration includes the return type of the function, the function

identifier, and an optional list of parameters.

• Function prototype declarations include declarations of parameters in the
parameter list.

• If the function takes no arguments, the keyword void may be substituted
for the parameter list in a prototype.

• A parameter type list may end with an ellipsis ", ... "to indicate that the
function may take more arguments than the number described. The comma
is necessary only if it is preceded by an argument.

• The parameter list may be omitted, which indicates that no parameter
information is being provided.

Examples:

I void srand(unsigned int seed);

The function srand returns nothing; it has a single parameter which is an
unsigned into The name seed goes out of scope at the) and as such serves
solely as documentation.

I int rand (void) ;

The function rand returns an int; it has no parameters.

int strcmp(const char *, canst char *);

The function strcmp returns an int; it has two parameters, both of which are
pointers to character strings that s trcmp does not change.

void (*signal(int, void (*) (int))) (int);

SPARCompilers C 2.0 Programmer's Guide-October 1992

The function signal returns a pointer to a function that itself returns nothing
and has an int parameter; the function signal has two parameters, the first
of which has type int and the second is a pointer to a function which returns
void (this "second" function itself has one argument of type int).

int fprintf(FILE *stream, const char *format, .. .)i

The function fprintf returns an int; FILE is a typedef name declared in
stdio. h; format is a const qualified character pointer; note the use of
ellipsis (...) to indicate an unknown number of arguments.

Function Definitions

A function definition includes the body of the function after the declaration of
the function. As with declarations, a function may be defined as a function
prototype definition or defined in the old style. The function prototype style
includes type declarations for each parameter in the parameter list. This
example shows how main would be defined in each style:

Table 5-11 Function Definitions

Function Prototype Style

int
main(int argc, char *argv[])
{

Old Style

int
main (argc, argv)
int argci
char *argv[]i
{

Some important rules that govern function definitions:

• An old style definition names its parameters in an identifier list, and their
declarations appear between the function declarator and the" {" that begins
the function body.

• Under the old style, if the type declaration for a parameter was absent, the
type defaulted to into In the new style, all parameters in the parameter list
must be type-specified and named. The exception to this rule is the use of
ellipsis, explained in "Function Declarators" on page 100.

• A function prototype tells the compiler:

The Parts of C 101

o the data type returned by the function
o the number of arguments the function takes
o the data type of each argument - the variable name is optional

float absolute_value (float);

or

float absolute_value (float mamed_float);

where named_float is the optional variable name. This name does not have to
be the same as the one used in the function definition - the compiler ignores
it anyway.

• Incomplete types are not allowed in the parameter list or as the return type
of a function definition. They are allowed in other function declarations.

5.5 Conversions and Expressions

102

Implicit Conversions

Characters and Integers
Any of the following may be used in an expression where an in t or
unsigned int may be used.

• char.

• short into

• A char, short, or in t bit-field.

• The signed or unsigned varieties of any of the above types.

• An object or bit-field that has enumeration type.

If an int can represent all values of the original type, the value is converted to
an int; otherwise it is converted to an unsigned into This process is called
integral promotion.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Note - The promotion rules for ANSI C are different from previous versions of
C. The compiler warns about expressions where this may lead to different
behavior.

Compilation Mode Dependencies
• Under compilation modes -Xs and -Xt, unsigned char and unsigned

short are promoted to unsigned int (unsigned preserving).

• Under compilation modes -Xa and -Xc, unsigned char and unsigned
short are promoted to in t.

Signed and Unsigned Integers
• When an integer is converted to another integral type, the value is

unchanged if the value can be represented by the new type.

• If a negative signed integer is converted to an unsigned integer with greater
size, the signed integer is first promoted to the signed integer corresponding
to the unsigned integer.

Integral and Floating
When a floating type is converted to any integral type, any fractional part is
discarded.

Float and Double
A float is promoted to double or long double, or a double is promoted
to long double without a change in value.

The actual rounding behavior that is used when a floating point value is
converted to a smaller floating point value depends on the rounding mode in
effect at the time of execution. The default rounding mode is "round to
nearest." Chapter 3, "ace Compiler Options for SunOS 4.x," briefly describes
"gradual underflow" behavior; see the Numerical Computation Guide and the
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) for
a more complete discussion of rounding modes.

The Parts of C 103

104

Usual Arithmetic Conversions
Some binary operators convert the types of their operands in order to yield a

common type, which is also the type of the result. These are called the usual
arithmetic conversions:

• If either operand is type long double, the other operand is converted to
long double.

• Otherwise, if either operand has type double, the other operand is
converted to double.

• Otherwise, if either operand has type f 1 oa t, the other operand is converted
to float.

• Otherwise, the integral promotions are performed on both operands. Then,
these rules are applied:

o If either operand has type unsigned long long int, then the other
operator is converted to unsigned long long int.1

o If either operand has type long long int, then the other operator is
converted to long long into

o If either operand has type unsigned long int, the other operand is
converted to unsigned long into

o Otherwise, if one operand has type long int and the other has type
unsigned int I both operands are converted to unsigned long int.

o Otherwise, if either operand has type long int, the other operand is
converted to long int.

o Otherwise if either operand has type uns i gned int, the other operand
is converted to unsigned int.

o Otherwise, both operands have type into

1. long long is not available in - Xc mode.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Expressions

1 values and Objects
An object is a region of storage that can be manipulated. An IvaI ue is an
expression referring to an object. An obvious example of an IvaI ue
expression is an identifier. There are operators that yield IvaI ues: for
example, if E is an expression of pointer type, then *E is an 1 value expression
referring to the object to which E points.

An IvaI ue is modifiable if:

• it does not have array type,

• it does not have an incomplete type,

• it does not have a const-qualified type, and, if it is a structure or union, it
does not have any member (including, recursively, any member of all
contained structures or unions) with a const-qualified type.

The name lvalue comes from the assignment expression El = E2 in which the
left operand El must be an 1 value expression.

Primary Expressions
• Identifiers, constants, string literals, and parenthesized expressions are

primary expressions.

• An identifier is a primary expression, provided it has been declared as
designating an object (which makes it an IvaI ue) or a function (which
makes it a function designator).

• A constant is a primary expression; its type depends on its form and value.

• A string literal is a primary expression; it is an IvaI ue.

• A parenthesized expression is a primary expression. Its type and value are
identical to those of the unparenthesized version. It is an 1 value, a
function designator, or a void expression, according to the type of the
unparenthesized expression.

The Parts of C 105

Operators

106

For a summary of operator associativity and precedence, see Table 5-12 on
page 114.

Unary Operators
Expressions with unary operators group right to left.

* e
Indirection operator. Returns the object or function pointed to by its
operand. If the type of the expression is "pointer to ... ," the type of the
result is " . "

&e

Address operator. Returns a pointer to the object or function referred to by
the operand. Operand must be an IvaI ue or function type, and not a bit
field or an object declared register. Where the operand has type "type,"
the result has type "pointer to type."

- e
Negation operator. The operand must have arithmetic type. Result is the
negative of its operand. Integral promotion is performed on the operand,
and the result has the promoted type. The negative of an unsigned quantity
is computed by subtracting its value from 2v' -OA'nv'OA' where n is the
number of bits in the result type.

+e
Unary plus operator. The operand must have arithmetic type. Result is the

value of its operand. Integral promotion is performed on the operand, and
the result has the promoted type.

! e
Logical negation operator. The operand must have arithmetic or pointer

type. Result is one if the value of its operand is zero, zero if the value of its
operand is nonzero. The type of the result is into

-e
The - operator yields the one's complement (all bits inverted) of its

operand, which must have integral type. Integral promotion is performed
on the operand, and the result has the promoted type.

SPARCompilers C 2.0 Programmer's Guide-October 1992

+ + e
The object referred to by the IvaI ue operand of prefix + + is incremented.

The value is the new value of the operand but is not an IvaI ue. The
expression + +x is equivalent to x + = 1. The type of the result is the type
of the operand.

- - e
The modifiable IvaI ue operand of prefix - - is decremented analogously

to the prefix + + operator.

e + +
When postfix + + is applied to a modifiable IvaI ue, the result is the value
of the object referred to by the IvaI ue. After the result is noted, the object
is incremented in the same manner as for the prefix + + operator. The type
of the result is the same as the type of the IvaI ue.

e - -
When postfix - - is applied to an IvaI ue, the result is the value of the
object referred to by the IvaI ue. After the result is noted, the object is
decremented in the same manner as for the prefix - - operator. The type of
the result is the same as the type of the IvaI ue.

sizeof e
The sizeof operator yields the size in bytes of its operand. When applied

to an object with array type, the result is the total number of bytes in the
array. (The size is determined from the declarations of the objects in the
expression.) This expression is semantically an unsigned constant (of type
size_t, a typedef) and may be used anywhere a constant is required
(except in a #if preprocessing directive line). One major use is in
communication with routines like storage allocators and I/O systems.

sizeof (type)
The sizeof operator may also be applied to a parenthesized type name. In
that case, it yields the size in bytes of an object of the indicated type.

Cast Operators - Explicit Conversions
(type) e

Placing a parenthesized type name before an expression converts the value
of the expression to that type. Both the operand and type must be pointer
type or an arithmetic type.

The Parts of C 107

108

Multiplicative Operators
The multiplicative operators *, I, and % group left to right. The usual
arithmetic conversions are performed, and that is the type of the result.

e * e
Multiplication operator. The * operator is commutative.

e I e
Division operator. When positive integers are divided, truncation is toward
O. If either operand is negative, the quotient is negative. Operands must be
arithmetic types.

e % e
Remainder (or modulus) operator. Yields the remainder from the division
of the first expression by the second. The operands must have integral type.
The sign of the remainder is that of the first operand. It is always true that
(alb) *b + a%b is equal to a (if alb is representable).

Additive Operators
The additive operators + and - group left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities for
each operator.

e + e
Result is the sum of the operands. A pointer to an object in an array and an

integral value may be added. The latter is in all cases converted to an
address offset by multiplying it by the size of the object to which the pointer
points. The result is a pointer of the same type as the original pointer that
points to another object in the same array, appropriately offset from the
original object. Thus if P is a pointer to an object in an array, the expression
P+l is a pointer to the next object in the array. No further type
combinations are allowed for pointers.

The + operator is commutative.

The valid operand type combinations for the + operator are:

a +a
p + i or i + P

where a is an arithmetic type, i is an integral type, and p is a pointer.

SPARCompilers C 2.0 Programmer's Guide-October 1992

e - e
Result is the difference of the operands. The operand combinations are the

same as for the + operator, except that a pointer type may not be subtracted
from an integral type.

Also, if two pointers to objects of the same type are subtracted, the result is
converted (by division by the size of the object) to an integer that represents
the number of objects separating the pointed-to objects. This conversion
will in general give unexpected results unless the pointers point to objects in
the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object size. The result type is
ptrdiff_t (defined in stddef .h). ptrdiff_t is a typedef for int in
this implementation. It should be used "as is" to ensure portability. Valid
type combinations are

a -a
p - i
p -p

Bitwise Shift Operators
The bitwise shift operators « and » take integral operands.

el « e2
Shifts el left by e2 bit positions. Vacated bits are filled with zeros.

el » e2
Shifts el right by e2 bit positions.

The result types of the bitwise shift operators are compilation-mode
dependent, as follows:

-Xt
The result type is unsigned if either operand is unsigned.

-Xa, -Xc

The result type is the promoted type of the left operand. Integral promotion
occurs before the shift operation.

The Parts of C 109

110

Relational Operators

I a relop a
p relop p

• The relational operators < (less than) > (greater than) <= (less than or
equal to) >= (greater than or equal to) yield 1 if the specified relation is true
and a if it is false.

• The result has type into

• Both operands:
o have arithmetic type; or
o are pointers to qualified or unqualified v the" ionsof

Equality Operators

I a eqopa
p eqop p
p eqop 0
o eqop p

• The = = (equal to) and! = (not equal to) operators are analogous to the
relational operators; however, they have lower precedence.

Bitwise AND Operator

I ie1 & ie2

• Bitwise "and" of iel and ie2.

• Value contains a 1 in each bit position where both iel and ie2 contain a 1,
and a a in every other position.

• Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Bitwise Exclusive OR Operator

[ie1 A ie2

• Bitwise exclusive "or" of iel and ie2.

• Value contains a 1 in each position where there is a 1 in either iel or ie2, but
not both, and a 0 in every other bit position.

• Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

Bitwise OR Operator

[iel I ie2

• Bitwise inclusive "or" of iel and ie2.

• Value contains a 1 in each bit position where there is a 1 in either iel or ie2,
and a 0 in every other bit position.

• Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

Logical AND Operator

[el && e2

• Logical" and" of el and e2.

• el and e2 must be scalars.

• el is evaluated first, and e2 is evaluated only if el is nonzero.

• Result is 1 if both el and e2 are non-zero, otherwise o.

• Result type is into

The Parts of C 111

112

Logical OR Operator

I el II e2

• Logical "or" of el and e2.

• el and e2 must be scalars.

• el is evaluated first, and e2 is evaluated only if el is zero. Result is 0 only if
both el and e2 are false, otherwise 1.

• Result type is in t.

Conditional Operator

Ie? el : e2

• If e is nonzero, then el is evaluated; otherwise e2 is evaluated. The value is
el or e2.

• The first operand must have scalar type.

• For the second and third operands, one of the following must be true:

o Both must be arithmetic types. The usual arithmetic conversions are
performed to make them a common type and the result has that type.

o Both must have compatible structure or union type; the result is that type.
o Both operands have void" type; the result has void type.
o Both operands are pointers to qualified or unqualified versions of

compatible types. The result type is the composite type.

• One operand is a pointer and the other is a null pointer constant. The result
type is the pointer type.

• One operand is a pointer to an object or incomplete type and the other is a
pointer to a qualified or unqualified version of vo i d. The result type is a
pointer to void. For the pointer cases (the last three), the result is a pointer
to a type qualified by all the qualifiers of the types pointed to by the
operands.

Assignment Expressions
• Assignment operators are:

= *= /= %= += -= «= »= &= 1= A=

SPARCompilers C 2.0 Programmer's Guide-October 1992

• An expression of the form el op= e2 is equivalent to el = el op (e2) except
that el is evaluated only once.

• The left operand:
o must be a modifiable IvaI ue.
o must have arithmetic type, or, for += and -=, must be a pointer to an

object type and the right operand must have integral type.
o of an = operator, if the operand is a structure or union, must not have any

member or submember qualified with canst.

• Result type is the type of the (unpromoted) left operand.

Comma Operator

I el , e2

• el is evaluated first, then e2. The result has the type and value of e2 and is
not an IvaI ue.

Structure Operators

I su.mem

Indicates member mem of structure or union suo

I sup -> mem

Indicates member mem of structure or union pointed to by sup. Equivalent to
(*sup) . memo

The Parts of C 113

114

Asociativity and Precedence of Operators

Table 5-12 Associativity and Precedence of Operators

Operators Associativity

1 () [] -> \ . left to right

2 ! - + + - - + - * & (type) sizeof right to left

3 * / % left to right

4 + - left to right

5 « » left to right

6 < <= > >= left to right

Q) 7 -- != left to right v =:
Q)

"0 8 & left to right Q)
v
Q)

"'" 9 A left to right ~

10 I left to right

11 && left to right

12 II left to right

13 ? : right to left

14 = += - = *= /= %= &= A= 1= «= »= right to left

15 , left to right

Unary +, -, and * have higher precedence than their binary versions.

Prefix + + and - - have higher precedence than their postfix versions.

Constant Expressions
• A constant expression is evaluated during compilation (rather than at run

time). As a result, a constant expression may be used any place that a
constant is required.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Initialization

• Constant expressions must not contain assignment, + +, - -, function-call,
or comma operators, except when they appear within the operand of a
sizeof operator.

• Scalars (all arithmetic types and pointers):

Scalar types with static or automatic storage duration are initialized with a
single expression, optionally enclosed in braces. Example:

int i = 1;

Additionally, scalar types (with automatic storage duration only) may be
initialized with a nonconstant expression.

• Unions:

An initializer for a union with static storage duration must be enclosed in
braces, and initializes the first member in the declaration list of the union.
The initializer must have a type that can be converted to the type of the first
union member. Example:

union {
int i;
float f;
} u = {1}; /* initialize u.i */

For a union with automatic storage duration, if the initializer is enclosed in
braces, it must consist of constant expressions that initialize the first
member of the union. If the initializer is not enclosed in braces, it must be an
expression that has the matching union type.

• Structures:

The Parts of C 115

116

The members of a structure may be initialized by initializers that can be
converted to the type of the corresponding member.

struct s
int ii
char Ci

char *Si

} S t = { 3, ' a', " abc" } i

This example illustrates initialization of all three members of the structure.
If initialization values are missing, as in

struct s st2 = {5}i

then the first member is initialized (in this case, member i is initialized with
a value of 5), and any uninitialized member is initialized with 0 for
arithmetic types and a null pointer constant for pointer types.

For a structure with automatic storage duration, if the initializer is enclosed
in braces, it must consist of constant expressions that initialize the respective
members of the structure. If the initializer is not enclosed in braces, it must
be an expression that has the matching structure type.

• Arrays:

The number of initializers for an array must not exceed the dimension, (i.e.,
the declared number of elements), but there may be fewer initializers than
the number of elements. When the number of initializers is less than the size
of the array, the first array elements are initialized with the values given,
until the supply of initializers is exhausted. Any remaining array elements
are initialized with the value 0 or a null pointer constant, as explained above
in the discussion of structures. Example:

int ia[5] = { 1, 2 }i

In this example, an array of five in ts is declared, but only the first two
members are initialized explicitly. The first member, ia [0], is initialized
with a value of 1; the second member, ia [1], is initialized with a value of
2. The remaining members are initialized with a value of o.

SPARCompilers C 2.0 Programmer's Guide-October 1992

When no dimensions are given, the array is sized to hold exactly the
number of initializers supplied.

A character array may be initialized with a string literal, as in:

char car] = { "abc" }; /*curly braces are optional*/

where the size of the array is four (three characters with a null byte
appended). The following:

char cb[3] = "abc";

is valid; however, in this case the null byte is discarded. But:

char cc[2] = "abc";

is erroneous because there are more initializers than the array can hold.

Arrays may be initialized similarly with wide characters:

wchar_t wc[] = L"abc";

Initializing subaggregates (for example, arrays of arrays) requires the proper
placement of braces. For example,

int ia [4] [2]

1,
2,
3,
4

} ;

initializes the first two rows of ia (ia [0] [0] I ia [0] [1], ia [1] [0] ,

and ia [1] [1]), and initializes the rest to o. This is a minimally bracketed
initializa tion.

The Parts of C 117

Note that a similar fully bracketed initialization yields a different result:

int ia [4] [2]

} ;

{l },

{2 },

{3 },

{4 },

initializes the first column of ia (ia [0] [0], ia [1] [0], ia [2] [0], and
i a [3] [0]), and initializes the rest to o.

Mixing the fully and minimally bracketed styles may lead to unexpected
results. Use one style or the other consistently.

5.6 Statements

118

Expression Statement

I expression;

The expression is executed for its side effects, if any (such as assignment or
function call).

Compound Statement

declaration-listopt
statement-listopt

• Delimited by { and }.

• May have a list of declarations.

• May have a list of statements.

• May be used wherever statement appears below.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Selection Statements

if

(expression)
statement

• If expression evaluates to nonzero (true), statement is executed.

• If expression evaluates to zero (false), control passes to the statement
following statement.

• The expression must have scalar type.

else

i f (expressionl)
statementl

e 1 s e if (expression2)
statement2

else
statement3

• If expressionl is true, statementl is executed, and control passes to the
statement following statement3. Otherwise, expression2 is evaluated.

• If expression2 is true, statement2 is executed, and control passes to the
statement following statement3. Otherwise, statement3 is executed, and
control passes to the statement following statement3.

• An else is associated with the lexically nearest if that has no else and
that is at the same block level.

switch

I switch (expression)
statement

• Control jumps to or past statement depending on the value of expression.

• expression must have integral type.

The Parts of C 119

120

• Any optional case is labeled by an integral constant expression.

• If a defaul t case is present, it is executed if no other case match is found.

• If no case matches, including defaul t, control goes to the statement
following statement.

• If the code associated with a case is executed, control falls through to the
next case unless a break statement is included.

• Each case of a switch must have a unique constant value after conversion to
the type of the controlling expression. In practice, statement is usually a
compound statement with multiple cases, and possibly a defaul t; the
description above shows the minimum usage. In the following example,
flag gets set to 1 if i is 1 or 3, and to 0 otherwise:

switch (i)
case 1:
case 3:

flag 1;
break;

default:
flag = 0;

Iteration Statements

while

I while (expression)
statement

This sequence is followed repetitively:

• expression is evaluated.

• If expression is non-zero, statement is executed.

• If expression is zero, statement is not executed, and the repetition stops.

• expression must have scalar type.

SPARCompilers C 2.0 Programmer's Guide-October 1992

do-while

statement I do

while (expression);

This sequence is followed repetitively:

• statement is executed.

• expression is evaluated.

• If expression is zero, repetition stops.

(do-while tests loop at the bottom; while tests loop at the top.)

for

for (expressionl; expression2; expression3)
statement

• expressionl initializes the loop.

• expression2 is tested before each iteration.

• If expression2 is true:
o statement is executed.
o expression3 is evaluated.
o Loop until expression2 is false (zero).

• Any of expressionl, expression2, or expression3 may be omitted, but not the
semicolons.

• expressionl and expression3 may have any type; expression2 must have scalar
type.

The Parts of C 121

122

Jump Statements

goto

I goto identifier;

• Goes unconditionally to statement labeled with identifier.

• Statement is labeled with an identifier followed by a colon, as in:

I A2: x = 5;

• Useful to break out of nested control flow statements.

• Can only jump within the current function.

break
Terminates nearest enclosing swi tch, while, do, or for statement. Passes
control to the statement following the terminated statement. Example:

for (i=O; i<n; i++) {
if ((a[i] = b[i]) = = 0)

break; /* exit for */

continue
Goes to top of smallest enclosing while, do, or for statement, causing it to

reevaluate the controlling expression. A for loop's expression3 is evaluated
before the controlling expression. Can be thought of as the opposite of the
break statement. Example:

for (i=O; i<n; i++)
if (a[i] != 0)

continue;
a[i] = b[i];
k++;

SPARCompilers C 2.0 Programmer's Guide-October 1992

return

r~eturn;
return expression;

• return by itself exits a function.

• return expression exits a function and returns the value of expression. For
example:

return a + bi

5.7 Portability Considerations
Certain parts of C are inherently machine dependent. The following list of

potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating point
arithmetic and integer division have proven in practice to be not much of a
problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the
others are only minor problems.

The number of variables declared with register that can actually be placed
in registers varies from machine to machine as does the set of valid types.
Nonetheless, the compilers all do things properly for their own machine;
excess or invalid register declarations are ignored.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified. For example, in
the expression

I a[i] = b[i++]

the value of i could be incremented after b [i] is fetched, but before a [i] is
evaluated and assigned to, or it could be incremented after the assignment.

The value of a multi-character character constant may be different for different
machines.

The Parts of C 123

124

Fields are assigned to words, and characters to integers, right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an
in t pointer to a char pointer and inspecting the pointed-to storage) but must
be accounted for when conforming to externally imposed storage layouts.

The 1 in t tool is useful for finding program bugs and non-portable constructs.
For information on how to use lint, see the Profiling Tools manual

SPARCompilers C 2.0 Programmer's Guide-October 1992

6.1 Introduction

C Error Messages

This chapter contains the text and explanation for all the warning and error
messages produced by the ANSI C compiler.

Note - The compiler will display many of the messages shown here only when
used with the cc -v option or ace -vc option. With this option, the compiler
performs stricter semantics checking and, therefore, displays more diagnostic
messages.

lint (1) is a program that checks your C code for errors. In many cases, lint
will warn you about incorrect, dangerous, or non-standard code that the
compiler will not necessarily flag. We strongly recommend that you run 1 in t
on your source code before compiling.

Many warning and error messages are common to both 1 in t and the compiler.
The manual Profiling Tools contains a chapter on warning messages produced
only by lint (Le., those not also produced by the compiler).

125

The message entries are formatted as follows:

Table 6-1 Explanation of Compiler Diagnostics

Entry Comment

n extra byte (s) in string literal initializer ignored Text of message.

Type: Warning Options: all Type of message and command-line options
which must be set for the message to appear
(" all" indicates that the message is
independent of options).

A string literal that initializes a character array contains n more charac- Explanation of message.
ters than the array can hold.

char ca[3] = "abed" ; Example of code that might generate the
message.

Messages in this chapter are listed in alphabetic order according to the first
letter in the message. Symbols (but not numbers) are not used for ordering.
Therefore a messages such as

#elif has no preceding #if

will be found under the letter E, as will the message

")" expected

When an error occurs, the error message is preceded by a file name and line
number. The line number is usually the line on which a problem has been
diagnosed. Occasionally the compiler must read the next token before it can
diagnose a problem, in which case the line number in the message may be a
higher line number than that of the offending line.

Note that lint(1) issues all of the messages listed in this chapter, and
additional messages about potential bugs and portability problems.

Message Types and Applicable Options

Each message description includes a Type and an Options field as follows:

Type

126 SPARCompilers C 2.0 Programmer's Guide-October 1992

indicates whether the message is a warning, an error, a fatal error, or a
combination of error types (see below).

Options
indicates which compiler command options must be set for the message to
appear. "all" implies that the message is independent of compiler options.

The following paragraphs explain the differences between warnings, errors,
and fatals.

Warning messages, in which the word warning: appears after the file name
and line number, provide useful information without interrupting compilation.
They may diagnose a programming error, or a violation of C syntax or
semantics, for which the compiler will nevertheless generate valid object code.

Error messages, which lack the warning: prefix, will cause the compiler
command to fail. Errors occur when the compiler has diagnosed a serious
problem that makes it unable to understand the program or to continue to
generate correct object code. It will attempt to examine the rest of your
program for other errors, however. The compiler will not link your program
if the compiler diagnoses errors.

Fatal errors cause the compiler to stop immediately and return an error
indication to the compiler command. A fatal error message is prefixed with
the word fatal:. Such messages typically apply to start-up conditions, such
as being unable to find a source file.

Operator Names in Messages

Some messages include the name of a compiler operator, as in:

operands must have arithmetic type: op "+"

Usually the operator in the message is a familiar C operator. At other times the
compiler uses its internal name for the operator, like u- . "Operator Names" on
page 232 lists these internal names and describes what they mean.

C Error Messages 127

6.2 Messages

a is invalid in # <number> directive

Type: Error I Options: All

The line number in a line number information directive (which the compiler uses for
internal communication) must be a positive, non-zero value.

a "foo.c"

a is invalid in #line directive

Type: Error I Options: All

This diagnostic is similar to the preceding one, except the invalid line number appeared
in a #1 ine directive.

#line a

a cast does not yield an lvalue

Type: Warning, Error
I

Options: All

You may not apply a cast to the operand that constitutes the object to be changed in an
assignment operation. The diagnostic is a warning if the size of the operand type and
the size of the type being cast to are the same; otherwise it is an error.

f (void) {
int i;
(long) i = 5;
(short) i = 4;

}

128 SPARCompilers C 2.0 Programmer's Guide-October 1992

\a is ANSI C "alert" character

Type: Warning I Options: - Xt

In other (K&R) C compilers, '\a' was equivalent to 'a'. However, ANSI C defines '\a'
to be an alert character. In this implementation, the corresponding character code is 07,
the BEL character.

int c = '\a' ;

access through "void" pointer ignored

Type: Warning I Options: All

A pointer to void may not be used to access an object. You wrote an expression that
does an indirection through a (possibly qualified) pointer to void. The indirection is
ignored, although the rest of the expression (if any) is honored.

f (void) {
volatile void *vpl, *vp2;
* (vpl = vp2);/* assignment does get done */

}

ANSI C behavior differs; not modifying typedef with "modifier"

Type: Warning I Options: - Xa -Xc

A typedefed type may not be modified with the short, long, signed, or unsigned
type modifiers, although earlier versions of C compilers permitted it. modifier is ignored.
A related message is modi fying typedef with "modifier"; only qualifiers
allowed.

typedef int INT;
unsigned INT ui;

C Error Messages 129

ANSI C predefined macro cannot be redefined

Type: Warning I Options: All

The source code attempted to define or redefine a macro that is predefined by ANSI C.
The predefined macro is unchanged.

#define - FILE - "xyz.c"

ANSI C predefined macro cannot be undefined

Type: Warning I Options: All

The source code contains an attempt to undefine a macro that is predefined by ANSI C.

#undef FILE - -

ANSI C requires formal parameter before " ... "

Type: Warning I Options: -Xc -v

The K&R C implementation allows you to define a function with a variable number of
arguments and no fixed arguments. ANSI C requires at least one fixed argument.

f (...) {}

130 SPARCompilers C 2.0 Programmer's Guide-October 1992

ANSI C treats constant as unsigned: op "operator"

Type: Warning I Options: All

The type promotion rules for ANSI C are slightly different from those of previous ver
sions of K&R C. In the current release the default behavior is to duplicate the previous
rules. In future releases the default will be to use ANSI C rules. You may obtain the
ANSI C interpretation by using the -Xa option for the compiler command.
Previous K&R C type promotion rules were "unsigned-preserving." If one of the oper
ands of an expression was of unsigned type, the operands were promoted to a common
unsigned type before the operation was performed.
ANSI C uses "value-preserving" type promotion rules. An unsigned type is promoted
to a signed type if all its values may be represented in the signed type.
ANSI C also has a different rule from previous K&R C versions for the type of an integral
constant that implicitly sets the sign bit.
The different type promotion rules may lead to different program behavior for the oper
ators that are affected by the unsigned-ness of their operands:
The division operators: /, / =, %, %=.
The right shift operators: », »=.
The relational operators: <, <=, >, >=.
The warning message tells you that your program contains an expression in which the
behavior of operator will change in the future. You can guarantee the behavior you want
by inserting an explicit cast in the expression.

f (void) {
int i;
/* constant was integer in K&R C, unsigned in ANSI C */
i /= OxfOOOOOOO;

argument cannot have unknown size: arg #n

Type: Error I Options: All

An argument in a function call must have a completed type. You passed a struct, union,
or enum object whose type is incomplete.

f (void) {
struct s *st;
g(*st) ;

}

C Error Messages 131

132

argument does not match
remembered type: arg #n

Type: Warning Options: -v

At a function call, the compiler determined that the type of the argument passed to a
function disagrees with other information it has about the function. That other informa
tion comes from two sources:
• An old-style (non-prototype) function definition, or
• A function prototype declaration that has gone out of scope, but whose type informa
tion is still remembered.
The argument in question is promoted according to the default argument promotion
rules.
This diagnostic may be incorrect if the old-style function definition case applies and the
function takes a variable number of arguments.

void f(i)
int ii
{ }

void g(void)
{

f (" erroneous") i

argument is incompatible with

Type: Error

prototype: arg #n

I Options: All

You called a function with an argument whose type cannot be converted to the type in
the function prototype declaration for the function.

struct s {int Xi} qi

f (void) {
int g(int,int) i

g(3,q) i

}

SPARCompilers C 2.0 Programmer's Guide-October 1992

argument mismatch

Type: Warning I Options: All

The number of arguments passed to a macro was different from the number in the macro
definition.

#define twoarg(a,b) a+b
int i = twoarg(4) ;

argument mismatch: nl arg[s] passed, n2 expected

Type: Warning Options: -v

At a function call, the compiler determined that the number of arguments passed to a
function disagrees with other information it has about the function. That other informa-
tion comes from two sources:
• An old-style (non-prototype) function definition, or
.A function prototype declaration that has gone out of scope, but whose type informa-
tion is still remembered.
This diagnostic may be incorrect if the old-style function definition case applies and the
function takes a variable number of arguments.

extern int out_of_scope();
int f()
{ /* function takes no args */

extern int out_of_scope(int);
}

int g()
{

f (1) ; /* f takes no args */
out_of _scope(); /* out_of_scope expects one arg */

}

C Error Messages 133

array too big

Type: Error I Options: All

An array declaration has a combination of dimensions such that the declared object is too
big for the target machine.

int bigarray[1000] [1000] [1000];

asm() argument must be normal string literal

Type: Error I Options: All

The argument to an old-style asmO must be a normal string literal, not a wide one.

asm(L"wide string literal not allowed");

"#assert identifier (... " expected

Type: Error I Options: All

In a #assert directive, the token following the predicate was not the (that was
expected.

#assert system unix

"#assert identifier" expected

Type: Error I Options: All

In an #assert directive, the token following the directive was not the name of the
predicate.

#assert 5

134 SPARCompilers C 2.0 Programmer's Guide-October 1992

n#assertn missing II) II

Type: Error I Options: All

In a #assert directive, the parenthesized form of the assertion lacked a closing).

#assert system(unix

assignment type mismatch

Type: Warning, Error I Options: All

The operand types for an assignment operation are incompatible. The message is a
warning when the types are pointer types that do not match. Otherwise the message is
an error.

struct s { int Xi } sti
f (void) {

int ii

char *CPi

canst char *CCPi

i = sti
cp = CCPi

}

auto/register inappropriate here

Type: Error
I

Options: All

A declaration outside any function has storage class auto or register.

auto int ii

f(void) {
}

C Error Messages 135

automatic redeclares external: name

Type: Warning I Options: All

You have declared an automatic variable name in the same block and with the same
name as another symbol that is extern. ANSI C prohibits such declarations, but previ-
ous versions of K&R C allowed them. For compatibility with previous versions, refer-
ences to name in this block will be to the automatic.

f (void) {
extern int ii
int ii
}

bad file specification

Type: Error I Options: All

The file specifier in a # inc 1 ude directive was neither a string literal nor a well-formed
header name.

#include stdio.h

bad octal digit: * I digit*'

Type: Warning I Options: - Xt

An integer constant that began with a included the non-octal digit digit. An 8 is taken to
have value 8, and a 9 is taken to have value 9, even though they are invalid.

int i = 08i

136 SPARCompilers C 2.0 Programmer's Guide-October 1992

bad token in #error directive: token

Type: Error I Options: All

The tokens in a #error directive must be valid C tokens. The source program con-
tained the invalid token token.

#error "this is an invalid token

bad use of n#1I or "##" in macro #define

Type: Warning I Options: All

In a macro definition, a # or ## operator was followed by a # or ## operator.

#define bug(s) # # s
#define bug2(s) # ## s

base type is really "type tag": name

Type: Warning
I

Options: -Xt

A type was declared with a struct, union, or enum type specifier and with tag and then
used with a different type specifier to declare type is the type specifier that you used for
the original declaration.
For compatibility with previous releases of K&R C, the compiler treats the two types as
being the same. In ANSI C (with the -Xa or -Xc options), the types are different.

struct s { int x,y,z; } ;

f (void) {
union s foo;
}

C Error Messages 137

bit-field size <= 0: name

Type: Error I Options: All

The declaration for bit-field name specifies a zero or negative number of bits.

struct s { int x:-3; } ;

bit-field too big: name

Type: Error I Options: All

The declaration for bit-field name specifies more bits than will fit in an object of the
declared type.

struct s { char c:20; } ;

"break" outside loop or switch

Type: Error I Options: All

A function contains a break statement in an inappropriate place, namely outside any
loop or switch statement.

f (void) {
break;

}

138 SPARCompilers C 2.0 Programmer's Guide-October 1992

cannot access member of non-struct/union object I
I

Type: Error I Options: All

The structure or union member must be completely contained within the left operand of
the. operator.

f (void) {
struct s { int Xi } i

char Ci

c.x = Ii

}

cannot begin macro replacement with "##"

Type: Warning I Options: All

The ## operator is a binary infix operator and may not be the first token in the macro
replacement list of a macro definition.

