
~"sun®
• microsystems

NeWS™ 1.1· Manual

NeWS™ is a trademark of Sun Microsystems, Inc.
Sun View™ is a trademark of Sun Microsystems, Inc.
Sun Workstation®, Sun Microsystems®, and the Sun logo

are registered trademarks of Sun Microsystems Inc.

POSTSCRIPT is a registered trademark of Adobe Systems Inc. Adobe
owns copyrights related to the POSTSCRIPT language and the POSTSCRIPT
interpreter. The trademark POSTSCRIPT is used herein to refer to
the material supplied by Adobe or to programs written in the
POSTSCRIPT language as defined by Adobe.

Macintosh is a trademark licensed to Apple Computer, Inc.

V AX is a trademark of Digital Equipment Corporation.

X Window System is a trademark of Massachusetts Institute of Technology.

UNIX is a registered trademark of AT&T Information Systems Inc.

Copyright © 1987 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per­
mission from Sun Microsystems.

Contents

Preface .. xv

Chapter 1 Introduction .. 3

1.1. The Design .. 3

1.2. Imaging .. 5

1.3. Canvases ... 5

1.4. User Interaction - Input .. 6

1.5. Client Interface ... 6

1.6. Background and Goals .. 7

Device Independence .. 7

Portability .. 8

Flexibility .. 8

Distribution .. 9

Graphics ... 9

References ... 9

Chapter 2 NeWS Extension Overview.. 13

2.1. The Lightweight Process Mechanism .. ~................... 13

2.2. Canvases and Shapes ... 14

Visibility .. 14

Damage ... ,................................. 14

Event Consumption ... :.. 15

Offscreen .. ;................... 15

Cursor .. 16

2.3. Colors ... 16

- iii-

Contents - Continued

Chapter 3 Input

3.1. Input Events

3.2. Submitting Events for Distribution .. .

3.3. Interests: Event Selection

Changing and Reusing Interests .. .

Inquiring for Current Interests .. .

3.4. Event Distribution .. .

Recei ving Events ... :

Event Matching ... ~

Name and Action Matching .. .

Canvas Matching

Process Matching .. .

Processing after an Interest Match

Order of Interest Matching

Interest Lists .. .

Multiple Matches

3.5. Special Event Types

Actions for Enter and Exit Events

3.6. Input Synchronization

3.7. Event Logging

3.8. Example

Chapter 4 Extensibility through POSTSCRIPT Language Files

4.1. Server Initialization

4.2. File Organization

POSTSCRIPT language Files Loaded at Initialization

init.ps

systoklst . ps

colors .ps

cursor .ps

statusdict. ps .. .

icon.ps

util.ps

- iv-

Contents - Continued

litemenu. ps ... 32

demomenu.ps ... 32

litewin .ps ... 32

liteUI. ps .. 32

POSTSCRIPT language Files for User Settings .. 32

user.ps ... 32

startup .ps ... 32

Other POsrSCRIPT language Files ... 33

compat .ps .. 33

liteitem. ps ... 33

li tetext . ps ... 33

debug. ps ... 33

event log. ps ... 33

journal.ps ... 33

repeat. ps .. 33

4.3. Some POSTSCRIPT language Extensions in the *. ps Files 33

Miscellaneous ... 33

4.4. User Interaction and Event Management ... 36

4.5. Rectangle Utilities ... 38

4.6. Graphics Utilities ... 39

4.7. CID Utilities ... 40

4.8. Text and Font Utilities .. 41

4.9. Journalling Utilities .. 42

Journalling Internal Variables ... 43

4.10. Constants ... 43

4.11. Key Mapping Utilities .. 43

4.12. Repeating Keys .. 44

4.13. Colors Definitions ... 45

4.14. Logging Events .. 45

UnloggedEvents ... 45

Chapter 5 The Extended Input System ... 49

5.1. Building on NeWS Input Facilities .. 49

-v-

Contents - Continued

5.2. The LiteUI Interface .. .

5.3. Keyboard Input .. .

Keyboard Input: Simple ASCII Characters .. .

Keyboard Input: Function Keys .. .

Assigning Function Keys .. .

Keyboard Editing and Cursor Control

5.4. Selection Overview and Data Structures

Selection Data Structures .. .

Selections: Library Procedures .. .

Selection Events

ISetSelectionAt

ExtendSelectionTo .. .

DeSelect

ShelveSelection .. .

Selection Request

5.5. Input Focus

Chapter 6 Classes

6.1. Packages and Classes

6.2. Introduction to Classes .. .

6.3. Class 'Foo' .. .

References .. .

Chapter 7 Window and Menu Packages .. .

7.1. Package Style .. .

7.2. A Scrollbar Implementation

Descri ption Format

7.3. Menu Methods

Polymorphic Menu Keys

7.4. Window Methocls

7.5. An example: lines

7.6. Default User Interface .. .

PointButton

-vi-

Contents - Continued

AdjustButton ... 83

MenuButton ... 83

Modifying the User Interface ... 83

Chapter 8 Debugging ... 87

8.1. Introduction ... 87

Contacting the Server ... 87

Starting a Debugging Session .. 88

8.2. The Debugging Environment ... 88

Multi-Process Debugging ... 88

8.3. Client Commands .. 88

8.4. User Commands ... 89

8.5. Miscellaneous Hints ... 93

Aliases ... 93

Use Multiple Debugging Connections .. 93

Chapter 9 C Client Interface .. 97

9.1. How to Use CPS ... 97

The . cps File .. 98

The . h File ... 100

The . c File ... 100

Comments ... 101

9.2. Tags, Tagprint, Typedprint .. 101

Tags .. 101

Receiving Tagged Packets from NeWS .. 102

9.3. A Sample Tags Program .. 103

9.4. Tokens and Tokenization .. 105

9.5. The CPS Utilities ... 106

Chapter 10 A Complete Example: roundclock 109

roundclock. c ... 109

roundclock . cps ... 111

Chapter 11 NeWS Type Extensions .. 117

- vii-

Contents - Continued

11.1. New Objects in NeWS .. .

11.2. Objects as Dictionaries

11.3. Canvases as Dictionaries

11.4. Events as Dictionaries

11.5. Graphics States as Dictionaries .. .

11.6. Processes as Dictionaries

11.7. Shapes as Dictionaries

11.8. Object Cleanup

Server Function

Object Management

Error Handling

Connection Management

Process Management

Killing An Application

Garbage Collection

11.9. NeWS Security

Chapter 12 NeWS Operator Extensions .. .

Chapter 13 Omissions and Implementation Limits

13.1. OperatorOmissions

13.2. Imaging Omissions

13.3. Implementation Limits

13.4. Autobind

Chapter 14 Byte Stream Format

14.1. Encoding

14.2. Object Tables

14.3. Magic Numbers

14.4. Examples

Chapter 15 Supporting NeWS From Other Languages

15.1. Contacting the Server .. .

15.2. Communication with the Server

- viii-

Contents - Continued

Chapter 16 Font Tools .. 167

16.1. Cursor Fonts ... 167

A Standard Font ... 167

Representation .. 167

Fonnat ... 168

Generating a Font ... 168

16.2. Building an Ordinary Font ... 170

Appendix A Using NeWS .. 173

A.l. NeWS Environment Variables ...•......... 173

Which Server Binary? .. 174

The Debugging Server Binary ... 174

A.2. Starting up NeWS .. 174

From outside suntools ... 174

From within suntools using overview(l) 174

Server Initialization ... 174

A.3. SunViewl Binary Compatibility with NeWS ... 174

Bugs in SunViewllNeWS Coexistence .. 175

Inconveniences ... 175

Screen Damage ... 176

Input Mismatches .. 176

NeWS on the Sun-3/110 ... 176

A.4. Learning NeWS .. 177

Putting A Message in a Window.. 177

The p s h Command ... 177

Running POsrSCRIPT language Programs .. 177

Using Joumalling .. 177

Previewing POSTSCRIPT language Graphics ... 178

Talking Directly to the Server ... 178

A Sample Session .. 178

Connecting to Remote NeWS Servers ... 179

A.5. A Sample psh Program: test. psh .. 180

A.6. Dictionaries and the Server ... 183

-ix-

Contents - Continued

Modifying the NeWS Server

startup .ps .. .

user .ps .. .

Notes on Modifications .. .

Modifying Your' 'Root" Menu

Saving Keystrokes .. .

Changing Defaults .. .

Appendix B Class Lite/tern .. .

B.l. Class Item

B.2. Two Sample Items

Sample Items Test Program .. .

B.3. Class Labeledltem .. .

B.4. Subclasses of LabeledItem .. .

B.5. Labeledltem Subclass Details

Appendix C NeWS Operators .. .

C.l. NeWS Operators, Alphabetically .. .

C.2. NeWS Operators, by Type

Appendix D NeWS Manual Pages

Index

-x-

Tables

Table 3-1 Boundary Crossing Events ... :..................................... 25

Table 4-1 Standard NeWS Cursors .. 38

Table 5-1 Selection-Dict Keys .. 54

Table 5-2 System-defined Selection Attributes ... 54

Table 5-3 Request-dict Entries .. 54

Table 7-1 LiteWindow Instance Variables ... 78

Table 7-2 Window User Interface Button Usage ... 82

Table 9-1 CPS Argument Types .. 99

Table 12-1 Mouse Event Translation .. 139

Table 13-1 Omitted POSTSCRIPT language primitives .. 151

Table 13-2 Implementation Limits ... 152

Table 14-1 Token Values ... 159

Table 14-2 Meaning of Bytes in Encoding Example "...................................... 159

- xi-

Figures

Figure 1-1 Client - Server Interaction in NeWS .. 4

Figure 6-1 Relationship between Instances and Classes .. 64

Figure 6-2 Self and Super .. 64

Figure 6-3 POSTSCRIPT language use of Dictionaries as Objects 65

Figure 6-4 POSTSCRIPT language use of Dictionaries as Objects 66

Figure 9-1 Short Tags Specification ~... 102

Figure 9-2 Long Tags Specification ... 102

Figure 9-3 A Server Side Tags Program ... 103

Figure 9-4 A Client Side Tags Program .. 104

Figure B-1 Two Instances of Class 'SampleToggle' .. 192

Figure B-2 An Instance of Class 'SampleSlider' .. 193

Figure B-3 The Sample Test Program .. 194

Figure B-4 Use of the Sample Test Program .. 195

Figure B-5 Use of the Sample Test Program - Moving the Slider 196

Figure B-6 Subclasses of LabeledItems .. ~............... 199

Figure B-7 Typical Item Usage .. 200

- xiii-

Prerequisite Documents

Companion Documents

Where to Start

Structure of the Manual

Preface

This manual is a combination guide and reference to NeWS.

All of this manual but the Introduction assumes knowledge of the material
covered in Adobe's PostScript Language Reference Manual, published by
Addison-Wesley. If you are unfamiliar with the POSTSCRIPT language, you
should also consider the companion book PostScript Language Tutorial and
Cookbook required reading.

The NeWS Technical Overview is a useful introduction to the concepts and
benefits of NeWS.

General help may be found in Appendix A, Using NeWS, and you can work
through the examples in the PostScript Language Tutorial and Cookbook using
NeWS's psview command.

The manual is organized as follows:

o An introduction to the design and goals of NeWS.

o An overview of the NeWS extensions.

o Further information about the extensions for handling jnput and events.

o An overview of the POSTSCRIPT language files that implement additional
server functionality and packages.

o Descriptions of some of the packages implemented in these POSTSCRIPT
language files:

• an extended input system

• a complete classing mechanism

• example window and menu packages based on this class mechanism

• a debugging facility

o A description of the CPS program, used to construct C client interfaces to
NeWS.

o A complete example client program.

- Xy-

Preface - Continued

Font Usage

o Reference chapters for the NeWS types and operators.

o A section detailing the areas in which the current POSTSCRIPT language
implementation is incomplete.

o A reference section for the format of the byte stream communication
between the clients and the server, detailing the data compression techn
available.

o Information on font support in NeWS.

o An appendix on how to start up NeWS, with some advice on programmiJ
NeWS and customizing the NeWS server.

o An appendix with a complete listing of all the NeWS operators, sorted al
betically and by class.

o Details of another class package, Lite! tem, used in the it emdemo derr
program.

o An appendix containing manual pages for NeWS.

The NeWS Manual includes code and procedures from two different languag
and the POSTSCRIPT language. We have used fonts to clarify which langua
used. This differs from other Sun manuals:

bo~d ~isting font
This font indicates things that you should type at yQJJ~t; \!
tation.

li st ing font This font indicates literal values such as file names and
put displayed by the computer. It also indicates use of 1

language: it is used in C program listings and C procedl
names. CPS routines and code fragments such as
ps_open_PostScript () are printed in this font.

sans serif font

bold font

italic font

This font is used for POSTSCRIPT program listings, type
code fragments such as 300 200 createcanvas map<
vas to distinguish them from C code. It is also used in
definition of NeWS functions (primarily in Chapter 12, A

Operator Extensions).

Unfortunately, sans serif fonts look poor in the middlt
normal text. So, as well as indicating cautions and war
bold font is used to indicate all NeWS names, such as
c1ipcanvas, when they appear in paragraphs or the inde

This font is used as a place holder for words, numbers,
expressions that you define, for example parameters to
mands, and operands of POSTSCRIPT language operatOl
Italics are also used in the conventional manner to emp
important words and phrases.

- xvi-

1
Introduction

Introduction ... 3

1.1. The Design 3

1.2. Imaging .. 5

1.3. Canvases ... 5

1.4. User Interaction - Input .. 6

1.5. Client Interface ... 6

1.6. Background and Goals .. 7

Device Independence .. 7

Portability .. 8

Flexibility .. 8

Distribution .. 9

Graphics ... 9

References ... 9

1.1. The Design

1
Introduction

NeWS is a distributed, extensible window system that takes a long-term approach
to the development of user interface and display technology. It is not an attempt
to codify and build on existing systems; it is rather an attempt to step up to a new
level of technology. The unique feature of NeWS is the ubiquitous use of an
extension mechanism. The extensibility of the system is the key to integrating
windows efficiently into a distributed environment. Performance is enhanced by
close interaction between clients and their server, communication is speeded up
by application-specific data compression, semantic issues are reduced by a cen­
tral authority, and user interface issues are easier to address.

NeWS is based on a novel sort of interprocess communication. Interprocess com­
munication is usually accomplished by sending messages from one process to
another via some communication medium. Messages are usually streams of
commands and parameters. One can view these streams of commands as pro­
grams in a very simple language. What happens if this language is extended to
become Turing-equivalent? Programs no longer communicate by sending mes­
sages, they communicate by sending programs that are elaborated by the
receiver. This has interesting effects on data compression, performance, and
flexibility .

The POSTSCRIPT programming language defined by John Warnock and Charles
Geschke at Adobe Systems is used injust this way.A What Warnock and
Geschke were trying to do was communicate with a printer. They transmit pro­
grams in the POSTSCRIPT language to the printer, which are elaborated by a pro­
cessor in the printer, and this elaboration causes an image to appear on the page.
The ability to define a function allows the extension and alteration of the capabil­
ities of the printer.

This idea has powerful implications within the context of window systems: it
provides a graceful way to make the system much more flexible and it provides
some interesting solutions to performance and synchronization problems. For
example, if you want to draw a grid, you don't have to transmit a large set of
lines to the window system, you just send a program containing the appropriate
iteration. Downloading programs in an extension language is not just a nice
feature that has been tacked on; it is an integral part of the window system.

NeWS extensions confonn to the form of POSTSCRIPT primitives. The
PO~TSCRIPT language is clean and simple, it has a well-designed graphics model,

~\sun ~ microsystems
3 Revision A of 15 January 1988

4 ~eWS 1.1 Manual

Figure 1-1

and it is compatible with many of the printers available today.

NeWS is a single process, which acts as a network server and contains a
POSTSCRIPT language interpreter1. Within this server process is a collectior
lightweight processes that execute POSTSCRIPT programs. A lightweight pn
is unlike a typical UNIX process in that it shares a data space with other ligh
weight processes. Consequently, process creation has very little overhead al
characterized by great rapidity.

Client programs talk to NeWS through byte streams. Each of these streams g
erally has a lightweight process within the NeWS server that executes the stre

NeWS server
keyboard

display

Client - Server Interaction in NeWS

Messages pass between client processes, which exist somewhere out on the
work, and NeWS processes, which exist within the NeWS server. These proce
can perform operations on the display and receive events from the keyboarc
the mouse. They can talk to other NeWS processes, which may, for example
implement menu packages.

NeWS centers around the POSTSCRIPT language. All that is provided by NeW:

set of mechanisms; policies are implemented as POSTSCRIPT procedures. F
example, NeWS has no window placement policy. It has mechanisms for cn
windows and placing them on the screen, given coordinates for the window
choice of those coordinates is up to some POSTSCRIPT procedure.

What is usually thought of as the user interface of a window system is expl
outside the design of this window system. User interface includes such thir
how menu title bars are drawn and whether or not the user can stretch a win
by clicking the left button in the upper right hand comer of the window outl
All these issues are addressed by implementing appropriate procedures in tl

1 NeWS was conceived and created wholly by Sun Microsystems.

~\sun ~ microsystems
Revision A of 15 J anua

1.2. Imaging

1.3. Can vases

Chapter 1 - Introduction 5

POSTSCRIPT language.

The rest of this section presents NeWS in four parts: the imaging model, window
management, user interaction, and the client interface. The imaging model refers
to the capabilities of the graphics system - the manipulation of the contents of a
window. Window management refers to the manipulation of windows as objects
themselves. User interaction refers to the way a user at a workstation interacts
with the window system (e.g., how keystrokes and mouse actions are handled).
The client interface defines the way in which client programs interact with the
window system (e.g., how programs make requests to the window system).

Imaging in NeWS is based on the stencil/paint model, essentially as it appears in
Cedar/GraphicsB and the POSTSCRIPT language. A stencil is an outline specified
by an infinitely thin boundary composed of spline curves in a non-integer coordi­
nate space. Paint is some pure color or texture - even another image - that
may be applied to the drawing surface. Paint is always passed through a stencil
before being applied to the drawing surface, just like silkscreening. This is the
total model. Lines and characters can be defined using stencils. Lines are done
as long, narrow stencils.

One of the attractive characteristics of this imaging model is its very abstract
nature. For example, the definition of a font allows many implementations: as
bitmaps, as pen strokes, or as spline outlines. No commitment is made about
exactly which pixels are affected, or even that there are pixels at all. The exten­
sion of the system to deal with anti-aliasing does not affect the interface. The use
of a very abstract imaging model provides a very high degree of device indepen­
dence.

The specification of this model is simple and elegant, but the way in which its
various features can be combined leads to a tricky implementation. For example,
the mechanism for specifying a stencil allows straight lines, arcs, and higher­
order curves to be a part of its boundary. Stencils can be used both for clipping
and for filling. This implies that it must be possible to compute the intersection
of curved boundaries.

NeWS implements curves with conic splines.C Curves form paths, or shapes, and
NeWS has a set of algorithms for manipulating these pathsP These algorithms
have been assembled into a library that supports the stencil/paint model. The
NeWS server is implemented as a language interpreter that knows nothing about
imaging, but calls routines in this library to perform all imaging operations.

NeWS's basic drawing surface is a canvas. This non-standard term was picked to
avoid the semantic confusion that surrounds the word 'window.' A canvas is just
a surface on which an image may be drawn. The surface may be either opaque or
transparent, and can have any shape. Canvases are laid out in two-and-a-half
dimensions on a display surface; in other words, they can overlap. The actual
implementation of canvases depends heavily on the graphics package described
in the previous section. A canvas may keep a portion of its image off-screen in
order to facilitate quick refresh of its image when uncovered. In addition, a can­
vas may be drawn to while not displayed and then mapped to the display that
renders it visible; this is a method for double-buffering.

~\sun ~ microsystems
Revision A of 15 January 1988

6 ~eWS 1.1 Manual

1.4. User Interaction -
Input

1.5. Client Interface

Canvases are cheap and easy to create. Menus, windows, and pop-up trt'
are all based on canvases. NeWS has extensions in the form of primitive~ LV ~
and manipulate canvases. All POSTSCRIPT graphics operations are perfonnl
some canvas.

Each possible input action is an event. Events are a general notion that incll
buttons going down and up (buttons may be on keyboards, mice, tablets, or
ever else) and locator motion. They are implemented as messages between
processes.

Events are distinguished by where they occur, what happened, and to what.
objects spoken about here are usually physical; they are the things that a pel
can manipulate. An example of an event is the (ID key going down while t
mouse is over canvas x. This might trigger the transmission of the ASCII c
for E to the -process that created the canvas. The bindings between events a
actions are very loose and easy to change.

The actions to be executed when an event occurs can be specified in a gene!
way, via the POSTSCRIPT language. The striking of the CID key sends a me
to a NeWS process that is responsible for deciding what to do with it. The pi
can do something as simple as sending the message to a UNIX process, or a
complicated as inserting the message into a locally maintained document.

POSTSCRIPT language procedures control much more than just the interpret
of ~eystrokes. They can be involved in cursor tracking, constructing borde
around windows, doing window layout, and implementing menus. Th~p
cedures strongly resemble the Bell Labs squeak language, with lightw~:rt
processes replacing concurrency compilation. E

A client program exists in two parts: one part is written in the POSTSCRIPT
language and lives inside NeWS, and one part lives outside NeWS and talks t(
through a byte stream. This leads to a number of levels at which the client
face can be viewed.

o At the lowest level, the programmer writes POSTSCRIPT language prog
and deals with an entirely POSTSCRIPT language universe. Menu pack
and window layout policies are examples of objects that will usually b
implemented this way.

At this level, NeWS provides conventions that define an object-oriented
face to windows, menus, selections, and so on. Objects inherit a defat
of behaviors, but these can be overridden selectively.

o One step above that, the programmer writes programs in C, or some 01

language, that generate POSTSCRIPT language programs. The prograrr
explicitly aware of the existence of the POSTSCRIPT language. NeWS e
tors of other window systems are generally implemented this way.

At this level, NeWS provides a C pre-processor that allows C program]
cross the language boundary to the POSTSCRIPT language easily. In e1
they can write C procedures with POSTSCRIPT language bodies. Analc
tools for other languages are possible.

~\sun ~ microsystems
Revision A of 15 Janu

1.6. Background and Goals

Device Independence

Chapter 1 - Introduction 7

o At the highest level, the existence of the POSTSCRIPT language and message
passing is completely hidden by an interface veneer that someone else has
constructed using the second-level facilities. NeWS appears as a set of rou­
tines that are called in the normal way.

As with the user interface, NeWS defines no details of the programmer's interface
and permits it to be specified by POSTSCRIPT programs. The programmer's inter­
face may even be created on a per-application basis, by writing POSTSCRIPT pro­
grams.

In some respects, NeWS represents a major break with the technology used in
current window systems. In other respects, it is very similar to some existing
systems. This section examines these differences and simi1arities, relating them
to the overall design goals of NeWS.

Most current window systems, including SunWindows,F MIT's X,G and
Carnegie-Mellon's Andrew,H are based on the RasterOp and pixel coordinate
imaging model. As graphics hardware evolves to provide better performance,
this model becomes less appropriate:

o The model preempts the use of advanced transformation and rendering
hardware by insisting clients break down their graphical operations to such a
low level that the hardware is useless. Current window systems mean that
powerful hardware assists only those clients which take special measures to
use it.

o The model ensures that clients are aware of the actual size of individual pix­
els on the display, since the only coordinate system they have is that pro­
vided by the hardware. Until recently, this has not been a severe problem
because the pixels on displays in use have all been within 30% or so of 80
dots to the inch. But displays up to 300 dots to the inch are already becom­
ing available, and resolutions may go much higher.

o The model doesn't extend in a clean and useful way to color. Boolean com­
bination functions between color pixel values don't make much sense. For
instance, one often draws transient rubber band lines by XORing them with
the image. XORing color map indices can lead to some pyrotechnic effects.
Furthermore, the model exposes the differences among the three common
ways that color is represented in display devices: I-bit black and white (con­
stant small set of colors), 8-bit color with a colormap (variable small set of
colors), and 24-bit color (all possible colors available everywhere). Clients
have to invoke different operations for each display type.

NeWS' more abstract imaging model allows advanced transformation and render­
ing hardware to assist all clients; clients do not have to determine if it is available
and take special measures to use it. NeWS clients need not be concerned with the
hardware coordinate system; they define their own.

NeWS clients also need not be concerned with any dependencies on a particular
color model or on color hardware. NeWS allows clients to specify colors as
red-green-blue values or as hue-saturation-brightness and will make its best

~~sun ~ microsystems
Revision A of 15 January 1988

8 NeWS 1.1 Manual

Portability

Flexibility

efforts to display the correct colors on the screen. On full-color displaysF>
displays the exact color. On color-mapped displays, NeWS selects the clo~si
color table entry to the requested color. On monochrome and gray-scale
displays, NeWS will use dithering and half-toning techniques as necessary. Ir
way, clients expend minimal effort to get usable output on a wide variety of
displays.

A similar problem of device-dependence exists on the input side of current v
dow systems. They implement a fixed set of devices, and the client has to bt
aware of the set. In many cases, the client has to determine which devices a,
ally are present and load appropriate keyboard mapping tables. In NeWS, art
trary transformations of input events may be programmed in the POSTSCRIP'
language, so each client can be presented with an appropriate set of input de
ices, and new and unanticipated devices can be accommodated.

Even if current window systems did not expose so much of the underlying
display hardware, many would not be portable between different machines.
terns that are implemented largely as part of the operating system kernel, su<
SunWindows, demonstrate this problem.

NeWS, like X and Andrew, is a user-level server process. Both these predece
have been ported with relatively little effort to a range of workstations. NeW
like Andrew in that it has been designed from the start to be ported. A wind
system that is available over a wide range of workstations and displays is be
ing a necessity for the UNIX marketplace.

Some current window systems, Andrew and the MacintoshI are examples, St
to impose a single consistent user interface style on their clients. This has g
productivity benefits, both for the user and the programmer. Users can lean
applications easily, because they behave the same as the last application lea
Programmers can inherit much of the user interface of a new application frc
"canned" application like MacApp.

Other current window systems, X and Smalltal/J are examples, observe that
wide range of intelface styles are already in use and that a specialized inted
can make an experienced user more effective than any single consistent inte
They set an explicit design goal of avoiding specifying a user interface stylt
other window systems the style is determined for the most part by libraries
into each application, and is very difficult either to change or to make consi

NeWS attempts to address both aspects of this dilemma. The server does no'
depend on any details of the user interface; it is written in the POSTSCRIPT
language and thus are easily changed. The way the lightweight NeWS proce
share their name spaces encourages clients to share user interface compone
such as menus, scrollbars, and so on. These shared components are typical]
inherited from the global POSTSCRIPT language environment, and are thus ~

sistent across the range of clients. They can be replaced for all applicatiom
changing the global environment. The effect is that unless clients explicit1~
override the default behavior, they are consistent in their user interface .

• \sun ~~ microsystems
Revision A of 151anul

Distribution

Graphics

References

Chapter 1 - Introduction 9

Both Andrew and X have demonstrated that windows can be presented as a net­
work service, available to clients anywhere, and can provide adequate petfor­
mance for most tasks. In a highly networked environment, a window system that
restricts clients to running on the machine with the display is unnatural.

Like these systems, NeWS is a network window server whose clients can be any­
where. However, it takes the provision of adequate petformance a step further.
The ability to write the parts of a user interface needing instantaneous response,
such as rubber-band lines, in the POSTSCRIPT language and have them executed
by the server without client intervention solves one of the critical petformance
problems of current systems. The ability to down-load iQterpreters for special,
application-specific protocols allows better use to be made of the limited network
bandwidth.

A window system that provides only RasterOp, lines, and simple text makes the
construction of graphically interesting interfaces difficult. The Macintosh, for
example, is a system that has a richer graphics model and as a result has a flair
for more interesting intetfaces at the cost of a somewhat more complex applica­
tion programmer interface. NeWS's use of the higher-level stencil/paint imaging
model provides advanced imaging capabilities without increasing the apparent
complexity .

A. Adobe Systems, POSTSCRIPT Language Reference Manual, Addison­
Wesley, July, 1985.

B. John Warnock and Douglas Wyatt, "A Device Independent Graphics Imag­
ing Model for Use with Raster Devices," Computer Graphics, vol. 16, no. 3,
July, 1982.

C. Vaughan Pratt "Techniques for Conic Splines," SIGGRAPH Proceedings,
July, 1985.

D. James Gosling, "If the Earth is Round, Why is the Sun Square," Usenix
Workshop on Computer Graphics, Monterey CA, December, 1985.

E. Luca Cardelli and Rob Pike, "Squeak: A Language for Communicating with
Mice," SIGGRAPH Proceedings, July, 1985.

F. Programmer's Reference Manualfor SunWindows, Sun Microsystems,
April, 1985.

G. James Gettys, "Problems Implementing Window Systems in Unix," Usenix
Proceedings, Denver, CO, January, 1986.

H. David Rosenthal and James Gosling, "A Window Manager for Bitmapped
Displays and Unix," in Methodology of Window Managers, ed. F. R. A.
Hopgood et aI., North Holland, 1986.

I. C. Espinosa and C. Rose, QuickDraw: A Programmer's Guide, Apple Com­
puter, March, 1983.

J. Adele Goldberg and David Robson, Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, May, 1983.

~\sun ~ microsystems
Revision A of 15 January 1988

2
NeWS Extension Overview

NeWS Extension Overview ... 13

2.1. The Lightweight Process Mechanism .. 13

2.2. Canvases and Shapes ... 14

Visibility .. 14

Damage ... 14

Event Consumption ... 15

Offscreen .. 15

Cursor .. 16

2.3. Colors ... 16

2.1. The Lightweight
Process Mechanism

2
NeWS Extension Overview

NeWS implements a number of extensions to the POSTSCRIPT language (as
specified by Adobe in the PostScript Language Reference Manual) which are
specific to NeWS for the purposes of interactive behavior. These extensions
include new types and new operators. The POSTSCRIPT language was initially
designed for driving printers. As a part of NeWS, the POSTSCRIPT language inter­
preter has to deal with multiple asynchronous clients, interaction, displays, key­
boards, and locators. This chapter is an overview of the NeWS extensions in the
areas of lightweight processes, canvases, colors and cursors. For a full descrip­
tion, see Chapter 11, NeWS Type Extensions and Chapter 12, NeWS Operator
Extensions.

Many application programmers will not be concerned with most of the primitives
described here. They will use instead the packages that have been defined using
these primitives to support windows, menus, and the like. These packages of
POSTSCRIPT language code are described starting in Chapter 4, Extensibility
through POSTSCRIPT Language Files.

The NeWS server maintains a set of simultaneously executing lightweight
processes. Each process is an individual thread of control with its own graphics
context, dictionary stack, execution stack, and operand stack. These processes all
exist in the same address space; two processes can refer to the same object if they
can both locate the object. Typically, each connection to the server obtains a
separate thread of execution, with its own context. This thread can fork new
threads and form a group of NeWS processes. Such groups of processes are
represented by process objects.

Processes can fork new processes, kill them, wait for them to die and obtain a
return value, pause to allow other processes to run, suspend themselves and
other processes, continue suspended processes, and examine the state of other
processes by opening the process objects that represent them as dictionaries.

The lightweight process scheduling policy is non-preemptive (a process contin­
ues to execute until it blocks) and serial (only one process is active at a time).
Processes block by executing file I/O requests, the pause or suspendprocess
primitives, or awaitevent.

NOTE The current scheduling policy might change to pre-emptive scheduling in the
future. Thus, it is unwise to write POSTSCRIPT language code that relies on the
behavior of a non-pre-emptive scheduling policy. POSTSCRIPT language code

~\sun ~ microsystems
13 Revision A of 15 January 1988

14 ;--;eWS 1.1 Manual

2.2. Canvases and Shapes

Visibility

Damage

that accesses shared data structures should use monitors to protect th(JLy/i
structures.

A canvas is a surface upon which are drawn using the POSTSCRIPT langua~
Each NeWS process has a canvas associated with it called the current canva,
Canvases exist in a hierarchy. At the root of a hierarchy is a device canvas
device canvas is created as the result of the create device operator and reprl
the background, sometimes called the "desktop." Additional canvas obje(
may be created with newcanvas calls.

A canvas can be repositioned in the list of its siblings with canvastotop an
vastobottom. Its x,y offset relative to its parent may be set with movecall'
canvas may be inserted inserted above (insertcanvasabove) or below (insc
vasbelow) another canvas.

Canvases need not be rectangular. Their shape may be set with reshapeca
to be the region outlined by the current path. Each canvas also has associa
with it a default transformation matrix. The reshapecanvas operator sets;
vas' default transformation matrix from the current matrix.

If a canvas is to be visible on a display device, it and its ancestors must be
mapped. Canvas mapping is controlled by the Mapped field of a canvas, '
is a boolean value. When a canvas is created, it is initially unmapped, so t
value of its Mapped field will be false. Setting this field to true and false
map and unmap the canvas from the display.

A canvas may be transparent: its image does not obscure any image draWl
underneath it by a parent or sibling. Any image drawn on a transparent ca
drawn on its parent. A non-transparent canvas is referred to as being opaCi.
Transparency is controlled by the Transparent field of a canvas, a boolea
Transparent canvases are useful for defining areas that are sensitive to inpl
that do not interfere with drawing in other canvases.

A canvas is considered to have damage if all or part of its image does not
There are several ways that damage can occur. A canvas may become daI
when, for example, another canvas is moved away from it, exposing the fi
vas. The entire canvas is considered to be damaged when it is first mappe
the screen (if it is not retained) or when it makes the transition from non-r,
to retained. The entire canvas is also considered to be damaged whenever
reshaped.

All programs have to cope with canvas damage and must be able to recon
the damaged part. An opaque canvas may be retained; that is, any porti01
canvas obscured by other canvases is saved in some offscreen area. Wher
these obscured areas is exposed, the offscreen copy is simply moved onto
screen. If the canvas were not retained, there would be no copy, and the c
would be damaged. Retaining a canvas is purely a performance enhancen

Damage can be spread with copyarea, which copies a region on the canv,
one place to another. If part of the source is damaged, the correspond~
tion area becomes damaged.

~~sun ~ microsystems
Revision A of 15 Jan

Event Consunlption

Offscreen

Chapter 2 - NeWS Extension Overview 15

Damage accumulates on a canvas until some process responds to it. Each opaque
canvas has a record of its damaged regions. As more damage occurs, this record
is enlarged. The damagepath operator sets the current path to an outline that
encloses all the damaged parts of the canvas, and clears the damage record. The
sequence of events followed to deal with damage repair is generally:

o Damage occurs on an opaque canvas.

o A IDamaged event is generated.

o A NeWS process receives the event.

o The NeWS process sends a message to the client program informing it that
damage has occurred.

o The client program receives the message and sends a message back to ini­
tiate the repair.

o When the repair initiation message is received by a NeWS process, it executes
damagepath cJipcanvas for the opaque canvas that was damaged.

o The NeWS process may send back a description of the region damaged.

o The client program sends a NeWS program to the server that will redraw the
damaged region (or it will draw the whole window and let the clipcanvas
operation throwaway irrelevant operations).

o The client program sends an end-of-repair message that executes newpath
clipcanvas.

This multi-level handshake is used so that the client and server can proceed asyn­
chronously and yet be properly synchronized when they deal with damage.

Canvases also have a property that controls their behavior with respect to input
events. The EventsConsumed field controls what happens to events that occur
on this canvas. The EventsConsumed field can have one of three keyword
values: I AIIEvents, IMatchedEvents, or INoEvents. If EventsConsumed
equals I AIIEvents, all events on this canvas are consumed by it. That is, no can­
vas behind this one will receive any events. If EventsConsumed equals
IMatchedEvents, then events that match an interest on this canvas will be con­
sumed, while non-matching events will be passed through to canvases behind
this one2. Finally, if EventsConsumed is equal to INoEvents, no events will be
consumed, and all will be pass through to the canvases behind.

A NeWS program can maintain an offscreen image by use of a canvas that is
retained, unmapped, and opaque. A process can draw in one of these canvases in
the same way it draws on other canvases, the only exception being that the image
will not appear on the screen. One way to have the image appear is to simply
map the canvas onto the screen. Another way of having the image appear is to
use the imagecanvas operator to copy the image from the offscreen canvas to an
onscreen canvas.

2 For an explanation of interests and events, see Section 3.3, Interests: Event Selection of Chapter 3, Input.

~~sun ~~ microsystems
Revision A of 15 January 1988

16 NeWS 1.1 Manual

Cursor

2.3. Colors

Every canvas has a ~u~sor im,age tha~ is displayed whenever the ~ouse C~\(
over the canvas. Th1s 1mage 1S set wIth setcanvascursor and retneved WIth
getcanvascursor. A child canvas inherits its parent's cursor upon creation (
canvas. A cursor image is composed of a black primary image and a white,
image. These images are superimposed on their origins. These images are 1

ing more than characters in a font. The hot spot of a cursor (the pixel coord
to which the mouse is pointing) is the origin of the primary image's charactt

The current location of the cursor in the current coordinate system is retume
currentcursorlocation. Similarly setcursorlocation will move the cursor 1

new location. We discourage use of setcursorlocation because it causes di~
certing cursor jumps.

The POSTSCRIPT language has a notion of color, which is implemented in tl
sethsbcolor and setrgbcolor primitives. NeWS extends this notion by addin
color type. Objects of type color can be created with either the HSB or the
color model. Color objects can also be compared with the contrastswithcu
primitive.

~\sun ~~ microsystems
Revision A of 15 J anu

3
Input

Input .. 19

3.1. Input Events .. 19

3.2. Submitting Events for Distribution ... 20

3.3. Interests: Event Selection .. 20

Changing and Reusing Interests ... 21

Inquiring for Current Interests ... 21

3.4. Event Distribution ... 21

Recei ving Events .. 21

Event Matching .. 21

Name and Action Matching ... 22

Canvas Matching .. 22

Process Matching ... 22

Processing after an Interest Match .. 22

Order of Interest Matching .. 23

Interest Lists ... 23

Multiple Matches ... 23

3.5. Special Event Types ... 24

Actions for Enter and Exit Events .. 24

3.6. Input Synchronization ... 25

3.7. Event Logging ... 26

3.8. Example .. 27

3.1. Input Events

3
Input

Printers don't receive input from the user; conversely, window programs do
much more than display graphics. For example, they usually change their
display in response to outside events such as mouse clicks. Hence, input han­
dling in NeWS is a major extension to the POSTSCRIPT language. This chapter
describes the primitive data structures and operations for handling input in NeWS.
These primitives provide a minimal user-input system. More sophisticated user­
interfaces can be constructed entirely in the POSTSCRIPT language on top of these
primitives (for example, the Extended Input System described in Chapter 5, The
Extended Input System).

Input in NeWS is treated as a series of events that are received, translated,
dispatched, and routed by the server to its clients. Events .are structured objects.
They contain a number of fields, which are accessed as though the event were a
dictionary and the fields were keys in that dictionary. Most of these fields are
mentioned as they become relevant in this chapter. The full definition of event
fields can be found in Chapter 11, NeWS Type Extensions. The POSTSCRIPT
language interface is structured in such a way that adding fields does not affect
existing POSTSCRIPT programs.

Among the most interesting fields in an event are:

o An event Name (a POSTSCRIPT language object - generally a small number
to represent a character, or a keyword such as lLeftShift or
IMouseDragged, but any object is legal.

o An event Action (another POSTSCRIPT language object, with more variety in
common types and semantics).

o A TimeStamp, which shows when the event happened.

o A Canvas and a coordinate pair (XLocation, YLocation), which give an
event location in terms of the cursor position at the time of the event.

Many events are generated by the system to report user actions like mouse
motion and key presses. Events can also be generated by NeWS processes, and
submitted for processing just like system-generated events. The createevent
primitive leaves a new event on the stack with null or 0 in all fields. The copy
primitive can be used to copy the fields of one event into another en masse. This
extension of the copy primitive is closely analogous to its usage with two dic­
tionaries. (For the integrity of the input system, the event's lsi nterest flag,

~~sun ~ microsystems
19 Revision A of 15 January 1988

20 NeWS 1.1 Manual

3.2. Submitting Events for
Distribution

3.3. Interests: Event
Selection

Serial number and IsQueued fields are not copied.)

Any event can be passed into the distribution mechanism to be received by a
process whose interests it matches. Three primitives are used in this context

sendevent
takes an event off the stack. The event is sorted into the event queue an
distributed as described below in Section 3.4, Event Distribution.

recallevent
takes an event off the stack and removes that event from the event quell!
This implies that the event must have been _put in the queue by sendeve
since no process will have a reference yet for system-generated events.
also requires that the client must have saved some reference to the even
given to sendevent, in order to pass the same event to recallevent.
recallevent is useful for turning off a timer event that has been sent but
yet delivered.

redistri buteeven t
takes an event (which should have been received by this process via
awaitevent, or be a copy of such an event) and resumes the distributior
cess right after the interest that resulted in the event's delivery to this p
cess. (The following sections provide detailed discussions of interests.:
This behavior is useful when a process receives an event via an exclusi1
interest (described below) and now needs to continue distribution (perh
after modifications) as though the interest had not been exclusive.

redistributeevent does not return events to the event queue; recallevel
will not work on a redistributed event. An interest that has been tested
for a match against an event will not be tested again when the event is 1

tributed; an interest will never match the same event twice. It is pointll
pass an event that has never been distributed to redistributeevent; the
will simply be discarded.

Processes indicate their interest in receiving events by constructing one or r
ideal events resembling what they want to receive and passing each ideal e'
as an argument to expressinterest. In other words, to get a particular kind I

event, create an event like it and express interest in that event. An event the
been used as an argument to expressinterest in this way is called an intere~
When real events are generated and distributed, they are are matched to intf
on the Name, Action, Canvas, and Process fields. Non-specific ("wild-ca
matches may be specified, as described under Section 3.4.2, Event Matchin,
below. Two other event fields that affect the matching behavior of an inten
its Exclusivity and its Priority; their effects are described under Section 3.­
Order of Interest Matching below.

An expression of interest may be canceled by revokeinterest. When intere
expressed in an event, its IsInterest field is set to true. IsInterest is false fc
events if:

o they have never been passed to expressinterest,

~\sun ~ microsystems
Revision A of 15 Janua

Changing and Reusing
Interests

Inquiring for Current
Interests

3.4. Event Distribution

Receiving Events

Event Matching

Chapter 3 - Input 21

o they have subsequently been passed to revokeinterest,

o the process that expressed the interest has tenninated, or

o the canvas on which the interest was expressed is destroyed.

The Name and Action of an interest may be changed while it is active, and the
change will be reflected in the next match attempted against that interest. How­
ever, changes to other fields in the interest will not be recognized and should not
be attempted. Rather, the interest should be revoked, the modifications per­
fonned, and then the interest should be expressed again.

If an interest is used as the argument to a second invocation of expressinterest
before it has been revoked or otherwise inactivated, the second expression of
interest overrides the first. If the same process expresses interest in the same
event twice in succession, the second expression is ignored.

The set of interests which are currently active for any canvas or process may be
retrieved as an array of events, by treating the canvas or process as a dictionary,
and getting the value associated with the Interests key. This mechanism is
described fully in Chapter 11, NeWS Type Extensions. Similarly, the global
interest list (the set of interests which have been expressed with null in their
Canvas) is returned by the operator giobalinterestlist. The result is an array of
events, ordered on priority (highest first).

Input events enter the system as they are generated by the NeWS server, or when a
process executes sendevent or redistributeevent. Events generated by the
server are stamped with the time of their creation; other events have whatever
TimeStamp is left by the process that provides them. (A process can use the
currenttime and lasteventtime primitives to generate a value for the
TimeStamp field.) In any case, newly received events are sorted into a single
event queue according to their TimeStamp values.

Events are removed from the head of the event queue one at a time as the server
schedules processes to be run. No event will be distributed before the time indi­
cated in its TimeStamp. Copies of the event are distributed to all processes
whose interests it matches and each of those processes is given a chance to run
before the next event is taken from the queue.

A process gets its next input event by executing awaitevent. If no event has
been distributed to it, the process will block. If a distributed event is waiting,
awaitevent will return immediately, with the new event on the top of the operand
stack.

Matching between a real event and an interest is defined as follows:

~\sun ,~ microsystems
Revision A of 15 January 1988

22 NeWS 1.1 Manual

Name and Action Matching

Canvas Matching

Process Matching

Processing after an Interest
Match

D The Name and Action fields are treated the same.

D Null in an interest field matches anything in the corresponding field of
real event.

D A simple object (boolean, keyword, or number) in the interest matches
same value.

D An array or a dictionary in the interest specifies a class of values the re
event may match. A real event value matches if it is any of the elemer
the array, or keys in the dictionary.

A null Canvas in the interest matches events not directed to a specific canv
This includes keystrokes and mouse-button/motion events. A non-null can
the interest will match events occurring when the cursor is within that canv
other events with the canvas field set to that canvas (e.g., IDamaged events

The Process field of an interest is set by expressinterest (to the process ex!
ing the interest). Normally, events being distributed have null in their Pro(
fields and will be matched against interests without restriction. If an event
specific process in its Process field, the event will only match interests that
been expressed by that process. (It must still match the interest on Name,
Action, and Canvas.)

If all of these conditions are met, the event matches the interest.

When an event matches an interest, a copy of the event is generated. JC-~'
copy, the Interest and Canvas fields are set to the interest and canvas liYdr'(
If the Name and/or Action values matched a key in a dictionary in the
corresponding field in the interest, one of two things will happen:

1. If the value in the dictionary corresponding to the matching key is not
cutable, then that value is stored in the Name or Action field in the ev

2. If the dictionary value is executable, then the value in the correspondi
field of the event is not modified; instead, the executable object from 1

tionary is queued for execution in the receiving process immediately (
the event is returned by awaitevent.

If both the Name and Action fields of the event have such executable
matches, the Name is executed first, then the Action.

Then the copy of the event is placed on a private queue for the process tha
expressed the interest; if that process was blocked in awaitevent, it is mad
runnable. The original event then may be matched against further interest

3 The null-canvas option of an interest is not logically necessary; the same effect can be achieved t
interest expressed on an overlay canvas for the root window. This overlay style has an additional ben€
allows recursive window managers. The null option has been retained for coding convenience among
willing to forego the generality.

4}\sun
~ microsystems

Revision A of 15 Jam

Order of Interest Matching

Interest Lists

Multiple Matches

Chapter 3 - Input 23

An event that is being distributed may potentially match more than one interest.
This section describes which interests will be satisfied by the event. The order in
which interests are considered for a match during the distribution of a real event
is determined by the interest list each belongs to and by their order within those
lists.

Each interest is contained in one interest list. There is an interest list for each
canvas; it holds all the interests that have been expressed on that canvas. There
is also one global interest list, which contains all the interests expressed with a
null Canvas field. An interest will never appear in more than one interest list,
and any interest list may be empty.

When an event is being distributed, its Canvas field is checked, and if it is non­
null, the event is matched only against interests on that canvas' interest list. If
the real event's Canvas is nUll, the real event is first matched against interests on
the global list. If none matches, it is matched against interests on the lists of can­
vases that contain the event's location. Canvas-specific interest lists are taken in
leaf-to-root order in the canvas tree. That is, the interest-list of the front-most
canvas is considered first, then the interest-list of its parent, then its parent, etc.

Within each interest list, the interests are ordered on their Priority field; higher
numeric values come first. Among interests on the same list with the same
Priority, the last-expressed interest is tested first.

The sequence of testing against interests continues until it is stopped by one of
the following conditions:

1. Any interest may have its Exclusivity field set true; if so, an event that
matches that interest will not be considered against any further interests.

2. A canvas may absorb events, so that they are not tested against interests on
any canvas behind it. This.is controlled by the canvas' EventsConsumed
field.

o If EventsConsumed is set to I AIlEvents, no event that hits the canvas
will be considered against the interest list of any canvas that lies behind
it.

o If EventsConsumed is IMatchedEvents, events that match an interest
on that canvas' list will be stopped, but others will pass through.

o If EventsConsumed is INoEvents, events will be considered against
interests on canvases farther back, regardless of whether they matched
an interest on this canvas.

In these terms, the global interest list acts as if it were a list on a canvas that con­
sumes MatchedEvents; events that match an interest on the global list don't get
through to any canvas-specific list, unless they are explicitly redistributed.

