CAROLE GCRIFF/TH

S-C 4060
STORED PROGRAM RECORDING SYSTEM

SOFTWARE DESCRIPTION
AND
SPECIFICATIONS

9500236

Stromberg-Carlson.......c..om.

1895 HANCOCK ST. P.0. BOX 2449, SAN DIEGO, CALIFE 92112 TEL.(714) 298-8331

Revision A
9500236

S-C 4060

STORED PROGRAM RECORDING SYSTEM

SOFTWARE DESCRIPTION
and

SPECIFICATIONS

Prepared 2 . "y - ,, ’4“\ Approved } \' '
T ST

R. C. Foster . J. J. Konen, Jr.

Checked

Stromberg-Carlson.................

1895 HANCOCK ST. P.0. BOX 2449, SAN DIEGO, CALIF 92112 TEL.(714) 298-8331

ABSTRACT

This document describes the software packages
which are delivered with the Stromberg—Carlson
4060 Microfilm Plotter-Printer Data Recording

System.

ii

TABLE OF CONTENTS

INTRODUCTION.

A. Primary Software Packages

B. Standard Operating Environment

C. Supplementary Software Packages
EXTERNAL COMPUTER SOFTWARE - IGS
A. Background.

B. Description .

C. Special Features

D. Advantages of IGS

S-C 4060 INTERNAL SOFTWARE - SCRIP .
A. Background.

B. Scrip Executive Program - MCS

C. Scrip Library Programs .

D. S-C 4060 Supplementary Software .

FIGURES

1. S-C 4060 Standard Operating Environment .

2. S-C 4060 CHARACTRON Set .

Page

-

© O w g s W

S
W N o

iii

—
.

S S L

APPENDICES

Meta-Language Description
S-C 4060 Standard Raster.
Mode Set Function/Code .
Messages During Execution
MCS Operating Features .
DAP-16 Symbolic Language
ASA Fortran

S-C 4060 Test Programs .

Operator Instructions to the S-C 4060 .

Page

iv

4 e
’ ' 4 v i Y
. ERRTE LN
W s . . . o . o
B ' ' . L v A .
| . < i o ’

I.

INTRODUCTION

A. Primary Software Packages

The two primary software packages which are delivered with the S-C 4060
Microfilm Recorder Plotter-Printer are the Integrated Graphic Software
(IGS) package and the Stromberg-Carlson Recorder Input Processing (SCRIP)

package.

IGS was developed by the RAND Corporation for the S-C 4060. It is a high
level (Fortran language) graphic application oriented software package,
which when run on a general purpose computer produces output in the form

of a meta-language (see Appendix A.)

SCRIP, developed by Stromberg-Carlson, is a low level (machine language)
package of routines which controls the operation of the S-C 4060; in particu-
lar, the SCRIP system contains the necessary routines to control the input of
the meta-language (either off-line or on-line) output by IGS, and supervise the
processing of the metalanguage into commands which cause the S-C 4060 to
generate the desired graphical and/or printed output. SCRIP routines also
monitor the film and hard copy control functions and provide additional input

processing capabilities as specified in Section III.

Standard Operating Environment

The standard oberating environment of the S-C 4060 is defined as one in
which a remote (external to the S-C 4060) general purpose computer uses
IGS to produce the input (off-line, or optionally on-line) to the S-C 4060.
This environment (see Figure 1), also referred to as an External System
Configuration, is fully supported by the standard SCRIP software package.
This system has the following advantages:

1. Simplified Programming - any desired display may be produced
by using IGS subroutines either singly or in combination.

Remote G. P. Computer

Application
Routines

Basic Graphic
Function
Routines

IGS

Meta-language
Generation and
Transmission
Routines

-

-

T

|

|
On-line lOff—l ine

|

|

S-C 4060
SCRIP
Routines

Figure 1.

Written in Fortran, PL/I
or user's machine language

Display Characters
Draw Joined Lines
Draw Line Segments
Draw Grids

Plot Symbols

Mode Setting

Display I.D. Information
Advance Frame

Form Flash

Plot Points and Characters
Print Lines of Characters

A Portion to be Written in
User's Machine Language

Controls Input and Processing

of meta-language data,
generates graphic output

S-C 4060 Standard Operating Environment

5-C 4020/SCORS Compatibility - SCORS programs can be used
in this environment.

Software Control Flexibility - software control of the S-C 4060
permits special user requirements to be incorporated into the
system without the necessity of expensive equipment modifica~
tion; only the SCRIP package need be extended. Thus, if the
user wanted to implement any other generalized output graphic
language from a remote general purpose computer he could add
an appropriate non-standard SCRIP processor.

C. Supplementary Software Packages

In addition to the IGS package and the SCRIP package, the following supple-

mentary software packages are delivered with the S-C 4060:

1.

R

DAP-16 Assembler - a symbolic assembly language package
which will enable the user to write routines to be added to the
SCRIP software (which is written in DAP-16 ~ see Appendix F).

Fortran IV Compiler - will process the standard Fortran language
specified by the American Standards Association (ASA - see Appendix
G) and permit the use of the S-C 4060 as a "stand-alone' computer
for small problems when it is not fulfilling its prime function - the
recording and output of graphical and/or printed displays. A library
of standard math and utility routines is included.

An EDITOR - to create or update the SCRIP system tape thus allowing
the user to tailor the system to his own needs.

Utility Routines - Checkout and debugging aid; core dump routines to
ASR-33, printhead, paper tape, and magnetic tape; card to tape pro-
gram; punch program (for self-loading object tapes); one and two pass
loaders; tape dump and copy program; cold start and library bootstraps.

II.

EXTERNAL COMPUTER SOFTWARE - IGS

A.

Background

In order to enable the programmer to utilize the S-C 4060 as a graphic out-
put device effectively and efficiently, a graphic software package was
developed to produce the input for the S-C 4060. This package, called Inte-
grated Graphic Software (IGS), was designed after a careful study of the
S-C 4020 SCORS package and other graphic output packages, in par-

ticular the SHARE committee report on Standard Graphic Output

Subroutines.

S-C 4060 Users familiar with the SCORS package will note many

differences between it and the IGS package. Since the SCORS pack-
age was originally designed for an S-C 4020/IBM 7090 combination,

it reflects the hardware limitations of each. IGS was designed

to provide for the powerful capabilities of the S-C 4060, and to eliminate
as many of the previous limitations as possible, to be more efficient,

and be easier to understand. Thus special features of the S-C 4060, such

as automatic character rotation, line width, stroke characters, dashed
lines, etc., and control features such as frame butt, on-line processing,

expose hardcopy, on-line messages, void frames, etc., are programmable.

IGS also was designed to take advantage of the new generation of computer
hardware and software; it will operate in a time sharing environment,
and is callable from PL/I. In addition to the above mentioned features,

SCORS compatibility is maintained.

The IGS package will be given to the user in source form and is intended
to be added to the system library of his computer. With the exception of
the packing, transmission (output), and conversion routines, the sys-

tem is written in Fortran and is thus "'computer independent.' The

packing, transmission, and conversion routines may require machine

dependent subroutines which will normally be supplied by the user.

Description

The Integrated Graphic Software package is a computer-independent set of
subroutines designed to remove the user from the hardware considerations
of the S-C 4060. The subroutines are written in Fortran, but may be called
from PL/I, Fortran or the computer's Assembly Language. When called by
the user the individual subroutines supply the details necessary to perform
the desired graphic functions (e.g., construct a grid, draw a line, plot a
character, etc.). These details principally consist of structuring, for-
matting, and outputting (either on-line or onto a magnetic tape) a position
keyed, character string meta-language for input to the S-C 4060

(see Appendix A). Thus, the user is allowed to think in terms of his dis-
plays rather than in terms of the hardware features which actually create

the displays.

The heart of the IGS package consists of five subroutines which display char-
acters, draw joined lines, draw line segments, plot symbols, and draw
grids (linear, non-linear). The subroutines are easy to use, easy to

understand, and place as few restrictions on the user as possible.

Special Features

1. Automatic Scaling - the user may set up his own coordinate system,
and an IGS subroutine computes the scale factors needed and auto-
matically scales the data.

2. Default Values - A powerful feaiure of IGS is the ability to assume
appropriate default values for items the user chooses to ignore. For
example, if the user doesu'. ~~2cify the plotting area he desires on
the tube face, the system will assume it to be the full 4096 x 3072
raster size of the S-C 4060 (Appendix B describes the S-C 4060
Standard Raster).

Mode Set Array - One of the most important concepts in IGS is the
use of a Mode Set array. This array contains all of the information
needed about both the user's and the installation's display environ-
ment. When the IGS system is initialized or reset, all the appropriate
default values are stored in the array. They remain in effect until the
user specifically changes them (see Appendix C-II).

A major advantage of the Mode Set concept is that it allows the user
to specify a minimum number of parameters in calling the graphic
subroutines. Consider a subroutine to display characters: In its
minimal form, the user only need specify an X, Y location of the
first character, the number of characters, and the characters
themselves. In its most complex form, the user might want to
specify character size, character orientation, character spacing,
right and left margins, line spacing, and line orientation.

It would be unreasonable to expect a user to specify all of these para-
meters each time he wanted to display a line of characters. Therefore,
the call to the character subroutine requires only the minimum infor-
mation needed to display characters. All the other parameters are
obtained automatically from the Mode Set array. The user may make
changes in the array when he wants to change a value such as char-
acter orientation or left margins; the modified Mode Set will stay in
effect until the user resets it, or until the IGS system is reinitialized.

