
Asun®
• microsystems

NeWS'" Application Scenario

Contents

Preface vii

Chapter 1 Introduction .. 3

1.1. The NeWS Server ... 3

1.2. Application Functionality ... 3

1.3. NeWS Explained ... 3

What Is a Process? 4

What Is a Class? .. 4

What Is a Canvas? .. 4

What is a Window? .. 4

1.4. The Game of go ... 5

1.5. Running Programs In This Manual... 5

Pasting Selections ... 6

1.6. Flexibility ... 7

Chapter 2 A Sample Working Window... 11

2.1. The Window Program ... 11

2.2. Invoking the Program .. 12

2.3. The Window Program Explained ... 12

2.4. Drawing An Image In the Sample Window... 13

Changing IPaintClient .. 13

2.5. Sample Program Plus /draw_arc .. 15

2.6. Establishing A Coordinate Space ... 16

U sing eli ppath pathbbox 16

2.7. The Next Step .. 17

- iii-

Contents - Continued

2.8. NeWS Operators, Methods and Keys .. 17

Chapter 3 A First Use of Subc1assing ... 21

3.1. Defining a Class .. 21

3.2. A First Go Board .. 23

3.3. The Sample Window Program Plus / draw_board 25

3.4. Painting an Icon .. 26

3.5. The Next Step .. 28

3.6. NeWS Operators, Methods and Keys .. 28

Chapter 4 Connecting to the Client Side .. 33

4.1. Principles of Application Development ... 33

4.2. Other Considerations ... 34

4.3. A New Set of Tools .. 34

4.4. Conversion to CPS Format .. 34

4.5. The Sample Window Program Converted .. 37

4.6. Creation of the Client Side ... 38

4.7. Using CPS .. 40

So Far ... 40

4.8. The Next Step .. 40

4.9. NeWS Operators, Methods and Keys .. 40

Chapter 5 Communication With a NeWS Process .. 43

5.1. A Review of NeWS Input .. 43

5.2. The CID Utilities ... 44

5.3. The Event Manager .. 44

5.4. Why Synchronize? .. 45

5.5. Adding CID To the Server Side .. 46

5.6. Adapting the Client Side ... 48

5.7. A Cautionary Note .. 49

5.8. So Far ... 49

5.9. The Next Step .. 49

5.10. NeWS Operators, Methods and Keys ... 49

- iv-

Contents - Continued

Chapter 6 Tracking Mouse Actions .. 53

6.1. Following Mouse Actions .. 53

6.2. What Do We Need? .. 53

6.3. Server Side Changes .. 54

drawing a stone .. 54

drawing a cross ... 56

client side tag functions ... 57

6.4. Accepting Input .. 58

tracking mouse actions .. 58

tracking button transitions ... 58

building a button manager ... 58

altering the frame event manager .. 59

cleaning up .. 60

6.5. The Complete Server Side Code ... 60

6.6. Client Side Changes ... 63

keeping track of stones .. 64

working with the array ... 64

6.7. The Next Step .. 65

6.8. The Final Board .. 66

6.9. Conclusion ... 66

6.10. NeWS Operators, Methods and Keys ... 67

Appendix A Conventions .. 71

A.1. Naming Conventions .. 71

A.2. Indentation .. 71

A.3. Stack Manipulation ... 72

A.4. Cliches .. 72

Understanding Cliches ... 72

A.5. A Cliche That Creates a Window... 73

Appendix B Tailoring An Application .. 77

B.1. Server Side Changes ... 77

adding the menu .. 77

-v-

Contents - Continued

adapting the icon ... 78

B.2. Client Side Changes .. 80

adding the menu .. 80

B.3. A Complete Model .. 80

B.4. The Board Plus Menu ... 85

B.S. NeWS Operators, Methods and Keys ... 85

Index .. 87

- vi-

Prerequisites

Companion Documents

Where to Start

Structure of the Manual

Preface

This manual serves as a companion volume to the NeWS Manual.

Before you begin working with this manual, you should:

o have a good understanding of the POSTSCRIPT and C languages,

o have read the NeWS Technical Overview.

You should have on hand copies of both POSTSCRIPT language books (the
PostScript Language Reference Manual and the PostScript Language Tutorial
and Cookbook) and the NdVS Manual. There are quite a few references to
POSTSCRIPT language primitives and many of the NeWS operators.

If you haven't started up NeWS yet, the Using NeWS appendix oftheNdVS Manual
will tell you how.

If you want to preview some of the examples in the PostScript Language
Tutorial and Cookbook, use the NeWS previewer, psview. Instructions on its
use may be found on the appropriate manual page in the NeWS Manual.

If you have NeWS up and running and are reasonably familiar with the
POSTSCRIPT language you can begin reading the rest of this manual. Chapters 1
and 2 are a quick introduction to your first steps in programming in the NeWS
environment. With the material presented in those chapters, you will start draw­
ing figures in a window almost immediately.

This manual is organized as follows:

o A brief introduction of NeWS and a sample window for NeWS programming

o A extended example (across several chapters) whichgilidesyou·through the
building of an interactive client-server NeWS applicatioll (the· go program)

o An appendix which describes NeWS programming conventions

o A second appendix which explains a number of special features that you
might want to add to applications

In Chapter 4 and the succeeding chapters we take the go program first demon­
strated in Chapter 3 and convert it into an application split across C client and
NeWS server. The work in these chapters represents a gradual progression:

-vii-

Preface - Continued

Source Code Listings

Terminology

Font Usage

o Chapter 4 first splits the functionality of the go program and describes the
general process of converting a POSTSCRIPT program for use with the CPS
interface;

o Chapter 5 develops the ability to communicate with a specific process on the
server side;

o Chapter 6 develops the mechanisms necessary to track mouse actions on the
server side from the client side;

You will find that all the sample programs of this manual m~y be found either in
$NEWSHOME/ client src/ app _guide/ go (for the go programs) or in
$NEWSHOME/ clientsrc/ app_guide/ code (for the code fragments and
programs).

In addition, at the end of each chapter you will find a summary of the NeWS prim­
itives used in that chapter.

In this manual you will find references to procedures and routines, methods,
functions:

o By procedure we mean a function written in the POSTSCRIPT language. It
mayor may not include NeWS operators.

o The term routine is interchangeable with procedure.

o By method we mean a procedure written in the POSTSCRIPT language that is
inherited from the definition of a class.

o When you see the term/unction used it means C language functions, accessi­
ble to the client side C program.

The NtWS Application Scenario includes code and procedures from the C and
POSTSCRIPT languages. In order to minimize confusion, we have used fonts to
clarify which language is used:

bo1d 1istinq font
This font indicates things that you should type at your works­
tation.

li st ing font This font indicates literal values such as file names and out­
put displayed by the computer. It also indicates use of the C
language: it is used in C program listings and C procedure
names. CPS routines and code fragments such as
ps_open_PostScript () are printed in this font.

sans serif font This font is used for POSTSCRIPT program listings, types and
code fragments such as 300 200 createcanvas mapcan­
vas to distinguish them from C code. It is also used in the
definition of NeWS functions (primarily in Chapter 12 of the
NeWS Manual, NeWS Operator Extensions.

bold font Unfortunately, sans serif fonts look poor in the middle of
normal text. So, as well as indicating cautions and warnings,

- viii-

italic font

Preface - Continued

bold font is used to indicate all NeWS names, such as
clipcanvas, when they appear in paragraphs or the index.

This font is used as a place holder for words, numbers, or
expressions that you define, for example parameters to com­
mands, and operands of POSTSCRIPT language operators.
Italics are also used in the conventional manner to emphasize
important words and phrases.

-ix-

1
Introduction

Introduction ... 3

1.1. The NeWS Server ... 3

1.2. Application Functionality ... 3

1.3. NeWS Explained ... 3

What Is a Process? .. 4

What Is a Class? .. 4

What Is a Canvas? .. 4

What is a Window? .. 4

1.4. The Game of go ... 5

1.5. Running Programs In This Manual... 5

Pasting Selections ... 6

1.6. Flexibility ... 7

1.1. The NeWS Server

Look at the programs provided in
$NEWSHOME/ demo for examples of
NeWS applications designed to run
wholly within the server.

1.2. Application
Functionality

1.3. NeWS Explained

1
Introduction

This manual shows you some of the fundamentals of NeWS. When you finish, you
should be able to develop a NeWS application that uses the basics: canvases,
processes, events and interests. The application developed in this manual uses all
of these.

This chapter serves as an overview, presenting brief explanations of the critical
components and terminology of NeWS. Detailed explanations of these mechan­
isms may be found in the NeWS manual.

NeWS applications can be written completely in the POSTSCRIPT language. These
applications will run within the NeWS server, which acts as an interpretive engine.

Formerly, if you wanted to use the POSTSCRIPT language you had to use a print
engine. NeWS implements a large subset of the POSTSCRIPT language and creates
an environment in which you can use the POSTSCRIPT language (and the NeWS
extensions to it) interactively.

Most applications, because of the considerations discussed below, will have a
client and a server side.

This manual provides you with a model of how to split an application between
the NeWS server and the client (C) side. As a general rule of thumb, POSTSCRIPT
language engines are best suited to simple user interaction routines and drawing
operations. Too many sophisticated calculations within the server hurts perfor­
mance. Thus, you gain a significant benefit by splitting an application between
the server and client sides, allowing the client side to take on the heavy computa­
tion. The client side can be written in any number of languages. Sun currently
supports the use of the C language with a 'C to POSTSCRIPT' (CPS) interface1.

The following paragraphs explains briefly some of the most vital structural ele­
ments of NeWS. If you're in a hurry (and are fanliliar with object-oriented pro­
gramming) they may provide you with enough information that you can try pro­
gramming right away.

1 See Chapter 15 of the NeWS Manual, Supporting NeWS From Uther Languages .

• \sun ~ microsystems
3 Revision A of 15 January 1988

4 :--:cws Application Scenario

What Is a Process?

\Vhat Is a Class'?

\Vhat Is a Canvas?

\Vhat is a \Vindow'?

NeWS processes run in the server's name space. They are lightweight (in contrast
to UNIX processes) because they all share a common address space. Thus, they
need no kernel support and are very cheap to start up in terms of system
resources.

When a child process is forked (for instance, whenever a menu is invoked) the
child process inherits a copy its parent's dictionary stack. The child inherits cer­
tain behaviors from the parent with this dictionary stack. By manipulating the
contents of this dictionary stack the child can selectively override behaviors and
control how much of its name space it shares with other processes.

Classes are implemented in NeWS through the dictionary mechanism2. A class is
a composition of both instances and methods. Instances may be likened to local
variables and methods to procedures. The methods are NeWS procedures which
operate on both the instance and class variables of the class. In object-oriented
programming an object is comprised of both data and the necessary procedures to
act upon that data. Objects are instances of classes in NeWS. They inherit their
behavior (the methods) and data (instance and class variables) from their parent
classes upon creation. An example of such an object is a NeWS window (see
below).

A canvas is the basic mechanism for drawing on a display3. Canvases are sur­
faces upon which images may be drawn. The surface may be opaque, or tran­
sparent, and can be of arbitrary shape. In NeWS, you are not limited to rectangular
drawing surfaces. Canvases may be virtually any shape. They may overlap on a
display surface. A canvas may be created (and drawn on) while it is not displayed
and then mapped to make it visible on the display.

Canvases are very lightweight objects - they are very easy to create and this can
be done very rapidly (again with little cost in system resources).

A window is a composition of canvases and a process called the frame event
manager. A window is an object, created as an instance of a NeWS class. A
default window is comprised of five canvases and the frame event manager. The
canvases are: an opaque frame canvas (containing two buttons), two transparent
button canvases (upper left and lower right), a transparent client canvas (where
you normally draw images), and an opaque icon canvas (representing the closed
window object). The frame event manager is a process created when the window
is created. It manages operations within the context of the window (Le., insures
that something happens when you click a mouse button somewhere in the win­
dow).

All this information, in much greater detail, can be found in the NeWS Manual.

2 For a good sample implementation, read Chapter 7 of the NeWS Technical Overview, Writing a User
Interface for NeWS.

3 We use the term canvas because window means many things to many people.

~\sun ~ microsystems
Revision A of 15 January 1988

1.4. The Game of go

Figure 1-1

1.5. Running Programs In
This Manual

Chapter 1 - Introduction 5

This explanation of how to write a NeWS application is developed around a sim­
ple go program4. Go is an ancient Japanese game of strategy. It uses a board
which is 19 squares on a side. Each of the two players place pieces (stones)
alternately on the intersections of the lines on the board. One player uses black
stones, the other white. The objective of the game is to capture territory. This is
accomplished by enclosing a group of your opponent's stones with a line of
yours. There should be no open lines from within the encirclement. The edge of
the board serves as an absolute boundary. The following image shows one such
successful encirclement (by white).

black loses a battle!

P. Go

.?;:9
--t.: ~~ IlL

.~.~ ~

I~~~ < /

d

The mechanisms used in implementing this application could very easily be
adapted to any application that required mouse input and a display medium.

In fact, we hope that you will do just that.

All the programs and program fragments in this manual have been included in
this release. Each complete program may be found in either the go or code sub­
directory of $NEWSHOME/ clientsrc/ app guide. The file containing the
program will have the same name as the figure~

4 A good primer on the game of go is Volume 1 of the Elementary Go Series,ln the Beginning, by Ikuro
Ishigure. It is published by the Ishi Press of Tokyo.

5 Only the go programs (. cps and . c) are in the go directory. All other programs are in the code
directory.

Revision A of 15 January 1988

6 ':\cws Application Scenario

Figure 1-2

Figure 1-3

. Pasting Selections

This release of NeWS includes the psh program6. The NeWS server is a
POSTSCRIPT language interpretive engine. p s h establishes a connection to the
server and allows you direct communication with the server. You may either
provide psh with a file to run:

running a program in psh

(~~~_b~a_b_Y~l_o_n_. _% __ P __ S_h_>_f_i~l_e_n_ame ___ ._p_s ________________ ~~ __________ ~~J
or start an interactive programming session with:

starting an interactive session with psh

babylOn% psh
executive
Welcome to NeWS Version 1.1

The executive command interposes an error handler between you and the NeWS
server so that any errors that may occur are dealt with gracefully.

Now that you are directly connected to the NeWS server you may type in any
combination of NeWS and POSTSCRIPT language commands that you want .

The code fragments and programs in this manual have been provided to you to
help you with the process of trying out the examples. You can either copy the
code fragments from one file to another using a text editor or you can "cut and
paste" using the following technique:

o Create two windows (psterrn emulators). Display the text that you wish
to copy in one; the other emulator should either display the text file into
which you will insert text or it should be running psh (which requires no
insert mode).

o While in the target emulator (into which you will paste), depress and hold
the CI&) key. Note that the cursor should be in the target emulator when you
do this.

o Still holding the (L6J key down, move the cursor to the emulator from which
you want to copy and select the text to be copied. Click the left mouse but­
ton, with the cursor held over the beginning of the text to copy and click the
middle mouse button over the end of the text to copy . Your text is now
selected (signified by an underbar under the selection).

o Move the cursor back to the target emulator and release the c:I&J key. The
selected text will be pasted into the target emulator at the insertion point (or
the current line if you're working in psh).

