

IIIIIIAPL*PLUS System
FOR THE VAX VMS ENVIRONMENT

User's Manual

Release 1
August 1987

A PLUS*WARETM PRODUCT •••• 111111111111111 1 1

STse

This document was prepared to assist users of STSC's PLUS * WARE software
products; its contents may not be used for any other purpose without written
permission. The material contained herein is supplied without representation or
warranty of any kind. STSC Inc., therefore assumes no responsibility and shall
have no liability of any kind arising from the supply or use of this document or
the material contained herein.

Copyright © 1987 STSC, Inc.

10987654321

ISBN 0-926683-32-2

Printed in the United States of America.

All rights reserved, including the right to reproduce this document or any portion
thereof in any form.

APL * PLUS® and PLUS * W ARE® are registered trademarks of STSC, Inc.

IBM® and PC® are registered trademarks of International Business Machines
Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

V AX and VMS are trademarks of Digital Equipment Corporation.

Macintosh is a trademark of Macintosh Laboratories, Inc.

Throughout this manual, trademarked names are used. Rather than put a trademark
symbol in every occurrence of a trademarked name, we state that we are using the
names only in an editorial fashion, and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Contents

Introduction

Organization of the Manuals
How to Read the Examples in this Manual 2
What is APL? 3
Where to Start 4
How to Get Help with Your System 4
Acknowledgements 6
Your Comments are Welcome 6

I. Getting Started

1-1 Hardware and Software Requirements 1-1
1-2 Beginning and Ending an APL Session 1-2
1-3 The APL Command Procedure 1-4
1-4 Terminals for APL 1-5
1-5 Using the Keyboard 1-9
1-6 The Session Manager 1-16
1-7 APL Session Parameters 1-18
1-8 Configuration File 1-28

2. Editing Functions And Variables

2-1 The Full-Screen Editor 2-1
2-2 The Del Editor 2-19

3. Using Files With APL

3-1 Fundamentals of File Use 3-2
3-2 More File Management Facilities 3-15
3-3 File Sharing Concepts and Functions 3-24
3-4 Detailed Control of File Sharing 3-32
3-5 The Access Matrix 3-35
3-6 APL Libraries and VMS Directories 3-38
3-7 Comparing APL and Native Files 3-40

4. Formatting

4-1 Designing a Report 4-1
4-2 What is DFMT? 4-2
4-3 Right Argument - The Data List 4-4
4-4 Left Argument - The Format String 4-6
4-5 How to Construct a Format String 4-8
4-6 The Editing Format Phrases 4-9
4-7 The Positioning and Text Format Phrases 4-14
4-8 Parameters 4-18
4-9 Grouping Symbols 4-21
4-10 Modifiers 4-22
4-11 Combinations of Modifiers 4-32
4-12 Useful Applications 4-34
4-13 Stars or Unknown Digits in Result 4-35
4-14 Workspace FORMAT Overview 4-36

5. Screen and Keyboard Management

5-1 Simple Input and Output Management Facilities 5-1
5-2 The IN PUT Workspace 5-8

6. Communications

6-1 How to Communicate with Remote Devices 6-1
6-2 Transferring Data from Other APL Systems 6-2
6-3 Using the SERHOST and SERXFER Workspaces 6-4
6-4 Using the T RAN S FER Workspace 6-6
6-5 Using a Source Level Transfer 6-9
6-6 Communicating With Other Machines 6-11

7. Using APL With Non-APL Programs

7-1 Using Native Files 7-1
7-2 Interfacing APL to non-APL Programs 7-2
7-3 Using External Processes 7-4
7 -4 Using External Routines 7-10

8. Printing 8-1

9.

10.

Supplied Workspaces

9-1 APLCOURSE 9-2
9-2 COMPLEX 9-3
9-3 DATES 9-5
9-4 DEMOAPL 9-6
9-5 EIGENVAL 9-7
9-6 LESSONS 9-7
9-7 UTILITY 9-8

Performance Tips

10-1 Use of Memory 10-1
10-2 Shared Code Segment 10-3
10-3 Avoiding WS FULL 10-3
10-4 Monitor Facility 10-4
10-5 Partial Compilation of APL Functions 10-4
10-6 Multiple References 10-5
10-7 Dynamic Internal Structures 10-6

Glossary

Appendixes

A. System Characteristics and Limits A-I
B. System Character Set B-1
C. Error Messages C-l
D. APL and Termcap D-l
E. Policy on Commercial Use and Distribution of Kermit E-l

Index

Introduction
Welcome to the APL *PLUS System!

The APL * PLUS System for V AXNMS is a version of the APL
programming language developed especially for the VMS operating
system.

To use the system and this manual most effectively, you should be
familiar with the APL language. If you are not, read APL Is Easy!
(STSC, 1987) when you get your APL * PLUS System running.
APL Is Easy! is a tutorial that will teach you the basics of
programming in APL. For "hands-on" practice, use the demonstration
APL programs on the disks included with your package. For details
on the many features available in the system, refer to the APL *PLUS
System Reference Manual.

Organization of the Manuals

This manual is tutorial in nature; it contains information on the
capabilities and features of your APL*PLUS System. The information
in it may be duplicated or reinforced in the APL *PLUS System
Reference Manual. The following paragraphs outline the contents of
this manual.

Chapter 1 shows you how to set up and access your APL * PLUS
System. It will make you familiar with the keyboard and show you
how to move about in the APL environment.

Chapter 2 explains how to edit data and functions using the Session
Manager supplied with the system.

Chapter 3 describes the file system. It explains the concepts behind
APL component files and VMS native files and describes how to create
and manipulate them.

Chapter 4 explains data formatting in the APL * PLUS System and
how to use the system function 0 F MT to format your data.

Copyright © 1987 STSC. Inc. Introduction

Chapter 5 describes the full-screen facilities of the system, how to
handle the screen under program control, and how to use the
programmable function keys.

Chapter 6 describes the communications capabilities of the system,
how to communicate with personal computers, how to access the
communications port, and how to transfer files and workspaces.

Chapter 7 shows how to interact with non-APL programs and VMS
native files, and how to issue DCL commands from APL.

Chapter 8 describes the printing facilities of the system and explains
how to use them.

Chapter 9 describes the workspaces supplied with your system and
how to use them.

Chapter 10 contains tips on how to use your system more efficiently
and how to avoid the more common errors experienced in APL.

This manual also contains several appendixes that describe system
characteristics and limits, the system character set, error messages, the
use of the term cap database to support other terminals , and the policy
on use and distribution of the Kermit transfer program. A glossary and
index complete the manual.

How to Read the Examples in This Manual

All items in A P L FONT represent actual system output or
information to be entered exactly as shown. Items in lowercase italic
font are mnemonic representations for information that you supply or
for system output that varies. For example, in the following
expression:

I filename 10FT I E tieno

OFT lEis the name of an APL system function. You would enter it
exactly as written. The words filename and tieno are mnemonic
representations for the file name and tie number. You supply this
information. Single quotes are used around character vector arguments;
they are not necessary if you use an APL variable as the argument.

Copyright © 1987 STSC, Inc. 2 Introduction

All items in Courier f ont represent either output displayed by
the operating system (VMS) or input entered into it. For example:

$apl

APL*PLUS SERVICE

CLEAR WS
)CMD

$dir

Directory $DISK1: [APL.RELB]

APL.COM;4 APLOTAB. ;2 APLX.CMD;3 APLX.EXE;l
ASCIITAB.;5 ATERMCAP.;l AVT.HLP;l AVT.INIT;4

Whenever possible, examples of system behavior are formatted as the
system would format them. User entries are indented six spaces to
match the system prompt for user input. Where user entries or system
responses are too wide or will not fit on the page, they are wrapped to
the next line with no indentation. Unless otherwise stated, all
examples assume index origin 1. The exceptions are generally DAV
indices, conventionally shown in origin O.

What is APL?

APL (A Programming Language) was originally conceived in the late
1950s by Kenneth E. Iverson, then a professor of mathematics at
Harvard University. It was initially used as a mathematical notation
and not as a computer programming language. In the mid-1960s, the
notation was implemented as a programming language for use by
IBM's central research staff at the company's TJ. Watson Research
Laboratory.

STSC, Inc., was organized in 1969 for the purpose of providing an
improved interactive time sharing service based on the use of APL as
the programming language. STSC's founders, active in the computer
industry for many years, were convinced that APL offered significant
productivity advantages when compared with more traditional
languages such as COBOL, FORTRAN, BASIC, and PL/I.

Copyright © 1987 STSC, Inc. 3 Introduction

Since 1969, STSC has been committed to an intensive research and
development effort to enhance and extend the usefulness of APL. The
result is a generalized application development system we call our
APL*PLUS System. Until 1981, the APL*PLUS System was
available only as a commercial time-sharing service. Now, however,
the system is available to run on a variety of computers from large
mainframes to personal computers.

Where to Start

Start by reading Chapter 1 of this manual. It contains the essential
information you need to begin using the APL * PLUS System.

If you have never programmed in APL, you should read APL Is Easy! .
APLIs Easy! is an introduction to APL that was developed
specifically for people beginning to use APL.

Almost all APL language features of the APL * PLUS System for
V AX/VMS are identical to those on other APL * PLUS Systems;
however, some support features vary slightly because of the constraints
imposed by different computers. Also, because of the unique
environment of your computer, some useful features have been added to
the APL * PLUS System for V AX/VMS that do not appear in other
APL * PLUS Systems. These unique features are noted as system
dependent or experimental in the APL *PLUS System Reference Manual.

How to Get Help with Your System

STSC wants you to get the most benefit from the APL * PLUS
System. These guidelines will help you to obtain the best support
from STSC.

Register Your System

STSC provides support and assistance only to registered software
licensees. Use the Registration card to register your system.
Registered system owners will receive information about updates to
the system including news of new versions, bug fixes , new features,
and other information of interest to APL * PLUS System users.

Copyright © 1987 STSC, Inc. 4 Introduction

The Help Line

STSC's Help Line has been established to provide timely assistance to
registered users of the APL * PLUS System. If you need assistance
with the product or want to report a problem, write to the following
address:

APL * PLUS V AXNMS Help Line
STSC, Inc.
2115 East Jefferson Street
Rockville, Maryland 20852

You also can call the Help Line number below. Since this phone is
answered for a limited numbers of hours, you may hear a recording that
tells you when you can reach us. Call:

(800) 638-6660

or in Maryland or outside the U.S. call:

(301) 984-5140

Please be ready to provide the following information:

your name
• your organization

the name of the registered owner of the system
the serial number of your system (on the diskette)
the version of the software you are using (enter DSY SVE R).

Report Apparent Errors in the Software to STSC

STSC is eager to learn of suspected problems with the system and you are
invited to report apparent bugs to STSC. We want to resolve problems in
future versions of the system so that all users benefit. We may receive
multiple reports of a single problem, so if the difficulty is not interfering
with your use of the system to an important degree, please write. If the
problem is causing you considerable difficulty, you should call the Help
Line.

Copyright © 1987 STSC, Inc. 5 Introduction

You can help us find and fix a bug by providing specific information about
the cause of the problem and the result. If you can narrow down the
problem to a few lines of input in a clear workspace, it will make it much
easier for us to find and fix the problem quickly.

STSC Offers APL Instruction and Consulting

STSC offers all levels of APL instruction, application design consulting,
and full application implementation at your facility or at STSC
headquarters. Contact STSC for more infonnation about class schedules
and tuition fees, and consulting rates .

Can I use the APL *PLUS System on Other Computers or
Other Operating Systems Similar to the VMS Operating System?

The APL * PLUS System is designed for the VMS operating systems or
close derivatives. A different STSC product is required to run the
APL * PLUS System on a non-VAX computer or to run on a V AX under
UNIX or UL TRIX.

Acknowledgments

Many people contributed to the design and production of the APL * PLUS
System for V AXNMS and the documentation. The editors are grateful to
them all, especially:

Larry Goodwin
William Lewis
Edward Myers
Mark Osborne
Marvin Renich

Your Comments Are Welcome

Richard Renich
Stuart Ritter
Laurie Russell
William Rutiser
Mary Wise

We appreciate suggestions of new features that might increase your
productivity. We particularly like to know what features you would like to
see enhanced and what new features you would find useful. We design
future releases based on suggestions we receive. Send your suggestions to:

Copyright © 1987 STSC, Inc. 6 Introduction

APL * PLUS V AXNMS Product Manager
STSC, Inc.
2115 East Jefferson Street
Rockville, Maryland 20852

Comments about this manual are also welcome. Please send your
comments to:

Technical Documentation Manager
STSC, Inc.
2115 East Jefferson Street
Rockville, Maryland 20852

Copyright © 1987 STSC, Inc. 7 Introduction

Chapter One
Getting Started

The Installation Guide describes the procedure for installing the
APL * PLUS System on your computer. The material in this chapter
assumes that the instructions have been followed and that APL has
been installed in the directory [AP L . RE Ln] , where n is the release
number of your APL * PLUS System.

1-1 Hardware and Software Requirements

Required Hardware Configuration:

• 2 megabytes main memory
• 2000 blocks free on the installation disk

Operating System Requirements:

• VMS or MicroVMS Version 4.4 or later

Recommended Hardware Configuration:

• Additional memory is required for efficient use of large workspaces
or for multiple users.

Terminals Supported:

• Digital VT100
• Digital VT200 series
• HDS AVT
• HDS Concept 108
• HDS 200 series
• HP 2641
• IBM PC running APL * PLUS PC System
• Macintosh running APL*PLUS Mac System
• Generic APL video or hardcopy terminals

Copyright © 1987 STSC, Inc. 1-1 Getting Started

Note: Terminals are supported through the use of the termcap
database (see Appendix D). You can add new terminals to the database.

1-2 Beginning and Ending an APL Session

Once installed, the APL * PLUS System can be invoked by the
following DeL command (the $ used here is the prompt displayed by
VMS):

$ apl

A list of supported terminals should be displayed:

pc
c108
avt
c200
hp
vt100
vt200
g
h

IBM PC running APL*PLUS PC
HDS Concept 108
HDS AVT
HDS 200
HP 2641
DEC VT100
DEC VT220 and VT240
generic APL video terminal
generic APL hardcopy terminal

Terminal name:

Enter the abbreviation that identifies your terminal. If your terminal
does not appear on this list, select g or h . APL will use a generic
terminal definition which assumes a line-oriented terminal that behaves
like a hardcopy terminal. Full-screen editing is not available for the
generic terminal.

APL is a large program and usually takes several seconds to load from
disk. When the system is loaded, a welcoming banner displays, and
the interactive session begins. The message CLEAR WS appears,
and the cursor indents six spaces on the next line. Depending upon the
kind of terminal you are using, the screen may be cleared and the
terminal switched into the APL character set.

Copyright © 1987 STSC, Inc. 1-2 Getting Started

APL should then display a screen similar to this:

APL*PLUS SYSTEM FOR VMS VERSION 1.0 SERIAL NUMBER 1234
COPYRIGHT 1986. 1987 STSC. INC. ALL RIGHTS RESERVED.

CLEAR WS

SCREEN 1 APL SESSION Ins APL

The file named AP L is a OCL command procedure that perfonns
several actions to set up the APL session. It will be installed as
[APL. RELnJ APL (where n is the release number) on one of the
system disks. If the System Administrator at your site has followed
the installation procedure recommended by STSC, the name AP L will be
defined as a synonym for this command in the file SYSLOGIN. COM.

The installation procedure also recommends that the synonym
APL DISK be defined for the disk on which APL is installed.

Once you become more familiar with the APL * PLUS System, you
will probably want to customize [APL. RELnJ APL to your
preferences (see Section 1-3).

Now test that APL is configured correctly for your tenninal by typing
in a simple expression such as:

2+3
5

Copyright © 1987 STSC. Inc. 1-3 Getting Started

If APL prints the answer properly, the configuration is correct. (If the
result displayed is 0.666667 instead of 5, you typed in the symbol for
APL division';', which is on the key where + appears on a non-APL
terminal.)

Once APL is started, it remains active until you type the command:

)OFF
$

If this command does not work, you probably are not using the keys
that APL expects. If your terminal is not an APL terminal or a
Personal Computer with STSC's APL characters installed, try "0 f f

(double-quote followed by unshifted oft). These are the keys on a
regular keyboard that correspond to) OF F on an APL keyboard.

Exiting from APL terminates the APL process for VMS. Open files
are closed; the contents of the active workspace are discarded, and the
terminal behavior is restored to what it was when APL was first
invoked.

1-3 The APL Command Procedure

The command procedures provided with the APL * PLUS System for
V AXNMS in directory [APL. RELnJ are for configuring the system
to specific APL terminals. These can be used instead of the general
apl procedure, which prompts for the kind of terminal you are using.

Files of the form nnnAPL. COM, where nnn is a terminal type, are
command procedures for running the APL * PLUS System. Each
command file turns off the DCL Ctrl-y and Ctrl-t functions and starts
APL with a specific initialization file.

The distributed command files and their associated initialization files
are:

Copyright © 1987 STSC, Inc. 1-4 Getting Started

Terminal Type: Command File Init File

general or unknown: APL.COM GENERIC.INIT
HDS A VT terminal: AVTAPL.COM AVT.INIT
HDS Concept 108: C108APL.COM C108.INIT
HDS 200 series: HDSAPL.COM HDS200.INIT
HP 2641 terminal: HPAPL.COM HP2641.INIT
IBM PC running the
APL * PLUS PC System
in terminal mode: PCAPL.COM PC.INIT
DEC VT100 terminal: VT1OOAPL.COM VT1OO.INIT
DEC VT200 series: VT200APL.COM VT200.INIT
generic APL video: GENERICAPL.COM GENERIC.INIT
generic APL hardcopy: HARDCOPYAPL.COM HARDCOPY.INIT

If the System Administrator at your site has followed the installation
procedure recommended by STSC, the following synonyms will be
dermed and may be used to execute the corresponding . COM command
files:

APL
AVTAPL
C108APL
HDSAPL

PCAPL
HPAPL
VT100APL
VT200APL

If the System Administrator has not already established global
synonyms for these commands for all users, users can edit their own
LOG IN . COM file to add a line such as:

$ hdsapl :== "@apl_disk: [apl.relnJhdsapl"

This will allow the user to invoke APL on an HDS 200 by typing:

$ hdsapl

1-4 Terminals for APL

The APL * PLUS System for V AX(VMS uses a file of the same
structure as the UNIX term cap database to describe the full-screen
behavior of various terminals. A file named ate rmcap is provided
on the distribution tape.

Copyright © 1987 STSC. Inc. 1-5 Getting Started

The atermcap database allows effective use of a wide variety of
terminals with the system. Appendix D explains how to support other
terminals not included in atermcap.

This section will also discuss the special support provided for the
VT220 and VT240 terminals and the IBM PC when using the
APL * PLUS PC System in terminal mode.

Using the VT220 and VTUO Terminals

Ctr1

The DCL procedure VT2 0 OAPL. COM on the distribution tape takes
advantage of the capability of fonts to be downloaded on the VT220
and VT240 terminals and makes them effective as APL terminals. The
configuration file VT2 0 0 . INIT loads useful values into the
terminal's function keys and configures APL to recognize its editing
keys. The APL keyboard for the VT220 is as follows:

VT 220 Keyboard

Sh i fted-+ Insert

Un s hifted-+ ~A1t

Copyright © 1987 STSC, Inc.

<when preceded
by A1t-key)

1-6

A1t

Cursor
Left

On/Off Un type

Page Page
up down

Cursor
Up

Cursor Cursor
Down Right

Getting Started

The function keys on a VT 220 are defined in VT2 0 0 . INIT as follows:

Key Unshifted Shifted

F6 Insert blank line below (Cmd I)
F7 Overstrike Delete line (Cmd D D)
F8 Delete char Split line (Cmd .)
F9 ClearEOL Join lines (Cmd ,)
FlO O-U-T Insert saved lines below (Cmd P)
Fll Undo Insert saved lines above (Cmd *)
F12 Refresh Save line (Cmd Y Y)
F13 Scroll down String search (Cmd !)
F14 Scroll up Repeat search (Cmd / RETIJRN)
F17 Cmd Z (editor end)
F18 Cmd S (to session)
F19 Cmd E (editor begin)
F20 Cmd Q (editor quit)

See Section 5-1 for more infonnation on function keys.

Using the APL "PLUS PC System as a Terminal

A PC running the APL * PLUS PC System in tenninal mode can be a
very effective terminal for the APL * PLUS System for V AXNMS.
The following steps are necessary in order to make the best use of the
PC as a full-screen tenninal.

On the PC (version 5.0 or later required):

• Execute the function TERMIN IT, listed below.
• Tum off the status line, using Scroll Lock, to prevent conflict with

the status line produced by APL * PLUS for V AXNMS.
• Switch into tenninal mode (Alt-F8).

On the VAX, run the DCL program PCAPL. COM, which runs APL
with the terminal type of pc. Alternatively, run APL. COM and
specify pc in response to the terminal: prompt.

After you complete the previous steps, the most common keystrokes
will have the same effect on the APL * PLUS System for V AXNMS
as they do on the Pc. The keystrokes affected are:

Copyright © 1987 STSC,lnc. 1-7 Getting Started

Backspace
Ctrl-C
Home
Ctrl-Home
End
Ctrl-End
t
Ctrl- t
~

Ctrl ~

Ctrl-+-

Ctrl-­
PgUp
Ctrl-PgUp
PgDn
Ctrl-PgDn
Alt -
Del
Ins

Acts as the Untype Key
Signals an interrupt to halt APL execution
Moves cursor LO left end of the line
Moves cursor to the LOp left of the screen
Moves cursor to the right end of the line
Moves cursor to the bottom right of screen
Moves cursor up one line
Moves cursor up four lines
Moves cursor down one line
Moves cursor down four lines
Moves cursor left
Moves cursor left eight spaces
Moves cursor right
Moves cursor right eight spaces
Scrolls up one line
Scrolls up one page
Scrolls down
Scrolls down one page
Clears to end of line
Deletes character and close up
Forms overstrike with next keystroke

The PC's Alt keys (such as Alt-4 for.), will produce the expected
composite character only if the APL * PLUS System for V AXNMS
is in overstrike mode. The PC's terminal mode transmits
'A',DTCBS ,'I' when Alt-4 is pressed, and the overstrike will not be
formed if the V AX is in insert or replace mode. You can achieve the
effect of the Alt-keys even if the system is not in overstrike mode, by
first pressing ESC and then the key that you would ordinarily use with
Alt on the PC.

Execute the following APL function on the PC to customize terminal
mode appropriately:

v TERMINIT;S;DSEG;TAB;DIO
[1] A Initializes APL * PLUS PC for use as a VMS terminal
[2] DSEG-' ,
[3] S-IDPOKE 115 A Full duplex
[4] S~127 0 DPOKE 171 172 A Suitable untype sequence
[5]
[6] A Other pokes for special editing keys
[7] DIO~O 0 TAB-DAV[9]

Copyright © 1987 STSC, Inc. 1-8 Gelling Started

[8J S 6t 138. DAVlTAB.' h' A Home -TAB H
[9J S-S. 6t 111. DAVlTAB. 'k '.TAB.' h' ACtrl-Home--TAB KTAB H
[10J S S.6t136.DAV l TAB.'ly' A PgUp -TABI Y
[11] S S.6t112.DAVlTAB. 'lc' A Clrl-PgUp--TAB IC
[12J S S.6t132.DAVlTAB.'1' A END -TABL
[13J S S. 6t 114. DAVl TAB. 'j' . TAB.' l' ACtrl-END--TAB JTAB L
[14J S S.6t165.DAVlTAB.'lu' A PgDn --TAB I U
[15J S S.6t115.DAVlTAB.'lv' A Ctrl-PgDn"""" TAB 1 V
[16 J S S. 6 t 177 16 A INS - Ctrl-P (overstrike)
[17J S S.6t176 4 A DEL""'" Ctrl-D (delelechar)
[18J DSEG ' , DSEG 2561DPEEK 130 129
[19J OOpS DPOKE 1102+lpS

V

See "Using Terminal Mode" in the APL * PLUS PC User's Guide
(Release 5.0 or later) for details on how the terminal mode behavior
can be customized.

1-5 Using the Keyboard

The APL * PLUS System for V AXNMS has been designed to provide
a user-friendly. full-screen interface. no matter which of dozens of
different terminals you may be using. Getting the most out of so
many different terminals means that APL must be very flexible in how
it treats the terminal. This means, however, that you have to ensure
that APL is set up properly to work with your terminal.

Terminal features and behavior can vary considerably. For example, if
your terminal has a cursor-up key labeled with an upward-pointing
arrow, you would probably like to be able to press this key in APL to
move the cursor up one line. If your terminal is an IBM PC running
the APL * PLUS PC System, pressing the cursor-up key transmits a
Ctrl-K character to VMS. On the other hand, if your terminal is a
DEC VT100 , the cursor-up key transmits three characters: Escape, [,
and A. Some terminals have no cursor key at all.

In order to deal with these differences. the APL * PLUS System uses
the concept of logical keystrokes. A logical keystroke is defined in
terms of the effect that a key on the terminal is expected to produce.
For example, "cursor-up" is a logical keystroke - it is a command
that you type at the terminal that instructs APL Lo move the cursor up

Copyright © 1987 STSC.lnc. 1-9 Getting Started

one line. The exact key that you press to achieve this command will
vary from one terminal to another, but the effect is the same.

Of course, this can only work if APL knows what sequence of
characters is intended to represent cursor-up, which is why it is so
important that the terminal interface be set up properly. The
following tables show APL logical keystrokes and their effects on
some popular terminals.

Input and Editing Keys

Keystroke

Untype

Delete

Clear-EOL

Undo

AIt-key

Overstrike

Enter

Cursor Keys

Cursor-up

Cursor-down

Copyright © 1987 STSC, Inc.

Logical Keystrokes

Effect

Delete the most recently typed character (the
character to the left of the cursor) and close up.
Also called destructive backspace.

Delete the character at the cursor and close up the
space.

Erase all characters from the cursor to the end of
the line.

Undo all changes that have been made to the line
and reprompt

Interpret the subsequent keystroke as an "Alt" key, or
a logical Program Function key (see Section 5-1).

Overstrike the character to the left of the cursor with
the next character typed.

Enter the current line as input to APL.

Move the cursor up one line.

Move the cursor down one line.

1-10 Getting Started

Cursor-left

Cursor-right

Window Control Keys

Scroll-up

Scroll-down

Page-up

Page-down

Input Mode Control:

APL-keyboard

Text-keyboard

Insert-mode

Other Commands:

Command

Interrupt

Copyright © 1987 STSC, Inc.

Move the cursor left one space without erasing
what is there (non-destructive backspace).

Move the cursor right one space without erasing
what is there (non-destructive space).

Scroll the active window up one line to reveal a
line saved in off-screen memory.

Scroll the active window down one line.

Move the active window up one page (one
screen-full of text).

Move the active window down one page.

Switch APL to interpret keystrokes as coming
from a tenninal with an APL keyboard.

Switch APL to treat the keyboard as a standard
non-APL keyboard.

Switch between insert mode, replace mode, and
overstrike mode. The current mode is shown on
the status line.

Interpret the next keystrokes as session
manager/full-screen editor command. See
Chapter 2 for details on editor commands.

Interrupt an executing APL program or the display
of output (functions like the BREAK key in some
other APL systems). Always a "C under VMS .

1-11 Oetting S ta:ted

Keystroke

Untype
Delete
Oear-EOL
Undo
All-key
Overstrike
Enter
Cursor-up
Cursor-down
Cursor-left
Cursor -right
Scroll-up
Scroll-down
Page-up
Page-down

O-U-T Interrupt r:J input (like the O-U-T escape sequence

used on older APL systems).

Refresh Clear the screen and re-display its contents.

The following table shows the physical keys used to produce logical
keystrokes when the proper configuration file has been used on these
terminals:

VT220: VT200INIT

HDS Concept 108: C108.INIT
Standard ASCII terminal with no . INIT file used
APL * PLUS PC terminals: PC. INIT

Logical Keystrokes on Selected Terminals

ASCII
tennlnal

VT200-type HDS with no APL*PLUS PC
Terminals CIOS config file Tenninals

Remove Backspace Ctrl-R Untype
F8 Ctrl-D Ctrl-D Del
F9 Ctrl-E Ctrl-E Alt-right-cursor
FIl Ctrl-B Ctrl-B Ctrl-B
Select Ctrl-A Escape Escape
F5 Ctrl-P Ctrl-P Ins
Enter Return Return Return
Cursor-up Cursor-up Ctrl-K Cursor-up
Cursor-down Cursor-down Ctrl-l Cursor-down
Cursor-left Cursor -left Ctrl-H Cursor-left
Cursor-right Cursor-right Ctrl-L Cursor-right
F14 Scroll-up Ctrl-Y Ctrl-Y or Page-up
F13 Scroll-down Ctrl-U Ctrl-U or Page-down
Previous-Screen Page-up Ctrl-C Ctrl-C or Ctrl-Page-up
Next-Screen Page-down Ctrl-V Ctrl-V or Ctrl-Page-down

APL-keyboard Ctrl-Y Ctrl-N Ctrl-N Ctrl-N
Text-keyboard Ctrl-O Ctrl-O Ctrl-O Ctrl-O
Insert-mode Insert-Here Ctrl-T Ctrl-T Ctrl-T
Command TAB TAB TAB TAB
o.U-T FlO Ctrl-Z Ctrl-Z Ctrl-Z
Refresh Fl2 Ctrl-F Ctrl-F Ctrl-F

Copyright © 1987 STSC, Inc. 1-12 Getting Started

Interrupting APL

The interrupt character for APL is Ctrl-C. You can use this character to:

• halt execution whenever APL is running
• interrupt the display of a large volume of output
• break out of the delay from DDL and DFHOLD.

During the time that APL is expecting input, Ctrl-C is the default
page-up character, and it does not interrupt anything. On full-screen
terminals, it is easy to tell whether APL can be interrupted:

• If the status line is hidden, then APL is running, and Ctrl-C acts an
interrupt.

• If the status line is visible, then APL is awaiting input, and Ctrl-C
does not act as an interrupt.

You can also use Ctrl-Y to end the APL process and return you
immediately to VMS. This event cannot be trapped by any error
handling routines, and your active workspace and all record of your
APL session will be lost. You can suppress this effect of Ctrl-Y by
using the DCL command:

set nocontrol=y

in the DCL procedure before invoking APL. This prevents Ctrl-Y
from interrupting APL, although the message I NT ERR UP T is still
displayed on the terminal. All of the APL command procedures
provided by STSC already contain this setting.

Editing Input

APL input is displayed on the terminal as you type it, but no action is
taken until you press Return. You can make any sort of correction
before entering the line as input, and the terminal displays the
corrections. The Untype key is particularly useful for immediately
erasing a mistyped character and typing the correct one in its place.

If you want to discard the line completely and start fresh, the Undo key
will erase everything you have typed on the line so you can begin

Copyright © 1987 STSC, Inc. 1-13 Gelling Started

again. Part of the line can be erased by backspacing and using the
Clear-EOL key.

Forming Overstrikes

The APL composite characters, also called overstrikes, can be fonned
in three distinct ways:

• The overstrike key will combine the character to the left of the
cursor (the one just typed) with the next keystroke typed. To
produce ., type the three keystrokes IJ., Overstrike, and I.

• The Alt-key mechanism is often handier for typing composite
characters. For example, Alt-4 will produce. (assuming that you
have not reprogrammed the Alt-key contents) .

• In overstrike mode,.a character already on the screen can be
overstruck with another by placing the cursor on the character and
typing the second character. This does not work in "insert" or
"replace" mode.

Input Errors

If you type a keystroke that has no meaning to APL, or if you attempt
to fonn an overstrike character from two keystrokes that do not
combine to fonn a composite character, the tenninal will indicate an
error either by flashing the screen or sounding the bell , depending upon
the kind of tenninal you are using.

Insert, Overstrike, and RepliJce Mode

For CRT tenninals, the system is in "insert" mode by default. Text
typed in the middle of a line is inserted at the cursor, pushing any
characters beyond the cursor to the right. The insert-mode key will
switch the keyboard between insert, overstrike, and replace mode.
CRT terminals may also have a status line that indicates whether the
terminal is in insert, replace, or overstrike mode.

In "replace" mode, characters typed at the tenninal replace the character
already present. Replace mode is convenient for reading user input
under application control. In replace mode, typing a space will

Copyright © 1987 STSC, Inc. 1-14 Gelling Started

substitute a blank space for the character already present on the screen.
The cursor-right key spaces past a character.

In "overstrike" mode, an APL composite character can be formed by
typing one symbol, backspacing, and typing the second symbol.
Overstrike mode can be useful when you want to form multiple
overstrikes at once; for example, you can enter ~ 4> e ~ by typing
* I - \ , followed by four backspaces and four 0 characters.

APL and Text Keyboards

If you are using a terminal that can switch between displaying APL
characters and regular ASCII characters, then you can use the
APL-keyboard and text-keyboard keys to switch keyboards. These
keys do not actually modify what the keys on the terminal transmit,
but they do control how APL interprets characters received from the
terminal.

In the APL keyboard state, typing the unshifted A key yields an upper
case A, and typing it while holding down the shift key yields alpha
(ex). In the text keyboard state, the unshifted key produces lowercase
"a" and the shifted key the upper case A.

Some characters can be produced from either keyboard. For example,
the asterisk (*) is the same character whether produced with a shift-P in
the APL keyboard or shift-8 on the text keyboard, and lowercase "a" on
the text keyboard is exactly the same as A overstruck with an
underscore (h).

AP L Alphabets

The APL * PLUS System's character set contains the uppercase letters
ABC DE . .. XY Z and the lowercase letters abc de . .. x y z. The
lowercase letters correspond to the underscored alphabet used in
traditional APL systems. On terminals that are incapable of
displaying both APL and ASCII characters at the same time, including
most hard-copy terminals, the lowercase alphabet is displayed in its
traditional form of AB CD E . . . X Y Z.

Copyright © 1987 STSC, Inc. 1-15 Getting Started

1-6 The Session Manager

The Session Manager manages the input and output between the user
and the APL interpreter. The Session Manager and the full-screen
editor are actually the same program, except that the full-screen editor
is used to edit APL functions and variables. The same keystrokes and
commands are used by both, providing a consistent environment for
the APL user. More details on the full-screen editor can be found in
Chapter 2.

All APL input you type and all output produced by APL is recorded in
a logical screen image stored in the computer. The logical image
typically contains more lines than can appear on the screen at once.
One of the most important functions of the Session Manager is to
keep the image that appears on the tenninal consistent with the image
stored in memory.

With the Session Manager, you can use the entire CRT screen for
APL input. You can move the cursor to any position on the screen,
insert or delete characters, or scroll up and down to reveal output that
has moved out of the visible window.

Moving the Cursor

The cursor movement keystrokes (cursor-up, cursor-left, and so on) are
used to move the cursor on the tenninal. The Session Manager keeps
track of the codes transmitted when you press the cursor keys. It also
transmits control codes to the tenninal to keep the visible cursor
position consistent with the cursor position known to APL. Many
full-screen editor cornmands can be used to move greater distances on
the screen or even to locate a specific text string in the session image.

Re-Using Previous Lines

When the APL * PLUS System is expecting input and you press
Return, the line on which the cursor rests is passed to the APL
interpreter as input. Thus, you can re-enter any line of input or output
that is visible on the screen by moving the cursor up to that line and
pressing Return. You can modify the current form of a line using
editing keystrokes and then enter the modified line.

Copyright © 1987 STSC. Inc. 1-1 6 Getting Started

Scrolling

If APL is in immediate execution input mode, and you move the
cursor up to use an earlier line to satisfy the input, the line is copied
to the bottom of the screen when you hit Return. If you make
changes to the line before pressing Return, the new form is copied to
the bottom of the screen and the old line is restored to its original
form, keeping an accurate record of the APL session. When not in
immediate execution mode (that is, in .the del editor or rJ input), APL
does not copy re-used lines to the bottom of the screen.

To understand the scrolling capabilities of the Session Manager, think
of the terminal screen as a window that displays only part of the input
and output that has been generated in the course of the APL session.
The Session Manager maintains in memory a record of recent output,
storing more lines than can appear on the screen at once. Scrolling is
the process of moving the window up and down through the stored
screen images.

Scrolling occurs automatically when all lines on the screen have been
used and a new line of output is produced. All lines on the screen move
up one position, and the topmost line disappears. If you move the
cursor to the top line of the screen using cursor-up and press cursor-up
again, you will "push" the window up one line to reveal the line that
had disappeared. Similarly, pressing cursor-down when the cursor is at
the bottom of the screen will push the window down one line.

The scroll-up and scroll-down keystrokes are used to scroll the window
up and down a line at a time without changing the cursor position.
Page-up and page-down move up and down a screen-full or "page" at a
time. Other editor commands can be used to move the window in
additional useful ways. Chapter 2 discusses the full-screen editor and
its commands in detail.

If you are at the top of the scrolling memory and try to move up
farther, the terminal will beep or flash the screen. The same effect is
produced by attempting to move down past the last line. Only a
limited number of screens of output are saved for scrolling; you can
specify how many with the session parameter screens= (see Section
1-7). By default, the system saves four screens-full of output. When
the scrolling memory is full, new output is inserted at the bottom of
the scrolling memory, and the top lines are discarded.

Copyright © 1987 STSC •. Inc. 1-17 Gelling Started

On-Line Session Manager Documentation

The system command) HE L P displays a summary of the keystrokes
and commands used by the Session Manager and full-screen editor.
The information displayed is extracted from a VMS file whose name is
specified by the APL session parameter help= (see Section 1-7). If
no help file is specified, the default file is used:

[APL . RELn] HELP. HLP.

1-7 APL Session Parameters

Session parameters control various options for APL sessions. They
also convey information to APL about the terminal you are using.
Specify session parameters by typing them on the same line as the
APL invocation, or by including them in your configuration file.
Following are some examples of session parameters:

$ apl 400000

Specifies the initial size of the active workspace to be 400,000 bytes.

$ apl editmem=40000 screens=lO

Specifies 40,000 bytes for session manager and full-screen editor
memory, with 10 screens of output saved in the scrolling memory.

$ apl initfile=[apl.rell]pc.init

Specifies that thefile APL _DISK: [APL. REL1] PC. INIT will be
used as a configuration file; this particular file (PC. INIT) is used
when the terminal is a PC running the APL * PLUS PC System in
terminal mode.

Many other session parameters also exist. Since there are so many
different session parameters, we recommend that you use a
configuration file to contain them. Configuration files are files that
contain APL session parameters; their structure is described in Section
1-8. The default APL command file, which is typically installed as

Copyright © 1987 STSC. Inc. 1-18 Gelling Started

the command APL, selects a configuration file for you based on the
type of terminal you specify.

The parameters that you can supply when starting APL are listed in
the following table:

Parameter

nnn
editmem=
help=
initfile=
initialws=
library=
outputtrt=
prompt=
screens=
status=
termcap=
termdinit=
terminal=
terminit=
termtype=b

Description

Workspace size in bytes (default=16,384)
Session/editor memory (default=65,536)
Name of help me
Name of configuration file
Initial workspace name
Define library/directory mapping
Name of output translate table file
String used as input prompt
Number of screens saved in session
Initial terminal state (default=O)
Name of termcap database
String sent to terminal on exit from APL
Name of terminal you are using
String sent to terminal at entry to APL
Bit-paired terminal

Each of the session parameters is described in more detail in this
section.

Workspace Size
nnn

The initial size of the APL workspace is specified by a session
parameter that consists of a number with no qualifier. For example:

$ apl 200000

specifies a 200,OOO-byte workspace. If the size parameter is missing
or incorrectly formed , or if not enough memory is available for the
requested size, the default workspace size is used. The default size is
the smallest possible workspace, 16,384 bytes.

The maximum workspace size is determined by the process size limit
and the amount of process memory available to VMS at the time APL

Copyright © 1987 STSC, Inc. 1-19 Getting Started

is invoked. If your request is for a larger workspace than VMS can
provide, APL displays the message INSUF F IC lENT SPACE
FOR W S and uses the default size.

Once APL is running, you can increase or decrease the workspace size
using) CLEAR :

)CLEAR 150000
CLEAR WS

)CLEAR 900000
INSUFFICIENT SPACE FOR WS
CLEAR WS

See Section 10-3 for information on how to increase the workspace
size limit.

Full·Screen Editor Memory
editmeIn=

The amount of memory allocated for the APL session manager and full­
screen editor can be specified with the editmem= bytes. For example:

$ apl editmem=50000

allocates 50,000 bytes of memory for the editor. This memory stores
the logical image of the APL session as well as the images of objects
being edited in the full-screen editor. The message NOT ENOUGH
MEMOR Y AV AI LABLE from the full-screen editor indicates that
the current allocation has all been used.

The default allocation is 65,536 bytes, and the edi tmem= bytes can
specify any value from 16,384 to as large as VMS will allow.

Help Facility
help=

The session parameter help= specifies the name of the file that is
read and displayed by the APL system command) HE L P. The help
facility allows you to display the contents of the file, one screen at a
time, or to review a screen that has already been displayed. If the
help= option is not used, the default help file is used:

Copyright © 1987 STSC. Inc. 1-20 Gelling Started

[APL.RELn]HELP.HLP

) HE L P provides only a very simple help facility and is not
recommended for incorporation into applications. The primary use of
the facility is to help you remember the session manager and
full-screen editor commands. For this reason, you may want to write a
specific help file for individual terminals and to include the help=
parameter in the configuration file for that terminal.

The distributed file HELP. HLP is a good example of the structure and
content of a help file. Note that the VMS line-feed character
(0 TC LF) is interpreted as the line delimiter in HELP. HLP.

Configuration File
initfile=

The initial file is a configuration file that contains session parameters.
See Section 1-8 for details on using initfile= and creating a
configuration file.

Initial Workspace
initialws=

The initial workspace parameter initialws= specifies the name of a
workspace that APL will load automatically at the start of the session.
If the initial workspace contains a latent expression (0 LX), an
application can be started automatically. The workspace name is
specified as the name of the VMS fIle that contains the saved
workspace but without the . ws extension. For example:

$ apl initialws=autostart

If no explicit path is provided, the workspace is assumed to be in the
current default directory.

Copyright © 1987 STSC. Inc. 1-2 1 Getting Started

Library Number
library:

The session parameter library= equates a library number with a
VMS directory. This feature can be used to increase compatibility
with other APL systems that use library numbers. For example:

library=ll[apl.rell]

defines library 11 as corresponding to the directory [APL. REL1] .

More information on numbered libraries is in Chapter 3.

Output Translation
outputtrt=

The session parameter outputtrt= specifies an optional output
translation table that is used instead of the translate table built-in to
the system. This table controls the character sequence transmitted to
the terminal for each of the 256 possible APL character values. All
normal APL output to the terminal is affected. including input that is
displayed while you type.

The outputtrt= parameter is primarily used to make APL work
with specialized terminals that do not conform to the APL/ ASCII
typewriter-paired standard. Thus. the file VT220TAB contains
translations specific to STSC's downloaded character set for the VT220
terminal. The following tables are available:

aplotab a translate table for APL/ASCII typewriter-paired
terminals

bitotab a translate table to be used with bit-paired
terminals. such as the HP 2641 A.

rawotab a translate table that causes each element of OAV
to be output with no translation at all

vt220tab a translate table for VT220 terminal with
downloaded APL characters.

An output translation file should be a regular VMS sequential
Stream_LF file containing exactly 256 lines. The lines should be

Copyright © 1987 STSC. Inc. 1-22 Getting Started

delimited by the line feed character (OTC LF in APL, not OTC NL), as
would be produced by the VMS editor. For example, the 48th
character of OAV (origin 1) is slash (/), so line 48 of the file should
contain the character / .

A new translate table can be used to change the display form of
characters in APL's OA V or to define display forms for characters that
are not presently defined. It does not allow you to define new
overstrikes that are accepted for input, although it can be used to
control how valid overstrikes are displayed. For example, it can be
used to control whether characters from OA V [97] to OAV [122]
are displayed as ABC . .. Z or a be ... z.

For convenience, the same notation as is used in term cap flIes can be
used to denote characters that are difficult to produce explicitly using a
text editor:

\E means the escape character (decimal 27)
"G means the BEL character (decimal 7)
\010 means octal 10 (decimal 8), also known as backspace or Ctrl-H
\ \ means a single backslash.

Each sequence of characters should actually cause only a single
character to be displayed on the terminal. If the sequence causes the
cursor to move anywhere other than one position to the right, the
terminal display will become unsynchronized with the session
manager.

Input Prompt String
prompt=

The session parameter prompt= is used to specify a string that serves
as the APL input prompt. Any string can be used, but the most
useful value is the ASCII BEL character, which causes the terminal to
beep when input is expected (much like an APL time sharing system).
If a personal computer is being used as a terminal, the BEL prompt
can provide a useful termination character for a DARB IN-based data
transfer protocol on the PC; for example:

$ apl prompt= "' G

where "'G is a notation recognized by APL for Ctrl-G.