Vector Characters - IGS contains the ability to draw vector char-
acters of variable size and orientation.

Grid, Plot, Label - IGS contains a comprehensive set of subroutines
to draw grids, plot symbols, and label graphs.

Addressable CHARACTRON Set - the full CHARACTRON character set
will be addressable by normal 8-bit or 6-bit characters. Special con-
trol characters appearing in a 6-bit character string will select lower
case characters and other special symbols. (See Figure 2)

S-C 4020 Software Compatibility - SCORS compatibility is maintained.

SCORS subroutines have been modified to call on the IGS subroutines
to produce the S-C 4060 input in meta-language form. None of the
SCORS calling sequences need be changed. SCORS programs, running
under the IGS system, will produce comparable output on the S-C 4060
with as good or better efficiency as they would have on the S-C 4020.

\<

O 2

{ «
- &
B A
b a
M N
m n
V W
vV W
4 5
x|
A 9

Figure 2.

~J
SRS
1+

~|

® =

.O?))_'
") R/ S
DEFYJI
de Y J 1
H P QR
h - e P { p
XK Z 5 5 .
x kz (012
7T 8 9 + -
> < dr 1)
S ¢ = » °

|

S-C 4060 CHARACTRON Set

- o O

c__:_‘
ST Un 2

|- O w .-

Advantages of IGS

1,

(7]

The basic S-C 4020 SCORS package is upwardly compatible with and
is supported by the IGS system. '

It is based on concepts which already have been analyzed and con-
sidered by major contributors and users of existing UAIDE (Society
for Users of Automatic Information Display Equipment) software.
Continued participation, review, and approval of these users will
be invited in order to obtain the widest possible UAIDE consensus.
Accordingly, IGS will be updated periodically to provide each user
with the latest improvements to the package.

Much of the basic design was suggested by the SHARE specification
for a standard graphic output language (GRAFPAC).

It is coded in ASA Standard Basic Fortran where possible; thus it
may be compiled on less sophisticated compilers.

Emphasis is placed on machine independence. While the working
package was developed and checked out on IBM 360 and 7044

computers, specific dependencies on word and character formats
and machine language operations were avoided except for packing
and transmission routines. Thus the package is substantially

transferable to other computers such as IBM 7090/94, Univac
1107, 1108, RCA Spectra 70, GE 625, 635, CDC 3600, 6600, etc.

It is coded using re-entrant or serially re-usable techniques wher-
ever possible, thus providing particular appeal for users of time-

sharing computing systems and other multi-programming systems.

The package is usable by PL/I programs.

III.

S-C 4060 INTERNAL SOFTWARE - SCRIP

A. Background

The S-C 4050 Microfilm Plotter-Printer was designed to have a software
interface and to operate under software control, thus permitting a higher
degree of flexibility than is normally associated with fully hard-wired
equipment. The Stromberg-Carlson Recorder Input Processor (SCRIP)
software package is a set of routines written in the DAP-16 language (see
Appendix F) which efficiently implements the design criteria. The SCRIP
package is modular in nature; the standard package supports the S-C 4060
hardware configuration (without optional hardware equipment) and the
Standard Operating Environment (External System Configuration using the
Integrated Graphic Software package). As the user adds optional hardware
equipment to his configuration, the appropriate software module necessary

to effectively use that option will be provided by Stromberg-Carlson.
The advantages afforded by software control of the S-C 4060 are as follows:

1. Minimum Operator Intervention - the basic software design provides
for automatic production operation with operator activities restricted
to tape mounting, bootstrap loading for cold starts, film and paper
loading, and taking appropriate action in the case of an irrecoverable
tape error.

2. Simplified Operational Control - An ASR-33 teleprinter is included

as part of the operational system which provides the medium for
operator communication with the S-C 4060. It provides for system
access as well as system status printouts (see Appendices D and I).

3. No Equipment Modifications - special user requirements may be

incorporated into the system without equipment modifications. Non-
standard character and line spacing, special on-line data servicing,
special plotting symbols and character fonts, non-standard input
translation, and many other non-standard requirements may effec-
tively be added to the system through modification of the SCRIP
software, rather than by requiring the user to make hardware
modifications.

B. SCRIP Executive Program - MCS

The executive program of SCRIP is called the Master Control System
(MCS); during S-C 4060 operation it is the resident program in the
Product Control Unit (PCU)* and is responsible for the following

functions:

1. Total Operational Control of Execution

a. MCS Manages ASR-33 Teleprinter Communications - instructions,
status queries, and direct data may be entered into the system while
execution and processing status, errors, direct messages, and other
monitoring information are being returned. Operator communication
with the S-C 4060 is in terms of phrases and meaningful mnemonics
rather than through the method of interpreting panel light configura-
tions and switch settings. (See Appendices D and I.)

b. MCS provides a complete Input/Output Control System for all peri-
pheral devices - I/0O buffers are assigned and printhead interrupts
are serviced automatically, as are all operator override instruc-
tions pertaining to magnetic tape transport functions.

1) MCS thus performs all magnetic tape I/0 activities**, such
as input tape and library tape read, tape write, record and
file backspacing and skipping, tape rewind, and character
packing and unpacking. Tape format, parity, and execution
errors are detected; the MCS recovery procedure informs
the operator of the error, determines the level of the error,
and either continues or halts S-C 4060 operation pending
operator action.

*The PCU is an 8K (16 bit word) general purpose computer; its execution of MCS
performs a function similar to that of a hard-wired interface.

**Input tape searches and special tape label handling are not included in the standard
SCRIP system; the implementation of these functions will require a minimum pro-
gramming effort either by the user or by Stromberg-Carlson by special request.

10

«

MCS monitors film processing - film exposure is coordinated
with 1ilm developing to prevent over-development of exposed
frames during periods of interrupted execution.

MCS provides for continuous job processing - job initialization
and termination procedures are designed for optimum operating
efficiency. MCS outputs a complete log of each job in an S-C
4060 run. See Appendix E for a description of the principal
operating features of MCS.

MCS furnishes for SCRIP an overall constants pool and a sub-
program communications region. All constants and subprogram
communications regions are kept in the resident MCS Nucleus.

2. Total Operational Control of Processing

a.

MCS reads into the PCU from the library tape the programs that
are necessary to process graphic instructions from the external
device (tape unit if off-line, remote computer if on-line) into
printhead circuit commands. Processing generally consists of:

1) Interpretation of the instruction;

2) Conversion of the instruction to the appropriate
printhead command(s);

3) Output of the resulting command ('"hardware logic')
to the printhead.

The interpretations and conversions of the instructions are
performed by subroutines in the library programs. These
subroutines are the ultimate means by which the user's
desired graphic output function is implemented. The stand-
ard SCRIP package allows the user to accomplish the follow-
ing:

1) Plot any of the CHARACTRON matrix characters at any
addressable point on the standard raster in any of four
sizes and in either of two orientations (vertical or hori-
zontal).

2) Type a string of matrix or stroke characters beginning

at any addressable point on the standard raster and
continuing horizontally or vertically to the limits of the

11

raster. Standard character spacing and line spacing (with
carriage return) will be provided according to the selected
character size. The character size may be any of the four
allowable character sizes and in either of two orientations
(vertical or horizontal).

3) Draw a solid or dashed line segment between any two address-
able points on the standard raster. Line segments may be
drawn in any of four widths and either of two densities.

4) Perform a frame advance.

5) Project a single form onto the film either on command or
automatically with each frame advance.

6) "Fast Plot'" - plot a string or cluster of characters such that
each character is plotted within 80 raster units of the pre-
viously plotted character to enable a plotting rate greater than
the normal plotting rate.

. SCRIP Library Programs -

The following list gives brief functional descriptions of the programs con-

tained on the S-C 4060 system library tape.

1. META Processor - interprets the standard meta-language in-
put tape functions generated by the external software (IGS), con-
verts these functions to the required printhead commands, and
outputs the resulting commands (""hardware logic') to the print-
head.

2. S-C 4020 Simulator - reads an S-C 4020 binary input tape,
converts the instructions to the necessary S-C 4060 printhead
commands, and outputs the commands to the printhead to per-
form an S-C 4020 simulation. The following restrictions affect
the simulation:

a. A shortened film pulldown is substituted for the
expand image command since image expansion
is not included in the S-C 4060 circuitry.

12

b. Camera selection commands are treated as follows:

1) Select camera 1 turns off the hard copy
mode.

2) Select camera 2 and select both cameras
is interpreted as Expose Hardcopy.

BCD Tape Printing - interprets an input tape that has been formatted
for a standard line printer and provides the corresponding printed out-
put.

Test and Maintenance Programs - exercises the internal circuits of
both the Printhead and the Product Control Unit. The routines test
the Product Control Unit memory, basic machine instructions, logic
and arithmetic units, input/output devices, and provide alignment
and performance testing for the recording head (see Appendix H).

Optional Programs - are incorporated into the library when the
user obtains the corresponding optional hardware.

a. Film and Hardcopy Processing Monitor,
b. On-line Control Monitor,

c. Stroke Generator Routine.

d. Card Reader Input Translator.

e. High Speed Paper Tape Monitor.

S-C 4060 Supplementary Software

The two software packages which supplement the primary software packages

(IGS and SCRIP) of the S-C 4060 system are the DAP-16 Assembler and the
Fortran IV Compiler. Both assembler and compiler will operate from mag-
netic tape and will treat the S-C 4060 print head as a line printer thus allow-

ing listings to be generated on microfilm.