6 See the Using NeWS appendix of the NeWS Manual for more detail on psh.

Revision A of 15 January 1988

1.6. Flexibility

Chapter 1 - Introduction 7

This method of pasting should prove helpful in adding example code to the
working window program.

In large part, this go application serves as a demonstration of the flexibility and
versatility of NeWS. We encourage you to approach your learning experience with
a willingness to experiment. There are usually many ways to accomplish the
same end. NeWS is made all the more powerful by the imagination of you, its
users.

Revision A of 15 January 1988

2
A Sample Working Window

A Sample Working Window ... 11

2.1. The Window Program ... 11

2.2. Invoking t.h.e Program .. 12

2.3. The Window Program Explained ... 12

2.4. Drawing An Image In t.h.e Sample Window ... 13

Changing IPaintClient .. 13

2.5. Sample Program Plus /draw_arc .. 15

2.6. Establishing A Coordinate Space ... 16

Using clippath pathbbox ... 16

2.7. The Next Step .. 17

2.8. NeWS Operators, Methods and Keys .. 17

2.1. The Window Program

Figure 2-1

This cliche is both useful and com­
mon and is explained in some detail
in Appendix A, Conventions.

2
A Sample Working Window

One of the first things a new user asks when introduced to a windowing system
is, "Well, how do I draw something?" This is shortly followed by, "How do I
draw it in a window?" This chapter answers these often frustrating questions. The
NeWS program in Figure 2-1 creates a window within which you can draw an
image. This program is a skeletal form which draws a window and then calls a
routine to draw something in that window. Think of this as a "working window"
- an easel upon which you can sketch7.

Here is the basic working window that will serve as our model throughout this
manual:

code/window.ps

/makewin { % - => - (builds a test window)
/win framebuffer /new DefaultWindow send def
{

/PaintClient { .4 fillcanvas } def
/FrameLabel (Workspace) def

} win send

/reshapefromuser win send
/map win send

} def

makewin

0/0 cliche

0/0 draw after damage
0/0 label window
0/0 execute contents of
% {} in win's context

0/0 select size/position
0/0 make visible

0/0 run the program

7 The directory $NEWSHOME/ cl ient src/ app _guide/ code contains the programs and program
fragments listed in this chapter.

11 Revision A of 15 January 1988

12 NeWS Application Scenario

2.2. Invoking the Program

2.3. The Window Program
Explained

Figure 2-2

An object's class hierarchy is
placed on the dictionary stack
(creating a context) so that any
methods used will evaluate refer­
ences correctly.

Figure 2-3

To execute the window program, retrieve it from the code directory and either
paste the program body into psh or use the program name as an argument to
psh:

(~ .• _____ b_a_b_· ... _Y_l_6_n~>%_·· ___ P_S_h_·._>W_··._i_n_d_o_w_·~_p_s _______________________________________ ~ __ ~J

Let's take a look at this code in some detail. The first line of this program:

a cliche

Iwin framebuffer Inew DefaultWindow send def

is what we choose to call a cliche. Cliches are common pieces of code which per­
form a commonly-needed function (in this case, creating a window to work in)8.
Some are quite simple, others quite complex. This particular cliche is one of the
more complex ones and so is explained in detail in Appendix A. You need not
understand it at this point to use it. The pair:

(_____ /w_in ___ "._d_e_f ___ J
assigns the window to win.

We can use this variable to send instructions to be executed in the new window's
class context.

IPaintCIient is an instance variable within the DefaultWindow class hierarchy.
NeWS uses this variable when re-drawing the client canvas after damage9. When­
ever damage occurs, the procedure body identified with IPaintClient is exe­
cuted 10. Hence, we can use this by specifying our own procedure to be drawn:

the lPaintClient routine

({.4 fillcanvas}

In this case, painting the window a shade of gray in the event of damage.

IFrameLabel is another instance variable used by NeWS to determine what label
to give a newly-created window. The contents of the IFrameLabel variable
should be an ASCII text string. You may provide it by either placing a string in

8 These windows are built using the Lite Window package. Strictly speaking, these are not low-level NeWS

operations.

9 The interior drawing surface of the window is called the ciiem canvas.

10 For example, damage occurs when part of the window is obscured, or when a canvas is first mapped to
the display. See the discussion in Chapter 2, NeWS Extension Overview of the NeWS Manual.

]

~~sun ~~ microsystems
Revision A of 15 January 1988

2.4. Drawing An Image In
the Sample Window

Changing IPaintClient

Chapter 2 - A Sample Working Window 13

parentheses (as we have done):

(~ __ /_F_ra_m_e_L_a_b_el_(_W_O_r_ks_p_a_C_e_)_d_ef ____________________________ ~]
or by placing a procedure in braces (which delays execution). The procedure has
to leave a text string on the operand stack after evaluation for this to work. The
final:

(~ ___ {_ ... _}_W_i_n_s_en_d __ ~]
sends the contents of the {}'s to the window win to be executed in its context.

The Ireshapefromuser method is "sent" to win's class context and executed
therein. Note that the send has to do with setting up the correct context, not send­
ing a message to a process.

This method allows the user to shape a window at creation by positioning the
cursor and clicking the left mouse button to fix the window comer. Then drag
the cursor - the wire frame of the window will follow it. Click the left mouse
button again to fix the window size.

The Imap method simply makes the window visible after you have sized it. It is
sent to win and executed in the same manner as Ireshapefromuser.

At this point, you should have some understanding of how our sample window
works.

Now consider the task of drawing an image in the sample window.

The sample window can fill an image in the canvas rather than the whole canvas.
To do this, you need to change two things in the sample program.

First, replace the procedure body (the code in braces following the IPaintClient
variable) with a call to the POSTSCRIPT language routine that you would like exe­
cuted. This is more complex than just calling the NeWS fillcanvas utility, so you
will require a procedure rather than a simple operator. For example, say you
wish to draw a simple arc in this window. Call this new routine Idraw_arc:

(____ /p_a_in_tC __ lie_n_t_{1_0_0_1_0_0_d_ra_W_-_a_~_}_d_e_f ________________________ ~J
When IPaintCIient variable is used it places 100, 100 on the stack and then exe­
cutes Idraw_arc.

Now you must actually add the Idraw_arc routine to the window program body.
The new procedure is as follows:

Revision A of 15 January 1988

14 :\eWS Application Scenario

Figure 2-4 code/ sample2 .ps

Idraw_arc { % x Y => - (draws an arc at the specifed location)
100 0 300 arc % radius start finish
gsave % save graphics context

.5 setgray fill % set the path color and fill it
grestore % restore graphics context
stroke % draw the arc

} def

This code is relatively straightforward. You can see from the comments that the
100, 100 passed to Idraw_arc on the stack determines the center point of the arc
in the client canvas.

The gsave ... grestore pair saves then later restores the graphics contextll . In
this case, this means that the pair saves the path of the arc for later stroking. The:

(.5 setgray fill

fills the current path with half-tone gray. The path of the arc is closed by the fill
operator before being filled 12. The grestore restores the path (because the fill
consumes it) and then you stroke it with the default color (black); drawing the
path in the client canvas of the window.

J

11 See the PostScript LAngUilge Reference Manual. Section 4.3 for a complete explanation of all the contents
of the graphics state stack saved by this operation.

12 See the PostScript LAnguage Reference Manual, Section 4.6 for an explanation of painting operations .

• \sun ~~ microsystems
Revision A of 15 January 1988

2.5. Sample Program Plus
/draw_arc

Figure 2-5

Chapter 2 - A Sample Working Window 15

Now, composing the new drawing routine with the sample window progam
results in:

codelarc.ps

Idraw_arc { % x y => - (draws an arc at the specifed location)
100 0 300 arc % define arc path
gsave % save the context

.5 setgray fill % fill path with gray
grestore % restore context
stroke % draw the arc

} def

Imakewin {% - => - (builds a test window)
Iwin framebuffer Inew DefaultWindow send def
{

IPaintClient { 100 100 draw_arc} def
IFrameLabel (Workspace) def

} win send

Ireshapefromuser win send
Imap win send

} def

makewin

% cliche

0/0 invoke draw_arc
% label the window

% size it
% make it visible

% run the program

This change was an easy one. At the end of this chapter are a pair of examples of
more complicated drawing procedures that have been integrated with this win­
dow.

Again, invoke psh to run the window program:

(babylon~ psharc~ps

J

~\sun ~ microsystems
Revision A of 15 January 1988

16 \:cws Application Scenario

Figure 2-6

2.6. Establishing A
Coordinate Space

Using clippath pathbbox

After you have sized the window~ the following image should be drawn:

drawing an arc in a window

--------------------Wor

Move
Move Constrained

Top
Bottom

Zap
Resize

Stretch Comer
Stretch Edge

Close
Redisplay

Note that this window has a menu. When you click the right mouse button a
menu appears that you did not explicitly create. Because the client canvas didn~t
express interest in the menu button~ the event generated by the mouse click was
passed through to the frame canvas beneath the client canvas13 .

Coordinates specified in a NeWS program refer to locations within an ideal coordi­
nate system that are independent of the coordinate system of whatever device
displays the image.

Following the implementation specification of the POSTSCRIPT language~ NeWS

defines a default user space which programs may modify with transfonnation
operators such as translate, scale and rotate14.

The cliche:

clippath pathbbox 0/0 - => X y W h 0/0 return dimensions

sets the current path to the one describing the current clipping path and then
returns the bounding box of the current path. The coordinates it returns are the
lower left x, lower left y~ upper right x, and upper right y15.

13 Menus are discussed in more detail in Appendix B, Tailoring an Application. Events and interests are
discussed in Chapter 3, Input of the NeWS Manual.

14 This mapping from user space to device space is always applied before any drawing operation.

15 See clippath and pathbbox in the PostScript Language Reference Manual for a more detailed

~\sun ~ microsystems
Revision A of 15 January 1988

Figure 2-7

2.7. The Next Step

2.8. NeWS Operators,
Methods and Keys

Inew

Inlap

Chapter 2 - A Sample Working Window 17

This cliche can be very useful in initially establishing a coordinate space It is fre­
quently coupled with the translate and scale operators to set up a "worldspace"
before drawing an image:

setting up a worldspace

clippath pathbbox
42 roll
translate
scale

%xywh
%whxy
%w h
0/0 -

The roll changes the order of the elements on the operand stack (as per the com­
ments)16. translate before the scale because the scale will change the current
transformation matrix and you must be sure of the location of the origin 17.

The next chapter takes the program arc. ps and alters it to make use of NeWS

classes and includes the first steps to create the go application from this frame­
work.

The following are all the NeWS features that have been introduced in this chapter:

canvas Inew window
Creates a new window. Sent to a window class, generally Default Window, to
create an instance of the class. The canvas is the parent canvas for the window
and is generally framebuffer. After creating a window, a client may want to
modify the window by changing its drawing routines, adding a client menu,
changing its frame or icon label, etc. The client makes these modifications by
changing instance variables in the new window (typically, by sending the win­
dow an executable array as a method).

- Imap
Make the window/icon visible. Fork the window's event manager if that has not
already been done. Imap is initially called by the client, but is then handled by
the window's user interface.

explanation of their behavior.

16 See Appendix A, Conventions for notes on comment conventions in NeWS.

17 See Transformations in Section 4.4, Coordinate Systems of the PostScript Language Reference Manual
for a detailed explanation of the transformation operators.

Revision A of 15 January 1988

18 ~eWS Application Scenario

~reshape

Note: This does not force the shape
to be rectangular, just to fit within
the bounding rectangle.

Ireshapefrolnuser

send

x y width height Ireshape

Reshape the window to have the given bounding box.

- Ireshapefromuser
Reshape the window to have a new bounding box. The user is prompted for a
bounding box, and the results are passed to ireshape. ireshapefromuser is ini­
tially called by the client, but is then handled by the window's user interface.

<optional args> method object send <optional results>
Establishes the object's context by putting it and its class hierarchy on the dic­
tionary stack, executes the method, then restores the initial context. The method
is typically the keyword of a method in the class of the object, but it can be an
arbitrary procedure.

~\Slln ~ff$ microsystems
Revision A of 15 January 1988

3
A First Use of Subclassing

A First Use of Subclassing .. 21

3.1. Defining a Class .. 21

3.2. A First Go Board .. 23

3.3. The Sample Window Program Plus / draw_board 25

3.4. Painting an Icon .. 26

3.5. The Next Step .. 28

3.6. NeWS Operators, Methods and Keys .. 28

3.1. Defining a Class

3
A First Use of Subclassing

This chapter, develops a subclass of the class DefaultWindow. One of the great
strengths of NeWS is in the ease with which objects can inherit behaviors from
classes. The process of defining a mechanism where an object inherits these
default behaviors is called subclassing.

Subclasses are very useful in providing newly-created windows with a special­
ized behaviorl8 . With subclasses, we can alter or extend the class methods
(which are inherited by every window of the subclass) to perform exactly as
desired.

The first step is to rewrite arc·. ps to create a window, an instance, of the class
GoWindow l9. The next step is to alter the drawing procedure again to create the
first example of the go board.

Here is a "pseudo-code" listing of a class definition:

Figure 3-1 a pseudo-class

/name OBJ ECT
dictbegin

instance variables
dictend
classbegin

def

class variables
class methods

classend

Briefly, the variables in the class dictionary (those lines bounded by the dictbe­
gin and dictend in arc2 . ps below) are instance variables. When you alter one
of these variables it will have a purely local effect. Only the behavior of the indi­
vidual window will be altered.

18 Classes and developing a subclass are thoroughly explained in the NeWS Manual, Chapter 6, Classes. A
sample class is implemented in Chapter 7 of the NeWS Technical Overview.

19 An instance refers to a specific member of the class. The window is an object created from the class
definition .

• sun
~ microsystems

21 Revision A of 15 January 1988

22 ~eWS Application Scenario

Conversely, class methods and variables (found between the c1assbegin and
c1assend statements) are inherited by each member of a class (or subclass) at the
time of creation. Should you alter or extend these methods, this change will have
an effect on all instances of the class created after the change was made.

Consider the use of IPaintClient and IFrameLabel in the following implementa­
tion of the sample window program, rewritten to use the GoWindow subclass:

Figure 3-2 code/ arc2 .ps

Idraw_arc { % x Y => - (draws an arc at the specifed location)
1 00 0 300 arc % locate the arc
gsave % save the context

.5 setgray fill % fill path with gray
grestore % restore context
stroke % draw the arc

} def

Imakewin {% - => - (builds a test window)
IGoWindow DefaultWindow
dictbegin

IFrameLabel (Workspace) def
dictend
classbegin

IPaintClient { 100 100 draw_arc} def
IPaintlcon {

.5 fillcanvas
o strokecanvas

} def
classend def

Iwin framebuffer Inew GoWindow send def
Ireshapefromuser win send
Imap win send

} def

makewin

0/0 create a subclass
0/0 begin local dict

0/0 end local dict
0/0 begin class defs
0/0 draw gray arc
0/0 drawing icon image
0/0 fill with gray
0/0 stroke the perimeter

% end class definition

0/0 cliche
0/0 resize window
0/0 make it visible

0/0 run the program

Note that while IPaintClient and IFrameLabel have been used as local
(instance) variables they are now separated. IPaintClient is generalized across
the entire subclass because it provides us with common behavior (that is the
same for all go boards). IFrameLabel, however, remains an instance variable
because the different instances of the subclass may well bear different names. In
the event that more than one window (of the subclass GoWindow) is created,
using IPaintClient as a window method saves resources (memory). This is at the
cost of generalizing its behavior across all members of the class.