Copyright © 1987 STSC. Inc. 1-23 Getting Started

"Customizing Logical Keystrokes" later in this section contains a
description of this notation.)

Scrolling Memory Pages
screens=

The session parameter screens= specifies the number of screens of
scrolling memory reserved for the image of the APL session. For
example:

$ apl screens=lO

specifies ten screens. This memory is allocated from the block of
storage reserved for the editor, and it may be necessary to increase the
editor memory (with the editmem= session parameter) in order to
have enough space.

Terminal Initialization
status=

Several session parameters are used to initialize the terminal or specify
terminal behavior. The status=n is used to set the initial state of
insert mode, status line, and keyboard:

status=O insert off, status line off, APL keyboard
status=l insert mode on
status=2 status line on in APL Session Manager (Default)
status=4 text keyboard instead of APL keyboard.

Combinations are specified by the sum of the values for the intended
state. For example:

$ apl status=5

specifies insert mode on, status line off, and text keyboard.

Initialization Strings
terminit= and termdinit=

The session parameter terminit= specifies a character sequence that
is transmitted to the terminal upon entry into APL. The default
sequence is the ASCII character SO (Ctrl-N) to switch the terminal into

Copyright © 1987 STSC, Inc. 1-24 Getting Started

the APL character set. The session parameter termdinit= specifies
a corresponding string that is transmitted upon exit from APL; its
default is the ASCII character SI (Ctrl-G). The termdinit= and
termini t= strings are also transmitted when 0 eM D and) eM Dare
used to execute a VMS DCL command from APL.

Both strings can be set to empty, effectively nullifying the default. For
example:

$ apl terminit= termdinit=

Specifying empty strings is recommended on terminals where the
default strings produce unwanted effects.

Identifying the Terminal to APL
terminal=

The terminal= parameter identifies the terminal name to APL. The
terminal name will then be used in conjunction with the term cap
database to provide a common set of terminal facilities for a wide
variety of terminal types. The terminals supported in the supplied
terminal database are:

pc
c108
avt
c200
hp
vt100
vt200
g
h

IBM PC running APL * PLUS PC
HDS Concept 108
HDSAVT
HDS 200
HP2641
DECVTlOO
DEC VT220 and VT240
generic APL video terminal
generic APL hardcopy terminal

To specify a terminal, use the appropriate abbreviation, as in:

Custom Termcap
termcap=

$ apl terminal=vt200

The APL * PLUS System for V AXNMS uses exactly the same
structure for entries in the termcap database as are used in the UNIX

Copyright © 1987 STSC, Inc. 1-25 Getting Started

environment. The facility is general enough to enable APL to provide
effective full-screen control on virtually any CRT display terminal. It
is possible to develop your own termcap entries for terminals not
presently included in the atermcap file supplied by STSC. If you
do, you can specify your own file instead of STSC's atermcap file
by using the termcap= parameter, as in:

$ apl termcap=filename

Since most terminals used in the VMS environment are designed to
emulate either a DEC VT100 or VT220, you should try identifying
your terminal to APL as one of these before developing your own
termcap entry and configuration file. See Appendix D for additional
information on the structure of a termcap database.

Customizing Logical Keystrokes

In order to work with a large variety of terminals, the APL * PLUS
System can recognize a sequence of one or more characters as one of
the logical editing keystrokes. Many terminals have cursor keys and
other special keys that transmit special character sequences.

Each of the logical keystrokes recognized by APL can be customized
to your terminal's behavior by specifying a session parameter. For
example, the cursor-up key on a DEC VT100 terminal transmits a
three-character sequence: ESC, T, and 'A'. The cursup= session
parameter defmes the cursor-up keystroke, thus:

$ apl cursup= \ 033[A

causes APL to recognize the VT1oo's cursor-up key. The phrase 033
represents the ESC key, which is encoded as octal 033.

The following table lists the logical keystrokes used in this
APL * PLUS System, the keywords used to specify them on the DeL
command line or in a configuration file, and the default characters used
for the keystrokes.

Copyright © 1987 STSC, Inc . 1-26 Getting Started

Defining Logical Keystrokes

Logical Parameter
Keystroke Keyword Default

Enter return= RETURN
Delete character delete= Ctrl-D
Clear-EOL clreol= Ctrl-E
Command prefix cornmand= TAB
Refresh refresh= Ctrl-F
Page-up pageup= Ctrl-C
Inse~eplace/OverstrUke toggle= Ctrl-T
Undo (restore line) undo= Ctrl-B
Alt-key prefIx altkey= ESC
Cursor-left cursleft= Ctrl-H
OverstrUke overstrike= Ctrl-P
Untype untype= Ctrl-R
Cursor-right cursright= Ctrl-L
Scroll-down scrolldown= Ctrl-U
Cursor-up cursup= Ctrl-K
Page-down pagedown= Ctrl-V
Cursor-down cursdown= Ctrl-l
APL-keyboard aplkeyb= Ctrl-N
Text-keyboard textkeyb= Ctrl-O
Scroll-up scrollup= Ctrl-Y
O-U-T out= Ctrl-Z

The defaults apply if no confIguration file is used. When APL is invoked
using the DCL command procedure [APL. RELnJ APL. COM, the correct
configuration is selected based on the terminal name you supply. For
many terminals, the cursor-movement keys are defined in the atermcap
database; if present, APL will implicitly use these definitions, and the
configuration fIle need not supply them.

The ASCII characters with decimal values in the range 0 through 31 are
called "control characters" and must be represented by a special notation.
The APL * PLUS System follows conventions for denoting control
characters either as a backslash followed by three octal digits or with "
followed by a letter. Thus, the character SO (decimal 14) is represented as
\016 (14 decimal is 16 octal) or as "N, since Ctrl-N on the keyboard
produces an SO character.

Copyright © 1987 STSC, Inc. 1-27 Getting Started

The logical keystrokes supplied to APL must be selected so each is
distinct. If the same character sequence is specified for two different
functions or one key sequence is a substring of another, the message
WARNING - CONFLICTING EDITING STRINGS ap~Ms
when APL is first invoked. For many terminals, the sequences transmitted
by the cursor keys Me part of the information stored in the termcap
database. If so, it is not necessMY to explicitly describe the cursor key
codes in the APL configuration file.

The most common source of conflict is the character ESC, which is APL's
default PF-key prefix and which is also transmitted by many terminals
when the cursor keys are pressed. Specifying a unique sequence for the
PF-key keystroke will silence the warning message. Ctrl-A (decimal 1) is
a common choice for the PF-key keystroke in this case.

1-8 Configuration Files

APL session parameters contain information provided to APL when it is first
invoked. These pMameters control the chMacteristics of the APL session.
Session parameters Me s~cified either in the VMS command that invokes
APL or in configuration files.

The number of session parameters you may need to provide is often too many
to type as part of the VMS command that invokes APL. The APL * PLUS
System, therefore, provides a means for you to use a configuration file that
contains an arbitrary number of additional session parameters.

You can think of a configuration file as an extension of the VMS command
line that invokes APL. Use the initfile= session parameter to specify
the name of the configuration file. For example:

$ apl initfile=apl_disk : [apl.reln]pc.init

invokes APL with the file named [APL. RELn] PC. INIT as the
configuration file.

A configuration file is an ordinary VMS file of ASCII text, that would be
produced with the VMS editor. Each line of the configuration file contains
the definition for one session pMameter, just as it would be specified in the
DCL command line. It is also possible for an configuration file to contain
comments; any line that begins with "#" is considered a comment.

Copyright © 1987 STSC. Inc. 1-28 Getting Started

For example, suppose the file [USERID] SAMPLE. INIT contains the
following lines:

[line 1]
[line 2]
[line 3]
[line 4]
[line 5]
[line 6]
[line 7]

This is an APL in it file that runs APL
with a 150,000-byte workspace:
150000
and 10 screens of session memory:
screens=10
and initial workspace [userid]autostart:
initialws=[userid]autostart

Then the following two VMS commands are exactly equivalent:

$ apl initfile=[userid]sample.init

$ apl 150000 screens=10 initialws=[userid]autostart

Specifying Configuration Files

The session parameter initfile= is used to specify a configuration
file explicitly by name. You can specify more than one configuration
fIle, and it is possible for a configuration file itself to contain the
ini t f ile= session parameter to specify another configuration file.
O'ne configuration file can be linked to another, up to a maximum of
15 fIles deep.

Whenever the initfile= parameter is encountered, the effect is as if
the contents of the specified file replaced the ini tf ile= parameter.
If a session parameter is specified more than once, the last definition is
the one used. Thus, the effect of:

$ apl initfile=[userid]sample.init 50000

is to run APL with a 50,OOO-byte workspace, even though the
configuration file specifies 150,000 bytes.

Copyright © 1987 STSC, Inc. 1-29 Getting Started

e"
Z
~
C
w

m
c
3
z
G')

Chapter Two
Editing Functions and Variables

This chapter describes the two editors that are available in the
APL * PLUS System:

a full-screen editor that can handle functions, character variables,
and the record of your APL session.

• the traditional APL function editor, known as the del (V) editor,
which is line-oriented and only applicable to user-defined functions.

Section 2-1 of this chapter describes the full-screen editor and its
associated ring of multiple images undergoing editing at any given
time. The descriptions include the concept of the edit ring and its
usage: placing a copy of an. object from the active workspace in the
ring, moving between images (including your APL session and its
immediate execution mode), moving within the image on the screen
and off, changing the image, and redefming an object from an image in
the ring.

Section 2-2 of this chapter describes the del editor and its associated
func'tion definition mode. The descriptions include entering and
leaving function definition mode, and selecting, displaying, entering,
editing, or deleting individual lines of the function.

2-1 The Full-Screen Editor

The full-screen editor is the part of the APL * PLUS System that
manages the input and output between the user and the APL system.
The full-screen editor includes a program called the Session Manager
that controls what appears on the terminal screen. Because the Session
Manager and full-screen editor are one unified program, you can edit 0
and I!l input and output, and 0 W PUT output, as well as APL
functions and data.

Copyright 1987 S'(SC, Inc. 2-1 Editing Functions and Variables

Using the Session Manager/editor, you can:

• create or mOdify functions or variables in the active workspace

• edit several objects at the same time

• edit the image of the APL session and save text into functions and
variables

• use cursor movement, scrolling, and paging

• insert and delete characters

• copy, move, and delete blocks of text

• move blocks of text between functions, variables, and the session

• search for specific character sequences and optionally replace them
with another string

• switch to text mode to allow entry of ASCII text (upper- and
lower-case letters, characters such as #%&", and so on).

A Ring of Editing Images

The full-screen editor operates on visual images of APL functions or
variables. The editor can work with many images at the same time,
although only one image at a time can be displayed on the terminal. Each
image is stored in a logical screen that has a name and a unique screen
number. A logical screen exists outside of the workspace where actions
like lLOADand lCLEARdonotaffectit.

The screen images stored in the editor are arranged in a ring, like a rotating
desktop telephone card file where many cards are stored but only one is
visible. You can move freely from one image to another without losing
its contents. Commands are provided to create new screens, move between
them, delete them, and define functions or variables from them.

Copyright 1987 STSC, Inc. 2-2 Editing Functions and Variables

Changing the image of a function or variable in the editor has no effect on
the object in the workspace until the image is explicitly written back into
the workspace.

The APL session is simply one of the images in the edit ring. Editor
commands can be used on the APL session, providing some very useful
capabilities. For example, you can develop APL statements interactively
in the session, then copy the lines of code into the image of a function
being edited. The string search feature can be used to find a line of text in
the APL session. You can even write the session image into the
workspace as a variable.

Special Behavior of the APL Session Screen

There are three main differences in behavior between working in the session
screen and editing a function or variable:

• The response to the Return key is different. In the APL session
screen, pressing the Return key causes APL to read the current line
as input and act upon it. When editing an object such as an APL
function, pressing Return simply moves the cursor to the beginning
of the next line.

• The maximum number of lines preserved in the APL session screen
is fixed when APL is invoked. The default maximum is four
terminal pages, but you can use the startup parameter screens= to
specify a larger maximum (see Section 1-7). Once all the lines are
used, the topmost lines are discarded as new ones are appended.
When editing a function or variable, however, data is never lost.
New lines are added to the object as it grows, limited only by the
amount of memory allocated to the editor at the start of the APL
session (see Section 1-7 for information on the editmem=
parameter).

• Line numbers can be displayed in edited objects but not in the APL
session screen.

Copyright 1987 STSC, Inc. 2-3 Editing Functions and Variables

Status Line

The last line of the terminal screen is reserved for a status line which
contains information about the active screen and keyboard input state.
The status line can be switched on and off using Command T
(described later in this section). Here are some examples of status
lines:

SCREEN l:APL SESSION Ovs APL
(The APL session screen.)

SCREEN 2:FN READ Ins APL
(An APL function named READ.)

SCREEN 3:CHAR MAT PRICES Ins Text
(A character matrix PRICE S.)

The status line consists of three fields:

• the screen number, which uniquely identifies the logical screen.

• object identification, which identifies the object in the screen; the
field will contain AP L S E S S ION to identify the session screen;
for other screens, it will contain the designation F N for an APL
function, or CHAR followed by VEC or MAT to identify a character
vector or matrix, followed by the object name

• editor state, which contains the indications 0 v s for overstrike
mode, Rep for replace mode, Ins for insert mode, or C m d for
command mode; A P L indicates APL font keyboard and T ext
indicates ASCII text keyboard input.

Full-Screen Editor Commands

Full-screen editor commands can be divided into two classes:

• basic and frequently used commands such as "move the cursor up
one line," "untype the last character," or "start insert mode." They
are typed with single keystrokes. These keystroke commands
include Untype, Delete, Undo, Overstrike, Clear-EOL, and

Copyright 1987 STSC. Inc. 2-4 Editing Functions and Variables

keystrokes for cursor movement and window scrolling. They are
listed in Section 1-5.

• powerful and general commands such as "replace one string with
another," "delete five lines," or "delete all characters through the next
, 0 '." These commands are formed starting with a prefix key and

generally require multiple keystrokes.

General Full-Screen Editor Commands

General commands all start with the Command keystroke (usually the
TAB key), which tells the editor that the keystrokes that follow are
part of a command and not APL input. Most of the commands allow
an optional count or repetition factor and a modifier or arguments.
Here are some examples of general commands:

TAB lOA (Move the cursor to absolute line number 10.)

TAB 6 D SPACE (Delete 6 characters to the right.)

TAB 4 D RETURN (Delete 4 lines.)

In these examples, the Command prefix is the TAB character, the
default. However, you can use a different keystroke as the Command
key. Section 1-7 explains how to specify the keystroke. The words
SPACE and RETURN represent the terminal's space bar and Return
keys. Spacing between the characters of the command provides clarity
in the example; the spaces would not be typed in the actual command.
Likewise, brackets, used to indicate fields that are optional, are not
typed in to the actual command. The general form of an editor
command is:

TAB [COunl] name parameters

The count is typically optional, and parameters are not needed for all
commands.

If you press the Return key to end a command, the word RETURN

appears in the description. Many commands do not require you to
press RETURN; they are completed as soon as you have typed the
entire command. The characters used in commands assume the APL

Copyright 1987 STSC, Inc. 2-5 Editing Functions and Variables

keyboard; for example, TAB E means the TAB key followed by the
unshifted E key.

Commands/or Editing Functions and Variables

Edit object

The following commands are used to control the contents of the edit
ring. Commands are provided to create a new logical screen, to move
from one screen to another or back to the APL session, and to define
APL objects from their screen images.

TAB E name {options] RETURN

Create a logical screen containing an image of the named object and
display the image on the screen for editing. The name of the screen is
the same as that of the object

l£rite object TAB 11 {name] {options] RETURN

Exit editor

Quit editor

.Get object

Write a copy of the current logical screen into the active workspace. If
a name is specified, the object is given that name; otherwise, the name
from the function header or, for a variable, the name of the screen is
u<>ed.

TAB Z {name] {options] RETURN

Write a copy of the current screen into the workspace (as name), delete
the screen, and return to the APL session. This command is the quick
way to exit from the editor.

TAB Q [ALL] RETURN

Delete the current logical screen and return to the previous one. If
ALL is specified, all screens except the APL session screen are
releted.

TAB G name RE TURN

Get the object (name) from the workspace and insert its image at the
current location in the screen.

Copyright 1987 STSC, Inc. 2-6 Editing Functions and Variables

forward screen TAB F {name] RETURN

Move forward to the next logical screen or, if name is specified, to the
screen with that name.

fiackward screen TAB B RETURN

Move backward to the previous logical screen.

APL Session screen TAB S RETURN

Move to the APL session screen.

Display .Ring TAB R

Display the contents of the ring of logical screens. The table of
contents remains visible until you press Return.

The options field in the above commands can contain one or more of
the following options, as appropriate, to specify the type and rank of
the object:

-FN edit or write the object as an APL function
-CHAR edit or write the object as character data
-VEC edit or write the object as a vector
-MAT edit or write the object as a matrix
-LNO edit the object without line numbers
- LNI edit the object with line numbers (default).

When you begin editing an object with TAB E, the default object
type is that of the object, if it already exists. If the object does not
exist, the default type is function (-FN). When you write the object
back to the workspace (TAB II), it will be stored as the same object
type as it was in the editor.

Note that changing the active screen with edit (TAB E), forward
(TAB F), backward (TAB B), or session (TAB S) does not
destroy the current logical screen. The current screen becomes
inactive, and you can return to it by moving around the edit ring.

Copyright 1987 STSC, Inc. 2-7 Editing Functions and Variables

Commands/or Moving Around on the Screen

In additon to the basic cursor movement keystrokes, the following
commands can also be used to move the cursor around the screen and
to scroll and page up and down:

Pseudonym .Keystrokes

+-+- TAB H

-+- TAB L

Bottom TAB J

Top TAB K

n+- TAB n H

n-+ TAB n L

Down TAB n J

Up TAB n K

Scroll t TAB n Y

Scroll "- TAB n U

Page t TAB n C

Page "- TAB n V

Locate - TAB X c

Locate -+ n TAB n Xc

Locate +- TAB X c

Copyright 1987 STSC,lnc.

Result

Move to the left margin.

Move to the right end of the line.

Move to the last line of the logical screen.

Move to the first line of the logical screen.

Move n spaces to the left.

Move n spaces to the right.

Move n lines down.

Move n lines up.

Scroll the window up n lines.

Scroll the window down n lines.

Page the window up n terminal screens.
If n is omitted, page up one screen.

Page the window down n terminal screens.
If n is ommitted, page down one screen.

Move right to the character c.

Move right to the nth occurrence of
character c.

Move left to the character c.

2-8 Editing Functions and Variables

Locate +- n TAB n X c

Locate ¢ TAB 0

Locate ¢ n TAB n 0

Jump TAB 0 c

Jumpn TAB n A

Commands/or Deleting Characters

Move left to the nth occurrence of
character c.

Move right to the next diamond.

Move right to the nth diamond.

Move to the line marked with the letter c
(see "Marking a Line," below).

Move to absolute line number n.

You can delete multiple characters with the delete command. Each
form of the command takes an optional number which defaults to 1 if
omitted.

Delete TAB n D L Delete n characters to the right.
or TAB n D SPACE (Altemateformofabovecommand.)

Delete +- TAB n D H

Delete n TAB n D X c

Delete +- n TAB n D X c

Delete n ¢ TAB n D 0

Commands/or Marking a Line

Delete n characters to the left.

Delete right to the nth occurrence of
character c.

Delete left to the nth occurrence of
character c.

Delete right to the nth occurrence of O.

A line can be marked with anyone-letter name for reference in other
commands. Once marked, the line can be referenced by the 0 modifier
followed by the character. For example, TAB 0 A moves the
cursor to the line marked with letter A.

Mark TAB M c Mark the current line with character name c.

Copyright 1987 STSC, Inc. 2-9 Editing Functions and Variables

Commands/or Deleting and Saving Lines

One or more lines can be deleted from the logical screen with a single
command. The deleted lines are saved into a buffer and can be inserted
from the buffer into a different place in the logical screen or even into
a different logical screen. Lines can also be saved into the buffer
without deleting them. Only one group of lines is saved in the buffer
at once, so deleting or saving a block of lines causes the previous
buffer contents to be lost.

Delete + TAB n D D
or TAB n D J

Delete t TAB n D K

Delete TAB n D A
Block

Delete TAB DOc
Thru

Copy + TAB n
or TAB n J

Copy t TAB n K

Copy Block TAB n A

Copy Mark TAB 0 c

Copyright 1987 STSC. Inc.

Delete n lines downward, including the
line on which the cursor appears; default
number is 1 to delete current line only.

Delete n lines upward.

Delete from current line upward
(positive n) or downward (negative n)
to line number n; if n is unspecified, all
lines to the last line in the logical
screen are deleted.

Delete through line marked with letter c.

Save n lines downward into the buffer,
including the current line. Note that
represents the APL assignment arrow,
not the cursor-left key.

Save n lines upward into the buffer.

Save from the current line to absolute
line number n; if n is unspecified, all
lines to the end of the logical screen are
saved.

Save from the current line to the line
marked with letter c into the buffer.

2-10 Editing Functions and Variables

Commands/or Inserting New and Saved Lines

Insert
Line +

Insert
Line t

Put+

Put t

New lines can be inserted with the insert line command. The lines
saved in the save buffer (from delete or copy) can be inserted with
the put command.

TAB I Insert a blank line below the current
line.

TAB 1 Insert a blank line above the current
line.

TAB P Put the contents of the save buffer
below the current line.

TAB * Put the contents of the save buffer
above the current line.

Note that moving from one logical screen to another with edit (TAB

E), forward (TAB F), backward (TAB B), or to session (TAB
S) does not alter the contents of the save buffer. Copy and put can
be used to move lines between functions or from the session to a
function.

Commands for Splitting and Joining Lines

Join TAB ,

Split TAB .

Join the next line to the current line to
form one line.

Split the current line at the cursor
position to make two lines.

Commands/or Searching and Replacing

The search and replace commands are used to locate a sequence of
characters in a screen and optionally replace it with a different string.
String searches wrap around to the start of the logical screen if the end
of the screen is reached.

Copyright 1987 STSC, Inc. 2-11 Editing Functions and Variables

Search

Repeat
Search

Replace n

Replace All

Repeat
Replace

Replace
.... n

Replace
4-n

Replace
Mark

Replace
Mark +-

TAB / string RETURN

Search the logical screen for the next
occurrence of string.

TAB / RETURN Repeat the last string search command.

TAB n \ \ string2 RETURN

Change n occurrences of the search
target from the previous string search to
the given string2. Default n is 1.

TAB $ \ \ string2 RETURN

TAB SPACE

Change all occurrences of the search
target from the previous string search to
the given string2.

Repeat the previous string replace
command.

TAB n \ L string2 RETURN

Delete n characters to the right and
replace them with string2.

TAB n \ H string2 RETURN

Delete n characters to the left and replace
them with string2.

TAB n \ Xc string2 RETURN

Delete from the cursor to the nth
occurrence of character c and replace
with string2.

TAB n \ Xc string2 RETURN

Copyright 1987 STSC. Inc. 2-12 Editing Functions and Variables

Delete from the cursor left to the nth
occurrence of character c and replace
with string2.

Replace
On

TAB n \ 0 string2 RETURN

Delete from the cursor to the nth
occurrence of I 0 I and replace with
string2.

Miscellaneous Commands

Status TAB T

Help TAB 7

Turn the status line on and off.

Display the help screen and allow the
user to browse through a list of editor
commands.

Canceling a Command

Any general editing command can be canceled before it is completed by
repeating the Command prefIX; for example,

TAB 5 D TAB

This command, which was intended to delete 5 lines, does not take
effect because it is terminated with Command.

Command Mode

There is a command mode in which all keystrokes are treated as editor
commands. In this mode, the command prefix can be omitted in all
commands. This mode is useful for editing an existing object,
moving data around, making global changes, and so on. As an
example, the commands to move to line 7 of a function and delete 3
lines normally would be:

TAB 7 A
TAB 3 DD

Copyright 1987 STSC, Inc. 2-13 Editing Functions and Variables

In command mode they would be:

7 A
3 DD

Command mode overrides insert mode and overstrike mode. Characters
typed in during command mode do not become part of the text.

TAB x Switch in and out of command mode
(the keystroke is the APL multiply key).

Entering the insert line command from command mode temporarily
returns you to insert or overstrike mode to enter data on the new line.
As soon as you leave the new line with any editor command, you are
back in command mode.

Editor System ComlTUlnds and System Functions

The system command) EDIT and system function DE DIT invoke
the full-screen editor and have the same effect as the TAB E key
sequence. The system command) HE L P is the same as TAB 7.

Using Hardcopy or Limited Terminals

The features of the editor are available on any CRT terminal with a
minimum set of capabilities. The minimum functions required to
support a terminal in full-screen mode are :

• clear to end of line

• clear screen (or alternatively, clear to end of page)

• cursor addressing (or alternatively, home-cursor).

Most CRT terminals have at least these facilities. If the terminal has
more advanced features than these, they will be used, but they are not
required. The terminal need not have any cursor control keys or
function keys, but if it does they can be used. Information on how to
control the terminal is extracted from the termcap database. For further
information on termcap and APL's use of it, see Section 1-4 and
Appendix D.

Copyright 1987 STSC, Inc. 2-14 Editing Functions and Vari ables

The APL * PLUS System will function with hardcopy terminals and
terminals without the minimum set of features, but editing capabilities
are limited. In these limited terminals the system works in line mode,
and none of the general full-screen editor commands can be used. The
system commands) HE L P and) EDIT and the system function
OED IT are disabled, but some of the basic editor commands can be
used. These provide the user with basic editing capabilities like those
used on earlier APL system implementations. In line mode, the
following editing keystrokes can be used:

Editor Errors

Untype

Delete

Clear-EOL

Work as backspace followed by linefeed.

Work only on the last character of the line;
the visual effect is a linefeed.

Erase all characters from the cursor to the
end of the line. The visual effect is a
linefeed.

Enter Enter the current line as input to APL.

Cursor-down Move the cursor down one line.

Cursor-left Move the cursor left one space without
erasing what is there (non-destructive
backspace).

Cursor-right Move the cursor right one space without
erasing what is there (non-destructive space).

Undo Discard everything typed on the line and
re-prompt.

An incorrectly formed editor command will produce a warning to the
user by flashing the terminal screen or sending a bell character. This
may occur when you try to delete more lines than a screen contains,
when you try to form an illegal overstrike, or from a variety of other
circumstances. Additionally, the editor may produce the following
error messages:

Copyright 1987 STSC. Inc. 2-15 Editing Functions and Variables

CANNOT GET UNDEFINED OBJECT

The object requested does not exist in the workspace.

CANNOT QUIT APL SESSION

The quit command (TAB Q) is not valid from the APL
session screen.

CANNOT REPLACE FN WITH VAR OR VAR WITH FN

The write command (TAB W) was issued to write an object
as a variable when it already exists as a function in the
workspace or vice versa. Use the session command (TAB

S) to move back to the session to erase the object and the
forward command (TAB F) to get back to the original
screen to retry the write command.

DEFN ERROR

An error in the structure of the function prevents the
function from being defined in the workspace.

DOMAIN ERROR

The object of an edit command (TAB E) is not an allowable
data type. Numeric data, nested arrays, and heterogeneous
data cannot be edited.

HELP FILE NOT FOUND

A help command (TAB H) was issued and the help file
cannot be found. The default help file is
[APL. RELn 1 HELP. HLP. Alternate help files can be
specified with the help= session parameter. See Section
1-7 for details.

IMPROPER NAME

An edit, get, forward, or write command (TAB E, TAB

G, TAB F, or TAB W) was issued with an improperly

Copyright 1987 STSC. Inc. 2-16 Editing Functions and Variables

formed variable or function name. Names must be
well-formed APL identifiers.

INCORRECT OPTION TO QUIT COMMAND

The quit command (TAB Q) was used with an option other
than ALL. ALL is the only option allowed with the quit
command.

LENGTH ERROR

The edit or get command (TAB E or TAB G) was issued
for a matrix that has a second dimension greater than 1014
or for a vector that has more than 1014 characters between
newline characters.

LINE TOO LONG

The join or replace command (T AB • or TAB \) issued
would have resulted in a line of more than 1014 characters in
length.

NAME MISSING

An edit or get command (TAB E or TAB G) was issued
without specifying the name of the variable or function to
be edited.

NO PREVIOUS CHANGE

A repeat replace command (TAB SPACE) was issued
when there is no last change to repeat.

NOT ENOUGH MEMORY AVAILABLE

The editor has run out of memory and cannot perform Lhe
requested operation. You can delete an unneeded logical
screen from the edit ring by moving to it and using the quit
command (TAB Q). If this problem occurs in the delete
command (TAB D), it is because the editor is attempting to
save the deleted lines so you can later retrieve with "Undo."
Try deleting fewer lines at once. The memory allocated to

Copyright 1987 STSC. Inc. 2-17 Editing Functions and Variables

the editor can be increased or decreased with the edi tmem=
parameter at APL startup. See Section 1-7 for details .

NOT FOUND

The object of the search command (TAB /) was not found.

OBJECT ALREADY EXISTS

The write command (TAB W) was used to rename an object,
but an object with the new name already exists in the
workspace. Use another name or return to the session with
the session command (TAB S), erase the object, and return
to the edit screen with the forward command (TAB F).

ONLY IN IMMEDIATE EXECUTION

During 0 or ~ input, an edit command was issued that
would move to a new logical screen. This is allowed only
during immediate execution mode input.

RANK ERROR

The edit or get command (TAB E or TAB G) was used to
edit an array of more than two dimensions.

SI DAMAGE: WRITE IGNORED

The write command (TAB W) was issued for a function
which has been altered in such a way as to affect the
localization of names in the header or the line labels. A
version of the same function is suspended. Use the
session command (TAB S) to move back to the session to
clear the suspension and the forward command (T AB F) to
get back to the original screen to retry the write command.

UNKNOWN OPTION

An undefined option was specified in a command

Copyright 1987 STSC, Inc. 2-18 Editing Functions and Variables

UNKNOWN WRITE OPTION

An undefined or invalid option was specified in a write
command (TAB W).

UNNAMED OBJECT - SUPPLY NAME

A write command (TAB W) was issued for the APL session
screen without supplying a name. A name must be
specified for this case.

2-2 The Del Editor

This section describes,the del editor, a traditional line-oriented function
editor. Topics covered in this section include how to:

• enter and leave function definition mode

• understand the prompt

• select a line of the function (with [J)

• display the function or a line of the function for possible editing or
replacement (with 0)

• delete selected lines (with -)

• enter or edit a selected line

• exit from the editor, leaving the function unchanged.

Entering Function Definition Mode

To enter function definition mode, you must first be in immediate
execution mode (that is , the system has typed a prompt of six spaces
and is awaiting your input). Then:

Copyright 1987 STSC. Inc. 2- 19 Editing Functions and Variables

• Type a v.

• Type a function name (NAME is used in the discussion below).

• Press Enter.

Places where variations are possible are indicated by dots:

v NAME

To create a new function called N AM E (when there is no function or
variable called NAME in the active workspace), enter:

v RESULT ~ LEFT NAME RIGHT

This creates the new function, and establishes its syntax by using this
line as the header line. Any of the following can be omitted, thereby
establishing a different syntax for the function name:

RESULT ~

LEFT

LEFT AND RIGHT.

Thus, v N AM E can create a new function called N AM E that takes
no arguments and yields no explicit result.

To re-open an existing unlocked function called N AM E that is already
present in the workspace, enter:

v NAME

Regardless of the syntax of the function name, the system will prompt
for a new line at the end of the function .

Leaving Function Definition Mode

To leave function definition mode, end any line with a v and press
Enter. Alternatively, using'" will lock the function.

Copyright 1987 STSC. Inc . 2-20 Editing Functions and Variables

The effects of leaving function definition mode are:

• The lines of the function are reordered according to their line
numbers. The header is treated as line O. The other lines are
renumbered with consecutive integers, if necessary.

• The current header, if different from the original header, determines
the name and syntax for subsequent use of the function.

• The function is locked (can never be redisplayed or edited, but can be
erased) if a ¥ was used when entering or leaving definition mode.

• If the function being edited was suspended (noted in the state
indicator with a *) and the renumbering has changed the value of
labels, the new values will apply when execution is resumed. The
error message SID AM AGE indicates that the editing changes
will not permit the function to be restarted. The damaged levels in
the state indicator are indicated by [-1] in) S I. Entering
) RE SET will clear the damaged state indicator, and the newly

edited function can be run.

• The six-space prompt for immediate execution mode replaces the
square-bracketed prompts of definition mode.

Discarding Editor Changes

If you change your mind and want to discard all the changes you have
made in function definition mode, you can exit from the editor by
typing:

in response to the numbered prompt. The system displays the
message EDIT ABORTED, and the original form of the function, if
any, is restored.

Prompts in Definition Mode

A function definition is a numbered sequence of lines, each containing
an APL statement. When displayed, the lines are shown in order, each
preceded by the line number enclosed in square brackets ([]).

Copyright 1987 STSC, Inc. 2-21 Editing Functions and Variables

The prompt in function definition mode is also a function line number
enclosed in square brackets; it is the number of the line where the
system expects to store what you type. The complete prompt also
includes the cursor in the seventh column of the same line, waiting for
your input. Note that if the line number is long (such as
[1234 . 567]), the cursor is displayed farther to the right.

Selecting Function Lines

To select the function line you want to enter, edit, or delete, specify
the line number in square brackets and press Enter. You can use such
a line choice to override the prompt just printed or to end the line you
used to enter definition mode. The system responds by prompting for
the information to be stored under that line number. For example:

vOLD[5]

[5]

Displaying Function Lines

The symbol 0, used within square brackets, causes the lines already in
the function defmition to be redisplayed.

[0] Displays the entire function as currently defined.

[On] Displays the function from line n through the last line of
the function (or until you press Ctrl-C).

[nO] Displays the line numbered n and prompts for a replacement.
(You can override the prompt, avoiding replacement by
typing a different line number within brackets.)

[nOcJ Displays the line numbered n for possible editing, leaving
the cursor in column c. If a zero value is entered in c, the
cursor is displayed at the end of the line.

Deleting Function Lines

To delete a line from the existing definition of the function, precede
the line number with a - and enclose the entry in brackets. For
example, [-12] (followed by Enter) in response to a definition

Copyright 1987 STSC. Inc. 2-22 Editing Functions and Variables

mode prompt completely removes the line stored as line [12]. To
delete several lines at once (even lines just inserted between others),
type a -, type the line numbers to be deleted (separated by a space),
and enclose the entry in brackets; for example:

[-4 5 12 15 8 3.5 3.6]

The same technique can be applied in a line used to enter or leave
definition mode (or used to both enter and leave definition mode in the
same line). For example:

vNAME[-2 9]v

enters definition mode only long enough to delete the second and ninth
lines after the header of the function name, then leaves definition mode
and reprompts for immediate execution mode on the next line.

Entering or Editing Function Lines

Once the line has been selected (and possibly displayed), all of the
single character editing actions are available for adding new material to
the line or changing new or old material in the line. This is true
regardless of how the line was selected, how it is displayed, and
whether or not the line number is an integer.

Even the number of the line can be changed. In this case, both the
line with the old number and the line with the new number will
remain.

While in function definition mode, you can edit and re-enter any line
displayed on the screen. Typically, the steps are :

• Move the cursor to the already displayed line .
• Edit the line.
• Press Enter.

Combining Function Lines

It is possible to combine most elements of definition mode into a
single line. The following examples show several of the combined
actions you can use:

Copyright 1987 STSC, Inc. 2-23 Editing Functions and Variables

vRESULT~LEFT NAME RIGHT;LOCAL1;LOCAL2
[lJ LOCAL1~2xLEFT

[2J LOCAL2~ pRIGHT ¢ RESULT - LOCAL2 + LOCAL1
v

In the above example, only the line number prompts [1] and [2]
were typed by the system. The first line enters definition mode,
creates a new function with two arguments, two local variables, and an
explicit result. The second line enters a first line for the function.
When the system prompts for the second line, the user enters a line
and ends it by leaving definition mode.

vNAME[1.5] RESULT ~ RESULT + P RIGHT

The example above enters definition mode, inserts a new line between
lines [1] and [2], and leaves defmition mode, causing renumbering
of lines. When the function is redisplayed, the new line is line [2],

and the numbers of the following lines are all one higher than they
were before. (This is an important reason for using labels on lines to
which you want to branch within the function. If the function is
subsequently revised, line numbers may change, but the labels remain
with the intended destination line.)

To redisplay the function without staying in definition mode, enter:

vNAME [0] v

If you enter the statement:

vNAME [0]

the system displays the entire function, stays in definition mode, and
then prompts for a new line to follow the last line of the function. If
name is not the N AM E of an existing function , the system reports a
DE F N ERR 0 R is reported. Entering the statement:

vNAME [30] v

displays line [3] and returns the system to immediate execution
mode.

Copyright 1987 STSC. Inc. 2-24 Editing Functions and Variables

vNAME[03]v

skips the header and lines [1] and [2] but lists the remainder of the
function and then leaves definition mode.

If you omit the final v in the last example, the system stays in
function definition mode and prompts for entry of the next function
line (one plus the highest line number). You can either enter
information for the new line or request redisplay of an existing line.
For example:

[12] [307]

redisplays line [3] with the cursor in column 7. You can then insert
additional information at the beginning of line [3], possibly
separated from the existing statement with a O.

Error Reports in Function Definition Mode

DEFN ERROR

One of the following has occurred:

• An incorrectly formed header was used.

• A line was entered that does not begin with a square-bracketed line.

• A v not in quotes or in a comment occurs within a line.

• An attempt was made to delete the header, to define a function with
the same name as an existing variable or label, to re-open definition
of an existing function by specifying something other than the
function name after the v , to open a locked function , or to open a
pendent function (use DVR to see it).

SI DAMAGE

You have closed definition after making changes to suspended or
pendent functions that invalidate the current suspended state indicator.
The state indicator must be cleared before execution can be restarted.

Copyright 1987 STSC, Inc. 2-25 Editing Functions and Variables

51 DAMAGE PENDING

You have made changes to a suspended or pendent function that
invalidate the current suspended state indicator. You can recover at this
point by canceling the changes made using [-.] .

51 WARNING

W5 FULL

You are opening defini tion on a suspended or pendent function.
Changing the syntax or labels of a suspended function or making any
changes to a pendent function will damage the suspended state
indicator. However, other corrections to a suspended function are
permitted.

There is not enough space in the active workspace for the function
being defined.

Copyright 1987 STSC. Inc. 2-26 Editing Functions and Variables

rn
w ...
u:::

!!
r­
m
C/)

Chapter Three
Using Files with APL

The APL * PLUS System for V AXNMS, like other APL * PLUS
Systems, gives APL the ability to store and access data in disk files
outside of the APL workspace. As a result, you can use the flexible
sharing capabilities of the APL * PLUS System's component files in
conjuction with other types of files native to the VMS operating
system environment. With these capabilities, your VMS operating
system becomes an excellent environment for multi-user (shared data)
APL applications.

The following general capabilities are available with the APL * PLUS
System's disk files:

• the ability to enter, retain, and access data in disk files, where the
data can remain after the APL session ends

• the ability to store more data than can all fit at a time in the APL
workspace and to retrieve it in manageable portions

• the ability to perform file operations (like creating, erasing,
appending to, and renaming a file) under program control

• the ability to use native VMS files from APL, providing an
interface between APL and non-APL programs such as database
managers, word processors, and spreadsheets.

How This Chapter Is Organized

Section 3-1 introduces files in the APL * PLUS System; it defines
files, covers the fundamentals of file use, and describes the minimum
set of file operations needed for working with files.

Section 3-2 explains additional file operations useful for managing
personal (non shared) files . Sections 3-2 and 3-3 together describe all
the file operations needed for personal file management.

Copyright © 1987 STSC, Inc. 3-1 Files

Section 3-3 introduces file sharing. File operations are discussed that
allow both casual personal exchange of files and information and
formal, regulated access to a common information base.

Section 3-4 discusses detailed control of file access. It is intended for
individuals who will be implementing major applications that require
the use of shared flIes.

Section 3-5 discusses the access matrix in more detail and explains
how to apply it and the effects of making changes to it.

Section 3-6 explains how the APL * PLUS System relates the VMS
directories to APL libraries.

Section 3-7 compares the' APL component files and the native files
available through the APL * PLUS System.

3-1 Fundamentals of File Use

The APL * PLUS System includes a built-in file system for the APL
environment This file system allows easy use of either floppy disk
drives or hard disk drives to store data either in APL component files
or other file types nati ve to the environment You can store, retrieve,
and otherwise manipulate data with APL system functions.

Key Concepts

The material in this manual presumes that you have a clear
understanding of several key concepts:

files: A file is a place for storing and organizing data in permanent
disk storage. The APL * PLUS System uses two distinct kinds of
files: (1) APL component files, which are used to hold APL arrays,
and (2) native files, which are standard to the VMS operating system
environment.

APL component files: An APL file is structured as a set of
components, each of which contains one APL array, An APL file
component is much like a variable, except that it has a number instead
of a name, Any value that can be stored in a variable can also be

Copyright © 1987 STSC, Inc. 3- 2 Files

stored in a file component. The file component contains complete
infonnation about the APL array, including its shape and datatype.

native files: These are VMS sequential Stream_LF files, of the
fonn used by the V AX C run-time library. The APL * PLUS System
treats native files as simple sequences of characters (bytes of data),
leaving the programmer responsible for any structuring and
housekeeping. Native files provide a means for APL applications to
share data with non-APL applications.

directories: The VMS operating system organizes files using a
hierarchy of directories. A directory is a special kind of native file that
contains a list of file names. The names in the list can be files or
other directories. Any file in the system can be located by specifying
the directory in which it resides. Every user has a default directory
where files and workspaces are stored and sought if no directory is
explicitly named. Users can also create and access files in other
directories by explicitly referring to the directory in a command.

libraries: Traditional APL systems organize files and workspaces
into libraries. Libraries are much like directories except that they are
identified by numbers instead of names, and they are not hierarchical
(that is, a library cannot contain another library). The APL * PLUS
System provides a mechanism for simulating traditional libraries by
associating a library number with a VMS directory. This allows
applications that were developed on other APL * PLUS Systems to run
without modification on this APL * PLUS System.

users: To the APL * PLUS System, a user is one individual. Every
user is recognized by a user name, which is used to log in to the
system. Every user also has an account number or user identification
code (VIC) , which is used by the APL * PLUS System to identify
individual users for file-sharing purposes. You can discover your user
account number by entering 1 t oAI.

access: A user has access to an APL file when the APL * PLUS
System pennits that person to use it in some way. Typically, you
have access to every file that you own, and can give access to other
users by appropriately setting the access matrix.

Copyright © 1987 STSC, Inc. 3-3 Files

ownership: Owning a file or workspace means that you are the
person (user account number) who originally created it or most
recently renamed it.

Comparison of APL Workspaces and Files

There are two ways to make permanent copies of APL data: in a saved
workspace or in an APL file . APL files and saved workspaces are
alike in that:

• Both reside on a disk.

• They can be created, used (and perhaps modified) over a period of
time, and erased when they are no longer needed.

• Both have names and optional library numbers.

• Both can contain many objects, each of which can be any APL
value. Stored data can be a scalar, vector, matrix, or higher­
dimensional array, nested or simple, holding either characters or
numbers. The only limit on the size of a component or variable is
that it must fit in the available space in the active workspace and on
the disk.

• They are owned by a particular user,generally the person who created
them.

There are some important differences between a file and a saved
workspace:

• A workspace can contain executable programs as well as data; a file
can contain only data.

• More than one file can be active at the same time.

• A file can hold amounts of data that are larger than can fit in one
workspace (which is limited by the amount of memory installed in
your computer). The size of a file can range from a few bytes up to
several megabytes, or more.

Copyright © 1987 STSC. Inc. 3-4 Files

• The APL*PLUS System refers to a variable in a workspace by its
name. The system refers to a component in an APL file by a
component number that gives the component's position within the
file. Component numbers are consecutive positive integers ranging
from the number of the first component to the number of the last
component.

File operations are used to bring the data contained in one component
into the active workspace for processing and to save values generated
in the active workspace as components of a file. File operations are
performed through a collection of APL system functions. As system
functions, file operations share many of the properties of APL
primitive functions: they are always available for use in the
workspace; they can be incorporated in user-defined functions; and
many return explicit results that can be used in subsequent operations.

The names of the functions used with APL files all start with OF, and
each name indicates the kind of operation being performed. Examples
of such functions are OF RE AD (for reading a component from a file)
and OF AP PEND (for appending to a file a value from the active
workspace). The names of the functions for use with native files all
start with ON, and each name indicates the kind of operation being
perfonned.