#define mac(s) ## s

cannot concatenate wide and regular string literals

Type: Warning, Error I Options: All

Regular string literals and string literals for wide characters may be concatenated only if
they are both regular or both wide. The compiler issues a warning if a wide string literal
is followed by a regular one (and both are treated as wide); it issues an error if a regular
string literal is followed by a wide one.

#include <stddef.h>
wchar _t wa[] = L"abc" "def" i
char a [] = "abc" L"def"i

C Error Messages 139

cannot declare array of functions or void

Type: Error I Options: All

You have attempted to declare an array of functions or an array of void.

int f [5] () ;

cannot define "defined"

Type: Warning I Options: All

The predefined preprocessing operator de fined may not be defined as a macro name.

#define defined xyz

cannot dereference non-pointer type

Type: Error I Options: All

The operand of the * (pointer dereference) operator must have pointer type. This diag-
nostic is also issued for an array reference to a non-array.

f (void) {
int i;
*i = 4;
i[4] = 5;

}

140 SPARCompilers C 2.0 Programmer's Guide-October 1992

cannot do pointer arithmetic on operand of unknown size

Type: Error I Options: All

An expression involves pointer arithmetic for pointers to objects whose size is unknown.

f (void) {
struct s *PSi

g(ps+l) i

}

cannot end macro replacement with "#11 or "##"

Type: Warning I Options: All

A # or ## operator may not be the last token in the macro replacement list of a macro
definition.

#define macl(s) abc ## s ##
#define mac2(s) s #

cannot find include file: filename

Type: Error I Options: All

The file filename specified in an #include directive could not be located in any of the
directories along the search path.

cannot have void object: name

Type: Error I Options: All

You may not declare an object of type void.

void Vi

C Error Messages 141

cannot initialize "extern" declaration: name

Type: Error I Options: All

Within a function, the declaration of an object with extern storage class may not have
an initializer.

f(void) {
extern int i = 1;

}

cannot initialize function: name

Type: Error I Options: All

A name declared as a function may not have an initializer.

int f (void) = 3 ;

cannot initialize parameter: name

Type: Error I Options: All

Old-style function parameter name may not have an initializer.

int f(i)
int i = 4; {}

cannot initialize typedef: name

Type: Error
I

Options: All

A typedef may not have an initializer.

typedef int INT = 1;

142 SPARCompilers C 2.0 Programmer's Guide-October 1992

cannot open file: explanation

Type: Fatal I Options: all

The compiler was unable to open an input or output file. Usually this means the file
name argument passed to the cc command was incorrect. explanation describes why file
could not be opened.

cc badname.c -c x.c

cannot open include file (too many open files) : filename

Type: Error I Options: All

The compiler could not open a new include file, because too many other include files are
already open. Such a situation could arise if you have that includes that includes and so
on. The compiler supports at least eight levels of "nesting," up to a maximum defined
by the operating system. The most likely reason for the diagnostic is that at some point
an include file includes a file that had already been included. For example, this could
happen if includes which includes again.

cannot recover from previous errors

Type: Error I Options: All

Earlier errors in the compilation have confused the compiler, and it cannot continue to
process your program. Please correct those errors and try again.

C Error Messages 143

cannot return incomplete type

Type: Error I Options: All

When a function is called that returns a structure or union, the complete declaration for
the structure or union must have been seen already. Otherwise this message results.

f(void) {
struct s g();
g();

}

cannot take address of bit-field: name

Type: Error I Options: All

You cannot take the address of a bit-field member of a structure or union.

f (void) {
struct s { int x:3, y:4; } st;
int *ip = &st.y;

}

cannot take address of register: name

Type: Warning, Error
I

Options: all

You attempted to take the address of name, which is an object that was declared with the
register storage class. You are not permitted to do so, whether or not the compiler actu-
ally allocates the object to a register. The attempt to take an object's address may have
been implicit, such as when an array is dereferenced. The diagnostic is an error if a regis-
ter was allocated for the object and a warning otherwise.

f (void) {
register int i;
register int ia[5];
int *ip = &i;
ia[2] = 1;

}

144 SPARCompilers C 2.0 Programmer's Guide-October 1992

cannot take sizeof bit-field: name

Type: Warning I Options: All

The sizeof operator may not be applied to bit-fields.

struct s { int x:3; } st;
int i = sizeof(st.x) ;

cannot take sizeof function: name

Type: Error I Options: All

The sizeof operator may not be applied to functions.

int f (void) ;
int i = sizeof(f) ;

cannot take sizeof void

Type: Error I Options: All

The sizeof operator may not be applied to type void.

void v (void) ;
int i = sizeof (v()) ;

cannot undefine "defined"

Type: Warning 1 Options: All

The predefined preprocessing operator de fined may not be undefined.

#undef defined

C Error Messages 145

146

case label affected by conversion: value

Type: Warning I Options: -v

The value for the case label cannot be represented by the type of the controlling expres
sion of a swi tch statement. If the type of the case expression and the type of the con
trolling expression have the same size, and the actual bit representation of the case
expression is unchanged, but its interpretation is different. For example, the controlling
expression may have type in t and the case expression may have type uns i gned in t .
In the diagnostic, value is represented as a hexadecimal value if the case expression is
unsigned, decimal if it is signed.
In the examplebelow, Oxffffffffu is not representable as an into When the case
expression is converted to the type of the controlling expression its effective value is -l.
That is, the case will be reached if i has the value -1, rather than Oxffffffff.

f (void) {
int ii

switch (i){
case Oxffffffffu:

"case" outside switch

Type: Error I Options: All

A case statement occurred outside the scope of any switch statement.

f (void) {
case 4 : i

}

SPARCompilers C 2.0 Programmer's Guide-October 1992

character constant too long

Type: Warning I Options: All

The character constant contains too many characters to fit in an integer. Only the first
four characters of a regular character constant, and only the first character of a wide
character constant, are used. (Character constants that are longer than one character are
non-portable.)

int i = 'abcde'i

character escape does not fit in character

Type: Warning I Options: All

A hexadecimal or octal escape sequence in a character constant or string literal produces
a value that is too big to fit in an unsigned char. The value is truncated to fit.

char *p = "\xlff\400"i

character escape does not fit in wide character

Type: Warning I Options: All

This message diagnoses a condition similar to the previous one, except the character con-
stant or string literal is prefixed by L to designate a wide character constant or string lit-
eral. The character escape is too large to fit in an object of type wchar_t and is truncated
to fit.

C Error Messages 147

corrunent does not concatenate tokens

Type: Warning I Options: -Xa, -xc

In previous releases of K&R C, it was possible to "paste" two tokens together by juxta-
posing them in a macro with a comment between them. This behavior was never
defined or guaranteed. ANSI C provides a well-defined operator, ##, that serves the
same purpose and should be used. This diagnostic warns that the old behavior is not
being provided.

#define PASTE(a,b) a/*GLUE*/b
int PASTE (prefix, suffix) = Ii /* does not create "prefixsuffix" */

corrunent is replaced by "##"

Type: Warning I Options: -Xt

This message is closely related to comment does not concatenate tokens. The diagnos-
tic tells you that the compiler is treating an apparent concatenation as if it were the ##
operator. The source code should be updated to use the new operator.

#define PASTE(a,b) a/*GLUE*/b
int PASTE (prefix, suffix) = Ii /* creates "prefixsuffix" */

canst object should have initializer: name

Type: Warning I Options: -v

A cons t object cannot be modified. If you do not supply an initial value, the object will
have a value of zero, or for automatics its value will be indeterminate.

canst int ii

148 SPARCompilers C 2.0 Programmer's Guide-October 1992

"continue" outside loop

Type: Error I Options: All

Your program contains a continue statement outside the scope of any loop.

f (void) {
continue;

}

controlling expressions must have scalar type

Type: Error I Options: All

The expression for an if, for, while, or do-while must be an integral, floating-point,
or pointer type.

f (void) {
struct s {int Xi} st;
while (st) {}

}

conversion of double to float is out of range

Type: Warning, Error I Options: All

A double expression has too large a value to fit in a float. The diagnostic is a warn-
ing if the expression is in executable code and an error otherwise.

float f = le300 * le300;

C Error Messages 149

conversion of double to integral is out of range

Type: Warning, Error I Options: All

A double constant has too large a value to fit in an integral type. The diagnostic is a
warning if the expression is in executable code and an error otherwise.

int i = lelOOi

conversion of floating-point constant to type out of range

Type: Error I Options: All

A floating-point constant has too large a value to fit in type type.

float f = le300fi

-D option argument not an identifier

Type: Error 1 Options: All

An identifier must follow the -D cc command line option.

cc -D3b2 -c x.c

-D option argument not followed by II_II

Type: Warning I Options: All

If any tokens follow an identifier in a -D command line option to the cc command, the
first such token must be =.

cc -DTWO+2 -c x.c

150 SPARCompilers C 2.0 Programmer's Guide-October 1992

declaration hides parameter: name

Type: Warning I Options: All

You have declared an identifier name with the same name as one of the parameters of
the function. References to name in this block will be to the new declaration.

int f(int i,int INT) {

int i;
typedef int INT;

}

declaration introduces new type in ANSI c: type tag

Type: Warning I Options: -Xt

struct, union, or enum tag has been redeclared in an inner scope. In previous ver-
sions of K&R C, this tag was taken to refer to the previous declaration of tag. In ANSI C,
the declaration introduces a new When the -Xt option is selected, the compiler repro-
duces the earlier behavior.

struct sl { int x; } ;

f(void) {
struct sl;
struct s2 { struct sl *ps1; } ; /* sl refers to line 1 */
struct sl { struct s2 *ps2; } ;

}

"default" outside switch

Type: Error I Options: All

A default label appears outside the scope of a switch statement.

f (void) {
default: ;

}

C Error Messages 151

#define requires macro name

Type: Error I Options: All

A #define directive must be followed by the name of the macro to be defined.

#define +3

digit sequence expected after n#line n

Type: Error I Options: All

The compiler expected to find the digit sequence that comprises a line number after
1 ine, but the token it found there is either an inappropriate token or a digit sequence
whose value is zero.

#line 09a

directive is an upward-compatible ANSI C extension

Type: Warning 1 Options: -Xc

This diagnostic is issued when the compiler sees a directive that it supports, but that is
not part of the ANSI C standard, and -Xc has been selected.

#assert system (unix)

152 SPARCompilers C 2.0 Programmer's Guide-October 1992

directive not honored in macro argument list

Type: Warning, Error I Options: All

A directive has appeared between the ()'s that delimit the arguments of a function-like
macro invocation. The following directives are disallowed in such a context: #ident,
#include, #line, #undef. The diagnostic is a warning if it appears within a false
group of an if-group, and an error otherwise.

#define flm(a) a+4
int i = flm(
#ifdef flm/* allowed */

#undef flm/* disallowed: error */
4

#else/* allowed */
#undef flm/* disallowed: warn * /
6

#endif/* allowed */
) ;

division by a

Type: Warning, Error I Options: All

An expression contains a division by zero that was detected at compile-time. If the divi-
sion is part of a #if or #elif directive, the result is taken to be zero.
The diagnostic is a warning if the division is in executable code, an error otherwise.

f (void) {

int i = 1/0;
}

C Error Messages 153

154

dubious type declaration; use tag only: tag

Type: Warning I Options: All

You declared a new struct, union, or enum type with tag tag within a function proto
type declaration or the parameter declaration list of an old-style function definition, and
the declaration includes a declarator list for type. Calls to the function would always
produce a type mismatch, because the tag declaration goes out of scope at the end of the
function prototype declaration or definition, according to ANSI C's scope rules. You
could never declare an object of that type outside the function. You should declare the
struct, union, or enum ahead of the function prototype or function definition and
then refer to it just by its tag.

The example below should appear as:

struct s {int Xi}i

int f(struct sst)
{}

int f(struct s {int Xi} st)
{}

dubious escape: \q

Type: Warning I Options: All

Only certain characters may follow \ in string literals and character constants; q was
not one of them. ANSI C ignores the \.

int i = '\q'i

dubious escape: \ <hex value>

Type: Warning I Options: All

This message diagnoses the same condition as the preceding one, but the character that
follows \ in the program is a non-printing character. The hex-value between the brack-
ets in the diagnostic is the character's code, printed as a hexadecimal number.

SPARCompilers C 2.0 Programmer's Guide-October 1992

dubious reference to type typedef: typedef

Type: Warning I Options: All

This message is similar to dubi ous tag in function prototype: type tag. A
function prototype declaration refers to a type union, struct, or enum typedef with
name typedef. Because the struct, union, or enum has been declared within a func-
tion, it could not be in scope when you define the function whose prototype is being
declared. The prototype declaration and function definition thus could never match.

f (void) {
struct s { int Xi } i

typedef struct s STi
extern int g(ST, struct s) i

}

dubious static function at block level

Type: Warning J Options: -xc

You declared a function with storage class static at block scope. The ANSI C stan-
dard says that the behavior is undefined if you declare a function at block scope with an
explicit storage class other than extern. Although K&R C allowed you to declare func-
tions this way, other implementations might not, or they might attach a different mean-
ing to such a declaration.

void
f (void) {

static void g (void) i

}

C Error Messages 155

dubious tag declaration: type tag

Type: Warning
I

Options: All

You declared a new struct, union, or enum type with tag tag within a function proto-
type declaration or the parameter declaration list of an old-style function definition.
Calls to the function would always produce a type mismatch, because the tag declaration
goes out of scope at the end of the function declaration or definition, according to ANSI
C's scope rules. You could never declare an object of that type outside the function.

int f(struct s *) i

dubious tag in function prototype: type tag

Type: Warning I Options: All

This message is similar to the previous one. A function prototype declaration refers to a
struct, union, or enum type with tag tag. The tag has been declared within a func-
tion. Therefore it could not be in scope when you define the function whose prototype is
being declared. The prototype declaration and function definition thus could never
match.

f (void) {
struct s {int Xi}i

int g(struct s *) i

}

156 SPARCompilers C 2.0 Programmer's Guide-October 1992

duplicate case in switch: value

Type: Error I Options: All

There are two case statements in the current swi tch statement that have the same
constant value value.

f (void) {
int i = 5;
switch(i) {

case 4 :
case 4 :

break;
}

}

duplicate "default" in switch

Type: Error I Options: All

There are two defaul t labels in the current swi tch statement.

f (void) {
int i = 5;

switch(i) {

default:
default:

break;
}

}

C Error Messages 157

duplicate formal parameter: name

Type: Warning I Options: All

In a function-like macro definition, name was used more than once as a formal parame-
ter.

#define add3(a,a,c} a + b + c

duplicate member name: member

Type: Error I Options: All

A struct or union declaration uses the name member for more than one member.

union u {

int i;
float i;

} ;

#elif follows #else

Type: Warning I Options: All

A preprocessing if-section must be in the order #if, optional #elif's, followed by optional
#else and #endif. The code contains a #elif after the #else directive.

#if defined(ONE}
int i = 1;

#elif defined (TWO)
int i = 2 ;

#else
int i = 3 ;

#elif defined (FOUR)
int i = 4;

#endif

158 SPARCompilers C 2.0 Programmer's Guide-October 1992

#elif has no preceding #if

Type: Error I Options: All

An #elif directive must be part of a preprocessing if-section, which begins with a
if directive. The code in question lacked the # if.

#elif defined (TWO)
int i = 2;

#endif

#elif must be followed by a constant expression

Type: Error I Options: All

There was no expression following the #elif directive.

#if defined (ONE)
int i = 1;

#elif
int i = 4;

#endif

#else has no preceding #if

Type: Error I Options: All

An #else directive was encountered that was not part of a preprocessing if-section.

#else
int i =7;

#endif

C Error Messages 159

embedded NUL not permitted in asm()

Type: Error I Options: All

The string literal that appears in an old-style asmO contains an embedded NUL character
(character code 0).

asm("this is an old-style asm with embedded NUL: \0") ;

empty #assert directive

Type: Error I Options: All

An #assert directive contained no predicate name to assert.

#assert

empty constant expression after macro expansion

Type: Error I Options: All

An #if or #elif directive contained an expression that, after macro expansion, con-
sisted of no tokens.

#define EMPTY
#if EMPTY

char *mesg = "EMPTY is non-empty" ;
#endif

empty #define directive line

Type: Error I Options: All

A #define directive lacked both the name of the macro to define and any other
tokens.

#define

160 SPARCompilers C 2.0 Programmer's Guide-October 1992

empty file name

Type: Error I Options: All

The file name in a #include directive is null.

#include <>

empty header name

Type: Error I Options: All

This diagnostic is similar to the preceding one, but the null file name arises after macro
substitution.

#define NULLNAME <>
#include NULLNAME

empty predicate argument

Type: Error I Options: All

The compiler expects to find tokens between the ()'s that delimit a predicate's assertions
in a #unassert directive. None were present.

#unassert machine()

empty translation unit

Type: Warning I Options: All

The source file has no tokens in it after preprocessing is complete. The ANSI C standard
requires the compiler to diagnose a file that has no tokens in it.

#ifdef COMPILE
int token;

#endif

C Error Messages 161

empty #unassert directive

Type: Error I Options: All

An #unassert contained no predicate name to discard.

#unassert

empty #undef directive, identifier expected

Type: Error I Options: All

An #unde f directive lacked the name of a macro to "undefine./I

#undef

{}-enclosed initializer required

Type: Warning
I

Options: All

When you initialize an aggregate, you must enclose the initializer in { }'s, except when
you initialize a character array with a string literal or an automatic structure with an
expression.

int ia[5] = Ii
f (void) {

struct s { int X,Yi } st = Ii
}

162 SPARCompilers C 2.0 Programmer's Guide-October 1992

/* encountered inside a comment

Type: Warning
I

Options: -v

There is a / * inside a comment.

/* This is comment
that has another /* inside
of the comment

*/

end-of-loop code not reached

Type: Warning I Options: All

You have written a loop in such a way that the code at the end of the loop that the com-
piler generates to branch back to the beginning of the loop is not reachable and will
never be executed.

f (void) {
int i = 1;
while (i) {

return 4;
}

}

C Error Messages 163

enum constants have different types: op "operator"

Type: Warning I Options: -v

You have used relational operator to compare enumeration constants from two different
enumeration types. This may indicate a programming error. Note also that the sense of
the comparison is known at compile time, because the constants' values are known.

enum el { ecll, ec12 } evl;
enum e2 { ec21, ec22 } ev2;
void v(void) {

if (ecll > ec22)
;

}

enum type mismatch: arg #n

Type: Warning Options: -v

The program is passing an enumeration constant or object to a function for which a pro-
totype declaration is in scope. The passed argument is of a different enumerated type
from the one in the function prototype, which may indicate a programming error.

enum el { ecll } evl;
enum e2 { ec21 } ev2;
void ef(enum el);

void v(void) {
ef(ec21) ;

}

164 SPARCompilers C 2.0 Programmer's Guide-October 1992

enum type mismatch: op "operator"

Type: Warning
I

Options: -v

This message is like the previous one. One of the operands of operator is an enumeration
object or constant, and the other is an enumeration object or constant from a different
enumerated type.

enum el { ecll, ec12 } evli
enum e2 { ec21, ec22 } ev2i
void v(void) {

if (evl > ec22)
i

}

enumeration constant hides parameter: name

Type: Warning I Options: All

A declaration of an enumerated type within a function includes an enumeration constant
with the same name as parameter name. The enumeration constant hides the parameter.

int
f(int i){

enum e { I, k, j, i } i

}

enumerator used in its own initializer: name

Type: Warning I Options: All

When setting the value of enumerator name in an enumeration type declaration, you
have used name in the expression. ANSI C's scope rules take name in the expression to
be whatever symbol was in scope at the time.

int ii

f (void) {
enum e { i = i+l, j, k }i/* uses global i in i+l */

}

C Error Messages 165

enumerator value overflows I NT_MAX (2147483647)

Type: Error I Options: All

The value for an enumeration constant overflowed the maximum integer value.

enum e { e1=2147483647, e2 };/* overflow for e2 */

EOF in argument list of macro: name

Type: Error I Options: All

The compiler reached end-of-file while reading the arguments for an invocation of func-
tion-like macro

#define mac (a)
mac (arg1

EOF in character constant

Type: Error I Options: All

The compiler encountered end-of-file inside a character constant.

EOF in comment

Type: Warning I Options: All

The compiler encountered end-of-file while reading a comment.

166 SPARCompilers C 2.0 Programmer's Guide-October 1992

EOF in string literal

Type: Error I Options: All

The compiler encountered end-of-file inside a string literal.

#error: tokens

Type: Error I Options: All

A #error directive was encountered in the source file. The other tokens in the direc-
tive are printed as part of the message.

#define ONE 2
#if ONE != 1
#error ONE != 1
#endif

error writing output file

Type: Error I Options: All

An output error occurred while the compiler attempted to write its output file or a tem-
porary file. The most likely problem is that a file system is out of space.

II) II expected

Type: Error I Options: All

In an #unassert directive, the assertion of a predicate to be dropped must be
enclosed in (~).

#unassert system(unix

C Error Messages 167

II (II expected after "# identifier"

Type: Error I Options: All

When the # operator is used in a #if or #elif directive to select a predicate
instead of a like-named macro, the predicate must be followed by a parenthesized list of
tokens.

#assert system (unix)
#define system "unix"
#if #system

char *systype = system;
#endif

" (II expected after first identifier

Type: Error I Options: All

In an #unassert directive, the assertion of a predicate to be dropped must be
enclosed in (~) .

#unassert system unix

extern and prior uses redeclared as static: name

Type: Warning I Options: -Xc, -v

You declared name at file scope as an extern, then later declared the same object or
function as s ta tic. ANSI C rules require that the first declaration of an object or func-
tion give its actual storage class. K&R C accepts the declaration and treats the object or
function as if the first declaration had been static.

extern int i;
static int i;

168 SPARCompilers C 2.0 Programmer's Guide-October 1992

n extra bytes (s) in string literal initializer ignored

Type: Warning I Options: All

A string literal that initializes a character array contains n more characters than the array
can hold.

char ca[3] = "abcd"i

first operand must have scalar type: op II?: II

Type: Error I Options: All

The conditional expression in a ? : expression must have scalar (integral, floating-
point, or pointer) type.

struct s { int Xi } sti

f (void) {
int i = st ? 3 : 4i

}

floating-point constant calculation out of range: op "operator"

Type: Warning, Error I Options: All

The compiler detected an overflow at compile time when it attempted the operator oper-
ation between two floating-point operands. The diagnostic is a warning if the expres-
sion is in executable code and an error otherwise.

double dl = le300 * le300i

C Error Messages 169

floating-point constant folding causes exception

Type: Error I Options: All

This message is like the previous one, except that the operation caused a floating-point
exception that causes the compiler to exit.

formal parameter lacks name: param #n

Type: Error I Options: All

In a function prototype definition, you failed to provide a name for the parameter.

int f(int) {
}

function cannot return function or array

Type: Error I Options: All

You declared a function whose return type would be a function or array, rather than, per-
haps, a pointer to one of those.

int f (void) [] i / * function returning array of ints */

function designator is not of function type

Type: Error I Options: All

You used an expression in a function call as if it were the name of a function or a pointer
to a function when it was not.

f (void) {
char *Pi

p() i

}

170 SPARCompilers C 2.0 Programmer's Guide-October 1992

function expects to return value: name

Type: Warning ~~I-O~fun~ I
The current function was declared with a ty~e, but you used a return statemen~-wilhl
no return value expression. I

~---~

__ f IV_O_:_. :_~_~_r_n __ ; ___ .J

I function has no return statement: name

I Type: Warning I Options: -v

I The function should include a return statement.

I #include <stdio.h>
main (void)
{

(void) printf("Do the hippy-hippy shake.\n");

function prototype parameters must have types

Type: Warning
I Options: All

A function prototype declaration cannot contain an identifier list; it must declare types.
The identifier list is ignored.

int f (i) ;
--

C Error Messages 171

identifier expected after 11#11

Type: Error I Options: All

The compiler expected to find an identifier, a predicate name, after a # in a conditional
compilation directive, and none was there.

#if #system(unix) II #
char *os = "sys" i

#endif

identifier expected after #undef

Type: Error
I

Options: All

A #unde f must be followed by the name of the macro to be undefined. The token fol-
lowing the directive was not an identifier.

#undef 4
--.------------------------~~-

identifier or " - " expected after -A

Type: Error I Options: All

The c c command line argument -A must be followed by the name of a predicate to
assert, or by a -, to eliminate all predefined macros and predicates. The token follow-
ing -A was neither of these.

cc -A3b2 -c x.c

172 SPARCompilers C 2.0 Programmer's Guide-October 1992

identifier or digit sequence expected after "#"

Type: Error I Options: All

An invalid token or non-decimal number follows the # that introduces a preprocessor
directive line.

#Ox12

identifier redeclared: name

Type: Warning I Options: All

You declared the identifier name in a way that is inconsistent with a previous appear
ance of or you declared name twice in the same scope.
Previous releases of K&R C were forgiving of inconsistent redeclarations if the types
were "nearly" the same (such as int and long on a Sun SPARCstation). ANSI C con
siders the types to be different.

int Xi

long Xi

int Yi
double Yi

Declarations of functions with and without argument information can often lead to con
fusing diagnostics. The following example illustrates.

int f (char) i

int f () i

According to ANSI C's type compatibility rules, a function declaration that lacks type
information (i.e., one that is not a function prototype declaration) is compatible with a
function prototype only when each parameter type is unchanged by the default argu
ment promotion rules. In the example, char would be affected by the promotion rules
(it would be promoted to int). Therefore the two declarations have incompatible types.

C Error Messages 173

identifier redeclaredi ANSI C requires "static" : name

Type: Warning I Options: All

You declared name twice at file scope. The first one used storage class static, but the
second one specified no storage class. ANSI C's rules for storage classes require that all
redeclarations of name after the first must specify static.

static int ii
int ii

identifier redefined: name

Type: Error I Options: All

You have defined name more than once. That is, you have declared an object more than
once with an initializer, or you have defined a function more than once.

int i = Ii
int i = 1i

#if must be followed by a constant expression

Type: Warning I Options: All

No expression appeared after a #if directive.

#if
int i = 4i

#endif

174 SPARCompilers C 2.0 Programmer's Guide-October 1992

#if on line n has no #endif

Type: Error I Options: All

The compiler reached end of file without finding the #endif that would end the prepro-
cessing if-section that began with the if directive that was on line The if directive is one
of #if, #ifdef, or #ifndef.

#ifdef NOENDIF
int i = 1 ;

#if-less #endif

Type: Error I Options: All

An #endif directive was encountered that was not part of a preprocessing if-section.

int i = 1 ;
#endif

#ifdef must be followed by an identifier

Type: Warning I Options: All

A #ifdef preprocessing directive must be followed by the name of the macro to check
for being defined. The source code omitted the identifier. The #ifdef is treated as if it
were false.

#ifdef
int i = 1 ;

#endif

C Error Messages 175

#ifndef must be followed by an identifier

Type: Warning I Options: All

The #ifndef directive must be followed by the identifier that is to be tested for having
been defined.

#ifndef
int i = 5;

#endif

ignoring malformed #pragma fini

Type: Warning
I

Options: All

The compiler encountered a #pragma f ini directive that did not have the form
shown. The erroneous directive is ignored.

#pragma fini foo

ignoring malformed #pragma init

Type: Warning I Options: All

The compiler encountered a #pragma ini t directive that did not have the form
shown. The erroneous directive is ignored.

#pragma init foo

ignoring malformed #pragma int_to_unsigned symbol

Type: Warning I Options: All

The compiler encountered a #pragma int_to_unsigned directive that did not have
the form shown. The erroneous directive is ignored.

#pragma int_to_unsigned strlen();

176 SPARCompilers C 2.0 Programmer's Guide-October 1992

-----1
ignoring malformed #pragma weak symbol [=va[ue] .

Type: Warning I OP_t_i~_._n __ ~_: _A_l_l ~~~~~~~~~~ __

The compiler encountered a #pragma weak directive that did not have the form shown. I
The erroneous directive is ignored. I

#pragma weak write,_write I
~---I

implicitly declaring function to return int: name()

Type: Warning I Options: -v

The program calls function which has not been previously declared. The compiler warns
you that it is assuming that function name returns int.

void v (void) {
g () ;

improper cast

Type: Error

of void expression

I

Options: All

You cannot cast a void expression to something other than void.

f (void) {
void v(void) ;
int i = (int) v() ;

}

C Error Messages 177

improper member use: name

Type: Warning, Error I Options: All

Your program contains an expression with a -> or . operator, and name is not a mem-
ber of the structure or union that the left side of the operator refers to, but it is a member
of some other structure or union.
This diagnostic is an error if the member is not "unique." A unique member is part of
one or more structures or unions but has the same type and offset in all of them.

struct sl { int x,y; } ;

struct s2 { int q,r; } ;

f (void) {
struct sl *ps1;
ps1->r = 3 ;

}

improper pointer subtraction

Type: Warning, Error I Options: All

The operands of a subtraction are both pointers, but they point at different types. You
may only subtract pointers of the same type that point to the same array.
The diagnostic is a warning if the pointers point to objects of the same size, and an error
otherwise.

f (void) {
int *ip;
char *cp;
int i = ip - cp;

}
I

178 SPARCompilers C 2.0 Programmer's Guide-October 1992

improper pointer/integer combination: arg #n
1------------------------,--------------------- --------------

I Options: All Type: Warning
r-----------------------~-------------~----

At a function call for which there is a function prototype declaration in scope, the code is
passing an integer where a pointer is expected, or vice versa.

int f (char *) i

g (void) {
f (5) i

improper pointer/integer

Type: Warning

combination: op "operator"

I Options: All

One of the operands of operator is a pointer and the other is an integer, but this combina-
tion is invalid.

f (void) {
int i = "abc" i
int j = i ? 4 : "def"i

}

inappropriate qualifiers with "void"

Type: Warning I Options: All

You may not qualify void (with const or volatile) when it stands by itself.

int f (const void) i

C Error Messages 179

#include < ... missing '>'

Type: Warning I Options: All

In a #include directive for which the header name began with <, the closing> char-
acter was omitted.

#include <stdio.h

#include directive missing file name

Type: Error I Options: All

A #include directive did not specify a file to include.

#include

#include of /usr/include/ ... may be non-portable

Type: Warning I Options: All

The source file included a file with the explicit prefix / usr / inc 1 ude. Such an inclu-
sion is implementation-dependent and non-portable. On some systems the list of default
places to look for a header might not include the /usr / include directory. In such a
case the wrong file might be included.

#include </usr/include/stdio.h>

incomplete #define macro parameter list

Type: Error I Options: All

In the definition of a function-like parameter, the compiler did not find a) character on
the same (logical) line as the #define directive.

#define mac (a

180 SPARCompilers C 2.0 Programmer's Guide-October 1992

incomplete struct/union/enum tag: name

Type: Error
I

Options: All

You declared an object name, with struct, union, or enum type and tag tag, but the type
is incomplete.

struct s sti

inconsistent redeclaration of extern: name

Type: Warning I Options: All

You have redeclared function or object name with storage class extern for which there
was a previous declaration that has since gone out of scope. The second declaration has
a type that conflicts with the first.

f (void) {
int *p = (int *) malloc(5*sizeof(int))i

}

g (void) {
void *malloc() i

}

C Error Messages 181

182

inconsistent redeclaration of static: name

Type: Warning I Options: All

You have redeclared an object or function that was originally declared with storage class
static. The second declaration has a type that conflicts with the first.

The two most frequent conditions under which this diagnostic may be issued are:

1. A function was originally declared at other than file scope and with storage class
static. The subsequent declaration of the function has a type that conflicts with the
first.

2. A function or object was originally declared at file scope and with storage class
static. A subsequent declaration of the same object or function at other than file
scope used storage class extern (or possibly no storage class, if a function), and there
was an intervening, unrelated, declaration of the same name.

f (void) {
static int myfunc(void)i

}

9 (void) {
static char *myfunc(void) i

}

static int Xi

f (void) {
int Xi /* unrelated */

extern float Xi /* related to first declaration */

SPARCompilers C 2.0 Programmer's Guide-October 1992

inconsistent storage class for function: name

Type: Warning I Options: All

ANSI C requires that the first declaration of a function or object at file scope establish its
storage class. You have redeclared function name in an inconsistent way according to
these rules.

g (void) {
int f (void) ;
static int f (void) ;

}

initializer does not fit: value

Type: Warning I Options: All

The value value does not fit in the space provided for it. That is, if it were fetched from
that space, it would not reproduce the same value as was put in. In the message, value is
represented as a hexadecimal value if the initializer is unsigned, decimal if it is signed.

The hexadecimal values Ox80 through Oxff will not fit into a char, Ox8000 through Oxffff
will not fit into a short, and Ox80000000 through Oxffffffff will not fit into an int, but these
values will work with their corresponding unsigned types.

struct s {signed int m1:3; unsigned int m2:3;} st = {4, 5} ;

unsigned char uc = 300u;

integer overflow detected: op "operator"

Type: Warning I Options: All

The compiler attempted to compute the result of an operator expression at compile-time,
and determined that the result would overflow. The low-order 32 bits of the result are
retained, and the compiler issues this diagnostic.

int i = 1000000 * 1000000;

C Error Messages 183

integral constant expression expected

Type: Warning I Options: All

The compiler expected (required) an integral constant or an expression that can be evalu-
ated at compile time to yield an integral value. The expression you wrote contained
either a non-integral value, a reference to an object, or an operator that cannot be evalu-
ated at compile time.

int ia[5.0]i

integral constant too large

Type: Warning I Options: All

An integral constant is too large to fit in an unsigned long.

int i = 123456789012345678901;

internal compiler error: message

Type: Warning 1 Options: All

This message does not diagnose a user programming error (usually), but rather a prob-
lem with the compiler itself. One of the compiler's internal consistency checks has
failed. The problem diagnosed by message is important to our support staff but is proba-
bly meaningless to you.

You can help us to identify the problem by performing the following and then calling a
support center.

Run the cc command again with the same options as when it failed, plus the-P
option. You will not get the internal compiler error message again. However, assum-
ing you compiled file. c, the cc command will create a file. i file in your current direc-
tory. This file will help us to identify the compiler problem.

184 SPARCompilers C 2.0 Programmer's Guide-October 1992

interpreted as a #line directive

Type: Warning I Options: -Xc

A source line was encountered that had a number where the directive name usually
goes. Such a line is reserved for the compiler's internal use, but it must be diagnosed in
the - Xc (strictly conforming) mode.