Generally, you should create a window as a subclass rather than altering a
method with the super send pair (another subc1assing technique)20. There are

20 The use of the super send pair is discussed in detail in Chapter 6 of the NeWS Manual, Classes. We use it
in Chapter 6 and Appendix B of this manual.

• sun Revision A of 15 January 1988
~~ microsystems

Chapter 3 - A First Use of Subclassing 23

slight speed advantages to subclassing and a significant savings in memory use.
You will notice that another method, IPaintIcon has been added to the code list­
ing. It is very easy to paint an icon. In this case:

Figure 3-3 painting an icon

3.2. A First Go Board

Figure 3-4

BOARD_SIZE is a constant (defined
below) with a value of 19.

This routine is a typical approach to
the issue of translating and scaling
a new canvas.

IPaintlcon { % draw icon image
% fill with gray .5 fillcanvas

o strokecanvas 0/0 stroke perimeter
} def

All this code does is fill the current canvas (the icon) with a shade of gray (.5
fillcanvas) and then stroke the perimeter of the canvas with a zero-width line (1
pixel). Like IPaintClient, IPaintIcon can draw much more complex images.

Now, replace the Idraw_arc routine with the /draw_board routine. This new
routine (with the further addition of code to describe the path) will draw a 19x19
go board in the working window.

The following code (/ClientPath) sets the coordinate space up for the client can­
vas and thus for the Idraw_board routine. It alters the scale of the client canvas
to a 19x19 coordinate system. /ClientPath also sets up the current path to be the
shape of the canvas.

the IClientPath and /IconPath methods

IClientPath { % X Y w h => - (define a client canvas path)
4 2 roll translate

} def

BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

IlconPath {ClientPath} def % define an icon canvas path

The IClientPath method is called by the Ireshapefromuser method when you
change the window's shape. Ireshapefromuser provides the bounding box coor­
dinates that IClientPath receives on the operand stack. The same is true of the
/IconPath21 .

The IClientPath method rolls the operand stack so that the x and y coordinates
are on the top and then does a translate. The translate pops these coordinates
off the stack, leaving just wand h. This translate fixes the client canvas origin
to be x, y (relative to its parent). BOARD_SIZE is placed on the stack and h is
divided by it, leaving the quotient on the stack. This value is exch'ed with the w
and the same operation is performed on the w. The end result is that this scale
operation yields a 19x 19 coordinate space. This means that if you address a

21 Because a Ireshape operation is done when the icon is displayed.

Revision A of 15 January 1988

24 NeWS Application Scenario

location between ° and 19 that that location will fall within the boundaries of the
client canvas.

The sequence:

.S .S translate
-.S -.S BOARD_SIZE BOARD_SIZE rectpath

moves the origin to .5 .5 of the client canvas' 19x 19 coordinate space. This
leaves the new origin slightly offset from -the lower left comer. The /rectpath
method adds a rectangle to the current path using the coordinates x, y, width and
height. So the statement:

(___ -_.S_-_.S_B_O_A_R_D_-_S_IZ_E __ B_O_A_R_D-_S_I_Z_E_re_c_tP_a_th ____________________ J

defines the path to be the entire client canvas.

Thus, when the /draw_board routine draws from 0,0 to 0,18 it leaves a.5 unit
space around all four edges (because 0,0 is now .5 units inset from the bounds of
the client path). This little trick simply isolates the board within the window
with a margin.

The /draw_board routine itself is much simpler to understand:

Figure 3-5 code/ sample4.ps

IBOARD_MAX 18 def
IBOARD_SIZE 19 def

/board_color .9 .69 .28 rgbcolor def
/Iine_color 000 rgbcolor def

0/0 BOARD_SIZE - 1
0/0 number of lines drawn

0/0 wood
0/0 black

Idraw_board { % - => - (draw the playing surface)
board_color setcolor
clippath fill
line_color setcolor
o 1 BOARD_MAX {

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for
stroke

} def

0/0 set the board color
0/0 fill the window w/wood
0/0 set the line color
0/0 draw the lines

0/0 stroke the path

The clippath operation clips the current path to the current clipping path. Since
it hasn't drawn anything yet, that makes the current path the interior area of the
window - the entire client canvas. The fill operation fills the current path with
the specified color or shade of gray (in this case wood)22.

22 On a monochrome system the board appears as white .

• \sun ~ microsystems
Revision A of 15 January 1988

3.3. The Sample Window
Program Plus
Idraw_board

Figure 3-6

Create an instance of the class
GoWindow.

Chapter 3 - A First Use of Subclassing 25

All the routines composed together give us a complete sample window program
which draw a go board.

code/go _ window.ps

% constant definitions
IBOARD_SIZE 19 def
IBOARD_MAX 18 def

Iboard_color .9 .69 .28 rgbcolor def
lline_color 00 0 rgbcolor def

Idraw_board { % - => - (draw the playing surface)
board_color setcolor
clippath fill
line_color setcolor
o 1 BOARD_MAX {

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for
stroke

} def

Imakewin {% - => - (builds a test window)
IGoWindow DefaultWindow
dictbegin

IFrameLabel (1 st Go board) def
dictend
classbegin

IPaintClient { draw_board} def
IPaintlcon { draw_board} def
IClientPath { % x Y w h => -

4 2 roll translate

0/0 wood
% black

% playing surface color
% fill the client canvas
% set line color
% draw board (0,0->0,18)

% stroke the path

% create a subclass
% begin instance defs
% label the window

% begin method defs

BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate % move origin
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

} def
llconPath {ClientPath} def

classend def

Iwin framebuffer Inew GoWindow send def
Ireshapefromuser win send
Imap win send

} def

makewin

% define icon image

% cliche
% resize window
0/0 draw it

% run the program

Revision A of 15 January 1988

26 ~eWS Application Scenario

running this program with psh creates the following window:

Figure 3-7 the sample window

rJ, lstGo botZrd

d

~.4. Painting an Icon The following example program demonstrates how easy it is to paint an icon:

Figure 3-8 code/muncherps

Isetup {
clippath pathbbox
scale
pop pop

.3 .5 translate
00 moveto
0.01 setlinewidth

} def

Imuncher {
newpath
00 .230330 arc
00 lineto
closepath
gsave

.8 setgray
fill

grestore
stroke

} def

~\sun ~ microsystems

0/0 set up world
0/0 obtain dimensions
0/0 scale to fit
0/0 -

0/0 move origin

% set stroke width

% draw muncher

0/0 save graphics context

0/0 restore graphics contex
0/0 stroke outline

Revision A of 15 January 1988

Chapter 3 - A First Use of Subclassing 27

Imakewin { % - => - (builds a test window)
IGoWindow DefaultWindow
dictbegin

IFrameLabel (Workspace) def
dictend
classbegin

IPaintClient {
setup
muncher
.1 .1 scale
1 1 5 {

.8 0 translate
00 moveto
muncher

} for
} def
IPaintlcon {

erasepage
setup
muncher
currentcanvas setcanvas
o strokecanvas

} def
classend def

Iwin framebuffer Inew GoWindow send def
Ireshapefromuser win send
Imap win send

} def

makewin

%' create a subclass
% begin instance dict

% end instance dict

% draw client canvas
% set up world
% draw muncher

% draw baby munchers

% draw the icon

% set a path
0/0 stroke border

% cliche
0/0 resize window
% make it visible

% run the program

Revision A of 15 January 1988

28 ~eWS Application Scenario

Figure 3-9

The following image shows both the iconic form of the window and the image
drawn in the window:

muncher

P,~ ____________ w.~o~r~~~.e~ __________ ~

3.5. The Next Step We expect that you have gained a familiarity with the NeWS environment in read­
ing the companion volumes: the NeWS Manual and the NeWS Technical Overview.

CAUTION If you have not done so, please read the chapter on classes in the NeWS

Manual and the section on lightweight processes in the NeWS Technical Over­
view before reading further. It is essential that you have a good grasp of the
NeWS process model and class hierarchy.

The next chapter will expand on the work you've already done, writing a simple
program which will communicate between the client and server sides.

The client side will contain code for calculations and the server side the user
interface .

• \sun ~ microsystems
Revision A of 15 January 1988

3.6. NeWS Operators,
Methods and Keys

classbegin

classend

currentcanvas

dictbegin

dictend

rectpath

setcanvas

strokecan vas

Chapter 3 - A First Use of Subclassing 29

The following are all the NeWS features that we have introduced in this chapter:

classname superclass instancevariables classbegin
Creates an empty class dictionary that is a subclass of superclass, and has instan­
cevariables associated with each instance of this class. The dictionary is put on
the dictionary stack. I nstancevariables may be either an array of keywords, in
which case they are initialized to null, or a dictionary, in which case they are ini­
tialized to the values in the dictionary.

- classend classname dict
Pops the current dictionary off the dictionary stack (put on by classbegin and
presumably filled in by subsequent defs), and turns it into a true class dictionary.
This involves compiling the methods and building various data structures com­
mon to all classes.

- currentcanvas canvas
Returns the current value of the canvas parameter in the graphics state.

- dictbegin
Combined with dictend, creates a dictionary large enough for subsequent defs
and puts it on the dictionary stack. A voids guessing what size dictionary to
create.

- dictend diet
Returns the dictionary created by a previous dictbegin.

x y width height rectpath
Adds a rectangle to the current path with x, y as the origin.

canvas setcanvas
Sets the current canvas to be canvas. Implicitly executes newpath initmatrix.

intlcolor strokecanvas
Strokes the border of the canvas with a one-point edge with the gray value or
color. Currently only works for rectangular canvases .

• sun
~ microsystems

Revision A of 15 January 1988

4

Connecting to the Client Side

Connecting to the Client Side ... 33

4.1. Principles of Application Development ... 33

4.2. Other Considerations ... 34

4.3. A New Set of Tools .. 34

4.4. Conversion to CPS Format .. 34

4.5. The Sample Window Program Converted .. 37

4.6. Creation of the Client Side ... 38

4.7. Using CPS .. 40

So Far ... 40

4.8. The Next Step .. 40

4.9. NeWS Operators, Methods and Keys .. 40

4.1. Principles of
Application
Development

4

Connecting to the Client Side

In this chapter, we will discuss how to develop an application that will work
across the gap between NeWS server and client program. Then you will apply this
knowledge to the window program developed in Chapter 3, creating an applica­
tion that splits its functionality between a C client and the NeWS server. Keep in
mind that this application will allow interaction between the NeWS server and the
user. For the remainder of this manual we will enhance this application (which
draws a go board) adding more and more sophisticated features.

As discussed in the Introduction to this manual, a major objective in splitting an
application between server and client sides is to obtain optimal performance. So,
in approaching the question of just what to put into the client side program and
what to put into the server side, you should use as a measure the degree of com­
plexity of the task. The NeWS server is best suited to dealing with simple
mathematical operations and the rendering of shapes. Complex mathematical
operations, or operations requiring a large number of iterations should be folded
into the client side.

For instance, say your application is one which reads data from a file, builds
matrices with this data (after performing mathematical operations on it), and then
uses these matrices to produce a number of two-dimensional mappings displayed
in a window. While all these operations could be done in a POSTSCRIPT
language engine (and thus, in the NeWS server) you would probably find that such
an application wasn't particularly speedy.

There are a couple of ways you could deal with the issue of splitting this
application's functionality. At a first approximation, you could simply isolate the
file manipulation and mathematical functions in a C client and pass the graph­
rendering information to the NeWS server. You would be using the server as you
would use a POSTSCRIPT language engine, off-loading (into client side code)
those tasks that would impede its performance. This is a perfectly reasonable
approach.

However, you would not being taking advantage of the real strength of NeWS: it
is interactive and programmable. Let us say that you wish to be able to dynami­
cally alter the coordinate system of the images displayed (perhaps to demonstrate
a particular relationship). In the above model, you would recalculate the matrices
on the client side and-re-display the information.

33 Revision A of 15 January 1988

34 ':\cws Application Scenario

4.2. Other Considerations

4.3. A N e\v Set of Tools

4.4. Conversion to CPS
Format

With NeWS you have an alternative. A menu in the window would provide a good
mechanism for letting the user change scales (or axis, or rotation in a plane).

Instead of directing your request back to the client side, you decide that it will be
directed to a lightweight process within the NeWS server. This process performs a
simple matrix multiplication operation and redisplays your graph (using cached
data) with the new coordinate system (or orientation). Never having had to cross
the client-server bridge, you may have gained a measurable benefit in real-time
performance.

There are a number of other considerations to be reviewed during the develop-
ment of a client-server application: .

o If you plan on running the application in a very low speed communication
environment then you will want to reduce network bandwith,

o You may want to use a client-side user interface toolkit which hides the
server side.

o You may be more comfortable writing in a language of your choice (other
than the POSTSCRIPT language). Splitting the application across client and
server allows you to use the language of your choice on the client side.

This is your introduction to a new set of tools. The CPS interface consists of the
cp s program, which will convert a POSTSCRIPT program of the correct format to
a form that a C program can use23. This program provides the material for the
bridge that will span the gap between client and server hal ves of an application.
CPS provides provides a number ofC functions in the library libcps . a. They
perform the following functions:

o open and close communication with the NeWS server,

o transmit POSTSCRIPT language code from the C client side to the NeWS
server,

o receive data sent from the server side to the client side24.

Converting a POSTSCRIPT program for use with CPS is relatively simple. In gen­
eral the conversion of a POSTSCRIPT language application to the client-server
model is relatively easy. The functions isolated on the client side will need to be
re-written in a client-side language25. Having separated your application into
component halves, you will have to add the necessary utilities to allow the two
halves to interact.

NeWS provides you with cps program that will do the low-level work of convert­
ing a POSTSCRIPT program (with a few minor changes) to a form that a C

23 This converted fonn is not strictly the PosrSffiIPT language.

24 For more detailed infonnation on the this interface, read Chapter 9 of the NeWS Manual, C Clienl Interface.
See the manual page on cps(l).

25 Currently the C language. See Chapter 15 of the NeWS Manual, Supporting NeWS From Other Languages
for more infonnation.

~\sun ,~ microsystems
Revision A of 15 January 1988

Figure 4-1

Chapter 4 - Connecting to the Client Side 35

program can use.

We will now take the window program introduced in Chapter 3 and change it to
be in CPS format. Initially, these additions will be few in number.