Revision A of 15 January 1988

24 NeWS 1.1 Manual

3.5. Special Event Types

Actions for Enter and Exit
Events

NeWS generates a number of different input events. Keystrokes generallC-~
numeric values in their Name, but most others are identified by a keywOlc?i
Name. The most important event types are described here.

o IDamaged: Damage events are generated for a canvas whenever it is d,
aged. By the time a process repairs the damage, several events may ha'
accumulated. The total damage is accessible with damagepath. The
Action for a damage event is null, and the Canvas field identifies the
affected canvas.

o IEnterEvent, IExitEvent: When the cursor is moved across a border
between canvases, multiple events are generated. In each event, the Nr
either IEnterEvent or IExitEvent, depending on the direction of the cr
ing. Details of the Action are described in the next section.

o IMouseDragged, ILeftMouseButton, IMiddleMouseButton,
IRightMouseButton: Manipulation of the mouse generates events witt
these names. If the mouse moves, the event Name is IMouseDragged
the Action is null. If a mouse button is pressed or released, the Name
identifies which button is affected and the Action is one of the keywon
IDownTransition or IUpTransition.

o Timer events: There are no special timer events in NeWS; rather, the gu:
tee that no event will be delivered from the event queue before the timt
TimeStamp means that any event can be used to generate another eveI
some time in the future. The example program at the end of this chJtpt j

illustrates a timer event.

There is no requirement that a process send a timer event to itself; it ca
as easily send a delayed message to another process, or broadcast one,
changing the Process field in the event passed to sendevent.

Window-crossing events are generated whenever the cursor crosses the bou
between two canvases. Each such event is directed to a particular canvas
(identified in the Canvas field of the event) and each specifies how the cun
moved with respect to that canvas.

The Name field of the event is either IEnterEvent or IExitEvent. The ACI
field of the event is 0, 1, or 2. The definitions below ease the explanation c
these values mean.

Let us say that the frontmost canvas under the cursor directly contains the I

Then a canvas is directly affected by a crossing if it directly contains the Cl

either before or after the crossing. (If the same window directly contains t1
sor both before and after an event, there is no crossing.)

A canvas may also be indirectly affected. This happens when the canvas i1
directly affected, but the cursor crosses into or out of the canvas' subtree.
is, a canvas is indirectly affected if it is an ancestor of either the canvas the
directly contains the cursor before the crossing or the canvas that directly (
tains the cursor after the crossing, but not both. (If a canvas is ancesto~
canvases that directly contain the cursor both before and after a crossi~i

~\sun ~~ microsystems
Revision A of 15 Janu

o

o

o

Table 3-1

3.6. Input Synchronization

Chapter 3 - Input 25

affected.)

The following table explains the six combinations of Name and Action for cross­
ing events.

Boundary Crossing Events

Name Action Explanation
IEnterEvent 0 The canvas now directly contains the cursor; the

previous direct container was not a descendant
of this canvas.

1 The canvas now directly contains the cursor; the
previous direct container was a descendant of
this canvas.

2 The canvas now indirectly contains the cursor;
the previous direct container was not a descen-
dant of this canvas.

IExitEvent
0 The canvas used to directly contain the cursor;

the new direct container is not a descendant of
this canvas.

1 The canvas used to directly contain the cursor;
the new direct container is a descendant of this
canvas.

2 The canvas used to indirectly contain the cursor;
the new direct container is not a descendant of
this canvas.

A crossing event (either IEnterEvent or IExitEvent) is generated for every
affected canvas, although there is no requirement that such events match any
interest.

Processing of input events is synchronized at the NeWS process level inside the
NeWS server. This means that all events are distributed from a single queue,
ordered by the time of occurrence of the event, and that when an event is taken
from the head of the queue, all processes to which it is delivered are given a
chance to run before the next event is taken from the queue. When an event is
passed to redistributeevent, the event at the head of the event queue is not distri­
buted until processes that receive the event in its redistribution have had a chance
to process it. No event will be distributed before the time indicated in its
TimeStamp.

In some cases, a stricter guarantee of synchronization than this is required. For
instance, suppose one process sees a mouse button go down and forks a new pro­
cess to display and handle the menu until the corresponding button-up. The new
process must be given a chance to express its interest before the button-up is

~\sun ~ microsystems
Revision A of 15 January 1988

26 ~eWS 1.1 Manual

3.7. Event Logging

The interest is required so that
awaitevent doesn't get a syntax
error; it is not considered in the
event-logging process. Therefore, it
should not match any events; if it
does, the process will receive two
copies of those events. A -1 in the
Name or Action is unlikely to match
an event; an interest expressed on
an unmapped canvas will also
never match.

distributed, even if the user releases the button immediately. In generalr~'\
ever processing of one event may affect the distribution policy, distribut1'b{\
the next event must be delayed until the policy change has been completed.
is done with the blockinputqueue primitive.

Execution of blockinputqueue prevents processing of any further events fre
the event queue until a corresponding unblockinputqueue is executed, or a
timeout has expired. The blockinputqueue primitive takes a numeric argur.
for the timeout; this is the fraction of a minute to wait before breaking the Ie
This argument may also be null, in which case the default value is used
(currently 0.0083333 == .5 second). Block/unblock pairs may nest; the que
not released until the outermost unblock. When nested invocations of
blockinputqueue are in effect, there is one timeout (the latest of the set ass(
ated with current blocks).

Distribution of events returned to the system via redistributeevent is not
affected by blockinputqueue, since those events are never returned to the e
queue.

As an aid to developing NeWS applications, there is a facility for monitoring
distribution of events by the NeWS server. A process may be designated as t
event-logger by a call to seteventlogger. This process will be given a copy
every event as it is distributed by the NeWS server. This includes events as t
are taken for distribution from the input queue, and also events handed to rt
tributeevent. After having expressed some interest, the process shoulcLlqo
doing an awaitevent.

That awaitevent will return a copy of each event as it is distributed. The p:
may then do whatever it wishes with its copy; for example, it might print
interesting fields in a window or a file. The file eve n t log. P s described
Chapter 4, Extensibility through POSTSCRIPT Language Files provides suct
matted display of events.

The current event-logging process, or null if there is none. is returned by a
to geteventlogger. Event-logging may be turned off by passing null as the
ment to seteventlogger.

~\sun ~ microsystems
Revision A of 15 J anu

3.8. Example

Chapter 3 - Input 27

The following short program illustrates many of the features of the NeWS input
system described in this chapter. It prints clock ticks on its standard output for
15 seconds; then it prints a final message and goes away.

Iclock { % line 1
{

Id 5 dict dup begin
!Tick ITock def
!T ock ITick def % line 5
IPumpkin {

(Pumpkin time \n) print
exit

} def
end def % line 10
le1 createevent def
e1 IName d put
e1 expressinterest
le2 e1 createevent copy def
e2 begin % line 15

IName IPumpkin def
!TimeStamp currenttime .25 add def

end
e2 sendevent
le3 e1 createevent copy def % line 20
e3 dup begin

IN arne !T ock def
!TimeStamp currenttime def

end {
dup begin % line 25

!TimeStamp TimeStamp .016667 add def
end sendevent
awaitevent dup begin

Name () cvs print
(... \n) print % line 30

end
} loop

} fork
} def

In lines 3 - 10, the dictionary 'd' is defined to have three entries: '/Tick' and
'/Tack' are defined to each other, and '/Pumpkin' is defined to be a small pro­
cedure that prints a message and exits.

This dictionary is then assigned to the INa me field of the event 'e 1,' and 'e l' is
passed to expressinterest (lines 12 and 13). This defines a class of events the
'clock' process will accept and, incidentally, specifies some processing to be
done as the events are received. The events that 'e1' will match fit the following
criteria:

o The Name must be one of '/Tick,' '/Tack,' or '/Pumpkin' (keys in the dic­
tionary 'd' in the Name).

~\sun ,~ microsystems
Revision A of 15 January 1988

28 ~eWS 1.1 Manual

o Any Action is valid (null in the Action).

o The location of the event doesn't matter, but events directed to a specif
canvas will not match (null in the Canvas).

Because the Name in the interest is a dictionary, special processing is invol
matching events. If the event Name is 'ffick' or 'ffack,' it will be translat
the other as the event is matched. (Non-executable values in the dictionary
replace the value in event field.) If the event Name is '/Pumpkin,' it will r
changed; rather, the value in 'd' of the procedure defined as '/Pumpkin' wi
executed as the awaitevent at line 28 returns. (Executable values in the di(
ary are queued for execution without changing-the field in the event.)

Line 14 creates the event 'e2' and initializes it to be the same as 'e 1.' Thi
up the Name and Process of 'e1' (which was Set by expressinterest); the]
will be replaced, but the Process is used to direct 'e2' directly back to this
cess. In lines 15 - 18, the Name of 'e2' is changed to '/Pumpkin' and its
TimeStamp is set to a quarter of a minute in the future. Then 'e2' is inser
the event queue to be delivered when its time arrives (line 19).

Lines 20 - 24 similarly create and initialize another event, 'e3,' and leave
the stack for the main loop. The first part of the loop (lines 25 - 27) adds :
a minute to the TimeStamp of the event on the top of the stack (which is '
the first time through), and sends it back for distribution a second later.

This leaves two events in the event queue which this process will be intere
when they are eventually distributed: the short-term 'Tick' / 'Tack' ~"~
which cycles every second, and the '/Pumpkin' event waiting for 15 Sc2~1
expire. The awaitevent on line 28 will block until one or the other is deE'
If the event that arrives is one of the copies of 'e3,' its Name is translated
matching process and printed in line 29 and the event is left on the stack f~
another trip around the loop (and distribution cycle). When the '/Pumpki
event finally arrives, its associated procedure executes as awaitevent retUl
minating the loop, and thus the 'clock' process .

• ~sun ~ microsystems
Revision A of 15 Jan

Extensibility through POSTSCRIPT
Language Files

4

Extensibility through POSTSCRIPT Language Files ... 31

4.1. Server Initialization .. 31

4.2. File Organization ... 31

POSTSCRIPT language Files Loaded at Initialization 31

init .ps ... 31

systoklst . ps .. 32

colors. ps .. 32

cursor. ps .. 32

statusdict. ps ... 32

icon.ps ... 32

util.ps ... 32

liternenu. ps ... 32

dernornenu. ps ... 32

litewin .ps ... 32

liteUI. ps .. 32

POSTSCRIPT language Files for User Settings .. 32

user .ps ... 32

start up. ps ... 32

Other POSTSCRIPT language Files ... 33

compat. ps .. 33

Ii tei tern. ps ... 33

Ii tetext. ps ... 33

debug. ps ... 33

event log . ps ... 33

journal. ps ... 33

repeat. ps .. 33

4.3. Some POSTSCRIPT language Extensions in the *. ps Files 33

Miscellaneous 33

4.4. User Interaction and Event Management ... 36

4.5. Rectangle Utilities ... 38

4.6. Graphics Utilities ... 39

4.7. CID Utilities ... 40

4.8. Text and Font Utilities .. 41

4.9. Journalling Utilities .. 42

JournaUing Internal Variables ... 43

4.10. Constants ... 43

4.11. Key Mapping Utilities .. 43

4.12. Repeating Keys .. 44

4.13. Colors Definitions ... 45

4.14. Logging Events .. 45

UnloggedEvents ... 45

4.1. Server Initialization

4.2. File 0 rganization

POSTSCRIPT language Files
Loaded at Initialization

init.ps

4

Extensibility through POSTSCRIPT
Language Files

There is much more to producing a useful, full-featured window systems plat­
form than the extensions to the POSTSCRIPT language described in the previous
two chapters; an ideal server would provide some support for tailoring the user
interface, selections between processes, the creation of windows and menus, etc.

This is where the extensibility inherent in the POSTSCRIPT language and NeWS

has a tremendous impact. The NeWS server includes these extra features, but they
are not "hard-wired" into the server; instead, they are provided as sets of
POSTSCRIPT language procedures in ASCII files that the server loads, usually
when it starts up.

You can look at these files, and are encouraged to do so: the files are in
$NEWSHOME/ lib/NeWS, where $NEWSHOME is the directory where you have
mounted NeWS (usually /usr /NeWS). What is more, you can redefine or
replace any of the procedures in those files, either globally when the server starts
up, or within a single process.

The next several chapters explain some of the facilities implemented in these
files; this chapter gives an overview of them, and lists some of the miscellaneous
procedures they define.

When you start up the NeWS server, its default initialization procedure (see the
news_server(l) manual page) simply executes the POSTSCRIPT language in
an ASCII file called init. ps and then runs the POSTSCRIPT language procedure
'&main'that ini t. ps defines (and which user. ps may have redefined).
ini t . ps in tum loads other POSTSCRIPT language files.

Here is an outline of the organization and contents of these POSTSCRIPT language
files.

Initializes the frame buffer; defines certain primitives in the POSTSCRIPT

language rather than C; defines some' 'oughta-be" primitives such as case;
defines and starts the server; sets certain constants and system defaults; loads
most of the initialization files described here. ini t . ps also defines a default
"root" menu" from which you can invoke common tools such as a terminal
window and a clock. This rootmenu is one of the things you will probably want

~\sun ~ microsystems
31 Revision A of 15 January 1988

32 NeWS 1.1 Manual

systoklst.ps

colors.ps

cursor.ps

statusdict.ps

icon.ps

util.ps

litemenu.ps

demomenu.ps

litewin.ps

liteUI.ps

POSTSCRIPT language Files
for User Settings

user.ps

startup.ps

to redefine; see Appendix A, Using NeWS, for tips on customizing yourOt

A list of POSTSCRIPT language primitives that are contained in the system c
tionary systemdict.

1m plements the X.I OV 4 lib/rgb colors set. Adds the dictionary / Colordict t
systemdict.

Builds a dictionary useful for naming characters in cursorfont, a special fon
cursors. Client-defined cursor fonts can also be built; see Chapter 16, Font
Tools, for more information.

Adds a statusdict to systemdict for users needing extreme printer compatil
The file statusdict . ps implements the statusdict dictionary and its
printer-specific operators such as printername and setsccbatch, as specific
Section D.6 of the PostScript Language Reference Manual. Many of these
operators are pseudo-implemented, since they have no meaning in a windo'
tern.

Builds a dictionary useful for naming characters in iconfont.

Procedures shared by packages; anything that is used by more than one pac
should be defined in here.

A menu package.

Contains the demos that appear in the root menu. Some of these are run b~
cuting a UNIX program with forkunix; the code for other demos is part of
POSTSCRIPT language file itself.

A window manager package.

Defines the user interface for NeWS. Runs several other * . ps files, which ~

for selections (cutting and pasting), set up an input focus, and load the app
ate translation table for your keyboard.

ini t . ps searches for these in the directory you started the NeWS server f
and failing that, looks in your home directory. Sample modifications to th
given in Section A.6.I, Modifying the NeWS Server.

Private definitions and re-definitions of system and package POSTSCRIPT
language words.

If startup. ps exists, ini t . ps will execute the POSTSCRIPT langua
fragments in it before it loads any of the other packages. This lets you me
characteristics of the server that are used before any of the other POSTSCR
language files (including user. ps) are loaded; for example, verbose? I
and the InitPaintRoot procedure which draws the background on the C

~\sun ~ microsystems
Revision A of 15 Jan

Other POSTSCRIPT language
Files

cornpat.ps

liteitern.ps

litetext.ps

debug.ps

eventlog.ps

journal.ps

repeat.ps

4.3. Some POSTSCRIPT
language Extensions in
the * . ps Files

Miscellaneous

Chapter 4 - Extensibility through POS~SCRIPT Language Files 33

framebuffer while NeWS is loading.

There are other files that define extensions to NeWS that are loaded by individual
programs rather than by ini t . ps:

Defines routines that make the server backwards-compatible with older NeWS
client programs; in effect the server is programmed to emulate previous versions
of the server.

A simple item package used by it ernderno.

A simple text package that is loaded by li tei tern. ps; it also supports a
blinking caret.

POSTSCRIPT language procedures used when debugging.

A small package for monitoring input-event distribution, described under Section
4.14, Logging Events below.

A package for recording user actions and replaying them in "player-piano" mode,
describe below under Section 4.9, Journalling Utilities.

Implements variable-rate repeating on keyboard keys. Described under Section
4.12, Repeating Keys below.

Here are some of the more useful and commonly used POSTSCRIPT language pro­
cedures in the * . ps files listed above. There are many more than are docu­
mented here. These procedures are ultimately defined using POSTSCRIPT
language operators described in the PostScript Language Reference Manual or in
Chapter 12,NeWS Operator Extensions, of this manual. If these procedures don't
do quite what you want, look at their source and define your own versions.

case and append are operations that nearly all POSTSCRIPT programs need to
perform. sprintf/printf/fprintf are near equivalents to their UNIX counterparts.
arrayinsert, arraydelete and arrayop are useful operations on arrays.
dictbegin/dictend save you from counting the size of dictionaries. modifyproc
brackets a procedure. createcanvas is a quick way to create a canvas. sleep
allows a POSTSCRIPT language procedure to sleep for an arbitrary period, and
getvalue and setvalue are useful for checking the status of an item. errored is
very helpful for graceful error-handling.

~~sun ,~ microsystems
Revision A of 15 January 1988

34 ~eWS 1.1 Manual

case value {key proc key key proc ... } case

getvalue

setvalue

append

sprintf

printf

Compares value against several keys, performing the associated proce~.e' i
match is found. The key IDefault matches all values. The following conve
number to a (whimsical) string:

MyNumber {
1 {(One)}
2 {(Two)}
345 {(Between 3 & 5)}
IDefault {(Infinity)}

} case

- getvalue value
Returns the Item Value. The value depends on the nature of the object (e.g.
a button, it is an boolean).

value setvalue
Takes value and sets ItemValue to agree with it. Value is dependent on th
nature of the object.

obj 1 obj2 append obj3
Concatenates arrays, strings, and dictionaries. In case of duplicate diction~
keys, the keys in the second dictionary overwrite the first's.

formatstring argarray sprintf string
A utility similar to the standard C spr intf(3S). formatstring is a string
'0/0' characters where argument substitution is to occur. Thus:

(Here is a string:%, 'and an integer:%) [(Hello) 1 0] sprintf

puts the string

(Here is a string:Hello, and an integer:1 0)

on the stack.

formatstring argarray printf
Printing form of sprintf. Prints on standard out, like print.

See also: dbgprintf

~\sun ~ microsystems
Revision A of 15 Jam

fprintf

arrayinsert

arraydelete

arrayop

modifyproc

Chapter 4 - Extensibility through POSTSCRIPf Language Files 35

file formatstring argarray fprintf
Prints to file. For example:

console (Server currenttime is:%n) [currenttime] fprintf

will print the time the NeWS server has been running on your console.
See also: console

array index value arrayinsert newarray
Creates a new array one larger than the initial array by inserting value at position
index. If index is beyond the end of the array value is appended to the end of the
array. Thus:

[fa /b /x /y] 2 0 arrayinsert ~ [fa /b 0 /x /y]

array index arraydelete
Returns a new array, deleting the value in array at position index. If index is
beyond the end of the array, the last item in the newly-constructed array is
deleted. Thus:

[fa /b 0 /x /y] 2 arraydelete ~ [fa /b /x /y]

A B proc arrayop C
Performs proc on pairs of elements from arrays A and B in turn, placing the result
in array C. For example:

[1 23] [45 6] {add} arrayop ~ [5 79]

proc head tail modifyproc {head proc tail}
Adds a head and tail modification to a procedure. Mainly used to over-ride the
behavior of a procedure. Thus:

/myproc myproc {(myproc called\n) print} {} modifyproc store

modifies the existing version of 'myproc' to print 'myproc called' each time it
is invoked.

NOTE Any o/the procedures can be keywords.

createcanvas parentcanvas numx numy createcanvas canvas
Creates canvas, a child of parentcanvas, located at (0, 0) relative to its parent and
with the given width and height.

Revision A of 15 January 1988

36 "Y.eWS 1.1 Manual

dictbegin

dictend

sleep

errored

4.4. User Interaction and
Event Management

getanimated

dictbegin
Combined with dictend, creates a dictionary' 'large enough" for subse<fUcnt
and puts it on the dictionary stack. A voids guessing what size dictionary to
create.

dictend dict
Returns the dictionary created by a previous dictbegin; together, they' 'shri
wrap" a dictionary around your defs. Usage:

IMyDict dictbegin
Imyvar 1 def

dictend def

interval sleep
sleep sends itself an event timestamped interval in the future, and returns w
that event is delivered. interval is in minutes, with 16 bits of fraction. The
usable resolution is about 10 milliseconds.

any errored bool
errored acts just like the stopped primitive, but for errors. Because this is
erally what stopped has been used for, errored is recommended.

Using errored also allows the debugger to work properly. Thus, if y01
currently using stopped as a way to detect errors, simply replace it with en

The procedures getanimated, getclick, getrect, and getwholerect are used
li tewin . ps (and hence in most windowing applications) to let the user i
cate window positions on the screen. You can use forkeventmgr and
eventmgrinterest to handle forking an event manager that deals with parti<
events. Use setstandardcursor to set a canvas's cursor to one of the stand
NeWS cursors.

xO yO procedure getanimated process
Forks a process that does animation while tracking the mouse, returning tht
cess object process to the parent process. Each time the mouse moves, the
cess executes 'erasepage xO yO moveto,' pushes the current mouse coon
nates x and y onto its stack, and calls procedure. The variables xO, yO, x, aI
are available to procedure. After procedure returns, the process executes tl
stroke operator. Thus, your procedure can use xO, yO, x, and y to build a p;
that will be drawn each time the mouse is moved - drawing a line to the c
cursor location, for example.

The process calling your procedure exits when the user clicks the mouse; i
leaves the final mouse coordinates in an array '[x y]' on top of its stack, so
they are available to the parent process via the waitprocess operator. SW-p
erasepage is executed each time the mouse is moved, the current canv;

~\sun ~ microsystems
Revision A of 15 J anu

Chapter 4 - Extensibility through POSTSCRIPf Language Files 37

be an overlay canvas when you call getanimated. getanimated is used to imple­
ment most rubber-banding operations on the screen such as in the rubber demo
program.

For example, the following code fragment animates a rubber band line that starts
at (100,100) and returns the chosen endpoint:

currentcanvas createoverlay setcanvas
100 100 { x y lineto } getanimated

wait process aload pop

% Set current canvas to an overlay.
% Fork a process to track the mouse
% and draw a line from 'xO, yO' to it.
% Wait for the animation to complete,
% then unpacks the returned 'x, y' onto
% the stack.

This slightly more complicated version of the getanimated call prompts for a
circle with its center at (100,100). The mouse controls its radius:

100 100 {
newpath xO yO
x xO sub dup mul y yO sub dup mul add sqrt
0360 arc

} getanimated

See also: createoverlay, waitprocess

get click - getclick xO yO

% Compute radius.

Uses getanimated to let the user indicate a point on the screen. getclick returns
the location of the click on the stack.

getrect xO yO getrect process
Uses getanimated to let the user "rubber-band" a rectangle with a fixed origin
xO, yO. Returns a process with which you can retrieve the coordinates of the
upper right-hand comer of the rectangle. Use waitprocess to put these coordi­
nates [xl yl] on the stack.

getwholerect - getwholerect process
Uses getclick and getrect to let the user indicate both the origin and a corner of a
rectangle. Returns a process with which you can retrieve the coordinates of the
both the origin and the upper right-hand comer of the rectangle. Use waitpro­
cess to put these coordinates [xO yO xl yl] on the stack.

forkeventmgr interests forkeventmgr process
Forks a process that expresses interest in interests, which may be either an array
or a dictionary whose values are interests. Each interest must contain, in its
/ClientData field, a dictionary having an entry (lproc) which is executed by the
event manager process. This procedure is called with the event on the stack.

NOTE The event manager uses some entries of the operand stack; do not use clear to
clean up the stack in your 'proc' procedure.

~\sun ~ microsystems
Revision A of 15 January 1988

38 NeWS 1.1 Manual

eventmgrinterest

setstandardeursor

eventname eventproc action canvas eventmgrinterest inte~~,
Makes an interest. Suitable for use by forkeventmgr or expressintere~~YF
example:

IMyEventMgr [
MenuButton {/popup MyMenu send}
IDownTransition MyCanvas eventmgrinterest

] forkeventmgr def

will create an event manager that handles popping up a menu.

primary mask canvas setstandardeursor
Sets canvas's cursor to the cursor composed of the primary and mask keyw
primary and mask must be cursors in cursorfont, the font of standard syster;
sors loaded by cursor. ps. For example:

Ihourg Ihourg_m MyCanvas setstandardcursor

sets the cursor in 'MyCanvas' to an hourglass, usually to indicate that its I
cess will not be responding to user input for a while.

Here are the cursors (and their masks) in cursorfont:

Table 4-1 Standard NeWS Cursors

4.5. Rectangle Utilities

reet

Primary Mask
Image Image Description When/W~o._

ptr ptr m arrow pointing to upper left default ~-:/
beye beye_m bullseye window frame
rtarr rtarr m "~" arrow menus
xhair xhair m crosshairs (" +" shape)
xeurs xeurs m "x" shape icons
hourg hourg_m hourglass shape start-up/canva5
nouse nouse m no cursor

See also: seteanvaseursor

reet, reetpath, reet2points , reetsoverlap, and insetreet are useful for m2
rectangular coordinates and paths; other graphics procedures are below un~
Graphics Utilities.

width height reet
Adds a rectangle to the current path at the current pen location.

~\sun ~ microsystems
Revision A of 15 Janu

rectpath

rect2points

points2rect

rectsoveriap

insetrect

4.6. Graphics Utilities

fillcanvas

strokecanvas

cshow

rshow

Chapter 4 - Extensibility through POSTSCRIPT Language Files 39

x Y width height rectpath
Adds a rectangle to the current path with x,y as the origin.

x Y width height rect2points x y x' y'
Converts a rectangle specified by its origin and size to a pair of points specifying
the origin and top right comer of the rectangle.

x y x' y' points2rect x y width height
Converts a rectangle specified by any two opposite comers to one specified by an
origin and size.

x y w h x' y' w' h' rectsoverlap bool
Returns true if the two rectangles overlap.

delta x y w h insetrect x' y' w' h'
Creates a new rectangle inset by delta.

The following are procedures often used to create graphics in canvases: fillcan­
vas, strokecanvas, cshow, rshow, rectframe, ovalpath, ovalframe, rrectpath,
rrectframe, and insetrrect.

intlcolor fillcanvas
Fills the entire current canvas with the gray value or color.

intlcolor strokecanvas
Strokes the border of the canvas with a one point edge with the gray value or
color. Currently only works for rectangular canvases.

string cshow
Shows string centered on the current location.

string rshow
Shows string right-justified at the current location.

~~sun ~fI/fII microsystems
Revision A of 15 January 1988

40 NeWS 1.1 Manual

rcctframe

ovalpath

ovalframe

rrectpath

rrectframe

insetrrect

4.7. CID Utilities

uniquecid

cidinterest

DAMAGE TAG is a client-defined
tag, not a "standard" part of NeWS.

thickness x y w h rectframe
Creates a path composed of two rectangles, the first with origin x,y and SI,,-,2' 1

the second inset from this by thickness. Calling eofill will fill the frame, whi
stroke will create a "wire frame" around it.

x y w h ovalpath
Creates an oval path with the given bounding box.

thickness x y w h ovalframe
Similar to rectframe, but with an oval.

r x y w h rrectpath
Creates a rectangular path with rounded comers. The radius of the comer ar
r, the bounding box is x y w h.

thickness r x y w h rrectframe
Similar to rectframe, but with a rounded rectangle.

delta r x y w h insetrrect r' x' y' w' h'
Similar to insetrect, but with a rounded rectangle.

There is a simple CID (Client IDentifier) synchronizer package availab~i
NeWS utilities. It works by generating a unique identifier that is used to gent
a "channel" for talking to the client and receiving responses from the client;
a synchronized manner.

- uniquecid integer
Generates a unique identifier (integer) for use with the rest of the package.

id cidinterest interest
Creates an interest appropriate for use with forkeventmgr. The callback pI
cedure installed in this interest simply executes the code fragment stored in
event's /ClientData field. Typical use (in go demo):

/repair { % - => - (repair the board)
/MyCID uniquecid def

} def

DAMAGE_TAG tagprint MyCID typedprint
[MyCID cidinterestJ forkeventmgr
waitprocess pop

This proceduJe generates a unique id, then notifies the client to repair the II
aged board by sending over a DAMAGE_TAG and MyCID. It then fof''!
cess which listens for code fragments from the client to execute. The '-/

~\sun ~ microsystems
Revision A of 15 Janu~

sendcidevent

cidinterestlonly

4.8. Text and Font Utilities

fontheight

fontascent

Chapter 4 - Extensibility through POSTSCRIPT Language Files 41

waitprocess waits for one of these fragments to exit the forkeventmgr callback
loop.

id proc sendcidevent
Sends a code fragment to a process which was created by the cidinterest -
forkeventmgr usage shown above. For example, the go demo uses the follow­
ing to respond to the repair procedure above. These calls draw the go board,
draw the black & white stones, erase a stone, and exit from the forkeventmgr
callback loop.

cdef draw_board(int id)
id {draw_board} sendcidevent

cdef black_stone (int id, int x, int y)
id {outline_color black_color x y stone} sendcidevent

cdef white_stone(int id, int x, int y)
id {outline_color white_color x y stone} sendcidevent

cdef cross(int id, int x, int y)
id {x y cross} sendcidevent

cdef repaired(int id)
id {exit} sendcidevent

The id used is the one sent along with the DAMAGE_TAG. See Chapter 9, The
C Client Interface for an explanation of the use of cdef.

id cidinterest10nly interest
A special form of cidinterest which processes only one code fragment. It
automatically exits by itself, rather than requiring the client to send the exit. For
example, the go demo uses this to respond to mouse buttons which place a single
stone using the above drawing fragments.

The following utilities help you display and manipulate text: fontheight, fontas­
cent, fontdescent, stringbbox, cvis, and cvas, findfilefont.

font fontheight int
Returns font's height.

font fontascent int
Returns font's ascent.

~\sun ~ microsystems
Revision A of 15 January 1988

42 NeWS 1.1 Manual

fontdescent

stringbbox

cvis

cvas

findfilefont

This is the way to have a bitmap
font loaded into NeWS after it has
started up.

4.9. Journalling Utilities

journalplay

journalrecord

journalend

font fontdescent int
Returns/ant's descent (as a positive number).

string stringbbox x y w h
Returns string's bounding box.

int cvis string
Converts a (small) integer into a one-character string.

array cvas string
Converts an array of (small) integers into a string.

string findfilefont font
Reads the font family file named by the string and constructs and returns a fOl
object that refers to it.

The font will be entered into the FontDirectory under the fontname in the farr
file.

The following utilites allow you to control the journalling mechanism. With
mechanism it is possible to to record and play back NeWS user input events. 1
file $NEWSHOME/ lib/NeWS/ journal. ps implements the followinjiifu~
procedures:

- journalplay
Begin replaying from the journalling file. The default filename is
/tmp/NeWS.journal.

- journal record
Start a joumalling session by opening the journalling file and logging user
actions to it. The default filename is /tmp/NeWS. journal.

- journalend
Ends a journaUing session started by journalrecord and closes the journallin
file.

Only raw mouse and keyboard events are replayed, so the system should be i
the exactly the same state at the beginning of the replay as it was at the start ~

the journaUing session - exactly the same windows in the same positions or
screen, the same user running the system from the same directory, etc. jOl1rr
play does take care of repositioning the mouse for you.

~\sun ~ microsystems
Revision A of 15 JanuaI')

Chapter 4 - Extensibility through POSTSCRIPT Language Files 43

Journalling Internal Variables There are a number of internal variables that the journalling utilities use:

4.10. Constants

console

framebuffer

nullproc

nullstring

nulldict

D RecordFiIe - the journalling file.

D PlayBackFiIe - same as RecordFiIe initially; this is the file from which
playback will take place.

D PlaySpeed - multiplier for the base replay time speed.

D Play Forever - play forever if true.

D State - current state of journalling system.

These variables are explained more fully in the comments of the file
$NEWSHOME/ lib/NeWS / journal. ps. They are defined in the NeWS dic­
tionary, journal.

The following are common constants, similar to #define's in C: console,
framebuffer, nullproc, nullstringand nulldict.

- console file
Returns the file object for the system's console. Use with fprintf to write mes­
sages to the console.

See also: fprintf

- framebuffer canvas
Returns the root canvas.

nullproc procedure
Returns a no-op procedure.

nullstring string
Returns an empty string.

nulldict dict
Returns an empty, small dictionary.

4.11. Key Mapping Utilities A key may be bound to a procedure with the bindkey procedure. A key may be
unbound using the unbindkey procedure. The following example binds the
string ! make to key CEB:J and assigns the NeWS-SunView selection converters
to I F9 I and CEIQJ4:

4 The (£iQ) function key doesn't exist on Sun3 keyboards .

• \sun ,,~ microsystems
Revision A of 15 January 1988

44 NeWS 1.1 Manual

bindkey

unbindkey

4.12. Repeating Keys

IFunctionF8 {

} bindkey

IFunctionF9
IFunctionF10

dup begin
IName IlnsertValue def
I Action (!makeO def

end
redistributeevent

(sv2newsJ)ut) bindkey
(news2svJ)ut) bindkey

and the C£2J key may be unmapped with:

(/FunctionF9 unbindkey

The following utilities allow you to bind keys:

key arg bindkey
Creates a new process which watches for key to be depressed, and executes (
whenever that happens. If arg is an executable array, name, or string, it is si
handed to the PostScript interpreter. Otherwise, if it is a string, then

'{ arg forkunix }'

is what gets evaluated.

key arg unbindkey
Removes the binding of the arg for the specified key (there is no need to cal:
unbindkey before rebinding a key to a new value - the new value will repla
old in bindkey).

By default the standard typing array (not the function keys or shift keys) reI
20 times per second, after a .5 second threshold. The repeating keys behavi
implemented by a standalone repeat-keys package,
$NEWSHOME/ lib/NeWS/repeat. ps, loaded as part of the Extended II
System started by ini t . ps. The threshold and repeat rate can be adjustec
your preference by modifying two values in the UserProfile dictionary; yOt
put something like the following in your user. ps file to change them:

UserProfile begin
IKeyRepeatThresh 1 60 div 2 div def
IKeyRepeatTime 1 60 div 12 div def

end

~\sun ~ microsystems
Revision A of 15 Janua

4.13. Colors Definitions

4.14. Logging Events

Chapter 4 - Extensibility through POSTSCRIPT Language Files 45

ColorDict is a dictionary which contains named colors. It is implemented by
colors. ps, which is loaded by ini t . ps. The color names are from the
lib/rgb values in X.I0V4. Here are some examples:

IAquamarine
IMediumAquamarine
IBlaek
IBlue
ICadetBlue
ICornflowerBlue
IDarkS lat e B lu e

112219147 RGBeolordef
50 204 153 RGBeolor def
o 0 0 RGBeolor def
o 0 255 RGBeolor def
95 159 159 RGBeolor def
6666 111 RGBeolor def
10735 142 RGBeolor def

... where RGBcolor simply converts 0 - 255 color values into NeWS colors:

IRGBcoior { % R G B => color

} def

% (Takes traditional 0 - 255 arguments for R G B)
3 {255 div 3 1 roll} repeat rgbcolor

The file event log. ps defines a procedure to turn logging of event distribution
on and off, and a dictionary of events which should be excluded from the log.
"Logging" means that a copy of each event is printed as it is taken out of the
event queue for distribution. This is useful for debugging the server and clients
using events heavily. It adds eventlog and UnloggedEvents to systemdict. The
fields of the event which are printed are SeriaI#, TimeStamp, Location, Name,
Action, Canvas, Process, KeyState, and ClientData. Here's a sample log mes­
sage:

#300 1.582 [166 161J EnterEvent 1 canvas (512x512,root,parent) null [J null

UnloggedEvents This is a dictionary of event names which are considered uninteresting to an
event whose Name is found in this dictionary will not be logged. The default
definition of UnloggedEvents is

IUnloggedEvents 20 diet dup begin
IDamaged dup def
ICaretTimeOut dup def

0/0 IEnterEvent dup def
0/0 IExitEvent dup def

IMouseDragged dup def
end def

~\sun ~~ microsystems
Revision A of 15 January 1988

5
The Extended Input System

The Extended Input System ... 49

5.1. Building on NeWS Input Facilities .. 49

5.2. The LiteUI Interface .. 50

5.3. Keyboard Input ... 50

Keyboard Input: Simple ASCII Characters ... 50

Keyboard Input: Function Keys ... 51

Assigning Function Keys ... 52

Keyboard Editing and Cursor Control.. 52

5.4. Selection Overview and Data Structures .. 53

Selection Data Structures ... 53

Selections: Library Procedures ... 54

Selection Events .. ~............... 56

ISetSelectionAt .. 56

ExtendSelectionTo ... 57

DeSelect .. 58

ShelveSelection ... 58

SelectionRequest .. 58

5.5. Input Focus .. 59

5.1. Building on NeWS Input
Facilities

5
The Extended Input System

The input mechanisms described thus far provide two things:

o a basic, default user interface, and

o a platform on which to build more sophisticated interfaces, such as
SunView's.

The default interface provides a simple ASCII keyboard: characters are delivered
when a key goes down; there is no way to be notified when a key goes up, or
what the state of non-character shift keys is ((Control}, [Shift D. Characters are
delivered to the last process to express a global interest in them, or to the canvas
under the cursor if there is no global interest. Interfaces that use the mouse are
responsible for doing their own mouse tracking and interpretation.

This chapter describes an Extended Input System (EIS). It is implemented
entirely in the POSTSCRIPT language, on top of the basic facilities provided by
the primitives in the NeWS server. It aims to support a sophisticated interface of
at least the complexity of Sun View or the Mac, and to provide at least one such
interface as an existence proof. It also is aimed at separating independent issues
in the implementation of interfaces. For example, it should be possible to pro­
vide alternatives in each of the following three categories without dependencies
between categories and without requiring any change to client code:

o different input devices (1- and 3-button mice, or keyboards with different
collections of function keys);

o alternative styles of input-focus, such as follow-cursor or click-to-type;

o alternative styles of selection, such as point-and-extend or wipe-through.

The EIS is sufficiently flexible that it should be possible to support a keyboard­
only input system.

This chapter has several independent sections, corresponding to some of the
modules of the EIS. It begins with a description of a particular user interface,
implemented by the file Ii teUI . ps, which is a suggestive subset of the Sun­
View interface. It includes a description of the requirements and facilities for a
client to handle keyboard input and selections in that world.

A good deal of the processing in the EIS is carried on in a single process called
"the global input handler." Some of it, however, must be done on a per-client

~\sun ,~ microsystems
49 Revision A of 15 January 1988

50 ':'.eWS 1.1 Manual

5.2. The LiteUI Interface

basis; facilities are provided which are active in the client's lightweigt~-'1C
in the server. For example, recognizing events that indicate a change ffi-7n]
focus and distributing keystrokes to that focus are done in the global input
handler. But recognizing user actions that indicate a selection is to be mad
be done for each client, since some clients will not make selections at all, t
apply other interpretations to the same user actions.

The liteUI implementation provides distribution of keyboard input and rna:
ment of selections in a style reminiscent of Sun View.

Primary, Secondary, and Shelve selections are provided; Put and Get work
all of them in the standard fashion. Selections are made when the mouse b
goes down, and are always in character units. Keyboard focus may be con
either by cursor motion into and out of windows, or by clicking a mouse bl
to reset the focus. In the latter mode, the Point button sets both the focus (;
Primary selection at the indicated position; the Adjust button restores the fl
a window, at its previous position, and without affecting the Primary selec

There is no multi-clicking to grow a selection, and no dragging a selection
the button down. The Find and Delete functions do not yet have any clien
so they have not been implemented. These restrictions are simply things r
(yet) done in liteUI; the underlying facilities to support them are already ir
EIS.

Clients of the liteUI interface are all lightweight processes running in the r
server. Such clients may have two categories of interaction with lite~t.
keyboard input, and dealing with selections (for example, cutting an "'_~~t
between windows). In general, a client follows the sequence:

o In an initialization phase, the client declares its interest in various cla~
activity. These classes include simple and extended keyboard input, l

selection processing. In response, the EIS sets up a number of interes
(some in the global input handler, some in the client's own process), j

records the client in some global structures.

o The client process enters its main loop, which includes an awaitevent
of the events it receives will be in response to interests expressed in tl
tialization calls it made. These events will generally be at a high sem
level; translating mouse events into selection actions is done inside E
The client will typically have more work to do with these events; for
pIe, characters may be sent across the communication channel to be ~
cessed in the client's non-POSTSCRIPT language code. Some of the p
ing will require calls back into EIS code; for example, a client will h~
infonn the system what selection it has made in response to selection

o Finally, when a client no longer requires various EIS facilities, it sho'
revoke its interests, so that resources do not remain committed when
longer needs them.

~\sun ~ microsystems
Revision A of 15 Jan

5.3. Keyboard Input

Keyboard Input: Simple
ASCn Characters

addkbdinterests

Chapter 5 - The Extended Input System 51

Four procedures provide access to increasingly sophisticated levels of keyboard
input. The most straightforward client merely wants to get characters from the
keyboard. This is done by invoking addkbdinterests (passing the client canvas
as an argument) and then sitting in a loop, doing an awaitevent and processing
the returned event.

canvas addkbdinterests [events]
declares the client as a candidate for the input focus. It also creates and expresses
interest in the following three kinds of events, and returns an array of the three
corresponding interest-events:

The first interest has ascii_ keymap for its Name, and IDownTransition for its
Action. (ascii_ keymap is a dictionary provided by EIS for expressing interest in
ASCII characters; it includes the translation from the user's keyboard to the ASCII

character codes where that is necessary.) Events which match this interest will
have ASCII characters in their Names, and IDownTransition in their actions.
The client can choose to see up-events too, by storing null into the Action field
of this interest.

The second interest has /Insert Value and a null Action. This will match events
whose Name is the keyword /InsertValue, and whose Action is a string which is
to be treated as though it had been typed by the user. Such events will be gen­
erated if some process is doing selection-pasting to this window, or if function­
key strings have also been requested (see below).

The third interest has the array [I AcceptFocus IRestoreFocus IDeS elect] in its
N arne. Events matching this interest inform the client it has gotten or lost the
input focus. (/DeSelect events referring to the focus will have an Action of
/InputFocus; clients doing selection processing may also receive IDeSelect
events for other objects besides the input focus, as described below under Selec­
tion Events.) These events are informational only; they do not affect the distribu­
tion of keyboard events. They are intended for clients which provide some feed­
back, such as a modified namestripe or a blinking caret, when they have the
focus. Clients are always free to ignore them.

A process that is about to exit, or that will continue to exist, but wants no more
keyboard input, may revoke an interest in keyboard input by passing the array
returned from addkbdinterests, along with the client canvas, to revokekbdin­
terests:

~\sun ~ microsystems
Revision A of 15 January 1988

52 NeWS 1.1 Manual

revokek bdinterests

Keyboard Input: Function
Keys

addfunctionstringsinterest

addfunctionnamesinterest

Assigning Function Keys

Keyboard Editing and Cursor
Control

[events] canvas revokekbdinterests
Undoes all the effects of addkbdinterests.

By default, clients do not receive any events associated with function keys.
client can choose to receive function-key events, either in the fonn of a key'
naming the key that went down, or as a string of the fonn "E S C [nnn z II (tn
ASCII-standard escape sequence for such keys).

To get the function-keys identified by escape sequences, the client should p;
client canvas to addfunctionstringsinterest.

canvas addfunctionstringsinterest event
creates an interest in the function keys, expresses interest in it, and returns t
event. As a result, when a function key is depressed, awaitevent returns an
whose Name is IInsertValue, and whose Action is a string holding the esc:
sequence defined for that key. Only function-key-down events can be recei
by this mechanism. Addkbdinterests must also have been called for this p
cedure to have any effect.

To get the function-keys identified by name, the client should pass its clien
vas to addfunctionnamesinterest.

canvas addfunctionnamesinterest event
creates an interest in the function keys, expresses interest in it, and retl(;\1
event. As a result, when a function key is pressed, awaitevent returns' .~

whose Name is a keyword like IFunctionL7. By default, both up and dow
sitions on the keys are noted; the client may change this by storing IDown1
sition (or IUpTransition, if that is what is desired) into the Action field of
returned interest. Addkbdinterests must also have been called for this pro
to have any effect.

No special procedure is provided to revoke interests generated by either of
two procedures, since passing the interest to the revokeinterest primitive
suffices.

You may assign a given procedure to be executed when a specified key goe
down. See the section on bindef in Chapter 4, Extensibility through POSTS
language Files.

If the client is passing characters through to a shell or some similar proces~
will do its own translations on them, they should be passed unmodified. B
the client is dealing with text directly, it should provide the editing and cal
motion facilities defined in the user's global profile. To assist in this, the (
may ask for incoming events to be checked for a match against those keyb
actions, and converted to unifonn editing-events if they do. This is done b
ing the client canvas to addeditkeysinterest.

.\sun ~~ microsystems
Revision A of 15 J anu

addeditkeysinterest

5.4. Selection Overview
and Data Structures

Chapter 5 - The Extended Input System 53

canvas addeditkeysinterest event
creates an interest in the key combinations that are defined for global editing and
caret motion, expresses interest in it, and returns that event. As a result, the
client sees events with a Name from the set:

{Edit,Move} {Back,Fwd} {Char, W ord,Field,Line, Column}

For example, here are the key combinations for EditBack*:

EditBackChar null
delete the character before the caret

EditBackWord null
delete the word before the caret

EditBackField null
move the caret back to the end of the preceding field if any exists,
deleting its contents or selecting them in pending-delete mode

EditBackLine null
delete from the caret back to the beginning of the current line

EditBackColumn null
delete all characters between the caret and the nearest boundary in
the line above; if the previous line ends to the left of the caret,
delete back through the preceding end-of-line

Substituting Fwd for Back indicates the deletion or motion (see the next para­
graph) extends after rather than before the caret. EditFwdLine deletes through
the next end-of-line.

Substituting Move for Edit indicates the caret is moved to the far end of the span
that would be deleted by an Edit, but the characters are not deleted.

Again, no separate procedure is provided to revoke this interest, since the
revokeinterest primitive does exactly what is needed.

Clients that will make selections and pass information about them to other
processes declare this interest via addselectioninterests. Thereafter, EIS code
will process user inputs according to the current selection policy. Occasionally,
it will pass a higher-level event through to the client, when some client action is
required in response. The exact interface by which a user indicates a selection is
not the client's responsibility; the client must simply be prepared to handle
higher-level events. Clients will also occasionally see events with a Name of
!Ignore; these are events which were delivered to the client process, but handled
entirely by EIS code before the event was made available to the client. The
IIgnore event is left behind in this situation so that client code can depend on an
event being on the stack when it gets control after awaitevent returns.

~~sun ~ microsystems
Revision A of 15 January 1988

54 NeWS 1.1 Manual

Selection Data Structures There is no separate "selection service" in EIS; some selection proce~(~
place in the global input handler, and the rest in client processes. There--rs'! a
bal repository of data about selections, however, and there are some standar
mats for the information stored in that repository and communicated betwet
selection clients.

Table 5-1

Table 5-2

A selection is named by its rank; in liteUI, the ranks are IPrimarySelectior
ISecondarySelection, and IShelveSelection5. For each rank, there is a dict
ary containing the information known to the system about that selection. S
dictionary will be called a selection-diet henceforth. It will have at least th
lowing three keys defined:

Selection-Diet Keys

Key
ISelectionHolder
ICanvas

ISelectionResponder

Type
process
canvas

null I process

Semantics
which process made the selecti<
the canvas in which the selectic
was made
what process will answer reque
concerning this selection

If ISelectionResponder is defined to null, there will be other keys defined
dictionary, setting out all available information about that selection. A fev
keys have been defined because they are expected to be generally useful. 1
are listed in the table below. Others may be provided by clients as cot~:
there is no limit on what consenting clients may say to each other abo~_/~
tion.

System-defined Selection Attributes

Key

I ContentsAscii
I ContentsPostScript

ISelectionObjsize
IS electionS tartIndex

ISelectionLastIndex

Type Semantics

string selection contents, encoded as a stril
string selection contents, encoded as an

executable POSTSCRIPT language ot
number n >= 0; for text, 1 indicates a charac
number position of the first object of selecti<

in its container
number position of the last object of selecti~

in its container

Finally, communications between clients about selections (that is, request:
their responses) are formatted as another dictionary, hereafter called a reql
diet. When submitted by the requester, the dictionary will have a key nan
each attribute it wants the value of. (It may also contain commands the se
holder should execute, such as IReplaceContents.) When received by a s
tion holder, a request-dict will contain the keys defined by the requester, r

5 There is nothing to prevent clients from using other ranks, with names they define themselves. S
speaking a rank is simply a key in the Selections dictionary.