The DAP-16 Assembler will enable the user to write routines which may be
incorporated into the SCRIP package, and thus take full advantage of the
flexibility provided by the software control of the S-C 4060.

13

DAP-16 Assembler - generates a set of machine instructions
which correspond to a program written in the DAP-16 symbolic
language (see Appendix F); it may pefform a one pass or two
pass assembly. It interprets all symbols and mnemonics,
allocates storage blocks, assigns buffers, provides sub-
routine linkage, allows Fortran compatibility, and provides

an object program (either paper tape or magnetic tape) and

an assembly listing on the ASR-33 or the S-C 4060 print

head showing appropriate diagnostics.

The following routines are included as part of the DAP-16
Assembler package:

a. DAP/Fortran relocating loaders (ASR-33, High Speed
Paper Tape, and Magnetic Tape).

- b. I/O Supervisor for DAP and Fortran.

c. Memory dump on ASR-33 and Print Head.
d. A debug program which enables dynamic tracing.

e. Routine to punch a program from or onto paper tape
preceeded by a bootstrap loader.

Source input on punched paper tape may be prepared on the ASR-
33 in the off-line mode and then read by the DAP-16 Assembly
program from the ASR-33 (or the optional high speed reader);
source input may also be prepared on punched cards and read

in via the optional card reader or on magnetic tape. Object
tapes are punched via the ASR-33 or the optional high speed
punch.

Fortran IV Compiler - processes the standard Fortran language
specified by the American Standards Association (ASA - see

Appendix G). It is a one-pass compiler which requires a minimum

of 8 K core storage* with one of each of the following peripheral
equipment: ‘ '

* The standard S-C 4060 PCU has 8 K core storage.

14

NG

Source input device:

1) ASR-33 key-in or ASR-33 punched paper
tape reader.

2) Magnetic tape.

3) Card reader (optional).

4) High speed punched paper tape reader (optional).

Listing device:

1) ASR-33 printer.

2) S-C 4060 film.

Object output:

1) Magnetic tape.

2) High speed paper tape punch (optional).

15

.y

APPENDIX A

Meta-Language Description

The basic building unit for the meta-language is the 6-bit or 8-bit byte, depending upon
the host computer. Each display function (i.e., plot, vector, fast plot, etc.) will be
of the same logical structure. The first byte will be the delimiter, the second byte
will be the function code, and the succeeding bytes will specify positional information,

characters, or control codes.

The S-C 4060 internal matrix code for alphanumeric characters differs from any exis-
ting standard code while the ASR-33 requires ASCII. MCS is designed to perform the
necessary conversion of the inherent alphanumeric code from the external computer

by means of conversion tables.

Any intermediate language which does not conform either logically or physically to the
meta-language, will require the addition of a software input translator by the user as

part of the S-C 4060 operating system.

g

APPENDIX B

S-C 4060 Standard Raster

The standard raster of the S-C 4050 is defined as a rectangular array of points 3072
vertically by 4096 horizontally, making a total of 12, 582, 912 points. Each point is
addressable which means that it may be specifically referred to by common rectangu-
lar coordinate notation. The coordinates specifying the raster points must be positive

integers and the standard raster is to be considered as first quadrant.

The standard raster with an accompanying six perforation pulldown (normal frame
advance) will produce an image on film which will yield 11 x 14 hardcopy. For 8-1/2
x 11 hardcopy, the raster size will be partitioned to the raster area as shown in the

following figure. Normal pulldown will also be six perforations.

0,3071 4095,3071 1854,3071 4095,3071

0,0 4095,0 1854, 0 4095, 0

Standard Raster and Partitioned Raster

(NOTE: The standard raster as it physically appears on the face of the CHARACTRON
tube has for its origin the coordinates (0,512). The programmer, however, need not
be concerned with these values because the SCRIP software automatically performs
the required translations on all data to be plotted. For the partitioned standard raster
(8-1/2 x 11), the physical origin is at (1854,512), Again, automatic translation by the

SCRIP software enables the programmer to use (0, 0) for his origin.)

APPENDIX C

S-C 4060 Meta-Language

I. FUNCTION STRING PARTS

A. Delimiter
6 bit mode 1701 (1|10 lllll 1]1 |0 jOctal 5676
gbitmode |0 [0 |1 |0 |1][0[1]0] Hex?2AOctal 052
The delimiter is the start flag for a function string. It must be followed
by either a null or a function code (See Appendix A).
B. Function Code (f)
6 bit mode I l l f I I
sbitmode [| | [] | | |
List of Function Codes (decimal).
0 Set Mode Matrix —~@ Advance Frame
1 Plot Specified Point #1 14 Stroke Table Input
2 Plot Specified Point #2 15 Operator Message
3 Plot Current Point 16 Retrieval Codes
4 Plot Specified Point #3 17 Start of Job
%j* Type Specified Point 18 Frame ID
6 Type Cu'rrent Point 19 Repeat Frame
7 Pause 20 Reset Mode Matrix
”‘@ Draw Joined Vectors 21 End of Job
9 Draw Line Segments —22 End of Run
10 No operation (NOP) 23 Stroke Write Bit Pattern
11 Tab Set 24 Draw Vector Family
12 Form Flash T -
Ab) L

N

The Function Code must be the first non-null character following a delimiter.

Raster Coordinates (X, Y)

6 bit mode 1 -6 7 - 18 19 - 24 25 - 36
Sign 0000 Sign 0000
00 =+ to 00 = + to
01 = - 7778 01 = - 77174
| J | |
1 |
X Y
8 bit mode |1 - 4 5 - 16 17 - 20 21 - 32
Sign 0to 77774 Sign 0to 7777
L | l)
[T
X Y

The position within the function string is defined by the function code. Note

leading zero bits. If S= 0, X (or Y) is taken as positive. If S=1, X (or Y)

is taken as two's complement (Module 409) negative value.

Plot or Type Characters (C)

6 bit mode

8 bit mode

The position within the function string is defined by the function code. The

6 bit character may be BCD, Fieldata, or Excess 3. The 8 bit code may be

ASCII or EBCDIC.
Null Byte (NUL)

6 bit mode 110111111

1|1} 1| Octal 5677

8 bit mode 11111111

Hex FF Octal 377

The null byte may occur within a function string between any two function

parts but must not break a function part. The occurrence of the null byte

within a function string in no way changes the function of the string.

Control Bytes

1. Single Byte (8 bit Mode only)

Description

Delimiter

Null Byte

Null (typing control)

Tab

Carriage Return/Line Feed
Shift Case 1

Shift Case 2

Shift Case 3

Superscript Shift

Subscript Shift

Octal

052
377
000
005
025
066
006
051
004
060

2. Double Byte (Both 6 and 8 bit Mode)

Control Byte (byte #1)

Description

6 bit
Delimiter 56 8
Null | 56 8

8 bit

52

8

377

Hexadecimal

2A
FF
00
05
15
36
06
29
04
30

Control Code (byte #2)

8

8 bit

Function

Null (typing)
Tab

Carriage Return/
Line Feed

Shift Case 1
Shift Case 2
Shift Case 3
Superscrip
Subscript
Capitalize Next
Backspace

Next Page

Code

$N

$T

$E
$U
$L
$S
$+
$-
$C
$B
$P

TYPING CONTROL

2nd Character

25

. 64

43

62

20

60

23

22

47

NOTE: (Code for $ is 538 in 6 bit or 1338 in 8 bit)

8 bit

325

343

305

344

323

342

216

140

203

302

327

I

II.

12

13

14

o WMo Z

Modeset Function String (M)

W O W N = O

S W N O

N =

= o

= o

Character size for plotting Normal size (default)
- Small size
- Medium size

- Large size

Character orientation for plotting vertical (default)

horizontal

Line weight Normal (default)
- Light
- Heavy

- Heaviest

Dash length - Solid
- 32 raster units
- 64 raster units
- 128 raster units
- 256 raster units

Character size for typing - Normal size (default)
- Small size
- Medium size
- Large size

Character and line orientation for typing - (default) vertical chars,
horizontal line
- horizontal chars, vertical

line
Vector speed - normal (default)
- fast
Plot Mode - .normal (default)
- fast
Plotting character case - 1 (upper) (default)
- 2 (lower)
- 3 (special) -
Page overflow in typing - Same page (default)
-~ - Frame advance
Set hardcopy for 4020 - 11 x 14 (default)

- 8-1/2x11

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30
31

= e [

=) N o

= o

- O

= o w N = o

Void mark flag - no void (default)
- Void this frame

Multiple line spacing for typing - single space (default)
- skipn + 1 lines

Typing character case - upper (default)
- lower
- Special

Character font - CHARACTRON Characters (default)
- font n required for stroke write

Programmer selection of - On (default)
Block Mode : - Off

Print list flag for PRNT - Off, Print normal (default)
-~ On, print list

Corner Marks - No corner marks (default)
- Corner marks required

Automatic Frame ID - No automatic frame ID (default)
- Automatic frame ID required

Automatic Form Flash - No automatic form flash (default)
- Automatic form flash required

Output Mode - None (default)
- Cut mode 11 x 14
- Cut mode 8-1/2 x 11
- Strip chart

Input Mode = - 8 bit mode (default)
] - 6 bit mode

Character spacing for typing follows - horizontal displacement
default 31 (Normal Size Character)

Character spacing for typing follows - vertical spacing
~default 0

Line spacing follows
default 52

Next frame number follows initially = 1

Working raster: X-min default = 0

32
33
34
35
36
37
38
39

Working raster: Y-min
Working raster: X-max
Working raster: Y-max
Typing margins XLFT default
(relative YBOT

to working XRGT

rasters) YTOP

Lines per page for PRNT default

It

512
4095
3583

4095
3071
58

III. Function String Formats

Function

Code

(971

Name Format and Description

Plot Specified Point #1
i ICX1Y1X2Y2 —————— x.nYn .
Plot a single character at different X and Y points.