Take another look at the window program of Chapter 3:

code/go _ window.ps

% constant definitions
IBOARD_SIZE 19 def
IBOAR D _MAX 18 def

Iboard_color .9 .69 .28 rgbcolor def
Iline_color 0 0 0 rgbcolor def

Idraw_board { % - => - (draw the playing surface)
board_color setcolor
clippath fill
line_color setcolor
01 BOARD_MAX {

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for
stroke

} def

Imakewin {% - => - (builds a test window)

% wood
% black

% playing surface color
% fill the client canvas
% set line color
% draw board (0,0->0,18)

0/0 stroke the path

IGoWindow DefaultWindow % create a subclass
dictbegin % begin instance defs

IFrameLabel (1 st Go board) def % label the window
dictend
classbegin % begin method defs

IPaintClient { draw_board} def
IPainticon { draw_board} def
IClientPath { % x Y w h => -

4 2 roll translate
BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate % move origin
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

} def
llconPath {ClientPath} def % define icon image

classend def

Iwin framebuffer Inew GoWindow send def
Ireshapefromuser win send
Imap win send

} def

makewin

% cliche
% resize window
% draw it

% run the program

~\sun ~~ microsystems
Revision A of 15 January 1988

36 :'\cws Application Scenario

What do you need to do to it to convert it for use with cps? Well, note first that
there is no interaction with the user in this simple program beyond the initial siz­
ing of the window. That doesn't change in this chapter. Thus, all that need be
done is to modify go_window. ps to make it acceptable to CPS and to create a
simple C client to invoke the routines defined in the modified go_window. ps
(within the context of the NeWS server).

First, tackle the issue of making this program acceptable as cps input. The cps
program expects that the file passed to it will have POSTSCRIPT language
definitions and procedures encapsulated in cdef statements. A cdef statement is
created by placing cdef on a newline, followed by some identifier in the form of
a C function name26. A cdef statement is terminated either by the end of the file
or another cdef statement. Thus, it is quite possible to take an entire POSTSCRIPT

program and encapsulate it within one cdef statement. This statement then
becomes a function, which may be called from the C client, as if it were any
other function in a C library.

We need to do a little more with our window program. First, we will encapsulate
the body of the program with the statement except for the concluding invocation
of make win:

cdef initializeO % begin program body

Then we will create a separate function execute () to explicitly call the rou­
tine makewin:

cdef executeO
makewin 0/0 execute procedure

These additions alone (with a simple C program) would be sufficient to allow us
to invoke the drawing of the go board from outside the NeWS server. Our C
client need only invoke initialize () to download the body of the
POSTSCRIPT program to the server, and then invoke execute () . However, we
need to make two more additions to insure that we don't leave our C program
hanging when we terminate the NeWS process within the server.

The pair:

Figure 4-2 afirst tag

#define DONE_TAG 1 0/0 define tag value
cdef doneO => DONE_TAGO 0/0 define return value

define a value to be returned to the client side from the server side27. The

26 A complete explanation of syntax for both cdefs may be found in Chapter 9, C Client Interface of theNl:wS
Manual.

4i\sun ~ microsystems
Revision A of 15 January 1988

4.5. The Sample Window
Program Converted

Figure 4-3

Chapter 4 - Connecting to the Client Side 37

function done () will be called from the client side. When called it looks at the
input file (P 0 s t S c r i pt In pu t) to determine whether the DON E_ TAG has
been sent to the client28 .

The second addition is to alter the IOestroyClient method in the class GoWin­
dow so that it returns the tag value (by means of a tagprint statement) to the
client-side C program. The frame event manager (the lightweight process manag­
ing the window) calls this method in the event of a choice of 'Zap' from the win­
dow menu. The value (DONE_TAG) is returned from the server side when the
process controlling the window is destroyed:

IDestroyClient {
DONE_TAG tagprint

% override class method
0/0 return 1 to client

The disappearance of the window processes on the server side severs the connec­
tion to the client side (the file PostScriptlnput receives an eof) . The
receipt of the DONE_TAG value on the input stream insures that the client-side
program terminates gracefully.

Here is the go program converted for use with CPS. It is now capable of simple
communication between client and server.

go/go3.cps

% PostScript constants
#define DONE_TAG 1

cdef initializeO

IBOARD_SIZE
IBOARD_MAX

19 def
18 def

Iblack_color 0 0 0 rgbcolor def
Iwhite_color 1 1 1 rgbcolor def
Iboard_color .9 .69 .28 rgbcolor def
Iline_color black_color def

% see function call defs ..

% number of lines drawn
% BOARD_SIZE - 1

% black
% white
% wood
% line color

Idraw_board { % - => - (draw the playing surface)
board_color setcolor
clippath fill
line_color setcolor
o 1 BOARD_MAX { % draw the lines

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for

27 The syntax of tags is complicated. See Chapter 9, C Clienlinler/ace, of the Nt!WS Manual for a complete
explanation.

Revision A of 15 January 1988

38 :\eWS Application Scenario

4.6. Creation of the Client
Side

stroke
} def

Imakewin {% - => - (builds a go window)
IGoWindow DefaultWindow
dictbegin

IFrameLabel (1 st Go board) def
dictend
classbegin

IPaintClient { draw_board} def
IPaintlcon {

.5 fillcanvas
o strokecanvas

} def
IDestroyClient {

DON E_ TAG tagprint
}

0/0 create a subclass

0/0 define icon image

0/0 override method

IClientPath { % x Y w h => - (define the client path)
4 2 roll translate
BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

} def
IlconPath {ClientPath} def % define the icon canvas path

classend def

Iwin framebuffer Inew GoWindow send def % cliche
Ireshapefromuser win send % resize window
Imap win send % draw it

} def % end initializeO

0/0 function call definitions
cdef doneO => DONE_ TAGO
cdef executeO

makewin

0/0 notify client side

0/0 execute program

This conversion took very little effort. Of course, the above program is simply
one-half (the server side) of our equation. It defines the information to be passed
to the client (and the actions to take place on the server side). To have any meas­
ure of sophisticated control over the process of execution you need to write a pro­
gram on the client side.

In general, the client side receives information on user interaction from the NeWS

server. A program on the client side can do many things with the information it
receives. Commonly, it coordinates the execution of functions on the server side.
The following C program is the complement to the CPS program we've just writ­
ten. It both passes the routines to the server and waits for notification of comple­
tion before exiting.

28 See Chapter 9 of the NeWS Manual for a complete explanation of the client-server interface.

~\sun ,~ microsystems
Revision A of 15 January 1988

Figure 4-4

Chapter 4 - Connecting to the Client Side 39

The CPS interface provides several functions for the maintenance of connections
with the NeWS server. These functions are ps open PostScript () ,
pS_flush_PostScript () and ps_clo;e_pottScript () 29. We use
two of these functions to open and close a connection to the NeWS server
(ps_open_PostScript and ps_close_PostScript) . These func­
tions are available through the CPS library, libcps . a. As explained in Section
4.7, Using CPS, these functions are defined, along with a number of others30, in
the header file created by cps.

go/go3.c

:ff:include "go3.h" /* go3.cps => go3.h */

main ()
{

/* open connection to server */
if (ps_open_PostScript() == 0)

fprintf (stderr,"Cannot connect to NeWS server\nlf);
exit (1);

/* load routines and execute */
initialize ();
execute ();

/* let us know when done */
while (!psio_error(PostScriptlnput»

if (done() I I (psio_eof(PostScriptlnput») {
printf ("Task completed\n");
break;

/* close the connection to the server */
ps_close_PostScript() ;
exit(O) ;

The while loop executes until an error condition is noted on the input stream
(which the server writes on) or a DONE_TAG is received. The first step within
the loop is a call to the done () function, which checks to see whether the
specified tag (in the . cps file) has been placed on the stream. If the connection
with the server has been broken, an eof is placed on the input stream. The call to
the ps io _ eof () function checks for this eventuality. If either of these condi­
tions are true the client side C program terminates, closing the connection to the
NeWS server (if it is not closed already).

29 For a complete explanation of these functions, see Chapter 9 of the NeWS Manual.

30 These functions (provided by cps) are detailed in Chapter 9 of the NeWS Manual.

~\sun ~~ microsystems
Revision A of 15 January 1988

40 ~eWS Application Scenario

4.7. Using CPS

So Far

4.8. The Next Step

4.9. NeWS Operators,
Methods and Keys

cdef

#define

In effect, all this simple C client does is to open a connection to the NeWS server,
send over the body of POSTSCRIPT language code, execute it within the context
of the server, and await an indication that execution has completed.

Building a version of go from the sample programs presented is a relatively easy
task. First, you need to run cps against the target. cps file:

(hahYIOn%Cpstest.cps

This creates a . h file (called t est. h) which should then be included by the C
program at compile time (using a #include statement). You will need to add
the CPS library, 1 ib cp s . a, to the list of libraries searched by the linker. This
may be done at compile time with the following command line form:

)

babylon%···cc ··-I$NEWSHOME/ include· ·g3.c $NEWSHOME/ libllibcps.~·a

What have you accomplished so far?

o you have a window within which to work,

o you have a method for drawing in the window and have drawn the go board
pattern and,

o you have a metric for deciding how to divide functionality within a CPS­

based application,

o you have a mechanism which defines the interaction between server and
client halves.

In this chapter we communicated with the NeWS server: downloading a
POSTSCRIPT program and executing it. We have not, as yet, given any considera­
tion to communicating with a specific process within the server (there can be
very many). In the next chapter we will address the problems that arise when
there is a need to communicate with a specific process within the NeWS server.

The following CPS directives were introduced in this chapter:

edef label <POSTSCRIPT language code>
Defines a body of code on the NeWS server side which may be called from the
client side with label() (as if it were a C function). Definition is terminated either
by an eof or by another edef.

#define name constant
Defines name as constant in a cps file. Commonly used for defining tags .

• \sun ~~ microsystems
Revision A of 15 January 1988

5
Communication With a NeWS Process

Communication With a NeWS Process ... 43

5.1. A Review of NeWS Input .. 43

5.2. The CID Utilities ... 44

5.3. The Event Manager .. 44

5.4. Why Synchronize? .. 45

5.5. Adding CrD To the Server Side .. 46

5.6. Adapting the Client Side ... 48

5.7. A Cautionary Note .. 49

5.8. So Far ... 49

5.9. The Next Step .. 49

5.10. NeWS Operators, Methods and Keys ... 49

5.1. A Review of NeWS
Input

The NeWS input system is described
in full in Chapter 3, Input of the NeWS

Manual.

5
Communication With a NeWS Process

While communicating with the NeWS server from a client-side application opens
up many new possibilities, we still have not completely explored the capabilities
of the server. In the last chapter, we passed NeWS procedures to the server and
requested their execution on the server. However, one very real distinction
between the NeWS server and a simple POSTSCRIPT language engine is that the
server is capable of maintaining a set of concurrently executing lightweight
processes (lwp).

These lwp are at the core of the design of the NeWS server. Each process executes
independently until it pauses and only one process is active at a time. Each pro­
cess carries with it its own graphics context, dictionary stack, execution stack,
and operand stack.

In order to take full advantage of the server's capabilities you must be able to
communicate with a specific process within the server. Communicating with one
process limits the client side program to very simple interactions with the server.
More complex interactions are only possible when you gain the ability to com­
municate with a specific process within the server.

To this end, there are a number of utilities which should prove very useful. These
are the Client IDentification (CID) utilities.

The NeWS server distributes input events from a single queue, which is ordered on
the events' timestamps. Events are inserted in this queue in response to physical
actions (such as key presses); they are distributed as they come to the head of the
queue.

Processes receive events in which they have expressed interest; they do so by
providing a template event which the distributed events must match.

Processes may generate events procedurally, and insert them in the input queue.
These events are then handled exactly like physical events: they may be distri­
buted back to the process that sent them, or to any other, as long as the recipient
has expressed a matching interest.

Events have various fields, including a Name and Action which describe the
event, and the TimeStamp mentioned above, which identifies when it happened.
There is also a field called ClientData, which is ignored by the input distribution
mechanism. It can filled with any information desired by the event's creator.

43 Revision A of 15 January 1988

44 ~eWS Application Scenario

~.2. The CID Utilities The CID package provides 3 procedures which are used by the sample program:

lllliquecid Returns a new value every time it is called. A match on this value can be used by
client- and server-side code to recognize a synchronization rendezvous.

ddinterest Takes a value such as the one returned by uniquecid, and constructs an interest
identified by that value. Calling forkeventmgr with this interest as argument
creates a process which will wait to receive an event identified by this value, and
then execute a procedure included in that event.

sendcidevent Takes a value such as the one returned by uniquecid, and a procedure to be exe­
cuted. It constructs an event identified by that value, includes the procedure, and
gives it to NeWS' input system to be distributed. If some process has invoked
cidinterest on the same value, and passed the result to forkeventmgr, it will
recei ve this event and execute the procedure.

5.3. The Event Manager The NeWS process mentioned above is an event manager which waits dormant to
receive an event from the input queue mechanism. An event manager is created
by the following fragment of POSTSCRIPT language code:

Figure 5-1 an event manager

Irepair { % - => - (repair the board)
DAMAGE_TAG tagprint uniquecid dup typed print
[exch cidinterest] forkeventmgr
waitprocess pop

} def

The statement:

(~ __ DA_M __ A_G_E __ T_A_G __ ta_g_p_rin_t ________________________________ ~J
sends the tag DAMAGE_TAG to the client side C program. As you will see, upon
the receipt of this tag the client side program will in return make a call to the
dr aw _board () function, asking it to draw the go board in the window. The
statement:

(____ u_n_iq_U_e_Ci_d_d_u_P_ty_p_e_d_p_ri_n_t ____________________________________ J

passes the value of uniquecid to the client side (using the typedprint statement).
uniquecid provides a unique number with which to identify events. The dup
simply insures that a copy of this unique number remains on the operand stack
for use by the next statement. The statement:

~\sun ~ microsystems
Revision A of 15 January 1988

Remember that '[' is the mark object
in the POSTSCRIPT language.

5.4. Why Synchronize?

Chapter 5 - Communication With a NeWS Process 45

(~ ___ [e_X_C_h_c_id_in_t_e_re_s_t]_f_Or_k_e_v_en_t_m_g_r ______________________________ -J]

creates an interest identified with the same value passed to the client side and
hands this interest to the forkeventmgr method.

The exch swaps the '[' and the uniquecid on the stack, so that uniquecid gets
passed to cidinterest as an argument.

forkeventmgr then creates a lightweight NeWS process. This lwp is created with
an interest in any events bearing this unique number as an identifier. The state­
ment:

(~ ___ w_a_it_p_ro_c_e_ss __ p_oP __ __JJ
insures that the lwp pauses until the just-forked event manager process exits.
Since wait process returns the value that was on the top of its stack when it exits,
the pop simply serves to clean up the operand stack.

This procedure is called by the IPaintCIient method (as our Idraw_board used
to be) when the window suffers damage:

(IPaintClient { repair} def

This is a reasonably complex set of events to occur within such an abbreviated
procedure. In summary, all that is really occurring is that when the Irepair pro­
cedure is called, it notifies the client side that damage has occurred and creates a
process which waits for an event directed at it.