~\sun ~ microsystems
Revision A of 15 Janl

Selections: Library
Procedures

addselectioninterests

clearselection

selectionrequest

Table 5-3

Chapter 5 - The Extended Input System 55

following two:
Request-diet Entries

Key Type Semantics
fRank rank the rank selection this request concerns
fSelectionRequester process the process which is sending the request

The use of these various structures is detailed under the relevant event descri p­
tions below.

This section lists the library procedures provided for clients to deal with selec­
tions.

canvas addselectioninterests [events]
creates and expresses interest in two classes of events, returning an array of the
two interests.

The first interest matches events with names in the following list:

IInsertValue
ISetSelectionAt
IExtendSelection To
IDeSelect
IS hel veSelection
ISelectionRequest

The response required from the client to each of these events is detailed below
under Selection Events. (Some clients may safely omit handlers for the last two;
see the detailed description).

The second interest matches events which are uninteresting to the client. It
arranges for EIS processing to be done by library code before the client ever sees
the event.

rank clearselection
sets the indicated selection to null; this allows a selection holder to indicate the
selection no longer exists.

request-diet rank selectionrequest request-diet
sends a request (contained in request-diet) concerning the rank selection. The
format of a request-diet is described above, in Table 5-3, Request-diet Entries.
The fSelectionRequester and fRank entries will be filled in by selectionrequest,
which will process the request and return a response. If the indicated selection
does not exist, null will be returned. Some keys in the request may not have an
answer available. In this case they will be defined to fUnknownRequest in the
response.

~\sun ~ microsystems
Revision A of 15 January 1988

56 NeWS 1.1 Manual

selectionresponse

setselection

getselection

Selection Events

event selectionresponse - ~,
is used by a selection holder to return a response to a selection request~Aie
argument should be a ISelectionRequest event that has been processed by t
holder. (/SelectionRequest events are described below under Selection EVl

The event will be transformed into a ISelectionResponse event and retumel
the requester.

selection-diet rank setselection
is used by a process to declare itself the holder of a selection. Selection-die
dictionary containing either a definition of ISelectionResponder, or of key:
which provide data about the selection itself, as described above in Table 5
Selection Data Structures. Rank indicates which selection is being set. If
another process currently holds that selection, it will be told to deselect.

rank getselection selection-diet
retrieves the information currently known to the system about the indicated
selection. This procedure is likely to be more useful to the implementor of
package like liteUI than to window clients.

As mentioned above, clients may expect to receive six different kinds of e,
concerning the selection. Of these, the InsertValue event has already beer
described under Keyboard Input; its usage in the selection context is eal
same as for function strings. The remaining five events and the appro ~
responses to them are presented below.

Each event is described in the following format:

EventType short description of the event's semantics

~\sun ~~ microsystems

Name:
keyword that identifies the event

Action:
description of the contents of the event's
Action field

Response:
description of what the client should do
when it receives such an event

Revision A of 15 Janu

ISetSelectionAt

NOTE

Chapter 5 - The Extended Input System 57

Informs the client the user has just made a selection in its canvas.

Name:
ISetSelectionAt

Action:

diet [Rank
X
y
Pen dingDelete
Preview
Size

IPrimarySelection I ISecondarySelection
number
number
true I false
true I false
number

LiteUI provides constant values/or three fields: PendingDelete = false, Preview
= false, and Size = 1.

Response:

Make a selection of the indicated Rank with the following parameters:

Key Value
X and Y indicate a position (it will be in the current canvas'

coordinate system).
Size indicates the unit to be selected; for example, in text:

o means a null selection at the nearest character
boundary,

1 corresponds to a character, and
larger values indicate larger units (words, lines, etc.)
whose definition is at the discretion of the client

PendingDelete indicates whether that mode should be used
(if supported by the client)

Preview indicates whether the selection is only for feedback to
the user; a selection shouldn't actually be set until
a selection event is received with Preview false

In client POSTSCRIPT language code, some private processing will generally
be required. For instance, the given position will have to be resolved to a
character in a text window, and appropriate feedback displayed on the
screen. Then the client should build a selection-dict describing the selection
just made, and pass it to setselection, along with the rank it received in the
ISetSelectionAt event:

selection-diet rank setselection

Selection-diet should contain either a non-null definition of ISelection­
Responder, or it should define keys which actually provide information
about the selection (lContentsAscii at a minimum). In the former case, the
holder is following a communication-model of selection, and must be
prepared to receive and respond to ISelectionRequest events as long as it
holds the selection. In the latter case, the holder is following a buffer-model
of selection; requests will be answered automatically by the global input

~\sun ~ microsystems
Revision A of 15 January 1988

58 ';:{eWS 1.1 Manual

ExtendSelectionTo

DeSelect

handler.

Selection-diet will have keys added to it, so it should be created with roc
for at least five more entries beyond those defined by the client.

Informs the client the user has just adjusted the bounds of a selection in its c.
vas.

Name:
IExtendSelection To

Action:

dict[

Response:

Rank
X
Y
PendingDelete
Preview
Size

IPrimarySelection I ISecondarySe'
number
number
true I false
true I false
number

The dictionary in the Action field is the same as the Action of a ISetSe
tionAt event, and the client response is very much the same. The distil
is that this event indicates a modification of an existing selection, when
ISetSelectionAt indicates a new one. ~

The client should adjust the nearest end of the current selection of ~~l
cated Rank to include the indicated position. If Size indicates growth,
extend both ends as necessary to get them at a boundary of the indicatel
size. (For example, if Size has changed from 1 to 2, a text window mig
grow both ends of the selection to ensure that they fall at word boundar
Adjust the PendingDelete mode or ignore it as the window is editable I

not.

If there was no selection of the indicated rank, pretend there was an em
one at the indicated position.

In client POSTSCRIPT language code, after doing any private processin!
required, processing is exactly the same as for ISetSelectionAt.

Informs the client that it no longer holds the indicated selection.

Name:
IDeSelect

Action:
rank

Response:
Undo a selection of the given rank in this window. Do not call
clearselection; the global selection information has already been updal

~\sun ~ microsystems
Revision A of 15 Janua

ShelveSelection

Selection Request

5.5. Input Focus

NOTE

Chapter 5 - The Extended Input System 59

Tells the client to set the shelf selection to be the same as a selection which the
client currently holds.

Name:
IShelveSelection

Action:
rank

Response:
Buffer-model clients (those that did not define ISelectionResponder when
they set the selection) will not receive ShelveSelection events; the service
will copy their selection to the shelf for them. Others should set the Shel­
veSelection to be the same as the selection whose rank is in Action, using
setselection as above.

The client is requested to provide information about a selection it holds.

Name:
ISelectionRequest

Action:
request-dict

Response:
Buffer-model clients (those that did not define ISelectionResponder when
they set the selection) will not receive SelectionRequest events; the service
will answer the request for them.

The client should enumerate the request-diet, responding to the various
requests by defining their values (as for IContentsAscii), or performing the
requested operation (as for IReplaceContents, whose value will be the
replacement value). The resultant dict should be left as the Action of the
event, which should then be passed as the argument to the procedure selec­
tionresponse.

There is no restriction on what requests may be contained in a selection request;
this is left to negotiation between the requester and the selection holder. A
holder may reject any request, by defining its value to be IUnknownRequest.

It may be noted that there is no mechanism described here for getting a
selection's contents from someplace else. In liteUI, user actions that precipitate
such a transfer are recognized and processed in the global input handler, which
then performs the selection request, and sends an IInsertValue event to the
receiving process. The selection library procedures described above provide an
interface for instigating such transfers independent of user actions.

The input focus (where standard keyboard events are directed) is maintained by
the global input-handler process, according to the current focus policy. A client
becomes eligible to be the input focus by calling addkbdinterests (described
above under Selections: Library Procedures). At some later time, some user
action will indicate that the client should become the focus. The client will
receive an event indicating this has happened (its Name will be IAcceptFocus or

~\sun ,~ microsystems
Revision A of 15 January 1988

60 NeWS 1.1 Manual

setinputfocus

currentinputfocus

hasfocus

setfocusmode

IRestoreFocus, and its Action will be nUll). Thereafter, the client wil()e
events whose Names are ASCII character codes. ---

This section describes a collection of routines provided to inquire about anc
manipulate the focus. These normally will not be called by clients of the w
system; rather, they support focus-policy implementations, which then com
cate with the clients.

The focus is identified in an array with two elements, a canvas and a proces
The canvas will be the canvas argument to addkbdinterests. The process'
be one which called addkbdinterests, and which should be doing an await
for keyboard events.

canvas process setinputfocus
The input focus is set to be the canvas - client pair identified by the argum~
setinputfocus.

- currentinputfocus [canvas, process]
The current input focus is returned by currentinputfocus. If there is no cu
focus, null is returned.

process hasfocus bool
Returns true or false as the indicated process is or is not currently the i!!pu
focus.

keyword setfocusmode
The global focus policy is reset to the policy named by the argument.
Currently-supported focus policies are identified by:

IClickFocus
As long as no function keys are down clicking the Select button will s
the focus and the primary selection in a window. Clicking Adjust will
the focus at its last position in this window, without making any selec

ICursorFocus
a window will receive the focus when the mouse enters its subtree, an
it when the mousie exits. If the mouse crosses window boundaries wh
function key is down, a focus change is delayed until all function key:
up, and then reflects the current situation.

IDefaultFocus
events are distributed as though no EIS were in effect.

~\sun
• microsystems

Revision A of 15 Jam

6
Classes

Classes .. 63

6.1. Packages and Classes .. 63

6.2. Introduction to Classes ... 65

6.3. Class 'Faa' ... 67

References ... 69

6.1. Packages and Classes

6
Classes

The reader familiar with traditional window systems will have noticed no men­
tion of menus, windows, scrollbars, and the like. This is intentional; NeWS pro­
vides the facilities to build these higher-level user interface tools without impos­
ing its notion of what these tools must be. Think of NeWS as providing the win­
dow management "kernel" from which a user interface toolkit may easily be
made.

On the other hand, there is a need to provide some user-interface tools. Our solu­
tion is to provide a small set of user interface packages, written entirely in the
POSTSCRIPT language, which you may use as a base for more sophisticated
development.

These are implemented using an object-oriented programmingK scheme that is
quite similar to Smalltalk.J This scheme has several advantages:

o It is a well-documented standard discussed in several easily obtainable
books.

o It is easily and naturally mapped onto the POSTSCRIPT language.

o It fonnalizes the flexibility and modularity available through use of the
POSTSCRIPT language dictionaries.

o There are at least two well-documented class hierarchies for application
writing: Smalltalk itself, and MacAppL Apple's "extensible application."

This chapter discusses NeWS's implementation of Smalltalk's class mechanism.
The following chapter, Window and Menu Packages, presents two packages,
menus and windows, built using this class mechanism. Appendix B, Class
Lite/tem, describes the implementation of a demonstration item class using
class-based programming. Some of this information was presented in a tutorial
given at the Winter 1986 USENIX Graphics Workshop.M

The reader unfamiliar with message-passing, classes, and object-oriented pro­
gramming might like to browse through the references listed at the end of the
chapter. However, many of the essential ideas in class-based systems are similar
to the more traditional "package" - or "module" -based systems.

~\sun ~ microsystems
63 Revision A of 15 January 1988

64 NeWS 1.1 Manual

Note: selfdoes not refer to the
method's class, but rather the
object that originally caused the
method to be invoked. If the
method is inherited, self will not be
the method's class, for example.

aFoo

o

instance
variables

instance

Figure 6-1

Briefly:

o Packages (modules) are replaced by classes.

o Procedures in packages are replaced by methods in classes.

o Creating package objects is replaced by creating new instances of a cla~

o Package local and global variables are replaced by class variables.

o Object variables are replaced by instance variables.

New notions are:

o Classes are ordered into a hierarchy by subclassing a new class to a pri~
one, inheriting its methods, instance variables, and class variables.

o Methods are invoked by use of the send primitive. The term message
used for an invocation of a method with its arguments.

o There is a means of constructing classes that is absent in most languag{
module creation.

o Two new concepts, the self and super pseudo-variables, are introduced
They are used in methods to refer to the object that sent the message ar
method's superclass, respectively.

o Unlike POSTSCRIIYf language procedures, methods are compiled when
class is created. Currently this simply resolves self and super, and p~r1
some minor optimizations.

The relationship betwt:~en an instance and its class and superclass is shown
figure below. We havl! made an instance, 'aFoo,' of class 'Foo,' which is
class of class Object. An instance has a copy of all instance variables of it!
superclasses, thus 'aFoo' has those required by both 'Foo' and Object. Tl
methods known by an instance are stored in the classes in its superclass ch,
Thus 'aFoo' can only respond to methods residing in 'Foo' and Object.

Foo ~O~b~l'le~c~t ____ ~
- C- null

class class
variables variables

& &
methods methods

class class

Relationship between Instances and Classes

Sending a message to an instance requires packaging the arguments to the
method, finding the method in the class chain, invoking the method in the
context, and possibly returning a result to the sender. If the pseudo-variab
is used for the object in sending a message, the search for the method start:
beginning of the chain, while if super is used the search starts in the Sl

~\sun ~ microsystems
Revision A of 15 Janu

F a 00

C I--

Figure 6-2

6.2. Introduction to Classes

classbegin

aFoo

Ifoo 1 def
Ibar (abc) def

instance

Figure 6-3

Chapter 6 - Classes 65

Foo Ob')lect
~ null

fool: fool: super ...
obj1:

self -

D
Self and Super

The POSTSCRIPT language implementation of classes uses dictionaries to
represent the classes and instances, Instances contain all the instance variables of
all their superclasses. Classes contain their methods as POSTSCRIPT language
procedures. Our current implementation of class is entirely in the POSTSCRIPT

language.

Foo

Inew {
Inew super send

} def

Obiect

null

Inew {

} def

~Iass t _________ class

dictionaries

POSTSCRIPT language use of Dictionaries as Objects

Classes are built using the classbegin ... classend procedures; messages are sent
with the send primitive:

classname superclass instancevariables classbegin
Creates an empty class dictionary that is a subclass of superciass, and has instan­
cevariables associated with each instance of this class. The dictionary is put on
the dict stack. I nstancevariables may be either an array of keywords, in which
case they are initialized to null, or a dictionary, in which case they are initialized
to the values in the dictionary.

~~sun ~ microsystems
Revision A of 15 January 1988

66 ~eWS 1.1 Manual

c1assend

send

userdict

- classend classname dict
POPS the current diet off the diet stack (put on by classbegin and presutft'~o1:
filled in by subsequent defs), and turns it into a true class dictionary. This
involves compiling the methods and building various data structures comm(
all classes.

<optional args> method object send <optional results>
Establishes the object's context by putting it and its class hierarchy on the d
tionary stack, executes the method, then restores the initial context. The mE
is typically the keyword of a method in the class of the object, but it can be
arbitrary procedure. (See the examples below.)

aFoo

Foo

Object

arg 1 arg2 Imeth aFoo send userdiet

systemdict systemdict

dictstack [before] dictstack [after]

self

super

Figure 6-4 POSTSCRIPT language use of Dictionaries as Objects

- self instance
U sed as the target object with send, self refers to the instance that caused th
current method to be invoked. It does not refer to the class the method is dt
in. In Figure 6-2, Self and Super, the method 'obj1' in class Object uses s(;
refer to 'aFoo,' not Object. The self primitive can also be used anywhere 1

refer to the currently active instance.

- super instance
Used as the target object with send, super refers to the method being overri
by the current method. In the figure above, the method 'fo01' in class 'Foe
overrides the method 'foo 1 ' in Object. The use of super in 'foo 1 ' refers t(
overridden method. Unlike self, super cannot be used outside the context c
send.

Here is the creation of the class Object, the root class of all classes:

~~sun ~ mitrosystems
Revision A of 15 Janua

6.3. Class 'Faa'

/Object null [] classbegin
% class variables
% methods

/new {

} def
/doit {

} def
c1assend def

Chapter 6 - Classes 67

0/0 class => instance (make a new object)

0/0 proc ins => - (compile & execute the proc)

It is simple indeed, having no instance or class variables, and only two methods
at this writing. They are important, however, because they are shared by all
classes. Inew builds an instance of a class. If you need to override Inew to do
something unique for your class, you would first call Inew super send to have
your superclasses do their thing; then modify the object you receive. (See the
sample below.) Idoit is used to create a temporary method and execute it in the
context of the object. This is generally only required if the procedure contains
the pseudo-variables self or super.

Inew may be sent to instances as well as classes. The Inew method is
polymorphic. Exactly the same result is obtained if you send Inew to a class or an
instance of that class.

The Inew method in class Object notices that "self' is an instance rather than a
class, and send the message on to its class. This can be a very useful way of
creating a new object without knowing its class.

Now lets build a sample class, 'Faa':

.\sun ~ microsystems
Revision A of 15 January 1988

68 NeWS 1.1 Manual

IFoo Object
dictbegin

IValue 0 def
ITime nu II def

dictend
classbegin

IClassTime currenttime def

% class methods
Inew {

Inew super send begin
Iresettime self send
cu rre ntd ict

end
} def

% 'Foo' is a subclass of Object
% (initialiied) instance variables

% The class variable 'ClassTime'

% - => - (Make a new 'Foo')

Iprintvars { % - => - (Print current state)
(... we gOt: Value=%, Time=%.\n) [Value Time] printf

} def
Ichangevalue { % value => - (Change the value of 'ValUE

IValue exch def
} def
Iresettime { % - => - (Change 'Time' to the current t,

ITime currenttime def
} def

classend def

'Foo' is a subclass of Object, as discussed above. 'Foo' has two instance \
abIes unique to each of its objects; 'Value,' an arbitrary value associated wi
object, and 'Time,' the time of creation of the object. They are initialized b
of the diet form of specifying instance variables. (The dictbegin ... dietenc
are standard utilities that create a dictjust the right size for its defs.) Foo h
one class variable, 'ClassTime,' which is the time of creation of the class.

'Foo' has four methods.: 'new,' 'printvars,' 'changevalue,' and 'resettim
'new' first calls its super class to get a raw instance, which it then initialize~
setting the time to the current time. Note the use of begin ... currentdict e
This is a s "cliche'." Also note the use of both self and super; we ask our s'
class to make a new instance of itself and initialize it, then ask self to reset (
time. 'printvars' is used to print the instance and class variables of the obje
note how this uses another standard utility, printf. 'changevalue' is a met
that takes a single argument and assigns it to the instance variable 'value.'
Finally, 'resettime' sets the instance variable 'time' to the current time.

Let's look at some uses of 'Foo.' Here we create a new instance, 'foo' of 'I
We then print out its initial values, shown by the line starting with" ... we gc
(By the way, we're getting these examples by cutting and pasting into a win
running psh onto our NeWS server.)

.\sun ,~ microsystems
Revision A of 15 Januar

References

Ifoo Inew Faa send def
Iprintvars faa send
... we got: Value=O, Time=22.8837.

Chapter 6 - Classes 69

Now we are going to change the value of 'faa's instance variable 'Value.' Note
that it initially was an integer, and we are changing it to a string; this is an exam­
ple of POSTSCRIPT language' 'polymorphism."

(A String) Ichangevalue faa send
Iprintvars faa send
... we got: Value=A String, Time=22.8837.

Similarly, this resets the time value of 'faa.'

Iresettime faa send
Iprintvars faa send
... we got: Value=A String, Time=23.1963.

Now we do an odd thing, we simply send an executable array (a procedure) to
'faa.' The effect of doing this is to execute the procedure within the context of
'faa.' (This is somewhat unfair, like cutting paper in Origami, but nicely illus­
trates the flavor of our combination of POSTSCRIPT language features and our
class extensions.) The procedure we're sending to 'faa' is {/Time ClassTime
def}, which assigns 'ClassTime,' the class variable, to 'Time,' the instance vari­
able.

{/Time ClassTime def} faa send
Iprintvars faa send
... we got: Value=A String, Time=22.7444.

The above sample did not go through method compilation, thus self and super
could not be used. Let's send an executable to 'foo' to change 'Value' to the
number of minutes since its creation, but this time using the more orthodox doit
method (it uses method compilation).

{currenttime Time sub round Ichangevalue self send} Idoit faa send
Iprintvars faa send
... we got: Value=1, Time=22.7444.

Finally, as an extreme example of polymorphism, we set 'Value' to be a pro­
cedure returning the current time in seconds, changing over time.

{currenttime 60 mul round} Ichangevalue foo send
Iprintvars foo send 1000 {pause} repeat Iprintvars faa send
... we got: Value=1449, Time=22.7444 .
... we got: Value=1450, Time=22.7444.

J. Adele Goldberg and David Robson, Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, May, 1983.

K. "Object-Oriented Languages," Byte Magazine, vol. 11 number 8, McGraw­
Hill Inc., August, 1986.

L. Kurt 1. Schmucker, Object-Oriented Programming/or the Macintosh, Hay­
den Book Company, 1986.

~\sun ~ microsystems
Revision A of 15 January 1988

70 ~eWS 1.1 Manual

M. Owen Densmore? "Object-Oriented Programming in NeWS," in 1IJ;:.~i4i
terey Graphics HTorkshop, USENIX, Nov 20-21,1986.

~~sun ~ microsystems
Revision A of 15 Jam

7
Window and Menu Packages

Window and Menu Packages .. 73

7.1. Package Style ... 73

7.2. A Scrollbar Implementation .. 74

Description Format .. 74

7.3. Menu Methods .. 74

Polymorphic Menu Keys .. 75

7.4. Window Methods .. 77

7.5. An example: lines .. 80

7.6. Default User Interface ... 82

PointButton .. 82

AdjustButton ... 83

MenuButton .. 83

Modifying the User Interface ... 83

7.1. Package Style

7
Window and Menu Packages

This chapter presents two class-based packages, one for pop-up menus and the
other for windows. In addition, we have provided a subclass of the standard win­
dow implementation, ScrollingWindow. The general notion of a package is dis­
cussed, and then the client interface specification for both packages is explained.
A detailed sample program follows the explanation. A few hints on modifying
the user interface conclude the chapter.

To emphasize that these are' 'lightweight" implementations, these classes are
called LiteMenu and LiteWindow. Their implementation files are
li temenu . ps and li tewin. ps For a more detailed explanation of the
ScrollingWindow subclass see the section 7.2, A Scrollbar Implementation in
$NEWSHOME/lib/NeWS.

To create a new instance of a class, use the Inew method. To create a new
instance of class 'Foo' and to assign it to the variable 'faa,' use:

Ifoo argl ... argN Inew Foo send def

where argl ... argN are parameters used in initializing the new instance. The
needed arguments vary from class to class. The Inew method is the only method
we describe that is sent to a class, rather than to an instance of a class.

Many classes have several subclasses that can be used in place of the class itself.
Thus one might have three subclasses of class 'Faa' that can be used anywhere
'Faa' can. For example, suppose we have three interface styles: 'SunViewFoo,'
'MacFoo,' and 'NewsFoo.' To allow the user to specify a preference, we use a
variable, 'OefaultFoo,' that has assigned to it the current preference:

IDefaultFoo SunViewFoo store

Note the use of store rather than def; 'OefaultFoo' already exists and you want
to change its value, not possibly create a new one in the current dictionary. The
initial values for DefaultMenu and DefaultWindow are LitePullRightMenu
and LiteWindow, respectively. There are demo root menu entries that let you
flip the default window and menu styles between a Sun View-style and a NeWS­

style set. This is done by simply changing the DefaultMenu and Default Win­
dow definitions.

~~sun ,~ microsystems
73 Revision A of 15 January 1988

7 4 ~eWS 1.1 Manual

7.2. A Scrollbar
Implementation

Forking A Process

Description Format

/samplemethod

7.3. Menu Methods

ScrollingWindow is a subclass of LiteWindow. It is defined in
$NEWSHOME/ lib/ li tewin. ps. There are two simple scrollbarSi'l{tt
frame margin. Two classes, ScrollbarItem and SimpleScrollbar, providt
basis for this implementation. The former is an abstract superclass which
the structure of scrollbars, but does not entirely implement one. Sim­
pleScrollbar implements a simple, one button scrollbar. The two scrollbc
initialized to return values between 0 and 1. When viewing a typical docu
this corresponds to a position within the document, where 0 indicates the 1
ning of the document, 1 is the end, and a fraction is somewhere in betweeI

A theme often encountered in the design and use of NeWS packages is fork
processes to perform tasks, especially if they may have considerable durat
the menu package, for example, a process is forked to track the user intera
with the menu, allowing other processing to occur in parallel. Similarly, t
dow package will fork a process to redraw the client canvas so that other r
ing can occur and so that the drawing itself may easily be interrupted. In t
f ish demo program, for example, you may perform other tasks while the
being drawn, or you may interrupt the drawing of the fish to change the si~
the window or to redraw the fish with different parameters.

The interface descriptions below differ somewhat from the usual interface
descriptions; only the arguments to the method are given, rather than the e
description of the send. Thus, if the send for method 'samplemethod' I(
like:

argJ ... argN /samplemethod Foo send

the interface description will look like:

arg1 ... argN /sarTlplemethod results

with no mention of the object 'Foo' or the operator send.

Menus associate a key, generally a string, with an action to be performed'
that key is selected by the user. If the menu action is another menu, neste<
displaying of that menu is performed. The default user interface style use:
Sun View-like pull-right nesting.

Notice that the action procedure is more like the Sun View notifier than a n
traditional menu invocation that puts up the menu and waits for a returned
This is quite intentional. NeWS favors greater use of multiple lightweight
processes. While the menu is being tracked, other computing may also be
formed. In particular~, NeWS menus do not freeze or lock the screen. This;
side red bad manners unless there is good reason for such locking behavior

~\sun ~ microsystems
. Revision A of 15 Jam:

Polymorphic l\1enu Keys

Inew

Chapter 7 - Window and Menu Packages 75

Menu keys may be strings, icon names, procedures, or class instances. The string
and icon name simply display the corresponding object. In addition, the menu
keys may be wrapped in an array. This allows for font and color changes, and
slight adjustments in the x,y location of the key relative to its default position. It
also allows passing additional arguments to the user's procedure or class
instance. Thus

[/Mylcon 1 0 0 rgbcolor .5 .5]

is a key that shows 'Mylcon' in red with a slight (.5 .5) offset.

The colornames demo has examples of advanced menu key usage.

The following methods are used with menus.

array -or- array array Inew menu
Creates a new menu. Sent to a menu class, generally DefaultMenu, to create an
instance of the class. Typically, you use a single argument, which is assumed to
be an array of key/action pairs. Thus:

/MyMenu [
(Key 1) {menuproc1}
(Key 2) {menuproc2}
(Other =» MyOtherMenu·

] /new DefaultMenu send def

creates 'MyMenu,' which displays the strings

(Key 1). (Key 2). (Other =», ...

and associates the actions

{menuproc1}, {menuproc2}, MyOtherMenu, ...

with these keys. If the action is a procedure, it is executed when the user chooses
the associated key. If the action is another menu, it is treated as a pull-right
menu, and nesting will occur.

If a double argument is used, it is assumed to be an array of keys and an array of
associated actions, respectively. If the second array is smaller than the first, it is
'padded' with the last entry. This is mainly used when a single action will
suffice for several keys. Thus:

/PointSizeMenu
[(10) (12) (14) (18) (24)]
[{SetPointSizeFromMenu}]
/new DefaultMenu send def

might be used as a pull-right menu for setting the point size of a font. The pro­
cedure will need to make use of the current menu selection using either Icurrent­
key or Icurrentindex below. For example:

/SetPointSizeFromMenu { /PointSize currentkey cvi def } def

sets the point size to be the integer value of the selected key. Note that we did

~\sun ~ microsystems
Revision A of 15 January 1988

76 NeWS 1.1 Manual

Ipopup

/popup is a direct replacement for
the original implementation of
/show. It does a /showat using the
current cursor location.

Ishowat

Icurrentkey

Icurrentindex

Isearchkey

I searchaction

linsertitem

not need to use Icurrentkey self send in this situation. The action prf lL
called within the scope of the menu instance, and thus does not need t~, .:e­
establish the menu's context.

- /popup
Pop-up the menu and track user actions; call the associated action if a key:
selected. This is generally called from an event manager such as:

/eventmgr [
MenuButton {/popup MyMenu send}
DownTransition MyCanvas eventmgrinterest

] forkeventmgr def

See Chapter 4, Extensibility through POSTSCRIPT Language Files, for desc
tions of eventmgrinterest and forkeventmgr.

x y or event /showat
Pop-up the menu and track user actions. A polymorphic method which can
take a pair of integer values for location (x y) or an event whose location is

- /currentkey kHY
Returns the selected key when called within a menu action procedure.

- /currentindex index
Returns the index of the selected key when called within a menu action pre
cedure. The indices begin at zero.

key /searchkey· index bool
Searches for the given key's position in the menu and returns the index of
if found (along with a boolean of true) or simply the boolean false if the ke
not found.

action /searchaction index bool
Searches for the given action's position in the menu, returning a boolean 0

and its location if found, false otherwise.

index key action linsertitem
Insert a new key/action pair into an existing menu at the given index. Thu

o (Do My Thing) {OoMyThing} /insertitem MyMenu send

would add a new menu entry to the top of 'MyMenu.' If index exceeds tht
of the menu, the item is inserted at the end of the menu.

~\sun ~ microsystems
Revision A of 15 Janu

/ deletei teln

/changeitem

7.4. Window Methods

/new

Chapter 7 - Window and Menu Packages 77

index /deleteitem
Remove the index-th menu item in the menu. Thus:

o /deleteitem MyMenu send

would remove the topmost menu entry in 'MyMenu.' If index exceeds the size
of the menu, the last menu item is deleted.

index key action Ichangeitem
Replace the menu item at the given index with a new key/action pair. Thus:

o (Do My Thing) {OoMyThing} /changeitem MyMenu send

would replace the menu entry at the top of 'MyMenu.' If index exceeds the size
of the menu, the last menu item is changed.

A window in NeWS is simply a set of canvases and an event manager. The default
window style manages a FrameCanvas, a ClientCanvas, and an IconCanvas.
It provides two types of user interface management: menu interaction and direct
mouse interaction with the window or icon. See the section on default user inter­
face below for details.

In the following descriptions of window methods, window/icon means the win­
dow or its icon, depending on whether the window is open or closed. If the win­
dow is open, the method· refers to the window frame. If the window is closed, the
method refers to the window icon.

Also, many of the window methods generally are not used by the client directly,
but are accessed primarily through the user interface to the window. These
methods are identified below with (UI).

canvas Inew window
Creates a new window. Sent to a window class, generally DefaultWindow, to
create an instance of the class. The canvas is the parent canvas for the window
and is generally framebuffer. After creating a window, a client will want to
modify the window by changing its drawing routines, adding a client menu,
changing its frame or icon label, etc. The client makes these modifications by
changing instance variables in the new window (typically, by sending the win­
dow an executable array as a method).

First, the standard creation of a window:

/win framebuffer /new OefaultWindow send def

Then, the modification of the window:

~\sun ~ microsystems
Revision A of 15 January 1988

78 NeWS 1.1 Manual

Table 7-1

Idestroy

Ireshape

Note: This does not force the shape
to be rectangular, just to fit within
the bounding rectangle.

Ireshapefromuser

Imap

IFrameLabel (Hello World) def
IPaintClient {MyPaintProc} def
IlconLabel Ihello_.world def
IClientMenu [

(First Menu Label) {MyFirstMenuAction}
(Next Menu Label) {MyNextMenuAction}

] Inew DefaultMenu send def
} win send

Table 1-1 contains the instance variables that are commonly modified, along
their initial values; there! are other instance variables available, but the interf
to them is prone to change.

Lite Window Instance Variables

Instance Vari.able Initial Value
FrameLabel
IconLabel
Iconlmage
PaintClient
ClientMenu

- Idestroy

nullstring
nullstring
null
nullproc
null

Destroy the window and. its entire process group. (UI)

x Y width height Ireshape

Reshape the window to have the given bounding box.

- Ireshapefromuselr
Reshape the window to have a new bounding box. The user is prompted for
bounding box, and the results are passed to Ireshape. Ireshapefromuser is .
tially called by the client, but is then handled by the window's user interface
(UI)

- Imap
Make the window/icon visible. Fork the window's event manager if that ha~
already been done. Ima]p is initially called by the client, but is then handled
the window's user interface. (UI)

Revision A of 15 Januar~

lunmap

Iftipiconic

Imove

/paint

/paintclient

Ipaintframe

Ipainticon

Chapter 7 - Window and Menu Packages 79

- lunmap
Make the window/icon invisible. (UI)

- Iflipiconic
Alternate between opened (window) and closed (iconic) state. (UI)

x y /move
Move the window so that its bottom left comer (its origin) is at the coordinates x
y in its parent canvas. (UI)

- /paint
Repaint the window or icon. If the window is open, paint calls both
Ipaintframe and /paintclient. The default /Damaged handler sets the canvas
clip to the damage region and calls /paint automatically. (UI)

- /paintclient
Repaint the window's client canvas. The default action is to call the instance
procedure variable PaintClient. It uses the value of ForkPaintClient? to con­
trol whether it will fork a process to do the repaint (the default). You should
make sure your PaintClient uses pause where appropriate, so that other
processes can run while you are painting.

- /paintframe
Repaint the window's frame. This includes the frame label and controls. The
instance variable FrameLabel holds the label string. Changing this and invok­
ing paintframe will change the frame's label.

- /painticon
Repaint the window's icon. The default action is to set the canvas to IconCan­
vas and call PaintIcon. This in tum defaults to using Iconlmage and IconLabel
to paint the icon. Clients typically either replace the PaintIcon procedure with
one that does all its own drawing, or set either Iconlmage or IconLabel and use
the default PaintIcon procedure. Iconlmage is initialized to null. Setting it to
the name of an icon in the system icon font, such as /hello _world, will cause that
icon to be drawn. IconLabel is initialized to the empty string.

~\sun ~ microsystems
Revision A of 15 January 1988

80 NeWS 1.1 Manual

Itotop - Itotop

Itobottom

7.5. An example: lines

Puts the window/icon above all canvases. (UI)

- Itobottom
Puts the window/icon under all canvases. (UI)

The following is an in-dlepth look at a sample demo program, lines, whic
creates a window and associates a menu with its client canvas. The prograrr
draws lots of lines (in color, if you are using a color machine). The menu c(
troIs the number of lines drawn. Here's the complete program:

~\Slln ~ microsystems
Revision A of 15 JanuaI

Chapter 7 - Window and Menu Packages 81

#! lusr/NeWS/bin/psh

% lines 6.3 87102124
%

0/0 Draw a window with a bunch of lines.
% The icon uses the same drawing procedure as the client.
%

Ifillcanvaswithlines { % linesperside => -

} def

Imain {

} def

main

gsave
1 fillcanvas
o setgray
clippath pathbbox scale pop pop
o 1 3 -1 roll div 1 {

ColorDisplay? {dup 1 1 sethsbcolor} if
o 0 moveto 1 1 index lineto stroke
o 0 moveto 1 lineto stroke
pause

} for
grestore

% Paint the background
% Set the default color black
0/0 Set scaling to be 0 to 1
0/0 0 delta 1 { .. } for
% Set color if ColorDisplay
% Draw line to top
% Draw line to side
0/0 Let others run

Ilinesperside 10 def
Isetlinesfrommenu {

0/0 Start with 10 lines per side

} def

llinesperside currentkey cvi store
Ipaintclient win send

0/0 - = > - (Set linesperside from menu)
% Set linesperside
0/0 Ask window to draw me

Iwin framebuffer Inew DefaultWindow send def
{

0/0 Create a window
% Install my stuff

IFrameLabel (Lines) def
IPaintClient {Iinesperside fillcanvaswithlines} def
IPaintlcon {1 0 fillcanvaswithlines 0 strokecanvas} def
IClientMenu

[(2) (4) (8) (10) (20) (100) (250) (500) (1000)]
[{setlinesfrommenu}] /new DefaultMenu send def

} win send
Ireshapefromuser win send

Imap win send

0/0 Shape it

% Map the window
% (Damage causes PaintClient to be called)

The program is written as a ps h script that sends the rest of the file to the NeWS

server. The program consists of two procedures, 'fillcanvaswithlines' and
'main,' and a call to 'main.'

The 'fillcanvaswithlines' procedure takes as an argument the number of lines
per side to draw. AIl-important point to notice here is the use of pause in the for
loop. This allows the lightweight process mechanism to optimize interactive

Revision A of 15 January 1988

82 NeWS 1.1 Manual

behavior. Be sure to use: pause in any part of your program that will p~~}~
take a long time. In this case, if the user has selected 1000 lines, the dr~~dif
could last several seconds. However, there is a cost in using pause; a more
efficient version of the lines example would pause every 10-20 sets of ve
tors.

The procedure 'main' initializes the 'linesperside' parameter, defines a mer
action procedure, 'setlinesfrommenu', and initializes the program's windo'

'setlinesfrommenu' sets the 'linesperside' parameter by converting the mt
key string into an integer. Note the use of store; this is necessary because w
changing a predefined value in userdict in a context potentially having seve]
other dictionaries on the dictionary stack. We could have used

userdict /linesperside currentkey cvi put

instead. Finally, 'setlinesfrommenu' causes the client canvas to be repaint!
sending /paintclient to "win.' We do this rather than simply calling 'fillcam
withlines' directly in order to inherit window manager side effects (mainly t
use of forking the client paint procedure).

The window initialization consists of creating a default window, installing 0

modifications, setting its shape from user input, and finally making it visible
The modifications we install set the frame label to the string ("Lines"), set t
client repaint procedure to call 'fillcanvaswithlines' with the current value (
'Iinesperside', set the icon to draw itself using 'fillcanvaswithlines,' and fi
set the client canvas' menu to be one that resets the 'linesperside' parp?'~te
Note that we map the window as our last step. This is intentional - rrli(~~ir
should be deferred until all setup is performed.

7.6. Default User Interface The (current) default window frame and icon surface use all three mouse bu
The buttons are identifit~d according to the following definitions in ini t . r

PointB utton

Table 7-2 Window User Interface Button Usage

Button Name
PointButton
Adj ustB utton
MenuButton

Initial Value
LeftMouseButton
MiddleMouseButton
RightMouseButton

You may want to redefine these according to taste.

PointButton operates as follows:

o In the frame "go-away" region (top left): causes the window to close.

o In the frame' 'stretch" region (bottom right): lets the user stretch the wi
dow by that comer.

o Elsewhere in the frame: brings the window to the top of the window pilt

o Anywhere in the icon: opens the window.

~\sun ~ microsystems
Revision A of 15 Januar:

AdjustButton

MenuButton

Modifying the User Interface

Chapter 7 - Window and Menu Packages 83

AdjustButton operates as follows:

o Anywhere in the frame or icon: moves the window or icon.

MenuBuUon operates as follows:

o Anywhere in the frame or icon: pops up the window or icon menu.

To change the default settings for the packages, simply put lines like these in
your user. ps file:

% Swap the Adjust and Menu mouse buttons.
IPointButton LeftMouseButton def
IAdjustButton RightMouseButton def
IMenuButton MiddleMouseButton def

% Change the font in menus, and box the selected menu item instead offdling it.
DefaultMenu begin

IMenuFont ITimes-ltalic findfont 12 scalefont def
IStrokeSelection? true def

end

% Change the font for frame headers.
DefaultWindow begin

IFrameFont !Times-Roman findfont 12 scalefont def
end

The following code will allow you to swap the mouse buttons for selections in
psterm as well:

UserProfile begin
IViewPoint PointButton def
IViewFocus PointButton def
IViewAdjust AdjustButton def
IViewRestore AdjustButton def

end

Revision A of 15 January 1988

8
Debugging

Debugging .. 87

8.1. Introduction ... 87

Contacting the Server ... 87

Starting a Debugging Session .. 88

8.2. The Debugging Environment ... 88

Multi-Process Debugging ... 88

8.3. Client Commands .. 88

8.4. User Commands ... 89

8.5. Miscellaneous Hints ... 93

Aliases ... 93

Use Multiple Debugging Connections .. 93

8.1. Introduction

8
Debugging

A primitive NeWS debugging package is available. It allows you to set break­
points and print to debugging output windows. It also has a simple facility for
automatically causing breaks when errors are encountered. This should be con­
sidered simply a tentative poke at the problem. Because the debugger is written
in the POSTSCRIPT language, users may modify it for their own purposes.

The NeWS debugger is simply the POSTSCRIPT language itself with a few added
commands in the file debug. ps. This file is not loaded during the standard
initialization process; you need to execute the following code to load the debug­
ging commands:

(NeWS/debug.ps) run

Normally you would do this by including this line in your user. ps file; see
Modifying the NeWS Server in Appendix A, Using NeWS, for more information on
the user. ps file.

Contacting the Server The usual style of debugging is to create one or more interactive connections to
the NeWS server and start a debugger on each. You can contact the server from
any shell using the pSh(l) command; see Talking Directly to the Server in
Appendix A, Using NeWS, for more information about contacting the server.
After the connection is made, a POSTSCRIPT language executive must be invoked
by typing the executive command. To make this a debugging connection, you
then run the command dbgstart.

NOTE Typing dbqstart will make the server try to start an executive for you if one
is not running already; However, there are situations where this canfail. If
problems occur, start the executive before typing dbqstart .

87 . Revision A of 15 January 1988

88 NeWS 1.1 Manual

Starting a Debugging Session

8.2. The Debugging
Environment

A typical initial sequence will look like:

paper% psh
executive
Welcome to Ne\\TS Version 1.1
dbgstart
Debugger installed.

This assumes (NeWS / debug. ps) run has already been executed from
user. ps file. Had this not been done, you would have had to type
(NeWS/ debug. ps) run before typing dbgstart.

Debugging commands fall into two categories: commands executed from cl
programs (client commands) and commands executed as a debugging user (
commands). The user ,;ommands are those executed from the psh connee
to the server, while the client commands are those put in the code being
debugged.

dbgstart forks a debugger process that is attached to the psh connection 2

"listens" for debugger-related events generated by client commands. (Act'
all client commands simply broadcast debugger events to these debugger d:
mons!) Any client command that causes printing will print in each debuggi
p s h connection.

Multi-Process Debugging NeWS is a multi-process environment so there is the problem of debug')
several processes at one time. The solution the debugger implements is to 1
each debugging connection maintain a list of processes that are paused for
debugging. This list is printed via the dbglistbreaks command below. It i~
printed whenever a new break occurs. Any of the listed breaks can be entel
using the dbgenterbre.ak command. This swaps the psh debugging contf
out and replaces it with the paused process. The context currently consists I

dict stack and operand stack.

8.3. Client Commands These are the client commands:

dbgbreak name dbgbreak
Causes the current client to pause, printing the pending breaks in all debug~
connections. Name is used as a label in the list to distinguish between breal
e.g. IBreak1.

See also: dbgbreakenter, dbgbreakexit

~\Slln ~ microsystems
Revision A of 15 Janua:

dbgprintf

<errors>

8.4. User Commands

Chapter 8 - Debugging 89

formatstring argarray dbgprintf
Prints on each debugger connection, in printf style. If there are no debugger
connections, it prints on the console. Thus:

(Testing: % % %\n) [1 2 3] dbgprintf

will print:

Testing: 1 2 3

on each debugger connection.
See also: printf, dbgprintfenter , dbgprintfexit

In addition to the above explicit calls to the debugger, errors cause the debugger
to be implicitly invoked. This is done by the debugger putting a special error
dictionary in the system dictionary. Each error slot in this debugger-supplied
dictionary has a call to the debugger for each error. See the PostScript Language
Reference Manual for details on error handling.

<errors>
While debugging, a client error causes the client program to break to the
debugger. This is exactly the same as inserting the code '/<errorname>
dbgbreak' at the point the error occurred. Here is the result of encountering an
undefined error while a debugger is running:

Break:/undefined from process(4154624, breakpoint)
Currently pending breakpoints are:

1: lundefined called from process(4154624, breakpoint)

Most of the user-level debugger commands come in two forms: one that expli­
citly takes a breaknumber and one that does not. The general rule is:

o A command of the form cmdnamebreak expects an explicit breaknumber for
its argument.

o A command of the form cmdname (without" -break") uses an implicit
breaknumber. This number is generally the currently entered break, or the
last break in the list if there is no currently entered break.

The implicit form is primarily used in the most common case of only one break
pending, or where constantly restating the breaknumber for the currently entered
process would be arduous.

~\sun ~ microsystems
Revision A of 15 January 1988

90 NeWS 1.1 Manual

dbgstart

dbgstop

dbglistbreaks

dbgbreakenter

dbgbreakexit

dbgprintfenter

These are the user commands:

- dbgstart
Make the current connection to the server a debugger. Required before any
the other commands bellow can be used.

- dbgstop
Removes the debugger from your p s h connection.

- dbglistbreaks
List all the pending breakpoints resulting from dbgbreak above. They are
in the following form:

dbg~istbreaks

Currently pending breakpoints are:
1: loneA called from process(4245774, breakpoint)
2: loneB called from process(4306134, breakpoint)
3: Imenubreak called from process(5177764, breakpoi
4: lundefined. called from process(4154624, breakpoi

The number preceding the colon is the breaknumber used in many of the fo­
ing commands. A number beyond the end of the listing behaves as the last

name/[dict name] dbgbreakenter
Modify the named procedure to call dbgbreak just after starting. If name i~
array, it is assumed to be a dict and the name of a procedure in the diet. Th
break when any new wilndow is made:

[Defau~tWindow /:new] dbgbreakenter
Break:/new from process(4050350, input_wait)
Currently pending breakpoints are:

1: Inew called from process(4050350, input_wait)

See also: dbgbreak

name/[dict name] dbgbreakexit
Modify the named procedure to call dbgbreak just before exiting.

See also: dbgbreak

name/[dict name] formatstring argarray dbgprintfenter
Modify the named procedure to call dbgprintf withformatstring and argar
just after starting. Note that argarray can be a literal array if you want to de
evaluation of the arguments until the dbgprintf occurs.

See also: dbgprintf

~\sun ~ microsystems
Revision A of 15 JanuaI

dbgprintfexit

The effects of this change will per­
sist until the NeWS server is res­
tarted.

Chapter 8 - Debugging 91

name/[dict name] formatstring argarray dbgprintfexit
Modify the named procedure to call dbgprintf withformatstring and argarray
just before exiting.

Note that argarray can be a literal array if you want to defer evaluation of the
arguments until the dbgprintf occurs.

[DefaultWindow /reshape] (resize: % % % %\n)
{FrameX FrameY FrameWidth FrameHeight} dbgprintfexit

resize: 91 100 179 181
resize: 91 94 223 187

See also: dbgprintf

dbgwherebreak

dbgwhere

dbgcon tinuebreak

dbgcontinue

dbgenterbreak

breaknumber dbgwherebreak
Prints a exec stack trace for the process identified by breaknumber:

1 dbgwherebreak
Level 1

Ifoo 10 'def' Ibar 20 'def' IA 'false' 'def' IB 'true'
'def' Imsg (Hi!) 'def' (Testing: %\n) 'mark' msg] dbgprintf
10neB *dbgbreak } (*21,22)

Level 0
{ 100 'diet' 'begin' array{22} *'loop' 'end' } (*4,6)

The asterisk indicates the currently executing primitive in each level. The two
numbers following each procedure are the index, relative to zero, of the asterisk
and the size of the procedure. This is useful information for using dbgpatch.

- dbgwhere
Prints the execution stack for the currently entered process or for the last process
listed if no process is currently entered.

breaknumber dbgcontinuebreak
Continues the process identified by breaknumber.

- dbgcontinue
Continues the currently entered process or the last process listed if no process is
currently entered.

breaknumber dbgenterbreak
As far as possible, make this debug connection have the same execution environ­
ment as the process identified by breaknumber. Currently, this includes the
operand stack and the dictionary stack. Thus dbgenterbreak allows you to
browse around in the given process' state. If dbglistbreaks is executed while
within an entered process, the listing will indicate that process with a "=>" in
the left margin:

~\sun ~ microsystems
Revision A of 15 January 1988

92 NeWS 1.1 Manual

dbgenter

dbgexit

dbgcopystack

dbgcallbreak

dbgcall

dbggetbreak

dbgpatchbreak

3 dbgenterbreak
dbglistbreaks
Currently pending breakpoints are:

1: loneA called from process(4245774, breakpoint)
2: loneB called from process(4306134, breakpoint)

=>3: Imenubreak called from process(5177764, breakpoj

- dbgenter
Enters the last process listed.