9

invalid cast expression

Type: Error I Options: All

You cannot apply the cast to the expression because the types are unsuitable for casting.
Both the type of the expression being cast and the type of the cast must be scalar types.
A pointer may only be cast to or from an integral type.

f (void) {
struct s {int Xi} sti

int i = (int) sti
}

invalid compiler control line in II. ill file

Type: Error I Options: All

A . i file, the result of a cc - P command, is assumed to be a reserved communication
channel between the preprocessing phase and the compilation phase of the compiler.
The . i file lets you examine that intermediate form to detect errors that may otherwise
be hard to detect. However, the compiler expects to find only a few directives that are
used for internal communication. The source file that was compiled (a . i file) contained
a preprocessing directive other than one of the special directives.

C Error Messages 185

invalid directive

Type: Error I Options: All

The identifier that follows a # in a preprocessing directive line was one that the com-
piler did not recognize.

unknown faa

invalid multibyte character

Type: Error I Options: All

A multibyte character in a string literal or character constant could not be converted to a
single wide character in the host environment.

invalid source character: 'c'

Type: Error I Options: -Xa, -Xc

The compiler encountered a character in the source program that is not a valid ANSI C
token.

int i = l$i

invalid source character: <hex value>

Type: Error I Options: All

This message diagnoses the same condition as the previous one, but the invalid character
is not printable. The hex-value between the brackets in the diagnostic is the hexadeci-
mal value of the character code.

186 SPARCompilers C 2.0 Programmer's Guide-October 1992

invalid switch expression type

Type: Error I Options: All

The controlling expression of a switch statement could not be converted to in t. This
message always follows switch expression must have integral type.

f (void) {
struct s {int Xi} SXi

swi tch (SX) {

case 4: i
}

}

invalid token: non-token

Type: Error I Options: All

The compiler encountered a sequence of characters that does not comprise a valid token.
An invalid token may result from the preprocessing # # operator. The offending non-
token is shown in the diagnostic. If the non-token is longer than 20 characters, the first 20
are printed, followed by ". . .". The offending invalid token is ignored.

#define PASTE(l,r) 1 ## r
double dl = lei
double d2 = PASTE(l,e);
int i = lveryverylongnontoken;

invalid token in #define macro parameters: token

Type: Error I Options: All

The compiler encountered an inappropriate token while processing the argument list of
a function-like macro definition. token is the erroneous token.

#define mac(a,4) abc

C Error Messages 187

invalid token in directive

Type: Error I Options: All

The compiler found an invalid token at the end of what would otherwise be a correctly
formed directive.

#line 7 "file.c
I

invalid type combination

Type: Error I Options: All

You used an inappropriate combination of type specifiers in a declaration.

short float f;
I

invalid type for bit-field: name

Type: Error I Options: All

The type you chose for bit-field name is not permitted for bit-fields. Bit-fields may only
be declared with integral types.

struct s { float f:3; } ;

invalid use of "defined" operator

Type: Error I Options: All

A defined operator in a #if or #elif directive must be followed by an identifier or (
)' s that enclose an identifier. The source code did not use it that way.

#if defined
int i = 1;
#endif

188 SPARCompilers C 2.0 Programmer's Guide-October 1992

invalid white space character in directive

Type: Warning I Options: All

The only white space characters that are permitted in preprocessing directives are space
and horizontal tab. The source code included some other white space character, such as
form feed or vertical tab. The compiler treats this character like a space.

label redefined: name

Type: Error I Options: All

The same label name has appeared more than once in the current function. (A label's
scope is an entire function.)

f (void) {
int i;
i = 1;
if (i) {

L:
while (i)

g();
goto L;

}

L: ;

}

left operand must be modifiable lvalue: op "operator"

Type: Error I Options: All

The operand on the left side of operator must be a modifiable lvalue, but it wasn't.

f (void) {
int i = 1;
+i - = 1;

}

C Error Messages 189

left operand of " ->" must be pointer to struct/union

Type: Warning, Error I Options: All

The operand on the left side of a -> operator must be a pointer to a structure or union,
but it wasn't. The diagnostic is a warning if the operand is a pointer, an error otherwise.

struct s { int x; } ;

f (void) {
long *lp;
lp->x = 1;

}

left operand of " " must be lvalue in this context

Type: Warning I Options: All

The operand on the left side of a . operator is an expression that does not yield an
lvalue. Usually this results from trying to change the return value of a function that
returns a structure.

struct s { int ia [10] ; } ;

struct s sf (void) ;
f (void) {

sf() .ia[O] = 3;
}

190 SPARCompilers C 2.0 Programmer's Guide-October 1992

,----

left operand of " " must be struct/union object

Type: Warning, Error I Options: All

The. operator is only supposed to be applied to structure or union objects. The diag-
nostic is an error if the operand to the left of . is an array, pointer, function call, enumer-
ation constant or variable, or a register value that got allocated to a register; it is a
warning otherwise.

f (void) {
struct s { short s; } ;

int i;
i.s = 4;

}

() -less function definition

Type: Error I Options: All

The declarator portion of a function definition must include parentheses. You cannot
define a function by writing a typedef name for a function type, followed by an identifier
and the braces that define a function.

typedef int F();

F f{ }

C Error Messages 191

loop not entered at top

Type: Warning I Options: All

The controlling expression at the beginning of a for or while loop cannot be reached
by sequential flow of control from the statement before it.

f (void) {
int i;
goto lab;
for (i = 1; i > 0; --i) {

lab: ;
i=5;

}

}

macro recursion

Type: Fatal I Options: -Xt

The source code calls a macro that calls itself, either directly or indirectly. ANSIC's
semantics prevent further attempts to rescan the macro. Older C compilers would try to
rescan the macro, which eventually leads to a fatal error.

Because the rescanning rules are different for ANSI C and its predecessor, the ANSI C
compiler provides the old behavior in -Xt mode, which includes producing this diag-
nostic when macro recursion is detected.

#define a(x) b(x)
#define b(x) a(x)
a (3)

192 SPARCompilers C 2.0 Programmer's Guide-October 1992

macro redefined: name

Type: Warning I Options: All

The source code redefined a macro. Previous releases of K&R C allowed such redefini-
tions silently if both definitions were identical except for the order and spelling of formal
parameters. ANSI C requires that, when a macro is redefined correctly, the definitions
must be identical including the order and spelling of formal parameters. This diagnostic
is produced under all options if the new macro definition disagrees with the old one. For
strict conformance, it is also produced under the -Xc option when the macro definitions
disagree only in the spelling of the formal parameters.

#define TIMES(a,b) a * b
#define TIMES(a,b) a - b

macro replacement within a character constant

Type: Warning I Options: -Xt

Previous releases of K&R C allowed the value of a formal parameter to be substituted in
a character constant that is part of a macro definition. ANSI C does not permit such a
use.

The proper way to express this construct in ANSI C is the following:

#define /* form control character */
int ctrl_c = CTRL(*'c*');

#define CNTRL(x) ('x'&037) /* form control character */
int ctrl_c = CTRL(c);

C Error Messages 193

macro replacement within a string literal

Type: Warning I Options: -Xt

This message diagnoses a similar condition to the preceding one, except the substitution
is being made into a string literal.

ANSI C provides a way to accomplish the same thing. The # "string-ize" operator turns
the tokens of a macro argument into a string literal, and adjacent string literals are con-
catenated. The correct form is:

#define HELLO (name) name
char *hello_mindy = HELLO ("Mindy") i

#define HELLO (name) "name"
char *hello_mindy = HELLO (Mindy) i

member cannot be function: name

Type: Error I Options: All

A function may not be a member of a structure or union, although a pointer to a function
may. You declared member name as a function.

struct s { int f (void) i } i

mismatched II? II and II. II

Type: Error I Options: All

An expression in a #if or #elif directive contained a malformed ?-: expression.

#if defined(foo) ? 5
int ii

#endif

194 SPARCompilers C 2.0 Programmer's Guide-October 1992

mismatched parentheses

Type: Error I Options: All

Parentheses were mismatched in a preprocessing conditional compilation directive.

#if ((1)

int i = 1;

#endif

missing II) II

Type: Error I Options: All

In a test of a predicate that follows a # operator in a #if or #elif directive, the) that
follows the assertion was missing.

#if # system (unix
char *system = "unix" ;
#endif

missing operand

Type: Error I Options: All

The constant expression of a preprocessing conditional compilation directive is mal-
formed. An expected operand for some operator was missing.

#define EMPTY
#if EMPTY / 4

int i = 1;
#endif

C Error Messages 195

missing operator

Type: Error I Options: All

The constant expression of a preprocessing conditional compilation directive is mal-
formed. An operator was expected but was not encountered.

#if 1 4

int i = Ii
#endif

missing tokens between parentheses

Type: Error I Options: All

In a #assert directive, there are no assertions within the parentheses of the predicate.

#assert system ()

modification of typedef with "modifier" ignored

Type: Warning I Options: All

You are applying a type modifier to a typedef name, which ANSI C prohibits. ANSI C
only permits you to modify a typedef with a type qualifier.

typedef int INTi
unsigned INT i

196 SPARCompilers C 2.0 Programmer's Guide-October 1992

modulus by zero

Type: Warning, Error I Options: All

The second operand of a % operator is zero. If the modulus operation is part of a #if or
#elif directive, the result is taken to be zero.

The diagnostic is a warning if the modulus is in executable code, an error otherwise.

#if 42 % 0
int i = 1;

#endif

more than one character honored in character constant: constant

Type: Warning I Options: All

A character constant has an integral value that derives from the character codes of the
characters. If a character constant comprises more than one character, the encoding of
the additional characters depends on the implementation. This warning alerts you that
the encoding that the preprocessing phase uses for the character constant constant is dif-
ferent in this release of the C compiler from the one in previous releases, which only
honored the first character. (The encoding for character constants you use in executable
code is unchanged.)

#if 'ab' != ('b' * 256 + 'a')
#error unknown encoding
#endif

"#11 must be followed by formal identifier in #define

Type: Error I Options: All

The "string-ize" operator # mus t be followed by the name of a formal parameter in a
function-like macro.

#define mac (a) # + a

C Error Messages 197

must have type "function-returning-unsigned": name

Type: Warning I Options: All

The name that is a part of a #pragma int_to_unsigned directive must be an identi-
fier whose type is function-returning-unsigned.

extern int f(int) i

#pragma int_to_unsigned f

newline in character constant

Type: Error I Options: All

You wrote a character constant that had no closing *' on the same line as the beginning
* ,

int i = 'a
i

newline in string literal

Type: Warning, Error I Options: All

You wrote a string literal that had no closing" (quote marks) on the same line as the
beginning ". The diagnostic is a warning if the string literal is part of a preprocessing
directive (and the compiler provides the missing ") and an error otherwise.

char *p = "abc
i

198 SPARCompilers C 2.0 Programmer's Guide-October 1992

newline not last character in file

Type: Warning I Options: All

Every non-empty source file and header must consist of complete lines. This diagnostic
warns that the last line of a file did not end with a newline.

~---

no file name after expansion

Type: Error I Options: All

You used the form of #include directive that permits macro expansion of its argu-
ment, but the resulting expansion left no tokens to be taken as a file name.

#define EMPTY
#include EMPTY

no hex digits follow \x

Type: Warning I Options: - Xa , -Xc

The \x escape in character constants and string literals introduces a hexadecimal char-
acter escape. The \x must be followed by at least one hexadecimal digit.

char *cp = "\XZ";

no macro replacement within a character constant

Type: Warning I Options: -Xa, -Xc

This message is the inverse of macro replacement within a character constant. It
informs you that the macro replacement that was done for -Xt mode is not being done
in -Xa or -Xt mode.

C Error Messages 199

I
I

no macro replacement within a string literal

Type: Warning I Options: - Xa I -Xc

This message is the inverse of macro replacement within a string literal. It informs you
that the macro replacement that was done for -Xt mode is not being done in -Xa or
-Xt mode.

no tokens after expansion

Type: Error I Options: All

After macro expansion was applied to the expression in a # 1 ine directive, there were no
tokens left to be interpreted as a line number.

#define EMPTY
#line EMPTY

no tokens follow U#pragma U

Type: Warning I Options: -v

The compiler encountered a #pragma directive that contained no other tokens.

#pragma

no tokens following u#assert name (U

Type: Error I Options: All

A use of the #assert directive is malformed. The assertions and the) that should fol-
low are missing.

#assert system (

200 SPARCompilers C 2.0 Programmer's Guide-October 1992

no tokens in #line directive

Type: Error I Options: All

The rest of a # 1 ine directive was empty; the line number and optional file name were
missing.

#line

non-constant initializer: op "operator"

Type: Error I Options: All

The initializer for an extern, static or array object must be a compile-time constant. The
initializers for an automatic structure or union object, if enclosed in { } , must also be
compile-time constants. operator is the operator whose operands could not be com-
bined at compile time.

int j i
int k = j+li

non-formal identifier follows 11#11 in #define

Type: Warning I Options: All

The identifier that follows a # opera tor in a macro definition must be a formal
parameter of a function-like macro.

#define mac (a) "abc" # b

C Error Messages 201

non-integral case expression

Type: Error I Options: All

The operand of a case statement must be an integral constant.

f (void) {
int i = 1;
switch (i) {

case 5.0: ;

}

}

non-unique member requires struct/union: name

Type: Error I Options: All

The operand on the left side of a. operator was not a structure, union, or a pointer to
one, and member name was not unique among all structure and union members that
you have declared. You should only use. with structures or unions, and the member
should belong to the structure or union corresponding to the left operand.

struct sl { int x,y; } ;

struct s2 { int y, Z; } ;

f (void) {
long *lp;
lp.y = 1;

}

non-unique member requires struct/union pointer: name

Type: Error I Options: All

This message diagnoses the same condition as the preceding one, but for the - > opera-
tor.

202 SPARCompilers C 2.0 Programmer's Guide-October 1992

null character in input

Type: Error I Options: All

The compiler encountered a null character (a character with a character code of zero).

null dimension: name

Type: Warning, Error I Options: All I

A dimension of an array is null in a context where that is prohibited. The diagnostic is a
warning if the offending dimension is outermost and an error otherwise.

int ia[4] [];
struct s { int x, Y[] i } ;

int i = sizeof(int []) ;

number expected

Type: Error I Options: All

The compiler did not find a number where it expected to find one in a #if or #elif direc-
tive.

#if 1 +
int i = 1;

#endif

C Error Messages 203

old-style declaration hides prototype declaration: name

Type: Warning I Options: -v

You redeclared function name in an inner scope. The outer declaration was a function
prototype declaration, but the inner one lacks parameter information. By ANSI C's scop-
ing rules, the parameter information is hidden and the automatic conversions of types
that the prototype would have provided are suppressed.

extern double sin (double) ;
f (void) {

extern double sin();
double d;
d = sin (1) ; 1* Note: no conversion to double! * /

}

old-style declaration; add "int"

Type: Warning I Options: All

Objects and functions that are declared at file scope must have a storage class or type
specifier. You will get this warning if you omit both.

i;
f (void) ;

only one storage class allowed

Type: Error I Options: All

You specified more than one storage class in a declaration.

f (void) {
register auto i;
}

204 SPARCompilers C 2.0 Programmer's Guide-October 1992

only qualifiers allowed after *

Type: Error I Options: All

You may only specify the const or volatile type qualifiers after a * in a declaration.

int * const Pi
int * unsigned qi

only "register" valid as formal parameter storage class

Type: Error I Options: All

You may specify a storage class specifier in a function prototype declaration, but only
register is permitted.

int f (
register int X,

auto int y
) i

operand cannot have void type: op "operator"

Type: Error I Options: All

One of the operands of operator has void type.

f (void) {
void v (void) i

int i = v() i

}

C Error Messages 205

operand must be modifiable lvalue: op "operator"

Type: Error I Options: All

The operand of operator must be a modifiable lvalue, but it wasn't.

f (void) {
int i = --3i
}

operand treated as unsigned: constant

Type: Warning I Options: -Xt

An operand you used in a #if or #elif directive has a value greater than LONG_MAX
(2147483647) but has no unsigned modifier suffix or U). Previous releases of K&R C
treated such constants as signed quantities which, because of their values, actually
became negative. ANSI C treats such constants as unsigned long integers, which may
affect their behavior in expressions. This diagnostic is a transition aid that informs you
that the value is being treated differently from before.

#if 2147483648 > 0
char *mesg = "ANSI C-style"i

#endif

operands have incompatible pointer types: op "operator"

Type: Warning I Options: All

You have applied operator to pointers to different types.

f (void) {
char *CPi

int *ipi

if (ip < cp)

i
}

206 SPARCompilers C 2.0 Programmer's Guide-October 1992

operands have incompatible types: op "operator"

Type: Error I Options: All

The types of the operands for operand are unsuitable for that kind of operator.

f(void) {
char *CPi
int *iPi
void *vp = ip + CPi

}

operands must have category type: op "operator"

Type: Error I Options: All

The operands for operator do not fall into the appropriate category for that operator.
category may be arithmetic, integral, or scalar.

f(void) {
int ia[S] i
int *ip = ia/4i

}

out of scope extern and prior uses redeclared as static: name

Type: Warning I Options: -xc, -v

You declared name as extern in a block that has gone out of scope. Then you declared
name again, this time as static. The ANSI C compiler treats the object or function as if it
were static, and all references, including ones earlier in the source file, apply to the
static version.

f (void) {
extern int ii

}

static int ii

C Error Messages 207

overflow in hex escape

Type: Warning I Options: All

In a hexadecimal escape (\x) in a character constant or string literal, the accumulated
value for the escape grew too large. Only the low-order 32 bits of value are retained.

int i = '\xabcdefedc';

parameter mismatch: n-decl declared, n-def defined

Type: Warning I Options: All

A function prototype declaration and an old-style definition of the function disagree in
the number of parameters. The declaration had n-decl parameters, while the definition
had n-def.

int f (int);
int f (i, j)
int i,j;
{}

parameter not in identifier list: name

Type: Error I Options: All

Variable name appears in an old-style function definition's parameter declarations, but
it does not appear in the parameter identifier list.

f (a,b)
int i;
{}

208 SPARCompilers C 2.0 Programmer's Guide-October 1992

parameter redeclared: name

Type: Error I Options: All

You have used name more than once as the name for a parameter in a function defini
tion.

int f(int i/ int i) { }
int g(i/j)
int ii
int ii
{ }

prototype mismatch: nl arg[s] passed/ n2 expected

Type: Error I Options: All

You called a function for which there is a function prototype declaration in scope, and
the number of arguments in the calt did not match the number of parameters in the dec-
laration/ nl.

int f(int) i

g (void) {
f (1/2) i

}

return value type mismatch

Type: Error I Options: All

You are attempting to return a value from a function that cannot be converted to the
return-type of the function.

f (void) {
struct s { int Xi } sti
return (st) i

}

C Error Messages 209

210

semantics of "operator" change in ANSI Ci use explicit cast

Type: Warning I Options: All

The type promotion rules for ANSI C are slightly different from those of previous ver
sions of K&R C. In the current release the default behavior is to duplicate the previous
rules. In future releases the default will be to use ANSI C rules. You may obtain the
ANSI C interpretation by using the -Xa option for the cc command.

Previous K&R C type promotion rules were "unsigned-preserving." If one of the oper
ands of an expression was of unsigned type, the operands were promoted to a common
unsigned type before the operation was performed.

ANSI C uses "value-preserving" type promotion rules. An unsigned type is promoted
to a signed type if all its values may be represented in the signed type.

The different type promotion rules may lead to different program behavior for the oper
ators that are affected by the unsigned-ness of their operands:

The division operators: /, /=, %, %=.

The right shift operators: », »=.

The relational operators: <, < = , >, >-

The warning message tells you that your program contains an expression in which the
behavior of operator will change in the future. You can guarantee the behavior you
want by inserting an explicit cast in the expression.

You can get the same behavior as in previous versions of K&R C by adding an explicit
cast:

f (void) {
unsigned char UCi

int ii
/* was unsigned divide in K&R C, signed in ANSI C */
i /= (unsigned int) UCi

f (void) {
unsigned char UCi

int ii
/* was unsigned divide in K&R C, signed in ANSI C */

i /= UCi

SPARCompilers C 2.0 Programmer's Guide-October 1992

shift count negative or too big: opn :ls---l
Type: Warning I Options: All

The compiler determined that the shift count (the right operand) for shift operator op is
either negative or bigger than the size of the operand being shifted. ~

f (){

short s;
s «= 25;

statement not reached

Type: Warning I Options: All

This statement in your program cannot be reached because of goto, break, continue,
or return statements preceding it.

f (void) {
int i;
return i;
i = 4;

}

static function called but not defined: name ()

Type: Warning I Options: All

The program calls function name, which has been declared static, but no definition of
name appears in the translation unit. (The line number that is displayed in the message
is one more than the number of lines in the file, because this condition can be diagnosed
only after the entire translation unit has been seen.)

static int statfunc(int);
void
f (){

int i = statfunc(4);
}

C Error Messages 211

static redeclares external: name

Type: Warning I Options: All

You reused name as the name of a static object or function after having used it in the
same block as the name of an extern object or function. The version of name that
remains visible is the static version.

f (void) {
extern int i;
static int i;

}

storage class after type is obsolescent

Type: Warning I Options: -v

According to the ANSI C standard, writing declarations in which the storage class speci-
fier is not first is "obsolescent."

int static i;

storage class for function must be static or extern

Type: Warning I Options: All

You used an inappropriate storage class specifier for a function declaration or definition.
Only extern and static may be used, or the storage class may be omitted. The specifier
is ignored.

f (void) {
auto g(void) ;

}

212 SPARCompilers C 2.0 Programmer's Guide-October 1992

string literal expected after #file

Type: Error I Options: All

The #file directive (which is reserved for the compilation system) is used for internal
communication between preprocessing and compilation phases. A string literal operand
is expected as the operand.

string literal expected after #ident

Type: Error I Options: All

A #ident directive must be followed by a normal (not wide character) string literal.

#ident no-string

string literal expected after # 1 ine <number>

Type: Warning I Options: All

This diagnostic is similar to string literal expected after # <number>,
except that it applies to the standard #line directive.

string literal must be sole array initializer

Type: Warning I Options: All

You may not initialize a character array with both a string literal and other values in the
same initialization.

char ca[] = { "abc" , 'd' } ;

C Error Messages 213

struct/union has no named members

Type: Warning I Options: All

You have declared a structure or union in which none of the members is named.

struct s { int :4i char : 0 i } i

struct/union-valued initializer required

Type: Error I Options: All

ANSI C allows you to initialize an automatic structure or union, but the initializer must
have the same type as the object being initialized.

f (void) {
int ii

struct s { int Xi } st = ii

}

switch expression must have integral type

Type: Warning, Error I Options: All

You wrote a swi tch statement in which the controlling expression did not have inte-
gral type. The message is a warning if the invalid type is a floating-point type and an
error otherwise. A floating-point switch expression is converted to into

f (void) {
float Xi

switch (x) {

case 4: i
}

}

214 SPARCompilers C 2.0 Programmer's Guide-October 1992

syntax error before or at: token

Type: Error I Options: All

This is an all-purpose diagnostic that means you have juxtaposed two (or more) lan-
guage tokens inappropriately. The compiler shows you the token at which the error was
detected.

f (void) {
int i = 3+;

}

syntax error in macro parameters

Type: Error I Options: All

The macro parameter list part of a function-like macro definition is malformed. The list
must be a comma-separated list of identifiers and was not.

#define mac(a,b,) a b

syntax error, probably missing II II "i II or "_II , ,

Type: Error I Options: All

You wrote a declaration that looked like a function definition, except that the type of the
symbol declared was not "function returning." You probably left out a L. ; or =.

int i
int j;

C Error Messages 215

syntax error: empty declaration

Type: Warning I Options: All

You wrote a null statement at file scope. This looks like an empty declaration statement.
K&R C permitted this previously, but ANSI C does not.

int ii i

syntax error: "& ... " invalid

Type: Warning I Options: - Xc

Youwrote& ... in a program that was compiled with the -Xc option. &. .. is invalid
ANSI C syntax. You should not use this notation explicitly.

syntax requires "; II after last struct/union member

Type: Warning I Options: All

You omitted the i that C syntax requires after the last structure or union member in a
structure or union declaration.

struct s { int x } i

(type) tag redeclared: name

Type: Error I Options: All

You have redeclared tag name that was originally a type tag.

struct q { int ml, m2i } i

enum q { el, e2 } i

216 SPARCompilers C 2.0 Programmer's Guide-October 1992

token not allowed in directive: token

Type: Error I Options: All

You used a token in a #if or #elif directive that is neither a valid operator for con-
stant expressions, nor a valid integer constant.

#if 1 > 11111

int i = 1;
#endif

token-less macro argument

Type: Warning I Options: - xc

The actual argument to a preprocessor macro consisted of no tokens. The ANSI C stan-
dard regards this condition as undefined. The C compiler treats the empty list of tokens
as an empty argument, and, under the -Xc mode, it also issues this warning.

#define m(x) x+3
int i = m() ;

tokens after -A- are ignored

Type: Warning I Options: All

In the -A- option to the cc command, there were additional tokens adjacent to the
option. They are ignored.

cc -A-extra -c x.c

C Error Messages 217

tokens expected after "# identifier ("

Type: Error I Options: All

When the # operator is used in a #if or #elif directive to select a predicate instead
of a like-named macro, the predicate must be followed by a parenthesized list of tokens.

#if #system(
char *system = "unix" i

#endif

tokens expected after II (II

Type: Error I Options: All

In a #unassert directive, the assertion(s) and closing) after the predicate were miss-
ing.

#unassert system (

tokens expected between parentheses

Type: Error I Options: All

The name of an assertion of a predicate to test was omitted in an # i f or # eli f directive.

#if #system()
char *sysname = n?? II i

#endif

218 SPARCompilers C 2.0 Programmer's Guide-October 1992

tokens ignored after II -u {identifier} II

Type: Warning I Options: All

In the command line - U option, there were tokens following the name of the macro to
be undefined.

cc -Uunix,u3b2 -c x.c

tokens ignored at end of directive line

Type: Warning I Options: All

A directive line contains extra tokens that are not expected as part of the directive.

#undef a b/* can only undefine one */

too many array initializers

Type: Error I Options: All

You provided more initializers for an array than the array can hold.

int ia[3] = { 1, 2, 3, 4 } ;

C Error Messages 219

too many #else's

Type: Warning I Options: All

The code contained more than one #else directive in a preprocessing if-section. All
#else directives after the first are taken to be false.

#ifdef ONE
int i = 1;

#else
int i = 2 ;

#else
int i = 3

#endif

too many errors

Type: Fatal I Options: All

The compiler encountered too many errors to make further processing sensible. Rather
than produce further diagnostics, the compiler exits.

too many initializers for scalar

Type: Error I Options: All

A{ } -bracketed initialization for a scalar contains more than one value.

int i = { 1, 2 } ;

220 SPARCompilers C 2.0 Programmer's Guide-October 1992

,---~~~~~~~~--~--~~~~-~~~----------~--~~~~~--~--,

too many struct/union initializers

~ptions: All ----
r--~~~~~~~~~~~~---~- ------------.--------.~~~~___1

Type: Error

You have provided too many initializers for a structure or union.
r---~---" ------- .. -- - -~--.- ------.--~-------.. - --------

struct s { int X,Yi } st = { 1,2,3 }i

trailing " " prohibited in enum declaration ,

Type: Warning I Options: -Xc,-v

You supplied an extra comma at the end of an enumeration type declaration. The extra
comma is prohibited by the syntax.

I

enum e { el, e2, } i

trigraph sequence replaced

Type: Warning I Options: -Xt

ANSI C introduces the notion of trigraphs, three-character sequences that stand for a sin-
gle character. All such sequences begin with ?? Because sequences that are interpreted
as trigraphs may appear in existing code, the K&RC compiler produces a transitional
diagnostic when such sequences are encountered.

char *surprise = "this is a trigraph??!";

C Error Messages 221

222

type does not match prototype: name

Type: Warning I Options: All

You provided a function prototype declaration for a function, but used an old-style defi
nition. The type for parameter name in that definition is incompatible with the type you
used in the prototype declaration.

The following example shows an especially confusing instance of
this diagnostic.

int f (char) i

int f(c)
char Ci

{ }

f has an old-style definition. For compatibility reasons, f's arguments must therefore
be promoted according to the default argument promotions, which is how they were
promoted before the existence of function prototypes. Therefore, the value that must
actually be passed to f is an in t, although the function will only use the char part of
the value. The diagnostic, then, identifies the conflict between the int that the function
expects and the char that the function prototype would (conceptually) cause to be
passed.

There are two ways to fix the conflict:

1. Change the function prototype to read int f (int) i

2. Define f with a function prototype definition:

int f (char) i

int f(char c)
{}

int f(char *) i

int f(p)
int *p;
{}

SPARCompilers C 2.0 Programmer's Guide-October 1992

typedef already qualified with "qualifier"

Type: Warning I Options: All

A type specifier includes a typedef and an explicit type qualifier, qualifier. The typedef
already included qualifier when it was declared.

typedef volatile int VOL;
volatile VOL v;

typedef declares no type name

Type: Warning I Options: All

In a declaration with storage class typedef, no type name was actually declared. This is
probably a programming error.

typedef struct s { int x; } ;

typedef redeclared: name

Type: Warning I Options: All

You have declared typedef name more than once. The later declaration has an identical
type to the first.

typedef int i;
typedef int i;

C Error Messages 223

typedef redeclares external: name

Type: Warning 1 Options: All

You declared typedef name, but there is an extern of the same name in the same block.
The typedef hides the external.

f (void) {
extern int INTi

typedef int INTi
}

"typedef" valid only for function declaration

Type: Warning I Options: All

A function definition may not have the typedef storage class. It is ignored here.

typedef int f (void) {}

-u option argument not an identifier

Type: Error I Options: All

An identifier must follow the - U c c command line option.

cc -U3b2 -c x.c

unacceptable operand for unary &

Type: Error I Options: All

You attempted to take the address of something whose address cannot be taken.

f (void) {
int *ip = &g () i

}

224 SPARCompilers C 2.0 Programmer's Guide-October 1992

#unassert requires an identifier token

Type: Error I Options: All

The #Unassert directive must name a predicate to "un-assert."

#unassert 5

undefined label: label

Type: Error I Options: All

You wrote a goto in the current function, but you never defined the target label any-
where within the function.

f (void) {
goto Li

}

undefined struct/union member: name

Type: Error I Options: All

Your program made reference to a structure or union member, that has not been declared
as part of any structure.

struct s { int Xi } i

f (void) {
struct s qi

q.y = 1i

}

C Error Messages 225

226

\

undefined symbol: name

Type: Error I Options: All

You referred to symbol name for which there is no declaration in scope.

f (void) {
g (i) i

}

undefining __ STDC __

Type: Warning I Options: -Xt

ANSI C prohibits un defining the predefined symbol __ sTDC __ . However, this release
of the C compiler permits you to do so in transition mode (only). You may want to use
this feature to test C code that you have written to work in both an ANSI C and non
ANSI C environment.

For example, suppose you have C code that checks __ STDC--, declaring function proto
type declarations if it is defined, and old-style function declarations (or definitions) if
not. Because the C compiler predefines __ STDC--, you would ordinarily be unable to
check the old-style code, and you would have to run the code through another (non
ANSI C) compiler. By undefining __ STDC __ (usually on the command line), you can
use the C compiler to do the checking. This diagnostic tells you, as required, that you are
violating ANSI C constraints.

#undef __ STDC __ /*usually -U __ STDC __ on cc line */

#ifdef __ STDC __
int
myfunc(const char *argl, int arg2)
#else/* non-ANSI Cease */
int
myfunc(argl,arg2)
char *argl,/* oops */
int arg2i
#endif
{

}

SPARCompilers C 2.0 Programmer's Guide-October 1992

unexpected II (II

Type: Error I Options: All

A misplaced (was encountered in a #if or #elif directive.

#if 1 (

int i = 1;
#endif

unexpected II) II

Type: Error I Options: All

A misplaced) was encountered in a #if or #elif directive.

#if) 1
int i = 1;

#endif

unknown operand size: op "operator"

Type: Error I Options: All

You applied operator ++ I - - ,or = to an operand whose size is unknown. The operand is
usually a pointer to a structure or union whose members have not been declared.

f (void) {
struct s *sp;
sp++;

}

C Error Messages 227

unnamed type member

Type: Warning I Options: All

In your type declaration, you failed to give a member a name.

union s { int; char c; } ;

unreachable case label: value

Type: Warning I Options: All

The expression you specified in a case statement has a value outside the range of the
type of the controlling expression of the enclosing switch statement. Therefore the case
label can never be reached. In the message, value is represented as a hexadecimal value if
the case expression is unsigned, decimal if it is signed.

f (void) {
unsigned char uc;

switch (uc){

case 256:
;

}

}

unrecognized #pragma ignored: pragma

Type: Warning I Options: -v

Because #pragma directives are implementation-specific, when the -v compilation flag
is set, the C compiler warns about any such directives that it is ignoring. The C compiler
does not recognize #pragma pragma.

#pragma list

228 SPARCompilers C 2.0 Programmer's Guide-October 1992

use "double" instead of "long float" l
Type: Warning l Options: All

You declared an object or function to be long float, which was a synonym for dou-
ble. ANSI C does not permit long float, although the C compHer accepts it as a
transition aid.

long float f = l. 0 i

useless declaration

Type: Warning I Options: all

ANSI C requires that every declaration actually declare something, such as
I

a declarator,

a structure or union tag,

enumeration constants.

You wrote a declaration that provided no information to the compiler.

inti /* no identifier */

enum e { el, e2 }i/* introduces enum e */

enum ei/* no new information */

C Error Messages 229

using out of scope declaration: name

Type: Warning I Options: All

You previously declared name in a scope that is no longer active. In some ANSI C
implementations, referring to such an object would yield an error; calling such a function
would be interpreted as calling a function returning int. The C compiler remembers the
previous declaration and uses it. This warning informs you what the compiler has
done.

f (void) {
extern int i;
double sin(double);

}

g (void) {
double d = sin(l. 5) ;
i = 1;

}

void expressions may not be arguments: arg #n

Type: Error I Options: All

A function call contains an argument for which the expression type is void.

f (void) {
void v(void) ;
g(v()) ;

}

230 SPARCompilers C 2.0 Programmer's Guide-October 1992

void function cannot return value

Type: Warning I Options: All _ _ .. ___ ~~~-II
You wrote a return statement with an expression, but the declared type of the function
is void.

void v(void){
return 3;

"void" must be

Type: Error

sole parameter

I Options: All
.. _----_._-_._--

Only the first parameter in a function prototype declaration may have void type, and it
must be the only parameter.

int f(int,void);

void parameter cannot have name: name

Type: Error
I

Options: All

You have declared a parameter name in a function prototype declaration that has void I

type. ~
int f(void v) ;

I
i

C Error Messages 231

6.3 Operator Names

232

zero or negative subscript

Type: Warning, Error I Options: All

The size in an array declaration is zero or negative. The diagnostic is a warning if the
size is zero and an error otherwise.

int ia[-5] i

int ib[O] ;

zero-sized struct/union

Type: Error I Options: All

You declared a structure or union with size of zero.

struct s { int ia[O] ; } i

This section lists internal operator names that the compiler may use in error
messages with definitions of these names.

,OP
The C "comma operator" (as distinct from the I that is used to separate
function arguments).

ARG

A function argument. That is, a value passed to a function.

AUTO
An automatic variable that has not been allocated to a register.

CALL
A function call with arguments.