J

Why does the event manager process wait? The answer to this is the key to the
use of the CIn utilities. The process pauses in its execution until it receives an
event. When it receives that event (that matches the interest it has specified) it
executes the code that it finds in the IClientData field of that event.

So, upon the receipt of the DAMAGE_TAG from the Irepair procedure the client
side program invokes draw_board (). The invocation of draw_board ()
from the client side inserts an event into the distribution queue. The definition of
this call gives us a clue to understanding this:

cdef draw_board(int id)
id {draw_board} sendcidevent % launch event with id

If you look up sendcidevent in the Chapter 4 of the NeWS Manual you will find
that it takes two arguments, an id and a proc. The id becomes a label for the
event which it inserts into the input distribution mechanism. The proc becomes
the contents of the IClientData field of the event, and is thus carried by it.

Revision A of 15 January 1988

46 ':'cws Application Scenario

WARNING

5.S. Adding CID To the
Server Side

Figure 5-2

The portion of the client side code that deals with this looks like:

/* let us know when done */
while (!psio_error(PostScriptlnput))

if (get_darnage(&id)) {
draw_board (id) ;
repaired (id) ;

The get_damage () call simply checks the input stream to determine whether
the DAMAGE_TAG has been received. If it has, it calls the draw_board () and
repaired () functions in succession.

It is important to note that all functions which look for an argument associ­
ated with a tag value need to pass that value by address. You will note, in
the above example, that get _damage () passes back the id value as an
address: & i d .

What we have created may be likened to a communication channel between the
client and server sides. We now have a dedicated lwp running in the context of
the NeWS server, waiting to be sent code to execute. We can direct code at this
particular process because it has expressed interest in events with an id that the
client-side program knows. This process will continue to run within the server
until we send it an event which causes it to exit.

Looking at the function repaired () we have just such a mechanism:

cdef repaired(int id)
id {exit} sendcidevent

The waiting process receives an event with the correct id and executes the exit
statement, terminating itself.

Now that you have some understanding of both how the CID utilities work and
what you want them to do let's add them to our POSTSCRIPT program. We have
discussed almost all the additions that need to be made. The only additional
changes will be to change the IFrameLabel variable and the IPaintClient class
variable. IPaintClient now invokes the Irepair procedure.

With the addition of the synchronization procedures the complete server side
code now looks like this:

golg04.cps

0/0 PostScript constants (see function call defs ..)
#define DONE_TAG 1
#define DAMAGE_TAG 2

~~sun ~ microsystems
Revision A of 15 January 1988

Chapter 5 - Communication With a NeWS Process 47

cdef initializeO

IBOARD_SIZE 19 def
IBOARD_MAX 18 def

Iblack_color 0 0 0 rgbcolor def
Iwhite_color 1 1 1 rgbcolor def
Iboard_color .9 .69 .28 rgbcolor def
Iline_color black_color def

Irepair { % - => - (repair the board)

% number of lines drawn
0/0 BOARD_SIZE-1

0/0 black
% white
0/0 wood
0/0 line color

DAMAGE_TAG tagprint uniquecid dup typedprint
[exch cidinterest] forkeventmgr
waitprocess pop

} def

Idraw_board { % - => - (draw the playing surface)
board_color setcolor
clippath fill
line_color setcolor
o 1 BOARD_MAX { % draw the lines

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for
stroke

} def

Imakewin {% - => - (builds a go window)
IGoWindow DefaultWindow % create a subclass
dictbegin

IFrameLabel (2nd Go board) def
dictend
classbegin

IPaintClient { repair} def
IPaintlcon { % define icon image

.5 fillcanvas
o strokecanvas

} def
IDestroyClient { % override method

DONE_TAG tagprint
}
IClientPath { % x Y w h => - (define the client path)

4 2 roll translate
BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

} def
llconPath {ClientPath} def % define the icon canvas path

classend def

Iwin framebuffer Inew GoWindow send def % cliche
Ireshapefromuser win send % resize window
Imap win send % draw it

Revision A of 15 January 1988

48 NeWS Application Scenario

5.6. Adapting the Client
Side

Figure 5-3

} def % end initializeO

% function call definitions
cdef doneO => DONE_ TAGO % notify client side
cdef draw_board(int id)

id {draw_board} sendcidevent % draw the go board
cdef get_damage(int id) => DAMAGE_ T AG(id)
cdef repaired(int id)

id {exit} sendcidevent % close channel
cdef executeO

makewin % execute program

The changes necessary on the client side are much less extensive. Since you
can't yet place stones on the board, damage repair will consist of simply redraw­
ing the board upon the receipt of a specific tag value (in the event of a board re­
scaling). All that you have effectively added to the client side are the calls to
get _damage () , draw_board () , and repaired () . The client side C
program now looks like:

golg04.c

=lfinclude "go4.h"

main ()
{

int idi

/* open connection to server */
if (ps_open_PostScript() == 0) {

fprintf (stderr,"Cannot connect to NeWS server\n")i
exit (1) i

/* load routines into buffer */
initialize ();

/* execute them */
execute ();

/* let us know when done */
while (!psio_error(PostScriptInput»

if (get_damage(&id» {
draw_board (id) ;
repaired(id) ;

else if (done () I I (psio_eof (PostScript Input))) {
printf ("Task completed\n");
break;

/* close the connection to the server */

Revision A of 15 January 1988

5.7. A Cautionary Note

5.8. So Far

5.9. The Next Step

5.10. NeWS Operators,
Methods and Keys

Chapter 5 - Communication With a NeWS Process 49

ps_close_PostScript()i
exit(O) ;

1
When the client-side e program receives the information that the board has been
damaged the draw_board () function is called and then the repaired ()
function. Because of the work done on the server side of the application, these
changes are all that is required.

The eIn mechanism outlined here is a clever mechanism for communications
with an arbitrary NeWS lwp. However, you should be aware that there is some
performance penalty for sending an event from the lwp that takes commands off
the wire to another desired lwp. For example, using this mechanism in a situation
where you wish to pump thousands of vectors to the server would result in an
unacceptable slowdown.

One alternative would be to create a POSTSCRIPT language routine that renders a
single graphic, download the routine once, and send the command to invoke the
routine repeatedly.

Another alternative is to make sure that the transformation, graphics context and
current canvas are set up in the lwp receiving commands from the connection.
Then send the vectors to the server. This is the most efficient way to send a large
number of rendering commands (the vectors) to the server31.

So far in this chapter we have explained:

o a new mechanism for maintaining multiple communication channels, and

o you have applied this knowledge to give the client side control over damage
repair on the server side

In this chapter we learned how to use the eIn utilities to communicate with a
single process within the NeWS server. However, this interaction has been both
simple and on a low-level - with little of the mechanism of choice (the input
mechanism) exposed. In the next chapter we will expose more of the NeWS pro­
cess model and provide you with a means to track mouse actions on the server
side.

The following NeWS features were introduced in this chapter:

31 We haven't described this approach but hope to do so in the future .

• \sun ~~ microsystems
Revision A of 15 January 1988

50 NeWS Application Scenario

cidinterest id cidinterest interest
Creates an interest appropriate for use with forkeventmgr. The callback pro­
cedure installed in this interest simply executes the code fragment stored in the
event's IClientData field.

forkeventmgr interests forkeventmgr process
Forks a process that expresses interest in interests, which may be either an array
or a dictionary whose values are interests. Each interest must contain, in its
IClientData field, a dictionary having an entry (/proc) which is executed by the
event manager process. This procedure is called with the e,:,ent on the stack.

NOTE The event manager uses some entries o/the operand stack; do not use clear to
clean up the stack in your lproc' procedure.

sendcidevent id proc sendcidevent
Sends a code fragment proc packaged in an event with a INa me of id to a process
created by the use of the cidinterest - forkeventmgr pair.

typedprint object typedprint
Returns the object in an encoded form on the current output stream. Encoding is
discussed in detail in Chapter 14 of the NtM'S Manual, Byte Stream Format.

uniquecid uniquecid integer
Generates a unique identifier (integer) for use with the rest of the package.

waitprocess process waitprocess value
Waits until process completes, and returns the value that was on the top of its
stack at the time that it exited.

tt\sun ~~ microsystems
Revision A of 15 January 1988

6
Tracking Mouse Actions

Tracking Mouse Actions ... 53

6.1. Following Mouse Actions .. 53

6.2. What Do We Need? .. 53

6.3. Server Side Changes .. 54

drawing a stone .. 54

drawing a cross ... 56

client side tag functions . .. 57

6.4. Accepting Input .. 58

tracking mouse actions .. 58

tracking button transitions ... 58

building a button manager ... 58

altering the frame event manager .. 59

cleaning u p .. 60

6.5. The Complete Server Side Code ... 60

6.6. Client Side Changes ... 63

keeping track of stones .. 64

working with the array.. 64

6.7. The Next Step .. 65

6.8. The Final Board .. 66

6.9. Conclusion ... 66

6.10. NeWS Operators, Methods and Keys ... 67

6.1. Following Mouse
Actions

6.2. What Do We Need?

6
Tracking Mouse Actions

This chapter develops a mechanism for handling user input. This may be as sim­
ple as clicking a mouse button to place a stone or as complex as cycling an item
button32. Up to this point, the user has had little interaction with the application
beyond that allowed by the Lite Window mechanisms.

The additions presented in this chapter will allow the user to place either a black
or white stone on the go board. This, while seeming quite simple, is actually
made possible by a non-trivial interaction between server and client program.

While this application could be kept very simple by only making additions on the
server side, we have chosen to do record-keeping on the client side. Doing so
leaves us with the option of someday hooking up this program with a go playing
algorithm written in C.

This record-keeping function is one likely to be used by many different C clients
(albeit in different forms). While we don't perform any calculations on the client
side data, this would be easily done.

In concluding this model of application development, our final objective is to
have the ability to follow mouse actions as they occur on the server side. We
would like to know when a button is depressed, which button it is, and where it
was when the transition occurred.

The movement of the mouse generates events. As does the depression and
release of its buttons. This application is limited to simply reacting to the clicks.

What procedures do we need to add to the server-side program? The procedures
to be added may be roughly divided into two groups: those necessary to draw and
remove the stones; and, those necessary for mouse interaction.

In the first group, we will need procedures to:

o draw a stone of an arbitrary color

o place the stone according to the mouse event's x and y coordinates

o erase the stone

32 See Appendix B of the NeWS Manual for a number of excellent examples of button implementations.

53 Revision A of 15 January 1988

54 :\cws Application Scenario

6.3. Server Side Changes

drawing a stone

Figure 6-1

STONE_SIZE is defined to be .80.

In the second group, we will need a number of changes to support a single com­
plex function. This function will both create a process to wait for lDownTransi­
tions of the mouse buttons, and will notify the client-side program of where it
placed (or removed) the stone.

First, we'll look at the procedures necessary to draw and remove stones. After
that we'll undertake a detailed explanation of the new complex function, the
IButtonMgr. As we encounter the need for new cdefs we'll talk about them. We
conclude with a discussion of the changes needed on the client side to track the
placement of stones on the server side.

This first procedure (/stone) draws a stone of specified color and then pauses to
allow other NeWS processes to execute.

drawing a stone

/stone { % outline_color stone_color x y => - (draw stone)
STONE_SIZE 2 div 0 360 arc % set stones path
gsave % save path

setcolor fill % fill with stone_color
grestore
setcolor stroke
pause

} def

~/O restore path
0/0 stroke path w/outline_color
0/0 allow others to execute

The next pair of procedures are a logical couple, Icheckloc being used only by
Iplacestone. Iplacestone has a fairly complex task:

Figure 6-2 placing the stone

/checkloc { % float => int (convert location to legal board location)
o max BOARD_MAX min round

} def

/placestone { % event tag => - (place stone at event's x,y)
ClientCanvas setcanvas % set current canvas
tagprint uniquecid dup typed print % send tag & id to client
exch % uniquecid event
begin % begin local dictionary

XLocation checkloc YLocation checkloc % round location
end % end local dictionary
typedprint typedprint % send x,y to client
[exch cidinterest1 only] fOrkeventmgr % create eventmgr
waitprocess pop % wait for events

} def

First, it sets the current canvas to be the ClientCanvas. This insures that when
the event manager process is created by rhe call to forkeventmgr it will be

~\sun ~ microsystems
Revision A of 15 January 1988

Chapter 6 - Tracking Mouse Actions 55

attached to the correct canvas. The line:

[~ ___ ta_g_p_ri_nt_u_n_iq_U_e_C_id_d_U_P_t_y_pe_d_p_r_in_t _____________________________ J

informs the client that a stone has been placed (the tagprint uses the tag passed
to the routine) and then passes the unique identifier that future calls to the server
side should use (llniqllecid dup typedprint). We want to use the identifier
returned by llniqllecid within this routine, so the dup insures that a copy of it
remains on the stack.

System events are labeled with the cursor location when they are generated33.

The begin ... end pair places the event (which had been on the operand stack)
on the dictionary stack. Now /checkloc can access the fields of the event dic­
tionary, XLocation and YLocation. Once these two values have been rounded
they are passed to the client-side program with the typedprint statements. You
have seen the statement:

[exch cidinterest1 only] forkeventmgr

before. The last time we used it we left the channel open (using cidinterest
instead of cidinterestlonly). The exch statement exchanges the '[' and the
value returned from llniqllecid on the stack.

This time only a single event is to be returned so this process will exit upon exe­
cuting the proc carried by that event.

/placestone provides the client with the location the stone is placed at, and
awaits an event which will contain the instructions to draw it on the server side.
Let's look at the cdefs that allow this routine to be called from the client side:

cdef black_stone(int id, int x, int y)
id {outline_color black_color x y stone} sendcidevent

cdef white_stone(int id, int x, int y)
id {outline_color white_color x y stone} sendcidevent

As you can see, the event returned to the waiting process contains an invocation
of the /stone procedure. The waiting process invokes /stone after placing the
outline color, the stone color, and the X, y coordinates of the stone on the stack.
Now let's take a look at the code necessary to remove a stone after we've placed
it.

33 See Chapter 5 of the NeWS Manual for an explanation of the structure of events, especially those generated
by the system.

Revision A of 15 January 1988

56 ;.\eWS Application Scenario

drawing a cross

Figure 6-3

In effect, this routine draws a cross in the region where a stone is present. A
small path is defined which encompasses the entire stone and that path is filled
with the board color. That serves to erase the stone.

However, drawing a cross is a somewhat more difficult issue than drawing a
stone. The lines with which crosses are drawn is the narrowest width possible
(one pixel). The imaging model defined by the POSTSCRIPT language leaves the
particular instance of drawing a minimum-width line in a precise area
undefined34. It has been called a "fence-post" problem. On which side of an arbi­
trary line does one draw a one-pixel line? How does one predict what the choice
made by the POSTSCRIPT language interpreter will be?