- dbgexit
Return to the debugger connection from whatever process you may have en
This is a no-op if no process is currently entered. The following debugger 1
tives will call this routine: dbgcontinuebreak, dbgkillbreak, dbgenterbrE
dbgstop. Thus, dbgenterbreak first calls dbgexit to insure preserving statl

- dbgcopystack
Copies the current operand stack to the process being debugged. This allov
to dbgenter a process, modify that copy of the operand stack, and copy it b
the process.

arg clientproc breaknumber dbgcallbreak
Execute clientproc in the broken process with arg as data. The clientproc
itive will be executed (in the client environment) with the arg on the stack,
is responsible for popping it off.

arg c1ientproc dbgcall
Implicit version of db~~callbreak.

breaknumber dbg~letbreak process
Returns the NeWS process object for the given breaknumber.

level index patch breaknumber dbgpatchbreak
Patch the execution stack for breaknumber process. The patch overwrites t
word in the executable at the given level, and at the given index within that
Prints the resulting exe:cution stack (dbgwhere).

~\sun ~ microsystems
Revision A of 15 J anu,

dbgpatch

dbgmodifyproc

dbgkillbreak

dbgkill

8.5. Miscellaneous Hints

Aliases

Use Multiple Debugging
Connections

level index patch dbgpatch
Patch the implicit process.

Chapter 8 - Debugging 93

name/[dict name] headproc tailproc dbgmodifyproc
Modify the named procedure to execute headproc just before calling it, and to
call tailproc just after calling it. In affect, '{proc}' becomes '{headproc proc
tailproc}.' This is the mechanism used for implementing dbgbreakenter/exit
and dbgprintfenter/exit.

breaknumber dbgkillbreak
Kills a breakpointed process, removing it from the breaknumber list.

- dbgkill
Kills the default process.

Here are some miscellaneous tips for debugging.

Because the debugger is POSTSCRIPT language-based, the above commands can
easily be modified or overridden entirely. One common change is to define some
easily-typed aliases for the above verbose names. The following POSTSCRIPT
language code does the trick; you can add this to your user. ps file to make
the aliases available in all debugging connections.

/dbe {dbgbreakenter} def
/dbx {dbgbreakexit} def
Ide {dbgeontinue} def
Ideb {dbgeontinuebreak} def
Idee {dbgeopystaek dbgeontinue} def
Ides {dbgeopystaek} def
Ide {dbgenter} def
Ideb {dbgenterbreak} def
Idgb {dbggetbreak} def
Idk {dbgkill} def
Idkb {dbgkillbreak} def
Idlb {dbglistbreaks} def
Idmp {dbgmodifyproe} def
Idp {dbgpateh} def
/dpe {dbgprintfenter} def
/dpx {dbgprintfexit} def
Idw {dbgwhere} def
Idwb {dbgwherebreak} def
Idx {dbgexit} def

If you are debugging POSTSCRIPT language code that you are running directly
from an executive, start a debugging executive in another psh connection. This
avoids having the debugging code trying to break to itself. You use the first exe­
cuti ve to run the code being tested, and the second one to trap the errors.

~\sun ~ microsystems
Revision A of 15 January 1988

9

C Client Interface

C Client Interface ... 97

9.1. How to Use CPS ... 97

The . cps File .. 98

The . h File ... 100

The . c File ... 100

Comments ... 101

9.2. Tags, Tagprint, Typedprint .. 101

Tags .. 101

Recei ving Tagged Packets from NeWS .. 102

9.3. A Sample Tags Program .. 103

9.4. Tokens and Tokenization .. 105

9.5. The CPS Utilities ... 106

9.1. How to Use CPS

9
C Client Interface

The C to POSTSCRIPT language (CPS) interface has been designed to facilitate
interactions between programs written in the C language on the "client" side and
the NeWS server on the "POSTSCRIPT language" side6. The interface model is of a
client program which constructs a NeWS program and then, after opening a con­
nection to the server, transmits the program. This program may make use of the
all the built-in features of NeWS (including procedures already defined in the
userdict and the systemdict).

With this code now resident in the NeWS server, the client side program can make
calls to the server side - initiating remote execution. The CPS interface defines:

o the format of the . cp s file

o the functions which establish and close communication with the NeWS server

o a format for passing information between client and server

There are three component files used in the construction of a NeWS client. These
are:

o the. cp s file - containing the POSTSCRIPT language code to be executed
within the server,

o the. h file - containing the POSTSCRIPT language code in a form recogniz-
able to the C compiler,

o the. c file - the client program, which can use POSTSCRIPT programs.

The CPS program acts to convert the contents of the . cps file into a form useable
by a C program. The POSTSCRIPT language functions (after conversion) can now
be called from the C program and execution will take place within the server (on
the POSTSCRIPT language side). An explanation of their use may be found in the
following section (The . cps File).

The CPS program needs only one argument (though it has a number of options),
the name of the file to translate:

6 NeWS is not limited to communication with programs written in C. Other interfaces may be designed
relativelyeasily.-

~~sun ~ microsystems
97 Revision A of 15 January 1988

98 i\eWS 1.1 Manual

The . cp S File

[x' cps test.cps

The input file in the above example is translated by CPS into a header file (a
file) 7. This header file is then # inc 1 u de' d in the client (C) program before
compilation. It will contain not only the definitions that you have made but a
number of additional functions that CPS provides (see the section 9.5 on The (
Utilities.

It is best to transmit information to the server once and place procedures and
variables to be used more than once in a local dictionary. An error will be ge:
erated on the POSTSCRIPT language side if you attempt to reference a procedl
or variable (other than implementation-associated ones) that you haven't pla(
in a dictionary.

There is no need to include the standard i/o header file (stdio.h) because CPS

this already. However, you will need to add the CPS library to your list of
libraries searched by the linker. Further, you will need to add the file ps io .
the compile line (or as a #include) in your file. This may be done at com
time with the following command line form:

(x % cc -I$NEWSHOME/include test.c /usr/NeWS/lib/libcf

where the pathname provided to the compiler is the full pathname of the,g~s
library (if it is not in your current directory).

The . cps file provides the input for the CPS program. The CPS program buill
header file of the proper form for inclusion in a client program written in the
language.

The . cps file contains definitions of the following form:

(cdef macro_name () procedure

where the macro _name is the name of the macro as you wish to label'it withi
your client side program. procedure is the POSTSCRIPT language procedure tl
you wish to invoke. For example, the pS_ffioveto () procedure is specifie
this way:

[cdef ps_moveto(x,y) x y moveto

CPS understands how to construct very efficient C code fragments that packa[
and transmit POSTSCRIPT language fragments. The arguments to the C proce
are inserted where they are referenced in the POSTSCRIPT language fragment.
The invocation:

7 The input file is passed through cpp (1) before it is read by cps.

~\sun ,~ microsystems
Revision A of 15 January

Argument Types

Table 9-1

Chapter 9 - C Client Interface 99

(~ __ p_s ___ m_o_v_e_t_O_(_1_0_'_2_0_) ______________________________________ ~J
causes this POSTSCRIPT language fragment to be transmitted:

(1020 moveto

To reduce communication costs, it is best to keep POSTSCRIPT language frag­
ments that will be used often as short as possible. One good way of doing this is
by defining POSTSCRIPT language procedures:

cdef initialize()
Idraw-dot { 4 0 360 arc fill } def

cdef draw_dot (x,y) x y draw-dot

Invoking initialize () will transmit the definition of the POSTSCRIPT
language function draw-dot a single time. Further invocations of the routine
draw_dot (with a call to draw_dot (x, y)) will require the transmission of
fewer bytes.

J

Just as in normal C procedure declarations, the parameters to CPS macros must be
given types. The syntax for specifying a type is different: the type name appears
preceding the parameter in the parameter list8. For example, the previous
definition of ps _ moveto () is equivalent to:

(
cdef ps_moveto(int x, int y) x y moveto J
----------~

Most of the types correspond directly to C types. The following table lists the
CPS argument types:

CPS Argument Types

CPS type

int
float
string
cstring

fixed

int
float or double
char *

C type

char * with an accompanying count of the number of
characters in the string. Such a parameter is actually two
parameters: the pointer to the string and the count.
A fixed-point number represented as an integer with 16
bits after the binary point. See the description of
integer in Table 13-2, Implementation Limits of the
PostScript Language Reference Manual.

8 The default type of these arguments is int (as in the C language).

Revision A of 15 January 1988

100 NeWS 1.1 Manual

Table 9-1

The . h File

The . c File

Communication with the Server

Opening a Connection

Connection Files

CPS Argument Types- Continued

CPS type

token

C type

A special user-defined token. This is described in the
section on user tokens.

The header (.h) file is created by the CPS utility. It should be included in you
client C program using the #include feature of the C pre-processer. In additi
the routines that have been defined in the . cp s file, this file includes anum
of pre-defined POSTSCRIPT language routines (listed in the final section of tr
chapter, The CPS Utilities).

The client side C program is written in much the same fashion as you would
write any C program. The functions that have been declared on the server sit
(with cdefs) are accessible to you on the client side. While the CPS interface
definition does the low-level work of passing these values in a form that you
program can understand., you will still have to explicitly open and close corr
munciation with the NeWS server.

Communication with the server is handled by three CPS functions. These fUl
tions manage the low-level work of determining which server to connect to,
establishing the connection, requesting execution of POSTSCRIPT language c
and severing the connection to the server cleanly. These functions are part 0

body of functions that define the CPS interface and which are made ava~~,'
the inclusion of the CPS library during compilation.

A connection to the NeWS server is establishing by calling the CPS function
ps_open_PostScript (). This function returns a PSFILE pointer if a .
nection to the NeWS server is successfully established, otherwise a o. The f
tion detennines which server to connect to by examining the environment v;
able NEWSSERVER9.

ps_open_ PostScript () must be called before any other procedure tha
needs to communicate with the server.

Two PSFILE pointers, PostScript and PostScriptInput, are the
duits through which information flows between NeWS server and client progr
When the client writes to the NeWS server, it is writing on the file representee
the pointer, PostScript. When it (the client) reads output from the serve
is reading the file PostScriptInput. All operations on these PSFILE
pointers are done using the psio package, not the standard I/O. See the psil
manual page for an explanation. Examples of this may be found in Chapter
Complete Example: roundclock.

9 For a detailed explanation S4!e Chapter 15, Supporting News/rom Other lAnguages.

~\sun ,~ microsystems
Revision A of 15 J anuar'

Buffered Output to the Server

Closing a Connection

Comments

9.2. Tags, Tagprint,
Typedprint

Tags

Chapter 9 - C Client Interface 101

Output to the NeWS server is buffered in order to provide a more efficient inter­
face mechanism. The contents of the buffer will be sent to the server when the
CPS function ps flush_PostScript () is called.

The connection to the server is terminated when the CPS function
ps_close_PostScript () is called. This function should be called before
the client program exits. When invoked it causes all NeWS processes running
within the server on the client's behalf to be terminated.

The CPS comment convention is the same as the POSTSCRIPT language comment
convention: everything from a % sign to the end of a line· is a comment.

There are many ways to implement a communication protocol between client and
server. In the CPS interface we have chosen to use a tagged packet method. The
server side communicates with the client program by packaging information into
packets. These packets are tagged with an identifying number and the informa­
tion passed in them is typed.

The section The . cps File explains how to call a POSTSCRIPT language func­
tion from the client side. This tagged packet method may be said to be the com­
plementary half of that system.

The CPS interface procedures for receiving input from the NeWS server are some­
what more complicated than the procedures presented in the preceding sections
that send POSTSCRIPT language fragments to NeWS. The body of a specification
has three parts:

1. A label (name) with args that the client side program can use.

2. An identifier (tag).

3. The POSTSCRIPT language routine or code fragment to be associated with
the label.

4. A list of variables to receive the values in the reply (results).

The syntax of a specification is:

cdef name (args) POSTSCRIPT language code => tag (results)

These three parts correspond to three phases in the client execution of a CPS pro­
cedure:

1. Transmission of the POSTSCRIPT language code.

2. Waiting for the return of the tagged reply.

3. Setting any result values from the reply.

The tag field is optional (as are the args and results) fields. Thus, a specification
may be brief as well as lengthy. Both of the following specifications are accept­
able:

4i\sun ,~ microsystems
Revision A of 15 January 1988

102 NeWS 1.1 Manual

Figure 9-1

Figure 9-2

Receiving Tagged Packets from
NeWS

Short Tags Specification

cdef executeO
makewin

which will execute the POSTSCRIPT language routine makewin within the
server when the execute () function is called from the C client, and

Long Tags Specification

#define BBOX_TAG 57
cdef ps_bbox(xO.yO,x1 ,y1) => BBOX_ TAG (y1 , x1, yO, xO)

clippath pathbbox % Find the bounding box of
0/0 the current clip.

BBOX_ TAG tagprint % Output the tag.
typedprint % Y1 is on the top of the stack,
typedprint % then x1. This is why the return
typedprint % list is in the opposite order from
typedprint % the argument list.

The long specification defines a C function called ps_bbox that takes as
parameters four pointers to integers. It sets the integers to the bounding.rbo)!
the current clipping path. When ps _ bbox () is called it starts by traC;it
a block of POSTSCRIPT language code to the NeWS server. In this case, tfie '(
path pathbbox' call returns the bounding box of the current clipping regior
then transmits back the tag and results.

The tag is necessary in the reply to deal with the possibility of multiple asyr
nous messages being sent from the server to the client. For example, if the
POSTSCRIPT language c.ode that handles menu selections executes this code
the user selects something from the menu:

MENU_HIT_TAG tagprint
menuindex typedprint

then tagged packets will be coming back from the server to the client at tim~
determined by the users. interaction, possibly intermixed with replies to requ
like ps _ bbox. The tags let the client side libraries sort out which replies J

which requests.

To generate a stub for r1eceiving messages like the menu hits in the previous
example, you can use cdef with a tag and return value list, but without an
POSTSCRIPT language code:

(
r~

In this case p s _me n u._ hit () will be a function, not a procedure. I t ~;-£ti

~~Slln ~ microsystems
Revision A of 15 Januar

tagprint and typed print

9.3. A Sample Tags
Program

Figure 9-3

Chapter 9 - C Client Interface 103

to see if the first message on the received message queue is a menu hit. If it is,
then it will unpack its arguments and return true, removing the tag and arguments
from the queue. Otherwise it will return false, leaving the queue alone. If there
is nothing in the received message queue, then the function will wait until some­
thing is received.

Functions like ps _menu_hi t () are generally used to construct the basic com­
mand interpretation loops of client programs by using a cascade of them in a pol­
ling fashion:

while (!psio_error(PostScriptlnput) {
if (ps_menu_hit(index))

handle_menu_hit(index) ;
else if (ps_character_typed(character))

handle_typed_character(character) ;
else if (ps_redraw_requested())

handle_redraw() ;
else

/* illegal tag; program bug */

The tagprint statement sends the tag 'BBOX_TAG' back to the client. It places
the specified value on the input stream (the file PostScriptlnput) from
which the client side retrieves it. The C client has been waiting for such a tag and
the subsequent 'typedprint's return the coordinates to the client. The
'typedprint's can return any variables of the types listed in the above table, CPS

Argument Types.

Following are two short sample programs. Together, they form a pair which will
allow you to return a menu choice from the NeWS server side to the C client side.
Remember when you create them to label the CPS file as test.cps. The CPS pro­
gram will create a test.h file that your C program can use.

A Server Side Tags Program

%

0/0 A very simple NeWS client
%

cdef initializeO
Istarpath { % x Y w h => - (make a star path)

matrix currentmatrix 5 1 roll % xfm x y w h
4 2 roll translate scale % xfm
.2 0 moveto .5 1 lineto .8 0 lineto % xfm
o .65 lineto 1 .65 lineto c10sepath % xfm
setmatrix % -

} def

Revision A of 15 January 1988

104 NeWS 1.1 Manual

IFiliCanvasWithStar { % stargray fillgray => -
fillcanvas setshade
clippath pathbbox starpath fill

} def
ISetStarGrays { % stargray fillgray => -

SET_GRAYS_TAG tagprint typedprint typedprint
} def

Iwin framebuffer InHW DefaultWindow send def
{

IFrameLabel (Talg Test) def
IPainticon {.25 .75 FiliCanvasWithStar} def
IPaintClient {1 0 FillCanvasWithStar} def
IClientMenu [

(Hlack on White) { 0 1 SetStarGrays}
(Black on Gray) { 0 .5 SetStarGrays}
(Gray on White) {.5 1 SetStarGrays}
(Gray on Black) {.5 0 SetStarGrays}
(White on Black) {1 0 SetStarGrays}
(White on Gray) {1.5 SetStarGrays}

] Inew DefaultMenu send def
} win send
Ireshapefromuser win send
Imap win send

cdef get_grays(float star, float fill) => SET_GRAYS_TAG (fill, star)

cdef set_grays(float star, float fill)
win IPaintClient {star fill FiIICanvasWithStar} put
Ipaintclient win send

Figure 9-4 A Client Side Tags Program

/* A very simple NeWS client *1

#include "psio.h"
#include "test.h"

mainO
{

float stargray, fillgray;

if (ps_open_PostScriptO == 0) {
fprintf(stderr,"Cannot connect to NeWS server\n");
exit(1) ;

}
initializeO;
while (!psio_error(P()stScriptlnput)) {

if (get--9rays(&stargray, &fillgray)) {
set--9rays(stargray, fillgray);

~\sun ~ microsystems
Revision A of 15 J anU3J

9.4. Tokens and
Tokenization

CAUTION

} else if (psio_eof(PostScriptlnput)) {
break;

} else {
fprintf ("Strange stuff!\n");
break;

}
ps_close_PostScriptO;

Chapter 9 - C Client Interface 105

NeWS provides a facility for establishing and maintaining a token list. The mes­
sages that a client program sends to the NeWS server are sequences

Using the features described here is a performance optimization. You are
encouraged not to bother with them until you have your application run­
ning, and even then only if communication and interpretation overheads are
a problem.

The token list is a very efficient mechanism for the compression of data prior to
transmission. The list is variable in length with a maximum dimension of 1056
elements. The first thirty-two (32) elements are tightly compressed, yielding a 1-
byte token. The latter 1024 tokens generate two-byte codes.

Several operators are defined by the CPS utility to allow you to add and retrieve
tokens from the token list. When a token is added to the list, it is available when­
ever the token is found by the scanner in the input stream lO.

NeWS has a mechanism, supported by cPS, where a client program and the server
can cooperatively agree on the definition of a user token. The CPS declaration:

usertoken black

tells CPS that you want to transmit the user-defined token black in compressed
form. When black appears in following CPS definitions, the compressed token is
used in the definition.

In order to establish the meaning of the token, the client has to talk to NeWS
before the first use of the token. There are a number of procedures that the C
program can call to do this:

ps _ def ine _ stack _ token(u)
Takes the value on the top of the POSTSCRIPT language stack in the server
and defines it as the value of the token u. In future messages to POSTSCRIPT
language, u is this value.

ps_define_ value_token(u)
Defines the user token u to be the same as the current value of the
POSTSCRIPT language variable u. In future messages to POSTSCRIPT

10 It is frequently useful to add font objects to the token list and save the lookup time.

~\sun ~~ microsystems
Revision A of 15 January 1988

106 NeWS 1.1 Manual

9.5. The CPS Utilities

language, u is the value that the POSTSCRIPT language variable u h~,
time ps_define_value_token () was called. Future chang~!c
value of the POSTSCRIPT language variable u, or its identity as determiI
by changes in variable scope, have no effect on the definition of the tok

ps _ def ine _word _ tOken(u)
Defines the user token u to be the name of the POSTSCRIPT language v,­
u. In future messages to POSTSCRIPT language, u the POSTSCRIPT lang
variable u. This binds the token u to the name u. When it is sent to
POSTSCRIPT language, the name u is evaluated and its value is used.

The operators that mani.pulate the token list are listed in the table in the foIl
section.

The following utilities are provided for your use when a . h file is created 1
cp s utility. You may use these functions without defining them on the serv
side. This list does not describe the arguments to these functions. You shoui
look at the header file for the complete form of the function.

Function
ps _open_PostScript
ps _close _PostScript
ps _flush_PostScript
ps_moveto
ps_rmoveto
ps_Iineto
ps rlineto
ps _ close path
ps arc
ps_stroke
ps_fill
ps show
ps_cshow
ps _ findfont
ps _scalefont
ps_setfont
ps_gsave
ps_grestore
ps finddef
ps scaledef
ps usetfont

~\sun ~ microsystems

Description
open connection to NeWS server
close connection to NeWS server
flush the output buffer
moveto
rmoveto
lineto
rlineto
closepath
arc
stroke
fill
show
cshow
findfont
scale font
setfont
gsave
grestore
takes font,scale returns index into token list
takes font and returns index into token list
takes 'font token' and returns a font object

Revision A of 15 Janua

10
A Complete Example: roundclock

A Complete Example: roundcl ock ... 109

roundclock. c ... 109

roundclock. cps ... 111

roundclock.c

/*
* NeWS clock program
*/

#include <stdio.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include "psio.h"
#include "roundclock.h"
#include <signal.h>

int 0;

main(argc, argv)
char **argv;

10
A Complete Example: roundclock

Here is a complete example, the clock program. We start with the C program,
and then show the CPS definitions it uses.

The body of roundclock, implemented in the file roundclock . c, consists
of a simple timed loop. The timer can be triggered either because the next unit of
time has elapsed or because the NeWS server has received a IDamaged event.
When damage occurs, the UNIX process repaints the entire clock. When the next
unit of time has elapsed, the UNIX process unpaints the old hands and paints the
new hands.

roundclock has two options. If the -8 flag is specified, roundclock
displays a second hand. If -f is specified, roundclock paints itself in a fancy
way.

int show seconds = 0;
int damaged;
int second_hand_length = 38;
int minute_hand_length = 35;
int hour_hand_length 20;

int Imin = -1, Ihour -1, lsec -1;
while (--argc > 0) {

if ((++argv) [0] [0] == , -')

109 Revision A of 15 January 1988

110 NeWS 1.1 Manual

else

s wit ch (a rgv [0] [1])
case 'f':

fancy_clock = 1;
break;

case's' :
show seconds 1;
break;

default:
fprintf(stderr,"roundclock: illegal option:%s\n", argv[C
exit(-l);

fprintf(stderr,"roundclock: illegal option:%s\n",argv[O]);
exit (-1) ;

if (ps open_PostScript() == 0)
fprintf(stderr, "No NeWS ser-ver\n");
exit(-l) ;

if (fancy_clock)

else {

second_hand_length = 10;
minute_hand_length = 35;
hour_hand_length = 20;
ps_fancy_initializeclock() ;

ps_initializeclock() ;

ps_createclock() ;
while (1) {

/* initialize round clock window */

register struct tm *tm;
long now = time(O);
if (damaged) { /* Redraw the clock face if necessary */

ps_redrawclock() ;
damaged = 0;

tm localtime(&now);
ps _ whi te () ; / * Clear out the old hands * /
tm->tm hour = tm->tm hour * 5 + tm->tm min / 12;
if (lmin >= 0)

if (tm->tm_min != Imin)
hand(lmin, minute_hand_length);

if (show_seconds && tm->tm_sec != lsec)
hand(lsec, second_hand_length);

if (tm->tm_hour != Ihour)
hand(lhour, hour_hand_length);

ps_black(); /* draw the new hands */
if (show_seconds)

hand (tm->tm_sec, second_hand_length);
hand (tm->tm_min, minute_hand_length);
hand (tm->tm_hour, hour_hand_length);
Isec = tm->tm_sec;

sun
microsystems

Revision A of 15 Janua

Chapter 10 - A Complete Example: roundclock III

lmin = tm->tm_min;
lhour = tm->tm hour;
ps flush_PostScript();
{ /* Wait for either the next clock tick or a

* window damage repair request */
int msk = 1 « psio_fileno(PostScriptlnput);
int n;
static struct timeval t;
now = show seconds ? 1 : 60 - tm->tm_sec;
t.tv sec = now> 60 ? 60 now;
if (select (32, &msk, 0, 0, &t) > 0)

char buf[lOOO];
n = read(psio_fileno(PostScriptlnput), buf, sizeof buf);
if (n > 0) /* The only input the clock

hand(angle, radius)

* ever gets is a damage
* repair request */

damaged++;
else if (n == 0)

exit (0) ;
else

perror(nreadn) ;

int angle, radius;

if (fancy_clock)
ps_fancy_hand(-angle * 6, radius);

else
ps_hand(-angle * 6, radius);

roundclock.cps All painting is done with POSTSCRIPT language routines defined with the help of
the CPS library. The CPS definitions are contained in roundclock. cps. This
file contains definitions of routines to create a round clock, to draw the clock
frame and hands in a simple style, and to draw the clock frame and hands in a
fancy style.

% CPS PostScript definitions to support clocks.

cdef ps_createclock()
/window framebuffer /new DefaultWindow send def
{

/IconLabel (Clock) def
/FixFrame { (F) print } def
/PaintClient { (P) print } def
/ShapeFrameCanvas {

gsave ParentCanvas setcanvas

sun
micros ys tems

. Revision A of 15 January 1988

112 Y.eWS 1.1 Manual

def

FrameX FrameY translate
FrameWidth FrameHeight scale
.5 .5 .5 0 360 arc FrameCanvas setcanvasshape
grestore

/ShapeClientCanvas { } def
/CreateClientCanvas {

/ClientCanvas FrameCanvas newcanvas def
} def
/PaintFrame { } def
/PaintFocus {

gsave FrameCanvas setcanvas
KeyFocus? {KeyFocusColor} {FrameFillColor} ifelse setcolor
calctransform 0 0 40 0 360 arc stroke
grestore

def
window send

/reshapefromuser window send % Shape it.
/map window send % Map the window.

window /FrameCanvas get set canvas
/calctransform {

initmatrix initclip
clippath pathbbox 100 div exch 100 div exch scale pop pop
50 50 translate

} def
/RDC {

} def

window /FrameCanvas get setcanvas
damagepath clipcanvas
calctransform drawclockframe clipcanvas

cdef ps_white() W
cdef ps_black() B
cdef ps_redrawclock() RDC

%

% ps_hand draws a plain clock hand.
%

cdef ps_hand(rot,rad)
gsave

%

rot rotate 0 0 moveto 0 rad rlineto
stroke

grestore

% ps fancy_hand draws a fancy clock hand.
%

cdef ps fancy_hand(rot,rad)
gsave

rot rotate newpath -5 0 moveto 0 0 5 180 360 arc
Orad rlineto -5 5 rlineto -5 -5 rlineto closepath
fill

sun
microsystems

Revision A of 15 JanuaJ

Chapter 10 - A Complete Example: roundclock 113

grestore

cdef ps_initializeclock()
Idrawclockframe {

bordercolor setcolor clippath fill
o 0 45 0 360 arc
backgroundcolor setcolor fill
textcolor set color
12

} def
IB {

o 40 moveto
o 5 rlineto
stroke
30 rotate

repeat

textcolor set color
} def
Iw {

backgroundcolor set color
} def

cdef ps_fancy_initializeclock()
Idrawclockframe {

.75 monochromecanvas {setgray} {.7 .7 setrgbcolor} ifelse fill
clippath fill
o 0 40 0 360 arc
1 monochromecanvas {setgray} {1 1 setrgbcolor} ifelse fill
1 monochromecanvas {setgray} {l 0 setrgbcolor} ifelse fill
o 45 5 0 360 arc fill

} def
IB {

.5 monochromecanvas {setgray} {.6 1 setrgbcolor} ifelse fill
} def
Iw {

1 monochromecanvas {setgray} {1 1 setrgbcolor} ifelse fill
} def

~\sun ~ microsystems
Revision A of 15 January 1988

11
NeWS Type Extensions

NeWS Type Extensions .. 117

11.1. New Objects in NeWS .. 117

11.2. Objects as Dictionaries .. 118

11.3. Canvases as Dictionaries .. 119

11.4. Events as Dictionaries .. 121

11.5. Graphics States as Dictionaries ... 123

11.6. Processes as Dictionaries .. 124

11.7. Shapes as Dictionaries ... 126

11.8. Object Cleanup ... 126

Server Function .. 126

Object Management .. 127

Error Handling .. ~............... 127

Connection Management .. 127

Process Management .. 127

Killing An Application .. 127

Garbage Collection ... 128

11.9. NeWS Security ... 128

11.1. New Objects in NeWS

canvas

color

event

graphicsstate

11
NeWS Type Extensions

NeWS extends the POSTSCRIPT language with a number of new types. Some are
opaque and can be accessed only by their specific operators. Others can be
opened and accessed like dictionaries. The keys available in these' 'magic dic­
tionaries" are discussed in the following sections. Types that are opened as dic­
tionaries are not, unless specially marked as such, read-only.

canvas
Canvas objects represent Cartesian coordinate spaces, with arbitrarily shaped
boundaries. Each display is represented by a canvas; others may be created and
arranged in an overlapping list.

color
Color objects represent a color. They can be defined using either RGB or HSB
coordinates; they can be compared; and they can be used as a source of paint for
the rendering primitives.

event
Event objects represent (a) messages between NeWS processes and (b) input
events from physical devices. Events can be accessed as dictionaries.

graphicsstate
Graphics state objects preserve entire graphics states, as defined by the
POSTSCRIPT language, in a permanent form. Their only use is to be saved and
restored.

~\sun ~ microsystems
117 Revision A of 15 January 1988

118 NeWS 1.1 Manual

lllOnitor

process

shape

11.2. 0 bjects as
Dictionaries

CAUTION

NOTE

monitor
Monitor objects are uSled for mutual exclusion. A monitor object has ~ . .:a
piece of state indicating whether it is locked or unlocked. Processes can us
monitors to implement: mutual exclusion (for example, to prevent conflicts
updating shared data structures).

process
Process objects represent lightweight processes in the POSTSCRIPT languag
interpreter. They can be accessed as dictionaries.

shape
Shape objects represent paths, as defined by the POSTSCRIPT language, in (;
manent form. Their only use is to be saved and restored; only the current I
may be operated on.

The internal state of some of these new types is accessible as if the object'
dictionary; fields in th~ object are accessed just like keys in a dictionary. I
pIes of typical usage (these particular keys are discussed later) are:

MyCanvas fColor get % determine if'MyCanvas' is a colored
or
MyEvent fName fEntl9rEvent put % set the Name in 'MyEvent' to EnterE

The use of new type objects as dictionaries has defined behavior OM f
existing keys given for each type. You should not define new keys~d
"dictionaries"; the results are undefined and what happens may chan
future implementations.

The following sections describe the keys of interest in those types that are
sible as dictionaries.

In the header to the description of each key, the type to the left of the key il
cates what values may be assigned to the key, and the type to the right indl
what values may be retrieved. For read-only keys, the position to the left (
tains '-.'

Revision A of 15 J anu

11.3. Canvases as
Dictionaries

TopCanvas

BottomCanvas

CanvasAbove

CanvasBelow

TopChild

Parent

Chapter 11 - NeWS Type Extensions 119

The accessible keys of a canvas dictionary are:

TopCanvas
BottomCanvas
CanvasAbove
CanvasBelow
TopChild
Parent
Transparent
Mapped
Retained
SaveBehind
Color
EventsConsumed
Interests

They are dealt with in order below.

- TopCanvas canvas
The current canvas' top sibling. The TopChild of the parent canvas.

BottomCanvas canvas
The current canvas' bottom sibling.

- CanvasAbove canvas or null
The sibling canvas immediately above this canvas, or null if no such canvas
exists.

- Canvas Below canvas or null
The sibling canvas immediately below this canvas, or null if no such canvas
exists.

- TopChiid canvas or null
The top child of this canvas, or null if no such canvas exists.

canvas or null Parent canvas or null
The parent of this canvas, or null if the canvas has no parent. Null is returned,
for example, for canvases that result from createdevice. Setting this field mani­
pulates the window hierarchy.

~~sun ,~ microsystems
Revision A of 15 January 1988

120 ~cws 1.1 Manual

Transparent

l\'1apped

Retained

SaveBehind

Color

E ventsConsumed

boolean Transparent boolean
True if the canvas is transparent, false if it is opaque. An opaque canvas-v'l~
hides all canvases underneath it; a transparent canvas does not. A transparer
canvas never has a retained image; instead it shares its parents retained imag

boolean Mapped boolean
True if the canvas is mapped, false if it is unmapped. When a canvas is rna]
it becomes visible on the screen that its parent is on. When a nonretained w
dow is mapped, the region that becomes visible is considered to be damaged

boolean Retained boolean
True if the canvas is retained, false if it is not. NeWS keeps an offscreen cop
a retained canvas. If it is on a screen and overlapped by some other canvas,
hidden parts of the canvas will be saved. A retained canvas generally perfor
much better with most window management operations, like moving and po
ping canvases. But the retained image does consume storage. For color dis]
the cost of retaining canvases is often prohibitive.

boolean SaveBehind
SaveBehind is a hint to the window system that when the canvas is made vi
on the screen canvases below it won't be too active and the canvas won't be
too long. This is a performance hint only; it does not affect the semantics 01

other operations. It is generally employed with popups to reduce the CFif
damage repair when they are removed. ~j

Color boolean
True if and only if the current canvas can support more colors than just blac
white, or greyscale.

keyword EventsColnsumed keyword
The event consumption behavior of the canvas is determined by its
EventsConsumed key, where keyword is one of:

IAIIEvents
no events will be matched against canvases behind this one

IMatchedEvents
events that match an interest on this canvas will not be matched against
canvases behind this one

INoEvents
events will be matched against interests on canvases behind this one, re
less of whether they match.

~\sun ~ microsystems
Revision A of 15 Januar

Interests

11.4. Events as Dictionaries

Action

Canvas

Chapter 11 - NeWS Type Extensions 121

Interests array
The interest list for the canvas is returned as an array of events. The order of
events in the array is the priority order of the interests, highest first. (The gIo­
balinterestlist primitive returns an exactly similar array of interests for the glo­
bal interest list - the set of interests expressed with a null Canvas. It is defined in
Chapter 12, NeWS Operator Extensions).

The currently accessible keys of an event dictionary are:

Action
Canvas
ClientData
Exclusivity
Interest
IsInterest
IsQueued
KeyState
Name
Priority
Process
Serial
TimeStamp
XLocation
YLocation

object Action object
An arbitrary POSTSCRIPT language object, often depending on the value of the
Name. For keystrokes, the value of Action is IDownTransition or IUpTransi­
tion; for mouse motion, Action is null, etc.

In an interest, the Action may be a number, a keyword, or a string, in which case
it is matched exactly against the Action of candidate events; or the Action may
be an array or dictionary. See Chapter 3, Input, for more information on interest
matching.

null or canvas Canvas null or canvas
When an event is submitted for distribution (by sendevent or redistributeevent),
this key indicates a restriction on its distribution: the event only matches interests
expressed with respect to the given canvas. Certain system events (such as
IDamaged events) have a canvas specified.

In an interest, the Canvas specifies that only events that happen to that canvas
will be matched. Null in an interest Canvas indicates an interest in all events not
explicitly directed to a particular canvas.

~\sun ~ microsystems
Revision A of 15 January 1988

122 NeWS 1.1 Manual

ClientData

Exclusivity

Interest

IsInterest

IsQueued

KeyState

Name

object ClientData object
In either an interest or an event submitted for distribution, this field may'l~61(
additional information rdating to the event. The information is carried alon~
without modification by NeWS.

boolean Exclusivity boolean
Exclusivity is meaningful only for interests, although it may be set and read
any event (since any event may be used as an argument to expressinterest).
true, it indicates that an event that matches this interest in distribution shoulc
be allowed to match any further interests.

- Interest event
This read-only key is set in a real event as it is distributed; its value is the im
that the event matched in order to be delivered to its recipient.

Islnterest boolean
This read-only key indicates whether an event is currently on some interest I

IsQueued boolHan
This read-only key is tnle when the event has been but in the input queue ani
not yet been delivered.

KeyState array
When keyboard translation is on, this array is empty. When translation is of
this array indicates all the keys that were down at the time the event was dis!
buted. (Normally, Ii t.eUI . ps is loaded by the server at initialization ana
turns off translation to gain access to the unencoded Sun keyboard.) The an
actually contains the Na.me values from events that had an Action of IDown
Transition, and that didl not have a subsequent event with the same Name a:
Action of IUpTransition. In generating this array, the test is executed befOI
down-event, and after an up-event, so a down-up pair with no intervening ev
will not be reflected in the KeyState array.

This key is meaningless in an interest.

object Name object
An arbitrary POSTSCRIPT language object, generally indicating the kind of e
For example, keystrokes will have numeric Names corresponding to the AS(
characters (or the keys) that were pressed. Many other events have keyword
values, such as IDamaged or IEnterEvent.

In an interest, the Nam(;~ may be a number, a keyword, or a string, in which (
it is matched exactly against the Name of candidate events; or it may be an ,
or dictionary. See Chapter 3, Input, for more information on interest matchi

~~sun ,~ microsystems
Revision A of 15 Januar'

Priority

Process

Serial

TimeStamp

The current nominal resolution of a
time value is Z16 seconds (about
0.9 ms) and the maximum interval
is 65,536 minutes (about 451/2

days).

XLocation

YLocation

11.5. Graphics States as
Dictionaries

Chapter 11 - NeWS Type Extensions 123

number Priority number
Priority is meaningful only for interests, although it may be set and read in any
event (since any event may be used as an argument to expressinterest). Real
events are matched against the interests expressed on a canvas in priority order,
highest priority first; among interests with the same priority, the most recent is
considered first. For these purposes, the global interest list (interests expressed
with a null Canvas) is treated like the foremost canvas interest list. The default
priority is 0; fractional and negative values are allowed, and there are very few
circumstances where the priority need be changed at all.

null or process Process null or process
In the event queue, this key indicates the only process the event will be delivered
to (if any - it must still match on all other criteria). In an interest list, it
identifies the process that expressed this interest.

Serial number
This key is a number that reflects the order in which events are taken off the
event queue. For an interest, Serial equals the serial number of the last delivered
event that matched this interest. This is a read-only key.

number TimeStamp number

This numeric value indicates the time an event occurred. (A time value is simply
the number of minutes since the system started; it may contain a fractional com­
ponent.) Events in the event queue are distributed in TimeStamp order, and no
event is delivered before the time in its TimeStamp field. Thus, a timer event is
simply any event handed to sendevent with a TimeStamp value in the future.
This key is ignored in interests.

number XLocation number
System events are labeled with the cursor location at the time they are generated;
this value is used to determine which canvas(es) the event can be distributed to.
It is available to recipients and is transformed to the current canvas' coordinate
system. This key accesses the X-coordinate of the location. It is ignored in
interests.

number YLocation number
This key accesses the Y -coordinate of the event location; see the explanation
under XLocation above. It is ignored in interests.

Graphics state objects are intended to be opaque. Their only use is to save the
graphics state of a process for future re-use by that (or another) process. They
are, therefore, not accessible as dictionaries.

~\sun ~ microsystems
Revision A of 15 January 1988

124 NeWS 1.1 Manual

11.6. Processes as
Dictionaries

DictionaryStack

ErrorCode

The keys that may be accessed in a process dictionary are:

DictionaryStack
ErrorCode
Standard Error Names
ErrorDetailLevel
Execee
ExecutionStack
Interests
OperandS tack
State

All of these keys are read-only; attempts to change their values in a process
unregistered errors.

DictionaryStack array
The current dictionary stack of the process is returned as an array. The earli
dictionary is array element O.

ErrorCode keyword
The current errorcode of the process is returned as a keyword. The set of pc
ble results is

laccept
Idictfull
I dictstackoverflow
I dictstackunderflow
I execstackoverflow
linterrupt
linvalidaccess
linvalidexit
linvalidfileaccess
linvalidfont
linvalidrestore
lioerr
IkiIJprocess
IIimitcheck
Inocurrentpoint
Inone
Irangecheck
Istackoverflow
Istackunderftow
Isyntaxerror
Itypecheck
lundefined
lundefinedfilename
lundefinedresult
lunim plemented
lunmatchedmark:
lunregistered
IVMerror

.\sun ~ microsystems
Revision A of 15 Janua

" , StandardErrorNames

Error DetailLevel

Execee

ExecutionStack

Interests

OperandStack

State

Chapter 11 - NeWS Type Extensions 125

- StandardErrorNames array
StandardErrorNames is an array of the names of the standard errors. It is used
by errored and the debugger, and is available for other programs' use.

process ErrorDetail Level
Controls the amount of detail that is included in an error report. Setting Error­
DetailLevel to 0 (the default) gives a minimum of error reporting. Setting it to 1
yields a more descriptive message, to 2 dumps the contents of the dictionary,
execution and operand stacks. Setting the detail level is done as follows:

currentprocess /ErrorDetailLevel 1 put

Execee object
The object currently being evaluated (i.e., the top of the process' execstack) is
returned.

ExecutionStack array
The full current execution stack of the process is returned as an array, containing
pairs of executable arrays and indices. The latest executable array is element 0 of
the array, the" program counter" within it is element 1.

Interests array
The current interest list of the process is returned as an array. The first element
of the array is the event which is the most recently expressed interest in this pro­
cess.

- OperandStack array
The full current operand stack of the process is returned as an array. The earliest
object on the stack is element O.

- State array
The current execution state of the process is returned as a keyword. The set of
possible results is:

Ibreakpoint
Idead
linput_ wait
lID wait
Imon wait
Iproc_wait
Irunnable
Izombie

~\sun ~~ microsystems
Revision A of 15 January 1988

126 l\eWS 1.1 Manual

11.7. Shapes as
Dictionaries

11.8. Object Cleanup

Server Function

Shape objects are opaqw~. Their only use is to save the current path of ()(
for future re-use by that (or another) process. They are, therefore, not access
as dictionaries.

The following sections in this heading discuss how to manage object cleanur
connections and process1es. These discussions are directed towards applicatio
developers.

When NeWS starts, it runs the code in ini t . ps called Iserver. This launcI­
process that listens for connections requests ona well-known socketll . Each
request for a new client forks a new process which is its initial process. Wid
that process is a small code fragment that:

o makes this process a member of a new process group

o builds the client's userdict

o initializes the graphics state.

The following code does all this:

100 diet begin initmatrix newprocessgroup

Finally, the client code is executed by executing:

connection file cvx exec

This converts the connection file to executable and then executes it. It return
when the socket is closed by the client.

Any client which has made entries in system diet that should be cleaned up
should do so before killing the client processgroup. This can be done by OVf

riding the DestroyClient method in the client window or by catching the e<
on the client socket.

This latter is done by starting a recursive file read in the client process. (See
description above of how the client process is initialized) This is done by he
the CPS initialization program include the following:

cdef initializeO
IAbortProc { .. do cleanup here .. } def
INestedServer {currentfile cvx exec AbortProc} def

Iwin framebuffer Inew DefaultWindow send def

NestedSelver
cdef ...

11 See the news_server (1) manual page for a more complete discussion.

~~sun ~ microsystems
Revision A of 15 Januar:

Object Management

Error Handling

A more subtle use of errordict is
exhibited by the debug. ps
debugger.

Connection Management

Process Management

Killing An Application

Chapter 11 - NeWS Type Extensions 127

The client will have altered the INestedServer loop to add the additional process
I AbortProc. This code will be executed in the initial client process when the
socket is closed 12.

There is no way to detennine all the objects that the server thinks are being refer­
enced. The reason for this is that there is currently no way to enumerate all the
processes known to the server. Because of this, there is no way to get at the dic­
tionaries that are "private" to these, mainly their userdict. Thus the best one can
do is enumerate all objects visible to systemdict.

There are ways, however, for a given client to allow for its objects to be
enumerated. The simplest way is to put hooks in systemdict. One way would be
to have clients put process objects in a dictionary in the systemdict. Using a dic­
tionary (rather than a composite object) would confer the benefit of precluding
duplicate entries. Another way is to have each process listen for special events
from other processes 13 .

Clients can do much of their own error processing by using their own version of
errordict. (POSTSCRIPT language error handling is discussed in detail in the
PostScript Language Reference Manual.) There is a set of standard error names
in systemdict. There is also a simple utility, errored that uses these.

Client side errors are dependent on their environment. C clients have to do most
of their own error-handling. The C client can catch signals and can install a
cleanup proc for their server connection using the AbortProc and NestedServer
(discussed above under the section titled Server Function.

If a C program is terminated without calling ps _close _PostScr ipt the
client UNIX process will tenninate, closing all its file descriptors. This in tum
will close the socket being used by the NeWS server for that process. This will
behave much like calling ps_close_PostScript, in that the client process
in the server will terminate. See the discussion on the initialization of the client
process, and the AbortProc and NestedServer programs.

The key to process management is to insure that memory reclamation is efficient.
Garbage collection should automatically clean up virtual memory when an appli­
cation is killed.

An application should kill its process groups and any other process groups it has
created upon its own termination. The NeWS server does this when your client
socket closes 14. The psh client creates a new process group so that the closing
of the client socket does not automatically kill the client. Otherwise, all psh
clients would always immediately die as soon as their window was created.

12 Some resources, such as cached fonts, are considered system resources and are not under client control.

13 Windows are redrawn in the lite tool kit using this method.

14 If you are running as a simple POSTSCRIPT language only program using the psh shell, the Zap menu item
will also, by default, kill the its process group.

~\sun ~ microsystems
Revision A of 15 January 1988

128 NeWS 1.1 Manual

Garbage Collection

De-Referencing Composite
Objects

11.9. NeWS Security

Garbage collection is the process of removing objects from virtual men(-)'
they are no longer referenced. The problem is quite acute in the current gene
tion of printers that understand the POSTSCRIPT language and any virtual
memory system must cope with it. Killing the client process group will "den
ence" the client's userdict, which will recursively garbage collect all the clie
local references. When the main process dies, it kills its process group. Only
other process groups have been created is there a need to explicitly kill the f(
processes made by that group.

When a process dies, the various stacks associated with it are garbage collec
(their ref count decremented). The dictionary stack, in particular, will have e
entry decremented. If a forked process created a dictionary and put it on its (
tionary stack, the only reference will be that of the process' dictionary stack.
Thus that dictionary will be garbage collected. Then, any objects in that dict
ary will then also be dee-reffed, making them candidates for garbage collect]

In other words, objects will be garbage collected only when all references to
them go away, regardless of the process dying. De-referencing a dictionary
references all the objects in the dictionary when the dictionary is garbage co
lected. When a composite object (arrays and dictionaries) is garbage collecte
each of its elements decreases its refcount and is in tum garbage collected if
count has gone to zero.

There is a dictionary called RemoteHostRegistry maintained in the se~;v
keys are the names of hosts which are allowed to connect to the NeWS S ~r.

When NeWS starts up, this just contains the name of the local host. Wheneve
connection is attempted, the name of the remote host is checked to see if it i~
this dictionary, and if it isn't then a message is issued to the user and the COIl

tion is closed.

NOTE This is exactly the same security that the X window system has.

A variable in the systenldict named NetSecurityWanted may be set to falSe
disable this security mechanism.

The shell script newshost(l) allows you to manage the registry of permit((
host names from the command line.

~~sun ~ microsystems
Revision A of 15 J anuar:

12
NeWS Operator Extensions

NeWS Operator Extensions ... 131

"C

acceptconnection

activate

arccos

arcsin

arctan

12
NeWS Operator Extensions

- "C
Mercilessly abort the NeWS server. (The name consists of two characters - a''''
followed by a 'C' - not a control-C.)

Iistenfile acceptconnection file
Listens for a connection from another UNIX process to the NeWS server on
listenfile. When another process connects,file will connect the server with the
client. Things that the client writes to the server will appear on/tie, and things
written to file will be sent to the server. Listenfile is created by invoking file with
the special file name (%socketln). N is the IP port number that will be used
for listening.

proc activate process
Creates a new process that will be executing proc in an environment that is a
copy of the original process's environment. When proc exits, the process will
terminate. Process is a handle by which the newly created process can be mani­
pulated.

See also: killprocess, killprocessgroup , waitprocess

num arccos num
Computes the arc cosine in degrees of num.

num arcsin num
Computes the arc sine in degrees of num.

num arctan num
Computes the arc tangent in degrees of num. You should probably use atan
instead.

~\sun ~ microsystems
131 Revision A of 15 January 1988

13 2 ~eWS 1.1 Manual

awaitevent

blockinputqueue

breakpoint

buildimage

awaitevent event
Blocks the NeWS lightweight process until an event in which it has expre~/d
interest happens, and remms an object of type event describing it.