Improper use of file operations can lead to file errors. Such errors are
indicated by error reports. Errors generated by file functions are just
like errors generated by APL primitive functions in terms of their
effect on the APL statement in which they occur. Each file operation
is described in detail in Section 3-3.

For an APL file, the directory name or library number and file name
together are termed the file identification. A file identification used as
an argument to a file function is represented as a vector of characters
enclosed in single quotes or as any other APL expression whose value
is a character vector. The directory name is represented as a path: a
sequence of directory names, separated by the character".", which lead
to the directory that refers to the file itself. If a library number is used
instead, it is represented as a positive integer. The directory name or
library number can be omitted if it is the same as the default directory
being used.

Copyright © 1987 STSC, Inc. 3-5 Files

A file name consists of from one to eleven uppercase letters (A - Z) and
numeric characters (0 - 9), and must begin with a letter. If the library
number is present, it is separated from the file name by one or more
spaces. Leading and trailing blanks in the character vector are permitted.

The rules for file identifications differ somewhat depending upon whether
directory mode or library mode is in effect. If any libraries are defined
(using DLIBD or a startup parameter), the system is said to be in
library mode, in which file identifications follow the forms used in other
APL * PLUS Systems. The following are valid file identifications in
library mode:

'SAMPLE' (Absence of library number implies default directory.)

'11 TOOLS' (me named TOOLS in library 11)

If no numbered libraries are defined, the system is in directory mode and
uses me identifications in the following form:

'SAMPLE' (in the current working directory)

, [JOE.USRJDATA87'

(the file named DATA 8 7 in the sub-directory named
US R, which in tum is in the directory named JOE)

Most of the examples in this manual show the use of library mode
because using it improves portability of code to other APL * PLUS
Systems on other operating systems.

APL file identifications are patterned after workspace identifications but
are logically distinct. A workspace and a file can have the same name.
They are distinguished at the VMS operating system level by the file
extension with which they are stored (. VF for files, . WS for
workspaces), and they are distinguished in practice by the operation with
which they are used.

Native, or VMS, file identifications use the same names both within
APL and outside the APL environment. See your VMS operating
system manual for the full set of conventions used by your system.

Copyright © 1987 STSC, Inc. 3-6 Files

To be used, a file must first be paired with an integer file tie number.
All operations on the file will refer to the file by its tie number rather
than by its name. The particular value of the tie number can be any
number in the acceptable range that is different from any other file tie
numbers already in use. The pairing of a file and a file tie number is
called a file tie, and a file is said to be tied if such an association has
been made.

Descriptions and examples of file operations in this chapter use the two
files described in the following section. Defining the functions used in
this chapter will enable you to execute each example in tum.

Creating and Building Files

In the following example, the APL fIle named PER SON S has four
components, each of which is a vector of characters. The APL file
SALE S also has four components, each of which is a vector of
numbers.

File name:

Component
number

1:
2:
3:
4:

PERSONS
'SMITH'
'JONES'
'KELLEY'
'BECKER'

SALES
563 1
261
4 629 1
20 6 4

A new APL file is brought into existence with the file function
OF C R EAT E , and new components are placed in the file with the
function OF AP P EN D. The following program can be used to build
the two files PERSONS and SALES:

v SAMPLE1;NAME;PMAT;T;VALUES
[lJ A CREATE THE FILES 'PERSONS' AND 'SALES':
[2J 'PERSONS' OFCREATE 5
[3J 'SALES' OFCREATE 20
[4J PMAT- 4 6 p'SMITH JONES KELLEYBECKER' ¢ I-1
[5J A PROMPT FOR SALES FOR EACH PERSON:
[6J A THEN STORE THE VALUES IN THE FILES :
[7J A
[8J LOOP:~(I>ltpPMAT) /END ¢ NAME-PMAT[I; J
[9J 'ENTER VALUES FOR ',NAME ¢ VALUES-~

Copyright © 1987 STSC. Inc. 3-7 Files

[10J CN~VALUES DFAPPEND 20
[llJ 'VALUES STORED IN COMPONENT NUMBER' .• CN
[12] AAPPEND TO FILE 'PERSONS'
[13] T~«NAME~' ')INAME) DFAPPEND 5
[14J I~I+1 0 -LOOP
[15J A
[16J END: DFUNTIE 20 5

v

The D F C R E ATE operation establishes a new file and prepares it for
further operations. The syntax (where fileid stands for file
identification and tieno stands for tie number) is

'fileid' oFCREATE tieno

The file name must be different from that of any existing file in that
library, and the tie number must not be in use. When SAMP LE 1 is
executed, line [2] creates the file PER SON S and ties it to 5. At
this point, the file PER SON S exists in the library, but it is empty
since it contains no components. Components are added 10 the file
PERSONS by the function DFAP PEND on line [11 J.

Similarly, oNC RE ATE is used 10 create a nativefile. Native files
follow somewhat different naming conventions and are used with
negative tie numbers. See oNCREATE in Chapter 3 of the
APL *PLUS System Reference Manual for more information.

The function OF AP PEN D puts a new component, containing an
APL value from the active workspace, at the end of an APL file. The
value in the workspace is not altered. The syntax is :

compno +- value oFAPPEND tieno

The left argument, which provides the value for the new component,
can be the name of a variable; for example:

name DFAPPEND 5

The left argument can also be the result of any APL calculation. For
example:

(5+2x4 6pl24) DFAPPEND 5

Copyright © 1987 STSC, Inc. 3-8 Files

The right argument is the tie number of the file to which data is being
appended. OF AP P EN D returns the new component number as its
result. Examples of appending to files SALE Sand PERSONS
appear in lines [11] and [13] of SAMPLE 1.

Similarly, ONAP PEND appends the contents of an array, byte for
byte, at the end of a native file.

Files created the way PER SON S and SALE S were created have no
maximum size. It is possible to specify a size limit for the file by
specifying the number of bytes after the file identification in the left
argument of OFC RE ATE. You will receive the error FILE FULL
if you attempt to put more than that number of bytes of data into the
file. The use of file size limits allows you to budget your disk storage
and prevent "runaway" programs from fIlling the entire disk.

If line [2] of SAMPLE 1 had been:

'PERSONS 10000' OFCREATE 5

the size limit would have been 10,000 bytes. The default value 0
indicates no size limit.

Untying Files

The function OF UNT I E has the following syntax:

OF U NT IE tie nos

It is used to break the pairing of an APL file and its tie number. The
argument is a vector of zero or more file tie numbers, so 0 F UNT I E
can untie several files at once (as in line [16] of SAMP LE 1).
OFUNT I E has no effect on the values stored in a file.

Similarly, ONUNT lEis used to break the pairing of a native file and
its tie number.

Copyright © 1987 SISCo Inc. 3-9 Files

Tying Files

An existing file that is not tied can be made available for processing,
as shown in the next sample function. This function prints each of
the components of the file named PER S ON S along with the sum of
the numbers in the corresponding components of SALE S. The two
file functions introduced in this example are OFT I E and OF RE AD.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

v SAMPLE2;I;X
A DISPLAYS TOTAL SALES FOR EACH PERSON

'PERSONS' DFTIE 1
'SALES' DFTIE 2
'NAME SUM' ,---- ---, 0 1<-1

A
LOOP:~(I>4)/END 0 X<-DFREAD 2.1

(10tDFREAD 1.I).l+/X
1+-1+1 0 ~LOOP

A
END: 'COMPLETE.'

v

The function OFT lEis used to establish an association between a
file identification and a tie number. This procedure is referred to as
tying a file. In SAMPLE2. PERSONS is tied to tie number 1 and
SALE S is tied to tie number 2 . The syntax of OFT lEis

I fileid '0FT I E tieno

The function 0 F TIE has the same effect as 0 F C R E ATE, except
that the file named in the left argument must already exist. Notice that
in SAMPLE 1 the file PERSON S was tied to the tie number 5,
while in SAMPLE 2 the file PER SON S was tied to 1. File tie
numbers for use with OFT IE can be any integer from 1 through
214 7483647, and the number for a particular file can be different
on different occasions.

Similarly, tie numbers for use with DNT I E can be any integer from
-1 through - 2 1 4 7 4 8 3 6 4 8 .

Copyright © 1987 STSC, Inc. 3- 10 Files

Reading from a File

The function OF RE AD copies the value of a file component into the
active workspace. The value can be placed in a variable (as in line
[6] of SAMPLE 2), used in an expression (as in line [7 J), or

displayed directly at the terminal. The syntax of OFREAD (where
compno stands for component number) is:

res +- OFREAD tieno compno

The argument of 0 F REA D is a two-element vector. The first element
is the file's tie number, and the second element is the component
number. OF RE AD returns the value of the specified file component
as its explicit result. .

Reading from a native file with ONRE AD is somewhat more
complicated, since the file is not logically divided into components and
does not internally track the datatype of what has been stored there.
See ON READ in Chapter 3 of the APL "PLUS System Reference
Manual for more information.

Duration of File Ties

The function SAMPLE2 tied the files PERSONS and SALES but
did not untie them, so those two files remain tied as files 1 and 2 . A
file remains tied until you untie it or end the APL session. Thereafter,
you must re-establish the appropriate ties in order to use the same
files.

The status of tied files is not changed by any system commands except
) 0 F F . Therefore, loading into or clearing the active workspace

leaves active any ties set previously during the terminal session. This
makes it possible to load different workspaces to process files without
having to re-establish the ties.

Listing Files in a File Library

The names of the files in a particular library or directory are obtained
with the function OFLIB. The syntax (where lib stands for library
number or directory name) is :

Copyright © 1987 STSC, Inc. 3-11 Files

result +- OFLIB lib

result is a character matrix. Each row holds the identification of a file
in the designated library. If, for example, the program SAMPLE 1
had been created by a user in library [J 0 E . US R] , then the
expressions:

IJUdoce:

OLIBD '101 [JOE.USR] '
OFLIB 101

101 DATAl
101 SALES87

All the APL flIes in a library or directory appear in the result of
OF LIB, even those that the user account number requesting the
display is not authorized to use.

OF LI B lO lists the APL files in the current default library
(working directory). The system command) F LI B yields the same
information as OFLIB.

Similarly, OLI Band) LI B return a list of all files (native, APL,
and even workspaces) in a format consistent with native file names.

Erasing Files

When an APL file is no longer needed, it can be erased using the
function OFERASE:

fileid OFERASE tieno

The file name is then deleted from the library. All of its components
are destroyed, and the space they occupied is made available for use by
other files. Since the file no longer exists, the file lie is also broken.

A file must be tied before it can be erased, and both the file name and
the tie number must be given. Similarly, ONE RASE can be used to

crase nati ve files.

Copyright © 1987 STSC, Inc . 3-12 Files

Copying Valuesjrom One APL File to Another

The following function is an example of changing the arrangement of
filed infonnation. The components of PERSONS and SALE S are to
be merged into a new ftle RECORDS. Each odd-numbered
component will come from SALES. The two original ftles are erased
after the merge is complete. Recall that PERSONS and SALE S are
still tied following execution of SAMPLE 2.

v SAMPLE3;T
[1] AMERGE FILES TIED TO 1 AND 2 INTO 'RECORDS'
[2] 'RECORDS' OFCREATE 3 ¢ I+-1
[3] A
[4] LOOP:-+(I>4)IEND
[5] T+-(OFREAD 1,I) DFAPPEND 3 A FROM 'PERSONS'
[6] T+-(OFREAD 2,I) OFAPPEND 3 A FROM 'SALES'
[7] I+-I+1 ¢ ... LOOP
[8] A
[9] END:OFUNTIE 3
[10] 'PERSONS' OFERASE 1 ¢ 'SALES' OFERASE 2

v

Note that when the ftles have been merged, the new file R E COR D S
(tied to 3) is untied. It is not necessary to untie the files tied to 1 and
2 because erasing the files unties them automatically.

Sample Handling oj a Native File

This example shows how a native file can be accessed and manipulated
from within APL. Suppose that a VMS file NAMES contains a list of
names to be sorted into alphabetic order. The file is structured like a
typical VMS Stream_LF ftle: it is a linear sequence of characters, and
the VMS newline character (OTC LF) separates the names. (Note that,
in native VMS conventions, OTCLF and not OTCNL is used as the
newline character.) The lines in the file are of varying lengths.

The system function ONT I E ties ("opens") the native file:

'NAMES' ONTIE -5

and the function ON SIZE reports the total number of bytes in the
file :

Copyright © 1987 STSC, Inc. 3-13 Files

DNSIZE -5
5129

Using the system function 0 N RE AD, it is possible to read a sequence
of data from the file. For relatively small files such as this, the
simplest method may be to read the entire file into the APL workspace
at once. The following command reads the entire file and stores it in
the variable F:

F-DNREAD -5 82, (DNSIZE -5),0

The character vector can then be arranged into ascending order by
converting it into a nested array (a vector of names) and arranging
those names into the desired order. Once the names are rearranged, the
list can be wrinen back to file. In this case, since the length of the
file does not change, you can replace the file with the new values. If
F S is a character vector containing the sorted form of the file, then the
following statement will write it to file:

FS DNREPLACE -1 0

The statement means "take the contents of F S and write them over the
present contents of the file, starting at byte 0 (the first byte)."

Putting the ingredients together, the following function sorts a native
file into alphabetic order by lines:

v SORTFILE FNAME;LINES;GRADEVEC
[lJ FNAME DNTIE -1 A TIE THE FILE
[2J LINES - DNREAD -1 82, (DNSIZE -1),0 A AND READ IT
[3J LINES-DTCLF,LINES A LEADING DELIMITER ON FIRST LINE
[4J LINES-U·· (LINES=DTCLF) cLINES ACONVERT TO NESTED ARRAY
[5J GRADEVEC-DAV+tUI=>,/p··LINES)t ·· LINES A GRADE
[6J LINES-LINES [GRADEVECJ A REARRANGE INTO SORTED ORDER
[7J LINES -U=> , ILINES, ··DTCLF A CONVERT TO SIMPLE AGAIN
[8J LINES DNREPLACE -lOA WRITE BACK TO FILE
[9J DNUNTIE-1

v

Comparisons with Corresponding Native File Operations

The correspondence between APL file operations and native file
operations is not always exact. In particular, note that

Copyright © 1987 STSC, Inc. 3-14 Files

• Native files are always used with directory names. Library numbers
do not apply to native files.

• Negative tie numbers are required for native files, rather than the
positive tie numbers used with APL files.

• ON READ needs a more complex right argument since the file is not
organized into components.

• ON AP PEN D places the exact contents of the array into the file,
retaining no information about the array such as shape, datatype, or
origin.

• There is no native file feature that is a close analogy for OF LI B
and) F LIB. The results of 0 LIB and) LIB include all APL
files and all APL workspaces too, since these are stored on disk as
native files.

A more detailed comparison of native and APL files can be found in
Section 3-7.

3-2 More Personal File Management Facilities

This section covers the remaining file functions used with both shared
and nonshared files . The examples in this section assume prior
creation and tying of files and are not intended for direct keyboard
execution as were the examples in Section 3-1.

Inquiring about File Ties

Two system functions, 0 F N AM E S and 0 F N U M S, repon the names
and numbers of the current APL file ties. 0 F N AM E S returns a
character matrix in which each row is the library number and name of a
currently tied APL file. OFNUM S returns a vector of their current tie
numbers, in an order corresponding to the names returned by
OFNAMES.

A convenient tabular display of this information is created by:

Copyright © 1987 STSC, Inc. 3-15 Files

OFNAMES . '110' OFMT OFNUMS
SAMPLE 1
PERSONS 2

The simplest way to untie all tied APL files is to execute the
statement 0 F U NT I E 0 F N U M S, since the vector returned by
OFNUMS is exactly what OFUNTIE needs to untie all files.

Similarly, the functions ONNAME Sand ONNUM S report on the
status of native file ties. Given the negative tie numbers for native
files. the corresponding formula for a tabular display is:

ONNAMES. 'Ill' OFMT ONNUMS

Replacing a File Component

A file component can be replaced by a new APL value using the
function OFREPLACE. The syntax is:

value OFREPLACE tieno compno

For example, to replace the second component of the file tied to 1
with the character vector' RE P LAC ED' • the following statement
could be used:

'REPLACED' OFREPLACE 1 2

The new value can be any APL value that fits in the active workspace.
If the new value is larger than the previous value, additional file
storage is automatically provided.

A common use of 0 F REP LA C E is to update a component by
modifying its value. In this example, the value of the variable debit is
catenated to the existing value of component 3 of the file tied to 7:

((OFREAD 7 3) . DEBIT) OFREPLACE 7 3

Note that the new value is larger than the value it is replacing. A
replacement component need not occupy the same amount of space as
the old value.

Copyright © 1987 STSC, Inc. 3- 16 Files

The corresponding native file operation, ONRE PLACE, cannot refer
to components; in place of a component number you supply the first
byte in the file to be replaced by the given value. That value will
replace exactly the amount of the file needed to store it, regardless of
what was there before. The programmer must evaluate positioning and
space requirements. If more data is to be stored than the remaining
space in the file can accommodate, ON RE P LA C E will lengthen the
file to make room for the rest of the data. For additional details, see
ONRE PLACE in Chapter 3 of the APL .. PLUS System Reference
Manual.

Dropping Components from Either End of a File

The function 0 F D R 0 P removes components from either end of a file.
The syntax is:

OFDROP tieno n

The argument to OF DROP is a two-element vector. The first element
is the tie number of the appropriate file. The second element is an
integer specifying both the number of components to be dropped, and
from which end of the file to drop them (shown by the sign of n). If n
is positive, the specified number of components are removed from the
front of the file; if n is negative, the components are removed from the
end of the file; if n is zero, no components are removed. The
component numbers of the remaining components are not changed.
For example, if the file tied to 99 has ten components numbered 1
through 10, then after executing:

OFDROP 99 4

the me will have six components remaining, numbered 5, 6, 7 , 8 ,
9, and 1 O. A further execution of:

OFDROP 99 -2

will leave components 5, 6, 7, and 8 .

Components cannot be dropped from the interior of a file. Other
techniques can be used to signify that an interior component holds no
information and should be bypassed in later processing. Perhaps the

Copyright © 1987 STSC, Inc. 3- 17 Files

simplest way is to replace the component with an empty vector (' ').

There is no native file operation that corresponds to 0 F D R 0 P , since
native files are not organized into components.

Determining the Size of a File

The function 0 F SIZE, with syntax:

result +- OF SIZE tieno

returns a four-element vector. The first two elements are the
component limits of the file: the number of the first component, and
a number that is 1 higher than the number of the last component.
The component limits of a newly created me are 1 1.

A count of the number of components in the file is given by the
following expression where In is the tie number:

I -/2tOFSIZE tn

The third and fourth elements of the result of OF SIZE are the
amount of file storage currently occupied by the me, and the file
storage limit, in bytes. If the fourth element is zero, the file has no
imposed size limit other than available space on the disk.

The corresponding native file operation, ON SIZE, returns a single
number representing the number of bytes in use. Since native files
have neither components nor automatic checking for maximum size,
there can be no meaningful equivalents for the other numbers in
OFSIZE.

Suppose the result of OF SIZE for the file tied to 10 is as follows:

OFSIZE 10
1 126 259584 265000

The result of 0 F SIZE indicates that the components in the file are
numbered 1 through 125 , inclusive, and that the size limit for the

Copyright © 1987 STSC, Inc. 3- 18 Files

file is 2 6 5 , 00 0 bytes, of which a total of 2 5 9 , 5 8 4 bytes are
now occupied.

Following are examples of how to implement two common file
organizations -- "first-in, first-out" (FIFO) and "last-in, first-out"
(LIFO) -- using 0 F DR 0 P and 0 F S I Z E. The examples use a file
tied to 5 O.

FIFO organization:

Data collection: data OFAPPEND 50
SIZE -- OFSIZE 50

Subsequent
processing:

INFO -- OFREAD 50,SIZE[1]

(process info)

OFDROP 50 1

LIFO organization:

Data collection: data OF AP PEN D 50
SIZE -- OFSIZE 50

Subsequent
processing:

INFO -- OFREAD 50,SIZE[2]-1

(process info)

OFDROP 50 -1

With each of these schemes, the data collection and processing phases
can be executed when it is convenient to do so. You can collect data
whenever information is available and process data when the file
becomes large and unwieldy or at some fixed interval; once a day or
once a week, for example.

After a component is processed, the storage it occupies is generally
released by executing 0 F D R 0 P. In some cases, 0 F D U P is needed to
reclaim all dropped storage; see Chapter 3 of the APL *PLUS System

Copyright © 1987 STSC, Inc. 3-19 Files

Reference Manual for more information. Consequently, data can be
collected and processed almost indefinitely and never require more than
a relatively small amount of storage space.

As an example of using OF D R 0 P with a file whose components are
released in an arbitrary sequence, the following function produces an
invoice from information in a file named C DAT A. After the invoice
is produced, the appropriate component of C DATA is dropped (if it is
the first component) or replaced with an empty component (if it is not
the first component). Each time it is used, the function checks to see
if the last component of data is an empty vector; if it is, that
component is dropped. This technique tends to minimize the file size.

v SAMPLE4;LIM;N
[1] 'CDATA' DFTIE 5
[2J 'ENTER RECORD NUMBER' 0 N~D
[3J A TEST COMPONENT NUMBER:
[4J LIM~2tDFSIZE 50~«N<LIM[IJ)vN~LIM[2J)/ERROR
[5J A READ RECORD AND PRODUCE INVOICE:
[6J RECORD~DFREAD 5,N 0 ~(O=pRECORD)/ERROR
[7J PRINTINVOICE RECORD
[8J " DFREPLACE 5,N
[9J A DROP ANY EMPTY COMPONENTS
[10J A FROM FRONT OF FILE
[11] LIM~2tDFSIZE 5
[12J LOOP:~(LIM[IJ=LIM[2J)/ENDATEST FOR EMPTY FILE
[13J A TEST FOR EMPTY COMPONENT
[14J ~(O#p,DFREAD 5,LIM[2J-l)/END
[15J A DROP EMPTY COMPONENT
[16J DFDROP 5 -1 0 LIM[2J~LIM[2J-l 0 ~LOOP
[17J A

[18J ERROR: 'THIS RECORD NUMBER NOT IN FILE'
[19J END:DFUNTIE 5

v

In line [4] of SAM P L E 4, a branch is taken to error if N is not
within the range of the lowest and highest component numbers.
Otherwise, line [6] reads the component, branching to error if the
component is empty. Line [7] calls the function P R I NT I NVO ICE
(not shown) which actually produces an invoice based on the record.
Lines [11] through [14] drop empty components, if any, from the
file. Note the checking for an empty file in line [12] .

Copyright © 1987 STSC, Inc. 3-20 Files

The above discussion presents a limited representation of possible file
organization techniques. There are more static forms of database file
organization that subdivide the data and keep directories. Also, there is
a widespread convention of reserving the first component for a
description of the file.

Renaming a File

The function 0 F R E N AM E is used to change an APL file name. The
syntax is

'ftleid' OFRENAME tieno

OF R E N AM E can be used to change the name of a file in a library:

'REPORTS' OFTIE 100
'OLDREPORTS' OFRENAME 100
OFUNTIE 100

Note that OF RENAME does not create a second copy of a file. After
the execution of the previous example, REPORT S would have
disappeared from the library.

In addition to changing the name, OFRENAME also sets the
ownership of the file to match the user account number under which
the operation was performed.

The system function ONREN AME is used for renaming native files
and for moving a native file into a different directory.

Changing a File's Size Limit

The function OF RE SIZE can impose a size limit on an APL file
beyond which the file is not permitted to grow. For example, if you
did not want a limit when you first created the file but have changed
your mind, use OF RE SI ZE.

Sometimes a file needs to hold more data than its current size limit
will allow. When a file does not have enough room for the value to
be stored in it, a FILE FULL error occurs:

Copyright © 1987 STSC, Inc. 3-21 Files

'OLDREPORT5' OFTIE 12
REPORT OFAPPEND 12

FILE FULL
REPORT OFAPPEND 12

"
The fourth element of the result of OF 5 I ZE shows that the size
limit for the file 0 L D REP 0 RT 5 is 100,000:

OF5IZE 12
1 34 99512 100000

The function OF RE 5 I ZE can be used to increase the file size limit
so that there will be enough room to perform the desired append
operation:

200000 OFRE5IZE 12
OF5IZE 12

1 34 99512 200000
REPORT OFAPPEND 12

34

The syntax of OF RE 51 ZE is:

newsize OFRE5IZE tieno

where newsize is the new file size limit. It is also possible to decrease
the size limit of a file, provided you do not specify less storage than is
already being used by the data in the file. In addition, you can always
specify:

o OFRE5IZE 12
OF5IZE 12

1 34 99512 0

to remove the size limit restriction completely.

There is no system function for native files that corresponds to
OFRE 51 ZE, since native files do not have size limits.

Copyright © 1987 STSC, Inc. 3- 22 Files

Copying a File

The function OF DU P is used to make a duplicate copy of the contents
of an APL file in another APL file. The copy need not be in the same
library as the file being copied, and the name need not be the same
(although it can be if the library number is different).

'5440 FIGHT' OFTIE 48
'1844 OREGON' OFDUP 48
OFUNTIE 48

The ownership of the original file is unchanged by OF DU P, but the
user account number that used OF DU P is the owner of the copy.

There is no need to uRtie the new copy (' 1844 OREGON') since
it was never tied. If you were to tie the new copy and compare its size
(using OF SIZE) to the size of the original me, you might find that
the new file was smaller, since OF DU P eliminates any wasted space
while copying (see "Compacting a File", below).

There is no system function for duplicating native files, but you can
use the VMS coinmand "copy", either from VMS or with) eM D, or
under program control with 0 eM D. This method can .also be used to

copy any file, including APL files and saved workspaces, without
compacting them.

To move a file from one library to another, use 0 F R EN AM E for APL
files and ONRENAME for native meso

Compacting a File

The function OF DU P can also be used to compact the contents of an
APL file. First, make a new compacted copy using OF DU P. If you want
the compacted file to have the same name as befor, first use OF DUP to
create a new file with a different name. Then erase the original, rename
the new compact copy to the original file name, and tie the compacted file
to the same tie number that the original me was using.

'5440 FIGHT' OFTIE 1844
'TEMP' OFDUP 1844
'5440 FIGHT' OFERASE 1844
'TEMP' OFTIE 1844

Copyright © 1987 STSC. Inc. 3- 23 Files

'5440 FIGHT' OFRENAME 1844
OFUNTIE 1844

The user account number that used OF DU P to compact the file
becomes the owner of the file.

Since storage space is limited, it may be necessary periodically to
reclaim file space containing abandoned data. The data may have been
abandoned by the use of OF DROP or OFREPLACE with a different
amount of data. The APL * PLUS System does not automatically
release for reuse all the space occupied by abandoned data within APL
files. It is the user's responsibility to reclaim storage space as needed
by using OFDUP.

There is no system function for compacting native files, since the
system does no tracking of their contents.

3-3 File Sharing - Concepts and Functions

The shared use of a file falls into one of two general categories. The
first, discussed in Sections 3-1 and 3-2, is that in which only one
person at a time may use a file (that is, have it tied). The second
category of sharing, discussed in Sections 3-3 and 3-4, involves the
concurrent use of a file by two or more people; rather like the use of
several telephone receivers on one telephone number, which may
require some protocol among speakers to prevent conflicts. Section
3-4, describes some mechanisms for the detailed control of concurrent
file sharing.

The File Access Matrix

Associated with every APL file is an access matrix that records which
user account numbers are authorized to use the file and which file
operations each can perform.

Every access matrix is an integer-valued matrix with three columns and
any number of rows:

• Column 1 is the user number to which access is granted.
Column 2 indicates which operations a user is authorized to perform.
Column 3 is a passnumber to the file.

Copyright © 1987 STSC. Inc. 3- 24 Files

The following table shows typical entries in an access matrix. The
details of columns 2 and 3 are of interest only when exercising detailed
control over access; they are discussed in Section 34.

Encoding of
Account Permitted
Number Operations Passnumber Description

12345 -1 0 Access granted to user
12345.

23456 9 5 Access granted to user
23456.

0 1 0 Access granted to all
other users.

A user account number in column 1 can be that of any user, or it can
be zero. Zero represents all user account numbers, except the file
owner's, that do not appear elsewhere in column 1 of the access
matrix.

When OFTIE or OFSTIE (a variant of OFTIE described later in
this chapter) is executed, the access matrix for the file being tied is
searched for a row containing the user account number. If a row is
found whose first element matches the user account number or failing
that, a row is found whose first element is zero, then the authorized
forms of access are taken from the second element of that row. Any
attempt to use a fIle operation that is not authorized will result in a
fIle access error.

The owner of a file has complete access to the file if column 1 of the
access matrix does not contain his user account number. No one else
has any access at all unless there is a match with his user account
number or a zero in column 1. If a person with no access attempts to
tie the file, the system will produce a file access error.

Functions like 0 F N AMES and 0 F N U M S are not restricted by access
matrix settings and never produce a file access error because they are
not performed on a particular file. Also, there are no limitations on
OF SI ZE or OF ST IE; these are permitted if any other file operation
is authorized.

Copyright © 1987 STSC, Inc. 3-25 Files

The functions OF RDAC and OF ST AC (described in Section 3-4) can
be used to manipulate the access matrix.

File Component Information

Along with the value stored in a component by appending or
replacing, four other pieces of information are carried with each
component of a file. They are:

• the workspace storage needed to hold the component's value

• the user account number of the person who last replaced or appended
the component

• the time that the component was last replaced or appended in a
packed-timestamp form

• the component timestamp in a seven-element unpacked form (year,
month, date, hour, minute, second, millisecond).

The function OF R DC I reads this component information; its syntax
is:

result ~ OF R DC I tieno compno

The result of OF R DC I is a ten-element numeric vector holding the
information described above. The packed timestamp in the third
element of the result is given in microseconds since 00:00, 1 January
1900; under program control, it is convenient for comparing the
timestamps of two components.

The function OF R DC I is particularly useful in data collection or
audit trail applications, where several persons may have access to
append to a file. As each person appends, the component is
automatically tagged with the time and the person's user account
number. Later, when a user with OFREAD and OFRDCI
authorization processes the file, the source of each component is
clearly indicated.

Copyright © 1987 STSC, Inc. 3- 26 Files

Concurrent Sharing of Files

The previous discussion covered the first category of shared file use, in
which only one person at a time is using a file. The use of OFT I E
to establish a file tie assures this kind of exclusive file use, since
OFT I E will produce a file tied error if any other user tries to tie the
file. Thus, OFT I E provides you with exclusive use of a file until
you untie it.

The second category of file use covers situations in which several users
may have the same file tied concurrently. Two file functions are
needed for concurrent file use: OF ST IE and OF HOLD.

The function OF ST IE, with syntax :

I fileid I OF ST IE tieno

establishes a tie to a file, exactly as OFT I E does. However, this
"shared tie" also permits others to share-tie the same file. OF ST IE
can be used to share-tie a file if the file's access matrix allows the user
any form of access whatever, provided no one has the file exclusively
tied using oFTIE.

When several persons are using a file concurrently, their file operations
proceed asynchronously, and it is quite likely that one person's
processing may be interleaved with another's. For example, suppose
that users P and Q have the file tied to 7 7 and are trying to add 1 to
the value of component 5; they use the following statement:

(l+oFREAD 77 5) oFREPLACE 77 5

When both are finished, component 5 should be increased by 2. But
suppose the parts of the statement are executed in this sequence:

p Q

oFREAD 77 5
oFREAD 77 5

(add 1)
oFREPLACE 77 5

(add 1)
oFREPLACE 77 5

Copyright © 1987 STSC, Inc. 3-27 Files

The value of component 5 is increased by only 1, since P's program
destroyed the value stored by Q.

What is needed here is an interlock to prevent P's program from
executing any part of the foregoing APL statement while Q's program
is executing it (and vice versa). The function OF HOLD provides this
interlock. Its syntax. is :

OFHOLD tienos

The effect of executing 0 F H 0 L D is to place an interlock on each fIle
whose tie number is included in the right argument. The concept of
this interlock is subtle; in effect, using 0 F H 0 L D means "wait until
no one else has these files held, then hold them for me."

OFHOLD executed by P, for example, has three effects:

• Any interlocks in effect from a previous 0 F H 0 L D executed by P
are released (even if they held the same file).

• P is placed in a queue behind every other user who has already
executed OF HOLD for any of the files specified by P. P's program
is delayed until no one else is holding any of these meso

• Interlocks are set simultaneously on all the designated files, and P's
program then resumes execution.

Many people misunderstand file holds when they are first learning
about APL files. They assume that "holding a file" means they are
preventing others from using the file while they have it held. The
only effect of a file hold is to delay the execution of 0 F H 0 L D in
other users' programs. In other words, no two users can have the same
file held at the same time. File holds do not block other file
operations such as OFREADor OFREPLACE.

OF H 0 L D does not prevent other users from using a file while you
have it held. But OF HOLD does provide a means for two or more
users to cooperate and avoid conflict in me use. For example, suppose
the program executed by P and Q in the previous example is changed
to:

Copyright © 1987 STSC, Inc. 3-28 Files

OFHOLD 77
(1+0FREAD 77 5) OFREPLACE 77 5 .
OFHOLD 10

Then the first user to execute OFHOLD 77 is able to proceed
without delay, while the other user's program is delayed until the first
user's program executes OFHOLD 10. The sequence would look
like this:

p

OFHOLD 77
(delay)

Q

OFHOLD 77

(proceed)
OFREAD 77 5
(add 1)
OFREPLACE 77 5
OFHOLD 10

(proceed)
OFREAD 77 5
(add 1)
OFREPLACE 77 5
OFHOLD 10
(proceed)

(proceed)

When Q executes OF H 0 L D 7 7, he establishes a hold on the file
that prevents P from establishing a hold. In P's program, OF HOLD
simply waits until its tum comes to hold the tie, which happens when
Q executes OF H 0 L D 1 O. P is then able to hold the file and
execution proceeds. This makes it possible for cooperating users to
avoid conflict.

However, if Q does not use OF HOLD properly, then there is nothing
P can do alone to prevent conflict. Suppose P is using OF H 0 L D:

OFHOLD 77
(1+0FREAD 77 5) OFREPLACE 77 5
OFHOLD to

And Q is not using OFHOLD:

(1+0FREAD 77 5) OFREPLACE 77 5

Copyright © 1987 STSC. Inc. 3-29 Files

The interaction could then be just as if P were not using 0 F H 0 L D at
all:

p Q

OFHOLD 77
(proceed) OFREAD 77 5
OFREAD 77 5 (add 1)
(add 1) OFREPLACE 77 5
OFREPLACE 77 5
OFHOLD 10

Only when all parties cooperate can conflicts be avoided. For this
reason, it is often wise to require the use of a specific function to
access a file -- one that obeys the desired protocol. File pass numbers
(discussed in Section 3-4) provide a means of enforcing the use of a
given protocol.

Here are some situations that do or do not require ftle holds in order to
work properly:

• Several users are concurrently appending to a file but make no other
use of the file. File holds are not needed since 0 F A P PEN D will
keep track of components added to the ftle by number. Although il
is not possible to predict in what order the various values will
appear in the file, any request for a file operation (in this case
OF AP PEND) always waits until a previous operation on the same
file is complete. This statement is being used:

mycomp value OF AP P EN D tn

The result of OF AP P EN D lets each person know which component
contains his value.

• Several users are reading and replacing components of a file, and it is
known that no two users ever reference the same component. For
example, P's program refers only to component 1, Q's program only
to component 2, and so on. No hold is needed, since no conflicl can
occur on the concurrent use of a single component.

• An application involves the use of three files in which
like-numbered components contain related data. One program is

Copyright © 1987 STSC, Inc. 3- 30 Files

updating the files while the other programs are reading the files
concurrently. To ensure that no program reading from the files will
encounter a mixture of old and new data, the updating program has
this appearance:

OF H 0 L D 2 1 2 2 2 (process and replace component n
of each of the three files)

OFHOLD to

and the me-reading programs that are operating concurrently have
this appearance:

OFHOLD 21 22 23
A - OFREAD 21,N
B - OFREAD 22,N
C - OFREAD 23,N
OFHOLD to

This is a situation where me holds are needed in a program that is
itself not modifying the contents of any meso

As these examples show, the need for me holds depends upon the
interrelation of program and me structure. The design of any
application involving concurrent use of files requires careful analysis
for possible "races" between programs. You can resolve such conflicts
with appropriate use of OFHOLD.

Duration of File Holds

All interlocks are released when the user who set them executes
another OF HOLD, signs off, or enters immediate execution mode.
The interlock on a single file can be released by untying it or retying
it. Note that DFHOLD to releases all interlocks.

The immediate execution case is particularly important to remember.
If you type the following three statements as three different immediate
execution inputs:

OFHOLD 1
PROCESS 1
OFHOLD to

Copyright © 1987 STSC, Inc. 3-31 Files

the OF HOLD has no effect at all. However, a compound statement
like the following will work correctly, since there is no immediate
execution input between 0 F H 0 L D and process:

OFHOLD 1 0 PROCESS 1 0 OFHOLD 10

3-4 Detailed Control oj File Sharing

This section covers some mechanisms for limiting file access to
particular parts of a file or to specific sequences of file operations,
primarily for designers of large-scale, shared-file applications. Most
readers will find the facilities described in Section 3-3 adequate for their
needs. Section 3-5 contains a more detailed discussion of the access
matrix.

For simplicity in the examples that follow, the syntax of APL file
operations does not include the optional passnumber argument.

Setting the Access Matrix

The value of a file's access matrix is set using the function 0 F ST A C.
The syntax is :

matrix OFSTAC tieno

The left argument is an integer-valued, three-column matrix. A three­
element integer vector is reshaped to become a one-row matrix. It
replaces the previous value of the access matrix. Initially, when a file
is created, its access matrix has no rows: its shape is 0 3. The file
owner has complete access since his user account number does not
appear in column 1 and no one else has any access for the same reason.

Reading the Access Matrix

The access matrix is read into the active workspace using the function
OFRDAC. The syntax is:

result +- OFRDAC tieno

Copyright © 1987 STSC, Inc . 3-32 Files

The result is the access matrix for the file tied to the number in the
right argument. The second element in a row of the access matrix is
the sum of access code values for the particular file operations that are
allowed to the user account number in the first position of the row.
The access code values are :

Code

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

Operation

DFREAD
DFTIE
DFERASE
DFAPPEND
DFREPLACE
DFDROP
(Not used.)
DFRENAME
(Not used.)
DFRDCI
DFRESIZE
DFHOLD
DFRDAC
DFSTAC
DFDUP
(Not used.)
(Not used, represents 0 F STAT U S on other
APL * PLUS Systems.)

The sum of all possible access codes can be used to authorize all
possible file operations. A -1 can also be used to grant full access.

A value of 9 indicates authorization to execute the functions
DFREAD and DFAP PEND on the file. Any non-zero value permits
use of DFSIZE and DFSTIE; obviously, not all combinations of
values make sense.

Using Passnumbers

The third element in a row of the access matrix, the passnumber, is
usually zero. Nonzero passnumbers are used only to exercise detailed
control over file access. If the third element contains a passnumber
other than zero, the user whose user account number is on that row
must provide a matching passnumber to operate on a file.

Copyright © 1987 STSC, Inc. 3- 33 Files

Omitting a passnumber from an argument (as in all uses of file
functions in Sections 3-2 through 3-4) is equivalent to providing an
explicit passnumber of zero. A mismatching passnumber causes a
FILE ACCESS ERROR.

Passnumbers are intended for use within locked APL functions that the
application programmer gives to users in place of the standard file
functions. Suppose each component of the personnel file 234 5
PER S is a vector holding an employee's telephone extension and
room number followed by salary information. The user with user
account number 9 876 is to be allowed to retrieve the telephone and
room number but not the salary information.

For example, the programmer chooses a passnumber, 10349 , and
defines these locked functions:

PTIE
[1] '2345 PERS' OFSTIE 25 10349

R-PREAD N
[1] R-2tOFREAD 25,N,10349

Next, he sets the access matrix for 2 3 4 5 PER S to authorize access
by user 9 8 7 6. The row of the access matrix will be

9876 1 10349

Finally, the programmer gives the locked functions to user 9876 ,
but does not tell him what the passnumber is. Now 9 876 has
permission to tie and read from the file, but only if he gives the
passnumber with each OF ST IE or OF RE AD. Since he does not
know the passnumber, he can access file 2345 PER S only through
the functions PT IE and PRE AD.

Using this general technique, it is possible to impose complex
restrictions on file authorization; in fact, you can impose any sort of
restriction that can be stated as an APL function. Since different
passnumbers can be imposed on different user account numbers, it is
easy to provide multiple levels of access authorization to confidential
data. The previous example showed access restricted to specific fields
within a component. Examples of other forms of control are :

Copyright © 1987 STSC. Inc. 3-34 Files

• access only to even-numbered components:

[1] DERROR (OF2IN)/'EVEN NUMBERED eNS ONLY'
[2] R~DFREAD 25,N,32049

• access only during the afternoon:

[1] DERROR(-DTS[4]E12 13 14 15 16 17)/'PM ONLY'
[2] R~DFREAD 25,N,32049

• automatic logging of information requests:

[1] A~N DFAPPEND 99 2888 A LOG TO FILE 99
[2] R~DFREAD 25, (N), 32049

Later use of OF RE AD and OF R DC Ion the fIle tied to 99 will
give the value of n, the timestamp, and the requestor's user account
number.

• access only after validating data:

[1] ~(1FppV)/ERR ¢ ~«20FpV)VOV.>V)/ERR
[2] R~V DFAPPEND 45 14149

• access only after verifying user identity by questions and answers
(to protect a momentarily unattended computer from passersby).

• access only to summary data (for instance, salary averages but no
individual salaries).

3-5 The Access Matrix

All APL fIles have access matrices that regulate which users can use
them and which operations each user can perform on them. The rules
applicable to an access matrix are as follows:

• Every access matrix is an integer matrix with three columns and any
number of rows. Each row in the access matrix represents the
authorization granted for l:l single user or class of users. The first
column of the matrix contains a user number; the second column

Copyright © 1987 STSC, Inc. 3-35 Files

contains an encoding of the corresponding authorized operations, and
the third column contains a passnumber.

• The user numbers in column 1 can be those of any users. A zero
value in column 1 refers to all users other than the owner or those
explicitly specified elsewhere in column 1.

The owner has full implicit access only if his user number does not
explicitly appear in column 1 of the access matrix. If the owner
does appear explicitly in the access matrix, then he is treated just
like any other user.

• The value in column 2 explicitly indicates which operations the user
is authorized to perform. Each operation subject to access control is
associated with a value, called the access code, that is a power of 2.
The sum of these access codes is the nominal value in column 2.

Formally, the value in column 2 is the integer representation of a
Boolean mask that has a bit for each controllable operation. If

MASK -- (32p2)TVALUE

then MAS K [3 2 - N] (origin 1) is the bit regulating the operation
whose access code is 2 * N. If the bit is 1, the user is authorized for
the operation. Many bit positions are not associated with any
operations; the value of these bits is immaterial. Thus, -1 grants
authorization for every operation, since (32 P 2) T -1 +--
32p1.

This last property is often used to grant all but certain kinds of
access to a file, workspace, or library. The technique is to subtract
from -1 the access codes for the operations to be denied. For
example, -5 grants all but OFE RASE access (-1- 4) , and -7
grants all but OF ERASE and OFT IE (-1- (4 + 2)) .

• The passnumber in column 3 can be any positive or negative integer
value. Together with the user number in column I, the passnumber
determines which row of the access matrix is to be applied in
verifying authorization for each operation. A single user or class of
users can have multiple rows in the access matrix, with different
privileges granted with different passnumbers.

Copyright © 1987 STSC, Inc. 3- 36 Files

Example of an Access Matrix

Suppose you want to set up a file to which all users have only
OF RE AD access, and you want to be able to test the application that
accesses the file and obtain the same permission as another user. You
would then set up an access matrix like this:

o 1 0

owner 1 0

owner

Importance of the File Passnumber

OF READ-only access to all but owner.

OF READ-only access to owner.

Full access with passnumber to owner
so he can perform other file operations.
Note that if the owner forgets the
passnumber, he will be unable to do
anything except a 0 F REA D unless he
uses)F ILEHELPE R on the file.

The passnumber used to tie a file remains associated with the file tie.
After you have tied a me, you must supply the same passnumber in
all subsequent operations on the file as you supplied when the file was
tied. Use of another passnumber will always produce a FILE
ACe E SSE R R 0 R, even if some row of the access matrix happens
to grant the appropriate permission with that passnumber. To use the
permission granted by a different row of the access matrix, you must
re-tie the file using that row's passnumber.