CBRANCH
A conditional branch. (This may be part of an if or loop statement.)

CONV

SPARCompilers C 2.0 Programmer's Guide-October 1992

A conversion. It may have been explicit, in the form of a cast, or implicit, in
the semantics of a C statement.

FCON
A floating-point constant.

ICON
An integer or address constant.

NAME
An object or function with extern or static storage class.

PARAM

A function parameter. That is, a value that is received by a function.

REG
An object that has been allocated to a register.

RETURN
The operation that corresponds to a return statement.

STAR
The indirection operator *, as in *p.

STRING

U&

U-

A string literal.

The "take address of" operator (as distinct from the bit-wise AND
operation).

The arithmetic negation operator (as distinct from subtraction).

UCALL
A function call with no arguments.

UGE
An unsigned >= comparison.

UGT
An unsigned> comparison.

ULE
An unsigned <= comparison.

C Error Messages 233

ULT
An unsigned < comparison.

UPLUS
The ANSI C "unary +" operator.

6.4 Other Error Messages

The following messages may appear at compile time, but they are not
generated by the compiler. Messages beginning with Assembler: are
produced by the assembler (fbe). Messages beginning with ld: are
generated by ld, the link editor. Note that the format of the messages varies,
and some of the messages are displayed over several lines.

Assembler: file.c
aline n (cline n) : trouble writing; probably out of temp-file

space

The file system may be low on space, or the temporary file or output file exceeded the
current ulimit.

Assembler: file.c aline n (cline n)
Cannot open Output File filename

The directory containing the source file is unwritable, or the file system containing
source file is mounted read-only.

ld: Symbol name in file2.o is multiply defined.
First defined in file1.o

A symbol name was defined more than once.

234 SPARCompilers C 2.0 Programmer's Guide-October 1992

undefined first referenced
symbol in file

syml filel.o

ld fatal: Symbol referencing errors. No output written to a.out

A referenced symbol was not found. Compilation terminates.

C Error Messages 235

236 SPARCompilers C 2.0 Programmer's Guide-October 1992

Part 2-C Programming Tools

Introduction

SourceBrowser, a window
oriented code browser that
is more powerful than
escape, is described
briefly on page 262.
(SourceBrowser is sold
separately.)

escape SourceCodeBrowser

The escape browser is an interactive program that locates specified elements
of code in C, lex, or yacc source files. It lets you search and, if you want, edit
your source files more efficiently than you could with a typical editor. That's
because escape knows about function calls - when a function is being called,
when it is doing the calling - and C language identifiers and keywords. This
chapter is a tutorial on the escape browser, which is provided with this
release.

Howcscope Works

When escape is called for a set of C, lex, or yacc source files, it builds a
symbol cross-reference table for the functions, function calls, macros, variables,
and preprocessor symbols in those files. It then lets you query that table about
the locations of symbols you specify. First, it presents a menu and asks you to
choose the type of search you would like to have performed. You may, for
instance, want escape to find all functions that call a specified function.

When escape has completed this search, it prints a list. Each list entry
contains the name of the file, the number of the line, and the text of the line in
which escape has found the specified code. In our case, the list will also
include the names of the functions that call the specified function. You now
have the option of requesting another search or examining one of the listed
lines with the editor. If you choose the latter, escape invokes the editor for

239

escape - Basic Use

the file in which the line appears, with the cursor on that line. You may now
view the code in context and, if you wish, edit the file as you would any other
file. You can then return to the menu from the editor to request a new search.

Because the procedure you follow will depend on the task at hand, there is no
single set of instructions for using escape. For an extended example of its
use, review the escape session described in the next section. It shows how
you can locate a bug in a program without learning all the code.

Suppose you are given responsibility for maintaining the program prag. You
are told that an error message, aut af starage, sometimes appears just as
the program starts up. Now you want to use escape to locate the parts of the
code that are generating the message. Here is how you do it.

Step 1: Set Up the Environment

240

escape is a screen-oriented tool that can only be used on terminals listed in
the Terminal Information Utilities (terminfa) database. Be sure you have set
the TERM environment variable to your terminal type so that escape can
verify that it is listed in the terminfa database. If you have not done so,
assign a value to TERM and export it to the shell as follows:

Bourne Shell:

I $ TERM=term_name; export TERM

C Shell:

I % setenv TERM term_name

You may now want to assign a value to the EDITOR environment variable. By
default, escape invokes the vi editor. (The examples in this chapter illustrate
vi usage.) If you prefer not to use vi, set the EDITOR environment variable to
the editor of your choice and export EDITOR:

Bourne Shell:

I $ EDITOR=emacs; export EDITOR

SPARCompilers C 2.0 Programmer's Guide-October 1992

C Shell:

I % setenv EDITOR emacs

Note that you may have to write an interface between escape and your editor.
For details, see "Command Line Syntax for Editors" on page 26l.

If you want to use escape only for browsing (without editing), you can set the
VIEWER environment variable to pg and export VIEWER. escape will then
invoke pg instead of vi.

An environment variable called VPATH can be set to specify directories to be
searched for source files. See "Using Viewpaths" on page 253.

Step 2: Invoke the escape Program

By default, escape builds a symbol cross-reference table for all the C, lex,
and yacc source files in the current directory, and for any included header files
in the current directory or the standard place. So if all the source files for the
program to be browsed are in the current directory, and if its header files are
there or in the standard place, invoke escape without arguments:

I $ cscope

To browse through selected source files, invoke escape with the names of
those files as arguments:

I $ cscope filel.c file2.c file3.h

For other ways to invoke escape, see "Command Line Options" on page 250.

escape builds the symbol cross-reference table the first time it is used on the
source files for the program to be browsed. By default, the table is stored in
the file escape. aut in the current directory. On a subsequent invocation,
escape rebuilds the cross-reference only if a source file has been modified or
the list of source files is different. When the cross-reference is rebuilt, the data
for the unchanged files are copied from the old cross-reference, which makes
rebuilding faster than the initial build and start-up time less for subsequent
invocations.

escape Source Code Browser 241

242

Step 3: Locate the Code

Now let's return to the task we undertook at the beginning of this section: to
identify the problem that is causing the error message out of storage to be
printed. You have invoked escape, the cross-reference table has been built.
The escape menu of tasks appears on the screen:

% cscope

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Figure 7-1 The esc ope Menu of Tasks

Press the RETURN key to move the cursor down the screen (with wraparound
at the bottom of the display), and "p (control-p) to move the cursor up; or use
the up ((ua) and down ((da) arrow keys if your keyboard has them. You can
manipulate the menu, and perform other tasks, with the following single-key
commands:

Table 7-1 cscope Menu Manipulation Commands (Sheet 1 of 2)

Menu Manipulation Commands

TAB move to next input field

RETURN move to next input field

"n move to next input field

"p move to previous input field

"y search with the last text typed

"b move to previous input field and search pattern

SPARCompilers C 2.0 Programmer's Guide-October 1992

Table 7-1 cscope Menu Manipulation Commands (Sheet 2 of 2)

Menu Manipulation Commands

Af move to next input field and search pattern

AC toggle ignore/use letter case when searching (a search for FILE will
match, for example, file and File when ignoring letter case)

Ar rebuild cross-reference

! start an interactive shell (type Ad to return to cscope)

Al redraw the screen

? display list of commands

Ad exit cscope

If the first character of the text for which you are searching matches one of
these commands, you can escape the command by entering a backslash (\)
before the character.

Now move the cursor to the fifth menu item, Find this text string,
enter the text out of storage, and press the RETURN key:

$ cscope

cscope Press the ? key for help

Find this C symbol
Find this global definition
Find functions called by this function
Find functions calling this function
Find this text string: out of storage
Change this text string
Find this egrep pattern
Find this file
Find files #including this file

Figure 7-2 Requesting a Search for a Text String

cscope Source Code Browser

--

243

Note - Follow the same procedure to perform any other task listed in the menu
except the sixth, Change this text string. Because this task is slightly
more complex than the others, there is a different procedure for performing it.
For a description of how to change a text string, see "Examples" on page 255.

escape searches for the specified text, finds one line that contains it, and
reports its finding as follows

Text string: out of storage

File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argvO);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functians calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

244

Figure 7-3 cscope Lists Lines Containing the Text String

After escape shows you the results of a successful search, you have several
options. You may want to change one of the lines or examine the code
surrounding it in the editor. Or, if escape has found so many lines that a list
of them will not fit on the screen at once, you may want to look at the next part
of the list. The following table shows the commands available after escape
has found the specified text:

Table 7-2 Commands for Use after an Initial Search (Sheet 1 of 2)

1 - 9 edit the file referenced by this line (the number you type corresponds to
an item in the list of lines printed by escope

space display next set of matching lines

+ display next set of matching lines

I\v display next set of matching lines

SPARCompilers C 2.0 Programmer's Guide-October 1992

Table 7-2 Commands for Use after an Initial Search (Sheet 2 of 2)

display previous set of matching lines

/\ e edit displayed files in order

> append the list of lines being displayed to a file

pipe all lines to a shell command

Again, if the first character of the text for which you are searching matches one
of these commands, you can escape the command by entering a backslash
before the character.

Now examine the code around the newly found line. Enter 1 (the number of
the line in the list). The editor will be invoked with the file alloc . c; the
cursor will be at the beginning of line 63 of alloc. c:

return(alloctest(realloc(p, (unsigned) size))) i

/* check for memory allocation failure */

static char *
alloctest(p)
char *Pi

if (p == NULL) {
(void) fprintf(stderr, "\n%s: out of storage\n", argvO) i

exit(l) i

return(p) i

"alloc.c" 67 lines, 1283 characters

Figure 7-4 Examining a Line of Code Found by cscope

escape Source Code Browser 245

You can see that the error message is generated when the variable p is NULL.
To determine how an argument passed to alloctest () could have been

NULL, you must first identify the functions that call alloctest () .

Exit the editor by using normal quit conventions. You are returned to the
menu of tasks. Now type alloctest after the fourth item, Find functions
calling this function:

Text string: out of storage

File Line
1 alloc.c 63 (void)fprintf(stderr, "\n%s: out of storage\n",argvO) i

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function: alloctest
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Figure 7-5 Requesting a List of Functions That Call alloctestO

246 SPARCompilers C 2.0 Programmer's Guide-October 1992

escape finds and lists three such functions:

Functions calling this function: alloctest
File Function Line
1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));
2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem, (unsigned) size)));
3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned) size)));

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Figure 7-6 cscope Lists Functions That Call alloctestO

cscope Source Code Browser 247

Now you want to know which functions call mymalloc (). escape finds ten
such functions. It lists nine of them on the screen and instructs you to press
the space bar to see the rest of the list:

Functions calling this function: mymalloc

File Function Line
1 alloc.c stralloc 24
2 crossref.c crossref 47

3 dir.c makevpsrcdirs63

4 dir.c addincdir 167
5 dir.c addincdir 168
6 dir.c addsrcfile 439

7 display.c dispinit 87
8 history.c addcmd 19
9 main.c main 212

return (strcpy(mymalloc (strlen(s) + 1), s»;
symbol = (struct symbol *) mymalloc(msymbols *

sizeof(struct symbol»;
srcdirs (char **) mymalloc(nsrcdirs * sizeof(char

*»;
incdirs (char **) mymalloc(sizeof(char *»;
incnames = (char **) mymalloc(sizeof(char *»;
p = (struct listitem *) mymalloc(sizeof(struct

listitem)) ;
displine = (int *) mymalloc(mdisprefs * sizeof(int »;
h (struct cmd *) mymalloc(sizeof(struct cmd»;
s = mymalloc«unsigned) (strlen(reffile) +

strlen(home) + 2»;

* 9 more lines - press the space bar to display more *
Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

248

Figure 7-7 cscope Lists Functions That Call mymallocO

Because you know that the error message out of storage is generated at
the beginning of the program, you can guess that the problem may have
occurred in the function dispini t () (display initialization).

SPARCompilers C 2.0 Programmer's Guide-October 1992

To view dispini t (), the seventh function on the list, type 7:

void
dispini t ()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs > 9) {

mdisprefs = 9;

/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

AL/* display a page of the references */

void
display ()
{

char file [PATHLEN + 1]; /* file name */
char function[PATLEN + 1] ;/* function name */
char linenum[NUMLEN + 1]; /* line number */
int screenline; /* screen line number */
int width; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters

Figure 7-8 Viewing dispini t () in the Editor

mymalloc () failed because it was called either with a very large number or a
negative number. By examining the possible values of FLDLINE and REFLINE,
you can see that there are situations in which the value of mdi spre f s is
negative, that is, in which you are trying to call mymalloc () with a negative
number.

Step 4: Edit the Code

On a windowing terminal you may have multiple windows of arbitrary size.
The error message out of storage might have appeared as a result of
running prog in a window with too few lines. In other words, that may have
been one of the situations in which mymalloc () was called with a negative

cscope Source Code Browser 249

250

number. Now you want to be sure that when the program aborts in this
situation in the future, it does so after printing the more meaningful error
message screen too small. Edit the function dispinit () as follows:

/* initialize display parameters */
void
dispinit ()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs <= 0) {

(void) fprintf (stderr I "\n%s : screen too small \n" I argvO);
exit (1) ;

if (mdisprefs > 9)
mdisprefs = 9;

/* allocate the displayed line array */

displine = (int *) mymalloc(mdisprefs * sizeof(int));

AL/* display a page of the references */

void
display()

Figure 7-9 Using cscope to Fix the Problem

You have fixed the problem we began investigating at the beginning of this
section. Now if prog is run in a window with too few lines, it will not simply
fail with the unedifying error message out of storage. Instead, it will check
the window size and generate a more meaningful error message before exiting.

Command Line Options

As noted, escape builds a symbol cross-reference table for the C, lex, and
source files in the current directory by default. That is,

I $ cscope

SPARCompilers C 2.0 Programmer's Guide-October 1992

is equivalent to

I $ cscope *. [chly]

We have also seen that you can browse through selected source files by
invoking cscape with the names of those files as arguments:

I $ cscope filel.c file2 . c file3 . h

cscape provides command line options that allow you greater flexibility in
specifying source files to be included in the cross-reference. When you invoke
cscape with the -s option and any number of directory names (separated by
commas)

I $ cscope -s dir,dir,dir

cscape will build a cross-reference for all the source files in the specified
directories as well as the current directory. To browse through all of the source
files whose names are listed in file (file names separated by spaces, tabs, or
new-lines), invoke cscape with the -i option and the name of the file
containing the list:

[$ cscope -i file

If your source files are in a directory tree, the following commands will allow
you to browse through all of them easily:

$ find. -name' *. [chly] , -print I sort > file
$ cscope -i file

Note that if this option is selected, cscape ignores any other files appearing
on the command line.

The -I option to cscape is similar to the -I option to cc. By default, cscape
searches for included header files in the current directory, then the standard
place. If you want cscape to search for an included header file in a different
directory, specify the path of the directory with -I:

I $ cscope -I dir

cscope Source Code Browser 251

252

In this case, cscope will search the directory dir for #include files called into
the source files in the current directory. Directories are searched for # inc 1 ude
files in the following order:

1. the current directory

2. the directories specified with - I

3. the standard place for header files (usually /usr / include)

You can invoke the -I option more than once on a command line. cscope
will search the specified directories in the order they appear on the command
line.

You can specify a cross-reference file other than the default cscope. out by
invoking the - f option. This is useful for keeping separate symbol cross
reference files in the same directory. You may want to do this if two programs
are in the same directory, but do not share all the same files:

$ cscope -f admin.ref admin.c common.c aux.c libs.c
$ cscope -f delta.ref delta.c common.c aux.c libs.c

In this example, the source files for two programs, admin and del ta, are in
the same directory, but the programs consist of different groups of files. By
specifying different symbol cross-reference files when you invoke cscope for
each set of source files, the cross-reference information for the two programs is
kept separate.

You can use the -pn option to specify that cscope display the path name, or
part of the path name, of a file when it lists the results of a search. The number
you give to -p stands for the last n elements of the path name you want to be
displayed. The default is 1, the name of the file itself. So if your current
directory is home / common, the command

I $ cscope -p2

will cause cscope to display common/filel. c, common/file2. c, and so
forth when it lists the results of a search.

SPARCompilers C 2.0 Programmer's Guide-October 1992

If the program you want to browse contains a large number of source files, you
can use the -b option to tell escape to stop after it has built a cross-reference;
escape will not display a menu of tasks. When you use escape -b in a
pipeline with the bateh(1) command (described in the SunOS 5.0 Reference
Manual) escape will build the cross-reference in the background:

echo 'cscope -b' I batch

Once the cross-reference is built (and as long as you have not changed a source
file or the list of source files in the meantime), you need only specify

I· $ cscope

for the cross-reference to be copied and the menu of tasks to be displayed in
the normal way. In other words, you can use this sequence of commands when
you want to continue working without having to wait for escape to finish its
initial processing.

The -d option instructs escape not to update the symbol cross-reference. You
can use it to save time - escape will not check the source files for changes
if you are sure that no such changes have been made.

Note - Use the -d option with care. If you specify -d under the erroneous
impression that your source files have not been changed, escape will refer to
an outdated symbol cross-reference in responding to your queries.

Check the eseape(1) page in the SunOS 5.0 Reference Manual for other
command line options.

Using Viewpaths

As we have seen, escape searches for source files in the current directory by
default. When the environment variable VPATH is set, escape searches for
source files in directories that comprise your viewpath. A viewpath is an
ordered list of directories, each of which has the same directory structure
below it.

For example, suppose you are part of a software project. There is an official set
of source files in directories below / f s 1 / a f c. Each user has a home directory
(/usr /yau). If you make changes to the software system, you may have

cscope Source Code Browser 253

254

copies of just those files you are changing in /usr /yau/ src/ cmd/pragl.
The official versions of the entire program can be found in the directory
/fsl/afc/src/cmd/pragl.

Suppose you use cscape to browse through the three files that comprise
pragl, namely, fl. c, f2 . c, and f3 . c. You would set VPATH to /usr /yau
and /fsl/afc

and export it, as in

Bourne Shell:

$ VPATH=/usr/you:/fsl/ofc; export VPATH

C Shell:

I % setenv VPATH /usr/you:/fsl/ofc

You would then make your current directory /usr /yau/ src / cmd/pragl,
and invoke cscape:

I $ cscope

The program will locate all files in the viewpath. In case duplicates are found,
cscape uses the file whose parent directory appears earlier in VPATH. Thus, if
f2 . c is in your directory (and all three files are in the official directory),
cscape will examine f2. c from your directory and fl. c and f3. c from the
official directory.

The first directory in VPATH must be a prefix (usually $HOME) of the directory
you will be working in. Each colon-separated directory in VPATH must be
absolute: it should begin at /.

Stacking escape and Editor Calls

cscape and editor calls can be stacked. That means that when cscape puts
you in the editor to view a reference to a symbol and there is another reference
of interest, you can invoke cscape again from within the editor to view the
second reference without exiting the current invocation of either cscape or the
editor. You can then back up by exiting the most recent invocation with the
appropriate cscape and editor commands.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Examples

This section presents examples of how escape can be used to perform three
tasks: changing a constant to a preprocessor symbol, adding an argument to a
function, and changing the value of a variable. The first example demonstrates
the procedure for changing a text string, which differs slightly from the other
tasks on the escape menu. That is, once you have entered the text string to be
changed, escape prompts you for the new text, displays the lines containing
the old text, and waits for you to specify which of these lines you want it to
change.

Changing a Constant to a Preprocessor Symbol
Suppose you want to change a constant, 100, to a preprocessor symbol,
MAXSIZE. Select the sixth menu item, Change this text string, and enter
\ 1 0 o. The 1 must be escaped with a backslash because it has a special
meaning (item 1 on the menu) to escape. Now press RETURN. escape will
prompt you for the new text string. Type MAXSIZE:

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string: \100
Find this egrep pattern:
Find this file:
Find files #including this file:
To: MAXSIZE

Figure 7-10 Changing a Text String

escape Source Code Browser 255

256

escape displays the lines containing the specified text string, and waits for
you to select those in which you want the text to be changed:

Change "lOa" to "MAXSIZE"

File Line
1 init.c 4 char s[100] i

2 init.c 26 for (i = 0; i < 100; i++)
3 find. c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.C 19 p = total/100.0; /* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help) :

Figure 7-11 cscope Prompts for Lines to Changed

You know that the constant 100 in lines I, 2, and 3 of the list (lines 4,26, and 8
of the listed source files) should be changed to MAXSIZE. You also know that
0100 in read. c and 100 . 0 in err. c (lines 4 and 5 of the list) should not be
changed. You select the lines you want changed with the following single-key
commands:

Table 7-3 Commands for Selecting Lines to Be Changed (Sheet 1 of 2)

1-9 mark or unmark the line to be changed

* mark or unmark all displayed lines to be changed

space display next set of lines

+ display next set of lines

SPARCompilers C 2.0 Programmer's Guide-October 1992

Table 7-3 Commands for Selecting Lines to Be Changed (Sheet 2 of 2)

display previous set of lines

a mark all lines to be changed

1\ d change the mar ked lines and exit

ESC exit without changing the marked lines

In this case, enter 1, 2, and 3. Note that the numbers you type are not
printed on the screen. Instead, cscope marks each list item you want to be
changed by printing a > (greater than) symbol after its line number in the list:

Change "lOa" to "MAXSIZE"

File Line
l>init.c 4 char s[lOO];
2>init.c 26 for (i = 0; i < 100; i++)
3>find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help) :

Figure 7-12 Marking Lines to Be Changed

cscope Source Code Browser 257

258

Now type Ad to change the selected lines. cscope displays the lines that have
been changed and prompts you to continue:

Changed lines:

char s[MAXSIZE];
for (i = 0; i < MAXSIZE; i++)
if (c < MAXSIZE) {

Press the RETURN key to continue:

Figure 7-13 escape Displays Changed Lines of Text

When you press RETURN in response to this prompt, cscope redraws the
screen, restoring it to its state before you selected the lines to be changed, as
shown in Figure 7-17.

SPARCompilers C 2.0 Programmer's Guide-October 1992

The next step is to add the #define for the new symbol MAXSIZE. Because
the header file in which the #de fine is to appear is not among the files whose
lines are displayed, you must escape to the shell by typing!. The shell prompt
will appear at the bottom of the screen. Then enter the editor and add the
#define:

Text string: 100

File Line
1 init. c 4 char s[100];
2 init. c 26 for (i = 0; i < 100; i++)
3 find.c 8 if (c < 100) {

4 read.c 12 f = (bb & 0100) ;
5 err.c 19 p = total/100.0; /* get percentage

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
$ vi defs.h

Figure 7-14 Escaping from cscope to the Shell

*/

To resume the cscope session, quit the editor and type Ad to exit the shell.

Adding an Argument to a Function
Adding an argument to a function involves two steps: editing the function
itself and adding the new argument to every place in the code where the
function is called. cscope makes that easy.

First, edit the function by using the second menu item, Find this global
definition. Next, find out where the function is called. Use the fourth
menu item, Find functions calling this function, to get a list of all the
functions that call it. With this list, you can either invoke the editor for each
line found by entering the list number of the line individually, or invoke the

escape Source Code Browser 259

Notes

260

editor for all the lines automatically by typing "e. Using escape to make this
kind of change assures that none of the functions you need to edit will be
overlooked.

Changing the Value of a Variable
The value of escape as a browser becomes apparent when you want to see
how a proposed change will affect your code. Suppose you want to change the
value of a variable or preprocessor symbol. Before doing so, use the first menu
item, Find this C symbol, to obtain a list of references that will be affected.
Then use the editor to examine each one. This will help you predict the overall
effects of your proposed change. Later, you can use escape in the same way
to verify that your changes have been made.

This section describes certain problems that may arise when you use escape
and how to avoid them.

Unknown Terminal Type

You may see the error message:

Sorry, I don't know how to deal with your IItermll terminal

If this message appears, your terminal may not be listed in the Terminal
Information Utilities (terminfa) database that is currently loaded. Make sure
you have assigned the correct value to TERM. If the message reappears, try
reloading the Terminal Information Utilities. You may also see:

Sorry, I need to know a more specific terminal type than II unknown II

If this message appears, set and export the TERM variable as described in "Step
1: Set Up the Environment" on page 240.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Command Line Syntax for Editors

As noted, cscape invokes the vi editor by default. You may override the
default setting by assigning your preferred editor to the EDITOR environment
variable and exporting EDITOR, as described in "Step 1: Set Up the
Environment" on page 240. Note, however, that cscape expects the editor it
uses to have a command line syntax of the form

I $ editor +linenum filename

as does vi. If the editor you want to use does not have this command line
syntax, you must write an interface between cscape and the editor.

Suppose you want to use ed, for example. Because ed does not allow
specification of a line number on the command line, you will not be able to use
it to view or edit files with cscape unless you write a shell script (called
myedi t here) that contains the following line:

I /usr/bin/ed $2

Now set the value of EDITOR to your shell script and export EDITOR:

Bourne Shell:

I $ EDITOR=myedit; export EDITOR

C Shell:

I % setenv EDITOR myedi t

When cscape invokes the editor for the list item you have specified, say, line
17 in main. c, it will invoke your shell script with the command line

~yedit +17 main.c

myedi t will discard the line number ($1) and call ed correctly with the file
name ($2). Of course, you will then have to execute the appropriate ed
commands to display and edit the line. That is, you will not be moved
automatically to line 17 of the file.

cscope Source Code Browser 261

SourceBrowser

262

Source Browser is an interactive tool to aid programmers in the development
and maintenance of software systems, particularly large ones. Because
SourceBrowser builds a database and uses it to respond to queries, once the
database it built, the size of the code you are browsing has minimal impact on
SourceBrowser's speed.

SourceBrowser can help you find all occurences of any symbol of your choice,
including those found in header files. It can be used from either a command
line or window environment.

SourceBrowser uses a what you see is what you browse paradigm. The source
code you manipulate is the same source code SourceBrowser uses in its
searches. This allows you to edit code from within SourceBrowser.

SourceBrowser is designed to be used with multiple languages. In addition to
C, it can be used with FORTRAN, C++, Pascal and Modula-2.

SourceBrowser is sold separately. For more information, see the Browsing
Source Code manual.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Scope of this Chapter

Introduction

1 in t Source Code Checker

Note - Of the nearly five hundred diagnostics issued by lint, this chapter
describes only the much smaller subset of 1 in t -specific warnings: those not also
issued by the compiler. The one exception to this rule applies to diagnostics
issued both by lint and the compiler that are capable of being suppressed
only by lint options.

For the text and examples of messages issued exclusively by 1 in t or subject
exclusively to its options, refer to "lint-specific Messages" on page 278.

For the messages also issued by the compiler, consult the SPARCompilers C 2.0
Programmer's Guide.

lint checks for code constructs that may cause your C program not to
compile, or to execute with unexpected results. lint issues every error and
warning message produced by the C compiler. It also issues 1 in t -specific
warnings about potential bugs and portability problems.

In particular, 1 in t compensates for separate and independent compilation in
C by flagging inconsistencies in definition and use across files, including any
libraries you have used. In a large project environment especially, where the
same function may be used by different programmers in hundreds of separate

263

264

modules of code, lint can help discover bugs that otherwise might be difficult
to find. A function called with one less argument than expected, for example,
looks at the stack for a value the call has never pushed, with results correct in
one condition, incorrect in another, depending on whatever happens to be in
memory at that stack location. By identifying dependencies like this one, and
dependencies on machine architecture as well, 1 in t can improve the reliability
of code run on your machine or someone else's.

Options and Directives

1 in t is a static analyzer, which means that it cannot evaluate the run-time
consequences of the dependencies it detects. Certain programs, for instance,
may contain hundreds of unreachable break statements, of little importance,
about which you typically can do nothing, and which lint will faithfully flag
nevertheless. That's where lint's command line options and directives -
special comments embedded in the source text - come in. For the example
we've cited here,

• you can invoke 1 in t with the - b option to suppress all complaints about
unreachable break statements;

• for a finer-grained control, you can precede any unreachable statement with
the comment / * NOTREACHED * / to suppress the diagnostic for that
statement.

"Usage" on page 269 discusses options and directives in greater detail and
introduces the lint filter technique, which lets you tailor lint's behavior
even more finely to your project's needs. It also shows you how to use
1 in t libraries to check your program for compatibility with the library
functions you have called in it.

Message Formats

Most of lint's messages are simple, one-line statements printed for each
occurrence of the problem they diagnose. Errors detected in included files are
reported multiply by the compiler but only once by lint, no matter how
many times the file is included in other source files. Compound messages are
issued for inconsistencies across files and, in a few cases, for problems within
them as well. A single message describes every occurrence of the problem in
the file or files being checked. When use of a lint filter (see "Usage" on page
269) requires that a message be printed for each occurrence, compound
diagnostics can be converted to the simple type by invoking lint with the -s
option.

SPARCompilers C 2.0 Programmer's Guide-October 1992

What lint Does

1 in t -specific diagnostics are issued for three broad categories of conditions:
inconsistent use, nonportable code, and suspicious constructs. In this section,
we'll review examples of lint's behavior in each of these areas, and suggest
possible responses to the issues they raise.

Consistency Checks

Inconsistent use of variables, arguments, and functions is checked within files
as well as across them. Generally speaking, the same checks are performed for
prototype uses, declarations, and parameters as lint (1) checks for for old
style functions. (If your program does not use function prototypes, 1 in twill
check the number and types of parameters in each call to a function more
strictly than the compiler.) 1 in t also identifies mismatches of conversion
specifications and arguments in [fs]printf () and [fs] scanf () control
strings. Examples:

• Within files, lint flags non void functions that fall off the bottom without
returning a value to the invoking function. In the past, programmers often
indicated that a function was not meant to return a value by omitting the
return type: fun () {}. That convention means nothing to the compiler,
which regards fun () as having the return type into Declare the function
with the return type void to eliminate the problem.

• Across files, lint detects cases where a nonvoid function does not return a
value, yet is used for its value in an expression, and the opposite problem, a
function returning a value that is sometimes or always ignored in
subsequent calls. When the value is always ignored, it may indicate an
inefficiency in the function definition. When it is sometimes ignored, it's
probably bad style (typically, not testing for error conditions). If you do not
need to check the return values of string functions like strcat (),
strcpy (), and sprintf (), or output functions like printf () and
putchar (), cast the offending call(s) to void.

• 1 in t identifies variables or functions that are declared but not used or
defined; used but not defined; or defined but not used. That means that
when lint is applied to some, but not all files of a collection to be loaded
together, it will complain about functions and variables declared in those
files but defined or used elsewhere; used there but defined elsewhere; or
defined there and used elsewhere. Invoke the -x option to suppress the
former complaint, -u to suppress the latter two.

lint Source Code Checker 265

266

Portability Checks

Some nonportable code is flagged by lint in its default behavior, and a few
more cases are diagnosed when lint is invoked with -p and/or -Xc. The
latter tells lint to check for constructs that do not conform to the ANSI C
standard. For the messages issued under -p and -Xc, check the "Usage"
section below. Examples:

• In some C language implementations, character variables that are not
explicitly declared signed or unsigned are treated as signed quantities
with a range typically from -128 to 127. In other implementations, they are
treated as nonnegative quantities with a range typically from a to 255. So
the test

char Ci

c = getchar()i
if (c == EOF) ...

where EOF has the value -1, will always fail on machines where character
variables take on nonnegative values. One of 1 in t' s -p checks will flag any
comparison that implies a plain char may have a negative value. Note,
however, that declaring c a signed char in the above example eliminates the
diagnostic, not the problem. That's because getchar () must return all
possible characters and a distinct EOF value, so a char cannot store its value.
We cite this example, perhaps the most common one arising from
implementation-defined sign-extension, to show how a thoughtful application
of lint's portability option can help you discover bugs not related to
portability. In any case, declare c as an in t.

• A similar issue arises with bit-fields. When constant values are assigned to
bit-fields, the field may be too small to hold the value. On a machine that
treats bit-fields of type in t as unsigned quantities, the values allowed for
int x: 3 range from a to 7, whereas on machines that treat them as signed
quantities, they range from -4 to 3. However unintuitive it may seem, a
three-bit field declared type in t cannot hold the value 4 on the latter
machines. 1 in t invoked with -p flags all bit-field types other than
unsigned int or signed into Note that these are the only portable bit
field types. Sun C supports int, char, short, and long bit-field types that
may be unsigned, signed, or plain. It also supports the enum bit-field
type.

SPARCompilers C 2.0 Programmer's Guide-October 1992

• Bugs can arise when a larger-sized type is assigned to a smaller-sized type.
If significant bits are truncated, accuracy is lost:

r--
I short S;

long Ii
s = Ii

1 in t flags all such assignments by default; the diagnostic can be suppressed
by invoking the -a option. Bear in mind that you may be suppressing other
diagnostics when you invoke lint with this or any other option. Check the
list in the "Usage" section below for the options that suppress more than one
diagnostic.

• A cast of a pointer to one object type to a pointer to an object type with
stricter alignment requirements may not be portable. 1 in t flags

int *fun(y)
char *y;

return(int *)Yi

because, on most machines, an int cannot start on an arbitrary byte boundary,
whereas a char can. You can suppress the diagnostic by invoking lint with
- h, although, again, you may be disabling other messages. Better still,
eliminate the problem by using the generic pointer void *.

• ANSI C leaves the order of evaluation of complicated expressions
undefined. What this means is that when function calls, nested assignment
statements, or the increment and decrement operators cause side effects -
when a variable is changed as a by-product of the evaluation of an
expression - the order in which the side effects take place is highly
machine dependent. By default, 1 in t flags any variable changed by a side
effect and used elsewhere in the same expression:

int a[lO];
main()
{

int i = Ii
a[i++] = i;

lint Source Code Checker 267

268

Note that in this example the value of a [1] may be 1 if one compiler is used, 2
if another. The bitwise logical operator & can give rise to this diagnostic when
it is mistakenly used in place of the logical operator &&:

I if ((c = getchar (» ! = EOF & c ! = I 0 I)

Suspicious Constructs

lint flags a miscellany of legal constructs that may not represent what the
programmer intended. Examples:

• An unsigned variable always has a nonnegative value. So the test

rr~S~~gned x;
if (x < 0)

will always fail. Whereas the test

I unsigned x;
if (x > 0)

is equivalent to

I if (x ! = 0) •••

which may not be the intended action. 1 in t flags suspicious comparisons of
unsigned variables with negative constants or O. To compare an unsigned
variable to the bit pattern of a negative number, cast it to unsigned:

I if (u == (unsigned) -1) ...

Or use the u suffix:

I if (u == -lU) ...

SPARCompilers C 2.0 Programmer's Guide-October 1992

Usage

• 1 in t flags expressions without side effects that are used in a context where
side effects are expected, that is, where the expression may not represent
what the programmer intended. It issues an additional warning whenever
the equality operator is found where the assignment operator was expected,
in other words, where a side effect was expected:

int fun()
{

int a, b, x, Yi

(a = x) && (b == Y)i

• 1 in t cautions you to parenthesize expressions that mix both the logical and
bitwise operators (specifically, & , I (,/\. ,« ,»), where
misunderstanding of operator precedence may lead to incorrect results.
Because the precedence of bitwise & ,for example, falls below logical =
, the expression

if (x & a == 0)

will be evaluated as

!if(X&(a==o))

which is most likely not what you intended. Invoking 1 in t with - h disables
the diagnostic.