See also: blockinputqueue, createevent , expressinterest , redistributeevent ,
sendevent

num blockinputqueue
Inhibit distribution of input events from the event queue, until a correspondil
unblockinputqueue is executed, or num minutes, whichever happens first.
When calls to blockinputqueue are nested, the timeout goes until the last of
of them and the queue remains blocked until an unhlockinputqueue has bee
executed to match each blockinputqueue.

Events used as arguments to sendevent are inserted in the event queue, and
hence are subject to inhibition; events passed to redistributeevent are not re
queued, and so are not inhibited.

See also: sendevent, unblockinputqueue

NOTE

breakpoint
Suspends the current process.

width height bits/sample matrix proc buildimage canvas
Constructs a canvas object from the width, height, bits/sample, and pro~~r,
ters in the same way as image interprets its parameters. A notable diff~~o
between the Sun and Adobe implementations is that if bits/sample is 24 ther
image is interpreted as color. The inverse of the matrix is used to define the
default coordinate system of the canvas.

The parameters represent a sampled image that is a rectangular array of wid I
height sample values, each of which consists of bits/sample bits of data (1,8
The data is received as a sequence of characters (Le., 8-bit integers in the raJ
to 255). If bits/sample is less than 8, the sample bits are packed left to right
within a character (from the right-order bit to the low-order bit). Each row i
padded out to a character boundary.

The buildimage operator executes proc repeatedly to obtain the actual imag
data. Proc must return (on the operand stack) a string containing any numb~
additional characters of sample data.

The matrix parameter specifies the transformation from a unit square to the I
coordinates of the image.

In the current implementation, only matrices of the form [width 0 0 -height t
height] will work correctly.

~\sun ~ microsyslems
Revision A of 15 Januru

canvastobottom

canvastotop

clipcanvas

clipcanvaspath

continueprocess

contrastswithcurrent

copyarea

Chapter 12 - NeWS Operator Extensions 133

canvas eanvastobottom
Moves the canvas to the bottom of its list of siblings.

canvas eanvastotop
lVIoves the canvas to the top of its list of siblings.

- elipeanvas
The clipcanvas operator is similar to clip except that it sets a clipping boundary
that is an attribute of the current canvas, not the current graphics state. This clip­
ping boundary is not affected by initgraphics, initclip, gsave, grestore, or any
of the other graphics state modifiers. Graphics operations are clipped to the
intersection of the canvas clip, the graphics state clip, and the shape of the can­
vas.

It is intended to be used when it is necessary to impose clipping restrictions on
all operations aimed at a canvas, no matter where they come from. This is typi­
cally used during damage repair to restrict updates to the damaged region.

The clip path set by this operation is not the clip path manipulated by the opera­
tions clip, clippath, eoclip, and initclip. The initclip operator sets its clip path
to the shape of the canvas.

See also: damagepath, clipcanvaspath

- eli peanvaspath
Sets the current path to the canvas clipping for the current canvas as set by clip­
canvas.

process eontinueproeess
Restarts a suspended process.

See also: suspendprocess, breakpoint

color eontrastswitheurrent boolean
Returns true if the color argument is different than the current color. The test
takes into account the characteristics of the current device. The standard boolean
operators, like eq can be used to compare colors without accounting for the
current device.

dx dy eopyarea
Copies the area enclosed by the current path to a position offset by dx,dy from its
current position. For example, you could use this primitive to scroll a text win­
dow. The nonzero winding number rule is used to define the inside and outside
of the path.

~~sun ~ microsystems
Revision A of 15 January 1988

134 NeWS 1.1 Manual

countinputqueue

create device

createevent

createmoni tor

createoverlay

currentautobind

- countinputqueue· num
Returns the number of events currently available from the POSTSCRIPT 1!1.-l-g1
process' input queue. If this number is positive, awaitevent will not block.

string createdevice canvas
Creates a new canvas from a frame buffer device named by string. The usm:
value for string on a Sun is "/dev/tb."

createevent eV~3nt

Synthesizes an object of type event, which will have null or zero values for,
fields.

See also: awaitevent, redistributeevent , expressinterest , sendevent

createmonitor monitor
Creates a new monitor object.

See also: monitorlocked, monitor

NOTE

canvas createoverl,ay canvas
Given a canvas, createoverlay creates a new canvas that overlays the origin
An overlay is like a sheet of cellophane that lays over a canvas. Anything tt
drawn in an overlay win float over the underlying canvas. Objects drawn in
?verlay ,:"ill not affect the underlying image, and objects drawn in the '0'
Image wIll not affect the overlay. Because of the way that overlays are' I
mented on some displays, there will be performance problems if too many tl
are written into the overlay. They are intended to be used for animated obje,
like rubber band lines and bounding boxes.

The current color is usually ignored when drawing in overlays. They will g{
erally be done in black. This weakness in the specification of overlays is an
explicit feature: it's there to allow overlays to be implemented using a varie1
tricks on different types of hardware.

In the current implementation, if there are multiple overlays active on the sc
only one of them will be visible, chosen essentially at random.

currentautobind boolean
Returns true or false depending on whether or not autobinding is enabled fOI
current process.

See also: setautobind

~\sun ~ microsystems
Revision A of 15 J anuar:

currentcan vas

currentcolor

currentcursorlocation

currentlinequality

current path

currentprintermatch

current process

currentrasteropcode

Chapter 12 - NeWS Operator Extensions 135

currentcanvas canvas
Returns the current value of the canvas parameter in the graphics state.

currentcolor color
Returns the current color as set by setcolor, setrgbcolor, or sethsbcolor.

- currentcursorlocation X y
currentcursorlocation returns the cursor's position at the time of the last event
distributed from the input queue.

- currentlinequality n
Returns an integer between 0 and 1 that represents the desired line quality.

See also: setlinequality

currentpath shape
Returns an object of type shape that describes the current path. It may later be
passed to setpath.

- currentprintermatch boolean
Returns the current value of the printermatch flag in the graphics state.

See also: setprintermatch

- currentprocess process
Returns an object that represents the current process.

- currentrasteropcode num
Returns a number that represents the current rasterop combination function.

See also: setrasteropcode

NOTE The RasterOp combination function exists only to support emulation of existing
window systems. If you find yourself using it, you are probably making a mistake
and will have problems running your programs on a wide range of displays. The
definition of rasterop is display-specific. Currently the image and copyarea
primitives do not use the rasteropcode .

• ~sun ~ microsystems
Revision A of 15 January 1988

136 NeWS 1.1 Manual

Cllrrentstate

Cllrrenttime

damagepath

dllmpsys

emptypath

enunleratefontdicts

currentstate state
Returns a graphicsstate object that is a snapshot of the current graphic~scat

See also: setstate

currenttime num
Returns a time value n.nnn in minutes since some unspecified starting time.
only guarantee that is made about the value returned by currenttime is that
difference of the results of two successive calls is approximately the numbe!
minutes that have elapsed in the interval of time between them.

damagepath
Sets the current path to be the damage path from the current canvas. The da
path will be cleared. The damage path represents those parts of the canvas t
were damaged by some manipulation of the scene on the display, and that c(
not be repainted from stored bitmaps. Processes can arrange to be notified c
damage through the input mechanism. Whenever damage occurs to a canva
Damaged event will be generated.

See also: clipcanvas

dumpsys
Dumps the contents of the system state to the standard output file. Output i~
quite voluminous and is interesting only to persons who are debugging the
server.

- emptypath boolean
Tests the current path, returning true if it is empty.

enumeratefontdicts names

POSTSCRIPT language code she uld
use FontDirectory in preferenCE! to
enumeratefontdicts.

Scans through all the font dictionaries that NeWS knows about and pushes th(
family file name onto the stack (of each font family that it can find).

eoclipcanvas - eoclipcanvas
This is the same as clipeanvas except that it uses the even/odd winding nUIT
rule rather than the nonzero rule.

See also: clipcanvas

~\sun ~ microsystems
Revision A of 15 J anuar

eocopyarea

eocurrentpath

eo resha pecan vas

eowritecanvas

eowritescreen

expressinterest

Chapter 12 - NeWS Operator Extensions 137

dx dy eocopyarea
Copies the area enclosed by the current path to a position offset by dx,dy from its
current position. For example, you could use this primitive to scroll a text win­
dow. The even/odd winding number rule is used to define the inside and outside
of the path.

See also: copyarea

- eocurrentpath shape
Returns an object of type shape that describes the current path using the even/odd
rule.

See also: currentpath

canvas eoreshapecanvas
The eoreshapecanvas operator is identical to reshapecanvas except that it uses
the even/odd winding number rule to interprete the path.

See also: reshapecanvas

file or string eowritecanvas
Either opens string as a file for writing, or if the argument is afile simply writes
to it. Creates a rasterfile which contains an image of the region outlined by the
current path in the current canvas. If the current path is empty, the whole canvas
is written. eowritecanvas would be used to save an image in a file. eowritecan­
vas follows an even-odd winding rule rather than a non-zero winding rule.

See also: writecanvas, writescreen , eowritescreen

file or string eowritescreen
Either opens string as a file for writing, or if the argument is afile simply writes
to it. Creates a rasterfile which contains an image of the entire screen. eowri­
tescreen writes pixels from the screen, and it will include pixels from canvases
that overlap the current canvas. If the current path is empty, the whole canvas is
written. eowritescreen would be used to do a conventional screen dump. eowri­
tescreen follows an even-odd winding rule rather than a non-zero winding rule.

See also: writecanvas, writescreen , eowritecanvas

event expressinterest
Input events matching event will be queued for reception by awaitevent. See
Chapter 3, Input, for more information on interest matching.

See also: awaitevent, createevent , redistributeevent , revokeinterest , sendevent

~\sun ~ microsystems
Revision A of 15 January 1988

138 NeWS 1.1 Manual

extenddamage

eoextenddamage

file

forkunix

gctcanvascursor

getcanvaslocation

getenv

- extenddamage
Add the current path to the damage shape for the current canvas. A IDar..-Iag
event will be sent to those processes which have expressed interest. Uses tht
non-zero winding rule.

- eoextenddamage!
Add the current path to the damage shape for the current canvas. A IDamag
event will be sent to those processes which have expressed interest. Uses thl
even-odd winding rule.

string1 string2 file file
Identical to the Adobe POSTSCRIPT interpreter implementation, with one eXt
tion: if the file identified by string1 cannot be found, and it is not an absolutl
pathname, the server will attempt to open the file $NEWSHOME/ lib/ strin

string forkunix
Forks a UNIX process to execute string as a shell command line. Standard i
and output are directed to / dev / null.

canvas getcanvasc:ursor font char char
Gets the cursor identifiers for canvas. Font is the font where the cursor ima:
characters (primary and. mask) are stored. The first char is used as the t:eJl
locate the primary image and the second char is used to locate the mas. -~u

See also: setcanvascursor

canvas getcanvaslocation x y
Returns the location of canvas relative to the current canvas. X,y is a delta'
(offset) in the current coordinate system from the lower left-hand comer of 1

current canvas to the lower left-hand comer of canvas.
See also: movecanvas

string1 getenv string2
Returns the value of the variable string 1 in the environment of the server pr
as modified by any putenv operations. This operator fails with an undefinel
error if string 1 is not present in the environment. One can guard against thi
by using the stopped operator to recover from the error. For example:

{ (ENV) getenv} stopped { pop (env default) } if

~\sun ~ microsystems
Revision A of 15 Janua

Chapter 12 - NeWS Operator Extensions 139

geteventlogger - geteventlogger process
Returns the process which is the current event logger, or null if there is none.

getkeyboardtranslation - getkeyboardtranslation bool

getmousetranslation

getkeyboardtranslation returns a boolean. true means the kernel is interpret­
ing the keyboard; false means keyboard interpretation is being left to
POSTSCRIPT language code, as in liteUI.

See also: keyboardtype, setkeyboardtranslation

NOTE Specific to the Sun Operating System Interface; should eventually move into an
environment dictionary.

- getmousetranslation boolean
Returns true or false as the underlying operating system is or is not doing transla­
tion and scaling on the input received from the mouse. Events from the mouse
will have the following keyword values in their name fields depending on the
value of mouse translation:

Table 12-1 Mouse Event Translation

getsocketlocaladdress

getsocketpeername

NOTE

true
MouseDragged
LeftMouseButton
MiddleMouseButton
RightMouseButton

false
RawMouseDragged
RawLeftMouseButton
RawMiddleMouseButton
Raw RightMouseButton

At present, there is no use for untranslated mouse events.

Specific to the Sun Operating System Interface; should eventually move into an
environment dictionary.

file getsocketlocaladdress string
Returns a string that describes the local address of the file. File must be a socket
file, and will generally be a socket that is being listened to. This is generally
used by servers to generate a name that can be passed to client programs to tell
them how to contact the server. The format of the string is unspecified.

file getsocketpeername string
Returns the name of the host that file is connected to. File must be an IPe con­
nection to another process. Such files are created with either acceptconnection
or (%socket) file. This is generally used with currentfile to determine where a
client program is contacting the server from.

~\sun ~ microsystems
Revision A of 15 January 1988

140 ~eWS 1.1 Manual

glo balin terestlist

hsbcolor

itnagecanvas

ilnagemaskcanvas

i nsertcan vasa bove

- globalinterestlist array
Returns an array of events which are the interests currently expressed wren a
Canvas field by all processes. The array is in priority order; the first element
the array has the highest priority.

h s b hsbcolor color
Takes three numbers between ° and 1 representing the hue, saturation, and
brightness components of a color and returns a color object that represents tr
color.

canvas imagecanvas
Renders a canvas onto the current canvas. It is much like the image operate
except that the image comes from a canvas instead of a POSTSCRIPT languag
procedure.

The canvas is imaged into the unit square in user coordinates with (0,0) at th
lower left-hand comer and (1,1) at the upper right-hand corner. To image a l

vas at a particular place, merely set the CTM to position the unit square, just
you would with the image primitive.

The imagecanvas primitive deals with all scaling and technology mapping
issues. It will, for example, map 24-bit color images onto black and white
screens by dithering.

boolean canvas imalgemaskcanvas
Renders a canvas onto the current canvas. It is much like the imagemask 0

tor except that the imagl! comes from a canvas instead of a POSTSCRIPT lang
procedure. The boolean determines whether the polarity of the mask canva~
be inverted.

The canvas is imaged into the unit square in user coordinates with (0,0) at tt
lower left-hand comer and (1,1) at the upper right-hand corner. To image a
vas at a particular place~, merely set the CTM to position the unit square, just
you would with the image primitive.

canvas x y insertcanvasabove
Inserts the current canvas above canvas, using the same interpretation of [x
movecanvas. The current canvas must either be a sibling or child of canvas
The mapped attribute of the canvas does not change.

~\sun ~ microsystems
Revision A of 15 Januar

insertcanvasbelow

keyboardtype

kill process

kill processgroup

lasteventtime

localhostname

max

min

monitor

Chapter 12 - NeWS Operator Extensions 141

canvas x y insertcanvasbelow
Inserts the current canvas below canvas, using the same interpretation of [x,y] as
movecanvas. The current canvas must either be a sibling or child of canvas.
The mapped attribute of the canvas does not change.

- keyboard type number
Returns a small integer indicating the kind of keyboard attached to the NeWS

server. The return value is actually the return from the KIOCTYPE iocd, docu­
mented under kb(4S).

See also: getkeyboardtranslation, setkeyboardtranslation

NOTE Specific to the Sun Operating System Interface; should eventually move into an
environment dictionary.

process killprocess
Kills process.

process killprocessgroup
Kills process and all other processes in the same process group.

See also: newprocessgroup

- lasteventtime num
Returns the TimeStamp of the last event delivered by the input system.

localhostname string
Returns the network hostname of the host on which the server is running.

a b max c
Compares a and b and leaves the maximum of the two on the stack. Works on
any data type for which gt is defined.

a b min c
Compares a and b and leaves the minimum of the two on the stack. Works on
any data type for which gt is defined.

monitor procedure monitor
Executes procedure with monitor locked (entered). At most one process may
have a monitor locked at anyone time. If a process attempts to lock a locked
monitor it will block until the monitor is unlocked. If an error occurs during the
execution of procedure and the execution stack is unwound beyond the monitor,
then the monitor object will be unlocked.

See also: createmonitor, monitorlocked

~~sun ~~ microsystems
Revision A of 15 January 1988

142 ~eWS 1.1 Manual

111onitorlocked monitor monitorlocked boolean
Returns true if the monitor is currently locked; false otherwise.

See also: createmonitor, monitor

1110VeCanvas x y movecanvas
Moves the current canvas to (x,y) relative to its parent. (x,y) is a delta vecto
interpreted according to the current transfonnation. This motion is relative
lower left-hand comer of the two canvases - (0,0) interpreted with referenc{
the initial matrix for each canvas. The mapped attribute of the canvas does
change.

See also: getcanvaslocation

newcanvas pcanvas newcanVClIS ncanvas
Creates a new empty canvas, ncanvas, whose parent is pcanvas.

It defaults to being opaque if its parent is the framebuffer; transparent other
It defaults to being retained if it is opaque and the number of bits per pixel (
framebuffer is less that the retain threshold. If your program relies on havir
canvas be retained you should explicitly set it to be retained.

These defaults are the result 0': his­
torical precedent. To ensure the
portability of your programs to
future releases of the system, you
should always explicitly set the
Transparent property of all neVi
canvases.

See also: reshapecanvas

newprocessgrou p

pathforallvec

newprocessgrollp
Creates a new process group with the current process as its only member: \
a process forks the child will be in the same process group as its parent.

array pathforallvec:
The single argument to pathforallvec is an array of procedures. The path­
forallvec operator then enumerates the current path in order, executing one
procedures out of the array for each of the elements in the path. The type 0

path element detennine!s which array element will be executed. moveto, iiI
curveto, and closepatht, respectively, are array elements 0,1,2, and 3. Ift!
array is too short, pathforallvec will try to reduce elements of one type to
another. Array element 5 is used to handle conic control points. The stand:
POSTSCRIPT language operator pathforall is exactly equivalent to '4 array
astore pathforallvec.' For further infonnation, consult the PostScript Lan
Reference Manual description of the pathforall operator. Users are cautior
against using this primitive if at all possible, and using pathforall instead.

~\sun ~ microsystems
Revision A of 15 J anua

pause

pointinpath

putenv

random

readcanvas

recallevent

redistributeevent

Chapter 12 - NeWS Operator Extensions 143

- pause
Suspends the current process until all other eligible processes have had a chance
to execute.

x y pOintinpath boolean
Returns true if the point [x,y J is inside the current path.

string1 string2 putenv
Defines the shell environment variable string1 to have the value string2. The
environment variables inherited by the server as modified by putenv calls are
inherited by UNIX processes created as children of the server with forkunix.

random num
Returns a random number in the range [0,1].

string or file readcanvas canvas
Reads a sun raster file into a newly created canvas (see the Pixrect reference
manual). The argument to readcanvas should be afile object or a string. The
canvas is either read from the file object or from the file named by the string. The
string must be the name of a file in the server's file name space. The canvas that
is created will be retained and opaque. The canvas will have the depth specified
in the raster file, will not have a parent, and will not be mapped. The canvas can­
not be mapped; an invalidaccess error will result if you try to map the canvas.
The canvas is useful only as a source for imagecanvas. If the file can't be found,
an undefinedfilename error is generated. If the file can't be interpreted as a ras­
ter file, an invalidaccess error is generated.

event recall event
The event passed as an argument is removed from the event queue. The most
common use for this primitive is to turn off a timer-event that has been sent but
not yet delivered.

See also: sendevent

event redistributeevent
Return an event that has been received by the calling process to the distribution
mechanism, which will continue as though the event had not matched the interest
which gave it to this process.

See also: expressinterest

~\sun ~~ microsystems
Revision A of 15 January 1988

144 NeWS 1.1 Manual

reshapecanvas

revokeinterest

rgbcolor

sendevent

setautobind

setcanvas

canvas reshapecanvas
Sets the shape of canvas to be the current path, and it sets the canvas' deraul
transformation matrix from the current transformation matrix. This also est
lishes its position relative to the current canvas. If canvas is the same as the
current canvas, then an implicit initmatrix will be done. The entire content
the canvas is considered to be damaged.

The initclip operation will set the path to the shape defined by the shape of:
current canvas.

Think of the current transformation matrix as laying down a grid over the Cl

path. This grid has its origin somewhere relative to the path and it has somt
scale, rotation, and skew associated with it. When reshapecanvas sets the
default transformation matrix for the canvas, it sets it so that this same grid
laid over the canvas as :is laid over the current path, with the origin in the sa
relative location.

event revokeinterest
No more input events matching event will be distributed to this NeWS proces

See also: express interest

r 9 b rgbcolor color
Takes three numbers bc;:tween 0 and 1 representing the red, green, and blue <

ponents of a color and returns a color object that represents that color.

event sendevent
Submit an event to the input distribution mechanism (Le., sort it into the ev<
queue according to its TimeStamp). See Chapter 3, Input, for more inform
about event distribution.

See also: awaitevent, createevent , recallevent , redistributeevent , expressintere:

boolean setautobind
Enables or disables autobinding for the current process. By default it is on.
Section 13.4, Autobind, for more information on autobinding.

See also: currentautobind

canvas setcanvas
Sets the current canvas to be canvas. Implicitly executes newpath initmatl

~\sun ~ microsystems
Revision A of 15 Janua

setcanvascursor

setcolor

setcursorlocation

seteventlogger

setfileinputtoken

Chapter 12 - NeWS Operator Extensions 145

font char char setcanvascursor
Sets the cursor identifiers for the currentcanvas. Font is the font where the cursor
image characters (primary and mask) are stored. The first char is used as the
index to locate the primary image and the second char is used to locate the mask
image.

See also: getcanvascursor

color setcolor
Sets the current color to be color. The operation rgbcolor setcolor is the same
as setrgbcolor, and hsbcolor setcolor is the same as sethsbcolor.

x y setcursorlocation
Moves the cursor so its hot spot is at (x, y) in the current canvas' coordinate
space.

process seteventlogger
Process (which must have expressed some interest - it doesn't matter what) is
made to be the event-logger. Thereafter, a copy of every event that enters the
distribution mechanism will be given to this process prior to (and without affect­
ing) the rest of the distribution mechanism. This facility is offered as a
POSTSCRIPT language debugging aid.

See also: geteventIogger

object integer setfileinputtoken
Used to define compressed tokens for communication efficiency.
setfileinputtoken takes a specified object and a specified integer and associates
them. They are then placed in the token list at the index location specified by the
integer.

setkeyboardtranslation bool setkeyboardtranslation
Kernel translation of the keyboard is turned on or off, as the argument is true or
false.

See also: keyboardtype

NOTE Specific to the Sun Operating System Interface; should eventually move into an
environment dictionary.

Revision A of 15 January 1988

146 NeWS 1.1 Manual

setlinequality

setmousetranslation

setpath

setprintermatch

setrasteropcode

n setlinequality
Sets the current desired line quality to n, which must be a number from cr-ro
Line quality controls th(~ quality of lines rendered by the stroke primitive.
Increasing values of line quality increase the quality of the rendered line, an!
decrease performance. A value of 0 renders lines as fast as possible with thE
least attention paid to quality (the line thickness is ignored, lines are always
single pixel wide). A value of 1 renders lines with the highest possible qual:
they will be the correct width, and all endcaps and joins will be correct. IntE
mediate values may give you different quality/performance tradeoffs.

The default value for line quality is 1. If the value of line quality is not spec:
the lines drawn will be 1172" wide, independent of your coordinate space.

See also: currentlinequality

NOTE

boolean setmousetranslation
Instructs the underlying operating system to switch to the indicated mouse tl
lation mode. The initial value is true.

Specific to the Sun Operating System Interface; should eventually move into
environment dictionary ..

path set path
Sets the current path from the shape object path.

boolean setprinterrnatch
Sets the current value of the printermatch flag in the graphics state to boole
When printer matching is enabled text output to the display will be forced t<
match exactly text output to a printer. The metrics used by the printer will 1
imposed on the display fonts. This will usually cause displayed text to look
bunched up and generaHy reduce readability. With printer matching disablE
readability will be maxJlmized, but the character metrics for the display will
correspond to the printer.

See also: currentprintermatch

num setrasteropcclde
Sets the current rasterop combination function, which will be used in subse
graphics operations. The values that setrasteropcode takes are the same as
RastetOp function codes used by the Pixrect library, though they must be c,
lated: useful values are PIX_NOT (PIX_DST) = 5, PIX_SRC~PIX_DST
PIX_SRC I PIX_DST= 14, etc. See the Pixrect Reference Manual for fun
details.

NOTE The RasterOp combination function exists only to support emulation of exis
window systems. If you find yourself using it, you are probably making am,
and will have problems running your programs on a wide range of displays
definition of-rasterop is display-specific. Currently, the image and cop~~
primitives do not use the rasteropcode.

~\sun ~ microsystems
Revision A of 15 Janum

Chapter 12 - NeWS Operator Extensions 147

See also: currentrasteropcode

setstate graphicsstate setstate
Sets the current graphics state from graphicsstate.

See also: currentstate

startkeyboardandmouse - startkeyboardandmouse
Initiate server processing of keyboard and mouse input. This is called once from
early initialization code in ini t . ps, and should not be called again.

suspend process process suspendprocess
Suspends the given process.

See also: breakpoint, continueprocess

tagprint n tagprint
Prints the integer n where -215~n <215

encoded as a tag on the current output stream. Tags are used to identify packets
sent from the NeWS server to client programs. See Chapter 9, C Client Interface,
for information on how the CPS input mechanism uses tags.

typedprint 0 typedprint
Print the object a in an encoded form on the current output stream. These objects
can then be read by client programs using the facilities of CPS. The format in
which objects are encoded is described in Chapter 14, Byte Stream Format.

unblockinputqueue - unblockinputqueue
An input queue lock set by blockinputqueue is released. If this reduces the
count of locks to 0, distribution of events from the input queue is resumed. If the
count was already 0, a range check error is raised.

See also: blockinputqueue

undef dictionary key undef
Removes the definition (if any) of key from the dictionary.

waitprocess process waitprocess value
Waits until process completes, and returns the value that was on the top of its
stack at the time that it exited.

See also: fork

~~sun ,~ microsystems
Revision A of 15 January 1988

148 NeWS 1.1 Manual

writecanvas

writescreen

file or string writecanvas
Either opens string as a file for writing, or if the argument is afile simpl'~r
to it. Creates a rasterfile which contains an image of the region outlined by tl
current path in the current canvas. If the current path is empty, the whole car
is written. writecanvas would be used to save an image in a file.

See also: writescreen, eowritesc:reen , eowritecanvas

file or string writescreen
Either opens string as a file for writing, or if the argument is afile simply wr
to it. Creates a rasterfile which contains an image of the entire screen. wri­
tescreen writes pixels from the screen, and it will include pixels from canva
that overlap the current canvas. If the current path is empty, the whole canva
written. writescreen could be used to do a conventional screen dump as fol

framebuffer setcanvas (/tmp/snap) writescreen

See also: writecanvas, eowritec:anvas , eowritescreen

~\sun ,~ microsystems
Revision A of 15 Januar~

13
Omissions and Implementation Limits

Omissions and Implementation Limits .. 151

13.1. Operator Omissions ... 151

13.2. Imaging Omissions .. 151

13.3. Implementation Limits .. 152

13.4. Autobind .. 153

13.1. Operator Omissions

Table 13-1

13.2. Imaging Omissions

13
Omissions and Implementation Limits

The following POSTSCRIPT language primitives were defined by Adobe, but have
not yet been implemented in the NeWS POSTSCRIPT language interpreter.

Omitted POSTSCRIPT language primitives

Primitive

banddevice
charpath
copypage
current screen
currenttransfer
echo
executeonly
framedevice
invertmatrix
noaccess
nulldevice
prompt
renderbands
resetfile
restore
reversepath
save
set screen
settransfer
showpage
start
translate
usertime

Printer specific.
Pseudo-implemented.
Pseudo-implemented.
Pseudo-implemented.
Pseudo-implemented.
Printer specific.

Printer specific.

Printer specific.
Printer specific.
Printer specific.

Pseudo-implemented.

Pseudo-implemented.
Pseudo-implemented.
Pseudo-implemented.
Pseudo-implemented.

Note

Replaced by user. ps/start up. ps initialization.
Missing matrix argument version.

Two portions of the stencil/paint imaging model remain to be implemented:
halftone screens and transfer functions. NeWS pseudo-implements many operators
specific to the POSTSCRIPT language printer interface with the statusdict diction­
ary. The release file statusdict .ps contains these implementations .

• ~sun ~ microsystems
151 . Revision A of 15 January 1988

152 NeWS 1.1 Manual

13.3. Implementation
Limits

Table 13-2 Implementation Limits

Quantity
integer

real

array

dictionary

string

name

file

userdict

Limit I Explanation
32767 Integers are represented as 32 bits, 16 bits of the

fraction. Integers are automatically converted to
if they overflow.

Single-precision floating-point numbers are used
Reals are represented as fractional integers if the:
small enough, but the type determination operate
describe them as real.

32767 Number of entries in an array.

16384 Number of key/value pairs in a dictionary.

32767 Number of characters in a string.

32767 Number of characters in a name.

Number of open files (includes open client comn
cation channels). The limit is
getdtablesize () -n, where n dependscrdtt
ticular server but will be about four.

100 Set by code in init. ps; easy to change.

operand stack 1500 Maximum size of an operand stack.

dict stack Expanded as required.

exec stack

gsave level

path

VM

interpreter level

save level

100 Maximum function/compound statement nesting

Expanded as required.

Expanded as required.

The server expands to use as much VM as the ur
ing system permits.

Not applicable.

Not applicable.

Revision A of 15 Jam

13.4. Autobind

Chapter 13 - Omissions and Implementation Limits 153

When the POSTSCRIPT language interpreter encounters an executable name, the
interpreter searches the dictionary stack from the top to the bottom until it finds a
definition for this name. The execution time will therefore increase as the size of
the dictionary stack increases. On the other hand, this method allows one to
redefine the behavior of a name by defining it in a dictionary and placing this dic­
tionary on the dictionary stack.

The POSTSCRIPT language provides an operator called bind that will circumvent
this name lookup process. bind goes through a procedure and checks each exe­
cutable name inside it. If a name resolves to an operator object in the context of
the current dictionary stack, then bind alters the procedure by replacing the name
with the operator object. This eliminates the time taken by name lookups when
executing this procedure, but it removes the flexibility of being able to change a
procedure's behavior by redefining names before executing it.

NeWS implements an autobind mechanism which will cause every executable
procedure to behave similarly to the way it would as if bind had been called on
it.

The following example illustrates the differences among the cases with no bind­
ing, using bind, and using autobinding.

paper% psh
executive
Welcome to NeWS version 1.1
falsesetautobind
/testl { 5 3 add -- } def
/test2 { 5 3 add == } bind def
true setautobind
Iteat2.5 { 5 3 add -- } clef
falsesetautobind
/add { sub } def
/test3 { 5 3 add == bind def
true·. set aut obind
/test4 { 5 3 add == def

testl
2
test2
8
test2.5
8
test3
2
test4
8

In this example, the 'test1' procedure calls 'add.' Since 'add' was redefined to
be '{ sub },' 'test1' really does a subtraction. The bind operator was used on
procedure 'test2,' so the 'add' was not redefined as it was for 'test1.' Simi­
larly, 'test2.5' behave~ like 'test2' since autobinding was enabled. bind was
run on 'test3,' but since 'add' now resolves to something other than an operator,

~\sun ~ microsystems
Revision A of 15 January 1988

154 NeWS 1.1 Manual

no binding takes place. The 'te5t4' procedure was defined with autob(~)u
on, but like 'te5t3', 'add' resolves to something other than an operator,-su 1

binding takes place.

,,'OTE Autobinding is on by default.

Autobinding can be turned on or off using the setautobind operator, which
a boolean argument. You can use the currentautobind operator to get the
current setting; it returns a boolean value. If you want to redefine the behav
a name that is defined in systemdict, you should make sure that autobindin!
off when the name is rt:defined and when procedures that use the new defini
are defined .

• \sun ~ microsystems
Revision A of 15 Janua

14
Byte Stream Format

Byte Stream Format .. 157

14.1. Encoding .. 157

14.2. Object Tables .. 158

14.3. Magic Numbers .. 159

14.4. Examples ... 159

The information in this section is
only of interest to those implement­
ing the NeWS protocol. Most C pro­
grammers should use cPs, which
deals with all of the protocol issues
transparently.

14.1. Encoding

14
Byte Stream Format

The communication path between NeWS and a client is a byte stream that contains
POSTSCRIPT programs. The basic encoding, which is compatible with
POSTSCRIPT language printers, is simply a stream of ASCII characters. NeWS also
supports a compressed binary encoding which may be freely intermixed with the
ASCII encoding. The two encodings are differentiated based on the top bit of the
eight-bit bytes in the stream. If the top bit is zero, then the byte is an ASCII char­
acter. If it is one, then the byte is a compressed token. This differentiation is not
applied within string constants or the parameter bytes of a compressed token.

Each compressed token is a single byte with the top bit set. There may be
parameter bytes following it and there may be a parameter encoded in the bottom
bits of the code byte. In the following description of the various tokens, the
values are referred to symbolically. The mapping between these names and
numeric values is given at the end of this chapter.

enc int
enc _int+(d < <2)+w ; w*N
OS;ws;3 and OS;ds;3: The next w+l bytes form a signed integer taken from
high order to low order. The bottom d bytes are after the binary point. This
is used for encoding integers and fixed point numbers.

enc _short_string
enc _short_string +w ; w*C

OS;wS;15: The next w bytes are taken as a string.

enc_string
enc_string+w; w*L; l*C
OS;w s;3: The next w + 1 bytes form an unsigned integer taken from high order
to low order. Call this value l. The next l bytes are taken as a string.

enc _ syscommon
enc _ syscommon +k

Os;k s;32: Inside the NeWS server there is table of POSTSCRIPT language
objects. The enc _ syscommon token causes the k th table entry to be inserted
in the input stream. Typically these names are primitive POSTSCRIPT

language operator objects. This table is a constant for all instances of
POSTSCRIPT language - the contents of the table are 'well-known' and
static. This token allows common POSTSCRIPT language operators to be
encoded as a single byte.

~\sun ~~ microsystems
157 Revision A of 15 January 1988

158 NeWS 1.1 Manual

14.2. Object Tables

enc _ syscommon2
enc _syscomrrwn 2; k
05:k 5:255: This is essentially identical to enc _ syscommon except that th
index into the object table is k +32. This allows the less common
POSTSCRIPT language operators to be encoded as two bytes.

enc usercommon
enc usercommon +k
05:k5:31: This is similar to enc_syscommon except that it provides user­
definable tokens. Each communication channel to the server has an ass l

ated POSTSCRIPT language object table. The enc _ usercommon token
causes the k th table: entry to be inserted in'the input stream. The table i
dynamic; it is the responsibility of the client program to load objects int
this table. The POSTSCRIPT language operator setfileinputtoken associ
an object with a table slot for an input channel.

enc lusercommon
enc _lusercommon + j; k
05:j5:3 and 05:k5:255: This is essentially identical to enc_usercommon e)
that the index is U <:-<8)+(k+32).

enc IEEEfloat
enc_IEEEfioat;4*F

The next four bytes, high order to low order, form an IEEE format float
point number.

enc IEEEdouble
enc_IEEEdouble; 8*F
The next eight bytes, high order to low order, form an IEEE double pre(
floating-point number.

The enc_ *common* tokens all interpolate values from object tables. The
appearance of one of these tokens causes the appropriate object table entry t
used as the value of the token. These tokens are typically a part of a POSTS<

language stream that is lto be executed and can be any kind of object. Usual]
either executable keyword or operator objects are used.

This has some subtle implications with scope rules. If the object is a keywo
then its value will be looked up before being executed, just as an ASCII encc
keyword would be. If it is an operator object, then the operator will be exec
directly, with no name lookup. This improves performance, but it also bind~
interpretation of the object table slot at the time that the slot is loaded.

For example, if the executable keyword moveto were loaded into a slot, thel
whenever that token was encountered moveto would be looked up and execl
On the other hand, if the value of moveto were loaded into the slot, then wh
ever that token was encountered the interpretation of moveto at the time the
was loaded would be used.

~\sun ~~ microsystems
Revision A of 15 J anuar

Chapter 14 - Byte Stream Format 159

14.3. Magic Numbers Here is the binding between token names and values:

14.4. Examples

Table 14-1 Token Values

Value Span Symbolic Name
0200 16 enc_int+(d«2)+w
0220 16 enc _ short_ string+w
0240 4 enc_string
0244 1 enc IEEEfloat
0245 1 enc IEEEdouble
0246 1 enc _ syscommon2
0247 4 enc lusercommon
0253 5 free
0260 32 enc _ syscommon
0320 32 enc usercommon
0360 16 free

The POSTSCRIPT language fragment:

10 300 moveto
(Hello world) show

can be encoded simply as an ASCII text string:

"10 300 moveto\n(Hello world) show"

which would give a message that is 33 bytes long. The space following show is
a delimiter; without it the tokens would run together. Binary tokens are self­
delimiting. If the tokens were sent in compressed binary format then the mes­
sage would be the following 19 bytes:

Table 14-2 Meaning of Bytes in Encoding Example

Byte

0200
0012
0201
0001
0054

0261

0233
0110
0145

0144
0262

~\sun ~ microsystems

Meaning
encoded integer, one byte long, no fractional bytes
the number 10
encoded integer, two bytes long, no fractional bytes
first byte of the number 300
second byte of the integer,
(1«8)+054==0454==300
move to - assuming that moveto is in slot one of
the operator table, which it isn't
(0220+ 11) start of an II-character string
'H'
'e'

'd'
show - assuming that show is in slot two of the
operator table, which it isn't

.. Revision A of 15 January 1988

Supporting NeWS From Other
Languages

15

Supporting NeWS From Other Languages .. 163

15.1. Contacting the Server ... 163

15.2. Communication with the Server ... 163

15.1. Contacting the Server

15.2. Communication with
the Server

15
Supporting NeWS From Other

Languages

As it comes out of the box, the only language that is supported for NeWS clients
(besides the raw POSTSCRIPT language) is C. The CPS preprocessor is primarily
responsible for providing C support. What CPS and the libcps. a library pro­
vide is a mechanism for contacting the server(ps open_PostScript ())
and a mechanism for creating and sending messages to NeWS on that I/O chan­
nel. lS

To contact the server from a UNIX environment you first need to get the environ­
ment variable NEWSSERVER. This contains a string like
3227656822 .2000; paper. The first number is the 32-bit IP address of the
server in host byte order. The second number is its IP port number. You need to
create a socket and connect it to this IP address and port. Following the semi­
colon in NEWS SERVER is the text name of the host on which the server is run­
ning, which you can ignore.

The setnewshost(1) command is a shell script that fabricates the appropriate
string for NEWS SERVER.

Once a connection has been established, all you need to do is write bytes down
the stream as described in the Chapter 14, Byte Stream Format. Remember that
you don't need to use the compressed binary tokens, they are merely an optimi­
zation. It is perfectly satisfactory to send ASCII POSTSCRIPT language code with
no compression.

Eventually, a CPS-like program that is appropriate for the language should prob­
ably be written. The basis for such a program would be the input and output
facilities that CPS uses; the program could write routines that called them, or
macros that expanded into invocations of them, or whatever other technique
suited the host language.

There is a C function called ppr in t f () which is the runtime output work­
horse behind CPS. It is invoked in a manner identical to fpr int f () (3s), with a
format string that is interpreted in the same way. \Vhen values are output with
~ s or "6 d or any of the other formatting specifiers, they are output as
compressed binary tokens. The rest of the format string is output as is; it may

15 The osn(1) and savel) programs provide these mechanisms to users who want simply to send
POSTSCRlPT programs to the server.

~,. ~.'-,
"'2.-~~ U..ll
~ r:1icrosystems

.~CV1Slon A 01 15 january l'lob

164 '::\cws l.1 Manual

contain compressed tokens or simple ASCII.

Input from NeWS to the client appears as bytes that can be read from the servt
I/O stream. The format of these bytes is entirely up to the POSTSCRIPT langl
code downloaded by the client into the server, so it may be as simple or as c(
plex as you wish. There is a facility in NeWS for writing objects back to the
clients using the same compressed binary format as the client uses to send to
server and a corresponding C procedure pscanf () for interpreting these r.
sages.

~\sun ~~ microsystems
Revision A of 15 Januar

Font Tools

Font Tools .. 167

16.1. Cursor Fonts .. . 167

A Standard Font .. . 167

Representation .. 167

Format ... 168

Generating a Font ... 168

16.2. Building an Ordinary Font ... 170

16.1. Cursor Fonts

A Standard Font

Representation

16
Font Tools

This chapter describes how to create bitmap fonts and place them in the NeWS
font library. It is like a cookbook; its level of detail is only good enough to
create simple fonts such as cursor fonts and icon fonts, and to convert existing
fonts into NeWS's fonnat. It is not a complete description of the font format. The
font utility programs described herein are all subject to change. With all these
caveats aside, let us proceed.

This section covers the creation of cursor fonts.

NeWS supplies the beginnings of a standard cursor font. The files involved are:

$NEWSHOME/lib/NeWS/cursor.ps
$NEWSHOME/fonts/Cursor.ffarn
$NEWSHOME/fonts/Cursor12.font

($NEWSHOME is the location of your NeWS installation, usually /usr/NeWS.)
The intent is to build this font into a collection of well-done generic cursor
images. As you develop such images you are encouraged to send them to Sun to
be included in the standard cursor font. Some screening will be applied to weed
out non-generic cursors. The advantages of using the standard cursor font
involve a more unifonn look between applications and greater resource sharing
within the NeWS server.

Cursors are nonnally implemented as bitmap fonts. The closest approximation
to the requested font will be selected from the font library of bitmaps.

Thus, cursor font shape descriptions are just bitmaps. The primary image is ren­
dered in black over a white mask image. There is no such thing as an XOR cur­
sor.

If a user-defined font is used, the shape descriptions may be arbitrary
POSTSCRIPT language. Cursors may have dynamic color, image, transforma­
tions, and shape. However, the cursor shape descriptions are called at the
server's discretion, not on every mouse motion.

~~Slln ~~ microsystems
167 Revision A of 15 January 1988

168 :\~ws 1.1 Manual

Format The font utility mkiconfont expects input in the fonnat illustrated ~~I
examples below. This happens to be the fonnat generated by the SunV~,,,it
iconedit program, but can be generated in any manner. Here is an exam
a cursor named pointer that is used for the root window in the default ini­
file. Its image is that of a narrow arrow that points up and to the left.

/7 E'ormat_version=l, ~\Tidth=16, Height=16, D'2pth=1, Valid_bits_per_itern=16
7< XOrigin=O, YOrig:_n=15
*1

OxOOOO,Ox4000,Ox6000,Ox7000,Ox7800,Ox7COO,Ox7EOO,Ox7800,
Ox4COO,OxOCOO,Ox0600,Ox0600,Ox0300,Ox0300,Ox0180,OxOOO0

XOrigin and YOrigin indicate the origin of the character, which is the
spot of the cursor. The values for XOrigin and YOrigin originate in t1

bitmap's lower left-hand corner with positive values extending up and to tht
right. YOr igin is strange in that it starts from the last non-zero row of pi
not the bottom of the bitmap. When using iconedit, XOrigin and
YOrigin need to be entered by a separate text editor.

Here is another example of a cursor named right _arrow that is used by the r
package supplied by the menu. ps file. Its image is that of an arrow that r
right.

1* Forrnat_version=l, Width=16, Height=16, Depth=l, Valid_bits_per_itern=16
* XOrigin=17, YOrigin=6
*/

OxOOOO,Ox0020,Ox0030,Ox0038,Ox003C,Ox7FFE,Ox7FFF,Ox7FFE,
Ox003C,Ox0038,Ox0030,Ox0020,OxOOOO,OxOOOO,OxOOOO,OxOOO0

Note that it is OK for the origin of the character to be off the edge of the bitr

Cursors have a mask image and a primary image. Here is the mask for the
pointer cursor. It is called pointer_mask.

1* Forrnat_version=l, Width=16, Height=16,·Depth=1, Valid bits_per_itern=16
* XOrigin=O, YOrig~_n=16

*/
OxCOOO,OxEOOO,OxFOOO,OxF800,OxFCOO,OxFEOO,OxFFOO,OxFF80,
OxFEOO,OxDFOO,Ox9FOO,OxOF80,OxOF80,Ox07CO,Ox07CO,Ox03C0

Note that the mask image is used to outline the primary image and thus its (
is offset by one from the primary image so as to superimpose the images
correctly. This is typical of cursor masks.

Generating a Font Here is the process for generating a simple font:

1. Generate a collection of ASCII bitmap file pairs (see the Format section
above). The convention is to call each cursor name. cursor and its n
name_mask. cursor. Create a file containing these file names, each
on a separate line. In this example, the file is called myfant.list - you
name it whatever you want. The pair order should be primary file namt
lowed by mask file name.

2. Make an ASCII version of the font from the list of ASCII bitmap files~~i:
program mkiconfont. The first argument to mkiconfont i()l

.t\Slln ~~ microsystems
Revision A of 15 J anum

Chapter 16 - Font Tools 169

containing a list of file names. The second argument to mkiconfont is
the name of the output file prepended by a > and the intended name of the
font family.

x% mkiconfont myfont.list MyFont>MyFont12.afb

3. Turn the ASCII version of the font into a binary version using the program
dumpfont. The first argument should be a -d flag. The second argument
is the directory in which the resulting . fb file should be placed (no spaces
between the flag and argument). The third argument is the name of the file
of the ASCII version of the font. The output file is named like the ASCII ver­
sion but with a . fb suffix instead of a . afb suffix.

(_______ X __ % __ d_Uffi __ p_f_o_n_t __ -_d_. __ M_y_F_o_n_t __ l_2_._a_f_b ________________________ ~J
4. Build a font family file for the font using the program bldfamily.

bldfamily will look in the current directory to find the font files.

(x% bldfamily -d. J
'---------"

5. To reference the font symbolically, one can build a . ps file that contains a
dictionary of character names for the font. Here is an example of the way to
do this:

#! /bin/ sh
egrep n

A (STARTCHARIENCODING) " MyFont12.afb>myfont.ps
ed - myfont.ps«'EOF'
g/STARTCHAR/j
1,$s'STARTCHAR *)ENCODING *)' /1/2 def'
1i
/myfontdiet 300 diet def
myfontdiet begin
$a
end
% Usage: x y moveto /myfontname showmyfont
/showmyfont {

eurrentfont () dup 0 myfontdiet 5 index get put
myfontfont setfont show setfont pop } def

/myfont (MyFont) findfont 12 sea1efont def
w
q
EOT

6. Copy the font and font family files to the font directory.

x% cp MyFont.ff MyFont12.fb $NEWSHOME/fonts

7. Copy the . ps to a well known pl~ce.

~~sun ~ microsystems
Revision A of 15 January 1988

170 ::"cws 1.1 Manual

16.2. Building an Ordinary
Font

x% cp myfont.ps $NEWSHOME/lib/NeWS

8. Use the . ps file at the front of the font in your POSTSCRIPT program

(NeWS/myfont.ps) run
myfontdict begin
myfont name name_mask setcanvascursor
end

In the POSTSCRIPT language a font, like Tim~s-Roman, is a scale-able obj
font file containing a set of bitmaps is an instance of a POSTSCRIPT langua
at some particular size and orientation. Because of the special requiremeno

the POSTSCRIPT language, NeWS has its own font file format. A group of t1
font files, called afamily can be used to implement a POSTSCRIPT languagt

There are two steps to create a POSTSCRIPT language font from a set of for

1. the font files must first be converted into NeWS format using dumpf or

2. then a description of them as a family must be build using bldfami=

dumpfont(l) will take a set of Adobe ASCII format or vfont(5) format fil
convert them to NeWS format with file extension . fb. bIdf ami I y(1) \\
a set of NeWS fonts and build a font family file with extension. f f. For a
description of these programs and their options, see their manual pages.

For example, say you have a set of vfont files gacha. b. 7, gaChC-:
gacha. b . 12, and gacha. b. 14; and you would like them to appear ir
as the POSTSCRIPT font Gacha-Bold. Call dumpfont with this cornman,

[x% dumpfont --d$NEWSHOME/fonts -S -n Gacha-Bold gach

dumpfont will convert the files named gacha . b . * into NeWS format, \.
them into the $NEWSHOME/fonts directory (usually /usr/NeWS/fc
calculate their size information by inspecting the bitmaps, and force the na
Gacha-Bold. Then call bIdfamiIy with this command line:

[x% bldfamily -d$NEWSHOME/fonts

bIdfamiIy will scan $NEWSHOME/ fonts for files named Gacha­
Eo Idn . fb. It will then build a font family file and write it to
$NEWSHOME/ fonts/Gacha-Bold. ff. Now you can send the POST~
language code:

(Gacha-Bold) findfont

to the NeWS server to pick up the font family that you have built. You can
POSTSCRIPT language scalefont primitive to select from the different size<
maps.