Changing the Access Matrix When a File is Tied

In the APL * PLUS System, access to an APL me is determined only
when the me is tied. Consequently, changing the access matrix of an
APL file while it is tied has no immediate effect on access. The new
value of the access matrix will be used when the other user tries to tie
the file.

Similarly, if a user changes the access matrix of a file in a way that
limits or otherwise changes his own access to the file, the change does
not affect his access until the next time he re-ties the file. Therefore, a

Copyright © 1987 STSC. Inc. 3- 37 Files

change to prevent accidental erasure by the owner of the file gives no
protection until he unties or re-ties the file.

Overriding an Access Matrix

Under the rules of access control, it is possible to be locked out of one
of your own files. Since the ability to set the access matrix is one of
the operations governed by the access matrix, you may be unable to
correct the problem with OF ST AC alone.

Facilities are available to assist the file owner who is locked out by
the access matrix. The system command) FILE H E L PER enables
the owner to access the file and change its access matrix. The syntax
is:

)FILEHELPER filename

where filename is a valid APL file identifier. See Chapter 2 of the
APL *PLUS System Reference Manual for details on the use of
)FILEHELPER.

) FILE H E L PER grants the owner full explicit access with no
passnumber. The old access matrix for the file is discarded. You can
then reset the matrix to an appropriate value.

3-6 APL Libraries and VMS Directories

APL has traditionally grouped files and workspaces together in
collections known as libraries, each identified by a library number. The
VMS operating system organizes all of the files in the system by
grouping them into directories and subdirectories. This chapter
explains how the APL * PLUS System for V AXNMS relates the
VMS directories to APL libraries.

VMS Directories as Libraries

A VMS directory can be made to appear like a traditional APL library
by giving it a library number. Library numbers are associated with
directories when the APL session begins according to the contents of
the configuration file specified when APL is invoked. A line of the

Copyright © 1987 STSC, Inc. 3-38 Files

APLn. INIT causes the library number to be associated with the
specific path. For example, the two-line file:

library=ll [apl.tools]
library=9123 [stuart]

associates library number 11 with directory [APL. TOOLS] and
library number 9123 with [STUART]. A command of the form:

)LOAD 11 WSDOC

would then cause the workspace saved as [APL. TOOLS] WSDOC. WS

to be loaded.

Once the APL session is started, library definitions can be added using
the system function 0 LIB D . For example:

OLIBD '244 [HARRIET]'

associates library number 244 with directory [harriet].

The Default Directory and Default Library

When APL is in library mode and a file identification omits the library
number, a default value for the library number is the user's VMS
account number (1 t 0 A I). The default directory assumed is the
current working directory in the VMS environment, as is set with the
DCL command SET DEFAULT . At session start, the working
directory for the APL session is inherited from the working directory
in effect when APL is invoked. During the APL session, the current
working directory can be changed using the system function
OCHDIR.

CHDIR '[TEST. SCRIPTS] ,
[VICKIJ

changes the current working directory to [TEST. SCRIPTS]. The
explicit result contains the name of the former default directory. From
this point on, the library number that matches (1 t OAI) refers to
that directory.

Copyright © 1987 STSC, Inc. 3- 39 Files

You can use the system command) LIB S (see Chapter 2 of the
APL *PLUS System Reference Manual) or the system function
OLI B S (see Chapter 3 of theAPL *PLUS System Reference
Manual) to display the library assignments in use for this session.
You can distinguish whether the APL session is in path mode or
library mode with 0 LIB S, which returns a zero-row result in path
mode.

3-7 Comparison of APL and Native Files

You should compare the APL component files and the native files
available through the APL * PLUS System in some detail. The APL
files provide more automatic housekeeping and control and greater
convenience when making changes. The native files permit an easy
interface with non-APL systems such as word processors, since these
are the files that non-APL programs use.

The native files created by ONe RE ATE are sequential Stream_LF
files of the same type used by the V AX C compiler's run-time library.

Files Are a Sequence of Stored Data Items

Both APL files and native files can be viewed as a simple sequence of
stored data items. They differ as follows:

• The APL file is a sequence of APL arrays. Each array, independent
of the others, can be of any datatype, of any rank, of any shape, and
of any size. One can be a table of decimal numbers, while the next
can be a four-page memo. Regardless of the nature or size of the
array, it is referred to by a single component number and can be
retrieved by that number. When a component is retrieved, the array's
internal organization (the number of bytes per element and the
interpretation of the arrangement of the bits, known as datatype) and
external organization (shape) are recognized and handled
automatically .

• The native file, by is a sequence of bytes (one character's worth of
data). How those bytes are organized or what they represent is
determined entirely by the programmer. This represents maximum
flexibility at the cost of maximum programming effort. The
program performing the retrieval must deal with where to start

Copyright © 1987 STSC, Inc. 3- 40 Files

reading the material, how far to read before reaching the other end,
whether to convert to numeric form (and which numeric form), and
whether to reshape the data and how.

Space Reservation and Checking

An APL file can be given a size limit. Each time you attempt to add
or replace material in the file, the system automatically checks whether
the operation would cause the file to exceed the limit. If the limit
would be exceeded, the operation is not performed. A FILE F U L L
is signaled, and the programmer (or the program) must deal with that
condition before continuing. This permits budgeting of disk space and
recognition of "runaway" programs.

There is no such size checking in writing to a native file.

Ownership and Access Control

The APL * PLUS System tracks the user account number that created
or last renamed the file (its owner). Through the use of the access
matrix, the file owner and those individuals he specifies can extend or
limit the types of file operations that can be performed by any given
user account number. The use of non-zero passnumbers in the access
matrix also makes it possible to limit the allowed operations. Usage
can be restricted to locked APL functions or special kinds of ties.

Access to native VMS files is controlled by a less specific mechanism.
Each native file has a set of "permissions" that determine how it can
be used and by whom. The three permissions are:

• read permission -- the privilege to read any data that the file contains

• write permission -- the privilege to modify the file or erase it
completely

• execute permission -- the right to attempt to load and execute the file
as an executable binary program.

Rather than track distinct permissions for each user in an access
matrix, the VMS operating system recognizes three classes of users:

Copyright © 1987 STSC. Inc. 3-41 Files

• the owner
• the members of the owner's group (a concept that is not used in APL)
• everyone else.

The VMS operating system tracks each of the three classes of
permission for each of the three classes of users. The system
functions DNRDAC and DNSTAC can be used to read and modify
native file permissions. See the detailed description of these features
in Chapter 3 of the APL * PLUS System Reference Manual.

Replilcement of Data

You can replace one component in an APL flle with any other APL
array using 0 F REP LA C E. You need not match the physical size in
bytes, the datatype, or the shape of the array being replaced. In a file
with 20 components, you could replace the integer in component 7
by a huge table of numbers without stopping to ask how much room
on the flle the integer occupied:

ASTRO DFREPLACE 5 7

Consequently, it is extremely easy to replace an object with an
enlarged (updated) version of itself; for example, a customer list with
one or more new customers added.

In a native file, you can only replace data byte-for-byte. You (or the
program) must ask how large the amount of data to be put into the file
is, and how that compares with the amount already there. Other
questions you should ask include: Where does the data that is already
there begin? What information currently in that space will be
destroyed by a simple byte-for-byte replacement? Will space be
wasted? Is more space needed than is used by the data to be replaced?
If so, where else can it be put, or how can a larger version of this file
(one that has more room for the replacement) be created?

Clearly, an updated list or otherwise enlarged object cannot simply
replace the earlier version on the file. To preserve the same relative
position would entail copying the rest of the flle with the new data
into a new file. To avoid copying of all the data, you must set up
some sort of directory system to track the data. This can include
currently unused space abandoned as data grew. If unused space is not
tracked, it cannot be reclaimed.

Copyright © 1987 STSC, Inc. 3-42 Files

If an APL file is cramped for space, reclaiming wasted space is simple.
The system function OF DU P uses the internal component-tracking
data to compact the file down to only its useful data. Using OF DU P
requires that enough space be available on the disk to hold all the
compocted data.

Since native files do not predictably include such tracking information,
no compression of space wasted in native ftles can be provided by the
system; it must be provided by the programmer.

Timestamp Infor11Ultwn

For each component, an APL file stores not only the data, its shape
and datatype, but alSo. (retrievable separately with OF RDC I) three
other pieces of information not tracked by native files:

• how big it is (the number of bytes of workspace storage that would
be needed to read the array)

• who stored it there (the user account number that put this array in
the file)

• when it was stored (the date and time encoded into a single number
called a timestamp).

The syntax of OF R DC I is:

result +- OFRDCI tieno compno

Different Naming Conventions

The names of APL files are restricted to combinations of alphabetic
and numeric characters, while the names of native files can contain
other characters permitted by VMS naming conventions (see your
VMS operating system manual) and are not restricted to names
beginning with a letter.

Copyright © 1987 STSC. Inc. 3-43 Files

CJ
Z
l­
I­
e(
~
a::
o
u..

Chapter 4
Formatting Data in the APL *PLUS System

This chapter describes the formatting capabilities of the APL * PLUS
System function OF MT and identifies the formatting functions
available in the workspace FORMAT.

4-1 Designing A Report

The first step in generating a report is designing it. Consider several
factors before you format the data for your report:

• the order of the columns
• the representation of the columns (integer, decimal, pattern,

exponential)
• the width of the columns
• the width of the entire report.

You also must decide what kinds of decorations you want to use to
clarify the meaning of the data. For example, you may want to
include dollar signs, commas, negative signs, and so on. In some
cases, a pattern may be the best way to represent to data; for example,
a telephone number can be displayed with parentheses around the area
code. The diagram below shows what the structure of a typical report
might look like.

Design of a Typical Report

Date

Title

Subtitle

Column Names

Row Names Body of Report

Copyright © 1987 STSC, Inc. 4- 1 Fonnatling

Once you have decided on the basic layout of your report, use the
functions described in Section 4-14 to add and position titles and
labels. The following report is an example of what a typical report
might look like using the structure shown in Exhibit 4-1 .

HARRIS GARAGE
EASTERN DIVISION INVENTORY REPORT

PART NAME NUMBER QUAN PRICE VALUE REORDER <6MO .

BATTERY 879-01 492 $92.85 $45 , 682 . 20 12/13/87
CARBURETOR 657-04 769 $73.23 $56,313 . 87 5/06/87
FUEL TANK 876-03 371 $71.80 $26,637 . 80 6/24/87
WHEEL 234-06 287 $41.75 $11 , 982.25 4/12/87
BATTERY 876-07 381 $96 . 45 $36,747 . 45 9/03/87
TIRE 876-02 98 $60.90 $5,968 . 20 4/25/87
AXLE 265-07 205 .$55.85 $11,449.25 11/13/87
TIRE 361-08 387 $66.95 $25,909.65 9/26/87
BRAKE 876-06 201 $32.00 $6,432.00 3/01187
CARBURETOR 876-04 879 $157.80 $138,706 . 20 6/25/87
TIRE 234-01 298 $68.90 $20,532 . 20 2111187
EXHAUST 876-05 367 $354.00 $126,615.00 6/25/87
IGNITION 876-09 652 $22.50 $14,670.00 3/12/87
SPARK PLUG 273-03 391 $2.85 $1,114.35 8/05/87
RADIATOR 872-05 738 $63.80 $47,084 . 40 2128/87
WATER PUMP 251-09 276 $53.78 $14,843.28 9/08/87
ALTERNATOR 729-07 493 $96.70 $47,673.10 7/14/87
RADIATOR 316-02 387 $69.30 $26,819 . 10 10/26/87
COIL 582-08 492 $25.50 $12,546 . 00 1/21187

This report was produced with the following program, called INVENTO RY.
The program uses the system function OFMT and several functions from the
FORMAT workspace.

R

R

R

R

R

R

R

R

v INVENTORY ;COLNAME;DATE ;FSTR;NUM;PRICE ;QUANT ;RN;VALUE
[l J FSTR~ '13Al,T16,G<Z99-99> , I6 , T29 , P<$>F8 . 2, T38'
[2J FSTR~FSTR , ' ,CP< $>F12 . 2, T51, G<Z9/99/99>'
[3J FSTR~FSTR , ' ,N< R>Q< >I13 , X-13 , 5 < >'
[4J NUM~ 87901 65704 87603 23406 87607 87602
[5J NUM~NUM, 26507 36108 87606 87604 23401 87605
[6J NUM~NUM , 87609 27305 87205 25109 72907 31602 58208
[7J RN~'/BATTERY/CARBURETOR/FUEL TANK/WHEEL/BATTERY'
[8] RN~RN, 'ITIRE/AXLEITIREIBRAKEICARBURETORITIRE'
[9J RN~RN, 'IEXHAUST/IGNITION WIRE/SPARK PLUG/RADIATOR'
[10J RN~RN , ' /WATER PUMP/ALTERNATOR/RADIATOR/COIL'
[ll J QUANT~ 4 92 769 37 1 287 381 98 205 387 201 879 298
[12J QUANT~QUANT , 367 652 391 738 276 493 387 492
[13J PRICE~ 92.85 73.23 71.8 41. 75 96.45 60.9 55 .85 66. 9 5

Copyright © 1987 STSC, Inc. 4-2 Formatting

[14J PRICE-PRICE. 32 157 . 8 68.9 345 22 . 5 2.85 63 . 8
[15J PRICE-PRICE. 53.78 96 . 7 69 . 3 25.5
[16J DATE- 121383 50683 62483 41283 90383 42583 111383
[17J DATE-DATE. 92683 30183 62583 2 1183 62583 31283
[18J DATE- DATE. 80583 22883 90883 71483 102683 12183
[19J VALUE-QUANTxPRICE
[20J COLNAME-'IPART NAMEINUMBERIQUANIPRICEIVALUE'
[21J COLNAME-COLNAME. 'IREORDERI<6 MO.'
[22J OLNAME-FSTR COLNAMES COLNAME
[23J RN-(tO) ROWNAMES RN
[24J FSTR RJUST '1/5/87'
[25J FSTR CENTER 'HARRIS GARAGE'
[26J FSTR CENTER 'EASTERN DIVISION INVENTORY REPORT'
[27J "
[28J COLNAME
[29 J "
[30J FSTR DFMT(RN;NUM;QUANT;PRICE;VALUE;DATE;xDATE-60587)

v

The program defines a format string containing formatting
instructions, assigns the data variables, uses the title functions and
column and row name functions to set the titles and label the rows and
columns. and finally calls DFMT to format the data into the report.

4-2 What Is OF MT?

The system function DFMT is a simple, economical, and adaptable
tool for detailed tabular formatting. 0 F MT allows you to:

• format several data arguments at a time

• vary the printing order of columns of data from the normal
left-to-right order

• insert message text

• display tables of numbers in designated rows and columns

• decorate monetary values with dollar signs or other identifiers

• express the results of floating-point calculations as standard
decimals or integers

• place flags to mark negative or zero values in results.

Copyright © 1987 STSC, Inc. 4-3 Fonnatting

OF MT is a dyadic system function. It can be represented as either:

result +- 'formatstring ' OFMT data
or

result +- 'formatstring' OFMT (datal ; data2; data3; . . . ; dawn)

The left argument,formatstring, is a character vector that specifies
how you want the data to look. It contains specific formatting
instructions that control the editing and display of the right argument,
the data you want to format. A data item in the right argument can be
the name of a variable or an APL expression that produces a result.

The result of OF MT is always a character matrix. It can be stored and
used within a larger expression like any other APL expression. For
example, the result of the expression:

'14' OFMT 987

is a one-row, four-column character matrix containing the value
, 987' .

The number of rows in the matrix result is determined by the
maximum number of matrix rows or vector elements in the data. The
number of columns is determined by both the format string and the
right argument.

The length of an edited line is limited only by the workspace storage
required to hold the values. The value of OPW does not control the
length of the line, and the value of 0 P P does not affect precision .

4-3 Right Argument - The Data List

The right argument to OFMT is a data list containing APL variables,
constants, or expressions that return numeric or character scalars,
vectors, or matrices. A single data expression in the right argument
needs no parentheses; for example:

'formatstring ' OFMT data

Copyright © 1987 STSC, Inc. 4-4 Form atting

If the right argument contains two or more data expressions, you can
separate them with semicolons, and enclose the entire set in
parentheses:

'formatstring , OF MT (datal; data2 ; data3; . . . ; dalan)

or you can use strand notation to specify the data as a nested array:

'formatstring' OF MT datal data2 data3. . . datan

You can replace any item in the data list with an expression that
produces the desired value as a result (though you may need
parentheses). The following examples show some permissible right
arguments:

SCALAR +- 15
VECTOR +- 3.5 4E3 0.007 1
CHAR +- 'MONDAY'
MAT +- 3 4 pt12

'formatstring , OFMT SCALAR

'formatstring , OFMT 2 2 pVECTOR

'formatstring , OFMT (SCALAR;VECTOR;CHAR ;MAT)

'formatstring , OFMT SCALAR VECTOR CHAR MAT

'formatstring , OFMT (MAT;+/MAT)

'formatstring' OFMT MAT (+/MAT)

The APL * PLUS System formats data expressions of different shapes
as follows:

• A matrix has each column formatted separately.
• A vector is treated as a one-column matrix.
• A scalar is treated as a one-row, one-column matrix.

If you want to display a vector horizontally, reshape it as a one-row
matrix.

Copyright © 1987 STSC, Inc. 4-5 Formatting

Each column of data (which can be one scalar, one vector, or one
column of a matrix) is formatted individually as specified by the left
argument.

4-4 Left Argument - The Format String

The left argument to DFMT is a character vector containing one or
more format phrases. There are two classes of format phrases:

• Editing format phrases edit data in the right argument; for
example, the I format phrase displays numeric data in integer
format.

• Positioning and text format phrases change the appearance of the
result without editing any data; for example, the T format phrase
specifies tab stops for column placement.

You can also use special parameters with many of the format
phrases to specify the field width and precision of the image, and you
can use modifiers to add special effects.

Separate individual format phrases with commas and enclose the entire
string in single quotes (the phrase must be character-valued). You can
use the format string directly as a character vector, or you can store it
in a variable and use it later.

or

Text Delimiters

'I4' DFMT V

F +- 'I4'
F DFMT V

Place text in the left argument between pairs of delimiters. Any of the
pairs of delimiters shown in the following list are valid. The closing
delimiter must correspond to the opening one.

Copyright © 1987 STSC, Inc. 4-6 Formatting

Delimiters Examples

< > <19 __ >
e => eCR=>

:;

0 0 0-0
rI rI rI YE Sri
I I INOI

You can use any of the delimiters as text characters within a format
phrase; but one of them cannot be the closing delimiter. For example,
to use the characters

5>37

as text in a format phrase, you could enclose them in different
delimiters:

e5>37=>

How the Format String is Processed

The format string is scanned phrase-by-phrase from left to right.
Editing fonnat phrases are matched with columns of data, and
positioning and text phrases are processed as they are encountered
without reference to the data.

You need not provide the same number of format phrases as columns
of data in the right argument. The number of fonnat phrases does not
have to divide the number of columns of data evenly. If the format
string contains an insufficient number of phrases to edit all of the data
in the right argument, 0 F MT cycles through the format string
repeatedly until all of the data has been edited. If the format string
contains more phrases than are necessary to edit all of the data, the
ttailing phrases are ignored.

Spaces in the format string have no effect, except between text
delimiters.

Copyright © 1987 STSC, Inc. 4-7 Fonnatting

4-5 How to Construct a Format String

A format string comprises several parts:

• Format phrases edit and position text and data.

• Parameters are used with format phrases to give DFMT detailed
instructions.

• Modifiers add special effects and decorations to edited data.

For example, in the format string

CI13

I is the format phrase telling 0 F MT to format numeric data as
integers, 1 3 is the parameter to the I format phrase specifying a field
width of 13 columns, and C is a modifier specifying that commas
should separate every three digits in the data.

To construct a format string, determine a report width and the width of
individual fields within the report. Then select appropriate format
phrases for the corresponding data, and code the required parameters,
such as field width and the number of digits to be displayed. You can
also include modifiers and decorations for special effects. Add
positioning phrases to the format string to control the location of
fields.

Simplify the coding of repeated format phrases or groups of format
phrases by using repetition factors within parentheses. A repetition
factor is a non-negative integer indicating the number of times to
apply a phrase or a group of phrases. The default repetition factor is 1.

You may fmd it helpful to store format strings as variables, especially
if you will be using them with several different right arguments.

Copyright © 1987 STSC, Inc. 4-8 Fonnatting

4-6 The Editing Format Phrases

The A, I, F, E, and G format phrases place columns of data in the
right argument into corresponding fields in the result.

A - Character Editing

The A format phrase is the only phrase that edits only character data.
The A phrase takes the form:

Aw

where w is the field width. The field width specifies the number of
columns in the result to be occupied by the edited value. (Remember
that a vector is treated as a one-column matrix and is formatted as a
single column, unless it is reshaped to a one-row matrix.)

S
A
L
T

'Al' DFMT 'SALT'

A character matrix in the data can contain several columns. In that
case, you must specify a separate A format phrase for each column.

SALT

CMATRIX - 1 4 p'SALT'
'Al.Al.Al.Al' DFMT CMATRIX

Instead of typing the format phrase repeatedly, you can use a repetition
factor to repeat the phrase. In the following example, a repetition
factor of 4 is used.

'4Al' DFMT CMATRIX
SALT

When the same format phrase is used for the entire right argument, as
in the above example, you can omit the repetition factor.

'Al' DFMT CMATRIX
SALT

Copyright © 1987 STSC, Inc. 4-9 Fonnatting

If the field width is greater than 1, leading positions of the field are
filled with blanks.

WORDSQ +- 3 3 p'BOAURNSEQ'

'A1. A2. A3 ' DFMT WORDSQ
B 0 A
U R N
S E Q

'A2. A2. A2' DFMT WORDSQ
B 0 A
U R N
S E Q

If you try to use an A fonnat phrase to edit numeric data in the right
argument, the result field is filled with stars (*).

'A6' DFMT 133

Stars also result if you try to use an edit phrase other than A to edit
character data.

I . Integer Editing

'I4' DFMT 'ABC'

The I format phrase edits numeric data in integer fonnat. The I
phrase takes the fonn:

Iw

where w is the field width. An I fonnat phrase displays numeric data
as integers. Be sure to include space in the field width for negative
signs in the result that correspond to negative values in the data.

TABLE +- -3 2 -1 D. * -2 -1 1 7

TABLE
0.1111111111 -0.3333333333 -3 -2187
0.25 0.5 2 128

Copyright © 1987 STSC. Inc. 4-10 Formatting

1

'3I4. I6' OFMT TABLE
o 0 -3 -2187
o 1 2 128
1 -1 -1 -1

'I8' OFMT C3 x 4). 6E2 0.4476.85912
12

600
o

477

fonnat. The F phrase takes the fonn:

Fw.d

where w is the field width and d is the number of decimal positions.
For example. the fonnat phrase F 9 . 2 creates a field of nine
positions, in which every value is fonnatted to two decimal places.
Allow two positions in the field width for a possible negative sign and
a decimal point.

'F9.2'
0.11
0.25
1. 00

OFMT TABLE
-0.33 -3.00
0.50 2.00

-1.00 -1.00

-2187 . 00
128.00

-1.00

For numbers between -1 and 1, a zero is placed to the left of the
decimal point in the result. Dyadic fonnat, in contrast, displays such
numbers without a zero to the left of the decimal point in fixed-point
editing.

E • Exponential Editing

The E fonnat phrase edits numeric data in exponential (scientific
notation) fonnat. The E phrase takes the form:

Ew.s

where w is the field width and s is the exact number of significant
figures in the nonexponent part of the result. For example, the fonnat
phrase E 15 . 7 produces a field width of 15 with 7 significant digits.
The number of significant digits specified must be between 1 and 16,

Copyright © 1987 STSC, Inc. 4-11 Formatting

inclusive. The width must be at least seven more than the number of
significant digits to provide space for a negative sign, a decimal point,
and a five-position exponent of the form £ -nnn. Additional width
leaves visible space between columns.

'£10.2'
1. 1£-1
2 .5£-1
1.0EO

DFMT TABL£
-3.3£-1 -3.0EO
5.0E-l 2.0EO

-1 . OEO -1 .OEO

'E12.4' DFMT 2*50 -50
1.126E15
8.882E-16

G - Pattern Editing

-2.2E3
1.3E2

-1.0EO

The G format phrase edits numeric data according to a pattern or
picture format. With this phrase, you can arbitrarily mix text
characters and data in a formatted column by creating a pictorial
template for the data. Special characters within the pattern indicate
where to display digits in the data; other characters are displayed as
they appear in the pattern. The G phrase takes the form :

G <pattern >

where pattern consists of the special characters 9 and Z, called digit
selectors, along with other text characters to insert in the field. Use
any valid pair of text delimiters to enclose the pattern (see Section
4-3). For example, to format a date with a G pattern, enter:

'G<99/99/99> ' DFMT 11887
01/18/87

The number of characters, including blanks, between the pattern
delimiters determines the field width. The field is formatted with the
exact number of characters and digits specified in the pattern.

Data in the right argument is rounded to the nearest integer. Each digit
of the integer is transferred to the field to replace a digit selector (9 or
Z) in the pattern. A 9 in the pattern transfers the corresponding digit
from the integer into the result. A Z suppresses leading and trailing
zeros, transferring the corresponding digit only if the digit is nonzero
or if it is between two transferred digits, as described below.

Copyright © 1987 STSC, Inc. 4-12 Fonnalting

Use the Z digit selector to omit leading or trailing zeros in the edited
fields. If a Z corresponds to a zero in the integer, the zero is
transferred only if digits on both sides are transferred; otherwise, the
corresponding position in the field is unchanged. Since a 9 always
transfers a digit to the result, a Z between two 9s acts as a 9 digit
selector. For example, G< Z9 Z . 99> is equivalent to
G < Z 9 9 . 9 9 >. The following table compares the effects of using 9 s
and Zs as digit selectors:

Format Phrase Data Result

G<Z99.99> 2460 1200 0 24.60 12 . 00 00.00
G<Z99.9Z> 2460 1200 0 24.6 12.0 00.0
G<ZZ9.9Z> 2460 1200 0 24.6 12.0 0.0
G<ZZ9.ZZ> 2460 1200 0 24.6 12 0
G<ZZZ.ZZ> 2460 1200 0 24.6 12

You must insert text characters or Z digit selectors in the pattern to
display negative signs and decorations (decorations are explained in
Section 4-10). Leading and trailing text characters always transfer
directly to the result Text between digit selectors transfers only if
digits to the right and to the left of the pattern text are transferred.
Compare the appearance of zeros and commas in the next two
examples.

NUM ~ 298738472 389487.987 387 0 . 35
ZEES ~ 'G<$ ZZZ,ZZZ,ZZ9 AND NO CENTS>'
NINES ~ 'G<$ 999,999,999 AND NO CENTS>'

ZEES DFMT NUM
$ 298,738,472 AND NO CENTS
$ 389,488 AND NO CENTS
$ 387 AND NO CENTS
$ ° AND NO CENTS

NINES DFMT NUM
$ 298,738,472 AND NO CENTS
$ 000,389,488 AND NO CENTS
$ 000,000,387 AND NO CENTS
$ 000,000,000 AND NO CENTS

You can use G formatting to produce visually effective reports when
numbers are displayed in traditional patterns.

Copyright © 1987 STSC, Inc. 4-13 Formatting

EMPLO ~ 4 7 p'ABEL GALOIS GAUSS ZORN
SSN~298374562 298750385 384716453 273069857
TEL~4086729873 7187364782 8063948726 3138472637
SALES ~ 567 309 4958 312
SAL ~ 49800 50000 59500 41200

FS ~ '7A1,G< 999-99-9999 >,G< (999) 999-9999>
FS ~ FS,' ,I6,G< ZZ,ZZ9>'

FS
ABEL
GALOIS
GAUSS
ZORN

DFMT (EMPLO; SSN;TEL; SALES; SAL)
298-37-4562 (408) 672-9873
298-75-0385 (718) 736-4782
384-71-6453 (806) 394-8726
273-06-9857 (313) 847-2637

567
309

4958
312

49,800
50,000
59,500
41,200

Although data values edited by a G fonnat phrase are rounded to
integers, fractional values in the data can be displayed by multiplying
the data by the appropriate power of ten. In the following example,
the data is multiplied by 100.

MONEY - 1 4 p14.6 52 17 2.44

'G< $99.99>' DFMT 100xMONEY
$14.60 $52.00 $17.00 $02.44

A better way to achieve the same effect is to prefix the G format
phrase with the K scaling modifier (see UK - Scaling" in Section 4-10).
In the following example, the data is scaled by 1 0 * 2 .

'K2G< $99.99>' DFMT MONEY
$14.60 $52.00 $17.00 $02.44

4-7 The Positioning and Text Format Phrases

The positioning fonnat phrases allow you to position fields without
having to count individual positions. The positioning phrase specifies
the column where the result of the next fonnat phrase should begin:

• The T phrase specifies the starting column relative to the left margin.

• The X phrase specifies the starting column relative to the current
position.

Copyright © 1987 STSC. Inc. 4-14 Fonnalting

The <text> format phrase inserts text directly into the result field.
These three phrases do not edit data; they simply position it in the
result

T • Absolute Tabbing

The T phrase specifies absolute tabbing Uumping to a particular
column). It takes the form:

Tp or T

where p is the column position (counting from the left margin) at
which to format the next edited value. For example, T 1 5 moves
directly to position 15 regardless of the previous position. The first
available position on a line is T 1.

If you use T without specifying the position, the next field is
formatted to the right of the rightmost column of the result formatted
thus far.

'3A1, T10, I2' DFMT (1 3 p'TAB';10)
TAB 10

Using a T phrase before individual format phrases can make the format
string easier to modify. The position of a field is clear and is
independent of previous formatting instructions.

x . Relative Tabbing

The X phrase specifies relative tabbing, or positions to be skipped. It
takes the form:

Xp

where p is the number of positions to be skipped from the present
position before formatting the next field of the result.

• If p is positive, p is the number of positions to be skipped to the right.
• If P is negative, p is the number of positions to move left.
• If P is zero, the phrase is ignored.

Copyright © 1987 STSC, Inc. 4-15 Formatting

Specify a negative value with a negative sign (X -12) or a minus sign
(X -12).

'I12,X-12,214,X4,I4' DFMT 1 4 pi 2 3 4
2 3 1 4

<text> - Text Insertion

The <text> phrase inserts the text between the delimiters into a line.
The phrase takes the form:

<text>

where text is any combination of characters and spaces. All the text
between the delimiters, including blanks, is inserted directly into the
edited line. You can use any valid pair of text delimiters to enclose the
text (see Section 4-3).

DPT ... 3 4 5
REV'" 344.50 89.74 250.13

FS""<REVENUES FOR DEPT.>,I2,< ARE .. $>,F6 .2'
FS DFMT (DPT;REV)

REVENUES FOR DEPT . 3 ARE . . $344.50
REVENUES FOR DEPT. 4 ARE . . $ 89.74
REVENUES FOR DEPT. 5 ARE .. $250.13

Using Positioning and Text Phrases

You can use the T and X format phrases to position fields without
having to count individual spaces. In the format string:

I5, X3, 25A1, T51, 4F7.2

the first floating point field begins in position 51, and if all four F
phrases are used, the result is a matrix with 78 (50 + 4 x 7) columns.

Positioning phrases may re-order data in the result. This example uses
parentheses and repetition factors to simplify the left argument (see
Sections 4-8 and 4-9).

Copyright © 1987 STSC. Inc. 4-16 Fonnatting

FS +- '3(A1, <- », T1, 3(I3,X2)'
FS DFMT (3 3p'ABCD£FGHI';3 3p19)

A-1
D-4
G-7

B-2
£-5
H-8

C-3
F-6
1-9

You can use text phrases to override previously formatted fields. The
decimal point is replaced by a colon in this example.

FS +- 'F7.2, X-3, <:>, T'
FS OFMT 1 4p10+0.15 x -1+14

10:00 10:15 10:30 10:45

You can use symbol substitution to achieve the same effect (see
"s -Standard Symbol Substitution" in Section 4-10).

A backward-pointing relative or absolute tab may cause a previously
formatted field to be overlaid by a new field. This new field need not
match the width or alignment of any previously formatted field. In
this case, nonblanlc characters in the new field replace the
corresponding characters in the old field. Blank characters in the new
field that occur as the result of explicit mention in <text> phrases, G
phrases, or certain modifiers also replace the corresponding characters
in the old field. However, blanks used as fill characters do not replace
any characters in the old field.

In the following example, the background fill modifier R (see "R -
Background Fill" in Section 4-10) alters the normal blank background
fill character.

IOTA +- 1 4 p1 2 3 4

'I12, T1. 2I4, T. I4' DFMT IOTA
2 3 1 4

'R<·>I12. T1, 2I4. T. I4' DFMT IOTA
000200030001 4

'R<·>I12, T1, 2R< >I4. T, I4' DFMT IOTA
2 3···1 4

In the last example, the blanks in the rightmost R modifier override
previously formatted fields because they are text characters rather than
fill characters.

Copyright © 1987 STSC, Inc. 4-17 Formatting

4-8 Parameters

You can use special parameters within format phrases to give OF MT
detailed instructions. Use them to specify:

• the number of times to apply a phrase or a group of phrases
• the width of an edited column
• the number of digits to be displayed
• the position for a tab or skip.

Most parameters specify essential formatting considerations and are
required with their corresponding format phrases; however, repetition
factors are optional. Repetition factors improve the readability of a
format string containing repeated format phrases and often clarify the
structure of the format string at a glance. They are useful when a long
format phrase is needed.

w • Field Width Parameter

The field width parameter w determines the number of positions in the
result to be occupied by the edited value. It is required with the following
phrases: A as in Aw, E as in Ew.s, F as in Fw.d, and I as in Iw.

'FG . l, Fl2 . l, FS.l, FlS.l' DFMT 2 4 p5S.S
5S.S 5S.S 5S.S 5S.S
5S . S 5S.S 5S.S 5S.S

ANAGRAMS - G 4 p'OPTSPOSTPOTSSPOTSTOPTOPS'

'Al' DFMT ANAGRAMS
OPTS
POST
POTS
SPOT
STOP
TOPS

If the field width is greater than the number of digits or characters, the
field is padded with leading blanks.

' A2' DFMT ANAGRAMS
OPT S
P 0 S T
POT S

Copyright © 1987 STSC. Inc. 4-1 8 Formatting

S POT
S TOP
TOP S

Be sure to leave space in the field width for:

• a negative sign in an E, F, or I phrase

• a decimal point in an F phrase, or in an E phrase if more than one
significant digit is specified

• an exponent of the form E - nnn in an E phrase

• any spacing you might want between the columns of a matrix.

If the field width is i!lsufficient, the field is filled with stars (see
Section 4-12).

TABLE - -3 2 -1 0.* -2 -1 17

'FS.l' DFMT TABLE
0.1 -0.3*****
0.3 O.S*****
1.0 -1.0 -1.0

d - Decimal Position Parameter

The decimal position parameter d controls the number of digits that
appear to the right of the decimal point. It is required with F phrases
(Fw.d).

FS - 'F2.0 , F7.3, FI0.6, F13.9, F16.12'
FS DFMT 1 5po l

3. 3.142 3.141593 3.141592654 3.141592653590

s - SignifICant Digits Parameter

The significant digits parameter s controls the number of significant
digits in the nonexponent part of the result. The value of this
parameter must be at least 1. This parameter is required with E
phrases (Ew.s).

Copyright © 1987 STSC, Inc. 4-19 Formatting

'£10.2 . £9.1, £17.9' DFMT 1 3 p-57.98765
-5 . 8£1 -6£1 -5.79876500£1

<pattern> - Pattern Text Parameter

The pattern text parameter <pattern> provides detailed control over the
location of the individual digits of the value to be fonnatted. It is
required with G phrases (G <pattern». See "G - Pattern Editing" in
Section 4-6 for detailed infonnation on this parameter.

p - Position Parameter

The position parameter p controls the location at which to display the
next field. It is required with X phrases (Xp) but is optional with T
phrases (Tp). When used with an X phrase, p is the number of
positions to be skipped from the present position. For example,
because X 1 says to skip the first position, it specifies the second. It
can be a positive or negative integer, or zero. A zero causes the phrase
to be ignored. Specify a negative value with either a negative sign
(X - 12) or a minus sign (X -12).

When used with a T phrase, p is the number of positions from the left
margin and is always a positive integer. For example, T 1 indicates
the first position.

'112, 4(X-4, 11)' DFMT 1 4 Pl4
4 321

FS ~ 'T12, 11, T9, 11, T6, 11 , T3, 11'
FS ~ DFMT 1 4Pl4

432 1

r - Repetition Factor

The optional repetition factor r detennines how many times to use a
single fonnat phrase or a group of fonnat phrases enclosed in
parentheses. You can use it with any fonnat phrase. The repetition
factor precedes all other elements in the fonnat phrase. For example, a
repetition factor of 2 to the left of an editing fonnat phrase causes that
phrase to edit two successive columns from the data list. For
example, F6. 3, F6 . 3 is the same as 2F6. 3.

Copyright © 1987 STSC. Inc. 4-20 Formatting

A nonzero repetition factor to the left of a T phrase has no effect. For
example, 3 T 5 is the same as T 5 and 3 T is the same as T.

A nonzero repetition factor to the left of an X phrase repeats the
specified skip. For example, 3 X 5 is the same as X 15 and 3 X - 5 is
the same as X - 1 5.

A nonzero repetition factor to the left of a <text> phrase repeats that
phrase. For example, 2 < P A GO > is the same as < P A GO P A GO >

A zero repetition factor to the left of any phrase causes that phrase to
be ignored.

The default repetition factor is 1.

4-9 Grouping Symbols

Use parentheses in the left argument of DFMT to simplify the
construction of repeated sets of format phrases and to limit further
scanning of the format string when the data has been exhausted.

Enclose the group of format phrases in parentheses and place the
repetition factor to the left of the left parenthesis.

12A1, 4(F10.2, I4)
I15. 4<X-4. Ii)

Without parentheses, you would have to specify the second format
string in the preceding example as:

A zero repetition factor to the left of a left parenthesis causes the
phrases in the group to be ignored.

If parentheses are used and no repetition factor is specified, 1 is
assumed

Copyright © 1987 STSC, Inc. 4-21 Formatting

After all columns of data have been used, T, X, and <text> format
phrases in the format string continue to be used until one of the
following occurs:

• an editing phrase (A, E, F, G, or I) with a nonzero repetition factor
• the end of the format string
• a right parenthesis with a repetition factor that has not been fully used
• a left parenthesis.

The following example demonstrates how to nest parentheses and how to
use them to limit scanning of a format phrase when no more data is left to
be edited

ADD ~ 2 4 p1 2 3 4 5 6 7 8
ADD~(+/ADD) .ADD
'12. < = >.4<11. «+»)' DFMT ADD

10 = 1+2+3+4
26 = 7+6+7+8

4-10 Modifiers

B· Blank

Modifiers add decorations and special effects to edited data. Place them
between the repetition factor and the format phrase. You can use any
number of modifiers in any order.

The B modifier leaves the field blank if the edited value is zero. Use it
with F, G, and I format phrases.

EX ~ -65423.43 -10 -0.4 0 100

'BF10.1' DFMT EX
-65423.4

-10.0
-0.4

(0 shows as blank.)
100.0

Copyright © 1987 STSC. Inc. 4-22 Formatting

C· Comma

K· Scaling

'BG<ZZZZZZ99>' DFMT £X
-65423

-10

100

(0 . 4 shows as blank.)
(0 shows as blank.)

The C modifier inserts commas between each group of three digits in the
integer part of the ediled value. Use il with F and I formal phrases.

DATA - 2987309 3870 . 23 96874382 38£5
'CI13' DFMT DATA

2.987.309
3.870

96.874.382
3.800.000

Remember to provide extra positions in the field width for commas.

The K modifier scales (multiplies) a number before displaying it. It
takes the form:

Ki

where i is a positive or negative integer. or zero. A negative value can
be specified by a negative sign (K -2) or a minus sign (K - 2). Each
number to which the K modifier applies is multiplied by 10 * i before
it is formatted.

'FB.2.KIFIO.2.K-2FB.2' DFMT 1 3 p470.6
470 . 60 4706 . 00 4.71

Use the K modifier with £, F, G, and I phrases. With an F, G, or I
phrase, the K modifier controls how far the digits are shifted left or
right of the decimal point in the result. With an £ phrase, the K
modifier adjusts the exponent in the result.

The following table shows the use of scaling with decimal,
exponential, and integer editing.

Copyright © 1987 STSC, Inc. 4-23 Fonnatting

Format Phrase Number Result

F6.2 24.60 24 . 60
K1F6.2 24 . 60 246 . 00

K-2F6 . 2 24.60 0.25

E9.4 24.60 2.460E1
K1E9.4 24.60 2 . 460E2

K-2E9.4 24.60 2.460E-1

13 24.60 25
K1I3 24 . 60 246

K-2I3 24.60 0

Scaling is particularly useful when fonnatting numbers with the
Gphrase.

Format Phrase

G<9.ZZ>
K1G<Z9 . ZZ>
K2G<ZZ999>
K2G<ZZ.99>
K2G<ZZ.9Z>

L - Lefl Justify

Number

24.60
24.60
24.60
24.60
24.60

Result

0.25
2.46
2460

24.60
24.6

The L modifier left-justifies the edited value in the result field . Use it
with F and I fonnat phrases.

2
4
8
16
32
64
128
256

'LI9' DFMT 2*18

Copyright © 1987 STSC. Inc. 4-24 Formatting

When numbers with fixed decimal points or negative signs are
left-justified, the alignment may be unusual.

'LF10.2' DFMT 34.5 266 0.300 -49.04
34.50
266.00
0.30
-49.04

M - Negative Left Decoration

The M modifier replaces negative signs with text you specify. It takes
the form

M<text>

where text replaces the negative sign to the left of the result. Use this
modifier with F, I, and G phrases. Be sure to provide space in the
field width for the decoration text. M < - > is the default negative left
decoration.

In the following example, the M modifier replaces the APL negative
sign (-) by the minus sign (-).

EX ~ -65423.43 -10 -0.4 0 100

'M<->Fl0.l' DFMT EX
-65423.4

-10.0
-0.4
0.0

100.0

This kind of replacement can be helpful when you use a different type
font to print a report. For example, since the APL negative sign (-)
displays as an "at" sign (@) in most fonts, you could use M < - > to
display negative values with a minus sign (-) in another font. You
can also use standard symbol substitution to solve similar problems
(see "s -Standard Symbol Substitution" in this section).

Copyright © 1987 STSC, Inc. 4-25 Fonnatting

N • Negative Right Decoration

The N modifier places text you specify to the immediate right of an
edited negative value. It takes the form

N<text>

where text represents the text. Use this modifier with F, I, and G
phrases. Be sure to provide space in the field width for the decoration
text.

'N< MINUS>F20.2' DFMT EX
-65423.43 MINUS

-10.00 MINUS
-0.40 MINUS

O· Format Zeros As Text

0.00
100.00

The 0 modifier places text you specify in fields with zero values. It
takes the form

o <text>

where text represents the text. Use this modifier with F, I, and G
phrases. Be sure to provide space in the field width for the decoration
text.

The 0 modifier overrides any P or Q modifier that specifies text or
decoration for zero values (see "P . Positive Left Decoration" and "Q .
Positive Right Decoration" in this section). If the text is shorter than
the field width, the text is right-justified in the result.

'O<NONE> Q< DR> F9.2' DFMT EX
-65423.43

-10.00
-0.40

NONE
100.00 DR

However, if the L modifier is specified (for F or I phrases only), the
text is left-justified. If the text is the same length as the field width,
no justification occurs.

Copyright © 1987 STSC. Inc. 4-26 Fonnatting

'O<NONE> LQ< DR> F9.2' DFMT EX
-65423.43
-10 . 00
-0.40
NONE
100.00 DR

P - Positive Left Decoration

The P modifier places text you specify to the immediate left of an
edited positive or zero value. It takes the form

P <text>

where text represents the text. Use this modifier with F, I, and G
phrases. Be sure to provide space in the field width for the decoration
text.

'P<+>Fl0.l' DFMT EX
-65423.4

-10.0
-0.4
+0.0

+100.0

Q - Positive Right Decoration

The Q modifier places text you specify to the immediate right of an
edited positive or zero value. It takes the form:

Q <text>

where text represents the text. Use this modifier with F, I, and G phrases.
Be sure to provide space in the field width for the decoration text.

'Q< DR>Il0' DFMT EX
-65423

-10
o DR
o DR

100 DR

When M, N, 0, P, and Q modifiers are used with the G format phrase, the
decoration text supersedes text characters in the pattern. The decoration tex

Copyright © 1987 STSC, Inc. 4-27 Fonnatting

appears adjacent to leading or trailing nonzero digits in the result.
Therefore, the text phrases may not align.