There are other solutions but this one is reasonably quick, if not pretty. It offers
the additional benefit of being easy to understand (if you're practiced with
POSTSCRIPT language syntax). It doesn't attempt to anticipate the choice the
NeWS server will make, it merely verifys that the result is acceptable.

drawing a cross

Icross { % X Y => - (draw cross)
10 dict begin

Iy exch def
Ix exch def

0/0 clear the stone:
x .5 sub Y .5 sub 1 1 rectpath
board_color setcolor
fill

0/0 define a local dict
0/0 save the y value
0/0 save the x value

0/0 define a path
0/0 set color
0/0 erase stone

0/0 draw the two cross strokes, carfully adjusting for edge locations:
x .5 sub 0 max y moveto x .5 add BOARD_MAX min y lineto % hrz stroke
x y .5 sub 0 max moveto x y .5 add BOARD_MAX min lineto % vrt stroke
line_color setcolor % set color
~ro~ %~ro~cro§
pause % allow other processes

0/0 to execute
end % end dict
} def

This routine isolates the values of x and y in a local dictionary. This allows us to
use them several times in the routine, confident that as long as we don't def the
statments their value will remain unchanged:

(x .5 sub Y .5 sub 1 1 rectpath

draws a bounding path around the stone of unit dimension 1 (remember our
STONE_SIZE is .80). When we fill this path we effectively erase whatever was

34 It would be antithetical to the philosophy of display independence.

J

Revision A of 15 January 1988

client side tag functions

Chapter 6 - Tracking Mouse Actions 57

there before. The key line (which draws the cross) is:

x .5 sub 0 max y moveto x .5 add BOARD_MAX min y lineto

perhaps it could be more clearly written:

x .5 sub 0 max y moveto
x .5 add BOARD_MAX min y lineto

0/0 set start location
0/0 set end location

In the first line, we subtract .5 from the value of x and then take the max of the
two values (x-.S, 0). This insures that we don't go over the edge of the go board.
Then we moveto that location.

The lineto creates a path from the location we moved to to another point .5 units
on the other side of x, once again checking to see that we don't exceed the
bounds of the board.

This is repeated with a path along the vertical axis, and the path is then stroked.
Finally, the routine pauses to allow other NeWS routines to execute.

The cdef that allows us to invoke this routine is:

cdef cross(int id, int x, int y)
id {x y cross} sendcidevent

quite similar to the cdefs for placing the stones.

0/0 draw a cross

These routines, Istone, Icheckloc, Iplacestone, Icross allow us to both draw
and remove stones from the board. Before we progress to a discussion of the
additions necessary to support tracking mouse actions, we should briefly consider
the changes necessary to the client side (to this point).

The client-side program watches the input stream for specific tag values35. The
tag value is an integer defined as either WHITE_TAG or BLACK_TAG. The
client-side program needs two functions (defined by cdefs) to determine which
tag it has received:

cdef get_black(int id, int x, int y) => BLACK_TAG(id, y, x)
cdef get_white(int id, int x, int y) => WHITE_ TAG(id, y, x)

These, in company with the already-defined black_stone and white_stone,
allow the client to both test the input stream and initiate a response on the server
side:

35 The values received by /placestone depend on which mouse button is depressed.

Revision A of 15 January 1988

5 8 ~eWS Application Scenario

The ellipses mark code which is
used to record the position of the
stones. This will be discussed in
greater detail later in this chapter.

/* loop until error on input stream */
while (!psio_error(PostScriptlnput» {

if (get_black (&id, &x, &y» {

black_stone (id,x,y) ;
else if (get_white (&id, &x, &y»

white_stone (id,x,y) ;

6.4. Accepting Input The following sections describe the manner in which the server-side NeWS code
tracks mouse (button) actions.

tracking mouse actions As explained in Chapter 3 of the NclVS Manual, manipulation of the mouse gen­
erates events with the names: IMouseDragged, ILeftMouseButton,
IMiddleMouseButton, IRightMouseBuUon. Right now, we're only interested
in the effect of depressing a mouse button. If a mouse button is depressed or
released, the Name of the event identifies which button is affected and the
Action is one of the keywords IDownTransition or IUpTransition.

tracking button transitions Now that we have the necessary procedures to both draw a stone and inform the
client side of its location, we need to create an event manager to watch for the
IDown Transitions of the mouse buttons. These transitions mark where stones
are to be placed or removed. The event labels will be:

Figure 6-4 event labels

building a button manager

#define BLACK_EVENT
#define WHITE_EVENT

ILeftMouseButton
1M iddleMouseButton

Our event manager process (the IButtonMgr) is a very simple construction.
When Istartinput is called it creates a process which waits for an event with the
Name lLeftMouseButton or IMiddleMouseButton and an Action of IDown­
Transition.

Upon receiving an event the IButtonMgr calls the procedure Iplacestone which
informs the client side as described above.

~\sun ,~ microsystems
Revision A of 15 January 1988

Figure 6-5

Remember the Iwp is waiting for an
event generated within the
ClientCanvas

altering the frame event
manager

Figure 6-6

Chapter 6 - Tracking Mouse Actions 59

a button manager

Idowneventinterest {/DownTransition ClientCanvas eventmgrinterest} def

Istartinput { % - => - (Wait for input)
IButtonMgr [

BLACK_EVENT {BLACK_TAG placestone} downeventinterest
WHITE_EVENT {WHITE_TAG placestone} downeventinterest

] forkeventmgr store
} def

The two routines Idowneventinterest and Istartinput form another logical cou­
ple; Idowneventinterest only being called from Istartinput.

eventmgrinterest takes four arguments and creates an interest suitable for use by
forkeventmgr. An interest is created with the label of either BLACK_EVENT or
WHITE_EVENT. It has an Action of lDownTransition and is aimed at the
ClientCanvas. When the IButtonMgr process receives this event (which will be
sent to it by a call from the client side program) it will draw the appropriate color
of stone (using the invocation of Iplacestone).

Our final task is to insure that the frame event manager automatically starts up
the Istartinput procedure when it in tum starts up. This way, whenever our win­
dow is displayed the IButtonMgr will be looking for IDownTransitions of
mouse buttons:

To do this, we take advantage of NeWS' class hierarchy36.

altering the frame event manager

IForkFrameEventMgr { % alter class method
IForkFrameEventMgr super send
start input % invoke IButtonMgr

} def

We use super send in this routine to alter the class method. The use is quite sim­
ple, the underlying context quite complex37. In brief, the instruction:

(~ ___ /F_o_r_k_F_ra_m_e_E_v_e_n_tM __ gr_S_u_p_e_r_s_e_nd ______________________________ ~J
executes the IForkFrameEventMgr method from the superclass of the current
class. The superclass is DefaultWindow. The current class, GoWindow,

36 As we did in Chapter 3, when we redefined the lPaintClient method of the class.

37 For a detailed ex planation, see the explanation of classes and super send in Chapter 6 of the NeWS Manual,
Classes.

Revision A of 15 January 1988

60 ':\cws Application Scenario

cleaning up

redefines the IForkFrameEventMgr to add Istartinput to the method, insuring
that it is executed whenever the /ForkFrameEventMgr method is called.

Where the change to /ForkFrameEventMgr adds to the method defined in class
DefaultWindow, the following change defines a method specific to class
GoWindow.

Every time a new go window is created a IButtonMgr process is launched, tied
to that window. We must insure that that process dies when the window dies. So,
we add to the IDestroyCIient method as follows:

IDestroyClient {
ButtonMgr killprocess
DON E_ TAG tagprint

} def

% override method
% kill ButtonMgr
% inform client side

IDestroyClient is null-defined in class DefaultWindow. As such, using super
send would not gain us anything.

6.5. The Complete Server Here is the complete listing of the modified server side code.
Side Code

Figure 6-7 go/goS.cps

% Constants needed in both C & PostScript:
C: #define BOARD_SIZE 19

% tag values (see function call defs ...)
#define DONE_TAG 1
#define DAMAGE_TAG 2
#define BLACK_TAG 3
#define WHITE_TAG 4

cdef initializeO
IBOARD_SIZE 19 def
IBOARD_MAX 18 def
ISTONE_SIZE .80 def
IBLACK_EVENT ILeftMouseButton def
IWHITE_EVENT IMiddleMouseButton def

0/0 define colors
Iblack_color
Iwhite_color
Iboard_color
lline_color
loutline_color

o 0 0 rgbcolor def
1 1 1 rgbcolor def
.9 .69 .28 rgbcolor def
black_color def
black_color def

Irepair { % - => - (repair the board)
DAMAGE_TAG tagprint
uniquecid dup typedprint
[exch cidinterest] forkeventmgr
waitprocess pop

~\sun ~~ microsystems

0/0 number of lines drawn
0/0 BOARD_SIZE - 1
% stone diameter
% place black stone
% place white stone

0/0 black
0/0 white
0/0 Wood color
% line color

0/0 send tag to client
% send id to client
% launch waiting process
% clear stack

Revision A of 15 January 1988

Chapter 6 - Tracking Mouse Actions 61

} def

/draw_board { % - => - (draw the playing surface)
board_color setcolor clippath fill
line_color setcolor
o 1 BOARD_MAX { % draw the lines

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for
stroke % stroke board path
pause

} def

/stone { % outline_color stone_color x y => - (draw stone)
STONE_SIZE 2 div 0 360 arc % set stones path
gsave % save context

setcolor fill % fill with stone_color
grestore % restore context
setcolor stroke % stroke restored stone path
pause % allow other processes

% to execute
} def

/cross { % X Y => - (draw cross)
1 0 diet begin

/y exch def
/x exch def

% clear the stone
x .5 sub Y .5 sub 1 1 rectpath
board_color setcelor fill

% begin local dictionary
% save as local var
% save as local var

% draw the two cross strokes, carfully adjusting for edge locations:
x .5 sub 0 max y moveto x .5 add BOARD_MAX min y lineto % horiz stroke
x y .5 sub 0 max moveto x y .5 add BOARD_MAX min lineto % vert stroke
line_color setcolor
stroke
pause

end
} def

% stroke cross
0/0 allow other processes
% to execute
% end local dictionary

/checkloc { % float => int (convert location to legal board location)
o max BOARD_MAX min round

} def

/placestone { % event tag => - (place stone at event's x,y)
ClientCanvas setcanvas % set current canvas
tagprint uniquecid dup typedprint % send tag & id to client
exch % uniquecid event
begin % begin local dictionary

XLocation checkloc YLocation checkloc % round location
end % end local dictionary

.sun
~ microsystems

Revision A of 15 January 1988

62 ~cws Application Scenario

typed print typedprint
[exch cidinterest1 only] forkeventmgr
waitprocess pop

} def

% send x,y to client
% create eventmgr
0/0 wait for events

Idowneventinterest {/DownTransition ClientCanvas eventmgrinterest} def

Istartinput { % - => - (Wait for input)
IButtonMgr [

BLACK_EVENT {BLACK_TAG placestone} downeventinterest
WHITE_EVENT {WHITE_TAG placestone} downeventinterest

] forkeventmgr store
} def

Imakewin {% - => - (builds a go window)
IGoWindow DefaultWindow
dictbegin

IFrameLabel (3rd Go board) def
IButtonMgr null def

dictend
classbegin

IPaintClient { repair} def
IPaintlcon { draw_board} def
IDestroyClient {

ButtonMgr killprocess
DONE_TAG tagprint

} def
IForkFrameEventMgr {

IForkFrameEventMgr super send
startinput

} def

% create a subclass
% begin instance variables
0/0 label window
% create instance
0/0 end instance variables
0/0 begin class definitions
% define client canvas image
0/0 define icon image
% override method
0/0 kill ButtonMgr
% inform client

% alter class method

% start ButtonMgr

IClientPath { % x Y w h => - (define client path)
4 2 roll translate
BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

} def
llconPath {ClientPath} def

classend def % end class definitions

Iwin framebuffer Inew GoWindow send def % cliche
Ireshapefromuser win send % resize window
Imap win send % draw it

} def
0/0 end initializeO

0/0 function call definitions
cdef doneO => DONE_TAGO
cdef get_damage(int id) => DAMAGE_ T AG(id)
cdef get_black(int id, int x, int y) => BLACK_ TAG(id, y, x)
cdef get_white(int id, int x, int y) => WHITE_TAG(id, y, x)
cdef draw_board(int id)

id {draw_board} sendcidevent

0/0 inform client
% inform client
% inform client
0/0 inform client
0/0 draw the go board

.\sun ~ microsystems
Revision A of 15 January 1988

6.6. Client Side Changes

Chapter 6 - Tracking Mouse Actions 63

cdef black_stone(int id, int x, int y) % draw black stone
id {outline_color black_color x y stone} sendcidevent

cdef white_stone(int id, int x, int y) % draw white stone
id {outline_color white_color x y stone} sendcidevent

cdef cross(int id, int x, int y) % draw cross
id {x y cross} sendcidevent

cdef repaired(int id) % close channel
id {exit} sendcidevent

cdef execute 0 makewin % execute program

Note that we have defined BOARD_SIZE using the cps macro:

(___ C __ :#_d_e_fin_e_B_O_A_R_D_-_S_I_Z_E __________ 1_9 _____________________ J

This is a macro which allows the definition of a C constant to take place on the
server side. We take advantage of this in the client side code below.

Further, note the addition of the necessary #define and def statements to support
our enhanced use of tags and the expanded drawing routines.

The interaction between client side and server side will now be as follows:

o a mouse button is clicked in the go window (server side),

o a lwp is launched to listen for an event directed at it (server side),

o the client side is informed with a tag and any additional information it may
need (server side),

o the client side, watching the input stream, decides upon an action based on
the received tag value and information (client side),

o if a stone or cross is to be placed it updates the stone array and returns the
requisite information to the server side with a function call (client side),

o otherwise, it simply makes one of a number of function calls to functions
within the server (client side),

o the waiting lwp, upon receipt of an event generated by the client side call to
a function, executes the proc carried by that event.

This is a reasonably lengthy interaction but also a well-defined one.

The client side code must undergo some fairly severe changes to keep up with
the revisions that we have made to the server side. We must add a number of
things:

o An array to keep track of stone color and location.

o Calls to the functions on the server side (to draw the stones).

Here is where we discuss the code marked by ellipses in Section 6.3.3, client side
tag Junctions .

• ~sun
• microsystems

Revision A of 15 January 1988

6.7. The Next Step

} ;

Chapter 6 - Tracking Mouse Actions 65

else {
board[x] [y] = WHITE;
white_stone(id,x,y);

else if (get_damage(&id» {
draw_board (id) ;
for (x = 0; x < BOARD_SIZE; x++)

for (y = 0; y < BOARD_SIZE; y++)
switch (board[x] [y]) {
case BLACK: black_stone(id,x,y);

break;
case WHITE: white_stone (id,x,y) ;

break;

repaired(id) ;
else if (done() I I (psio_eof(PostScriptInput»)
break;

/* close the connection to the server */
ps_close_PostScript() ;
exit(O) ;

This chapter concludes this explanation of how to write a NeWS application. To
this point, we've developed many of the skills necessary to write a useful appli­
cation. Appendix B shows you how to add some features to this application
which should prove very useful. It describes how to add a menu of your own
design (using the tag feature) and how to alter the icon. Both these mechanisms
will make use of NeWS classes in an effort to demonstrate their relative power and
ease of use.