You invoke lint with a command of the form

! $ lint file.c file.c

1 in t examines code in two passes. In the first, it checks for error conditions
local to C source files, in the second for inconsistencies across them. This
process is invisible to the user unless lint is invoked with -c:

! $ lint -c filel.c file2.c

lint Source Code Checker 269

270

That command directs lint to execute the first pass only and collect
information relevant to the second - about inconsistencies in definition and
use across filel. c and file2 . c - in intermediate files named filel.ln
and file2 .In:

$ Is
filel.c
filel.ln
file2.c
file2.1n

In this way, the -c option to lint is analogous to the -c option to cc, which
suppresses the link editing phase of compilation. Generally speaking, lint's
command line syntax closely follows cc's.

When the .In files are linted

I $ lint filel.ln file2.1n

the second pass is executed. 1 in t processes any number of . c or . In files in
their command line order. So

I $ lint filel.ln file2.1n file3.c

directs lint to check file3 . c for errors internal to it and all three files for
consistency.

lint searches directories for included header files in the same order as cc (see
the C 2.0.1 Programmer's Guide). You can use the -I option to lint as you
would the -I option to cc. Namely, if you want lint to check an included
header file that is stored in a directory other than your current directory or the
standard place, specify the path of the directory with - I as follows:

I $ lint -ldir filel.c file2.c

SPARCompilers C 2.0 Programmer's Guide-October 1992

You can specify -I more than once on the lint command line. Directories are
searched in the order they appear on the command line. Of course, you can
specify multiple options to lint on the same command line. Options may be
concatenated unless one of the options takes an argument:

I $ lint -cp -Idir -Idir filel. c file2. c

That command directs lint to

• execute the first pass only;

• perform additional portability checks;

• search the specified directories for included header files.

1 in t Libraries

You can use lint libraries to check your program for compatibility with the
library functions you have called in it: the declaration of the function return
type, the number and types of arguments the function expects, and so on. The
standard lint libraries correspond to libraries supplied by the C compilation
system, and generally are stored in the standard place on your system, the
directory /usr/ccs/lib. By convention, lint libraries have names of the
form llib-Ix.ln.

The lint standard C library, llib-Ic . In, is appended to the lint command
line by default; checks for compatibility with it can be suppressed by invoking
the -n option. Other lint libraries are accessed as arguments to -1. That is,

I $ lint -Ix filel.c file2.c

directs lint to check the usage of functions and variables in filel. c and
file2. c for compatibility with the lint library llib-Ix.ln. The library
file, which consists only of definitions, is processed exactly as are ordinary
source files and ordinary. In files, except that functions and variables used
inconsistently in the library file, or defined in the library file but not used in
the source files, elicit no complaints.

lint Source Code Checker 271

lint Filters

272

To create your own lint library, insert the directive 1* LINTLIBRARY * I at
the head of a C source file, then invoke lint for that file with the -0 option
and the library name that will be given to -1:

$ lint -0 files headed by j* LINTLIBRARY *j

causes only definitions in the source files headed by 1* LINTLIBRARY * I to
be written to the file llib-lx.ln. (Note the analogy of lint -0 to cc -0.)
A library can be created from a file of function prototype declarations in the
same way, except that both 1* LINTLIBRARY * I and 1* PROTOLIBn * /
must be inserted at the head of the declarations file. If n is 1, prototype
declarations will be written to a library . ln file just as are old-style definitions.
If n is 0, the default, the process is cancelled. Invoking lint with -y is
another way of creating a lint library:

I $ lint -y -ox filel.c file2.c

causes each source file named on the command line to be treated as if

it began with 1* LINTLIBRARY * I and only its definitions to be written to
llib-lx.ln.

By default, 1 in t searches for 1 in t libraries in the standard place. To direct
lint to search for a lint library in a directory other than the standard place,
specify the path of the directory with the - L option:

I $ lint -Ldir -lx filel.c file2.c

The specified directory is searched before the standard place.

A lint filter is a project-specific post-processor that typically uses an awk
script or similar program to read the output of 1 in t and discard messages that
your project has decided do not identify real problems - string functions, for
instance, returning values that are sometimes or always ignored. It enables
you to generate customized diagnostic reports when lint options and
directives do not provide sufficient control over output.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Two options to 1 in t are particularly useful in developing a filter. Invoking
1 in t with - s causes compound diagnostics to be converted into simple, one
line messages issued for each occurrence of the problem diagnosed. The easily
parsed message format is suitable for analysis by an awk script.

Invoking lint with -k causes certain comments you have written in the
source file to be printed in output, and can be useful both in documenting
project decisions and specifying the post-processor's behavior. In the latter
instance, if the comment identified an expected lint message, and the
reported message was the same, the message might be filtered out. To use - k,
insert on the line preceding the code you wish to comment the / * LINTED

[msg] * / directive, where msg refers to the comment to be printed when lint
is invoked with -k. (Refer to the list of directives below for what lint does
when -k is not invoked for a file containing /* LINTED [msg] */.)

Options and Directives Listed

These options suppress specific messages:

Table 8-1 lint Options Supressing Messages (Sheet 1 of 2)

Option Suppresses

assignment causes implicit narrowing conversion

-a conversion to larger integral type may sign-extend
incorrectly

-b
statement not reached (unreachable break and empty
statements)

assignment operator II_II found where equality operator
11- _II was expected

constant operand to op: II! II

fallthrough on case statement

-h
pointer result in improper alignment cast may

precedence confusion possible; parenthesize

statement has no consequent: if

statement has no consequent: else

-m declared global, could be static

lint Source Code Checker 273

274

Table 8-1 lint Options Supressing Messages (Sheet 2 of 2)

Option Suppresses

name defined but never used
-u

name used but not defined

-v argument unused in function

-x name declared but never used or defined

These options enable specific messages:

Table 8-2 lint Options Enabling Messages

Option Enables

conversion to larger integral type may sign-extend
incorrectly

may be indistinguishable due to truncation or case

-p
pointer casts be troublesome may

nonportable bit-field type

suspicious comparison of char with value: op "op"

bitwise operation on signed value nonportable

function must return int: main()

-Xc may be indistinguishable due to truncation or case

only 0 or 2 parameters allowed: main()

nonportable character constant

Other options:

-c filename

-c

Create a .In file with the filename specified. These .In files are the
product of lint's first pass only. filename may be a complete pathname.

Create a .In file consisting of information relevant to lint's second pass
for every . c file named on the command line. The second pass is not
executed.

SPARCompilers C 2.0 Programmer's Guide-October 1992

-F
When referring to the. c files named on the command line, print their path
names as supplied on the command line rather than only their base names.

-Idir
Search the directory dir for included header files.

-k
When used with the directive /* LINTED [msgl */, print info: msg.

-Ix
Access the lint library llib-lx.ln.

-Ldir
When used with -I, search for a lint library in the directory dir.

-n
Suppress checks for compatibility with the default 1 in t standard C library.

-ox

-8

-y

-v

Create the file 11 ib-lx . In, consisting of information relevant to 1 in t' s
second pass, from the . c files named on the command line. Generally used
with -y or /* LINTLIBRARY * / to create lint libraries.

Convert compound messages into simple ones.

Treat every . c file named on the command line as if it began with the
directive / * LINTLIBRARY * /.

Write the product name and release to standard error.

lint Source Code Checker 275

276

Directives:

Table 8-3 lint Directives

Directive

/*ARGSUSEDn*/

/*CONSTCOND*/

/*EMPTY*/

/*FALLTHRU*/

Action

Suppress:

argument unused in function

for every argument but the first n in the function
definition it precedes. Default is O.

Suppress:

constant in conditional context

cons tan t operand to op: "!"

logical expression always false: op "&&"

logical expression always true: op "I I"

for the constructs it precedes. Also

/* CONSTANTCONDITION */.

Suppress:

statement has no consequent: else

when inserted between the else and
semicolon;

statement has no consequent: if

when inserted between the controlling expression of the
if and semicolon.

Suppress:

fallthrough on case statement

for the case statement it precedes. Also

/* FALLTHROUGH */.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Table 8-3 lint Directives

Directive

/ *LINTED- [msgJ * /

/*LINTLIBRARY*/

/*NOTREACHED*/

lint Source Code Checker

Action

When - k is not invoked, suppress every warning
pertaining to an intra file problem except:

argument unused in function

declaration unused in block

set but not used in function

static unused

variable unused in function

for the line of code it precedes. msg is ignored.

When -0 is invoked, write to a library .In file only
definitions in the . c file it heads.

Suppress:

statement not reached

for the unreached statements it precedes;

fallthrough on case statement

for the case it precedes that cannot be reached from the
preceding case;

function falls off bottom without
returning value

for the closing curly brace it precedes at the end of the
function.

277

Table 8-3 lint Directives

Directive

I*PRINTFLIKEn*/

I*PROTOLIBn*/

I*SCANFLIKEn*/

I *VARARGSn* /

Action

Treat the nth argument of the function definition it
precedes as a [f s] pr in t f () format string and issue:

malformed format string

for invalid conversion specifications in that argument,
and

function argument type inconsistent with
format

too few arguments for format

too many arguments for format

for mismatches between the remaining arguments and
the conversion specifications. lint issues these
warnings by default for errors in calls to [fs]printf ()
functions provided by the standard C library.

When n is 1 and 1* LINTLIBRARY * I is used, write to
a library .In file only function prototype declarations in
the. c file it heads. Default is 0, cancelling the process.

Same as 1* PRINTFLIKEn * / except that the nth
argument of the function definition is treated as a
[fs] scanf () format string. By default, lint issues
warnings for errors in calls to [f s] scan f () functions
provided by the standard C library.

For the function whose definition it precedes, suppress:

function called with variable number of
arguments

for calls to the function with n or more arguments.

1 in t-specific Messages

278

This section lists alphabetically the warning messages issued exclusively by
1 in t or subject exclusively to its options. The code examples illustrate
conditions in which the messages are elicited. Note that some of the examples
would elicit messages in addition to the one stated. For the remaining 1 in t
messages, consult the C 2.0.1 Programmer's Guide.

SPARCompilers C 2.0 Programmer's Guide-October 1992

Format is explained on page 264.

argument unused in function

Format: Compound

A function argument was not used. Preceding the function definition with
/ * ARGSUSEDn * / suppresses the message for all but the first n arguments; invoking

lint with -v suppresses it for every argument.

1 int fun(int x, int y)
2 {

3 return Xi

4 }

5 /* ARGSUSED1 */
6 int fun2(int X, int y)
7 {

8 return Xi

9 }

argument unused in function
(1) y in fun

array subscript cannot be >value:

Format: Simple

value

The value of an array element's subscript exceeded the upper array bound.

1 int fun()
2 {

3 int a [10] i

4 int *p = a;
5 while (p != &a[10]) /* using address is ok */
6 P++i

7 return a[5 + 6] i

8 }

============
(7) warning: array subscript cannot be > 9: 11

lint Source Code Checker 279

280

array subscript cannot be negative: value

Format: Simple

The constant expression that represents the subscript of a true array (as opposed to a
pointer) had a negative value.

1 int f ()
2 {
3 int a[10];
4 return a[5 * 2 / 10 - 2];
5 }

(4) warning: array subscript cannot be negative: -1

assignment causes implicit narrowing conversion

Format: Compound

An object was assigned to one of a smaller type. Invoking lint with -a suppresses
the message. So does an explicit cast to the smaller type.

1 void fun()
2 {

3 short s;
4 long 1 = 0;
5 s = 1;
6 }

============

assignment causes implicit narrowing conversion
(5)

SPARCompilers C 2.0 Programmer's Guide-October 1992

assignment operator = found where -- was expected

Format: Simple

An assignment operator was found where a conditional expression was expected.
The message is not issued when an assignment is made to a variable using the value
of a function call or in the case of string copying (see the example below). The
warning is suppressed when lint is invoked with -h.

1 void fun ()
2 {
3 char *p, *q;
4 int a = 0, b = 0, c = 0, d = 0, i;
5 i = (a = b) && (c -- d);
6 i = (c -- d) && (a = b);
7 if (a = b)
8 i = 1;
9 while (*p++ = *q++);
10 while (a = b);
11 while ((a = getchar ()) -- b);
12 if (a = foot)) return;
13 }

(5) warning: assignment operator
was expected
(7) warning: assignment operator

was expected
(10) warning: assignment operator

was expected

lint Source Code Checker

found where

found where

found where

281

282

bitwise operation on signed value nonportable

Format: Compound

The operand of a bitwise operator was a variable of signed integral type, as defined
by ANSI C. Because these operators return values that depend on the internal
representations of integers, their behavior is implementation-defined for operands of
that type. The message is issued only when lint is invoked with -Xc.

1 fun()
2 {

3 int i;
4 signed int j;

5 unsigned int k;
6 i = i & 055;
7 j = j I 022;
8 k = k » 4;
9 }

warning: bitwise operation on signed value nonportable
(6) (7)

constant in conditional context

Format: Simple

The controlling expression of an if, while, or for statement was a constant. Preceding
the statement with / * CONSTCOND * / suppresses the message.

1 void fun ()
2 {
3 if (! 1) return;
4 while (1) foo();
5 for (;1;);
6 for (;;);
7 /* CONSTCOND */
8 while (1);
9 }

(3) warning: constant in conditional context
(4) warning: constant in conditional context
(5) warning: constant in conditional context

SPARCompilers C 2.0 Programmer's Guide-October 1992

constant operand to op: !

Format: Simple

The operand of the NOT operator was a constant. Preceding the statement with / *
CONSTCOND * / suppresses the message for that statement; invoking lint with - h

suppresses it for every statement.

1 void fun()
2 {

3 if (! 0) return;
4 /* CONSTCOND */
5 if (! 0) return;
6 }

(3) warning: constant operand to op: n!n

constant truncated by assignment

Format: Simple

An integral constant expression was assigned or returned to an object of an integral
type that cannot hold the value without truncation.

1 unsigned char f()
2 {

3 unsigned char i;
4 i = 255;
5 i = 256;
6 return 256;
7 }

============

(5) warning: constant truncated by assignment
(6) warning: constant truncated by assignment

lint Source Code Checker 283

284

conversion of pointer loses bits

Format: Simple

A pointer was assigned to an object of an integral type that is smaller than the
pointer.

1 void fun()
2 {

3 int j = 100;
4 int *i;
5 i = &j;

6 c = i;
7 }

(6) warning: conversion of pointer loses bits

conversion to larger integral type may sign-extend incorrectly

Format: Compound

A variable of type "plain" char was assigned to a variable of a larger integral type.
Whether a "plain" char is treated as signed or unsigned is implementation-defined.
The message is issued only when lint is invoked with -p, and is suppressed when it
is invoked with -a.

1 void fun()
2 {

3 char c = 0;
4 short s = 0;
5 long 1;
6 1 = c;
7 1 = s;
8 }

conversion to larger integral type may sign-extend incorrectly
(6)

SPARCompilers C 2.0 Programmer's Guide-October 1992

declaration is unused in block

Format: Compound

An external variable or function was declared but not used in an inner block.

1 int fun()
2 {

3 int foo () ;
4 int bar () ;
5 return foo () ;
6 }

============
declaration unused in block

(4) bar

lint Source Code Checker 285

286

declared global, could be static

Format: Compound

An external variable or function was declared global, that is, not declared static,
but was referenced only in the file in which it was defined. The message is
suppressed when lint is invoked with -m.

1 int ii

2 static int bar()
3 {

4 return i· ,
5 }

6 int foo ()
7 {

8 return ii

9 }

10 main()
11 {

12 int ai

13 a = faa () i

14 a = bar() i

15 return ai

16 }

declared global, could be static
i file. c (1)

faa file.c(7)

SPARCompilers C 2.0 Programmer's Guide-October 1992

equality operator -- found where = was expected

Format: Simple

An equality operator was found where a side effect was expected.

1 void fun (a, b)
2 int a, bi
3 {

4 a -- bi
5 for (a -- bi a < 10i a++) i
6 }

============

(4) warning: equality operator 11 __ 11 found where II_II was expected
(5) warning: equality operator 11 __ 11 found where "_II was expected

evaluation order undefined: name

Format: Simple

A variable was changed by a side effect and used elsewhere in the same expression.

1 int a[10] i
2 main()
3 {

4 int i = Ii
5 a[i++] = ii
6 }

============

(5) warning: evaluation order undefined: i

lint Source Code Checker 287

288

fallthrough on case statement

Format: Simple

Execution fell through one case to another without a break or return. Preceding
a case statement with / * FALLTHRU * /, or / * NOTREACHED * / when the case
cannot be reached from the preceding case (see below), suppresses the message for
that statement; invoking lint with - h suppresses it for every statement.

1 void fun (int i)
2 {

3 switch (i) {

4 case 10:
5 i = 0;
6 case 12 :
7 return;
8 case 14:
9 break;
10 case 15:
11 case 16:
12 break;
13 case 18:
14 i = 0;
15 /* FALLTHRU */
16 case 20:
17 error ("bad number");
18 /* NOTREACHED */
19 case 22:
20 return;
21 }

22 }

(6) warning: fallthrough on case statement

SPARCompilers C 2.0 Programmer's Guide-October 1992

function argument (number) declared inconsistently

Format: Compound

The parameter types in a function prototype declaration or definition differed from
their types in another declaration or definition. The message described after this one
is issued for uses (not declarations or definitions) of a prototype with the wrong
parameter types.

file i3a.c
1 int fun1(int)i
2 int fun2(int)i
3 int fun3 (int) i

file i3b.c
1 int fun1(int *i)i
2 int fun2(int *i) {}
3 void foo ()
4 {
5 int *ii
6 fun3 (i) i

7 }

function argument (number) declared inconsistently
fun2 (arg 1) i3b.c(2) int * .. i3a.c(2) int
fun1 (arg 1) i3a.c(l) int .. i3b.c(l) int *

function argument (number) used inconsistently
fun3 (arg 1) i3a.c(3) int .. i3b.c(6) int *

lint Source Code Checker 289

290

function argument number used inconsistently

Format: Compound

The argument types in a function call did not match the types of the formal
parameters in the function definition. (And see the discussion of the preceding
message.)

file f1. c
1 int fun(int x, int y)
2 {
3 return x + Yi
4 }
file f2.c
1 int main()
2 {
3
4
5
6 }

int *Xi

extern int fun() i

return fun(l, X)i

function argument 2 used inconsistently
fun (arg 2) fl.c(2) int .. f2.c(5) int *

function argument type inconsistent with format

Format: Compound

An argument was inconsistent with the corresponding conversion specification in
the control string of a [fs]printf () or [fs] scanf () function call. (See also

/* PRINTFLIKEn * / and / * SCANFLIKEn * / in the list of directives in "Usage"
on page 269.)

1 #include <stdio.h>
2 main()
3 {

4 int ii

5 printf("%s", i) i

6 }

============
function argument type inconsistent with format

printf(arg 2) int .. (format) char * test.c(5)

SPARCompilers C 2.0 Programmer's Guide-October 1992

function called with variable number of arguments

Format: Compound

A function was called with the wrong number of arguments. Preceding a function
definition with / * VARARGSn * / suppresses the message for calls with n or more
arguments; defining and declaring a function with the ANSI C notation " ... "
suppresses it for every argument. (And see the discussion of the message following
this one.)

file f1.c
1 int fun(int x, int y, int z)
2 {
3 return x + y + Zi

4 }
5 int fun2(int x, ...)
6 {
7 return Xi

8 }
10 /* VARARGS1 */
11 int fun3(int x, int y, int z)
12 {
13 return Xi

14 }
file f2.c
1 int main ()
2 {
3 extern int fun(), fun3(), fun2(int x, ...) i
4 return fun(l, 2) i

5 return fun2(l, 2, 3, 4) i

6 return fun3(l, 2, 3, 4, 5) i

7 }

function called with variable number of arguments
fun f1.c(2) .. f2.c(4)

lint Source Code Checker 291

292

function declared with variable number of arguments

Format: Compound

The number of parameters in a function prototype declaration or definition differed
from their number in another declaration or definition. Declaring and defining the
prototype with the ANSI C notation " ... " suppresses the warning if all declarations
have the same number of arguments. The message immediately preceding this one
is issued for uses (not declarations or definitions) of a prototype with the wrong
number of arguments.

file i3a.c
1 int funl(int)i
2 int fun2(int)i
3 int fun3(int)i
file i3b.c
1 int funl(int, int)i
2 int fun2(int a, int b) {}
3 void foo ()
4 {
5
6
7 }

int
i =

i, j, ki
fun3 (j, k) i

function declared with variable number of arguments
fun2 i3a.c(2) .. i3b.c(2)
funl i3a.c(1) .. i3b.c(1)

function called with variable number of arguments
fun3 i3a.c(3) .. i3b.c(6)

SPARCompilers C 2.0 Programmer's Guide-October 1992

function falls off bottom without returning value
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~------

Format: Compound 

A nonvoid function did not return a value to the invoking function. If the closing 
curly brace is truly not reached, preceding it with / * NOTREACHED * / suppresses 
the message. 

1 fun() 
2 {} 

3 void fun2 () 
4 {} 

5 foo () 
6 { 

7 exit(l) ; 
8 /* NOTREACHED */ 

9 } 

function falls off bottom without returning value 
(2) fun 

function must be of type int: main() 

Format: Simple 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-------

You used a main () that did not return int, in violation of ANSI C restrictions. The
message is issued only when lint is invoked with -Xc.

1 void main ()
2 {}

(2) warning: function must be of type int: main()

lint Source Code Checker 293

294

function returns pointer to [automatic/parameter]

Format: Compound

A function returned a pointer to an automatic variable or a parameter. Since an
object with automatic storage duration is no longer guaranteed to be reserved after
the end of the block, the value of the pointer to that object will be indeterminate after
the end of the block.

1 int *fun(int x)
2 {

3 int a [10] ;
4 int bi

5 if (x -- i)
6 return ai

7 else if (x -- 2)
8 return &b;
9 else return &Xi

10 }

(6) warning: function returns pointer to automatic
(8) warning: function returns pointer to automatic
(9) warning: function returns pointer to parameter

SPARCompilers C 2.0 Programmer's Guide-October 1992

function returns value that is always ignored
f---

Format: Compound

A function contained a return statement and every call to the function ignored its
return value.

file fl.c
1 int fun ()
2 {
3 return 1;
4

file f2.c
1 extern int fun();
2 int main ()
3 {
4 fun();
5 return 1;
6

function returns value that is always ignored
fun

I

lint Source Code Checker 295

296

function returns value that is sometimes ignored

Format: Compound

A function contained a return statement and some, but not all, calls to the function
ignored its return value.

file f1.c
1 int fun()
2 {
3 return 1;
4 }

file f2.c
1 extern int
2 int main ()
3 {

4 if(l) {

5 return
6 }

7 else {

8 fun () ;
9 return
10 }

11 }

fun () ;

fun ();

1;

function returns value that is sometimes ignored
fun

SPARCompilers C 2.0 Programmer's Guide-October 1992

function valued is used, but none returned

Format: Compound

A nonvoid function did not contain a return statement, yet was used for its value
in an expression.

file fl.c
1 extern int fun();
2 main ()
3 {
4 return fun();
5 }
file f2.c
1 int fun()
2 {}