Plot Specified Point #2

120,X)Y C XY, ----C XY

Plots different characters at different specified
X and Y points,

Plot Current Point

13C.CC -----=--
3€1C5% n

Plot different characters all at current point.

Plot Specified Point #3

CCC ~=--=- C
HAX, Y1666 n

Plot different characters all at specified point.

Type Specified Point #1

YCCC ----- C
1R Y,C1C,C5 n

Types a series of characters beginning at a specified
point X, Y.

Type Current Point #1

6CCC -=-=-==-- C

i_ C1 2 3 n

Types a series of characters beginning at current
point.

Pause

1 7 (no arguments)

Causes the SCRIP operating progran: (MCS-Master
Control System) to enter an idle state in the PCU
for S-C 4060 operator action. This action should
have been communicated to the operator either
personally or by a preceding function code to type
out an on-line message on the ASR (see function
code 15).

T

Function

10

11

12

13

14

15

16

Name Format and Description

Draw Joined Vectors

T8 Y XY XY —-=——mm XY
1172727373 n n

Draws series of joined (head to fail) vectors.

Draw Line Segments

Y Y ————————— X Y Y
3;QXI 1X2 2 n-1 n—lxn n

A
Draws series of separate line segments (n must be even)

No Operation

110
Communicate Table of Tabsets (f = 11)
Ia fa T ’ T s T y TTTTT T

1 27 3 n

Ti represents the horizontal tab stop in raster units
relative to XMIN (Mode 31) or YMIN (Mode 32 8)
depending on value of ORT%3 (Mode 6 8).

Form Flash (f = 12)
I, f

Frame Advance (f = 13)

i, f, N

N represents the number of frame advances to be
performed (one byte)

Transmit Stroke Table (f = 14)

f, n, h, , 8 _, m——m——— , 0,h, s, s -- (n = Stroke
i(n °1 2 Sn 1’ 2, (

Table Font Number in Octal)
Each byte string from the height adjust designator
n to the end of that stroke character terminated
by a 0 (zero) repeats until a delimiter follows the 0.

Message to Operator (f = 15)
’ f’ c., Cc_, ’ T -

i 17 Cp G0 €4 c, 1

Retrieval Code (f = 16)

I, £, T, cd :

T represents the code type (Miracode or kodamatic)

and cd is a fixed length bit string representing the

" code.

Function
Code

17

18

19

20

21

22

23

24

Name Format and Description

Start of Job (f = 17)

i, f, c.,c ,c ,—=-———- ¢ (71 character maximum)
1" 2 3 n

1. The character string is typed on the ASR-33.
2. The character string is placed on the ID frame.

3. The function executes the user supplier accounting
routine, if present.

Frame ID (f = 18)

First 20 characters are retained for use by the frame
ID routine.

Repeat Frame (f = 19)

I, f, n

n represents the number of times the previous frame
is to be repeated.

Reset Mode Matrix (f = 20)
I, f

Resets the mode matrix to the default state

End of Job (f = 21)
I, t

Type comment to operator, proceed to next job.

End of Run (f = 22)
i, f
Type comment to operator, halt for operator action.
Stroke Character (f = 23)
:t, f, X.r Yy, Sz, h’ Sl: S2) S3’ ------- Sn’ 0)
SZ is size and H is height adjust.
SZ = 0 normal size, normal orientation
1 large size, normal orientation
Si represents the stroke patterns.

Draw vector Family (f = 2;1)
i f, D, Xp» Vpr X0 ¥y
Draws n equidistant vectors betweenthe two specified

by X1 ¥y and Xy y2

n = 2 bytes

C-10

APPENDIX D

Examples of ASR-33 Messages

A complete list of messages is contained in Document Number
HMO-208, S-C 4060 Stored Program Recording System,
Operator's Handbook.

**NO PGM Requested program is not available for
execution.
JOB Part of STATUS reply, ERROR print out,

and END OF JOB print out.

FRAME Part of STATUS reply, ERROR print out,
and END OF JOB print out.

**STOPPED Signals operator that system has entered
the STOP state.

**READY Signals operator that system has entered
the READY State.

**QOK Previously specified command has been
successfully executed or issued.

**END OF JOB _ End of Job sensed on input tape.

**WHAT ? System is unable to interpret ASR-33 input.
**FILM LOW : Operator Warning

**PAPER LOW Operator Warning

**PAUSE Programmer requested system halt.

Operator action will be required.

APPENDIX E

MCS OPERATION

The following is a brief description of the principal operating features of MCS:

A.

Initialization

Initialization is a process which automatically occurs after MCS is initially
loaded, at the end of job, and after the RESTART, CNCL, or NEXT com-
mand is input from the ASR-33. This process sets all default conditions

and interrogates the print head and input tape unit sense lines for the ready

condition.

System Status {

During MCS operation the system will be in either the RUN status or the
IDLE status. The RUN status means that MCS is processing input data
and outputting printer circuit commands to the print head. IDLE status
signifies that the input data is not being processed and the system is
waiting for an input from the ASR-33. Monitoring of film developing,

however, is maintained during IDLE status.

Two separate conditions exist during IDLE status: Ready state and Stop

state.

1. Ready State: The Ready state is that condition which immediately
succeeds the initialization process and precedes processor execution.

2. Stop State: The Stop state is that condition which results from either
the STOP command being input from the ASR-33, or when MCS
detects an error which is of such a consequence as to require operator
action, or when a PAUSE function code is encountered in processing
meta-language.

%

Error Detection

MCS provides for continuous monitoring of all the major functions of the
S-C 4060. If an error or a serious condition occurs, a comment will be

printed on the ASR-33.

ASR-33 Communication

One of the principal features of the S-C 4060 operating system is that it
enables direct communication with the S-C 4060 via the ASR-33. Because
of this, the entire operation, with the exception of a cold start, is under

control of the ASR-33.

Appendix I contains examples of input instructions and the system action

resulting from them.

Library Director and Loader

MCS performs all loading from the library. The LOAD instruction when
given by the operator (see Appendix I) causes MCS to locate the requested
processor on the library tape and load it into a pre-designated location in

core.

Input/Output Supervisor

108 provides for general magnetic tape handling. It enables reading (and
optionally, writing) in either even or odd parity; at all densities up to 800
bpi; and in either the 7 or 9 track configuration. It provides for back-

spacing and skipping of single records and files and performs a rewind.

All I/0O operations are fully monitored for parity errors and when detected
initializes corrective action. For example, nine attempts will be made to
read when a read-error is encountered and, in the case of a 9 track tape,

a CRC (Cylic Redundancy Check) test will be made to correct the error.

g

APPENDIX F

SUMMARY OF S-C 4060 SYMBOLIC INSTRUCTIONS (DAP-16)

Octal
Mnemonic Code
ACA 141216
ADD 06
ALR 0416
ALS” 0415
ANA 03
AOA 141206
ARR 0406
ARS 0405
CAL 141050
CAR 141044
CAS 11
CHS 140024
CMA 140401
CRA 140040
CSA 140320
ENB 000401
ERI} 05
HLT 000000
IAB 000201
ICA 141340
ICL 141140
ICR 141240
IMA 13
INA 54
INH 001001
INK 000043
IRS 12
IMP 0l
JST 10
LDA 02
LDX . 15
LGL 0414

Instruction

Add Cto A

Add

Logical Left Rotate
Arithmetic Left Shift
AND to A

Add One to A

Logical Right Rotate
Arithmetic Right Shift
Clear A, Left Half

Clear A, Right Half
Compare

Complement A Sign
Complement A

Clear A

Copy Sign and Set Sign Plus
Enable Program Interrupt
Exclusive OR to A

Halt

Interchange A and 3

Interchange Characters in A

Interchange and Clear Left Half

of A

Interchange and Clear Right
Half of A

Interchange Memory and A
Input to- A

Inhibit Program Interrupt
Input Keys

Increment, Replace and Skip
Unconditional Jump

Jump and Store Location
Load A ‘

" Load X

Logical Left Shift

Cycles

1

2
1 +n/2
1+n/2

2

1
1+n/2
1+n/2

DD H ke e e WO

[y

[y

CON W W = oW

1+n/2

APPENDIX F (Cont)
SUMMARY OF S-C 4060 SYMBOLIC INSTRUCTIONS (DAP-16)