FMT - 'M<>N< CR>O<NONE>Q< DR>G<Z,ZZZ--->'
FMT DFMT -123 120 242 a -100 1000

123 CR
12 DR-
242 DR

NONE
1 CR--

1 DR ---

R • Background Fill

The R modifier fills the result field with text you specify in all
positions not filled with the edited value. It takes the form

R<text>

where text represents the text. Starting at the left side of the field, text
is repeated as many times as necessary to fill the field. Use this
modifier with A, E, F, I, and G phrases. Be sure to provide space in
the field width for the decoration text.

'R<' >Il0' DFMT EX
•• -65423
••• '-10

• • 0
• • 0
'100

'R<BACKGROUND>I21 , DFMT EX
BACKGROUNDBACKG-65423
BACKGROUNDBACKGROU-l0
BACKGROUNDBACKGROUNDO
BACKGROUNDBACKGROUNDO
BACKGROUNDBACKGROU100

When used with the G format phrase, the R modifier is displayed only
in positions not occupied by text characters or decorations.

RDEC ~ 'R<*>G<$ ZZZ,ZZZ,ZZ9>'

RDEC DFMT 23987458 38794 287 0
$ *23,987,458
$ *****38,794

Copyright © 1987 STSC, Inc. 4-28 Formatting

$ ********287
$ **********0

You can use the R modifier to replace leading blanks in the result of
an A format phrase with nonblank characters.

'R<->A2 1 OFMT 3 3p'BOAURNSEQ'
-B-O-A
-U-R-N
-S-E-Q

However, the R modifier will not put the background text into a data
position; rather, it will only fill in leading positions created by using a
repetition factor.

'R<*>A2 1 OFMT 1 8 p'JOHN DOE'
*J*O*H*N* *D*O*E

The blank between JOHN and DOE is not filled in with a background
star.

S - Standard Symbol Substitution

The S modifier substitutes symbols of your choice for standard
symbols used by DFMT. Use the S modifier with F, G, and I
format phrases. You can also use it with the G format phrase to free
the digit selectors 9 and Z to serve as characters to be inserted in the
result, and with an F or I format phrase to tailor other formatting
effects to individual needs. S allows only a one-to-one substitution of
symbols.

The S modifier takes the form:

S <symbolpairs>

where the rust symbol in each pair must be one of the symbols in the
following table, and the second symbol is the temporary replacement
for the first.

This table contains a list of symbols that can be replaced using the S
modifier. Applicable format phrases are shown in parentheses.

Copyright © 1987 STSC. Inc. 4-29 Fonnatting

Symbol Purpose (Applicable Format Phrases)

9 Digit selector (G)

z Digit selector, with leading and trailing zero suppression (G)

* Field overflow fill character (E, F, G, I)

Decimal point (F)

C modifier insert character (F, I)

o Z modifier fill character (F, I) or leading-zero fIll character
from a 9 digit selector (G)

The following example shows how you can use the S modifier to
display decimal numbers as clock times.

'S<. :>F7.2' DFMT 1 4 p10+0.15 x -1+t4
10:00 10:15 10:30 10:45

The substitution affects only the format phrase with the S modifier, as
in the next example.

'S<.V>F5.1. F9.3' DFMT 1 2 p470.6 370.168
470V6370 . 168

You can substitute for more than one symbol in a single format
phrase. For example. symbol substitution can be used to follow
European conventions. where periods rather than commas are used as
number separators, and commas rather than periods are used as decimal
points to mark the fractional part of a value.

I S <. • • . > C F 1 4 . 2 I 0 F MT 1 2 3 4 5 6 7 . 8 9
1.234.567.89

The only substitutions permitted for symbols in the left argument to
DFMT are those for the digit selectors 9 and Z in the G format
phrase. The other substitutions that are permitted affect symbols that
DFMT places in the result. In the next example, the S modifier frees
the digit selector 9 for use as a character in text .

Copyright © 1987 STSC. Inc. 4-30 Fonnatting

1964
1957
1972
1954

Use the 5 modifier to replace the stars that mark field overflow.

A+-o 1E2 1

, F 5 . 2' 0 F MT A

3.14

'5<*$>F5.2' DFMT A
$$$$$
3.14

The following uses of standard symbol substitution produce a
FORMAT ERROR:

• An odd number of symbols appears between the delimiters; for
example, 5 < . >.

• The first symbol in a pair of symbols is not in the preceding table;
for example, 5 < V . >.

• More than one substitution is made for the same symbol in the
same format phrase; for example, 5 < . : . • >.

• The same symbol is substituted for the digit selectors 9 and 2; for
example, 5<9_2_>.

2· Zero Fill

The 2 modifier fills unused leading positions in the result field with
zeros instead of blanks. Use the 2 modifier with Iand F format
phrases.

Copyright © 1987 STSC. Inc. 4-31 Fonnatting

'ZI10' OFMT 3x1 2 3 4 5
0000000003
0000000006
0000000003
0000000012
0000000015

The Z modifier can also be used to display telephone numbers when
exchanges and trunk numbers have been stored separately.

EXCHANGES ~ 355 298 385 448
NUMBERS ~ 56 7980 230 66

'I3,<->,ZI4' OFMT EXCHANGES NUMBERS
355-0056
298-7980
385-0230
448-0066

When the Z modifier is used with an editing phrase to format a
negative value, the negative sign is left-justified in the result field.

'ZI5' OFMT -1 0 1
-0001
00000
00001

4-11 Combinations of Modifiers

When the B modifier and 0, P, or Q modifiers are used together, any
data values that are zero appear as blanks, and the decoration text does
not appear in the result field.

'BO<NONE>I5' OFMT -1 0 1
-1

1

'BP<+ >I5' OFMT -1 0 1
-1

+ 1

When the Band R modifiers are used together, any data values that are
zero do not suppress the R fill text in the result field.

Copyright © 1987 STSC, Inc. 4-32 Formatting

'BR< NONE>FS . 2' DFMT -1 0 1
-1.00
NONE
1. 00

When the Band Z modifiers are used together, any data values that are
zero appear as blanks in the result field.

'BZI5' DFMT -1 a 1
-0001

00001

When the Land 0 modifiers are used together, text specified by the 0
modifier is left-justified.

-1
NONE
1

'LO<NONE>I4' DFMT -1 a 1

When the Land Z modifiers are used together, the Z modifier has no
effect.

'LZI5' DFMT -1 a 1

When the M and Z modifiers are used together, each negative data value
appears with its negative sign replaced by the M decoration text. The
decoration text is left-justified in the result field .

'M<- >ZIS' DFMT -1 a 1
- 001
00000
00001

When the 0 modifier and the P or Q modifier are used together
without the B modifier, any data values that are zero are formatted by
the 0 text rather than the P or Q text.

Copyright © 1987 STSC, Inc. 4-33 Fonnatting

'0< v>P<[>Q<]>L15' DFMT 012 3

[1]
[2]
[3]

v

When the P and 2 modifiers are used together, each zero or positive
data value appears wilh the P decoration text and is left-justified in the
result field.

'P<+ >215' DFMT -1 0 1
-0001
+ 000
+ 001

When the R modifier is .used with one or more M, N, 0, P, or Q
modifiers, the decoration text overrides the background text for the
portion of the field covered by the M, N, 0, P, or Q modifier.

FS~'R<*>M<->N<->0<NONE>P<+>Q<+>15'
FS DFMT -1 0 1

**-1-
*NONE
**+1+

4-12 Useful Applications

Here are some examples of commercial applications that use 0 F MT wilh
combinations of modifiers. The numeric array N U M is used in most of the
examples.

NUM
1316026.715

11586.9
6789137.817
3836077.871

755715 . 3407
2190044 . 457

o
-5195105.458

4587093.116
-471009.5613
9347189.744

234.5

Float Dollar Signs and Place Negative Values in Parentheses

'e P<$> Q<
$1,316,026.72

$11,586.90
$6,789,137.82
$3,836,077.87

Copyright © 1987 STSC, Inc .

> M«$> N<» F19.2' OFMT NUM
$755,175.34 $4,587,093.12

$2,190,044.46 ($471,009 . 56)
$0.00 $9,347,189.74

($5,195,105.46) $234.50

4-34 Fonnatting

Format Negative Values into Separate Columns and
Omit Negative Signs

'M<>N< > CI40' DFMT ,NUM
1,316,027

755,715
4,587,093

11,587
2,190,044

471,010

5,195,105

Display Decorations Only

BOOLEAN ~ 0 0 1 0 1

6,789,138
o

9,347,190
3,836,078

235

'P<YES>R<NO >BI4, X-1, < >' DFMT BOOLEAN
NO
NO
YES
NO
YES

4-13 Stars or Unknown Digits in Result

Stars in Result

If stars appear in your result when you did not expect them, you probably
used DFMT incorrectly. Stars appear in the result when:

• A formatted value is larger than the field width (often because you
forgot to account for the width of decorations in the field width).

• You tried to use an A format phrase to edit numeric data.

• You tried to use a format phrase other than A edit character data.

You can avoid these conditions by using a larger field width, by

Copyright © 1987 STSC, Inc. 4-35 Fonnatting

scaling the data, or by using the correCl format phrase for the data type.
You can always substitute another symbol for the star by using the S
modifier (see Section 4-10).

Unknown Digits in Result

The precision of the result of OF MT is independent of the value of
o P P. 0 F MT displays up to 17 digits. A format phrase requesting
more significant digits than are available in the internal representation
uses zeros for the missing digits.

'F24.1' OFMT 01£20
314159265358979330000.0

4-14 Workspace FORMAT Overview

The workspace FORMAT supplied with your APL*PLUS System
contains several functions that will help you place titles and row and
column names on a report. These functions fall into the following
categories:

• Title functions allow you to position titles over your report.
• Label functions allow you to label rows or columns of your report.
• A special function allows you to build custom tilling routines.

Use these functions in conjunction with OFMT to help you generate
your reports. Instead of loading the entire workspace, you can copy
any of these functions into your workspace with the command

) COPY [APL. R£Ln] FORMAT objects

where objects is a list of one or more desired functions.

Title Functions

Each of the following titling functions produces a character matrix as
an explicit result. The matrix has the same width as the result of
OFMT used with the same format string, which permits catenation of
titles onto formatted data to form larger character matrices.

Copyright © 1987 STSC, Inc. 4-36 Formatting

Center a title over a report. CENTER
LJUST
RJUST

Left justifie a title over a report.
Right justifie a title over a report.

Label Functions

The following functions set up labels for rows and columns of a
report.

COLNAMES
ROWNAMES

Cuswm Titling Routines

Label columns of a report.
Label rows of a report.

The CENTER, LJUST, RJUST, and COLNAMES functions
analyze a format string using the RWT D function. You can use
RWT D directly to design you own titling routines to meet your needs.

Using the Functions in Formatting Programs

The following program GO uses functions in FORMAT in
conjunction with DFMT.

v GO DATA;FSTR;RN
[1] FSTR~'8A1, X2, IS, F10.2, F15.2'
[2] RN~8 ROWNAMES 'INUTSIBOLTSISCREWS'
[3] FSTR CENTER 'INVOICE'
[4] FSTR COLNAMES '·MATERIAL·QTY·COST·EXTENSION'
[5] FSTR DFMT (RN;DATA)

v

INFO ~ 3 3 p20 0.15 3 9 0.71 6.39 3 0.42 1.26

GO INFO

MATERIAL
NUTS
BOLTS
SCREWS

Copyright © 1987 STSC, Inc.

INVOICE
QTY COST

20 O. 15
9 0.71
3 0.42

4-37

EXTENSION
3.00
6.39
1. 26

Formatting

To speed up execution of your reports, use the following two
techniques:

• Separate report setup from report production.

• Avoid repeated analysis of the same format string by the RWT D
function.

Separating Report Setup from Report Production

To save execution time when producing reports, use a separate "setup"
program to prepare and store as variables portions of the report that do
not change, such as titles and row and column labels. The report
program runs faster since it is only printing the saved variables rather
than computing them. Using this approach, the function GO (shown
previously) is replaced by two functions SETUP and RE PORT.

v SETUP
[1] FSTR-'BA1,X2,I5,FIO.2,F15.2'
[2] RN-B ROWNAHES 'NUTS/BOLTS/SCREWS'
[3] TITLE-FSTR CENTER 'INVOICE'
[4] COLN-FSTR COLNAHES '·HATERIAL·QTY·COST·EXTENSI

v

v REPORT DATA
[1] " ¢ TITLE ¢ "
[2] COLN
[3] FSTR DFHT (RN;DATA)

v

The SETUP function places four global variables in the workspace,
to be used by the REPORT function. The REPORT function can be
run as many times as needed once SETUP has been run. If the report
specifications change, revise SET UP, run it once, and save the
workspace for future use.

Avoiding Repeated Analysis by the RWT D Function

When a format string is given as the left argument to LJU ST,
RJUST, CENTE R, or COLNAMES, these functions use RWT D to
analyze the format before proceeding. However, if the left argument to
these functions is numeric data, the functions assume it is the proper
result of an earlier analysis by RWT D and bypass the use of RWT D.

Copyright © 1987 STSC, Inc. 4-38 Fonnatting

Therefore, to save execution time use one of the following procedures:

• Call RWT D separately and save its result for use as the left
argument to LJUST, RJUST, CENTER, or COLNAMES.
Lines [3] and [4] of SETUP in the previous example would
run faster as:

[3] RR-RWTD FSTR 0 TITLE-RR CENTER 'INVOICE'
[4] COLN-RR COLNAMES 'oMATERIALoQYToCOSToEXTENSION'

• Use a numeric vector of field widths instead of RWT D. The
COLNAME S program will right justify headings over fields with
positive widths, and left justify headings over fields with negative
widths. Lines [3] and [4] of the previous example would then be:

[3] RR--a 7 10- 15 0 TITLE-RR CENTER 'INVOICE'
[4] COLN-RR COLNAMES'oMATERIALoQYToCOSToEXTENSION'

Copyright © 1987 STSC, Inc. 4-39 Fonnatting

Q
a:
c(
0(1)
IDW
>­
wI-
~~
zO
Itl~
a:
U
(I)

Chapter Five
Keyboard and Screen Management

In addition to manipulating the screen from the terminal keyboard, the
APL * PLUS System provides system functions to manipulate the
screen under program control. Using these facilities changes the image
of the APL session screen in memory and also causes APL to transmit
the necessary control sequences to the terminal to produce the same
effect

5-1 Simple Input and Output Management Facilities

The building blocks of simple input and output facilities are the 0
(quad) for numeric data and ~ (quote-quad) for character data. The D
can be used in an expression like D-A to display the contents of A at
the terminal. It can be used in the expression A-D to wait for input
from the terminal and store it in the variable A. The ~ works the
same way for character input, except that on output (~-A) it does not
display a carriage return at the end of the data.

A typical function might use D or ~ both to accept input data for
processing and to display the result of the operation:

vUPDATE
[1] D-'ENTER NAME:
[2] NAME-~
[3] ~-'OK, '.NAME.' HOW OLD ARE YOU? '
[4] AGE-~

v

The function above would begin execution as follows, with user input
in bold:

Copyright © 1987 STSC, Inc. 5-1 Screen and Keyboard Management

UPDATE
ENTER NAME :
SMITH
OK. SMITH. HOW OLD ARE YOU? 34

In the UP D AT E function above. AGE will include leading spaces to
indicate the location of the entry on the line. Some older APL
systems return the entire line (including prompt) rather than spaces. If
you have programs that require this behavior. you can set 0 P R to I I

to emulate the older style. See Chapter 3 of the APL --PLUS System
Reference Manual for details on 0 P R.

Other APL -- PLUS systems use the expression:

~-'PROMPT' 0 OARBOUT 10 0 ANSWER-~

to eliminate anything on the line except the user's entry. The
APL * PLUS System for V AXNMS supports this idiom.

OARBOUT lOis a special definition of OARBOUT. Normally
OARBOUT can be used to send any ASCII character tothe screen. It
sends arbitrary character data to the screen. interpreting the numeric
codes given in its argument as the corresponding ASCII character.

Terminal Control Characters

Several system constants are provided to simplify sending control
characters to the terminal. They can be used to produce special actions
on the terminal . The system constants take the form OTCnn and
produce the following control characters:

• Bell:
• Backspace:
• Delete:
• Escape:
• Form Feed:
• Linefeed:
• New Line:
• Null:

Copyright © 1987 STSC, Inc.

OTCBEL
OTCBS
OTCDEL
OTCESC
OTCFF
OTCLF
OTCNL
OTCNUL

5-2 Screen and Keyboard Management

Note how some of these are used in the example below. For details on
the terminal control system constants, see Chapter 3 of the
APL *PLUS System Reference Manual.

In conjunction with 0 and l!I on output, OCURSOR can position the
output anywhere on the screen; 0 T C F F can be used to clear the screen
altogether. The session-related variable 0 CUR SO R contains the
current location of the cursor within the current window on the screen.
Its value is a vector containing the row and column of the current
cursor position relative to the upper left comer of the window in use
(see OW IN DOW).

You can assign OCURSOR a new value, which will immediately
cause the cursor to move to a new location. The following function, a
slightly enhanced upqate program, clears the screen and positions the
question on the screen:

vUPDATE2
[1] OTCFF
[2] OCURSOR ~ 4 15
[3] l!I+-'ENTER NAME: ' ¢ OARBOUT 10
[4] NAME~l!I

[5] REPLY~'OK,' ,NAME, 'HOW OLD ARE YOU?
[6] OCURSOR +- 6 10
[7] l!I+-REPLY,OTCBEL ¢ OARBOUT 10
[7] AGE+-l!I

V

Screen Operations

If you have a large quantity of text to display on the screen or if you
want to specify display attributes such as reverse video, 0 W PUT is a
useful tool. This system function replaces the characters or attributes
(or both) in a specified screen window. OWPUT has the syntax:

wspec OWPUT data

where wspec is the optional specification of a window other than the
current one, and data is the data to display in the window. The wspec
argument takes the form of the session-related variable OW INDOW.
OW IN DOW is a vector whose first two elements are the absolute

Copyright © 1987 STSC. Inc. 5-3 Screen and Keyboard Management

screen position of the upper-left comer of the window and whose last
two elements are the shape of the window.

The system function that corresponds to 0 W P UT on input is
DWGET. DWGET reads the characters or attributes (or both) from a
specified screen window. It has the syntax:

result wspec DWGET rtype

where wspec is the optional specification of a window other than the
current one and rtype is the type of result desired: an integer ccx:le from
1 to 4 .

Display Attributes

Most CRT terminals provide a facility for display attributes, allowing
the display of characters to be emphasized by reverse video, high
intensity, or blinking. The APL * PLUS System allows you to
manipulate the display attributes on the screen using DWGET and
DWPUT. APL uses a logical attribute approach to standardize the
handling of attributes on a wide variety of terminals.

The logical attribute is a number representing the combination of
attributes that are used to display a character. Each possible attribute has
a numeric value, and the combination of attributes is expressed as the
sum of these numbers. This APL * PLUS System is capable of handling
up to 8 distinct display attributes in 256 different combinations. Most
monochrome terminals support 4 attributes. By convention, the
attributes are identified to APL by the following attribute values:

o default display form for the terminal
I reverse video
2 alternate intensity (brighter or dimmer than usual)
4 blinking
8 underlined

For example, to make a 1 O-by-l 0 section of the screen display in
reverse video with blinking characters, use:

o 0 10 10 DWPUT 5

Copyright © 1987 STSC. Inc. 5-4 Screen and Keyboard Management

These attribute conventions work only if the termcap database being
used contains the necessary definitions. See Appendix D for
information on the structure of the termcap database.

Single Keystroke

To capture a single keystroke, use the system function 0 INK E Y.
Where I!I captures all input until the user presses Return, 0 INK E Y
takes only a single input character. For example:

D~'PRESS ANY KEY TO CONTINUE' ¢ KEYSTROKE~DINKEY

DIN KEY allows you to write APL programs that react to each keystroke as
the user types it.

Using the Programmable Function Keys

The APL * PLUS System includes a facility for defining a group of
logical programmable function keys that provide a faster method to
type pre-defined sequences of keystrokes as input. This facility is
independent of any real function keys that you may have on your
terminal keyboard, and you can use this facility even if there are no
function keys on the terminal.

A function key is used by typing the PF-key keystroke (also known as
the Alt-Key) followed by any other single character. A distinct
function key is defined for each of the 128 ASCII characters. For
example, suppose that the function key value for the" 1" key is defined
to be the six -character sequence (') V A R S ' , 0 TeN L). Then, when
you press PF-key followed by 1, a) V AR S and a simulated Return
are displayed as though you had entered them yourself from the
keyboard.

Each function key has a default definition. The most commonly used
APL overstrikes can all be produced using the default function keys.
These keys have been chosen to correspond to the way the Alt-shift
key is used to produce overstrikes on the APL * PLUS System and on
IBM 3270-series terminals. Thus, PF-key followed by " , " produces
A, and PF-key A produces a. For this reason the PF-key keystroke is
also known as Alt-key.

Copyright © 1987 STSC, Inc. 5-5 Screen and Keyboard Management

Ctrl

The diagram belows shows the defaulL definitions that correspond to
the Alt-keys on other keyboards. For the other ASCII characters, the
default function key yields the character itself.

Default Aft-key Definitions

A single function key sequence can be defined to have as many as 64
characters, but the total for all 128 function keys cannot exceed 512
characters.

The system function OP FKEY reports and optionally modifies the
definitions of the function keys. Used monadically, it reports the
current definition:

OPFKEY '1'
I

Used dyadicalIy, it changes the definition:

,)VARS' ,OTCNL OPFKEY '1'

The effect of the above statement is to make PF-key 1 expand into the
command) V AR S. Note that OP F KEY makes the distinction
between shifted and unshifted keys. This makes it possible to assign
key definitions that, when the text keyboard option is in use, are the
same as the "unified" keyboard used by the APL * PLUS PC System.

OP F K EY is described in detail in Chapter 3 of the APL *PLUS
System Reference Manual.

Copyright © 1987 STSC, Inc. 5-6 Screen and Keyboard Management

Character to Numeric Conversion

Frequently, data captured from screen input must be converted from
character to numeric. The system function OF I will convert character
vectors that are images of numbers to their nwneric form. Its syntax
is:

result +- OF I data

where data is character data. The result is a nwneric vector formed by
taking successive groups of nonblank characters from the argwnent and
converting them to numbers. Any characters that do not represent a
well-formed nwnber appear as zero in the result. For example:

OFI 'ANSWER: 666'
o 666

Other algorithms using the execute primitive (~) could be used for
the same purpose but ~ will produce an error message for any
incorrectly formed data, rather than returning a zero.

The system function 0 V I can be used in conjunction with OF I to
provide a validity check on the input character vector. The syntax for
o V I is the same as for OF I but the result is a Boolean vector with a
1 in each position that represents a well-formed number and a 0 for
each group of characters that does not form a valid number. For
example:

OVI 'ANSWER: 666'
o 1

Another idiom commonly used to convert only valid character input
into numeric input is:

ANSWER+-rJ
NUMANSWER+-(OVI ANSWER)/OFI ANSWER

Here is another example of character conversion:

C+-' .25 -6.25 8,9,10'
OFI C

0.25 0 0

Copyright © 1987 STSC, Inc. 5-7 Screen and Keyboard Management

OVI C
100

As suggested by the last example, a minus sign (-) cannot be used in
place of a negative sign (-) to negate a number; and commas and other
symbols do not serve to separate fields. An example of a technique for
modifying such symbols to form a valid argument for OF I is:

EXT+-' 0123456789E., +_1

INT+-I 0123456789E . - 1

OFI INT[EXT1' .25 -6.25 8,9,10 1]

0.25 -6.25 8 9 10

For more detailed information on the use of each of these system
functions and constants, see theAPL *PLUS System Reference
Manual.

5-2 The INPUT Workspace

The APL * PLUS System includes the workspace INPUT that
contains utility functions incorporating the system functions described
above. The utility functions are easy to use, have widely accepted
default behavior, and can handle special requirements as well. The
functions include the following built-in features:

• same-line prompting

• help messages

• normalization of input

• checks and limits on input length

• error messages

• keyword detection (such as HELP or END)

• customized processing.

The input workspace contains fuctions that accept and manipulate
input. Six input functions whose names begin with IP form the core
of the workspace:

Copyright © 1987 STSC. Inc. 5-8 Screen and Keyboard Management

• I PC H R accepts character input.

• I P N U M accepts numeric input.

• I PMATCH accepts forced choice input (character or numeric).

I P MIX accepts combined character, numeric, and forced choice input.

• I P BULK accepts bulk input.

• I P YN accepts variations of "yes" or "no" and calls I PM IX.

These functions can be used either as stand-alone functions or as
functions that call the input primitive I P. All six functions prompt
for and accept input, remove superfluous blanks, check input length,
display more detailed prompts on empty input, and reprompt, if
necessary, with error messages. If the optional global j pes c is
defined, the functions detect keywords like HELP, END, or QUIT and
return a distinguished result if a keyword is encountered. You can also
compose customized input functions using these functions as building
blocks:

• DEB deletes excess blanks (leading, trailing, and consecutive).

• DLB deletes leading blanks.

• DT B deletes trailing blanks.

• S S DE B deletes excess blanks from substrings of a segmented vector.

• SSMATCH matches data against a segmented vector of keywords.

• SSG L B converts a segmented vector into a set of global variables.

• SSMAT converts a segmented vector into a matrix.

• S SVEC converts a segmented vector into an aligned vector.

The input workspace also serves as a source for these commonly used
input functions:

Copyright © 1987 STSC, Inc. 5-9 Screen and Keyboard Management

• AK I accepts keyboard input.
• NIP accepts numeric input.
• AYN accepts "yes" or "no" responses.

Broader capabilities, however, are provided by the functions I PC H R,
IPNUM,andIPYN.

To most effectively use the input workspace, you need to answer some
basic questions about your data input requirements.

What Kind of Input Are You Requesting?

Are you asking for numbers, such as salary information, or are you
requesting character data, such as an employee's name? Do you want
to restrict input to specific choices, as in:

CHOOSE ONE OF: ADD. CHANGE. DELETE

Do you need to request input of mixed datatypes, such as name, age,
and salary? Do you need to collect several lines of input at once?

If you want this kind of input

numeric
character
specified choices (numeric or character)
mixed (numeric or character)
bulk input

How Do You Set Up a Prompt?

Use this function

IPNUM
IPCHR
IPMATCH
IPMIX
IPBULK

The right argument to each input function is a vector of one or more
prompts. The leading prompt should be brief since it is displayed each
time input is requested. Subsequent prompts should be detailed
enough to clarify the leading prompt. They are displayed when a user
requests help by pressing the Return key when prompted for input.

If you need to request phone numbers, a possible line of code is:

A 3 IPNUM 'IPHONE: 13 NUMBERS (E .G. 3016571872) '

Copyright © 1987 STSC. Inc. 5-10 Screen and Keyboard Management

An experienced user would generally need to see only the first prompt:

PHONE: 301 320 4089

But if the user needs help, he can press Return to request more details:

PHONE: (Return)
3 NUMBERS <E.G. 301 657 1872)
PHONE: 301 320 4089

How Do You Restrict Input?

The left argument contains control information.

IPNUM and IPCHR

Do you want to restrict the input length? Can input be of any length?
Must your input fit in a range of lengths, such as 1 to 30 characters? Or
do you need exactly two numbers?

Length restrictions?

No

Yes, exact lengths

Yes, a range of lengths

Your left argument should be

to

one or more non-negative integers, such as
2 4 for two or four characters or numbers

one or two non-positive integers such as
- 3 for one, two or three characters or
numbers, or - 2 - 4 for two, three,
or four characters or numbers

If you want to request exactly three numbers, you can use this statement:

3 IPNUM 'IPHONE: IENTER 3 NUMBERS'

If you need to store employee names with a maximum length of 40
characters, you can use the following input statement:

-40 IPCHR 'INAME: ILASTNAME. FIRST MI'

to accept responses containing 1 to 40 characters.

Copyright © 1987 STSC, Inc. 5-11 Screen and Keyboard Management

IPMATCH

IPMIX

What kind of choices do you require? Are your choices numeric (for
example, a valid zone number of 1, 2, or 3) or character? If character,
are you accepting exact matches only (ADD exactly matches AD D), or
are you taking partial matches as well (A, AD, and ADD match
ADD)? Are you taking only "yes" or "no" responses?

If your choices are

numeric

character, partial matches

character, exact matches

"Yes" or "no"

Your left argument should be

a numeric vector

a segmented string of choices
(LA ' I SINGLE I MARRIED')

a segmented string reshaped into a
one-row matrix
(LA"'" 1 15p'ISINGLEIMARRIED')

LA 'IYESINO'

You can also use the unlocked cover function I P YN if you want only
"yes" or "no" responses. I PYN has a built-in left argument of
lYE SIN 0 and returns a Boolean result.

The result of I PMATCH is a one-element integer vector indicating
the number of the matched segment:

R~' ISINGLE!MARRIED' IPMATCH 'MARITAL STATUS: I

MARITAL STATUS: M

2
1

R ¢ ppR

What combination of data do you require? Once you have determined
what types of data you want, you need to decide whatiength
restrictions (as for I PC H R and I P N U M) and specific input choices
(as for IPMATCH) you need. Each field of input requires a control
specification. For example, if you are requesting a name and age, you

Copyright © 1987 STSC, Inc. 5-12 Screen and Keyboard Management

can specify two control specifications in the left argument:

-402 13 IPMIX 'INAMEIAGE:

The integer - 402 specifies character data (type 2) of length 1 to 40;
the integer 13 specifies integer data (type 3) of length exactly 1.

Do You Want to Detect Keywords Like HELP or END?

If so, you must create a global variable called i pes c. It is a
segmented string of keywords, for example:

ipesc~' IHELPIEND'

and it is defined in the same way as the left argument to I P MAT C H
with regard to exact and partial matches. A match to i pes c is
returned as a scalar integer to distinguish it from other data which is
always returned as a vector. Note that on some hardware, lowercase
APL characters (i pes c) may appear as underscored APL characters
(IPESC).

Do You Have Special Processing Needs?

The input functions perform quote-quad (~) input and output,
including the display of error messages. If you have special te.rminal
requirements, you can write a non-default I P function to handle them.
For example, you can have I P clear the screen before a user enters
input.

Copyright © 1987 STSC, Inc. 5-13 Screen and Keyboard Management

!I'J
Z
o
~
(.)

Z
::::>
~
~
o
(.)

Chapter Six
Communications

Computers often need to exchange information with other computers
or peripheral devices. The primary feature of the APL * PLUS System
enabling such communication is the system function DARBIN.
DARB IN can be used to create print files (see Chapter 8) or to gather
information from the keyboard (see Chapter 5).

This chapter will survey the use of 0 AR BIN and then review the
application built with DARBIN, SERHOST (Section 6-3), to move
APL workspaces and files from one APL System to another.

The other way to communicate between APL Systems is to move an
APL workspace or file to a native file with the utility functions in the
S LT or T R AN S FER workspaces. A file transfer program such as
Kermit can move the file from one machine to the other.

The SLT workspace is discussed in Section 6-5. Ways to move files
from machine to machine are discussed in Section 6-6.

6-1 How to Communicate with Remote Devices

The system function DARBIN provides a facility for detailed control
of input and output between APL on Lhe V AX and the user's terminal.
If the user's terminal is actually another computer, such as a PC
running the APL * PLUS System, DARBIN can be used as the basis
for transferring data between the two computers under program control.
The SE RHO ST workspace is an example of this kind of data transfer.

The syntax for DARBIN is:

result +- paramUst DARBIN prompt

where result contains any received data, paramlist is a list of
parameters that describes where and how to communicate, and prompt
is the data to be transmitted.

Copyright ©1987 STSC, Inc. 6-1 Communications

The left argument is a vector (or singleton) of integers describing how
the communication is to be carried out. If the left argument is a
singleton, it specifies the outport and awaits no input, but
immediately resumes local processing. If input is expected, or if you
are specifying values other than default values, the left argument
contains the foHowing elements in this order:

[1] outport - destination of data

[2] inport - source from which data is to be received

[3] translation - translation table to be used

[4] protocol- transmission protocol to be used

[5] wait - number of seconds to wait for data

[6] charlimit - maximum number of characters of data

[7] terminators - list of termination codes.

The elements are used starting from the left; if fewer than six elements
are given, the remaining parameters assume the default values. For
detailed information on syntax, default values, and behavior of
OARBIN, see Chapter 3 of the APL "PLUS System Reference
Manual.

The first two elements of the parameter list tell 0 ARB IN where to
send data and from where to receive it These are described as the
outport, or the destination of data you are sending, and the in port,
or the source of data sent to you. The other parameters are used to
control how these ports are handled.

6-2 Transferring Data from Other APL Systems

The APL * PLUS System contains several utility workspaces and
programs to help exchange workspaces and files with APL Systems on
other computers:

SE RHO ST -- a workspace for transferring APL component files
between the APL * PLUS System for V AXNMS and the

Copyright ©1987 STSC, Inc. 6-2 Communications

APL*PLUS Systems for the PC or Macintosh. SERHOST can
be used to move workspaces as well as files since workspaces can
be stored in APL component files and later recreated into
workspaces.

• T R AN S FER -- is in a workspace containing a number of useful
utilities that can be used in conjunction with Kermit or another file
transfer technique to transfer APL workspaces and APL data.

SLT - Source Level Transfer - is a workspace with functions that
will transfer workspaces from one APL system to another using
the Workspace Interchange Standard.

The kind of data being transferred and the degree of compatibility
between the source and destination systems determines which tools are
most appropriate to use. There are several different kinds of
compatibility:

• APL workspace and component file compatibility - - A workspace
saved on the APL * PLUS PC or UNIX system cannot be loaded by
the APL * PLUS System for V AXNMS. This is true even between
the VMS and UL TRIX versions of APL for the V AX. The internal
structures of saved workspaces and component files are different for
each APL * PLUS System implementation.

• Character set compatibility - - The order of characters in DAV for
the APL * PLUS System for V AXNMS is exactly the same as the
APL * PLUS PC System, but differs from the APL * PLUS UNX
and APL * PLUS Mainframe systems. APL character data must be
translated when moved to systems with different DAV order. The
S E RHO S T workspace handles 0 A V differences automatically.
Explicit translation is needed, however, if you use a native file-based
transfer between the APL * PLUS System for V AXNMS and
APL * PLUS System for UNIX. The T R AN S FER workspace
contains functions to perform this translation.

• APL source level compati.bility - - APL programs that look the
same produce the same effect. The APL * PLUS PC, Mac, UNIX,
VM, MVS, and V AXNMS systems are source level compatible at
the APL standard level and the APL * PLUS standard level with only
a few exceptions. Nested arrays are not available on the Macintosh

Copyright ©1987 STSC. Inc. 6-3 Communications

or PC, for example. The APL * PLUS Systems for V AX/VMS and
for UNIX are completely compatible at the source level.

The APL standard level consists of the APL primitives, system
functions, and system variables that are defined by the ISO/ANSI
standard for the APL Programming Language. The APL * PLUS
standard level is a superset of the base APL standard, containing the
STSC enhancements to APL whose behavior is compatible across
all versions of the APL * PLUS System. Any system feature that is
not identified as "system dependent" or "experimental" can be
assumed to be an APL * PLUS standard.

It is be practical to transfer APL programs and data in source form
between the various APL * PLUS systems. Conversion is likely to
be required only where "system dependent" or "experimental" features
are used.

The APL * PLUS Systems for PC, UNIX, and V AX/VMS Systems
are partially compatible in certain system-dependent device control
features such as DARBIN, DWGET, DWPUT, and DINKEY,
which are as similar in the three environments as is technically
practical. In many cases, it is possible to move code that uses these
features between the systems with very little conversion.

6-3 Using the SERHOSTand SERXFERWorkspaces

The easiest way to move APL functions and variables between either
the PC or Mac systems and the V AX/VMS System is with the
5 E RHO 5T workspace. For additional information on 5 E R X FER
see the APL * PLUS PC Programmer's Manual, or the APL * PLUS
Mac System documentation.

The PC or Macintosh must use the terminal mode of the APL * PLUS
System to sign on to the V AX in order to use the 5E RHO 5T and
5ERXFER workspaces.

Copyright ©1987 STSC,lnc. 6-4 Communications

Summary of Personal Computer to VMS Transfer Using SERXFER

1. If transferring workspaces, create a transfer file on the personal
computer:

)LOAD myws
)COPY SERXFER DTF DTFALL
'myws'DFCREATE 1
DTFALL 1

2. Switch the personal computer into terminal mode and sign on to
the V AX. Invoke the APL * PLUS System for VMS, then:

)LOAD SERHOST
'myws'DFCREATE 1

3. Switch the personal computer back into local mode, then:

1 SENDSFILE 1

4. When the transfer is complete, switch the personal computer into
terminal mode. If the file is a transfer file , reconstitute the
workspace as follows:

) C LE AR 300000 A As large as necessary
)COPY SERHOST LFF LFF 1

. .. (objects are defined from transfer form)

)ERASE LFF DTF DTFALL
)SAVE myws

Summary of VMS to Personal Computer Transfer Using SERXFER

1. If necessary, create the transfer fIle on V AX:

)LOAD myws
)COPY SERHOST DTF DTFALL
I myws I DFCREATE 1
DTFALL 1

Copyright ©1987 STSC, Inc. 6-5 Communications

2. On the personal computer:

)LOAD SERXFER
'myws' DFCREATE 1

3. On the V AX:

)LOAD SERHOST
(Make sure the source file is tied to 1)

4. On the personal computer:

1 GETSFILE 1

5. When the transfer is complete, a transfer file can be reconstituted into
a workspace on the personal computer:

)CLEAR
)COPY SERXFER LLF
LLF 1 A Restore the workspace from transfer form .

. . . Objects are defined from transfer form

)ERASE LFF DTF DTFALL
)SAVE myws

For more information on using some of the functions in the S E RHO S T
workspace, see Chapter 4 of the APL * PLUS System Reference Manual.

6-4 Using the TRANSFER Workspace

An alternative transfer method that requires more programming effort
is a native file transfer, which serves the same function as the
component transfer files used by the S E R X FER protocol. The
transfer file is a native file containing character vectors delimited by a
specific character (the default is DTCBEL). Each character vector is
the representation of one APL object in the same "transfer form" as is
used by the S E R X FER workspace.

Copyright ©1987 STSC, Inc. 6-6 Communications

The T RAN SF E R workspace contains the functions DT F Nand
DT FNALL, which build a native transfer file, and LF FN, which
reconstitutes a workspace from the native file transfer form.

The syntax of these functions is the same as DTF, DTF ALL, and
LFF in the SERXFE Rand SE RHOST workspace. A more detailed
description is provided in chapter 4 of the Reference Manual.

The native transfer fIle is the recommended technique for exchanging
workspaces with machines running the APL * PLUS System for
UNIX. It can also be used for transfers with the APL * PLUS PC
System.

Summary of the TRANSFER Functions

names DTFN tieno

DT FN takes a matrix of names as the left argument and
writes the corresponding objects in source code form to the
native me tied to tieno .

DTFNALL tieno

DT FNALL takes a native fIle lieno as the right argument
and writes the entire contents of the active workspace to the
corresponding native fIle.

LFFN limo

LF FN takes a native file tieno as the right argument and
recreates the active workspace from its contents.

<lienal. size) UNBLOCKS lieno2

UN B L 0 C K S takes a native file tieno 1 and file size as its
left argument and unblocks the file to the file corresponding
to lieno2. The result is a sequential S1REAM_LF file.
Since Kermit builds files in 512-byte blocks for
transmission, the desired size of the file must be specified so
that UN B L 0 C K S can remove the padding on the last block.
Get the size by performing a ON SIZE on the original file
on the other system.

Copyright ©1987 STSC, Inc. 6-7 Communications

The translate table 6. T RTUNXTOVM S is also provided in the
UT I LITY workspace. This variable is used to translate characters
from their representation in APL * PLUS System for UNIX to the
APL * PLUS System for V AXNMS. The character set used in the
APL * PLUS System for V AXNMS is the same as that used in the
APL * PLUS PC System. Therefore, translation is not needed to move
workspaces from the DOS environment to VMS. The translate table
may be applied by removing the comment symbol (A) from line
[13] of function LF FN.

Summary of the Native File Transfer: UNIX to VMS

1. Build the transfer file on the APL * PLUS System for UNIX:

)LOAD myws

)COPY TRANSFER DTFN DTFNALL
'MYWS.T' ONCREATE -1
DTFNALL -1
S1 ZE ONS1 ZE -1 A Note size of the file for step 3 below
ONUNTIE - 1

2. In UNIX, use Kermit in image mode or any other file transfer
program that will transfer binary data to move the file to the V AX.

3. Run the APL * PLUS System on the V AX, then:

) C LEAR 300000 (as large as necessary)
)COPY TRANSFERFNS LFFN t.TRTUNXTOVMS UNBLO CK S
'MYWS.T' ONT1E -1
'MYWS.S' ONCREATE -2
(-1 ,size) UNBLOCKS -2 AGetsizefrom step l .above

Modify the function LF F N to translate between the two OA V
orders by deleting a single A as indicated in the function iLSelf.

LFFN -2
)ERASE LFFN DTFN DTFNALL UNBLOCK S
)ERASE 6.TRTUNXTOVMS UNBLOCKS
ONUNTIE -1 -2
)SAVE myws

Copyright ©1987 STSC. Inc. 6-8 Communications

6-5 Using a Source Level Transfer

The functions in the S L T workspace conform to the Workspace
Interchange convention (as described in the ISO/ANSI APL standard)
for converting APL functions, variables, and environmental
information into character variables called canonical representation
vectors, or C'RVs. The Standard also prescribes a technique for
mapping a sequence of CRVs into a bit stream for transfer to another
installation on a physical medium. The technique permits transfers
between any two APL systems, regardless of character sets or the
internal representations of characters.

The following overview summarizes the procedures for transferring
workspaces from the APL * PLUS System and for installing transfers
from other systems onto the APL * PLUS System. For details on the
functions in workspace S LT, see DES C RIB E in the workspace and
the function descriptions in Chapter 4 of the APL *PLUS System
Reference Manual.

Transfer FROM the APL ftPLUS System

1. Condition the workspace. The workspace should be loaded using
) XL OAD if appropriate. All functions should be unlocked and all
global variables should have their correct values.

2. Copy S LT into the active workspace:

)COPY [APL.RELnJSLT
SAVED 17:15:54 08/13/87

3. Send the workspace to file:

DUMPWS 'MYFILE.S£T'
FILE SIZE : 3218
OPP
OIO
OCT
ORL
OLX
OELX
OALX
NAME 1
NAME2
NAME3

Copyright ©1987 STSC, Inc. 6-9 Communications

FILE SIZE: 894 3

4. Repeat the above steps for each workspace to be transferred.

5. Output files can then be written to tape or transferred to another
system by a file transfer utility such as Kermit (see Section 8-5).

Transfer TO the APL *PLUS System

l. A Source Level Transfer file must be read into the VMS System using
a file transfer utility such as Kermit.

2. Use W S LIB to produce a catalog of the transfer file:

)LOAD SLT
SAVED 17:15:~4 08/13/87

'MYFILE.SLT'
WSLIB -1

OFFSET : 961
OF F SET: 14014
OFFSET: 50868

DNTIE -1

WSID : WS TRANSFERWS
WSID: FILE TRANSFERFILE
END OF FILE.

3. Bring in a workspace from the file:

'WICTEST' LOADWS -1 961
OFFSET: 961 WSID: WS TRANSFERWS
OFF
010
OCT
ORL
OLX
OELX
OALX
MAINFUNCTION
SUBFUNCTION
VARIABLE
OFFSET: 14014 WSID: FILE TRANSFERFILE
SAVING WICTEST
WICTEST SAVED 17:59:31 08/13/87

Note that the filed workspace is automatically created and saved. The
second element of the right argument of LOA DW S is the offset for the
workspace to be loaded.

4. Repeat the above step for each workspace on the transfer file.

Copyright ©1987 STSC, Inc. 6-10 Communications

6-6 Communicating with Other Machines

There are two facilities for transferring non-APL files directly from
other machines to the V AX: the VMS command SET HOST, and
Kermit. Kermit is an implementation of the popular KERMIT file
transfer protocol, which can send and receive native files between
incompatible hardware and different operating systems.

The SET HOST Command

The VMS command SET HOST provides a means of connecting
your terminal to another system. It allows you to communicate
through a DECNET node or a hard-wire from your serial port.

To use a DECNET node, the syntax for SET HOST is:

$ SET HOST node

where node is the number of a DECNET node. To communicate with
another machine through a serial port, the syntax is:

$ SET HOST/DTE TXAn

where TXAn is the name of a serial port on your machine. For details
and a list of options to go with the SET HOST command, use the
VMS Help facility (HELP SET HOST). To terminate the
connection, hit Ctrl-\ (Control key and ASCII backslash).