function value is used, but none returned
fun

~~~--------------------------------------------------, 

logical expression always false: op && 

Format: Simple 

A logical AND expression checked for equality of the same variable to two different 
constants, or had the constant 0 as an operand. In the latter case, preceding the 
expression with / * CONSTCOND * / suppresses the message. 

1 void fun (a) 
2 int a; 
3 { 
4 a = (a == 1) && (a == 2); 
5 a = (a == 1) && (a == 1); 
6 a = (1 == a) && (a -- 2); 
7 a = (a -- 1) && 0; 
8 /* CONSTCOND */ 
9 a = (0 && (a -- 1)); 
10 } 

(4) warning: logical expression always false: op "&&" 
(6) warning: logical expression always false: op "&&" 
(7) warning: logical expression always false: op "&&" 

lint Source Code Checker 297 



298 

logical expression always true: op I I 

Format: Simple 

A logical OR expression checked for inequality of the same variable to two different 
constants, or had a nonzero integral constant as an operand. In the latter case, 
preceding the expression with / * CONSTCOND * / suppresses the message. 

1 void fun (a) 
2 int a; 
3 { 
4 a = (a 1 = 1) I 
5 a = (a 1 = 1) I 
6 a = (1 1= a) I 
7 a = (a == 10) 
8 /* CONSTCOND */ 

(a 
(a 
(a 

I 1; 

1 = 2); 

1 = 1); 

1 = 2); 

9 a= (111 (a--l0)); 
10 } 

(4) warning: logical expression always true: op "11" 
(6) warning: logical expression always true: op "1 I" 
(7) warning: logical expression always true: op "1 I" 

malformed format string 

Format: Compound 

A [fs]printf () or [fs] scanf () control string was formed incorrectly. (See also 
/ * PRINTFLIKEn * / and / * SCANFLIKEn * / in the list of directives in "Usage" 
on page 269.) 

1 #include <stdio.h> 
2 main ( ) 
3 { 
4 printf("%y"); 
5 } 

malformed format string 
printf test.c(4) 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



may be indistinguishable due to truncation or case 

Format: Compound 

External names in your program may be indistinguishable when it is ported to 
another machine because of implementation-defined restrictions as to length or case. 
The message is issued only when lint is invoked with -Xc or -po Under -xc, 
external names are truncated to the first 6 characters with one case, in accordance 
with the ANSI C lower bound; under -p, to the first 8 characters with one case. 

file fl.c 
1 int foobarli 
2 int FooBar12i 
file f2.c 
1 int foobar2i 
2 int FOOBAR12i 

under-p 
may be indistinguishable due to truncation or case 
FooBar12 fl.c(2) .. FOOBAR12 f2.c(2) 
under-Xc 
may be indistinguishable due to truncation or case 
foobarl fl.c(l) .. FooBar12 fl.c(2) 
foobarl fl.c(l) .. foobar2 f2.c(1) 
foobarl fl.c(l) .. FOOBAR12 f2.c(2) 

name declared but never used or defined 

Format: Compound 

A nonstatic external variable or function was declared but not used or defined in any 
file. The message is suppressed when lint is invoked with -x. 

file f.c 
1 extern int fun()i 
2 static int fOO()i 

name declared but never used or defined 
fun f.c(l) 

lint Source Code Checker 299 



300 

name defined but never used 

Format: Compound 

A variable or function was defined but not used in any file. The message is 
suppressed when lint is invoked with -u. 

file f·c 
1 int i, j, k = 1; 
2 main ( ) 
3 { 
4 j = k; 
5 } 

name defined but never used 
i f.c(l) 

name mUltiply defined 

Format: Compound 

A variable was defined in more than one source file. 

file fl.c 
1 char i = 'a' ; 
file f2.c 
1 long i = 1; 

name mUltiply defined 
i f1.c(l) .. f2.c(l) 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



name used but not defined 

Format: Compound 

A nonstatic external variable or function was declared but not defined in any file. 
The message is suppressed when lint is invoked with -u. 

file f·e 
1 extern int fun() ; 
2 int main ( ) 
3 { 

4 return fun() ; 
5 } 

============ 

name used but not defined 
fun f.c(4) 

nonportable bit-field type 

Format: Compound 

You used a bit-field type other than signed int or unsigned into The message is 
issued only when lint is invoked with -po Note that these are the only portable bit
field types. ANSI C supports int, char, short, and long bit-field types that may 
be unsigned, signed, or "plain." It also supports the enum bit-field type. 

1 struct u { 
2 unsigned v:l; 
3 int w:l; 
4 char x:8; 
5 long y:8; 
6 short z:8; 
7 }; 

(3) warning: nonportable 
(4) warning: nonportable 
(5) warning: nonportable 
(6) warning: nonportable 

lint Source Code Checker 

bit-field type 
bit-field type 
bit-field type 
bit-field type 

301 



302 

nonportable character constant 

Format: Simple 

A multi-character character constant in your program may not be portable. The 
message is issued only when lint is invoked with -Xc or -po 

1 int c = 'abc'i 

(1) warning: nonportable character constant 

only 0 or 2 parameters allowed: main() 

Format: Simple 

The function main () in your program was defined with only one parameter or more 
than two parameters, in violation of the ANSI C requirement. The message is issued 
only when lint is invoked with -Xc. 

1 main(int argc, char **argv, char **envp) 
2 {} 

(2) warning: only 0 or 2 parameters allowed: main() 

pointer cast may result in improper alignment 

Format: Compound 

You cast a pointer to one object type to a pointer to an object type with stricter 
alignment requirements. Doing so may result in a value that is invalid for the 
second pointer type. The warning is suppressed when lint is invoked with -h. 

1 void fun() 
2 { 

3 short *Si 

4 int *ii 

5 i = (int *) Si 

6 } 

pointer cast may result in improper alignment 
(5) 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



pointer casts may be troublesome 

Format: Compound 

You cast a pointer to one object type to a pointer to a different object type. The 
message is issued only when lint is invoked with -P, and is not issued for the 
generic pointer void *. 

1 void fun() 
2 { 

3 int *i; 
4 char *c; 
5 void *v; 
6 i = (int *) c; 
7 i = (int * ) v; 
8 } 

warning: pointer casts may be troublesome 
(6 ) 

precedence confusion possible: parenthesize 

Format: Simple 

You did not parenthesize an expression that mixes a logical and a bitwise operator. 
The message is suppressed when lint is invoked with -h. 

1 void fun ( ) 
2 { 

int x = 
i = (x + 
i = (x & 

0, m 
m --
MASK 

3 
4 

5 
6 
7 

i = (MASK --
} 

= 0, 
0) ; 

--

1 & 

MASK = 

0) ; /* 
x) ; /* 

0, i; 

eval'd 
eval'd 

(x & (MASK -- 0)) */ 
((MASK--l) &x) */ 

(5) warning: precedence confusion possible; parenthesize 
(6) warning: precedence confusion possible; parenthesize 

lint Source Code Checker 303 



304 

precision lost in bit-field assignment 

Format: Simple 

A constant was assigned to a bit-field too small to hold the value without truncation. 
Note that in the following example the bit-field z may have values that range from 
o to 7 or -4 to 3, depending on the machine. 

1 void fun ( ) 
2 { 
3 struct { 
4 signed x:3; /* max value allowed is 3 */ 
5 unsigned y:3; /* max value allowed is 7 */ 
6 /* max value allowed is 7 */ 
7 

8 
9 
10 
11 
12 
13 
14 

(9) warning: precision lost in bit-field assignment: 4 
(11) warning: precision lost in bit-field assignment: Ox8 
(13) warning: precision lost in bit-field assignment: 8 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



set but not used in function 

Format: Compound 

An automatic variable or a function parameter was declared and set but not used in 
a function. 

1 void fun(y) 
2 int y; 
3 { 
4 int x; 
5 x = 1; 
6 y = 1; 
7 } 

set but not used in function 
(4) x in fun 
(1) y in fun 

statement has no consequent: else 

Format: Simple 

An if statement had a null else part. Inserting / * EMPTY * / between the else 
and semicolon suppresses the message for that statement; invoking lint with -h 
suppresses it for every statement. 

1 void f(a) 
2 int a; 
3 { 

4 if (a) 
5 return; 
6 else; 
7 } 

(6) warning: statement has no consequent: else 

lint Source Code Checker 305 



306 

statement has no consequent: if 

Format: Simple 

An if statement had a null if part. Inserting / * EMPTY * / between the 
controlling expression of the if and semicolon suppresses the message for that 
statement; invoking lint with -h suppresses it for every statement. 

1 void f(a) 
2 int a; 
3 { 

4 if (a) ; 
5 if (a -- 10) 
6 /* EMPTY */; 
7 else return; 
8 } 

(4) warning: statement has no consequent: if 

statement has null effect 

Format: Compound 

An expression did not generate a side effect where a side effect was expected. Note 
that the message is issued for every subsequent sequence point that is reached at 
which a side effect is not generated. 

1 void fun ( ) 
2 { 
3 int a, b, c, X; 
4 a; 
5 a -- 5; 
6 ; 
7 

8 
while (x++ != 10); 

9 ( 
10 
11 } 

(a == b) && (c = a); 
a = b) && (c -- a); 
(a, b); 

statement has null effect 
(4) (5) (9) (10) 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



statement not reached 

Format: Compound 

A function contained a statement that cannot be reached. Preceding an unreached 
statement with / * NOTREACHED * / suppresses the message for that statement; 
invoking lint with - b suppresses it for every unreached break and empty statement. 
Note that this message is also issued by the compiler but cannot be suppressed. 

1 void fun (a) 
2 { 

3 switch (a) 
4 case 1 : 
5 return; 
6 break; 
7 case 2 : 

8 return; 
9 /* NOTREACHED 

10 break; 
11 } 
12 } 

{ 

*/ 

statement not reached 
( 6) 

static unused 

Format: Compound 

A variable or function was defined or declared static in a file but not used in that 
file. Doing so is probably a programming error because the object cannot be used 
outside the file. 

1 static int x; 
2 static int main () {} 

3 static int foo (); 
4 static int y = 1; 
============ 

static unused 
(4) y (3 ) foo (2 ) main (1) x 

lint Source Code Checker 307 



308 

suspicious comparison of char with value: op op 

Format: Simple 

A comparison was performed on a variable of type "plain" char that implied it may 
have a negative value « 0, <= 0, >= 0, > 0). Whether a "plain" char is treated as 
signed or nonnegative is implementation-defined. The message is issued only when 
1 in t is invoked with -po 

1 void fun(c, d) 
2 char c; 
3 signed char d; 
4 { 

5 int i; 
6 i = (c -- -5) ; 

7 i = (c < 0) ; 

8 i = (d < 0) ; 

9 } 

(6) warning: suspicious comparison of char with negative 
constant: op "--" 

(7) warning: suspicious comparison of char with 0: op "<" 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



suspicious comparison of unsigned with value: op op 

Format: Simple 

A comparison was performed on a variable of unsigned type that implied it may 
have a negative value « 0, <= 0, >= 0, > 0). 

1 void fun (x) 
2 unsigned Xi 

3 { 

4 int ii 

5 i = (x > -2) i 

6 i = (x < 0) ; 

7 i = (x <= 0) i 

8 i = (x >= 0) i 

9 i = (x > 0) i 

10 i = (-2 < x) ; 
11 i = (x -- -1) i 

12 i = (x -- -lU) i 

13 } 

(5) warning: suspicious comparison of unsigned with negative 
constant: op ">" 

(6) warning: suspicious comparison of unsigned with 0: op 11<11 

(7) warning: suspicious comparison of unsigned with 0: op 11<=11 

( 8) warning: suspicious comparison of unsigned with 0: op 11>=11 

(9 ) warning: suspicious comparison of unsigned with 0: op ">11 

(10) warning: suspicious comparison of unsigned with negative 
constant: op "<" 

(11) warning: suspicious comparison of unsigned with negative 
constant: op 

lint Source Code Checker 309 



310 

too few arguments for format 

Format: Simple 

A control string of a [fs]printf () or [fs] scanf () function call had more 
conversion specifications than there were arguments remaining in the call. (See also 
1* PRINTFLIKEn * I and 1* SCANFLIKEn * I in the list of directives in "Usage" 
on page 269.) 

1 #include <stdio.h> 
2 main() 
3 { 

4 int ii 

5 printf (" %d%d" f i) i 

6 } 

too few arguments for format 
printf test.c(5) 

too many arguments for format 

Format: Compound 

A control string of a [fs] printf () or [fs] scanf () function call had fewer 
conversion specifications than there were arguments remaining in the call. (See also 
1* PRINTFLIKEn * I and 1* SCANFLIKEn * I in the list of directives in "Usage" 
on page 269.) 

1 #include <stdio.h> 
2 main() 
3 { 

4 int if j i 

5 printf ("%d" f if j) i 

6 } 

too many arguments for format 
printf test.c(5) 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



value type declared inconsistently 

Format: Compound 

The return type in a function declaration or definition did not match the return type 
in another declaration or definition of the function. The message is also issued for 
inconsistent declarations of variable types. 

file fl.c 
1 void fun () {} 
2 void fool); 
3 extern int a; 
file f2.c 
1 extern int fun() ; 
2 extern int fool) ; 
3 extern char a; 

value type declared inconsistently 
fun fl.c(l) void() .. f2.c(1) int() 
faa f1.c(2) void() " f2.c(2) int() 
a fl.c(3) int .. f2.c(3) char 

lint Source Code Checker 311 



312 

value type used inconsistently 

Format: Compound 

The return type in a function call did not match the return type in the function 
definition. 

file fl.c 
1 int *fun(p) 
2 int *Pi 

3 { 

4 return Pi 

5 } 

file f2.c 
1 main() 
2 { 

3 int if *Pi 

4 i = fun(p) i 

5 } 

value type used inconsistently 
fun f1.c(3) int *() .. f2.c(4) int() 

variable may be used before set: name 

Format: Simple 

The first reference to an automatic, non-array variable occurred at a line number 
earlier than the first assignment to the variable. Note that taking the address of a 
variable implies both a set and a use, and that the first assignment to any member of 
a struct or union implies an assignment to the entire struct or union. 

1 void fun() 
2 { 

3 int if j f ki 

4 static int Xi 

5 k = j i 

6 i = i + 1i 

7 X = x + 1i 

8 } 

(5) warning: variable may be used before set: j 
(6) warning: variable may be used before set: i 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



varable unused in function 

Format: Compound 

A variable was declared but never used in a function. 

1 void fun() 
2 { 

3 int X, y; 
4 static z; 
5 } 

variable unused in function 
(4) z in fun 
(3) y in fun 
(3) X in fun 

lint Source Code Checker 313 



314 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Part 3-Appendices 





ANSI C Data Representations 

This appendix describes how ANSI C represents data in storage and the 
mechanisms for passing arguments to functions. This chapter is intended as a 
guide to programmers who wish to write or use modules in languages other 
than C and have those modules interface to C code. 

317 



A.l Storage Allocation 

Table A-1 Storage Allocation for Data Types 

Data Type Internal Representation 

char elements a single 8-bit byte aligned on a byte boundary. 
---

short integers half word (two bytes or 16 bits), aligned on a two-byte boundary. 

int and long 32 bits (four bytes or one word), aligned on a four-byte boundary. 

long longa 64 bits (8 bytes, 2 words), aligned on a double-word (eight-byte) 
boundary. 

float 32 bits (four bytes or one word), aligned on a four-byte boundary. 
A float has a sign bit, 8-bit exponent, and 23-bit fraction. 

double 64 bits (eight bytes or two words), aligned on a double-word 
boundary. A double element has a sign bit, an ll-bit exponent 
and a 52-bit fraction. 

a. long long is not available in - Xc mode. 

A.2 Data Representations 

318 

Bit numberings of any given data element depend on the architecture in use: 
Sun-4s and SPARCStations use bit 0 as the least significant bit, with byte 0 
being the most significant byte. The tables below describe the various 
representations. 

Integer Representations 

Integer types used in ANSI C are short, int, long, and long long: 1 

Table A-2 Representation of short 

Bits Content 

8-15 Byte 0 

0-7 Byte 1 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Table A-3 Representation of in t and long 

Bits Content 

24-31 Byte 0 

16-23 Byte 1 

8-15 Byte 2 

0-7 Byte 3 

Table A-4 Representation of long long 

Bits Content 

56 - 63 Byte 0 

48 - 55 Byte 1 
--

40- 48 Byte 2 

32 - 39 Byte 3 

24 - 31 Byte 4 

16 - 23 ByteS 

8 - 15 Byte 6 

0 - 7 Byte 7 

float and double Representation 

float and double data elements are represented according to the "ANSI 
IEEE" 754-1985 standard. The tables below, 

s 
= sign (1 bit) 

e 
= biased exponent (Ubits) 

1. long long is not available in -Xc mode. 

ANSI C Data Representations 319 



f 
= fraction (23 bits) 

u 
= unsigned 

Table A-5 float Representation 

Bits Name Content 

31 Sign 1 if number is negative. 

23-30 Exponent Eight-bit exponent, biased by 127. Values of all zeros, 
and all ones, reserved. 

0-22 Fraction 23-bit fraction component of normalized significand. 
The "one" bit is "hidden". 

Table A-6 double Representation 

Bits Name Content 

63 Sign 1 if number is negative. 

52-62 Exponent Eleven-bit exponent, biased by 1023. Values of all 
zeros, and all ones, reserved. 

0-51 Fraction 52-bit fraction component of normalized significand. 
The "one" bit is "hidden". 

A float or double number is represented by the form: 

I (-1) Sign2 (exponent- bias) I.f 

where "l.f' is the significand and "f' is the bits in the significand fraction. 

320 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Extreme Number Representation 

Normalized float and double numbers are said to contain a "hidden" bit, 
providing for one more bit of precision than would otherwise be the case. 

Table A-7 float Representations 

normalized number 
(O<e<255) : 

subnormal number 
(e=O, f!=O): 

zero (e=O, f=O): 

signaling NaN 

Quiet NaN 
Infinity 

( -1) Sign2 (exponent - 127) If 

s=u, e=255(max); f=.Ouuu-uu (at least one bit must be non
zero) 
s=u, e=255(max); f=.1uuu-uu 
S=U, e=255(max); f=.OOOO-OO (all zeroes) 

Table A-8 double Representations 

normalized number 
(O<e<2047) : 

subnormal number 
(e=O, f!=O): 

zero (e=O, f=O): 

signaling NaN 

Quiet NaN 

Infinity 

ANSI C Data Representations 

( -1) Sign2 (exponent - 1023) I.! 

(_I) Sign 2(1022) I.! 

s=u, e=2047(max); f=.Ouuu-uu (at least one bit must be non
zero) 

s=u, e=2047(max); f=.1uuu-uu 

s=u, e=2047(max); f=.OOOO-OO (all zeroes) 

321 



322 

Hexadecimal Representation of Selected Numbers 

Table A-9 Hexadecimal Representation of Selected Numbers 

Value float double 

+0 00000000 0000000000000000 
-0 80000000 8000000000000000 

+1. 0 3F800000 3FFOOOOOOOOOOOOO 
-1. 0 BF800000 BFFOOOOOOOOOOOOO 

+2.0 40000000 4000000000000000 
+3.0 40400000 4008000000000000 

+Infinity 7F800000 7FFOOOOOOOOOOOOO 
-Infinity FF800000 FFFOOOOOOOOOOOOO 

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx 

Pointer Representation 

Array Storage 

A pointer in C occupies four bytes. The NULL value pointer is equal to zero. 

Arrays are stored with their elements in a specific storage order. The elements 
are actually stored in a linear sequence of storage elements. 

C arrays are stored in row-major order; the last subscript in a multi
dimensional array varies fastest. 

String data types are simply arrays of char elements. 

Arithmetic Operations on Extreme Values 

This subsection describes the results derived from applying the basic 
arithmetic operations to combinations of extreme and ordinary floating-point 
values. 

No traps or any other exception actions are taken. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



All inputs are assumed to be positive. Overflow, underflow, and cancellation 
are assumed not to happen. In all the tables below, the abbreviations have the 
following meanings: 

Table A-l0 Extreme Values Usage 

Abbreviation Meaning 

Num Subnormal or Normalized Number 

Inf Infinity (positive or negative) 

NaN Nota Number 

Uno Unordered 

The tables that follow describe the types of values that result from arithmetic 
operations performed with combinations of different types of operands. 

Table A-ll Addition and Subtraction Results 

Addition and Subtraction 

Right Operand 
Left Operand 

0 Num Inf NaN 

0 0 Num Inf NaN 

Num Num Num Inf NaN 

Inf Inf Inf Note NaN 

NaN NaN NaN NaN NaN 

ANSI C Data Representations 323 



Note - Inf + Inf = Inf; Inf - Inf = NaN 

Table A-12 Multiplication Results 

Multiplication 

Right Operand 
Left Operand 

0 Num Inf NaN 

0 0 0 NaN NaN 

Num 0 Num Inf NaN 

Inf NaN Inf Inf NaN 

NaN NaN NaN NaN NaN 

Table A-13 Division Results 

Division 

Right Operand 
Left Operand 

0 Num Inf NaN 

0 NaN 0 0 NaN 

Num Inf Num 0 NaN 

Inf Inf Inf NaN NaN 

NaN NaN NaN NaN NaN 

324 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Table A-14 Comparison Results 

Comparison 

Right Operand 
Left Operand 

0 Num Inf NaN 

0 = < < Uno 

Nwn > < Uno 

Inf > > Uno 

NaN Uno Uno Uno Uno 

Note - NaN compared with NaN is Unordered, and also results in inequality. 
+0 compares equal to -0. 

A.3 Argument Passing Mechanism 

This section describes how arguments are passed in ANSI C. 

All arguments to C functions are passed by value. 

Actual arguments are pushed onto the stack in the reverse order from which 
they are declared in a function declaration. 

Actual arguments which are expressions are evaluated before the function 
reference. The result of the expression is then pushed onto the stack. 

Functions return integer and float results in register %00 , while double 
results are returned in % f 0 and % fl. 

long long l integers are passed in registers with the higher word order in %oN 
and the lower order word in %0 (N+l). In-register results are returned in %iO 
and %il, with similar ordering. 

1. Not available in -Xc mode. 

ANSI C Data Representations 325 



All arguments, except doubles, are passed as four-byte values; a double is 
passed as an eight-byte value. 1 

Upon return from a function, it is the responsibility of the caller to pop 
arguments from the stack. 

A.4 Referencing Data Objects in C 

326 

This section describes how variables of different types are actually accessed (or 
referenced). The method and notations of access, of course, differ depending 
on whether the object is a simple variable, an array, a structure, or a union. 

Referencing Simple Variables 

A plain variable (of simple scalar type) is accessed by its identifier. Since such 
a simple variable has no structure, its identifier alone is enough to reference it. 

#include <stdio.h> 

int egress; 
float lightly; 
char coal; 
extern double sin(); 

main() 
{ 

egress = 10; 
coal = 'a'; 
lightly = 3.14; 

putc (coal, stdout) ; 
(void) printf(" %f\n",sin(lightly)); 

return 0; 

Figure A-1 Examples of Simple Variable References 

1. In previous versions of C, all float values were passed as doubles. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Referencing With Pointers 

A variable can also be declared as a pointer to another object. In this case, the 
reference to the object must be done with the pointer notation. Placing an 
asterisk character * in front of an identifier uses that identifier as a pointer to 
an object, and the thing that is read from or written to is the object that the 
identifier points to. 

#include <stdio.h> 

int *egress; 
float *lightly; 
char *coal; 
extern double sin(); 

main() 
{ 

egress = (int *) malloc(sizeof(egress)); 
*egress 10; 

lightly (float *) malloc(sizeof(lightly)); 
*lightly = 3.14; 

coal = "Hello Mateo"; 

(void) printf("%f\n",sin(*lightly)); 
(void) printf("%s\n",coal); 

return 0; 

'--------------------------~~----------

Figure A-2 Examples of Pointer References 

Referencing Array Elements 

When an identifier of an array type appears in an expression, the identifier is 
converted to a pointer to the first member of the array. 

The subscript operation [] is interpreted such that 

I 

E1 [E2] --I 
~--------------------~ 

ANSI C Data Representations 327 



328 

is equivalent to the construct 

I * ((E1) + (E2)) 

#include <stdio.h> 

int egress[10]; 
float lightly[5] [5]; 
char coal[15]; 
extern double sin(); 
int idx; 
int idy; 

main() 
{ 

for (idx = 0; idx < 10; idx++) 
egress [idx] = idx; 

for (idx = 0; idx < 5; idx++) 
for (idy = 0; idy < 5; idy++) 

(void) printf ("%f\n", sin(lightly[idx] [idy])); 

for (idx = 0; idx < 12; idx++) 
(void) printf ("%c" ,coal [idx] ) ; 

printf (" \n") ; 

return 0; 

Figure A-3 Examples of Array Variable References 

Referencing Structures and Unions 

There are only three operations which may be done on a structure or a union: 

1. A member of the structure or union can be referenced by means of the . 
or -> operator. 

2. The address of the entire structure or union can be taken, with the & 

operator. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



3. One structure can be copied to another of the same type with the 
assignment operator. 

The . operator is used in contexts where the structure or union identifier is 
available directly to the expression. The -> operator is used when the 
identifier for the structure or union is a pointer to the object. Structures can 
also be passed as parameters, returned from functions, or assigned to variables 
of the same structure or union type . 

. ~-------~~-~-------------~-------; 

#define MAXLEN 256 
#define NULL 0 

struct val list 
char *name; 
char val type; 
int value; 
struct vallist *nextval; 

} ; 

struct vallist * 
demo(char *wanted, struct vallist *valhead) 
{ 

int i; 
struct 

int level; 
char *cp; 
char pbuffer[MAXLEN]; 

putter; 

struct vallist *pointer; 

putter. level = 10; 
for (i = 0; i < MAXLEN; i++) 

putter.pbuffer[i] = *putter.cp; 

for (pointer = valhead; pointer != NULL; pointer 
>nextval) 

if (strcmp(pointer->name, wanted) == 0) 
return (pointer) ; 

Figure A-4 Examples of Accessing Members of Structures 

ANSI C Data Representations 

pointer-

329 



330 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Translation 

Implementation-Defined Behavior 

The American National Standard for Information Systems - Programming Language 
C, X3.159-1989 defines the behavior of ANSI-conformant C. However, this 
standard leaves a number of issues as "implementation-defined," that is, as 
varying from compiler to compiler. 

This chapter details these areas. They made be readily compared to the ANSI 
standard itself: 

• Each issue uses the same section text (in boldface italic) as found in the 
ANSI standard. 

• Each issue is preceded by its corresponding section number in the ANSI 
standard. 

(2.1.1.3) Identification of diagnostics: 

Error messages have the following format: 

filename I 1 ine line number: message 

Warning messages have the following format: 

filename I 1 ine line number: warning message 

Where: 

• filename is the name of the file containing the error or warning 

331 



Environment 

Identifiers 

332 

• line number is the number of the line on which the error or warning was 
found 

• message is the diagnostic message 

(2.1.2.2.1) Semantics of arguments to main: 

int main (int argc, char *argv[]) 

argc is the number of command line arguments that the program was invoked 
with. After any shell expansion, argc is always equal to at least 1 (the name of 
the program). 

argv is an array of pointers to the command line arguments. 

(2.1.2.3) What constitutes an interactive device: 

An interactive device is one for which the system library call isatty () 
returns a non-zero value. 

( 3.1.2) The number of significant initial characters (beyond 31) in an 
identifier without external linkage: 

The first 1023 characters are significant. Identifiers are case-sensitive. 

(3.1.2) The number of significant initial characters (beyond 6) in an 
identifier with external linkage: 

The first 1023 characters are significant. Identifiers are case-sensitive. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Characters 

( 2.2.1) The members of the source and execution character sets, except as 
explicitly specified in the Standard: 

Both sets are identical to the ASCII character sets. 

(2.2.1.2) The shift states used for the encoding of multibyte characters: 

There are no shift states; MB_CUR_MAX is equal to 1. 

(2.2.4.2.1) The number of bits in a character in the execution character set: 

There are 8 bits in a character. 

(3.1.3.4) The mapping of members of the source character set (in character 
and string literals) to members of the execution character set: 

Mapping is identical between source and execution characters. 

(3.1.3.4) The value of an integer character constant that contains a 
character or escape sequence not represented in the basic execution 
character set or the extended character set for a wide character constant: 

It is the numerical value of the rightmost character. For example, '\q' will 
equal' q'. A warning will be emitted if such an escape sequence occurs. 

(3.1.3.4) The value of an integer character constant that contains more 
than one character or a wide character constant that contains more than 
one multibyte character: 

It is the numerical value of the rightmost character. For example, 'qq' will 
equal' q'. A warning will be emitted if such an escape sequence occurs. 

(3.1.3.4) The current locale used to convert multibyte characters into 
corresponding wide characters (codes) for a wide character constant: 

The current locale is "C" locale. 

Implementation-Defined Behavior 333 



Integers 

334 

(3.2.1.1) Does a plain char have the same range of values as signed 
char or uns i gned char: 

A char is treated as a signed char. 

(3.1.2.5) The representations and sets of values of the various types of 
integers: 

Table B-1 Representations and sets of values of integers 

Bits Min Max 

char 8 -128 127 

signed char 8 -128 127 

unsigned char 8 0 255 

short 16 -32768 32767 

signed short 16 -32768 32767 

unsigned short 16 0 65535 

integer 32 -2147483648 2147483647 

signed integer 32 -2147483648 2147483647 

unsigned integer 32 0 4294967295 

long 32 -2147483648 2147483647 

signed long 32 -2147483648 2147483647 

unsigned long 32 0 4294967295 

long longa 64 -9223372036854775808 9223372036854775807 

signed long longa 64 -9223372036854775808 9223372036854775807 

unsigned long 64 0 18446744073709551615 
longa 

a. Not valid in -Xc mode. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



(3.2.1.2) The result of converting an integer to a shorter signed integer, or 
the result of converting an unsigned integer to a signed integer of equal 
length, if the value cannot be represented: 

When an integer is converted to a shorter signed integer, the low order bits will 
be copied from the longer integer to the shorter signed integer. The result may 
be negative. 

When an unsigned integer is converted to a signed integer of equal size, the 
low order bits will be copied from the unsigned integer to the signed integer. 
The result may be negative. 

(3.3) The results of bitwise operations on signed integers: 

The result of a bitwise operation applied to a signed type is the bitwise 
operation of the operands, including the sign bit. Thus each bit in the result is 
set if and only if each of the corresponding bits in both of the operands is set. 

(3.3.5) The sign of the remainder on integer division: 

The result will be the same sign as the dividend; thus the remainder of -23/4 is 
-5. 

(3.3.7) The result of a right shift of a negative-valued signed integral 
type: 

The result of a right shift will be a signed right shift. 

Floating Point 

(3.1.2.5) The representations and sets of values of the various types of 
floating point numbers: 

Table B-2 Values of floating-point numbers (Sheet 1 of 2) 

float 

Bits 32 

Min 1.17549435E-38 

Max 3.40282347E+38 

Implementation-Defined Behavior 335 



336 

Table B-2 Values of floating-point numbers (Sheet 2 of 2) 

Epsilon 1.19209290E-07 

double 

Bits 64 

Min 2.2250738585072014E-308 

Max 1.7976931348623157E+308 

Epsilon 2.2204460492503131E-16 

long double 

Bits 128 

Min 3.362103143112093506262677817321752603E-4932 

Max 1.189731495357231765085759326628007016E+4932 

Epsilon 1.925929944387235853055977942584927319E-34 

(3.2.1.3) The direction of truncation when an integral number is 
converted to a floating-point number that cannot exactly represent the 
original value: 

Numbers are rounded to the nearest value that can be represented. 

(3.2.1.4) The direction of truncation or rounding when a floating- point 
number is converted to a narrower floating-point number: 

Numbers are rounded to the nearest value that can be represented. 

Arrays And Pointers 

(3.3.3.4,4.1.1) The type of integer required to hold the maximum size of an 
array; that is, the type of the sizeof'operator, size_t: 

unsigned int as defined in stddef . h. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Registers 

(3.3.4) The result of casting a pointer to an integer or vice versa: 

The bit pattern does not change for pointers and values of type int, long, 
unsigned int and unsigned long. 

(3.3.6,4.1.1) The type of integer required to hold the difference between 
two pointers to members of the same array, ptrdiff_t: 

in t as defined in s tdde f . h. 

(3.5.1) The extent to which objects can actually be placed in registers by 
use of the register storage-class specifier: 

The number of effective register declarations depends on patterns of use and 
definition within each function and is bounded by the number of registers 
available for allocation. Neither the compiler nor the optimizer is required to 
honor register declarations. 

Structures, Unions, Enumerations And Bit-Fields 

(3.3.2.3) A member of a union object is accessed using a member of a 
different type: 

The bit pattern stored in the union member is accessed, and the value 
interpreted, according to the type of the member by which it was accessed. 

Implementation-Defined Behavior 337 



338 

(3.5.2.1) The padding and alignment of members of structures. 

Table B-3 Padding and alignment of structure members 

type 
alignment byte 
boundary alignment 

char byte 1 

short halfword 2 

int word 4 

long word 4 

float word 4 

double doubleword 8 

long double doubleword 8 

pointer word 4 

long longa doubleword 8 

a. Not available in -Xc mode. 

Structure members are padded internally so that every element is aligned on 
the appropriate boundary. 

Alignment of structures is the same as its more strictly aligned member. For 
example, a struct with only char's would have no alignment restrictions, 
whereas a struct containing a double would be aligned on an 8-byte 
boundary. 

(3.5.2.1) Whether a plain int bit-field is treated as a signed int bit
field or as an unsigned int bit-field: 

It is treated as an unsigned into 

(3.5.2.1) The order of allocation of bit-fields within an int: 

Bit-fields are allocated within a storage unit from high-order to low-order. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Qualifiers 

Declarators 

Statements 

(3.5.2.1) Whether a bit-field can straddle a storage-unit boundary: 

Bit-fields do not straddle storage-unit boundaries. 

(3.5.2.2) The integer type chosen to represent the values of an 
enumeration type: 

This is an into 

(3.5.3) What constitutes an access to an object that has volatile
qualified type: 

Each reference to the name of an object will constitute one access to the object. 

(3.5.4) The maximum number of declarators that may modify an 
arithmetic, structure, or union type: 

No limit imposed by the compiler. 

(3.6.4.2) The maximum number of case values in a swi tch statement: 

No limit imposed by the compiler. 

Preprocessing Directives 

(3.8.1) Whether the value of a single-character character constant in a 
constant expression that controls conditional inclusion matches the 
value of the same character constant in the execution character set: 

A character constant within a preprocessing directive has the same numeric 
value as it has within any other expression. 

Implementation-Defined Behavior 339 



340 

(3.8.1) Whether such a character constant may have a negative value: 

Character constants in this context may have negative values. 

(3.8.2) The method for locating includable source files: 

A file whose name is delimited by < > is searched for first in the directories 
named by the - I option and then in the standard directory. The standard 
directory is /usr/include, unless the -YI option is used to specify a 
different default location. 

A file whose name is delimited by quotes is searched for first in the directory 
of the source file that contains the #include, then in directories named by the 
- I option, and last in the standard directory. 

If a file name enclosed in < > or double quotes begins with a I / I character, 
the file name shall be interpreted as a path name beginning in the root 
directory. The search for this file will begin in the root directory only. 

(3.8.2) The support of quoted names for includable source files: 

Quoted filenames in include directives are supported. 

(3.8.2) The mapping of source file character sequences: 

Source file characters are mapped to their corresponding ASCII values. 

(3.8.6) The behavior on each recognized #pragma directive: 

The following pragmas are supported: 

f ini identifier 
marking identifier as a "finalization function." Such functions are expected 
to be of type void and to accept no arguments, and are called either when a 
program terminates under program control or when the containing shared 
object is removed from memory. As with "initialization functions," 
finalization functions are executed in the order processed by the link 
editor(s). 

ini t identifier 
marking identifier as an "initialization function." Such functions are 
expected to be of type void and to accept no arguments, and are called 
while constructing the memory image of the program at the start of 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



execution. In the case of initializers in a shared object, they will be executed 
during the operation that brings the shared object into memory, either 
program start-up or some dynamic loading operation such as dlopen ( ) . 
The only ordering of calls to initialization functions is the order in which 
they were processed by the link editor(s), both static and dynamic. 

ident string 
place string in the . commen t section of the executable 

int_to_unsigned function name 
For a function that returns a type of unsigned, in -Xt or -Xs mode, 
change the function return to be of type into 

unknown_control_flow (name, [, name] 
Specifies a list of routines that violate the usual control flow properties of 
procedure calls. For example, the statement following a call to setjrnp ( ) 
can be reached from an arbitrary call to any other routine. The statement is 
reached by a call to longjrnp ( ). Since such routines render standard 
flowgraph analysis invalid, routines that call them cannot be safely 
optimized; hence, they are compiled with the optimizer disabled. 

unshared (name [, name ]) 
Any identifer named in the id list must be marked in the symbol table as 
unshared (thread-local), so that subsequent symbol table accesses for the 
symbol will be able to pass along this information to any tool that needs it. 
errno is an example of a symbol which should be marked. 

weak function name = _function name 
If a defined global symbol function name exists, the appearance of a weak 
symbol_function name with the same name will not cause an error. 

weak function name 
The linker will not complain if it does not find a definition for function name. 

The compiler ignores unrecognized pragmas. 

(3.B.B) The definitions for_DATE_ and _TIME_ when, 
respectively, the date and time of translation are not available: 

These macros are always available from the environment. 

Implementation-Defined Behavior 341 



342 

Library Functions 

(4.1.5) The null pointer constant to which the macro NULL expands: 

NULL equals O. 

(4.2) The diagnostic printed by and the termination behavior of the 
assert function: 

The diagnostic is: 

Assertion failed: statement. file filename, line number 

Where: 

• statement is the statement which failed the assertion 
• filename is the name of the file containing the failure 
• line number is the number of the line on which the failure occured 

(4.3.1) The sets of characters tested for by the isalnum, isalpha, 
iscntrl, islower, isprint, and isupper functions: 

Table B-4 Character sets tested by isalpha, islower, etc. 

isalnum ASCII characters 'N-'Z', 'a'-'z' and '0'-'9' 

isalpha ASCII characters' N -' Z' and 'a' -' z' 

iscntrl ASCII characters with value 0-31 and 127. 