Octal . R o : .
Mnemonic Code =~ = "Instruction " - QCycles
LGR ' 0404 Logical Right Shift 1 +n/2
LLL 0410 Long Left Logical Shift 1+n/2
LLR 0412 Long Left Rotate o 1 +n/2
LLS 0411 Long Arithmetic Left Shift : 1+n/2
LRL -~ 0400 Long Right Logical Shift - 1+n/2
LRR 0402 Long Right Rotate : . v 1+n/2
LRS 0401 Long Arithmetic Right Shift ; 1+n/2
NOP 101000 No Operation : 1
ocPp 14 Output Control Pulse 2
OTA .74 Output From A 2
OTK +171020 Output Keys 2
RCB 140200 Reset C Bit 1
SCB 140600 Set C Bit 1
SKP ., 100000 Unconditional Skip 1
SKS 34 Skip if Ready Line Set 2
SLN 101100 Skip if (A16) is ONE 1
SLZ 100100 Skip if (Alé) is ZERO 1
SMI 101400 Skip if A Minus 1
SMK 74 Set Mask 2
SNz 101040 Skip if A Not ZERO 1
SPL 100400 Skip if A Plus 1
SRC 100001 Skip if C Reset 1
SR1 100020 Skip if Sense Switch 1 is Reset 1
SR2 100010 Skip if Sense Switch 2 is Reset 1
SR3 100004 Skip if Sense Switch 3 is Reset 1
SR4 100002 © Skip if Sense Switch 4 is Reset 1
SSC 101001 Skip if C Set 1
SSM 140500 Set Sign Minus 1
SSP 140100 Set Sign Plus 1
SSR 100036 Skip if no Sense Switch Set 1
SSS 101036 Skip if any Sense Switch is Set 1
SS1 101020 Skip if Sense Switch 1 is Set 1
S52 .10lolo0 Skip if Sense Switch 2 is Set 1
SS3 101004 Skip if Sense Switch 3 is Set 1
SS4 101002 Skip if Sense Switch 4 is Set 1
STA 04 Store A 2
STX 15 Store X 2

F-2

APPENDIX F (Cont)
SUMMARY OF S-C 4060 SYMBOLIC INSTRUCTIONS (DAP-16)

Octal
Mnemonic Code Instruction Cycles
SUB 07 Subtract 2
SZE 100040 Skip if A ZERO 1
TCA 140407 Two's Complement A 1.5

APPENDIX G

PROPOSED AMERICAN STANDARD

FORTRAN

The following Proposed American Standard
of the FORTRAN language was developed by
X34.3-FORTRAN Group under the American
Standards Association Sectional Committee X3,
Computers and Information Processing. The
committee was established under the sponsor-
ship of the Business Equipment Manufacturers
Association. Here is presented the most recent
issue of the proposed standard available at this
printing. Anv further issues are not expected to
alter the technical content.

Inquiries regarding copies of the Proposed
Standard should be addressed to the X3 Secre-
tary, BEMA, 235 E. 42nd Street, New York,
NY.

TABLE OF CONTENTS

SECTION SECTION
1. INTRODUCTION 7.1.2.3 Logical IF statement
2. BASIC TERMINOLOGY 7.1.2.4 CALL statement
3. PROGRAM FORM 7.1.2.5 RETURN statement
7.1.2.6 CONTINUE statement
3.1 The FORTRAN character set
. 7.1.2.7 Program control statements
3.2 Lines
7.1.2.8 DO statement
3.3 Statements
3.4 Statement label 7.1.3 Input/Output statements
') 7.1.3.1 READ and WRITE statements
3.5 Symbolic names L
3.6 Ordering of characters 7.1.3.2 Auxiliary Input/Output
' 7.1.3.3 Printing of formatted records
4. DATA TYPES o 7.2 Nonexecutable statements
4.1 Datatype association 7.2.1 Specification statements
4.2 Data type properties 7.2.1.1 Array declarator
5. DATA AND PROCEDURE IDENTIFICATION 7.2.1.2 DIMENSION statement = . .
5.1 Data and procedure names 7.2.1.3 COMMON statement
5.1.1 Constants 7.2.1.4 EQUIVALENCE statement
5.1.2 Variable 7.2.1.5 EXTERNAL statement
5.1.3 Array 7.2.1.6 Type statement
5.1.4 Procedures 7.2.2 Data initialization statement
5.2 Function reference 7.2.3 FORMAT statement
5.3 Type rules for data and procedure identifiers 8. PROCEDURES AND SUBPROGRAMS

5.4 Dummy arguments
6. EXPRESSIONS
6.1 Arithmetic expressions
6.2 Relational expressions
6.3 Logical expressions

6.4 Evaluation of expressions - 9.

7. STATEMENTS
7.1 Executable statements

7.1.1 Assignment statements 10.

7.1.2 Control statements
7.1.2.1 GO TO statements
7.1.2.2 Arithmetic IF statement

8.1 Statement functions
8.2 Intrinsic functions and their reference
8.3 External functions
8.4 Subroutine
8.5 Block data subprogram
PROGRAMS
9.1 Program components
9.2 Normal execution sequence
INTRA- AND INTERPROGRAM RELATIONSHIPS .
10.1 Symbolic names
10.2 Definition e
10.3 Definition requirements for use of entities .

PROPOSED AMERICAN STANDARD
FORTRAN

1. INTRODUCTION

1.1 Purprose. This standard establishes the form for
and the interpretation of programs expressed in the FORTRAN
language for the purpose of promoting a high degree of
interchangeability of such programs for use on a variety of
automatic data processing systems. A processor shall con-
form to this standard provided it accepts, and interprets
as specified, at least those forms and relationships described
herein.

Insofar as the interpretation of the form and relation-
ships described are not affected, any statement of require-
ment could be replaced by a statement expressing that the
standard does not provide an interpretation unless the
requirement is met. Further, any statement of prohibition
could be replaced by a statement expressing that the
standard does not provide an interpretation when the pro-
hibition is violated.

1.2 Scopre. This standard establishes:

(1) The form of a program written in the FORTRAN
language.

(2) The form of writing input data to be processed
by such a program operating on automatic data processing
systems.

(3) Rules for interpreting the meaning of such a
program.

(4) The form of the output data resulting from the
use of such a program on automatic data processing systems,
provided that the rules of interpretation establish an inter-
pretation.

This standard does not prescribe:

(1) The mechanism by which programs are trans-
formed for use on a data processing system (the combination
of this mechanism and data processing system is called a
processor).

(2) The method of transcription of such programs or
their input or output data to or from a data processing
medium. :

(3) The manual operations required for set-up and
contro] of the use of such programs on data processing
equipment. .

(4) The results when the rules for interpretation fail
to establish an interpretation of such a program.

(5) The size or complexity of a program that will
exceed the capacity of any specific data processing system
or the capability of a particular processor.

(6) The range or precision of numerical quantities.

2. BASIC TERMINOLOGY

This section introduces some basic terminology and
some concepts. A rigorous treatment of these is given in
later sections. Certain assumptions concerning the meaning
-of grammatical forms and particular words are presented.

A program that can be used as a self-contained com-
puting procedure is called an executable program (9.1.6).

An executable program consists of precisely one main
program and possibly one ‘or more subprograms (9.1.6).

A main program is a set of statements and comments
not containing a FUNCTION, SUBROUTINE, or BLOCK
DATA statement (9.1.5).

A subprogram is similar to a main program but is
headed by a.- BLOCK DATA, FUNCTION, or SUB-
ROUTINE statement. A subprogram headed by a BLOCK
DATA statement is called a specification subprogram. A
subprogram headed by a FUNCTION or SUBROUTINE
statement is called a procedure subprogram (9.1.3, 9.1.4).

The term program unit will refer to either a main pro-
gram or subprogram (9.1.7).

Any program unit except a specification subprogram
may reference an external procedure (Section 9).

An external procedure that is defined by FORTRAN
statements is called a procedure subprogram. External pro-
cedures also may be defined by other means. An external
procedure may be an external function or an external
subroutine. An external function defined by FORTRAN
statements headed by a FUNCTION statement is called
a function subprogram. An external subroutine defined by
FORTRAN statements headed by a SUBROUTINE state-
ment is called a subroutine subprogram (Sections 8 ‘and 9).

Any program unit consists of statements and comments.
A statement is divided into physical sections called lines,
the first of which is called an initial line and the rest of which
are called continuation lines (3.2).

There is a type of line called a comment that is not a
statement and merely provides information for documentary
purposes (3.2).

The statements in FORTRAN fall into two broad classes—
executable and nonexecutable. The executable statements
specify the action of the program while the nonexecutable
statements describe the use of the program, the character-
istics of the operands, editing information, statement func-
tions, or data arrangement (7.1, 7.2).

The syntactic elements of a statement are names and
operators. Names are used to reference objects such as data
or procedures. Operators, including the imperative verbs,
specify action upon named objects.

One class of name, the array name, deserves special
mention. An array name must have the size of the identi-
fied array defined in an array declarator (7.2,1.1). An array
name qualified only by a subscript is used to identify a
particular element of the array (5.1.3).

Data names and the arithmetic (or logical) operations
may be connected into expressions. Evaluation of such an
expression develops a value, This value is derived by per-
forming the specified operations on the named data.

The identifiers used in FORTRAN are names and num-
bers. Data are named. Procedures are named. Statements
are labeled with numbers. Input, output units are numbered
(Sections 3, 6, 7):)

At various places in this document there are statements
with associated lists of entries. In all cases the list is assumed
to contain at lease one entry unless an explicit exception
is stated. As an example, in the statement

SUBROUTINE s (ai, a2, - - - a)
it is assumed that at least one symbolic name is included

in the list within parentheses. A list is a set of identifiable .

elements each of which is separated from its successor by
a comma. Further, in a sentence a plural form of a noun
will be assumed to also specify the singular form of that
noun as a special case when the context of the sentence does
not prohibit this interpretation.

The term reference is used as a verb with specxal meaning
as defined in Section 5.

3. PROGRAM FORM

Every program unit is constructed of characters grouped
into lines and statements.