Revision A of 15 January 1988

66 NeWS Application Scenario

~.8. The Final Board

Figure 6-10

6.9. Conclusion

This program can serve as a playing aid to the game of go . ' Our final board
looks as follows:

the go program

------------------~dGobo~d------------------
/'"""'\. r

.... ,/ ''('

~ K2~ ~ ~ II" A~
T ... II.. ~II" y 1"'"

V-K)-r-o: "" --
~ -2 11" A. -- ... 1"'I11III "'y ,~

, f

i"'''''' ~:- y
'l1li1" 'l1li1" ...

~ :0 C)-K)-r9
H ~

... II" P'

....... A po

..... ~~ ~ ,~Kr--~~ "II"" ,..
IC""'....... .../ ,~, A ~ Y
~t9 "' ,/"11 ...

"'-/ 0<"'"
k .. I.. '" ~--~
~ ~~

....... /'

I-- / 11" ,/ Y
.... 11" 11'" Y

..... <?-.... ""'A -
"-J '-../ "P'

This demonstration program has been designed to illustrate one way to design the
interaction between client and server. As such, it is not necessarily the most
efficient, nor even the best way to do it.

The model of interaction presented by the design of the client and server sides
should prove relatively easy to generalize to more complex applications.

Keep in mind a number of basic principles:

o Try to clearly define those tasks which are best done in the context of the
server and in the context of the client,

o Use the class mechanism of NeWS to your advantage: inherit behavior, don't
reinvent it,

o Design your CPS application to minimize round-trips between server and
client.

Where do you go from here? We suggest that you try a number of programs writ­
ten solely for use in the NeWS server. Learn how NeWS, and its mechanisms, work
before you attempt to create a new application. Many of the programs used in the
demo menu are good examples of programs written solely for use in NeWS. They
represent a wide variety of interface design and many use the class mechanism
extensively .

• \sun ~ microsystems
Revision A of 15 January 1988

6.10. NeWS Operators,
Methods and Keys

c: #define

cidinterestlonly

eventmgrinterest

expressinterest

kill process

max

min

Chapter 6 - Tracking Mouse Actions 67

As you cut and pasted the examples in this manual, we urge you to cut examples
out of these files for use in your own applications.

This manual has presented only the fundamentals of the mechanisms needed in
developing a NeWS application split over the client-server bridge. There is much
more to NeWS than we have been able to present here.

In the spirit of this approach, we urge you to continue to experiment with NeWS.

These are the NeWS operators and CPS directives that we have introduced in this
chapter.

c: #define constant value
Allows definition of a C constant with value from the cps file.

id cidinterest10nly interest
A special form of cidinterest which processes only one code fragment. It
automatically exits by itself, rather than requiring the client to send the exit.

eventname eventproc action canvas eventmgrinterest interest
Makes an interest. Suitable for use by forkeventmgr or expressinterest.

event expressinterest
Input events matching event will be queued for reception by awaitevent.

See Chapter 3, Input of the NeWS Manualfor more information on interest
matching.

process killprocess
Kills the specified NeWS process.

a b max c
Compares a and b and leaves the maximum of the two on the stack. Works on
any data type for which gt is defined.

a b min c
Compares a and b and leaves the minimum of the two on the stack. Works on
any data type for which gt is defined.

~~sun ~'ftI microsystems
Revision A of 15 January 1988

68 :\cws Application Scenario

va use - pause

setcanvas

super

XLocation

YLocation

Suspends the current process until all other eligible processes have had a chance
to execute.

canvas setcanvas
Sets the current canvas to be canvas. Implicitly executes newpath initmatrix.

- super instance
Used as the target object with send, super refers to the method being overriden
by the current method. Unlike self, super cannot be used outside the context of
send.

number XLocation number
System events are labeled with the cursor location at the time they are generated;
this value is used to determine which canvas(es) the event can be distributed to.
It is available to recipients and is transformed to the current canvas' coordinate
system. This key accesses the X-coordinate of the location. It is ignored in
interests.

number YLocation number
This key accesses the Y -coordinate of the event location; see the explanation
under XLocation above. It is ignored in interests .

• \sun ~ microsystems
Revision A of 15 January 1988

A
Conventions

Conventions .. 71

A.l. Naming Conventions .. 71

A.2. Indentation .. 71

A.3. Stack Manipulation ... 72

A.4. Cliches .. 72

Understanding Cliches ... 72

A.5. A Cliche That Creates a Window ... 73

A
Conventions

This appendix lists the NeWS coding conventions which have come into common
use. We encourage you to come back to this appendix as your understanding
progresses38.

A.I. Naming Conventions When you write a new function, provide the reader with a list of what that func­
tion expects to find on the stack, what it leaves on the stack after completion, and
what its purpose is. A typical function header would be of the fonn:

A.2. Indentation

Figure A-I

Figure A-2

vanilla function header

/vanilla { % var1 var2 array1 => value (returns a value from an array)

} def

As with the C language, the POSTSCRIPT language can be made nearly unintelli­
gible by neglecting to separate functions into logical subdivisions by indentation.
Indentation has no functional effect on the interpretation of POSTSCRIPT but it is
almost a requirement to understanding.

Indentation should follow the flow of control and execution. Consider this small
function:

no indentation

/uniquecid {currentcid 1 add /currentcid 1 index store} def

Unless you are quite experienced with POSTSCRIPT, this function is quite cryptic.
Now look at the same code with indentation. Note how the form separates dif­
ferent steps in the execution. This form also makes the inclusion of comments
much easier.

38 Because of the flexibility of NeWS and the packages that we provide these conventions cannot be
considered to be cast in stone. However, we do our best to adhere to them wherever possible and recommend
that you do the same .

• \sun ~ microsystems
71 Revision A of 15 January 1988

72 '::\.cws Application Scenario

Figure A-3

A.3. Stack Manipulation

Figure A-4

A.4. Cliches

Understanding Cliches

indentation

/uniquecid {
currentcid 1 add
/currentcid 1 index
store

0/0 create a unique id number
0/0 increment /currentcid
0/0 /currentcid currentcid
0/0 store value in /currentcid

} def

Functions that depend on manipulation of the stack are efficient. However they
can be very difficult to understand unless you comment them thoroughly. In-line
comments about the contents of the stack are often useful. Here's an example:

stack-based manipulation

/drift { % x Y w h event => - (scale, translate, launch an event)
5 1 roll % event x y w h
4 2 roll % event w h x y
translate % event w h
scale % event
dup begin % event event

/Name /Repaired def % set /Name field
/Canvas currentcanvas def % set /Canvas field

end % event

} def

Example programs in this document use of some of the mechanisms developed in
the Lite packages provided with your NeWS release. The most common of these
mechanisms we call cliches. They are very useful, performing commonly­
needed operations such as creating a window, or scaling and translating it. These
cliches are annotated both in the program comments and in the margins.

These cliches are often representative of the sophistication of NeWS. You don't
need to understand cliches before you use them, but it pays to have some grasp of
the techniques they use. When you decide that you want a deeper understanding
of NeWS you'll find numerous examples of the cliches in the Lite window pack­
ages. Classes and the inheritance of properties (key features in most uses of
cliches) are discussed in some detail in Chapter 6 of the NeWS Manual, Classes.

4}\sun
~ microsystems

Revision A of 15 January 1988

A.S. A Cliche That Creates
a Window

Figure A-5

Appendix A - Conventions 73

The following cliche serves to illustrate that the power of NeWS lies in its imple­
mentation of classes:

creating a window

Iwin framebuffer Inew DefaultWindow send def 0/0 cliche

This cliche is used in Chapter 2 of this manual to create a sample working win­
dow. The order of interpretation is not immediately apparent. This cliche defines
an instance of a window Iwin with the pair:

(____ /w_in __ .. _.d_e_f __ ~J
The send primitive (defined in Chapter 6 of the NeWS Manual, Classes) puts the
class hierarchy of Default Window on the dictionary stack, executes the Inew
method in that context (defined in Chapter 7 of the NeWS Manual, Window and
Menu Packages):

(~ ___ fr_a_m_e_b_u_ff_e_r_/n_e_w __ D_e_fa_u_lt_W_i_n_d_ow __ s_e_n_d __________________________ ~J
Inew takes a single argument, framebuffer: a canvas within which to create a
new window. Further messages may be sent to this window with:

(~ ___ w_i_n_s_e_n_d __ J
Thus,

{lPaintClient {.S setgray fill} def} win send

will alter the IPaintClient instance variable of the window (/win). It will now
fill the window with a shade of gray when damage next occurs.

~\sun ~ microsystems
Revision A of 15 January 1988

B
Tailoring An Application

Tailoring An Application ... 77

B.l. Server Side Changes ... 77

adding the menu .. 77

adapting the icon ... 78

B.2. Client Side Changes .. 80

adding the menu .. 80

B.3. A Complete Model .. 80

B.4. The Board Plus Menu ... 85

B.5. NeWS Operators, Methods and Keys ... 85

B.I. Server Side Changes

adding the menu

B
Tailoring An Application

In this appendix you will learn how to add a menu of your own design to the go
program. You will also learn how to adapt the icon to display a scaled-down
image of the go board.

The changes required on the POSTSCRIPT language side (server) are few in
number. You are already familiar with the use of tags and function definitions
and so this will not be presented in great detail.

Adding a menu to the client canvas is a relatively simple task. The window
package looks to see if the instance variable IClientMenu is defined with a
menu. If so, the window package will create an event manager for the menu but­
ton for the client canvas. The following code allows you to explicitly create a
menu for the client canvas:

Figure B-1 a new client menu

/ClientMenu [% alter class menu
(Erase Board) {MENU_TAG tagprint ERASE_CMD typed print}
(Fill Board) {MENU_TAG tagprint FILL_CMD typed print}

] /new DefaultMenu send def

The Inew method passed to DefaultMenu with the send expects an array of
menu choices and associated actions39. This sequence:

[(Erase Board) {MENU_TAG tagprint ERASE_CMD typed print}
(Fill Board) {MENU_TAG tagprint FILL_CMD typedprint}

] /new DefaultMenu send

puts the menu class object DefaultMenu on the stack and executes the method
Inew in the DefaultMenu's class context. This creates an instance of the class
DefaultMenu with the specified items.

39 This is explained in detail in Chapter 7 of the NeWS Manual, Window and Menu Packages.

~\sun ~ microsystems
77 Revision A of 15 January 1988

78 0.cWS Application Scenario

adapting the icon

The pair:

(~ ___ /C_I_ie_n_tM_e_n_U_._ .. _d_e_f _______________________________________ J

simply associates this menu with the instance variable IClientMenu. When the
IForkFrameEventMgr method is called it looks to see whether the
IClientMenu variable is other than null-defined2. If a IClientMenu exists the
IForkFrameEventMgr method creates an interest as specified by the menu. So,
the frame event manager process will now have an interest in IDownTransitions
of the right mouse button and will pop-up the client menu. '

As you can see, we also need to add a tag value and a function that can be called
from the client side. The tag value is:

[#define MENU_TAG 5

The function call simply returns the command (cmd) that was invoked. It is as
follows:

J

(____ cd_e_f_g_et_-_m_e_nU_(_in_t_cm __ d)_=_>_M __ E_N_U_-_TA_G __ (C_m_d_) __________________ ~J
The commands (erase and fill) are represented on both the C side and the
POSTSCRIPT side:

% Constants needed in both C & PostScript:
C: #define ERASE_CMD 0
C: #define FILL_CMD 1
#define ERASE_CMD 0
#define FILL_CMD 1

In Iflipiconic we want the icon painted if it is going to iconic form and the client
canvas is retained. This is because the window package doesn't call the IPaintI­
con method to repaint the icon if it is already retained.

The only additions required to have the icon display the current condition of the
go board are minor. However, they do require some explanation:

2 /ClientMenu is one of a number of instance variables null-defined in class LiteWindow .

• \sun ~ microsystems
Revision A of 15 January 1988

Figure B-2

Appendix B - Tailoring An Application 79

adapting the icon

IPainticon { repair} def

Iflipiconic { % - => - (Redraw current state for icon)
Iflipiconic super send
Iconic? IconCanvas IRetained get and {lpaint self send} if

} def

The IPaintIcon instance variable now calls the Irepair procedure (the same as
the lPaintClient procedure). Previously, it called the I draw_board routine, just
drawing the empty go board. Now, it will draw the board with the stones placed
just as they are in the full-sized window.

The sequence:

(~ ___ fl_Ii_Pi_c_o_ni_c_s_u_p_e_r_se_n_d ______________________________________ ~J
executes the Iflipiconic method from the superclass. The line:

Iconic? IconCanvas IRetained get and {/paint self send} if

is then added to the definition of the method in the current class.

Iconic? is an instance variable of class LiteWindow. It is a boolean which
reflects the current condition of the window. It is true when the window is
displayed in icon fonn (rather than the window itself).

(~ ___ lc_o_n_c_a_n_v_as __ /R_e_t_ai_n_e_d_g_e_t __________________________________ ~J
The POSTSCRIPT language operator get returns a boolean value of the dictionary
key !Retained for the canvas IconCanvas. If the canvas is retained, then the
value returned is true41 . The POSTSCRIPT operator and does a logical "and"
between the two booleans. Thus, if either of them are false (the window is iconic
or the icon canvas is not retained) a boolean with a value of false is put on the
stack.

Finally, the if operator executes the procedure body

(____ {/_pa_i_nt_s_e_lf_s_e_nd_} ______________________________________ ~]
if the boolean left on the stack is true. The Ipaint method is sent to the current
window, causing the icon to repaint with the current condition of the go board42.

41 See Chapter 11 of the NeWS Manual, NeWS Type Extensions for an explanation of canvas dictionary fields.

42 The /paint method is described in Chapter 7 of the NeWS Manual, Window and Menu Packages.

Revision A of 15 January 1988

80 !\cWS Application Scenario

B.2. Client Side Changes

Figure B-3

adding the menu

Figure B-4

B.3. A Complete Model

Figure B-5

In this fashion, the effect of damage can be simulated and the canvas redrawn
with the current go board pattern. If the icon is unretained it will be redrawn
every time another canvas uncovers it. This way it functions efficiently as a
retained canvas but it can still be redrawn as the need arises.

The changes to the client side are somewhat more extensive than the changes to
the server side (though not very complicated). We need to add a function to the
client side to randomly generate a stone using the rand () library function. The
function is as follows:

pick a random stone

enum stone pickastone ()

extern int rand();

int i = rand() % 7;
return (i>2 ? CROSS (enum stone) i);

In addition, the following code fragment is added to support the menu calls. We
add it to the already lengthy if statement:

responding to menu requests

else if (get_menu(&cmd»
for (x = 0; x < BOARD_SIZE; x++)

for (y = 0; y < BOARD_SIZE; y++)
board[x] [y] = (cmd == FILL_CMD ? pickastone()

repaint(id);
CROSS) ;

With the addition of the variable definition (as an integer) for cmd our client-side
code is now complete.