The SET HOST command can be used to transfer data between other
machines and the V AX by using the / LOG option. The / LOG option
keeps a record of your session in the VMS file SETHOST . LOG. Once
you are connected to the other machine, any data that you can display
on your screen can be found in the SETHOST • LOG file.

Since the VMS data buffers can overflow when you are
communicating at 9600 CPS, data can be lost using this transfer
method. We recommend setting your terminal speed to 1200 CPS or
less when using the /LOG option for data transfer.

For moving large data files from other systems, the Kermit utility,
described in the next section, is a better tool.

Copyright © 1987 STSC, Inc. 6-11 Communications

Using Kermit

The file [APL. RELnJ KERMIT. EXE distributed with the
APL * PLUS System for V AXNMS is a stand-alone program that
uses the popular Kermit fIle transfer protocol defined at Columbia
University. The Kermit program is distributed free of charge by STSC
with the permission of Columbia University; it is not considered to be
part of the supported APL * PLUS System. Columbia's policy on
distribution of Kermit is reproduced in Appendix D. Users who require
full Kermit documentation or the code for Kermit on other machines
should contact Columbia University.

We have found Kermit an effective technique for transferring files
between different UNIX systems, and between UNIX and non-UNIX
systems such as VMS. We suggest that users who find Kermit useful
make a contribution to Columbia University to help fund this valuable
service to the computing community.

Kermit starts in "command mode," but can operate in either "connect
mode," in which it serves as a terminal emulator for logging onto a
remote system, or in the "send" or "receive" mode. When transferring
fIles that contain other than ASCII text (for example, a source-level
workspace transfer fIles) the file type must be set to binary.

Before Kermit can be used, the KERMIT. EXE fIle must be installed
with LOG _ 10 privilege. A typical input sequence that will start
Kermit is:

$ RUN KERMIT
C-kermit> SET LINE TXAn
C-kermit> SET SPEED 9600
C-kermit> CONNECT
$ [Return]

Kermit is sensitive to parity. If Kermit does not respond, check your
parity setting for your terminal. For an HDS terminal for example,
parity must be set to "space." When using a PC as a terminal, parity
must be off, with eight-bit data and one stop bit.

For more information on the use of Kermit, use the Kermit help
facility. The help facility is accessed by entering a? from the Kermit
prompt.

Copyright ©1987 STSC, Inc. 6-12 Communications

Chapter Seven
Using APL with Non-APL Programs

This chapter discusses the variety of ways that you can use the
APL * PLUS System to interact with non-APL programs, such as
operating systems and other languages.

There are three basic techniques for communicating with other
programs from APL. From simplest to most complex and interactive,
they are: Native Files, OX P, and DNA. A section in this chapter is
devoted to each.

The Native File facility is the loosest coupling with non-APL
programs. You can read and write data to a native file with a set of
built-in functions. Then you can leave APL, either with) 0 F F, or
temporarily with) C M D or 0 C M D and run the non-APL program
using the data in the native file. Finally, you can read the result or
any new data back into the APL workspace using 0 N REA D. The
system function 0 C M D allows you to perform these steps under
program control.

To run another non-APL process simultaneously with APL, the
APL * PLUS System provides the external process interface, 0 X P n.
Each system function (OX P 1, OX P2, OX P 3, OX P4, and OX P5)
is the complete interface to one external process, permitting as many
as five external processes to be running at once.

The system function DNA provides the facility to incorporate
non-APL code as part of the APL workspace. This allows APL
functions to be built from programs written in other languages.

7-1 Using Native Files

Native VMS files can be accessed from APL with the native file
system functions. These system functions parallel the suite of
component file system functions, such as OF C RE AT E and
OFREAD, but have the letter N as a prefix (ONCREATE and
ON REA D) instead of the letter F.

Copyright © 1987 STSC, Inc. 7-1 Using APL with Non-APL Programs

For a brief tutorial on the fundamentals of native file use, see "Sample
Handling of Native Files" at the end of Section 3-1.

Issuing DCL Commands

The system command) CMD permits the APL user to execute DeL
commands from the APL environment, and then return to the active
APL workspace. If no command is given,) C M D displays the
reminder type log to return to apl and then accepts a
sequence of DCL commands on subsequent lines until given the
instruction logout in response to the VMS prompt. You are then
returned to APL. The syntax is:

)CMD
or

) C M D command

where command is the DCL command to be executed.

The system function 0 C M D provides a similar capability and can be
used under program control. The effect of 0 C M D is to temporarily
exit from APL while preserving the contents of the active workspace
and to execute the command given it, after which it returns to APL and
excutes any code that follows. For details on the use of 0 C M D and
) CMD, see the APL "'PLUS System Reference Manual.

The native file system and 0 C M D can be used together to integrate an
APL program with a non-APL program. The APL program could fust
prepare some data and store it in a file in the format required by the
non-APL program. 0 C M D could then be used to request the operating
system to start executing the non-APL program and use the file
previously created by APL as the input. The output generated by the
non-APL program could be stored in a file and later retrieved by APL
after the 0 C M D task completes execution.

7-2 Interfacing APL to Non-APL Programs

The APL * PLUS System provides two distinct facilities for calling
non-APL programs from the APL environment:

Copyright © 1987 STSC, Inc. 7-2 Using APL with Non-APL Programs

External routines mapped into the APL process's address space can
be associated with APL names using ON A and called as though they
were defined functions. The facility is similar to that provided by the
FASTFNS utilities in the APL*PLUS Mainframe System and by
ON A in IBM's APL2 Program Product.

External processes are complete modules that APL runs as
subprocesses, exchanging data through VMS mailboxes. The facility
is very similar to the external process interface used in the
APL * PLUS System for UNIX.

The two facilities provide quite different capabilities. The appropriate
facility to use depends upon the nature of the program being interfaced
to APL. As a rule, external routines are used to make discrete utility
subroutines available to APL programs. These may be useful runtime
library routines or fast implementations of algorithms that are hard to
express efficiently in APL. External processes are more suited to
interfacing APL to other major subsystems, such as database managers
or large graphics packages.

Comparisons oj External Routines and External Processes

• External Routines are mapped into the APL process and share the
same address space. They can, therefore, operate on objects in the
APL workspace. In contrast, external processes execute in a separate
address space, receiving copies of APL variables passed through a
mailbox interface.

• The external routine interface is simpler to use than external
processes, particularly if the routine already exists. Once ON A has
been used to describe the routine to APL, APL will automatically
pass parameters of the correct type to the routine whenever it is
called. The external process interface requires that the programmer
understand the internal form of variables in the APL workspace and
write code specifically to process APL variables.

• External routines must be linked into sharable modules and the full
names of the resulting . EXE files must be defined as logical names
to VMS . External processes need not be sharable and are invoked by
specifying the fully qualified name of the . EXE file.

Copyright © 1987 STSC, Inc. 7-3 Using APL with Non-APL Programs

• External routines are associated with a monadic APL function in the
workspace; each routine requires a distinct APL function name and
uses a small amount of workspace. External processes are interfaced
through a system function and have no effect at all on the APL
workspace; the effect is more like defining a new system function.

• External routines are treated like user-defined functions by workspace
operations such as)SAVE.)LOAD.)COPY and)CLEAR.
External processes are not associated with the workspace and are not
affected by workspace operations.

• External routines are unable to create new APL arrays, though it is
easy to create arrays from APL whose values can be filled in by
external routines. An external process always creates a new array
each time it is invoked.

• Since external routines are part of the APL process, they cannot
execute concurrently with APL. It is possible, however, to design
an external process so that it can execute concurrently with APL.
For example, APL can start a time-consuming computation, such as
a large database transaction running in an external process, without
waiting for the transaction to complete.

• External routines are restricted in the kinds of operating system
services they may use, while no such restrictions apply to external
processes. For example, if you wish to process RMS files from
APL in ways that are not provided with built-in system functions, it
is wiser to write an external process for this purpose. An external
process can open and close files with no side effects on the files that
have been opened by APL. Also, external processes can request
memory allocation from VMS, and use variables to preserve
information between calls. External routines generally use only
their own automatic variables and the data areas passed to them as
formal parameters.

7-3 Using External Processes

An external process is a program that runs concurrently with APL, but
as a separate VMS process or task. The external process is created by

Copyright © 1987 STSC, Inc. 7-4 Using APL with Non-APL Programs

the APL process and runs until explicitly terminated by APL or until
the APL process itself terminates.

The program running as an external process is an independently
compiled, executable module that can be executed under VMS. The
external process creates a unique mailbox, QMBxx:xx, which it uses to
communicate with APL. In the mailbox name QMBxx:xx, xx:xx
represents the external (child) process ID number and can be observed
by issuing the VMS command show logical/ job. Unlike the
typical VMS program, however, the input and output are not ASCII
text, but instead are APL variables, in the internal data representation
used in the APL * PLUS System workspace.

APL communicates with an external process through a VMS mailbox.
When OX Pn is called, it writes first its left and then its right
argument into the external process's mailbox, and then it begins to
read the mailbox. The external process is constructed so that it
receives two arrays, computes a result array, and then writes that result
array to the mailbox. APL reads the mailbox to obtain the array that
becomes the explicit result of 0 X P n.

Using External Processes

Up to five external processes can be running at once. The system
functions 0 X Pi, 0 X P 2, 0 X P 3, 0 X P 4 , and 0 X P 5 refeflo these
external processes. The monadic form of all the 0 X P n system
functions controls the interface. The dyadic form passes data to the
external process and returns computed results to the workspace.

An external process is created by monadic OX Pn. If the right
argument is a character vector, it is assumed to be the name of the
program to be run.

One of the sample external processes distributed with the APL * PLUS
System is named VTOM. To initate the process:

OXP1 '[APL.RELnJVTOM.EXE'
8192

The explicit result (8192) is the VMS ID for the new process. If the
external process cannot be created, a two-element integer vector

Copyright © 1987 STSC, Inc. 7·5 Using APL with Non-APL Programs

is returned. The first element is 0, and the second element is the VMS
System Service Condition Value.

Once the process is running, dyadic OX Pn can be used to pass APL
variables to it and to return the computed result. The VTOM process is
designed to convert a blank-delimited character vector into a matrix.

VECTOR~' ONE TWO THREE FOUR FIVE'
MATRIX~" OXP1 VECTOR
pMATRIX

5 5
MATRIX

ONE
TWO
THREE
FOUR
FIVE

Note that in this example the external process actually uses only its
right argument. An empty vector is used as a dummy left argument
since OX Pn must be called dyadically. The program VTOM will read
but ignore the left argument.

You can query the name of the program running as an external process
by calling OX Pn monadically with an empty argument:

OXP1 "
[APL . RELIJVTOM.EXE

If the result is empty, no external process is presently running for the
particular 0 X P n system function:

pOXP1 "
12 (OX P 1 is already being used.)

pOXP2 "
o (OXP2 is currently available.)

To terminate the external process before the end of the APL session,
freeing 0 X P 1 for re-use, use monadic 0 X P 1 with a numeric
argument to signal the external process. In the case of VTOM, the
untrappable "kill" signal (9) will work:

Copyright © 1987 STSC, Inc. 7-6 Using APL with Non-APL Programs

OXPl 9
o

The 0 indicates that the external process is no longer running and
OX P 1 can be re-used. In the current release, the only acceptable
numeric argument to monadic OX P n is the scalar 9, which terminates
the external process. Any other number produces a DOMAIN
ERROR .

Debugging an External Process

While an external process is being developed, it is useful to use
fpr int f to display messages that trace the status of the program.
The sample external process source file VTOM • C contains examples of
this debugging tech~ique. Output produced by fprintf is not a part
of the logical screen image maintained by the APL Session Manager,
so it disappears when the Refresh key is pressed.

If 0 X P n indicates normal creation of a process, yet the external
process does not function at all, the problem may be that system
quotas have been exceeded preventing the system from starting the
process. You can check to see if the process is running with the
following command:

)CMD SHOW SYSTEM

The operating system should display the XPnxxxx process. If it does
not, check your quotas with the VMS command:

)CMD SHOW PROCESS/QUOTAS

The open file, subprocess, paging file, and buffered I/O byte count
quotas are affected by each external process. Additional information on
the appropriate values for each of these quotas is provided in the
APL*PLUS System/nstallalion Manual.

Stopping an Orphan External Process

The VMS command show system displays a list of process IDs
and names. The name of an external process is XPnxxxx where n
represents OX P n and the xxxx represents the process ID number of the
parent process (APL). If APL has terminated abnormally, leaving an

Copyright © 1987 STSC, Inc. 7-7 Using APL with Non-APL Programs

orphan external process still running, the external process is stopped
by issuing the VMS command stop! id=yyy, where yyy is the
process ID of the XPnxx:xx process itself.

Writing External Processes

The programs that run as external processes must be specifically
written for this purpose and conform to the input and output
conventions of OX Pl . These programs can be written in any suitable
language, provided the resulting program is a VMS . EXE file.
Typically, the external process is used as an interface to a library of
subroutines supplied with a software package such as a database
manager. The external process is a relatively simple program that
forms a front end to the package, interpreting APL arrays as control
information or data, and dispatching the appropriate subroutines.

Programs written to run as external processes need to obey the
following conventions:

• All input read from the mailbox QMBxux will be provided by APL
in the internal form of an APL variable. The structure of APL
variables is explained in the file VARMAC . H distributed with the
APL * PLUS System; this file also contains macros to be used for
constructing and manipulating arrays.

• All output written to the mailbox must be in the same format as an
APL variable.

Following is an outline of the structure of a typical external process.
Sample external processes are provided with the APL * PLUS System
in both executable and C source forms. Users who want to write their
own external processes are encouraged to begin by studying the sample
source files . In many cases, it is practical to modify one of the sample
programs to perform the task desired.

Structure of an External Process

The general structure of a typical external process is described below.
For additional details and coding techniques, examine the following
files distributed with this APL * PLUS System:

Copyright © 1987 STSC, Inc. 7-8 Using APL with Non-APL Programs

• VTOM . C C language source code for a vector-to-matrix
external process called (APL. RELn] VTOM. EXE

• FILE. C C language native file interface for VMS

• VARMAC . H C language header file describing the structure of
APL arrays as used in the external process interface
and containing macros for accessing the fields
within the array

• ERRMACRO • H C language header flie containing the error codes
used to signal specific errors from 0 X P in the APL
environment.

Main Program -lnitialiUltion

• Set traps for any signals that may be sent by the application. If no
traps are set, any signal will terminate the external process.

• Initialize other variables or open flies as the application warrants.
The mailbox is created for inter-process communication here.

Main Program - Main Loop

• Read the OX Pn left argument (an APL array) from the mailbox by
reading up to 512 bytes into the local buffer. The first 4-byte field
is a 32-bit integer indicating the size of the array in bytes, including
the 4-byte field. If the array is larger than 512 bytes, read the rest of
the variable into a suitably large buffer. If the read terminates with
fewer bytes than expected, go to exit.

• Read the OX Pn right argument from the mailbox by the same
technique used for the left argument. You must read the entirety of
both arguments out of the mailbox, even if one is a "dummy"
argument, to dyadic OX Pn.

• Interpret the content of the APL arrays by using the appropriate
macros to access the datatype, rank, shape vector, and data values of
the array.

• Perform whatever processing is appropriate.

Copyright © 1987 STSC, Inc. 7-9 Using APL with Non-APL Programs

Exit

• Construct the APL array that is to become the explicit result of
OX P 1 by writing the appropriate values into an internal buffer
variable. You must fill in the following fields:

leading length (4-byte integer)
descriptor (type) byte
rank byte
number of elements (4-byte integer)
shape vector (4-byte integers)
data value; padded as necessary to fill out to a 4-byte boundary
trailing length (4-byte integer)

The routine ini tbuf () in VTOM. C fills in all but the shape
vector integer(s) and the data values. The 6 bytes between the
leading count field and the descriptor field can have any value, but
are best set to zero.

• Write the result array to the mailbox. APL will wait until the entire
array has appeared in the mailbox before allowing OX P 1 to return it
as an explicit result.

• Go to main loop.

Close the mailbox and tenninate.

7-4 Using External Routines

After an external routine has been defmed in the workspace with 0 N A,
it can be used as though it were a locked APL function. External
routines are always monadic; they are called with a right argument
whose shape is equal to the correct number of parameters for the
external routine. Typically, the argument to an external routine is a
nested array, in the fonn of a vector of arrays, in which each item
corresponds to a parameter to the external function.

The explicit result of the external routine is a vector of those items
specified as output variables by ON A. If the non-APL routine
generates an explicit result, such as a return code, and this result is
described with ON A, the result becomes the first item of the result

Copyright © 1987 STSC. me. 7-10 Using APL with Non-APL Programs

returned to APL. Additional items in the result consist of any
parameters designated as output variables, in the order in which they
appear in the parameter list.

For example, suppose an external routine named ISUM exists, whose
effect is to add up a vector of integers and return a scalar containing
that sum. In C, the function could be expressed as follows:

int sum (input, length)
int *input; / *address of first number in vector */
int length; /*length of the vector */

int i;
int sum = 0;

for i=O; i<length; i++
sum += input[i];

return (sum) ;

Also, suppose that this routine has been compiled and linked, and that
the resulting. EXE file has been defined as a logical name SUMFNS
(see "Writing Your Own External Routines" for details). To bind this
function to APL, DNA would be used as follows:

3 0 DNA 'SUMFNS:dSUM ISUM (*I4, 14) 14'
1

This tells APL to create an external function in the workspace named
6 SUM, which is bound to a routine named ISUM that can be found in
the shared module with logical name SUMFNS . The explicit result of
1 indicates that the arguments to DNA were well formed, but it does
not necessarily indicate that the external routine can be called with
these arguments. Since the specifications for parameters are not
preserved in compiled code, it is extremely important to provide the
correct information to DNA. Unpredictable results, including an APL
system crash, can be caused by incorrect use of external routines.

Once the external function has been bound to an APL name, it is for
all practical purposes a locked function in the workspace. For
example:

Copyright © 1987 STSC, Inc. 7-11 Using APL with Non-APL Programs

ASUM

3

)FNS

ONC I ASUM I

)SAVE SAMPLE

)ERASE ASUM
)COPY SAMPLE ASUM

SAVED . ..

As defmed to APL in the above example, the function A SUM is called
with a 2-item nested vector. The first item is the vector containing the
number to be summed, and the second is a scalar containing the length
of the vector. For example:

ASUM (l5) (5)

15

It is often convenient to define a cover function for an external routine,
for example:

v Z+-SUM R
[1] Z+-ASUM (R) (p,R)

v

How APL Calls External Routines

After an external routine has been defined to APL with ON A, it car. be
invoked by calling it as a monadic function and supplying the proper
right argument. When an external routine is called, APL performs the
following steps:

• Check the right argument to make sure it is a scalar or vector whose
length matches the number of parameters that were specified with
DNA.

• Build a standard V AX architecture argument list containing data
extracted from the items of the right argument.

• Locate the module and routine, mapping them into the APL
process's address space if they are not there already.

• Call the routine, passing the argument list.

Copyright © 1987 STSC, Inc. 7-12 Using APL with Non-APL Programs

• When the routine returns, build an APL variable to contain the
explicit result and return it to APL.

How Arguments are Passed to External Routines

When an external routine is called, APL constructs a standard V AX
argument list from the right argument supplied to the external routine.
The argument list consists of 4-byte parameters that contain either the
data value itself (which is called "pass by value") or an address of the
data ("pass by reference"). The maximum number of parameters that
the external routine may have is 255.

If an argument is passed by value, APL requires the corresponding item
of the external routine's argument to be a scalar, whose value is placed in
the 4-byte field. Double-precision floating point items can be passed by
value, taking up two successive 4-byte values. This is the same way
that the V AX C compiler passes double-precision floats by value; most
other V AX languages pass only single precision (4-byte) floats by value.

If the argument is passed by reference, APL passes the address of the
first data value of the corresponding item of the argument. For
example, if a routine has two arguments, both passed by reference
(* I 4 • * C 1), it would require a 2-item nested array as its argument:

ARG +- (99 100 101 102) ('ABCDEFG')

The external routine will be passed an argument list that contains the
address in the workspace of the value 9 9 in 1:;) A R G, and the address
of the 'A' in 2:;) A R G.

Arguments of type GO (general APL objects), are always passed by
reference. APL passes the address of the APL array itself rather than
the address of its data, which begins a few bytes into the array. The
external routine must be written with a knowledge of APL array
structure. See the preceding discussion of External Processes for hints
on APL array structure.

Because of the efficient form that the APL *PLUS System uses to
create and represent nested arrays, the execution cost of forming a
nested array argument to an external routine is negligible. There is
very little overhead in building the argument in instances like the
following:

Copyright © 1987 STSC, Inc. 7-13 Using APL with Non-APL Programs

T ~ PROCESS (ARG1)(ARG2)(ARG3)(ARG4)

Automatic Conversion of Numeric Datatypes

APL uses three different datatypes to represent numeric values
(boolean, integer, and floating point). If a numeric array is passed as
the argument to an external function, APL will automatically create a
copy of the array in which the values have been converted to the
datatype that the external routine expects. For example, the function
t. SUM described above could be called with integer values in any
datatype:

T ~ ASUH (1 0 1 1)(4) A BOOLEAN VALUES
T ASUH (1 + 0 -1 0 0)(4) A INTEGER
T ~ ASUH (lE-12 + 1 0 1 1)(4) A FLOAT

Floating point values will be converted to integer only if they are
within APL's "integer tolerance" of a whole number. Values that are
not close to a whole integer produce an error:

T ~ t.SUM (1.5 2 3)(3)
DOMAIN ERROR

T ~ t.SUM (1.5 2 3)(3)

"
Explicit Results for External Routines

The explicit result that an external routine returns to APL is formed
from the result of the routine (if described in the ON A description)
followed by any parameters marked as output arrays with ,~, in the
ON A description. If any output arrays are passed by reference, they
will be returned as enclosed items of the result. If the routine is
described to ON A as not returning a result, by omitting a result
specification, any result produced when the routine is actually called
will be discarded. If no result and no output variables are specified, the
external routine returns an empty numeric matrix (0 0 pO).

Output arrays provide the mechanism by which an external routine can
return an entire array to APL rather than a single scalar. For example,
consider an external routine REVE R SE that reverses a character
vector. It expects three parameters -- the address of input vector, the
address of the output vector, and the length:

Copyright © 1987 STSC. Inc. 7-14 Using APL with Non-APL Programs

3 0 DNA 'SMPLFNS:REVERSE(*Cl.*Cl~.I4)'

When REVE R SE is called from APL, its second parameter must be
the array that it will modify to contain the reversed character vector.
This array should be of the same shape as the first parameter, which is
the input.

Since APL always makes a copy of an output array before passing it
to the external routine, the simplest way to call this routine is to pass
the same array as both arguments:

TXT ~ 'THE INPUT UNMODIFIED'
TXTR ~ ~REVERSE (TXT)(TXT)(pTXT)
TXTR

DEIFIDOMNU TUPNI EHT
TXT

THE INPUT UNMODIFIED

If the array returns more than one item in its result, strand assignment is
convenient for breaking up the nested array result. Suppose REVERSE
also returns a return code to be returned to APL:

)ERASE REVERSE
3 0 DNA 'SMPLFNS:REVERSE(*Cl.*Cl~,I4)I4'

REVE RSE will now return a 2-item vector:

RC TXTR ~ REVERSE (TXT) (TXT) (pTXT)

It is important that all arrays that might be modified by the external
routine are marked with ,~, by DNA. Consider the effect of not
marking the output array in the above example:

)ERASE REVERSE
3 0 DNA 'SMPLFNS:REVERSE(*Cl,*Cl,I4) ,
TXTR ~ ~REVERSE (TXT) (TXT) (pTXT)
TXTR

DEIFIDOMNU TUPNI EHT
TXT

DEIFIDOMNU TUPNI EHT

APL passed the same address as both the input and output, with the
consequence that the external routine modified the input variable as
well. Since no copy was made, the variables TXT and TXTR refer
to the same array in the workspace.

Copyright © 1987 STSC. Inc. 7-15 Using APL with Non-APL Programs

Cautwn: Unless care is taken to ensure that only one variable name points to an
array, it is unwise to modify an existing array in the workspace. For
example,

A-B-C-tlOOO

creates a single copy of the array t 100 0 and causes three variable
names to refer to it. If the contents of A are modified by an external
routine, by passing A by reference and not defming it as an output
variable, B and C will be modified as a side-effect of modifying A. An
example of when it is safe to modify a named array can be found in
"Case Study: Vector to Matrix Conversion," in this section.

Errors Produced by Calling External Routines

The following errors may be produced at the time that an external
routine is called:

RANK ERROR The argument is not a scalar or vector.

LENGTH ERROR The shape of the argument does not match the number of
parameters described to DNA.

DOMAIN ERR 0 R The datatype of an item of the argument does not match the
type specified with ON A and the data can not be converted
to the required type. DOMAIN ERROR is also produced
when APL is unable to map the external routine into its
address space. This can occur for a number of reasons, t.he
most common of which are:

• The logical name of the module is undefined.

• The . EXE file associated with the logical name does not
exist.

• The . EXE file contains no entry point with t.he specified
name.

• The module is not linked as sharable.

Copyright © 1987 STSC. Inc. 7-16 Using APL with Non-APL Programs

Future versions of the APL * PLUS System will permit passing
arguments by VMS descriptor, a common practice in the VAX
environment. In the current release, you have to write your own
intermediate routines that accept the currently supported datatypes and
set up calls to routines that expect parameters passed by descriptor.

WriJing Your Own External Routines

External routines can be written in any suitable language, including
FORTRAN, PASCAL, C, BLISS, as well as assembler. The only
restrictions are:

• The routine must accept parameters passed by standard V AX
argument lists.

• The routine must use parameters of types that are accepted by
DNA.

The procedure for writing, compiling, and linking a module that contains
routines to be called from APL is summarized by the following example:

1. Edit the source file. Suppose an editor is used to create a "en
language source file SUMFNS . C with these contents:

int isum(a,n) /* sum an integer vector x/
int *a;
int n;

int z = 0;
while
return

--n >=0) z += *a++;
(z) ;

double fsum(a,n) /* sum a float vector */
double *a;
int n;

double z = 0;
while --n >= 0) z += *a++;
return (z);

Copyright © 1987 STSC, Inc. 7-17 Using APL with Non-APL Programs

2. Compile or assemble the source file. In this instance, the DCL
command to compile a C program is:

$ cc sumfns

3. Link the object file as a sharable module, specifying both routines
as universal (externally visible) entry points:

$ link/share sumfns, sys$input:/opt
(User types as many linker

uni versal=isum options as needed and types
uni versal=fsum Ctrl-Z to indicate end.)

4. Defme a logical name for the module:

$ define sumfns $duaO: [jgw.text]sumfns.exe

5. Run APL, and use ON A to bind external functions to the routines:

1
3 0 DNA 'SUMFNS:ISUM(*I4.I4)I4'

3 0 DNA 'SUMFNS:FSUM(*D8.I4)D8'
1

6. Use the external routines:

ISUM (1 2 3)(3)
6

FSUM (1.5 10.4)(2)
11. 9

Calling Runtime Library Routines

Routines in VMS runtime libraries can also be called from APL as
external routines. For example, the V AX C runtime library routine
times () returns information on how much CPU time the APL
process has consumed. Its C syntax is:

int times (t)
int t[4]; /* where values will be placed */

The V AX C Runtime Library is assumed to be equated with the
logical name VAXCRTL, so an external routine can be defined thus:

Copyright © 1987 STSC. Inc. 7·18 Using APL with Non-APL Programs

3 0 DNA 'VAXCRTL:CPUATIME TIMES (*I4~)'

1

The monadic func tion CPU A TIM E now can be called, passing a
4-element integer vector by reference. The function time s () will
write its result as this address:

pT ~ ~CPUATIME c14
4

T
234 0 0 0

Case Study: Vector to Matrix Conversion

This example shows how to deal with the restriction that external
routines cannot create new APL arrays but can only modify the values
of arrays that have been passed to them. A program that converts a
delimited vector to a matrix must examine its input before the shape of
the result can be calculated; and the shape must be known before the
output array can be created.

The problem can be solved by splitting the calculation into two
external routines. The first examines the input, calculates the
dimensions of the result matrix, and returns them to APL. An APL
statement then uses reshape to create a matrix with the correct shape
and datatype. The matrix is passed to the second routine, which fills
in its values.

In C, the two routines could be defined with the syntax below.
Function vrnshape () calculates the shape needed for the result
matrix and vrnfi 11 () fills in the values.

vrnshape(input,len,shape)
char *input; /* delimited character vector */
int len; /* length of input vector */
int shape [2]; /* where #rows and #cols are placed

int nrows;
int ncols;

Copyright © 1987 STSC, Inc.

/* number of rows needed in result */
/* number of cols needed for

longest row */

7-19 Using APL with Non-APL Programs

/* ... scan input, calculate nrows and ncols ... */
shaperO] nrows;
shape[l] = cols;

vrnfill (input, output, shape)
char *input; /* delimited character vector */
char *output;
int shape[2]
(

/* character matrix */
/* shape of output */

/* ... scan input, copy each delimited string
to a row of output ... */

After these routines have been compiled and linked, they can be defined
as external functions:

1

1

3 0 DNA

3 0 DNA

'VTOM:VMSHAPE(*Cl.14.*I4~)1

'VTOM:VMFILL(*Cl.*Cl~.*I4)1

The two external routines can be incorporated into a stand-alone APL
cover function:

v MATRIX"'VTOM VECTOR; SHAPE
[lJ R Converts a delimited character vector
[2 J R in to a ma t r i x .
[3J SHAPE ... VMSHAPE (VECTOR)(pVECTOR)(2 2)
[4J MATRIX'" VMFILL (VECTOR) (SHAPEp' ')(SHAPE)

v

Note the use of the third parameter to VMSHAPE. A two-element
integer array with arbitrary values (2 2) is created and passed to
VMSHAP E to be filled in. Since the third parameter is designated as
an output variable and included in the result, APL will create a second
2-element vector which is passed to VMS HAP E. A similar process
occurs with the second element of VM FILL. In both cases, an APL
expression is used to create a new variable which is duplicated to
become the explicit result. Two arrays are created in each case but
only one is needed.

Copyright © 1987 STSC, Inc. 7-20 Using APL with Non-APL Programs

Efficiency can be improved in this case by passing arrays that the
external routine is expected to modify and not marking them as output
variables:

1

1

)ERASE VMSHAPE VMFILL
3 0 DNA 'VTOM:VMSHAPE(*C1,I4,*I4)'

3 0 DNA 'VTOM:VMFILL(*C1,*C1,*I4)'

v MATRIX~VTOM VECTOR;SHAPE
[1] A Converts a delimited character
[2] A vector into a matrix.
[3] SHAPE~2 2
[4] VMSHAPE (VECTOR) (pVECTOR) (SHAPE)
[5] MATRIX ~ SHAPEp , ,
[6] VMFILL (VECTOR) (MATRIX) (SHAPE)

v

In this case, it is safe to allow the external routine to modify the
contents of the named variable, since it is certain that the array is
referenced by only one name. The usage is considerably more
efficient

Copyright © 1987 STSC,lnc. 7-21 Using APL with Non-APL Programs

C!J
Z
t­
Z
a:
Q,.

Chapter Eight
Printing

Because of the wide variety of printers used in the VMS environment,
both with the V AX and Micro V AX, the APL * PLUS System does not
yet have any standardized printing utilities. As support for various
printers becomes available, information will be added to this chapter.

How Do I Get APL Data to My Printer?

Use the existing printing facilities of your printer and VMS. The
APL * PLUS System's Native File capability allows you to write your
APL data into native files (see Section 7-1 of this manual). Then,
submit a print job for the native file, just as you would for any other
VMS file.

How Do I Get APL Characters to Print?

There are hardcopy terminals such as the LA120 that have APL
character sets and can print files with APL characters.

Alternatively, you can print APL characters by using a PC (running
the APL * PLUS PC System in terminal mode) as a terminal to the
V AX. A slave printer attached to the PC can be made to print any
characters that appear on the screen.

Copyright © 1987 STSC, Inc. 8-1 Printing

Chapter Nine
Supplied Workspaces

The workspaces supplied with this APL * PLUS System can be
grouped into several categories:

• The tutorial workspaces are AP LCOURSE and LE SSONS. They
will help you learn and practice APL in conjunction with the
manual APL Is Easy!

• The demonstration workspace, DE MOAP L, illustrates features of
this APL system.

• The file transfer workspaces are SERHOST, TRANSFER, and
S LT. S E RHO ST is a data transfer application used with
S E R X FER on personal computers.

• The utility workspaces are DATES, FORMAT, INPUT, and
UT ILITY. They contain helpful functions that you can use to
format dates and data, ease conversion from other APL systems, and
collect and process input You'll fmd them useful when building
your own programs and applications.

• The supplemental workspaces are COMPLEX and E IGENVAL .
The COM P LE X workspace provides APL cover functions to
perform complex number arithmetic. The E I G E NV AL workspace
provides functions to compute eigenvalues and eigenvectors.

Where relevant, overviews of certain workspaces are given in other
chapters of this manual as follows:

• INPUT ---Chapter 5
• SERHOST, SLT, and TRANSFER---Chapter6
• FORMAT---Chapter4

This chapter briefly documents the other supplied workspaces. Each
section consists of an overview and a list of the functions grouped by
subject. Detailed function descriptions can be found in Chapter 4 of
theAPL*PLUS System Reference Manual.

Copyright © 1987 STSC, Inc. 9- 1 Supplied Workspaces

Each workspace contains a DES C RIB E function or variable
containing online documentation for the workspace. When you first
load one of the workspaces, enter DES C RIB E to augment the
documentation in this manual.

9-1 The APLCOURSE Workspace

The AP LCOUR SE workspace is an interactive tutorial that creates
drill and practice exercises using primitive monadic and dyadic
functions with scalar or vector integer and floating-point data. The
workspace corresponds to the A I D R ILL workspace discussed in the
APL text APL: An Interactive Approach by Leonard Gilman and
Allen J. Rose (Wiley, 1984). All the functions are unlocked.

The functions prompt for selection of the APL functions on which
you want to be tested. You can select several function types for a
session. You must solve the problem and respond with a correct
answer. You get three chances to solve the problem correctly. After
three incorrect answers, the correct answer is displayed. You will be
drilled on the use of the function until you solve the problem. If you
want, you can receive a record of your performance.

The functions E AS Y DR ILL and TEA C H create the practice drills;
the function IN ST R displays instructions on using these functions.
E AS Y D R ILL and TEA C H are quite similar in action. You first
select the function and datatype. If vectors are used, you can also
choose reduction. The TEA C H function differs from E AS Y D R ILL
in its ability to use vectors of length zero and to create drills with
scalar monadic, scalar dyadic, mixed dyadic, and mixed monadic
functions. The variables SM and S D contain the scalar functions, and
MM and M D contain the dyadic functions.

The variables PLEASE, CHANGE, STOP, and STOPSHORT halt
execution of the current exercise. If you have difficulty solving the
problem, P LEASE returns the solution and creates another problem
using the same function type. CHANGE gives the correct solution
and switches to problems of another function type. STO P ends the
session and displays the record of your performance. The variable
S COR E stores the results of your session. ST 0 P S H 0 RT
terminates the session without displaying your score.

Copyright © 1987 STSC. Inc. 9-2 Supplied Workspaces

9-2 The COMPLEX Workspace

The COM P LEX workspace contains functions that perfonn complex
number computations and structural manipulations that invert complex
matrices. The workspace also includes a function that derives the
complex roots of an analytic function of a single complex variable.

The summary function provides a synopsis of all of the functions in
the workspace. You can display documentation for each individual
utility function by entering:

EXPLAIN functionname

The following conventions are used throughout the workspace:

• The notation aJb is used to reference the complex number a+bi in
the documentation and function descriptions. Purely imaginary
numbers are referenced as OJb. Purely real numbers, aJO, are
abbreviated as a.

• An array of complex numbers is represented by a numeric array
whose rank is one higher and whose first dimension is 2. The first
coordinate represents the real part of the complex number and the
second coordinate represents the imaginary part. For example, the
complex scalar 3J4 (3+4i) is represented by the vector 3 4. The
complex vector lJ2 3J 4 5 6J7 OJ8 is represented by
2 5 P 1 3 5 6 0 2 4 0 7 8. Likewise, an m-by-n
complex matrix is represented by a 2-by-m-by-n numeric array.

• Functions that operate on arbitrary complex arrays are prefixed ex;
functions that operate only on complex scalars (two-element
numeric vectors) are prefixed Z.

• The tenn "alternating string" refers to a numeric vector with an even
number of elements where the odd elements are the real parts of
several complex numbers and the even elements are the imaginary
parts of the complex numbers.

The C X function filters an APL array to ensure it is a valid
representation of a complex array. It also takes an alternating string
and organizes it as a representation of a complex vector. The
ex RE S HAP E function can be used to create higher dimer.sional

Copyright © 1987 STSC, Inc. 9-3 Supplied Workspaces

, ...

complex arrays. Once you have established representations of complex
arrays, you can apply a variety of computational functions to them.

For example, the function C XT I M E S multiplies two complex arrays.
To multiply the complex vector 1 J 2 3 4 J 5 by the vector
1J -1 2J -2 3 J - 3, you can execute:

1 2 3 0 4 5 CXTIMES 1 -1 2 -2 3 -3

When both operands are complex scalars, use ZTIMES. For example,
the statement:

6 7 ZTIMES 8 9

mUltiplies 6J7 by 8J9.

Other functions are available to compute:

• sums, differences, and quotients

• square roots, powers, logarithms, and exponentials

• trigonometric and hyperbolic functions and their inverses

• conjugates, magnitUdes, and amplitudes

• inverses and transposes of complex matrices.

Use the SUMMARY function in the COMPLEX workspace to display
both the name and syntax of each of these functions.

The C X ROO T S function finds the roots of a function of a single
complex variable. This function must be named C X f n and must be
monadic and return an explicit result. Both the argument and the result

Copyright © 1987 STSC. Inc. 9-4 Supplied Workspaces

must be a complex scalar (two-element numeric vector). After you
defme C X f n • execute:

roots +- CXROOTS guesses

where the argument is an alternating string or complex vector of
guesses. The number of guesses supplied limits the number of roots
that will be returned. The C X s tat e global variable conlrols the
behavior of the C X ROO T S function -- the maximum number of
iterations, the convergence tolerance, the display of intermediated
results, and so forth. Execute C X STATE for a review and
interpretation of the elements of C X s tat e .

9-3 The D AT E S Workspace

Conversion

Formatting

The DATES workspace contains functions for converting dates (vector
to scalar or scalar to vector), formatting dates, verifying dates, and
performing miscellaneous calculations and manipulations of dates
based on the Gregorian calendar. Each function handles any number of
dates in its argument, except for DATE SPELL and DSPELL,
which handle only a single date at a time. All functions that accept
the vector form of dates require that the argument be in OT S
timestamp form. No error-checking is performed. Invalid arguments
may produce errors or incorrect results.

The DATEREP, HOURREP, MINREP, SECREP, TIMEREP,
and FT I MERE P conversion functions change dates from a compact
base form (for example, as the number of days or minutes that have
elapsed since, or prior to, 0:00:00,1 January 1900) to a vector form
similar to the OTS timestamp. Conversely, the DATATBASE,
HOURBASE, MINBASE, SECBASE, TIMEBASE, and
FT IME BASE conversion functions change dates from a vector form
to a scalar form representing the elapsed number of time units from
0:00:00, 1 January 1900.

The TIMEFMT, FTIMEFMT, and DSPELL functions format dates
in fixed formats. D AT ESP ELL spells out and formats dates

Copyright © 1987 STSC. Inc. 9-5 Supplied Workspaces

according to various options, and allows an hour offset to time zones
other than Eastern. TIMEFMT, DSPELL, and DATESPELL
allow formatting of varying time precisions.

Verification

Calculation

The DATECHEC K function verifies a date to ensure that it is a valid
date.

A variety of functions in this workspace perform calculations with
dates. DAYSDIFF and W K DAYSDIFF calculate the number of
days or weekdays between dates. DA Y OFW K determines the numeric
value (1-7) of the day of the week for a given date; DAY 0 F Y R
determines the numeric value (1-365) of the day of the year.
LE A P Y R determines whether a given year is a leap year.
D AT EO F F S ET calculates dates by offsetting to past or future dates.
YMDTOMDY converts dates packed as [YMDJ to dates packed as
[M D Y J , and M D YT 0 Y M D performs the inverse operation.

9-4 The DEHOAPL Workspace

The DEMO A P L workspace contains functions that demonstrate the
diverse capabilities of your APL * PLUS System. The DE S C RIB E
variable explains the purpose of each function. Use of this workspace
is discussed in Chapter 1 of APL Is Easy! The LI ST function
displays an entire function using 0 V R when a function name is
supplied as the right argument. All functions are unlocked and
commented.

Formatting Output

REPORT, CALENDAR, and CALEN demonstrate use of the report
generation facility (see Chapter 7). A report typical of a business
application is generated by REPORT. The report title is centered over
the table by the CENTER function. DATA, PARTS, QUAN,
TITLE, and TOT are created as global variables by RE PORT.
CALENDAR creates a calendar for any specified month of a given
year after October, 1752. C ALEN uses the C ALEN DAR function
twelve times to display a calendar for an entire year.

Copyright © 1987 STSC. Inc. 9-6 Supplied Workspaces

Mathematical Operations

COMB, PERMX, and PRIME S use primitive APL system functions
to perfonn complex mathematical options. COMB uses a recursive
algorithm to create all combinations of a given number from a fixed
set of numbers. P E RMX generates a table of all pennutations of
numbers from 010 to a specified number. PRIMES returns all
prime numbers from 1 to a specified number.

Character Manipulation

The P IGLAT IN function translates a character string to pig-latin.
Extra blanks are removed.

9-5 The E I G E NV AL Workspace

The E IGENV AL workspace contains a variety of functions to fmd
eigenvalues and, optionally, the eigenvectors of real matrices. Both
real and complex eigenvalues are derived. Different routines
embodying different techniques can be used depending upon whether or
not the real matrix is symmetric.

The summary function provides a synopsis of all of the functions in
the workspace. You can display documentation for each individual
utility function by entering

EXPLAIN functionname

9-6 The LESSONS Workspace

The LE S SON S workspace contains all of the functions discussed in
the tutorial APLIs Easy! APL Is Easy! explains APL concepts with
concise, detailed examples. You should be able to complete the
tutorial in 10 to 15 hours; using LE S SON S will help you learn.

As you work through the tutorial, you can verify the accuracy of your
answers by examining the solutions in LE S SON S, or you can copy
the desired programs into your workspace to save time. Although all

Copyright © 1987 STSC, Inc. 9-7 Supplied Workspaces

the functions are in the workspace, you must create the variables. The
solutions to the exercises are also in the appendix in the tutorial. The
DEMOAPL workspace contains the functions mentioned in Chapter 1
of APLls Easy!

9-7 The UTILITY Workspace

The UTI LIT Y workspace contains a group of functions to display
nested arrays in pictorial form . The primary function is DI SPLAY.
It will return a character matrix containing a pictorial representation of
the array provided as its right argument. For example:

DISPLAY t "l3

~------------------

~-- -to----

111 1121 11231
....... t 1 __ ' , ____ '

'c--------------- --- '

DISPLAY is used extensively in Chapter 1 oftheAPL*PLUS
System Reference Manual.

Copyright © 1987 STSC, Inc. 9-8 Supplied Workspaces

w
()
z
c:(
:;:(/)
II:~
o~
U.
II:
W
0..

Chapter Ten
Performance Tips

To ensure that your APL * PLUS System is running efficiently:

• Have enough memory for the APL interpreter and editor and the
user's workspace to be resident concurrently.

• Install APL as a shared code segment if you have multiple user's
working simultaneously.

These two considerations are discussed in Sections 10-1 and 10-2,
respectively.

10-1 Use of Memory

The size of the APL interpreter itself is approximately 280,000 bytes.
The APL workspace size can be increased or decreased using
) C LE AR; the largest size obtainable is a function of the way VMS is

configured at your site.

How Much Do I Need?

The amount of memory APL uses consists of two parts: a fixed
amount representing the minimum storage necessary to run APL, and
a variable amount that depends on how much storage you need to use
for the workspace and full-screen editor.

The fixed amount is approximately 280,000 bytes, the size of the APL
interpreter.

The variable part of the APL process memory is the dynamic memory
that APL allocates to use for the workspace and the Session
Manager/full-screen editor. The amount of memory used
can be controlled by APL session parameters. Once APL is running,
you can change the size of the active workspace with the system
command) C LEAR. For example:

Copyright © 1987 STSC, Inc. 10-1 Performance Tips

)CLEAR 500000
CLEAR WS

This sets the active workspace size to 500,000 bytes. If the new size
is larger than the former size, APL requests additional memory from
VMS.