3.1 THE FORTRAN CHARACTER SET. A program unit
is written using the following characters: A, B, C, D, E,
F,G H I,J,K,LL,M,N,0,P,QR,ST,U,V, W, X,
Y, Z,0,1,2 3,4,5,6,7, 8,9, and:

Character Name of Character
Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis -
Right Parenthesis
Comma

. Decimal Point

$ Currency Symbol

TS * g 4+

The order in which the characters are listed does not -

imply a collating sequence.

3.1.1 Digits. A digit is one of the ten characters:
0,1,2,3,4,5,6,7, 8, 9. Unless specified otherwise, a string
of digits will be interpreted in the decimal base number
system when a number system base interpretation is ap-
propriate.

An octal digit is one of the eight characters 0,1, 2,3,
4, 5, 6, 7. These are only used in the STOP (7.1.2.7.1) and
PAUSE (7.1.2.7.2) statements.

3.1.2 Letters. A letter is one of the twenty-six char-
acters: A, B,C,D,E, F,G, H,I,J,K, L, M, N,O, P,
QR,S,T, UV, WX, Y, Z.

3.1.3 Alphanumeric Characters. An alphanumeric
character is a letter or a digit. : '

'3.1.4 Special Characters. A special character is one
of the eleven characters blank, equals, plus, minus, asterisk,
slash, left parenthesis, right parenthesis, comma, decimal
point, and currency symbol.

3.1.4.1 Blank Character. With the exception of the
uses specified (3.2.2, 3.2.3, 3.2.4, 4.2.6, 5.1.1.6, 7.2.3.6, and
7.2.3.8), a blank character has no meaning and may be
used freely to improve the appearance of the program subject
to-the restriction on continuation lines in 3.3.

3.2 LINEs. A line is a string of 72 characters. All
characters must be from the FORTRAN character set except
as described in 5.1.1.6 and 7.2.3.8.

The character positions in a line are called columns
and are consecutively numbered 1, 2, 3, - - -, 72. The number
indicates the sequential position of a character in the line
starting at the left and proceeding to the right.

G-4

3.2.1 Comment Line. The letter C in column 1 of a
line designates that line as a comment line. A comment
line must be immediately followed by an initial line, another
comment line, or an end line.

A comment line does not affect the program in any
way and is available as a convenience for the programmer.

3.2.2 End Line. An end line is a line with the char-
acter blank in columns 1 through 6, the characters E, N,
and D, once each and in that order, in columns 7 through
72, preceded by, interspersed with, or followed by the
character blank. The end line indicates to the processor,
the end of the written description of a program unit (9.1.7).
Every program umt must physically terminate with an
end line.

. 8.2.8 Initial Line. An initial line is a line that is
neither a comment line nor an end line and that contains
the digit 0 or the character blank in column 6. Columns 1
through 5 contain the statement label or each contains the

- character blank.

3.2.4 Continuation Line. A continuation line is a line
that contains any character other than the digit 0 or the
character blank in c¢olumn 6, and does not contain the
character C in column 1.

A continuation line may only follow an initial line or
another continuation line.

3.3 STATEMENTS. A statement consists of an initial
line optionally followed by up to nineteen ordered con-
tinuation lines. The statement is written in columns 7
through 72 of the lines. The order of the characters in the
statement is columns 7 through 72 of the initial line followed,
as applicable, by columns 7 through 72 of the first continu-
ation line, columns 7 through 72 of the next continuation
line, etc.

3.4 STATEMENT LABEL. Optionally, a statement may
be labeled so that it may be referred to in other statements.
A statement label consists of from one to five digits. The
value of the integer represented is not significant but must
be greater than zero. The statement label may be placed -
anywhere in columns 1 through 5 of the initial line of the
statement. The same statement label may not be given to
more than one statement in a program unit. Leading zeros
are not significant in differentiating statement labels.

3.5 SymBoLic NAMES. A symbolic name consists of
from one to six alphanumeric characters, the first of which
must be alphabetic. See 10.1 through 10.1.10 for a discus-
sion of classification of symbolic names and restrictions on
their use.

3.6 ORDERING OF CHARACTERS. An ordering of char-
acters is assumed within a program unit. Thus, any meaning-
ful collection of characters that constitutes names, lines,
and statements exists as a totally ordered set. This ordering
is imposed by the character position rule of 3.2 (which
orders characters within lines) and the order in which lines
are presented for processing.

4. DATA TYPES

Six different types of data are defined. These are integer,
real, double precision, complex, logical, and Hollerith. Each
type has a different mathematical significance and may have
gnternal representation. Thus the data type has a
s'gni” ~ACe in the interpretation of the associated opera-
tions with which a datum is involved. The data type of a
function defines the type of the datum it supplies to the
expression in which it appears.

4.1 Darta TYPE AssoCIATION. The name employed
to identify a datum or function carries the data type asso-
ciation. The form of the string representing a constant
defines both the value and the data type.

A symbolic name representing a function, variable, or

~array must have only a single data type association for

each program unit. Once associated with a particular data
type, a specific. name implies that type for any differing
usage of that symbolic name that requires a data type
association throughout the program unit in which it is
defined.

Data type may be established for a symbolic name by
declaration in a type-statement (7.2.1.6) for the integer,
real, double precision, complex, and logical types. This
specific declaration overrides the implied association avail-
able for integer and real (5.3).

There exists no mechanism to associate a symbolic
name with the Hollerith data type. Thus data of this type,
other than constants, are identified under the guise of a
name of one of the other types.

4.2 DaAta TyrE PROPERTIES. The mathematical and
the representation properties for each of the data types are
defined in the following sections. For real, double precision,
and integer data, the value zero is considered neither positive
nor negative.

4.2.1 Integer Type. An integer datum is always an
exact representation of an integer value. It may assume
positive, negative, and zero values. It may only assume
integral values.

4.2.2 Real Type. A real datum is a processor ap-
proximation to the value of a real number. It may assume
positive, negative, and zero values.

4.2,.3 Double Precision Type. A double precision
datum is a processor approximation to the value of a real
number. It may assume positive, negative, and zero values.
The degree of approximation, though undefined, must be
greater than that of type real.

4.2.4 Complex Type. A complex datum is a processor
approximation to the value of a complex number. The
representation of the approximation is in the form of an
ordered pair of real data. The first of the pair represents the
real part and the second, the imaginary part. Each part has,
accordingly, the same degree of approximation as for a
real datum,)

4.2.5 Logical Type. A logical datum may assume
only the truth values of true or false. v

4.2.6 Hollerith Type. A Hollerith datum is a string
of characters. This string may consist of any characters
capable of representation in the processor. The blank char-
acter is a valid and significant character in a Hollerith
datum.

5. DATA AND PROCEDURE IDENTIFICATION
Names are employed to reference or otherwise identify
data and procedures.

The term reference is used to indicate an identification

of a datum implying that the current value of the datum
will be made available during the execution of the statement
containing the reference. If the datum is identified but not
necessarily made available, the datum is said to be named.
One case of special interest in which the datum is named is
that of assigning a value to a datum, thus defining or re-
defining the datum.

The term, reference, is used to indicate an identification
of a procedure implying that the actions specified by the
procedure will be made available.

A complete and rigorous discussion of reference and
definition, including redefinition, is contained in Section 10.

5.1 DATA AND PROCEDURE NaAMEs. A data name
identifies a constant, a variable, an array or array element,
or a block (7.2.1.3). A procedure name identifies a function
or a subroutine.

5.1.1 Constants. A constant is a datum that is always
defined during execution and may not be redefined. Rules
for writing constants are given for each data type.

An integer, real, or double precision constant is said to
be signed when it is written immediately following a plus
or minus. Also, for these types, an optionally signed con-
stant is either a constant or a signed constant.

5.1.1.1 Integer constant. An integer constant is
written as a nonempty string of digits. The constant is the
digit string interpreted as a decimal numeral.

5.1.1.2 Real Constant. A basic real constant is written
as an integer part, a decimal point, and a decimal fraction
part in that order. Both the integer part and the decimal
part are strings of digits; either one of these strings may be
empty but not both. The constant is an approximation to
the digit string interpreted as a decimal numeral.

A decimal exponent is written as the letter, E, followed
by an optionally signed integer constant. A decimal ex-
ponent -is a multiplier (applied to the constant written
immediately preceding it) that is an approximation to the
exponential form ten raised to the power indicated by the
integer written following the E. '

A real constant is indicated by writing a basic real
constant, a basic real constant followed by a decimal ex-
ponent, or an integer constant followed by a decimal
exponent.

5.1.1.3 Double Precision Constant. A double precision
exponent is written and interpreted identically to a decimal
exponent except that the letter, D, is used instead of the
letter, E.

A double precision constant is indicated by writing a
basic real constant followed by a double precision exponent
or an integer constant followed by a double precision ex-
ponent.

5.1.1.4 Complex Constant. A complex constant is
written as an ordered pair of optionally signed real con-
stants, separated by a comma, and enclosed within paren-
theses. The datum is an approximation to the complex
number represented by the pair. .

5.1.1.5 Logical Constant. The logical constants, true
and false, are written .TRUE. and .FALSE. respectively.

5.1.1.6 Hollerith Constant. A Hollerith constant is
written as an integer constant (whose value n is greater
than zero) followed by the letter H, followed by exactly n
characters which comprise the Hollerith datum proper.
Any n characters capable of representation by the processor
may follow the H. The character blank is significant in the
Hollerith datum string. This type of constant may be
written only in the argument list of a CALI. statement and
in the data initialization statement.)