islower ASCII characters 'a' -' z' 

isprint ASCII characters with decimal value 32 through 126 

isupper ASCII characters' N -' Z' 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



(4.5.1) The values returned by the mathematics functions on domain 
errors: 

Table B-5 Values returned on domain errors 

Compiler Modes 

error math functions -Xs -Xt -Xa-Xc 

DOMAIN acos ( I x I > 1 ) 0.0 0.0 

DOMAIN asin(lxl>l) 0.0 0.0 

DOMAIN atan2(+-O,+-0) 0.0 0.0 

DOMAIN yO(O) -HUGE -HUGE_VAL 

DOMAIN yO (x<O) -HUGE -HUGE_VAL 

DOMAIN yl(O) -HUGE -HUGE_VAL 

DOMAIN yl (x<O) -HUGE -HUGE_VAL 

DOMAIN yn(n,O) -HUGE -HUGE_VAL 

DOMAIN yn(n,x<O) -HUGE -HUGE_VAL 

DOMAIN log (x<O) -HUGE -HUGE_VAL 

DOMAIN loglO(x<O) -HUGE -HUGE_VAL 

DOMAIN pow(O,O) 0.0 1.0 

DOMAIN pow(O, neg) 0.0 -HUGE_VAL 

DOMAIN pow(neg,non-integal) 0.0 NaN 

DOMAIN sqrt (x<O) 0.0 NaN 

DOMAIN fmod(x, 0) x NaN 

DOMAIN remainder (x, 0) NaN NaN 

DOMAIN acosh(x<l) NaN NaN 

DOMAIN a tanh ( I x I > 1 ) NaN NaN 

Implementation-Defined Behavior 343 



Signals 

344 

(4.5.1) Whether the mathematics functions set the integer expression 
errno to the value of the macro ERANGE on underflow range errors: 

Mathematics functions, except scalbn, set errno to ERANGE when underflow 
is detected. 

(4.5.6.4) Whether a domain error occurs or zero is returned when the frnod 
function has a second argument of zero: 

In this case it returns the first argument with domain error. 

(4.7.1.1) The set of signals for the signal function: 

The semantics for each signal recognized by the signa 1 function: 

Table B-6 Semantics for signal signals 

Signal No. Default Event 

SIGHUP 1 Exit hangup 

SIGINT 2 Exit interrupt 

SIGQUIT 3 Core quit 

SIGILL 4 Core illegal instruction (not reset when caught) 

SIGTRAP 5 Core trace trap (not reset when caught) 

SIGIOT 6 Core lOT instruction 

SIGABRT 6 Core used by abort 

SIGEMT 7 Core EMT instruction 

SIGFPE 8 Core floating point exception 

SIGKILL 9 Exit kill (cannot be caught or ignored) 

SIGBUS 10 Core bus error 

SIGSEGV 11 Core segmentation violation 

SIGSYS 12 Core bad argument to system call 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Table B-6 Semantics for signal signals 

Signal No. Default Event 

S1GP1PE 13 Exit write on a pipe with no one to read it 

S1GALRM 14 Exit alarm clock 

S1GTERM 15 Exit software termination signal from kill 

S1GUSRl 16 Exit user defined signal 1 

S1GUSR2 17 Exit user defined signal 2 

S1GCLD 18 Ignore child status change 

S1GCHLD 18 Ignore child status change alias 

S1GPWR 19 Ignore power-fail restart 

S1GW1NCH 20 Ignore window size change 

S1GURG 21 Ignore urgent socket condition 

S1GPOLL 22 Exit pollable event occured 

S1G1O 22 Exit socket 1/ a possible 

S1GSTOP 23 Stop stop (cannot be caught or ignored) 

S1GTSTP 24 Stop user stop requested from tty 
_ .. _-

S1GCONT 25 Ignore stopped process has been continued 

S1GTT1N 26 Stop background tty read attempted 

S1GTTOU 27 Stop background tty write attempted 

S1GVTALRM 28 Exit virtual timer expired 

S1GPROF 29 Exit profiling timer expired 

S1GXCPU 30 Core exceeded cpu limit 

S1GXFSZ 31 Core exceeded file size limit 

S1GWA1T1NGT 32 Ignore process's lwps are blocked 

Implementation-Defined Behavior 345 



346 

(4.7.1.1) The default handling and the handling at program startup for 
each signal recognized by the signal function: 

See above. 

(4.7.1.1) If the equivalent of signal (sig, SIG_DFL) ;is not executed 
prior to the call of a signal handler, the blocking of the signal that is 
performed: 

The equivalent of signal (sig, SIG_DFL) is always executed. 

(4.7.1.1) Whether the default handling is reset if the SIGILL signal is 
received by a handler specified to the 'signal' function: 

Default handling is not reset in SIGILL. 

Streams and Files 

(4.9.2) Whether the last line of a text stream requires a terminating new
line character: 

The last line does not need to end in a new-line. 

(4.9.2) Whether space characters that are written out to a text stream 
immediately before a new-line character appear when read in: 

All characters will appear when the stream is read. 

(4.9.2) The number of null characters that may be appended to data 
written to a binary stream: 

No null characters are appended to a binary stream. 

(4.9.3) Whether the file position indicator of an append mode stream is 
initially positioned at the beginning or end of the file: 

File position indicator is initially positioned at the end of the file. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



(4.9.3) Whether a write on a text stream causes the associated file to be 
truncated beyond that point: 

A write on a text stream will not cause a file to be truncated beyond that point 
unless a hardware device forces it to happen. 

(4.9.3) The characteristics of file buffering: 

Output streams, with the exception of the standard error stream (stderr), are by 
default buffered if the output refers to a file, and line-buffered if the output 
refers to a terminal. The standard error output stream (stderr) is by default 
unbuffered. 

A buffered output stream saves many characters, and then writes the 
characters as a block. An unbuffered output stream queues information for 
immediate writing on the destination file or terminal immediately. Line
buffered output queues each line of output until the line is complete (a newline 
character is requested). 

(4.9.3) Whether a zero-length file actually exists: 

A zero-length file does exist in the sense that it has a directory entry. 

(4.9.3) The rules for composing valid file names: 

A valid file name may be from 1 to 1023 characters in length and may use all 
character except the characters "null" and slash U). 

(4.9.3) Whether the same file can be open multiple times: 

The same file can be opened multiple times. 

(4.9.4.1) The effect of the remove function on an open file: 

The file is deleted on the last call which closes the file. A program cannot open 
a file which has already been removed. 

(4.9.4.2) The effect if a file with the new name exists prior to a call to the 
rename function: 

If the file exists, it is removed and the new file is written over the previously 
existing file. 

Implementation-Defined Behavior 347 



Errno 

348 

(4.9.6.1) The output for %p conversion in the fpr in t f function: 

The output for %p is equivalent to %x. 

(4.9.6.2) The input for %p conversion in the f scanf function: 

The input for %p is equivalent to %x. 

(4.9.6.2) The interpretation of a '-' character that is neither the first nor 
the last character in the scan list for % [ conversion in the f scan f 
function: 

The I - I character indicates an inclusive range; thus, [0-9] is equivalent to 
[0123456789]. 

(4.9.9.4) The value to which the macro errno is set by the fgetpos or 
ftell function on failure: 

errno is set to EBADF, ESPIPE, or EINVAL on failure. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



(4.9.10.4) The messages generated by the perror function: 

Table B-7 Error Messages generated by perror (Sheet 1 of 5) 
--------,--- ~-.-.----- .. ------.----------------

Number Message 

1 Not owner 
_._-----------

2 No such file or directory 
- ----------------._--_ ... ------

3 No such process 

4 Interrupted system call 
.---~-------- ---

5 I/O error 
---------

6 No such device or address 

7 Arg list too long 

8 Exec format error 

9 Bad file number 

10 No child processes 

11 No more processes 

12 Not enough space 

13 Permission denied 

14 Bad address 

15 Block device required 

16 Device busy 

17 File exists 

18 Cross-device link 

19 No such device 

20 Not a directory 

21 Is a directory 

22 Invalid argument 

23 File table overflow 

Implementation-Defined Behavior 349 



Table B-7 Error Messages generated by perror (Sheet 2 of 5) 

Number Message 

24 Too many open files 

25 Not a typewriter 

26 Text file busy 

27 File too large 

28 No space left on device 

29 Illegal seek 

30 Read-only file system 

31 Too many links 

32 Broken pipe 

33 Argument out of domain 

34 Result too large 

35 No message of desired type 

36 Identifier removed 

37 Channel number out of range 
- -----.-

38 Level 2 not synchronized 

39 Level 3 halted 

40 Level 3 reset 

41 Link number out of range 

42 Protocol driver not attached 

43 No CSI structure available 

44 Level 2 halted 

45 Deadlock situation detected/avoided 

46 No record locks available 

50 Bad exchange descriptor 

350 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Table B-7 Error Messages generated by perror (Sheet 3 of 5) 
~--------~- -- ---~~~----

Number Message 

51 Bad request descriptor 
--------

52 Message tables full 
---~------ ------------------------.--~~~ ---~.--------.-. --

53 Inode table overflow 

54 Bad request code 

55 Invalid slot 

56 File locking deadlock 

57 Bad font file format 

60 Not a stream device 

61 No data available 

62 Timer expired 

63 Out of stream resources 
--------._------- ----_ .. _--------_._------

64 Machine is not on the network 

65 Package not installed 

66 Object is remote 
---

67 Link has been severed 

68 Advertise error 

69 Srmount error 

70 Communication error on send 

71 Protocol error 

74 Multihop attempted 

77 Not a data message 

78 File name too long 

79 Value too large for defined data type 

80 Name not unique on network 

Implementation-Defined Behavior 351 



Table B-7 Error Messages generated by perror (Sheet 4 of 5) 

Number Message 

81 File descriptor in bad state 

82 Remote address changed 

83 Can not access a needed shared library 

84 Accessing a corrupted shared library 

85 .lib section in a.out corrupted 

86 Attempting to link in more shared libraries than 
system limit 

87 Can not exec a shared library directly 

89 Operation not applicable 

90 Number of symbolic links encountered during path 
name traversal exceeds MAXSYMLINKS 

93 Directory not empty 

94 Too many users 

95 Socket operation on non-socket 

96 Destination address required 
--

97 Message too long 

98 Protocol wrong type for socket 

99 Option not supported by protocol 

120 Protocol not supported 

121 Socket type not supported 

122 Operation not supported on transport endpoint 

123 Protocol family not supported 

124 Address family not supported by protocol family 

125 Address already in use 

126 Cannot assign requested address 

352 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Table B-7 Error Messages generated by perror (Sheet 5 of 5) 

Number Message 

127 Network is down 

128 Network is unreachable 

129 Network dropped connection because of reset 

130 Software caused connection abort 

131 Connection reset by peer 

132 No buffer space available 

133 Transport endpoint is already connected 

134 Transport endpoint is not connected 

135 Structure needs cleaning 

137 Not a name file 

138 Not available 

139 Is a name file 

140 Remote I/O error 

141 Reserved for future use 

142 

143 Cannot send after socket shutdown 

144 Too many references: cannot splice 

145 Connection timed out 

146 Connection refused 

147 Host is down 

148 No route to host 

149 Operation already in progress 

150 Operation now in progress 

151 Stale NFS file handle 

Implementation-Defined Behavior 353 



354 

Memory 

(4.10.3) The behavior of the calloc, malloc, or realloc function if the 
size requested is zero: 

Malloc and calloc return a unique pointer if the size is zero. realloc will 
free the object pointed to if the size is zero and the pointer is not null. 

abort Function 

(4.10.4.1) The behavior of the abort function with regard to open and 
temporary files: 

abort first closes all open files, stdio streams, directory streams, and message 
catalogue descriptors, if possible, and then causes the signal SIGABRT to be 
sent to the calling process. 

exi t Function 

(4.10.4.3) The status returned by the exi t function if the value of the 
argument is other than zero, EXIT_SUCCESS, or EXIT_FAILURE: 

The value returned by the argument to exi t. 

getenv Function 

(4.10.4.4) The set of environment names and the method for altering the 
environment list used by the getenv function: 

The set of environment names provided to a program are the same as those 
that were in the environment when the program was executed. Any 
environment variable altered during program execution does not permanently 
change the environment variable; that is, the environment variable has the 
same value upon program completion as it did before the program was 
executed. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



system Function 

(4.10.4.5) The contents and mode of execution of the string by the sys tern 
function: 

(void) execl("/sbin/sh", ash", (canst char *)"-c", string, (char *)0); 

strerror Function 

(4.11.6.2) The contents of the error message strings returned by the 
s trerror function: 

See 4.9.10.4 above. 

Locale Behavior 

(4.12.1) The local time zone and Daylight Savings Time: 

The local time zone is set by the environment variable TZ. 

(4.12.2.1) The era for the clock function 

The era for the clock is represented as clock ticks with the origin at the 
beginning of the execution of the program. 

Locale-specific Behavior 
The following characteristics of a hosted environment are locale-specific: 

(2.2.1) The content of the execution character set, in addition to the 
required members: 

There are no extensions to the character set. 

(2.2.2) The direction of printing: 

Printing is always left to right. 

Implementation-Defined Behavior 355 



356 

(4.1.1) The decimal-point character: 

The decimal point is ' . '. 

(4.3) The implementation-defined aspects of character testing and case 
mapping functions: 

Same as 4.3.1 above 

(4.11.4.4) The collation sequence of the execution character set: 

The collation sequence is the ASCII collation sequence. 

(4.12.3.5) The formats for time and date: 

The names of the months are: 

Table B-8 Names of Months 

January May September 

February June October 

March July November 

April August December 

The names of the days of the week are: 

Table B-9 Days of the Week 

Sunday Thursday 

Monday Friday 

Tuesday Saturday 

Wednesday 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



The abbreviated names of the days of the week: 

Table B-l0 Abbreviated Days of the Week 

Sun Thu 

Man Fri 

Tue Sat 

Wed 

The format for time is: 

%H:%M:%S 

The format for date is: 

%rn/%d/%y 

The format for AM/PM designation is: 

AM 

PM 

Implementation-Defined Behavior 357 



358 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Incompatibilities between ANSI C 
and Sun C2.0.1(SunOS4.1.x) 

This appendix briefly describes compatibility issues between the ANSI C 
standard and Sun C 2.0.1 (available in SunOS 4.l.x). 

These compatibility issues include: 

• Search paths for header files and libraries. 

• 1 ibc functions. 

• libansi. a library. 

• name space pollution. 

• header files modified for Sun OS 4.x. 

• miscellaneous differences. 

C.l Library Differences 

Search Paths 

These are the orders in which directories are searched for header files and 
libraries. These are the default paths; actual paths will depend on your 
installation. Table C-1 summarizes these paths. 

359 



Table C-1 Directory Search Paths 

ace ace -sys5 

header /usr/lang/SC2.0.1/include/cc_41[lI 2 13] /usr/lang/SC2.0.1/include/cc_41[lI 2 13] 

files /usr/include /usr/5include 
/usr/include 

library /usr/lang/SC2.0.1/cg87 /usr/lang/SC2.0.1/cg87 

files /usr/lang/SC2.0.1 
/usr/lib 

/usr/lang/SC2.0.1 
/usr/51ib 
/usr/lib 

Note - The cc header files can be in cc_411, cc_412, or cc_413 depending on the 
version of SunOS 4.1.x you are running. 

Note - The -sys5 option provides compatibility with lusr 15include header 
files and lusr I 5 lib libraries (see Table C-1). To accomplish this compatibility, 
the driver predefines _SYS5_ when -sys5 is specified. 

libc Differences 

ace 

typedef int size_ti 

int abort (void) i 

char *calloc (size_t, 
size_t)i 

int clearerr (FILE *) i 

int fputc (char, FILE *) ; 

360 

Some of the functions in SunOS 4.x 1 ibc do not behave as specified by the 
ANSI standard. These differences are detailed in Table C-2. 

Table C-2 libc Differences (Sheet 1 of 2) 

ace -sys5 ANSI standard 

typedef int size_ti typedef unsigned int 
size_t; 

void abort (void) i void abort (void) i 

void *calloc (size_t, void *calloc (size_t, 
size_t)i size_t) i 

void clearerr (FILE *) i void clearerr (FILE *) ; 

int fputc (int, FILE *) i int fputc (int, FILE *) i 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Table C-2 libc Differences (Sheet 2 of 2) 

ace ace -sys5 ANSI standard 

int free (void *) ; void free (void *) ; void free (void *) ; 

char *malloc (size_t) ; void *malloc (size_t) ; void *malloc (size_t); 

char *memchr (char * char *memchr (char * void *memchr (const void * I I I 

inti size_t) ; inti size_t) ; inti size_t) ; 

int memcmp (char * int memcmp (char * int memcmp (const void * I I I 

char * int) ; char * int) ; const void * I size_t) ; I I 

char *memset (char * char *memset (char * void *memset (void * I I I 

inti int) ; inti int) ; inti size_t) ; 

char *memcpy (char * char *memcpy (char * void *memcpy (void * I I I 

char * int) ; char * int) ; const void * I size_t); I I 

int qsort (void * size_t, void qsort (void * size_t, void qsort (void * I size_t, I I 

size_t/int (* ) (const size_t/int (* ) (const size_t/int (* ) (const 
void * const void *) ) ; void * const void *) ) ; void * const void *) ) ; I I I 

char *realloc (void * I 
size_t) ; 

char *sprintf (char * I 
const char * ... ) ; I 

char *vsprint (char * I 

const char * void *) ; I 

int rewind (FILE *) ; 

void *realloc (void * I void *realloc (void * I 

size_t) ; size_t); 

int sprintf (char * int sprintf (char * I I 

const char * ... ) ; const char * I ... ) ; I 

int vsprint (char * int vsprint (char * I I 

const char * void *) ; const char * void *) ; I I 

void rewind (FILE *) ; void rewind (FILE *) ; 

In addition to the information in Table C-2, realloc will not accept a NULL 
pointer as a first argument. Instead of the NULL pointer being equivalent to a 
malloe call, its use will result in a run-time error. 

C.2 Library libansi . a 

libansi. a is packaged with C 2.0.1 (ANSI C) to furnish functionality that is 
either missing or different on SunOS 4.x, when compared to the ANSI 
standard. This library is intended to reduce the gap between C 2.0.1 and ANSI 
C but not to fulfill all the requirements of the ANSI C standard. 

Incompatibilities between ANSI C and Sun C 2.0.1 (SunOS 4.1.x) 361 



362 

Header Files 

libansi. a is located in /usr / lang / SC2 .0.1. 

The following headers in /usr / lib/ SC2 . 0 .1/ include / cc_ 41 [112 13] are 
packaged with the compiler to support ANSI features: 

assert.h 
ctype.h 
errno.h 
float.h 
limits.h 
locale.h 
math.h 
setjump.h 
signal.h 
stdarg.h 
stddef .h 
stdio.h 
stdlib.h 
string.h 
time.h 

ANSI C Functionality Supplied by libansi.a 

The following routines are defined only in 1 ibans i . a, as they are required by 
ANSI C specs and are not supplied in SunOS 4.x 1 ibc . a. 

atexit () 
difftime () 
div () 
fsetpos () 
labs () 
ldiv () 
memmove () 
raise () 
strerror () 
strtoul () 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



The following routines are redefined by libansLa in order to correct non-ANSI 
behavior of the corresponding routines that are provided by SunOS 4.x or 
libc. a. 

fflush () 
rand () 
srand () 

C.3 Name Space Pollution 
The ANSI C Standard reserves certain names for the compiler: 

• Identifiers belonging to the list of keywords. 

• External names defined in the ANSI Standard library section. 

• External names beginning with _. 

• All names beginning with _[A-Z}, or _[A-Z, a-z]. 

All other names are available to the user. 

Note - Of the ANSI C Standard's reserved identifiers, internal names 
beginning with _[a-z] are not considered to be reserved, and are therefore, 
implicitly available to the programmer. 

C 2.0.1 (ANSI C) does not guarantee all of the above conditions. For example, 
in stdio. h, the internal name _iob is referenced by various macros within it 
(stdio. h). In C 2.0.1 (ANSI C), the programmer should avoid the use of any 
identifiers beginning with _[A-Z, a-z}, or _[A-Z, a-z]. 

C.4 Header Files Modified for SunOS 4.x 
The following discussion describes problems and their fixes for Sun ANSI C 
compiler header files modified for SunOS 4.x. The header files are found in 
/usr/lang/SC2.0.1/include/cc_41{1121 3 ]. 

/usr/include/arpa/nameser.h 

Problem: 

Statements are guarded with #ifdef spare. sparc is not defined in -Xc mode. 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 363 



364 

Fix: 

Remove #ifdef sparc 

/usr/include/des_crypt.h 

Problem: 

"/usr /include I des_crypt.h", line 45: warning: old-style declaration; add "int" 

"/usr/include/des_crypt.h", line 57: warning: old-style declaration; add "int" 

Fix: 

Add missing return type for function declaration 

/usr/include/hsfs/hsfs_spec.h 

Problem: 

"/usr /include I hsfs Ihsfs_spec.h", line 30: warning: tokens ignored at end of 
directive line 

Fix: 

Change #if statement to used defined values 

/usr/include/hsfs/hsnode.h 

Problem: 

"/usr/include/hsfs/hsnode.h", line 84: warning: tokens ignored at end of 
directive line 

Fix: 

Change #if statement to used defined values 

/usr/include/hsfs/iso_spec.h 

Problem: 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



"/usr/include/hsfs/iso_spec.h", line 25: warning: tokens ignored at end of 
directive line 

Fix: 

Change #if statement to used defined values 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 365 



366 

/usr/include/machine/reg.h 
/usr/include/sun4c/reg.h 
/usr/include/sun4/reg.h 

Problem: 

"/usr/include/sun4c/reg.h", line 92: incomplete struct/union/enum fpq: 
<unnamed> 

"/usr/include/sun4c/reg.h", line 92: warning: unnamed union member 

"/usr/include/sun4c/reg.h", line 96: (struct) tag redeclared: fpq 

Fix: 

Move definition of struct fpq before struct fq 

/usr/include/mon/eeprom.h 

Problem: 

Missing semi-colon after last structure member 

"/usr/include/mon/eeprom.h", line 249: warning: syntax requires ";" after last 
struct/union member 

Fix: 

Add semicolon 

/usr / include/pixrect/ gt_fbi . h (SunOS4.1.2and4.1.3) 

Problem: 

"/usr/include/pixrect/gt_fbLh", line 661: warning: syntax requires ";" after last 
struct/union member 

Fix: 

Add semicolon 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



/usr/include/pixrect/pixrect.h 

Problem: 

"/usr/include/pixrect/gt_fbLh", line 661: warning: syntax requires ";" after last 
struct/union member. 

Fix: 

Add semicolon. 

/usr/include/rfs/ns_xdr.h 

Problem: 

"/usr/include/rfs/ns_xdr.h", line 10: warning: comment is replaced by "##" 

"/usr/include/rfs/ns_xdr.h", line 11: warning: comment is replaced by "##" 

Fix: 

Replace /**** / with ## 

/usr/include/rfs/rfs_xdr.h 

Problem: 

"/usr/include/rfs/rfs_xdr.h", line 16: warning: comment is replaced by "##" 

"/usr/include/rfs/rfs_xdr.h", line 17: warning: comment is replaced by "##" 

Fix: 

Replace /**** / with ## 

/usr/include/rpc/auth.h 

Problem: 

Statements are guarded with #ifdef spare. spare is not defined in -Xc mode. 

Fix: 

Remove #ifdef spare 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 367 



368 

/usr/include/sparc/asffi_linkage.h 

Problem: 

"/usr/include/sparc/asm_linkage.h", line 107: warning: comment is replaced 
by "##" 

Fix: 

Replace /**** / with ## 

/usr/include/stand/scsi.h 

Problem: 

"/usr/include/stand/scsi.h", line 216: warning: syntax requires ";" after last 
struct/union member 

"/usr/include/stand/scsi.h", line 216: warning: unnamed struct member 

Fix: 

Add name followed by semicolon for the structure member 

/usr/include/sun4c/asffi_linkage.h 

Problem: 

"/usr/include/sun4c/asm_linkage.h", line 107: warning: comment is replaced 
by "##" 

Fix: 

Replace /**** / with ## 

/usr/include/sun4c/debug/asffi_linkage.h 

Problem: 

"/usr/include/sun4c/debug/asm_linkage.h", line 45: warning: comment is 
replaced by "##" 

Fix: 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Replace 1****1 with ## 

/ us r / inc 1 ude / sun4m/ asm_l inkage . h (SunOS 4.1.2 and 4.1.3) 

Problem: 

"/usr/include/sun4m/asm_linkage.h", line 107: warning: comment is replaced 
by "##" 

Fix: 

Replace 1****1 with ## 

/usr / incl ude/ sun4m/ iommu. h (SunOS4.1.2and4.1.3) 

Problem: 

"/usr/include/sun4m/iommu.h", line 7: warning: tokens ignored at end of 
directive line 

Fix: 

Place token within comments 

/usr / include/ sun4m/vmparam. h (SunOS4.1.2and4.1.3) 

Problem: 

"/usr/include/sun4m/vmparam.h", line 98: warning: trigraph sequence 
replaced (-Xt mode only) 

Fix: 

Remove trigraph sequence 

/usr/include/sundev/scsi.h 

Problem: 

"/usr /include I sundev I scsi.h", line 254: warning: syntax requires ";" after last 
struct/union member 

"/usr/include/sundev Iscsi.h", line 254: warning: unnamed struct member 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 369 



370 

Fix: 

Add name followed by semicolon for the structure member 

/usr/include/sunif/if_llc.h 

Problem: 

"/usr/include/sunif/if_llc.h", line 54: warning: syntax requires ";" after last 
struct / union member 

Fix: 

Add semicolon 

/usr/include/suntool/wmgr.h 

Problem: 

"/usr/include/suntool/wmgr.h", line 3: warning: tokens ignored at end of 
directive line 

Fix: 

Change the #ifdef statment from wmgr.h_DEFINED to wmgr_h_DEFINED 

/usr/include/sunwindow/io_stream.h 

Problem: 

"/usr/include/sunwindow/io_stream.h", line 112: warning: old-style 
declaration; add "int" 

"/usr /include/sunwindow /io_stream.h", line 158: warning: old-style 
declaration; add "int" 

"/usr/include/sunwindow/io_stream.h", line 170: warning: old-style 
declaration; add "int" 

Fix: 

Add missing return type for function declaration 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



/usr/include/sunwindow/sun.h 

Problem: 

"/ usr / include / sunwindow / sun.h", line 21: warning: identifier redeclared: 
sprintf 

Fix: 

Add proper declaration 

/usr/include/sys/debug.h 

Problem: 

"/usr/include/sys/debug.h", line 23: warning: macro replacement within a 
string literal 

Fix: 

Replace /**** / with ## 

/usr/include/sys/ioccom.h 

Note - For all modes except -Xs, ALL macro calls that use _la, _lOR, _lORN, 
_lOW, _laWN, _IOWR, and 10WRN must be changed. For example:: 

#ifdef STDC - -
int i _10( I z '); 

#else 
int i _1O(z); 

#endif 

Problem: 

"usr/include/sys/ioccom.h", line 25: warning: macro replacement within a 
character constant 

"/usr/include/sys/ioccom.h", line 26: warning: macro replacement within a 
character constant 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 371 



372 

"/usr/include/sys/ioccom.h", line 27: warning: macro replacement within a 
character constant 

"/usr/include/ /sys/ioccom.h", line 28: warning: macro replacement within a 
character constant 

"/usr/include/sys/ioccom.h", line 29: warning: macro replacement within a 
character constant 

"/usr/include/sys/ioccom.h", line 31: warning: macro replacement within a 
character constant 

"/usr/include/syslioccom.h", line 32: warning: macro replacement within a 
character constant 

The following files use macros from sys/ioccom.h and have been modified to 
work with the changed macros in sys / ioccom.h 

/ usr / include / net / nit_buf.h 
/usr /include/net/nit_if.h 
/ usr / include / net / nit_pf.h 
/ usr / include / pixrect / g8var.h 
/usr/include/pixrect/gp1var.h 
/usr/include/sbusdev /audio_79C30.h 
/usr /include/ sbusdev / gtreg.h 
/ usr / include / sun/ audioio.h 
/usr /include/ sun/ dbriio.h 
/usr /include/ sun/ dkio.h 
/ usr / include / sun/ fbio.h 
/ usr / include / sun/ gpio.h 
/usr /include/ sun/isnio.h 
/usr /include/ sun/mem.h 
/ usr / include / sun/ ndio.h 
/ usr / include / sun/ sqz.h 
/usr /include/ sun/tvio.h 
/ usr / include / sun/ vddrv.h 
/ usr / include / sundev / dbio.h 
/ usr / include / sundev / fdreg.h 
/ usr / include / sundev /kbio.h 
/usr/include/sundev/lightpenreg.h 
/ usr / include / sundev / mcpcmd.h 
/ usr / include / sundev / msio.h 

SPARCompilers C 2.0 Programmer's Guide-October 1992 

(Sun as 4.1.2 and 4.1.3) 

(Sun as 4.1.2 and 4.1.3) 

(SunOS 4.1.3) 

(SunOS 4.1.3) 

(Sun as 4.1.2 and 4.1.3) 



#ifdef _STDC 

lusr lincludel sundev Imsreg.h 
lusr I include I sundev I openpromio.h 
lusr I include I sundev Ippreg.h 
lusr lincludel sundev I srreg.h 
I usr I includel sundev I streg.h 
lusr/include/sundev Ivuid_event.h 
lusr lincludel sunwindow Iwin_ioctl.h 
lusr lincludel sysl des.h 
I usr I include I sys I filio.h 
lusr lincludel sys/mtio.h 
I usr I include I sys I sockio.h 
lusr lincludel sysl stropts.h 
I usr I include I sys I termio.h 
I usr I include I sys I termios.h 
lusr /include I sys/ttold.h 
I usr I include I sys I ttycom.h 
I usr I include I sys I vcmd.h 
lusr /include I scsi/impl/uscsi.h 
I usr I include I scsil targets I srdef.h 
I usr I include I scsi/ targets I stdef.h 

Fix: 

Replace macros: 

#define _IO(x,y) CIOC_ VOID I (x«8) I y) 
#define _IOR(x,y,t) CIOC_OUT I «sizeof(t)&_IOCPARM_MASK)«16) I (x«8) I y) 
#define _IORN(x,y,t) CIOC_OUT I «(t)&_IOCPARM_MASK)«16) I (x«8) I y) 
#define _IOW(x,y,t) CIOC_IN I «sizeof(t)&_IOCPARM_MASK)«16) I (x«8) I y) 
#define _IOWN(x,y,t) CIOC_IN I «(t)&_IOCPARM_MASK)«16) I (x«8) I y) 
#define _IOWR(x,y,t) CIOC_INOUT I «sizeof(t)&_IOCPARM_MASK)«16) I (x«8) I y) 
#define _IOWRN(x,y,t) CIOC_INOUT I «(t)&_IOCPARM_MASK)«16) I (x«8) I y) 
#else 
#define _IO(x,y) CIOC_ VOID I ('x'«8) I y) 
#define _IOR(x,y,t) CIOC_OUT I «sizeof(t)&_IOCPARM_MASK)«16) I ('x'«8) I y) 
#define _IORN(x,y,t) CIOC_OUT I «(t)&_IOCPARM_MASK)«16) I ('x'«8) I y) 
#define _IOW(x,y,t) CIOC_IN I «sizeof(t)&_IOCPARM_MASK)«16) I ('x'«8) I y) 
#define _IOWN(x,y,t) CIOC_IN I «(t)&_IOCPARM_MASK)«16) I ('x'«8) I y) 
#define _IOWR(x,y,t) CIOC_INOUT I «sizeof(t)&_IOCPARM_MASK)«16) I ('x'«8) I y) 
#define _IOWRN(x,y,t) (_IOC_INOUT I «(t)&_IOCPARM_MASK)«16) I ('x'«8) I y) 
#endif 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 373 



374 

/usr/include/sys/termios.h 

Note - For all modes except -Xs, ALL macro calls that use _CTRL must be 
changed. For example:: 

#ifdef _STDC_ 
char ctrlz 

#else 
char ctrlz 

#endif 

Problem: 

_CTRL ( , z ' ) ; 

_CTRL(z) ; 

"/usr/include/sys/termios.h", line 44: warning: macro replacement within a 
character constant 

Fix: 

Replace the macro _ CTRL: 

#ifdef _STDC_ 
#define _ CTRL(c) 
#else 
#define _ CTRL(c) 
#endif 

(c&037) 

('c'&037) 

/usr/include/sys/ttychars.h 

Note - For all modes except -Xs, ALL macro calls that use CTRL must be 
changed. For example: 

#ifdef _STDC_ 
char ctrlz 

#else 
char ctrlz 

#endif 

CTRL ( 'z' ) ; 

CTRL(z) ; 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



Problem: 

"/usrlinclude/sys/ttyehars.h", line 29: warning: macro replacement within a 
character constant 

Fix: 

Replace the macro CTRL: 

#ifdef _STDC_ 
#define CTRL(e) (e&037) 
#else 
#define CTRL(e) ('e'&037) 
#endif 

/usr/include/sys/types.h 

Problem: 

Statements are guarded with #ifdef spare. spare is not defined in -Xc mode. 

Fix: 

Remove #ifdef spare 

/usr/include/sys/wait.h 

Problem: 

Statements are guarded with #ifdef spare. spare is not defined in -Xc mode. 

Fix: 

Remove #ifdef spare 

/usr/include/values.h 

Problem: 

"test.e", line 6: warning: integer overflow detected: op "«" 
"test.e", line 7: warning: integer overflow detected: op "«" 
"test.e", line 8: warning: integer overflow detected: op "«" 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 375 



- -

-

when using the HIBITI, HIBITL, MAXINT or MAXLONG macros 

Fix: 

Add suffix 'U' to the left operand of the left shift operator in the macro for 
HIBITI and HIBITL 

c.s Problems with Header Files using the -Xc Mode 
The following problems still occur with header files using the -Xc mode: 

Bit fields which are not of type int or unsigned int 

Problem: 

"/usr/include/pixrect/gplreg.h", line 39: warning: nonportable bit-field type 

Tokens at the end of #else or #endif are not enclosed within comments 

Problem: 

"/usr/include/stand/sireg.h", line 274: warning: tokens ignored at end of 
directive line 

Enumerated types which have a trailing comma 

Problem: 

/usr/include/sparc/fpu/ieee.h",line 46: warning: trailing "," prohibited in 
enum declaration 

C.6 Miscellaneous Differences 
C 2.0.1 (ANSI C) does not support the #pragma weak directive 

Type Qualifier cons t 

The type qualifier const is not placed in a read-only area of storage. 

376 SPARCompilers C 2.0 Programmer's Guide-October 1992 



size_t is defined to be of type int, instead of unsigned int as specified by 
the ANSI standard. 

Incompatibilities between ANSI C and Sun C 2.0.1(SunOS 4.1.x) 377 



378 SPARCompilers C 2.0 Programmer's Guide-October 1992 



D.l Introduction 

data type 

aggregate initialization 

struct { 

int a [3] ; 
int b; 

} w[] = { {1} , 2} ; 

incomplete struct, union, enum 
declaration 

switch expression integral type 

order of precedence 

-XS Differences for Sun C and ANSI C 

In this appendix we describe the differences in compiler behavior when using 
the -Xs option. The -Xs option tries to emulate /bin/ cc, Sun C 1.0, Sun C 1.1 
(K&R style), but in some cases the emulation fails. 

Table D-l -Xs Behavior (Sheet 1 of 2) 

Sun C (K&R) Sun ANSI C 

sizeof (w) = 16 sizeof (w) = 32 
w[O] .a = 1, 0, 0 w[O] .a = 1, 0, 0 
w[O] .b =2 w[O] .b =2 

struct fq { Does not allow incomplete struct, union, 
int i; enum declaration. 
struct unknown; 

} ; 

Allows non-integral type. Does not allow non-integral type. 

Allows Does not allow 
if (rcount > count += index) if (rcount > count += index) 

379 



data type 

unsigned, short, and long type
def declarations 

struct or union tag mismatch in 
nested struct or union declara
tions 

incomplete struct or union type 

casts as lvalues 

380 

Table D-1 -Xs Behavior (Sheet 2 of 2) 

SunC(K&R) 

Allows 

typedef short small 
unsigned small; 

Allows tag mismatch 

struct x { 
int i; 

} sl; 

/* K&R treats as a struct */ 
{ 

union x s2; 

Ignores an incomplete type declara
tion. 

Allows 

(char *) ip = &foo; 

Sun ANSI C 

Does not allow (all modes). 

Does not allow tag mismatch in nested 
struct or union declaration. 

struct x { 
int i; 

} sl; 

main() 
{ 

struct x; 
struct y { 

struct x fl; 
/* in K&R, fl refers */ 
/* to outer struct */ 
} s2; 
struct x { 

int i; 
} ; 

Does not allow casts as lvalues (all modes). 

SPARCompilers C 2.0 Programmer's Guide-October 1992 

I i~ 
II~ 

II 



Glossary 

ANSI 
ANSI is an acronym for the American National Standards Institute. ANSI 
establishes standards in the computing industry from the definition of 
ASCII (see below) to the measurement of overall datacom system 
performance. ANSI standards have been established for the Ada, 
FORTRAN, and C programming languages. 

a.out 
a. out, historically for "assembler output," is the default file name for an 
executable program produced by the C compilation system. 

application 
An application program is a working program in a given operating system, 
that is, an application of that system. When the source code for an 
application program is portable to another operating system, the program is 
an application of that system as well. 

archive 
An archive, or statically linked library, is a collection of object files each of 
which contains the code for a function or a group of related functions in the 
library. When you call a library function in your program and specify a 
static linking option on the cc command line, a copy of the object file that 
contains the function is incorporated in your executable at link time. For a 
discussion, see the C 2.0.1 Libraries Reference Manual. 

Glossary-381 



Glossary-382 

argument 
You use an argument to pass information to a command or a function. A 
command instructs the operating system to execute a program. The 
command is the name of the file containing the program. Command line 
arguments are character strings or numbers that follow the command, 
separated from it by a space, or that follow another command line 
argument, separated from it by a space. There are two types of command 
line arguments: options and operands. Options, which are immediately 
preceded by a minus sign (-), change the behavior of the program. Some 
options can themselves take arguments. Options are also called flags. 
Operands specify files or directories to be operated on by the program. So, 
in the command line % cc -0 hello hello.c all the elements after the cc 
command are arguments. cc is the name of the file containing the C 
compiler program. The C source file hello. c is its operand. -0 is an 
option that tells the compilation system to generate an executable program 
with a name other than a. out. hello is an argument to -0 that specifies 
the name of the executable program to be created. 

Function arguments are enclosed in a pair of parentheses immediately 
following the function name. The number of arguments can be zero or 
more; if two or more are given, they must be separated by commas and the 
whole list enclosed by parentheses. The formal definition of a function 
describes the number and data type of arguments expected by the function. 

You can find formal definitions of the functions supplied with the C 
compilation system in the SunOS 5.0 Reference Manual. 

ASCII 
ASCII is an acronym for the American Standard Code for Information 
Interchange, the standard for data representation followed in the UNIX 
system. ASCII code represents 128 upper- and lowercase letters, numerals, 
and special characters as binary numbers. Each alphanumeric and special 
character has an ASCII equivalent that is one byte long. 

assembler 
Assembly language is a programming language that uses symbolic names to 
represent the machine instructions of a given computer. An assembler is a 
program that accepts instructions written in the assembly language of the 
computer and translates them into a binary representation of the 
corresponding machine instructions. Because each assembly language 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



instruction usually has a one-to-one correspondence with a machine 
instruction, programs written in assembly language are not portable to 
different machines. 

buffer 
A buffer is a space in computer memory where data are stored temporarily 
in convenient units for system operations. Buffers are often used by 
programs such as editors that access and alter text or data frequently. When 
you edit a file, for instance, a copy of its contents are read into a buffer; the 
copy is what you change. For your changes to become part of the 
permanent file, you must write the buffer's contents back into the 
permanent file. This replaces the contents of the file with the contents of the 
buffer. When you quit the editor, the contents of the buffer are flushed. 

child process 
See "fork ( ) ." 

command 
A command instructs the operating system to execute a program. On the 
UNIX system, an executable program is a compiled and linked program or a 
shell program. The command to execute a program is either is the name of 
the file containing the program. A command line consists of the command 
followed by its arguments, so % cc filel.c file2.c instructs the operating 
system to execute the C compiler program, which is stored in the file ee, 
and to use the source files filel. e and file2. e as input. A command 
line can extend over multiple terminal lines. 

compiler 
A compiler is a program that translates a source program written in a 
higher-level language into the assembly language of the computer the 
program is to run on. An assembler translates the assembly language code 
into the machine instructions of the computer. On the C compilation 
system, these instructions are stored in object files that correspond to each of 
your source files. That is, each object file contains a binary representation of 
the C language code in the corresponding source file. Source file names 
must end with the characters. e; object files take the name of the source file 
with.o in place of . e. The link editor links these object files with each 
other, and with any library functions you have used in your source code, to 
produce an executable program called a. ou t by default. The preprocessor 
component of the C compiler performs macro expansion, conditional 