Every machine has an effective maximum workspace size; requesting
more workspace than is available produces an error message:

)CLEAR 5000000
INSUFFICIENT SPACE FOR WS

Section 10-3 contains suggestions on how to proceed if you cannot
obtain a workspace as large as you need.

Avoiding Excessive Paging

The size of APL processes can be a major factor in the effective
performance of the VMS system. The total amount of memory
allocated to active processes can be larger than the amount of main
memory in the computer. In this situation, VMS pages inactive
processes to disk, copying them into memory to run them, then
copying them back to disk.

Often, the paging of tasks to disk has no perceptible effect on APL
performance. However, when too much process space is allocated at
once, the machine may begin to "thrash," copying pages between
memory and disk. The effect can be very frustrating to the APL
user--the system will appear to freeeze for seconds at a time--and the
disk drive will be constantly active.

If you have a problem with thrashing while APL is running, it may
help to use smaller workspaces or reduce the number of concurrent
APL users. But the problem is most likely to be resolved by
consulting the hardware vendor for advice on whether VMS can be
"tuned" to better handle large processes. Often the problem can be
resolved simply by adding more memory, but the hardware vendor can
best determine how to address your particular situation.

VMS has excellent virtual memory facilities, but as with any such
system, performance can suffer if the facility is abused. As a rule, the

Copyright © 1987 STSC, Inc. 10-2 Perfonnance Tips

larger the APL workspace you use, the more your execution
peformance will be diminished by paging to disk. It is generally wise
to keep workspaces small enough so that they fit completely in real
memory.

10-2 Shared Code Segment

The exectuable file [APL. RELn] APLX is set up to use a "shared code
segment" so that only one copy of the executable program is resident
in memory at the same time, no matter how many APL processes are
running at once. This greatly reduces the amount of main memory
consumed by the APL interpreter, and also makes APL load faster if
another user is running it already. Each user has his own private
storage for data and workspace, and there is no danger of one user's
APL usage conflicting with another.

The shared code segment technique works only when a central copy of
the executable interpreter file is used by each user. Making private
copies of the executable file defeats the benefits of the shared code
segment.

If multiple users are likely to be running APL at once, the APL
interpreter should be installed as a shared image program. Have only
one copy of the interpreter resident in memory even if many users are
running APL simultaneously. The procedure for installing APL in
this fashion is included in the Installation Guide.

10-3 Avoiding WS FULL

There are several possible reasons why you mat not be able to obtain
as large a workspace as you want. Allocating the requested amount of
memory might cause your APL process to exceed the system-wide
process size limit (the maximum size of anyone process). Or, the
total amount of space available for all VMS processes combined may
be used up.

The process size limit can often be increased by adding memory to the
computer and then re-installing or re-configuring VMS. Refer to your
V AX system administrator's manual or consult with the hardware
vendor to see if this is possible on your machine.

Copyright © 1987 STSC, Inc. 10-3 Performance Tips

The total process space can also be increased by reconfiguring VMS to
provide a larger" swap area", the region of the disk that is reserved for
storing inactive processes.

1 0-4 Monitor Facility

An important step in improving the performance of your APL
applications is identifying where the execution bottlenecks. The
system function DMF monitors an APL function and returns the
accumulated CPU times for each line of the funtion. When applied
within an application, it identifies areas of code which may benefit
from optimization efforts.

See Chapter 3 of the APL *PLUS Reference Manual for details on
how to use DMF.

10-5 Partial Compilation of APL Functions

This APL * PLUS System uses a technique of partially compiling a
line of APL code when it is executed for the first time. The line is
translated into an internal form of pseudo-code, which is then executed
by the interpreter. This pseudo-code differs from the internal form used
by most other APL systems in that it does not require syntactic
analysis when it is executed. STSC research has shown that a
substanial portion of the work done by a traditional APL system is
spent in performing syntax analysis.

When a function is first dermed in the system, the input representation
of the function (called the source form) is stored in the workspace
exactly as typed. The source form is not examined until the first time
the function is executed, when syntactic analysis is performed and
pseudo-code is generated. The pseudo-code is then stored in the
function, along with the source code, and is executed the next time the
function is executed. The pseudo-code needs to be regenerated only if
the syntactic context on which the function depends has changed. In
practice this happens only with a change in valence of a user-defined
object used in the APL statement.

Copyright © 1987 STSC, Inc. 10-4 Performance Tips

Implications of this partial compilation include:

• A function runs faster after the first time it has been executed, since
it needs syntactic analysis only once. The function also grows to
occupy more workspace area as the pseudo-code is generated.

• When a function is displayed with the Del editor, 0 V R, or 0 C R,
or is edited with the full-screen editor, the display form is the same
as entered by the user.

• System functions such as 0 V Rand 0 DE F, which maipulate the
source form of function, are relatively fast

• Copying a function into the workspace, or redefining it with
ODE F , 0 V R, or the editor causes the pseudo-code to be discarded.
Pseudo-code is preserved in a saved workspace.

• Derived functions that use non-scalar or user-defmed functions are
particularly well suited for representation in pseudo-code.

10-6 Multiple References

The APL * PLUS System makes copies of APL variables in the
workspace only when absolutely necessary. In particular, using a
variable as the argument to a defined function does not cause an extra
copy to be made. Also, assignment to one variable of the unmodified
value of another variable does not cause an extra copy to be made. For
example:

creates only one copy of the value (1 100). The value is discarded
only when the last reference to it is deleted, which occurs when a
different value has been assigned to each of the variables or when all of
them are erased.

Multiple references are particularly significant for nested arrays. For
example:

A 1000pctlOOO

Copyright © 1987 STSC, Inc. 10-5 Performance Tips

creates only one copy of the value (1 1 000). The variable A consists
of multiple references to the value, not multiple copies of it. This can
yield a substantial space savings in many situations.

10-7 Dynamic Internal Structures

The data structures used by the APL workspace are all dynamic and
their sizes can be easily changed. The execution stack (state indicator)
extends automatically when necessary and releases the extra space when
it is no longer needed. Thus, the error ST AC K FULL cannot
occur, although WS FULL is possible if there is no room to
extend the stack. Similarly, the symbol table is dynamic, and its size
can be increased or decreased at any time using) S Y M B 0 L S, even
when names are in use in the workspace.

Since the symbol table is automatically extended by the system
whenever necessary, we recommend beginning your session with only
a small symbol table, preferably the default of 512.

Copyright © 1987 STSC. Inc. 10-6 Performance Tips

> a:
<
(/)
(/)

9
(!J

Glossary

abort

absolute tab

absolute value

access matrix

Interrupt and abandon execution of a program or a session that is in
progress.

A cursor position that is specified relative to the left margin.

The magnitude of a number, regardless of any negative sign that
might be present. The APL monadic function I returns the
absolute value of the number or numbers in its argument.

A matrix associated with each APL component file. The matrix
consists of three columns containing the user account numbers of
those who have been given access permission of some type, the
sums of the access codes granted to each user, and the access
passnumbers (if any) required of each user.

account number
An integer (ranging from 0 to 32,767) that identifies a user
account. The user provides this number to the system at the
beginning of each APL session. The user account number is the
value of DAI [1]. User account numbers appear in the first
column of file access matrices.

accounting information
Information consisting of the user account number, the CPU time
consumed by the APL session, and the elapsed time since the start
of the APL session. This information is returned by the system
function DAI.

active workspace
The workspace that is currently in the computer's CPU memory.
The last workspace loaded by the user. If the user has just begun
an APL session, the active workspace is either C LE AR W S or
a workspace specified as a start-up parameter.

Copyright © 1987 STSC. Inc. GL-l Glossary

address

algorithm

All key

An identification that designates a particular location in the
computer's memory.

A set of well-defined rules for solving a problem in a finite number
of steps.

The shift key for which the red key label has been provided.

ambivalent function

APL file

A function that can take either one argument (monadic) or two
(dyadic).

A collection of sequentially numbered APL arrays (called
components)e stored on disk. APL files are created and
manipulated by system functions whose names begin with 0 F.

application program

argument

array

array shape

A program that enables the computer to perform a specific job. It
is usually written in a high-level language such as APL, and often
includes parts written in other languages.

The data on which a function acts.

An arrangement of elements into zero, one, or more coordinates
(dimensions).

See shape of an array.

Copyright © 1987 STSC, Inc. Gl.r2 Glossary

ASCII
The acronym for the American Standard Code for Information
Interchange, used as the standard code for information interchange
among data processing systems, communication systems, and
associated equipment. It uses a coded character set consisting of
seven-bit coded characters with an eighth bit available for parity
checking.

assembly language

atomic vector

attention

attributes

autorepeat

A low-level symbolic programming language, closely resembling
machine-code language, that allows a computer user to write a
program using mnemonics instead of numeric instructions.

The vector that contains all of the possible character values in an
APL system. These character values can be referenced using the
system function DAV.

An interrupt issued by pressing Break while an APL statement or
function is being executed.

The visible traits associated with displayed characters (colors,
highlighting, inverse video, blinking, and so on).

A feature that allows you to hold a key, producing the same result
as pressing the key multiple times.

backspace character

backup

A non-graphic character that causes the cursor to move one
position to the left. Available in APL * PLUS Systems as
DTCBS.

An extra copy of stored data that can be used in case of accidental
damage to or inadvertent erasure of the original (caused by either
human error or machine failure).

Copyright © 1987 STSC, Inc. GL-3 Glossary

baud rate

bell character

binary

bit

bit-pairing

Boolean

boot

bootstrap

BPS

The speed of transmitting data to peripherals or other computers:
See also BPS.

A non-graphic character that produces a bell sound on many ASCII
devices. Available in APL * PLUS Systems as DTeBEL.

A number representation system using the base (radix) two.
Numbers are written using only the digits 0 and I, where each
additional place to the left represents an increasing power of 2, just
as in normal decimal numbers each place represents an increasing
power of 10.

Shortened form of binary digit. The smallest unit of data on
computers. A single character in a binary number (that is, 0 or 1).

The mapping of the APL characters onto the keys of a bit-pairing
terminal. Compare to typewriter-pairing.

Arrays in which all values are either 0 or 1.

See bootstrap.

A procedure for loading a program (usually the operating system)
into a computer as a result of preliminary instructions. This
procedure is initiated by a switch or by a keyboard input command.
Also called "IPL."

Abbreviation for "bits per second" . A measure of data transmission
speed showing the number of bits of information that pass a given
point in one second. Bytes per second in ASCII transmissions is
usually approximately BPS divided by 10.

Copyright © 1987 STSC, Inc. G1,4 Glossary

branch potential
The indication of whether an APL statement has tenninated with a
successful branch. One of three potentials associated with an APL
statement after it has executed. Contrast with display potential
and value potential.

branch statement
A statement in a defined function which changes the order of
execution of statements in that function. See conditional
branch and unconditional branch.

branch target value

Break

Break signal

buffer

byte

The line number to which a branch is to be made.

A signal sent from the keyboard to indicate that current processing
should be interrupted, or that the line being entered should be
abandoned. It is signaled in this APL * PLUS System with the
Interrupt key.

The result of pressing Break.

A fixed-size internal storage area dedicated by the system to a
particular purpose, such as holding data received from a port until it
is used.

A sequence of adjacent bits used as a unit of data. One byte usually
contains 8 bits.

calling environment
The environment from which a function is called upon to execute
and to which the computer returns after its execution.

canonical representation
The representation of a given function fonned by converting the
function into a character matrix in which each row is a line of that
function. The explicit result of 0 CR.

Copyright © 1987 STSC, Inc. Gl.r5 Glossary

caret

catenate

character

In an error display, a pointer where the problem was encountered.
Represented by the caret symbol (A).

To join two arrays to form a single larger array.

Any symbol, letter, digit, or punctuation mark used to control or
represent data.

character constant

character data

A series of characters enclosed between single quotes.

Data, consisting of symbols (visible or not) used by the keyboard,
screen, communications, or printing devices (also known as literal
data). Each symbol occupies one byte of storage and is found
among the 256 unique elements of the atomic vector (OA V). One
of two datatypes in APL. Contrast with numeric data.

character image
A representation of a number using the characters
"0 12 3 4 56789 E . -" along with its spacing on the page.

character input mode
The input mode invoked when ~ executes. The system provides
no distinguishing prompt for the user entry. The result is a
character vector of the user entry (possibly preceded by a
program-issued prompt) with no execution or command processing
of the user entry. Character input mode is normally ended by
pressing Enter, but can be aborted by using the O-U-T keystroke
(typically Ctrl-Z). Contrast with evaluated input mode.

clear workspace
An active workspace created by the) C LE AR command. It has no
workspace name and contains no user-defined functions or
variables. All workspace-related system variables have their default
values.

Copyright © 1987 STSC, Inc . GL-6 Glossary

clock

command

compaction

A device capable of generating signals at periodic intervals.

A word related to a particular computer operation that can be used
alone or with additional information to cause that operation to be
performed. Most commonly used for the operating system or for
APL system commands.

Reclaiming disk storage space abandoned in a component file by
replacing file components with components of a different size.

comparison tolerance

component

The limit within which two APL values being compared are judged
to be close enough to each other to be considered equal. The
amount is controlled by the user through OCT. Also referred to as
"fuzz."

See file component.

component file
See APL file .

component information
The numbers returned by OFRDC I, representing bytes needed to
store the component in the workspace, the user account number
that placed this data in the file, and the timestamp of when it was
placed in the me.

component number
The number used to refer to a file component, including all uses of
file system functions that refer to individual components
(OFREAD , OFREPLACE, OFRDCI). This number is
assigned to the component when it is first appended by
OF AP PEN D. The number is one greater than that of the
component just before it. The first component appended to a new
file is numbered 1.

Copyright © 1987 STSC, Inc. Gl.,.7 Glossary

compound statement
Two or more statements written on a single line and separated from
one another by diamond symbols (0). Compound statements are
executed in order, from left to right.

computer program
A set of instructions (called "statements" in APL) expressed in a
form suitable for execution by a computer. Also called a
"program. "

conditional branch
A branch statement whose effect is dependent on some specified
condition. The argument to a conditional branch may evaluate to a
numeric array whose first element is used as the destination or to
an empty array, resulting in no branching being done. Contrast
with unconditional branch.

conform ability

constant

The required rank and shape relationship of the array arguments of a
function.

An array whose content is specified at the point of call (where it is
to be used), rather than referring to another source for the data (such
as a variable). See character constant, numeric constant,
variable.

control character

control key

A character produced by pressing a key while holding down the
Ctrl-key.

The key labeled "Ctr!."

conversion type
Specifications for interpreting and storing the data bits read from a
native file.

Copyright © 1987 STSC, Inc. Gl.,.8 Glossary

coordinate

CPU

crash

CRT

Ctrl

An axis along which data is arranged in an array, allowing indexing
(subscripting) selection. To select a single element of data, a
single index must be specified for each coordinate. The lengths of
all coordinates of an array are given in the array's shape vector.

Acronym for Central Processing Unit. The part of a computer that
controls the interpretation and execution of instructions.

Also called a system crash, is a failure of either the hardware or the
software. A crash leaves the system in an unusable state. The
system must be restarted either by re-booting or by powering off
and then on again.

Acronym for cathode-ray tube. A television-like device used for
displaying text and possibly graphic images.

A shift key (also called control) used to enter control codes from
the terminal keyboard. For example, Ctrl-S means that the user
presses the S key while holding down the Ctrl key.

current directory

cursor

data

The directory that the operating system is currently using as the
default directory.

Position where the next input or output character will appear on
the screen. Indicated during input by a blinking underline on the
screen.

A collection of numbers or characters. Datatypes are classified as
numeric or character. See character data and numeric data.

Copyright © 1987 STSC, Inc. GL-9 Glossary

database

datatype

decimal

decoration

default

Data items stored in order to meet the information processing and
retrieval needs of an organization. The term implies an integrated
file or files used by many processing applications as opposed to an
individual data file for a particular application.

See character data and numeric data.

The number representation system using the base (radix) 10.
Compare to binary and hexadecimal notation. Also, a
synonym for decimal point.

An optional modifier used as part of the left argument to the
APL * PLUS System function OFMT. Displays the specified text
with numeric data.

A value used by a system or language translator when no other
value has been specified by the user or the user's program.

default disk drive

default library

default value

default width

The disk drive that DOS uses when no disk drive has been
specified. The letter representing this disk drive followed by a
separator character is used as a prompt in DOS.

The library used when no library number has been provided.

A predetermined value used when no explicit choice is made or
when no explicit action is taken to set the value.

When the width specification of the dyadic format primitive is 0, or
when the width is unspecified, the default width is used to format
the data. The default width is equal to one more than the widest
representation of any value in any of the columns of the right
argument whose formatting is controlled by that specification.

Copyright © 1987 STSC, Inc. GlrlO Glossary

defined function

defined name

An APL program defined by the user while in definition mode or
by using DDEF, DDEFL, DFX , orthefull-screeneditor. A
defined function consists of a header line (that formally specifies
the function name, any arguments, and any result) and lines of
APL statements. One of three function types in APL. Also called
user-defined function. Contrast with primitive function
and system function. See also function.

An APL identifier currently being used as the name of a function,
variable, or label in the workspace. A name that does not produce
a VALUE ERROR when referenced.

definition mode
See function definition mode.

defn error (definition error)

delimiters

An error occurring when the system is unable to alter a defined
function in the way requested.

With regard to DFMT, pairs of symbols used to open and close
text and pattern phrases.

diamond symbol

digit

digit selectors

dimension

The symbol 0 used to separate the individual statements in a
compound statement.

A graphic character that represents an integer, one of the characters
o through 9. Also called numeric character.

Special characters used in the g format phrase to indicate where
digits in the data are to be displayed.

The number of elements along a single coordinate of an array. The
maximum size of the number and arrangement of elements in an
array. Also called coordinate. See also shape of an array.

Copyright © 1987 STSC, Inc. GIr11 Glossary

directory
System table space used to control data storage and retrieval in a
file. A table of identifiers and references to the corresponding items
of data. Also, DOS's table of information on a group of files,
possibly the entire contents of a disk.

directory mode

disk

disk drive

diskette

display

A mode of the system where files and workspaces in different
directories are identified by prefixing the name with the operating
system's directory or path designation. Contrast to library
mode.

A non-volatile, rotating, data storage device whose circular surface
is coated with magnetic material.

A hardware device that rotates a disk, permitting electromagnetic
reading and writing of data.

Synonym for a disk (mini-disk). See disk.

A visual presentation of data.

display potential

domain

domain error

The indication of whether the value of an APL statement is to be
displayed. If the statement has no value, display potential is
undefined. One of the three potentials associated with an APL
statement after it has executed. Compare branch potential and
value potential.

The set of arguments (or of pairs of arguments) for which a
function is defined.

An error occurring when a function is executed with one or more
arguments not in its domain.

Copyright © 1987 STSC. Inc. GL-12 Glossary

dyadic function

edit

A function that requires both a left and a right argument.

To add to, change, or delete from an existing program or set of
data.

editing format phrases

elements

empty array

empty vector

Enter

error

error handling

error message

Fonnat phrases that convert data in the right argument of D F MT
into characters in the result.

The individual items in an array. In an array of character data, each
character is an element In an array of numeric data, each number
is an element.

An array having one or more dimensions of length zero. The
number of elements in an empty array is zero.

An empty array of one dimension (t 0 or ' ').

The key that you press to indicate that you have finished typing a
line of input and that the line should now be processed. Called
"Return" on some computer manufacturers' keyboards.

A statement or command that cannot be executed, usually due to
incorrect construction, unacceptable values, or hardware constraints
or failures.

The use (via DE LX) of preplanned responses to errors encountered
in statement execution.

See error report.

Copyright © 1987 STSC,lnc. Gl.r13 Glossary

error report
A message produced by the system when it encounters a statement
or system command it cannot execute.

escape character

evaluate

A non-printing character, typically with transmission code 27,
accepted by some communicating devices as a signal that
subsequent characters are commands to alter option settings in the
device.

To calculate. See also execute.

evaluated input mode

execute

The input mode when 0 executes. The system prompt in this
mode is 0 :. User entry is evaluated as an APL statement whose
last explicit result is the value used as input. Evaluated input
mode is normally ended by typing Enter. Evaluated input mode
can be aborted by typing Exit or by entering a branch arrow (-+)
without an argument. Contrast with character input mode.

In computer programming, to interpret a computer instruction and
carry out the operations specified by the instruction. Also called
run. Also, an APL function, denoted by the symbol ~, that takes
a character vector or scalar as its argument and evaluates (executes)
the APL statement represented in the argument. See also
evaluate.

execution mode
Synonym for immediate execution mode.

explicit coordinate

explicit result

A coordinate to a primitive function that is specified by enclosing
it in brackets. For instance, in + \ [2] A, the explicit coordinate
is 2. Contrast with implicit coordinate.

A value produced as a result of expression evaluation available for
use in subsequent expressions or for screen display.

Copyright © 1987 STSC, Inc. GL-14 Glossary

exponential editing

expression

extension

field

field width

file

Type of formatting that displays all numbers as multiples of a
designated power of ten. You specify the number of significant
digits to be displayed.

Identifiers, constants, and/or primitive functions and operators in
syntactic combination. See also latent expression.

See file extension.

A set of consecutive columns in the result controlled by an editing
or text format phrase (with DFMT), or a format pair (with dyadic
format).

The number of consecutive columns in the result controlled by one
format phrase (with DFMT) ,or one format pair (with dyadic format).

A linear collection of related data records arranged on disk in a
prescribed sequence. The user can communicate information to,
and access information from a file using the APL * PLUS PC
System's file system functions. In an APL file, a linear collection
of arrays (called components). In a native file, a linear collection
of characters (called bytes). See also native file.

file component

file errors

file extension

The fundamental storage reference point in an APL * PLUS System
component file. Any APL array can be stored in a file component.

Errors that occur during the execution of an instruction that requires
a reference to a file on disk. May be concerned with a particular
file or with a disk or disk drive.

The period and zero to three alphanumeric characters following the
name of a DOS file (also known as file type).

Copyright © 1987 STSC, Inc. GL-15 Glossary

file identification

file name

file operations

The combination of library number and file name (or in the case of
native files, a library letter, colon, file name, period, and optional
extension) that identifies a file.

The name that identifies a file. It consists of one to eight
alphabetic and numeric characters, beginning with an alphabetic
charocter.

All system functions that query or alter the files on the disks. For
example, bringing components into the active workspace for
processing or saving values generated in the active workspace as
components of a fIle.

file passnumber
A number appearing in column 3 of a file access matrix that is
used to control access to the file . Also called passnumber.

file reservation

file size limit

file tie

file tie number

file tie quota

The space reserved on a disk for future growth of a particular APL
fIle. Also called file size limit.

The size beyond which an APL file is not allowed to grow. Also
called file reservation.

The arbitrarily established and temporary link that pairs a number
to a particular fIle so that the number can be used to represent the
file in the numeric arguments to file system functions .

A unique number used for referencing a file while it is in active
use.

The maximum number of files that can be tied concurrently.

Copyright © 1987 STSC. Inc. Glr16 Glossary

file type
See file extension.

fixed point editing

floating-point

floppy disk

format

format pair

format phrase

format string

Type of formatting that displays all numbers with the decimal
point in a flxed position. If necessary, values are padded with zeros
or rounded to comply with the number of decimal positions
specifled.

A number able to have a fractional part. Also, the internal storage
format used for such numbers.

A storage medium that consists of a flexible disk (diskette) of
oxide-coated mylar stored in a paper or plastic envelope. The entire
envelope is inserted in the disk drive. Also called diskette. See
also disk.

The primitive function that forms numeric values into a character
image. In the monadic form of format, the system chooses the
width and precision of the image. In the dyadic form, the left
argument controls the width and precision of the image.
Represented by the thorn symbol (...). Also, to prepare a disk for
accepting data.

A pair of numbers in the left argument of dyadic thorn that control
the format fleld width and display precision when formatting one or
more columns of data in the right argument.

A sequence of characters in the left argument to 0 F MT that specify
how a column of data is to be edited or positioned for display
purposes. The specifications control the spacing, representation,
precision, and decoration of the displayed data.

A character vector containing one or more format phrases separated
by commas that is used as a left argument to OFMT.

Copyright © 1987 STSC, Inc. GL-17 Glossary

formatting
The process of arranging data for display purposes. Formatting
specifications control the spacing, representation, precision, and
decoration of the displayed data. Also, preparing a disk to accept
data.

fractional part of a number

function

The part of a number to the right of the decimal point.

A named procedure (program or subroutine) that specifies how a
job is to be done. A function is classified as primitive (for
example, +), system (for example, OFRE AD), or defined (for
example, ROWNAMES). See primitive function, defined
function, and system function.

function dermition
The rule or algorithm by which a user-defined function is to work.
A user-defined function is entered, edited, and displayed in function
definition mode or in the full-screen editor. The system functions
ODEF, ODEFL, and OFX can also defme functions. See
function definition mode.

function definition mode
Entering, modifying, or displaying a defined function using the
on-screen editing facilities. Compare immediate execution
mode.

function header
The initial line of a defined function that names the function,
models and determines its syntax, and names any identifiers that are
local to the function. Referred to as line [0] when editing or
using OCRL or ODEFL .

function line number

function type

See line number.

Defined functions can either return or not return explicit results.
They can also be niladic, monadic, or dyadic. See also dyadic
function, monadic function, and niladic function.

Copyright © 1987 STSC, Inc. Glr 18 Glossary

fuzz

garbage

See comparison tolerance.

Unwanted data remaining from a previous operation that has not
been erased from memory. Also, any useless or inaccurate data.

garbage collection
The rearrangement of the contents of memory that eliminates
unwanted data (garbage) to reclaim space for new data.

global definition
The definition of a function or variable outside of the current (local)
state of execution.

global environment
The collective term for the global definitions of all functions,
variables, and system variables in the active workspace .

. global variable

hardware

header

With respect to a level of function execution, any variable not local
to that function.

The physical units making up a computer system (that is, the
apparatus as opposed to the software or programs).

See function header.

hexadecimal notation

identifier

A notation of numbers using the base (radix) sixteen. The ten
decimal digits 0 to 9 and the letters A through F are used to
represent the digits 0 through 15, respectively, as single characters.
One "byte" can be encoded using two hexadecimal symbols.
Abbreviated and also called "hex." '

Name of a function or variable.

Copyright © 1987 STSC. Inc. GL-19 Glossary

idle character
See null character.

IEEE
Acronym for the Institute of Electrical and Electronics Engineers.

immediate execution mode
The method of operation in which any entered statement or system
command is immediately executed. Immediate execution mode is
the initial operating mode after a user has begun an APL * PLUS
System session. Also referred to as execution mode. Compare
with function dermition mode.

implicit coordinate
A coordinate to a primitive function that is not specified explicitly.
For instance. in + \A. the implicit coordinate is the last
coordinate. while in + ICX. the implicit coordinate is the first
coordinate. Compare with explicit coordinate.

implicit output

inclusive

index

index origin

inport

A value produced by an APL expression which is not re-used as an
argument or assigned to a variable before the statement ends, and
consequently is displayed.

Including the numbers at each end of the range as well as the
numbers between them.

A non-negative integer used to select an element along a coordinate
of an array. Also called subscript.

The value that represents the first index position along a
coordinate. The first number used in counting from the beginning.
Can be either 0 or l. Represented by 0 IO .

A source from which input is received. For example. a serial port,
keyboard. and screen.

Copyri ght © 1987 STSC, Inc. Gl.r20 Glossary

input

input buffer

input/output

input source

integer

Data to be processed and instructions to control processing entered
into the internal storage of a computer system.

See type-ahead buffer.

A general term for the equipment used to communicate with a
computer and the data involved in such communication.
Abbreviated and also called I/O.

Where the input for an APL session is coming from -- usually the
keyboard, but possibly an APL component file selected by 0 INto
act as a surrogate for keyboard input, with each component
containing one line of input (as built by 0 CAP, for example).

A number whose fractional part is zero. In this APL * PLUS
System, an integer can range from -2147483648 to
2 1 4 74 8 3 6 4 8 and be stored in four bytes. Outside that range,
.integer values are stored in eight bytes.

integer editing
Type of formatting that displays all numbers as integers. Each number
is rounded (if necessary) and displayed without a decimal point.

integral part of a number
The part of a decimal number to the left of the decimal point.

integrated circuit
See chip.

integrity
Protecting data from errors in normal operation, such as accidental
erasure or entering too many digits for a date.

internal precision
The number of significant digits provided by the internal
representation of a number.

Copyright © 1987 STSC, Inc. GL-21 Glossary

interpreter

interrupt

110

key top

label

lamp symbol

A computer program that interprets and executes each source
language statement before interpreting and executing the next
statement. Often contrasted with a compiler, a program that
translates an entire source language program into a machine
language program without executing it.

A signal, condition, or event that causes normal processing
operations to be suspended temporarily.

See input/output.

The upper surface of a key on the keyboard and, by extension, the
symbol or name printed there.

A name used to identify a line in an APL function. A label,
followed by a colon, immediately precedes the rest of the
statement. Labels are used in branching expressions as the values
of the lines on which they appear.

The symbol A used to separate a comment from a statement or a
label. A comment preceded by a A can occupy a separate function
line.

latent expression

left argument

length

A system variable (OLX) whose contents are executed immediately
when a workspace is loaded. Represented by OLX .

The value that appears to the left of a dyadic function.

The number of positions along a coordinate. See shape of an
array.

Copyright © 1987 STSC. Inc. Gl.r22 Glossary

library

library mode

A set of stored files and/or workspaces. In this APL * PLUS
System, equivalent to an operating system directory.

A mode of the system where files and workspaces in different
directories are identified by prefixing the name with a library
number. The library numbers are assigned to a directory or path
names with 0 LI B D or a startup parameter. Contrast to
directory mode.

library number

line number

The number used to reference a library, particularly in the
identification of an APL file or workspace, or in an inquiry
regarding the contents of a given library.

In a function definition, the number associated with a line.

linefeed character

literal data

A non-graphic character that, when displayed, causes the cursor to
advance one line, but does not cause any horizontal motion.
Represented by DTCLF.

See character data.

local definition
The definition of a function at a particular state of function
execution. Compare global definition and most local
definition. If an object's name is not included in the header of
any function in the state indicator, its local and global definitions
are the same.

local environment
The collective name for all of the most local definitions of
functions, variables, and system variables. An APL statement in a
defined function can only use or modify the local definitions of
objects. Compare global environment.

Copyright © 1987 STSC, Inc. GL-23 Glossary

local value

local variable

location

The value of a variable at a particular state of function execution.

A variable that has a value only during execution of a defined
function and that is explicitly localized in the function header.

An element of computer memory referred to by its address.

locked function

loop

A defined function that cannot be edited or displayed. See also
function.

A closed sequence of statements performed repeatedly, usually until
some test condition is mel

low-level language
A programming language that is machine-dependent, being
translated by an assembler into instructions and data formats for a
specific machine.

low-order digit
The rightmost (least significant) digit that appears in the
representation of a number to a given precision.

machine language

matrix

The set of processing instructions native to the computer hardware,
and therefore the only instructions the hardware can execute.
Commands or instructions in higher level languages are translated
into sometimes lengthy sequences of machine language by system
software (such as the operating system command processor) and
various computer language processors, such as this APL * PLUS
System.

A rectangular arrangement of elements (numbers or characters).
Each element requires two subscripts to identify it -- the first
identifies the row, the second identifies the column. A
two-coordinate or two- dimensional array, an array of rank two.

Copyright © 1987 STSC, Inc. GL-24 Glossary

memory

microsecond

miUisecond

minus sign

mnemonic

modem

modifiers

Any device or medium capable of accepting and retaining data, so
that data can be retrieved and used when needed. Often used more
narrowly to refer to the computer's internal memory.

One millionth of a second.

One thousandth of a second.

See subtraction sign and negative sign.

A name or symbol chosen to assist the human memory. For
example, "fn" for "function."

A device that permits the transmission of digital signals over
analog transmission lines. Acronym for modulator-demodulator
since it modulates and demodulates signals transmitted over
communication facilities.

The elements of format phrases that specify decorations and special
effects with edited data.

monadic function
A function that takes only one data argument (appearing on its
right).

most global definition
The definition of a variable or function at the state where there are
no suspended functions (with a clear state indicator). Contrast with
local definition and most local definition.

most local definition
The definition of a variable or function at the current state of
function execution.

Copyright © 1987 STSC, Inc. GL-25 Glossary

native file

negative sign

Any operating system file considered as a stream of bytes and
accessed with file functions beginning with ON. Contrast with
APL file .

The sign used to indicate that a number is negative (for example,
-8). This sign does not indicate an operation.

newline character
A non-graphic character that, when displayed, causes the cursor to
move to the first column in the next line. Represented by 0 T C N L.

niladic function
A function that takes no arguments.

non-graphic characters

non-negative

nuD character

number

Characters in the APL * PLUS System that, when displayed, do not
have a visual representation.

Numbers zero or higher.

A non-graphic character that causes no movement of the cursor, but
takes the same amount of time as displaying a character.
Represented by OTCNUL.

A quantity. Usable with arithmetic functions such as addition.
The more limited set of numbers that can be stored in a computer
can be expressed as numeric constants. Numbers are left unaltered
by the APL identity function (for example, +5), while characters
are rejected.

numeric constant
A number used directly from the keyboard or within a program, but
not stored in a variable. It is formed of digits with the possible
additional use of decimal point, negative sign, or even the lelter E.
A number is distinguished from the same character sequence within
single quotes.

Copyright © 1987 STSC. Inc. GL-26 Glossary

numeric data
A collection of numbers. One of the two data types in APL. See
also character data, elements, number, and numeric
constant.

operating system

operator

origin

An organized collection of software that controls the execution of
computer programs and that can provide scheduling, debugging,
input/output control, accounting, compilation, storage allocation,
data management, and other related services. The operating system
manages computer resources and provides services to programs.
See also system.

A primitive function operating on arguments that are themselves
primitive functions to create another function. For example, the \
in + \ is an operator that combines with the primitive scalar dyadic
function called addition to produce a primitive monadic function
called addition-scan.

See index origin.

origin-dependent

outport

overstrike

owner of a file

Affected by the value of the index origin.

A destination to which output is directed. For example, a serial
port, printer, or screen.

A composite symbol formed by typing two symbols in the same
character position. Also, by extension, symbols that can be
formed that way even when they have been made available on a
single key.

The account number by which the file was created or 1I10st recently
renamed.

Copyright © 1987 STSC. Inc. GL-27 Glossary

parallel port

parameter

passnumber

A communications channel through which all the data bits of a
byte pass concurrently (instead of consecutively). Typically used
for impact printers. Compare to serial port.

A value specified for use by a program, software package, or
operating system command, often from a limited set of acceptable
values.

An integer that can be used to extend the identification of a user.
Used with files to exercise detailed control over file access as
specified in the access matrix.

passtbrougb localization
Use of global values for localized system variables that have not
yet been assigned local values.

pendent function

peripberals

port

A function that is halted because of a suspension in another
function that is called by this function. Pendent functions cannot
be edited with function definition mode nor changed (under that
name) with the full-screen editor.

Devices that can be attached to a computer or terminal (for
example, printers, disk drives, plotters, or microfiche viewers).

A communications channel between a computer and an external
device such as a keyboard, a printer, or a communications line.

positioning format phrases

precision

Format phrases (X and T) that change the appearance of the result
of OF MT by moving the cursor without reference to data in the
right argument.

The number of significant digits used to represent a number.

Copyright © 1987 STSC. Inc. GL-28 Glossary

primitive function

print precision

print width

program

A function built into the APL language and represented by a single
non-letter symbol in APL symbol form .

The system variable OP P that controls the number of significant
digits (precision) of numeric output.

The system variable OPW that control the maximum number of
character positions or print columns available to the system for
displaying output.

(To develop) a set of sequenced instructions that cause a computer
to perform particular operations, a plan to achieve a problem
solution, or a routine. See also application program,
function, and operating system.

programmed function key
A key that can be programmed to contain or perform varying
functions . In the APL * PLUS System, the keys that can be
programmed by 0 P F KEY into multiple character sequences.

programming language

prompt

protocol

A language designed to express instructions in a form suitable for
execution by a computer. Examples are APL, BASIC, COBOL,
FORTRAN, and Assembly language. Also called "compuler
programming language."

A cue given to the user by a computer program asking the user to
enter information.

A set of rules and conventions governing the communications
between two or more devices. For example, XON/XOFF and
RTS/CTS.

public comment
A comment at the end of a function line, beginning with A v, and
retrievable even from a locked function by 0 C R L PC.

Copyright © 1987 STSC, Inc. Gl.r29 Glossary

quad functions
See system functions.

quad input

quad variables

query

See evaluated input mode.

See system variables.

A question directed to the user by a computer program, or
vice-versa, to obtain specific information.

quote quad input

radix

RAM

random link

rank

read

reboot

See character input mode.

The base number in a number system. For example, the radix in
the decimal system is 10.

An acronym for random access memory. Often, specifically a
memory chip used with computers that can be read from and
written on. Contrast with ROM. See also memory.

The link (value of ORL) used by the system's pseudo-random
number generator.

The number of dimensions (coordinates) of an array.

To obtain or interpret data from a storage device, data medium, or
other source.

To reload the operating system and reinitialize all of the computer's
internal memory, as by system reset. A final effort to regain
control of the computer without powering off and back on. Loses
all data in computer memory. See also bootstrap.

Copyright © 1987 STSC, Inc. Gl.r30 Glossary

recursive function

register

A function that calls itself during execution.

An internal computer component capable of storing a specified
amount of data (for example, one word). Registers hold the results
of intermediate calculations.

relational function

relative tab

reset

result field

return

A function used to compare two values that returns a result of
either 1 or 0 to indicate true or false. See also function.

A cursor position specified relative to the present position.

To return components of a computer system to a specified starting
state. See also reboot.

See field.

To resume execution in, and pass a value back to, the calling
environment (for example, the results of a function).

right argument

ROM

root directory

The value appearing to the right of a monadic or dyadic function
name.

Acronym for read-only memory. Typically, a memory chip used
with computers from which data can be read but to which no data
can be written. Contrast with RAM. See also memory.

The main directory on a floppy disk or hard disk.

Copyright © 1987 STSC, Inc. GL-31 Glossary

row (of a matrix)

RS-232

run

A horizontal line of elements in a matrix or array of elements.
Also, the first dimension of a two-dimensional array or, more
generally, the next-ta-last dimension of any array.

The most common type of connection into a computer for a serial
device, such as a terminal, modem, or plotter. Its characteristics
are determined by a standard from the Electronic Industries
Association.

To execute a particular computer program. Also, an execution of a
program by a computer on a given set of data. Also called
execution. See also execute.

saved workspace

scalar

A workspace stored in a library (on a disk).

An array of rank zero that must contain a single data element: a
single number, or a single character. See also scalar constant.

scalar constant

scale factor

scan operator

A value coded explicitly, rather than being assigned to a variable.
If numeric, a single number. If character, a single character
enclosed in quotes.

For the system function DFMT, the amount by which a number is
multiplied, expressed as a power of 10.

Primitive facility that combines with any primitive scalar dyadic
function to form a new monadic function. The new function forms
successive elements of its result by using reduction to apply the
scalar dyadic function to successive take (t) operations of the right
argument

Copyright © 1987 STSC, Inc. Gl..,.32 Glossary

scope

scroD

security

seed value

serial port

session

With respect to an active state indicator, the collection of
contiguous environments (function calls) in which a particular
definition of an identifier persists.

The movement of text on a CRT (screen).

Limiting access to data based on established criteria (payroll
information, for example).

See random link.

A communications channel through which each data bit passes
consecutively. Typically used with terminals. Compare to
parallel port.

A period of time during which a particular software system is in
continuous use.

session-related system variables

shadowed

A system variable whose value is not changed by loading or
clearing a workspace. The values remain through an entire session
unless explicitly changed. ContIast with workspace-related
system variables.

An APL object at a particular state of function execution that is
inaccessible from the current state because an object with the same
name is localized at the current state or at an intervening state. See
scope.

shape of an array
A numeric vector whose elements are the dimensions of the array.

shared file
See file.

Copyright © 1987 STSC, Inc. OL.33 Glossary

shift keys
Keys that alter the effect of pressing a character key.

significant digits

singleton

sink file

software

spool

state indicator

statement

Those digits in a number which can be trusted not to have been
distorted or rendered inaccurate by measurement, calculation, or the
storage format.

An array containing a single number or character regardless of rank.
Any elements in its shape vector are 1.

A file into which material destined for display on the screen is
placed, either in addition to or in place of the screen.

A set of functions, procedures, and routines associated with the
operation of a computer system. See also hardware and
program.

Acronym for simultaneous peripheral operations on-line. To write
or read data to or from peripheral devices concurrently with
execution of another program. For example, to spool data ready for
printing so that it is printed while the computer is freed for other
uses.

A table in the active workspace that tracks the execution progress
of defined functions. If function execution is halted, the state
indicator shows the halted defined functions in order (the most
recently active suspended function first) and the line in each
function where execution stopped.

A syntactically well-formed expression of APL primitive functions
and operators, data constants, variables, and user-defined functions.

statement label
See label.

Copyright © 1987 STSC. Inc. GL-34 Glossary

status line

steward

stopping

store

See system status line.

The individual or user account number that can add, delete, or
modify the access of other user account numbers to a particular
software application.

The use of the system function 0 ST 0 P to cause function
execution to halt before executing specified function lines.

To enter data into or retain data in a device from which it can be
retrieved at a later time.

strong interrupt

subprogram

subroutine

subscript

Two or more Breaks entered in quick succession during processing.
A strong interrupt is recognized during the execution of an APL
statement, and may halt execution before the entire statement has
completed. Contrast with weak interrupt.

Synonym for subroutine.

A subsidiary routine called by the main program. Also called
subprogram.

The value used to indicate the specific position(s) along a given
coordinate of an array. Also called index.

subtraction sign
The sign used to indicate that the subtraction function is to be
performed (for example, 5 - 3), represented by the hyphen.

suspended function
A function whose execution has been halted at some point because
of an error, a Break signal, or a stop set by 0 STO P. Suspended
functions are marked in the state indicator by a * . See state
indicator.

Copyright © 1987 STSC, Inc. GL-35 Glossary

suspended workspace

symbol table

syntax

syntax error

system

A workspace whose state indicator is not empty.

The area of a workspace that stores the names of APL objects that
have been referred to in the workspace.

In APL, the rules by which functions and their arguments are put
together to form valid statements.

An error occurring from an improperly formulated expression or an
improperly called function. This may be caused, for example, by
unmatched parentheses, by two variables juxtaposed with no
function between them, or by a function used without correct
arguments as specified in the function header.

The physical equipment and software used as a unit to process data.
A system includes the central processing unit, its operating
system, and the peripheral devices and programs under its control.

system command
An instruction used to direct the APL * PLUS System in
performing certain housekeeping tasks. An instruction that allows
the user to monitor and control the contents of workspaces, files,
and libraries. Every system command begins with a "A". System
commands cannot be used as part of an APL statement or defined
function.

system constant
A constant value available from the system (like a system
variable), but one that is not user-definable.

system functions
A special class of functions that can always be used from the active
workspace. They occupy no storage in the workspace and do nOl
appear in the) F N S list. System functions have names beginning
with the quad symbol (D). Some system functions perform
operations similar to system commands.

Copyright © 1987 STSC. Inc. GL-36 Glossary

system status line
A line at the bottom of the screen that displays the current settings
of such items as workspace identification, keyboard states, and
printer activity.

system variables
A special class of variables, always in the workspace, that are used
to monitor or control the workspace or session environment They
are distinguished by having names that begin with the quad symbol
(D). See workspace-related system variables and
session-related system variables.

text format phrases

text insertion

thorn symbol

tie

tie number

tied file

timestamp

Format phrases that insert characters into the result of OF MT
without referencing data in the right argument.

Type of formatting used to insert specified text directly into the
result field

The symbol • used to represent the format primitive function.

To assign a unique integer to a file to allow for referencing the file
when it is in active use. Also, the match of file to tie number so
created.

See file tie number.

A file currently paired with a number (its tie number), and
consequently available for processing. Currently tied files can be
listedby OFNAMES 0 ONNAMES. See also tie number.

A record of the date and time that some event occurred (for
example, appending a file component).

Copyright © 1987 STSC, Inc. G1,37 Glossary

tracing

translation

The use of the system function 0 T RAe E to display the result of
statements on specified lines.