5.1.2 Variable. A variable is a datum that is identi-
fied by a symbolic name (3.5). Such a datum may be
referenced and defined.))

5.1.3 Array. An array is an ordered set of data of
one, two, or three dimensions. An array is identified by a
symbolic name. Identification of the entire ordered set is
achieved via use of the array name.

5.1.3.1 Array Element. An array element is one of
the members of the set of data of an array. An array element

G-5

is identified by immediately following the array name with
a qualifier, called a subscript, which points to the particular
element of the array.

An array element may be referenced and defined.

5.1.3.2 Subscript. A subscript is written as a paren-
thesized list of subscript expressions. Each subscript ex-
pression is separated by a comma from ‘its successor, if
there is a successor. The number of subscript expressions
must correspond to the declared dimensionality (7.2.1.1),
except in an EQUIVALENCE statement (7.2.1.4). Follow-
ing evaluation of all of the subscript expressions, the array
element successor function (7.2.1.1) determines the identi-
fied array element.

5.1.3.3 Subscript Expressions. A subscript expression
is written as one of the following constructs:

v + k&

ctv — k

c*v

v+ k

v—k

v

.k

where ¢ and & are integer constants and v is an integer
variable reference. See Section 6 for a discussion of evalua-
tion of expressions and 10.2.8 and 10.3 for requirements
that apply to the use of a variable in a subscript.

5.1.4 Procedures. A procedure (Section 8) is identi-
fied by a symbolic name. A procedure is a statement
function, an intrinsic function, a basic external function,
an external function, or an external subroutine. Statement
functions, intrinsic functions, basic external functions, and
external functions are referred to as functions or function
procedures; external subroutines as subroutines or sub-
routine procedures.

A function supplies a result to be used at the point of
reference; a subroutine does not. Functions are referenced
in a manner different from subroutines.

5.2 FuncrioN REFERENCE. A function reference con-
sists of the function name followed by an actual argument
list enclosed in parentheses. If the list contains more than
one argument, the arguments are separated by commas.
The allowable forms of function arguments are given in
Section 8.

See 10.2.1 for a discussion of requlrements that apply
to function references.

5.3 TyprE RULEs FOR DATA AND PROCEDURE IDENTI-
FIERS. The type of a constant is implicit in its name,

There is no type associated with a symbolic name that
identifies a subroutine or a block.

A symbolic name that identifies a variable, an array,
or a statement function may have its type specified in a
type-statement. In the absence of an explicit declaration,
the type is implied by the first character of the name: I,
J, K, L, M, and N imply type integer; any other letter
implies type real.

A symbolic name that identifies an intrinsic function
or a basic external function when it is used to identify this
designated procedure, has a type associated with it as
specified in Tables 3 and 4.

In the program unit in which an external function is
referenced, its type definition is defined in the same manner
as for a variable and an array. For a function subprogram,
type is specified either implicitly by its name or explicitly
in the FUNCTION statement.

The same type is associated with an array element as
is associated with the array name.

G-6

5.4 DuMMy ARGUMENTS. A dummy argument of an
external procedure ldentlﬁes a variable, array, subroutine,

or external function.

When the use of an external function name is specified,
the use of a dummy argument is permissible if an external
function name will be associated with that dummy argu-
ment. (Section 8.)

When the use of an external subroutine name is speci-
fied, the use of a dummy argument is permissible if an
external subroutine name will be associated with that
dummy argument.

_ When the use of a variable or array element reference
is specified, the use of a dummy argument is permissible if
a value of the same type will be made available through
argument association.

~ Unless specified otherwise, when the use of a variable,
array, or array element name is specified, the use of a
dummy argument is permissible provided that a proper
association with an actual argument is made.

The process of argument association is discussed in
Sections 8 and 10.

6. EXPRESSIONS

This section gives the formation and evaluation rules
for arithmetic, relational, and logical expressions. A rela-
tional expression appears only within the context of logical
expressions. An expression is formed from elements and
operators. See 10.3 for a discussion of requirements that
apply to the use of certain entities in expressions.

6.1 ARITHMETIC EXPRESSIONS. An arithmetic expres-
sion is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements
identify values of one of the types integer, real, double
precision, or complex. The arithmetic operators are:

Operator Representing
+ Addition, positive value (zero + element)
- Subtraction, negative value (zero — element)
* Multiplication
/ Division
*ok Exponentiation

The arithmetic elements are primary, factor, term,
signed term, simple arithmetic expression, and arithmetic
expression.

A primary is an arithmetic expression enclosed in
parentheses, a constant, a variable reference, an array
element reference, or a function reference.

A factor is a primary or a construet of the form

primary**primary

A term is a factor or a construct of one of the forms

term/factor
or
term*term i

A signed term is a term immediately preceded by
+ or —. '

A simple arithmetic expression is a term or two simple
arithmetic expressions separated by a + or —.

An arithmetic expression is a simple arithmetic expres-
sion or a signed term or either of the preceding forms
immediately followed by a 4+ or — immediately followed
by a simple arithmetic expression.

A primary of any type may be exponentiated by an
integer primary, and the resultant factor is of the same
type as that of the element being exponentiated. A real or
double precision primary may be exponentiated by a real
or double precision primary, and the resultant factor is of
type real if both primaries are of type real and otherwise

of type double precision. These are the only cases for which
use of the exponentiation operator is defined.

By use of the arithmetic operators other than ex-
ponentiation, any admissible element may be combined
with another admissible element of the same type, and the
resultant element is of the same type. Further, an admissible

- real element may be combined with an admissible double
precision or complex element; the resultant element is of
type double precision or complex, respectively.

6.2 RELATIONAL EXPRESSIONS. A relational expres-
sion consists of two arithmetic expressions separated by a
relational operator and will have the value true or false as
the relation is true or false, respectively. One arithmetic
expression may be of type real or double precision and the
other of type real or double precision, or both arithmetic
expressions may be of type integer. If a real expression and
a double precision expression appear in a relational expres-
sion, the effect is the same as a similar relational expression.
This similar expression contains a double precision zero as
the right hand arithmetic expression and the difference of
the two original expressions (in their original order) as the
left. The relational operator is unchanged. The relational
operators are: .

Operator Representing

.LT. Less than

.LE. Less than or equal to
EQ. Equal to

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

6.3 LocicaL ExpPrEssioNs. A logical expression is
formed with logical operators and logical elements and has
the value true or false. The logical operators are:

Operator Representing
OR. Logical disjunction
AND. Logical conjunction
.NOT. Logical negation

The logical elements are logical primary, logical factor,
logical term, and logical expression.

A logical primary is a logical expression enclosed in
parentheses, a relational expression, a logical constant, a
logical variable reference, a logical array element reference,
or a logical function reference.)

A logical factor is a logical primary or .NOT. followed
by a logical primary. .

A logical term is a logical factor or a construct of the
form: :
logical term .AND. logical term

A logical expression is a logical term or a construct of
the form: i

- logical expression .OR. logical expression

6.4 EvaLUATION OF EXPRESSIONS. A part of an ex-
pression need be evaluated only if such action is necessary
to establish the value of the expression. The rules for
formation of expressions imply the binding strength of
operators. It should be noted that the range of the sub-
traction operator is the term that immediately succeeds it.
The evaluation may proceed according to any valid forma-
tion sequence (except as modified in the following para-
graph).

When two elements are combined by an operator, the
order of evaluation of the elements is optional. If mathe-
matical use of operators is associative, commutative, or
both, full use of these facts may be made to revise orders
of combination, provided only that integrity of parenthe-
sized expressions is not violated. The results of different
permissible orders of combination even though math-
ematically identical need not be computationally identical.

The value of an integer factor or term is the nearest integer
whose magnitude does not exceed the magnitude of the
mathematical value represented by that factor or term. The
associative and commutative laws do not apply in the
evaluation of integer terms containing division, hence the
evaluation of such terms must effectively proceed from
left to right.

Any use of an array element name requires the evalua-
tion of its subseript. The evaluation of functions appearing
in an expression may not validly alter the value of any
other element within the expressions, assignment statement,
or CALL statement in which the function reference appears.
The type of the expression in which a function reference or
subscript appears does not affect, nor is it affected by, the
evaluation of the actual arguments or subscript.

No factor may be evaluated that requires a negative
valued primary to be raised to a real or double precision
exponent. No factor may be evaluated that requires raising
a zero valued primary to a zero valued exponent.

No element may be evaluated whose value is not
mathematically defined.

7. STATEMENTS ‘

A statement may be classified as executable or non-
executable. Executable statements specify actions; non-
executable statements describe the characteristics and
arrangement of data, editing information, statement
functions, and classification of program units.

7.1 EXEcUTABLE STATEMENTS. There are three types
of executable statements:

(1) Assignment statements.

(2) Control statements.

(3) Input output statements.

7.1.1 Assignment Statements. There are three types
of assignment statements:

(1) Arithmetic assignment statement.

(2) Logical assignment statement.

(8) GO TO assignment statement.

7.1.1.1 Arithmetic Assignment Statement. An arith-
metic assignment statement is of the form: :

v=oe
where v is a variable name or array element name of type
other than logical and e is an arithmetic expression. Execu-
tion of this statement causes the evaluation of the expression
e and the altering of v according to Table 1.

7.1.1.2 Logical Assignment Statement. A logical as- .

signment statement is of the form

v=oe .
where v is a logical variable name or a logical array element
name and e is a logical expression. Execution of this state-
ment causes the logical expression to be evaluated and its
value to be assigned to the logical entity.