~\sun ~~ microsystems
ReVision A 01 is Janu

Using NeWS

Using Ne\VS 173

:\.1. .\JeWS Environment Variables 1'1'"
11 j

\Vhich Server Binary? 174

The Debugging Server Binary ... 174

A.2. Starting up NeWS .. . 174

From outside suntools ... 174

From within suntools using overvie,tJ(l) 174

Server Initialization ... 174

A.3. SunView1 Binary Compatibility with NeWS 174

Bugs in Sun View 11 NeWS Coexistence .. 175

I nconveniences .. .

Screen Damage .. .

I nput Mismatches

:,kWS on the Sun-3/ 11 0

175

176

176

176

A.4. Learning NeWS .. 177

Putting A Message in a Window 177

The psh Command 177

Running POSTSCRIPT language Programs 177

Using JournalJing 177

Previewing POSTSCRIPT language Graphics ... 178

Talking Directly to the Server ... 178

A Sample Session .. . 178

Connecting to Remote NeWS Servers 179

A.S. A Sample psh Program: test. psh .. 180

A.6. Dictionaries and the Server ... 183

Modifying the NeWS Server ... 183

startup.ps ... 183

user. ps ... 183

Notes on Modifications ... 183

Modifying Your' 'Root" Menu .. 184

Saving Key~,trokes .. 184

Changing D,:faults .. 185

NOTE

A.I. NeWS Environment
Variables

Running NeWS on two displays is not
supported.

A

Using NeWS

This chapter explains how to start up the NeWS server, and gives some very
basic ti ps for getting started with NeWS and POSTSCRIPT language programming,
including how to "personalize" your server.

Information on installing NeWS is in the NeWS Installation Guide. The examples
in this section assume you have installed NeWS in /usr/NeWS or have mounted
NeWS over the NFS on /usr /NeWS; substitute its actual location if different.

You can run NeWS from any directory, but it is easier to run psh programs (see
below) if you have NeWS mounted on (or have symbolic links to) /usr /NeWS.
Some of the demo programs cannot be run directly from a shell without
modification if you do not have a /usr /NeWS /bin/psh, although they can
be run from the menu.

The NeWS server needs to know where its subtree has been installed, so that it can
find fonts, images, * . ps files, etc. Provide this information by:

[~ ___ p_a_p_e_r __ % __ s_e_t_e_n_V __ NE __ W_S_H_O_ME ___ /_u __ s_r_/_N_e_w_s _________________________ J
The NeWS bin directory must be in the search path of the NeWS server process. It
is also useful to put the demo directory into your path. So:

paper% set path=(/usr/NeWS/bin /usr/NeWS/demo Spath)

If your machine has multiple displays available, and you want NeWS to use a
framebuffer other that / dev / fb as its default framebuffer, you can:

[~ ___ p_a_p_e_r_~_~ __ s_e_t_e_n_V __ F_RAME ____ B_U_F_F_E_R ___ /_d_e_V_/_c_g_t_w_o_o ____________________ J

or whatever device corresponds to the other framebuffer.

You can set these NeWS environment variables permanently in your .login file
(for C shell users) or in your. prof ilefile (for Bourne shell users).

~~sun ,~ microsystems
173 RevislOn A of 15 January 1988

174 :'\cws 1.1 Manual

\Vhich Server Binary?

The Debugging Server Binary

A.2. Starting up NeWS

From outside suntools

From within suntools using
overview(l)

Server Initialization

A.3. Sun View! Binary
Compatibility ,vith
NeWS

There are three versions of the NeWS server in $NEWSHOME/bin,
::.ews server010, =-:.ews_server010.debug, and news sei~v-e~

The tIle news_server(1) is a symbolic link to news_server010, whi
the MC68010 (Sun-2) version of the server. This will run on Sun-2 and Su
machines, but if you have a Sun-3 you should run news_server020for
increased performance. Read F arious Versions of the NeWS Server in the Nt.

Installation Guide for more information on the different binaries (includinf
4).

The third version of the NeWS server found in $NEWSHOME/bin,
news_server010. debug has been compiled with full debugging enab
Customers who have a reproducible crash are encouraged to reproduce it w
this server. Run dbx on the resulting core file and submit the output from tl
where and dump commands with the bug report.

The NeWS server news server can be started in two ways.

[
paper% news server

'---------

[
paper% overview -w news server

'----------
This sends diagnostic output to the shell tool or cmdtool from.:}\l~i(
started the serverl6. The NeWS server takes over the screen, and whenC }.
Sun View 1 tools "underneath" will redisplay. ,-"

Section A.3, SunViewl Binary Compatibility '.vith NeWS discusses some of t
limitations on using NeWS and Sun View 1 tools together.

In each case, the NeWS server starts by reading and executing the POSTSCRI
language code found in the file ini t . ps. The standard ini t . ps file ~

others it executes define the desktop background, the root menus the sampl
dow package, and other packages; see Chapter 4, Extensibility through
POSTSCRIPT Language Files for more information on the contents of these

\Vhenever the server opens a file (including ini t . ps) it first tries to ope
file in the current directory, and if this fails, it looks for it in
$ {NEWS HOME} / lib. Usually the server is searching for NeWS /fzlenam

If you start up NeWS directly from the console it is possible to run unmodifi
SunViewl (or SunWindows-based) binaries within NeWS. Windows put Ul
SunViewl will appear to float over NeWS, including even NeWS menus, but
overlap other Sun View 1 based windows. One way of looking at this is tha
NcWS. rather than the ~;untools(l) program, manages the root window.

i6 N8: You must be sure that the FRf\YiS3C'?F2? environment variable used by the NeWS serverma
-d argument used by sun too 1. s. Both of these values default to / de v / [:0, so if one is changed, the
must be also.

,,-CVlSlon r\ Ui 1.) j~nu~

Bugs in Sun Viewl/;\ews
Coexistence

r nconveniences

NOTE

Appendix A - Using KeWS 175

Sun View 1 windows appear to update the display simultaneously with NeWS can­
vases. Sun View 1 windows are surrounded by a white margin to avoid
"gli tches" when the cursor is moved between them and NeWS canvases.

Running SunViewl tools under NeWS when the latter is started up from within
suntools is not supported.

It is possible to use NeWS and SunViewl applications simultaneously. However,
you must make note of what version of the Sun as you are running under. ~eWS
is not supported on versions of the Sun OS prior to 3.2. While running NeWS

and a version of the as with a release number equal to or greater than 3.2:

D Multiple SunViewl applications may run at the same time.

D SunViewl menus and prompts look fine, even over the NeWS window. How­
ever, NeWS menus appear to slide under Sun View 1 windows.

D Sun View 1 cross-hairs also work fine.

D Gfxsubwindow-based applications work fine.

D Very old versions (back to 1.1) of Sun Windows-based applications work as
well as they would under suntools.

If you are determined to use NeWS on releases prior to 3.2, then you should add
the following to your startup. ps file:

UserProfile IUIModuie IDefault put

If you make this modification, you will be able to type at psterm (the terminal
emulator), but more complex actions such as making selections and typing to
it emdemo will not work.

This ability to run SunViewl programs from NeWS is handy, but not fully
developed yet. As a result there are numerous bugs.

o A color SunViewl application needs the cursor over its window in order to
see the application's true colors.

D All of NeWS repaints when a SunViewl window's size or position changes.

D Annoying

Window display lock broken after time limit exceeded \
by pid nnn

messages appear on the console. You can adjust the display lock timeout by
modifying the kernel with adb(I); see Section 7.5, Kernel Tuning Options,
in the SunViewl System Programmer's Guide.

D If you run NeWS using overview(l) from within suntools(l) and you
then run SunViewl applications inside NeWS, the colormap flashes when you
move the cursor between NeWS and the Sun View 1 applications. This is one
reason why this configuration is not supported .

. '&.. ~. . .. - ... -
4~"~~ Ul1
~ microsystems

IZeVlsion A of 15 January i 988

176 :'\eWS 1.1 Manual

Screen Damage

Input Mismatches

:'\c\VS on the Sun-31110

You will sometimes see cursor "splotches." This happens when you rf-\
Sun View 1 application over the cursor that is on NeWS's part of screen. \-G~l~
also occur when moving from a Sun View 1 part of the screen to a NeWS part
screen. To cure this, move any Sun View 1 window to cause repair and choc
'Redisplay' from the frame menu of the affected Sun View 1 application.

The bottom scanlines of SunViewl windows get damaged by the NeWS serv
a white line appears.

SunViewl sets up the kb(4S) keyboard driver in the kernel to deliver enco(
events, while NeWS uses an unencoded keyboard. The NeWS server resets th
board state to Sun View 1 encoding when the mouse moves into a Sun View 1
dow and when NeWS exits, so you shouldn't notice the difference. However
you are debugging in NeWS and the NeWS server dies, NeWS doesn't catch the
nals that make it reset the keyboard state, and you may be left with the keyt
producing random characters in Sun View 1 windows. The program kbd _ In

switches the keyboard between the different modes; you can r login to yc
machine and type Jebd_mode -e to reset to SunViewl mode, or add the
lowing to your rootrnenu SunViewl rootmenu file:

"Reset Keyboard" kbd_mode -e

Since the keyboard state is changed when you move the mouse between Ne'
and Sun View 1, don't hold any keys down when you move the mouse from I

world to the other; the world you were in to begin with never sees the key f
up, so it is confused about the keyboard's state when you reenter it. ~T
.. ~~

leave you m secondary selectIon mode. You should be able to clear thISby
pressing the (]1QQ] key twice (usually CTIJ) in NeWS or SunViewl.

If this does not reset the state of the function keys, you can r log in to you
machine and type clear_functions(l) to get SunViewl's selection m
ism out of a constant secondary selection mode.

On 31110 models with the LC (cgfour) color monitor, if things go wrong
the system seems to hang, the wrong plane group is probably being display
To get out of this state, r login into your machine and type switcher

-e.- 1 to display the overlay plane or switcher -e 0 to display the color f
group. You can avoid a common cause of this problem if you create a sym
link from / dev / fb to / dev / cgf ourO.

,~

<~~~ S il il
~~ m;crosystems

R.evision A oi 15 janu;

A.4. Learning NeWS

Putting A Message in a Window

The psh Command

Running POSTSCRIPT language
Programs

Using Journalling

Appendix A - Using NeWS 177

The best way to learn NeWS is to read the POSTSCRIPT language books, trying out
sample POSTSCRIPT programs in NeWS as you go (see Previewing POSTSCRIPT
language Graphics below for more information). Then start examining and
modifying the NeWS demo programs and the server's * . ps files. The following
sections give further information on these topics.

To simply display a message in a window, use the say(l) program. This has
many options, but its default action is to put up a message in a window; for
example

paper% say -b"Text Using Say" Hello There

will create a window, give it the frame header' 'Text Using Say", and display
"Hello There" in it. Since NeWS is a network service, you can easily put up a
message on a remote machine with this command; see Section A.4.3, Connecting
to Remote NeWS Servers

The psh(1) command provides the easiest way to send POSTSCRIPT programs to
the NeWS server. There is a manual page for it in $NEWSHOME/man, which is
also printed in the back of this manual.

The psh command establishes a connection to the NeWS server and sends it
POSTSCRIPT language fragments. If your program can live directly in the NeWS
server, (i.e. it doesn't have to communicate with a C client side), you can use
p s h to run the code in the server.

The NeWS program you send to the server can create its own window and even
define its own menu and input handling. The sample program described below in
Section A.5, A Sample psh Program: test. psh uses this method, and it's
how many of the graphics demo programs work, such as bounce, colorcube,

it emdemo, etc.

psh need not create any window at all. For example, you might want to change
the visual feedback that occurs when you move a window around the screen; this
can be changed with the 'User Interface => Window Management Style => Flip
Drag' menu item, and to do the same from the command line, the following code
would suffice:

echo '/dragfrarne? dragfrarne? not store' I psh

When you select 'Applications! ~/ Journal' from the root menu, a new pull-right
menu is added to the root menu.

From this you can start recording user input events, stop recording, play them
back, or remove journalling. You can also bring up a control panel with buttons
for controlling journalling, the speed of playback, auto-repeat, the journalling file
to use, etc. See Ch.4, Extensibility through POSTSCRIPT language Files for more
detailed information.

~~sun ~ microsystems
Revision A of 15 January 1988

178 :-\eWS l.1 Manual

Previewing POSTSCRIPT
language Graphics

Talking Directly to the Server

A Sample Session

You can use psh to directly preview graphics by creating your own w~~~
defining a PaintClient procedure for it that includes your POSTSCRIPT 'fa-fig
code. PaintClient is called whenever the window is resized or damaged (St

Section 7.4, Window M·ethods).

However, you must be aware of some differences between psh and a
POSTSCRIPT language printer. Firstly, various printer-related commands su
showpage are meaningless or pseudo-implemented in the NeWS window en'
ment. Secondly, the default Sun LaserWriter coordinate scheme is one unit
one point on the paper (a point is 1172 of an inch), so that a U.S. letter-sizec
goes from (0,0) to (612,792), whereas the window canvas is scaled in pixel~
begin with.

The program psview(l) implements a page previewerthat gets around the
problem by including some additional code to scale the coordinate space to
match the canvas.

The NeWS server is a POSTSCRIPT language interpreter, and you can use it iy
tively to program and clebug,17 Usually you use the psh command to connt
the server, then run the executive command to start an executive, an interac
session with the server ..

paper% psh
executive
Welcome to Ne1i\TS Version 1.1

Once running an executive, you can type in any POSTSCRIPT language com
mands you want. The following miscellany perform some arithmetic, defir
function called 'centigrade', and find out some stuff about the NeWS server
further commands print some words and draw arcs of various styles on the
screen.

17 (see Chapter 8, Debugging).

~~sun ~~ microsystems
Revision A of 15 J anua

Connecting to Remote :\eWS

Servers

340 1024 mul =
348160
/centigrade {

32 sub 5 mul 9 div
} def
70 centigrade =
21.1111
32 centigrade =
o
current canvas
canvas (width, height, root)
100 100 moveto

Appendix A - Using NeWS 179

/Times-Italic findfont 24 scalefont setfont
(Hello world!) show

newpath
150 200 50 90 0 arc
stroke

1 setlinequality 1 setlinejoin 30 setlinewidth
300 200 50 90 0 arc
stroke

NeWS is a network-based window system, so you can connect to remote NeWS

servers and display output on them (remember, the server runs on the machine
with the display and keyboard, providing them as a resource for the client pro­
gram).

The environment variable NEWS SERVER determines which server client pro­
grams will access; by default they access the local host. There is a utility pro­
gram, setnewshost(1) which outputs the correct setting of the NEWS SERVER

variable for a given remote host. You can also craft the value of NEWS SERVER

yourself using the information about its format in Section 15.1, Contacting the
Serve,.

After you define NEWSSERVER, say and other NeWS client programs will
display their output on remote_host, and psh with no arguments will connect to
remote _host allowing you to run an interactive programming session on a remote
machine. For example, to display a message on machine neighbor:

paper% setenv NEWSSERVER 'setnewshost neighbor'
paper% say -bLunch -c -w -100,200 "Come have lunch" &

:1eighbar has to have allowed a NeWS connection from paper for this all to
work. See Chapter 11, NeWS Type Extensions, section 11.9, NeWS Security for
more information.

More commonly, you can use the network aspect of NeWS in reverse to run NeWS

applications on fast remote machines while you interact with them on your own
\vorkstation. For example, you could use the an(1) remote execution service

.~~ _ .. - .. --
~~#~ ~ U it
~~ microsystems

Revision A of 15 January 1988

180 ~eWS 1.1 Manual

A,S, A Sample p sh
Program: test. psh

When reading POSTSCRIPT
language source, it's often eas est
to start from the bottom and work
backwards, since subprocedun~s
are usually defined before the main
body of the code

#! lusr/NeWS/bin/psh

(which preserves .environment vari~bles lik~ ~EWSSERVER) from with'~)
psterm(1) termInal emulator (WhICh explIcItly sets NEWS SERVER to tfie f'
server it is running on) to run the roundclock program to determine the t
on a remote machine.

The following program is a script that creates its own window and displays I

of several graphic patterns, depending on the menu item selected. The sour<
in$NEWSHOME/clientsrc/client/test.psh.

The sample program uses psh(1) to connect to the NeWS server. The first Ii:

#! /usr/NeWS/bin/psh

means that if the file is executable, it will be run by /usr /NeWS/bin/ps
you do not have NeWS mounted on /usr/NeWS, you have several choices:

1. Change the first line to reflect the location of p s h on your host.

2. Type

[paper'/; psh wherever/test .psh

to run the script.

3. Modify the script to be:

-#! /bin/sh
psh « \EOF
... current script
EOF

(the «\EOF on the command line is a shell convention indicating that
entire file up to the string EOF should be sent to the standard input of I
the backslash tells the shell not to perform metacharacter substitution 0

input, which is useful if the POSTSCRIPT language code contains shell r
characters) .

The patterns are drawn by the procedures 'Lines,' 'Circles,' 'Rects' and'l
these are defined first. Then a 'main' procedure is defined: this creates the 1

dow and a menu for it using procedures from the LiteWindow and LiteMenu

classes, which handle event processing (putting up the menu when the menl
mouse button is pressed, calling the 'Draw' procedure to repaint, etc.). 'me
called to begin the program.

The procedure' Draw' ils set to one of the graphics procedures to begin with
is reset when one of the procedures is selected from the menu. Note that if '
is selected, 'Draw' is set to all four graphics procedures, so each is rapidly (
in tum. The window's PaintClient procedure is set to 'Draw', so wheneve:
window is damaged or redisplayed, the current graphics procedure is called.

% define each of the four possible drawing routines
% 'Lines', 'Circles', 'Rects', and 'Text'.
% Note the use of pause in each drawing routine. This allows other programs
% to run simultaneously.

~\sun ~ microsystems
Revision A of 15 J anuar

IUnes {
gsave

1 fillcanvas clippath pathbbox scale translate

Appendix A - Using NeWS 181

% It's a good idea to do a gsave ...
% grestore around graphics operations.

.1 .1 1 {a a moveto dup 1 lineto a a moveto 1 exch lineto pause} for
a setgray stroke

grestore
} def
ICircles {
gsave

1 fillcanvas clippath pathbbox scale translate
a .1 .4 {dup a a 1 1 insetrect ovalpath 2 mul setgray fill pause} for

grestore
} def
IRects {
gsave

1 fillcanvas clippath pathbbox scale translate
a .1 .4 {dup a a 1 1 insetrect rectpath 2 mul setgray fill pause} for

grestore
} def
IText {
gsave

1 fillcanvas a setgray
IFonts [

(Times-Roman) (Times-Bold) (Times-Italic)
(Helvetica) (Helvetica-Bold) (Helvetica-Oblique)
(Courier) (Courier-Bold) (Courier-Oblique)
(Symbol) (Boston) (Cyrillic)

] def
IPointSize 24 def
Iy 10 def
Fonts {

dup findfont PointSize scalefont setfont 1 a y moveto
1 a {dup show 15 a rmoveto} repeat pop
Iy y PointSize 1.1 mul add def
pause

}forall
grestore
} def
IDraw {Text} def
% 'Text' has the window draw me so that I inherit certain
% side effects, such as forking the PaintClient procedure
% and setting the graphics state.
ICallDraw {/paintclient win send} def

Imain {
Iwin framebuffer Inew DefaultWindow send def
{

IPaintClient {Draw} def

~\sun ~ microsystems

% This is an array of font names

% The forall operator below performs
% this procedure for each font in the
% 'Fonts' array

% Initial drawing procedure is 'Text'

% Create a window
% Modify the window. There are default
% procedures for each of these.
% IPaintClient will be called
% whenever my image needs to be

Revision A of 15 January 1988

182 ~eWS 1.1 Manual

IFrameLabel (Demos!) def
Ilconimage Ihello_world def
/ClientMenu [

(Lines) {lDraw {Lines} store CaliDraw}
(Ovals) {lDraw {Circles} store CaliDraw}
(Rectangles) {lDr3w {Rects} store CaliDraw}
(Text) {/Draw {Text} store CaliDraw}
(All!) {lDraw {Lines Circles Rects Text} store CaliDraw}

% repaired or redisplayed.

% Make the menu and give it to the
% window event manager to handle.

] Inew DefaultMenu send def % Inew is one of the well-known
% methods in the menu class.

} win send % Sending a procedure to an object
% will cause it to be executed in
% the object's context.

Ireshapefromuser win sE!nd % Ask the user to shape the window.

% Do initialization. Then have my window mapped (made visible)
% which will cause the paint procedure to be called.

Imap win send

} def

main

~\sun ,~ microsystems

% Map (& activate) the window.
% Damage will cause PaintClient
% to be called.

% start everything going

Revision A of 15 Janu,

/\.6. Dictionaries and the
Server

\Iodifying the :\eWS Server

startup.ps

Appendix A - Using ~eWS 183

\Vhen the NeWS server starts up, it mns a file called ini t . ps. ini t . ps in tum
loads several POSTSCRIPT language files that implement a variety of packages;
see Section 4.2, File Organization for a summary of their organization and con­
tents. These are all ASCII POSTSCRIPT language files that you can and should
look at.

It is possible to modify these files, or make copies of them and put them in the
directory from which you start the NeWS server. Thus you can override the
default i ni t . p s (or any of the files it loads) by putting a private version of the
fIle in the directory from which you start the server; For example, if you create a
NeWS directory in the directory from which you start news_server, and put
your own ini t . ps file in that, the server would mn your version instead.
However, it is better to override the default procedures specified in these start up
fllesbycreatingyourown startup.ps and user.ps files. These aren't
supplied with NeWS; users who want to change the server's behavior are
encouraged to create their own.

You should place start up. ps and user. ps in your home directory or the
directory from which you start NeWS, (not the directory the NeWS server itself
resides in). in it. P s first looks in the directory the NeWS server was started
from, then in your home directory (given by the HOME environment variable)
when it tries to load startup. ps and user. ps.

Before it loads anything else, the default ini t . ps file looks to see if a file
called startup. ps exists. If it does, it executes the POSTSCRIPT language
commands therein. These commands would typically be to set flags, such as ver­
bose?, or to install a special PaintRoot procedure that is used during startup.

NOTE Since the .\ystem's own POSTSCRIPT language files have not been read in lvhen
st art up. ps is loaded, you cannot use any of the routines described in
Chapter 4, Extensibility through POSTSCRIPT Language Files, or the packages
(windows, cursors, etc.) they irnpLement.

user.ps

Notes on Modifications

Then in it. P s loads a standard set of POSTSCRIPT language files that define
the classes, packages and user interface for NeWS.

Next, ini t . ps looks to see if a file called user. ps exists. If it does, it exe­
cutes that too. user. ps is a convenient place for you to override default set­
tings in the standard ini t . ps, and to define useful procedures for your own
use.

Then the server starts listening for connections and for mouse and keyboard
events.

When client programs are run and first start defining procedures, they make
entries in a per-process user dictionary. However, the user. ps file adds pro­
cedures to the system dictionary, which has a finite amount of room available.
More importantly, the system dictionary is shared by all processes, so you do not
want to clutter it up with lots of definitions because this will increase the risk of
name clashes.

~~Silll ~ microsystems
RevislOn A of 15 january 1 Y68

184 ~eWS 1.1 Manual

Modifying Your" Root" NIenu

Saving Keystrokes

You should not use these shortened
names in client programs since the
definitions will not exist on other
machines.

If you are going to define lots of new functions, it's best to create yourf"~ll
tionary from within user. ps as follows:

0/0 Define my VDI emulation routines
systemdiet ImyVDldict known not {

systemdiet ImyVDldiet 50 diet put % size to however many entries are in ,
myVDldiet begin
IVDlrange 34200 def
etc.
end

} if

This checks to see if 'VDldiet' is already defined in the system dictionary;
isn't, it creates its own dictionary, only adding one entry to the system dict
ary. You can access your own dictionary of extensions as follows:

myVDldiet begin
VDlrange 4 mul
etc.
end

(Or you can use the g€t, store and put primitives.)

Here are some examples of modifications you can make in user. ps.

The following code in user. ps will add a new pullright menu, myStufJ, t
root menu. This in tuln has two items, another pullright menu called myW
and a menu item that IUns the UNIX program mygo.

Iprojeetmenu [
(test program) {(work.tst) forkunix }

] Inew DefaultMenu send def

Imymenu [
(myWork =» . projeetmenu
(my Go game) .[(mygo) forkunix }

] Inew DefaultMenu send def

o (myStuff =» myme-nu linsertitem rootmenu send

If you often connect to the server directly, you can redefine commonly use
mands to save typing.

The following code added to your use r . p s redefines several common cc
mands to save keystrokes.

~\sun ,~ microsystems
Revision A of 15 Janu

Changing Defaults

% Some aliases
Ips {pstack} def
Icds {countdictstack =} def
Ifb framebuffer def
% Debugger
Idbe {dbgbreakenter} def
Idbx {dbgbreakexit} def
Idc {dbgcontinue} def
Idlb {dbglistbreaks} def
Idwb {dbgwherebreak} def

Appendix A - Using NeWS 185

(keystroke savers ps, cds, fb, dbe, dbx, dc, dlb and dwb defined\n) print

The following code added to your user. ps will load the optional debug pack­
age and change item dragging behavior if running on a color display so that only
a wire frame of the window is dragged, not the entire window which requires
more memory to perform this adequately.

(Loading debug.ps\n) print (debug.ps) run

~~sun q~, Revision A of 15 January 1988
~ microsystems

B
Class Lite/tern

Class Liteltcnl .. 189

B.1. Class Item .. .

f3.2. Two Sam pIe I terns .. .

Sample Items Test Program

B.3. Class Labeledltem

B.4. Subclasses of Labeledltem

B.S. LabeledItelTI Subclass Details .. .

189

191

194

196

198

200

B.1. Class Item

CAUTION

B
Class Lite/tern

This chapter presents a class-based items package, called "LiteItem." Items are
simple, graphical input controls, like Sun View's panel items. The item package
is a further demonstration of the use of classes and packages besides the window
and menu packages described in Chapter 7, Window and Menu Packages. The
item package is only used by the i ternderno demo program. The POSTSCRIPT

language code for the items package is in the file 1 it e item. p s in
$NEWSHOME/lib/NeWS.

This package is included for demonstration purposes only. No support for it
in the future is implied.

The item package currently implements the base class, Item (which is useless by
itself), the subclass LabeledItem (which also is useless), and several practical
subclasses of LabeledItem (which are useful).

A common need in interactive systems is a simple, user-definable, graphic,
interactive, input/output object. Examples are buttons, sliders, scrollbars, dials,
text fields, message areas, and the like. The class Item defines a skeleton for
such an object.

An item has these major components:

o A canvas that depicts the item and is the target of the item's input.

o A set of procedures that paint the canvas and handle activation and tracking
events.

o A current value and a procedure that notifies the client when that value
changes due to action of the tracking procedures.

o Methods for creating, moving and painting the item, and for returning the
item's location and bounding box.

There are two utilities for items that reside outside of the class itself: forkitems
and paintitems:

j~ ~U-l ~7~ j
~ microsystems

189 Revision A 01 15 January i 088

190 ':'.eWS 1.1 Manual

forkitems

paintitems

items forkitems process
Takes an array or dictionary of items and launches a process looking fol-dh
activation event (generally a mouse down event) for each of the items. Wht
this occurs, a second event manager is forked that looks for events this parti
item is interested in.

items paintitems
Sends the /paint message to each of the items in an array or dictionary of it

Let's take a look at the definition of class Item:

litem Object [
% instance variables

IltemWidth
IltemHeight
litem Parent
IltemCanvas
IltemValue
IltemlnitialValue
IltemPaintedValue
IStartl nterest
litem Interests
IltemEventMgr
INotifyUser

] classbegin
% default variables

litem Font DefaultFont def
IltemTextColor 000 rgbcolor def
IltemBorderColor ItemTextColor def
IltemFiliColor 1 1 1 rgbcolor def

% class variables; mainly the std client procs
IPaintltem nullproc def
IClientDown nullproc: def
IClientDrag nullproc def
IClientEnter nullproc def
IClientExit nullproc def
IClientKeys nullproc def
IClientUp nullproc def
IStopOnUp? true dEtf

% methods
Inew
Imakecanvas
Imakeinterests
Imove
Imoveinteractive

Ipaint
Ilocation
Ibbox

classend def

% item's width,
% ... and height,
% ... and parent canvas (from new)
% the canvas we created for the item
% the canvas' current value
% the value it started out with
% the value it currently shows
% the interest which activates the item
% interests used to track item
% ... the tracking process
% the user's notify proc

% the item's font
% ... & text color
% ... & border color
% ... & background color

% the core of the /paint method
% procedures installed in
% the activated (tracking)
% process

% deactivate on up event?

% parentcanvas width height => ins1
% - =>-
% - =>-
% x Y => - (Moves item to x y)
% item's backgroundcolor => -
% (interactively moves the item)
% - => - ([Rejpainls item)
% - => X Y
% - => X Y w h

The canvas and its "looks" are defined by:

ItemWidth, ItemiHeight, ItemParent, ItemCanvas, ItemFont, Item
TextColor, ItemBorderColor, ItemFillColor

~\Slln ~ microsystems
Revision A of 15 Janu

B.2. Two Sample Items

Appendix B - Class Lite/tern 191

The parent canvas, height, and width are specified by the Inew method. The oth­
ers are initialized by the class and may be changed by the programmer or user.

The set of procedures for painting the canvas and handling activation and track­
ing events are:

PaintItem, StartInterest, ItemInterests, ItemEventMgr ClientDown,
ClientDrag, ClientEnter, ClientExit, ClientKeys, Client Up, StopOnUp?

The PaintItem procedure is called by the Ipaintitem method, after it sets the
canvas and does some minor bookkeeping. Startlnterest is an event used by the
forkitems utility to determine when to fork a second event manager,
ItemEventMgr, to perform "tracking" of the item. Startlnterest defaults to a
mouse down event and generally is not overridden. ItemInterests is a dictionary
of events used to track the item. It defaults to a set of events determined by
which of the 'ClientFoo' procedures have been overridden to be non-null. It is
made by the Imakeinterests method, which is generally invoked by the Imove
method as part of the item's deferred initialization. Clients are free to call Item­
Interests themselves, however, if the need arises. ItemEventMgr is the tracking
process and is null when tracking is not being performed. StopOnUp? is a
boolean (default = true) that tells the tracking process whether to terminate on an
up mouse event. (At present, only text items do not terminate on an up mouse
event.)

The current value and notification procedures use:

Item Value, ItemInitialValue, ItemPaintedValue, NotifyUser

Item Value is the current value of the item. For example, it might be the string
currently in a type-in item or true/false for a button item (indicating whether the
button is currently on or off). ltemInitialValue is set to ItemValue when the
item is activated for tracking. ItemPaintedValue is set to the value currently
painted. These last two values are used to maintain a simple state machine by
class implementations. NotifyUser is a procedure used to alert the client of
changes in state.

These two subclasses of Item implement a simple toggle button and a simple
slider. They both override the Inew method, adding the initial ItemValue and
the NotifyUser procedure to the argument list. Notice the way overriding is
done:

/new super send begin

eu rre ntd iet
end

This is a standard POSTSCRIPT language programming style.

'SampleToggle' provides tracking by implementing the client 'Down', 'Up',
'Enter', and' Exit' procedures. Item Value is treated as a boolean, with true
meaning "on". 'Down' and 'Enter' simply assign not ItemInitialValue to
ItemValue, while 'Exit' resets it to ItemInitialValue. 'Up' simply calls the
'notify' procedure if the state has changed. 'SampleToggle' adds no instance or
class variables.

~\sun ~ microsystems
Revision A of 15 January 1988

192 ~eWS 1.1 Manual

Figure B-1

Here are two toggles, one on and the other off, and the implementation~_)l
class 'SampleToggle':

Tj,vo Instances o/Class 'SampleToggle'

/SampleToggle Item []
classbegin

Inew {
Inew super send begin

INotifyUser exch cvx def
lItemValue exch def
currentdict

end
} def

IPaintitem {
ItemValue

{O fillcanvas}

% initialvalue notifyproc parent width height =:

{1 fillcanvas 0 strokecanvas} ifelse
} def
IClientDown {Item InitialValue not SetToggleValue} def
IClientUp {ltemValue ItemlnitialValue ne {NotifyUser} if} def
IClientEnter {ClientDown} def
IClientExit {ltemlnitialValue SetToggleValue} def

ISetToggleValue {
litem Value exch store
Ipaint self send

} def
ciassend def

% value => - (set value & pain! toggle)

The 'SampleSlider' provides tracking by implementing the client 'Down
'Up', and 'Drag' proc.edures. The 'Down' and 'Drag' procedures are ider
simply projecting the current x coordinate of the mouse onto the slider.

~\sun ~~ microsystems
Revision A of 15 Janu

Figure B-2

Appendix B - Class Lite/tern 193

Here is a slider and its implementation:

An Instance of Class 'SampleSlider'

ISampleSlider Item [/SliderX ISliderY ISliderWidth ISliderHeight]
classbegin

Inew { % initialvalue notifyproc parent width height => item
Inew super send begin

INotifyUser exch cvx def litem Value exch def
ISliderX ItemHeight 2 div 1 sub def
ISliderY ItemHeight 2 div def
ISliderWidth Item Width ItemHeight sub def
ISliderHeight 2 def
currentdict

end
} def
IPaintitem {

ItemCanvas setcanvas 1 fillcanvas a strokecanvas
SliderX SliderY SliderWidth SliderHeight rectpath fill
ItemValue a PaintSliderValue

} def
IClientDown {

SetSliderValue
Item Value ItemPaintedValue ne {

ItemPaintedValue 1 PaintSliderValue

} if
} def

ItemValue a PaintSliderValue

IClientUp {ltemValue ItemlnitialValue ne {NotifyUser} if} def
IClientDrag {ClientDown} def
IPaintSliderValue { % value gray => -

setgray
SliderX add SliderY 5 sub 4 4 rectpath fill
IltemPaintedValue ItemValue store

} def
ISetSliderValue {

litem Value

} def

CurrentEvent geteventlocation pop SliderX sub
a max SliderWidth min store

classend def

~~sun ~ microsystems
Revision A of 15 January 1988

194 ~dVS l.1 Manual

Sample Items Test Program

Figure B-3

:\ow we'll play with these procedures using a simple test program. TW=~-~(
procedure simply prints the value of the item using the printf utility. ~c~';
building a canvas and painting it \vith 'itembackground.' Then we make 1

items, a button and a slider, putting them in a dictionary called 'items.' \V
paint them and fork an activation event manager.

This is usually all you need; we throw in an extra event manager, 'p 1,' that
the middle mouse button to move the items interactively with the ·slideiter
procedure. It then prims out the new location. (This is a poor man's item e
that often is useful.)

Here's what the test looks like, and its implementation:

The Sample Test Program

Revision A 01 i5 j anu,

Figure B-4

IltemSampleTest {
Inotify {ltemValue (ItemValue: % \n) printf} def
litembaekground .75 def
lean framebuffer 200 200 ereateeanvas def

Appendix B - Class Lite/tern 195

ean seteanvas 200 100 moveeanvas eurrenteanvas mapeanvas
itembaekground fiIIeanvas 0 strokeeanvas

litems 10 diet dup begin
Isampletoggle

false Inotify ean 30 30 Inew SampleToggle send def
10 30 Imove sampletoggle send

Isampleslider
20 Inotify ean 180 20 Inew SampleSlider send def
10 70 Imove sampleslider send

end def
items paintitems Ip items forkitems def

Islideitem { % - (event) =>-
litem CurrentEvent laetion get def
items itembaekground Imoveinteraetive item send
(New bbox: % % % % \n) [/bbox item send] printf

} def
Ip1 [

items {
litem exeh def pop
MiddleMouseButton {slideitem}
1 diet dup DownTransition item put
item litem Canvas get eventmgrinterest

} forall
] forkeventmgr def

} def

% key item
0/0 _

% but proe
% but proe diet

After pushing the toggle and sliding the slider, we have:

Use a/the Sample Test Program

~\sun ,~ microsystems
Revision A of 15 January 1988

196 :\eWS 1.1 Manual

After we push the middle button on the slider and move it, we get:

·····~····;",1!;'!jjWl'%H!.I.flji%. ··················)}i}····)})(?H?····(.· •• :-:·:·:-:-:-:-:.:.:-:.:.:-:-:: ::

!ii:ij bi qmac% i::l~ITTIPITTIPTIITillTIITillTIP1~TIITTIPITTIPTIITillTIITillTImITiliITITHJ""
;::1:1 s t.;~rt i nq server F
m1 Initiallzation fi les loaded! : .:-:-:.:-
• St.arting root eventmgr

Hi trlere!
ItemS~.mp 1 eTest
ItemVa 1 ue: true
I tE:m\,'a 1 u e: 104
NE:I.oJ bbox: 10 169 180 20

" ::}

1.:I,i:.I,,:.:,:~ ... ,:.:,:.:,:: :.:.:.:.: ... ,:, .. , .. ,:': ~;;;::;:;::;::::;::;:;:;:;:;::;:;:::::::;:::;:=:;:::;:::===;::==~ ... = ... =.:-= .. =:-.. ==:-.-:= ... :-:::!1 ~:::~:::~:::~:::~:::~::~~::~~:::~:::~:::~:::::::::::~::::::::::~~:.:::.::::::::::::::: .. :::::::::::::::::::::::::::::

Figure B-5 Use of the Sample Test Program-Moving the Slider

B.3. Class LabeledItem

What to notice here is the simplicity and power both of the program and sal
items, and of the NeWS programming environment. The implementation of
items and test program, and the testing of them both in the interpretive NeW

environment takes very little time.

Most items are more elaborate than the preceding examples. Class Lal)-elel
implements a more common item; one that has a label-object pair, and an
optional frame. The (abbreviated) class definition is:

~\sun ~ microsystems
Revision A of 15 Januu

Appendix B - Class Liteltem 197

ILabeledltem Item
dictbegin
% instance variables

IltemObject nullstring def
IObjectX 0 def
IObjectY 0 def
IObjectWidth 0 def
IObjectHeight 0 def
litem Label nullstring def
ILabelX 0 def
ILabelY 0 def
ILabelWidth 0 def
ILabelHeight 0 def

% The item's "object"
% and bounding rect:

% The item's ((label"
% and bounding rect:

IltemBorder 2 def
IObjectLoc null def

% Extra space around the item
% Label-Object position

IltemGap 5 def
IltemFrame 0 def

% Distance between object & label
% Draw frame if not zero

IltemRadius 0 def % Radius of frame
dictend
classbegin
% default variables

IltemLabelFont Item IltemFont get def
% class variable: over-ride of Paint/tem

IPaintltem % - => -
% methods: over-ride new

Inew % label obj loc notify parent width height => instance
% utilities used to manipulate label-object pair

ILabelSize % - => width height
IShowLabel % - => -
IShowObject % - =>-
IEraseObject % - => -
IAdjustltemSize % - => -

ICalcObj&LabelXY % - => -
ciassend def

The label and object and their item-relative bounding rectangles are defined by:

ItemLabel, LabelX, LabelY, LabelWidth, LabelHeight, ItemObject,
ObjectX, ObjectY, ObjectWidth, ObjectHeight

The ItemLabel and ItemObject are either a string, an icon keyword, or a pro­
cedure keyword. If it is a procedure, it takes a boolean as an argument: true
causes it to draw itself; false causes it to return its width and height. The Item­
LabelFont is bound to the label, the ItemFont is bound to the object.

The item's layout metrics are defined by:

ItemBorder, ObjectLoc, ItemGap, ItemFrame, ItemRadius

Item Border is the space between the item bounding box and its label-object
pair. ObjectLoc is the position of the object relative to the label. It may be any
of fRight, fLeft, fTop, fBottom. ItemGap is the space between the label-object
pair. ItemFrame is the size of the frame to draw around the item. It should be
no greater than ItemBorder. ItemRadius is the curvature of the item's border.
Zero represents a rectangular shape; a number between 0 and .5 represents a
rounded rectangle whose radius is that fraction of the shortest edge; and any

~\sun ~~ microsystems
Revision A of 15 January 1988

108 ~<c\VS 1.1 0.1anual

BA. Subclasses of
LabeledItem

uther number is used as the absolute curvature of the rounded rectang~(_)

The two overrides are the Inew method and the IPaintItem procedure callE
the Ipaint method. Note that Inew adds label, obj, loc, and notify to the a
ments of its superclass.. These are bound to ItemLabel, ItemObject,
ObjectLoc, and NotifyUser. respectively.

Class LabeledItem contains a few utilities that are used by its subclasses:

LabelSize, Show Label, ShowObject, EraseObject, AdjustItemSize
CalcObj&LabelXY

LabelSize returns the height and width of the label. ShowLabel and Sho\
ject paint the label and object in the item's canvas: EraseObject erases th(
object. AdjustItemSize and CalcObj&LabelXY are two layout utilities.
AdjustItemSize is used to insure the item is large enough for its label-objE
while CalcObj&LabelXY is used to adjust the label-object pair's relative
tions. Note that CalcObj&LabelXY adds the initial values of the label an
object locations. which default to O. to the calculated locations, thereby pre
for slight adjustments by the programmer.

This section presents 5,everal practical subclasses of Class LabeledItem, s
ing how they are used by client programs. There are further examples of il
usage in the it emdemo program provided in the standard release. The il
mentation of these classes is included in the item.ps file that implemen
Class Item and Class LabeledItem. Programmers wanting to imple~j?_gt
own items should look at these implementations; they are generally IC;;)l
page of POSTSCRIPT language. -

The subclasses are:

o

ButtonItem: provides a simple activation/confirmation item

CycleJtem: provides check boxes and choices

SliderItem: provldes a continuous range of values

TextItem: provides a type-in area

~1essageItem: provides an output area

ArrayItem: provides an array of choices

~ ,~ .~ ~~ ~--
~?~~~ (111 i<cvlsion A of 15 J anu
~ microsystems

Appendix B - Class LiteItem 199

This window contains one of each of these items:
<.<::.:::::::::::::::-::::::.:.:::::::::.:::::::-:.::::-:.:::.:-:.:::.:::.::.:.:.:-:::::-::::.:.:.:.:.:::.:::.:::.:::.:::.:::.:::.::::::.:::.:.:.:::-:.:.:.::::-::::.:::.:::.:::.::::::.::::-:.:::.:::.:-::-:.:::.:-::::.:-::-:.:::.:-:.:-::::.:-::-:\))

hems

:<tonltent! [if Cycle I tern

Textltenl: Faa ---------------------------
51iderItern: ______ ~o------

........

EIITVlO \1
Four D Six

Array I tern

lVlessage !tan
ItemValue: Foo

.

.. ,d.:::.:::.::
: ~. ~: ~. ~: ~.:::.:::.:::.:::.:::.:::.:::-:::.:::-:::.:: :.::: -:::.:::.:::.:::.:::.:::.:.:.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::: ~:): ~: ~:

Figure B-6 Subclasses of Labeledltems

Things to notice:

o All items except button items have the following arguments:

label object location notifyproc parentcanvas width height

Buttons have no object; thus leave out object and location. Cycle and array
items have multiple objects in an array.

o All four object locations are visible in the sample:

• The text and slider items use fRight

• The cycle item uses fLeft

• The message item uses ITop

• The array item uses IBottom

o The width and height parameters are hints only; the AdjustItemSize pro­
cedure will increase these if necessary. The minimal size will be enough to
contain the label-object pair separated by ItemGap with a border of Itelll­
Border. The message item in the example below uses this by using a 0,0
size for the canvas but a large em pty string as the initial value of the mes­
sage.

o The values calculated by CalcObj&LabelXY

LabelX LabelY ObjectX ObjectY

can be adjusted by assigning initial values to any of them. This is used in
the check box example above:

Icycle (Cycleltem) (lpanel_check_off Ipanel_check_on]
Ileft Inotify can 0 0 Inew Cycleltem send
dup IlabelY -4 put 10 70 Imove 3 index send def

o The label or object can generally be either a string, an icon name, or a pro­
cedure. The procedure takes a boolean which indicates whether to draw the
object (true) or to return its width and height (false). The array object above
shows both an icon and a drawing procedure (the box):

~\sun ~ microsystems
Revision A of 15 January 1988

200 :\~ws 1.1 Manual

Figure B-7

B.S. LabeledItem Subclass
Details

/drawing {
{ltemBorderColor setcolor 1 1 14 14 rectpath stroke}
{16 16} ifelse

} def

Use of these items follows the general pattern:

D A canvas is created for containing the items. This is generally done b:
creating a window and getting its ClientCanvas. The window's
PaintClient procedure should include a call to paintitems.

D A dictionary (or array) of items is created using the Inew message to t

item class of interest followed by a Imove message to this instance.

D This collection of items is activated by calling forkitems. The items'
notification procedures will be used to perform the activities the progr
desires.

Here is a minimal example of this style. We create a window with a buttol
message item. The button's notify procedure simply prints "Button Presst
the message item.

Iwin {
IPaintClient {items paintitems} def

} makewindowfromuser def
lean win /ClientCanvas get def
Inotify {(Button Pressed!) /print items Imessage get send} def

fitems 50 dict dup begin
fmessage (Message:) ()

fRight {} can 0 0 /new Messageltem send
10 10 fmove 3 indl3x send def

!button (Button) fnotify can 0 0 fnew Buttonltem send
10 30 fmove 3 index send def

end def
Ip items forkitems def

This is the resulting window:

?c(·· .. !:!

(lhtflm) Message: Button Pressed!

:.: ... :.:

Typical Item Usage

This section presents details on the use of the LabeledItem subclasses.

D ButtonItem: IteulValue is a boolean; true if pressed, false if not. Gel
the ItemValue is never used; the NotifyUser is called to perform the
button's activity. ButtonItems differ from the rest of the Labeledltel
not having an object and object location in the arguments to /new.

~\sun ~~ microsystems
Revision A of 15 Janu

Appendix B - Class Lite/tern 201

CycleItem: ItemObject is an array of objects. Item Value is the index of
the currently displayed object in that array. The cycle stans at zero and
progresses one each "push" of the item. NotifyUser is called when the
cycle changes value.

SliderItem: The object is an array consisting of three integers: the minimum
value, the maximum value, and the initial value for the slider. The Itenl­
Value is the current value of the slider, and NotifyUser is called when the
button is released. You can be notified continuously by overriding
ClientDrag:

IClientDrag {/ClientDrag super send NotifyUser} def

CJ TextItem: Item Value is the current string being displayed. The object is
the initial string. NotifyUser is called whenever there is any change to
Item Value. Text items differ from the others in the way they use the mouse.
iVlouseDown activates the text item if it is not yet active, and changes the
caret location if it already active. The item is de-activated by activating
another text item or by exiting the parent canvas of the text item. Keyboard
motion is available in the text item using standard Emacs control sequences.

CJ ~'1essageItem: The object in a message is its initial value. This need not be
text! Message items have two additional methods: /print and /printf.
/print takes a single argument, generally a string, and displays it as the
item's new object. /printf has two arguments: a format string and an argu­
ment array. See the previous chapter for sample usage. NotifyUser is called
whenever a new message is posted. It should generally be an empty pro­
cedure. ItemValue is the current message.