Following is a complete listing of both server and client sides of the go program:

go/g06.cps

0/0 Constants needed in both C & PostScript:
C: #define BOARD_SIZE 19
C: #define ERASE_CMD 0
C: #define FILL_CMD 1

0/0 tag values (see function call defs ...)
#define DONE_TAG 1
#define DAMAGE_TAG- 2
#define BLACK_TAG 3

~\sun
,,, microsystems

Revision A of 15 January 1988

Appendix B - Tailoring An Application 81

#define WHITE_TAG 4
#define MENU_TAG 5

cdef initializeO
IBOARD_SIZE 19 def
IBOARD_MAX 18 def
ISTONE_SIZE .80 def
IBLACK_EVENT ILeftMouseButton def
!WHITE_EVENT IMiddleMouseButton def
IERASE_CMD 0 def
IFILL_CMD 1 def

0/0 define colors
Iblack_color
Iwhite_color
Iboard_color
Iline_color
loutline_color

o 0 0 rgbcolor def
1 1 1 rgbcolor def
.9 .69 .28 rgbcolor def
black_color def
black_color def

Irepair { % - => - (repair the board)
DAMAGE_TAG tagprint
uniquecid dup typedprint
[exch cidinterest] forkeventmgr
waitprocess pop

} def

0/0 number of lines drawn
0/0 BOARD_SIZE - 1
0/0 stone diameter
0/0 place black stone
0/0 place white stone

0/0 erase board
0/0 fill with stones

0/0 black
0/0 white
0/0 Wood color
0/0 line color

0/0 send tag to client
0/0 send id to client
0/0 launch waiting process
0/0 clear stack

Idraw_board { % - => - (draw the playing surface)
board_color seteclor clippath fill
line_color setcolor
o 1 BOARD_MAX { % draw the lines

dup 0 moveto 0 BOARD_MAX rlineto
o exch moveto BOARD_MAX 0 rlineto

} for
stroke % stroke board path
pause

} def

Istone { % outline_color stone_color x y => - (draw stone)
STONE_SIZE 2 div 0 360 arc % set stones path
gsave % save context

setcolor fill % fill with stone_color
grestore
seteolor stroke
pause

} def

Icross { % X Y => - (draw cross)
1 0 diet begin

Iy exch def
Ix exch def

0/0 clear the stone

.\sun ~~ microsystems

0/0 restore context
0/0 stroke restored stone path
0/0 allow other processes
0/0 to execute

0/0 begin local dictionary
0/0 save as local var
0/0 save as local var

Revision A of 15 January 1988

82 NeWS Application Scenario

x .5 sub Y .5 sub 1 1 rectpath
board_color setcolor fill

% draw the two cross strokes, carfully adjusting for edge locations:
x .5 sub 0 max y moveto x .5 add BOARD_MAX min y lineto % horiz stroke
x y .5 sub 0 max moveto x y .5 add BOARD_MAX min lineto % vert stroke
line_color setcolor
stroke
pause

end
} def

0/0 stroke cross
% allow other processes
0/0 to execute
% end local dictionary

Icheckloc { % float =>int (convert location to legal board location)
o max BOARD_MAX min round

} def

Iplacestone { % event tag => - (place stone at event's x,y)
ClientCanvas setcanvas % set current canvas
tagprint uniquecid dup typedprint % send tag & id to client
exch % uniquecid event
begin % begin local dictionary

XLocation checkloc YLocation checkloc % round location
end % end local dictionary
typedprint typedprint % send x,y to client
[exch cidinterest1 only] forkeventmgr % create eventmgr
waitprocess pop % wait for events

} def

Idowneventinterest {/DownTransition ClientCanvas eventmgrinterest} def

Istartinput { % - => - (Wait for input)
IButtonMgr [

BLACK_EVENT {BLACK_TAG placestone} downeventinterest
WHITE_EVENT {WHITE_TAG placestone} downeventinterest

] forkeventmgr store
} def

Imakewin {% - => - (builds a go window)
IGoWindow DefaultWindow
dictbegin

IFrameLabel (3rd Go board) def
IButtonMgr null def

dictend
classbegin

IPaintClient { repair} def
IPainticon { repair} def
IDestroyClient {

ButtonMgr killprocess
DONE_TAG tagprint

} def

% create a subclass
% begin instance variables
% label window
% create instance
% end instance variables
% begin class definitions
% define client canvas image
% define icon image
% override method
% kill ButtonMgr
0/0 inform client

Iflipiconic { % - => - (Redraw current state for icon)
Iflipiconic super send % alter superclass

Revision A of 15 January 1988

Appendix B - Tailoring An Application 83

Iconic? IconCanvas IRetained get and {Jpaint self send} if
} def
IForkFrameEventMgr { % alter class method

IForkFrameEventMgr super send
startinput % start ButtonMgr

} def
IClientPath { % x Y w h => - (define client path)

4 2 roll translate
BOARD_SIZE div exch BOARD_SIZE div exch scale
.5 .5 translate
-.5 -.5 BOARD_SIZE BOARD_SIZE rectpath

} def
llconPath {ClientPath} def
IClientMenu [% define dedicated menu

(Erase Board) {MENU_TAG tagprint ERASE_CMD typedprint}
(Fill Board) {MENU_TAG tagprint FILL_CMD typedprint}

1 Inew DefaultMenu send def % install menu
classend def % end class definitions

0/0 cliche Iwin framebuffer Inew GoWindow send def
Ireshapefromuser win send
Imap win send

0/0 resize window
0/0 draw it

} def
0/0 end initializeO

0/0 function call definitions
cdef doneO => DONE_TAGO
cdef get_damage(int id) => DAMAGE_ T AG(id)
cdef get_black(int id, int x, int y) => BLACK_TAG(id, y, x)
cdef get_white(int id, int x, int y) => WHITE_ TAG(id, y, x)
cdef get_menu(int cmd) => MENU_TAG(cmd)
cdef draw_board(int id)

id {draw_board} sendcidevent
cdef black_stone(int id, int x, int y)

id {outline_color black_color x y stone} sendcidevent
cdef white_stone(int id, int x, int y)

id {outline_color white_color x y stone} sendcidevent
cdef cross(int id, int x, int y)

id {x y cross} sendcidevent
cdef repaired(int id)

id {exit} sendcidevent
cdef repaintO

Jpaintclient win send
cdef execute 0 makewin

0/0 inform client
0/0 inform client
0/0 inform client
% inform client
0/0 inform client
0/0 draw the go board

% draw black stone

% draw white stone

% draw cross

% close channel

0/0 repaint go board

0/0 execute program

Revision A of 15 January 1988

84 0:eWS Application Scenario

Figure B-6 go/go6.c

#include "go6.h"

enum stone {CROSS=0,BLACK=1,WHITE=2};
static enum stone board[BOARD_SIZE] [BOARD_SIZE];

enum stone pickastone ()

extern int rand();
int i = rand() % 7;
return (i>2 ? CROSS

main ()
{

int x, y, id, cmd;

(enum stone) i);

if (ps_open_PostScript() == 0) {
fprintf(stderr,"Cannot connect to NeWS server\n");
exit(l);

initialize () ;

execute();

while (!psio_error(PostScriptInput»
if (get_black (&id, &x, &y» {

sun
microsystems

if (board[x] [y] == BLACK) {
board[x] [y) = CROSS;
cross(id,x,y);

} ;

else {
board[x] [y] = BLACK;
black_stone(id,x,y);

else if (get_white (&id, &x, &y»
if (board[x) [y] == WHITE) {

board[x] [y) = CROSS;
cross(id,x,y);

} ;

else {
board[x) [y) = WHITE;
white_stone(id,x,y);

else if (get_menu(&cmd»
for (x = 0; x < BOARD_SIZE; x++)

for (y = 0; y < BOARD_SIZE; y++)
board[x] [y] = (cmd==FILL_CMD ? pickastone() :CROSS);

repaint();
else if (get_damage(&id» {

draw_board (id) ;
for (x = 0; x < BOARD_SIZE; x++)

for (y = 0; y < BOARD_SIZE; y++)
switch (board [x] [y) {

case BLACK: black_stone(id,x,y);
break;

case WHITE: white_stone(id,x,y);

Revision A of 15 January 1988

B.4. The Board Plus Menu

Figure B-7

B.S. NeWS 0 perators,
Methods and Keys

Appendix B - Tailoring An Application 85

break;

repaired(id);
else if (done () I I psio_eof (PostScriptlnput»

break;

ps_close_PostScript();
exit (0);

The go board now has a menu which will allow you to either erase all the stones
or to fill it with a pseudo-random pattern of black and white stones.

When the window is represented by an icon the icon will display the same pat­
tern as the board does. Here is the board with the menu:

the go board plus menu

rJ, Go

Oi ~ '
.J. I A

rO- Erase Board .,L.. "" - -
Flll Board /')-~ "- .. ~

.,L.. /' ... '"
.oil. Y .oil ,,)6 ")-"'I'")Q "'I ""

,
... "" "'I"" •• /" "'lIP'

19 (~~o; ~: X~)-~~ ~ ~: ... ""
JIII~ 'l..-:"~ ~.: :: "-

9~
.... ,. "" IP' A ~::

16,/)-~~
.. 'III """" / 'III""

" ... "III"\.. IP' • . :: 'r-' "III"" .,."" ... "' ... • .,.~,.

F9 Yx- .,.!"" ... ""
I-

/ IY
~~IP' • -.r\.. ./ .. .,. \..../

.;;;J

The (UI) label means that these window methods are generally not used by the
client but are accessed primarily through the user interface of the window .

• \sun ~ microsystems
Revision A of 15 January 1988

86 ~eWS Application Scenario

~flipiconic

/paint

self

- /flipiconic
Alternate between opened (window) and closed (iconic) state. (UI)

- /paint
Repaint the window or icon. If the window is open, paint calls both
Ipaintframe and Ipaintclient. The default IDamaged handler sets the canvas
clip to the damage region and calls Ipaint automatically. (UI)

- self instance
Used as the target object with send, self refers to the instance that caused the
current method to be invoked. It does not refer to the class the method is defined
in. The self primitive can also be used anywhere to refer to the currently active
instance.

tt\sun ~ microsystems
Revision A of 15 January 1988

Index

B
begin, 55
button manager, 58,60
IButtonMgr, 58
buttons, 53

c
canvas, 4

client, 12
currentcanvas,29
setcanvas, 29, 68
strokecanvas, 29

cdef, 36, 40, 55,57
using, 36

channels, 43, 46
creating, 50, 67

cid utilities, 44, 45, 46
cidinterest, 44, 50
cidinterestlonly,67
event manager, 44
sendcidevent, 44, 50
uniquecid, 44, 50

cidinterest, 44,50,55
cidinterestlonly, 55, 67
class, 4
class menu, 16
class methods, 4, 22
class variables, 4, 21
class begin, 29
classend, 29
classes, 21

structures, 21
subclass, 21
superclasses, 59

cliche
creating a window, 12, 73
definition of, 72
setting up a worldspace, 16

ClientCanvas,54
IClientData

as event field, 45
IClientMenu, 77
IClientPath

as window method, 23
clients

connecting to, 33

-87-

constants
definition of, 67

context
graphics, 14,43

conventions
indexing, 71
naming, 71
stack manipulation, 72

coordinate space, 16
cps

#define,40
#include, 40
pS_close_PostScriptO,39
ps_flush_PostScriptO,39
ps_open_PostScriptO,39
C: #define, 67
cdef,40
compiling a C program, 40
conversion to, 34
interface definition. 39
typedprlnt, 50
using cps, 40

cps,34
cut and paste, 6

D
damage repair, 46
DefaultWindow, 12
#define,40
IDestroyClient, 60
destroying a window, 37
dictionary

dictbegin, 29
dictend,29

display independence, 56
drawing

a cross, 56
a stone, 54

E
emulator, 6
end,55
event

expressinterest, 67
input, 43
system, 55

event fields, 43

Index - Continued

fnt fields, continued
fAction, 43
fClientData, 43
/Name, 43
ffimeStamp, 43
XLocation, 68
YLocation, 68

eventmgrinterest, 59, 67
events, 43
expressinterest, 67

F
file formats, 34
files

PostScriptInput,37
fillcanvas, 13
lHipiconic, 78

in window class, 86
forkeventmgr, 44, 50, 54, 67
fForkFrameEventMgr, 78
frame event manager, 4, 50, 59

altering, 59
inheriting, 59

fFrameLabel
as instance variable, 12

function definition, 40
functions

client side tag, 57

G
)aphics context, 14

I
IClientPath

as window method, 23
icons, 23, 78
indexing, 71
input, 43
instance variables, 4, 21
interests, 59, 67

K
killprocess, 67

M
Imap

as window method, 13
in window class, 17

max, 67
menu, 16

requests, 80
menus

adding to client side, 80
adding to server side, 77
creating, 77

methods, 4
/new,77
/flipiconic, 78
ForkFrameEventMgr, 59, 78
/rectpath, 24

- 88-

min, 67
mouse

button manager, 58
button transitions, 58
/DownTransition,78
following actions, 53
generating events, 53
server side code, 60
tracking, 58

N
naming conventions, 71
/new,77

in window class, 17

o
objects, 4

p
/paint

in window class, 86
/PaintClient

as instance variable, 45
/PaintClient

altering, 13
as instance variable, 12

/PaintIcon
as window method, 23

path
rectpath, 29

pause, 68
placing

a stone, 54
process, 4
processes, 43

communication with, 43
creating an interest, 67
creating event manager, 44
dictionary stack, 43
eventmgrinterest, 67
execution stack, 43
forkeventmgr, 50
graphics state stack, 43
killing, 67
kill process, 67
lightweight, 4,43
operand stack, 43
pause, 68
pausing, 45, 55
waitprocess,50

program
invoking a, 12
running a, 5

psh,5,12

R
record-keeping, 53
repair

client side, 48
of damage, 46

/reshape

Ireshape, conJinued
in window class, 18

Ireshapefrom user
as window method, 13
in window class, 18

S
selections, 6
self,86
send, 18
sendcidevent, 44, 45, 50
server, 3, 43

closing connection to, 39
setcanvas,68
stacks

clearing, 45
dictionary, 55
event, 55
notating use of, 72
operand,23

Istartinput, 59
super send, 59, 68
superclass, 59
synchronization, 45

T
tagprint, 44, 55
tags, 36, 57, 78

definition of, 40
timestamp, 43
transformation operators, 16
typed print, 44, 50, 55

U
uniquecid, 44, 50, 55
utilities

CID,43

W
waitprocess, 45, 50
window, 4

creating a window manager, 50
destroying, 37
Iflipiconic, 86
Imap, 17
Inew, 17
Ipaint,86
process, 37
Ireshape, 18
Ireshapefrom user, 18

window program, 11
working window, 11

X
XLocation, 55,68

y
YLocation, 55,68

Index - COnJinued

-89-