7.1.1.3 GO TO Assignment Statement. A GO TO
assignment statement is of the form:

ASSIGN £ TO i

where %k is a statement label and i is an integer variable
name. After execution of such a statement, subsequent .
execution of any assigned GO TO statement (Section
7.1.2.1.2) using that integer variable will cause the statement
identified by the assigned statement label to be executed

" next, provided there has been no intervening redefinition

(9.2) of the variable. The statement label must refer to an
executable statement in the same program unit in which
the ..3SIGN statement appears.

Once having been mentioned in an ASSIGN statement,
an integer variable may not be referenced in any statement
other than an assigned GO TO statement until it has been’
redefined (Section 10.2.3). ’ .

G-7

TABLE 1. RULES FOR ASSIGNMENT OF e TO U

If v Type Is And e Type Is The Assignment Rule Is*
Integer Integer Assign
Integer Real Fix & Assign
Integer Double Precision Fix & Assign
Integer Complex P
Real . Integer Float & Assign
Real . Real Assign
Real : Double Precision DP Evaluate & Real Assign
Real Complex P
Double Precision Integer DP Float & Assign
Double Precision Real DP Evaluate & Assigh
Double Precision Double Precision Assign
Double Precision Complex)
Complex Integer P
Complex Real P
Complex : Double Precision P
Complex Complex Assign
*NOTES.

(1) P means prohibited combination.

(2) Assign means transmit the resulting value, without
change, to the entity.

(8) Real Assign means transmit to the entity as much
precision of the most significant part of the resulting value
as a real datum can contain.

(4) DP Evaluate means evaluate the expression ac-
cording to the rules of 6.1 (or any more precise rules) then
DP Float.

(5) Fix means truncate any fractional part of the result
and transform that value to the form of an integer datum.

(6) Float means transform the value to the form of a
real datum.

(7) DP Float means transform the value to the form
of a double precision datum, retaining in the process as
much of the precision of the value as a double precision
datum can contain. ‘

7.1.2 Control Statements. There are eight types of
control statements:

(1) GO TO statements.

(2) arithmetic IF statement.

(38) logical IF statement.

(4) CALL statement.

(5) RETURN statement.

(6) CONTINUE statement.

(7) program control stabements

(8) DO statement.

The statement labels used in a control statement must
be associated with executable statements within the same
program unit in which the control statement appears.

7.1.2.1 GO TO Statements. There are three types of
GO TO statements:

(1) Unconditional GO TO statement.

(2) Assigned GO TO statement.

(8) Computed GO TO statement. :

7.1.2.1.1 Unconditional GO TO Statement. An un-
conditional GO TO statement is of the form:)

GO TO *
where £ is a statement label.

Execution of this statement causes the statement
identified by the statement label to be executed next.

7.1.2.1.2 Assigned GO TO Statement. An assigned GO
TO statement is of the form:

‘ GO TO i, (ky, k2, =+ , kp)
where i is an integer variable reference, and the k’s are
statement labels. '

G-8

At the time of execution of an assigned GO TO state-
ment, the current value of i must have been assigned by the
previous execution of an ASSIGN statement to be one of
the statement labels in the parenthesized list, and such an
execution causes the statement identified by that statement
label to be executed next. .

7.1.2.1.3 Computed GO TO Statement, A computed
GO TO statement is of the form: e

GO TO (ki, ke, -+« , kp), & :
where the ’s are statement labels and i is an integer variable
reference. See 10.2.8 and 10.3 for a discussion of require-
ments that apply to the use of a variable in a computed
GO TO statement.

Execution of this statement causes the statement identi-
fied by the statement label %; to be executed next, where j
is the value of i at the time of the execution. This statement
is defined only for values such that 1 < j < n.

7.1.2.2 Arithmetic IF Statement. An arithmetic IF
statement is of the form:

IF (e) kl, }iz, ka
where e is any arithmetic expression of type integer, real,
or double precision, and the k’s are statement labels.

The arithmetic IF is a three-way branch. Execution of
this statement causes evaluation of the expression e following
which the statement identified by the statement label %,
ks, or k3 is executed next as the value of e is less than zero,
zero, or greater than zero, respectively.

7.1.2.3 Logical IF Statement. A logical IF statement
is of the form: -

IF (¢ S
where e is a logical expression and S is any executable
statement except a DO statement or another logical IF
statement. Upon execution of this statement, the logical
expression e is evaluated. If the value of e is false, statement
S is executed as though it were a CONTINUE statement,
If the value of e is true, statement S is executed.

7.1.24 CALL Statement. A CALL statement is of
one of the forms: .

CALL s (a), az, --- , ap)

. or

CALL s
where s is the name of a subroutine and the a’s are actual -
arguments (8.4.2).

The inception of execution of a CALL statement
references the designated subroutine. Return of control
from the designated subroutine completes execution of the
CALL statement.

7.1.2.5 RETURN Statement. A RETURN statement
is of the form:

RETURN

A RETURN statement marks the logical end of a
procedure subprogram and, thus, may only appear in a
procedure subprogram

Execution of this statement when it appears in a sub-
routine subprogram causes return of control to the current
calling program unit.

Execution-of this statement when it appears in a func-
tion subprogram causes return of control to the current
calling program unit. At this time the value of the function

:(8.3.1) is made available.

7.1.2.6 CONTINUE Stabement A CONTINUE
statement is of the form:

CONTINUE
Execution of this statement causes continuation of
normal execution sequence.

7.1.2.7 Program Control Statements. There are two
types of program control statements:

(1) STOP statement.

(2) PAUSE statement.

7.1.2.71 STOP Statement. A STOP statement is of
.one of the forms:

STOP n
or
STOP
where n is an octal digit string of length from one to five.

Execution of this statement causes termination of
execution of the executable program.

7.1.2.7.2 PAUSE Statement. A PAUSE statement is
of one of the forms:

PAUSE n
or
PAUSE
where 7 is an octal digit string of length from one to five.

The inception of execution of this statement causes a
cessation of execution of this executable program. Execution
must be resumable. At the time of cessation of execution
the octal digit string is accessible. The decision to resume
execution is not under control of the program, but if exe-
cution is resumed without otherwise changing the state of
the processor, the completion of the PAUSE statement
causes continuation of normal execution sequence.

7.1.2.8 DO Statement. A DO statement is of one of
the forms:

DOni = my, me, mg
or
DOni = m,m
where:

(1) n is the statement label of an executable statement.
This statement, called the terminal statement of the asso-
ciated DO, must physically follow and be in the same
program unit as that DO statement. The terminal state-
ment may not be a GO TO of any form, arithmetic IF,
RETURN, STOP, PAUSE, or DO statement, nor a logical
IF containing any of these forms.

(2) i is an integer variable name; this variable is
called the control variable.

(38) m,, called the initial parameter; m., called the
terminal parameter; and ms, called the incrementation
parameter, are each either an integer constant or integer
" variable reference. If the second form of the DO statement
is used so that m; is not explicitly stated, a value of one is
implied for the incrementation parameter. At time of exe-
cution of the DO statement, m,, mz, and m; must be greater
than zero. .

Associated with each DO statement is a range that is
defined to be those executable statements from and in-
cluding the first executable statement following the DO,
to and including the terminal statement associated with
the DO. A special situation occurs when the range of a DO
contains another DO statement. In this case, the range of
the contained DO must be a subset of the range of the
containing DO.

A completely nested nest is a set of DO statements and
their ranges, and any DO statements contained within
their ranges, such that the first occurring terminal statement
of any of those DO statements physically follows the last
occurring DO statement and the first occurring DO state-
ment of the set is not in the range of any DO statement.

A DO statement is used to define a loop. The action
succeeding execution of a DO statement is described by the
following five steps:

1. The control variable is assigned the value repre-
sented by the initial parameter. This value must be less
than or equal to the value represented by the terminal
parameter.

2. The range of the DO is executed.

3. If control reaches the terminal statement, and after
execution of the terminal statement, the control variable of
the most recently executed DO statement associated with
the terminal statement is incremented by the value repre-
sented by the associated incrementation parameter.

4. If the value of the control variable after incre-
mentation is less than or equal to the value represented by
the associated terminal parameter, the action as described
starting at step 2 is repeated with the understanding that
the range in question is that of the DO, the control variable
of which was most recently incremented. If the value of the
control variable is greater than the value represented by
its associated terminal parameter, the DO is said to have
been satisfied and the control variable becomes undefined.

5. At this point, if there were one or more other DO
statements referring to the terminal statement in question,
the control variable of the next most recently executed DO
statement is incremented by the value represented by its
associated incrementation parameter and the action as
described in step 4 is repeated until all DO statements
referring to the particular termination statement are satis-
fied, at which time the first executable statement following
the terminal statement is executed. In the remainder of
this section (7.1.2.8) a logical IF statement containing a
GO TO or arithmetic IF statement form is regarded as a
GO TO or arithmetic IF statement respectively.

Upon exiting from the range of a DO by execution of a
GO TO statement or an arithmetic IF statement, that is,
other than by satisfying the DO, the control variable of
the DO is defined and is equal to the most recent value
attained as defined in the foregoing.

A DO is said to have an extended range if both of the
following conditions apply:)

(1) There exists a GO TO statement or arithmetic IF
statement within the range of the innermost DO of a com-
pletely nested nest that can cause control to pass out of
that nest.

(2) There exists a GO TO statement or arithmetic IF
statement not within the nest that, in the collection of all
possible sequences of execution in the particular program
unit could be executed after a statement of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>