=:; ArrayItem: The object is an array of equal length arrays. The "inner"
arrays are the subsequent rows. The sample array item was created by:

(Arrayltem) [
[(One) (Two) /panel_text]
[(Four) /drawing (Six)]

] /Top /notify can 0 0 /new Arrayltem send

ItemValue is an array of indices of the current selection and is initialized to
lO 01. NotifyUser is called from ClientUp if the ItemValue changed from
its initial value.

~~~ S il Ii 
.~ microsystems 

ReVISIon A of 15 January 19bi-\ 





c 
NeWS Operators 

\:e\VS Operators .............................................................................................................................. 205 

C.l. 0icWS Operators, Alphabetically ............................................................................. 205 

C.2. :-JeWS Operators. by Type ............................................................................................207 





C.l. NeWS Operators, 
AI phabetically 

listenfile 
num 
num 
num 

num 

w h bits matrix proc 
canvas 
canvas 

process 
color 
dx dy 

string 

canvas 

c 
NeWS Operators 

This appendix lists all the current NeWS operators, alphabetically first, then by 
type. 

acceptconnection file 
arccos num 
arcsin num 
arctan num 
awaitevent event 
blockinputqueue -
breakpoint -
buildimage canvas 
canvastobottom -
canvastotop -
clipcanvas -
clipcanvaspath -
continueprocess -
contrastswithcurrent boolean 
copyarea -
countinputqueue num 
createdevice canvas 
createevent event 
createmonitor monitor 
createoverlay canvas 
currentautobind boolean 
currentcanvas canvas 
currentcolor color 
currentcursorlocation x y 
currentlinequality n 
currentpath shape 
currentprintermatch boolean 
currentprocess process 
currentrasteropcode num 
currentstate state 

~\sun ~ microsyslems 

listens for connection 
computes arc cosine 
computes arc sine 
computes arc tangent 
blocks for event 
block input events 
suspends current process 
constructs canvas object 
moves to bottom of sibling list 
moves to top of sibling list 
cli p to canvas boundary 
set current path to clip 
restart suspended process 
compare colors 
copy current path to dx, dy 
returns count of input queue 
create new canvas 
create an event 
create monitor object 
create overlay canvas 
autobinding enabled? 
current canvas 
current color 
returns mouse coordinates 
current line quality 
return current path 
return printermatch value 
return current process object 
rasterop combination function 
returns graphicsstate object 

205 Revision A of 15 January 1988 



206 "':'.eWS 1.1 Manual 

dx dy 

canvas 
file or string 
file or string 

any 
event 

string 1 string2 
proc 

string 
canvas 
canvas 
string 1 

file 
file 

hsb 
canvas 

boolean canvas 
canvas x y 
canvas x y 

process 
process 

ab 
ab 

monitor proc 
monitor 

xy 
pcanvas 

array 

xy 
string 1 string2 

string 

currenttime num 
damagepath -
dumpsys -
ernptypath boolean 
enumeratefontdicts names 
eocl i pcanvas -
eoco pya rea -
eocurrentpath shape 
eoreshapecanvas -
ec)writecanvas -
ec)writescreen -
errored boolean 
expressi nterest -
e:denddamage -
et:lextenddamage -
file file 
fc)rk process 
f()rkunix -
getcanvascursor font char char 
getcanvaslocation x y 
getenv string2 
geteventlogger process 
getkeyboardtranslation num 
getmousetranslation boolean 
getsocketlocaladdress string 
getsocketpeername string 
hsbcolor color 
i magecanvas -
imagemaskcanvas -
i nsertcanvasabove -
insertcanvasbelow -
keyboardtype num 
killprocess -
killprocessgroup -
lasteventtime num 
localhostname string 
maxc 
min c 
monitor -
monitorlocked boolean 
movecanvas -
newcanvas ncanvas 
newprocessgroup -
pathforallvec -
pause -
pointinpath boolean 
putenv -
random num 
readcanvas canvas 

~\sun ~ microsystems 

returns a time value 
sets path to damage path 
dump state to standard output 
tests current path 
scans font dictionaries 
eoc1ip to current canvas 
copy area to dx, dy 
returns current path 
even/odd reshape of canvas 
write canvas to file 
write screen to file 
use like stopped 
queue input events 
extend damaged path 
extend damaged path 
same as Adobe implementation 
creates a new process 
forks a UNIX process 
gets cursor for canvas 
returns canvas location 
gets value of string1 in server 
get event logger process 
returns mode of translation 
are events translated? 
return address of file 
return name of host connected 
return color matching h s b 
maps canvas to current canvas 
analogous to imagemask 
insert above current canvas 
insert below current canvas 
return type of keyboard 
kills process 
kills entire processgroup 
returns TimeStamp 
returns network hostname 
leaves maximum on stack 
leaves minimum on stack 
exec proc wi th locked monitor 
checks state of monitor 
moves canvas to x y 
creates a new canvas 
creates a new processgroup 
analogous to pathforall 
suspends current process 
is x y in path? 
alter value of string 1 
return random value 
read string as canvas 

Revision A of l5 Jam 



C.2. 

Appendix C - NeWS Operators 207 

event recallevent - remove event from queue 
event redistributeevent - enter event into queue 

canvas reshapecanvas - sets canvas to be path 
event revokeinterest - revoke interest in event 
r g b rgbcolor color set color to r g b value 

event sendevent- launch an event 
boolean setautobind - set autobinding 
canvas setcanvas - set current canvas 

font char char setcanvascursor - set cursor identifiers 
color setcolor - set current color 

xy setcursorlocation - set cursor to x y 
process seteventlogger - make process event logger 

object integer setfileinputtoken - add object to tokenlist 
boolean setkeyboardtranslation - is translation on? 

n setlinequality - set linequality value 
boolean setmousetranslation - sets mouse translation mode 

path setpath - set path to path 
boolean setpri ntermatch - set printermatch flag 

num setrasteropcode - set rasterop combination function 
graphicsstate setstate - set graphics state 

startkeyboardandmouse - initiate server processing 
process suspendprocess - suspend process 

num tagprint - put num on output stream 
object typedprint - put object on output stream 

unblockinputqueue - release input queue block 
dictionary key undef - undefine key from dictionary 

process waitprocess value wait until process completion 
file or string writecanvas - write canvas to file 
file or string writescreen - write screen to file 

NeWS 0 perators, by 
Type 

The following operators are sorted by type. 

Canvas Operators 

w h bits matrix proc 
canvas 
canvas 

string 
canvas 

canvas 
file or string 
file or string 

buildimage canvas 
canvastobottom -
canvastotop -
clipcanvas -
clipcanvaspath -
createdevice canvas 
createoverlay canvas 
currentcanvas canvas 
eoclipcanvas -
eoreshapecanvas -
eowritecanvas -
eowri tescreen -

~\sun ~ microsystems 

constructs canvas object 
moves to bottom of sibling list 
moves to top of sibling list 
clip to canvas boundary 
set current path to clip 
create new canvas 
create overlay canvas 
current canvas 
eoclip to current canvas 
even/odd reshape of canvas 
write canvas to fIle 
write screen to ti Ie 

Revision A of 15 January 1988 



208 '-."~\VS 1.1 ~hmual 

'::2.nvas 

X ..: 

~ can'Jas 
string 
canvas 
=:anvas 

=l..Le or string 
=ile or stri:1o 

getcanvaslocation X Y 
imagecanvas -
imagemaskcanvas -
insertcanvasabove -
insertcanvasbelow -
ITIOVeCanvas -
newcanvas ncanvas 
readcanvascanvaS 
resha pecan vas -
setcanvas -
\\Titecan vas -
\vritescreen -

Event Operators 

event 

event 
event 
event 
event 

awaitevent event 
blockinputqllelle -­
countinputqueue num 
createevent event 
expressinterest -
geteventlogger process 
getmousetranslation boolean 
lasteventtime num 
recallevent -
redistributeevent -­
revokeinterest -
sendevent -
unblockinputquelle -

.\ Iathematical Operators 

r'lurn 

a b 

arccos num 
arcsin num 
arctan num 
max C 

min c 
random num 

Process Operators 

~:rocess 

proc 

process 
process 

breakpoint -
continueprocess -
createmonitor monitor 
current process process 
fork process 
forkunix -
kill process -
killprocessgroup -­
monitor -

returns canvas location 
maps canvas to current canvas 
analogous to imagemask 
insert above current canvas 
insert below current canvas 
moves canvas to x :v 
creates a new canvas 
read string as canvas 
sets canvas to be path 
set current canvas 
write canvas to file 
write screen to .file 

blocks for event 
block input events 
returns count of input queue 
create an event 
queue input events 
get event logger process 
are events translated? 
returns TimeStamp 
remove event from queue 
enter event into queue 
revoke interest in event 
launch an event 
release input queue block 

computes arc cosine 
computes arc sme 
computes arc tangent 
leaves max on stack 
leaves min on stack 
return random value 

suspends current process 
restart suspended process 
create monitor object 
return current process object 
creates a new process 
forks a UNIX process 
kills process 
kills entire processgroup 
exec proc with locked manito 

Revision A 01 15 Jan 



monitor 

process 

process 

monitorlocked boolean 
newprocessgroup -
pause -
seteventlogger -
suspendprocess -
waitprocess value 

Path Operators 

dx dy copyarea -
currentpath shape 
damagepath -
emptypath boolean 

dx d y eocopyarea -
eocurrentpath shape 
extenddamage -
eoextenddamage -

x y pointinpath boolean 
path set path -

File Operators 

listenfile 
stringl string2 

file 
file 

num 
object 

acceptconnection file 
file file 
getsocketlocaladdress stri ng 
getsocketpeername string 
tagprint -
typedprint -

Color Operators 

color 

h s b 
r g b 
color 

contrastswithcurrent boolean 
currentcolor color 
hsbcolor color 
rgbcolor color 
setcolor -

Keyboard and Mouse Operators 

boolean 
boolean 

currentcursorlocation x y 
getkeyboardtranslation num 
getmousetranslation boolean 
keyboardtype num 
setkeyboardtranslation -
setmousetranslation -
startkeyboardandmouse -

~\sun ~ microsystems 

Appendix C - :\eWS Operators 209 

checks state of monitor 
creates a new processgroup 
suspends current process 
make process event logger 
suspend process 
wait until process completion 

copy path to dx, dy 

return current path 
sets path to damage path 
tests current path 
copy area to dx, dy 
returns current path 
extend damaged path 
extend damaged path 
x y in path? 
set path to path 

listens for connection 
same as Adobe implementation 
return address of file 

return name of host connected 
put num on output stream 
put object on output stream 

compare colors 
current color 
return color matching h s h 
set color to r g b value 
set current color 

returns mouse coordinates 
returns mode of translation 
are events translated? 
return type of kt':,hoard 
is translation on) 

sets mouse translation mode 
initiate server processing 

iZeVlSlon A of 15 January 1988 



210 0.cWS 1.1 Manual 

Cursor Operators 

canvas 
font char char 

x y 

currentcursorlocation X Y 
getcanvascursor font char char 
setcanvascursor -
setcursorlocation -

l\1iscellaneous Operators 

any 
stringl 

array 
stringl string2 

boolean 
n 

boolean 
num 

graphicsstate 
dictionary key 

currentautobind boolean 
currentlinequality n 
currentprintermatch boolean 
currentrasteropcod{~ num 
currentstate state 
currenttime num 
dumpsys -
enumeratefontdicts names 
errored boolean 
getenv string2 
localhostname strin9 
pathforallvec -
putenv -
setautobind -
setlinequality -
setprintermatch­
setrasteropcode -
setstate -
undef-

~\sun ~~ microsystems 

returns mouse coordinates 
gets cursor for canvas 
set cursor identifiers 
set cursor to x y 

autobinding enabled? 
current line quality 
return printermatch value 
rasterop combination function 
returns graphicsstate object 
returns a time value 
dump state to standard output 
scans font dictionaries 
use like stopped 
gets value of string] in server 
returns network hostname 
analogous to pathforall 
alter value of string] 
set auto binding 
set linequality value 
set printermatch flag 
set rasterop combination function­
set graphics state 
undefine key from dictionary 

Revision A of 15 Janu~ 



D 
NeWS Manual Pages 

~JeWS Manual Pages .................................................................................................................... 213 

~=ldfamily(l) - build font family description ......................................................... 213 

-=9S(1) - construct C to POSTSCRIPT language interface ...................................... 215 

iiurnpfont(l) - dump font in another format ............................................................. 217 

journaiLing( 1) - record and playback package ............................................................. 219 

kb d_rno de (1) - change keyboard translation mode ................................................ 221 

news_server(1) - NeWS server program ................................................................ 223 

psterrn( 1) .......................................................................................................................................... 225 

newsdemos(6) - NeWS demonstrations ........................................................................... 231 

newshost( 1) - NeWS network security control............................................................ 237 

9sh(1) - NeWS POSTSCRIPT shell ..................................................................................... 239 

jJsload(l) - display load average under NeWS ............................................................ 241 

~:~an - un-line display of reference pages using NeWS .......................................... 243 

~:)sterrn(l) - Ne\VS terminal emulator .......................................................................... 245 

psview( 1) - POSTSCRIPT language previewer ............................................................... 247 

.s a y( 1) - execute POSTSCRIPT language fragment .................................................... 249 

setnewshost(1) - set NEWS SERVER environment ........................................ 251 

xdemos(6) - X Window System demonstration ........................................................... 253 

ps io(3) - NeWS buffered inputJoutput package ......................................................... 255 





BLDFAMILY (1) USER COMMANDS BLDFAMIL Y (1) 

~AME 

bldfamily - build font family description 

SYNOPSIS 
bidfamily [ -ddirname ] [ -ooutname ] [ -v ] names 

DESCRIPTION 
bldfamily scans a sets of NeWS font files and produces a NeWS font family file. A font family is a set of 
font files that are grouped together to provide a single POSTSCRIPT language font. In the POSTSCRIPT 
language, a font has a name, like Times-Roman, and can be rendered in many different sizes. A NeWS 
font file is an instance of a POSTSCRIPT language font at a particular size. Font family files contain the 
information necessary for NeWS to pick the right bitmap font. 

bldfamily scans directory dirname for files with extension ".fu" or ".fm" and where the leading non-digit 
characters of the filename match one of the names . The family file that is built will be written to 
dirname loutname .ff. 

If outname isn't specified, it defaults to the first of the names. If dirname isn't specified, it defaults to 
"$FONDIR" if defined, "." otherwise. If names isn't specified bldfamily scans dirname for all font files and 
builds all the possible family files. 

OPTIONS 
-ddirname Specifies the directory to scan and put the .ffam file into. 

Specifies the output font name -ooutname 

-v 

EXAMPLE 

Verbose - gives a more detailed description of what is going on. 

paper% dumpfont -d lusr/newfonts -n Boston boston*.vfont 
paper% bldfamily -dlusr/newfonts Boston 

The first command calls dumpfone and converts all the vfont files whose names match "boston*.vfont" into 
NeWS format. It puts them into lusrlnewjonts and changes their font name to Boston (it would have 
defaulted to boston). The second command calls bldfamily and scans lusrlnewfonts for "Boston*.tb" and 
builds a font family file for them, which will be called lusrlnewfontslBostonf!. 

SEE ALSO 
dumpfont(l) 

DIAGNOSTICS 
filename isn't a font file 

TRADEMARK 

bldfamily has found a file that matches one of the names and has an appropriate exten­
sion, but it isn't a valid font file. You should probably ignore this message. 

POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

Sun Release 3.4 Last change: 2 December 1987 213 





CPS ( 1) USER COMMANDS CPS (1) 

NAME 
cps - construct C to POSTSCRIPT language interface 

SYNOPSIS 
cps [ -c ] [ -D symbol] [ -I filename ] [ -i] [POSTSCRIPT language file] 

DESCRIPTION 
CPS compiles a specification file containing procedure names and POSTSCRIPT language code into a header 
file (filename. h) that can be included in programs. Only one input file can be specified, and if the 
filename. h file has been previously created, a backup copy of this file will be generated in the form 
filename. h . BAK before the new file is generated. 

The convention is for the input specification file to end in . cps. 

OPTIONS 
-c 

-D symbol 

-I filename 

-i 

SEE ALSO 

Compiles a POSTSCRIPT language file for faster loading by NeWS, and is not used to gen­
erate a specification file for programs. For example, the following command line: 

cps -c < input_file > output_file 

will convert the input Jzle from the ascii form of the POSTSCRIPT language, to the 
compressed binary form. When read by NeWS, the output Jzle will execute exactly the 
same as inputJzle, except that it will be faster. The -c option will not work if the 
input Jzle uses constructs like currentfile readstring, which are often used with the 
image primitive. 

Defines symbols to be passed onto the language pre-processor (cpp) which processes the 
input file. 

Specifies include files. Passed on to the pre-processor. 

Generates two specification files: one that contains only the procedures and POSTSCRIPT 
language code that are user-defined, and one that contains other definitions required for 
the C-POSTSCRIPT language interface. For example, and would be defined in the second 
file. The second file references the user-defined procedures as extern char. The first 
file is of the formfilename.c, and the second file is of the form filename.h. . BAK files 
will be generated if the files already exist. 

This option is valuable for controlling the size of the CPS include files in multiple source 
files. The filename.h would only need to be included once. Each source file would only 
need to include it's specificfilename.c file generated by this option. 

NeWS Manual- Chapter 9 "C Client Interface" 
cpp(1) 

TRADEMARK 
POSTSCRIPT is a registered trademark of Adobe Systems, Inc. 

Sun Release 3.4 Last change: 7 November 1987 215 





DUMPFONT( 1) USER COMMANDS DUMPFONT ( 1 ) 

~AME 

dumpfont - dump font out in some other format 

SY~OPSIS 

dumpfont [ -al-bl-vl ] [ -c comment] [ -d dirname ] [ -f n] [ -nfontname] [ -S ] [ -s n] [ -t] [ -tv] [ 
-ta ] filenames 

DESCRIPTION 
dumpfont reads in the set of named font files and dumps them out again according to the specified options, 
effectively converting the files from one font format to another. dumpfont is typically used to generate 
fonts for use with the NeWS window system. 

There are five types of font files that dumpfont can read: Sun standard vfont format, Adobe ASCII bitmap 
format, Adobe ASCII metric format, NeWS font format, and CMU (Andrew) format. The format of the 
input font is determined automatically by inspecting the file. It can write fonts out in one of three formats: 
Adobe ASCII, NeWS, and vfont. The default output format is NeWS. 

OPTIONS 
-a 

-b 

-v 

-vf 

-c comment 

-d dirname 

-fn 

-n name 

-S 

Sun Release 3.4 

Selects Adobe ASCII output format. This is the format that you should use when tran­
sporting fonts from one machine architecture to another. The output file extension will 
be " .afont" . 

Selects NeWS output format (the default). The output file extension will be ".font". If 
the input file is an Adobe ASCII metrics file, the extension will be ".metrics". 

Selects vfont output format. The output file extension will be ".vfont". 

Selects vfont output format. The output file extension will be ".vfont". Forces the char­
acters to be fixed width. 

Sets the comment field of the font. The Adobe ASCII and NeWS font formats support an 
internal comment that accompanies the font. This is usually used to contain copyright or 
history information. It is normally propagated automatically. 

Specifies the directory into which the font files will be written. If the FONTDIR environ­
ment variable is set, it is used as the default value. Otherwise, if the NEWSHOME 
environment variable is set, $NEWSHOME/fonts is used as the default value. Otherwise 
"." is used. 

Sets the maximum length of an output filename (excluding extension) to n . When writing 
NeWS format files, NeWS normally constructs the output filename from the name of the 
font and its scaling factors. Some systems cannot cope with long file names, so this 
option can be used to heuristically squeeze the name. 

Forces the output font name to be name. It is important to not confuse the name of the 
font with the name of the file that contains it. Some font formats (Adobe ASCII and 
NeWS) contain the name of the font internally. So given a IO-point Times-Roman font, 
its font name will be "Times-Roman", but its file name might be TimRomlOfont. 

Attempts to determine the size information of fontS by inspecting the bitmaps and apply­
ing some heuristics. This is useful when reading vfonts (particularly those intended for 
printers like the Versatec) that are missing or have incorrect size information. 

Last change: 28 February 1987 217 



D1Th1PFONT ( 1 ) USER CO~fMANDS D1Th1PFONT ( 1 ' 

-sn 

-t 

-tv 

-ta 

Sets the point size of the font to n . Overrides any internal size specification 

Prints a short description of the fonts on standard output; a reformatted font file is no 
dumped. 

Prints a move verbose description of the fonts on standard output; a reformatted font filt 
is not dumped. 

Prints a long description of the fonts on standard output; a reformatted font file is no 
dumped. You'11 get every scrap of information. 

SEE ALSO 
bldfamiiy(l), vfont(5) 

DIAGNOSTICS 

BUGS 

Bad flag: -C 

Couldn't write ... 

f: not a valid font. 

Unknown command like option 

Error writing font file 

Unknown input file format. 

Should have been named convertfont . 

218 Last change: 28 February 1987 Sun Release 3.'" 



JOURNALLING (1) USER COMMANDS JOURNALLING ( 1 ) 

NAME 
journalling - NeWS event record and playback package 

SYNOPSIS 
journalling 

DESCRIPTION 

USAGE 

The Journalling package allows you to capture NeWS mouse and keyboard events onto a file, and then play 
the file back. This results in NeWS acting like a player piano, faithfully duplicating the original user 
actions in real time. 

This package permits continuous replaying of a given file. Playback can be interrupte~ at any time by 
clicking one of the mouse buttons. 

Journalling also includes playback speed control, which allows you to slow down or speed up the playback 
rate. 

Invoking the journalling program will add a Journalling => menu item to the root menu. The JournaL 
menu item in the NeWS Applications => sub-menu does the same thing. Note that it will take a few seconds 
for journalling to load everything into the NeWS server. 

There are five submenus under the main Journalling menu item: 

Control Panel- Brings up the Journalling control panel 

Start Recording - S tart recording on the current Record file 

Stop Recording - Signals the end of recording 

Playback - Starts playback of the current Playback file 

Remove Journalling - Gets rid of all journalling menus and resources 

Note that Playback can be interrupted at any time by hitting one of the mouse keys. 

Selecting the Control Panel item brings up a control panel window. It contains the following items: 

RECORD, STOP, and PLAY buttons: These buttons perform the same function as the 
corresponding menu items. They also light up to indicate what action is currently taking place. 
They can be used interchangeably with the menu items. 

Record File: This text item allows you to specify the current file to record onto. It can be any 
valid filename on the server machine. Relative pathnames are taken to be relative to the directory 
that NeWS was started from. The default for the Record file is ItmplNeWSjournaL. 

Playback File: The current file to playback from. It has the same characteristics as the Record 
File. 

Play Forever toggle switch: If this switch is on then Journalling will automatically repeat play­
ing the Playback File. 

Playback Speed: Slider that scales the playback time. Positive values make playback speed up, 
negative values make playback slow down. This facility is dependent on the speed of the underly­
ing hardware. It is not calibrated between different machines. 

Sun Release 3.4 Last change: 27 October 1987 219 



JOURNALLING (1) USER COMMANDS JOURNALLING ( 

Done: The Done button will hide the Control Panel. It can be brought back up by selec~ 
Control Panel menu item. The Zap window command has the same effect. 

TIPS FOR USING JOURNALL~G 

FILES 

When creating journals that will be replayed repeatedly, it is important to get rid of whatever windows; 
have created at the end of the journal. The stat.e of the screen should be just as it was when the journal \ 
begun. Otherwise, the NeWS server will eventually run out of memory because you are continually cn 
ing new windows. Doing a Zap from the AU Windows menu at the end of the journal will provide 
desired effect. However, be sure that you then restart a Console window to catch system messages. 

There is a noticeable variation in performancl! on NeWS running on different kinds of machines; it r 
much faster on a Sun 4 than on a 3/50! This means that playing back a script recorded on a fast macr 
might not always work correctly on a slower machine. A given machine can handle NeWS events at sc 
maximum rate. The Playback Speed Control will allow you to adapt playback speed of a given script 1 

fairly wide range of machines; unfortunately, this requires a bit of trial and error. 

Care must be taken when recording sequences that contain invocations of Unix programs, particul: 
when starting new applications. The mouse must not be clicked until the bounding box is up on the scn 
If the mouse is clicked early, the wrong window sizing will be made on playback, leading to unpredict, 
behavior due to the window not being where it was when recording. 

$ {NEWSHOME}/lib/NeWS/journal.ps Contains the low level journalling code, the control p, 
and menu code, and state button Lite Item code used 
the control panel. 

$ {NEWSHOME}/demo/journalling 

SEE ALSO 

Loads ${NEWSHOMEj/lib/NeWS/journal.ps. 

BUGS 

220 

NeWS Manual 

The unpredictable behavior of playback due to the non-deterministic Unix scheduling mechanism and! 
eral operating environment make reliance on the Joumalling package for critical functions unadvisable. 

Last change: 27 October 1987 Sun Releasl 



KBD_MODE( 1) USER COMMANDS KBD _MODE ( 1 ) 

NAME 
kbd _mode - change the keyboard translation mode 

SYNOPSIS 
kbd _mode -a \-n \-e \-u 

DESCRIPTION 
kbd_mode sets the translation mode of the console's keyboard (ldevlkbd) to one of the four values defined 
for KIOCTRANS in kb(4S). This is useful when a program which resets the translation mode crashes; for 
example, NeWS (when run from SunView) can sometimes leave SunView reading untranslated events. 

OPTIONS 
-a 

-n 

-e 

-u 

FILES 

ASCII: the keyboard will generate simple ASCII characters 

none: the keyboard will generate unencoded bytes - a distinct value for up and down 
on each switch on the keyboard 

events: the keyboard will generate SunWindows input events with ASCII characters in 
the value field 

unencoded: the keyboard will generate SunWindows input events with unencoded 
bytes in the value field (this is the mode NeWS currently uses). 

ldevlkbd 
$NEWSHOMElbinlkbd _mode 

SEE ALSO 
kb(4S) 

Sun Release 3.4 Last change: 26 October 1987 221 





NEWS_SERVER ( 1) USER COMMANDS NEWS_SERVER ( 1) 

NAME 
news server - NeWS server 

SYNOPSIS 
news_server [ POSTSCRIPT] 

DESCRIPTION 
The news _server command starts the NeWS server. The NeWS server is an interpreter for a subset of the 
POSTSCRIPT language. The POSTSCRIPT language was defined by Adobe Systems Inc. NeWS SUpports many 
overlapping drawing surfaces, multiple lightweight threads of execution, and message-based interprocess 
communication. Details of the the structure of NeWS are found in the NeWS Manual. 

OPTIONS 

USAGE 

[ POSTSCRIPT ] 
The NeWS server interprets the POSTSCRIPT program given as an argument on the command line. 
If no POSTSCRIPT language text is given on the command line, news _server executes 

(NeWS/init.ps) (r) file cvx exec &main 

This POSTSCRIPT language fragment sets up NeWS for its normal use as a window server. When 
specifying this argument, you probably should put single quotes around the "s fragment" to pro­
tect it from premature interpretation by the shell. The POSTSCRIPT language files %stdin, 
%stdout, and %stderr have their normal meanings while this program is executing. 

FRAMEBUFFER 
Another option is defined by the FRAMEBUFFER environment variable. The device name (e.g., 
/dev/bwtwoO, /dev/cgtwoO) contained in FRAMEBUFFER tells NeWS which frame buffer to 
display on. If FRAMEBUFFER is not defined then /devljb is the default. 

The first thing that you should do is to start a terminal emulator which acts as a console. This console win­
dow will display system messages and will prevent these messages from writing over your display. Bring 
up a console window by depressing the right mouse button and sliding the mouse to the right until the word 
'Console' is displayed under the mouse cursor. Now release the right mouse. 

Compatibility 
NeWS may be run either from outside the Sun View environment, or from inside the Sun View environment 
by using overview(1). NB: You must be sure that the FRAMEBUFFER environment variable used by the 
NeWS server matches the -d argument used by server matches the -d argument used by suntools. Both 
of these values default to I dev I fb, so if one is changed, the other must be also: 

overview -w news_server 

While running NeWS from outside SunView, Sun View tool binaries may be executed as normal. Their 
windows will appear on top of all NeWS windows, but will otherwise behave normally. 

Root Menu 
When NeWS Starts, using the standard init.ps, it paints the desktop gray and waits for the user to select a 
menu option. By default, menus pop up on the right mouse button. The standard root menu is (shown 
with the submenus hierarchy expanded): 

Sun Release 3.4 

Applications => 
Terminals => 

Fixed Size => 
Console 
sun 
H19 
bitgraph 

Last change: 2 December 1987 223 



NEWS_SERVER ( I) USER COMMANDS 

224 

Console 
sun 
RI9 
bitgraph 
vt100 
wyse 
tvi925 

vt100 
wyse 
tvi925 

Clocks => 
Plain 
Plain (seconds) 
Fancy 
Fancy (seconds) 

Load Average 
Calculator 
Journal 

Demos=> 
(see newsdemo(6)) 

All Windows => 
Zap 
Open 
Close 
Flip 
Tidy 
Rere 
Drop 
Top 
Bounce => 

SunViewi => 

Windows 
Icons 
All 
Stop 

Selection Transfer => 
NeWS to SunView Shelf 
SunView to NeWS Shelf 

Applications => 

User Interface => 

shelltool 
cmdtool 
mail tool 
textedit 
defaultsedit 
iconedit 
dbxtool 
perfmeter 
clock 
gfxtool 
console 
lockscreen 
Default .suntools 

Last change: 2 December 1987 

NEWS _ SERVER ( I 

Sun Release 



NEWS_SERVER ( 1) USER COMMANDS NEWS_SERVER ( 1) 

Input Focus => 
Click to Type 
Follow Cursor 

Window Management Style => 
Rubber-band Box => 

Thin 
Thick 
Grid 

Zoom=> 
Zoom Slow 
Zoom Medium 
Zoom Fast 

Flip Drag 
Look & Feel => 

NeWS Default 
SunView1 

Retained Windows => 
On 
Off 
Default 

Root Image => 
Group 
Plain 

Repair => 
Repaint All 
Reset Input 

Exit NeWS => 
No, not reall y. 
Yes, really! 

Applications => 
This menu lets you start up a number of NeWS applications. 

Terminals is a pull-right menu from which you can create a window using the psterm(l) terminal 
emulator program. If you select one of these terminals, you must drag out the exact size of the 
window in which the terminal emulator will run. There is another menu item called Fixed 
Startup, which has the same options as the Terminals menu. If you select one of the terminals 
from Fixed Startup, you need not specify the size and location of the terminal emulator; it will be 
created automatically in the lower-left comer of the screen. Selecting Console from either the 
Terminals menu or the Fixed Startup menu creates an H19 terminal emulator that is set up to 
receive console messages. 

Clocks is a pull-right menu from which you can create a clock. The Plain clock is a simple round 
clock. The Fancy clock is a stylish modem round clock. Both clocks can be create with an option 
to show the seconds. 

Load Average invokes the psload program. This program is a load average monitor. 

Journal causes a joumalling mechanism to be loaded into NeWS. In addition, a menu entitled 
"Joumalling" is installed in the top level root menu. The joumalling mechanism allows you to 
capture and playback user actions. See journalling( 1 ). 

Demos => 

Sun Release 3.4 Last change: 2 December 1987 225 



226 

USER COMMANDS NEWS SERVER j 

Lets you run one of the many demonstration programs. They are described in newsdemos(~~ 

All Windows => 
Provides you with the choices necessary to manage all the windows on your display at or 
Some of the operations are more fun lhan useful. 

Zap causes all the windows on the screen to be destroyed. 

Open causes all the windows on the screen to be opened. 

Close causes all the windows on the screen to be closed. 

F lip causes all the windows on the screen to toggle between their open state and their closed st, 

Tidy causes all the open windows on the screen to be moved to their closest comer. All cla 
windows line up along the bottom edge of the screen. 

Close causes all the windows on the s.creen to be closed. 

Here Allows you to position all the windows on the screen with successive clicks of the mouse 

Drop causes all the windows on the screen to "fall" to the bottom of the screen. 

Top causes all the windows on the SClreen to "rise" to the top of the screen. 

Bounce is a pull-right menu that is used to invoke a demo that is used to "bounce" ~ 
around the screen. This demo is prurticularly slick when all the windows are retained. [~l 
bounce just the open windows with the Windows command. You can bounce just the icons' 
the Icons command. You can bounce both with the All command. Stop terminates the bouncir 

SunViewl => 
As mentioned above, you can run existing SunViewl and SunWindows application concurre 
with NeWS applications. 

Selection Transfer lets you exchang~: selections between NeWS applications and Sun View appi 
tions. NeWS to Sun View Shelf takes the current NeWS selection and loads it onto the Sun\ 
shelf. A subsequent get operation in SunView will retreive the contents of the shelf. SunVie 
NeWS Shelf takes the current SunView selection and loads it onto the NeWS shelf. A subseq 
get operation in NeWS will retreive the contents of the shelf. Note: There is a race cond 
between when you invoke one of th~~se shelf transfer menu operations and when you subseqm 
release the get key. Waiting a second or two between the two operations should avoid any p 
lem. 

Applications lets you invoke any of the following SunView applications: shelltool, cmdtool, 
tedit, mailtool, defaultsedit, iconedit, dbxtool, perf meter, clock, gfxtool, console, lockscreen. 
Default .suntools entry starts up the standard set of Sun View applications, which includes a 
sole window, a text editor, a clock, a mail handier, and a terminal emulator. 

User Interface => 
The User Interface menu lets you alter a number of user interface options. 

Input Focus is a pull-right that provides you with a choice of keyboard focus mechanls~l 
to Type forces input to occur in whichever window you last clicked the mouse (independeJ 

Last change:: 2 December 1987 Sun Release 



NEWS_SERVER ( 1) USER CO~ANDS NEWS_SERVER ( 1) 

current cursor location). Follow Cursor forces the input focus to shift to whichever window the 
cursor is currently in. 

Window Management Style pull-right provides you with a number of options for controlling the 
default behavior of your windows. The Rubber-band Box menu controls the appearance of the 
rubber-band rectangle that appears when you specify window size; the choices are Thin, Thick and 
Grid. The Zoom menu controls the speed with which windows zoom into icons and vice versa; 
the choices are Zoom Slow, Zoom Medium and Zoom Fast. Flip Drag toggles the method of mov­
ing windows between dragging the entire window and dragging just its frame. 

Look & Feel is a pull-right that allows you to toggle between the standard NeWS look and feel and 
the SunViewl look and feel. Both windows and menus are altered to reflect the chosen look and 
feel. 

Retained Windows is a pull-right that allows you to choose the image saving behavior of newly 
created windows. If you turn retention On, windows redisplay very quickly, at the expense of 
more main memory usage. If you tum retention Off, applications redisplay by repainting their 
image, not by letting the system do it from an image stored off-screen. The Default setting is 
retained for one bit deep frame buffers but not for deeper frame buffers. 

Root Image is a pull-right that controls the color or pattern on the background (root) window. 
Select Plain to get your root window back to the default background Select Group to show an 
image that mentions NeWS and shows the Sun logo. 

Repair => 
Allows you to reset the input mechanism (Reset Input) or to repaint all the windows (Repaint All). 

Exit NeWS => 
This menu allows you to exit NeWS gracefully. It is done as a menu in order to avoid accidental 
invocation. 

Window Management 
The standard window management package provides for window manipulation via a pop-up menu invoked 
from within the frame of a window. Certain functions are also available via accelerators. Here is the win­
dow management menu (it is found under the Frame pull-right): 

Move Lets you move the window by dragging it around with the mouse. Click a mouse button to leave 
the window at its new location. 

Move Constrained 
Lets you move the window, with motion constrained either vertically or horizontally. If you click 
in the left or right part of the window's frame, you can move the window only horizontally. If you 
click in the top or bottom part of the window's frame, you can move the window only vertically. 
Click once more to leave the window at its new location. 

Top Raises this window above all of the other windows. 

Bottom Pushes this window below all of the other windows. 

Zap Causes the current program to exit. 

Resize Allows you to change the size and placement of a window. Click where you want the upper left 
comer of the window to be, then drag out a rubber-band rectangle and click where you want the 
lower right corner to be, just as if you were creating a new window. The window will be resized 
and moved to the rectangle you just swept out 

Stretch Comer 

Sun Release 3.4 

Allows you to change a window's size by dragging one comer, leaving the opposite comer fixed 
where it is. Click a button when the mouse is near the comer you wish to drag; then click again 

Last change: 2 December 1987 227 



NEWS_SERVER ( 1) USER COMMANDS NEWS _ SERVER ( 1 

228 

when the rubber-band rectangle is the size you want it to be. 

Stretch Edge 
Allows you to drag a window's edge, ju.st like dragging a comer. Click near the edge you want t 
drag, and then click again when you have placed it. 

Close Closes this window into an icon. 

Redisplay 
Causes the window to redisplay itself. 

You can use accelerators instead of the menu to manage windows. To raise a window, click the left butto 
in the window's frame. To drag a window, press the middle button in the window's frame, and drag tt 
window into position with the button still down. To close the window into an icon, click the left button j 

the cycle glyph in the upper left comer of the window. To resize a window, click the left button in tt 
resize glyph in the lower right comer of the window. 

You can use similar management functions on icons as well as on windows. You can bring up a windo' 
management menu over an icon by holding down the right button anywhere in the icon. This menu is sim 
lar to the menu for windows, except that it contains the following entries: Move, Top, Bottom, Zap, Opei 
Open&Resize, and Redisplay. The only new function is Open&Resize. This function opens an icon into 
window that you drag out with the mouse. This is in contrast to Open, which causes the window to opE 
into its original shape. You can use accelerators on icons, too. You can click the left mouse button on (; 
icon to open it, and you can drag an icon to a new location with the middle button. 

Interpreter Access 
The standard init.ps file starts a server listening on port 144 (and then 2(00) for client connections. Yc 
can use a. program called psh(l) ~o connec~ to, ~is port. At this point, you are talking to a POS~I1 
language mterpreter, and you can mteract WIth It m the normal way. However, any errors you mak~u: 
the server to break the connection. To put yourself into an environment that is more forgiving of error 
you must type executive after you connect. For example, 

paper% psh 
executive 
Welcome to NeWS Version 1.1 

Type quit to the interpreter to exit psh. 

Remote Access 
See newshost( 1) for information about allowing remote hosts to start applications on your local machin 
The default is that other machines can't open connections to your NeWS server. 

NeWS Sockets 
If there is no socket specified in the NEWSSOCKET environment variable or in user. ps, NeWS will tJ 

to listen on socket 144. Since 144 is a privileged socket, unless news_server is running as root, tl 
attempt to listen on 144 will fail, and the NeWS: server will then try to listen on socket 2000. This ord 
of consideration may be overridden by setting the NEWSSOCKET environment variable. The followir 
shell archive allows you to run two NeWS servers on two displays: 

#! /bin/sh 
FRAMEBUFFER=/dev/bwtwoO NEWSSOCKET=%socket12000 news server & 
FRAMEBUFFER=/dev/cgtwoO NEWSSOCKET=%socket12001 news server & 
sleep 5 
adjacentscreens /de~/bwtwoO -r /dev/cgtwoO 

The socket on which NeWS listens can also be set: in your user. ps file with a line of the form: 

Last change: 2 December 1987 Sun Release 3 



NEWS_SERVER ( 1) USER COMMANDS NEWS_SERVER ( 1) 

FILES 

INeWS_socket (%socketI2001) def 

This will override any socket specified in the NEWS SOCKET environment variable. 

If news server is unable to open a file whose name doesn't start with I, and which can't be found in your 
horne directory or the directory you started NeWS from, it inserts ${NEWSHOME}/lib at the front of the 
name and tries again. 

${NEWSHOME}llib/NeWSI*.ps 

$ {NEWSHOME }/fonts/* 

${NEWSHOME}/bininews server 

-/user.ps 

Startup POSTSCRIPT language programs. 

Font Library 

the NeWS server 

user-definable server customizations; loaded after other 
system *.ps files 

-/startup.ps user-definable server custornizations; loaded before other 
system *.ps files 

The FRAMEBUFFER environment variable specifies the default frame buffer for NeWS. It defaults to 
ldevlfb· 

SEE ALSO 

BUGS 

psh(l), psterm(l), psview(l), say(l), newsdemos(6), xdemos(6), joumalling(l), kbd _ mode(1), 
newshost(l), psload(l), psman(l), setnewshost(l) 

NeWS Manual 

PostScript Language Reference Manual, Adobe Systems Inc., Addison-Wesley 

Some parts of the POSTSCRIPT language have yet to be implemented. See the chapter in the NeWS Manual 
entitled Omissions and Implementation Limits. 

The NeWS server is not yet completely robust when it runs out of memory. This out of memory condition 
occurs because swap space has been used up. Swap space is a resource that is shared by all the processes 
running on your machine. NeWS has been designed to print a message on the console about being low on 
memory when it gets very close to being out of memory. If you see this message then you should immedi­
ately reduce the stress on swap space by terminating some large processes [see pstat(8) with the -s flag]. If 
NeWS does completely run out of memory, and it can't recover, then it is designed to print a message on the 
console about being out of memory and aborting. 

When running SunView1 program, you may see many "Window display lock broken ... " messages. You 
should have a console window for these message to appear in so as to avoid trashing the screen. 

TRADEMARK 
POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

Sun Release 3.4 Last change: 2 December 1987 229 





NEWSDEMOS ( 6 ) GAMES AND DEMOS NEWSDEMOS ( 6 ) 

NAME 
NeWS demos - NeWS demonstrations 

SYNOPSIS 
Demos menu item in the NeWS root menu 

OVERVIEW 
The Demos pull-right menu provides access to several NeWS demonstration programs. These programs are 
intended to demonstrate NeWS graphics and user interaction capabilities. 

Many of these programs are written in the extended version of the POSTSCRIPT language understood by 
NeWS, using the psh(1) program. psh simply opens a connection to the NeWS server and sends NeWS com­
mands to it 

Unless described otherwise, you must specify a window for the demo when you start it When a small box 
appears by the cursor, you should click (and let go of) the right mouse button to indicate where you want 
one comer of the window to be. Then, as you move the mouse, a rubber-band box expands and contracts 
to show a window region. Click the right mouse button again to indicate where you want the opposite 
comer to be. You should not hold down the right button while defining the box. 

DESCRIPTION 
The Demos menu is available as a pull-right item from the NeWS root menu. This menu contains the fol­
lowing entries: 

Sun Release 3.4 

Animation => 
Bounce 
Spin 
Wink 
Icosahedron 
Icosahedron screens aver 

Color => 
Color Cube 
Color Wheel 
Color Names 

Games => 
Go 
Backgammon 

Images => 
Display Scanned Image 
Image Rotate 
Image Scale 
Image Stencil 
Image Spin 
Catalyst 

Line Drawing => 
Escher's fish 
Lines 
Rubber-band 
Vectors 
World 

Miscellaneous => 
Flags 
Item Demo 
Pie Chart 
Spiral 

Previewer => 
Golfer 

Last change: 2 December 1987 231 



NEWSDEMOS ( 6 ) GAMES AND DEMOS NEWSDEMOS ( I 

232 

Text => 

Rose 
Shuttle 
Nozzle 
Overview 

Text 
Text (scaled) 
Language Demo 
Icon Browse 

X.I0 Demos => 
RunaDemo=> 

Analog Clock 
Load Average 

Kill X Server 

Animation => 
The Animation pull-right item brings up a menu that contains several demonstrations of Ne\\ 
animation capabilities. 

B ounce bounces a moving puck around inside of a window. You can use the menu inside the w 
dow to stop and start the puck, to change its size and color, and to change the speed at which 
puck bounces. You can drag the Bounce window while it is running; this demonstrates Ne\\ 
lightweight process mechanism. 

Spin displays a spinning globe. It is bl!st to select a small (1 inch x 1 inch) area for this deUii-~ 

Wink displays a pair of eyes in the middle of the screen, one of which winks at you. 

Icosahedron displays a bouncing 20 sided regular solid with the hidden lines removed. Due to 
computation necessary to figure the hidden lines, this demo may run faster if the program is run 
another machine. 

Icosahedron screensaver is like icosahedron, but runs on top of all visible window. This progr 
goes away with a click of a mouse button. 

Color => 
The Color pull-right item brings up a menu that contains programs that demonstrate some 
NeWS' color capabilities. Other programs will display in color, what distinguished the progrCl 
in this menu is their focus on color. 

Color Wheel draws a wheel of colors inside a window. If NeWS is running on a monochro 
display, it uses gray values instead of colors. You can use the menu to switch between gray; 
color, and to vary the number of shades, the saturation, and the intensity of the colors displayed 

Color Cube is similar to the Color ~Vheel in that it displays colors and gray levels; howevel 
presents them in a different format Its menu lets you alter the presentation of the colors i 
manner similar to Color Wheel. 

Color Names shows you the correspondence between color names in the color dictionary 
implemented by NeWSlcolors.ps) and their colors on the screen. This program uses scroe 
access all the colors. In addition, there is an interesting use of the lite menu package to, _ ~ 
horizontal menu bar and menus with rows and columns. The menu is used to control text co 
font, face and size. 

Last change: 2 December 1987 Sun Release 