compilation, and file inclusion before the compiler proper translates C 
source code into assembly language. 

Glossary-383 



Glossary-384 

core image 
A core image is a copy of the memory image of a process. A file named 
core is created in your current directory when the UNIX system aborts an 
executing program. The file contains the core image of the process at the 
time of the failure. 

data symbol 
A data symbol names a variable that mayor may not be initialized. 
Normally, these variables reside in read/write memory during execution. 
Compare "text symboL" 

debugging 
Debugging is the process of locating and correcting errors in executable 
programs. 

default 
A default is the way a program will perform a task in the absence of other 
instructions, that is, if you do not specify something else. 

directory 
A directory is a type of file used to group and organize other files or 
directories. A subdirectory is a directory that is pointed to by a directory 
one level above it in the file system. A directory name is a string of 
characters that identifies the directory. It can be a simple directory name, a 
relative path name, or a full path name. 

dynamic linking 
Dynamic linking refers to the process in which external references in a 
program are linked with their definitions when the program is executed. 
For a discussion, see the C 2.0.1 Libraries Reference Manual and the Linker and 
Libraries Manual SunOS 5.0. 

ELF 
ELF is an acronym for the executable and linking format of the object files 
produced by the C compilation system. 

environment 
An environment is a collection of resources used to support a function. On 
the UNIX system, the shell environment consists of variables whose values 
define the way you interact with the operating system. The shell 
environment variable $HOME, for example, stands for your login directory; 
$ PATH is a list of directories the shell will search for executable programs. 
When you log in, the system executes programs that create most of the 

SPARCompilers C 2.0 Programmer's Guide-October 1992 

II 
II 
II 



environment variables you need to do your work. These variables are 
stored in jete/profile, a file that defines a common environment for 
users when they log in to the system. You can tailor your environment to 
your own needs by defining and setting variables in the file. profile (or 
. eshre or . login in a C Shell) in your login directory. You can also 
temporarily set variables at the shell level. 

executable program 
On the UNIX system, an executable program is a compiled and linked 
program or a shell program. The command to execute either is the name of 
the file containing the program. A compiled and linked program is called 
an executable object file. Compare "object file." 

exitO 
The exi t () function causes a process to terminate. exi t () closes any 
open files and cleans up most other information and memory used by the 
process. An exit status, or return code, is an integer value that your 
program returns to the operating system to say whether it completed 
successfully or not. 

expression 
An expression is a mathematical or logical symbol or meaningful 
combination of symbols. 

file 
A file is a potential source of input or a potential destination for output; at 
some point, then, an identifiable collection of information. A file is known 
to the UNIX system as an inode plus the information the inode contains that 
tells whether the file is a plain file, a special file, or a directory. A plain file 
contains text, data, programs, or other information that forms a coherent 
unit. A special file is a hardware device or portion thereof, such as a disk 
partition. A directory is a type of file that contains the names and inode 
addresses of other plain, special, or directory files. 

file descriptor 
A file descriptor is an integer value assigned by the operating system to a 
file when the file is opened by a process. 

file system 
A UNIX file system is a hierarchical collection of directories and other files 
that are organized in a tree structure. The base of the structure is the root 
(j) directory; other directories, all subordinate to root, are branches. The 

Glossary-385 



Glossary-386 

collection of files can be mounted on a block special file. Each file of a file 
system appears exactly once in the inode list of the file system and is 
accessible via a single, unique path from the root directory of the file system. 

filter 
A filter is a program that reads information from the standard input, acts on 
it in some way, and sends its result to the standard output. It is called a 
filter because it can be used in a pipeline (see "pipe") to transform the 
output of another program. Filters are different from editors in that they do 
not change the contents of a file. Examples of UNIX system filters are sort, 
which sorts the input, and wc, which counts the number of words, 
characters, and lines in the input. 

flag 
See "argument." 

forkO 
fork () is a system call that splits one process into two, the parent process 
and the child process, with separate, but initially identical, text, data, and 
stack segments. fork () is described in Section 2 of the SunOS Reference 
Manual. 

header file 
A header file is a file that usually contains shared data declarations that are 
to be copied into source files by the compiler. Header file names 
conventionally end with the characters . h. Header files are also called 
include files, for the C language #include directive by which they are 
made available to source files. 

include file 
See "header file." 

interrupt 
An interrupt is a break in the normal flow of a system or program. 
Interrupts are initiated by signals generated by a hardware condition or a 
peripheral device to indicate the occurrence of a specified event. When the 
interrupt is recognized by the hardware, an interrupt handling routine is 
executed. An interrupt character is a character (normally ASCII) that, when 
typed on a terminal, causes an interrupt. You can usually interrupt UNIX 
system programs by pressing the delete or break keys, or by pressing the 
CTRL and d keys simultaneously. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



lID 
I/O stands for input/ output, the process by which information enters 
(input) and leaves (output) a computer system. 

kernel 
The kernel is the basic resident software of the UNIX system. The kernel is 
responsible for most system operations: scheduling and managing the work 
done by the computer, maintaining the file system, and so forth. The kernel 
has its own text, data, and stack areas. 

lexical analysis 
Lexical analysis is the process by which a stream of characters (often 
comprising a source program) is broken up into its elementary words and 
symbols, called tokens. The tokens can include the reserved words of a 
programming language, its identifiers and constants, and special symbols 
such as =, : =, and i. Lexical analysis enables you to recognize, for instance, 
that the stream of characters printf ( "hello I world \n" ) i is a series of 
tokens beginning with printf and not with, say, printf ("h. In 
compilers, a lexical analyzer is often called by a syntactic analyzer, or parser, 
that analyzes the grammatical form of tokens passed to it by the lexical 
analyzer. 

library 
A library is a file that contains object code for a group of commonly used 
functions. Rather than write the functions yourself, you arrange for the 
functions to be linked with your program when an executable is created (see 
"archive") or when it is run (see "shared object"). 

link editing 
Link editing refers to the process in which a symbol referenced in one 
module of a program is connected with its definition in another. On the C 
compilation system, programs are linked statically, when an executable is 
created, or dynamically, when it is run. See the Linker and Libraries Manual 
SunOS 5.0 and the C 2.0.1 Libraries Reference Manual. 

makefile 
A make f i 1 e is a file that is used with the program make to keep track of 
the dependencies between modules of a program, so that when one module 
is changed, dependent ones are brought up to date. 

Glossary-387 



Glossary-388 

module 
A module is a program component that typically contains a function or a 
group of related functions. Source files and libraries are modules. 

null pointer 
A null pointer is a C pointer with a value of O. 

object file 
An object file contains a binary representation of programming language 
code. A relocatable object file contains references to symbols that have not 
yet been linked with their definitions. An executable object file is a linked 
program. Compare "source file." 

optimizer 
An optimizer improves the efficiency of the assembly language code 
generated by a compiler. That, in turn, will speed the execution time of 
your object code. 

option 
See "argument." 

parent process 
See "fork ( ) ." 

parser 
A parser, or syntactic analyzer, analyzes the grammatical form of tokens 
passed to it by a lexical analyzer (see "lexical analysis"). 

path name 
A path name designates the location of a file in the file system. It is made 
up of a series of directory names that proceed down the hierarchical path of 
the file system. The directory names are separated by a slash character (j). 
The last name in the path is the file. If the path name begins with a slash, it 
is called an absolute, or full, path name; the initial slash means that the path 
begins at the root directory. A path name that does not begin with a slash is 
known as a relative path name, meaning relative to your current directory. 

permissions 
Permissions define a right to access a file in the file system. Permissions are 
granted separately to you, your group, and all others. There are three basic 
permissions: read, write, and execute. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



pipe 
A pipe causes the output of one program to be used as the input to another 
program, so that the programs run in sequence. You create a pipeline by 
preceding each command after the first command with the pipe symbol (I), 
which indicates that the output from the process on the left should be 
routed to the process on the right. So % who I wc -1 causes the output of 
the who command, which lists the users who are logged in to the system, to 
be used as the input of the wc, or word count, command with the -1 option. 
The result is the number of users logged in to the system. 

portability 
Portability refers to the degree of ease with which a program can be moved 
to a different operating system or machine and run. 

preprocessor 
A preprocessor is a a program that prepares an input file for another 
program. The preprocessor component of the C compiler performs macro 
expansion, conditional compilation, and file inclusion. 

process 
A process is an executing program. Every time you enter the name of a file 
that contains an executable program you initiate a new process. A process 
ID is a unique system-wide number that identifies an active process. You 
can use the ps(1) command to determine the process ID of any process 
currently active on your system. 

regular expression 
A regular expression is a string of alphanumeric characters and special 
characters that describes, in a shorthand way, a pattern to be searched for in 
a file. 

routine 
A routine is another name for a function. 

shared object 
A shared object, or dynamically linked library, is a single object file that 
contains the code for every function in the library. When you call a library 
function in your program, and specify a dynamic linking option on the cc 
command line, the entire contents of the shared object are mapped into the 
virtual address space of your process at run time. As its name implies, a 

Glossary-389 



Glossary-390 

shared object contains code that can be used simultaneously by different 
programs at run time. For a discussion, see the C 2.0.1 Libraries Reference 
Manual and the Linker and Libraries Manual SunOS 5.0. 

shell 
The shell is the UNIX system program that handles communication between 
you and the system. The shell is known as a command interpreter because 
it translates your commands into a language understandable by the system. 
A shell normally is started for you when you log in to the system. A shell 
program calls the shell to read and execute commands contained in an 
executable file. 

signal 
A signal is a message you send to a process or that processes send to one 
another. You might use a signal, for example, to initiate an interrupt. A 
signal sent by a running process is usually a sign of an exceptional 
occurrence that has caused the process to terminate or divert from the 
normal flow of control. 

source file 
Source files contain the programming language version of a program. 
Before a computer can execute the program, the source code must be 
translated by a compiler and assembler into the machine language of the 
computer. Compare "object file." 

standard error 
Standard error is an output stream from a program that normally is used to 
convey error messages. On the UNIX system, the default case is to associate 
standard error with the user's terminal. 

standard input 
Standard input is an input stream to a program. On the UNIX system, the 
default case is to associate standard input with the user's terminal. 

standard output 
Standard output is an output stream from a program. On the UNIX system, 
the default case is to associate standard output with the user's terminal. 

static linking 
Static linking refers to the process in which external references in a program 
are linked with their definitions when an executable is created. For a 
discussion, see the C 2.0.1 Libraries Reference Manual. 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



stream 
A stream is an open file with its associated buffering. Stream also refers to a 
full duplex processing and data transfer path in the kernel that implements 
a connection between a driver in kernel space and a process in user space, 
providing a general input/ output interface for user processes. 

string 
A string is a contiguous sequence of characters treated as a unit. In C, a 
character string is an array of characters terminated by the null character, 
\0. 

syntax 
Command syntax is the order in which commands and their arguments 
must be put together. The command always comes first. The order of 
arguments varies from command to command. Language syntax is the set 
of rules that describes how the elements of a programming language may 
legally be used. 

system call 
A system call is a request from a program for an action to be performed by 
the UNIX system kernel. 

text symbol 
A text symbol names a program instruction. Instructions reside in read-only 
memory during execution. Compare "data symbol." 

user ID 
A user ID is an integer value, usually associated with a login name, that the 
system uses to identify owners of files and directories. The user ID of a 
process becomes the owner of files created by the process and by descendant 
processes (see "fork ( ) "). 

variable 
In a program, a variable is an object whose value may change during the 
execution of the program or from one execution to the next. A variable in 
the shell is a name representing a string of characters. 

white space 
White space is one or more spaces, tabs, or new-line characters. White space 
is normally used to separate strings of characters and is required to separate 
the command from its arguments on a command line. 

Glossary-391 



Glossary-392 SPARCompilers C 2.0 Programmer's Guide-October 1992 



Index 

Symbols 
# preprocessing operator, 83 
## preprocessing operator, 84 
#assert, 88 to 89 
#assert preprocessing directive 

acc compiler option, 28 
#define, 9,51,84 to 85 

acc compiler, 30 
#elif, 86 to 88 
#else, 86 to 88 
#endif, 86 to 88 
#error, 91 
#ident, 89 
#if, 9,86 to 88 
#ifdef, 86 to 88 
#ifndef, 86 to 88 
#include, 9,45,69,85 to 86 
#line, 88 
#pragma, 89 to 91, 340 
#Undef, 85 
/ usr / include, 45 to 46 

a.out(4), 12 to 13, 15, 17 
renaming, 36 

abort function, 354 
acc compiler 

inline templates, 31 
inlining, 31 
non-standard floating point, 32 
options, 27 to 41 

acc compiler flags, see options 
acc compiler option 

-a, count number of times program 
executes each block, 29 

-Aname, associate name with token as 
if by #assert directive, 28 

-Bbinding, specify static or dynamic 
binding of libraries, 29 

-bsdmaHoc, use faster maHoc, 29 
-C, prevent C preprocessor from 

removing comments, 29 
-c, suppress linking with ld(1), 29 
-cg87, generate floating-point code 

(not for fsqrts and fsqrtd), 29 
-cg89, generate floating-point code 

(supports fsqrts and 
fsqrtd), 30 

-cg92, generate code for SPARC 
version 8 machines, 30 

-dalign, generate double load/ store 
instructions, 31 

-Dname, associate name with token as 
if by a #define directive, 30 

393 



394 

do not link libraries by default, 34 
-dryrun, show constructed 

commands, but not 
execute, 31 

-E, run source only through 
preprocessor, 31 

-fast, select best combination of 
options for speed, 31 

-fnonstd, enable hardware traps for 
floating-point overflow, 32 

-fsingle, evalute float expressions as 
single precision, 32 

-G, produce shared object, 53 
-g, produce symbol table information 

for dbx, 32 
-H, print path name of each include 

file, 32 
-help, display information about 

acc, 33 
-inline, inlines specified functions and 

excludes all others, 33 
-Ipathname, add path name to 

#include file search path, 33 
-keeptmp, retaining temporary 

files, 33 
-L dir, add directory to library search 

path, 33 
-llibary, direct ld to link with object 

library, 33 
-libmieee, force IEEE 754 style return 

values for math routine 
exceptions, 34 

-libmil, select best inline templates 
floating-point, 34 

-M, run only the cpp macro 
preprocessor, 34 

-misalign, allow misaligned data, 34 
-native, compile floating-point code 

targeted for machine doing 
the compile, 34 

-no lib mil, reset -fast, 34 
-noqueue, do not queue request if 

license is unavailable, 35 
-0 level, specify optimization 

level, 35 
-0 outputfile, designate output file 

other than a.out default, 36 
-p, prepare object code to collect 

profiling data, 36 
-P, run source file through C 

preprocessor only, 36 
-pg, prepare object code to collect 

gprof(1) profiling data, 36 
-PIC, produce position-independent 

code, 36 
-pic, produce position-independent 

code (limit global offset table 
to 8K), 37 

-qdir directory, search for compiler 
component in designated 
directory, 38 

-Qdir directory, search for compiler 
components in designated 
directory, 38 

-Qoption or -qoption, pass an option 
to compiler phase program 
(e.g., as(1), cpp(1), inline(1), 
or Id(1»., 38 

-Qpath or -qpath, insert directory 
pathname into compiler 
component search path, 38 

-Qproduce or -qproduce, produce 
source code of the 
designated sourcetype, 38 

-R, merge data segment with text 
segment for as(1), 38 

-5, produce assembler source, but do 
not assemble it, 38 

-s, remove symbolic debugging 
information from the output 
object file, 39 

-sb, generate and compile symbol 
table information for 
SourceBrowser, 39 

-sbfast, generate (but do not compile) 
symbol table information for 
SourcBrowser, 39 

specify whether or not to optimize 
loops, 39,65 

-strconst, insert string literal into text 
segment instead of data 
segment, 39 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



-sys5, add System V header files and 
libraries to compiler search 
path, 39 

-temp, specify directory to hold 
compiler temporary files, 39 

-time, report execution times of the 
various compilation 
passes, 39 

-Uname, remove initial definition of 
preprocessor symbol, 39 

-v, print compiler version number and 
name of each program it 
executes, 40 

-V, print name and version ID of each 
pass as the compiler 
executes, 40 

-vc, perform stricter semantic checks 
and enable other lint-like 
checks, 40 

-Xa, ANSI C plus K&R compatibility 
extensions, 41 

-Xc, maximally conformant ANSI C 
without K&R compatibility 
extensions, 41 

-xlicinfo, return information about 
licensing system, 41 

-Xs, includes all features compatible 
with pre-ANSI K&R, 41 

-Xt, ANSI C plus K&R compatibility 
extensions without semantic 
changes required by ANSI 
C,41 

acc compiler options, 27 to 41 
acc options 

compatibility (-X), 49 
summary table, 42 
-X (compatibility) flags, 27 

access to object with volatile- qualified 
type, 339 

acomp (C compiler), 11 
addition operator, 108 
address operator, 106 
alignment of structures, 338 
allocation of zero size, 354 

Index 

ANSI C (see also C language), 73 
ANSI C vs. K&R C, 27, 49 
ANSI-conformant (strict) mode, 41 
ANSI-conformant mode (lax), 41 
archive libraries, 10,21 to 25 
archive libraries, implementation, 10 
archive libraries, linking with, 21,22 to 25 
argc and argv, 18 
arithmetic conversions, 74 to 75, 104 
arithmetic types, 92 
array, declaration, 99 to 100 
array, initialization, 116 
as(1), 15 
asm, 77 
assembler, 9, 15 
assembler (fbe), 11 
assembly source file, 38,58 
assert function, 342 
assignment operators, 112 
auto, 96 
autoload 

definition, 64 

B 
backslash ( \ ), 80 
basic block counter, 11 
basic types, 92 
basicblk (basic block counter), 11 
behavior, implementation-defined, 331 to 

357 
behavior, see mode 
bindings of libraries 

acc compiler, 29 
bit-fields, 93, 266, 338 

order of allocation, 338 
straddling storage boundaries, 339 

bits, in execution character set, 333 
bitwise AND operator, 110 
bitwise exclusive OR operator, 111 
bitwise inclusive OR operator, 111 

395 



396 

bitwise operations on signed integers, 335 
blocks, basic (counting), 11 
break statement, 122 
buffering, 347 

c 
C compiler, 11 
C language, comments, 81 
C language, compilation modes and 

dependencies, 73 to 79, 91, 103 
C language, constants, 77 to 80 
C language, conversions, 74 to 75, 102 to 

104 
C language, declarations, 92 to 101 
C language, definitions, 101 to 102 
C language, escape sequences, 80 
C language, expressions, 105 
C language, identifiers, 77 
C language, keywords, 77 
C language, operators, 83 to 84, 106 to 118 
C language, phases of translation, 75 to 76 
C language, preprocessing, 82 to 91 
C language, scope, 95 to 96 
C language, storage duration, ?? to 97, 97 

to ?? 
C language, string literals, 81 
C language, tokens, 76 to 83 
C language, types, 92 to 95, 98 to 102 
C library, linking with, 20 
C preprocessor, 11 
calloc, 354 
case statements, maximum number, 339 
cast operators, 107 
cb(1), 7 
cc compiler 

code optimization, 63 
option, ?? to 65 
options, 49 to?? 

cc compiler flags, see options 
cc compiler option, ?? to 65 

-###, show component as invoked, 

but do not execute, 50 
-#, verbose mode, 50 
-Aname, associate name with token as 

if by #assert directive, 50 
-Aname, preassertions, 50 
-Bbinding, bindings of libraries, 51 
-C, retain comments during 

compilation, 51 
-c, suppress linking, 51 
-cd, dynamic vs. static linking, 51 
compatibility (-X), 60 
-dalign, generate double load/ store 

instructions, 51 
default mode, 60 
-Dname, associate name with token as 

if by #define directive, 51 
-E, run source through preprocessor 

only, 52 
-F, floating-point (reserved for 

future), 52 
-fast, best combination of options, 52 
-fnonstd, gradual underflow, 52 
-fsingle, eva lute float expressions as 

single precision, 53 
-g, symbol table information for 

dbx, 53 
-h name, naming shared libraries, 54 
-H, print include file names, 53 
-i, ignore LD_LIBRARY_PATH 

setting, 55 
-Ipathname, add pathname to include 

file search path, 55 
-keeptmp, retain temporary files, 56 
-KPIC, produce position-independent 

code, 55 
-Kpic, produce position-independent 

code (limit size of global 
offset table to 8K), 55 

-Ldir, add directory to library search 
path, 56 

-llbirary, direct ld to link with 
designated object library, 57 

-misalign, allow loading and storing 
of misaligned data, 57 

-native, compile floating-point code 
targeted for machine doing 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



the compile, 57 
-noqueue, request not queued if 

license is unavailable, 57 
-0 outputfile, specify output file name 

(other than default, 
a.out), 57 

-0, equivalent to level 02 
optimization, 57 

-p, prepare object code to collect 
profiling data for prof(l), 58 

-P, run source file through 
preprocessor only, 57 

print summary of options, 52 
-Qc, add information about invoked 

compilation tool, 58 
-qc, basic block analyzer, 58 
-Rdir, specify library search path for 

linker, 58 
-S, produce assembly source file, 58 
-s, remove symbolic debugging 

information, 58 
-Uname, remove initial definition of 

preprocessor symbol, 59 
-V, name and version ID of each pass 

of the compiler, 59 
-v, preform stricter semantic checks 

and enable lint-like 
checks, 59 

-w, disable warning messages, 60 
-W, pass arguments to designated 

tool, 59 
-Xa, ANSI-conformant mode (lax), 60 
-x a, basic block counter, 61 
-Xc, ANSI-conformant (strict) 

mode, 60 
-xcg89, generate floating-point code 

(supports fsqrts and 
fsqrtd), 61 

-xcg92, generate code for SPARe 
version 8 machines, 61 

-xF, produce code that can be re
ordered at the function 
level, 61 

-xinline, inlines specified functions 
and excludes all others, 62 

-xlibmieee, force IEEE 754 style return 

Index 

values for math routine 
exceptions, 62 

-xlibmil, include inline templates for 
libm, 62 

-xlicinfo, return information about 
licensing system, 62 

-xM, macro preprocessor only, 62 
-xnolib, no default linking of 

libraries, 62 
-xnolibmil, reset -fast (no inlining), 63 
-xO, optimization of code, 63 
-xpg, profiling 

with gprof(1), 64 
-xs, disable autoload for dbx, 64 
-Xs, pre-ANSI-conformant mode, 60 
-xsb, generate symbol table 

information for 
SourceBrowser, 65 

-xsbfast, generate (no compile) 
symbol table information for 
SourceBrowser, 65 

-xstrconst, insert string literals into 
text segment, 65 

-Xt, transition mode, 60 
-Y, designate new directory search 

path for include file, library, 
or start-up object file, 65 

cc compiler options, 49 to ?? 

cc flags, see options 
cc options 

summary table, 66 
syntax, 49 

cc(l) 
debugging option, 70 
header search option, 69 to 70 
profiling options, 70 to 71 

cc(1), compilation modes and 
dependencies, 73 to 75, 77, 79, 91, 
103 

cc(1), debugging option, 46 
cc(1), header search option, 45 to 46 
cc(1), library linking option, 21,22 to 25 
cc(1), library search option, 23 to 25 
cc(1), profiling options, 46 to 47 

397 



398 

cc(1), program naming option, 13 
cc(1), static linking options, 23 to 25 
cflow(1), 7 

cg (code generator), 11 

char, 92, 102 
character constant, 339 
character constants, 79 to 80 
character set 

bits in, 333 
mapping, 333 
source and execution, 333 

character testing, 342 

characters, mapping of, 333 

clock function, 355 
code generator, 11 

code optimizer, 11 
collation sequence of execution character 

set, 356 

comma operator, 113 

command-line syntax, 27,49 
comments, 14,81 

comments, retaining during compilation 
ace compiler, 29 

compatibility options, 40,60 
compatibility options (-X), 49 

acc compiler, 27 

compiler, 9, 11 

compiler diagnostics, 125 to 235 
compiler diagnostics, error defined, 127 

compiler diagnostics, fatal error 
defined, 127 

compiler diagnostics, list of, 128 to 232 
compiler diagnostics, operator names 

in, 127,232 to 234 
compiler diagnostics, warning 

defined, 127 

compiler options, ?? to 48, ?? to 72 

compiling C programs, 9 to 16 
conditional compilation, 86 to 88 
conditional operator, 112 
const, 93,98 

constant expressions, 114 
constants, 77 to 80 
constants, representation of, 78 
continue statement, 122 

conversion of integers, 335 

conversions, 74 to 75, 102 to 104 
cpp (C preprocessor), 11 

creating temporary files, 56 
cscope(1), 5, 239 to 261 
cscope(1), command line, 241,250 to 253 

cscope(1), environment setup, 240 to 241, 
260 to 261 

cscope(1), environment variable, 253 to 
254 

cscope(1), usage examples, 240 to 250, 255 
to 260 

ctrace(1), 7 
cxref(1), 7 

D 
data representation 

, 317 to 326 

data segment, (see also object files), 10 

data types (see C language, types), 92 
data types, suffixes for, 78 

date 
formats, 356 

_DATE_ and _TIME--.J 341 

Daylight Savings Time, 355 
days, formats, 356 

dbx 

dbx 

symbol table info for, 53 
ace compiler, 32 

initializes faster, 64 
dbx(1), 46,70 

debug 
disable autoload for dbx, 64 

debuggin information, removing, 39, 58 
decimal-point character, 356 

declarations, 92 to 101 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



de clara tors 
maximum number, 339 

decrement operator, 107 
default compiler behavior, 40,41,60,73, 

74 
default compiler mode, 73,74 
default handling and SIGILL, 346 
default locale, 333 
default mode, 40,41,60 
definition, function, 101 to 102 
diagnostics, format, 331 
direction of printing, 355 
direction of truncation, 336 
directives, 340 
dis(1), 7 
division operator, 108 
domain errors 

math functions, 343 
double, 92, 103 
double load/ store instructions, 51 
do-while statement, 121 
dump(1), 7 
dynamic linking, 10, 19 to 25 
dynamic linking, implementation, 10 
dynamic vs. static binding, 51 

acc compiler, 29 

E 
ellipsis notation, 100 
else statement, 119 
enumeration (enum), 95 
equality operator, 110 
ERANGE, 344 
errno, 348 
errno, set to ERANGE, 344 
error messages, 127,331 
escape sequences, 80 
executable, 12 
executable files, 12 to 13, 15, 17 
execution character set, 333 

Index 

exit function, 354 
exitO, 15 
exit(O), 15 

exiting gracefully, 15 
expressions, 105 
extern, ?? to 97, 98 to ?? 

F 
faster linking and initializing, 64 
fatal errors, 127 
fbe (assembler), 11 
fgetpos function and errno, 348 
file buffering, 347 
file names, rules for valid, 347 
file position indicator, initial position, 346 
file truncation, 347 
files 

opening multiple, 347 
files and streams, 346 
flags, see options 
float, 92, 103 
float expressions as single precision, 53 

acc compiler, 32 
floating point, 335 

direction of truncation, 336 
gradual underflows, 47, 71 
nonstop, 47, 71 
representations, 335 
truncation, 336 
values, 335 

floating point constants, 79 
floating types, conversion, 103 
floating types, declaration, 92 
floating-point 

non-standard, 52 
acc compiler, 32 

fmod function and second argument of 
zero, 344 

for statement, 121 
format, 331 
formats 

399 



400 

date, 356 
days, 356 
months, 356 
time, 356 

fprintf function, %p, 348 
fscanf function, and %p, 348 
ftell and errno, 348 
function 

prototypes, 265 
function declaration, 100 to 101 
function definition, 101 to 102 
function prototypes, 96, 100, 101 
function prototypes, lint(1) checks 

for, 272 

generate double load/ store instructions 
acc compiler, 31 

generic pointer, 99 
getenv function, 354 
go to statement, 122 
gprof(1), 64 
gradual underflows, 47, 71 
greater or equal operator, 110 
greater than operator, 110 

header files 
how to include, 69 to 70 
standard place, 69 to 70 

header files, how to include, 45 to 46,85 to 
86 

header files, lint(1)ing, 270 to 271 
header files, standard place, 45 to 46 
hexadecimal escape, 80 

I 
identifiers, 77, 332 

significant characters, 332 
if statement, 119 

implementation-defined behavior, 331 to 
357 

incomplete types, 100, 102 
increment operator, 107 
indent(1), 7 
indirection operator, 106 
inequality operator, 110 
initialization, 115 
inline expansion templates, 62 
inline templates, 11,52 
inline templates, exclusion of, 63 
inlining, 11,52,62 
int, 92, 102 to 104 
integer conversions, 335 
integers, 334 

bitwise operations on, 335 
conversions, 335 
representations, 334 
values, 334 

integral constants, 77 to 79 
integral types, conversion, 102 to 104 
integral types, declaration, 92 
integral types, initialization, 115 
interactive device, 332 
intrinsic name of a library, 54 
iropt (code optimizer), 11 
isalnum, 342 
is alpha, 342 
iscntrl, 342 
is lower, 342 
isprint, 342 
isupper, 342 

K&R C vs. ANSI C, 27, 49 
keywords, 77 

L 
ld (linker), 11 
Id(1), 15 

SPARCompilers C 2.0 Programmer's Guide-October 1992 

Ii 
I~ 

'~ 



left shift operator, 109 
less or equal operator, 110 
less than operator, 110 
lex(1), 6 

libraries, 10, 19 to 25 
intrinsic name, 54 
renaming shared, 54 

libraries, archive, 10,21 to 25 
libraries, libc, 20 
libraries, libdl, 21 
libraries, linking with, 22 to 25 
libraries, lint(1), 271 to 272 
libraries, naming conventions, 22 
libraries, shared object, 10,20 to 25 
libraries, standard place, 21 
library bindings, 51 

acc compiler, 29 
link editing, 4, 10, 15 to 18, 19 to 25 
link editing, dynamic, 10, 19 to 25 
link editing, library linking options, 21,22 

to 25 
link editing, quick reference, 22 to 25 
link editing, static, 10, 19 to 25 
link editing, undefined symbols, 19 
linker, 11 

links faster, 64 
linking 

static vs. dynamic, 51 
acc compiler, 29 

suppression of, 51 
acc compiler, 29 

lint(1), 263 to 313 
lint(1), command line, 269 to 272 
lint(1), consistency checks, 265 
lint(1), filters, 272 to 273 
lint(1), libraries, 271 to 272 
lint(1), message formats, 264 
lint(1), messages, 278 to 313 
lint(1), options and directives, 264,273 to 

278 
lint(1), portability checks, 266 to 268 

Index 

lint(1), suspicious constructs, 268 to 269 
local time zone, 355 
locale 

default, 333 
locale behavior, 355 
locating includable source files, 340 
location of temporary files, 56 
logical AND operator, 111 
logical negation operator, 106 
logical OR operator, 112 
long double, 92, 103 
long int, 92, 104 
long long, 78,92 

arirthemtic promotions, 104 
as struct/union bit-fields, 94 
passing, 325 
representation of, 319 
returning, 325 
storage allocation, 318 
suffix, 78 
value preserving, 78 

long long int, see long long 
lorder(1), 7 
lpro£, 11 
Iprof(1), 5,46 to 47, 58,70 to 71 
Iva lues, 105 

M 
m4(1), 7 

macro expansion, 84 to 85 
main 

semantics of args, 332 
main function, 18, 101 
make(1), 5 
malloc, 354 
mapping of characters, 333 
math functions 

domain errors, 343 
mcs(1), 7 
mode 

ANSI-conformant (lax), 41,60 

401 



402 

ANSI-conformant (strict), 41,60 
default, 40,41,60,73,74 
pre-ANSI conformant, 41,60 
senescent, 41,60 
transition, 41 

months, formats, 356 
multibyte characters, 80 

current locale, 333 
shift status, 333 

multiplication operator, 108 

N 
name and version ID of each pass of the 

compiler, 40 
negation operator, 106 
nm(1), 8 
no inline templates, 63 
non-standard floating point, 52 
nonstop arithmetic, 52 
nonstop floating point, 47, 71 
null characters not appended to data, 346 
NULL, value of, 342 

o 
object files, tools for manipulating, 7 to 8 
octal escape, 80 
onescomplementoperator', 106 
operators (C language), 106 to 118 
operators (C language), preprocessing, 83 

to 84 
operators (C language), unary, 106 to 107 
operators, additive, 108 
operators, assignment, 112 
operators, associativity and 

precedence, 114 
operators, bitwise, 109, 110 
operators, cast, 107 
operators, comma, 113 
operators, conditional, 112 
operators, equality, 110 

operators, logical, 111 
operators, multiplicative, 108 
operators, relational, 110 
operators, structure, 113 
optimizer, 11 
options, ?? to 48, ?? to 72 

compatibility (-X), 40 
syntax, 27 

outputfile, 36 

p 
%p and fprintf, 348 
%p and fscanf, 348 
padding of structures, 338 
pass -u _malloc /lib /libbsdmalloc.a to 

linker 
acc compiler, 29 

pass, name and version of each, 40,59 
perror function, 349 

messages, 349 
pointer, declaration, 98 to 99 
pointer, initialization, 115 
portability, 123 
portability, lint(1) checks for, 266 to 268 
position-independent code, 36 
#pragma, 340 
pre-ANSI-conformant mode, 41 
preassertions' 

acc compiler option, 28 
predefinitions, 51 

acc compiler, 30 
preprocessing, 82 to 91 

directives, 69 to 70 
preprocessing directives, 339 
preprocessing tokens, 75 
preprocessing, directives, 9,45 to 46,83 to 

91 
preprocessing, output, 13 to 14 
preprocessing, predefined names, 91 
preprocessing, tokens, 82 to 83 
preprocessor, 9, 11 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



macro, only, 62 
using only, 36 

preserving 
unsigned, 74 
value, 74 

primary expressions, 105 
printing, direction of, 355 
produce assembly source file, 38 
prof(l), 5,36,46 to 47, 70 to 71 
profilers (see Iprof(1), prof(1), Iprof(1), 

prof(l», 5 
profiling 

with prof(1), 36 
with tcov(1), 61 

profiling with Iprof(1), 58 
promotions, 74 

Q 
qualifiers, 339 
quoted names for includable source 

files, 340 

realloc, 354 
register, 96 
relocatable files (see also object files), 20 
remainder operator, 108 
remove function, 347 
removes symbolic debugging 

information, 39 
rename function, 347 
renaming shared libraries, 54 
representation of constants, 78 
representations of floating point, 335 
representations of integers, 334 
retaining temporary files, 56 
retaining with -keeptmp, 56 
return statement, 123 
right shift, 335 
right shift operator, 109 

Index 

rounding behavior, 47, 71, 103 

s 
scalar 

types, 92 
SCCS, 6 
scope, 95 to 96 
semantics of arguments to main, 332 
senescent mode, 41,60 
shared libraries, naming, 54 
shared object, 53 
shared objects, 10,20 to 25 
shared objects, implementation, 10 
shared objects, linking with, 20, ?? to 25 
shift status of multibyte characters, 333 
short int, 92, 102 
SIGILL, 346 
signal, 101,344 

semantics, 344 
signal function, 344 
signal(sig, SIG_DFL), 346 
signed, 74, 92, 102 to 104 
signed char vs. unsigned char, 334 
single-character character constant, 339 
size(1), 8 
sizeof operator, 107 
source character set, 333 
Source Code Control System, 6 
source files 

locating, 340 
SourceBrowser (source code 

browser), 262 
space characters, 346 
sructure member operator, 113 
statements, 118 
static, ?? to 96, 98 to ?? 

static linking, 10, 19 to 25 
static linking, implementation, 10 
static vs. dynamic binding, 51 

acc compiler, 29 

403 



404 

static vs. dynamic linking, 51 
storage duration, ?? to 97, 97 to?? 
stream, 346 
streams and files, 346 
strerror function, 355 
string literals in text segment, 65 
strings, constants, 81 
strings, literals, 81 
strip(1), 8 
structure (struct), declaration, 93 to 95 
structure (struct), initialization, 115 
structure pointer operator, 113 
structures 

alignment, 338 
padding, 338 

subtraction operator, 109 
suffixes for data types, 78 
summary of acc options, 42 
summary of cc options, 66 
suppression of linking 

acc compiler, 29 
switch statement, 119 
symbol table for dbx, 64 
symbolic debugging information, 

removing, 39, 58 
syntax of acc command line, 27 
syntax of cc command line, 49 
system function, 355 

tcov(1), 61 
temporary files 

crea ting, 56 
directory for, 56 
location, 56 
space for, 56 
where created, 56 

terminating newline, 346 
text segment, (see also object files), 10 
text segment, and string literals, 65 
text stream, 346 

text stream and terminating newline, 346 
time 

formats, 356 
_TIME_ and _DATE-, 341 
TMPDIR environment variable, 56 
tokens, 76 to 83 
tokens, preprocessing, 82 to 83 
transition mode, 41 
translation behavior, 331 
trigraph sequences, 75,82 
truncation, direction, 336 
type conversions, 74 to 75, 102 to 104 
type qualifiers, 93 
typedef, 97, 101 
types, 92 to 95, 98 to 102 

u 
unary plus operator, 106 
undefined symbols, 19 
underflow, gradual, 52 
union, declaration, 95 
union, initialization, 115 
unsigned, 74, 92, 102 to 104 
unsigned char vs. signed char, 334 
unsigned preserving, 74 
use libbsdmalloc.a 

acc compiler, 29 
/usr/lib, 21 

v 
value preserving, 74 
values of floating point, 335 
values of integers, 334 
/var/tmp, 56 
void, 92 
volatile, 93 

w 
warning messages, 127 

SPARCompilers C 2.0 Programmer's Guide-October 1992 



warning messages, format, 331 
while statement, 120 
wide character constants, 80 
wide characters, 80 
write on text stream, 347 

x 
-x (compatibility options), 49 

acc compiler, 27 
-Xc mode, 78 
-Xs option 

y 

compiler behavior, 379 
Sun ANSI C, 379 
Sun C (K&R), 379 

yacc(1), 6 

z 
zero-length file, 347 
zero-size memory allocation, 354 

Index 405 



406 SPARCompilers C 2.0 Programmer's Guide-October 1992 