A character-by-character substitution to adjust for proper printing or
for transmission to a device incapable of dealing with the original
form.

translation table
An array of characters indexed by subscripts into a character set in
order to map characters from one character set into a different
character set. Such a table might be used to map ASCII character
codes to corresponding internal APL characters, for example.

type-ahead buffer
An area in memory where typed keystrokes are collected until the
system is ready to process them.

typewriter-pairing
A mapping of the APL characters onto the keys of a
typewriter-pairing terminal. Compare to bit-pairing.

unbalanced quotes
An odd number of quotes (not counting any quotes in the optional
comment) in an APL statement.

unconditional branch
A branch statement whose effect is always the same. Contrast
with conditional branch.

user account number
The unique integer used by an APL * PLUS System to identify a
user. The user account number is the value of 1 t DAV.

user-defined function

value

See defined function .

Data that can be assigned to a variable, specific data (either a
constant, the contents of a variable or system variable), or the
explicit result returned by a function.

Copyrighl © 1987 STSC, Inc. GL-38 Glossary

value potential

variable

vector

The indication of whether an APL statement returned a value. One
of the three potentials associated with an APL statement after it has
executed. Compare branch potential and display potential.

A named collection of data or a named array.

A linearly arranged array, an array with one coordinate (dimension),
an array of rank one, or a data structure that permits the location of
any item by the use of a single index or subscript. See also
atomic vector and empty vector.

video attributes
See attributes.

visual representation
The form of display of a defined function that includes leading and
trailing del symbols (v) and line numbers. The result of 0 V R.

waiting function
A function called in the currently executing APL statement whose
left argument is being evaluated prior to beginning the function.

weak interrupt

window

A single Break entered at the keyboard. A weak interrupt is
recognized only at the completion of a line of a function. Contrast
with strong interrupt.

A rectangular portion of the CRT screen, specified by four integers.
The first two integers represent the location on the screen of the
upper-left comer of the window. The second two integers represent
the shape of the window (rows and columns).

window specification
A precise description of a particular window, given as an integer
vector whose four elements represent the starting row and column
(the position of the upper-left comer) and the size of the window.

Copyright © 1987 STSC, Inc. 01.,.39 Glossary

workspace
The APL execution environment in which computation takes place
and in which names have meaning. A workspace contains the
variables, defined functions, and control information for an APL
session. A repository for a collection of functions and data.
Workspaces can be stored in libraries for later use. See also
active workspace and saved workspace.

workspace identification
The library number and workspace name that identify a workspace.

workspace name
A sequence of one to eight characters, all of which must be capital
letters or digits and the first of which must be a letter.

workspace parameter
See system variables.

workspace-related system variables

wrap

wrap marker

wrapped line

System variables associated only with a workspace. Their value is
not preserved when another workspace is cleared or loaded, or when an
APL session ends. See also session-related system variables.

To continue uninterrupted on a second line of the screen a line
begun above.

The screen attribute used in the leftmost column of the current
window to indicate that the line on which the marker occurs is part
of a wrapped line begun above.

A line on a CRT screen that is longer than the width of the screen.
The display of a wrapped line occupies more than one physical line
on the screen or continues on the line or lines below its beginning.

Copyright © 1987 STSC, Inc. GL·-40 Glossary

en w x
C z
W
Q.
Q.
~

Appendix A
System Characteristics and Limits

The characteristics and limits for this APL * PLUS System are listed
below.

The character set is described in Appendix B of this Manual.

The following internal data representations are used:

• Boolean

• Integer

• Floating point

• Character

• Nested

• Heterogeneous

one bit per element (range 0 -1)

32-bit 2's complement integers (range
-2147483648 to 2147483637)

64-bit V AX-D format double precision
(range: negative-number-limit to
positive-number-limit)

8-bit characters

four-bytes per element at outermost level
(4-byte pointer)

10 bytes per element (one byte datatype, one
byte reserved, eight bytes to hold largest
possible value).

In the following table, when a limit is given as "none," that there is
no constant value that the system enforces as a limit. Available
workspace area is the only limitation that applies in these cases.

Copyright © 1987 STSC. Inc. A-1 System Characteristics and Limits

Positive-number-limit:
Negative-number-limit:

Positive-counting-number-limit:
Negative-counting-number-limit:

(Coordinate-length-limit) Index-limit:
Length-limit:

Rank-limit:
Identifier-length-limit:

Quote-quad-output-limit:
Comparison-tolerance-limit:

Integer-tolerance:
Print-precis ion-limit:
Full-print-precision:

Exponent-width-limit:
Indent-prompt:

Quad-prompt:
Function-definition-prompt:

Line-limit:
Elements-per-array-limit:

Printing-width-limit:
Symbols-limit:

Input-line-Iength-limit:
Function-line-length-Iimit:

Execute-argument-Iength-limit:

1.0141183460469229£38
-1.0141183460469229£38

72057594037927936 (-1+2*56)
- 72057594037927936 (--1+2*56)
2147483647
2147483647
127
100
none
1£ -13
2 * -32
1 8
1 8
3
6p'
'0:' ,OTCNL,6p'
'1234567890. []'
32767
2147483647
255
32767
1014
none
2147483647

Copyright © 1987 STSC, Inc. A-2 System Characteristics and Limits

AppendixB
System Character Set

The following table describes the characters that make up the
Atomic Vector (DAV) for this APL * PLUS System. The table
includes:

• decimal index in DAV (origin 0)

• display form of the character

• the overstrike sequence (if any) that can be used to create the
character

• the character's name

• the terminal required.

Your terminals may not be able to display all of the characters
described here. Generally, this complete character set is available
only on bit-mapped devices in which a custom font has been
developed or on personal computers used as terminals in which the
hardware has been modified to support APL (with a ROM or
downloadable character set).

Characters that can require a special terminal (other than an ASCII
terminal) are flagged with the following codes:

APL An APL terminal is required to display this character.

extended A terminal with an extended character set and a
custom font that includes this special character is
required.

Copyright © 1987 STSC. Inc. B-1 Atomic Vector

Index Char Overstrike Name Terminal

O. oTCNUL
1. G OU smiling face Extended
2 . "t "1_ inequivalent Extended
3. { c_ epsilon-underscore Extended
4. 0 diamond APL
5. dieresis APL
6. <- left arrow APL
7. oTCBEL
8. oTCBS
9. horizontal tab

10 . oTCLF
11. c implication APL
12. oTCFF
13 . oTCNL
14. :::J reverse implication APL
15. 5 * 0 logarithm APL
16. § o 0 quad-jot Extended
17. lSI o \ sandwich Extended
18. 1 1 iota-underscore Extended
19 . ~ v- del-tilde APL
2 0 . U lower-case u grave Extended
21. I .i T I-beam APL
22 . {1 0- zilde Extended
23 . lJ omega APL
24. t take APL
25. .j. drop APL
26. ... right arrow APL
27 . oTCESC
28. -4 right tack APL
29. I- left tack APL
3 0 . • t:. upgrade APL
31. t v downgrade APL
32. space
33. shriek
34 . " double quote
35. # number sign
36 . $ dollar sign
37. % percent sign
38. & ampersand

Copyright © 1987 STSC, Inc. B-2 Atomic Vector

Index Char Overstrike Name Terminal

39. single quote
40. left parenthesis
41. right parenthesis
42. * power
43. + plus sign
44. comma
45. minus sign
46. period
47. / slash
48. 0 zero
49. 1 one
50. 2 two
51. 3 three
52. 4 four
53. 5 five
54. 6 six
55. 7 seven
56. 8 eight
57. 9 nine
58. colon
59. semi-colon
60. < less than
61. = equal
62. > greater than
63. ? query
64. @ at-sign
65. A upper -case A
66 . B upper-case B
67. C upper-case C
68. D upper-case D
69. E upper -case E
70. F upper-case F
71. G upper-case G
72. H upper-case H
73. I upper -case I
74. J upper -case J
75. K upper-case K
76. L upper -case L
77 . M upper-case M
78 . N upper-case N

Copyright © 1987 STSC, Inc. B-3 Atomic Vector

Index Char Overstrike Name Terminal

79. 0 upper-case 0
8 O. P upper-case P
81. Q upper-case Q
82. R upper-case R
83. S upper-case S
84. T upper -case T
85. U upper-case U
86. V upper -case V
87. II upper -case W
88. X upper -case X
89. Y upper-case Y
90. Z upper -case Z
91. [left bracket
92. \ backslash
93.] right bracket
94 . 1\ logical and
95. underscore
96. left single quote
97. a A_ lower -case a
98. b B_ lower-case b
99. c C_ lower-case c

100. d D lower-case d
101. e E lower-case e
102. f F_ lower-case f
103. 9 G_ lower-case g
104 . h H lower-case h
105. i I lower-case i
106. j J lower-case j
107. k K lower-case k
108. 1 L lower-case I
109. m M lower-case m
110. n N_ lower-case n
111. a 0_ lower-case 0

112 . P p- lower-case p
113. q Q- lower-case q
114. r R_ lower-case r
115. s S_ lower-case s
116. t T lower-case t
117. u U lower-case u
118. v V_ lower-case v

Copyright © 1987 STSC. Inc. B-4 Atomic Vector

Index Char Overstrike Name Terminal

119 . w W_ lower-case w
120. x X_ lower-case x
121. y y- lower-case y
122. z Z lower -case z
123. { left brace
124. split stile
125. right brace
126. tilde
127. OTCDEL
128 . ~ upper -case C cedilla Extended
129. U lower-case u umlaut Extended
130. e lower-case e acute Extended
131. a lower-case a circumflex Extended
132. a lower-case a umlaut Extended
133. a lower-case a grave Extended
134. f; not equal APL
135. ~ lower-case C cedilla Extended
136. e lower-case e circumflex Extended
137. e lower-case e umlaut Extended
138. e lower-case e grave Extended
139. 'i lower-case i umlaut Extended
140. T lower-case i circumflex Extended
141. r ceiling APL
142. A upper-case A umlaut Extended
143. L floor APL
144 . t upper-case E grave Extended
145. A delta APL
146 . x times APL
147. a lower-case 0 circumflex Extended
148. 0 lower-case 0 umlaut Extended
149. 0 quad APL
150. 0 lower-case u circumflex Extended
151. ~ 0' quote-quad APL
152. m 0+ domino APL
153. D upper-case 0 umlaut Extended
154 . U upper-case U umlaut Extended
155. ¢ c l cent sign Extended
156. £ { .1 British pound Extended

Copyright © 1987 STS·C. Inc. B-5 Atomic Vector

Index Char Overstrike Name Terminal

157. T y- Japanese yen Extended
158. f catbar Extended
159.

..
frown Extended

160. a a / lower-case a acute Extended
161. 1 i / lower-case i acute Extended
162 . 6 o / lower-case 0 acute Extended
163 . U u / lower-case u acute Extended
164 . n lower-case n tilde Extended
165. N upper-case N tilde Extended
166. A n 0 comment lamp APL
167. \ \ - backslash-bar APL
168. 6 inverted query Extended
169. D [] squad Extended
170. T T snout Extended
171. v V •. frog Extended
172. it * sourpuss Extended
173. inverted shriek Extended
174. « left guillemet Extended
175. » right guillemet Extended
176 . ~ .25 shading character Extended
177 . • .50 shading character Extended
178. • .75 shading character Extended
179 . 1 line-drawing character Extended
18 o. 1 line-drawing character Extended
181. ~ line-drawing character Extended
182. 11 line-drawing character Extended
183. 11 line-drawing character Extended
184 . '1 line-drawing character Extended
185 . 91 line-drawing character Extended
186 .

"
line-drawing character Extended

187. 11 line-drawing character Extended
188 . :!J line-drawing character Extended
189. .JJ line-drawing character Extended
190. d line-drawing character Extended
191. l line-drawing character Extended
192. L line-drawing character Extended
193. J.. line-drawing character Extended

Copyri ght © 1987 STSC, Inc. B-6 Atomic Vector

Index Char Overstrike Name Terminal

194. T line-drawing character Extended
195. ~ line-drawing character Extended

196. line-drawing character Extended
197. + line-drawing character Extended
198. ~ line-drawing character Extended
199. I~ line-drawing character Extended
200. I!: line-drawing character Extended
201. Ii' line-drawing character Extended
202. d1 line-drawing character Extended
203. 'if line-drawing character Extended
204. ~ line-drawing character Extended
205. line-drawing character Extended
206. JL line-drawing character Extended lr
207. d::: line-drawing character Extended
208. .Jl. line-drawing character Extended
209. T line-drawing character Extended
210. T line-drawing character Extended
211. 11. line-drawing character Extended
212. b line-drawing character Extended
213. r line-drawing character Extended
214. r line-drawing character Extended
215. .. line-drawing character Extended
216. 9= line-drawing character Extended
217. J line-drawing character Extended
218 . r line-drawing character Extended
219. • solid character Extended
220. • solid lower-half character Extended
221. I solid left-half character Extended
222 . I solid right-half character Extended
223 . • solid upper-half character Extended
224. ex alpha APL
225 . 1$ German double-S Extended
226 . 1 iota APL
227. 0 hoot Extended
228 . 0 o .. holler Extended
229 . >.; v- nor APL
230 . .l base, decode APL

Copyright © 1987 STSC. Inc. B-7 Atomic Vector

Index Char Overstrike Name Terminal

23 l. T encode APL
232. 4> 01 rotate APL
233. e 0- rotate-bar APL
234. "., 1\- nand APL
235. f / - slash-bar APL
236. v del APL
237. /<V 0\ transpose APL
238 . ~ epsilon APL
239 . n intersection APL
240. - equivalent APL
24l. A h delta-underscore APL
242. ~ greater than or equal APL
243. ~ less than or equal APL
244. ... T • thorn APL
245. ~ .l • hydrant APL
246. divide APL
247. " German open-quote Extended
248. jot APL
249. 0 circle APL
250. v or APL
25l. P rho APL
252. u union APL
253. high minus APL
254. stile APL
255. undefmed

Copyright © 1987 STSC, Inc. B-8 Atomic Vector

AppendixC
Error Messages

This chapter contains the error messages displayed by the system along with the
probable cause of the error. Detailed explanation of the cause of an error may also
be found in the description of the function or system command that created the
error.

Error

AXIS ERROR

DISK ERROR

DOMAIN ERROR

FILE ACCESS ERROR

FILE ARGUMENT ERROR

FILE DAMAGED

Copyright © 1987 STSC. Inc.

Explanation

An attempt has been made to select a
non-existent or invalid axis
(coordinate) of an array for use with a
function or operator.

A VMS system file operation used
internally by APL has produced an
unexpected error. In most cases, the
error message will include the VMS
return code.

The argument supplied is not the
right type or has a value outside the
acceptable range.

You are not permitted to access this
file, or the supplied passnumber is
incorrect

The file name is incorrect. This often
arises from using a directory name
while the system is in library mode or
a library number when in directory
mode.

Internal inconsistencies have been
found in an APL component file.
This can be caused by writing to a
component file with native file
operations.

C-1 Error Messages

Error

FILE DATA ERROR

FILE FULL

FILE INDEX ERROR

FILE NAME ERROR

FILE NAME TABLE FULL

FILE NOT FOUND

FILE TIE ERROR

FILE TIE QUOTA EXCEEDED

FILE TIED

Copyright © 1987 STSC. Inc.

Explanation

The file component does not contain a
well-fonned APL array. The
component was probably written by a
non-APL program.

The space required for this operation
would cause the file to exceed its size
limit.

The component number lies outside
the range of valid component numbers
for this file.

A file with the same identification
(name) already exists.

There is insufficient space available in
the internal table used to contain file
names.

The fIle was not found in the library
or directory specified (may be the
default working directory if no library
number or directory name is
supplied).

No file is tied to the tie number
supplied.

There is a maximum number of files
that can be tied at one time. This
operation would have exceeded this
limit.

Another user already has the file
exclusively tied.

C-2 Error Messages

Error

FORMAT ERROR

HOST ACCESS ERROR

INDEX ERROR

INCOMPATIBLE WS

INCORRECT COMMAND

INSUFFICIENT MEMORY

INSUFFICIENT PROCESS
SPACE

LENGTH ERROR

Copyright © 1987 STSC, Inc.

Explanation

The format phrase provided to OF MT
is ill-formed. Up to 16 characters of
the incorrect phrase is displayed
preceding the FORMAT ERROR
phase.

The operating system's file
permissions on this native file do not
permit the file operation (see
ONRDAC).

The index is not in the range of valid
indices for this variable (check OIO).

The specified workspace was saved by
a newer version of APL than the one
you are using.

The system command is ill-formed.
Some possible causes include:
• A misspelled command
• A library number has been used

when the system is in directory
mode

• Miscellaneous and extraneous
material following the command

• The argument supplied is invalid

There is not enough system memory
available to complete the operation.

Workspace size required for this
operation would cause the APL
process to exceed the operating
system's configuration limit.

The argument does not have the
correct shape. For example, it
supplies five numbers when it should
supply only four.

C-3 Error Messages

Error

LIBRARY NOT FOUND

LIMIT ERROR

NO SPACE FOR DDM

NONCE ERROR

NOT COPIED:

NOT COPIED. WS DAMAGED

NOT ERASED:

NOT FOUND:

NOT IN DEFN OR QUAD

Copyright © 1987 STSC. Inc.

Explanation

The specified APL library number is
not defined in 0 LIB S. or the
directory referenced does not exist.

The number is out of the acceptable
range of numbers or some other
system limit has been reached.

There is not enough space in the
workspace to record the diagnostic
message.

The supplied argument follows the
design principles of the system. but
for various implementation
considerations is not valid in this
version of the system.

The indicated objects were not copied
from the saved workspace because the
active workspace is full. the symbol
table is full. or the saved workspace is
damaged.

The copy operation could not be
completed because the saved
workspace is damaged.

The requested objects were not erased
from the workspace because they were
pend~ntorsuspended.

The indicated objects were not found
in the saved workspace.

This system command is not
permitted while the system is in
D-input or function definition mode.

C-4 Error Messages

Error

RANK ERROR

SYNTAX ERROR

SYSTEM ERROR

VALUE ERROR

WS ARGUMENT ERROR

WS DAMAGED

WS FULL

WS NAME ERROR

WS NOT FOUND

WS TOO LARGE

Copyright © 1987 STSC,lnc.

Explanation

The argument supplied is of incorrect
rank. For example, a matrix was
supplied when the system was
expecting a vector or a scalar.

The statement supplied is not a valid
APL statement

An error has occured in the APL
interpreter code, possibly caused by
damage to the workspace's internal
data structures. The APL session is
terminated after a system end.

The object identifier (name) does not
have a value in this workspace.

The workspace identifier is ill-formed
or is too long to process.

The source workspace is not in the
correct form for a saved workspace, or
a disk error has occurred.

This operation requires more
workspace than currently available.
) C LE A R can be used to enlarge the

workspace.

A workspace already exists with the
name supplied.

The workspace does not exist in the
specified directory or you do not have
permission to access it.

The saved workspace is too large to
be used at this time.

C-5 Error Messages

AppendixD
APL and Termcap

This APL * PLUS System for the V AXNMS environment emulates
the UNIX operating system's "termcap" ~inal gmability) facility as
the basis for providing full-screen support on a wide variety of
terminals. A termcap file is a database that describes the control
sequences appropriate to a large number of different screen terminals.

A small termcap database that describes popular APL terminals (the
atermcap file) is included with the APL * PLUS System. This
appendix provides the material you need to add other terminals to the
term cap database by augumenting the aterrncap file. Experience
with the UNIX term cap facility is most useful in modifying the
aterrncap file. In fact, adding a UNIX termcap entry into
aterrncap is the quickest way to provide some terminal support for a
new terminal since the termcap databases distributed with UNIX
systems often contain entries for a large number of terminals and
many terminal manufacturers will provide a recommended termcap
entry for a terminal upon request.

Customization of the UNIX termcap entry will likely still be needed to
fully utilize all the features of APL with a new terminal. If you are
unable to locate a termcap entry that works with your terminal, contact
our Help Line since we may be able to supply one or help you
construct one for you terminal. The telephone number for our Help
Line can be found at the end of the Introduction.

Identifying the Terminal and Termcap to APL

In order to provide full-screen support for your terminal, APL needs
two essential pieces of information:

• the type of terminal you are using
• the name of the termcap database to be used.

Copyright © 1987 STSC, Inc. D-1 Termcap

The terminal type is determined from the value of the terminal=
startup parameter.

$apl terminal=vtlOO

The term cap file is identified by the termeap= startup parameter.

Custom Termcap

The fIle atermeap that is distributed with the APL* PLUS System
is a termcap file that describes most popular APL terminals. The
following table lists the term cap entries used by the APL * PLUS
System.

Termcap Entries Used by the APL * PLUS System

Name Use

ti Cursor movement initialization string
te Cursor movement de-initialization string
sr Scroll reverse
up Move cursor up
do Move cursor down
le Move cursor left
nd Non-destructive space (cursor right)
em Cursor movement
im Insert mode
ei End insert mode
ie Insert character
al Add line
dl Delete line
de Delete Character
ho Move cursor to home position
ee Clear to end of line
cd Clear to end of display
el Clear screen
vb Visible bell
so Begin standout mode*
se End standout mode*
kh Sequence transmitted by Home key**
kr Sequence transmitted by cursor-right key**
kl Sequence transmitted by cursor-left key**

Copyright © 1987 STSC. Inc. D-2 Tenncap

ku
kd
AT

AP
AD -AS

SC
SO
SR

Sequence transmitted by cursor-up key**
Sequence transmitted by cursor-down key**
Attribute type (STSC enhancement)*
Attribute prefix (STSC enhancement)*
Attribute codes (STSC enhancement)*
Spaces clear flag (STSC enhancement)
Spaces overstrike (STSC enhancement)
Spaces replace (STSC enhancement)

* Standout mode is used if the STSC enhanced termcap notation for
attributes is not present in the file. See "Termcap Notation for
Display Attributes," following, for a discussion of the STSC
enhancements.

** APL will extract the logical keystrokes for cursor movement from
the term cap file if these entries are present, in which case it is not
necessary to explicitly define them in the configuration file.

Termcap NolIJtWn/or Display Attributes

Regular UNIX termcap files only contain the information necessary to
support one logical attribute, known as "standout mode". When APL
is used with a regular termcap file, standout mode is used to produce
display attribute 1, but attributes 2, 4, and 8 have no effect.
Depending upon the terminal, attribute 1 may be reverse video or
something different.

To provide a more complete set of attributes, the APL * PLUS System
supports extensions to termcap that describe how attributes are
produced on a terminal. APL handles two distinct ways in which
terminals control combinations of display attributes called "Type 0"
and "Type 1":

• On "Type 0" terminals, attributes are set individually, with a
separate escape sequence used to set each attribute. APL sets the
attributes on these terminals by first transmitting the "clear all
attributes" sequence and then transmitting a separate escape sequence
to turn on each desired attribute. Terminals that follow the ANSI
standard, such as the DEC VT100 and VT2OO, are common
examples of Type 0 terminals.

Copyright © 1987 STSC, Inc. D-3 Termcap

• On "Type I" terminals, the display attributes are set by an escape
sequence followed by an "attribute byte" that expresses the desired
combination of attributes to be turned on. The APL * PLUS PC
System in terminal mode is an example of a Type I terminal.

The following tables descibe how termcap entries are consuucted for
both types of terminals. The STSC term cap file ate rmcap contains
examples of each type of attribute encoding.

Name

AT

AO

Al

A2
A3
A4
AS
A6
A7

A8

Name

AT

AP

Attribute Notation for Type 0 Terminals

Use

attribute type: AT=O means that this is a Type 0
terminal, with each attribute turned on individually
default attribute (0): transmitting this sequence to the
terminal will reset the terminal to its default display
attribute
string to enable attribute 1 (reverse video)
string to enable attribute 2 (alternate intensity)
string to enable attribute 4 (blinking)
string to enable attribute 8 (underline)
string to enable attribute 16
string to enable attribute 32
string to enable attribute 64
string to enable attribute 128

Attribute Notation for Type 1 Terminals

Use

attribute type: AT=l means that this is a Type 1 terminal
with all attributes set by one attribute byte
attribute prefix: the invariant part of the escape sequence
that sets the attribute byte; APL transmits this sequence
to the terminal followed by a single byte computed to
denote all of the attributes

Copyright © 1987 STSC, Inc. D4 Tenncap

AO default attribute (0): a single character that represents the
default attribute; the attribute characters for the other
attributes are added to the decimal value of this character to
compute the attribute byte; typically, AO is either SPACE
or "@" (decimal 32 or 64)

Al character added to AO for attribute 1 (reverse video)
A2 character for attribute 2 (alternate intensity)
A3 character for attribute 4 (blinking)
A4 character for attribute 8 (underline)
AS character for attribute 16
A6 character for attribute 32
A 7 character for attribute 64
A8 character for attribute 128

For example, on a Type 1 terminal where

AO="@"
AI=Ctrl D
A2=CtrIH

(decimal value 64)
(decimal value 4)
(decimal value 8)

APL would set attribute 3 by transmitting the AP string followed by
the ASCII character "L" (whose decimal value 76 is 64+4+8).

Other STSC Termcap Enhancements

In addition to the enhanced notation for display attributes, STSC has
also defined lhree new termcap control strings. These strings control

the means by which OW PUT writes data to the terminal screen when
only a portion of the screen is being updated. On many APL
terminals, it is necessary to fIrst blank out the characters already
present on the screen before the new data is written, since the terminals
will overstrike the existing data instead of replacing it.

The new strings are

sc Flag to indicate that the terminal always overwrites data
already present on the screen, even in APL mode. This is
true of non-overstriking terminals such as the VT200. If the

term cap entry contains: SC:, OW PUT will not blank out
an area before overwriting it

Copyright © 1987 STSC. Inc. D-5 Termcap

SO=... If sc is absent, this is the string used to put the terminal
into a state where spaces overstrike rather than replace
existing characters. Default is SO= AN.

SR=. .. If sc is absent, this is the string used to put the terminal
into a state where spaces replace existing character, enabling
OW P UT to reliably blank out an area on the screen. Default
is SR=AO.

Copyright © 1987 STSC, Inc. 0-6 Termcap

AppendixE
Policy On Commercial Use
And Distribution of Kermit

STSC provides Kermit with this APL *PLUS System in accordance
with the following policy statement written by Frank da Cruz.
Columbia University Center for Computing Activities. June 1984:

The KERMIT file transfer protocol has always been open, available,
and free to all. The protocol was developed at the Columbia
University Center for Computing Activities, as were the ftrst several
KERMIT programs. Columbia has shared these programs freely with
the worldwide computing community since 1981, and as a result many
individuals and institutions have contributed their own improvements
or new implementations in the same spirit. In this manner, the
number of different systems supporting KERMIT implementations has
grown from three to about sixty in less than three years. If Columbia
had elected to keep the protocol secret, to restrict access to souce code,
or to license the software, the protocol would never have spread to
cover so many systems, nor would the programs be in use at so many
sites, nor would the quality of many of the implementations be so
high.

Although KERMIT is free and available to anyone who requests it, it
is not in the "public domain". The protocol, the manuals, the
Columbia implementations, and many of the contributed
implementations bear copyright notices dated 1981 or later, and include
a legend like

Permission is granted to any individual or institution to copy
or use this document and the programs described in it, except
for explicitly commercial purposes.

This copyright notice is to protect KERMIT, Columbia University,
and the various contributors form having their work usurped by others
and sold as a product. In addition, the covering letter which we include
with a KERMIT tape states that KERMIT can be passed along to
others; "we ask only that profit not be your goal, credit be given where
it is due, and that new material be sent back to us so that w~ can

Copyright © 1987 STSC. Inc. E-1 Kermit

maintain a definitive and comprehensive set of KERMIT
implementations. "

Within this framework, it is acceptable to charge a reproduction fee
when supplying KERMIT to others. The reproduction fee may be
designed to recover costs of media, packaging, printing, shipping,
order processing, or any computer use required for reproduction. The
fee should not reflect any program or documentation development
effort, and it should be independent of how many implementations of
KERMIT appear on the medium or where they came from. It should
not be viewed as a license fee. For instance, when Columbia ships a
KERMIT tape, there is a $100.00 reproduction fee which includes a
2400' reel of magnetic tape, two printed manuals, various flyers, a
box, and postage; there is an additional $100.00 order processing
charge if an invoice must be sent. The tape includes all known
versions of KERMIT, including sources and documentation.

Commercial institutions may make unlimited internal use of
KERMIT. However, a quesiton raised with increasing frequency is
whether a company may incorporate KERMIT into its products. A
hardware vendor may wish to include KERMIT protocol into its
comunications package, or to distribute it along with some other
product. A timesharing vendor or dialup database may wish to provide
KERMIT for downloading. All these uses of KERMIT are
permissible, with the following provisos:

• A KERMIT program may not be sold as a product in and of itself.
In addition to violating the prevailing spirit of sharing and
cooperation, commercial sale of a product called "KERMIT" would
violate the trademark which is held on that name by Henson
Associates, Inc., creators of The Muppet Show.

• Existing KERMIT programs and documentation may be included
with hardware or other software as part of a standard package,
provided the price of the hardware or software product is not raised
significantly beyond costs of reproduction of the KERMIT
component.

• KERMIT protocol may be included in a multi-protocol
communication package as one of the communication options, or as
a communication feature of some other kind of software package, in
order to enhance the attractiveness of the package. KERMIT

Copyright © 1987 STSC, Inc. E-2 Kermit

protocol file transfer and management should not be the primary
purpose of the package. The price of the package should not be
raised significantly because KERMIT was included, and the vendor's
literature should make a statement to this effect.

• Credit for development of the KERMIT protocol should be given to
the Columbia University Center for Computing Activities, and
customers should be advised that KERMIT is available for many
systems for only a nominal fee from Columbia and from various
user group organizaitons, such as DECUS and SHARE.

Columbia University holds the copyright on the KERMIT protocol,
and may grant permission to any person or institution to develop a
KERMIT program for any particular system. A commercial
institution that intends to distribute KERMIT under the conditions
listed above should be aware that other implementations of KERMIT
for the same system may appear in the standard KERMIT distribution
at any time. Columbia University encourages all developers of
KERMIT software and documentation to contribute their work back to
Columbia for further distribution.

Finally, Columbia University does not warrant in any way the
KERMIT software nor the accuracy of any related documentation, and
neither the authors of any KERMIT programs or documentation nor
Columbia University acknowledge any liability resulting from
program or documentation errors.

These are general guidelines, not a legal document to be searched for
loopholes. To date, KERMIT has been freely shared by all who have
taken the time to do work on it, and no formal legalities have proven
necessary. The guidelines are designed to allow commercial enterprises
to participate in the promulgation of KERMIT without seriously
violating the KERMIT user community's trust that KERMIT will
continue to spread and improve at no significant cost to themselves.
The guidelines are subject to change at any time, should more formal
detail prove necessary .

Commercial organizations wishing to provide by KERMIT to their
customers should write a letter stating their plans and their agreement
to comply with the guidelines lis~ed above. The letter should be
addressed to:

Copyright © 1987 STSC, Inc. E-3 Kermit

KERMIT Distribution
Columbia University Center for Computing Activities
612 West 115th Street
New York, NY 10025

Copyright © 1987 STSC, Inc. E-4 Kermit

>< w
o z

Index

U = APL *PLUS System User's Manual
R = APL *PLUS System Reference Manual

) 2-5 R
Access (see Files)
Access matrix (see Files)
Accounting information

(see OAI)
OAI 3-9 R
Alphabets 1-15 U
OALX 3-10 R
APL command procedure 1-4 U
APL component files (see Files)
APL session 1-2 U
APLCOURSE workspace 9-2 U
Aplotab file 1-22 U
OARBIN 6-1 U, 3-12 R
Arbitrary input from terminal (see DAR BIN)
Arbitrary ouput to terminal (see OARBOUT)
DAR BOUT 5-2 U, 3-17 R
ASCII terminal 1-12 U
Atermcap file D-l U
Atomic vector (see OA V)
Attention latent expression (see OALX)
OA V B-1 U, 3-18 R
AXIS ERROR C-l U

Bitotab file 122 U

Canonical representation of a function,
(see OCR and OCRL)

Character set (see OA V)
DC H D I R 3-20 R
) CLEAR 2-6 R
)CMD 7-2U,2-8R
OCMD 3-21 R
Communications overview 6-1 U
Comparison tolerance (see 0 CT)
COMPLEX workspace 9-3 U
Configuration files 1-28-1-29 U
Conversion of data (see OF I)
) COpy 2-9 R

Copyright © 1987 STSC, Inc.

OCOPY 3-23 R
OCR 3-25 R
OCRL 3-26 R
OCRLPC 3-28 R
OCT 3-29 R
OCURSOR 5-3 U, 3-31 R
Cursor movement 1-16 U
Cursor position (see 0 CUR SO R)

Data conversion (see OF I)
Data representation (see 0 DR)
D AT E S workspace 9-5 U
ODEF 3-32 R
ODEFL 3-35 R
Del editor 2-21-2-26 U

errors 2-26 U
Delay execution (see 0 D L)
DEMOAPL workspace 9-6 U
Diagnotsic message (see 0 DM)
DISK ERROR C-l U
Display attributes 5-4 U
ODL 3-38 R
ODM 3-39 R
DOMAIN ERROR C-l U
ODR 3-42R
) DROP 2-11 R
DTFN function 6-7 U
DTFNALL function 6-7 U

DEDIT 2-14U,3-43R
)EDIT 2-14U, 2-12 R

Editmem= 1-20 U
EIGENVAL workspace 9-7 U
OELX 3-44 R
Erase objects (see OERASE and OEX)
)ERASE 2-13 R
OERASE 347 R
Error exception signal (see 0 ERR 0 R)
Error latent expression (see OELX)

I-I Index

oERROR 3-48 R
Errors, listed C-J U
oEX 3-51 R
External processes 7-4-7-10 U

defined 7-3 U
structure 7-8-7-10 U
writing 7-8 U

External routines 7-10-7-21 U
defined 7-3 U

DFAPPEND 3-52R
oFAVAIL 3-54R
OF CREATE 3-7-3-9 U, 3-55 R
oFDROP 3-17U,3-57R
OF DU P 3-23 U, 3-58 R
oFERASE 3-12U,3-60R
oFHIST 3-61 R
oFHOLD 3-27-3-31 U, 3-62 R
OF I 5-7 U, 3-64 R
File system availability (see 0 FA V A I L)
FILE ACCESS ERROR C-l U
FILE ARGUMENT ERROR C-l U
FILE DAMAGED C-l U
FILE DATA ERROR C-2 U
FILE FULL C-2 U
FILE INDEX ERROR C-2 U
FILE NAME ERROR C-2 U
FILE NAME TABLE FULL C-2 U
FILE NOT FOUND C-2 U
FILE TIE ERROR C-2 U
FILE TIE QUOTA EXCEEDED C-2U
FILE TIED C-2 U
)FILEHELPER 2-14R

Files 3-1-3-43 U
access 3-3 U
access matrix 3-24-3-26, 3-32-3-38 U

defined 3-35 U
example 3-37 U
override (see)FILEHELPER)

compacting 3-23 U
comparison with workspaces 3-4 U
component information (see OF R DC I)
components 3-2 U
copying (see 0 F D UP)
creating (see DFC RE AT E)
dropping components (see 0 F D R 0 P)
erasing (see oFERASE)

Copyright © 1987 STSC, Inc .

examples 3-19 U
libraries 3-3 U

default 3-39 U
defined 3-38 U
listing (see 0 F LIB)

native files 3-3, 3-43, 7-1 U
comparison with APL files 3-14

3-40 U
sample handling 3-13 U

pass numbers 3-35 U
reading (see oFREAD)
renaming (see oFRENAME)
replacing components

(see oFREPLACE)
sharing ties

(see oFSTIE and oFHOLD)
size (see OF SIZE)
size limit (see OF RE SIZE)
tie inquiries (see OF N AMES and

oFNUMS)
tying (see OFT I E)
untying (see oFUNT I E)

)FLIB 2-15 R
oFLIB 3-11 U, 3-65 R
OFMT 3-67 R, 4-1-4-39 U

arguments 4-4--4-7 U
data list 4-4 U
decorators (see modifiers)
defined 4-3 U
examples 4-2, 4-34 U
format phrases 4-9-4-17 U

character editing 4-9 U
exponential editing 4-11 U
integer editing 4-10 U
pattern editing 4-12 U
positioning 4-14-4-17 U
text 4-14-4-17 U

format string 4-6-4-8 U
grouping symbols 4-21 U
modifiers 4-22-4-34 U
parameters 4-18-4-21 U
stars in result 4-34 U
tutorial 4-1-4-39 U

OFNAME S 3-15 U, 3-70 R
DFNUMS 3-15 U, 3-71 R
)FNS 2-16 R

Format ouput (see OFMT)

1-2 Index

FORMAT ERROR C-3 U
FORMAT workspace 4-36--4-39 U
FO!1llatting (see 0 F MT)
DFRDAC 3-32 U, 3-72 R
OF R DC I 3-26 U, 3-73 R
DFREAD 3-11 U,3-75R
DFRENAME 3-21 U, 3-77 R
DFREPLACE 3-16 U, 3-79 R
OF RE SIZE 3-21 U, 3-81 R
OF SIZE 3-18 U, 3-82 R
DFSTAC 3-32 U, 3-83 R
OF ST I E 3-27 U, 3-85 U
DFTIE 3-lOU,3-87R
Full-screen editor 2-1-2-18 U

command mode 2-13 U
commands 2-4-2-14 U
errors 2-16-2-19 U
status line 2-4 U

Function definition (see DDEF)
Function definition mode 2-21 U
Function fix (see OF X)
DFUNTIE 3-9 U, 3-89 R
DFX 3-90 R

Hardware requirements 1-1 U
HDS terminal 1-12 U
)HELP 2-17 R

Help= 1-20 U
HOST ACCESS ERROR C-3 U

Identifier list
(see DIDLIST and DIDLOC)

DIDLIST 3-92R
DIDLOC 3-94R
INCOMPATIBLE WS C-3 U
INCORRECT COMMAND C-3 U
Index origin (see DIO)
INDEX ERROR C-3 U
Initfile= 1-21 U
Initialws= 1-21 U
DINKEY 5-5 U, 3-96 R
Input format conversion (see OF I)
Input format verification (see 0 V I)
Input management 5-1-5-7 U
INPUT workspace 5-8-5-13 U
Insert mode 1-14 U
INSUFFICIENT MEMORY C-3 U

Copyri ght © 1987 STSC, Inc.

INSUFFICIENT PROCESS SPACE
C-3 U

Internal data representations A-I U
Internal structures 10-6 U
Interrupting APL 1-13 U
DIO 3-97 R
IPCHR function 5-11 U
IPMATCH function 5-12 U
IPMIX function 5-12 U
IPNUM function 5-11 U

Kermit 611 U
distribution policy E-l U

Keyboard 1-9-1-15 U

Latent expression (see DLX)
OLe 3-99 R
LENGTH ERROR C-4 U
LESSONS workspace 9-7 U
LF F N function 6-7 U
)LIB 2-18 R
DLIB 3-100 R
DLIBD 3-101 R
)LI BS 2-19 R
DLIBS 3-102 R
Libraries (see Files)
Library define (see DLI B D)
Library list (see DLI B and DLI B S)
LIBRARY NOT FOUND C-4 U
library= 1-22 U
LIMIT ERROR C-4 U
Line counter (see DL C)
)LOAD 2-20 R
DLOAD 3-103 R
DLOCK 3-104 R
Logical keystrokes 1-9 U

customizing 1-26 U
DLX 3-105 R

Memory considerations 10-1 U
DMF 10-4 U, 3-106 R
Monitor function (see DMF)

DNA 7-1, 7-10-7-21 U, 3-108 R
case study 7-19 U
errors 7-16 U
writing your own routines 7-17 U

1-3 Index

Name classification (see ON C)
Name list of identifiers (see ON L)
ONAPPEND 3-111 R
ONC 3-113 R
ONCREATE 3-114 R
ONERASE 3-116 R
ONL 3-117 R
ONNAMES 3-119 R
ONNUMS 3-120 R
NO SPACE POR ODM C-4 U
Non-APL Routine (see DNA)
NONCE ERROR C-4 U
NOT COPIED C-4 U
NOT COPIED. WS DAMAGED C-4 U
NOT ERASED C-4 U
NOT POUND C-4 U
NOT IN DEPN OR QUAD C-5 U
ONRDAC 3-121 R
ONREAD 3-123 R
ONRENAME 3-125 R
ONREPLACE 3-126 R
ONSIZE 3-128 R
ONSTAC 3-129 R
ONTIE 3-131 R
ONUNTIE 3-132 R

)OPP 2-22R
Output management 5-1-5-7 U
Outputtrt= 1-22 U
Overstrike mode 1-14 U
Overstrikes 1-14 U

Paging 10-2 U
PC as a terminal 1-6-1-9
) PCOPY 2-23 R
OPCOPY 3-133 R
PF keys 5-5, 5-6 U
OPPKEY 3-135 R
) PORTS 2-24 R
OPP 3-137R
Printing 8-1 U
Printing precision (see 0 P P)
Printing width (see 0 P W)
OPR3-138R
Prompt replacement (see 0 P R)
Prompt= 1-23 U
Protected copy (see 0 P COP y)

Copyright © 1987 STSC, Inc.

)PSAVE 2-25 R
OPSAVE 3-140 R
OPW 3-142R

OQLOAD 3-143 R
Quad (0) input 5-1 U
Quiet load (see OQLOAD)
Quote-quad (!!J) input 5-1 U

Random Link (see ORL)
RANK ERROR C-5 U
Rawotab file 1-22 U
References, multiple 10-5 U
Replace mode 1-14 U
)RESET 2-26 R

Ring, editing 2-2 U
ORL 3-144 R

OSA 3-145R
)SAVE 2-27R
OSAVE 3-148 R
Screens= 1-24 U
Scrolling 1-17 U
SERHOST workspace 6-4-6-6 U
S E R X PER workspace 6-4-6-6 U
Session Manager 1-16-1-18 U
Session parameters 1-18-1-28

list 1-19 U
Set Host command 6-11 U
Shared code segment 10-3 U
) SI 2-29 R
OSI 3-150 R
) SIC 2-30 R
) SINL 2-31 R
OSIZE 3-151 R
S L T workspace 6-9 U
Software requirements 1-1 U
Source level trans fer

(see SLT workspace)
OSS3-153R
S tate indicator (see 0 S I)
Status= 1-24 U
Stop action (see 0 SA)
Stop function execution (see OSTOP)
OSTOP 3-154 R
String search (see 0 S S)
) SYMBOLS 2-32 R

1-4 Index

OSYMB 3-157 R
SYNTAX ERROR C-5 U
OSYSID 3-158 R
System identifier (see 0 S Y S I D)
System limits A-I U
System version (see 0 S Y S V E R)
SYSTEM ERROR C-5 U
OSYSVER 3-159 R

OTCBEL 5-2 U, 3-160 R
OTCBS 5-2 U, 3-160 R
OTC DE L 5-2 U, 3-160 R
OTCESC 5-2 U, 3-160 R
OTC F F 5-2 U, 3-160 R
OTCLF 5-2 U, 3-160 R
OTCNL 5-2 U, 3-160 R
OTCNUL 5-2 U, 3-160 R
Termcap database 1-25 U, D-1 U
Termcap entries D-2 U
Termcap= 1-25 U
Termdinit= 1-24 U
Terminal control codes (see OTCx x)
Terminal= 1-25 U
Terminals supported 1-2, 1-4 U
Terminit= 1-24 U
Timestamp (see OTS)
Trace function execution (see OTRACE)
OTRACE 3-163 R
T RAN S FER workspace 6-6-6-8 U
Transferring data 6-2 U
Translate table 1-22 U
OTS 3-165 R

OUL 3-166 R
UNBLOCKS function 6-7 U
User identification (see 0 USE R I D)
User load (see OUL)
OUSERID 3-167 R
UTILITY workspace 9-8 U

VALUE ERRORC-5U
)VARS 2-33 R
OVI 5-7 U, 3-168 R
Visual representation of a function

(see OVR)
OVR 3-169R
VT220 terminal 1-6 U

Copyright © 1987 STSC, Inc .

VT220 tab file 1-22 U

OWA 3-170R
OWGET 5-4 U
OWGET 3-171 R
Window data (see OWPUT and OWGET)
Window specification (see OW I N DOW)
OWINDOW 3-173 R
Work area available (see 0 W A)
Workspaces

comparison with files 3-4 R
supplied with system 9-1-9-8 U,

4-1-4-25 R
OWPUT 5-3 U, 3-174 R
WS ARGUMENT ERROR C-5 U
WS DAMAGED C-5 U
WS FULL 10-3 U, C-5 U
WS NAME ERROR C-5 U
WS NOT FOUND C-5 U
WS TOO LARGE C-6 U
)WSID 2-34 R
OWSID 3-176 R
)WSLIB 2-35 R
OWSLIB 3-177 R
OWSOWNER 3-179 R
OWSSIZE 3-180R
OWSTS 3-181 R

OXLOAD 3-182 R
OX P 7-1, 7-4 U, 3-183 R

1-5 Index