NEWSDEMOS ( 6 ) GAMES AND DEMOS NEWSDEMOS ( 6 ) 

Games => 
The Games pull-right item brings up a menu with available games. 

Go is a simple program that puts up a Go board with which you can interact by placing and 
removing stones. Thus, you could playa game of go with someone else while seated in front of 
the screen. It is intended as a simple (but complete) application to show programmers how C, cPS, 
and NeWS interact. The tutorial part of the NeWS Tutorial and Cookbook describes the internals 
of this program. 

Backgammon is a game that puts up a backgammon board and will actually play against you. This 
program is a port of gammontool, so see its man page for further documentation. 

Images => 
The Images pull-right item brings up a menu that contains several demonstrations of NeWS' 
imaging capabilities. Each program (except for Image Scale) lets you select the image to display 
by means of a pop-up menu. You bring up the menu by clicking the right mouse button inside the 
window (not in the window's frame). 

Display Scanned Image creates a window and displays an image inside of it. The image will be 
scaled to fit exactly within the window boundaries, regardless of its original aspect ratio. 

Image Rotate displays ten rotations of an image in a pinwheel arrangement. 

Image Scale takes the bitmap image of a turkey (from the PostScript Reference Manual, page 171) 
and scales it as many times as will fit inside the window. 

Image Stencil demonstrates NeWS' capability of pushing an image through an arbitrary path, or 
stencil. The right button menu brings up a menu giving a choice of several stencils in addition to 

the selection of the image to be displayed. 

Image Spin demonstrates NeWS' image rotation capability. After you bring up the window, the 
server waits for you to define another rubber-band square with the mouse. Press the right mouse 
button where you want the lower left corner of the image to go and then release the button where 
you want the lower right corner of the image. The image is rotated and scaled to fit between the 
two points. The right button menu has an additional menu item, Spin, which lets you specify a 
different rotation for the image. 

Catalyst shows images digitized from Sun's Catalyst Third Party Software catalog. 

Line Drawing => 

Sun Release 3.4 

This pull-right item brings up a menu with demonstrations of line drawing. 

Escher's fish draws the famous Square Limit created by M. C. Escher. The demo is a 260-line 
recursive NeWS program that draws a large number of vectors. You can use the menu to vary the 
complexity of this drawing. 

Lines creates a window with a line pattern inside of it You can can alter the number of lines 
drawn from the pop-up menu inside the window. On color screens, the line pattern is displayed in 
a rainbow of colors. 

Rubber-band demonstrates how responsive NeWS can be when interacting with you. When you 
bring up the window, NeWS draws a rubber-band line from a corner of the window to the current 
mouse location. This line will track the mouse as you move it around on the screen. When you 

Last change: 2 December 1987 233 



NEWSDEMOS ( 6 ) GAMES AND DEMOS NEWSDEMOS( 

234 

click a mouse button, NeWS tracks the mouse with a rubber-band curve instead of a lii~C 
more click kills the window. 

Vectors is a demonstration of NeWS' vector-drawing capabilities. The demo draws four spa, 
ships inside its window, composed of over 7,000 vectors. 

World displays a geographic projection of the Western Hemisphere. 

Miscellaneous => 
This pull-right item brings up a menu with miscellaneous demonstrations. 

Flags displays flags of many nations, in color if possible. You can use the menu to display ju: 
single flag or all the flags at once. 

Item Demo is a demonstration of uselr interface items. The set of items includes buttons, slidl 
cycles, and text areas. All of the items can be dragged around with the mouse. 

Pie Chart draws a business pie chart with slices of the pie filled with varying colors. 

Spiral draws a simple spiral pattern. 

Pre viewer => 

Text => 

This pull-right item brings up a menu with demonstrations of NeWS' PoSTSCRIPT language I 
viewing capabilities. The program psview is used to display POSTSCRIPT language files ou 
from other programs, e.g., Frame's Frame Maker, AutoCAD, and Adobe's Illustrator. 

Golfer and Rose were produced using Adobe's Illustrator program. 

Nozzle and Shuttle were produced using AutoCAD. 

Overview was produced using Frame's Frame Maker program. This is a multi-page docUI1 
that provides an overview of NeWS' capabilities. 

This pull-right item brings up a menu with demonstrations of NeWS' text capabilities. 

Text writes text inside a window in s,everal styles. The right button brings up a pop-up menu 1 
which you can select the font (under the Font pull-right), the point size, the colors, and the te 
be shown. The text shown can be either some sample text or a list of all characters in the ch 
font. 

Text (scaled) demonstrates NeWS' ability to simulate the arbitrary scaling of text using onl) 
map fonts. The line spacing and intercharacter spacing are varied so that a continuous ran~ 
sizes can be simulated with a fixed number of bitmap fonts. 

Language Demo shows that NeWS Gan support several different languages. You can select 01 

a variety of languages from the pop,-up menu, causing both the menu and the text to be disp] 
in the chosen language. 

IconBrowse brings up a large window that displays icons from the Icon font. You use th~ 
control the range of characters displayed and to change the font from which they are disp~~ 

Last change: 2 December 1987 Sun Releas 



NEWSDEMOS ( 6 ) GAMES AND DEMOS NEWSDEMOS ( 6 ) 

X.I0 Demos => 
This pull-right item brings up a menu with a demonstration of a partial X.10 emmulation package. 
See xdemos.6 for further information. 

FILES 
$NEWSHOMEllibINeWSldemomenu.ps 

NeWS code for the demo menu and some of the demo programs. 

$NEWSHOMEldemol* demo programs not built into the demo menu. 

SEE ALSO 
psh(1), psterm(1), psview(1), say(1), xdemos(6) 

NeWS Manual 

PostScript Language Reference Manual, Adobe Systems Inc., Addison-Wesley 

TRADEMARK 
POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

Sun Release 3.4 Last change: 2 December 1987 235 





NEWSHOST ( 1 ) USER COMM:ANDS NEWSHOST ( 1 ) 

:\"AME 
newshost - NeWS network security control. 

SYNOPSIS 
newshost add [ hosts ] 

or newshost remove [ hosts ] 
or newshost show 

DESCRIPTION 
Newshost is a shell command that manipulate the registry of hosts that are allowed to connect to the NeWS 
server. The identity of the NeWS server whose registry will be manipulated is determined by the NEWS­
SERVER environment variable. The variable lNetSecurityWanted (in the NeWS systemdict) may be set to 
false to disable the security mechanism. 

newshost add 

newshost remove 

newshost show 

SEE ALSO 
NeWS Manual 

Sun Release 3.4 

adds the named hosts to the registry, 

removes the named hosts from the registery, 

prints out a list of the hosts in the registry. 

Last change: 26 October 1987 237 





PSH ( 1) USER COMMANDS PSH( 1) 

~AME 

psh - NeWS POSTSCRIPT shell 

SYNOPSIS 
psh [ files] 

DESCRIPTION 
psh opens a connection to the NeWS server and transmits the file arguments (or stdin if no files are 
specified) to it. Any output from NeWS is copied to stdout. The files should be POSTSCRIPT programs for 
the NeWS server to execute. 

A common use for psh is in creating applications written entirely in the POSTSCRIPT language. First, type 
your POSTSCRIPT program into a file. Then, type as its first line: 

#! lusr/NeWS/binipsh 

If you now make the file executable (with chmod ) you can invoke it by name from the shell, and UNIX 
will use /usrINeWSlbin/psh to execute it. psh will in turn send your program to the NeWS server. 

SEE ALSO 
sh(I), say(l) 

NeWS Manual 

TRADEMARK 
POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

Sun Release 3.4 Last change: 2 December 1987 239 





PSLOAD( 1) USER COMMANDS PSLOAD( 1) 

NAME 
psload - display load average under NeWS. 

SYNOPSIS 
psload [ -u update] [ -h history ] 

DESCRIPTION 
Psload displays a graph in a NeWS window of the system load average. The graph is updated every 
update minutes, and contains information spanning an interval of history minutes. Update defaults to 0.083 
minutes (5 seconds) and history defaults to 10 minutes. 

SEE ALSO 
NeWS Manual 

Sun Release 3.4 Last change: 10 March 1987 241 





PSMAN( l) USER COMMANDS PSMAN( l) 

~AME 

psman - display reference manual pages; find reference pages by keyword 

SYNOPSIS 
psman [section] title 
psman -k keyword 

DESCRIPTION 
psman displays information from the reference manuals. It can display complete manual pages that you 
select by title. It can display one-line summaries selected by keyword (-k). 

When -k is not specified, psman formats a specified manual page by title. A section, when given, applies 
to the title that follows it on the command line. psman looks in the indicated section of the manual for the 
title. section should be a digit. If section is omitted, psman searches all reference sections (giving prefer­
ence to commands over functions) and prints the first manual page it finds. If no manual page is located, 
psman prints an error message. 

The following line instructs psman to look in section 8 of the reference manual for the ypwhich(8) manual 
page: 

babylon% psman 8 ypwhich 

If the NeWS server is not available psman formats for a teletype and pipes its output through more(1). 
Otherwise, psman formats for a typesetter and pipes its output through psview(l). 

OPTIONS 
-kkeyword . .. 

psman prints out one-line summaries from the whatis database (table of contents) that contain any 
of the given keywords. 

ENVIROl'-MENT 
MANPATH If set. its value overrides lusrlman:$NEWSHOMElman as the default search path. 

SEE ALSO 
cat(1 V), col(l V), eqn(l), more(l), nroff(1), tbl(l), troff(l), whatis(l), man(7), catman(8) 

Sun Release 3.4 Last change: 11 July 1986 243 





PSTERM( l) USER COMMANDS PSTERM( l) 

~AME 

psterm - NeWS terminal emulator 

SYNOPSIS 
psterm [ options] [command] 

DESCRIPTION 
psterm is a termcap-based terminal emulator program for NeWS. When invoked, it reads the letc!termcap 
entry for the terminal named by the -t option, or by the TERM environment variable, and arranges to emu­
late the behavior of that terminal. It forks an instance of command (or, by default, the program specified 
by the SHELL environment variable, or csh if this is undefined), routing keyboard input to the program 
and displaying its output. 

psterm scales its font to make the number of rows and columns specified in the letcltermcap entry for the 
terminal it is emulating fit the size of its window. It also responds to (most of) the particular escape 
sequences that term cap defines for that terminal. 

OPTIONS 

-c 
-f 

-w 

route Idev/console messages to this window, if supported by the operating system. 

Bring up a reasonably-sized terminal in the lower-left comer of the screen (or in the location 
specified with the -xy option) instead of having the user define its size and location. 

wait around after the command terminates. 

-flJrame label 
Use the specified string for the frame label. 

-il icon label 
Use the specified string for the icon label. The icon label normally defaults to the name of the 
host on which psterm is running. 

-Ii lines specifies the height of the window in characters. 

-co columns 
specifies the width of the window in characters. 

-xy x y specifies the location of the lower left hand comer of the window (in screen pixel coordinates). 

-bg causes psterm to place itself in the background by disassociating itself from the parent process and 
the controlling terminal. If psterm is invoked with rsh(1), this option will cause the rsh command 
to complete immediately, rather than hang around until psterm exits. 

-Is causes psterm to invoke the shell as a login shell. In addition, any specified command will be 
passed to the shell with a -c option, rather than being invoked directly, so that the shell can estab­
lish any environment variables that may be needed by the command. Further, if psterm is invoked 
via rsh(l), the host at the other end of the rsh socket will be used as the server, unless a NEWS­
SERVER environment variable is present. 

-pm specifies that a psterm should enable page mode. When page mode is enabled and a command 
produces more lines of output that can fit on the screen at once, psterm will stop scrolling, hide the 
cursor, and wait until the user types a character before resuming output. When psterm is blocked 
with a screenfull of data, typing a carriage return or space will cause scrolling to proceed by one 
line or one screenful, respectively; any other character will cause the next screenfull to appear and 
be passed through as normal input. This mode can also be enabled or disabled interactively, using 
the Page Mode menu item. 

SELECTION 
Clicking the left mouse button over a character selects that character. Clicking it beyond the end of the line 
selects the newline at the end of that line. Clicking the middle mouse button over a character when a pri­
mary selection does not exist in that window selects that character. Clicking the middle mouse button over 
a character when a primary selection does exist in that window extends or shrinks the selection to that char­
acter. 

Sun Release 3.4 Last change: 27 October 1987 245 



PSTERM( 1) USER COMMANDS PSTEIU 

Note that selections are made by clicking. ~Iouse tracking is not implemented yet. 

The Copy key (L6) copies the primary selection to the shelf. The Paste key (L8) copies the contents I 

shelf to the insertion point. 

If you make a selection while holding down the Copy key, the selection will be a secondary sele 
Subsequently letting go of the Copy key copies the secondary selection to the shelf and deselects the s 
dary selection. 

Making a selection while holding down the Paste key also makes a secondary selection. It pastes th 
mary selection to the location of the secondary selection and deselects the secondary selection. 

Copy and Paste of both primary and secondary selections work across separate invocations of psterm. 
do not work between psterm and Sun View. However, a mechanism does exist for transferring a Sur 
selection to the NeWS shelf, and vice versa. See the description of Selection Transfer in news _server(l 

MENU ITEMS 

FILES 

P sterm adds two items to the top of the standard menu associated with the right hand mouse button. 
items permit the page mode and automatic margin modes to be turned on and off. Menu items c 
according to the state of each mode. For example, if page mode is enabled, the menu item will in 
"Page Mode Ofr' . 

letcltermcap to find the terminal description. 

SEE ALSO 

BUGS 

246 

news _server (1) 

NeWS Manual 

Emulating some terminal types works better than others, largely because there are incomplete 1'tX: ... ,:fei 

entries for them. 

A large number of termcap fields have yet to be implemented. 

Page Mode gets easily confused. 

Last chan.ge: 27 October 1987 Sun Rele: 



PSVIEW( 1) USER COMMANDS PSVIEW (1) 

NAME 
psview - POSTSCRIPT language previewer for NeWS 

SYNOPSIS 
psview [ POSTSCRIPT language-file] 

DESCRIPTION 
P sview puts up a window and runs the user's POSTSCRIPT language code in it. P sview uses a portion of the 
window that has the proper aspect ratio for a standard letter-size page in portrait orientation. 

If POSTSCRIPT language-file is specified, the POSTSCRIPT language code is taken from that file. If no argu­
ment is given, or if a '-' is given as the argument, psview reads the POSTSCRIPT program from standard 
input. 

P sview lets you flip through the pages. Page boundaries are determined by locating the %%Page: com­
ments. Psview provides a slider to move to any page, and a menu to go to the first, previous, next or last 
page. Clicking the left mouse button goes to the next page. 

SEE ALSO 
psh(l), say(I), newsdemos(6) 

NeWS Manual 

PostScript Language Reference Manual, Adobe Systems Inc., Addison-Wesley 

TRADEMARK 
POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

BUGS 
Assumes a syntactically valid POSTSCRIPT language file. 

Sun Release 3.4 Last change: 2 December 1987 247 





SAY (1) USER COMMANDS SAY (1) 

NAME 
say - execute POSTSCRIPT language fragment 

SYNOPSIS 
say [ options] [ strings] 

DESCRIPTION 
say connects to the NeWS server and displays the strings provided on the command line in a window. An 
option is provided to interpret the command line, or the standard input, as a POSTSCRIPT program to be exe­
cuted by the server. 

say is used to implement some of the NeWS demo programs. This technique allows window applications to 
be shell scripts. 

OPTIO~S 

-bstring 

USAGE 

Use string as the title for the window. 

-c Center the text in the window. 

-p The command line contains a POSTSCRIPT program rather than simply text strings. 

-p The standard input contains a POSTSCRIPT program, which is executed after the POSTSCRIPT 
language commands on the command line (if any). 

-r Make the window round. 

-snn Use nn as the point size of the text. 

-w Wait for the window to be destroyed. The default is for the window to vanish when execution of 
its POSTSCRIPT program is finished. 

- W Do not create a window for the POSTSCRIPT to be executed in. This can be used to implement 
operations that do not require a window; for example toggling drag mode in the window manager, 
or running POSTSCRIPT language code that creates its own window. 

-xxx,yyy 
The first xxx,yyy pair of numbers sets the X andY coordinates of the window. If a second 
-xxx,yyy command line option is given, it sets the size of the window. 

Older programs that use say solely to send POSTSCRIPT to the NeWS server (by specifying the -P -w -W " " 
options to say). should be converted to use psh (1). 

SEE ALSO 
psh(l), news_server(1) 

NeWS Manual 

PostScript Language Reference Manual. Adobe Systems Inc, Addison-Wesley 

TRADE~tARK 

POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

Sun Release 3.4 Last change: 2 December 1987 249 





SETNEWSHOST ( 1 ) USER COMMANDS SETNEWSHOST ( 1 ) 

NAME 
setnewshost - generate a string for the NEWSSER VER environment variable 

SYNOPSIS 
setnewshost hostname 

DESCRIPTION 
setnewshost generates and prints the proper value of the NEWSSERVER environment variable for the 
given hostname. If NEWSSERVER is set then NeWS clients will attempt to connect to the server it points 
to rather than the local host. 

The format of the NEWSSER VER environment variable is as follows: 

decimal-address. portH ; hostname 

For example, if the host called "paper" has address 192.98.34.118, the NEWSSERVER variable should be 
set to "3227656822.2000;paper" so that NeWS clients will connect to the NeWS server on "paper". 
setnewshost simply calculates this string and sends it to standard output. This is not its most convenient 
form, however. C-shell users can define the following alias: 

alias snh 'setenv NEWSSERVER 'setnewshost \!*" 

and System V Bourne Shell users can define the following function: 

snh 0 { 

} 

NEWSSER VER=' setnewshost $*' 
export NEWSSERVER 

Both forms let you simply type 'snh hostname' to set the NEWSSERVER environment variable automati­
cally. 

SEE ALSO 
psh(l) 

BL'GS 

NeWS Manual 

The host table entry must have exactly the following format: a.b.c.d<tab>hostname. 

If you use the snb alias or shell function, and the hostname you give is unknown, or you give too many or 
too few arguments, the NEWSSERVER variable will be trashed. 

Sun Release 3.4 Last change: 11 March 1987 251 





XDEMOS(6) GAMES AND DEMOS XDEMOS(6) 

~AME 

xdemos - X Window System demonstration 

S~OPSIS 

X Demos menu item in the NeWS root menu 

DESCRIPTION 
The NeWS X Demos are some programs that demonstrate a small subset of the X Window System (ver­
sion 10) protocol running under NeWS. The X server is written almost entirely in the POSTSCRIPT 
language; the code is contained in the file $NEWSHOMEllibINeWSIXIO.ps. 

The X Demos pull-right menu has two items: Run a Demo and Kill X Server. If the X server is not run­
ning, the second menu item will have no effect. 

RU1't~1:NG DEMOS FROM THE MENU 
In order to start an X demo from the NeWS menu, you must pull right from the Run a Demo menu item. 
This reveals a number of demo programs: Analog Clock and Load Average. Selecting one of these starts 
up the corresponding X program. If the X Server has not yet been started, it will be started automatically. 
The demonstration programs do not bring up windows in the standard NeWS style; they instead conform to 
the standard X style, which is as follows. First, the name of the program appears in a small window in the 
upper left-hand comer of the screen. Then, a flickering rectangle or square appears at the current cursor 
location. This rectangle tracks the motion of the cursor. At this point, you can do one of three things: 

Click the left button. This brings up a window of default size at the current cursor location. 

Drag with the middle button. If you hold down the middle button, drag the mouse, and then 
release the middle button, you can drag out a rubber-band rectangle that specifies the window's 
location and size. 

Click the right button. This brings up a window of default size at the default location. 

If you select Kill X Server while any X demos are active, they will be killed along with the server. 

WINDOW MANAGEMENT 
In the X Window System, the only way to move or resize windows is to use a window manager program. 
Unfortunately, no X window managers work under NeWS as yet. In order to provide window management 
facilities to X windows running under NeWS, a special window management menu is made available in all 
X windows. This menu is accessible from the right mouse button when the cursor is over an X window 
and it contains the following items: Move. Redisplay. Resize. and Quit. These functions should be self­
explanatory . 

RUN~ING DEMOS FROM A SHELL 
In order to run X demos from a shell (on the local machine or on a remote machine) one must set the 
DISPLAY environment variable properly. The NeWS X server listens for connections on port 5901, which 
means that the DISPLAY variable should contain the string' 'hostname: 1" so that X clients will connect to 
the proper location. After DISPLAY is set properly, one can start up X demos in the normal X fashion. 

SEE ALSO 
newsdemos( 6) 
NeWS Manual 

BUGS 
No byte swapping is done. 

Only a small subset of X requests is implemented. In particular, only programs like xclock and xload. 

The NeWS X Server accepts only internet-domain connections. UNIX-domain connections are not sup­
ported. 

Sun Release 3.4 Last change: 2 December 1987 253 



XDEMOS(6) GAMES AND DEMOS XDEMOS(6 

Running the X demos from the menu can freeze the screen and input if you have a line in your . ]tete 
faults file similar to the following: .MakeWillldow.Freeze: on Turning on this option causes X clien 
to issue a slightly different set of requests, two of which the X demo do not handle. The work-around is 1 

change the line in . Xdefaults to: .MakeWindow.Freeze: off 

$NEWSHOME/ lib/NeWS / demomenu. ps contains an error which causes the X demos to not run somt 
times. The work-around is to replace the following lines in $NEWSHOME/ lib/NeWS/demomenu .po: 
% do "setenv DISPLAY localhost:1" (DISPLAY) (local host: 1 ) putenv with: % do "setenv DISPLA 
'hostname':1" (DISPLAY) localhostname (:1) append putenv 

The following is not really a bug as much as an exposure of the NeWS/X interface. X demo windows wi 
not respond to 'Repaint All' requests from the root menu, or 'Zap All', 'Open All' requests from the' A 
Windows' menu. The 'Repaint All' problem is due to a known inadequacy of the current X emulator derr 
package. 'Zap All' and other selections from th,e 'All Windows' menu have no effect since X and NeW 
exist, in essence, in two different worlds. 

TRADEMARK 
POSTSCRIPT is a registered trademark of Adobe Systems Inc. 

254 Last change: 2 December 1987 S un Release 3 



PSIO( 3) C LIBRARY FUNCTIONS PSIO(3 ) 

NAME 
psio - NeWS buffered input/output package 

SYNOPSIS 
#include "psio.h" 

PSFILE *psio _ stdin; 
PSFILE *psio _ stdout; 
PSFILE *psio _stderr; 

DESCRIPTION 
The functions described here constitute a user-level I/O buffering scheme for use when communicating 
with NeWS. This package is based on the standard I/O package that comes with Unix. The functions in this 
package are used in the same way as the similarly named functions in Standard I/O. 

The in-line macros psio _gete and psio yute handle characters quickly. The higher level routines 
psio _read, psio yrintj, psio Jprintj, psio _write all use or act as if they use psio _gete and psio yute; they 
can be freely intermixed. 

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type PSFILE. 
psio _open creates certain descriptive data for a stream and returns a pointer to designate the stream in all 
further transactions. Normally, there are three open streams with constant pointers declared in the psio.h 
include file and associated with the standard open files: 

psio_stdin standard input file 
psio _ stdout 

standard output file 
psio _ stderr 

standard error file 

A constant NULL (0) designates a nonexistent pointer. 

An integer constant EOF (-1) is returned upon end-of-file or error by most integer functions that deal with 
streams. 

Any module that uses this package must include the header file of pertinent macro definitions, as follows: 

#include "psio.h" 

The functions and constants mentioned in here are declared in that header file and need no further declara­
tion. The constants and the following 'functions' are implemented as macros; redeclaration of these names 
is perilous: gete, pute, psio _ eoj, psio _error, psio Jtleno, and psio _ clearerr. 

SEE ALSO 
open(2V), close(2), read(2V), write(2V), intro(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), getc(3S), 
printf(3S), putc(3S), ungetc(3S). 

DIAGNOSTICS 
The value EOF is returned uniformly to indicate that a PSFILE pointer has not been initialized with 
psio _open, input (output) has been attempted on an output (input) stream, or a PSFILE pointer designates 
corrupt or otherwise unintelligible PSFILE data. 

LIST OF FUNCTIONS 
Name 

psio _ clearerr 
psio_close 
psio_eof 
psio_error 
psio _fdopen 
psio_flush 
psio _ fileno 

Sun Release 3.4 

Description 

stream status inquiries 
flush a stream 
stream status inquiries 
stream status inquiries 
open a stream 
close or flush a stream 
stream status inquiries 

Last change: 9 November 1987 255 



PSIO (3) 

256 

psio _fprintf 
psio_getc 
psio_open 
psio_read 
psioyrintf 
psioyutc 
psio _ ungetc 
psio_write 

C LIBRARY FUNCTIONS 

fonnatted output conversion 
get character or integer from stream 
open a stream 
buffered binary input/output 
formatted output conversion 
put character or word on a stream 
push character back into input stream 
buffered binary input/output 

Last change: 9 November 1987 

PSIO(3 

Sun Release 3 



Index 

Special Characters 

A 
acceptconnection, 131 
Action, 19, 121 
activate, 131 
addeditkeysinterest, 52 
addfunctionnamesinterest,52 
addfunctionstringsinterest, 51 
addkbdinterests,51 
addselectioninterests, 55 
AliEvents, 23, 120 
append,34 
append,34 
arccos, 131 
arcsin,131 
arctan, 131 
array 

ExecutionStack, 125 
Interests, 125 
OperandStack,125 
StandardErrorNames, 125 
State, 125 

arraydelete, 35 
arraydelete, 35 
arrayinsert, 35 
array insert, 35 
arrayop,35 
arrayop,35 
autobind, 153 

currentautobind,154 
setautobind, 154 

awaitevent, 132, 13,21,22, 134, 137, 144 

B 
banddevice, 151 
bindkey,44 
bldfamily(l) - build font family description, 169, 170,213 
blockinputqueue, 132,26, 132, 147 
Bottom Canvas, 119 
breakpoint, 132, 133, 147 
bulldimage, 132 
buttons 

AdjustButton, 83 

buttons, continued 
MenuButton, 83 
PointButton, 82 

byte stream fonnat, 157 

-257-

c 
canvas, 14,5 

AIlE vents, 23, 120 
as canvas dictionary, 119 
as canvas object, 117 
BottomCanvas, 119 
CanvasAbove, 119 
CanvasBelow, 119 
canvastobottom, 133 
canvastotop, 133 
clipcanvaspath, 133 
Color, 120 
createdevice, 134 
createoverlay, 134 
currentcanvas, 135 
cursor, 16 
damage, see damage 
damagepath, 136 
eoreshapecanvas, 137 
eowritecanvas, 137 
eowritescreen, 137 
EventsConsumed, 15, 23, 120 
framebuffer, 43 
getcanvascursor, 138 
imagecanvas, 140 
imagemaskcanvas, 140 
insertcanvasabove, 140 
insertcanvasbelow, 141 
interest list, 23 
Interests, 121 
Mapped, 14, 120 
mapping, 14 
MatchedEvents, 23, 120 
matching events against, 23 
movecanvas, 142 
newcanvas, 142 
NoEvents, 23, 120 
opaque, 14 
Parent, 119 
readcanvas, 143 
reshapecanvas, 144 
retaiQed, 14 
Retained, 120 



Index - Continued 

canvas, continued 
SaveBehind, 120 
setcanvas, 144 
setcanvascursor, 145 
TopCanvas, 119 
TopChHd, 119 
transparent, 14 
Transparent, 14, 120 
visibility, 14 
writecanvas, 148 
writescreen, 148 

Canvas, 19,23,54, 121 
event matching, 22 
in window enter and exit events, 24 

CanvasAbove, 119 
CanvasBelow,119 
canvastobottom, 133, 14 
canvastotop, 133, 14 
case comparator, 34 
case, 34 
edef,98 
/changeitem 

in menu class, 77 
charpath, 151 
cid utilities, 40 
cidinterest,40 
cidinterestlonly, 41 
c1assbegin, 65 
c1assend, 65 
classes, 63, 65 

Object, 66 
ScroliBarItem, 74 
SimpleScrollbar, 74 

c1earselection, 55 
/ClientData, 37, 122 
CllentMenu, 78 
clipcanvas, 133, 136 
clipcanvaspath, 133, 133 
clock program, 109 
code, see example code 
color 

eolors. ps, 32 
as color dictionary, 45 
as color object, 117 
contrastswithcurrent, 133 
currentcolor, 135 
hsbcolor, 140 
NeWS' implementation, 7 
rgbcolor, 144 
setcolor, 145 

Color, 120 
colors. ps, 32 
compat • ps, 33 
connection management, 127 

ps_close_PostSeript(),127 
console, 43,35 
constants, 43 
contrastswithcurrent,16 
contacting the server, 178 

for debugging, 87 
interpreter access, 228 

contacting the server, continued 
multiple servers, 228 
NEWSSERVER, 163,251 
remote access, 228 
setnewshost(l) - set NEWSSERVER environm 

/ContentsAscii, 54 
/ContentsPostScript, 54 
continueprocess, 133, 147 
contrastswithcurrent, 133 
copy events, 19 
copyarea, 133, 14, 137 
copypage, 151 
countinputqueue, 134 
cps 

argument types, 99 
edef,98 
how to use, 97 
parameters, 99 
tagprint, 101 
tags, 101 
the . e file, 100 
the . eps file, 98 
the . h file, 100 
typedprint, 101 

cps utilities, 106 
tagprint, 147 
typedprint, 147 

-258 -

versions for other languages, 163 
eps(l) \m construct C to POSTSCRIPT language interface, : 
createcanvas, 35 
createcanvas,35 
createdevice, 134, 14 
createevent, 134, 19, 132, 137, 144 
createmonitor, 134, 141, 142 
createoverlay, 134,37 
cshow,39 
currentautobind, 134, 144, 154 
currentcanvas, 135 
currentcolor,135 
currentcursorlocation, 135, 16 
/ currentindex 

in menu class, 76 
currentinputfocus, 59 
/currentkey 

in menu class, 76 
currentlinequality, 135, 146 
currentpath, 135, 137 
currentprintermatch, 135, 146 
currentprocess, 135 
currentrasteropcode, 135, 147 
currentscreen, 151 
currentstate, 136, 147 
currenttime, 136,21 
currenttransfer, 151 
cursor 

building, 32 
canvas, 16 
currentcursorlocation, 16, 135 
cursor control, 52 
Cursor. ffam, 167 



cursor, continued 
Cursor12.font, 167 
cursorfont, 32, 38 
font, 16,32 
fonts, 167 
format, 168 
getcanvascursor, 138 
hot spot, 16 
images, 16 
inheriting, 16 
mask image, 16 
primary image, 16 
representation, 167 
setcanvascursor, 145 
setcursorlocation, 16, 145 
setstandardcursor,38 
standard font, 167 

Cursor. ffam, 167 
cursor. ps, 32,38 
Cursor12.font, 167 
cvas,42 
cvas,42 
cvis,42 
cvis, 42 

D 
damage, 14 

clipcanvas, 133 
damagepath, 136 
eoextenddamage, 138 
extenddamage,138 
responding to damage, 15 
typical repair sequence, 15 

/Damaged, 109 
damagepath, 136, 15,24, 133 
dbgbreak,90 
dbgbreakenter,88 
dbgbreakexit,88 
dbgprintf, 34, 90, 91 
dbgprintfenter, 89 
dbgprintfexit, 89 
de-referencing, 128 
debugging, 87 

contacting the server, 87 
dbgbreak,88 
dbgbreakenter,90 
dbgbreakexit, 90 
dbgcall,92 
dgbcallbreak, 92 
dbgcontinue,91 
dbgcontinuebreak, 91 
dbgcopystack, 92 
dbgenter, 92 
dbgenterbreak, 88, 91 
dbgexit,92 
dbggetbreak, 92 
dbgkill,93 
dbgkillbreak, 93 
dbgl~tbreaks,88,90 
dbgmodifyproc, 93 
dgbpatch, 93 
dbgpatchbreak,92 

debugging, continued 
dbgprintf, 89 
dbgprintfenter,90 
dbgprintfexit, 91 
dbgstart, 87, 90 
dbgstop,90 
dbgwhere, 91 
dbgwherebreak,91 
debug. ps, 33, 87 
errored,36 
errors, 89 

define stack_token(),105 
ps_define_value_token(),105 
ps_define_word_token(),I06 
/deleteitem 

in menu class, 77 
demos 

demomenu. ps, 32 
itemdemo, 189 
newsdemos(6) - demos menu, 231 
rubber, 37 

Index - Continued 

xdemos(6) - X Window System demonstration, 253 
/destroy 

-259-

in window class, 78 
dictbegin, 36 
dictend,36 
dictend,36 
dictionary, 183 

colors. ps, 32 
creating your own, 184 
de-referencing, 128 
dictbegin, 36 
magic dictionaries, 117 
new NeWS types, 117 
size of userdict, 152 
system, 32, 183 
systoklst .ps, 32 
UnloggedEvents,45 
user, 183 

DictionaryStack,124 
distribution mechanism, see event distribution 
doit,66 
dumpfont(l) - dump font in another format, 169, 170,217 
dumpsys, 136 

E 
echo, 151 
emptypath, 136 
enumeratefontdicts, 136 
environment variables 

getenv,138 
putenv, 143 

eoclipcanvas, 136 
eocopyarea, 137 
eocurrentpath, 137 
eoextenddamage, 138 
eoreshapecanvas, 137 
eowritecanvas, 137, 148 
eowritescreen, 137, 137, 148 
error 

accept, 124 



Index - Continued 

error, continued 
dictfull, 124 
dictstackoverfiow, 124 
dictstackunderfiow, 124 
execstackoverfiow, 124 
interrupt, 124 
invalidaccess, 124 
invalidexit, 124 
invalidfileaccess, 124 
inva1idfont, 124 
invalidrestore, 124 
ioerr, 124 
killprocess, 124 
limitcheck, 124 
nocurrentpoint, 124 
none, 124 
rangecheck, 124 
stackoverflow, 124 
stackunderfiow, 124 
syntaxerror, 124 
typecheck, 124 
undefined, 124 
undefined filename, 124 
undefinedresult, 124 
unimplemented, 124 
unmatched mark, 124 
unregistered, 124 
VMerror, 124 

error handling, 127 
ErrorCode, 124 
ErrorDetailLevel, 125 
errored,36 
errors, 36 
event, 6 

absorption, 23 
as event dictionary, 121 
as event object, 117 
awaitevent, 132 
blockinputqueue, 132 
boundary crossing events, 24 
client-generated events, 19 
consumption, 15 
copy and events, 19 
createevent, 134 
distribution, 21 
eventmgrinterest, 38 
exclusivity, 23 
expressinterest, 20, 137 
geteventlogger, 139 
ideal, 20 
interest lists, 23 
interest matching, 21 
interests, 20 
interests and forkeventmgr, 37 
Interests key in process, 125 
keystrokes, 24 
matching, 21 
order of interest matching, 23 
queue, 21 
recallevent, 143 
receiving events, 21 
redistributeevent, 143 
revokeinterest, 20, 144 

-260-

event, continued 
sendevent, 144 
seteventlogger, 145 
synchronization, 25 
synthetic events, 19 
types of events, 24 

event fields 
Action, 19,21, 121 
Canvas, 19,22,24, 121 
ClientData, 122 
EventsConsumed, 15, 23 
Exclusivity, 20, 122 
Interest, 122 
IsInterest, 19,20, 122 
IsQueued, 20, 122 
KeyState, 122 
Name, 19,21, 122 
Priority, 20, 23, 123 
Process, 22, 123 
Serial,20, 123 
TimeStamp, 19,24, 123, 141 
XLocation, 19, 123 
YLocation, 19, 123 

event logging 
event log . ps, 33 

eventlog, 45 
eventmgrinterest, 38 
events 

IDamaged, 24 
IEnterEvent, 24 
IExitEvent,24 
IlLeftMouseButton,24 
fMiddleMouseButton, 24 
lMouseDragged, 24 
IRightMouseButton, 24 
IDownTransition,24 
logging, 26, 45 
mouse, 24 
timer, 24 
unlogging, 45 
IUpTransition, 24 
window crossings, 24 

EventsConsumed, 15,23, 120 
example code 

interactive NeWS server session using psh, 178 
lines, 80 
periodic events, 27 
roundclock,109 
setting cursor shape, 38 
using the window and menu packages, 80 

example programs 
rubber-banding, 37 
test. psh, 180 

Exclusivity, 20, 23, 122 
Execee, 125 
executeonly, 151 
ExecutionStack, 125 
executive, 87, 178 
expressinterest, 137, 20, 21, 132, 134, 143, 144 
extenddamage, 138 



F 
file 

raster, 143 
file, 138 
fillcanvas, 39 
findfilefont, 42 
findfilefont, 42 
findfont 

Building NeWS fonts, 170 
Iftipiconic 

in window class, 79 
font, 167 

vlont fonnat, 170 
ASCII version, 168 
binary version, 169 
bldfamily(l) - build font family description, 169,213 
building ordinary fonts, 170 
Cursor. ffam, 167 
Cursor12.font, 167 
dictionary generation, 169 
directory, 169 
dumpfont(l) - dump font in another format, 169,217 
family, 170 
generation, 167 
iconedit, 168 
iconfont, 32 
mkiconfont, 168 
representation, 167 

font object, 42 
font utilities, 41 

cvas,42 
cvis,42 
findfilefont,42 
fontascent, 41 
fontdescent, 42 
fontheight, 41 
stringbox, 42 

fontascent, 41 
fontascent,41 
fontdescent, 42 
fontdescent, 42 
fontheight, 41 
fontheight, 41 
fork, 147 
forkeventmgr,37 
forkitems, 190 
ForkPaintClient?,79 
fork unix, 138, 32 
format 

byte stream, 157 
fprintf,35 
fprintf, 35, 43 
framebuffer, 43 
framedevice, 151 
FrameLabel, 78, 79 
function keys 

assigning, 43 
repeating, 44 

G 
garbage collection, 128 

de-referencing, 128 
get, 184 
getanimated, 36 
getcanvascursor, 138, 16, 145 
getcanvaslocation, 138, 142 
getclick, 37 
getenv,138 
geteventlogger, 139, 145 
getkeyboardtranslation, 139 
getkeyboardtranslation, 139, 141 
getmousetranslation, 139 
getrect,37 
getselection, 56 
getsocketiocaladdress, 139 
getsocketpeername, 139 
getvalue, 34 
getvalue, 34 
getwholerect, 37 
global interestlist, 21, 23 
globalinterest, 140,21 
graphics utilities, 39 
graphicsstate 

- 261-

as graphicsstate dictionary, 123 
as graphicsstate object, 117 
currentstate, 136 
setstate, 147 

H 
hasfocus, 60 
hsbcolor, 140 

icon 
I 

fonts, 167 
icon.ps,32 
iconfont, 32 

iconedi t, 168 
Iconlmage,78 
IconLabel, 78 
image 

build image, 132 
imagecanvas, 140 
imagemaskcanvas, 140 

imagecanvas, 140, 15 
imagemaskcanvas, 140 
implementation limits, 152 
init.ps 

size of userdict, 152 
init.ps, 31, 82,174,183 
initclip, 144 
PaintRoot, 32 
input, 19 

addeditkeysinterest, 52 
addfunctionnamesinterest, 52 
addfunctionstringsinterest, 51 
addkbdinterests, 51 
extended input system, 49 
lasteventtime, 141 

Index - COnJinued 



Index - Continued 

input, continued 
revokekdbinterests, 51 

input events, 19, see also Event Fields 
input focus, 59 

currentinputfocus, 59 
hasfocus, 60 
setfocusmode, 60 
setinputfocus, 59 

insertcanvasabove, 140, 14 
insertcanvasbelow, 141, 14 
linsertltem 

in menu class, 76 
insetrect, 39 
insetrrect,40 
interactive 

example, 178 
server, 178 

interest matching 
order of, 23 

Interest, 122 
interests, see events 

globalinterestlist, 140 
Interests, 125 
Interests, 121 
interpreter access, 228 
introduction 

NeWS 110 library functions, 255 
invertmatrix, 151 
IsInterest, 20, 122 
IsQueued, 122 
item, 189 

forkitems, 190 
liteitem.ps,33 
paintitems, 190 

itemdemo, 189 

J 
journalend, 42 
journalling, 42 

begin, 42 
controls, 43 
endjournal, 42 
internal variables, 43 
journal,42 
journal. ps, 33 
record,42 
replay, 42 
stop, 42 

journalling(l) - record and playback package, 219 
journalplay, 42 
journalrecord, 42 

K 
kbd mode(l) - change keyboard translation mode, 221 

NeWS and Sunview, 176 
key mapping, 43 
keyboard 

function key assignment, 52 
keyboard editing, 52 
repeating keys, 44 

keyboard input 

keyboard input, continued 
ASCII,50 
function keys, 51, 52 
reset, 221 

keyboardtype, 141, 139, 145 . 
keys 

-262-

bindkey,44 
mapping, 43 
repeat. ps, 33 
repeating, 44 
unbindkey,44 

KeyState, 122 
kill process, 141, 131 
killprocessgroup, 141, 131 

L 
lasteventtime, 141, 21 
library functions 

introduction to NeWS standard 110, 255 
lightweight processes, see processes 
line quality 

currentlinequality, 135 
setlinequality, 146 

lines example code, 80 
Lite/tern, see item 
liteitem.ps, 33,189 
LiteMenu, see menu 
litemenu.ps,3~73 

litetext. ps, 33 
liteUI user interface package, 50 
liteUI. ps, 32, 49, 122 
litewin. ps, 32,36 
LiteWindow, see window 
litewindow. ps, 73 
localhostname, 141 
logging, 45 
logging events, 26 

M 
magic numbers, 159 
/map 

in window class, 78 
Mapped,120 
MatchedEvents, 23, 120 
max, 141 
menu 

/changeitem,77 
/currentindex, 76 
Icurrentkey,76 
/deleteitem, 77 
example program test. psh, 180 
linsertitem, 76 
keys, 75 
litemenu. ps, 32 
modifying the root menu, 184 
Inew, 75 
Ipopup,76 
root menu, 223 
/searchaction, 76 
/searchkey, 76 



menu, continued 
/showat,76 

menu keys, 75 
menu methods, 74 
min, 141 
missing POSTSCRIPf language operators, 151 
mkiconfont, 168 
modifying the server, 183 

changing defaults, 185 
changing menus, 184 
changing the window user interface, 83 
saving keystrokes, 93, 184 
startup.ps,32 
user. ps, 32, 183 

modifyproc, 35 
modifyproc, 35 
monitor 

as monitor object, 118 
createmonitor, 134 

monitor, 141, 134, 142 
monitorlocked, 142, 134, 141 
mouse, see cursor 
/move 

in window class, 79 
movecanvas, 142, 14, 138 
multiple servers, 228 

N 
Name, 19, 122 
new, 66, 73, 191 

in Liteltem class, 191 
in menu class, 75 
in window class, 77 

new#,184 
newcanvas, 142, 14 
newprocessgroup, 142, 141 
NeWS buffered 110 library functions, introduction to, 255 
NeWS 110 library functions, introduction to, 255 
NeWS protocol, 157 
NeWS type extensions 

canvas, 117 
color, 117 
event, 117 
graphicsstate, 117 
monitor, 118 
process, 118 
shape, 118 

news server(1) - NeWS server program, 31, 174,223 
dehugging server, 174 
three binaries, 174 

newsdemos(6) - NeWS demonstrations, 231 
newshost(l) - NeWS network security control., 237 
NEWS SERVER, 163, 179 
noaccess, 151 
NoEvents, 23, 120 
nulldevice, 151 
nulldict,43 
nullproc, 43 
n ullstring, 43 

o 
object tables, 158 
Object, 66 
objects 

cleanup, 126 
connection management, 127 
error handling, 127 
management, 127 
process management, 127 
server function, 126 

offscreen images, 15 
omitted POSTSCRIPT language operators, 151 
on(1), 179 
online reference using NeWS - man, 243 
opaque canvases, 14 
OperandStack, 125 
operators, 205 
ovalframe, 40 
ovalpath, 40 
overlay canvas 

createoverlay, 134 
getanimated,37 

overview (1),174,175,223 

P 

Index - Continued 

POSTSCRIPT language files loaded by the server, see p s files 
packages, 73, 63 

-263 -

interface description format, 74 
/paint, 190 

in window class, 79 
/pain tc lien t 

in window class, 79 
PaintClient, 78, 178 
/paintframe 

in window class, 79 
/painticon 

in window class, 79 
paintitems, 190 
Parent, 119 
pathforallvec, 142 
pause, 143, 13, 81 
pointinpath, 143 
points2rect,39 
/popup 

in menu class, 76 
portability 

retained, 142 
POSTSCRIPT language extensions 

in * . ps files, 33 
pprintf (), 163 
previewing POSTSCRIPT language graphics, 178 
printer compatability, 32 
printemame, 32 
printf,34 
printf, 34, 67, 89, 194 
Priority, 20, 23, 123 
process 

as object, 118 
as process dictionary, 124 
scheduling policy, 13 



Index - Continued 

process keys 
DictionaryStack, 124 
ErrorCode, 124 
Execee,125 
ExecutionStack, 125 
Interests, 125 
OperandStack,125 
State, 125 

process management, 127 
garbage collection, 128 
killing an application, 127 

Process, 123 
event matching, 22 

processes, 13 
activate, 131 
breakpoint, 132 
continueprocess, 133 
currentprocess, 135 
forking, 74 
forkunix, 138 
killprocess, 141 
killprocessgroup, 141 
newprocessgroup, 142 
pause, 143 
suspendprocess, 147 
waitprocess, 147 

prompt, 151 
*. ps files, 31 

colors. ps, 32 
compat. ps, 33 
cursor. ps, 32, 38, 167 
debug. ps, 33, 87 
demomenu. ps, 32 
event log . ps, 33 
file location, 31 
icon.ps,32 
init.ps,31,82, 152,168,174,183 
journal.ps,33 
liteitem.ps, 33, 189 
litemenu.ps,32,73 
litetext. ps, 33 
liteUI. ps, 32, 49, 122 
litewin .ps, 32, 36 
litewindow. ps, 73 
menu. ps, 168 
organization, 31 
POSTScRIPf language procedures they define, 33 
repeat. ps, 33 
startup.ps,32, lSI, 183 
statusdicLps, 32 
systoklst. ps, 32 
user.ps,32,83,87,93, lSI, 183 
util.ps,32 

ps_define_stack_token(),105 
ps_define_value_token(),105 
ps_define_word_token(},106 
pscanf (), 164 
psh(1) - NeWS PostScript shell, 177, 81, 87, 178, 239 

example program test. psh, 180 
psio(3) -NeWS buffered input/output package, 255 
psload(1) - display load average under NeWS, 241 
man -online display of reference pages using NeWS, 243 

- 264-

psterm(l) - NeWS terminal emulator, 180,225, '2f 
psview(1) - POSTSCRIPT language previewer, 178~.>1 
put, 184 
putenv, 143 

R 
random, 143 
Rank,54 
raster files, 143 
rasteropcode 

currentrasteropcode, 135 
setrasteropcode, 146 

readcanvas, 143 
recallevent, 143, 20, 144 
rect,38 
rect2points, 39 
rectangle utilities, 38 
rectframe, 40 
rectpath, 39 
rectsoverlap, 39 
redistributeevent, 143,20,21,25,26, 132, 134, 137, 144 
remote access, 228 
renderbands, 151 
resetfile, 151 
Ireshape 

in window class, 78 
reshapecanvas, 144, 14, 137, 142 
Ireshapefromuser 

in window class, 78 
restore, 151 
retained 

portability, 142 
retained canvases, 14 
Retained, 120 
reversepath, 151 
revokeinterest, 144,20, 137 
revokekbdinterests, 51 
rgbcolor, 144 
roundclock example code, 109 
rrectframe, 40 
rrectpath, 40 
rshow,39 
rubber, 37 

s 
save, 151 
SaveBehind, 120 
sa y( 1) - execute POSTSCRIPf language, 177, 249 
scalefont 

building NeWS fonts, 170 
scene,S 
scrollbars, 74 
lsearchaction 

in menu class, 76 
lsearchkey 

in menu class, 76 
security 

implementation, 128 
selection events, 56 



selection events, cOnJinued 
DeSelect, 58 
ExtendSelectionTo, 57 
SelectionRequest, 58 
ISetSelectionAt, 56 
ShelveSelection, 58 

selection library procedures, 54 
ISelectionHolder, 54 
ISelectionLastIndex, 54 
ISelectionObjsize, 54 
selectionrequest,55 
SelectionRequester,54 
ISelectionResponder,54 
selectionresponse, 55 
selections, 53 

addselectioninterests, 55 
c1earselection, 55 
getselection, 56 
selectionrequest,55 
selectionresponse, 55 
setselection, 55 

ISelectionStartlndex,54 
self,64 
self,66 
send, 65, 64 
sendcidevent,41 
sendevent, 144,20,21, 132, 134, 137, 143 
Serial, 123 
server function, 126 
setautobind, 144, 134, 154 
setcanvas, 144 
setcanvascursor, 145, 16,38, 138 
setcolor, 145 
setcursorlocation, 145, 16 
seteventlogger, 145 
setfileinputtoken, 145 
setfileinputtoken, 145 
setfocusmode, 60 
sethsbcolor, 16, 145 
setinputfocus, 59 
setkeyboardtranslation, 145 
setkeyboardtranslation, 145, 139, 141 
setlinequality, 146, 135 
setmousetranslation, 146 
setnewshost(l) - set NEWSSERVER environment, 163, 179, 

251 
setpath,146 
setprintermatch, 146, 135 
setrasteropcode, 146, 135 
setrgbcolor, 16, 145 
setsccbatch, 32 
setscreen, 151 
setselection, 55 
setstandardcursor,38 
setstate, 147, 136 
settransfer, 151 
setvalue, 34 
setvalue, 34 
shape 

shape, continued 
as shape dictionary, 126 
as shape object, 118 

Ishowat 
in menu class, 76 

showpage, 151 
sleep, 36 
sleep, 36 
sockets 

acceptconnection, 131 
getsocketlocaladdress, 139 
getsocketpeername, 139 
priority of connection, 228 

sprintf,34 
sprintf,34 
StandardErrorNames, 125 
start, 151 

-265 -

starting NeWS, 174 
startkeyboardandmouse, 147 
startup.ps, 32,183 
State, 125 
statusdict.ps, 32 
store, 184 
stringbbox,42 
stringbox, 42 
stroke 

currentlinequality, l35 
setlinequality, 146 

strokecanvas, 39 
SunView 

keyboard state if NeWS crashes, 221 
SunViewl 

and NeWS on the Sun-3/110, 176 
coexistence with NeWS, 174 

super, 64 
super,66 
suspend process, 147, 13, 133 
systoklst .ps, 32 

T 
tagprint, 103 
tagprint, 147 
tags, 101 
text 

display using say(l), 177 
text utilities, 41 
time values, 19 

event queue, 21 
resolution, 123 

TimeStamp, 19,21,24, 123,141 
Ito bottom 

in class window, 80 
tokenization, 105 
tokens, 105 
TopCanvas, 119 
TopChild, 119 
Itotop 

in window-class, 80 
translate, 151 
transparent canvases, 14 

Index - ConJinued 



Index - Continued 

Transparent, 120 
type extensions, 117 
typedprint, 103 
typedprint, 147 

U 
unbindkey,44 
unblockinputqueue, 147, 26, 132 
undef,147 
uniquecid,40 
UnknownRequest,55 
unlogging, 45 
lunmap 

in window class, 79 
unregistered 

error accessing process keys, 124 
user interface 

default, 82 
window management, 227 

user. ps, 32, 83, 87,93, 183 
usertime, 151 
usertoken, 105 
utilities 

cps, 106 
font, 41 
misc., 33 
text, 41 
util.ps,32 

V 
verbose?, 32 

W 
waitprocess, 147,37, 131 
window 

Idestroy,78 
example program test. psh, 180 
Iftipiconic, 79 
ForkPaintClient?, 79 
litewin. ps, 32 
Imap,78 
Imove,79 
Inew, 77 
Ipaint,79 
Ipaintclient, 79 
Ipaintframe, 79 
Ipainticon,79 
Ireshape,78 
Ireshapefromuser,78 
scrollbars, 74 
Ito bottom, 80 
Itotop, 80 
lunmap,79 

window management, 227 
window methods, 77 
writecanvas, 148, 137 
writescreen, 148, 137, 148 

X 
xdemos(6) - X Window System demonstration, 253 
XLocation, 19, 123 

y 
YLocation, 19, 123 

-266-



Revision History 

Version Date Comments 

A 29 March 1987 First release of the NtM'S Manual. 

SO 2 October 1987 First release of the p version of the NtM'S 

Manual. 

A 15 January 1988 FCS 1.1 release of the NtM'S Manual. 




